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Introduction
Symmetry	is	an	immensely	important	concept.	A	fascination	with	symmetric
forms	seems	to	be	an	innate	feature	of	human	perception,	and	for	millennia	it	has
influenced	art	and	natural	philosophy.	More	recently,	symmetry	has	become
indispensable	in	mathematics	and	science,	where	its	applications	range	from
atomic	physics	to	zoology.	Einstein’s	principle	that	the	laws	of	Nature	should	be
the	same	at	all	locations	and	all	times,	which	forms	the	basis	for	fundamental
physics,	requires	those	laws	to	possess	corresponding	symmetries.	But	for
thousands	of	years,	the	concept	of	symmetry	was	just	an	informal	description	of
regularities	of	shape	and	structure.	The	main	example	was	bilateral	or	mirror-
image	symmetry—for	example,	human	bodies	and	faces	look	almost	the	same	as
their	reflections.	Occasionally	the	term	was	also	used	in	connection	with
rotational	symmetry,	such	as	the	fivefold	symmetry	of	a	starfish	or	the	sixfold
symmetry	of	a	snowflake.	The	main	focus	was	on	symmetry	as	a	geometric
property	of	shapes,	but	sometimes	the	word	was	invoked	in	a	metaphorical
sense:	for	example,	that	in	social	disputes,	both	sides	should	be	treated	in	the
same	way.	The	deeper	implications	of	symmetry	could	not	be	discovered	until
the	concept	was	made	precise.	Then	mathematicians	and	scientists	would	have	a
solid	base	from	which	to	investigate	how	symmetry	affects	the	world	we	live	in.

Today’s	formal	concept	of	symmetry	did	not	come	from	art	or	sociology.	It	did
not	come	from	geometry,	either.	Its	primary	source	was	algebra,	and	it	emerged
from	a	study	of	the	solution	of	algebraic	equations.	An	algebraic	formula	has
symmetry	if	some	of	its	variables	can	be	interchanged	without	altering	its	value.
In	the	1800s	several	mathematicians,	notably	Niels	Henrik	Abel	and	Évariste
Galois,	were	attempting	to	understand	the	general	equation	of	the	fifth	degree.
They	proved,	in	two	related	but	different	ways,	that	this	equation	cannot	be
solved	by	any	formula	of	the	traditional	kind	(‘radicals’).	Both	analysed	A	Rubik
cube	with	one	face	in	the	process	of	being	rotatedp;	}	@font-face	{	font-family:
"Charis";	src:	url(XXXXXXXXXXXXXXXX);	font-style:	the	relation	between
such	a	solution	and	symmetric	functions	of	the	roots	of	the	equation.	What
emerged	was	a	new	algebraic	concept:	a	group	of	permutations.

After	an	initial	hiatus	while	mathematicians	got	used	to	this	new	idea,	it	soon
became	apparent	that	structures	remarkably	similar	to	groups	of	permutations
occurred	naturally	in	many	different	areas	of	mathematics,	not	just	algebra.
Among	these	areas	were	complex	function	theory	and	knot	theory.	General	and



Among	these	areas	were	complex	function	theory	and	knot	theory.	General	and
more	abstract	definitions	of	a	group	appeared,	and	a	new	subject	was	born:
group	theory.	At	first	most	work	in	this	area	was	algebraic,	but	Felix	Klein
pointed	out	a	deep	connection	between	the	concepts	that	made	sense	in	any
specific	type	of	geometry	and	the	group	of	transformations	upon	which	that
geometry	was	based.	This	connection	allowed	theorems	to	be	transferred	from
one	area	of	geometry	to	another,	and	unified	what	at	the	time	was	an
increasingly	disparate	collection	of	geometries—Euclidean,	spherical,
projective,	elliptic,	hyperbolic,	affine,	inversive,	and	topological.

At	much	the	same	time,	crystallographers	realized	that	group	theory	could	be
used	to	classify	the	different	types	of	crystal,	by	considering	the	symmetries	of
the	crystal’s	atomic	lattice.	Chemists	began	to	understand	how	the	symmetries	of
molecules	affected	their	physical	behaviour.	General	theorems	linked
symmetries	of	mechanical	systems	to	the	great	classical	conserved	quantities,
such	as	energy	and	angular	momentum.

Symmetry	is	a	highly	visual	topic	with	many	applications,	such	as	animal
markings,	locomotion,	waves,	the	shape	of	the	Earth,	and	the	form	of	galaxies.	It
is	fundamental	to	both	of	the	core	theories	of	physics,	relativity	and	quantum
theory,	and	provides	a	starting	point	for	the	ongoing	search	for	a	unified	theory
that	subsumes	them	both.	This	makes	the	topic	ideal	for	a	Very	Short
Introduction.	My	aim	is	to	discuss	the	historical	origins	of	symmetry,	some	of	its
key	mathematical	features,	its	relevance	to	patterns	in	the	natural	world,
including	living	organisms,	and	its	applications	to	pattern	formation	and
fundamental	physics.

The	story	begins	with	simple	examples	of	symmetry	related	to	everyday	life.
These	lead	to	the	great	breakthrough:	the	realization	that	objects	do	not	have
symmetry:	they	have	symmetries.	These	are	transformations	that	leave	the	object
unchanged.	This	concept	then	extends	to	symmetries	of	more	abstract	entities,
such	as	mathematical	equations	and	algebraic	structures,	leading	to	the	general
notion	of	a	group.	Some	of	the	basic	theorems	of	the	subject	are	then	stated	and
motivated,	without	proofs.

Next,	we	describe	some	of	the	many	different	types	of	symmetry—translations,
rotations,	reflections,	permutations,	and	so	on.	In	combination,	these
transformations	lead	to	many	symmetric	structures	that	are	vital	in	both
mathematics	and	science:	cyclic	and	dihedral	symmetry,	frieze	patterns,	lattices,
wallpaper	patterns,	regular	solids,	and	crystallographic	groups.	For	light	relief,



wallpaper	patterns,	regular	solids,	and	crystallographic	groups.	For	light	relief,
we	discuss	how	group	theory	can	be	applied	to	some	familiar	games	and
puzzles:	the	Fifteen	Puzzle,	the	Rubik	cube,	and	sudoku.

Equipped	with	a	refined	understanding	of	symmetry,	we	examine	how	Nature’s
patterns,	especially	familiar	ones	from	everyday	life,	can	be	described	and
explained	through	symmetry.	Examples	include	crystals,	water	waves,	sand
dunes,	the	shape	of	the	Earth,	spiral	galaxies,	animal	markings,	seashells,	animal
movement,	and	the	spiral	Nautilus	shell.	These	examples	motivate	the	concept	of
symmetry	breaking,	which	is	a	general	pattern-forming	mechanism.

Delving	deeper,	we	examine	the	profound	impact	that	symmetry	has	had	on	the
basic	equations	of	mathematical	physics.	S	analogues	of	simple	Lie
groupsittheymmetries	of	mechanical	equations,	now	conceptualized	as	Lie
groups,	are	closely	related	to	fundamental	conservation	laws	via	Noether’s
Theorem.	An	important	class,	the	simple	Lie	groups,	can	be	classified
completely.	Lie	groups	appear	in	relativity	and	quantum	mechanics,	providing
an	entry	route	for	the	search	for	VA">Left:



Chapter	1
What	is	symmetry?

Three	bored	children	on	a	ferry	are	passing	the	time	by	playing	a	game.	It	is	a
traditional	game,	requiring	no	apparatus	beyond	the	children	themselves:	rock–
paper–scissors.	Make	the	shape	behind	your	back	with	your	hands,	then	reveal	it.
Rock	blunts	scissors.	Scissors	cut	paper.	Paper	wraps	rock.

In	the	distance,	waves	roll	up	a	sandy	beach,	breaking	as	they	reach	the	shore:	an
apparently	endless	succession	of	parallel	ridges	of	water.

Half	the	sky	is	a	layer	of	thick	grey	cloud	as	a	summer	shower	falls.	Illuminated
by	the	bright	sun	in	the	other	half	of	the	sky,	a	polychrome	rainbow	arches
across	the	heavens.

A	schoolboy	passes	by	on	his	bicycle,	moving	smoothly	along	the	road.

He	stops	to	watch	the	ferry	docking.	He	feels	guilty	because	he	should	be	doing
his	geometry	homework	on	isosceles	triangles.	Like	generations	of	schoolboys
before	him,	he	is	stuck	at	the	pons	asinorum—the	bridge	of	asses.	Why	are	the
base	angles	equal?	To	him,	Euclid’s	proof	is	opaque	and	inscrutable.

*

I	put	Euclid	in	as	a	broad	hint	that	these	scenes	from	everyday	life	have	some
kind	of	mathematical	content.	In	fact,	all	five	verbal	snapshots	have	a	common
theme:	symmetry.	The	children’s	game	is	symmetric:	neither	child	has	an
advantage	or	a	disadvantage,	whichever	choice	they	make.	The	waves	rolling	up
the	beach	are	symmetric:	they	all	look	pretty	much	alike.	The	rainbow	is
beautiful	and	elegantly	proportioned,	attributes	often	associated	with	symmetry
in	a	metaphorical	sense,	but	it	has	a	more	literal	symmetry	too.	Its	coloured	arcs
are	circular,	and	circles	are	very	symmetric	indeed—which	may	be	why	ancient
Greek	philosophers	considered	circles	to	be	the	perfect	form.	Each	wheel	of	the
bicycle	is	also	a	circle,	and	it	is	the	circle’s	symmetry	that	makes	the	bicycle
work:	perfection	of	form	is	subjective	and	irrelevant	to	mechanics,	but	symmetry
is	crucial.	The	schoolboy,	trying	to	understand	the	mindset	of	an	ancient	Greek
mathematician,	is	frustrated	because	]w	written	he	has	not	yet	become	aware	of	a



hidden	symmetry	in	Euclid’s	proof—one	that	would	have	reduced	the	whole
problem	to	a	single,	obvious	statement,	had	Euclid’s	culture	allowed	him	to
think	that	way.

I’ve	used	the	word	‘symmetry’	many	times	already,	but	I	haven’t	explained	what
it	is—and	now	is	too	early.	It’s	a	simple	yet	subtle	concept.	A	general	definition
will	emerge	from	these	examples,	but,	for	now,	let’s	consider	each	in	turn,
starting	with	the	simplest	and	most	direct.

Bicycle

Why	are	wheels	circular?	Because	circles	can	roll	smoothly.	When	a	wheel	rolls
over	a	flat	surface,	successive	positions	look	like	Figure	1.	The	wheel	rotates
through	an	angle	between	each	position	and	the	next,	but	looking	at	the	picture,
you	can’t	tell	the	difference.	You	can	see	that	the	circle	has	moved,	but	you	can’t
see	any	difference	in	the	circle	itself.	However,	if	you	put	a	mark	on	the	circle,
you	will	see	that	it	has	rotated,	through	an	angle	that	is	proportional	to	the
distance	travelled.	The	wheel	has	circular	symmetry:	every	point	on	the	rim	is
the	same	distance	from	the	centre.	So	it	can	roll	along	the	flat	surface,	and	the
centre	always	stays	at	the	same	height.	Just	the	place	to	put	an	axle.

1.	Why	wheels	work

Circles	work	on	bumpy	surfaces	too,	as	long	as	the	bumps	are	gentle	or	small
enough	not	to	matter.	If	you	are	given	the	luxury	of	redesigning	the	road,
circular	symmetry	is	neither	necessary	nor	sufficient	for	a	shape	to	roll.	Square
wheels	work	pretty	well	when	the	road	is	a	series	of	upside-down	catenaries,	as
in	Figure	2	(left),	although	the	motion	is	a	bit	jerky.	In	fact,	given	any	shape	of
wheel,	there	exists	a	road	that	it	can	run	on	while	staying	level:	see	Leon	Hall
and	Stan	Wagon,	‘Roads	and	wheels’,	Mathematics	Magazine	65	(1992)	283–
301.	Non-circular	shapes	with	constant	width	make	poor	wheels	but	perfectly
good	rollers.	The	simplest	is	constructed	by	swinging	arcs	of	circles	from	the
corners	of	an	equilateral	triangle,	shown	in	white	in	Figure	2	(right).



2.	Left:	A	road	fit	for	square	wheels.	Right:	Any	curve	of	constant	width	can
be	used	as	a	roller

Rainbow

Why	do	rainbows	look	the	way	they	do?	Everyone	focuses	on	the	colours,	and
we’ve	all	been	told	the	answer:	a	drop	of	water	is	like	a	prism,	and	prisms	split
white	light	into	its	constituent	colours.	But	what	about	the	shape?	Why	is	a
rainbow	formed	from	a	series	of	bright	bands,	forming	a	great	arch	in	the	sky?
Ignoring	the	shape	of	the	rainbow	is	like	explaining	why	a	fern	is	green	but	not
why	it’s	fern	shaped.

The	main	problem	with	the	usual	explanation	of	the	rainbow	is	that	although
each	droplet	of	water	acts	like	a	prism,	despite	not	being	shaped	like	one,	a
rainbow	involves	millions	of	droplets	spread	over	a	large	volume	of	space.	Why
don’t	all	those	coloured	rays	get	in	each	other’s	way,	producing	a	muddy
smeared-out	pattern?	Why	do	we	see	a	concentrated	band	of	light?	Why	do	the
different	colours	stan">Left:	Effect	of	a	clockwise	quarter-turn	on	cubies.	alLDd
out?

The	answer	lies	in	the	geometry	of	light	passing	through	a	spherical	droplet.
(Incidentally,	you	also	need	to	understand	the	geometry	to	see	why	a	droplet
works	like	a	prism,	since	it	has	no	sharp	corners.)	Imagine	a	tight	bunch	of
parallel	light	rays	from	the	sun,	encountering	a	single	tiny	droplet.	Each	ray	is
really	a	combination	of	rays	of	many	distinct	colours—as	the	prism	experiment
shows—so	it	simplifies	the	problem	if	at	first	we	consider	just	one	colour.	The
incoming	light	bounces	round	inside	the	droplet	and	is	reflected	back.	What
happens	is	surprisingly	complex,	but	the	main	feature,	which	creates	the
rainbow,	is	described	by	rays	that	hit	the	front	of	the	droplet,	pass	inside	and	are
refracted	by	the	water,	hit	the	back	of	the	droplet	and	are	reflected,	and	finally
pass	out	again	through	the	front,	being	further	refracted.	This	is	not	as
straightforward	as	passing	in	through	one	face	of	a	prism	and	out	through	the
opposite	one.



The	geometry	of	this	process	is	illustrated	in	Figure	3	for	incoming	rays	lying	in
a	plane	through	the	line	that	joins	the	centre	of	the	sun	to	the	centre	of	the
droplet.	This	line	is	an	axis	of	rotational	symmetry	for	the	entire	system	of	rays.
The	main	features	are	two	caustics:	curves	to	which	the	rays	are	all	tangent.
Caustics	are	the	places	where	the	light	is	concentrated,	a	kind	of	focusing	effect.
The	name	means	‘burning’,	which	is	what	sunlight	passing	through	a	lens	will
do	to	skin.	One	caustic	lies	inside	the	droplet,	and	the	other	is	outside.	The
external	caustic	is	asymptotic	to	a	straight	line	at	a	specific	angle	to	the	axis	of
symmetry.	So	for	each	colour,	most	of	the	light	emitted	by	the	droplet	is	focused
at	a	specific	angle	to	the	axis.	Because	the	system	of	rays	is	rotationally
symmetric,	the	emergent	rays	lie	very	close	to	a	bright	cone.

3.	Geometry	of	the	rainbow

When	we	look	at	a	rainbow,	most	of	the	light	that	we	see	comes	from	those
droplets	whose	cones	happen	to	meet	our	eye.	Simple	geometry	shows	that	these
droplets	lie	on	another	cone,	with	our	eye	at	the	tip,	pointing	in	exactly	the
opposite	direction	to	the	cones	emitted	by	the	raindrops.	It	has	the	same	vertex
angle	as	the	cone	of	emitted	light,	and	its	axis	is	the	line	joining	the	sun	to	our
eye.	So	we	observe	a	cross	section	of	a	cone,	which	is	a	bright	circular	arc.	The
other	raindrops	don’t	smear	that	out	because	hardly	any	of	their	light	hits	our
eye.

What	about	the	coloured	bands?	They	arise	because	the	angle	of	refraction
depends	on	the	wavelength	of	the	light.	Different	wavelengths,	corresponding	to
different	colours,	produce	arcs	of	slightly	different	sizes.	For	visible	light,	the
angle	lies	roughly	between	40°	(blue)	and	42°	(red).	These	arcs	all	have	the	same
centre,	which	lies	on	the	symmetry	axis.	There’s	much	more	to	rainbows,	for
example	the	common	occurrence	of	a	secondary	rainbow,	which	lies	outside	the
main	one,	is	not	as	bright,	and	has	the	colours	in	the	reverse	order.	This	is
created	by	rays	that	bounce	more	than	once	inside	the	droplets.	But	the	overall



shape	is	a	consequence	of	rotational	symmetry,	both	of	a	droplet	and	of	the
entire	system.	Next	time	you	see	a	rainbow,	don’t	think	prisms,	think	symmetry.

Ocean	waves

In	reality,	waves	rolling	up	the	beach	are	not	precisely	identical,	but	in	some
circumstances	they	come	close:	for	example,	gentle	ripples	on	a	very	calm	sea.
Simple	mathematical	equations	for	waves	reproduce	this	pattern:	they	have
analogues	of	simple	Lie	groupson	occurregular	periodic	solutions.	In	the
simplest	model	of	all,	with	space	reduced	to	one	dimension	and	assuming	the
wave	height	to	be	small,	a	wave	is	a	sine	curve	moving	at	constant	speed;	see
Figure	4.

Sine	curves	have	an	important	symmetry	indicated	by	the	arrows	in	the	figure:
they	are	periodic.	Add	2π	to	any	angle,	and	its	sine	remains	the	same.	That	is,

sin(x	+	2π)	=	sin	x

4.	Sinusoidal	waves

So	at	any	instant	of	time,	the	spatial	pattern	of	the	wave	would	look	exactly	the
same	if	you	slid	the	whole	wave	along	by	a	distance	2π,	or	any	integer	multiple.
And	‘look	exactly	the	same’	is	one	of	the	characteristic	features	of	symmetry.

Moving	waves	have	another	type	of	symmetry:	symmetry	in	time.	If	the	wave	is
travelling	with	speed	c	then	its	shape	at	time	t	is	sin(x−ct).	After	time	2π/c	that
becomes	sin(x−2π),	which	equals	sin	x.	So	the	pattern	looks	the	same	after	a	time
that	is	any	integer	multiple	of	2π/c.	This	is	why	each	successive	wave	looks
much	the	same	as	the	previous	one.

In	fact,	a	sine	wave	has	even	more	symmetry:	it	maintains	the	same	shape	as	it
moves.	If	you	slide	the	wave	sideways	by	any	amount	a	and	wait	for	a	time	a/c,
you	see	exactly	the	shape	that	you	started	with,	because	sin(x	+	a−ca/c)	=	sin	x.



This	type	of	spatio-temporal	symmetry	is	characteristic	of	travelling	waves.

Rock–paper–scissors

In	the	previous	examples,	symmetry	is	associated	with	geometry.	However,
symmetry	need	not	be	related	to	anything	visual.	The	symmetry	of	rock–paper–
scissors	is	crystal	clear,	and	everybody	sees	it	immediately	because	it’s	what
makes	the	game	fair.	All	three	strategies	are	‘on	the	same	footing’.	Whatever
one	child	chooses,	the	other	has	one	choice	that	beats	it,	one	that	loses	to	it,	and
one	that	is	the	same	and	therefore	leads	to	a	draw.

Rock–paper–scissors	is	a	game	in	a	more	formal	sense.	In	1927	John	von
Neumann,	one	of	the	great	mathematicians	of	the	20th	century	and	a	pioneer	of
computer	science,	invented	a	simple	model	of	economic	decision-making,	called
game	theory.	He	proved	a	key	theorem	about	games	in	1928,	and	this	led	to	an
explosion	of	new	results,	culminating	in	Theory	of	Games	and	Economic
Behaviour,	written	jointly	with	Oskar	Morgenstern	and	published	in	1944.	It
became	a	media	sensation.

In	the	simplest	version	of	von	Neumann’s	set-up,	a	game	is	played	by	two
people.	Each	has	a	specific	set	of	available	strategies,	and	must	choose	one	of
them.	Neither	player	knows	what	their	opponent	is	going	to	choose,	but	they
both	know	how	their	gains	and	losses—payoffs—depend	on	the	combination	of
choices	that	they	make.	In	an	economic	application,	one	player	might	be	a
manufacturer	and	the	other	a	potential	customer.	The	manufacturer	can	choose
what	to	make	and	what	price	to	char">Left:	Effect	of	a	clockwise	quarter-turn	on
cubies.	alLDge;	the	customer	can	decide	whether	or	not	to	buy.

To	bring	out	the	basic	mathematical	principles,	imagine	that	the	two	players
repeat	the	same	game	many	times,	making	new	strategic	choices	on	each
repetition—just	like	the	children	on	the	ferry.	Which	strategy	produces	the
greatest	gain,	or	the	least	loss,	on	average?	Always	making	the	same	choice	is
clearly	a	bad	idea.	If	one	child	always	chooses	scissors,	then	the	other	can	win
every	time	by	spotting	the	pattern	and	choosing	rock.	So	von	Neumann	was	led
to	consider	mixed	strategies,	involving	a	range	of	random	choices,	each	with	a
fixed	probability.	For	example,	choose	scissors	half	the	time,	paper	one-third	of
the	time,	and	rock	one-sixth	of	the	time,	at	random.	His	basic	result	was	the
Minimax	Theorem:	for	any	game	there	exists	a	mixed	strategy	that	permits	both



players	simultaneously	to	make	their	maximum	losses	as	small	as	possible.	This
result	had	been	conjectured	for	some	time,	but	it	needed	a	proper	proof,	and	von
Neumann	was	the	first	person	to	find	one.	He	said:	‘There	could	be	no	theory	of
games	…	without	that	theorem	…	I	thought	there	was	nothing	worth	publishing
until	the	Minimax	Theorem	was	proved.’

The	mixed	strategy	above	is	not	minimax.	If	one	player	chooses	scissors	half	the
time,	then	the	other	can	improve	their	chance	of	winning	by	choosing	rock	more
frequently	than	paper.	We	can	find	the	minimax	strategy	by	exploiting	the
game’s	symmetry.	Roughly	speaking,	the	minimax	strategy	must	have	the	same
kind	of	symmetry.	We	can	all	guess	where	that	leads	to,	but	it	will	be	useful	to
run	through	some	of	the	details	that	confirm	that	guess.	Consider	a	mixed
strategy	in	which	a	player	chooses	rock	with	probability	r,	paper	with	probability
p,	and	scissors	with	probability	s.	Denote	this	strategy	by	(r,	p,	s)	and	suppose	it
is	minimax.	I’m	going	to	use	the	symmetry	of	the	game	to	deduce	the	values	of
r,	p,	and	s.

First,	we	need	a	table	of	payoffs,	called	the	payoff	matrix.	Scoring	1	for	a	win,
−1	for	a	loss,	and	0	for	a	draw,	it	looks	like	Figure	5	(left).	I	claim	that	if	(r,	p,	s)
is	a	minimax	strategy	for	player	1,	then	so	is	(p,	s,	r).	In	fact,	so	is	(s,	r,	p),	but
we	don’t	use	that.	To	see	why,	imagine	renaming	the	choices	according	to	the
language	of	the	aliens	of	Apellobetnees	III,	using	the	standard	dictionary:

The	rules	of	the	game	sound	the	same	in	both	languages—on	Apellobetnees	III,
payppr	beats	roq	beats	syzzrs	beats	payppr.	The	payoff	matrix	looks	the	same
whichever	language	we	use.	So	the	effect	of	this	linguistic	change	is	to	cycle	the
strategies	as	in	Figure	5	(right).	The	average	gains	or	losses	for	any	strategy	(r,
p,	s)	also	don’t	change	if	we	cycle	the	symbols,	which	leads	to	the	strategy	(p,	s,
r).	Since	these	two	strategies	always	have	the	same	average	gains	and	losses,	it	is
clear	that	if	one	of	them	is	minimax,	so	is	the	other.



5.	Left:	Payoff	matrix	for	the	first	player	in	rock–paper–scissors.	Right:
Cycling	strategies;	arrow	means	‘beats’

Usually	there	is	only	one	minimax	strategy.	I	don’t	want	to	get	tied	up	in	the
technicalities,	but	it’s	true	for	rock–paper–scissors.	So	the	two	mixed	strategies
are	the	same:

(r,	p,	s)	=	(p,	s,	r)

That	means	that	r	=	p	=	s.	But	a	player	must	choose	one	of	the	three	shapes,	so
the	probabilities	sum	to	1:

r	+	p	+	s	=	1

Therefore	r,	p,	and	s	all	equal	1/3.	In	short:	the	minimax	strategy	for	rock–
paper–scissors	is	to	choose	each	shape	at	random	with	equal	probability.

As	I	said,	you	could	have	guessed	this.	But	we	now	know	why	it’s	true—and
which	technical	theorems	you	need	to	prove	to	demonstrate	that.	The
mathematical	skeleton	of	the	argument	ignores	many	details	of	the	problem;
instead,	it	focuses	on	general	principles:

1.	The	problem	is	symmetric.

2.	Therefore	any	solution	implies	the	existence	of	symmetrically	related	ones.

3.	The	solution	is	unique.

4.	Therefore	the	symmetrically	related	solutions	are	all	the	same.

5.	Therefore	the	solution	we	require	is	itself	symmetric,	and	that	determines	the
probabilities.



6.	Pons	asinorum

Bridge	of	asses

Euclid’s	proof	that	the	angles	at	the	base	of	an	isosceles	triangle	are	equal	is
quite	complicated.	Likely	reasons	for	its	nickname	are	the	diagram,	which
resembles	a	bridge	(see	Figure	6),	and	its	metaphorical	status	as	a	bridge	to	the
deeper	theorems	to	which	it	leads.	Another,	more	frivolous,	suggestion	is	that
many	students	ground	to	a	halt	when	required	to	cross	it.

Here’s	how	Euclid	proves	the	theorem.	I’ve	taken	some	liberties	and	used
simpler	language,	shortening	the	argument	considerably.	I’ve	abbreviated
‘equal’,	‘angle’,	and	‘triangle’	in	the	usual	way	(=,	∠,	Δ).	Equality	for	triangles
is	what	we	now	call	‘congruent’—same	shape	and	size.

Let	ABC	be	an	isosceles	triangle	with	AB	=	AC.

Extend	AB	and	AC	to	get	BD	and	CE.	We	claim	that	∠ABC	=	∠ACB.

To	prove	this,	take	F	somewhere	on	BD.	From	AE	cut	off	AG	=	AF.	Draw	FC
and	GB.	Now	FA	=	GA	and	AC	=	AB.	ΔAFC	and	ΔAGB	contain	a	common
angle	∠FAG.	Therefore	ΔAFC	=	ΔAGB,	so	FC	=	GB.	The	remaining	angles	are
equal	in	corresponding	pairs:	∠ACF	=	∠ABG	and	∠AFC	=	∠AGB.

Since	AF	=	AG	and	AB	=	AC,	the	remainder	BF	=	CG.	Consider	ΔBFC	and
ΔCGB.	Now	FC	=	GB	and	∠BFC	=	∠CGB,	while	the	base	BC	is	common	to
both	triangles.	Therefore	ΔBFC	=	ΔCGB,	so	their	corresponding	angles	are
equal.	Therefore	∠FBC	=	∠GCB	and	∠BCF	=	∠CBG.

Since	∠ABG	was	proved	equal	to	∠ACF,	and	∠CBG	=	∠BCF,	the	remaining



∠ABC	=	∠ACB,	and	these	angles	are	at	the	base	of	ΔABC.

QE">Left:	Effect	of	a	clockwise	quarter-turn	on	cubies.	alLDD

What’s	going	on	here?	What	is	the	idea	behind	Euclid’s	list	of	formal
deductions?

The	clue	is	that	everything	comes	in	matching	left–right	pairs.	The	sides	AB	and
AC	start	this	process;	the	angles	we	want	to	prove	equal	end	it.	F	and	G	are
symmetrically	related;	so	are	FC	and	GB;	so	are	all	the	pairs	of	angles	that	are
proved	equal.	Euclid	compiles	enough	equal	pairs	of	angles	to	conclude	that
∠ABC	=	∠ACB,	as	required.	This,	too,	is	a	symmetrically	related	pair.	Figure	7
illustrates	the	main	steps,	showing	the	symmetry	throughout.

7.	In	each	vertical	pair	of	diagrams	the	marked	lines,	angles,	and	triangles
are	equal

Euclid’s	jumble	of	letters	now	starts	to	tell	a	mathematical	story,	the	essence	of	a
memorable,	insightful	proof.	The	essential	idea,	from	a	modern	standpoint,	is
that	the	isosceles	triangle	has	mirror	symmetry.	It	looks	the	same	if	you	reflect	it
in	the	vertical	line	through	its	apex.	Since	this	operation	swaps	the	base	angles,
they	must	be	equal.

Why	didn’t	Euclid	prove	it	like	that?	He	didn’t	have	the	luxury	of	referring	to
symmetry.	The	closest	he	could	get	was	the	notion	of	congruent	triangles.	He
was	building	up	his	geometry	step	by	logical	step,	and	some	concepts	that	seem
obvious	to	us	were	not	available	at	this	stage	of	his	book.	So	instead	of	flipping
the	triangle	over	to	compare	it	to	its	mirror	image,	he	constructed	mirror-image
pairs	of	lines	and	angles	to	do	the	same	job,	using	the	technical	tool	of	congruent
triangles	to	prove	the	required	equalities.

Ironically,	there	is	a	very	simple	way	to	prove	the	theorem	using	congruent
triangles,	without	adding	any	extra	construction	lines.	Observe	that	ΔABC	is



congruent	to	ΔACB.	Two	sets	of	corresponding	sides	are	equal	(AB	=	AC	and
AC	=	AB)	and	the	included	angles	∠BAC	and	∠CAB	are	equal	since	they	are
the	same	angle.

Euclid	didn’t	think	like	that,	though.	To	him,	ΔABC	and	ΔACB	were	the	same
triangle.	What	he	needed	was	to	define	a	triangle	as	an	ordered	triple	of	line
segments.	But	he	was	thinking	in	pictures,	and	that	level	of	abstraction	was	not
available	to	him.	I’m	not	saying	he	couldn’t	have	done	it.	I’m	saying	that	his
cultural	perspective	didn’t	permit	it.

*

We’ve	now	seen	that	symmetries	of	various	kinds	arise	naturally	in	mathematics
and	the	world	around	us,	and	that	their	presence	can	often	simplify	a	calculation,
provide	insight	into	Nature,	or	motivate	a	proof.	We’ve	also	seen	that,
mathematically,	symmetry	can	be	a	shape	(circles,	waves),	an	abstract	structure
(rock–paper–scissors),	or	a	reflection	(bridge	of	asses).	The	physical
implications	of	symmetry	can	apply	to	space,	to	time,	to	both	in	combination,	or
to	more	abstract	notions	such	as	probability	or	a	matrix.

What	I’ve	not	yet	explained	is	what	symmetry	is.	The	diversity	of	contexts	in
which	the	word	seems	applicable	suggests	that	a	precise	definition	could	be
elusive.	However,	the	examples	mainly	indicate	what	symmetry	is	not.	It	isn’t	a
number,	it	isn’t	a	shape,	it	isn’t	an	equation.	It	isn’t	space	and	it	isn’t	time.	It
might	be	one	of	those	metaphorical	or	judgemental	ideas	that	you	can’t	pin	down
formally,	like	‘beauty	Invariants	of	the	Rubik	group.	ng0B’.	However,	it	turns
out	that	there	is	a	useful	and	precise	notion	of	symmetry,	broad	enough	to	cover
all	of	our	previous	examples	and	a	great	deal	besides.	Even	more	general	notions
of	symmetry	exist;	this	one	isn’t	sacred.	But	it	is	extremely	powerful	and	useful,
and	it’s	the	industry	standard	in	pure	mathematics,	applied	mathematics,
mathematical	physics,	chemistry,	and	many	other	branches	of	science.

When	talking	of	the	symmetry	of	a	circle	I	described	it	in	two	ways.	One	was:
every	point	is	the	same	distance	from	the	centre.	The	other	was:	if	you	rotate	the
circle	through	any	angle,	it	looks	exactly	the	same	as	it	was	to	begin	with.	The
second	version	is	the	one	that	holds	the	key	to	a	formal	definition	of	symmetry.

What	is	a	rotation?	Physically,	it	is	a	way	to	move	an	object	by	changing	its
orientation	without	changing	its	shape.	Mathematically	it	is	a	transformation—



an	alternative	word	for	‘function’.	A	transformation	is	a	rule	F	that	associates	to
any	appropriate	‘thing’	x	another	‘thing’	F(x).	The	‘thing’	might	be	a	number,	a
shape,	an	algebraic	structure,	or	a	process.	There’s	a	fancy	set-theoretic
definition:	if	you	know	it	I	don’t	need	to	say	what	it	is,	and	if	you	don’t,	you
know	enough	already	without	it.

For	the	present	example,	x	is	a	point	on	a	circle,	so	I’ll	replace	x	by	the	more
traditional	symbol	θ.	Imagine	the	unit	circle	in	the	plane.	I	can	prescribe	a	point
on	the	circle	by	letting	θ	be	the	angle	at	which	it	sits.	What	happens	if	I	rotate	the
circle	through,	say,	a	right	angle?	Then	the	point	θ	moves	to	a	new	point	at	angle
θ	+	π/2.	So	this	particular	rotation	can	be	defined	using	the	transformation	F	for
which:

F(θ)	=	θ	π/2

In	these	terms,	what	does	my	statement	‘the	circle	looks	exactly	the	same	as	it
was	to	begin	with’	mean?	Each	point	on	the	circle	moves—it	turns	through	a
right	angle.	But	the	set	of	all	rotated	points	is	exactly	the	same	as	the	original	set
—the	circle.	What’s	changed	is	how	we	label	those	points	with	angles.

More	generally,	rotation	through	a	general	angle	α	corresponds	to	(‘is’,	in	fact,
by	definition)	the	transformation

Fα(θ)	=	θ	π/2

which	adds	the	same	angle	α	to	every	angle	θ	representing	a	point	on	the	circle.
Again,	the	set	of	all	rotated	points	is	exactly	the	same	as	the	original	set.	We	say
that	a	circle	is	symmetric	under	all	rotations.

*

We	can	now	define	symmetry.

A	symmetry	of	some	mathematical	structure	is	a	transformation	of	that	structure,
of	a	specified	kind,	that	leaves	specified	properties	of	the	structure	unchanged.

There	is	one	technical	condition:	only	invertible	transformations,	ones	that	can
be	inverted	(reversed),	are	permitted.	So	we	can’t	squash	the	entire	circle	down
to	a	single	point,	for	instance.	Rotations	are	invertible:	the	inverse	of	rotation	by
α	is	rotation	by	−α;	that	is,	through	the	same	angle,	but	in	the	opposite	direction.



If	the	definition	of	symmetry	seems	a	bit	vague,	that’s	because	it’s	extremely
general.	‘Specified’	is	vague	until	you	specify.	For	shapes	in	the	plane	or	space,
the	most	natural	transformations	to	specify	are	rigid	motions,	which	leave	the
distances	between	pairs	of	points	unchanged.	Other	types	of	transformation	are
possible;	for	instance,	topological	ones,	which	can	bend	space,	compress	it,
stretch	it,	but	not	break	or	tear	it.	But	here	we	will	confine	attention	to	rigid
motions,	which	allows	a	more	explicit	definition:	A	symmetry	of	a	shape	in	the
plane	(or	space)	is	a	rigid	motion	of	the	plane	(or	space)	that	maps	the	shape	to
itself.

With	these	specifications,	does	a	circle	have	any	other	symmetries?	Yes:
reflections.	Any	rigid	motion	of	the	plane	that	maps	the	circle	to	itself	must	map
its	centre	to	itself.	Consider	the	unit	circle	in	the	plane,	centred	at	the	origin.	By
convention,	angles	are	measured	anticlockwise	from	angle	0,	which	is	on	the
positive	x-axis.	If	we	reflect	the	plane	in	any	straight	line	through	the	centre,	a
conceptual	mirror,	then	the	circle	again	maps	to	itself.	For	a	horizontal	mirror,
the	reflection	is	R0,	where

R0(θ)	=	−θ

If	the	mirror	is	inclined	at	an	angle	α	to	the	horizontal,	the	reflection	is	Rα,	where

Rα(θ)	=	2α	−θ

With	a	bit	more	technique,	we	can	prove	that	these	rotations	and	reflections
comprise	all	possible	rigid-motion	symmetries	of	the	circle.

Notice	that	the	circle	has	infinitely	many	symmetries:	one	infinite	family	of
rotations,	and	a	second	infinite	family	of	reflections.	Other	shapes	may	be	less
richly	endowed.	For	example,	an	ellipse	(with	its	axes	in	the	usual	position:	one
horizontal,	the	other	vertical)	has	exactly	four	symmetries;	see	Figure	8	(left).
These	are:	leave	it	alone,	rotate	by	π,	and	reflect	about	the	horizontal	or	vertical
axes.	In	symbols,	the	transformations	concerned	are	F0,	Fπ,	R0,	and	Rπ/2.

An	equilateral	triangle,	centred	at	the	origin	and	with	one	vertex	on	the
horizontal	axis	as	in	Figure	8	(middle),	has	six	symmetries:	rotate	through	0,
2π/3,	4π/3,	or	reflect	in	any	of	the	lines	bisecting	the	triangle.	Symbolically,
these	are	F0,	F2π/3,	F4π/3,	R0,	R2π/3,	and	R4π/3.	Similarly	a	square,	Figure	8	(right),



has	eight	symmetries:	F0,	Fπ/2,	Fπ,	F3π/2,	R0,	Rπ/2,	Rπ,	and	R3π/2.

As	these	examples	illustrate,	a	given	shape	may	have	many	different
symmetries.	So	instead	of	considering	individual	symmetries,	we	need	to	think
about	them	all.	It	turns	out	that	the	set	of	all	symmetries	of	a	given	shape—or,
more	generally,	some	structure—has	an	elegant	algebraic	property.	Namely,	if
we	‘compose’	two	symmetries	by	performing	the	transformations	in	turn,	the
result	is	also	a	symmetry.

You	can	check	this	property	for	the	above	examples	on	a	case-by-case	basis,	but
there’s	an	easier	way.	First,	note	that	composing	two	rigid	motions	produces	a
rigid	motion:	if	you	leave	the	distance	between	two	points	unchanged,	and	then
leave	it	unchanged	again,	you	obviously	leave	it	unchanged.	Second,	if	each
rigid	motion	concerned	maps	the	shape	to	itself,	then	so	does	their	composition:
if	you	map	a	shape	to	itself	and	then	map	it	to	itself	again,	you	have	clearly
mapped	it	to	itself.

8.	Symmetries	of	an	ellipse,	equilateral	triangle,	and	square.	F0,	which
leaves	all	points	fixed,	is	not	indicated

This	property	of	symmetries	is	trivial,	but	it	is	also	of	vital	importance.	We	say
that	the	set	of	all	symmetries	of	a	given	shape	or	structure	forms	a	group.
Accordingly,	we	rename	this	set	the	symmetry	group	of	the	shape	or	structure.	It
turns	out	that	if	you	know	the	symmetry	group,	you	can	infer	all	sorts	of	things
about	the	shape	or	structure.	All	five	of	my	examples	can	be	described	in	the
language	of	sof	simple	Lie



Chapter	2
Origins	of	symmetry

The	broad	notion	of	symmetry	was	tacitly	recognized	for	thousands	of	years
before	a	specific	version	was	formulated	in	precise	mathematical	terms.
Symmetries	can	be	found	in	art,	culture,	the	natural	world,	science,	and
mathematics,	and	their	appeal	seems	to	go	to	the	roots	of	human	perception.
Religious	and	secular	symbols	are	often	symmetric,	and	today	the	same	is	true	of
some	company	logos;	see	in	the	plane.	iland	duneFigure	9.	A	bold,	simple,
symmetric	design	seems	to	have	a	powerful	effect	on	the	human	psyche.	Artists
have	explored	symmetric	patterns	in	remarkable	depth	and	detail.	Architects
have	employed	a	variety	of	symmetries	to	design	elegant	buildings.	Symmetry	in
the	natural	world	has	fascinated	natural	historians	and	scientists	since	the	time	of
Aristotle.

Islamic	art	is	famous	for	its	use	of	symmetric	designs,	such	as	those	found	in	the
Alhambra,	a	former	fortress	and	palace	in	Grenada,	Spain	that	dates	to	the	14th
century;	see	Figure	10.	The	building	itself	is	not	designed	to	a	systematic	plan,
but	it	is	decorated	with	a	great	many	tiling	patterns.	There	are	seventeen	distinct
symmetry	types	of	lattice	pattern	(Chapter	4),	and	it	is	often	said	that	all	of	them
exist	in	the	Alhambra.	The	truth	of	this	statement	depends	on	how	it	is
interpreted,	because	real	patterns	don’t	go	on	forever.	Edith	Muller	found	eleven
(some	say	twelve)	of	them	in	1944;	Branko	Grünbaum	and	others	found	two
more	in	the	1980s	but	were	unable	to	locate	the	remaining	four.	In	1987	Rafael
Pérez-Gomes	and	independently	José	María	Montesinos	stated	that	they	had
succeeded	in	doing	so.	Grünbaum	has	disputed	this	claim	on	grounds	of
imprecise	definitions.	Syed	Jan	Abas	and	Amer	Shaker	Salman’s	Symmetries	of
Islamic	Geometrical	Patterns	includes	examples	of	all	seventeen	patterns	from
Islamic	art,	not	all	from	the	Alhambra.	In	addition,	Islamic	artists	invented	many
patterns	that	at	first	sight	appear	to	be	perfectly	symmetric,	but	cleverly	avoid
rigid	mathematical	obstacles	to	create	‘impossible’	patterns—for	instance,
containing	apparently	regular	heptagons	and	octagons.	Artistically,	these	are	on
a	par	with	the	perfectly	symmetric	patterns,	and	it	seems	unlikely	that	the	artists
distinguished	between	these	two	types	because	they	did	not	employ	a	rigorous
mathematical	characterization.



9.	Symmetric	symbols	and	logos.	Left	to	right:	Christianity,	Judaism,	Islam,
yin-yang,	Mercedes,	Toyota

10.	A	typical	Islamic	pattern	from	the	Alhambra

The	most	evident	symmetry	in	Nature	is	the	striking,	though	never	exact,
bilateral	symmetry	of	animals,	including	humans.	The	spiral	forms	of	many
shells	are	another	well-known	instance	of	symmetry	in	the	living	world.
Informal	uses	of	symmetry,	often	tacit,	occur	throughout	the	sciences.	For
example,	astronomers	assumed	that	a	large	mass	of	molten	rock	in	space	was
likely	to	assume	a	spherical	form,	and	that	a	rotating	mass	would	be	axially
symmetric.

More	formal	uses	came	in	particular	from	crystallography.	Crystals	often	have	a
striking	geometric	form;	for	example,	salt	crystals	can	be	cubes.	The	facets	of	a
crystal	are	evidence	for	the	underlying	atomic	lattice,	and	the	symmetries	of	the
macroscopic	crystal	are	related	to	those	of	this	lattice.	However,	the	details	of
the	growth	patterns	of	the	crystal	are	also	involved,	in	general,	so	the	most	direct
predictions	from	the	lattice	are	the	angles	between	neighbouring	facets.
Historically,	scientists	only	began	to	accept	that	crystals	have	a	regular	structure
when	measurements	of	these	angles	produced	the	same	results	for	many	samples
of	the	same	mineral.	This	may	seem	in	two	or	three	dimensionsOne	of	the
pioneers	of	crystallography	was	Pierre	Curie,	and	he	stated	his	famous
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dissymmetry	principle:	an	effect	cannot	have	a	dissymmetry	absent	from	its
cause.	Dissymmetry	is	lack	of	symmetry,	so	we	can	rephrase	this	as	‘The
symmetry	of	the	causes	must	be	reproduced	in	the	effects.’	Suitably	interpreted,
this	principle	is	arguably	true,	but	its	more	obvious	interpretations	are	often
false;	see	Chapter	6.	Crystallography	was	one	of	the	first	areas	of	science	to
benefit	from	a	rigorous	mathematical	formulation	of	the	concept	of	symmetry.

Another	was	chemistry,	where	it	was	discovered	that	many	molecules	exist	in
two	mirror-image	forms—the	technical	term	is	‘chirality’,	introduced	in	1873	by
Lord	Kelvin.	In	1815	Jean-Baptiste	Biot	noticed	that	some	chemicals,	notably
sugars,	rotate	polarized	light	in	one	direction,	while	other	apparently	identical
chemicals	rotate	it	in	the	opposite	direction.	Louis	Pasteur	deduced	in	1848	that
the	molecules	concerned	must	be	mirror	images	of	each	other.	Chirality	is
important	in	biochemistry	because	one	form	of	the	molecule	may	be	biologically
active	while	the	other	is	not.	Amino	acids,	the	basic	constituents	of	proteins,	are
examples:	the	body	can	use	one	form	but	not	the	other.	Many	molecules	are
symmetric,	and	their	properties	are	influenced	by	their	symmetry.	A	recent	case
is	buckminsterfullerene,	a	cage	of	60	carbon	atoms	arranged	like	the	vertices	of	a
truncated	icosahedron,	which	has	the	same	symmetries	as	the	icosahedron.

A	rigorous	definition	of	symmetry	emerged	from	none	of	these	areas.	Instead,	it
came	from	pure	mathematics,	with	the	concept	of	a	group	of	transformations.
One	of	the	basic	rules	in	the	history	of	mathematics	seems	to	be	that	important,
simple,	general	ideas	first	arise	in	a	far	more	complicated	form.	Group	theory	is
no	exception.	It	emerged	from	a	number	of	difficult	technical	areas	of
mathematical	research,	and	in	each	case	the	concept	had	accompanying	baggage:
additional	special	structure	that	obscured	the	underlying	simplicities.	The
historical	sources	for	group	theory	include	several	distinct	areas	of	algebra,	of
which	the	most	influential	is	the	theory	of	equations:	how	to	solve,	or	in	this	case
how	not	to	solve,	polynomial	equations.	Another	source	is	the	theory	of	elliptic
functions	and	related	‘modular’	functions	in	complex	analysis.	An	early
application,	knot	theory,	was	also	influential.	Matrix	algebra,	which	emerged
from	work	on	changes	of	variables	in	algebraic	geometry,	also	played	a	major
role,	but	we	won’t	go	into	that.

You	don’t	need	to	know	any	of	this	material	to	understand	what	a	group	is,	or	to
use	the	concept.	However,	a	feel	for	the	history	helps	to	put	the	material	in
context,	and	it	demonstrates	that	what	we	are	studying	is	real	mathematics,
related	to	core	areas	of	the	subject,	and	not	just	some	weird	abstraction	with	no



purpose	and	no	content.

Equations	and	Galois	Theory

After	basic	geometry	and	arithmetic,	the	oldest	area	of	mathematics	is	probably
the	theory	of	equations.	Four	thousand	years	ago,	Babylonian	scribes	were
teaching	what	in	effect	was	today’s	elementary	algebra	to	their	pupils,	using
verbal	descriptions	and	examples,	often	stated	as	‘I	found	a	stone	but	did	not
weigh	it	…’	followed	by	enough	information	to	pin	down	the	weight	exactly.
The	stu	Spatio-temporal	symmetries	of	the	bound

One	triumph	of	Babylonian	algebra,	if	I	can	call	it	that	when	no	symbols	were
used,	was	the	solution	of	quadratic	equations.	Babylon’s	scribes	seem	to	have
understood	the	general	principle	for	solving	any	quadratic	equation,	although
they	presented	their	method	through	typical	examples.	The	main	difference
today	is	the	use	of	an	algebraic	formula	to	specify	the	solutions.	Also,	negative
coefficients	and	complex	solutions	are	now	permitted.	By	the	Renaissance,
Italian	mathematicians	had	discovered	similar	formulas	for	solving	cubic	and
quartic	equations.	The	common	feature	of	these	formulas	was	that,	aside	from
the	standard	algebraic	operations	of	addition,	subtraction,	multiplication,	and
division,	the	only	extra	ingredient	was	the	extraction	of	nth	roots—radicals.	The
solution	of	the	quadratic	required	square	roots;	that	of	the	cubic	required	both
square	roots	and	cube	roots;	that	of	the	quartic	also	required	square	roots	and
cube	roots.	A	fourth	root,	after	all,	is	just	the	square	root	of	a	square	root,	so	it’s
surplus	to	requirements.

The	formulas	were	universal,	in	the	sense	that	the	same	formula	worked	for	any
equation	of	the	relevant	degree.	(In	some	circumstances	the	classical	formula
does	not	explicitly	represent	the	real	and	imaginary	parts	of	roots.	This	was	first
realized	for	cubic	equations.	If	there	is	one	real	root,	the	formula	provides	it.	If
there	are	three	real	roots,	it	specifies	them	only	as	expressions	involving	cube
roots	of	complex	numbers.)	However,	as	the	degree	increased,	so	did	the
complexity	of	the	formula.	For	centuries	there	was	a	general	feeling	that	the	only
obstacle	to	extending	the	results	to	equations	of	higher	degree	was	this	growing
complexity.	The	solution	of	the	general	quintic	equation,	for	instance,	was
presumably	given	by	some	complicated	formula,	no	doubt	involving	fifth	roots,
cube	roots,	and	square	roots.	It	might	possibly	need	seventh	roots,	or	107th	roots
for	that	matter,	but	it	was	hard	to	see	why	those	would	come	into	play.

By	the	late	18th	century,	some	of	the	leading	mathematicians	were	beginning	to



By	the	late	18th	century,	some	of	the	leading	mathematicians	were	beginning	to
suspect	that	this	belief	was	mistaken.	Joseph	Louis	Lagrange	found	a	unified
description	of	previous	methods	for	solving	quadratics,	cubics,	and	quartics;	he
used	permutations	of	the	roots	of	the	equation	to	construct	what	we	now	call	a
Lagrange	resolvent.	This	is	a	related	equation,	whose	roots	determine	those	of
the	original	one.	For	quadratics,	cubics,	and	quartics,	the	Lagrange	resolvent	has
smaller	degree	than	the	original	equation	does.	But	for	quintics,	the	Lagrange
resolvent	makes	the	problem	worse,	turning	a	quintic	equation	into	a	sextic
equation—one	of	degree	6.

That	does	not	imply	that	no	solution	by	radicals	exists.	Perhaps	there	might	be
some	alternative	approach.	Maybe	Lagrange	resolvents	aren’t	the	way	to	go.	By
1799	the	Italian	mathematician	Paolo	Ruffini	had	written	down	what	he	claimed
to	be	a	proof	that	you	do	have	to	go	that	way,	and	it	doesn’t	work.	His	title
translates	as	‘The	general	theory	of	equations	in	which	it	is	proved	that	the
algebraic	solution	of	equations	of	degree	greater	than	4	is	impossible.’
Unfortunately	his	book	was	enormously	long,	with	extensive	calculations	where
mistakes	might	easily	occur,	and	the	end	result	was	negative,	so	his	work
attracted	little	attention.	Ruffini	tried	to	make	his	proof	more	accessible,	but	he
never	really	got	the	credit	he	deserved.	Later	it	turned	out	that	his	proof	had	a
logical	gap,	but	it	could	be	filled.

The	first	accepted	impossibility	proof	was	published	by	the	Norwegian	Niels
Henrik	Abel	in	1823,	aft	analogues	of	simple	Lie	groupss	wCPer	an	earlier
episode	where	for	a	brief	time	he	mistakenly	thought	he	had	found	a	formula	that
solved	the	quintic	using	radicals.	His	first	proof	was	incomprehensibly	brief,	and
in	1826	he	published	an	expanded	treatment.	Like	Lagrange	and	Ruffini,	he
focused	on	permutations	of	the	roots	of	the	equation.	It	was	a	proof	by
contradiction:	assume	there	is	a	formula	using	radicals,	and	deduce	something
self-contradictory.	The	final	step	was	a	curious	calculation	involving	two
different	permutations	of	the	five	roots.

The	trouble	with	that	sort	of	proof	is	that	although	you	can	check	the	logic	and
assure	yourself	that	it	is	correct,	it’s	not	always	clear	why	the	answer	is	what	it
is.	The	big	breakthrough	came	from	the	young	Frenchman	Évariste	Galois,	who
made	a	head-on	assault	on	the	general	question:	when	can	a	polynomial	equation
be	solved	by	radicals?	Galois	gave	a	complete	solution,	which	in	passing	proved
that	the	general	quintic	cannot	be	solved	in	that	manner,	but	it	had	what	was	seen
at	the	time	to	be	a	flaw.	It	expressed	the	condition	for	solubility	in	terms	of	the



roots,	not	the	coefficients.	This	makes	it	difficult	to	verify	Galois’s	conditions
for	any	specific	equation.	Galois	made	things	even	worse	for	himself	by
becoming	involved	in	revolutionary	politics,	and	managed	to	get	himself	killed
in	a	duel.

*

The	techniques	available	to	Galois	were	basic	algebra	and	Lagrange’s	idea	of	a
permutation.	In	those	days,	a	permutation	of	a	list	of	objects—say	abcde—was
another	list	in	which	they	were	rearranged,	such	as	bdaec.	This	way	of	thinking,
and	writing,	is	rather	cumbersome,	but	it	was	all	Galois	had.	He	associated	with
any	polynomial	equation	a	list	of	permutations	of	its	roots,	defined	by	certain
algebraic	properties,	and	showed	that	this	list	has	a	specific	kind	of	structure.	He
called	such	a	list	a	‘group’.	And	he	proved	that	an	equation	can	be	solved	by
radicals	if	and	only	if	its	group	can	be	broken	up,	in	a	particular	manner,	into	a
series	of	smaller	groups,	each	having	a	very	simple	form.	The	idea	was	highly
original,	and	it	took	time	for	the	importance	of	the	work	to	sink	in.

In	modern	terms,	his	basic	idea	was	to	consider	the	symmetry	group	of	the
equation.	Remember:	a	symmetry	group	consists	of	transformations	that
preserve	certain	structure.	So	what	are	the	transformations,	and	what	is	the
structure?

The	transformations	are	permutations	of	the	roots,	but	we	now	think	of
permutations	as	functions,	not	as	arrangements.	Instead	of	thinking	of	a	standard
list	abcde	and	a	rearrangement	bdaec,	we	think	of	the	transformation	that
replaces	each	symbol	in	the	standard	list	by	the	corresponding	one	in	the
rearranged	list.	That	is,

a	→	b	b	→	d	c	→	a	d	→	e	e	→	c

This	way	of	thinking	has	an	advantage:	it	makes	it	obvious	how	to	compose	two
permutations,	and	it	is	clear	that	this	yields	another	permutation.

The	structure	that	must	be	preserved	is	more	subtle.	It	is	not	the	equation.	A
permutation	of	the	roots	of	an	equation	is	just	a	reordering	of	those	roots;	the
reordered	roots	satisfy	exactly	the	same	equation	as	they	did	in	the	original
order.	Instead,	what	must	be	preserved	is	all	algebraic	relations	among	the
roots.	Perhaps	the	original	roots	satisfy	an	equation	like	ad−ce	=	4.	Apply	the
permutation,	and	this	becomes	be−ac	=	4.	If	this	relation	does	not	hold,	then	the



permutation	is	not	a	symmetry	of	the	equation.	If	it	does	in	two	or	three
dimensionsThis	is	where	group	theory,	the	mathematics	of	symmetry,	came
from.	Not	from	geometric	ideas	about	rotating	squares	or	icosahedra.	Everything
would	have	been	much	clearer	if	the	geometry	had	come	first,	and	symmetry
groups	were	available	to	Galois	and	his	forerunners—but	it	didn’t,	and	they
weren’t.	Great	pioneers	never	let	this	kind	of	thing	stop	them,	but	it	does	make
their	work	harder	for	mere	mortals	to	understand.

For	a	time,	group	theory	was	little	more	than	an	algebraic	curiosity,	important	in
just	one	area:	the	theory	of	equations.	Undaunted,	a	few	indefatigable	pioneers
continued	developing	group	theory	for	its	own	sake.	Soon	groups	littered	the
entire	mathematical	landscape.	Henri	Poincaré,	in	a	slightly	un-self-critical
moment,	once	remarked	that	the	theory	of	groups	was,	‘as	it	were,	the	whole	of
mathematics	stripped	of	its	matter	and	reduced	to	pure	form’	(my	italics).	The
astonishing	thing	is	not	that	he	should	make	such	a	sweeping	statement:	it	is	that
the	statement	was	only	a	slight	exaggeration.	Groups	had	become	that	central
and	that	important.

Areas	where	groups	started	making	their	presence	felt	included	abstract	algebra,
topology,	complex	analysis,	algebraic	geometry,	and	differential	equations.
Connections	with	science,	especially	in	physics	and	chemistry,	also	motivated
further	development	of	the	group	concept	and	its	deep	relationship	with
symmetry.

Abstract	algebra

The	modern	abstract	approach	to	algebra	grew	from	the	work	of	Galois	and
others	on	structural	features	of	numbers,	permutations,	and	similar	systems.
Galois	himself	investigated	what	we	now	call	Galois	fields:	finite	sets	for	which
operations	like	‘addition’	and	‘multiplication’	can	be	defined,	satisfying	all	of
the	standard	rules	of	algebra.	There	is	one	of	these	for	each	prime	power	number
pn	of	elements;	it	is	denoted	by	GF(pn).

The	simplest	example	occurs	when	n	=	1.	Let	GF(p)	be	the	set	of	numbers	0,	1,
2,	…,	p−1,	with	operations:

a	⊕	b	=	the	remainder	on	dividing	a	+	b	by	p

a	⊗	b	=	the	remainder	on	dividing	ab	by	p

kindle:pos:fid:00il… well, there are other potential relations, and <em>all</em> of them have to be preserved. It’s not immediately clear how to verify this condition, but it is clear that the permutations that satisfy it must form a group. We now call it the <em>Galois group</em> of the equation, and we define ‘preserve relations’ in a more abstract way.</p> <p class=


Then	many	familiar	algebraic	laws	hold:	for	example,	the	commutative	law	for
addition:

a	⊕	b	=	b	⊕	a

the	distributive	law:

a	⊗	(b	⊕	c)	=	(a	⊗	b)	⊕	(a	⊗	c)

and	simple	rules	like:

0	⊕	a	=	a										1	⊗	a	=	Left:	Wallpaper	pattern	with	two	independent
translations	(arrows).	alLD">a

Moreover,	when	p	is	prime,	every	nonzero	element	a	has	a	multiplicative	inverse
a−1	for	which	aa−1	=	1.	So	a−1	is	effectively	1/a	and	we	can	define	division:

a/b	=	ab−1

For	instance,	suppose	p	=	5.	Addition	and	multiplication	tables	look	like	this:

Now	2⊗3	=	1,	so	2−1	=	3	and	3−1	=	2.

Number	theorists	had	used	this	basic	idea	for	some	time	before	Carl	Friedrich
Gauss	formalized	it	in	his	Disquisitiones	Arithmeticae,	introducing	the	notation:

x	≡	y	(mod	n)

to	mean	that	x−y	is	exactly	divisible	by	n.	The	resulting	system	is	known	as
‘arithmetic	modulo	n’.	When	p	is	prime,	so	that	multiplicative	inverses	exist,	the
integers	modulo	p	form	a	structure	called	a	field.	When	p	is	composite,	so	that



inverses	may	not	exist	and	division	may	not	be	defined,	all	the	other	main
algebraic	laws	still	hold	and	we	have	a	ring.	There	are	many	different	structures
with	similar	properties,	so	these	concepts	came	into	widespread	use	in	algebra.

Under	addition,	GF(p)	behaves	remarkably	like	a	group	of	transformations,
except	that	its	elements	are	not	transformations.	If	we	interpret	the	elements	of
GF(5)	so	that	g	corresponds	to	rotation	of	the	plane	about	the	origin	through	an
angle	2πg/5,	then	addition	in	GF(p)	corresponds	exactly	to	addition	of	angles.
For	instance,	4⊕1	corresponds	to	8π/5	+	2π/5	=	10π/5	=	2π,	the	same	angle	as	0.
So	these	two	structures	are	identical	except	for	the	context	in	which	they	are
defined.	They	are	said	to	be	isomorphic.

There	is	another	structure	in	GF(5)	that	closely	resembles	a	group	of
transformations:	its	nonzero	elements	under	multiplication.	Now	there	are	four
elements,	and	they	form	a	group	isomorphic	to	the	rotational	symmetries	of	the
square.	In	this	sense,	a	Galois	field	is	two	groups	joined	together:	a	group	of
nonzero	elements	under	multiplication,	and	a	larger	group	with	0	included,	under
addition.	The	distributive	law	places	a	constraint	on	how	the	two	groups	relate	to
each	other.

If	n	>	1,	the	integers	modulo	n	do	not	form	a	field,	because	p.pn−1	≡	0	(mod	pn).
The	definition	of	GF(pn)	is	more	complicated.

Elliptic	functions

Groups	turned	up	in	complex	analysis	because	they	brought	together	several
different	strands	of	the	subject,	unifying	them	at	a	specific	angle	to	the	axis0
occur	into	what	is	now	a	very	powerful	toolkit,	with	applications	to	other	areas
including	number	theory	and	algebraic	geometry.	It	played	a	key	role	in	Andrew
Wiles’s	1995	proof	of	Fermat’s	Last	Theorem,	for	example.

In	real	analysis,	the	trigonometric	functions	‘sine’	and	‘cosine’	are	highly
influential.	One	of	their	important	properties,	already	noted	in	the	context	of
waves,	is	periodicity.	Their	values	remain	the	same	if	2π	is	added	to	the	variable:

sin(x	+	2π)	=	sin(x)					cos(x	+	2π)	=	cos(x)

It	immediately	follows	that	adding	an	integer	multiple	2kπ	to	x	also	leaves	the
function	unchanged.	This	relationship	also	holds	when	the	variable	is	complex



(replace	x	by	z	=	x	+	iy).	Another	closely	related	periodic	function	on	the
complex	plane	is	the	exponential	ez,	but	this	time	the	period	is	2πi,	which	is
imaginary.	The	link	is	the	famous	equation:

eiθ	=	cos	θ	+	i	sin	θ

11.	The	lattice	formed	by	all-integer	linear	combinations	of	two	complex
periods	ω1	and	ω2

Because	the	complex	numbers	form	a	plane,	it	is	seems	possible	in	principle	for
a	complex	function	f	to	have	two	independent	periods,	ω1	and	ω2,	so	that:

f	(z	+	ω1)	=	f	(z	+	ω2)	=	f	(z)

By	‘independent’	I	mean	that	ω1	is	not	a	real	multiple	of	ω2,	so	ω1	and	ω2
correspond	to	linearly	independent	vectors	in	the	real	plane.	The	linear
combinations	mω1	+	nω2,	for	integer	m,	n,	form	a	lattice;	see	Figure	11.	The
function	is	completely	determined	by	its	values	on	any	‘tile’	of	this	lattice,	such
as	the	shaded	region.	The	values	elsewhere	are	obtained	by	translating	this	tile
by	an	element	of	the	lattice.	Specifically,	the	equation

f	(z	+	mω1	+	nω2)	=	f	(z)

defines	the	values	of	f	on	the	shaded	tile	translated	by	mω1	+	nω2.

Functions	of	this	kind	are	called	elliptic	functions.	The	name	reflects	the
historical	path	to	their	discovery:	they	arise	when	calculating	the	length	of	an	arc
of	an	ellipse.	‘Doubly	periodic	function’	is	a	more	informative	name.	Elliptic
functions	can	be	construct	analogues	of	simple	Lie	groupss	wCPed	using	infinite
series	that	sum	certain	expressions	over	the	lattice.



More	generally,	we	can	replace	translations	by	Möbius	transformations:

where	a,	b,	c,	d	are	complex	constants	such	that	ad−bc	≠	0	(the	condition	for	the
transformation	to	have	an	inverse).	Möbius	transformations	have	elegant
geometric	properties;	in	particular	they	map	circles	or	straight	lines	in	the
complex	plane	to	circles	or	straight	lines.	Composing	two	Möbius
transformations	gives	another	Möbius	transformation,	and	the	numbers	a,	b,	c,	d
behave	exactly	like	2×2	matrices

under	matrix	multiplication,	though	you	get	the	same	Möbius	transformation	if
all	four	numbers	are	multiplied	by	the	same	constant,	and	this	must	be	borne	in
mind.

Elliptic	functions	are	invariant	under	a	group	of	translations	of	the	complex
plane.	Analogous	elliptic	modular	functions	are	invariant	under	a	suitable	group
of	Möbius	transformations.	There	are	several	standard	ways	to	visualize	such
groups.	One	is	to	see	what	they	do	to	the	unit	disc	|z|	≤	1.	Figure	12	shows	a
tiling	of	the	unit	disc	whose	symmetries	comprise	one	particular	group	of
Möbius	transformations.	Although	the	tiles	seem	to	shrink	towards	the	edge	of
the	disc,	they	are	all	the	same	size	in	the	metric—notion	of	distance—of	the
hyperbolic	plane.

The	unit	disc	is	a	standard	model	for	one	kind	of	non-Euclidean	geometry:
hyperbolic	geometry,	in	which	parallels	(to	a	given	line,	passing	through	a	given
point)	are	not	unique.	In	this	model,	‘straight	lines’	correspond	to	circles	that	cut
the	boundary	of	the	disc	at	right	angles.	Möbius	transformations	turn	out	to	be
the	analogue	of	rigid	motions	in	this	model	of	hyperbolic	geometry.



12.	Tiling	of	the	unit	disc	corresponding	to	a	group	of	Möbius
transformations

This	identification	of	Möbius	geometry	with	hyperbolic	geometry	is	one
example	of	Klein’s	unification	of	the	vast	range	of	geometries	that	was
proliferating	late	in	the	19th	century.	His	Erlangen	Programme,	named	after	the
city	where	he	announced	it,	takes	each	kind	of	geometry	and	associates	to	it	the
group	of	allowable	transformations.	For	Euclidean	geometry	this	is	the	group	of
rigid	motions;	for	hyperbolic	geometry	it	is	the	analogous	group	in	hyperbolic
space;	for	Möbius	geometry	it	is	the	group	of	Möbius	transformations;	for
projective	geometry	it	is	the	group	of	projective	transformations;	and	for
topology	it	is	the	group	of	all	continuous	invertible	transformations.	If	two
apparently	distinct	geometries	have	isomorphic	groups—more	precisely,	groups
whose	actions	on	their	spaces	are	isomorphic—then	they	are	really	the	same
geometry	in	disguise.	Geometry	is	then	the	study	of	invariants	of	transformation
groups—features	of	the	underlying	space	that	are	preserved	by	the
transformations.	At	the	time,	this	was	an	important	way	to	unify	geometry,	and	it
inspired	some	profound	new	ideas.

Knot	theory	and	topology

Topology	is	a	kind	of	geometry,	but	instead	of	just	rigid	motions,	any	invertible
in	two	or	three	dimensionsdeformations	do	not—they	can	bend	things,	stretch
them,	or	shrink	them.	A	triangle	can	be	changed	into	a	circle	by	a	continuous
deformation.	One	of	the	founding	papers	in	topology	is	‘Analysis	situs’,
published	in	1895	by	Poincaré.	It	introduced	a	structure	known	as	the
fundamental	group,	associated	with	any	topological	space.	Two	spaces	that	are
continuously	deformable	into	each	other	have	isomorphic	fundamental	groups;
that	is,	the	fundamental	group	is	a	topological	invariant.



The	fundamental	group	is	defined	using	closed	loops	inside	the	topological
space.	First,	choose	a	base	point—any	specific	point	in	the	space.	Then	consider
all	possible	loops:	continuous	curves	that	start	from	the	base	point,	wander
around	the	space,	and	end	back	at	the	base	point.	Any	two	loops	can	be
combined:	first	trace	one,	then	the	other.	The	trivial	loop	(stay	at	the	base	point)
acts	almost	like	an	identity	element.	Reversing	a	loop	by	tracing	it	in	the
opposite	direction	is	almost	an	inverse	for	the	original	loop.	However,	this
doesn’t	quite	work:	tracing	a	loop	and	then	going	back	along	it	is	not	the	same	as
staying	at	the	base	point	the	whole	time.

These	deficiencies	can	be	remedied	by	considering	not	loops,	but	homotopy
classes	of	loops.	Two	loops	are	said	to	be	homotopic	if	each	can	be	deformed
continuously	into	the	other.	Homotopy	classes	can	be	combined	by	combining
representative	loops	and	taking	the	class	of	all	loops	homotopic	to	the	result.
Now	the	homotopy	class	of	the	trivial	loop	really	is	an	identity,	and	the
homotopy	class	of	the	reverse	loop	is	the	inverse.	In	other	words,	loops	form	a
group	in	which	two	loops	are	combined	by	tracing	them	in	turn,	provided	the
loops	are	considered	only	‘up	to	homotopy’:	homotopic	loops	are	considered	to
be	the	same.

For	example,	suppose	that	the	space	is	a	circle.	Then	each	homotopy	class
corresponds	to	all	loops	with	a	given	winding	number:	how	many	times	the	loop
winds	round	the	circle	in	a	clockwise	direction.	If	you	combine	a	loop	with
winding	number	m	and	one	with	winding	number	n,	the	result	has	winding
number	m	+	n.	So	the	fundamental	group	of	the	circle	corresponds	precisely	to
integers	under	addition.	The	trivial	loop	has	winding	number	0;	the	reverse	of	a
loop	with	winding	number	n	has	winding	number	−n.

Kurt	Reidemeister	took	up	Poincaré’s	idea,	and	used	it	to	study	knots.	A	knot	is
a	closed	curve	K	embedded	in	three-dimensional	space	(3-space).	As	a
topological	space	in	its	own	right,	K	is	just	a	circle.	What	matters	for	knots	is
how	K	sits	inside	3-space.	One	way	to	describe	this	embedding	is	to	consider	the
knot	complement:	everything	in	3-space	that	is	not	in	K.	Reidemeister	defined
the	knot	group	of	K	to	be	the	fundamental	group	of	the	knot	complement.	It	is	a
topological	invariant	for	the	way	K	sits	inside	3-space.

Reidemeister	realized	that	it	is	possible	to	compute	the	knot	group	from	a
diagram	of	the	knot	by	associating	symbols	x1,	…,	xn	with	a	diagram	of	the
knot.	These	symbols	belong	to	the	group,	which	implies	that	the	group	must	also



include	all	‘words’	formed	by	the	symbols,	such	as	x12	Spatio-temporal
symmetries	of	the	bound

Figure	13	shows	an	example	using	a	so-called	Wirtinger	presentation.	On	the	left
is	a	knot	diagram,	which	naturally	decomposes	into	connected	arcs.	Each	arc	is
given	a	symbol.	At	each	crossing	the	arrows	look	like	either	Figure	13	(middle)
or	Figure	13	(right).	Using	x,	y,	z	to	represent	the	corresponding	symbols,	we
impose	the	relation	xy	=	zx	for	Figure	13	(middle),	and	xz	=	yx	for	Figure	13
(right).	These	relations	are	geometric	consequences	of	systematic	ways	to
deform	specific	loops	near	crossings.

Here	the	elements	of	the	group	are	not	transformations.	They	are	strings	of
symbols,	with	rules	that	require	superficially	different	strings	to	be	equal.
Geometrically,	they	represent	homotopy	classes	of	loops,	but	their	topological
features	have	been	distilled	into	a	purely	symbolic	form.

13.	Left:	A	typical	knot	diagram	broken	into	arcs	at	crossings.	Middle:
Three	symbols	at	a	crossing	for	one	orientation.	Right:	Three	symbols	at	a
crossing	for	the	other	orientation

Abstract	groups

Ironically,	this	very	richness	of	sources	obscured	the	underlying	simplicity	of	the
group	concept,	because	mathematicians	and	physicists	defined	their	notion	of	a
group	in	terms	of	the	area	in	which	they	were	using	it.	Many	came	close	to	the
modern	definition,	but	omitted	crucial	features—for	example,	the	presence	of	the
identity	transformation.	Today’s	definition	seems	to	have	evolved,	gradually,
from	many	closely	related	variants.

In	an	axiomatic	approach,	a	group	is	like	a	group	of	transformations,	except	that
you	throw	away	the	transformations.	The	elements	(or	members)	of	the	group
can	in	principle	be	anything.	What	matters	is	how	they	combine.	Here	is	(one
version	of)	the	current	definition:



A	group	is	a	set	G	together	with	an	operation	*	that	combines	any	two	elements
g	and	h	of	G	to	give	an	element	g*h	of	G.	(Technically	this	is	a	function
*:G×G→G.)	The	following	conditions	must	hold:

1.	Identity.	There	exists	a	special	element	in	G,	which	we	denote	by	1,	such	that
1*g	=	g	and	g*1	=	g	for	all	g	∈	G.	(It	need	not	be	the	number	1.)

2.	Inverse	in	two	or	three	dimensions3.	Associative	law.	For	any	g,	h,	k	∈	G	we
have	g*(h*k)	=	(g*h)*k.

Symmetry	groups	of	geometric	figures	and	groups	of	permutations	satisfy	this
definition.	The	operation	*	is	then	composition	of	transformations,	1	is	the
identity	transformation,	g−1	is	the	inverse	transformation,	and	the	associative	law
holds	because	it	holds	for	all	functions	whenever	composition	is	defined.	Similar
remarks	apply	to	groups	of	symbols,	but	now	*	is	‘juxtapose	and	simplify’.	The
samet	references	t

kindle:pos:fid:00il</em>. For any <em>g</em> ∈ <em>G</em> there exists <em>g</em><sup>−1</sup> ∈ <em>G</em> such that <em>g</em>*<em>g</em><sup>−1</sup> = 1 and <em>g</em><sup>−1</sup>*<em>g</em> = 1.</p> <p class=


Chapter	3
Types	of	symmetry

Rigid	motions	are	among	the	easiest	symmetries	to	understand,	because	they
have	a	geometric	interpretation	and	their	effects	can	be	illustrated	using	pictures.
The	possibilities	depend	on	the	dimension	of	the	space:	the	greater	the
dimension,	the	more	different	kinds	of	rigid	motion	there	are.

On	a	line,	there	are	two	types	of	rigid	motion.	Either	the	orientation	of	the	line
(the	direction	in	which	the	coordinate	increases	from	negative	to	positive)	is
preserved,	or	not.	If	is	a	topological	invariant"	aid="0Ha,	so	a	general	point	x
maps	to	x	+	a.	If	not,	then	the	line	is	reflected	in	the	origin	and	then	translated,
so	x	maps	to	−x	+	a.

The	possibilities	become	richer	when	we	consider	rigid	motions	in	the	plane.
The	main	types,	shown	in	Figure	14,	are:

1.	Translations,	which	move	the	entire	plane	in	some	direction	by	a	specific
distance.

2.	Rotations,	which	rotate	the	plane	through	some	angle	about	a	fixed	point.

3.	Reflections,	which	map	each	point	to	its	mirror	image	in	some	fixed	line.

14.	The	four	types	of	rigid	motion	in	the	plane

Less	well	known,	but	also	important,	are:

4.	Glide	reflections,	which	map	each	point	to	its	mirror	image	in	some	fixed	line,



and	then	translate	the	plane	in	the	direction	of	that	line.

The	rigid-motion	symmetries	of	a	bounded	region	of	the	plane	cannot	include	a
nontrivial	translation	or	glide	reflection,	because	repeated	application	of	either	of
these	transformations	moves	points	through	arbitrarily	large	distances.	So	for
bounded	shapes,	only	rotations	and	reflections	occur.

Cyclic	and	dihedral	groups

The	finite	groups	of	rigid	motions	fall	into	two	classes,	depending	on	whether
the	group	consists	only	of	rotations,	or	includes	at	least	one	reflection.

Figure	15	shows	two	typical	cases.	The	left-hand	shape	is	symmetric	under	five
rotations	about	its	centre,	through	angles	of	0,	2π/5,	4π/5,	6π/5,	and	8π/5;	see
Figure	16	(left).	These	rotations	form	the	cyclic	group	of	order	5,	denoted	by	Z5.
The	right-hand	shape	is	symmetric	under	the	same	five	rotations,	but	it	also	has
five	reflectional	symmetries,	in	the	mirror	lines	shown	in	Figure	16	(right).
These	rotations	and	reflections	form	the	dihedral	group	of	order	10,	denoted	by
D5.	(Many	books	use	D10	instead,	but	the	notation	D5	reminds	us	of	the	relation
to	Z5.)

15.	Two	symmetric	shapes	in	the	plane.	Left:	Z5	symmetry.	Right:	D5
symmetry

Similarly	we	can	define	the	cyclic	group	Zn	of	order	n	and	the	dihedral	group	D
Trotting	sow	(Muybridge)ng0Bn	of	order	2n.	The	group	Zn	consists	of	all
rotations	through	2kπ/n	about	the	origin,	where	0	≤	k	≤	n−1.	The	group	Dn
consists	of	the	same	rotations,	together	with	reflections	in	mirror	lines	making
angles	kπ/n	with	the	horizontal	axis,	where	again	0	≤	k	≤	n−1.	The	dihedral



group	Dn	is	the	symmetry	group	of	a	regular	n-gon,	and	the	cyclic	group	Zn	is
the	group	of	rotational	symmetries	of	the	n-gon.	Here	Zn	is	a	subset	of	Dn	that
happens	to	form	a	group	under	the	same	operation.	We	call	it	a	subgroup.

16.	Left:	The	five	rotations	for	Z5	symmetry.	Right:	The	five	mirror	lines	for
the	extra	symmetries	in	D5

Every	finite	group	G	of	rigid	motions	of	the	plane	must	fix	some	point.	In	fact,	if
x	is	any	point	in	the	plane	then	a	short	calculation	proves	that	the	‘centre	of
mass’

is	fixed	by	G.	It	is	not	hard	to	prove	that	Zn	(n	≥	1)	and	Dn	(n	≥	1)	comprise	all
finite	groups	of	rigid	motions	of	the	plane	that	fix	the	origin.

Orthogonal	and	special	orthogonal	groups

There	are	two	further	important	groups	of	rigid	motions	that	fix	the	origin:	the
group	SO(2)	of	all	rotations	about	the	origin	and	the	group	O(2)	of	all	rotations
and	reflections	in	lines	through	the	origin.	The	symbols	stand	for	‘special
orthogonal	group’	and	‘orthogonal	group’.	A	circle	has	symmetry	group	O(2).
Again,	SO(2)	is	a	subgroup	of	O(2).

Friezes

Unbounded	shapes	can	have	a	richer	range	of	symmetries.	A	frieze	pattern	is	a
pattern	in	the	plane	whose	symmetries	leave	the	horizontal	axis	invariant.



Individual	points	on	that	axis	may	move,	but	the	whole	axis	is	mapped	to	itself
as	a	set.	The	name	comes	from	the	friezes	often	used	at	the	top	of,	or	across	the
middle	of,	wallpaper.	There	are	seven	different	symmetry	types	of	frieze,	shown
in	Figure	17.



17.	The	seven	symmetry	types	of	frieze	pattern	is	the	number	of	elements



Wallpaper

Wallpaper	patterns	are	symmetric	under	two	independent	translations:	one
step	along	the	length	of	the	roll	of	paper,	and	one	step	sideways	to	the	next
strip	of	paper,	possibly	with	a	shift	up	or	down	(which	interior	decorators
call	the	‘drop’).	This	is	just	like	the	symmetries	of	elliptic	functions,	defined
by	a	lattice;	see	Chapter	2.	In	addition,	the	entire	pattern	may	be	symmetric
under	various	rotations	and	reflections.	The	simplest	such	symmetry	group
consists	of	combinations	of	the	two	translations,	and	a	typical	pattern	is
shown	in	Figure	18	(left).	To	avoid	confusion,	it	is	important	to	appreciate
that	the	pattern	in	Figure	18	(right)	does	not	have	additional	rotational
symmetries.	A	single	star	has	extra	symmetries,	but	when	you	apply	them	to
the	whole	pattern,	other	stars	don’t	map	correctly.	However,	the	pattern	is
now	symmetric	under	reflection	in	the	vertical	bisector	of	any	star,	a	new
symmetry	that	the	donkey	paper	lacks.

In	1891	the	Russian	pioneer	of	mathematical	crystallography	Yevgraf
Fyodorov	(often	spelt	Evgraf	Fedorov)	proved	that	there	are	exactly
seventeen	different	symmetry	classes	of	wallpaper	pattern.	George	Pólya
obtained	the	same	result	independently	in	1924.	These	patterns	can	be
classified	according	to	the	symmetry	type	of	the	underlying	plane	lattice.
Replacing	the	points	of	the	lattice	by	symmetrically	arranged	shapes
produces	patterns	whose	symmetry	group	is	a	subgroup	of	that	of	the
lattice.

18.	Left:	Wallpaper	pattern	with	two	independent	translations	(arrows).
Right:	Same	translations,	no	2π/5	rotations,	but	also	reflections	in	a	vertical
bisector	of	any	pentagon	(such	as	the	dotted	line)

Lattices	have	two	distinct	types	of	symmetry:	the	lattice	translations



themselves,	and	the	holohedry	group,	consisting	of	all	rigid	motions	that	fix
one	lattice	point	(which	we	may	take	to	be	the	origin)	and	map	the	lattice	to
itself.	Any	symmetry	is	a	combination	of	these	two	types.	The	proof	is
simple:	suppose	s	is	a	symmetry	of	the	lattice,	sending	0	to	s(0).	There	is	a
translation	t	that	maps	0	to	s(0),	so	t−1s	=	h	is	in	the	holohedry	group.
Therefore	s	=	th,	which	is	a	holohedry	composed	with	a	lattice	translation.

19.	The	five	symmetry	types	of	lattice	in	the	plane.	Left	to	right:
Parallelogrammic,	rhombic,	rectangular,	square,	hexagonal.	Arrows	show	a
choice	of	lattice	generators.	Shaded	area	is	the	associated	fundamental
region

The	five	symmetry	types	of	lattice,	shown	in	Figure	19,	are:

1.	Parallelogrammic	or	oblique:	the	lattice	generators	are	of	unequal	length
and	not	at	right	angles.	The	fundamental	domain	is	a	parallelogram
straightforward	alLD.	The	holohedry	is	Z2	generated	by	rotation	through	π.

2.	Rhombic:	the	lattice	generators	are	of	equal	length	and	not	at	angles	π/2,
π/3,	2π/3.	The	fundamental	domain	is	a	rhombus.	The	holohedry	is	D2
generated	by	rotation	through	π	and	a	reflection.

3.	Rectangular:	the	lattice	generators	are	of	unequal	length	and	at	right
angles.	The	fundamental	domain	is	a	rectangle.	The	holohedry	is	also	D2.



4.	Square:	the	lattice	generators	are	of	equal	length	and	at	right	angles.	The
fundamental	domain	is	a	square.	The	holohedry	is	D4	generated	by	rotation
through	π/2	and	a	reflection.

5.	Hexagonal	or	(equilateral)	triangular:	the	lattice	generators	are	of	equal
length	and	at	an	angle	of	π/3.	The	fundamental	domain	is	a	rhombus
composed	of	two	equilateral	triangles.	Parts	of	three	of	these	fit	together	to
make	a	hexagon	that	also	tiles	the	plane.	The	holohedry	is	D6	generated	by
rotation	through	π/6	and	a	reflection.

To	obtain	the	wallpaper	classification,	we	examine	each	of	these	five	types
of	lattice,	and	classify	the	subgroups	of	the	symmetry	group	that	contain	the
lattice	translations.	Figure	20	shows	all	seventeen	wallpaper	patterns,	their
standard	crystallographic	notation,	and	the	underlying	lattices.

Regular	solids

Now	we	move	up	to	three	dimensions.	A	solid	(that	is,	a	polyhedron)	is	said
to	be	regular	if	its	faces	are	regular	polygons,	all	identical,	with	the	same
arrangement	of	faces	at	each	vertex.	The	five	regular	solids	shown	in	Figure
21	are	a	rich	source	of	symmetries	in	three	dimensions.	They	are:





20.	The	seventeen	wallpaper	patterns.	Captions	are	standard
crystallographic	notation



21.	The	five	regular	solids.	Left	to	right:	Tetrahedron,	cube,	octahedron,
dodecahedron,	icosahedron

•	Tetrahedron:	four	faces,	each	an	equilateral	triangle.

•	Cube:	six	faces,	each	a	square.

•	Octahedron:	eight	faces,	each	an	equilateral	triangle.

•	Dodecahedron:	twelve	faces,	each	a	regular	pentagon.

•	Icosahedron:	twenty	faces,	each	an	equilateral	triangle.

Not	only	are	the	faces	and	vertex	arrangements	of	these	solids	very	regular:
the	entire	solid	is,	in	the	sense	of	symmetry	at	a	specific	angle	to	the	axis
occur.	For	each	solid,	any	face	can	be	mapped	to	any	other	face	by	a	rigid
motion,	and	this	rigid	motion	maps	the	entire	solid	to	itself.	Moreover,	any
symmetry	of	that	face	extends	uniquely	to	a	symmetry	of	the	solid.	Proving
these	statements	is	not	especially	hard,	but	it	requires	developing	a	few
geometric	techniques	not	found	in	Euclid.

These	symmetry	properties	allow	us	to	compute	the	number	of	symmetries
that	each	regular	solid	possesses;	that	is,	the	order	of	its	symmetry	group.
For	example,	the	tetrahedron	has	four	faces,	each	of	which	can	be	mapped
to	a	specified	reference	face.	Then	the	reference	face	has	six	symmetries—
the	group	D3—all	of	which	extend	to	the	whole	solid.	So	in	total	there	are
4.6	=	24	symmetries.	More	generally,	if	the	solid	has	F	faces,	each	with	E
edges,	its	symmetry	group	contains	2EF	rigid	motions.	Table	1	shows	the
results.

Looking	at	this	table,	it	immediately	becomes	clear	that	the	cube	and
octahedron	have	the	same	number	of	symmetries,	as	do	the	dodecahedron
and	icosahedron.	There	is	a	simple	reason,	known	as	duality.	The	centres	of
the	faces	of	a	cube	form	the	vertices	of	an	octahedron,	so	any	symmetry	of
the	cube	is	also	a	symmetry	of	this	octahedron.	On	the	other	hand,	the
centres	of	the	faces	of	an	octahedron	form	the	vertices	of	a	cube,	so	any



centres	of	the	faces	of	an	octahedron	form	the	vertices	of	a	cube,	so	any
symmetry	of	the	octahedron	is	also	a	symmetry	of	this	cube.	A	similar
relationship	holds	for	the	dodecahedron	and	icosahedron.	So	these	pairs	of
symmetry	groups	are	isomorphic.

Table	1.	Number	of	symmetries	of	regular	solids

What	about	the	humble	tetrahedron?	The	centres	of	its	faces	form	another
tetrahedron.	It	is	self-dual,	and	this	construction	gives	rise	to	nothing	new.

A	symmetry	of	a	regular	solid	always	fixes	its	centre,	which	by	convention	is
the	origin.	Suppose	we	define	an	orientation	for	the	solid	by	conceptually
marking	an	arrow	on	each	face	in	an	anticlockwise	direction,	as	seen	from
outside	the	solid.	Rotations	preserve	this	orientation.	Reflections,	and	some
other	transformations,	reverse	it.	In	fact,	the	symmetry	preserves	the
orientation	of	the	solid	if	and	only	if	it	is	a	rotation	in	three-dimensional
space.	It	reverses	the	orientation	if	and	only	if	it	is	a	rotation	composed	with
minus	the	identity.	This	sends	each	vertex	to	the	diametrically	opposite	one,
mapping	(x,y,z)	to	(−x,−y,−z),	and	it	can	be	written	as	−I.

Reflections	can	be	characterized	by	two	simple	properties:	they	fix	every
point	in	a	plane	through	the	origin,	the	mirror	plane,	and	they	act	as	minus
the	identity	on	the	line	normal	to	that	plane.	Of	the	2EF	symmetries	of	the
solid,	EF	are	rotations	and	the	remaining	EF	are	rotations	composed	with	a
reflection	or	−I.	In	general,	reflections	alone	do	not	give	all	the	orientation-
reversing	symmetries	of	three-dimensional	space.	For	example,	−I	is	a
symmetry	of	the	cube.	Although	this	map	reverses	orientation,	it	is	not	a
reflection	because	the	only	point	that	it	fixes	is	the	origin.



is	the	number	of	elements

The	regular	solids	therefore	provide	three	symmetry
groups:	the	tetrahedral	group	T,	the	octahedral	group
O	(which	also	corresponds	to	the	cube),	and	the
icosahedral	group	I	(which	also	corresponds	to	the
dodecahedron	and	is	often	called	the	dodecahedral
group).	We	consider	the	simplest	case,	the
tetrahedron,	to	see	how	the	various	rigid	motions	act;
see	Figure	22.

	

Tetrahedral	group

There	are	five	geometrically	distinct	kinds	of	symmetry,	summarized	in
Table	2:

•	The	identity.	This	is	(trivially)	a	rotation	that	fixes	every	point.	There	is
one	such	transformation.

•	Rotations	fixing	a	vertex:	two	for	each	vertex.	Each	such	rotation	has
order	3.	There	are	eight	of	them.

•	Rotations	about	an	axis	joining	the	midpoints	of	opposite	sides.	Each	such
rotation	has	order	2.	There	are	three	of	them.



Table	2.	Types	of	symmetry	for	tetrahedron

•	Reflections	in	a	plane	passing	through	two	vertices	and	the	midpoint	of	the
opposite	edge.	Each	has	order	2.	There	are	six	of	them.

•	Motions	that	cycle	the	four	vertices	in	some	order,	fixing	none	of	them.
Geometrically	such	a	motion	can	be	obtained	by	rotating	through	π/2	about
an	axis	joining	the	midpoints	of	opposite	edges,	and	then	reflecting	the
tetrahedron	in	a	plane	at	right	angles	to	that	axis.	There	are	six	such
motions	(rotate	clockwise	or	anticlockwise	for	each	of	three	axes)	and	each
has	order	4.

Note	that	−I	does	not	leave	a	tetrahedron	invariant.

In	the	case	of	the	octahedral	and	icosahedral	groups,	we	describe	only	the
orientation-preserving	motions	(rotations)	for	simplicity.	The	orientation-
reversing	motions	can	be	obtained	by	composing	these	with	−I.	Some	are
reflections,	some	are	not.

23.	Rotational	symmetries	of	a	cube

Octahedral	group



It	is	easiest	to	visualize	this	using	a	cube;	see	Figure	23.	Now	we	get	Table	3:

•	The	identity.	There	is	one	such	transformation.

•	Rotations	about	an	axis	joining	the	midpoints	of	opposite	sides.	Each	such
rotation	has	order	2.	There	are	six	of	them.

•	Rotations	fixing	a	vertex:	two	for	each	vertex.	Each	such	rotation	has
order	3.	There	are	eight	of	them.

•	Rotations	by	±π/2	about	an	axis	joining	the	midpoints	of	opposite	faces.
Each	such	rotation	has	order	4.	There	are	six	of	them.

•	Rotations	by	π	about	an	axis	joining	the	midpoints	of	opposite	faces.	Each
such	rotation	has	order	2.	There	are	three	of	them.

Top	left:	The	pinwheel	galaxy.	Table	3.	Rotational	symmetries	of	the	cube

Icosahedral	group

It	is	easier	to	draw	pictures	using	a	dodecahedron;	see	Figure	24.	Now	we	get
Table	4:

•	The	identity.	There	is	one	such	transformation.

•	Rotations	±2π/5	about	an	axis	joining	the	midpoints	of	opposite	faces.	Each
such	rotation	has	order	5.	There	are	twelve	of	them.

•	Rotations	±4π/5	about	an	axis	joining	the	midpoints	of	opposite	faces.	Each
such	rotation	has	order	5.	There	are	twelve	of	them.



•	Rotations	fixing	a	vertex:	two	for	each	vertex.	Each	such	rotation	has	order
3.	There	are	twenty	of	them.

•	Rotation	by	π	about	an	axis	passing	through	the	midpoints	of	opposite	edges.
Each	such	rotation	has	order	2.	There	are	fifteen	of	them.

24.	Rotational	symmetries	of	a	dodecahedron

Table	4.	Rotational	symmetries	of	the	dodecahedron

Orthogonal	group

Several	symmetry	groups	in	three-dimensional	space	contain	infinitely	many
transformations.	If	we	fix	an	axis,	then	all	rotations	about	that	axis	form	a
group	isomorphic	to	SO(2),	and	reflections	in	planes	through	that	axis	extend
this	to	a	group	isomorphic	to	O(2).	The	cone	(or	any	‘solid	of	revolution’)	is	an
example	of	this	type	of	symmetry.	A	cylinder	has	another	type	of	symmetry	as
well:	reflection	about	a	plane	at	right	angles	to	its	axis.

If	we	include	all	possible	rotations	about	all	possible	axes,	we	get	the	special
orthogonal	group	SO(3).	Augmented	by	all	rotations	composed	with	−I,	this
gives	the	orthogonal	group	O(3).	The	obvious	shape	with	O(3)	symmetry	is	a



sphere.	If	a	shape	in	three	dimensions	has	SO(3)	symmetry	then	it	must	also
have	O(3)	symmetry,	so	we	have	to	add	some	extra	structure	to	get	SO(3).	For
instance,	we	can	provide	the	sphere	with	an	orientation	and	require	the
transformation	to	preserve	this.

Crystallographic	groups

The	regular	shapes	of	crystals	can	be	traced	to	the	arrangement	of	their	atoms,
which	in	an	ideal	model	form	a	regular	lattice,	symmetric	under	three
independent	translations	in	three-dimensional	space.	So	a	crystal	is	the	three-
dimensional	analogue	of	wallpaper.	Several	different	classifications	of	crystal
lattices	are	possible,	providing	increasing	levels	of	fine	detail.	The	coarsest
classification	lists	the	lattices	in	terms	of	their	symmetries:	these	are	called
Bravais	lattices	or	lattice	systems.	They	are	listed	in	Table	5	and	illustrated	in
Figure	25.

We	saw	in	Figure	19	that	in	two	dimensions	the	analogous	list	contains	five
types	of	lattice,	but	Figure	20	shows	seventeen	symmetry	classes	of	patterns.
The	same	distinction	arises	in	three	dimensions:	Bravais	lattices	classify	the
symmetry	types	of	points	arranged	in	a	lattice,	whereas	the	full	list	classifies
shapes	arranged	in	a	lattice.	The	shapes	have	a	richer	range	of	symmetries,
and	distinguish	more	types	of	pattern.	The	most	extensive	list	in	three
dimensions	classifies	space	groups:	symmetry	groups	of	three-dimensional
arranged	on	a	lattice.	There	are	230	of	these,	or	219	if	certain	mirror-image
pairs	are	considered	to	be	equivalent.

Table	5.	The	fourteen	Bravais	lattices:	names

kindle:pos:fid:000P are listed in <a class=


A	curious	feature	observed	in	these	classifications	is	the	crystallographic
restriction:	a	crystal	lattice	in	two	or	three	dimensions	cannot	have	a	symmetry
of	order	5.	In	fact,	the	only	permissible	orders	are	1,	2,	3,	4,	and	6.	Here	is	a
simple	proof	of	this	fact	for	lattices	in	the	plane.	First,	note	that	every	lattice	is
discrete:	the	distance	between	distinct	points	always	exceeds	some	nonzero
lower	bound.	This	is	intuitively	clear;	the	proof	is	a	simple	estimate.	Suppose
the	lattice	consists	of	all	integer	linear	combinations	au	+	bv	of	two	vectors	u
and	v.	We	can	choose	coordinates	so	that	u	=	(1,0),	in	which	case	v	=	(x,y)	with
y	≠	0	because	v	is	independent	of	u.	Suppose	that	au	+	bv	is	not	the	origin
(0,0).	The	square	of	the	distance	from	au	+	bv	to	the	origin	is:



25.	The	fourteen	Bravais	lattices:	geometry

||(a	+	bx,	by)||2	=	(a	+	bx)2	+	(by)2	≥	b2	y2	≥	y2

unless	b	=	0,	since	b	is	an	integer.	But	then:

||(a	+	bx,by)||2	=	a2	≥	1

since	a	is	nonzero	in	this	case.	Therefore	the	distance	from	the	origin	to	any
other	lattice	point	is	at	least	min(1,	y2),	a	fixed	constant	greater	than	0.	By
translation,	the	same	bound	holds	for	the	distance	between	any	two	distinct
lattice	points.

Now	suppose	that	a	lattice	has	a	point	X	with	order-5	symmetry.	The	symmetry
must	be	a	rotation	since	reflections	have	order	2.	The	point	X	may	lie	in	the
lattice,	but	conceivably	it	may	not:	a	square	lattice	has	90°	rotational	symmetry
about	the	centre	of	any	square,	which	is	not	in	the	lattice,	for	example.	No
matter:	pick	any	lattice	point	A	is	the	number	of	elements

Now	we	have	a	regular	pentagon	ABCDE	consisting	of
lattice	points;	see	Figure	26	(left).	Fill	in	the	five-
pointed	star	to	find	points	P,	Q,	R,	S,	T	as	shown.	ABPE



is	a	parallelogram,	indeed	a	rhombus.	The	vector	BP	is
equal	to	the	vector	AE,	which	is	a	lattice	translation.
Therefore	P	lies	in	the	lattice.	Similarly	Q,	R,	S,	and	T
lie	in	the	lattice.	We	have	now	found	a	smaller	regular
pentagon	whose	vertices	all	lie	in	the	lattice.	In	fact,	its
size	is

	

26.	Left:	Pentagon	and	five-pointed	star.	Right:	Part	of
Penrose	pattern	with	order-5	symmetry

times	that	of	the	original	pentagon.	By	repeating	this
construction,	the	distance	between	two	distinct	lattice
points	can	be	made	arbitrarily	small;	however,	this	is
impossible.	Contradiction.

In	four	dimensions	there	are	lattices	with	order-5
symmetries,	and	any	given	order	is	possible	for	lattices
of	sufficiently	high	dimension.	You	might	like	to
consider	adapting	the	above	proof	to	three	dimensions,



consider	adapting	the	above	proof	to	three	dimensions,
and	then	working	out	why	it	fails	in	four.

Although	order-5	symmetries	of	a	crystal	lattice	do	not
exist	in	two	or	three	dimensions,	Roger	Penrose
(inspired	by	Johannes	Kepler)	discovered	non-repeating
patterns	in	the	plane	with	a	generalized	type	of	order-5
symmetry.	They	are	called	quasicrystals.	Figure	26
(right)	is	one	of	two	quasicrystal	patterns	with	exact
fivefold	symmetry.	In	1984	Daniel	Schechtman
discovered	that	quasicrystals	occur	in	an	alloy	of
aluminium	and	manganese.	Initially	most
crystallographers	discounted	this	suggestion,	but	it
turned	out	to	be	correct,	and	in	2010	Schechtman	was
awarded	the	Nobel	Prize	in	Chemistry.	In	2009,	Luca
Bindi	and	his	colleagues	found	quasicrystals	in	an	alloy
of	aluminium,	copper,	and	iron:	mineral	samples	from
the	Koryak	mountains	in	Russia.	To	find	out	how	these
quasicrystals	formed,	they	used	mass	spectrometry	to
measure	the	proportions	of	different	isotopes	of	oxygen.
The	results	indicate	that	the	mineral	is	not	of	this	world:
it	derives	from	carbonaceous	chondrite	meteorites,
originating	in	the	asteroid	belt.

Permutation	groups

We	now	move	on	to	a	class	of	groups	that	does	not	come	from	geometry.	A
permutation	on	a	set	X	is	a	map	 :X	→	X	that	is	one-to-one	and	onto,	so	that



the	inverse	 −1	exists.	Intuitively,	 	is	a	way	to	rearrange	the	elements	of	X.
For	example,	suppose	that	X	=	{1,	2,	3,	4,	5}	and	 (1)	=	2,	 (2)	=	3,	 (3)	=	4
straightforward	alLD (4)	=	5,	 (5)	=	1.	Then	 	rearranges	the	ordered	list	(1,
2,	3,	4,	5)	to	give	(2,	3,	4,	5,	1).	The	notation

shows	this	clearly.	Diagrammatically,	the	effect	of	 	is	shown	in	Figure	27
(left),	and	in	an	alternative	form	in	Figure	27	(right).

Let	X	=	{1,	2,	3,	…,	n}	where	n	is	a	positive	integer.	The	set	of	all	permutations
of	X	is	a	group	under	composition.	The	identity	map	is	a	permutation,	the
inverse	of	a	permutation	is	a	permutation,	and	(fg)−1	=	g−1f−1	so	the
composition	of	two	permutations	is	a	permutation.	This	group	is	the	symmetric
group	Sn	on	n	symbols.	Its	order	is	|Sn|	=	n!

In	Figure	27	(left)	the	long	arrow	crosses	the	other	four	arrows.	We	write	c( )
=	4,	where	c	is	the	crossing	number,	defined	to	be	the	smallest	number	of
crossings	in	such	a	diagram.	Suppose	we	compose	this	permutation	 	with
another	permutation	σ,	obtaining	σρ	as	in	Figure	28	(top	left).	Removing	the
middle	layer,	we	see	there	are	c(ρ)	+	c(σ)	crossings.	However,	this	is	not	the
smallest	number	of	crossings	for	σρ	because	some	arrows	cross	each	other
more	than	once.	We	can	straighten	out	the	arrows	to	get	the	smallest	number.
Figure	28	(bottom	left)	shows	one	stage	in	this	process,	involving	the	arrows
from	1	and	5.	Originally	these	crossed	twice;	moving	the	arrows	cancels	out
two	crossings	and	reduces	this	to	zero.	Another	pair	of	crossings	for	arrows	1
and	3	can	be	removed	in	the	same	manner.	Figure	28	(bottom	right)	shows	the
final	result.	We	started	with	4	+	4	=	8	crossings,	then	reduced	it	by	2	to	6,	then
by	another	2	to	4.	So	although	c(σρ)	is	not	the	same	as	c(ρ)	+	c(σ),	these	two
numbers	have	the	same	parity:	odd	or	even.



27.	Two	ways	to	illustrate	the	effect	of	the	permutation	

28.	Composing	two	permutations.	Top	left:	Composition.	Top	right:	Removing
middle	layer.	Bottom	left:	One	stage	in	straightening	out	the	arrows	from	5
and	1.	Bottom	right:	All	arrows	straightened

The	same	argument,	which	can	be	performed	in	a	formal	algebraic	manner
for	rigour,	shows	that	in	general:

c(σρ)	≡	c(ρ)	+	c(σ)(mod	2)

The	value	of	c( )	modulo	2	is	called	the	parity	of	the	permutation	 .	We	say
that	is	an	even	permutation	if	c( )	≡	0,	and	an	odd	permutation	if	c( )	≡	1.	The
equation	implies	tha7K4SA">g



b	=	the	remainder	on	dividing	D">Chapter	4
Structure	of	groups

To	provide	techniques	for	analysing	the	structure	of	symmetry	groups,	and
language	to	describe	them,	we	now	discuss	some	basic	concepts	of	group	theory.
Formal	proofs	are	generally	omitted.	This	chapter	is	only	the	beginning	of	a	vast
theory	of	groups,	introducing	a	few	simple	ideas	that	we	will	need	in	later
chapters.	It	is	of	necessity	more	symbol-ridden	and	formal-looking	than	the	rest
of	this	book.

Isomorphism

We	have	already	seen	that	sometimes	two	groups,	which	are	technically	distinct,
may	have	the	same	abstract	structure	(we	used	the	term	‘isomorphic’).	For
example,	the	group	Z3	of	integers	modulo	3	under	addition	has	the	group
multiplication	table:

The	rotational	symmetries	of	an	equilateral	triangle	form	a	group	R	with	three
elements,	consisting	of	the	rotations	R0,	R2π/3,	R4π/3.	The	multiplication	table
now	looks	like	this:

The	two	tables	have	exactly	the	same	structure,	but	they	use	different	symbols.	If
we	take	the	first	table	and	change	0	to	R0,	1	to	R2π/3,	and	2	to	R4π/3	throughout,



we	obtain	the	second	table.	Formally,	this	feature	is	expressed	in	terms	of	the
map	f:	Z3	→	R	defined	by	the	change	of	symbols:

f	(0)=	R0				f	(1)	=	R2π/3f	(2)	=	R4π/3

or,	more	succinctly:

f	(j)	=	R2jπ/3

for	j	=	0,	1,	2.	This	map	is	a	bijection,	with	the	property:

f	(j	+	k)	=	f	(j)f	(k)

This	implies	that	the	two	tables	have	the	same	structure.

More	generally,	if	G	and	H	are	groups,	a	map	f:G	→	H	is	an	isomorphism	if	it	is
a	bijection	and	satisfies	the	condition:

f	(gh)	=	f	(g)	f	(h)				for	all	g,	h	∈	G

We	say	that	G	and	H	are	isomorphic,	and	write	G	≌	H.

If	two	groups	are	isomorphic,	then	any	property	The	seven	symmetry	types	of
frieze	patternng0B	of	the	first	that	depends	only	on	the	abstract	structure	also
holds	for	the	second.	In	particular,	they	have	the	same	order	(recall	that	the	order
of	a	group	is	the	number	of	elements	that	it	contains).	However,	it	is	easy	to	find
groups	with	the	same	order	that	are	not	isomorphic:	for	example,	Z6	and	D3.
Both	have	order	6,	but	the	first	is	abelian	and	the	second	is	not.

Subgroup

We	have	already	encountered	several	examples	in	which	a	group	is	contained	in
another	group.	The	formal	concept	is	defined	like	this:	a	subgroup	of	a	group	G
is	a	subset	H	⊆	G	such	that:

1	1	∈	H

2	If	h	∈	H	then	h−1	∈	H



3	If	g,	h	∈	H	then	gh	∈	H

Here	are	some	examples	of	subgroups	that	we	have	already	met:

•	Zn	is	a	subgroup	of	Dn.

•	An	is	a	subgroup	of	Sn.

•	SO(2)	is	a	subgroup	of	O(2).

•	T,	O,	I	and	SO(3)	are	subgroups	of	O(3).

If	we	realize	the	cyclic	group	Zn	as	the	integers	modulo	n	under	the	operation	of
addition,	we	can	be	more	ambitious	and	list	all	subgroups.	It	turns	out	that	they
correspond	to	integers	m	that	divide	n	exactly.	For	each	such	m,	there	is	a
subgroup:

mZn	=	{mj:	j	=	0,1,…,n/m-1}

It	is	isomorphic	to	Zn/m.	These	are	all	of	the	subgroups	of	Zn.

For	example,	the	divisors	of	12	are	1,	2,	3,	4,	6,	12.	So	the	subgroups	of	Z12	are:

1Z12	=	Z12

2Z12	=	{0,	2,	4,	6,	8,	10}	≌	Z6

3Z12	=	{0,	3,	6,	9}	≌	Z4

4Z12	=	{0,	4,	8}	≌	Z3

6Z12	=	{0,	6}	≌	Z2

12Z12	=	{0}	≌	1

It	is	no	coincidence	that	the	orders	of	these	subgroups	are	divisors	of	12,	the
order	of	the	group.	A	similar	property	holds	in	complete	generality.

Lagrange’s	Theorem



Lagrange’s	Theorem

Let	G	be	a	finite	group.	If	H	is	a	subgroup	of	G	then	|H|	divides	|G|.

For	example,	if	G	is	the	group	of	rotational	symmetries	of	a	dodecahedron	then
|G|	=	60.	So	the	possible	orders	of	subgroups	are	1,	2,	3,	4,	5,	6,	10,	12,	15,	20,
30,	60.	Most	of	these	orders	occur,	but	not	15,	20,	and	30.

Order	of	an	element

Suppose	that	G	is	a	group	and	g	∈	G.	The	set	of	all	powers	of	g

H	=	{gn	:	n	∈	Z}

is	a	subgroup,	the	subgroup	generated	by	g.	There	are	two	main	possibilities:

•	All	powers	of	g	are	distinct.	Then	H	≌	Z,	the	additive	group	of	integers.	This
case	cannot	occur	if	G	is	finite.

•	Two	distinct	powers	of	g	are	equal.	Then	H	≌	Zk	where	k	is	the	smallest
positive	integer	such	that	gk	=	1.	This	case	must	occur	if	G	is	finite.

The	order	|g|	of	g	is	∞	in	the	first	case	and	k	in	the	second.

Since	the	powers	of	g	form	a	subgroup,	Lagrange’s	Theorem	implies	that	when
G	is	finite,	the	order	of	every	element	divides	the	order	of	G.	For	example,	the
orders	of	elements	of	the	group	of	rotational	symmetries	of	a	dodecahedron	must
belong	to	the	list	given	above	for	orders	of	subgroups.	Table	5	shows	that	of
these,	only	1,	2,	3,	4,	and	5	actually	occur	for	elements.

Conjugacy

Two	symmetries	of	some	objects	may	be	essentially	the	same,	except	that	they
are	applied	at	different	locations.	For	example,	Figure	29	shows	two	reflections	s
and	t	of	a	regular	pentagon,	with	different	axes,	and	the	rotation	r	that	sends	the
axis	of	s	to	the	axis	of	t.

It	is	clear	from	the	picture,	and	can	be	checked	using	properties	of	D5,	that:



t	=	r-1sr

That	is,	to	reflect	in	the	first	axis	are	listed	in	In	general,	if	G	is	a	group,	then	two
elements	g,	h	∈	G	are	said	to	be	conjugate	if	there	exists	k	∈	G	such	that	h	=
k−1gk.	Conjugate	elements	always	have	the	same	order.	The	set	of	all	elements
conjugate	to	a	given	one	is	called	a	conjugacy	class.	For	a	finite	group	G,	the
number	of	elements	in	any	conjugacy	class	always	divides	the	order	of	G.
Informally,	conjugate	elements	do	the	same	thing,	but	in	a	different	place.

29.	Conjugate	reflectional	symmetries	of	a	regular	pentagon

Normal	subgroups,	homomorphisms,	and	quotient	groups

Subgroups	are	the	obvious	way	to	derive	smaller	groups	from	a	given	one.
However,	there	is	a	second,	subtler	construction,	whose	genesis	can	be	traced	to
Galois’s	approach	to	the	solution	of	equations	by	radicals,	although	not	in	its
present	formulation.	This	is	called	a	quotient	group,	and	it	is	fundamental	to
group	theory.

For	an	example,	consider	the	symmetry	group	of	a	square.	The	symmetries	are
of	two	kinds:	rotations	(which	preserve	orientation,	that	is,	do	not	flip	the	square
over)	and	reflections	(which	reverse	orientation,	that	is,	do	flip	the	square	over).
The	symbols	flip	and	non-flip	form	a	group	in	their	own	right:

non-flip	×	non-flip	=	non-flip

non-flip	×	flip	=	flip

flip	×	non-flip	=	flip

flip	×	flip	=	non-flip

kindle:pos:fid:00ca0B, rotate that axis to the second position, then reflect in that axis, then rotate back.</p> <p class=


That	is,	any	symmetry	of	the	first	type,	composed	with	any	symmetry	of	the
second	type,	always	yields	a	symmetry	of	the	third	type.	Abstractly,	we
recognize	this	group:	it	is	cyclic	of	order	2.

For	another	example,	consider	the	group	Sn	of	all	permutations	of	a	set	with	n
elements.	Permutations	have	parity:	they	can	be	can	be	even	or	odd.	The	parity
of	a	product	of	two	permutations	depends	only	on	the	types	of	the	permutations
themselves:	odd	×	even	=	odd	and	so	on.	Again,	these	two	types	naturally	form	a
group	in	their	own	right,	and	again	it	is	cyclic	of	order	2.

A	group	constructed	in	this	manner	is	called	a	quotient	group.	Formally,	a
quotient	group	can	be	defined	as	a	special	kind	of	partition	of	the	group:	a	way
to	chop	it	into	disjoint	pieces.	Suppose	that	this	can	be	done	in	such	a	way	that
the	pieces	inherit	the	group	structure.	That	is:	if	g1	and	g2	are	in	the	same	piece,
and	h1	and	h2	are	in	the	same	piece,	then	g1h1	and	g2h2	are	in	the	same	piece.	If
this	property	holds,	the	set	of	pieces	forms	a	group.	In	the	above	example
standard	crystallographic	notationIntuitively,	we	can	think	of	a	quotient	group	as
a	way	to	colour	the	elements	of	the	group	so	that	elements	have	the	same	colour
if	and	only	if	they	lie	in	the	same	piece.	The	above	condition	implies	that	we	can
multiply	any	two	colours	together	to	obtain	a	well-defined	colour.	Choose	two
elements	that	have	those	colours,	multiply	them	together,	and	take	the	colour	of
the	result.	The	condition	ensures	that	this	product	always	has	the	same	colour,
whichever	two	elements	we	pick.	The	elements	of	the	quotient	group	are	now
the	colours,	and	the	group	operation	is	multiplication	of	colours.

We	now	have	two	groups:	the	original	one	G	and	a	group	of	colours	K.	There	is
a	natural	map	 :G→K	in	which	 (g)	is	the	colour	of	g	∈	G.	The	ability	to
multiply	colours	consistently	boils	down	to	the	equation

ϕ(gh)	=	ϕ(g)ϕ(h)

for	all	g,	h	∈	G.	A	map	with	this	property	is	called	a	homomorphism.	It	is	like	an
isomorphism,	but	need	not	be	a	bijection.

Although	colourings	of	this	kind	are	easy	to	visualize,	it	is	not	so	easy	to	find
them.	An	alternative	characterization	of	quotient	groups	relates	them	to	special
subgroups,	called	normal	subgroups.	Whenever	a	group	has	a	quotient	group,
the	piece	that	contains	the	identity	forms	a	subgroup.	All	elements	of	that	piece
have	the	same	colour—suppose	it	is	red.	We	claim	that	red	×	red	=	red	in	the
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quotient.	This	follows	since1	×	1	=	1,	and	1	is	red.	This	implies	that	the	red	piece
of	the	group	is	closed	under	multiplication.	Because	1−1	=	1,	it	is	also	closed
under	the	inverse.	So	it	forms	a	subgroup.

Do	all	subgroups	arise	in	this	manner?	It	turns	out	that	they	do	not.	In	fact,	a
subgroup	H	of	G	can	be	the	piece	containing	1,	for	some	quotient	group	of	G,	if
and	only	if	H	has	one	further	property,	called	normality.	This	states	that	if	h	is
any	member	of	H,	and	g	any	member	of	G,	then	g−1hg	is	a	member	of	H.	This
condition	is	necessary	because	in	G	we	have	g−11g	=	g−1g	=	1.	It	is	also
sufficient:	define	a	partition	of	G	by:

g1	and	g2	belong	to	the	same	part	if	and	only	if	g1g2−1	is	a	member	of	H.

The	parts	here	are	called	cosets	of	H.	A	few	calculations	show	that	they	have	the
required	colouring	property.	The	quotient	group	is	denoted	by	G/H.	There	is	a
natural	homomorphism	 :G�>.	It	is	calle



Chapter	5
Groups	and	games

Group	theory	has	applications	not	just	to	science,	but	to	games	and	puzzles.	Here
we	look	at	three	examples.	The	first	is	the	Fifteen	Puzzle,	and	group	theory
proves	that	it	is	impossible.	The	second	is	the	Rubik	cube,	and	group	theory
helps	us	to	solve	it.	The	third	is	sudoku:	group	theory	tells	us	how	many	puzzles
there	are,	but	sheds	little	light	on	how	to	solve	them.

In	1880	the	USA,	Canada,	and	Europe	were	swept	by	a	short-lived	craze—it
started	in	April	and	was	over	by	July—for	a	puzzle	invented	by	a	New	York
postmaster	named	Noyes	Palmer	Chapman.	Matthias	Rice,	a	businessman
specializing	in	woodworking,	marketed	it	as	the	Gem	Puzzle;	a	dentist	called
Charles	at	a	specific	angle	to	the	axisis0HFigure	31	(left),	with	an	empty	square
at	bottom	right.	The	aim	of	the	puzzle	is	to	rearrange	the	blocks	into	Figure	31
(right),	by	sliding	successive	blocks	into	the	empty	square—which	moves	as	the
blocks	are	slid.

One	hundred	years	later,	a	similar	craze	spread	worldwide.	But	this	time	the
puzzle	consisted	of	moving	cubes,	rather	than	squares.	It	was	the	Rubik	cube,
Figure	32,	invented	by	the	Hungarian	sculptor	and	architecture	professor	Ernö
Rubik.	To	date	over	350	million	cubes	have	been	sold.	The	six	faces	of	the	cube
are	coloured	so	that	each	face	has	one	colour.	The	puzzle	is	constructed	so	that
any	face	of	the	cube	can	be	rotated,	and	a	series	of	these	rotations	scrambles	the
colours.	The	aim	of	the	puzzle	is	to	restore	the	original	colouring.

31.	Fifteen	Puzzle.	Left:	Start.	Right:	Finish



32.	A	Rubik	cube	with	one	face	in	the	process	of	being	rotated

In	2005	yet	another	craze	swept	the	world;	this	time	it	was	a	combinatorial
puzzle	whose	solution	required	placing	digits	1–9	in	a	9×9	square	divided	into
nine	3×3	subsquares,	in	such	a	manner	that	each	row,	column,	and	subsquare
contained	one	of	each	digit.	Some	digits	were	filled	in	and	the	challenge	was	to
complete	the	grid.	This	game	is,	of	course,	sudoku;	see	Figure	33.	It	remains
wildly	popular	and	features	regularly	in	most	newspapers,	following	in	the	well-
trodden	footsteps	of	crossword	puzzles.

33.	Left:	A	sudoku	grid.	Right:	Its	solution

These	puzzles	all	have	a	considerable	amount	of	symmetry—more	than	meets
the	eye—and	they	illustrate	how	group	theory	illuminates	structural	symmetries
in	mathematics.	We	consider	them	in	turn.

Fifteen	Puzzle

The	Fifteen	Puzzle	is	often	associated	with	the	famous	American	puzzlist	Sam
Loyd,	who	claimed	that	he	had	started	a	craze	for	it	in	the	1870s.	However,
Loyd’s	contact	with	the	puzzle	was	confined	to	writing	about	it	in	1896.	He
revived	interest	by	offering	a	prize	of	$1,000,	a	substantial	sum	at	the	time	and



revived	interest	by	offering	a	prize	of	$1,000,	a	substantial	sum	at	the	time	and
still	not	to	be	sneezed	at.	But	Loyd’s	money	was	safe,	as	he	well	knew.	In	1879,
William	Johnson	and	William	Story	had	proved	that	the	Fifteen	Puzzle	is
insoluble.

Their	argument	involves	the	‘potential’	symmetry	group	of	the	puzzle,	which
consists	of	all	possible	permutations	of	sixteen	objects—the	fifteen	sliding
blocks	and	the	empty	square,	which	for	simplicity	we	label	16.	It	is	therefore	the
symmetric	group	S16.	This	is	a	symmetry	group	in	the	sense	that	it	comprises	all

possible	way	are	listed	in	

34.	Colouring	the	squares	in	the	Fifteen	Puzzle

Here’s	why.	Sliding	a	block	in	effect	transposes	that	block	with	the	empty
square,	and	this	permutation	is	a	2-cycle.	If	we	colour	the	squares	like	a
chessboard,	as	in	Figure	34,	then	each	such	move	changes	the	colour	associated
with	the	empty	square.	So	a	sequence	consisting	of	an	even	number	of	moves
will	leave	the	colour	of	the	empty	square	unchanged,	whereas	a	sequence
consisting	of	an	odd	number	of	moves	will	change	the	colour	of	the	empty
square.	The	conditions	of	the	puzzle	require	the	empty	square	to	end	up	in	its
original	position,	so	any	sequence	of	moves	that	does	this	must	be	the	product	of
an	even	number	of	transpositions.	It	is	therefore	an	even	permutation.

However,	the	permutation	required	to	solve	the	puzzle	is	the	transposition	(14
15),	which	is	an	odd	permutation.	Therefore	no	solution	exists.

In	effect,	this	proof	constructs	an	invariant—a	property	of	the	state	of	the	puzzle
that	is	unchanged	by	any	move.	Define	the	parity	of	an	integer	to	be	0	if	it	is
even,	1	if	it	is	odd.	Parities	can	be	added	together	modulo	2:	0	+	0	=	0,	1	+	0	=	0
+	1	=	1,	and	1	+	1	=	0.	The	squares	on	the	chessboard	can	also	be	assigned	a
parity:	0	for	white,	1	for	black.	The	invariant	is	then	the	parity	of	the	number	of
moves	plus	that	of	the	empty	square.	Any	move	changes	each	by	1,	so	their	sum
changes	by	1	+	1	=	0.	The	initial	position	has	invariant	0;	the	required	final



position	has	invariant	1.	This	proves	the	impossibility.

It	is	fairly	straightforward	to	prove	that	this	parity	sum	is	the	only	invariant;	that
is,	if	two	positions	of	the	puzzle	have	the	same	invariant,	then	there	exists	a
sequence	of	moves	from	one	to	the	other.	So	legal	moves,	starting	from	any
initial	state,	can	reach	exactly	half	of	the	16!	possible	rearrangements.	Would-be
solvers	can	potentially	explore	16!/2	=	10,461,394,944,000	arrangements,	which
is	so	large	that	they	will	always	be	aware	that	there	are	plenty	of	possibilities
left.	This	could	encourage	them	to	think	that	any	arrangement	must	be	possible.

Rubik	cube

The	number	of	distinct	arrangements	of	the	Rubik	cube,	obtainable	from	the
standard	configuration,	is	equal	to	the	order	of	the	group	of	transformations
obtained	by	composing	rotations	of	the	six	faces.	We	call	this	the	Rubik	group.
To	compute	its	order,	we	first	calculate	the	total	number	of	rearrangements,
ignoring	the	constraints	of	the	puzzle.	That	is,	we	think	about	taking	the	puzzle
apart	and	then	reassembling	it.	Then	we	work	out	what	fraction	of	those
arrangements	can	be	reached	from	the	standard	position	by	legal	moves.

Some	terminology	is	useful.	The	twenty-seven	component	sub-cubes	are	called
cubies	by	aficionados.	Their	faces,	the	small	coloured	squares,	are	facets.	There
are	four	kinds	of	cubie:	the	centre	cubie	which	is	never	visible,	the	centres	of	the
faces	(face	cubies),	those	in	the	middle	of	an	edge	(edge	cubies),	and	those	at	the
corners	(corner	cubies).	The	centre	and	face	cubies	play	no	significant	role:	the
centre	one	is	fixed	and	the	face	cubies	rotate	but	do	not	move.	So	we	restrict
a">Bottom	right:	The	same	image	rotated	180alLDttention	to	the	twelve	edge
cubies	and	eight	corner	cubies,	and	assume	the	centre	and	face	cubies	are	as	in
the	standard	configuration.

There	are	8!	ways	to	reorder	the	corner	cubies.	Each	can	be	rotated	into	three
different	orientations.	So	the	total	number	of	arrangements,	taking	colours	into
account,	is	388!.	Similarly	the	number	of	arrangements	of	the	face	cubies	is
21212!.	So	the	potential	symmetry	group	has	order:

388!21212!	=	519	024	039	293	878	272	000

We	claim	that	the	actual	symmetry	group	is	one-twelfth	as	big.	So	its	order	is:



388!21211!	=	43	252	003	274	489	856	000

The	proof	involves	three	invariants,	which	impose	conditions	on	the	cubies	and
their	colours:

•	Parity	on	cubies.	Figure	35	(left)	shows	one	face	of	the	cube,	with	all	but	the
central	facet	marked	with	the	numbers	1–8,	and	the	result	of	a	clockwise	quarter-
turn.	The	corresponding	permutation	is

with	cycle	decomposition	(1753)(2864).	Each	4-cycle	is	odd,	so	the	product	is
even.	All	other	cubies	are	fixed,	so	any	quarter-turn	has	even	parity.	Therefore
any	element	of	the	Rubik	group	has	even	parity	as	a	permutation	of	cubies.

•	Parity	on	edge	facets.	Figure	35	(middle)	shows	a	similar	labelling	of	the	eight
facets	of	the	edge	cubies	on	one	layer	of	the	cube.	A	quarter-turn	produces	the
same	permutation	of	these	facets,	and	leaves	all	other	edge	facets	fixed.	So	any
element	of	the	Rubik	group	has	even	parity	as	a	permutation	of	edge	facets.

Note	that	this	is	an	extra	restriction.	Leaving	all	edge	cubies	fixed	but	flipping
the	facets	of	one	has	even	parity	on	cubies,	but	is	odd	on	edge	facets.

•	Triality	on	corners.	Number	the	twenty-four	facets	of	the	corners	so	that	those
on	two	opposite	faces	are	labelled	0,	and	at	every	corner	the	numbers	cycle
clockwise	in	the	order	0,	1,	2,	as	in	Figure	35	(right).	Let	T	be	the	total	of	the
numbers	on	any	pair	of	opposite	faces,	considered	modulo	3.	Here	the	totals	are
0	and	6,	but	these	reduce	to	0	modulo	3.	We	call	T	the	triality	of	the
arrangement.	It	can	be	checked	that	any	quarter-,	half-or	three-quarter-turn	of	a
face	leaves	all	faces	with	a	total	that	is	0	modulo	3.	So	the	Rubik	group
preserves	triality,	and	any	legal	arrangement	has	triality	0.	It	is,	however,	easy	to
find	illegal	arrangements	with	triality	1	or	2:	just	rotate	one	corner	cubie	and
leave	all	else	fixed.



35.	Invariants	of	the	Rubik	group.	Left:	Effect	of	a	clockwise	quarter-turn
on	cubies.	Middle:	Labelling	edge	facets.	Right:	Labelling	corner	facets

These	invariants	correspond	to	three	homomorphisms	from	the	potential
symmetry	group	G	to	Z2,	Z2,	and	Z	the	special	orthogonal	group	3
respectively.	They	therefore	correspond	to	three	normal	subgroups	N1,	N2,
and	N3,	whose	orders	are	respectively	|G|/2,	|G|/2,	and	|G|/3.	As	already
observed,	in	different	language,	N1	and	N2	are	different.	The	same	goes	for
N3	because	3	is	prime	to	2.	Basic	group	theory	now	tells	us	that	the
intersection	N	=	N1∩N2∩N3	is	a	normal	subgroup	of	G	and	|N|	=	|G|/12.
(Here	12	=	2.2.3.)

All	three	invariants	are	0	for	elements	of	the	Rubik	group,	so	it	must	be
contained	in	N.	A	detailed	and	lengthy	analysis	shows	that	in	fact	the	Rubik
group	is	equal	to	N.	The	basic	idea	is	to	find	enough	sequences	of	moves	to
arrange	almost	all	cubies	and	facets	arbitrarily,	and	then	observe	that	the
remaining	ones	are	determined	by	the	three	invariants.	Group	theory	can	be	used
to	advantage	in	constructing	such	moves.	For	details	see	Tom	Davis,	‘Group
theory	via	Rubik’s	cube’	2006	(http://www.geometer.org/rubik/index.html);
Ernö	Rubik,	Tamás	Varga,	Gerazon	Kéri,	György	Marx,	and	Tamás	Vekerdy,
Rubik’s	Cubic	Compendium;	and	David	Singmaster,	Notes	on	Rubik’s	Magic
Cube	(full	details	in	Offline	Reading).	We	give	a	flavour	of	the	group	theory
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below.

It	turns	out	that	seven	of	the	orientations	of	the	corner	cubies	can	be	chosen
independently,	but	they	then	fix	that	of	the	eighth	corner	by	triality,	so	that	only
8!37	possibilities	for	the	corners	can	be	realized	by	legal	moves.	The	twelve
edge	cubies	can	be	permuted	in	only	12!/2	ways	by	parity	on	cubies.	Of	these
edge	cubies,	eleven	can	be	flipped	independently,	but	the	last	is	then	fixed	by
parity	on	edge	facets.	Counting	these	possibilities	we	find	8!3712!210
rearrangements.	This	is	equal	to	the	order	of	N,	so	N	is	the	Rubik	group.

Group	theory	helps	to	solve	the	Rubik	cube.	In	particular,	the	concept	of
conjugate	transformations	is	very	widely	used,	not	always	explicitly.
Aficionados	learn	‘macros’,	combinations	of	moves	that	produce	some	specific
effect.	For	example,	the	macro	might	flip	two	adjacent	edge	cubies	while	leaving
everything	else	unchanged.	By	‘adjacent’	I	mean	they	are	next	to	the	same
corner	cubie.	Now,	suppose	you	want	to	flip	two	non-adjacent	edge	cubies	while
leaving	everything	else	unchanged.	Your	macro	doesn’t	work,	but	a	conjugate
does.	Perform	a	sequence	of	moves	s	that	places	those	two	edge	cubies	adjacent
to	each	other.	This	jumbles	everything	else	up,	but	ignore	that,	it	will	all	come
out	in	the	wash.	Since	the	edge	cubies	are	now	adjacent,	you	can	use	your	macro
m.	Finally,	reverse	s	to	get	s−1.	All	of	the	jumbling	gets	undone,	except	for	the
two	edge	cubies	you	started	with—and	those	are	flipped.	How	did	you	achieve
that?	Using	the	sequence	s−1ms,	which	is	a	conjugate	of	your	macro	m.

I’ll	end	the	discussion	of	Rubik’s	are	listed	in	Sudoku

Sudoku	is	a	combinatorial	puzzle,	requiring	symbols	to	be	arranged	according	to
specific	rules.	The	use	of	digits	as	symbols	is	a	convenient	choice,	but	the	puzzle
involves	no	arithmetic.	Its	solution	involves	chains	of	logical	deductions—
intelligent	trial	and	error,	eliminating	incorrect	choices—and	can	be	formalized
into	computer	algorithms.	These	algorithms	are	often	used	to	design	and	check
sudoku	puzzles.

The	history	of	sudoku	is	often	traced	back	to	Leonhard	Euler	in	1783.	He	was
familiar	with	magic	squares,	in	which	numbers	are	arranged	in	a	square	grid	so
that	all	rows	and	columns	have	the	same	total.	Euler’s	article	‘A	new	type	of
magic	square’	was	a	variation	on	this	theme.	A	typical	example	is:

1		2		3
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2		3		1

3		1		2

The	row	and	column	sums	are	all	the	same,	namely	6,	so	this	is	a	magic	square,
though	it	violates	the	traditional	condition	of	using	consecutive	numbers	once
each,	and	diagonal	sums	don’t	work.	It	is	an	example	of	a	Latin	square:	an
arrangement	of	n	symbols	on	an	n×n	square	grid,	so	that	each	symbol	appears
exactly	once	in	every	row	and	column.	The	name	arises	because	the	symbols
need	not	be	numbers,	and	in	particular	can	be	Latin—that	is,	Roman—letters.

Euler	was	after	something	more	ambitious,	and	wrote:

A	very	curious	problem,	which	has	exercised	for	some	time	the	ingenuity	of
many	people,	has	involved	me	in	the	following	studies,	which	seem	to	open	up	a
new	field	of	analysis,	in	particular	the	study	of	combinations.	The	question
revolves	around	arranging	36	officers	to	be	drawn	from	6	different	ranks	and
also	from	6	different	regiments	so	that	they	are	arranged	in	a	square	so	that	in
each	line	(both	horizontal	and	vertical)	there	are	6	officers	of	different	ranks	and
different	regiments.

His	puzzle	asks	for	two	6×6	Latin	squares,	one	for	each	of	two	sets	of	symbols.
It	requires	them	to	be	orthogonal:	each	pair	of	symbols	occurs	exactly	once.
Euler	couldn’t	solve	his	puzzle,	but	he	did	construct	orthogonal	n×n	Latin
squares	for	all	odd	n	and	all	multiples	of	4.	It	is	easy	to	prove	that	no	such
squares	exist	for	order	2.	That	left	only	n	=	6,	10,	14,	18,	and	so	on.	Euler
conjectured	that	no	orthogonal	pairs	of	Latin	squares	exist	in	these	cases.	In
1901	Gaston	Tarry	proved	his	conjecture	for	6×6	squares,	but	in	1959	Ernest
Tilden	Parker	constructed	two	orthogonal	10×10	Latin	squares.	In	1960	Parker,
Raj	Chandra	Bose,	and	Sharadachandra	Shankar	Shrikhande	proved	that	Euler’s
conjecture	is	false	for	all	larger	sizes.

A	completed	sudoku	grid	is	a	special	type	of	Latin	square:	the	3×3	subsquares
introduce	extra	constraints.	How	many	different	sudoku	grid	Rotational
symmetries	of	a	cube

6,670,903,752,021,072,936,960

was	posted	on	the	USENET	newsgroup	rec.puzzles,	but	without	a	full	proof.
Bertram	Felgenhauer	and	Frazer	Jarvis	gave	a	detailed	calculation	in	2005,	with



computer	assistance,	and	relying	on	a	few	plausible	but	unproved	assertions.	The
number	of	9×9	Latin	squares	is	about	a	million	times	as	large.	However,	a
sudoku	grid	has	several	types	of	symmetry:	ways	to	rearrange	a	given	grid	while
observing	all	the	rules.	The	most	obvious	symmetries	are	the	permutations	of	the
nine	symbols,	the	symmetric	group	S9.	In	addition,	rows	can	be	permuted
provided	the	three-block	structure	is	preserved;	so	can	columns;	and	the	entire
grid	can	be	reflected	in	its	diagonal.	It	can	be	shown	that	the	symmetry	group
has	order	2.68	=	3,359,232.

This	group	comes	into	play	when	we	ask	a	basic	question:	how	many	distinct
grids	are	there	if	we	consider	symmetrically	related	ones	to	be	equivalent?	In
2006	Jarvis	and	Ed	Russell	computed	this	number	as:

5,472,730,538

This	is	not	the	full	number	divided	by	3,359,232	because	some	grids	have
nontrivial	symmetries.

The	key	to	such	calculations	is	the	orbit-counting	theorem,	often	referred	to	as
Burnside’s	Lemma.	Suppose	that	a	group	G	acts	by	permutations	on	a	set	X.
Given	any	element	x	∈	X,	we	can	apply	all	the	elem.	Consider	for



Chapter	6
Nature’s	patterns

Symmetries	are	widespread	in	the	natural	world,	and	they	have	a	strong	appeal
to	our	innate	sense	of	pattern.	Figure	37	shows	three	instances	in	biology.	On	the
left	is	a	butterfly,	Morpho	didius.	There	are	over	eighty	species	in	the	genus
Morpho,	and	they	mainly	inhabit	South	and	Central	America.	In	the	middle	is
the	eleven-armed	sea	star	Coscinasterias	calamaria	found	in	the	seas	around
southern	Australia	and	New	Zealand.	It	can	be	up	to	30	cm	(one	foot)	across.	On
the	right	is	a	Nautilus	shell,	shown	in	cross	section.	The	nautilus	is	a	cephalopod,
and	today	six	distinct	species	exist.

The	butterfly	has	bilateral	symmetry:	it	looks	(almost)	the	same	if	it	is	reflected
left/right	about	its	central	axis,	as	if	in	a	mirror.	Bilateral	symmetry	D1	is
widespread	in	the	animal	kingdom.	Humans	are	an	example:	a	person	viewed	in
a	mirror	looks	just	like	a	person.	In	fine	detail,	humans	are	not	perfectly
symmetric—the	face	often	looks	subtly	different	when	reflected;	see	Figure	38.
For	a	start,	Mirror-Lincoln	parts	his	hair	on	the	other	side.	Internally,	there	are
other	asymmetries	in	the	human	body:	the	heart	is	usually	on	the	left,	the
intestines	wind	asymmetrically,	and	so	on.

37.	Three	symmetric	organisms.	Left:	Morpho	butterfly.	Middle:	Eleven-
armed	sea	star.	Right:	Nautilus



38.	Abraham	Lincoln	and	his	mirror	image

Figure	39	(left)	shows	an	artificial	butterfly	created	by	taking	the	right-hand	half
of	Figure	37	(left)	and	joining	it	to	its	mirror	image	in	the	grey	vertical	line.	The
resemblance	to	the	original	butterfly	is	striking.	The	sea	star,	suitably	arranged
on	a	flat	plane,	would	be	an	almost	perfectly	symmetric	eleven-sided	regular
star:	Figure	39	(middle).	Its	symmetry	group	would	be	D	is	the	number	of
elementsof11.

The	symmetry	of	the	spiral	shell	of	Nautilus	is	more	subtle.	The	shape,	extended
to	infinity,	is	very	close	indeed	to	a	logarithmic	spiral,	with	equation	r	=	ekθ	in
polar	coordinates,	for	a	suitable	constant	k.	Figure	39	(right)	shows	such	a	spiral
superposed	on	the	shell.	If	we	translate	the	angle	θ	to	θ	+	 	for	a	fixed	 ,	the
equation	transforms	into	r	=	ek(θ+ϕ)	=	ekϕekθ.	So	the	radius	is	multiplied	by	a
fixed	factor	ekϕ.	A	change	of	scale	is	called	a	dilation;	in	Euclidean	geometry	it
plays	the	same	role	relative	to	similar	triangles	as	rigid	motions	do	relative	to
congruent	ones.

39.	Left:	Right-hand	side	of	butterfly	plus	its	mirror	image.	Middle:	Eleven-
sided	regular	star	polygon.	Right:	Logarithmic	spiral	superposed	on
Nautilus	shell

The	idealized	Nautilus	is	not	symmetric	under	rotation,	and	it	is	not	symmetric
under	dilation	either.	However,	it	is	symmetric	under	a	suitable	combination	of



them:	rotate	by	f	and	dilate	by	e−kϕ.	Indeed,	this	is	a	symmetry	for	any	 .	So	the
symmetry	group	of	the	infinite	logarithmic	spiral	is	an	infinite	group,	with	one
element	for	each	real	number	 .	Two	such	transformations	compose	by	adding
the	corresponding	angles,	so	this	group	is	isomorphic	to	the	real	numbers	under
addition.

Of	course,	symmetry	in	living	creatures	is	never	perfect.	Mathematical
symmetry	is	an	idealized	model.	However,	slightly	imperfect	symmetry	requires
explanation;	it’s	not	enough	just	to	say	‘it’s	asymmetric’.	A	typical	asymmetric
shape	would	be	very	different	from	its	mirror	image,	not	almost	identical.

Bilateral	symmetry	in	organisms

Why	are	many	living	organisms	bilaterally	symmetric?	The	full	story	is
complicated	and	not	fully	understood,	but	here	is	a	rough	outline	of	some	key
issues.	I	have	simplified	the	biology	considerably	to	keep	the	story	short.

Sexually	reproducing	organisms	develop	from	a	single	cell,	a	fusion	of	egg	and
sperm.	Initially	this	is	roughly	spherical.	It	then	undergoes	a	repeated	series	of
about	ten	to	twelve	divisions	into	2,	4,	8,	16	…	cells,	with	the	overall	size
staying	much	the	same.	The	first	few	divisions	destroy	the	spherical	symmetry,
distinguishing	front	from	back	(anteroposterior	axis),	top	from	bottom
(dorsoventral	axis),	and	left	from	right.	In	subsequent	development	the	first	two
symmetries	are	quickly	lost	too,	but	the	embryo	tends	to	retain	left–right
symmetry	until	the	organism	has	become	fairly	complex.

Development	is	a	combination	of	the	natural	‘free-running’	chemistry	and	the
special	orthogonal	group	The	internal	structure	is	often	forced	to	become
asymmetric	for	geometric	or	mechanical	reasons.	The	human	gut	is	too	long	to
fit	inside	the	body	cavity	without	being	folded,	and	no	symmetric	method	of
folding	can	fit	it	in.	But	there	is	good	evidence	that	genes	are	involved	as	well.	A
number	of	biological	molecules	have	been	found	which	relay	asymmetric
signals.	In	1998	it	was	discovered	that	the	gene	Pitx2	is	expressed	(activated)	in
the	left	heart	and	gut	of	embryos	of	the	mouse,	chick,	and	Xenopus	(a	frog).
Failure	to	express	this	gene	correctly	causes	misplaced	organs.	In	the	same	year
it	was	discovered	that	if	the	protein	Vg1,	a	growth	factor	known	to	be	associated
with	left–right	asymmetry	is	injected	into	particular	cells	on	the	right	side	of	a
Xenopus	embryo,	where	this	protein	does	not	normally	occur,	the	entire	structure



of	the	internal	organs	flipped	to	a	mirror	image	of	the	usual	form.	Further
experiments	led	to	the	idea	that	Vg1	is	a	very	early	step	in	the	developmental
pathway	that	sets	up	the	left–right	axis:	whichever	side	gets	Vg1	becomes	the
‘left’	side	in	terms	of	normal	development.

It	has	also	been	suggested	that	bilateral	symmetry	plays	a	role	in	sexual
selection,	an	evolutionary	phenomenon	in	which	female	preferences	interact
with	male	features	(sometimes	the	other	way	round)	to	create	an	evolutionary
‘arms	race’	that	drives	the	male	to	develop	exaggerated	body	forms	that	without
this	selective	pressure	would	reduce	the	prospects	of	surviving	to	breed.	The
enormous	tail	of	the	peacock	is	a	standard	example.	These	preferences	can	be
arbitrary,	but	any	that	are	associated	with	‘good	genes’	will	also	reinforce
biological	fitness.	Since	symmetric	development	has	a	genetic	component,
external	symmetry	can	function	as	a	test	for	good	genes.	So	it	is	natural	for	each
sex	to	prefer	symmetric	features	in	the	other.	Experiments	showed	that	female
swallows	were	less	attracted	to	males	with	asymmetric	tails,	and	the	same	went
for	the	wings	of	Japanese	scorpion	flies.	It	is	often	stated	that	movie	stars	have
unusually	symmetric	faces,	but	this	whole	area	is	controversial	because	even
when	symmetry	can	be	associated	with	preference,	it	is	extremely	difficult	to
establish	the	reasons	for	the	association.

A	great	deal	is	known	about	the	role	of	various	genes	in	the	symmetric	body
plans	of	vertebrates,	echinoderms	(the	fivefold	symmetry	of	starfish,	for
example),	and	flowers.	In	1999	it	was	found	that	a	mutation	in	the	plant	Linaria
vulgaris	can	change	the	symmetry	of	the	flower	from	bilateral	to	radial.	The
mutation	affects	a	gene	called	Lcyc,	and	‘switches	it	off’	in	the	mutant.	The
causes	of	symmetry	in	living	creatures	are	complex	and	subtle.

Animal	gaits

The	symmetry	of	a	living	creature	affects	not	just	its	shape,	but	how	it	moves.
This	phenomenon	is	particularly	striking	in	its	most	familiar	instance:	the
movements	of	quadrupeds,	four-legged	animals.	Horses	walk	at	low	speeds,	trot
at	intermediate	ones,	and	gallop	at	high	speeds.	Many	insert	a	fourth	pattern	of
movement,	the	canter,	between	trot	and	gallop.	Camels	and	giraffes	employe
rigid-motion	symmetries	of

bound.	Pigs	walk	and	trot;	see	Figure	40.	Throughout	the	animal	kingdom,



quadrupeds	make	use	of	a	small,	standard	list	of	patterns	of	movement,	known
as	gaits.

Gait	analysis	goes	back	at	least	to	Aristotle,	who	argued	that	a	trotting	horse	can
never	be	completely	off	the	ground.	The	subject	began	in	earnest	when
Eadweard	Muybridge	started	using	arrays	of	still	cameras	to	take	series	of
photographs	of	humans	and	animals	in	motion.	Only	then	was	it	possible	to	see
exactly	what	the	animal	was	doing.	In	particular,	it	turned	out	that	a	trotting
horse	can	be	completely	off	the	ground	during	some	phases	of	its	motion.	This
settled	a	rather	expensive	bet	in	favour	of	Leland	Stanford,	former	governor	of
California.

Gaits	are	periodic	cycles	of	movement,	idealized	from	actual	animal	motion,
which	can	stop,	start,	and	change	according	to	decisions	made	by	the	animal.
The	ideal	gait	repeats	the	same	gait	cycle	over	and	over	again.	If	two	legs	follow
the	same	cycle	but	one	has	a	time	delay	relative	to	the	other,	then	the	difference
in	timing	is	called	a	phase	shift.	Here	we	measure	such	a	shift	using	the
corresponding	fraction	of	the	period.

Like	all	periodic	motions,	gaits	have	time-translation	symmetry:	change	phase
by	any	integer	number	of	cycles.	There	is	also	a	spatial	symmetry,	the	bilateral
symmetry	of	the	animal.	However,	the	timing	patterns	of	gaits	suggest
considering	another	kind	of	symmetry,	which	applies	to	the	patterns	but	not	the
animal	as	such:	permuting	the	legs.	For	example,	in	the	bound,	both	front	legs
hit	the	ground	together,	then	both	back	legs,	and	there	is	a	symmetry	that	swaps
front	and	back,	combined	with	a	half-cycle	phase	shift;	see	Figure	41.	This	is	not
a	symmetry	of	the	animal,	but	it	is	clearly	present	in	several	gaits,	and	is	crucial
to	one	method	for	modelling	and	predicting	gait	patterns.

Gait	analysts	have	long	distinguished	symmetric	gaits,	such	as	the	walk,	pace,
and	bound,	from	asymmetric	ones,	such	as	the	canter	and	gallop.	Permutational
symmetries	of	the	legs	refine	this	classification	and	link	the	patterns	to	a
structure	in	the	animal’s	nervous	system	known	as	a	central	pattern	generator,
which	is	thought	to	control	the	basic	rhythms	of	the	motion.	The	timings	for
some	of	the	common	gaits	can	be	summarized	using	the	fractions	of	the	gait
cycle	at	which	the	four	legs	first	hit	the	ground;	see	Figure	42.	Here	we	employ
the	convention	that	the	cycle	starts	when	the	left	rear	leg	hits	the	ground,	which
is	convenient	mathematically.



40.	Trotting	sow	(Muybridge)

41.	Spatio-temporal	symmetries	of	the	bound

Here	the	fractions	1/4,1/2,	3/4,	occurring	in	the	symmetric	gaits,	are	more	or	less
exact	and	do	not	vary	from	one	animal	to	another.	The	fractions	1/10,	6/10,	9/10,
occurring	in	the	asymmetric	gaits,	are	more	variable,	and	can	change	depending
on	the	animal	and	the	speed	with	which	it	moves.

The	permutational	symmetries	that	fix	these	gaits,	when	combined	with
an">Middle:	Labelling	edge	facets.	alLD	appropriate	phase	shift,	can	be
described	informally	as	follows:

•	In	the	walk,	legs	cycle	in	the	order	LF	→	RF	→	LR	→	RR	with	phase	shifts



•	In	the	walk,	legs	cycle	in	the	order	LF	→	RF	→	LR	→	RR	with	phase	shifts
1/4	between	each	successive	leg.

•	In	the	trot,	corresponding	diagonal	pairs	of	legs	are	synchronized.	Swapping
front	and	back,	or	left	and	right,	induces	a	phase	shift	1/2.

•	In	the	bound,	corresponding	left	and	right	legs	are	synchronized.	Swapping
front	and	back	induces	a	phase	shift	1/2.

42.	Spatio-temporal	symmetries	of	some	standard	gaits

•	In	the	pace,	corresponding	front	and	back	legs	are	synchronized.	Swapping	left
and	right	induces	a	phase	shift	1/2.

•	In	the	canter,	there	is	a	1/2	phase	shift	on	one	diagonal	pair	of	legs,	and	the
other	pair	is	synchronized.

•	In	the	gallop,	there	is	a	1/2	phase	shift	from	front	to	back.	(Left	and	right	are
almost	synchronized,	but	not	exactly.)	More	precisely,	this	gait	is	a	transverse
gallop,	found,	for	example,	in	horses.	The	cheetah	uses	a	rotary	gallop,	in	which
the	phases	of	the	front	legs	are	interchanged.

These	patterns	are	very	similar	to	those	observed	in	closed	rings	of	identical
oscillators.	For	example,	if	four	oscillators	numbered	0,	1,	2,	3	are	connected
successively	in	a	ring,	with	each	influencing	the	next	(but	not	the	reverse)	then
the	main	natural	patterns	of	periodic	oscillation	(‘primary’	oscillations)	are:



The	second	pattern	resembles	the	walk,	if	oscillators	are	assigned	to	legs	in	a
suitable	way.	With	the	same	assignment,	the	third	pattern	is	a	backwards	walk.
The	fourth	pattern	resembles	the	bound,	pace,	or	trot,	depending	on	how	the
oscillators	are	assigned	to	legs.

The	table	for	the	four-oscillator	ring	includes	one	pattern	of	phase	shifts	that	has
not	yet	been	mentioned	in	connection	with	gaits:	the	first	entry,	with	all	four	legs
synchronized.	This	gait	does	occur	in	some	animals,	such	as	the	gazelle,	and	it	is
called	a	pronk	(or	stot).	The	whole	animal	jumps,	with	all	four	legs	leaving	the
ground	simultaneously.	This	gait	is	thought	to	have	evolved	to	confuse
predators,	but	that	suggestion	is	no	more	than	speculation.

There	is	a	plausible	reason	to	suppose	that	the	central	pattern	generator	for	gait
patterns	must	possess	cyclic	group	symmetry	of	this	general	kind,	in	order	to
generate	the	observed	patterns	in	a	robust	manner:	see	M.	Golubitsky,	D.
Romano,	and	Y.	Wang,	‘Network	periodic	solutions:	patterns	of	phase-shift
synchrony’,	Nonlinearity	25	(2012)	1045–74.	For	reasons	too	extensive	to	go
into	here,	the	central	pattern	generator	architecture	that	most	closely	models
observations	consists,	in	a	schematic	description,	of	two	rings,	each	composed	of
four	‘units’	of	nerve	cells,	connected	left–right	an	a	mirror-symmetric	manner.
Each	ring	controls	the	basic	timing	of	the	legs	on	its	side	of	the	animal,	but	two
units	control	the	muscles	of	the	back	legs	and	the	other	two	control	the	front
legs.	The	units	assigned	to	a	given	leg	are	not	adjacent	in	the	ring,	but	are	spaced
alternately.	This	architecture	predicts	all	of	the	common	gait	patterns—the
gallop	and	the	canter	are	‘mode	interactions’	in	which	two	distinct	patterns
compete—and,	crucially,	does	not	predict	the	innumerable	other	patterns	that	c
is	the	number	of	elementsstheould	be	envisaged.	The	literature	on	gaits	is	huge,
including	detailed	models	of	the	mechanics	of	locomotion.	The	symmetry
analysis	is	just	one	small	part	of	a	complex	and	fascinating	area.

Sand	dunes



Nature’s	tendency	to	create	symmetric	objects	is	especially	striking	in	the	flow
of	sand	as	winds	blow	over	a	desert.	There’s	not	a	great	deal	of	structure	in	a
desert,	and	winds	tend	either	to	blow	fairly	consistently	in	one	main	direction,
the	‘prevailing	wind’,	or	to	vary	all	over	the	place.	Neither	feature	sounds	like	an
ingredient	that	might	lead	to	symmetry,	but	sand	dunes	exhibit	striking	patterns,
a	sign	that	symmetries	may	lurk	somewhere	nearby.

Geologists	classify	dunes	into	six	main	types:	longitudinal,	transverse,
barchanoid,	barchan,	parabolic,	and	star;	see	Figure	43.	Reality	is	less	symmetric
than	idealized	mathematical	models,	so	all	of	the	symmetries	that	I’ll	mention
are	approximate	ones.	In	controlled	experiments	and	computer	simulations,
where	the	‘desert’	is	perfectly	flat	and	uniform	and	the	wind	blows	in	a	regular
fashion,	the	symmetries	are	closer	to	the	ideal.

43.	Sand	dune	shapes

Longitudinal	and	transverse	dunes	occur	in	equally	spaced	parallel	rows,	when
there	is	a	strong	prevailing	wind	in	a	fixed	direction.	In	effect,	they	are	stripes	in
the	sand.	Longitudinal	dunes	are	aligned	with	the	wind	direction.	Transverse
dunes	are	aligned	at	right	angles	to	the	wind	direction.	Barchanoid	dunes	are	like
transverse	ones,	but	they	have	scalloped	edges,	as	if	the	striped	pattern	is	starting
to	break	up.

Barchan	dunes	are	what	happen	when	the	stripes	do	break	up.	Each	dune	is	a



Barchan	dunes	are	what	happen	when	the	stripes	do	break	up.	Each	dune	is	a
crescent-shaped	mound	of	sand,	with	the	arms	of	the	crescent	pointing	in	the
direction	of	the	wind.	Barchans	often	form	a	‘swarm’	of	nearby	dunes,	and	in
models	these	are	often	the	same	shape	and	size,	and	regularly	spaced	in	a	lattice.
In	reality,	they	are	irregularly	spaced	and	can	have	different	sizes.	Sand	is	blown
up	the	front	of	the	dune	and	falls	over	the	top	to	the	far	side;	at	the	tips	of	the
crescents	the	sand	also	flows	round	the	side.	As	a	result,	the	entire	dune	moves
slowly	downwind,	retaining	the	same	shape.	In	Egypt,	entire	villages	can
disappear	beneath	an	advancing	barchan	dune,	only	to	re-emerge	decades	later
when	the	dune	moves	on.

Parabolic	dunes	are	superficially	like	barchans,	but	oriented	in	the	opposite
direction:	the	tips	of	the	crescent	point	into	the	wind.	They	tend	to	form	on
beaches,	where	vegetation	covers	the	sand.	Star	dunes	are	isolated	spikily	ridged
hills,	and	again	often	occur	in	swarms.	They	are	found	when	the	wind	direction
is	highly	irregular,	and	they	form	starlike	shapes	with	three	or	four	pointed	arms.

Symmetries	don’t	just	let	us	organize	these	patterns.	They	help	us	to	understand
how	they	arise;	see	Figure	44.	Sand	dunes	are	typical	of	many	pattern-forming
systems	in	mathematical	physics,	and	they	exemplify	a	general,	powerful	way	of
thinking	about	these	systems.	The	key	idea	is	known	as	symmetry	breaking.	At
first	sight	it	seems	to	violate	Curie’s	principle	(see	Chapter	2),	because	the
observed	state	has	less	symmetry	than	its	cause	does.	However,	a	tiny
asymmetric	perturbation	is	required	to	create	this	state,	so	technically	Curie	is
correct.	the	special	orthogonal	group	



44.	Symmetries	of	dune	patterns

First,	imagine	a	very	regular	model	desert	in	which	the	wind	blows	with	constant
speed	and	constant	direction	over	an	infinite	plane	of	initially	flat	sand.	The
symmetries	of	the	system	comprise	all	rigid	motions	of	the	plane	that	fix	the
wind	direction.	These	are	all	translations	of	the	plane,	together	with	left–right
reflection	in	any	line	parallel	to	the	wind.

If	the	profile	of	the	sand	has	full	symmetry,	then	the	sand	will	be	the	same	depth
everywhere,	because	any	point	can	be	translated	to	any	other.	So	we	get	a
uniform	flat	desert.	However,	this	state	can	become	unstable,	and	intuitively	we
expect	this	if	the	wind	becomes	strong	enough—while	remaining	uniform—to
disturb	sand	grains.	Tiny	random	effects	will	cause	some	grains	to	move,	while
others	remain	in	place.	Tiny	dips	and	bumps	begin	to	appear,	and	these	affect	the
flow	of	the	wind	nearby.	Vortices	trail	off	from	the	sides	of	the	bumps,	and	local
wind	speeds	can	increase.	These	effects	can	amplify	through	feedback,	and	the
symmetry	breaks.

What	does	it	break	to?	The	plane	has	independent	translational	symmetries	in
two	directions:	parallel	to	the	wind,	and	at	right	angles	to	it.	If	the	translational
symmetry	at	right	angles	breaks,	the	most	symmetric	possibility	is	that	instead	of



the	pattern	being	fixed	by	all	translations,	it	is	fixed	by	a	subgroup:	translation
through	integer	multiples	of	some	fixed	length.	The	result	is	parallel	waves,
separated	by	the	length	in	question.	The	waves	are	invariant	under	all
translations	parallel	to	the	wind,	so	they	look	like	an	array	of	parallel	stripes,
running	in	the	direction	of	the	wind.	These	are	longitudinal	dunes.

If	the	translational	symmetry	along	the	direction	of	the	wind	breaks,	much	the
same	happens,	but	now	the	waves	form	at	right	angles	to	the	wind.	So	we	get
transverse	dunes.

Barchanoid	dunes	form	when	a	second	symmetry	breaks:	the	group	of	all
translations	at	right	angles	to	the	wind.	Again,	this	becomes	a	discrete	subgroup,
creating	the	rippled	pattern	along	the	ridges.	The	ripples	are	equally	spaced,	and
they	are	all	the	same	shape.	The	group	of	translational	symmetries	is	lattice:	its
generator	moves	the	entire	ridge	either	one	step	forwards	or	one	step	sideways.
Each	ripple	is	also	bilaterally	symmetric	in	all	mirror	lines	parallel	to	the	wind
and	passing	through	either	the	apex	of	each	ripple	or	the	point	halfway	between
two	apexes.	So	some	of	the	reflectional	symmetries	break,	but	some	do	not.

Individual	barchan	dunes	also	have	this	kind	of	mirror-image	symmetry,	and	so
do	theoretical	arrays	of	barchan	dunes.	Detailed	models	of	the	flow	of	air	and
sand	explain	the	crescent	shape,	which	is	caused	by	a	large	vortex	that	separates
from	the	overall	flow	across	the	dune.

Parabolic	dunes	break	translation	along	the	wind	direction	altogether:	they	are
pinned	in	place	by	the	edge	of	the	beach.	They	are	symmetric	under	a	discrete
group	of	sideways	translations	and	reflections	similar	to	those	found	for
barchans.

Star	dunes	form	when	there	is	not	a	prevailing	wind	direction.	It’s	probably	best
to	say	that	they	have	lost	all	symmetry,	but	they	have	traces	of	rotational
symmetry—their	starlike	shape—which	may	correspond	to	the	rotational
symmetry	of	the	average	wind	direction:	equally	likely	to	blow	in	any	direction
whatever.

When	we	think	about	the	faces,	each	an	equilateral	triangle.

what	might	otherwise	seem	a	very	disordered	catalogue.	The	group-theoretic
analysis	of	symmetries,	and	how	they	break,	reveals	a	deeper	structure.
Ironically,	Curie’s	principle	applies	only	in	a	world	that	is	even	more	idealized
than	the	mathematical	model	of	symmetric	equations	plus	small	random



than	the	mathematical	model	of	symmetric	equations	plus	small	random
perturbations:	namely,	a	world	that	lacks	the	random	perturbations.	It	tells	us
that	any	explanation	of	the	patterns	must	involve	something	that	breaks	the
symmetry,	but	it	doesn’t	explain	any	of	the	patterns	that	then	appear.

Galaxies

Galaxies	have	beautiful	shapes,	but	are	they	symmetric?	I’m	going	to	argue	that
the	answer	is	‘yes’,	but	the	reasoning	depends	on	modelling	assumptions	and
which	kinds	of	symmetry	are	being	considered.

The	most	dramatic	feature	of	a	galaxy	is	its	spiral	form.	This	is	often	close	to	a
logarithmic	spiral—for	example,	the	spiral	arms	of	our	own	galaxy,	the	Milky
Way,	are	roughly	of	this	form.	When	discussing	the	Nautilus	shell	we	saw	that
the	logarithmic	spiral	has	a	continuous	family	of	symmetries:	dilate	by	some
amount	and	rotate	through	a	corresponding	angle.	Strictly	speaking,	this
symmetry	applied	only	to	the	complete	infinite	spiral.	Real	galaxies	are	of	finite
extent,	and	a	finite	spiral	cannot	have	dilation-plus-rotation	symmetry.	However,
it	is	reasonable	and	commonplace	to	model	finite	patterns	as	portions	of	ideal
infinite	ones,	so	this	objection	carries	little	weight.	We’ve	just	used	this	kind	of
model	for	sand	dunes,	in	fact.	A	more	significant	objection	is	that	the	spiral	arms
do	not	extend	far	enough	to	confirm	that	the	spiral	really	is	close	to	logarithmic.

A	glance	at	pictures	of	galaxies	shows	that	many	of	them	have	a	remarkably
close	approximation	to	symmetry	under	rotation	through	180°.	Figure	45	shows
two	examples,	the	Pinwheel	Galaxy	and	NGC	1300.	The	former	is	a	spiral,	the
latter	a	barred	spiral.	The	pictures	show	an	image	of	each	galaxy	next	to	the
same	image	rotated	180°.	At	first	glance,	it	is	hard	to	tell	the	difference.



45.	Top	left:	The	pinwheel	galaxy.	Top	right:	The	same	image	rotated	180°.
Bottom	left:	The	barred-spiral	galaxy	NGC	1300.	Bottom	right:	The	same
image	rotated	180°

According	to	many	of	the	current	mathematical	models	of	galaxy	dynamics,	the
arms	of	a	spiral	or	barred	spiral	galaxy	are	probably	rotating	waves,	which	retain
the	same	shape	as	time	passes,	but	rotate	about	the	galaxy’s	centre.	(It	has	also
been	suggested	that	barred	spirals	may	be	created	by	chaotic	dynamics:	see
Panos	A.	Patsis,	‘Structures	out	of	chaos	in	barred-spiral	galaxies’,	International
Journal	of	Bifurcation	and	Chaos	D-11-00008.)	The	waves	are	thought	to	be
density	waves,	so	the	densest	regions	do	not	always	contain	the	same	stars.	A
sound	wave	is	a	density	wave:	as	sound	passes	through	the	air,	some	parts
become	compressed,	and	the	compressed	region	travels	like	a	wave.	However,
the	molecules	of	air	do	not	travel	with	the	compression	wave;	they	remain	close
to	their	original	position.	Whether	the	spiral	arms	are	waves	of	stars	or	waves	of
density,	rotating	waves	have	a	continuous	family	of	space-time	symmetries:	wait
for	a	period	of	time	and	rotate	through	a	suitable	angle.	S">Middle:	Labelling
edge	facets.	alLDo	in	fact	galaxies	are	highly	symmetric,	and	the	symmetry
constrains	their	form.

Most	galaxies	with	(approximate)	rotational	symmetry	are	fixed	by	180°
rotation,	but	a	few	seem	to	have	higher-order	rotational	symmetries.	A	three-
armed	spiral	could	be	symmetric	under	a	120°	rotation,	for	example.	This	seems



armed	spiral	could	be	symmetric	under	a	120°	rotation,	for	example.	This	seems
to	be	very	rare	in	real	galaxies,	but	it	occurs	in	some	simulations	and	is	observed
in	the	galaxy	NGC	7137.	The	Milky	Way’s	spiral	arms	have	approximate	90°
rotational	symmetry,	but	the	existence	of	a	central	bar	reduces	this	to	180°
rotation	only.

Snowflakes

In	1611	Johannes	Kepler,	an	inveterate	pattern	seeker,	gave	his	sponsor	Matthew
Wacker	a	New	Year	present:	a	small	book	that	he	had	written	with	the	title	De
Nive	Sexangula	(‘On	the	six-cornered	snowflake’).	Kepler’s	main	target	was	the
notorious	six-sided	symmetry	of	snowflakes,	made	all	the	more	baffling	by	the
enormous	variety	of	shapes	that	occur;	see	Figure	46.	Notice	that	the	bottom-
right	image	has	threefold	symmetry,	not	sixfold,	showing	that	other	shapes	are
also	possible.

46.	Snowflakes	photographed	by	Vermont	farmer	Wilson	Bentley,
published	in	Monthly	Weather	Review	1902

Kepler	deduced,	on	the	basis	of	thought	experiments	and	known	facts,	that	the
‘formative	principle’	for	a	snowflake	must	be	related	to	closely	packed	spheres
—much	as	a	number	of	pennies	on	a	table	naturally	pack	into	a	honeycomb
pattern.	The	current	explanation	is	along	those	lines:	the	crystal	lattice	of	the
relevant	form	of	ice	consists	of	slightly	bumpy	layers	whose	main	symmetry	is
hexagonal.	This	creates	a	six-sided	‘seed’	upon	which	the	snowflake	grows.	The
exact	shape	is	affected	by	the	temperature	and	humidity	of	the	storm	cloud,



which	vary	chaotically,	but	because	the	flake	is	very	small	compared	to	the
scales	on	which	these	quantities	vary,	very	similar	conditions	occur	at	all	six
corners.	So	the	sixfold	(that	is,	D6)	symmetry	is	maintained	to	a	good
approximation.	However,	instabilities	can	break	this	symmetry,	and	other
physical	processes	come	into	play	under	different	meteorological	conditions.

Other	patterns

Many	other	forms	and	patterns	in	the	natural	world	are	evidence	for	the
symmetry	of	the	processes	that	generate	them.	The	Earth	is	roughly	spherical
because	it	condensed	out	of	a	disc	of	gas	surrounding	the	nascent	Sun.	The
natural	minimum-energy	configuration	for	>

	



Chapter	7
Nature’s	laws

Albert	Einstein	remarked	that	the	most	surprising	thing	about	Nature	is	that	it	is
comprehensible.	He	meant	that	the	underlying	laws	are	simple	enough	for	the
human	mind	to	understand.	How	Nature	behaves	is	a	consequence	of	these	laws,
and	simple	laws	can	generate	extremely	complex	behaviour.	For	example,	the
movement	of	the	planets	of	the	solar	system	is	governed	by	the	laws	of	gravity
and	motion.	These	laws	(either	in	Newton’s	version	or	in	Einstein’s)	are	simple,
but	the	solar	system	is	not.

The	term	‘law’	here	has	a	misleading	air	of	finality.	All	scientific	laws	are
provisional:	approximations	that	are	valid	to	a	high	degree	of	accuracy	and	are
used	until	something	better	comes	along.

One	of	the	most	intriguing	features	of	the	laws	of	Nature,	as	we	understand
them,	is	that	they	are	symmetric.	As	we	saw	in	the	previous	chapter,	symmetry
of	the	equations	(laws)	need	not	imply	symmetry	of	the	behaviour	(solutions).	In
general,	the	laws	of	Nature	are	more	symmetric	than	Nature	itself,	but	the
symmetries	of	the	laws	can	beflections,	which	map	each	point	to	its	mirror
image	in	some	fixed	linep;	}	@font-face	{	font-family:	"Charis";	src:
url(XXXXXXXXXXXXXXXX);	font-style:	reak.	The	patterns	exhibited	by	the
behaviour	provide	clues	to	the	symmetries	that	are	being	broken.	Physicists	in
particular	have	found	this	observation	to	be	of	vital	importance	when	trying	to
find	new	laws	of	Nature.

*

One	of	the	fundamental	theorems	in	this	area	is	Noether’s	Theorem,	proved	by
Emmy	Noether	in	1918.	A	Hamiltonian	system	is	a	general	form	of	equation	for
mechanics	without	frictional	forces.	The	theorem	states	that	whenever	a
Hamiltonian	system	has	a	continuous	symmetry,	there	is	an	associated	conserved
quantity.	‘Conserved’	means	that	this	quantity	remains	unchanged	as	the	system
moves.

For	example,	energy	is	a	conserved	quantity.	The	corresponding	continuous
symmetry—that	is,	group	of	symmetries	parametrized	by	a	continuous	variable



—is	time	translation.	The	laws	of	Nature	are	the	same	at	all	times:	if	you
translate	time	from	t	to	t	+	θ	the	laws	don’t	look	any	different.	Following
through	the	nuts	and	bolts	of	Noether’s	proof,	the	corresponding	conserved
quantity	is	energy.	Translation	in	space	(the	laws	are	the	same	everywhere)
corresponds	to	conservation	of	momentum.	Rotations	are	another	source	of
continuous	symmetries;	here	the	conserved	quantity	is	angular	momentum	about
the	axis	of	rotation.	The	profound	conservation	laws	discovered	by	the	classical
mechanicians—Newton,	Euler,	Lagrange—are	all	consequences	of	symmetry.

*

The	standard	setting	for	the	study	of	continuous	symmetries	is	Lie	theory,	named
after	the	Norwegian	mathematician	Sophus	Lie.	The	resulting	structures	are	Lie
groups,	with	which	are	associated	Lie	algebras.	To	motivate	the	main	ideas,	we
consider	one	example,	the	special	orthogonal	group	SO(3).	This	consists	of	all
rotations	in	three-dimensional	space.	A	rotation	is	specified	by	its	axis,	which
remains	fixed,	and	an	angle:	how	big	the	rotation	is.	These	variables	are
continuous:	they	can	take	any	real	value.	So	this	group	has	a	natural	topological
structure	as	well	as	its	group	structure.	Moreover,	the	two	are	closely	linked:	if
two	pairs	of	group	elements	are	very	close	together,	so	are	their	products.	That
is,	the	group	operations	are	continuous	maps.	Indeed,	more	is	true:	we	can	apply
the	operations	of	calculus,	in	particular	taking	the	derivative.	The	group
operations	turn	out	to	be	differentiable.

More	strongly,	the	group	has	a	geometric	structure	analogous	to	that	of	a	smooth
surface	but	with	more	dimensions.	To	find	its	dimension,	observe	that	it	takes
two	numbers	to	specify	the	axis	of	rotation	(say	the	longitude	and	latitude	of	the
point	in	which	the	axis	meets	the	northern	hemisphere	of	the	unit	sphere)	and
one	further	number	to	specify	the	angle.	So	without	doing	any	serious
calculations,	we	know	that	SO(3)	is	a	three-dimensional	space.

Algebraically,	SO(3)	can	be	defined	as	the	group	of	all	3×3	orthogonal	matrices
of	determinant	1.	A	matrix	M	is	orthogonal	if	MMT	=	I	where	I	is	the	identity
matrix	and	T	indicates	the	transpose.	There	is	an	important	connection	with
another	type	of	matrix.	The	exponential	of	any	matrix	M	can	be	defined	using
the	convergent	series



and	a	simple	calculation	shows	that	every	matrix	in	SO(3)	is	the	exponential	of	a
skew-symmetric	matrix,	for	which	MT	=	−M,	and	conversely.

The	product	of	two	orthogonal	matrices	is	always	orthogonal,	but	the	product	of
two	skew-symmetric	matrices	need	not	be	skew-symmetric.	However,	the
commutator

[L,	M]	=	LM	−	ML

of	two	skew-symmetric	matrices	is	always	skew-symmetric.	A	vector	space	of
matrices	that	is	closed	under	the	commutator	is	called	a	Lie	algebra.	So	we	have
associated	a	Lie	algebra	with	the	special	orthogonal	group,	and	the	exponential
map	sends	the	Lie	algebra	to	the	group.

More	generally,	a	Lie	group	is	any	group	that	also	has	a	particular	type	of
geometric	structure,	with	respect	to	which	the	group	operations	(product,
inverse)	are	smooth	maps.	Every	Lie	group	has	an	associated	real	Lie	algebra,
which	describes	the	local	structure	of	the	group	near	the	identity	element.	This	in
turn	determines	a	complex	Lie	algebra.	Using	complex	Lie	algebras,	it	is
possible	to	classify—that	is,	determine	the	structure	of—some	important	types
of	Lie	group.	The	first	step	is	to	classify	the	simple	complex	Lie	algebras,	which
are	complex	Lie	algebras	L	that	do	not	contain	a	subalgebra	K	(other	than	0	or	L)
such	that	[L,K]	⊆	K.	Such	a	subalgebra	is	called	an	ideal,	and	this	property	is	the
analogue	for	a	Lie	algebra	of	a	normal	subgroup.

In	1890	Wilhelm	Killing	obtained	a	complete	classification	of	all	simple
complex	Lie	algebras,	subject	to	a	few	errors	and	omissions	that	were	soon
corrected.	This	classification	is	now	presented	in	terms	of	graphs	known	as
Dynkin	diagrams,	which	specify	certain	geometric	structures	called	root	systems.
Every	simple	complex	Lie	algebra	has	a	root	system,	and	this	completely
determines	its	structure.	Figure	47	shows	the	Dynkin	diagrams.	There	are	four
infinite	families,	denoted	An	(n	≥	1),	Bn	(n	≥	2),	Cn	(n	≥	3),	and	Dn	(n	≥	4).	In
addition,	there	are	five	exceptional	diagrams,	denoted	G2,	F4,	E6,	E7,	and	E8.	The
dimensions	of	these	algebras	(as	vector	spaces	over	C)	are	listed	in	Table	7.

The	four	infinite	families	that	occur	in	the	classification	theorem	can	be	realized
as	Lie	algebras	of	matrices	under	the	commutator	operation.	The	type	An	algebra
is	the	special	linear	Lie	algebra	sln	+	1(C),	consisting	of	all	(n	+	1)×(n	+	1)



complex	matrices	whose	trace	(sum	of	diagonal	terms)	is	zero.	The	type	Bn
algebra	consists	of	skew-symmetric	(2n	+	1)×(2n	+	1)	complex	matrices,
denoted	so2n	+	1(C).	The	type	Dn	algebra	consists	of	skew-symmetric	2n×2n
complex	matrices,	denoted	at	a	specific	angle	to	the	axistwCPso2n(C).	And	the
type	Cn	algebra	consists	of	symplectic	2n×2n	complex	matrices,	denoted
sp2n(C).	These	are	the	matrices	that	can	be	written	in	block	form	as:

Table	7.	The	classification	of	the	simple	complex	Lie	algebras

47.	Dynkin	diagrams



where	X,	Y,	Z	are	n×n	matrices	and	Y	and	Z	are	symmetric.

The	complex	simple	Lie	algebras	are	fundamental	to	the	classification	of	simple
Lie	groups,	but	the	passage	from	the	real	numbers	to	the	complex	numbers
introduces	some	complications	because	the	geometric	structure	of	a	Lie	group	is
defined	in	terms	of	real	coordinates.	Each	simple	Lie	algebra	has	a	variety	of
‘real	forms’,	and	these	correspond	to	different	groups.	Moreover,	for	each	real
form,	there	is	still	some	freedom	in	the	choice	of	group:	groups	that	are
isomorphic	modulo	their	centres	have	the	same	Lie	algebra.	Nonetheless,	a
complete	picture	can	be	derived.

*

Lie	groups	are	not	always	simple.	A	familiar	example,	one	that	we	have	been
studying	from	time	to	time	throughout	this	book,	without	giving	it	a	technical
name,	is	the	Euclidean	group	E(2)	of	all	rigid	motions	of	the	plane.	This	has	a
subgroup	R2	that	comprises	all	translations,	and	this	group	turns	out	to	be
normal.	E(2)	also	contains	all	rotations	and	reflections,	and	it	is	three
dimensional.	The	analogous	group	E(n)	in	dimension	n	has	similar	properties,
and	has	dimension	n(n	+	1)/2.	The	equations	of	Newtonian	mechanics	are
symmetric	under	the	Euclidean	group,	and	also	under	time	translation,	and
Noether’s	Theorem	explains	the	existence	of	the	classical	conserved	quantities
as	consequences	of	continuous	subgroups,	as	described	above.

Another	important	group	in	classical	(that	is,	non-relativistic)	mechanics	is	the
Galilean	group,	which	is	used	to	relate	two	different	coordinate	systems	(frames
of	reference)	that	are	moving	at	uniform	velocity	relative	to	each	other.	Now	we
need	transformations	that	correspond	to	uniform	motion,	in	addition	to	those	in
the	Euclidean	group.

From	the	modern	point	of	view,	the	most	influential	symmetries	in	classical
mechanics	are	those	that	relate	to	its	reformulation	by	William	Rowan	Hamilton,
in	terms	of	a	single	function.	We	call	it	the	Hamiltonian	of	the	system.	It	can	be
interpreted	as	its	energy,	expressed	as	a	function	of	position	and	momentum
coordinates.	The	appropriate	transformations	turn	out	to	be	symplectic.	Most
advanced	research	in	classical	mechanics	is	now	done	in	the	framework	of
symplectic	geometry.



Another	Lie	group	that	is	very	similar	to	the	Euclidean	is	not	just	a	matter	of

d2	=	x2	+	y2	+	z2

	

in	three-dimensional	space	is	replaced	by	the	interval
between	events	in	space-time:

d2	=	x2	+	y2	+	z2	–	c2t2

where	t	is	time.

The	scaling	factor	c2	merely	changes	the	units	of	time
measurement,	but	the	minus	sign	in	front	of	it	changes
the	mathematics	and	physics	dramatically.	The	group
of	transformations	of	space-time	that	fixes	the	origin
and	leaves	the	interval	invariant	is	called	the	Lorentz
group	after	the	physicist	Hendrik	Lorentz.	The
Lorentz	group	specifies	how	relative	motion	works	in
relativity,	and	is	responsible	for	the	theory’s
counterintuitive	features	in	which	objects	shrink,	time
slows	down,	and	mass	increases,	as	a	body	nears	the
speed	of	light.

*

Just	over	a	century	ago,	most	scientists	did	not	believe
that	matter	was	made	of	atoms.	As	experimental	and



that	matter	was	made	of	atoms.	As	experimental	and
theoretical	support	grew,	atomic	theory	became	first
respectable,	then	orthodox.	Atoms,	at	first	thought	to
be	indivisible—which	is	what	the	word	means,	in
Greek—turned	out	to	be	made	from	three	kinds	of
particle:	electrons,	protons,	and	neutrons.	How	many
of	each	an	atom	possessed	determined	its	chemical
properties	and	explained	Dmitri	Mendeleev’s	periodic
table	of	the	elements.	But	soon	other	particles	joined
the	game:	neutrinos,	which	rarely	interact	with	other
particles	and	can	travel	through	the	Earth	without
noticing	it’s	there;	positrons,	made	of	antimatter,	the
opposite	of	an	electron;	and	many	more.	Soon	the	zoo
of	allegedly	‘elementary’	particles	contained	more
particles	than	the	periodic	table	contained	elements.

At	the	same	time,	it	became	clear	that	there	are	four
basic	types	of	force	in	Nature:	gravity,
electromagnetic,	weak	nuclear,	and	strong	nuclear.
Forces	are	‘carried’	by	particles,	and	particles	are
associated	with	quantum	fields.	Fields	pervade	the
whole	of	space,	and	change	over	time.	Particles	are
tiny	localized	clumps	of	field.	Fields	are	seething
masses	of	particles.	A	field	is	like	an	ocean,	a	particle
is	like	a	solitary	wave.	A	photon,	for	instance,	is	the
particle	associated	with	the	electromagnetic	field.
Waves	and	particles	are	inseparable:	you	can’t	have
one	without	the	other.



one	without	the	other.

As	this	picture	slowly	assembled,	step	by	step,	the
vital	role	played	by	symmetry	became	increasingly
prominent.	Symmetries	organize	quantum	fields,	and
therefore	the	particles	associated	with	them.	Out	of
this	activity	emerged	the	best	theory	we	have	of	the
truly	fundamental	particles;	see	Figure	48.	It	is	called
the	standard	model.	The	particles	are	classified	into
four	types:	fermions	and	bosons	(which	have	different
statistical	properties),	quarks	and	leptons.	Electrons
are	still	fundamental,	but	protons	and	neutrons	are
not:	they	are	composed	of	quarks	of	six	different
kinds.	There	are	three	types	of	neutrino,	and	the
electron	is	accompanied	by	two	other	particles,	the
muon	and	tauon.	The	photon	is	the	carrier	for	the
electromagnetic	force;	the	Z-and	W-bosons	carry	the
weak	nuclear	force;	the	gluon	carries	the	">Monthly
Weather	Review	1902alLDstrong	nuclear	force.



48.	Particles	of	the	standard	model

As	described,	the	theory	predicts	that	all	particles
have	zero	mass,	and	this	is	not	consistent	with
observations.	The	final	piece	in	the	jigsaw	is	the	Higgs
boson,	which	endows	particles	with	masses.	The	field
corresponding	to	the	Higgs	boson	differs	from	all
others	in	that	it	is	nonzero	in	a	vacuum.	As	a	particle
moves	through	the	Higgs	field,	its	interaction	with	the
field	endows	it	with	behaviour	that	we	interpret	as
mass.	In	2012	a	new	particle	consistent	with	the
theoretical	Higgs	boson	was	detected	by	the	Large
Hadron	Collider.	Further	observations	will	be
required	to	decide	whether	it	corresponds	exactly	to
the	predicted	particle,	or	is	some	variant	that	might
lead	to	new	physics.



lead	to	new	physics.

Symmetries	are	crucial	to	the	classification	of
particles	because	the	possible	states	of	a	quantum
system	are	to	some	extent	determined	by	the
symmetries	of	the	underlying	equations.	Specifically,
what	matters	is	how	the	group	of	symmetries	acts	on
the	space	of	quantum	wave	functions.	The	‘pure
states’	of	the	system—states	that	can	be	detected	when
observations	are	made—correspond	to	special
solutions	of	the	equations,	called	eigenfunctions,
which	can	be	worked	out	from	the	symmetry	group.
The	mathematics	is	sophisticated,	but	the	story	can	be
understood	in	general	terms,	as	follows.

A	useful	analogy	is	Fourier	analysis,	which	represents
any	2π-periodic	function	as	a	linear	combination	of
sines	and	cosines	of	integer	multiples	of	the	variable.
Passing	to	the	complex	numbers,	any	2π-periodic
function	is	represented	by	an	infinite	series	of
exponentials	enix	with	complex	coefficients.	The
relevant	symmetry	group	here	consists	of	all
translations	of	x	modulo	2π,	which	physically
represent	phase	shifts	of	the	periodic	function.	The
resulting	group	R/2πZ	is	isomorphic	to	the	circle
group	SO(2),	so	the	whole	set-up	is	symmetric	under
the	phase-shift	action	of	SO(2)	on	the	vector	space	of



all	2π-periodic	functions.	Fourier	analysis	originated
in	work	on	the	heat	equation	and	the	wave	equation	in
mathematical	physics,	and	these	equations	have	SO(2)
symmetry,	realized	as	phase	shifts	on	periodic
solutions.	The	solutions	enix,	for	specific	n,	are	special
solutions;	in	the	context	of	the	wave	equation	these
functions—rather,	their	real	parts—are	especially
familiar	as	normal	modes	of	vibration.	In	music,	the
vibrating	object	is	a	string,	and	the	normal	modes	are
the	fundamental	note	and	its	harmonics.

For	a	deeper	interpretation	of	the	mathematics,	we
consider	how	SO(2)	acts	on	the	space	of	periodic
functions.	This	is	a	real	vector	space,	of	infinite
dimension.	The	normal	modes	span	subspaces,	which
are	two-dimensional	except	for	the	zero	mode	when
the	subspace	is	one-dimensional.	A	(real)	basis	for	this
space	consists	of	the	functions	cos	nx	and	sin	nx,
except	when	n	=	0,	in	which	case	the	sine	term	is
omitted	because	it	is	zero,	and	the	cosine	is	constant.
Each	such	subspace	is	invariant	under	the	symmetry
group—that	is,	a	phase	shift	applied	to	a	normal-
mode	wave	is	a	normal-mode	wave.	This	is	most	easily
veri	the	tips	of	the	crescentThLDfied	in	complex
coordinates,	because	eni(x+ϕ)	=	eniϕenix,	and	eniϕ
is	just	a	complex	constant.	In	real	coordinates,	both



cos	x	+	 	and	sin	x	+	 	are	linear	combinations	of	cos	x
and	sin	x.

Geometrically,	the	action	of	θ	∈	SO(2)	on	the
subspace	spanned	by	enix	is	rotation	through	an	angle
nθ.	So	each	subspace	provides	a	representation	of
SO(2),	that	is,	a	group	of	linear	transformations	that
is	isomorphic	to	it,	or	more	generally	a	homomorphic
image	of	it.	The	linear	transformations	correspond	to
matrices,	and	the	representation	is	irreducible	if	no
proper	nonzero	subspace	is	invariant	under	(mapped
to	itself	by)	every	such	matrix.	So	what	Fourier
analysis	does,	from	the	point	of	view	of	symmetry,	is
to	decompose	the	representation	of	SO(2)	on	the	space
of	2π-periodic	functions	into	irreducible
representations.	These	representations	are	all
different,	thanks	to	the	integer	n.

This	set-up	can	be	generalized,	with	SO(2)	replaced
by	any	compact	Lie	group.	A	basic	theorem	in
representation	theory	states	that	any	representation	of
such	a	group	can	be	decomposed	into	irreducible
representations.	Notice	that	the	normal	mode	enix	is
an	eigenvector	for	all	of	the	matrices	given	by	the
group,	again	because	eni(x	+	ϕ)	=	eniϕenix,	and
eniϕ	is	a	constant.



Quantum	mechanics	is	similar,	but	the	wave	equation
is	replaced	by	Schrödinger’s	equation	or	equations	for
quantum	fields.	Complex	numbers	are	built	into	the
formalism	from	the	start.	The	analogues	of	normal
modes	are	eigenfunctions.	So	every	solution	of	the
equation,	that	is,	every	quantum	state	for	the	system
being	modelled,	is	a	linear	combination—a
superposition—of	eigenfunctions.	Experiment	and
theory	suggest	that	superposed	states	should	not	be
observable	as	such;	only	individual	eigenfunctions	can
be	observed.	More	precisely,	observing	a
superposition	is	delicate	and	only	possible	in	unusual
circumstances;	until	recently	it	was	believed	to	be
impossible.	Associated	with	this	suggestion	is	the
Copenhagen	interpretation,	in	which	any	observation
somehow	‘collapses’	the	state	to	an	eigenfunction.
This	proposal	led	to	quasi-philosophical	ideas	such	as
Schrödinger’s	cat	and	the	many-worlds	interpretation
of	quantum	mechanics.	All	we	need	here,	however,	is
the	underlying	mathematics,	which	tells	us	that
observable	states	correspond	to	irreducible
representations	of	the	symmetry	group	of	the
equation.	In	particle	physics,	observable	states	are
particles.	So	symmetry	groups	and	their
representations	are	a	basic	feature	of	particle	physics.

Historically,	the	importance	of	symmetry	in	particle



physics	traces	back	to	Hermann	Weyl’s	attempt	to
unify	the	forces	of	electromagnetism	and	gravity.	He
suggested	that	the	appropriate	symmetries	should	be
changes	of	spatial	scale,	or	‘gauge’.	That	approach
didn’t	work	out,	but	Shinichiro	Tomonaga,	Julian
Schwinger,	Richard	Feynman,	and	Freeman	•
Raymond	WacksalLD	Dyson	modified	it	to	obtain	the
first	relativistic	quantum	field	theory	of
electromagnetism,	based	on	a	group	of	‘gauge
symmetries’	U(1).	This	theory	is	called	quantum
electrodynamics.

The	next	major	step	was	the	discovery	of	the
‘eightfold	way’,	which	unified	eight	of	the	particles
that	were	then	considered	to	be	elementary:	neutron,
proton,	lambda,	three	different	sigma	particles,	and
two	xi	particles.	Figure	49	shows	the	mass,	charge,
hypercharge,	and	isospin	of	each	of	these	particles.	(It
doesn’t	matter	what	these	words	mean:	they	are
numbers	that	characterize	certain	quantum
properties.)	The	eight	particles	divide	naturally	into
four	families,	in	each	of	which	the	hypercharge	and
isospin	are	the	same,	and	the	masses	are	nearly	the
same.	The	families	are:

singlet:	lambda

doublet:	neutron,	proton



doublet:	neutron,	proton

doublet:	the	two	xis

triplet:	the	three	sigmas

49.	A	superfamily	of	particles	organized	by	the
eightfold	way

where	the	adjectives	indicate	how	many	particles
there	are	in	each	family.

The	eightfold	way	interpreted	this	‘superfamily’	of
eight	particles	using	a	particular	eight-dimensional
irreducible	representation	of	the	group	U(3),	whose
choice	had	good	physical	motivation.	Ignoring	time
breaks	the	symmetry	to	a	subgroup	SU(3),	which	acts
on	the	same	eight-dimensional	space.	This
representation	of	SU(3)	breaks	up	into	four



irreducible	subspaces,	of	dimensions	1,	2,	2,	3.	Each	of
these	dimensions	corresponds	to	the	number	of
particles	in	one	of	the	families.	Particles	in	the	same
family—that	is,	corresponding	to	the	same	irreducible
representation	of	SU(3)—have	the	same	mass,
hypercharge,	and	isospin	because	of	the	SU(3)
symmetry.	The	same	ideas	applied	to	a	different	ten-
dimensional	representation	predicted	the	existence	of
a	new	particle,	not	known	at	the	time,	called	the
Omega-minus.	When	this	was	observed	in	particle
accelerator	experiments,	the	symmetry	approach
became	widely	accepted.

Building	on	these	ideas,	Abdus	Salam,	Sheldon
Glashow,	and	Steven	Weinberg	managed	to	unify
quantum	electrodynamics	with	the	weak	nuclear
force.	In	addition	to	the	electromagnetic	field	with	its
U(1)	gauge	symmetry,	they	introduced	fields
associated	with	four	fundamental	particles,	all	of	them
bosons.	The	gauge	symmetries	of	this	new	field	form
the	group	SU(2),	and	the	combined	symmetry	group	is
U(1)×SU(2),	where	the	×	indicates	that	the	two	groups
act	independently.	The	result	is	called	the	electroweak
theory.

The	strong	nuclear	force	was	included	in	the	picture
with	the	invention	of	quantum	chromodynamics.	This



assumes	the	existence	of	a	third	quantum	field	for	the
strong	force,	with	gauge	symmetry	SU(3).	Combining
the	three	fields	and	their	three	groups	led	to	the
standard	model,	with	symmetry	group
U(1)×SU(2)×SU(3).	The	U(1)	symmetry	is	exact,	but
the	other	two	are	approximate.	It	is	thought	that	they
become	exact	aadjacent	edge	cubies	while	leaving
everything	else	unchanged.

*

One	force	is	still	missing:	gravity.	There	ought	to	be	a
particle	associated	with	the	gravitational	field.	If	it
exists,	it	has	been	dubbed	the	graviton.	However,
unifying	gravity	with	quantum	chromodynamics	is
not	just	a	matter	of	adding	yet	another	group	to	the
mix.	The	current	theory	of	gravity	is	general
relativity,	and	that	doesn’t	fit	very	neatly	into	the
formalism.	Even	so,	symmetry	principles	underpin
one	of	the	best-known	attempts	at	unification:	the
theory	of	superstrings,	often	called	string	theory.	The
‘super’	refers	to	a	conjectured	type	of	symmetry
known	as	supersymmetry,	which	associates	to	each
ordinary	particle	a	supersymmetric	partner.

String	theories	replace	point	particles	by	vibrating
‘strings’,	which	originally	were	viewed	as	circles,	but



are	now	thought	to	be	higher-dimensional.
Incorporating	supersymmetry	leads	to	superstrings.
By	1990	theoretical	work	had	led	to	five	possible	types
of	superstring	theory,	designated	types	I,	IIA,	IIB,
HO,	and	HE.	The	corresponding	symmetry	groups,
known	as	gauge	groups	because	of	the	way	they	act	on
quantum	fields,	are	respectively	the	special
orthogonal	group	SO(32),	the	unitary	group	U(1),	the
trivial	group,	SO(32)	again,	and	E8×E8,	two	distinct	c
on	the	enigma



Chapter	8
Atoms	of	symmetry

One	of	the	greatest	scientific	achievements	of	the	19th	century	was	Mendeleev’s
discovery	of	the	periodic	table,	which	organizes	the	basic	building	blocks	of
matter	into	sets	of	substances	with	similar	properties.	These	building	blocks	are
chemical	molecules	that	cannot	be	broken	up	into	smaller	molecules:	in	short,
atoms.	Collectively,	they	are	called	elements.	By	the	20th	century	it	turned	out
that	atoms	are	themselves	composed	of	smaller	subatomic	particles,	but	before
that	atoms	were	defined	as	indivisible	particles	of	matter.	The	name,	in	fact,	is
Greek	for	‘indivisible’:	a	=	not,	temno	=	cut.	To	date	118	elements	have	been
identified,	of	which	ninety-eight	occur	naturally.	The	rest	have	been	synthesized
in	nuclear	reactions.	All	of	the	latter	are	radioactive	(as	are	eighteen	of	the
former)	and	most	are	very	short-lived.

In	a	loose	analogy,	every	finite	symmetry	group	can	be	broken	up,	in	a	well-
defined	manner,	into	‘indivisible’	symmetry	groups—atoms	of	symmetry,	so	to
speak.	These	basic	building	blocks	for	finite	groups	are	known	as	simple	groups
—not	because	anything	about	them	is	easy,	but	in	the	sense	of	‘not	made	up
from	several	parts’.	Just	as	atoms	can	be	combined	to	build	molecules,	so	these
simple	groups	can	be	combined	to	build	all	finite	groups.

One	of	the	greatest	mathematical	achievements	of	the	20th	century	was	the
discovery	that—to	continue	the	analogy—there	is	a	kind	of	periodic	table	for
symmetries.	This	table	contains	infinitely	many	gro	The	lattice	formed	by	all-
integer	linear	combinations	of	two	complex	periods	ω

The	proof	of	the	Classification	Theorem	for	Finite	Simple	Groups,	when	first
completed,	ran	to	about	10,000	pages	in	mathematical	journals.	It	has	since	been
reworked,	exploiting	insights	acquired	along	the	way	to	streamline	the	proof,
and	it	is	now	estimated	that	when	complete	it	will	be	5,000	pages	long.	An	even
more	streamlined	third-generation	proof	is	under	investigation.	However,	it	was
always	obvious	that	any	proof	would	have	to	be	unusually	lengthy,	because	the
answer	itself	is	complicated.	The	surprise,	if	anything,	is	that	it	can	be	done	at
all;	even	more	so	that	a	mere	5,000	pages	are	needed.

*



In	Chapter	4	we	described	two	distinct	ways	to	extract	smaller	groups	from
bigger	ones,	both	discovered	by	the	early	pioneers	of	group	theory.	The	most
obvious	of	these	concepts	is	that	of	a	subgroup,	which	is	a	subset	of	a	group	that
forms	a	group	in	its	own	right.	The	second	concept	is	that	of	a	quotient	group,
which	we	saw	is	associated	with	a	special	kind	of	subgroup,	known	as	a	normal
subgroup.	Recall	that	an	intuitive	way	to	visualize	a	quotient	group	is
conceptually	to	colour	the	group	elements.	If	it	is	true	that	whenever	elements	of
two	given	colours	are	combined,	the	colour	of	the	result	is	always	the	same,	then
the	colours	themselves	form	a	group,	and	this	is	the	quotient.	The	corresponding
normal	subgroup	consists	of	all	elements	with	the	same	colour	as	the	identity.
Every	group	with	more	than	one	element	has	at	least	two	quotient	groups.	In
one,	we	colour	all	elements	using	the	same	colour,	and	the	quotient	group	has
only	one	element.	In	the	other,	we	colour	all	elements	using	distinct	colours,	and
the	quotient	group	is	the	original	group.	Neither	is	terribly	interesting.	If	these
are	the	only	quotient	groups,	then	we	say	that	the	original	group	is	simple.

The	smallest	simple	group,	aside	from	cyclic	groups	of	prime	order,	is	the
alternating	group	A5	with	sixty	elements.	This	group	is	isomorphic	to	the	group
of	rotational	symmetries	of	the	dodecahedron,	discussed	in	Chapter	3.	Table	4	in
that	chapter	contains	the	basic	information	for	a	short,	snappy	proof	that	A5	is
simple.	The	key	idea	is	that	if	a	normal	subgroup	of	some	group	contains	an
element,	say	h,	then	it	must	also	contain	all	conjugates	g−1hg	as	g	ranges	through
the	entire	group.	Recall	that	conjugacy,	geometrically	speaking,	means	‘do	the
same	thing	at	another	location’.	So	symmetries	of	the	same	type	are	conjugate	to
each	other.	The	sizes	of	these	‘conjugacy	classes’	are	1,	12,	12,	15,	and	20.	Any
normal	subgroup	must	be	a	union	of	some	of	these	classes.	Moreover,	it	must
contain	the	identity	(the	class	with	one	element),	and	by	Lagrange’s	Theorem	its
order	must	divide	60.	So	we	are	seeking	solutions	of	the	equation

1	+	(a	selection	from	12,	12,	15,	20)	divides	60

and	it	is	easy	to	show	that	the	only	solutions	are:

1	=	1

1	+	12	+	12	+	15	+	20	=	60

Therefore	the	only	normal	subgroups	are	the	identity	and	the	whole	group,	and
that	impl	the	tips	of	the	crescentIt	is	possible	to	apply	the	same	argument	directly

kindle:pos:fid:00ilies it is simple.</p> <p class=


to	A5	by	relating	its	conjugacy	classes	to	the	decomposition	of	permutations	into
cycles,	and	there	are	other	ways	to	prove	that	it	is	simple	as	well.	Modern
treatments	of	Galois	Theory	use	the	simplicity	of	A5	to	prove	that	quintic
equations	cannot	be	solved	using	radicals.	Leaving	out	a	heap	of	important
technicalities,	the	main	idea	is	that	extracting	a	radical	is	equivalent	to	forming	a
cyclic	quotient	group	of	the	symmetry	group	of	the	equation.	If	there	are	no
nontrivial	proper	quotients,	there	are	no	cyclic	ones,	hence	no	radicals	that
simplify	the	equation.

Simple	groups	are	roughly	analogous	to	prime	numbers.	In	number	theory,	every
integer	can	be	written	as	a	product	of	prime	factors;	moreover,	those	factors	are
unique	except	for	the	order	in	which	they	appear.	There	is	an	analogous
statement	for	finite	groups,	known	as	the	Jordan–Hölder	theorem.	It	states	that
any	finite	group	can	be	broken	up	into	a	finite	list	of	simple	groups,	and	that
these	‘composition	factors’	are	unique	except	for	the	order	in	which	they	appear.
More	precisely,	for	any	finite	G	there	exists	a	chain	of	subgroups

1	=	G0	⊆	G1	⊆	G2	⊆	…	⊆	Gr	=	G

each	normal	in	the	next,	such	that	every	quotient	group	Gm+1/Gm	is	simple.

For	example,	if	G	=	Sn	and	n	≥	5	then	such	a	chain	is:

1	⊆	An	⊆	Sn

The	composition	factors	are:

An	/	1	≅	An	Sn	/	An	≅	Z2

Properties	of	S2,	S3,	and	S4	can	be	used	to	deduce	the	solutions	of	quadratic,
cubic,	and	quartic	equations	by	radicals	that	were	known	in	Babylon	and	in
Renaissance	Italy.	Using	similar	methods	in	an	era	before	groups	were	available,
Gauss	found	a	ruler-and-compass	construction	for	the	regular	seventeen-sided
polygon.	We	now	interpret	his	method	in	terms	of	composition	factors	of	the
multiplicative	group	of	nonzero	elements	of	GF	(17).

*

We	can	recover	any	number	uniquely	from	its	prime	factors	by	multiplying	them



all	together.	This	is	not	the	case	for	groups.	Many	different	groups	can	have	the
same	composition	factors.	So	the	analogy	with	prime	factorization	is	very	loose.
Nevertheless,	simple	groups	play	the	same	prominent	role	in	group	theory	that
primes	do	in	number	theory.

A	closer	analogy	is	one	we	have	already	hinted	at:	molecules	and	atoms.	Every
molecule	is	composed	of	a	unique	set	of	atoms,	but	a	given	set	of	atoms	may
correspond	to	many	different	molecules.	A	simple	example	is	ethanol	and
dimethyl	ether.	Both	are	composed	of	six	hydrogen	atoms,	two	carbs	to
rearrange	the	blocks

Figure	50.	This	is	one	justification	of	the	metaphor	in	which	simple	groups	are
the	atoms	of	finite	groups.

The	search	for	simple	groups	occupied	the	attention	of	algebraists	for	over	150
years,	starting	from	the	time	of	Galois.	The	most	obvious	such	groups	are	the
cyclic	groups	Zp	of	prime	order	p.	These	could	not	be	explicitly	recognized	as
simple	groups	until	‘group’	and	‘simple’	were	defined,	but	the	reason	why	they
are	simple—primes	have	no	proper	factors—goes	back	to	Euclid.	Unlike	all
other	simple	groups,	the	cyclic	groups	are	abelian.

Galois	found	the	first	nonabelian	simple	groups	in	1832:	the	two-dimensional
projective	special	linear	groups	PSL2(p),	associated	with	geometries	over	finite
fields	with	a	prime	number	p	≥	5	of	elements.	These	groups	are	analogous	to	the
Lie	groups	PSL2(R)	and	PSL2(C),	which	are	groups	of	2×2	matrices	over	the
fields	R	and	C	modulo	scalar	multiples	of	the	identity,	except	that	R	and	C	are
replaced	by	a	finite	field	GF(p).	It	was	soon	recognized	that	the	alternating
groups	An	are	simple	for	n	≥	5.	The	smallest	nonabelian	simple	group	is	A5,	with
order	60.	The	next	smallest	is	PSL2(GF	(7))	with	order	168.

50	Left:	Ethanol.	Right:	Dimethyl	ether

The	next	simple	groups	to	be	discovered	did	not	fit	into	any	nice	family	of



groups	with	closely	related	properties.	They	were	what	we	now	call	sporadic
groups.	In	1861	Émile	Mathieu	found	the	first	of	these,	M11	and	M12,	now
named	after	him.	They	contain	7,920	and	95,040	elements,	respectively.	One
way	to	construct	them	is	to	employ	combinatorial	structures	known	as	Steiner
systems.	For	example,	a	(5,	6,	12)	Steiner	system	is	a	collection	of	six-element
subsets	of	a	set	with	twelve	elements,	having	the	property	that	every	five-
element	subset	occurs	in	exactly	one	of	the	six-element	subsets.	There	is	exactly
one	such	system,	up	to	isomorphism.	One	way	to	construct	it	is	to	start	with
GF(11),	the	integers	modulo	11.	This	is	a	finite	field	since	11	is	prime.	Add	a
twelfth	point	at	infinity,	∞.	These	twelve	points	form	a	finite	geometry	called	a
projective	line.	There	are	natural	maps	from	the	projective	line	to	itself:	the
fractional	linear	transformations	(just	like	Möbius	transformations	of	C):

where	a,	b,	c,	d	∈	GF	(11)	and	we	interpret	1/0	as	∞.

To	form	the	six-element	subsets,	take	the	set	of	all	squares	{0,	1,	3,	4	is	not	just	a
matter	of	dew,	5,	9}	and	apply	all	possible	fractional	linear	transformations.	We
obtain	a	list	of	132	subsets,	each	with	six	elements.	Using	the	algebra	of	GF	(11)
it	is	possible	to	show	that	each	five-element	subset	occurs	in	exactly	one	of	these
six-element	subsets.

The	Mathieu	group	M12	can	then	be	defined	as	the	symmetry	group	of	this
Steiner	system;	that	is,	the	group	of	permutations	of	{0,	1,	2,	3,	4,	5,	6,	7,	8,	9,
10,	11,	∞}	that	map	each	six-element	subset	in	the	list	to	another	in	the	list.	M11
is	the	subgroup	fixing	one	point.	Mathieu	also	found	three	other	sporadic	simple
groups	in	a	similar	manner.	M24	is	the	symmetry	group	of	a	(5,	8,	24)	Steiner
system,	M23	is	the	subgroup	fixing	one	point,	and	M22	is	the	subgroup	fixing	two
points.

The	Mathieu	groups	have	relatively	large	orders,	too	large	for	pencil-and-paper
listing.	However,	by	the	standards	of	sporadic	simple	groups	the	Mathieu	groups
are	tiny.	The	monster,	predicted	in	1973	by	Bernd	Fischer	and	Robert	Griess,
and	constructed	in	1982	by	Griess,	has

808	017	424	794	512	875	886	459	904	961	710	757	005	754	368	000	000	000



elements—roughly	8×1053.	It	is	the	group	of	symmetries	of	a	curious	algebraic
structure,	the	Griess	algebra.

Despite	these	complexities,	the	early	discoveries	were	representative	of	the
complete	list.	We	now	know	that	every	finite	simple	group	is	one	of	the
following:

•	cyclic	groups	of	prime	order.

•	alternating	groups	An	for	n	≥	5.

•	sixteen	families	of	groups,	analogues	of	simple	Lie	groups	that	replace	R	or	C
by	finite	fields,	called	groups	of	Chevalley	type	after	Claude	Chevalley.	Many	of
these	families	had	been	constructed	previously,	but	Chevalley	found	a	unified
description	that	led	to	new	families.	Nine	of	these	families	are	now	called
Chevalley	groups.	Defining	them	is	not	just	a	matter	of	taking	matrix	groups	and
changing	the	field,	but	that’s	what	motivated	the	idea.

•	twenty-six	sporadic	groups—one-offs	like	the	Mathieu	groups.

Table	8.	The	twenty-six	sporadic	finite	simple	groups





A	list	of	the	families	is	not	especially	informative	on	its	own;	details	can	easily
be	found	on	the	Internet,	for	example	in	Wikipedia.	Table	8	lists	the	sporadic
groups,	and	shows	why	‘sporadic’	is	a	sensible	name.	All	but	the	final	two
groups	are	named	after	whoever	discovered	them.

This	classification	was	obtained	between	1955	and	2004	through	the	joint	efforts
of	about	a	hundred	mathematicians,	ultimately	following	a	programme	proposed
by	Daniel	Gorenstein.	As	already	remarked,	a	more	streamlined	version	has	been
found	and	further	simplifications	are	in	train.	The	sheer	complexity	of	the
classification	and	its	enormous	proof	are	a	testament	to	the	power	of
mathematics	and	the	dedication	and	persistence	of	its	practitioners.	It	is	one	of
the	most	impressive	high	points	in	our	growing	The	five	symmetry	types	of
lattice	in	the	plane.	ng0B	understanding	of	symmetry.

*

Initially	the	classification	of	the	finite	simple	groups	was	an	end	in	itself.	It	was
obviously	important,	fundamental	information	on	which	future	mathematicians
could	build.	What	they	would	build	was	necessarily	unclear;	if	we	knew	where
research	was	going	to	lead,	it	wouldn’t	be	research.	There	was	some	speculation
about	potential	applications,	but	until	the	classification	was	complete,	these	had
to	remain	speculative.	Now	that	the	classification	has	been	obtained,	applications
are	already	appearing.	They	use	the	classification	as	a	crucial	part	of	the	proof	of
results	that	do	not	explicitly	refer	to	simple	groups.	Some	are	in	areas	outside
group	theory.
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