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Introduction
	

Mathematics	has	a	history	that	stretches	back	for	at	least	4,000	years	and	reaches
into	every	civilization	and	culture.	It	might	be	possible,	even	in	an	introduction
as	 very	 short	 as	 this	 book,	 to	 outline	 some	 key	 mathematical	 events	 and
discoveries	 in	 roughly	 chronological	 order.	 Indeed,	 this	 is	 probably	what	most
readers	will	expect.	There	can	be	several	problems,	however,	with	 that	kind	of
exposition.

	

The	 first	 is	 that	 such	 accounts	 tend	 to	portray	 a	whig	version	of	mathematical
history,	in	which	mathematical	understanding	is	generally	perceived	to	progress
onwards	 and	 upwards	 towards	 the	 splendid	 achievements	 of	 the	 present	 day.
Unfortunately,	 those	 looking	 for	 evidence	 of	 progress	 tend	 to	 overlook	 the
complexities,	 lapses,	 and	 dead	 ends	 that	 are	 an	 inevitable	 part	 of	 any	 human
endeavour,	 including	 mathematics;	 sometimes	 failure	 can	 be	 as	 revealing	 as
success.	Besides,	by	defining	present-day	mathematics	as	the	benchmark	against
which	earlier	efforts	are	 to	be	measured,	we	can	 too	easily	come	 to	 regard	 the
contributions	 of	 the	 past	 as	 valiant	 but	 ultimately	 outdated	 efforts.	 Instead,	 in
looking	 to	 see	 how	 this	 or	 that	 fact	 or	 theorem	 originated,	 we	 need	 to	 see
discoveries	in	the	context	of	their	own	time	and	place.
	

A	 second	 problem,	 about	 which	 I	 shall	 have	 more	 to	 say	 later,	 is	 that
chronological	 accounts	 all	 too	 often	 follow	 a	 ‘stepping	 stone’	 style,	 in	 which
discoveries	 are	 placed	 before	 us	 one	 after	 another	 without	 the	 all-important
connections	 between	 them.	 The	 aim	 of	 the	 historian	 is	 not	merely	 to	 compile
dated	lists	of	events	but	to	throw	light	on	the	influences	and	interactions	that	led
to	them.	This	will	be	a	recurring	theme	of	this	book.

	

A	 third	problem	 is	 that	key	events	and	discoveries	come	 to	be	associated	with
key	people.	Further,	in	most	histories	of	mathematics,	most	of	those	people	will
have	lived	in	western	Europe	from	about	the	16th	century	onwards	and	will	be



male.	This	does	not	necessarily	reflect	Eurocentric	or	sexist	attitudes	on	the	part
of	the	writers.	The	rapid	pace	of	development	of	mathematics	in	the	masculine
culture	 of	Europe	 since	 the	Renaissance	has	 led	 to	 a	 large	 amount	 of	material
that	 historians	 have	 rightly	 thought	 worth	 investigating;	 besides,	 we	 have	 a
wealth	of	sources	from	Europe	for	this	period,	as	opposed	to	only	a	handful,	in
relative	 terms,	 for	pre-medieval	Europe,	China,	 India,	or	America.	Fortunately,
the	 availability	 and	 accessibility	 of	 sources	 from	 some	 of	 these	 other	 areas	 is
beginning	 to	 improve.	 The	 fact	 remains,	 however,	 that	 focussing	 on	 big
discoveries	 rules	 out	 the	mathematical	 experience	 of	most	 of	 the	 human	 race:
women,	 children,	 accountants,	 teachers,	 engineers,	 factory	workers,	 and	 so	on,
often	entire	continents	and	centuries	of	 them.	Clearly	 this	will	not	do.	Without
denying	 the	 value	 of	 certain	 notable	 breakthroughs	 (and	 this	 book	 will	 begin
with	one	of	them)	there	have	to	be	ways	of	thinking	about	history	in	terms	of	the
many	who	practise	mathematics,	not	just	a	few.
	

This	book	can	do	only	a	little	to	redress	the	masculine	bias	of	most	depictions	of
the	 history	 of	mathematics;	 it	 can,	 however,	 pay	more	 than	 lip	 service	 to	 the
mathematics	of	continents	other	than	Europe;	and	it	will	attempt	to	explore	how,
where,	 and	why	mathematics	 has	 been	 practised	 by	 people	whose	 names	will
never	 appear	 in	 standard	 histories.	 To	 do	 so,	 however,	 requires	 something
different	from	the	usual	chronological	survey.

	

The	alternative	model	that	I	propose	to	follow	will	be	built	around	themes	rather
than	periods.	Each	chapter	will	 focus	on	 two	or	 three	case	 studies,	 chosen	not
because	 they	are	 in	any	way	comprehensive	or	exhaustive	but	 in	 the	hope	 that
they	will	 suggest	 ideas	and	questions	and	 fresh	ways	of	 thinking.	At	 the	 same
time,	in	keeping	with	the	ideals	proclaimed	above,	I	have	tried	wherever	possible
to	draw	out	contrasts	or	similarities	between	the	various	stories,	so	that	readers
can	build	up	an	 interconnected	view	of	at	 least	 a	 few	aspects	of	 the	very	 long
history	 of	 mathematics.	 My	 aim	 has	 been	 to	 demonstrate	 not	 only	 how
professional	historians	now	approach	their	discipline	but	how	the	layperson	too
can	think	about	mathematical	history.
	

In	this	way,	I	hope	that	this	book	will	help	the	reader	to	recognize	the	richness
and	diversity	of	mathematical	activity	throughout	human	history;	and	that	it	will
be	a	very	short	introduction	not	just	to	some	of	the	mathematics	of	the	past	but	to



the	history	of	mathematics	itself	as	a	modern	academic	discipline.
	

	



Chapter	1
Mathematics:	myth	and	history
	

It	 is	 not	 often	 that	 a	 thorny	old	mathematical	 problem	makes	 the	news,	but	 in
1993	newspapers	in	Britain,	France,	and	the	United	States	announced	that	a	40-
year-old	mathematician	called	Andrew	Wiles,	 in	 a	 lecture	 at	 the	 Isaac	Newton
Institute	 in	 Cambridge,	 had	 demonstrated	 a	 proof	 of	 a	 350-year-old	 problem
known	 as	 Fermat’s	 Last	 Theorem.	 As	 it	 turned	 out,	 the	 claim	 was	 a	 little
premature:	Wiles’s	200	pages	of	mathematics	contained	an	error	that	took	a	little
while	to	fix,	but	two	years	later	the	proof	was	secure.	The	story	of	Wiles’s	nine-
year	struggle	with	the	theorem	became	the	subject	of	a	book	and	of	a	television
film	in	which	Wiles	was	moved	to	tears	as	he	spoke	of	his	final	breakthrough.

	

One	 reason	 that	 this	 piece	 of	 mathematical	 history	 so	 caught	 the	 public
imagination	was	undoubtedly	the	figure	of	Wiles	himself.	For	seven	years	before
the	Cambridge	lecture,	he	had	worked	in	near	isolation,	devoting	himself	single-
mindedly	 to	 the	 deep	 and	 complicated	 mathematics	 underlying	 the	 theorem.
Here	then	was	a	story	to	which	those	brought	up	in	the	mythologies	of	western
culture	were	already	well	attuned:	the	lonely	hero	struggling	against	the	odds	to
attain	 an	 elusive	 goal.	 There	was	 even	 a	 princess	 in	 the	 background:	 only	 his
wife	knew	of	Wiles’s	ultimate	purpose,	and	was	the	first	to	receive	the	finished
proof,	as	a	birthday	present.
	

A	second	 reason	 is	 that	 although	 the	eventual	proof	of	Fermat’s	Last	Theorem
was	 fully	 understood	 by	 perhaps	 no	 more	 than	 20	 people	 in	 the	 world,	 the
theorem	itself	is	easily	stated.	Wiles	was	already	intrigued	by	it	when	he	was	10
years	old,	and	even	those	who	have	long	ago	forgotten	most	of	the	mathematics
they	ever	learned	can	grasp	what	it	is	about;	we	will	return	to	it	in	a	moment.

	

Before	 that,	 however,	 note	 that	 in	 the	 very	 first	 sentence	 of	 this	 chapter	 three



people	 were	 already	 mentioned	 by	 name:	 Wiles,	 Newton,	 and	 Fermat.	 In
mathematics	 this	 is	 typical:	 it	 is	universal	practice	 for	mathematicians	 to	name
theorems,	conjectures,	or	buildings	after	one	of	 the	 tribe.	This	 is	because	most
mathematicians	are	keenly	aware	that	they	continuously	build	on	work	done	by
their	predecessors	or	their	colleagues.	In	other	words,	mathematics	is	an	innately
historical	subject	in	which	past	endeavours	are	rarely	far	out	of	mind.	To	begin
to	 think	 about	 the	 questions	 that	 historians	 of	 mathematics	 ask,	 let	 us	 pursue
Fermat’s	Last	Theorem	backwards	from	that	Cambridge	lecture	theatre	in	1993
to	its	more	remote	beginnings.
	

Fermat	and	his	theorem

	

Pierre	de	Fermat,	born	in	1601,	spent	his	entire	life	in	southern	France.	A	lawyer
by	training,	he	was	a	Counselor	to	the	Parlement	of	Toulouse,	the	judicial	body
for	a	large	surrounding	area.	In	his	spare	time,	which	was	little	enough,	Fermat
worked	 on	 mathematics,	 and	 being	 far	 removed	 from	 circles	 of	 intellectual
activity	 in	 Paris	 he	 did	 so	 almost	 entirely	 alone.	 During	 the	 1630s	 he
corresponded	 with	 mathematicians	 further	 afield,	 through	 the	 Parisian	 Minim
friar	Marin	Mersenne,	 but	 during	 the	 1640s,	 as	 the	 political	 pressures	 on	 him
increased,	he	withdrew	once	again	into	mathematical	isolation.	Fermat	achieved
some	of	the	most	profound	results	of	early	17th-century	mathematics	but	for	the
most	part	was	prepared	to	say	tantalizingly	little	about	them.	Time	and	again	he
promised	his	correspondents	that	he	would	fill	in	the	details	when	he	had	enough
leisure	 to	do	so,	but	 that	 leisure	never	came.	Sometimes	he	would	offer	a	bare
statement	 of	what	 he	 had	 found,	 or	 he	would	 send	 out	 challenges	 that	 plainly
demonstrated	the	ideas	he	was	working	on	but	without	giving	away	his	hard-won
results.

	

The	 first	 hint	 of	 his	 Last	 Theorem	 appeared	 in	 such	 a	 challenge,	 sent	 to	 the
English	mathematicians	John	Wallis	and	William	Brouncker	in	1657;	they	failed
to	 see	what	 he	was	 driving	 at	 and	 dismissed	 it	 as	 being	 beneath	 their	 dignity.
Only	after	Fermat’s	death,	when	some	of	his	notes	and	papers	were	edited	by	his
son	 Samuel,	 did	 the	 full	 statement	 of	 the	 theorem	 emerge,	 scribbled	 in	 the



margin	 of	 Fermat’s	 copy	 of	 the	 Arithmetica	 of	 Diophantus.	 Before	 taking
another	step	back	in	time	to	see	what	it	was	in	Diophantus	that	inspired	Fermat,
we	need	to	digress	briefly	to	some	mathematics,	Fermat’s	Last	Theorem	itself.
	

The	one	bit	of	mathematics	that	almost	everyone	recalls	from	their	schooldays	is
Pythagoras’	Theorem,	which	states	that	the	square	on	the	longest	side	of	a	right-
angled	 triangle,	 the	hypotenuse,	 is	 equal	 to	 the	 sum	of	 the	 squares	on	 the	 two
shorter	sides,	the	‘legs’.	Most	people	will	probably	also	remember	that	if	the	two
short	sides	are	respectively	3	and	4	units	 in	 length	then	the	long	side	will	be	5
units,	because	32	+	42	=	52.	This	kind	of	triangle	is	known	as	a	3-4-5	triangle	and
may	 conveniently	 be	 used	 for	marking	 out	 right	 angles	 on	 the	 ground	with	 a
piece	 of	 rope,	 or	 by	 textbook	 writers	 who	 want	 to	 set	 problems	 that	 can	 be
solved	 without	 resort	 to	 a	 calculator.	 There	 are	 plenty	 of	 other	 sets	 of	 three
whole	numbers	that	satisfy	the	same	relationship:	it	is	easy	to	check	that	52	+	122
=	132,	for	instance,	or	that	82	+	152	=	172.	Such	sets,	sometimes	written	as	(3,	4,
5),	 (5,	 12,	 13),	 and	 so	 on,	 are	 known	 as	 ‘Pythagorean	 triples’,	 and	 there	 are
infinitely	many	of	them.

	

Now	suppose	 that,	as	mathematicians	 like	 to	do,	we	tweak	the	conditions	a	bit
and	see	what	happens.	What	if,	instead	of	taking	the	squares	of	each	number,	we
take	their	cubes?	Can	we	find	triples	(a,	b,	c)	that	satisfy	a3	+	b3	=	c3?	Or	can	we
be	even	wilder	and	ask	for	a	triple	that	satisfies	a7	+	b7	=	c7	or	even	a101	+	b101	=
c101?	The	 conclusion	 Fermat	 came	 to	was	 that	 there	 is	 no	 point	 in	 trying:	we
cannot	do	 it	 for	any	power	beyond	squares.	As	so	often,	however,	he	 left	 it	 to
others	to	work	out	the	details.	This	time,	his	excuse	was	not	time	but	space:	he
had	discovered	a	marvellous	proof,	he	 said,	but	 the	margin	was	 too	meagre	 to
contain	it.
	

The	margin	 in	 question	 belonged	 to	 page	 85	 of	Claude	Gaspar	Bachet’s	 1621
edition	 of	 the	 Arithmetica	 of	 Diophantus.	 The	 Arithmetica	 had	 intrigued
European	mathematicians	 ever	 since	 a	manuscript	 copy,	written	 in	Greek,	 had
been	 rediscovered	 in	Venice	 in	1462.	About	Diophantus	himself,	no-one	knew
anything,	 and	 little	 more	 is	 known	 now.	 The	 manuscript	 refers	 to	 him	 as
‘Diophantus	of	Alexandria’	so	we	may	suppose	 that	he	 lived	and	worked	for	a
significant	 part	 of	 his	 life	 in	 that	 Greek-speaking	 city	 of	 northern	 Egypt.



Whether	 he	was	 a	 native	Egyptian	or	 an	 incomer	 from	 some	other	 part	 of	 the
Mediterranean	world,	we	do	not	know.	And	any	estimate	for	his	dates	is	no	more
than	guesswork.	Diophantus	cited	a	definition	from	Hypsicles	(c.	150	BC),	while
Theon	(c.	AD	350)	cited	a	result	from	Diophantus.	That	pins	him	down	to	within
500	years,	but	we	cannot	do	better	than	that.

	

Compared	 with	 the	 geometric	 texts	 that	 have	 survived	 from	 other	 Greek
mathematical	writers,	the	Arithmetica	is	highly	unusual.	Its	subject	matter	is	not
geometry	but	nor	is	it	the	arithmetic	of	everyday	accounting.	Rather,	it	is	a	set	of
sophisticated	problems	asking	for	whole	numbers	or	 fractions	 that	must	satisfy
certain	conditions.	The	eighth	problem	of	the	second	book,	for	example,	asks	the
reader	to	‘divide	a	square	into	two	squares’.	For	our	present	purposes,	we	may
translate	this	into	a	more	modern	mode	of	expression	and	see	that	Diophantus’
question	 was	 related	 to	 Pythagorean	 triples,	 where	 a	 given	 square	 (in	 the
notation	above,	c2)	may	be	divided	or	separated	into	two	smaller	squares	(a2	+
b2).	Diophantus	showed	a	clever	way	of	achieving	this	when	the	largest	square	is
16	 (in	 which	 case	 the	 answer	 involves	 fractions);	 and	 then	 he	 moved	 on	 to
something	else.
	

Fermat,	however,	hesitated	at	this	point	and	must	have	asked	himself	the	obvious
question:	can	the	method	be	extended?	Can	one	‘divide	a	cube	into	two	cubes’?
This	was	precisely	the	question	he	posed	to	Wallis	and	Brouncker	in	1657	(and
to	which,	after	Fermat	had	 later	 reported	 that	 it	was	 impossible,	Wallis	angrily
retorted	that	such	‘negative’	questions	were	absurd).	What	Fermat	suggested	in
the	margin	in	fact	applied	not	only	to	cubes	but	to	any	higher	power	at	all,	a	long
way	beyond	anything	required	by	Diophantus.

	

One	other	name	has	recurred	throughout	the	above	account,	so	let	us	now	take
one	 further	 historical	 step	 backwards,	 from	Diophantus	 to	 Pythagoras,	 who	 is
supposed	to	have	lived	on	the	Greek	island	of	Samos	around	500	BC.	Despite	this
very	 early	 date,	 many	 readers	 will	 probably	 feel	 much	 more	 at	 home	 with
Pythagoras	 than	 with	 Diophantus:	 indeed	 the	 question	 I	 am	 most	 commonly
asked	 as	 a	 historian	 of	 mathematics	 is:	 ‘Do	 you	 go	 all	 the	 way	 back	 to
Pythagoras?’	It	is	true	that	Pythagoras’	Theorem	has	been	known	for	a	very	long
time;	the	disappointing	news	is	that	there	is	no	evidence	to	link	it	to	Pythagoras.



In	fact,	there	is	little	evidence	to	link	anything	to	Pythagoras.	If	Diophantus	is	a
shadowy	 figure,	Pythagoras	 is	buried	under	 a	blanket	of	myth	and	 legend.	We
have	no	texts	written	by	him	or	his	immediate	followers.	The	earliest	surviving
accounts	of	his	life	are	from	the	third	century	AD,	about	800	years	after	he	lived,
by	writers	with	their	own	philosophical	axes	to	grind.	His	supposed	journeys	to
Babylon,	 or	 to	 Egypt,	 where	 he	 was	 said	 to	 have	 learned	 geometry,	 were
probably	 no	 more	 than	 fictions	 used	 by	 such	 writers	 to	 bolster	 Pythagoras’
standing	and	authority.	As	to	the	tales	of	what	his	followers	are	supposed	to	have
done	 or	 believed,	 there	 may	 be	 some	 foundation	 for	 them	 in	 fact,	 but	 it	 is
impossible	to	be	certain	of	any	of	them.	In	short,	Pythagoras	became,	literally,	a
legendary	figure,	to	whom	much	was	ascribed	but	of	whom	little	was	known	in
reality.
	

The	lives	of	these	four	men,	Pythagoras,	Diophantus,	Fermat,	Wiles,	span	more
than	 2,000	 years	 of	 mathematical	 history.	 We	 can	 certainly	 trace	 similar
mathematical	ideas	running	through	the	stories	about	each	of	them	even	though
they	 are	 spaced	 several	 centuries	 apart.	 Have	 we	 then	 ‘done’	 the	 history	 of
Fermat’s	Last	Theorem	from	start	 to	 finish?	The	answer	 is	 ‘no’,	 and	 for	many
reasons.	The	first	 is	 that	one	task	of	 the	historian	is	 to	disentangle	fiction	from
fact,	 and	 myth	 from	 history.	 This	 is	 not	 to	 underestimate	 the	 value	 of	 either
fiction	 or	 myth:	 both	 embody	 the	 stories	 by	 which	 societies	 define	 and
understand	 themselves,	 and	 may	 have	 deep	 and	 lasting	 value.	 The	 historian,
however,	 must	 not	 allow	 those	 stories	 to	 obscure	 evidence	 that	 may	 point	 to
other	 interpretations.	 In	 the	case	of	Pythagoras,	 it	 is	 relatively	easy	 to	see	how
and	why	 tales	 that	appear	 robust	have	been	spun	from	the	 flimsiest	of	 threads,
but	in	the	case	of	Andrew	Wiles,	where	we	believe	we	have	the	facts	in	front	of
our	eyes,	it	is	much	harder.	The	truth	of	almost	any	story	is	almost	always	more
complex	 than	 we	 first	 imagine	 or	 than	 the	 authors	 would	 sometimes	 have	 us
believe,	 and	 stories	 about	 mathematics	 and	 mathematicians	 are	 no	 exception.
The	rest	of	this	chapter	examines	some	common	myths	and	pitfalls	in	the	history
of	 mathematics;	 for	 convenience,	 I	 have	 called	 them	 ‘Ivory	 tower	 history’,
‘Stepping-stone	history’,	and	‘Elite	history’.	The	rest	of	the	book	will	then	offer
some	alternative	approaches.
	

Ivory	tower	history



	

One	 of	 the	 most	 remarkable	 features	 of	 Wiles’s	 story	 is	 the	 fact	 that	 he
deliberately	shut	himself	away	for	seven	years	so	that	he	could	pursue	the	proof
of	the	Last	Theorem	without	interruption	or	interference.	Fermat	too	was	clearly
a	loner,	separated	by	geographical	distance	if	nothing	else	from	those	who	might
have	 been	 able	 to	 understand	 and	 appreciate	 his	 work.	 We	 have	 spoken	 of
Diophantus	and	Pythagoras	also	without	any	reference	 to	 their	contemporaries.
Were	these	four	men	then	really	lonely	geniuses	forging	new	paths	alone?	Is	this
how	mathematics	is	done	properly,	or	done	best?	Let	us	return	to	Pythagoras	and
this	time	work	forward.

	

The	 stories	 about	Pythagoras	persistently	claim	 that	he	established	or	 attracted
around	 him	 a	 community,	 or	 brotherhood,	 who	 shared	 certain	 religious	 and
philosophical	 beliefs	 and	 perhaps	 also	 some	 mathematical	 explorations.
Unfortunately	 the	 stories	 also	 claim	 that	 the	 brotherhood	 was	 bound	 to	 strict
secrecy,	 which	 of	 course	 leaves	 room	 for	 endless	 speculation	 about	 their
activities.	Even	if	there	is	only	a	grain	of	truth	in	such	stories,	however,	it	would
seem	 that	 Pythagoras	was	 charismatic	 enough	 to	 attract	 followers.	 Indeed,	 the
fact	that	his	name	has	survived	at	all	suggests	that	he	was	respected	and	revered
in	his	lifetime,	and	that	he	was	no	hermit.
	

We	are	a	 little	better	able	 to	place	Diophantus,	who	 in	Alexandria	would	have
been	 able	 to	 enjoy	 the	 company	 of	 other	 scholars.	 He	 would	 also	 almost
certainly	 have	 had	 access	 to	 books	 gathered	 from	 other	 parts	 of	 the
Mediterranean	world	in	temple	or	private	book	collections.	It	is	possible	that	the
problems	of	the	Arithmetica	were	his	own	invention,	but	it	could	equally	be	the
case	 that	 he	 compiled	 them	 into	 a	 single	 collection	 from	 a	 variety	 of	 other
sources,	written	 or	 oral.	One	 of	 the	 recurring	motifs	 of	 this	 book	will	 be	 that
mathematics	 repeatedly	passes	 from	one	person	 to	 another	 through	 the	 spoken
word.	 Diophantus,	 like	 any	 other	 mathematically	 creative	 person,	 almost
certainly	 discussed	 his	 problems	 and	 their	 solutions	 with	 a	 teacher	 or	 with
students	 of	 his	 own.	We	 should	 therefore	 think	 of	 him	 not	 as	 a	 silent	 figure
writing	 his	 books	 in	 private	 but	 as	 a	 citizen	 of	 a	 city	 where	 learning	 and
intellectual	exchange	were	valued.

	



Even	 Fermat,	 confined	 to	 Toulouse	 and	 the	 rigours	 of	 full-time	 political
employment,	was	not	quite	as	isolated	as	might	first	appear.	One	of	his	friends
during	his	early	studies	in	Bordeaux	was	Etienne	d’Espagnet,	whose	father	had
been	a	friend	of	the	French	lawyer	and	mathematician	François	Viète.	The	works
of	 Viète,	 otherwise	 rare	 but	 thus	 made	 available	 to	 Fermat,	 were	 to	 have	 a
profound	 influence	 upon	 his	 development	 as	 a	mathematician.	Another	 friend,
and	fellow	Counselor	in	Toulouse,	was	Pierre	de	Carcavi,	who,	when	he	moved
to	 Paris	 in	 1636,	 took	with	 him	 news	 of	 Fermat	 and	 his	 discoveries.	 Through
Carcavi,	Fermat	became	known	 to	Marin	Mersenne,	 and	 through	Mersenne	he
corresponded	 with	 Roberval,	 probably	 the	 best	 mathematician	 in	 Paris	 at	 the
time,	and	with	Descartes	in	the	Netherlands.	Later	he	communicated	some	of	the
discoveries	arising	from	his	studies	of	Diophantus	to	Blaise	Pascal	in	Rouen	and
to	 John	 Wallis	 in	 Oxford.	 Thus	 even	 Fermat,	 far	 from	 important	 centres	 of
learning,	was	connected	into	a	network	of	correspondence	that	stretched	across
Europe,	a	virtual	community	of	scholars	that	later	came	to	be	called	the	Republic
of	Letters.
	

When	it	comes	to	Wiles,	it	is	much	easier	to	see	the	cracks	in	the	‘lone	genius’
story:	 Wiles	 was	 educated	 at	 Oxford	 and	 Cambridge,	 and	 later	 worked	 at
Harvard,	Bonn,	Princeton,	and	Paris,	 in	all	of	which	he	was	part	of	flourishing
mathematical	communities.	The	mathematical	clue	that	eventually	gave	direction
to	 his	 interest	 in	 the	Last	 Theorem	was	 picked	 up	 from	 a	 casual	 conversation
with	 a	 fellow	mathematician	 in	 Princeton;	 when	 after	 five	 years	 he	 needed	 a
fresh	breakthrough,	he	attended	an	international	conference	in	order	to	elicit	the
latest	thinking	on	the	subject;	when	he	needed	technical	help	with	an	important
aspect	of	the	proof,	he	broke	his	secrecy	to	a	colleague,	Nick	Katz,	and	delivered
the	material	in	question	in	a	graduate	lecture	course,	though	it	eventually	lost	all
its	 listeners	 except	Katz;	 two	weeks	before	he	made	 the	 entire	 proof	public	 in
three	 lectures	 in	 Cambridge,	 England,	 he	 asked	 a	 colleague,	 Barry	Mazur,	 to
check	 it;	 the	 final	 proof	 was	 checked	 by	 six	 others;	 and	 when	 a	 flaw	 was
discovered,	Wiles	invited	one	of	his	former	students,	Richard	Taylor,	to	help	him
fix	it.	Further,	throughout	his	years	of	working	on	the	proof,	Wiles	never	stopped
teaching	students	or	attending	departmental	seminars.	In	short,	although	he	spent
many	hours	alone,	he	was	also	embedded	in	a	community	that	allowed	him	to	do
so,	and	which,	when	required,	came	to	his	aid.

	

Wiles’s	years	of	 isolation	capture	 the	 imagination	not	because	 they	are	normal



for	a	working	mathematician	but	because	they	were	exceptional.	Mathematics	is
fundamentally	 and	 necessarily	 a	 social	 activity	 at	 every	 level.	 Every
mathematics	 department	 in	 the	 world	 contains	 communal	 spaces,	 whether
alcoves	or	common	rooms,	always	equipped	with	some	kind	of	writing	surface,
so	that	mathematicians	can	put	their	heads	together	over	the	tea	and	coffee	that
fuel	them.	Language	or	history	students	rarely	write	their	essays	collaboratively,
and	would	not	be	encouraged	to	do	so,	but	mathematics	students	frequently	and
fruitfully	work	together,	teaching	and	learning	from	each	other.	And	despite	all
the	advances	of	modern	technology,	mathematics	is	still	primarily	learned	not	so
much	from	books	as	from	other	people,	through	lectures,	seminars,	and	classes.
	

Stepping	stone	history

	

In	the	outline	of	the	story	of	Fermat’s	Last	Theorem	sketched	above,	Pythagoras,
Diophantus,	Fermat,	and	Wiles	appear	not	only	as	isolated	in	their	own	lives	but
also	 from	 one	 other,	 like	 stepping	 stones	 standing	 out	 across	 an	 otherwise
featureless	 river.	 If	 the	 ivory	 tower	 version	 of	 history	 isolates	mathematicians
from	 their	 social	 groups	 and	 communities,	 the	 stepping	 stone	 version	 isolates
them	from	their	past.	Since	 the	past	 is	 supposed	 to	be	 the	subject	of	history,	 it
seems	strange	to	ignore	huge	chunks	of	it	in	this	way,	but	a	surprising	number	of
general	histories	of	mathematics	are	presented	in	stepping	stone	style.

	

Let	us	then	re-examine	our	story	and	the	gaps	in	it	a	little	more	closely.	Just	as
Pythagoras	 and	 Diophantus	 are	 somewhat	 shadowy,	 so	 is	 the	 space	 between
them.	 It	 is	 possible	 that	Diophantus	 had	 never	 heard	 of	Pythagoras.	He	would
almost	 certainly,	 however,	 have	 come	 across	 ‘Pythagoras’	 Theorem’,	 not	 from
any	writings	of	Pythagoras,	but	in	the	work	of	Euclid,	who	lived	around	250	BC.
Apart	 from	 this	 very	 approximate	 date,	 we	 know	 no	 more	 about	 Euclid	 than
about	 Diophantus	 a	 few	 centuries	 later,	 but	 his	 master	 work,	 the	 Elements,
survived	 to	 become	 the	 longest-running	 textbook	 ever,	 still	 used	 in	 school
geometry	teaching	well	into	the	20th	century.	The	Elements	 is	a	comprehensive
compilation	 of	 the	 geometry	 of	 Euclid’s	 day,	 with	 the	 theorems	 arranged	 in
careful	 logical	 order,	 and	 the	 penultimate	 theorem	 of	 the	 first	 book	 is



‘Pythagoras’	 Theorem’,	 carefully	 proved	 by	 geometric	 construction.	 One	may
reasonably	 suppose	 that	Diophantus	 in	Alexandria	had	 access	 to	 the	Elements,
and	it	is	possible	that	‘Pythagoras’	Theorem’	set	him	thinking	about	Pythagorean
triples.	 It	 is	 equally	 possible,	 however,	 that	 his	 inspiration	 came	 from	 other
sources	that	we	no	longer	know	about.
	

The	first	few	centuries	between	Diophantus	and	Fermat	are	almost	harder	to	fill
in	 than	 those	 before	 Diophantus,	 even	 in	 the	 imagination.	 We	 know	 that
Diophantus’	Arithmetica	was	 originally	written	 in	 thirteen	 books,	 but	 only	 the
first	 six	 survived	 in	Greek;	we	 do	 not	 know	how	or	why.	 (In	 1968	 an	Arabic
manuscript	was	discovered	in	Iran	which	claims	to	be	a	translation	of	books	IV
to	VII,	but	scholars	are	not	agreed	as	 to	how	accurately	 the	 text	 represents	 the
original.)	 Fortunately,	 those	 six	 books	 were	 preserved	 for	 the	 Greek-speaking
world	at	Byzantium	(later	Constantinople,	now	Istanbul),	and	eventually	copies
were	 brought	 to	western	Europe.	As	will	 be	 discussed	 further	 in	Chapter	 6,	 a
German	 scholar	known	as	Regiomontanus	 saw	one	of	 them	 in	Venice	 in	1462
and	 believed	 that	 it	 contained	 the	 origins	 of	 the	 outlandish	 subject	 known	 to
Europeans	as	algebra.	A	century	later,	the	Italian	engineer	and	algebraist	Rafael
Bombelli	studied	a	manuscript	of	the	Arithmetica	in	the	Vatican	and	halted	work
on	his	own	book	on	algebra	in	order	to	incorporate	problems	from	Diophantus.
The	first	printed	edition	was	published	in	Basle	in	1575,	in	Latin,	translated	and
edited	by	Wilhelm	Holtzman	(Xylander),	a	humanist	scholar,	who	described	the
work	 as	 ‘incomparable,	 containing	 the	 true	 perfection	 of	 arithmetic’.	 The
problems	of	Diophantus	continued	to	intrigue	those	who	came	across	them,	and
in	1621	a	new	Latin	edition	of	the	Arithmetica	was	produced	by	Claude	Gaspard
Bachet	 de	 Méziriac	 in	 Paris.	 This	 was	 the	 edition	 that	 Fermat	 owned	 and
annotated.

	

It	 is	 not	 too	 difficult	 to	 fill	 in	 the	 gap	 between	 Fermat	 and	Wiles.	 The	 Last
Theorem,	published	by	Samuel	Fermat	in	1670,	seems	not	to	have	attracted	any
serious	 attempts	 in	 the	 17th	 century,	 but	 in	 the	 18th	 century	 it	 came	 to	 the
attention	of	Leonhard	Euler,	the	most	versatile	and	prolific	mathematician	of	the
period,	who	made	 some	 inroads	 into	 the	 easier	 cases	 of	 it.	 In	 1816,	 the	 Paris
Academy	of	Sciences	offered	a	prize	for	a	solution.	This	inspired	the	efforts	of
Sophie	Germain,	who	had	some	success	with	certain	parts	of	it	and	whose	work
was	 taken	 up	 and	 extended	 by	 others.	 Beyond	 that,	 the	 problem	 gradually
became	widely	known	and	over	the	years	attracted	hundreds,	if	not	thousands,	of



purported	 solutions,	 from	 professionals	 and	 amateurs	 alike.	 Most	 of	 these
attempts	 were	 both	 incorrect	 and	 useless,	 but	 a	 few	 led	 to	 important
mathematical	 discoveries	 in	 their	 own	 right,	 which	Wiles	 would	 have	 known
about.	When	 he	 eventually	 embarked	 on	 his	 own	 proof,	 he	 used	 some	 of	 the
deepest	mathematics	of	the	20th	century,	which	was	by	then	known	to	relate	to
Fermat’s	 Last	 Theorem:	 the	 Taniyama-Shimura	 conjecture,	 made	 by	 two
Japanese	 mathematicians	 in	 the	 1950s,	 and	 the	 Kolyvagin-Flach	 method,
developed	 by	Victor	Kolyvagin	 (Russian)	 and	Matthias	Flach	 (German)	 in	 the
1980s.	Note	again	the	propensity	of	mathematicians	to	write	the	names	of	their
predecessors	 into	 the	historical	 record.	Note	 too	 the	complex	web	of	historical
interactions	behind	a	single	theorem.
	

Generally	speaking,	the	further	back	one	goes,	the	more	difficult	it	is	to	trace	the
ground	between	the	stepping	stones,	not	least	because	much	of	the	evidence	has
long	since	been	washed	away.	But	without	the	attempt,	there	is	no	history,	only
the	series	of	anecdotes	on	which	much	of	the	popular	history	of	mathematics	is
still	too	often	based.
	

Elite	history

	

Although	we	know	almost	nothing	about	the	lives	of	Euclid	or	Diophantus,	there
are	 just	 a	 few	 things	we	can	 say	 for	certain:	 that	both	were	well	 educated	and
could	 write	 fluently	 in	 Greek,	 the	 intellectual	 language	 of	 the	 eastern
Mediterranean;	that	both	had	access	to	earlier	writings	on	mathematics;	that	both
were	able	to	understand,	order,	and	extend	some	of	the	cutting-edge	mathematics
of	 their	day;	and	 that	 the	mathematics	 they	wrote	about	had	no	practical	value
but	 was	 a	 purely	 intellectual	 pursuit.	 The	 number	 of	 men	 engaged	 in	 such
mathematics	can	never	have	been	great,	even	in	a	city	like	Alexandria.	Indeed,	it
has	been	estimated	 that	 at	 any	one	 time	 there	were	no	more	 than	a	handful	of
them	 anywhere	 in	 the	Greek-speaking	world.	 In	 other	words,	 both	Euclid	 and
Diophantus	belonged	to	tiny	mathematical	elites.

	

A	moment’s	 reflection	 is	 enough	 to	 show	 how	much	more	mathematics	must



have	been	going	on	than	the	mathematics	they	wrote	about.	Greek	society,	like
every	 other,	 had	 its	 shopkeepers	 and	 housekeepers,	 farmers	 and	 builders,	 and
many	others	who	 routinely	measured	and	calculated.	We	know	almost	nothing
about	their	methods	because	such	people	would	have	learned	and	taught	mostly
by	example	and	word	of	mouth.	Nor	were	they	organized	into	schools	or	guilds,
though	we	do	know	of	one	named	group,	the	harpēdonaptai,	or	rope-stretchers.
By	 its	 very	nature,	 their	mathematics	 left	 few	 traces.	Collections	of	 tokens,	 or
marks	scratched	in	wood,	stone,	or	sand,	would	have	been	discarded	as	soon	as
they	were	no	longer	useful,	and	were	certainly	not	going	to	be	stored	in	libraries.
In	any	case,	 these	activities	were	carried	out	by	people	of	relatively	low	social
status,	and	were	of	little	or	no	interest	to	the	intellectuals	of	the	academies.
	

When	mathematical	historians	speak	of	‘Greek	mathematics’,	as	they	frequently
do,	they	are	almost	always	speaking	of	the	sophisticated	written	texts	that	have
come	down	to	us	 from	Euclid,	Archimedes,	Diophantus,	and	others,	not	of	 the
common	 or	 garden	mathematics	 of	 the	 hoi	 polloi.	 Recently	 this	 has	 begun	 to
change.	Historians	have	started	to	acknowledge	that	elite	Greek	mathematics	had
its	roots	in	the	practical	and	everyday	mathematics	of	the	eastern	Mediterranean,
even	if	later	writers	distanced	themselves	from	those	roots	by	developing	a	more
formal	and	‘useless’	kind	of	mathematics.

	

There	 is	 something	 else	 to	 be	 wary	 of	 in	 the	 catch-all	 phrase	 ‘Greek
mathematics’.	 Diophantus	 lived	 in	 Alexandria	 in	 Egypt;	 Archimedes	 lived	 in
Syracuse,	 on	 the	 island	 of	 Sicily;	 Apollonius,	 another	 of	 the	 great	 ‘Greek’
mathematicians,	lived	in	Perga,	in	the	region	that	is	now	Turkey;	in	other	words,
although	all	wrote	in	Greek,	none	of	them	came	from	the	area	that	we	now	know
as	Greece.	Indeed,	Diophantus,	for	all	we	know,	could	have	been	African	born
and	bred.	Nevertheless,	‘Greek	mathematics’,	so	highly	revered	by	Renaissance
Europeans,	has	come	to	be	thought	of	as	essentially	‘European’.	The	absurdity	of
incorporating	Alexandria	 into	Europe	becomes	all	 the	more	apparent	when	we
think	of	the	exclusion	of	Spain,	at	the	opposite	end	of	the	continent.	Spain	came
under	 Islamic	 rule	 early	 in	 the	 8th	 century	 and	 consequently	 enjoyed	 the	 rich
culture	and	 learning	of	 the	Islamic	world.	Yet	one	frequently	 reads	 that	Arabic
numerals	were	introduced	to	Europe	by	Fibonacci,	writing	in	Pisa	in	Italy	in	the
early	 13th	 century,	 as	 though	 their	 use	 in	 Spain	 for	 two	 centuries	 before	 that
counted	 for	 nothing,	 and	 as	 though	Spain	were	 somehow	not	 a	 proper	 part	 of
Europe.	Those	promoting	the	cause	of	elite	mathematics	have	naturally	tended	to



assimilate	 into	 their	 histories	 whatever	 would	 give	 their	 subject	 authority	 and
respectability,	regardless	of	other	inconvenient	facts.
	

Wherever	mathematics	 is	 practised,	we	 are	 likely	 to	 find	 a	 few	 advanced	 and
highly	respected	practitioners	but	many	more	whose	names	will	never	enter	any
history	 book.	 If	 we	 re-examine	 the	 situation	 in	 Fermat’s	 day,	 we	 will	 find	 it
hardly	any	different.	During	his	 lifetime,	France	was	exceptionally	rich	in	elite
mathematical	activity:	one	can	think	of	as	many	as	three	or	four	Parisians	who
could	have	kept	up	with	Fermat.	At	a	generous	estimate,	there	were	perhaps	as
many	 again	 in	 the	 Netherlands	 and	 Italy	 together,	 and	 even	 one	 or	 two	 in
England,	but	no	more	than	that.	Yet	mathematical	activity	lower	down	the	social
scale	was	more	widespread	than	one	might	expect.	Recent	electronic	searches	of
digitized	material	have	shown	that	as	many	as	a	quarter	of	the	books	published
in	England	in	the	16th	and	17th	centuries	mentioned	mathematics	in	one	way	or
another,	if	only	in	passing.	Further,	there	was	a	steady	increase	in	books	aimed	at
tradesmen	or	craftsmen	who	wanted	to	acquire	basic	mathematical	skills.

	

Before	ending	this	chapter,	let	us	look	in	a	little	more	detail	at	one	of	them:	there
is	after	all	no	better	way	of	exploring	 the	history	of	mathematics	 than	 to	delve
into	 the	 original	 sources.	 Robert	 Recorde’s	 The	 Pathway	 to	 Knowledg	 was
published	in	England	in	1551,	about	50	years	before	Fermat	was	born.	For	much
of	his	life,	Recorde	practised	as	a	physician.	In	1549	he	was	appointed	controller
of	 the	 Bristol	 mint,	 and	 two	 years	 later	 surveyor	 of	 silver	 mines	 in	 Ireland.
Unfortunately	 he	 made	 political	 enemies	 in	 this	 period	 and	 ended	 up	 in	 the
King’s	Bench	prison	in	London,	where	he	died	in	1558	at	the	age	of	48.	It	was
also	during	this	time,	however,	that	he	published	most	of	the	mathematical	works
for	which	he	is	now	remembered.	Educated	at	Oxford	and	Cambridge,	Recorde
was	 fluent	 in	 Latin	 and	 Greek	 but	 made	 the	 bold	 choice	 of	 writing	 his
mathematical	texts	in	English.	In	particular,	he	aimed	to	make	the	mathematics
of	 Euclid,	 one	 of	 the	 most	 elite	 of	 mathematicians,	 available	 to	 the	 common
man.	This	was	no	easy	task:	for	one	thing,	most	English	workmen,	though	they
may	have	been	adept	enough	with	plumb	lines	and	rulers,	had	never	heard	of	a
formal	 subject	 called	 ‘geometry’;	 for	 another,	 there	 were	 simply	 no	 words	 in
English	 for	 technicalities	 like	 ‘parallelogram’	 or	 ‘sector’.	 Recorde	 addressed
both	problems	with	imagination	and	skill.
	



In	 a	 lengthy	 preface	 he	 described	 the	 classes	 of	men	 for	whom	geometry	was
‘much	necessary’,	from	those	of	humblest	social	status	upwards.	At	the	bottom
were	the	‘unlearned	sort’	who	worked	the	land.	Even	these	men,	Recorde	argued,
had	an	instinctive	grasp	of	geometry,	otherwise	their	ditches	would	collapse	and
their	haystacks	would	topple.	Moving	upwards	to	tradesmen,	Recorde	supplied	a
long	 list,	 in	 verse,	 of	 those	 to	whom	 geometry	was	 indispensable:	merchants,
navigators,	 carpenters,	 carvers,	 joiners,	 masons,	 painters,	 tailors,	 shoemakers,
weavers,	and	more,	concluding

That	never	was	arte	so	wonderfull	witty
So	needefull	to	man,	as	is	good	Geometry.

Recorde	 also	 deemed	 geometry	 to	 be	 indispensable	 in	 the	 professions	 of
medicine,	divinity,	and	law,	though	his	arguments	became	rather	more	artificial
and	less	convincing	as	he	climbed	the	social	scale.

	

Recorde’s	 empathy	 with	 the	 common	 man	 is	 clearest	 when	 he	 comes	 to	 the
geometry	itself:	his	exposition	is	a	model	of	good	pedagogy,	expressed	in	plain
language	with	lots	of	examples	and	helpful	diagrams.	Quite	early	on	he	teaches
Euclid’s	 ruler	 and	 compass	 construction	 of	 a	 right	 angle.	 In	 case	 this	 should
prove	 too	 difficult,	 however,	 he	 has	 an	 alternative	 suggestion:	 take	 a	 line	 and
mark	off	 three,	 four,	 and	 five	 units	 respectively,	 and	 then	use	 those	 lengths	 to
create	a	triangle.	The	angle	between	the	short	sides	will	be	a	right	angle.	This	is
no	classical	Euclidean	construction:	 it	 is	 a	method	 for	practical	men,	 for	 rope-
stretchers.
	

For	the	21st	century,	we	could	make	a	far	longer	list	than	Recorde	could	of	those
who	 use	 mathematics	 in	 their	 everyday	 life,	 in	 school,	 the	 home,	 or	 the
workplace.	 I	 am	 thinking	 of	 my	 mother	 Irene,	 who	 at	 the	 age	 of	 89	 trusted
neither	 banks	 nor	 computers,	 but	 tallied	 every	 penny	 of	 her	 household
expenditure	 in	 carefully	 ruled	 notebooks;	 or	 of	 my	 friend	 Tatjana,	 who
repeatedly	 tells	me	she	was	no	good	at	mathematics	at	 school	but	who	creates
intricately	designed	quilts	(see	Figure	1).	She	can	certainly	handle	 right-angled
triangles.	Indeed,	her	instinct	for	tessellation	and	proportion	qualify	her,	perhaps,
as	a	modern-day	representative	of	the	harpēdonaptai.
	



	

1.	 ‘Colourwash’	by	Tatjana	Tekkel	Peppé	who,	by	her	 own	account,	 is	 no
good	at	mathematics
	

Elite	history	does	not	have	any	space	for	Irene	or	Tatjana:	women,	in	particular,
have	 to	 rise	 at	 least	 to	 the	 level	 of	 Sophie	 Germain	 before	 they	 are	 taken
seriously.	Yet	without	people	who	do	and	teach	mathematics	at	every	level,	the
elite	 could	 not	 flourish.	 Behind	 the	 outposts	 occupied	 by	 Wiles,	 Fermat,	 or
Diophantus,	 there	 stretch	 vast	 hinterlands	 of	 mathematical	 activity	 that	 have
been	all	too	little	explored	in	general	histories	of	the	subject.	Part	of	the	purpose
of	 this	book	 is	 to	 redress	 the	balance	and	 to	 reclaim	mathematics	 for	 the	man,
woman,	and	child	in	the	street,	to	revisit	the	history	of	mathematics	from	some
new	perspectives.
	



Chapter	2
What	 is	 mathematics	 and	 who	 is	 a
mathematician?
	

In	 the	previous	chapter,	 I	assumed	that	 readers	would	 take	‘mathematics’	 to	be
more	 or	 less	 the	 subject	 they	 studied	 under	 that	 name	 at	 school,	 and
‘mathematicians’	to	be	those	people	who	continue	with	it	into	adult	life.	History,
however,	 requires	 us	 to	 think	 about	 both	 terms	 more	 carefully.	 So	 does
experience:	 when	 as	 a	 school	 teacher	 I	 found	 myself	 in	 a	 single	 morning
delivering	 lessons	 on	 percentages,	 circle	 theorems,	 and	 differential	 calculus,	 I
was	 forced	 to	 ask	 myself	 how	 this	 unlikely	 collection	 of	 topics	 had	 come
together	under	the	single	heading	of	‘mathematics’.	Most	people	would	probably
agree	with	the	rather	general	statement	that	mathematics	is	based	on	properties
of	 space	 and	 number,	 but	 how	 then	 would	 they	 regard	 the	 popular	 puzzle
Sudoku?	Is	it	a	mathematical	pursuit	or	not?	I	have	heard	expert	mathematicians
argue	that	it	is	or	that	it	isn’t,	with	equal	vehemence	either	way.

	

Let	us	go	back	to	a	beginning.	The	Greek	word	mathemata	simply	meant	‘what
has	been	 learned’,	 sometimes	 in	 a	general	way,	 at	other	 times	connected	more
specifically	to	astronomy,	arithmetic,	or	music.	The	Greek	word	entered	into	the
etymology	of	the	modern	word	‘mathematics’	and	its	cognates	in	other	European
languages	(mathématiques,	Mathematik,	matematica,	 or,	 in	US	English,	math).
The	meanings	of	the	word	‘mathematics’,	however,	slipped	and	twisted	through
many	variations	over	the	centuries,	as	we	shall	see	shortly.	And	that	is	looking	at
the	matter	only	from	a	European	perspective.	If	we	go	back	one	or	two	thousand
years,	before	European	culture	became	dominant,	can	we	find	words	equivalent
to	our	‘mathematics’	in	Chinese,	Tamil,	Mayan,	or	Arabic?	If	so,	what	writings
and	 activities	 did	 those	 words	 cover?	 To	 investigate	 that	 question	 thoroughly
would	be	a	lifetime’s	work	for	an	army	of	scholars,	but	here,	as	elsewhere	in	this
book,	 some	 case	 studies	 will	 serve	 to	 illustrate	 the	 questions	 that	 need	 to	 be
asked	and	the	kind	of	answers	that	can	arise.



	

Tracing	some	meanings	of	suàn

	

From	histories	 composed	by	Chinese	government	 officials	 for	 the	period	 from
shortly	 before	 200	 BC	 to	 AD	 200	 (the	 Qín	 and	 Hàn	 periods)	 it	 is	 possible	 to
discover	the	names	of	just	over	20	people	who	were	said	to	have	been	skilled	in
some	aspect	of	suàn	 .	As	a	noun,	suàn	can	mean	a	set	of	short	rods,	made	of
wood,	 metal,	 or	 ivory,	 which	 are	 manipulated	 on	 a	 flat	 surface	 to	 record	 the
numbers	in	a	calculation;	it	can	also	mean	the	act	of	using	the	rods.	Here	then	is
evidence	of	mathematical	activity,	but	we	still	do	not	know	very	much	unless	we
can	discover	what	kind	of	calculations	were	carried	out.
	

For	many	of	the	practitioners	named	in	the	official	records,	it	appears	that	suàn
was	closely	associated	with	the	astronomical	or	calendrical	systems	known	as	lì	
.	All	pre-modern	societies	used	the	positions	of	the	Sun,	Moon,	and	planets	to

determine	 appropriate	 times	 and	 dates	 for	 religious	 rituals	 or	 the	 planting	 of
crops,	so	those	who	could	make	correct	predictions	from	astronomical	data	were
indispensable	to	rulers	and	governments.	There	are	thus	repeated	associations	of
suàn	with	lì	in	the	histories	of	early	imperial	China.	The	same	records	also	show,
however,	 that	 suàn	 was	 relevant	 to	 more	 earthly	 matters,	 the	 calculation	 of
profit,	and	the	distribution	of	resources.
	

In	the	early	1980s,	a	new	source	was	discovered	for	the	period	around	200	BC,
one	that	sheds	further	light	on	the	use	of	suàn	at	that	time.	The	text	known	as	the
Suàn	shù	shū	 	 is	 inscribed	on	190	bamboo	strips,	each	about	30cm	long,
which	were	originally	joined	side	by	side	with	knotted	string	so	that	they	could
be	rolled	together	like	a	mat.	The	final	word	shū	means	‘writings’	or	sometimes
‘book’.	The	middle	word,	shù,	may	be	broadly	interpreted	as	‘number’.	What	is
most	relevant	for	our	purposes,	however,	is	the	meaning	of	the	combination	suàn
shù.	The	writings	on	suàn	shù	contain	around	70	problems	with	instructions	for
solving	them.	These	include:	multiplying	whole	numbers	and	fractions;	sharing
out	profit	according	to	the	amounts	put	in	by	different	contributors;	allowing	for
waste	in	the	production	of	commodities;	calculating	total	cost	from	the	price	of	a



given	amount;	calculations	of	tax;	finding	amounts	of	ingredients	in	a	mixture;
converting	an	amount	of	raw	material	to	a	number	of	finished	products;	checking
times	taken	for	a	journey;	calculation	of	volumes	and	areas;	conversion	of	units.
	

Thus	for	the	most	part	the	problems	of	the	Suàn	shù	shū	are	based	on	everyday
activities	and	 transactions.	 It	 is	written	 in	a	very	direct	style:	 for	each	problem
the	 writer	 poses	 ‘question’,	 ‘result’,	 and	 ‘method’.	 Here	 as	 examples	 are	 two
‘customs-post	problems’	from	the	second	chapter:

A	fox,	a	wild-cat	and	a	dog	go	through	a	customs-post;	 they	are	taxed
111	 coins.	 The	 dog	 says	 to	 the	wild-cat,	 and	 the	wild-cat	 says	 to	 the	 fox
‘Your	 skin	 is	 worth	 twice	 mine;	 you	 should	 pay	 twice	 as	 much	 tax!’
Question:	how	much	is	paid	out	in	each	case:	Result:	 the	dog	pays	out	15
coins	and	 	coins;	the	wild-cat	pays	out	31	coins	and	5	parts;	the	fox	pays
out	 63	 coins	 and	 3	 parts.	 Method:	 let	 them	 be	 double	 one	 another,	 and
combine	them	[into]	7	to	make	the	divisor;	multiply	each	by	the	tax	to	make
the	 dividends;	 obtain	 one	 for	 [each	 time]	 the	 dividend	 accommodates	 the
divisor.

	

And	perhaps	more	realistically:
	

A	man	 is	 carrying	hulled	grain	 –	we	do	not	 know	how	much	–	 as	 he
passes	through	three	customs	posts.	[Each]	post	takes	a	duty	of	1	in	3.	After
leaving	 he	 has	 one	 dŏu	 of	 hulled	 grain	 left.	 Question:	 when	 he	 started
going,	 how	much	 hulled	 grain	 did	 he	 bring?	Result:	 The	 hulled	 grain	 he
brought	was	3	dŏu	3	shēng	and	 .	Method:	Set	out	one,	and	thrice	double	it
to	make	 the	 divisor.	Again	 set	 out	 one	dŏu	 of	 hulled	 grain	 and	 3-fold	 it.
Again	 three-fold	 it	 and	 [multiply	 by]	 the	 number	 of	 passes	 to	 make	 the
dividend	for	it.

	

The	 answers	 are	 correct	 but	 the	 descriptions	 of	 the	 ‘method’	 are	 not	 very
enlightening,	 and	 it	 is	 likely	 that	 they	were	meant	 to	be	 supplemented	by	oral
explanation.	 The	 instructions	 are	 given	 only	 for	 the	 particular	 numbers	 in	 the
stated	question,	but	a	trained	reader	would	be	able	to	adapt	them	to	any	similar
problem,	 so	 in	 that	 sense	 they	 provide	 a	 general	 technique.	 There	 is	 no
expectation	in	the	text,	however,	that	the	reader	should	understand	the	reasoning



behind	the	method,	only	that	he	should	be	able	to	apply	it.
	

Similar	problems	and	others	appear	in	a	later	text,	the	Jiŭ	zhŭng	suàn	shù	 ,
writings	on	suàn	shù	in	nine	sections,	commonly	known	in	English	as	the	‘Nine
Chapters’.	The	official	histories	show	that	the	text	was	in	use	by	the	beginning	of
the	2nd	century	AD.	As	with	Euclid’s	Elements	from	some	three	or	four	centuries
earlier,	however,	we	have	no	information	about	the	author	or	composition	of	the
‘Nine	Chapters’,	nor	the	original	text.	The	only	version	that	has	come	down	to	us
is	the	one	given	by	Liú	Huī	 	in	AD	263.	Until	the	transcription	and	publication
of	the	contents	of	the	Suàn	shù	shū	in	2000,	the	‘Nine	Chapters’	was	the	earliest
extensive	text	devoted	to	suàn.	The	discovery	of	the	Suàn	shù	shū	therefore	not
only	makes	possible	 important	 textual	comparisons,	but	also	offers	historians	a
much	deeper	knowledge	of	the	uses	of	suàn	in	the	early	years	of	imperial	China.
	

It	 is	 clear	 even	 from	 this	 very	 short	 account	 that	 the	 word	 suàn	 was	 not
associated	with	any	overarching	subject	that	we	can	capture	with	the	single	word
‘mathematics’.	Instead	it	denotes	techniques	and	skills	that	could	be	put	to	use	in
a	range	of	contexts,	from	applications	to	lì,	the	astronomical	reckonings	required
at	court,	to	the	more	mundane	suàn	shù.	Turning	now	to	the	Latin	West,	can	we
find	a	similar	range	of	practices	associated	with	the	word	‘mathematics’?
	

Tracing	some	meanings	of	‘mathematics’

	

Around	AD	100	the	Roman	writer	Nicomachus	listed	four	disciplines	concerned
with	multitude	and	magnitude:	arithmetic,	music,	geometry,	and	astronomy.	For
Nicomachus,	arithmetic,	the	study	of	multitudes	(or	numbers),	and	geometry,	the
study	 of	 magnitudes,	 were	 the	 most	 fundamental;	 music	 was	 the	 science	 of
multitudes	in	relation	to	one	another,	while	astronomy	dealt	with	magnitudes	in
motion.	Four	centuries	later,	the	philosopher	Boethius	described	these	disciplines
collectively	as	the	quadrivium.	Together	with	the	trivium	of	grammar,	logic,	and
rhetoric,	 they	 made	 up	 the	 seven	 liberal	 arts	 of	 the	 medieval	 academic
curriculum.	Boethius	himself	wrote	treatises	on	arithmetic	and	music	that	were
studied	in	European	universities	throughout	the	medieval	period.	Some	writings



on	 geometry	were	 also	 ascribed	 to	 him,	 but	 their	 true	 authorship	 is	 uncertain:
Boethius,	like	Pythagoras,	became	something	of	a	mythical	figure	to	whom	later
work	could	usefully	be	attributed.

	

Arithmetic	 and	 geometry	 remain	 at	 the	 heart	 of	 mathematics	 (they	 are	 the
activities,	 we	 may	 recall,	 practised	 by	 Irene	 and	 Tatjana)	 but	 astronomy	 and
music	have	now	gone	their	separate	ways.	The	break	came	in	 the	17th	century
when	 it	 became	 increasingly	 difficult	 to	 reconcile	 mathematical	 theory	 with
musical	 practice,	 and	 when	 astronomy	 struggled	 to	 free	 itself	 of	 its	 long
associations	with	astrology	to	become	a	respectable	subject	in	its	own	right.
	

In	any	case,	by	the	time	of	the	Renaissance	the	four-fold	division	of	Nicomachus
was	 too	 constrained	 to	 accommodate	 the	 many	 new	 kinds	 of	 mathematical
activity	that	were	beginning	to	emerge	in	response	to	the	rapid	growth	of	wealth,
trade,	 and	 travel.	 John	 Dee,	 in	 a	 preface	 to	 the	 first	 English	 translation	 of
Euclid’s	Elements,	 in	1570,	set	out	a	‘groundplat’,	or	plan,	of	the	mathematical
arts	 and	 sciences	 (see	 Figure	 2).	 Arithmetic	 and	 geometry	 remain	 the	 key
components,	but	by	now	geometry,	which	answers	 the	questions	 ‘How	farre?’,
‘How	 high	 or	 deepe?’,	 ‘How	 broad?’,	 has	 given	 rise	 to	 ‘geographie’,
‘chorographie’,	‘hydrographie’,	and	something	called	‘stratarithmetrie’.	Further,
there	 is	 a	 long	 list	 of	 subjects	 regarded	 as	 ‘derivatives’	 of	 both	 arithmetic	 and
geometry,	including	‘astronomie’	and	‘musike’	among	many	others.	The	modern
reader	will	have	some	idea	of	what	was	meant	by	‘perspective’,	‘cosmographie’,
‘astrologie’,	 ‘statike’,	 ‘architecture’,	 and	 ‘navigation’	 but	 will	 probably	 be	 as
bemused	 as	 contemporary	 readers	 might	 have	 been	 by	 ‘anthropographie’,
‘pneumatithmie’,	 ‘archemastrie’,	 and	 several	 other	 uncommon	 branches	 of
learning.	Indeed,	the	obscurity	of	the	subject	matter	and	the	neat	divisions	under
subheadings	 and	 sub-subheadings	 suggest	 that	 Dee’s	 systematization,	 like	 the
much	simpler	scheme	of	Nicomachus	or	Boethius,	was	a	philosophical	exercise
rather	than	a	genuine	classification	of	existing	practices.

	

How	 then	 are	 we	 to	 find	 out	 more	 precisely	 what	 mathematical	 activity	 in
western	Europe	consisted	of	during	the	centuries	between	AD	500	and	1500?	Can
we	 carry	 out	 the	 same	 kind	 of	 study	 for	 ‘mathematics’	 as	 we	 did	 for	 suàn,
discovering	the	meanings	of	the	word	by	examining	the	contexts	in	which	it	was



used?	There	are	many	more	surviving	texts	from	western	Europe	over	this	period
than	 there	are	for	early	 imperial	China,	so	a	full	survey	 is	 impossible,	but	as	a
first	 approach	we	will	 examine	 a	mathematical	 history	 compiled	by	 the	Dutch
scholar	 Johann	 Gerard	 Vossius,	 his	 De	 scientiis	 mathematicis,	 published	 in
Amsterdam	in	1649,	in	particular	as	it	relates	to	British	writers.
	

	

2.	John	Dee’s	‘groundplat’	from	his	preface	to	Euclid’s	Elements,	1570
	

It	 may	 seem	 strange	 to	 turn	 to	 a	 Dutch	 scholar	 for	 information	 on	 British
intellectual	history,	but	much	of	Vossius’s	account	of	British	authors	was	based
on	earlier	work	by	the	English	antiquary	John	Leland.	In	1533,	shortly	before	the



dissolution	 of	 the	 monasteries,	 Leland	 was	 commissioned	 by	 Henry	 VIII	 to
search	 the	 libraries	and	colleges	of	 the	realm	and	 to	 list	 their	collections.	Over
the	 next	 two	 or	 three	 years,	 he	 listed	 the	 holdings	 of	 some	 140	 religious
foundations.	The	subsequent	dispersal	and	loss	of	books	grieved	him	greatly:	in
1536	 he	 complained	 to	 Thomas	 Cromwell	 that	 ‘the	 Germanes	 perceiving	 our
desidiousness	[indolence]	and	negligence,	do	send	dayly	young	Scholars	hither,
that	spoileth	 them,	and	cutteth	 them	out	of	Libraries’.	Leland	provided	 the	 last
and	most	comprehensive	record	of	what	the	libraries	had	contained.	He	intended
to	compile	a	dictionary	of	British	writers,	containing	some	600	entries,	but	sadly
became	 insane	 before	 it	 was	 quite	 completed.	 His	 invaluable	 work	 was
recognized	 by	 other	 historians,	 however,	 and	 a	 great	 number	 of	 later	 writers,
including	Vossius,	drew	directly	or	indirectly	on	his	findings.

	

The	 earliest	 English	writer	mentioned	 by	Vossius	was	Bede,	writing	 about	AD
730,	who	was	 listed	under	both	‘astronomy’	and	‘arithmetic’.	Bede,	who	spent
most	of	his	life	in	the	monastery	at	Jarrow	in	the	north-east	of	England,	is	well
known	as	a	biblical	commentator	and	church	historian,	but	few	would	now	count
him	 an	 astronomer.	 The	 writings	 ascribed	 to	 him,	 however,	 are	 described	 as
being	on	the	Moon	and	its	cycles,	the	date	of	Easter,	the	planets	and	zodiac,	the
use	 of	 the	 astrolabe,	 and	 calculation	 of	 the	 vernal	 equinox.	 Some	 of	 these
writings	may	have	been	mistakenly	ascribed	to	Bede	by	later	commentators,	but
he	was	certainly	much	concerned	with	the	date	of	Easter,	which	was	as	crucial	to
Christians	 as	 the	 correct	 timing	 of	 the	 winter	 solstice	 had	 been	 to	 the	 early
Chinese	emperors.	It	was	not	an	easy	calculation	either:	Easter	had	to	fall	on	the
first	 Sunday	 following	 a	 full	 Moon	 after	 the	 spring	 equinox,	 and	 so	 correct
calculation	of	the	date	required	an	understanding	both	of	lunar	and	solar	cycles,
which	 are	 not	 naturally	 correlated.	The	presence	of	 two	Christian	 traditions	 in
northern	England,	Celtic	and	Roman,	had	led	to	conflicting	dates,	a	situation	that
had	eventually	been	resolved	at	the	Synod	of	Whitby	in	664.	Bede	may	not	have
carried	out	 the	necessary	calculations	himself,	 but	he	knew	what	was	at	 stake.
Calculations	 concerned	 with	 ecclesiastical	 time-keeping	 eventually	 became
known	 by	 the	 name	 of	 computus,	 and	 remained	 essential	 throughout	 the
medieval	period.
	

After	Bede	and	his	pupil	Alcuin,	no	further	English	names	appear	 in	Vossius’s
account	 for	 more	 than	 four	 centuries,	 until	 we	 meet	 Adelard	 of	 Bath	 around
1130.	Adelard,	who	appears	 to	have	 travelled	 in	France,	Sicily,	and	Syria,	was



one	of	the	earliest	translators	of	parts	of	Euclid’s	Elements	from	Arabic	to	Latin,
and	was	also	said	to	have	written	on	the	astrolabe.

	

Only	 for	 the	 13th	 and	 14th	 centuries	 do	 the	 names	 (and	 their	 supposed	 dates)
begin	 to	 appear	 with	 increasing	 frequency,	 all	 of	 them	 under	 ‘astronomy’	 or
‘astrology’:	John	Sacrobosco	(1230),	whose	writings	on	the	Earth	and	its	place
in	 the	 universe	 remained	 a	 key	 part	 of	 the	 university	 curriculum	 for	 four
centuries;	 Roger	 Bacon	 (1255),	 described	 as	 an	 astrologer;	Walter	 Oddington
(1280),	said	to	have	written	on	the	motion	of	the	planets;	Robert	Holcot	(1340)
of	Northampton,	said	to	have	written	on	the	motion	of	the	stars;	John	Eastwood
(1347),	astrologer;	Nicholas	Lynne	(1355),	astrologer;	John	Killingworth	(1360),
astronomer;	Simon	Bredon	(1386),	said	to	have	written	on	medicine,	astrology,
and	 astronomy;	 John	 Summer	 (1390),	 astrologer,	 and	 so	 on.	 Then	 in	 the	 15th
century	the	names	begin	to	fade	out	again.	Clearly	the	14th	century	was	a	high
point	 of	 astronomical	 and	 astrological	 studies,	 one	 contributory	 factor	 perhaps
being	 the	 terrible	shock	of	 the	Black	Death	 in	1348.	Many	of	 those	mentioned
belonged	 to	 religious	orders,	Franciscan,	Dominican,	or	Carmelite.	Many	were
also	linked	to	Oxford,	particularly	to	Merton	College,	and	some	of	their	writings
are	 safeguarded	 to	 this	 day	 in	 Oxford	 libraries.	 All	 of	 them	 crossed	 and	 re-
crossed	the	fluid	boundaries	between	astronomy	and	astrology.
	

In	 contrast	 to	 this	 galaxy	 of	 astronomers,	 no	English	writers	 appear	 in	 any	 of
Vossius’s	 chapters	 on	 music,	 optics,	 geodesics,	 cosmography,	 chronology,	 or
mechanics,	and	only	Gervase	of	Tilbury	and	Roger	Bacon	are	mentioned	under
geography,	as	map-makers.	Thus,	 looking	back	 from	a	16th-century	standpoint
to	 the	 mathematical	 writings	 of	 medieval	 England,	 the	 dominant	 themes	 are
computus	and	astrology.
	

For	other	regions	of	Europe,	however,	the	picture	would	have	been	different.	In
Italy,	for	instance,	situated	in	the	heart	of	the	western	Mediterranean,	trade	was
more	extensive	and	more	complex	than	in	northern	Europe,	and	the	13th	century
saw	the	establishment	of	abacus	schools	to	train	boys	in	commercial	arithmetic
and	 even	 a	 little	 rudimentary	 algebra	 (solving	 some	 basic	 equations).	 The
seminal	 text	was	 the	Liber	abaci	 (Book	 of	 Abacus)	 of	 Leonardo	 of	 Pisa,	 later
known	 also	 as	 Fibonacci.	 The	 Liber	 abaci	 contains	 hundreds	 of	 commercial
problems.	Here	are	two	of	them:



Four	men	made	 a	 company	 in	 which	 the	 first	 man	 put	 	 of	 a	 whole,
another	put	 ,	a	third	put	 ,	and	a	fourth	truly	put	 ,	and	they	had	together	a
profit	of	60	soldi;	it	is	sought	how	much	each	held	of	it.	The	problem	truly
is	the	same	as	was	said	about	four	men	who	buy	a	pig	for	60	soldi	of	which
the	first	wishes	to	have	one	third	of	the	pig,	the	second	one	fourth,	the	third
one	fifth,	and	the	fourth	one	sixth.…

	

Leonardo	 himself	 has	 pointed	 to	 two	 versions	 of	 this	 question;	 it	 is	 also
mathematically	equivalent	to	the	fox,	dog,	and	wild-cat	problem	from	the	Suàn
shù	 shū.	 The	 next	 problem	 reflects	 the	 concerns	 of	 contemporary	 Italy	 and	 is
typical	of	hundreds	of	questions	on	conversion	of	currencies	or	materials.	At	the
same	 time,	 it	 shows	 that	 some	 ten	 centuries	 after	 Diophantus,	 arithmetic	 of
another	kind	was	still	thriving	in	Alexandria.
	

Also	11	Genoese	rolls	[of	cloth]	are	worth	17	carats	in	Alexandria;	how
much	are	9	Florentine	rolls	worth?	Because	the	11	rolls	and	the	9	rolls	are
not	the	same	units	of	weight,	you	make	Florentine	rolls	of	the	11	Genoese
rolls,	or	you	make	Genoese	rolls	of	the	9	Florentine	rolls	so	that	both	will
be	either	Florentine	rolls	or	Genoese	rolls;	but	because	you	can	easily	make
Florentine	rolls,	each	Genoese	roll	is	 2	Florentine	rolls,	you	will	multiply
the	Genoese	rolls	by	 2	to	make	 23	Florentine	rolls…

	

For	all	their	learning,	Vossius	and	his	sources	in	northern	Europe	had	never	seen
the	Liber	abaci;	Vossius	knew	of	 it	only	by	hearsay	and	got	 its	date	wrong	by
two	centuries.	Mathematical	activity	could	be	very	localized.

	

It	 was	 also	 time-related.	 For	 the	 medieval	 period,	 most	 of	 the	 headings	 later
invented	 by	 Dee	 and	Vossius	 would	 have	 been	 largely	 redundant,	 at	 least	 for
England.	By	 the	 end	of	 the	16th	 century,	 as	Britain	 too	entered	 into	 the	wider
world,	 that	was	no	longer	the	case.	Thomas	Harriot,	working	around	1600,	left
writings	 on	 optics,	 ballistics,	 alchemy,	 algebra,	 geometry,	 navigation,	 and
astronomy.	 Meanwhile,	 his	 contemporary	 Simon	 Stevin	 in	 the	 Netherlands
published	 on	 a	 similar	 range	 of	 subjects,	 but	 with	 navigation	 replaced	 by	 the
more	pertinent	problems	(to	him)	of	locks	and	sluices.	Computus	and	astrology
had	given	way	to	the	mathematical	activities	of	a	new	world	order.



	

What	is	mathematics?

	

What	then	has	mathematics	been	historically,	if	indeed	there	has	ever	been	such
an	entity?	It	should	be	clear	by	now	that	mathematical	activity	has	taken	many
forms,	 only	 loosely	 connected	 by	 the	 fact	 that	 they	 require	 some	 kind	 of
measurement	or	calculation.	A	more	precise	answer	must	be	heavily	dependent
on	time	and	place.	There	are	a	few	common	threads:	all	organized	societies	need
to	regulate	trade	and	time-keeping,	which	were	very	roughly	speaking	the	aims
of	suàn	shù	and	suàn	lì,	respectively,	in	early	imperial	China,	or	of	abacus	and
computus	in	13th-century	Europe.	The	practitioners	of	these	various	techniques,
however,	were	likely	to	have	been	of	very	different	social	status.	Suàn	shù	and
abacus	 teachings	were	 intended	 for	merchants	 or	 officials,	whereas	 suàn	 lì	 or
computus	 were	 the	 provenance	 of	 high-ranking	 specialists	 in	 China,	 and	 of
monks	 and	 scholars	 in	 medieval	 Europe.	 A	 separation	 of	 status	 and	 respect
between	 those	 sufficiently	 educated	 to	 engage	 in	 ‘higher’	mathematics,	 which
usually	 requires	 a	 certain	 level	 of	 abstract	 thinking,	 and	 the	 tradesmen	 or
craftsmen	 who	work	 with	 ‘common’	 or	 ‘vulgar’	 mathematics,	 has	 recurred	 in
different	contexts	over	many	centuries.

	

As	societies	become	more	complex	so	 too	do	their	mathematical	 requirements.
The	 long	 list	 of	 headings	 proposed	 by	 Dee,	 even	 if	 some	 were	 redundant,
indicates	 a	 wide	 range	 of	 activities	 in	 which	 mathematical	 expertise	 was
invoked.	 These	 subjects	 were	 collectively	 known	 as	 ‘mixed	 mathematics’,
suggesting	that	mathematics	was	an	integral	part	of	each	of	them	(not	quite	the
same	as	 the	later	concept	of	‘applied	mathematics’,	where	mathematics	 is	used
to	analyse	subjects	outside	itself).
	

There	is	no	reason	to	suppose	that	the	lessons	learned	from	early	imperial	China
and	medieval	Europe	do	not	extend	to	other	societies	too:	that	there	is	no	single
body	of	knowledge	that	we	can	conveniently	call	‘mathematics’	but	that	we	can
identify	many	mathematical	disciplines	and	activities.	And	which	particular	ones
are	considered	most	relevant	or	prestigious	has	always	been	a	matter	of	time	and



place.
	

Who	is	a	mathematician?

	

Now	that	we	have	begun	to	identify	the	range	of	activities	that	have	constituted
mathematics,	 can	we	say	who	does	or	does	not	count	as	a	mathematician?	All
four	of	Pythagoras,	Diophantus,	Fermat,	and	Wiles	are	commonly	described	as
mathematicians,	 and	 the	 first	 three,	 being	 dead,	 have	 made	 it	 into	 a	 standard
reference	work,	the	Biographical	Dictionary	of	Mathematicians.	None	of	them,
however,	would	 have	 recognized	 the	 label	 they	 have	 been	 given.	We	 have	 no
idea	how,	if	at	all,	Pythagoras	would	have	described	himself.	Diophantus	would
probably	 have	 thought	 of	 himself	 as	 an	 arithmetician,	 not	 as	 a	 practitioner	 of
everyday	 arithmetic	 of	 the	 suàn	 shù	 or	 abacus	 kind,	 but	 of	 the	 ‘higher
arithmetic’	that	investigates	some	of	the	more	obscure	and	difficult	properties	of
the	 natural	 numbers.	 Fermat,	 on	 the	 other	 hand,	 would	 have	 called	 himself	 a
géomètre,	geometry	by	then	being	the	most	authoritative	and	respectable	branch
of	 the	 quadrivium.	 This	 remained	 a	 standard	 description	 of	 an	 academic
mathematician	 in	France	well	 into	 the	19th	 century.	Of	 the	 four,	 only	Wiles,	 I
suggest,	would	unreservedly	call	himself	a	mathematician.

	

Today	the	discipline	of	mathematics	is	highly	respected,	even	revered,	but	from
what	has	been	said	already	in	this	chapter	it	can	easily	be	seen	why	this	has	not
always	 been	 the	 case.	 John	 of	 Salisbury	 in	 the	 12th	 century	 claimed	 that	 the
practice	of	mathematica,	 the	 foretelling	of	 the	 future	 from	 the	positions	of	 the
stars	and	planets,	arose	from	a	fateful	familiarity	between	men	and	demons,	and
along	 with	 chiromancy	 (palm-reading)	 and	 augury	 (interpreting	 the	 flight	 of
birds)	was	a	source	of	evil.	In	1570,	Girolamo	Cardano,	medical	practitioner	and
author	of	one	of	the	leading	algebra	texts	of	the	Renaissance,	was	imprisoned	for
casting	a	horoscope	of	Christ;	Thomas	Harriot,	 arrested	 in	1605	on	charges	of
association	 with	 perpetrators	 of	 the	 Gunpowder	 Plot,	 was	 questioned	 not	 so
much	about	the	plot	itself	but	about	the	fact	that	he	had	a	horoscope	of	James	I
pinned	to	his	wall;	and	late	in	the	17th	century	John	Aubrey	wrote	of	the	country
clergyman	and	mathematics	teacher	William	Oughtred	that	‘The	country	people



did	 believe	 that	 he	 could	 conjure’.	 In	 pre-modern	 Europe,	 the	 practice	 of
‘mathematics’	was	not	without	its	dangers,	to	the	practitioner	as	much	as	to	his
supposed	subjects.
	

In	 fact,	 the	 word	 ‘mathematician’	 began	 to	 be	 used	 regularly	 in	 English
mathematical	writings	only	from	1570	onwards.	At	first,	it	was	used	mainly	for
foreign	 authors,	 but	 later	 in	 two	 curiously	 unrelated	 contexts,	 for	 gunners	 or
astrologers.	After	the	Restoration	in	1660	it	came	to	be	used	more	generally	for
writers	on	arithmetic	or	geometry	but	also	still	for	astrologers;	at	the	same	time,
the	 predictions	 of	 ‘the	 mathematicks’	 became	 a	 regular	 subject	 of	 satire	 and
ridicule.	 The	 longstanding	 and	 persistent	 association	 of	 mathematics	 with
astrology	 helps	 to	 explain	 why	 academics	 preferred	 to	 avoid	 the	 term.	When
Henry	Savile	founded	two	mathematical	chairs	in	Oxford	in	1619,	they	were	in
Geometry	 and	 Astronomy,	 respectively,	 with	 strict	 directions	 that	 the	 latter
should	 not	 include	 judicial	 astrology.	To	 this	 day	Cambridge	 hosts	 a	Lucasian
Professor	of	Mathematics,	 but	Oxford’s	 equivalent	 is	 the	Savilian	Professor	of
Geometry.	And	unless	 it	should	be	 thought	 that	 the	association	of	mathematics
with	 prediction	 and	 influence	 was	 only	 a	 European	 phenomenon,	 it	 is	 worth
bearing	in	mind	that	the	modern	Chinese	term	for	mathematics,	shù	xué	 ,	has
traditionally	meant	the	study	of	numbers	in	the	context	of	divination.
	

In	 short,	 ‘mathematicians’,	 as	 we	 now	 understand	 the	 term,	 are	 a	 modern
European	 invention.	 In	 the	 long	 history	 of	 mathematical	 activity,	 they	 have
existed	 for	 little	 more	 than	 a	 blink	 of	 the	 eye,	 and	 if	 we	 are	 to	 appreciate
mathematical	history	properly	 it	 is	crucial	not	 to	project	 their	 image	back	onto
the	past.	For	that	reason,	historians	prefer	to	use	more	precise	descriptions	like
‘scribe’,	 ‘cosmographer’,	 or	 ‘algebraist’,	 or	 more	 general	 terms	 like
‘mathematical	practitioner’.	One	 thing	 is	certain:	 the	history	of	mathematics	 is
not	the	history	of	mathematicians.
	



Chapter	3
How	are	mathematical	ideas	disseminated?
	

The	previous	chapter	carried	out	some	broad	surveys	of	mathematical	activity	at
different	 times	 and	 places.	 This	 is	 one	 way	 of	 studying	 the	 history	 of
mathematics:	determining	what	people	actually	did.	The	historian	always	wants
to	 ask	 further	 questions,	 however:	 not	 just	 what	 people	 knew	 but	 how	 they
communicated	 it	 to	 one	 another	 and	 to	 those	 who	 lived	 after	 them.	 How	 are
mathematical	 ideas	 passed	 from	 one	 person	 to	 another,	 from	 one	 culture	 to
another,	or	from	one	generation	to	another?	(Recall	the	questions	first	raised	in
Chapter	1:	how	did	Fermat	know	about	Diophantus,	or	Wiles	about	Fermat?)

An	extension	of	 these	questions	 is	 to	ask	how	historians	 themselves	can	know
about	 the	 mathematics	 of	 the	 past:	 what	 sources	 do	 we	 have,	 how	 have	 they
come	down	 to	 us,	 how	 reliable	 are	 they,	 and	how	can	we	 learn	 to	 read	 them?
This	chapter	will	examine	the	way	mathematical	ideas	have	sometimes	traversed
long	distances	of	time	and	space,	but	also	how,	often,	they	have	not.
	

Fragility,	scarcity,	and	obscurity

	

Those	who	have	comfortably	assumed	that	mathematics	began	with	Pythagoras
may	 now	 suffer	 a	 slight	 sense	 of	 vertigo	 on	 discovering	 that	 sophisticated
mathematics	was	already	being	practised	more	 than	a	 thousand	years	earlier	 in
Egypt	 and	 in	 the	 region	 that	 is	 modern	 Iraq.	 The	 Egyptian	 and	 Babylonian
civilizations	 of	 the	 2nd	 and	 1st	 millennia	 BC	 existed	 in	 relative	 proximity	 to
each	 other,	 but	we	 know	 very	much	more	 about	 the	mathematics	 of	 the	 latter
than	 the	former	for	 the	very	simple	reason	that	 the	clay	 tablets	used	as	writing
material	 along	 the	 Tigris	 and	 Euphrates	 were	 robust	 and	 durable	 whereas	 the
papyri	 of	 the	Nile	 region	were	 not.	Thousands	 of	 tablets	 have	 been	 excavated
from	 Iraq,	 many	 with	 mathematical	 content,	 and	 thousands	 more	 probably



remain	 buried	 if	 they	 have	 not	 been	 crushed	 by	 tank	 treads	 or	 looted	 in	 the
chaotic	 aftermath	of	 recent	wars.	For	Egypt,	on	 the	other	hand,	 the	number	of
surviving	 mathematical	 texts	 and	 fragments	 can	 be	 counted	 on	 the	 fingers	 of
three	 hands,	 and	 those	 are	 scattered	 across	 a	 thousand	 years	 of	 history.	 The
equivalent	for	Britain	would	be	a	few	texts	from	around	the	time	of	the	Norman
conquest	and	a	few	more	from	the	19th	century.	Clearly	the	surviving	Egyptian
texts	 provide	 only	 the	most	meagre	 insight	 but	 at	 the	 same	 time	 leave	 ample
room	for	speculation	and	fantasy	about	Egyptian	mathematical	activity.

	

For	India,	south-east	Asia,	and	South	America,	the	situation	has	been	much	the
same	as	for	Egypt:	the	climate	has	rapidly	destroyed	natural	materials	like	wood,
skin,	or	bone,	so	that	historians	have	had	to	do	the	best	they	can	with	very	few
texts,	poorly	preserved.	Clearly	the	paucity	of	material	distorts	our	picture	of	the
past.	 We	 must	 ask	 whether	 what	 survives	 is	 typical	 of	 what	 has	 been	 lost,
knowing	 that	 a	 single	 new	 discovery	 (like	 the	 Suàn	 shù	 shū	 in	 China)	 could
radically	 alter	 our	 perceptions	 of	 an	 entire	mathematical	 culture.	 At	 the	 same
time,	 the	 lack	 of	 texts	 has	 perhaps	 had	 some	 benefits	 in	 that	 it	 has	 forced
historians	 to	 broaden	 their	 search	 for	 sources.	 Administrative	 records,	 for
instance,	 can	 reveal	 the	 counting	 and	 measuring	 that	 were	 carried	 out	 in
everyday	 life.	 Archaeological	 evidence	 has	 improved	 our	 knowledge	 of	 how
buildings	 were	 planned	 and	 constructed	 and	 what	 calculations	 must	 therefore
have	 gone	 into	 them	 (for	we	 have	 no	 direct	 evidence	 of	 any	 calculations	 that
went	 into	 the	 building	 of	 Stonehenge	 or	 the	 Pyramids).	 Sources	 as	 varied	 as
pictures,	stories,	or	poems	may	also	include	hints	of	contemporary	mathematical
knowledge.
	

Many	ancient	 texts	were	written	 in	 scripts	and	 languages	 that	 are	now	extinct,
and	 the	process	of	 translating	 them	 is	 fraught	with	difficulties.	The	number	of
scholars	with	the	requisite	language	skills	who	are	also	brave	enough	to	engage
with	 mathematical	 material	 remains	 very	 small	 indeed,	 and	 their	 task	 is
exceedingly	 delicate.	 Any	 translation	 from	 one	 language	 to	 another	 risks
destroying	something	of	the	essence	of	the	original,	but	mathematical	translation
introduces	 a	 further	 difficulty:	 how	 to	make	 the	 technical	 concepts	 of	 another
culture	 comprehensible	 to	 a	 modern	 audience.	 What	 can	 the	 ordinary	 reader
make,	 for	 example,	 of	 the	 following	 passage	 from	 the	 Indian
Brāhmasphuṭasiddhānta	from	AD	628:



The	height	of	a	mountain	multiplied	by	a	given	multiplier	is	the	distance
to	a	city;	it	is	not	erased.	When	it	is	divided	by	the	multiplier	increased	by
two	it	is	the	leap	of	one	of	the	two	who	make	the	same	journey.

	

To	understand	this	problem,	the	reader	needs	to	know	that	one	traveller	descends
a	mountain	and	walks	along	the	plain	to	a	city,	while	the	other	magically	leaps
from	the	mountain	top	to	a	greater	vertical	height	and	flies	along	the	hypotenuse,
but	 in	 doing	 so	 covers	 just	 the	 same	 distance.	 For	 a	 student	 at	 the	 time,	 this
problem	 may	 have	 been	 one	 of	 a	 standard	 type	 (another	 version	 of	 it	 has
monkeys	 leaping	 up	 trees)	 and	 was	 probably	 elucidated	 through	 oral
explanation,	but	for	a	21st-century	reader	with	no	knowledge	of	Sanskrit	or	7th-
century	Indian	mathematical	conventions,	it	is	at	first	sight	simply	baffling.

	

Thus	a	literal	translation	of	a	raw	text	is	not	likely	to	convey	very	much	to	a	non-
specialist.	An	 age-old	way	 of	 getting	 round	 this	 problem	 is	 for	 translators	 (or
copyists)	to	add	annotations	or	explanatory	diagrams:	all	important	mathematical
texts	 have	 accrued	 layers	 of	 commentary	 in	 this	 way.	 Another	 method	 is	 to
translate	the	text	into	modern	mathematical	notation.	The	reader	who	wishes	to
try	this	for	the	problem	of	the	two	mountain	travellers	will	probably	find	that	it
makes	it	much	clearer.	The	use	of	modern	algebraic	notation	can	be	helpful	as	a
preliminary	 way	 in	 to	 understanding	 the	 mathematics	 of	 the	 past	 but	 should
never	be	mistaken	for	what	the	original	writer	was	‘really’	trying	to	do,	or	what
he	would	have	done	with	 the	 advantage	of	 a	 good	modern	 education.	At	 best,
such	modernization	obscures	the	original	method	and	at	worst	can	lead	to	serious
misunderstandings.
	

The	surviving	Egyptian	texts	of	the	2nd	millennium	BC,	for	example,	are	written
in	 hieratic,	 a	 cursive	 script	 that	 replaced	 hieroglyphics	 in	 everyday	 use	 from
about	 2000	 BC	 onwards.	 They	 were	 translated	 into	 English	 or	 German	 in	 the
early	 20th	 century	 and	 for	 many	 years	 those	 translations	 remained	 standard.
Unfortunately,	 however,	 the	 contents	 were	 translated	 not	 only	 into	 modern
languages	but	also	into	modern	mathematics.	It	is	often	stated,	for	instance,	that
the	 Egyptians	 used	 a	 value	 of	 3.16	 for	 the	 number	 we	 now	 denote	 by	 π,	 the
multiplying	 factor	 that	 gives	 the	 area	 of	 a	 circle	 from	 its	 radius-squared	 (as	 a
modern	formula,	we	may	write	A	=	πr2).	When	we	examine	the	texts	on	which
this	 claim	 is	 based,	we	 find	 that	 they	do	not	 expect	 the	 reader	 to	multiply	 the



radius-squared	by	any	number	at	all.	Instead	they	instruct	him	to	find	the	area	by
reducing	 the	 diameter	 by	 	 and	 then	 squaring	 it.	 A	 bit	 of	 pencil	 and	 paper
calculation	 shows	 that	 this	 gives	 the	 area	 of	 the	 circle	 as	 	 times	 the	 radius-
squared,	hence	the	magic	value	of	 	=	3.16…	But	‘reducing	and	squaring’	is	not
the	 same	 as	 ‘squaring	 and	multiplying’,	 even	 if	 it	 gives	 very	 nearly	 the	 same
answer:	the	process	is	quite	different,	and	processes	are	precisely	what	historians
need	to	be	concerned	with	if	they	are	to	understand	the	mathematical	thinking	of
earlier	cultures.

	

The	story	of	translation	of	Babylonian	texts	has	been	similar.	Here	the	languages
are	Sumerian,	unrelated	to	any	surviving	language,	and	Akkadian,	a	precursor	of
Arabic	and	Hebrew;	and	the	writing	is	cuneiform,	imprinted	into	wet	clay	with	a
sharpened	 reed.	 A	 large	 number	 of	 mathematical	 texts	 were	 translated	 and
published	during	the	1930s	by	Otto	Neugebauer	and	François	Thureau-Dangin,
and	thereafter	for	many	years	the	job	was	thought	to	be	more	or	less	done.	These
early	 translations,	 however,	 all	 too	 often	 turned	 Mesopotamian	 calculation
techniques	into	their	modern	algebraic	equivalents,	obscuring	the	true	nature	of
what	the	original	scribe	was	actually	thinking	and	doing,	while	at	the	same	time
making	the	calculations	look	rather	primitive.	Only	since	the	1990s	have	many
of	 the	 tablets	 been	 translated	 afresh,	 with	 much	 greater	 care	 for	 the	 original
language.	Words	 that	 mean	 literally	 ‘break	 in	 half’	 or	 ‘append’,	 for	 instance,
convey	physical	actions	that	are	quite	lost	in	the	abstract	translations	‘divide	by
2’	 or	 ‘add’,	 and	 give	 us	 a	 much	 better	 insight	 into	 the	 way	 problems	 were
understood	or	taught.
	

Reading	and	translating	texts	is	only	one	part	of	the	work	of	historians	of	ancient
mathematics,	albeit	an	important	one.	The	other	is	to	interpret	them	within	their
own	context.	Sometimes	 this	 is	 simply	 impossible:	many	Middle	Eastern	 texts
excavated	 or	 rediscovered	 in	 the	 19th	 century,	 including	 almost	 all	 the	 extant
Egyptian	 hieratic	 texts	 and	 hundreds	 of	 Old	 Babylonian	 cuneiform	 tablets,
changed	 hands	 in	 the	 antiquities	 market	 carrying	 no	 known	 provenance.
Unfortunately,	many	 looted	or	stolen	objects	are	still	bought	and	sold	 this	way
today.

	

The	 fragility	 and	 scarcity	 of	 mathematical	 texts	 improves	 only	 a	 little	 as	 we



move	forward	from	the	ancient	world	 to	 the	medieval	period.	Even	documents
deliberately	 preserved	 in	 libraries	 are	 not	 always	 secure.	 There	 are	 varying
accounts,	 now	 impossible	 to	 confirm,	 of	 the	 destruction	 of	 the	 library	 at
Alexandria	in	times	of	conflict,	and	certainly	it	would	have	been	as	vulnerable	to
fire	 as	 any	 pre-modern	 library	 housing	 books	 or	 manuscripts.	 Readers	 at
Oxford’s	Bodleian	Library	are	still	required	to	swear	an	oath	promising	‘not	to
bring	into	the	Library,	or	kindle	therein,	any	fire	or	flame,	and	not	to	smoke	in
the	Library’,	a	reminder	of	the	days	when	such	activities	could	prove	as	lethal	to
books	as	to	people.
	

We	 have	 already	 seen	 the	 efforts	 of	 John	 Leland	 to	 record	 the	 contents	 of
monastic	 libraries,	 but	 he	 could	 not	 preserve	 more	 than	 a	 fraction	 of	 the
collections	themselves	when	those	libraries	were	eventually	destroyed	and	their
holdings	 dispersed.	 There	 were	 other	 dangers	 too:	 Merton	 College	 in	 Oxford
threw	 out	 a	 great	 many	 manuscript	 books	 during	 the	 16th	 century	 as	 it
modernized	to	printed	texts,	and	though	some	were	rescued	by	alert	collectors,
there	must	have	been	many	that	were	not.	And	John	Wallis	in	1685,	like	Leland
more	 than	 a	 century	 earlier,	 complained	 bitterly	 about	 the	 theft	 of	 valuable
material:	 two	 12th-century	 prefaces,	 he	 wrote,	 had	 ‘lately	 (by	 some	 unknown
hand)	 been	 cut	 out,	 and	 carried	 away’	 from	 a	 manuscript	 in	 Corpus	 Christi
College.	He	hoped	that	‘Who	ever	hath	them,	would	do	a	kindness	(by	some	way
or	other)	to	restore	them’,	but	he	hoped	in	vain:	the	prefaces	are	still	missing.

	

Private	collections	of	papers	were	also	vulnerable:	John	Pell,	worrying	in	1644
about	 the	mathematical	 papers	 of	 his	 recently	 deceased	 friend	Walter	Warner,
wrote:
	

I	am	not	a	little	afraid	that	all	Mr	Warner’s	papers,	and	no	small	share	of
my	 labour	 therein,	 are	 seazed	 upon,	 and	 most	 unmathematically	 divided
between	the	sequestrators	and	creditors,	who	will,	no	doubt,	determine	once
in	their	lives	to	become	figure-casters,	and	so	vote	them	all	 to	be	throwen
into	the	fire.

	

Printed	books	are	 just	 as	 susceptible	 as	manuscripts	 to	 fire,	 flood,	 insects,	 and
human	 carelessness,	 but	 because	more	 copies	 are	 produced	more	 are	 likely	 to



survive.	Those	that	come	down	to	us,	however,	are	unlikely	to	be	typical	of	what
once	existed.	An	expensive	volume	from	a	gentleman’s	library	is	more	likely	to
last	 than	a	 tradesman’s	well-thumbed	ready-reckoner,	but	probably	 tells	us	 less
about	what	was	actually	read	and	used.

	

Constructing	 a	 true	 understanding	 of	 the	 past	 often	 feels	 like	 trying	 to	 put
together	a	jigsaw	puzzle	in	which	most	of	the	pieces	are	missing	and	there	is	no
picture	on	the	box.	Nevertheless,	remarkably,	we	do	have	mathematical	texts	that
have	survived	for	centuries,	even	millennia.	For	the	most	part,	their	contents	are
of	 purely	 historical	 interest:	 no-one	 now	 calculates	 with	 Egyptian	 fractions,
except	as	a	school	exercise,	and	the	only	vestiges	of	the	Babylonian	sexagesimal
system	are	 in	our	otherwise	curious	division	of	 an	hour	 into	60	minutes	and	a
circle	 into	 360	 degrees.	Other	 texts,	 however,	 have	 remained	 very	much	 alive
through	 continued	 use	 and	 translation,	 and	 occasionally	 it	 is	 even	 possible	 to
trace	an	almost	continuous	line	of	descent	from	past	to	present.	The	outstanding
example	must	 be	 Euclid’s	Elements,	 which	 has	 already	 been	mentioned	more
than	 once,	 and	 without	 which	 no	 history	 of	 mathematics	 can	 be	 complete.	 A
study	of	what	is	sometimes	called	the	‘transmission	history’	of	the	Elements	tells
us	 much	 about	 how	 mathematical	 ideas	 from	 the	 past	 may	 be	 preserved,
amended,	and	passed	on.
	

Preservation	through	time

	

The	remarks	made	above	on	the	fragility	of	Egyptian	sources	apply	just	as	much
to	 texts	 from	 the	 ancient	 Greek-speaking	 world,	 which	 were	 also	 written	 on
papyrus.	We	assume,	from	contemporary	references	to	some	of	his	other	works,
that	Euclid	wrote	around	250	BC.	Yet	the	earliest	surviving	text	of	the	Elements
is	 from	 AD	 888.	 That	 represents	 over	 a	 thousand	 years	 of	 copying	 and	 re-
copying,	 with	 all	 the	 scope	 that	 entails	 for	 error,	 change,	 and	 ‘improvement’.
How	 can	 we	 know	 that	 the	 text	 we	 have	 now	 is	 in	 any	 way	 faithful	 to	 the
original?	The	answer	 is	 that	we	can	not.	 In	 the	case	of	 the	Elements,	we	have
extensive	commentaries	 from	 later	Greek	writers,	Pappus	 (AD	320),	Theon	(AD
380),	and	Proclus	(AD	450),	which	tell	us	how	the	text	appeared	in	the	4th	or	5th



century	BC.	These	men	lived	much	closer	 to	Euclid’s	 time	than	we	do,	but	still
several	 centuries	after	 the	Elements	was	 first	written.	Otherwise,	 the	only	way
historians	can	approach	 the	original	 is	 to	construct	 a	 ‘family	 tree’	of	 surviving
manuscripts,	by	observing,	for	example,	where	mistakes	or	alterations	have	been
copied	from	one	text	to	another.	In	this	way	they	would	hope	to	arrive	back	at	a
‘master	copy’,	but	it	is	painstaking	work	with	no	guarantee	that	it	will	take	one
back	to	a	true	and	unique	source.

	

That	 earliest	 surviving	manuscript	 of	 the	Elements,	 from	AD	 888,	 is	written	 in
Greek	and	was	preserved	in	Byzantium.	But	as	Islam	spread	into	the	old	Greek-
speaking	regions	of	the	Mediterranean,	the	text	was	also	translated	into	Arabic.
One	 can	 imagine	 what	 difficulties	 the	 early	 Islamic	 translators	 might	 have
encountered	 by	 comparing	 their	 task	 with	 that	 of	 Robert	 Recorde	 several
centuries	 later:	 it	 is	 unlikely	 that	 Arabic,	 the	 language	 of	 nomadic	 tribes,
contained	 ready-made	words	 for	 the	 abstract	 concepts	 of	 Euclidean	 geometry.
Nevertheless,	Arabic	translators	saved	many	texts	from	extinction.
	

Most	medieval	translations	of	the	Elements	into	Latin	were	thus	made	not	from
Greek,	a	language	that	had	by	then	all	but	died	out	in	western	Europe,	but	from
Arabic	sources	in	Spain	or	Sicily.	Adelard	of	Bath,	whom	we	met	in	the	previous
chapter,	 was	 one	 such	 translator,	 and	 there	 were	 several	 others	 in	 the	 12th
century,	 scholars	 from	 northern	 Europe	 who	 travelled	 south	 in	 search	 of	 the
learning	 that	 could	 be	 found	 there.	 Eventually,	 as	 knowledge	 of	 Greek	 was
slowly	revived,	translations	were	also	made	directly	from	Greek	sources.

	

Once	printing	was	established,	in	the	15th	century,	Euclid’s	Elements	was	finally
secured	for	posterity.	It	was	amongst	the	first	mathematical	books	to	be	printed,
in	 a	 beautiful	 edition	 of	 1482	 that	 continued	 the	 traditions	 of	 manuscript
production:	there	is	no	title	page	(because	manuscript	writers	traditionally	signed
their	names	at	the	end	of	a	text,	not	at	the	beginning),	and	it	contains	delicately
painted	illuminations	(see	Figure	3).
	



	

3.	The	first	page	of	the	first	printed	edition	of	Euclid’s	Elements,	1482
	

During	the	16th	century,	printed	editions	followed	each	other	rapidly,	at	first	in
Latin	 and	 Greek	 but	 then	 in	 several	 vernacular	 languages.	 Robert	 Recorde
included	most	of	 the	material	 from	the	 first	 four	books	of	 the	Elements	 in	The
Pathway	 to	 Knowledg	 in	 1551,	 and	 some	 further	 and	 more	 difficult	 material
from	the	later	books	in	his	last	publication,	The	Whetstone	of	Witte,	in	1557.	The
first	full	English	translation	of	the	Elements	was	published	in	a	lavish	edition	by
Henry	Billingsley	in	1570:	it	contains	Dee’s	‘groundplat’	and	is	also	the	earliest
known	English	text	to	display	the	word	‘mathematician’	on	the	title	page.

	

Over	the	next	four	centuries,	there	were	many	further	translations	and	editions	as
editors	adapted	to	the	changing	needs	of	the	time.	By	the	mid-20th	century,	the



Elements	was	finally	eased	out	of	the	school	curriculum	(though	not	its	contents:
schoolchildren	 still	 learn	 to	 construct	 triangles	 and	 bisect	 angles).	 It	 has	 not,
however,	disappeared	from	the	public	domain.	A	modern	interactive	web	version
is	the	most	recent	innovation	in	a	very	long	tradition	of	translating	and	adapting
the	Elements	for	each	new	generation.
	

The	Elements	 has	 been	 unique	 in	 its	 reach	 and	 longevity,	 but	 the	 story	 of	 its
preservation	 is	 typical	 of	 that	 of	 many	 other	 Greek	 texts,	 including	 the
Arithmetica	of	Diophantus,	from	which	Fermat’s	Last	Theorem	arose.	A	similar
story	 about	 early	 commentaries,	 translations	 into	Arabic,	 later	 translations	 into
Latin,	and	eventual	print	publication	from	surviving	Greek	sources	can	be	 told
for	most	classical	texts.	There	has	been	just	one	exception,	the	near	miraculous
rediscovery	 in	 the	early	20th	century	of	an	otherwise	 lost	 text	by	Archimedes,
faintly	discernible	below	later	writing	and	paintings	on	the	pages	of	a	Byzantine
prayer	book.	Such	finds	are	exceedingly	rare,	and	serve	to	remind	us	yet	again	of
how	much	mathematics	of	any	culture	has	also	been	lost.
	

Preservation	over	distance

	

Despite	the	fragility	of	written	documents,	mathematics	has	been	communicated
not	 just	 over	 long	 periods	 of	 time,	 but	 sometimes	 over	 long	 distances,	 and
sometimes	both.	We	begin	with	a	mystery.	Here	 is	 the	beginning	of	a	problem
from	an	Old	Babylonian	tablet	now	in	the	British	Museum	(BM	13901):

I	summed	the	area	and	my	square-side	so	that	it	was	0;45.
	

Using	 the	 technique	 that	was	warned	 against	 above,	 let	 us	 introduce	 algebraic
notation	for	just	long	enough	to	see	what	the	problem	is	about.	If	we	let	the	side
of	a	square	be	s	 then	 its	area	 is	s2.	The	number	0;45	 is	a	modern	 transcription
that	we	may	 interpret	 as	 	 or	 .	 Thus	 the	 statement	 can	 be	written	 in	modern
terms	as	the	equation	s2	+	s	=	 .	The	Babylonian	technique	for	finding	the	length
of	 the	 square-side	 involved	slicing	and	 rearranging	geometrical	 shapes;	 for	 the
trained	 practitioner,	 this	 could	 be	 reduced	 to	 a	 series	 of	 brief	 instructions,	 a



recipe	guaranteed	to	give	the	answer.

	

Now	consider	this	problem	from	a	text	on	the	subject	of	Al-jabr	wa’l-muqābala
(‘Restitution	and	Balancing’)	composed	by	al-Khwārizmī	in	Baghdad	around	AD
825.
	

A	square	and	21	units	are	equal	to	10	roots.

Here	the	‘roots’	are	the	square-roots	of	the	given	square,	and	so	if	we	once	again
use	modern	notation	we	see	that	the	problem	can	be	written	as	s2	+	21	=	10s.	In
other	words,	this	is	closely	related	to	the	Old	Babylonian	problem	written	down
more	 than	 two	and	a	half	 thousand	years	earlier.	Further,	al-Khwārizmī	gave	a
very	similar	recipe	for	finding	the	answer.	His	text	was	so	influential	that	it	gave
its	name	to	the	subject	now	known	as	algebra.

	

Is	 it	coincidence	 that	 the	same	kind	of	problem	with	 the	same	kind	of	solution
reappeared	 so	many	centuries	 later	 in	 the	 same	part	of	 the	world?	There	 is	no
evidence	at	all	for	continuity	down	the	years	as	we	have	for	Euclid’s	Elements,
certainly	not	within	ancient	or	Islamic	Iraq.	We	do,	however,	have	evidence	of
ideas	 being	 carried	 from	 late	Babylonian	 culture	 to	 India,	 and	 of	mathematics
later	 being	 transported	 in	 the	other	 direction,	 from	 India	 to	Baghdad.	 It	 is	 just
possible	 that	 problems	 like	 those	 discussed	 here	 were	 part	 of	 that	 flow:	 we
cannot	 say	 and	 can	 only	 speculate.	 It	 is	 worth	 rehearsing,	 however,	 what	 we
know	with	more	certainty.
	

From	 about	 500	 BC	 to	 330	 BC,	 ancient	 Iraq	 and	 northwest	 India	 were	 distant
partners	in	the	Persian	empire,	after	which	for	a	short	time	the	same	region	came
under	 the	 rule	 of	 Alexander	 the	 Great.	 Evidence	 for	 the	 absorption	 of
Babylonian	mathematics	into	India	is	circumstantial	but	fairly	clear,	especially	in
astronomical	 calculations:	 it	 can	 be	 seen	 in	 the	 Indian	 use	 of	 base	 60	 in
measurements	 of	 time	 and	 angle,	 and	 in	 similar	 methods	 of	 calculating	 the
length	 of	 daylight	 throughout	 the	 year.	 (In	 India,	 as	 in	 other	 early	 societies,
correct	 time-keeping	 for	 ritual	 and	 other	 purposes	 was	 essential.)	 Later,	 there
were	 translations	 into	 Sanskrit	 of	 Greek	 astronomical	 or	 astrological	 texts,	 so
that	 the	 Greek	 ‘chord’,	 used	 in	 measuring	 astronomical	 altitude,	 became	 the



basis	 of	 the	 Indian	 ‘sine’.	 The	 dearth	 of	 early	 Indian	 texts	 prevents	 us	 from
knowing	what	other	knowledge	must	have	passed	eastwards,	and	no	doubt	in	the
other	 direction	 too:	 a	 few	 astronomical	 fragments	 from	 pre-Islamic	 Iran,	 for
example,	suggest	the	influence	there	of	Sanskrit	texts.

	

By	 the	 end	 of	 the	 6th	 century	 AD	 (or	 even	 much	 earlier)	 there	 had	 been
developed	 in	parts	 of	 central	 India	 a	 system	of	writing	numbers	using	 just	 ten
digits	together	with	a	system	of	place	value.	The	importance	of	this	can	hardly
be	overstated.	In	modern	parlance,	it	means	that	we	can	write	any	number	of	any
size	(or	smallness)	using	just	the	ten	symbols	0,	1,	2,	3,	4,	5,	6,	7,	8,	9.	‘Place-
value’	 means	 that	 ‘2’	 and	 ‘3’	 stand	 for	 different	 values	 in	 200,003	 and	 302
because	 they	are	positioned	differently.	 In	both	cases,	 the	zeros	serve	as	place-
holders	so	 that	we	do	not	mistake	200,003	for	23	or	302	for	32.	Once	 this	has
been	 understood,	 the	 same	 few	 rules	 for	 addition	 and	 multiplication	 can	 be
applied	 to	 numbers	 of	 any	 size.	 Of	 course,	 there	 have	 historically	 been	many
other	ways	of	writing	numbers,	but	all	of	them	require	the	invention	of	more	and
more	new	symbols	as	the	numbers	get	larger,	and	none	is	convenient	for	pencil
and	paper	calculation:	try	adding	a	pair	of	numbers	written	in	Roman	numerals,
xxxiv	 and	 xix	 for	 instance,	 without	 converting	 them	 into	 something	 more
familiar.
	

The	Indian	or	Hindu	numerals,	as	they	came	to	be	called,	were	already	known	in
parts	of	Cambodia,	 Indonesia,	and	Syria	as	early	as	 the	7th	century:	 they	were
highly	praised	by	 the	Syrian	bishop	Severus	Sebokht,	 for	example.	By	AD	750
Islam	had	spread	over	the	area	of	the	old	Persian	empire	(and	beyond);	and	by
773	 the	 Hindu	 numerals	 had	 arrived	 in	 Baghdad	 in	 astronomical	 treatises
brought	to	the	Caliph	al-Manṣūr	from	India.	Around	825,	al-Khwārizmī,	whom
we	have	 already	met	 as	 a	writer	 on	al-jabr,	wrote	 a	 text	 on	 the	 use	 of	 Indian
numerals.	The	original	is	lost,	but	its	contents	can	be	recovered	from	later	Latin
translations.	It	taught	first	how	to	write	the	ten	digits,	in	their	Arabic	rather	than
Sanskrit	 forms,	with	 careful	 explanation	 of	 place-value	 and	 the	 correct	 use	 of
zero;	this	was	followed	by	instructions	on	adding	and	subtracting,	doubling	and
halving,	multiplication	 and	 division,	 some	 teaching	 on	 fractions	 including	 the
sexagesimal	 kind,	 and	 directions	 for	 extracting	 square-roots.	 Al-Khwārizmī’s
text	set	the	pattern	for	arithmetic	texts	for	centuries:	its	outline	can	still	be	easily
discerned	in	many	17th-century	European	texts	even	though	the	material	was	by
then	much	 expanded.	 For	 now,	 however,	 let	 us	 stay	with	 the	 Indian	 numerals



themselves	 or,	 as	 they	 had	 now	 become,	 the	 Hindu–Arabic	 numerals,	 as	 they
continued	to	spread	westward.

	

By	 the	end	of	 the	10th	century,	 the	numerals	had	been	carried	 to	Spain,	at	 the
other	end	of	the	Islamic	world	from	India,	and	had	acquired	the	western	Arabic
form	 that	 prefigured	modern	western	 numerals,	 rather	 than	 the	 eastern	Arabic
form	still	used	in	Arabic-speaking	countries.	And	from	Spain,	they	were	slowly
disseminated	northwards	 into	France	and	England.	One	of	 the	myths	about	 the
numerals	 is	 that	 they	were	 introduced	 into	Christian	Europe	by	 a	monk	 called
Gerbert,	later	Pope	Sylvester	II,	who	had	visited	Spain	before	970.	It	is	true	that
Gerbert	used	the	numerals	on	abacus	counters,	but	on	this	slender	evidence	one
can	hardly	give	him	credit	for	introducing	them	to	the	rest	of	Europe:	we	do	not
know	whether	he	had	learned	the	relevant	methods	of	calculation	or	whether	he
merely	used	 the	numerals	as	decorative	symbols;	nor	do	we	know	how	widely
his	abacus	was	known	or	used;	and	besides,	there	must	have	been	other	travellers
to	 Spain	 who	 similarly	 brought	 back	 a	 little	 knowledge	 of	 the	 numerals	 to
demonstrate	 to	 their	 friends.	Knowledge	of	 the	numerals	probably	 spread	only
slowly	and	 in	a	piecemeal	sort	of	way	until	 their	usefulness	began	 to	be	better
recognized.
	

We	 do	 know	 that	 astronomical	 tables	 from	 Spain,	 the	 Toledan	 tables,	 were
adapted	 for	 Marseilles	 in	 1140	 and	 for	 London	 in	 1150.	 The	 instructions	 for
using	the	tables	were	translated	from	Arabic	 to	Latin	but	 the	tables	 themselves
were	 not:	who	would	want	 to	 convert	 columns	 of	 two-digit	 figures	measuring
degrees,	 minutes,	 and	 seconds	 into	 clumsy	 Roman	 numerals?	 Just	 as
astronomical	 tables	 had	 carried	 the	 Indian	 numerals	 to	Baghdad,	 so	 they	 later
brought	 them	 to	 northern	Europe:	 for	 astronomers,	 the	 numerals	were	 not	 just
useful	but	crucial	in	order	to	make	sense	of	other	people’s	observations.

	

At	a	more	mundane	level,	knowledge	of	the	numerals	and	associated	methods	of
calculation	must	also	have	spread	westwards	and	northwards	through	trade.	The
Crusaders,	for	instance,	would	have	encountered	them	from	the	late	11th	century
onwards.	 Unlike	 astronomical	 tables,	 however,	 records	 of	 buying	 and	 selling
were	ephemeral	and	have	long	since	vanished.
	



By	 the	 12th	 century,	 texts	 were	 being	 written	 specifically	 to	 explain	 the	 new
numerals	and	the	associated	methods	of	calculation.	One	of	them	was	Leonardo
of	 Pisa’s	Liber	 abaci	 which	 circulated	 in	 Italy	 but	 not	 in	 northern	 Europe.	 In
France	 and	 England,	 there	 were	 instead	 to	 be	 found	 Latin	 texts	 called
‘algorisms’,	 the	 name	 being	 a	 corruption	 of	 their	 opening	 words,	 ‘Dixit
Algorismi’,	 meaning	 ‘Thus	 spake	 al-Khwārizmī’.	 These	 texts,	 like	 al-
Khwārizmī’s	original	treatise,	taught	how	to	write	the	numerals	and	how	to	carry
out	 basic	 arithmetic	 with	 them.	 A	 particularly	 charming	 one,	 known	 as	 the
‘Carmen	de	algorismo’,	was	composed	in	verse	by	Alexander	de	Ville	Dieu	from
northern	France.	The	opening	lines	are,	in	translation:

This	present	art	is	called	algorismus,	in	which
We	make	use	of	twice-five	Indian	figures:
0.9.8.7.6.5.4.3.2.1.

Alexander	went	on	to	explain	how	the	position	of	each	numeral	mattered:
	

If	you	put	any	of	these	in	the	first	place,
It	signifies	simply	itself:	if	in	the	second,
Itself	tenfold.

Despite	their	obvious	advantages,	the	uptake	of	the	numerals	was	slow,	not,	as	is
sometimes	 suggested,	 because	 of	 their	 Oriental	 and	 non-Christian	 origins,	 but
because	for	everyday	use	the	old	Roman	system	together	with	calculations	done
on	fingers	or	counting	boards	served	well	enough.	Besides,	not	everyone	found
the	new	numerals	easy	to	learn:	as	late	as	the	14th	or	15th	century	a	monk	in	the
Benedictine	monastery	of	Cavenso	in	Italy	numbered	some	of	his	chapters	from
the	30th	onwards	as	XXX,	XXX1,	302,	303,	304,	….	Eventually,	however,	 the
Hindu–Arabic	 numerals	 superseded	 all	 others,	 and	 once	 they	 had	 been	 taken
west	to	America	had	almost	completed	their	circumnavigation	of	the	world.

	

There	are	other	 stories	 that	could	be	 told	about	 the	way	mathematics	has	been
disseminated	over	long	distances.	Traditional	Chinese	mathematics,	for	instance,
was	 taken	 up	 by	 all	 China’s	 immediate	 neighbours,	 and	 there	 were	 no	 doubt
exchanges	with	India	as	well,	but	none	with	the	West	until	the	Jesuits	arrived	in
the	 17th	 century,	 bearing	 the	 Elements	 of	 Euclid.	 Such	 movements	 have
continued	in	more	recent	times:	in	the	19th	century,	European	mathematics	was



carried	outwards	from	its	heartlands	in	France	and	Germany	to	the	peripheries	of
Europe,	the	Balkans	at	one	end	and	Britain	at	the	other,	and	then	to	the	United
States,	 and	 eventually	 to	 every	 country	 in	 the	 world.	 Such	 dissemination	 is
typical	of	 the	modern	era,	but	 in	mathematics,	 ideas	have	been	 travelling	for	a
very	long	time.
	

Not	forgetting	people

	

In	 this	 chapter	 I	 have	described	how	 some	of	 the	mathematics	 of	 the	past	 has
survived,	 in	 however	 fragmented	 a	 form,	 over	 long	 periods	 of	 time	 and
sometimes	 over	 long	 distances	 too.	 I	 have	 tried	 to	 be	 careful,	 however,	 with
language.	 A	 common	 word	 for	 the	 passing	 on	 of	 mathematical	 ideas	 is
‘transmission’,	 but	 I	 dislike	 it:	 apart	 from	 the	 connotation	 of	 radio	 masts,	 it
suggests	that	the	originators	were	deliberately	aiming	their	ideas	and	discoveries
at	 future	 generations.	 This	 has	 rarely	 been	 the	 case.	 For	 the	 most	 part,
mathematics	 is	 written	 down	 for	 one’s	 own	 use	 or	 for	 one’s	 immediate
contemporaries,	 and	 its	 survival	 much	 beyond	 that	 is	 largely	 a	 matter	 of
circumstance.	 I	have	also	 tried	 to	avoid	speaking	of	 ideas	simply	spreading,	as
though	they	were	garden	weeds	with	a	power	of	their	own.

	

On	the	contrary,	every	mathematical	exchange,	large	or	small,	is	brought	about
by	 human	 agency.	 Behind	 the	 long-running	 stories	 outlined	 above	 lie
innumerable	tiny	interactions	and	transactions.	We	have	already	glimpsed	some
of	 them:	 Indian	 envoys	 presenting	 themselves	 to	 the	 caliph	 in	 Baghdad;	 a
Byzantine	 scribe	 copying	 a	 manuscript	 he	 may	 barely	 have	 understood;
Florentine	traders	haggling	in	the	markets	of	Alexandria;	a	library-keeper	in	that
same	city	of	Alexandria	a	millennium	earlier	carefully	 listing	 the	scrolls	 in	his
charge,	 and	 perhaps,	 like	 John	 Leland	 later,	 distraught	 at	 the	 thought	 of	 their
destruction;	Fermat	sending	his	letters	in	false	hope	to	Wallis	 in	Oxford;	Wiles
delivering	first	news	of	his	proof	in	a	lecture,	and	news	of	its	eventual	correction
by	 email.	 Mathematical	 ideas	 move	 around	 only	 because	 people	 think	 about
them,	 discuss	 them	 with	 others,	 write	 them	 down,	 and	 preserve	 relevant
documents.	Without	people,	 there	 is	no	dissemination	of	mathematical	 ideas	at



all.
	



Chapter	4
Learning	mathematics
	

A	 fact	 easy	 to	 overlook	 is	 that	 the	 largest	 group	 of	 people	 in	modern	 society
doing	mathematics	 is	 comprised	 not	 of	 adults	 but	 of	 schoolchildren.	A	 young
person	 anywhere	 in	 the	 world	 who	 is	 fortunate	 enough	 to	 have	 access	 to
education	is	likely	to	spend	a	significant	amount	of	time	learning	mathematics;
in	the	developed	countries,	this	is	likely	to	amount	to	two	or	three	hours	of	each
school	week	for	ten	years	or	more.

	

In	 the	 light	 of	 that,	 it	 is	 a	 little	 surprising	 to	 remember	 that	 the	 inclusion	 of
mathematics	 in	 the	school	curriculum	is	a	modern	phenomenon.	Around	1630,
for	 example,	 John	 Wallis,	 later	 Savilian	 Professor	 of	 Geometry	 at	 Oxford,
learned	 arithmetic	 neither	 at	 school	 nor	 at	 Cambridge	 but	 from	 his	 younger
brother	studying	to	go	into	trade;	30	years	later,	the	highly	intelligent	and	literate
Samuel	Pepys,	also	educated	at	Cambridge,	and	a	member	of	 the	Navy	Board,
struggled	 to	 learn	 his	 multiplication	 tables.	 Nevertheless,	 passing	 on
mathematical	 knowledge	 to	 at	 least	 a	 few	 of	 the	 next	 generation	 has	 been
regarded	as	an	important	task	in	most	civilized	societies.
	

A	 study	 of	 what	 has	 been	 taught,	 and	 how,	 tells	 us	 a	 good	 deal	 about	 what
aspects	of	mathematics	have	been	regarded	as	relevant,	and	for	what	purposes.
In	 this	chapter	we	will	 examine	 two	case	 studies	 for	which	we	have	 relatively
good	documentation:	a	schoolroom	at	Nippur	in	southern	Iraq	some	time	before
1740	BC,	and	another	at	Greenrow	Academy	in	Cumbria	in	the	north	of	England
shortly	after	AD	1800.
	

A	Babylonian	schoolroom



	

The	 ancient	 city	 of	Nippur,	 situated	 in	 the	marshlands	 of	 the	 Euphrates	 about
halfway	 between	 the	 modern	 cities	 of	 Baghdad	 and	 Basra,	 was	 an	 important
religious	centre,	built	around	a	temple	complex	dedicated	to	the	god	Enlil.	Like
the	 abbeys	 and	 monasteries	 of	 medieval	 Europe	 later,	 Babylonian	 temples
received	 substantial	 offerings,	 and	 controlled	 land	 and	 labour,	 and	 so	 needed
trained	 scribes	 who	 could	 handle	 written	 accounts	 and	 calculations.	 Children
destined	for	the	profession,	which	usually	ran	in	families,	probably	began	their
training	early.

	

A	 small	mud-brick	 house	 in	Nippur,	 now	 known	 as	House	 F,	 appears	 to	 have
been	 one	 of	 perhaps	 several	 scribal	 schools	 in	 the	 city.	 Close	 to	 a	 temple
dedicated	to	the	goddess	Inana,	House	F	was	first	built	some	time	after	1900	BC
and	was	used	as	a	school	shortly	before	1740	BC.	Like	all	mud-brick	structures,	it
required	regular	upkeep	and	after	it	ceased	to	be	used	as	a	school	it	was	rebuilt
for	the	fourth	or	fifth	time.	At	this	point,	the	builders	made	good	use	of	hundreds
of	 discarded	 school	 tablets	 which	 they	 incorporated	 into	 the	 floor,	 walls,	 and
furniture	 of	 the	 new	 house.	 Other	 partially	 destroyed	 tablets	 have	 been	 found
mixed	with	large	quantities	of	unused	clay	in	recycling	bins.
	

When	used	as	a	school,	House	F	was	divided	into	three	or	four	inner	rooms	and
two	 courtyards,	 the	 latter	 containing	 benches	 and	 the	 recycling	 bins.
Unfortunately,	we	do	not	know	the	names	or	ages	of	the	students,	of	whom	there
may	have	been	no	more	than	one	or	two	at	a	time,	nor	do	we	know	how	often	or
for	how	long	they	occupied	the	courtyard	benches.	Remarkably,	however,	 their
method	 of	 using	 their	 tablets	 has	 enabled	 cuneiformists	 to	 reconstruct	 their
curriculum.

	

Many	of	the	tablets	from	House	F	are	flat	on	one	side	(the	obverse)	and	slightly
rounded	on	the	other	(the	reverse).	The	obverse	contains	on	the	left	a	model	text
written	by	a	teacher,	copied	on	the	right	by	the	student.	The	rounded	reverse	of
the	 tablet,	 however,	 contains	 longer	 passages	 of	 material	 learned	 earlier,
rewritten	for	further	practice	or	perhaps	as	a	test	of	memory.	From	some	1,500
Nippur	 tablets	 of	 this	 kind,	 each	 containing	 ‘earlier’	 and	 ‘later’	material,	Niek
Veldhuis	 in	 the	1990s	was	able	 to	discern	a	consistent	order	 in	 the	elementary



curriculum,	 starting	 with	 basic	 writing	 techniques	 and	 ending	 with	 the
beginnings	of	 literary	Sumerian.	Applying	the	same	methodology	to	about	250
similar	 tablets	 from	House	F,	Eleanor	Robson	was	able	 to	do	 the	 same	 for	 the
House	F	curriculum,	and	so	to	discover	the	place	of	mathematics	within	it.
	

The	student’s	first	steps	were	to	learn	the	correct	technique	for	writing	cuneiform
signs	and	to	combine	them	to	form	personal	names.	Then	they	acquired	written
vocabulary	 through	 lists	 of	 words,	 beginning	 with	 trees	 and	 wooden	 objects,
then	reeds,	vessels,	leather	and	metal	objects;	animals	and	meats;	stones,	plants,
fish,	birds,	and	garments;	and	so	on.	Some	mathematical	vocabulary	was	already
introduced	 here,	 with	measures	 of	 capacity	 for	 boats;	 of	 weight	 for	 trees	 and
stones;	 and	of	 lengths	 for	 reed	measuring-rods.	Further	metrological	units	 also
appeared	in	dedicated	lists	of	weights	and	measures	later.
	

Next,	 the	 student	 was	 expected	 to	 learn	 by	 heart	 lists	 of	 inverses	 (pairs	 of
numbers	that	multiply	to	60)	and	more	than	20	standard	multiplication	tables.	A
list	of	inverses,	for	example,	might	begin
	

	

(In	sexagesimal	arithmetic,	which	we	still	use	for	hours,	minutes,	and	seconds,	7
30	is	equivalent	to	7 ,	and	6	40	to	6
	

Multiplication	tables	required	considerable	feats	of	memory.	The	multiplication
table	for	16	40,	for	example,	began
	



	

It	has	been	estimated	that	it	could	take	up	to	a	year	to	learn	the	full	set	of	tables
alongside	 other	 school	 exercises.	 At	 this	 stage,	 students	 also	 started	 to	 write
complete	sentences	in	Sumerian,	some	of	them	containing	the	metrological	units
learned	earlier.
	

Only	after	 all	 this,	 as	 they	also	 learned	more	advanced	Sumerian,	did	 students
begin	 to	 carry	 out	 their	 own	 calculations	 of	 reciprocals	 or	 inverses	 not	 in	 the
standard	tables.	One	of	the	few	‘advanced’	tablets	from	House	F	contains	some
of	the	calculations	used	to	find	the	inverse	of	17	46	40	(answer:	3	22	30).	These
are	written	on	the	same	tablet	as	an	extract	from	a	literary	work	known	as	‘The
supervisor’s	 advice	 to	 a	 younger	 scribe’,	which	 includes	 some	moralistic	 lines
based	on	the	supervisor’s	memory	of	himself	as	a	young	student:

Like	a	springing	reed,	I	leapt	up	and	put	myself	to	work.
I	did	not	depart	from	my	teacher’s	instructions;
I	did	not	start	doing	things	on	my	own	initiative.
My	mentor	was	delighted	with	my	work	on	the	assignment.

Most	 of	 the	 advanced	 texts	 from	House	F	 are	not	mathematical	 but,	 like	 ‘The
supervisor’s	 advice’,	 literary	 compositions.	Many,	 however,	 contain	 references
to	 the	uses	of	both	 literacy	and	numeracy	 in	 the	 just	 administration	of	 society.
Lines	 from	 a	 hymn	 to	 Nisaba,	 the	 patron	 goddess	 of	 scribes,	 praise	 her	 for
bestowing	her	gifts	upon	the	king:

A	1-rod	reed	and	a	measuring	rope	of	lapis	lazuli,
A	yardstick,	and	a	writing	board	which	gives	wisdom.

A	Cumbrian	schoolroom

	



Greenrow	 Academy	 was	 founded	 in	 1780	 by	 John	 Drape,	 at	 Silloth	 on	 the
northwest	coast	of	England,	 just	a	few	miles	south	of	 the	Scottish	border.	Like
the	school	in	House	F	at	Nippur,	Greenrow	Academy	was	something	of	a	family
enterprise.	Drape’s	father,	known	as	John	Draper,	had	previously	run	a	school	in
Whitehaven,	 30	 miles	 south	 on	 the	 same	 coast.	 The	 Whitehaven	 school	 had
emphasized	 subjects	 relevant	 to	 ‘trade	 and	 seamanship’	 and	 Draper	 had
published	 two	 textbooks	 for	 the	use	of	 his	 pupils:	The	Young	 Student’s	Pocket
Companion,	 or	 Arithmetic,	 Geometry,	 Trigonometry,	 and	 Mensuration,
Calculated	for	the	Improvement	of	Youth	at	School	(1772)	and	The	Navigator’s
veni-mecum:	 or	 a	 Complete	 System	 of	 the	 Art	 of	 Navigation	 (1773).	 When
Draper	 died	 in	 1776,	 his	 son	 John	 inherited	 his	 books,	 his	 mathematical
instruments,	and	some	property,	enabling	him	to	establish	Greenrow	Academy	a
few	years	later.	After	Drape	himself	died	in	1795,	the	school	passed	into	the	care
of	 another	 family	 member,	 Joseph	 Saul,	 a	 relative	 of	 Drape’s	 wife,	 who
remained	 in	charge	of	 it	 for	nearly	50	years.	The	curriculum	was	broadened	 to
include	Greek,	Spanish,	and	scriptural	studies,	but	Greenrow	Academy,	 like	 its
parent	 school	 in	 Whitehaven,	 continued	 to	 place	 a	 strong	 emphasis	 on
mathematical	studies.

	

The	 school	 attracted	 boys	 not	 only	 from	 the	 local	 area	 but	 from	 elsewhere	 in
England	 and	 even	 from	 overseas.	Nine-year-olds,	 and	 at	 one	 time	 even	 a	 six-
year-old,	 could	 be	 registered,	 but	 young	men	 in	 their	 early	 twenties	were	 also
sometimes	educated	there.	Most	of	the	pupils,	however,	were	aged	about	14	or
15.	Records	 for	 1809	 show	 that	 one	 of	 the	 youngest	 pupils,	Rowland	Cowper
(aged	11),	and	one	of	the	oldest,	James	Irving	(aged	23),	followed	the	same	basic
curriculum	 of	 English,	 writing,	 and	 arithmetic.	 Most	 of	 the	 other	 boys	 also
studied	 drawing	 and	 either	 French	 or	 Latin	 together	 with	 a	 wide	 range	 of
mathematical	topics.	The	curriculum	followed	by	John	Coleman	(aged	15)	was
typical:	 English,	 French,	writing,	 drawing,	 arithmetic,	 geometry,	 trigonometry,
mensuration,	surveying,	book-keeping,	spherics,	astronomy,	mechanics,	algebra,
and	 Euclid.	 Further	 mathematical	 subjects	 on	 offer	 were	 dialling	 (the
construction	 of	 sun-dials),	 gauging,	 and	 fortification,	while	George	 Peat	 (aged
16),	 who	 seems	 to	 have	 been	 exceptionally	 able,	 also	 took	 lessons	 on	 conic
sections	and	fluxions	(the	Newtonian	version	of	the	calculus).
	

We	 are	 fortunate,	 however,	 to	 have	 more	 from	 Greenrow	 than	 mere	 lists	 of
topics.	Before	his	death	in	2005,	the	mathematics	educator	John	Hersee	collected



over	 200	 mathematical	 copy	 books	 written	 by	 pupils	 in	 schools	 throughout
England	and	Wales	between	1704	and	1907.	These	were	not	exercise	books	 in
the	 modern	 sense.	 Pupils	 did	 not	 waste	 precious	 paper	 practising	 similar
questions	over	and	over	again;	instead	they	inscribed	carefully	copied	examples
of	 standard	 problems,	 thus	 creating	 for	 themselves	 a	 collection	 of	 worked
examples	which	they	could	carry	with	them	into	later	life.	Many	of	the	examples
were	 taken	 from	 popular	 textbooks	 of	 the	 time,	 in	 particular	 from	 the	 long-
running	The	Tutor’s	Assistant	of	Francis	Walkingame	(first	published	 in	1751),
but	 many	 others	 must	 have	 been	 invented	 for	 their	 pupils	 by	 teachers
themselves.
	

	

4.	The	front	page	of	Robert	Smith’s	arithmetic	book,	Greenrow	Academy,
1832
	



The	Hersee	 collection	 includes	 five	mathematical	workbooks	 by	Robert	Smith
from	the	years	1832	and	1833	(see	Figure	4).	Over	these	two	years	Robert	filled
almost	1,700	pages	with	mathematical	examples,	so	that	we	have	a	very	detailed
picture	 of	 what	 he	 studied.	 These	 books	 were	 not	 the	 first	 that	 Robert	 wrote
because	he	had	already	advanced	beyond	the	elementary	operations	of	addition,
subtraction,	multiplication,	and	division.	The	earliest	surviving	book,	 for	1832,
begins	 with	 the	 Rule	 of	 Three.	 This	 was	 the	 rule	 that	 enabled	 countless
generations	of	 students	 to	answer	questions	 like:	A	men	dig	a	ditch	 in	B	 days,
how	long	would	it	take	C	men	to	do	the	same	job?	The	rule	is	so	named	because
there	are	three	known	quantities	(A,	B,	C)	from	which	a	fourth	(the	answer)	must
be	found.	The	rule	originated	in	India	and	probably	travelled	westwards	with	the
Indian	numerals:	it	was	ubiquitous	in	Islamic	and	European	arithmetic	texts	for
centuries.
	

The	Rule	of	Three	was	taught	by	rote:	like	his	Babylonian	predecessors,	a	19th-
century	English	 schoolboy	was	not	 expected	 to	 ‘start	doing	 things	on	my	own
initiative’.	In	the	example	above,	he	would	be	taught	that	he	must	multiply	B	by
C	and	divide	by	A	 to	get	 the	correct	 answer.	But	of	 course,	 there	were	always
variations	to	catch	out	the	unwary	student:	Robert	Smith	had	to	learn	the	Rule	of
Three	Direct,	 the	Rule	of	Three	 Inverse,	and	 the	Double	Rule	of	Three.	These
topics	were	followed	by,	among	others,	Barter,	Interest,	the	Rule	of	Fellowship
(the	sharing	of	profits),	Vulgar	Fractions,	Decimal	Fractions,	and	Arithmetic	and
Geometric	 Progressions.	 A	 second	 book,	 apparently	 written	 in	 the	 same	 year,
works	 through	a	 similar	 list	 of	 topics,	 again	beginning	with	 the	Rule	of	Three
and	ending	with	Progressions	and	Duodecimals.	The	books	seem	to	have	been
written	consecutively,	since	Robert	himself	labelled	them	Vol.	I	and	Vol.	II,	and
it	is	not	clear	why	he	worked	through	similar	material	twice.

	

Many	of	his	examples	are	taken	from	Walkingame;	here,	for	instance,	is	one	of
just	 two	examples	on	Permutations	(the	other	is	on	the	number	of	changes	that
can	be	rung	on	12	bells):
	

A	young	person,	coming	to	town	for	the	convenience	of	a	good	library,
made	a	bargain	with	the	person	with	whom	he	lodged,	to	give	him	£40	for
his	board	and	 lodging,	during	so	 long	a	 time	as	he	could	place	 the	family
(consisting	of	6	persons	besides	himself)	in	different	positions,	every	day	at



dinner.	How	long	might	he	stay	for	his	£40?
	

Robert	 wrote	 the	 correct	 solution	 (1	 ×	 2	 ×	 3	 ×	 4	 ×	 5	 ×	 6	 ×	 7	 =	 5040	 days)
immediately	after	the	question,	but	then,	following	Walkingame	quite	closely	at
this	point,	moved	on	immediately	to	vulgar	fractions.

	

Robert’s	two	arithmetic	books	for	1832	between	them	contain	almost	900	pages.
In	addition,	he	filled	almost	500	pages	more	in	a	third	book	headed	‘Geometry
Trigonometry	 Mensuration	 and	 Surveying’,	 which	 contains	 some	 of	 the
beautifully	 drawn	 and	 painted	 sketches	 that	 seem	 to	 have	 been	 encouraged	 at
Greenrow	(see	Figure	5).
	

The	 next	 book,	 with	 the	 title	 page	 ‘Arithmetic	 by	 Robert	 Smith	 Green-Row
1833’,	 is	on	‘Practical	questions	upon	common	rules’.	The	questions	known	as
Bills	 of	 Parcels	 are	 of	 particular	 interest	 because	 pupils	 often	 substituted	 their
own	names	 and	dates	 for	 those	given	by	Walkingame.	Thus	Robert’s	 first	Bill
begins:

	

Further	 dates	 on	 further	 bills	 follow	 through	 July	 1832	 and	 into	 August,
suggesting	 that	Robert	might	have	been	writing	 this	book	in	1832,	and	did	not
begin	 it	 but	 only	 finished	 it	 in	 1833,	 the	 date	 on	 the	 title	 page.	 The	 name	 of
Thomas	Nash	is	elsewhere	inscribed	at	the	end	of	Robert’s	first	book,	along	with
that	 of	 one	 Robert	 Reid,	 suggesting	 that	 they	 might	 have	 been	 his	 teachers;
Robert	Reid	makes	another	appearance	here,	charged	with



	

5.	A	problem	 in	 trigonometry,	 illustrated	 and	 answered	by	Robert	 Smith,
Greenrow	Academy,	1832
	

	

and	so	on.

	

The	second	book	completed	in	1833	was	on	‘Mensuration	of	Solids’.	It	includes
sophisticated	 calculations	 of	 the	 volumes	 and	 surface	 areas	 of	 the	 five	 regular
solids	 (tetrahedron,	 cube,	 octahedron,	 dodecahedron,	 icosahedron)	 but	 also
calculations	 typical	 of	 those	 used	 by	 bricklayers,	 masons,	 carpenters,	 slaters,



painters,	glaziers,	plumbers,	and	others,	with	the	appropriate	units	used	by	each.
Robert	 learned	 that	painters,	 for	example,	estimate	 the	areas	of	 ‘wainscottings,
doors,	window	shutters’	by	the	square	yard	but	that	‘deductions	must	be	always
made,	for	fireplaces	and	other	openings’.
	

Unfortunately,	we	do	not	know	how	old	Robert	was	when	he	did	all	this,	but	we
can	see	that	his	years	at	Greenrow	gave	him	a	mathematical	education	that	was
both	theoretical	and	thoroughly	practical.
	

Girls

	

I	have	hesitated	to	include	a	section	that	treats	a	group	of	people	who	constitute
half	of	humanity	 as	 though	 they	were	 a	minority,	but	 there	 is	no	getting	away
from	 the	 fact	 that	 for	most	of	history	 in	most	 societies	 it	has	not	been	 thought
necessary,	or	 indeed	appropriate,	 to	 educate	girls,	 and	certainly	not	 in	 subjects
like	mathematics	or	science.	It	is	not	surprising,	therefore,	that	there	have	been
very	few	women	mathematicians	of	note,	just	as	until	recent	centuries	there	have
been	few	women	writers,	lawyers,	or	doctors.	This	state	of	affairs	must	have	left
countless	 thousands	 of	 intelligent	 women	 somewhat	 frustrated.	 Nevertheless,
there	 have	 from	 time	 to	 time	 been	 some	who	were	 given,	 or	who	 created	 for
themselves,	opportunities	for	mathematical	education.

	

One	group	of	such	women	were	those	with	enough	wealth	or	leisure	to	indulge
in	 whatever	 studies	 they	 chose.	 An	 early	 example	 was	 the	 Chinese	 Empress
Dèng	 ,	 who	 at	 the	 end	 of	 the	 1st	 century	 AD	 took	 lessons	 in	 suàn	 shù.
Unusually	for	this	period,	her	teacher	was	also	a	woman,	by	the	name	of	Bāan
Zhāao	 .	Much	later,	 in	the	1640s,	Princess	Elisabeth	of	Bohemia	and	Queen
Christina	of	Sweden	both	took	lessons	from	Descartes,	though	they	were	perhaps
more	 interested	 in	 his	 philosophy	 than	 in	 his	 mathematics.	 A	 century	 later,
Europe’s	most	prolific	mathematician,	Leonhard	Euler,	wrote	over	200	letters	on
mathematical	and	scientific	subjects	 to	 the	Princess	of	Anhalt-Dessau,	niece	of
Frederick	 the	Great	 of	 Prussia.	 The	 letters,	 published	 in	 French,	 Russian,	 and
German,	and	later	in	English	as	Letters	to	a	German	Princess,	remain	in	print	to



this	day.
	

A	more	common	route	 into	mathematics	 for	ordinary	women,	however,	was	 to
be	taught	by	a	father,	husband,	or	brother.	In	the	19th	century	BC,	for	example,
there	 were	 two	 women	 scribes	 in	 the	 Babylonian	 town	 of	 Sippur,	 the	 sisters
Inana-amağa	 and	 Niğ-Nanna.	 It	 seems	 more	 than	 likely	 that	 they	 learned	 the
profession	from	their	father,	Abba-ţābum,	also	a	scribe.	Two	millennia	later,	the
Empress	 Dèng	 and	 her	 brothers	 received	 their	 earliest	 education	 from	 their
father,	even	though	their	mother,	it	seems,	thought	this	a	waste	of	time	for	a	girl.
The	Empress	Dèng’s	later	 teacher,	Bān	Zhāo,	was	 the	sister	of	 the	scholar	Bān
Gù	 ,	 whose	 work	 she	 understood	 suffficiently	 well	 to	 complete	 after	 his
death,	 including	 a	 treatise	 on	 astrology.	 Perhaps	 the	 most	 famous	 father–
daughter	 pair	 in	mathematics	 is	 that	 of	Theon	 and	Hypatia	 in	 late	 4th-century
Alexandria;	from	Hypatia	herself,	however,	we	have	no	writings,	only	secondary
accounts	of	her	life	and	death	around	which	much	legend	has	accumulated.
	

Teaching	of	girls	within	the	family	continued	into	the	early	modern	period.	John
Aubrey,	writing	in	the	1670s	about	his	former	friend	Edward	Davenant,	vicar	of
Gillingham	in	Dorset,	noted	his	love	of	mathematics,	though	‘being	a	Divine	he
was	 unwilling	 to	 print,	 because	 the	 world	 should	 not	 know	 how	 he	 spent	 a
greater	 part	 of	 his	 time’.	 Davenant	 had	 taught	 algebra	 not	 only	 to	 Aubrey
himself,	but	also	to	his	own	daughters:

He	 was	 very	 ready	 to	 teach	 and	 instruct.	 He	 did	 me	 the	 favour	 to
informe	me	first	in	Algebra.	His	daughters	were	Algebrists.

	

As	 it	 happens,	 we	 know	 what	 Edward	 Davenant	 taught	 his	 eldest	 daughter,
Anne,	in	the	way	of	algebra	because	in	1659	Aubrey,	avid	recorder	of	all	human
affairs,	copied	out	the	contents	of	her	notebook.	Anne	was	born	before	1632	(the
date	 of	 birth	 of	 her	 younger	 sister	Katherine)	 and	married	Anthony	Ettrick	 in
1650,	 so	was	 probably	 being	 trained	 as	 an	 ‘Algebrist’	 some	 time	 in	 the	 early
1640s.	Aubrey’s	copy	of	her	work	is	headed

This	algebra	 I	 transcribed	 from	ye	MS	of	Mris	Anne	Ettrick	 the	eldest
daughter	of	Dr	Davenant	who	is	a	very	good	Logist.

	



The	early	problems	in	Anne’s	notebook,	and	the	Latin	in	which	she	wrote	them,
are	typically	those	of	a	young	beginner.	In	one	of	them,	for	example,	some	girls
are	 taking	 a	 walk	 when	 a	 young	 man	 comes	 along.	 ‘Greetings’,	 he	 says	 (in
Latin),	‘you	twelve	maidens’.	To	which	one	of	the	girls	replies	immediately	(and
also	in	Latin):	‘If	we	were	multiplied	by	five,	we	would	be	as	many	more	than
twelve	as	we	are	now	fewer	than	twelve.’	Question	to	the	reader:	how	many	girls
were	there?	Several	pages	later,	we	find	Anne	working	an	example	whose	form
and	 solution	 had	 been	 proposed	 by	 al-Khwārizmī	 in	 Baghdad	 eight	 centuries
earlier:	what	number	multiplied	by	6	and	added	to	16	makes	its	own	square	(in
modern	notation	6x	+	16	=	x2).	Finally,	towards	the	end	of	the	notebook,	both	the
Latin	 and	 the	 mathematics	 become	 more	 mature.	 The	 penultimate	 problem
comes	 straight	 from	 the	 Arithmetica	 of	 Diophantus:	 to	 divide	 370	 into	 two
cubes,	whose	roots	are	whole	numbers	that	add	to	10.	As	Anne	was	able	to	show,
the	 answer	 is	 73	 plus	 33.	 The	 numbers	 in	 this	 question	 have	 been	 carefully
chosen	to	give	an	easy	solution,	but	it	becomes	impossible	if	370	is	replaced	by	a
perfect	cube,	as	Fermat,	at	much	 the	same	 time	but	 far	away	 in	Toulouse,	was
just	discovering.

	

Well	into	the	18th	century,	girls	were	likely	to	be	taught	mathematics	only	if,	like
the	Empress	Dèng	or	Anne	Davenant,	they	had	the	advantages	of	social	status	or
indulgent	parents.	Sophie	Germain,	one	of	 the	key	people	 to	make	progress	on
Fermat’s	Last	Theorem,	benefited	from	both.	Born	into	a	wealthy	and	educated
family	in	Paris	in	1776,	she	was	just	13	when	the	French	Revolution	broke	out.
Confined	to	her	home,	she	amused	herself	in	her	father’s	library	and	discovered
mathematics,	a	subject	her	parents	did	not	at	first	think	suitable	for	her	but	they
later	relented	in	the	face	of	her	determination.	When	she	was	18,	she	managed	to
obtain	 lecture	notes	from	the	newly	opened	École	Polytechnique	and,	although
she	 was	 not	 allowed	 to	 attend	 lectures	 herself,	 she	 submitted	 work	 under	 the
pseudonym	Monsieur	 le	 Blanc	 to	 one	 of	 the	 greatest	 of	 the	 École’s	 teachers,
Joseph-Louis	Lagrange.	Four	years	later,	she	corresponded	with	the	equally	great
German	 mathematician	 Carl	 Friedrich	 Gauss,	 again	 under	 the	 pseudonym	 le
Blanc.	To	the	credit	of	both	Lagrange	and	Gauss,	they	continued	to	admire	her
mathematics	and	her	courage	even	after	they	discovered	her	true	identity.	Sophie
struggled	 against	 the	 odds	 for	most	 of	 her	 life:	 she	 had	 never	 had	 the	 kind	 of
education	 that	 a	 boy	 of	 equal	 talent	might	 have	 had,	 and	 her	work	was	 often
marred	 by	 errors	 and	 incompleteness.	 She	 never	 held	 any	 official	 post.
Nevertheless,	after	her	death	in	1831	Gauss	remarked	that	she	would	have	been



worthy	of	an	honorary	degree	at	Göttingen,	by	then	one	of	the	key	mathematical
centres	of	Europe.
	

Articles	or	posters	about	‘Women	in	mathematics’	invariably	feature	Hypatia	and
Sophie	Germain,	unfortunately	not	because	 they	were	 typical	of	 their	 time	and
place	 but	 because	 they	 were	 not.	 Unsung	 women	 like	 Bān	 Zhāo	 or	 Anne
Davenant	are	on	the	whole	much	more	representative	of	women’s	experience	of
mathematics	and	mathematical	education.

	

By	the	19th	century,	the	situation	for	girls	in	western	Europe	slowly	improved	as
they	 started	 to	 benefit	 in	 larger	 numbers	 from	 elementary	 school	 education.
Copy	books	by	girls	are	in	the	minority	in	the	Hersee	collection,	but	those	that
we	have	give	us	some	valuable	 insights	 into	 the	kind	of	mathematics	 taught	 to
girls	in	a	variety	of	schools	in	England	and	Wales.
	

In	 1831,	 the	 year	 before	 Robert	 Smith	 at	 Greenrow	 began	 creating	 the	 books
discussed	 above,	 Eleanor	 Alexander,	 at	 Fairwater	 School	 in	 a	 valley	 north	 of
Newport	in	South	Wales,	worked	on	Reduction	(‘Bring	£30	1s	1 	into	farthings’)
and	the	Rule	of	Three	(‘If	7	yards	of	cloth	cost	£3	10s	what	will	65	yards	cost?’).
Her	entire	copy	book	of	127	pages	consists	of	just	these	two	types	of	question.
Three	 years	 later,	 beginning	 in	 October	 1834,	 Ann	 Weetman	 at	 Appleton-le-
Moors,	 near	York,	 began	 to	work	 her	way	 through	Walkingame’s	The	 Tutor’s
Assistant	(see	Figure	6).	Her	early	entries	are	dated,	so	we	know	that	she	spent
about	ten	days	on	Simple	Addition	but	a	whole	month	on	Multiplication.	After
Christmas	 she	worked	on	Compound	Addition	 (of	money,	 cloth	measure,	 land
measure,	beer	and	ale	measure,	and	so	on)	and	by	the	end	of	March	she	reached
Bills	of	Parcels.	In	her	case,	the	8	pairs	of	worsted	stockings	went	to	Mrs	Wm	G.
Atkinson	 (her	 teacher?)	 while	 Mr	 Henry	 Weetman	 (her	 father?	 her	 brother?)
bought	15	yards	of	satin.	By	April	1837	she	had	reached	Practice,	a	method	that
relied	 on	 knowing	 fractions	 of	 standard	weights	 and	measures	 (see	 Figure	 7).
Her	book	ends	after	250	pages	on	10	May	1837,	by	which	time	she	had	worked
her	way	through	Walkingame	as	far	as	Compound	Interest,	considerably	less	in
three	 years	 than	 Robert	 Smith	 had	 completed	 in	 a	 few	 months,	 but	 still	 a
respectable	amount	of	mathematics.

	



Twenty	years	later,	Elisabeth	Attersall	in	Stainfield	in	Lincolnshire	also	worked
through	Walkingame,	from	Compound	Addition	to	the	Rule	of	Three	(‘Gave	£1
1s	 8d	 for	 3lb	 of	 coffee,	what	what	 [sic]	must	 be	 given	 for	 29lb	 4oz.’).	 In	 her
case,	the	8	pairs	of	worsted	stockings	went	to	Mrs	Chappell	on	22	October	1850.
Miss	I.	Norman	at	Mr	Ingleson’s	Dorset	Street	Academy	in	Hulme,	Manchester,
in	 1861,	 however,	 was	 served	 a	 slightly	 different	 diet.	 Her	 copy	 book	 was
specially	printed	with	 the	name	of	 the	school,	on	pale	blue	paper	with	margins
ruled	 in	 double	 red	 lines.	 On	 the	 first	 page,	Miss	Norman	wrote	 ‘Progressive
arithmetic’	but	sadly	she	did	not	progress	very	 far:	every	one	of	 the	book’s	60
pages	 is	 filled	 with	 multiplication	 or	 division	 of	 pounds,	 shillings,	 and	 pence
(‘What	must	I	pay	for	4767	yards	of	cloth	at	7 	per	yard?’).	Elizabeth	Dawson	at
Carshield	School	in	Northumberland	a	year	later	did	a	great	deal	of	work	on	the
Rule	of	Three	and	a	great	deal	more	on	Practice;	to	find	‘the	value	of	7234	yards
at	6s	8d’,	for	example,	she	used	a	fact	known	to	every	British	schoolchild	before
1971,	that	6s	8d	was	£	 .	It	was	rather	less	easy,	though,	for	her	to	find	the	cost	of
65	feet	3 	inches	at	3s	7 d	per	foot.
	



	

6.	The	first	page	of	Ann	Weetman’s	exercise	book,	dated	‘Oct	20th	1834’
	

	

7.	One	of	the	final	pages	of	Ann	Weetman’s	exercise	book,	dated	‘April	12
1837’
	

From	April	 1866,	 Isabella	Lund,	 a	 pupil	 at	 the	Grammar	School	 in	Bolton-le-
Sands	 in	Lancashire	 (founded	originally	 only	 for	 boys),	 spent	 just	 over	 a	 year
progressing	 from	Simple	Addition	 to	 the	Rule	 of	Three.	A	year	 later,	Miss	G.
Jones	at	Ribston	Hall	Grammar	School	 for	Girls	 in	Gloucester	gradually	 filled
out	20	pages	of	invoices;	her	8	pairs	of	worsted	stockings	went	to	a	Miss	Jenkins
in	July	1868.



	

The	girls’	copy	books	selected	above	are	some	for	which	we	happen	to	know	the
name	 of	 the	 writer	 and	 the	 school	 and	 the	 date;	 without	 further	 research	 we
cannot	 assume	 they	 are	 representative.	 They	 do	 suggest,	 however,	 that
mathematical	 education	 for	 girls	 had	 a	 strong	 practical	 emphasis	 (no	 Euclid
here);	 further,	by	modern	 standards,	 the	pace	was	 sometimes	agonizingly	 slow
and	repetitive.	Nevertheless,	the	girls	who	wrote	these	books	were	both	literate
and	 numerate,	 particularly	 compared	 with	 their	 counterparts	 in	 previous
generations.
	

To	 go	 beyond	 elementary	 mathematics	 to	 university	 education,	 however,	 still
required	 a	 particular	 strength	 of	 character.	 We	 will	 end	 this	 section	 with	 a
comparison	of	two	women	who	did	manage	to	reach	the	higher	reaches	of	their
country’s	education	systems,	Flora	Philip	 in	Scotland	and	Florentia	Fountoukli
in	Greece.

	

Flora	Philip	was	one	of	 the	 first	women	graduates	of	Edinburgh	University,	 in
1893,	 but	 she	 had	 already	 joined	 the	 Edinburgh	 Mathematical	 Society	 seven
years	earlier.	Most	of	her	education	in	higher	mathematics	was	gained	in	fact	not
from	 the	 university	 but	 through	 the	 Edinburgh	 Association	 for	 the	 University
Education	of	Women.	The	Association	had	been	established	in	1867	to	provide
education	 beyond	 school	 level	 for	 women,	 parallel	 to	 that	 provided	 by	 the
university	 for	 men.	 Mathematics	 was	 included	 in	 the	 Association’s	 lecture
courses	 early	 on,	 though	 not	 without	 some	 opposition	 from	 those	 who
considered	it	‘altogether	outside	the	domain	of	a	lady’s	thought’.	The	aim	was	to
teach	 the	same	mathematics	as	was	 taught	at	 the	university,	but	 since	many	of
the	women	were	 ill-prepared	 by	 their	 elementary	 schooling,	 the	 level	 reached
was	never	 as	high	 as	 in	 the	university	 courses.	Nevertheless,	 they	were	 taught
Euclid,	 algebra,	 trigonometry,	 and	 conic	 sections.	The	 number	 of	women	who
took	the	courses	was	often	very	 low	but,	as	one	of	 the	 lecturers	reported,	 ‘The
zeal	 and	 industry	 of	 the	 Class	 doubly	 compensates	 for	 the	 smallness	 of	 its
numbers’.	 Later,	 a	 more	 advanced	 senior	 course	 was	 introduced,	 from	 which
Flora	Philip	graduated	successfully	 in	1886,	 the	year	 she	 joined	 the	Edinburgh
Mathematical	 Society.	 By	 the	 time	 she	 was	 awarded	 her	 degree	 from	 the
university	in	1893,	she	had	already	been	teaching	for	some	time	at	St	George’s
School	 for	 Girls,	 a	 school	 founded	 by	 the	 Association.	 In	 that	 same	 year,



however,	she	married,	and	thereafter	withdrew	both	from	academic	life	and	from
the	Edinburgh	Mathematical	Society.
	

The	 career	 of	 Florentia	 Fountoukli,	 born	 in	 1869	 in	 Athens,	 ran	 parallel	 in
several	 ways	 to	 Flora’s.	 While	 Flora	 was	 studying	 mathematics	 with	 the
Edinburgh	 Association	 in	 the	 1880s,	 Florentia	 Fountoukli	 was	 earning	 her
schoolteacher’s	diploma	from	the	Arsakeion	Normal	School	for	girls	in	Athens.
Afterwards	the	Board	of	the	Arsakeion	Schools	allowed	Florentia	funds	to	study
pedagogy	in	Berlin	for	a	year.	She	then	requested	an	extension	in	order	to	take	a
degree	in	Zürich,	in	mathematics,	but	the	Board	refused.	(Her	brother	Michael,
on	the	other	hand,	did	become	a	mathematician	and	later	worked	in	Hamburg.)
Florentia	 returned	 to	 teach	 in	 the	Arsakeion	School	 in	Corfu,	 during	 the	 same
years	that	Flora	was	teaching	at	St	George’s.	In	1892,	just	as	Flora	matriculated
into	 the	 University	 of	 Edinburgh,	 Florentia	 matriculated	 into	 the	mathematics
department	of	the	University	of	Athens,	the	first	woman	to	do	so.	Unlike	Flora,
however,	she	does	not	appear	to	have	graduated.	Instead	she	continued	to	teach,
in	a	school	 for	girls	 in	Athens,	which	she	and	her	 friend	Irene	Prinari	 founded
and	ran	themselves.	By	1899,	she	was	signing	herself	Fountoukli-Spinelli	which
suggests	that	she	may	have	married	Loudovikos	Spinelli,	another	teacher,	but	the
facts	are	not	clear.	Unfortunately,	by	the	late	1890s,	before	she	was	even	30,	her
health	began	to	fail	and	she	went	to	live	in	Italy,	where	she	died	in	1915.

	

Both	 Flora	 and	 Florentia	 had	 to	 struggle	 to	 get	 the	 kind	 of	 education	 they
wanted.	Nevertheless,	 the	universities	of	Edinburgh	and	Athens	were	 ahead	of
some	others.	Cambridge	University	did	not	admit	women	as	full	members	until
1947.
	

Autodidacts

	

Until	 two	 centuries	 ago,	 only	 a	 small	 number	 of	 girls	 anywhere	 in	 the	 world
received	 any	 kind	 of	 mathematical	 education.	 But	 even	 for	 boys,	 compulsory
education	 in	 mathematics	 has	 been	 a	 relatively	 recent	 phenomenon.	 In	 17th-
century	 England,	 as	 we	 saw	 with	 Wallis	 and	 Pepys,	 it	 was	 possible	 to	 be



educated	all	the	way	through	school	and	university	without	learning	much	at	all
in	 the	 way	 of	 mathematics.	 Those	 with	 a	 particular	 aptitude	 or	 liking	 for	 the
subject	were	 therefore	 often	 largely	 self-taught.	 This	was	 the	 case	 for	 Fermat,
who	learned	some	of	the	most	advanced	mathematics	of	his	day	from	the	books
owned	by	 the	 father	of	his	 friend	Etienne	d’Espagnet	 in	Bordeaux.	 It	was	also
the	 case	 for	 Isaac	 Newton,	 one	 of	 the	 greatest	 mathematicians	 of	 the	 17th
century.	Newton	may	have	learned	some	elementary	mathematics	at	his	grammar
school	in	Grantham	in	Lincolnshire,	but	he	learned	very	much	more	through	his
own	 reading	 as	 a	 student	 at	 Cambridge	 in	 the	 1660s.	 Many	 years	 later,	 he
described	to	a	friend	how	he	had	read	Descartes’	Géométrie,	republished	in	Latin
just	a	few	years	earlier.	Many	people	will	recognize	the	difficulties	of	reading	a
strange	 new	 mathematical	 text;	 perhaps	 rather	 fewer	 will	 have	 emulated
Newton’s	stubborn	and	self-motivated	persistence.
	

He	bought	Descartes’s	Geometry	&	read	it	by	himself.	When	he	was	got
over	2	or	3	pages	he	could	understand	no	farther,	then	he	began	again	&	got
3	or	4	pages	 farther	 till	 he	 came	 to	 another	difficult	 place,	 then	he	began
again	&	advanced	farther	&	continued	so	doing	till	he	made	himself	Master
of	the	whole.

	

We	know	from	Newton’s	 surviving	manuscripts	 that	he	proceeded	 in	a	 similar
way	with	other	contemporary	texts,	and	that	he	worked	on	the	material	he	found
in	 them	 to	 create	 mathematics	 that	 went	 far	 beyond	 that	 of	 any	 of	 his
predecessors.

	

In	the	17th	century,	and	some	way	into	the	18th,	a	person	sufficiently	motivated
could	still	read	and	learn	from	almost	the	entire	range	of	available	mathematical
literature.	Even	at	 the	beginning	of	 the	19th	century,	Sophie	Germain	managed
to	 teach	 herself	 some	 of	 the	 most	 advanced	 mathematics	 of	 her	 day,	 but	 she
belonged	to	almost	the	last	generation	for	whom	this	was	feasible.	By	the	20th
century,	 it	 was	 barely	 possible	 except,	 perhaps,	 for	 prodigies	 with	 quite
exceptional	 mathematical	 instincts,	 like	 the	 self-taught	 Indian	 mathematician
Ramanujan.	 Andrew	Wiles	was	 certainly	 not	 self-taught;	 he	went	 through	 the
many	years	 of	 formal	 education	 that	 are	 now	needed	 to	 initiate	 even	 the	most
mathematically	gifted	into	some	of	the	problems,	techniques,	and	conventions	of
the	 discipline.	 The	 days	 of	 ‘amateur’	mathematics	when	 almost	 anyone	 could



have	a	go	at	a	cutting-edge	problem	like	Fermat’s	Last	Theorem	are	long	past.
	

Nevertheless,	from	time	to	time	writers	continue	to	create	fictional	accounts	of
individuals	 who	 manage	 to	 learn	 mathematics	 from	 the	 writings	 of	 another
person,	well	enough	to	understand	and	extend	their	work.	One	such	story	is	Mrs
Einstein	 by	 Anna	 McGrail,	 another	 is	 the	 more	 recent	 play	 Proof	 by	 David
Auburn.	 In	both,	 the	heroines	are	 the	daughters	of	mathematicians	 (a	 trope	we
have	already	seen	 in	real	 life)	who	manage	 to	educate	 themselves	 to	very	high
levels	in	their	fathers’	work.	Unfortunately,	the	reality	of	modern	mathematics	is
that	such	feats	are	now	extremely	implausible.
	

Why	learn	mathematics	at	all?

	

Given	 the	enormous	amount	of	human	energy	 that	over	 the	centuries	has	gone
into	 teaching	or	 learning	mathematics,	 it	 seems	a	 little	perverse	 to	ask	 ‘Why?’
The	 answers	 to	 the	 question,	 however,	 have	 varied	 considerably	 over	 time.
Sumerian	 texts	 of	 the	 2nd	 millennium	 BC	 made	 it	 clear	 that	 literacy	 and
numeracy	were	 essential	 to	 the	 just	 administration	of	 society,	 though	 that	may
have	 seemed	 a	 somewhat	 distant	 ideal	 to	 the	 boys	 on	 the	 cramped	 courtyard
benches	of	House	F.

	

Two	thousand	years	later,	boys	of	a	similar	age	educated	in	the	abacus	schools	of
13th-century	 Italy	 learned,	 like	 their	earlier	Babylonian	counterparts,	 to	handle
numbers,	weights,	 and	measures,	but	 for	different	 reasons:	not	 for	 the	good	of
society	as	a	whole	but	so	that	they	as	individuals	would	be	better	fitted	for	the
commercial	 ventures	 they	 were	 expected	 to	 engage	 in.	 The	 value	 of
mathematical	skills	to	the	individual	is	seen	again	in	Robert	Recorde’s	preface	to
The	Pathway	 to	Knowledg	with	 its	 long	 list	 of	 specific	 crafts	 and	 occupations
that	require	a	knowledge	of	geometry.
	

In	Recorde’s	writings,	however,	we	also	get	a	glimpse	of	yet	another	reason	for
studying	mathematics:	 to	whet	 the	wits,	 that	 is,	 to	 sharpen	 the	mind.	Recorde



was	not	the	first	to	suggest	this.	Some	mathematical	puzzle	questions	ascribed	to
the	 8th-century	 teacher	 Alcuin	 were	 entitled	 ‘Propositions	 of	 Alcuin	 for
sharpening	 the	young’	 (‘Propositiones	Alcuini	ad	acuendos	 juvenes’).	The	 idea
that	mathematics	should	be	learned,	like	Latin	or	Greek,	to	improve	one’s	mind
has	continued	ever	since.	After	all,	 the	mathematics	required	for	ordinary	daily
life,	basically	time-keeping	and	accounting,	has	probably	been	acquired	by	most
people	 by	 the	 end	 of	 childhood.	 Few	 adults	 ever	 need	 to	 use	 Pythagoras’
Theorem,	or	 solve	quadratic	 equations,	 or	 bisect	 an	 angle,	 but	 almost	 all	were
once	taught	to	do	so.	It	can	be	argued	(and	I	would	argue)	that	learning	a	foreign
language	or	studying	history	does	just	as	much	to	encourage	the	development	of
memory,	 reasoning,	 and	 analysis,	 but	 such	 subjects	 have	 never	 acquired	 the
prestige	 of	 mathematics,	 and	 at	 present	 are	 optional	 rather	 than	 compulsory
subjects	in	the	British	school	curriculum.

	

Perhaps	it	is	the	sheer	longevity	of	mathematics	that	has	made	it	such	an	integral
part	of	every	modern	child’s	education.	It	is	also	the	case	that	those	who	are	to
progress	to	the	frontiers	of	the	subject	need,	like	young	musicians,	to	start	young
and	practise	regularly.
	



Chapter	5
Mathematical	livelihoods
	

Any	mathematician	 who	 wants	 to	 break	 new	 ground	 needs	 time	 to	 think	 and
scribble,	and	some	kind	of	financial	support.	Let	us	return	for	a	moment	to	those
we	met	in	the	first	chapter.	We	have	no	idea	how	Diophantus	earned	his	living;
perhaps,	like	many	with	mathematical	talent,	he	taught.	Many	of	the	best-known
mathematicians	of	the	century	before	Fermat	also	taught	mathematics,	but	often
only	 as	 a	 secondary	 occupation:	 Girolamo	Cardano	 and	 Robert	 Recorde	were
physicians,	though	Recorde	also	worked	for	much	of	his	life	in	mints	and	mines;
Rafael	Bombelli	and	Simon	Stevin	were	both	employed	on	practical	construction
projects;	François	Viète,	 like	Fermat,	was	 a	 lawyer	 and	Counselor.	Fermat	has
often	been	described	as	an	‘amateur’	mathematician,	but	he	lived	at	a	time	when
there	were	 so	 few	 professionals	 that	 the	 concept	 of	 amateur	was	meaningless.
Wiles,	 on	 the	 other	 hand,	 cannot	 be	 described	 as	 anything	 but	 a	 professional,
fully	 accredited,	 and	 paid	 to	 work	 full	 time	 in	 the	 research	 and	 teaching	 of
mathematics.

	

Over	 the	 centuries,	 there	 have	 been	 significant	 changes	 in	 the	 ways	 that
mathematicians	have	been	employed.	A	modern	mathematician	is	very	likely	to
work	in	education,	finance,	or	industry,	all	of	which	are	institutionally	organized.
Some	 individuals	 may	 also	 be	 prepared	 to	 pay	 for	 mathematical	 services,	 for
tuition,	perhaps,	or	accounting	skills,	but	they	keep	no	more	than	a	small	number
of	 people	 in	 work.	 In	 the	 1st	 millennium	 AD	 the	 picture	 was	 very	 different.
Economic	 and	 political	 power	 throughout	 most	 of	 Europe	 and	 Asia	 was
concentrated	 in	 the	hands	of	kings,	bishops,	 caliphs,	 and	warlords.	Those	who
wanted	 to	 live	by	 their	 intellectual	 skills,	 including	mathematics,	were	wise	 to
place	themselves	under	a	patron	powerful	enough	to	pay	and	protect	them.	Such
patronage	could	take	many	different	forms.	In	this	chapter	we	will	see	it	at	work
first	in	the	lives	of	three	scholars	of	the	10th	and	11th	centuries	in	the	lands	then
dominated	by	Islam.
	



Patterns	of	patronage

	

Thābit	 ibn	Qurra	was	born	 in	AD	 826	 in	 the	 town	of	Ḥarrān,	 very	 close	 to	 the
modern	Turkish-Syrian	border,	and	spent	his	early	life	there	as	a	money	changer.
He	was	not	a	Muslim	but	belonged	to	a	local	sect,	the	Sabians.	Only	a	few	years
previously,	the	library	known	as	the	Bayt	al-Ḥikma	(House	of	Wisdom)	had	been
established	 in	 Baghdad	 by	 the	 Abbasid	 caliph	 al-Ma’mūn	 for	 the	 purpose	 of
preserving,	and	translating	into	Arabic,	texts	in	Greek,	Sanskrit,	or	Persian.	Ibn
Qurra’s	 knowledge	of	Greek	 and	Arabic	besides	his	 native	 language	of	Syriac
brought	 him	 to	 the	 attention	 of	 the	 Baghdad	 mathematician	 Muḥammad	 ibn
Mūsā	 when	 the	 latter	 passed	 through	 Ḥarrān	 on	 his	 return	 from	 Byzantium.
Unfortunately,	we	do	not	know	the	date	of	this	meeting,	but	we	may	suppose	that
ibn	Qurra	was	still	relatively	young	because	at	ibn	Mūsā’s	invitation	he	moved
to	 Baghdad,	 where	 he	 was	 educated	 by	 ibn	 Musa	 and	 his	 two	 brothers
(collectively	known	as	the	Banū	Mūsā)	in	mathematics	and	astronomy.

	

In	the	years	that	followed,	ibn	Qurra	became	one	of	the	most	respected	scholars
in	 Baghdad.	 He	 wrote	 on	 medicine,	 philosophy,	 and	 religion,	 but	 is	 best
remembered	 now	 for	 his	 work	 in	 mathematics	 and	 astronomy.	 He	 translated
several	treatises	of	Archimedes	into	Arabic,	and	also	wrote	extensively	on	topics
that	 had	 interested	 Archimedes:	 mechanics,	 and	 problems	 to	 do	 with	 areas,
surfaces,	 or	volumes	of	 curved	 shapes.	He	commented	on	Ptolemy’s	Almagest
and	wrote	on	 spherical	geometry	 and	astronomy,	 especially	on	 the	motion	and
apparent	height	of	the	Sun,	and	the	motion	of	the	Moon	and	the	five	then	known
planets.	He	 also	 studied	 Euclid’s	Elements	 intensively;	 his	 attempted	 proof	 of
one	of	Euclid’s	postulates,	on	parallel	lines,	was	taken	up	again	in	Oxford	in	the
17th	century.	Ibn	Qurra	also	produced	his	own	proofs	of	Pythagoras’	Theorem,
one	of	which	is	shown	in	Figure	8.
	



	

8.	Thābit	ibn	Qurra’s	proof	of	Pythagoras’	Theorem:	a	simple	cut-and-paste
argument	shows	that	IHBE	=	EFCA	+	GHDC
	

Ibn	 Qurra	 remained	 in	 Baghdad	 until	 his	 death	 in	 AD	 901.	 He	 retained	 his
association	 with	 the	 Banū	Mūsā	 for	 many	 years	 and	 taught	 ibn	Mūsā’s	 sons.
During	the	final	ten	years	of	his	life,	he	became	a	regular	attendant	at	the	court
of	 the	 caliph	 al-Mu’taḍid,	 so	 intimate	 with	 the	 caliph	 that,	 according	 to	 a
biographical	sketch	by	 the	12th-century	writer,	al-Qiftḍ,	he	was	allowed	 to	 ‘sit
down	 in	 his	 presence	 at	 any	 time	 he	 wished’.	 Later	 his	 son,	 Sinān,	 and	 two
grandsons	became	well	known	scholars	in	their	own	right.	In	what	is	known	of
ibn	Qurra’s	life,	we	may	thus	discern	two	crucial	features.	One	is	a	network	of
teaching	 and	 learning	 established	 between	 friends	 and	 families,	 in	 this	 case
linking	 members	 of	 ibn	 Mūsā’s	 family	 to	 ibn	 Qurra’s.	 Such	 close	 personal
relationships	have	now	been	observed	several	 times	 in	 the	course	of	 this	book.
The	 second	 feature,	 more	 particular	 to	 ibn	 Qurra’s	 time	 and	 place,	 is	 the
protection	 and	 patronage	 offered	 first	 by	 the	 Banū	Mūsā,	 later	 by	 the	 caliph
himself.

	

Another	 scholar,	 Abū	 Rayḥān	 al-Bḍrūnḍ,	 generally	 known	 as	 al-Bḍrūnḍ	 was
born	70	years	after	ibn	Qurra	died,	at	the	further	end	of	the	Islamic	domains,	and
into	a	less	stable	world.	The	town	of	his	birth	on	the	Āmū	Daryā	(or	River	Oxus)
lies	 just	 inside	modern	Uzbekistan	and	is	now	called	Biruni.	He	was	taught	by
the	mathematician	and	astronomer	Abū	Naṣr	Manṣūr,	with	whom	he	continued
to	work	later	in	his	life.	As	a	young	man	he	was	already	using	solar	observations



to	 calculate	 latitudes	of	 local	 towns,	but	 this	 activity	was	disrupted	when	civil
war	broke	out	in	995	and	he	was	forced	to	flee.	We	know	something	of	his	wide-
ranging	 movements	 over	 the	 next	 30	 years	 from	 his	 precise	 observations	 of
eclipses.	At	 times,	 he	worked	 in	 the	 region	 south	of	 the	Caspian	Sea,	 close	 to
modern	Tehran,	where	he	is	known	to	have	dedicated	a	text	on	chronology	to	the
Ziyārid	ruler	of	the	region,	Qābūs.	At	other	times	he	lived	in	his	home	area,	at
first	 under	 the	 patronage	 of	 the	 Sāmānid	 ruler	Manṣūr	 II,	 later,	 for	 14	 years,
under	that	of	Abu’l-Abbās	Ma’mūn.
	

This	 last	 relatively	 stable	period	came	 to	an	end	 in	1017	when	 the	 region	was
overrun	by	the	Ghaznavid	dynasty	based	in	what	is	now	eastern	Afghanistan.	Al-
Bḍrūnḍ	 appears	 to	 have	been	 taken	prisoner,	 and	 subsequently	 lived	 for	many
years	near	Kabul	or	at	Ghazna	itself,	about	100km	to	the	south.	His	relationship
to	the	sultan,	Maḥmūd,	 is	unclear:	he	complained	of	 ill	 treatment	but	was	 later
supported	 in	 some	of	his	 studies.	He	was	also	able	 to	 travel	 to	northern	 India,
which	 had	 also	 fallen	 under	 Ghaznavid	 rule,	 and	 wrote	 extensively	 about	 the
region	and	its	religion,	customs,	and	geography.	After	Maḥmūd’s	death	in	1030,
al-Bḍrūnḍ	came	under	a	second	Ghaznavid	patron,	Maḥmūd’s	son	Ma‘sūd;	and
under	a	third,	Ma‘sūd’s	son	Mawdūd,	after	Ma‘sūd	was	murdered	 in	1040.	Al-
Bḍrūnḍ	himself	died	in	Ghazna	in	1050.

	

Throughout	a	life	beset	by	dynastic	changes,	al-Bḍrūnḍ	was	a	committed	scholar
and	a	prolific	writer.	Around	half	of	his	works	were	on	astronomy	and	astrology,
with	 other	 texts	 on	 mathematics,	 geography,	 medicine,	 history,	 and	 literature.
Unfortunately,	only	a	fraction	of	what	he	wrote	has	survived.
	

The	 third	 mathematical	 scholar	 we	 will	 look	 at	 is	 ‘Umar	 ibn	 Ibrāhḍm	 al-
Nḍsābūrḍ	al-Khayyāmḍ,	 better	 known	 in	 the	west	 as	Omar	Khayyam.	He	was
born	 shortly	 before	 al-Bḍrūnḍ	 died,	 in	 Nishapur	 in	 north-east	 Iran.	 His	 name
suggests	 that	 he	 came	 from	 a	 family	 of	 tentmakers.	 By	 this	 time,	 the	 Iranian
region	had	come	under	the	rule	of	the	Seljuqs,	a	dynasty	of	Turkic	origin.	As	a
young	 man	 al-Khayyāmḍ	 travelled	 east	 to	 Samarkand	 where	 he	 wrote	 an
important	 treatise	 on	 equations,	 dedicated	 to	 the	 chief	 justice,	 Abū	 Ṭāhir.	 He
later	spent	many	years	in	Isfahan	where,	under	the	patronage	of	the	sultan	Malik-
shāh	 and	 his	 vizier	 Niẓām	 al-Mulk,	 he	 supervised	 the	 observatory	 and	 the
compilation	 of	 astronomical	 tables.	 During	 this	 same	 period,	 like	 ibn	 Qurra



before	 him,	 he	 also	 wrote	 commentaries	 on	 Euclid.	 Unfortunately,	 the
observatory	was	closed	in	1092	after	Niẓām	al-Mulk	was	murdered	and	Malik-
shāh	died.	Eventually,	after	 further	changes	of	 ruler,	al-Khayyāmḍ	left	 Isfahan.
After	 spending	 some	 time	 in	 Merv,	 about	 halfway	 between	 Isfahan	 and
Samarkand,	he	finally	returned	to	Nishapur,	where	he	died	in	1131.
	

I	 cannot	 resist	 including	one	of	his	Rubā‘iyyāt	 (quatrains),	 not	 from	 the	 rather
syrupy	Victorian	 translation	by	Edward	FitzGerald	but	 from	a	1998	 translation
by	Shahriar	Shahriari.
	

The	secrets	eternal	neither	you	know	nor	I
And	answers	to	the	riddle	neither	you	know	nor	I
Behind	the	veil	there	is	much	talk	about	us,	why
When	the	veil	falls,	neither	you	remain	nor	I.

These	 three	 simplified	 case	 studies	 do	 not	 begin	 to	 tell	 all	 that	 could	 be	 said
about	mathematical	practice	under	the	medieval	Islamic	dynasties,	but	at	least	a
few	 general	 points	 emerge.	 One	 is	 that,	 just	 as	 a	 few	 centuries	 earlier,	 Greek
mathematical	 writers	 were	 to	 be	 found	 anywhere	 around	 the	 eastern
Mediterranean	 but	 rarely	 in	Greece	 itself,	 so	 those	who	wrote	mathematics	 in
Arabic	 were	 scattered	 across	 an	 even	 vaster	 region,	 from	 modern	 Turkey	 to
modern	Afghanistan,	though	not	Arabia	itself.	For	this	reason,	historians	prefer
to	 call	 such	 writers	 ‘Islamic’	 rather	 than	 ‘Arabic’	 but,	 as	 the	 example	 of	 ibn
Qurra	shows,	not	all	were	Muslims,	nor	were	their	mathematical	writings	related
to	 their	 religious	 views.	 Nevertheless,	 they	 all	 lived	 in	 societies	 where	 the
practices	and	culture	of	Islam	were	dominant	and	so	the	label	is	probably	better
than	any	other.

	

A	 second	 theme	 that	 comes	 through	 is	 the	 precariousness	 of	 scholarship	 in	 a
world	of	rapidly	changing	rulers	and	dynasties.	For	a	boy	or	young	man	of	talent
to	have	his	mathematical	skills	recognized	and	nurtured	was	already	a	matter	of
chance	 and	 circumstance,	 as	 for	 both	 ibn	Qurra	 and	 al-Bḍrūnḍ.	 His	 ability	 to
study	or	travel	thereafter	might	depend	very	largely	on	the	favour	and	financial
support	of	a	ruler	whose	own	future	might	be	far	from	secure.	Al-Bḍrūnḍ	seems
to	have	been	particularly	 remarkable	 in	enjoying	or	 surviving	 the	attentions	of
patrons	from	opposing	dynasties.	Despite	such	difficulties,	the	output	of	some	of



these	scholars	was	both	prolific	and	varied.	Those	who	wrote	on	astronomy	and
astrology	might	 also	write	 on	 spherical	 geometry	 and	 trigonometry,	 or	 on	 the
Elements	 of	 Euclid	 or	 the	works	 of	 other	Greek	writers,	 or	 on	 arithmetic	 and
algebra,	or	on	geography,	history,	music,	philosophy,	religion,	or	literature.
	

Finally,	one	might	ask	what	was	in	such	arrangements	for	the	patron?	Individual
cases	differed	greatly,	 indeed	 there	was	no	single	word	 in	 Islamic	societies	 for
the	relationship	here	described	as	‘patronage’.	As	we	have	already	seen	in	China
and	 Europe,	 rulers	 often	 valued	 the	 mathematically	 adept	 for	 their	 ability	 to
calculate	 auspicious	dates.	 In	 some	cases,	 they	may	also	have	hoped	 for	 long-
term,	even	eternal,	benefit	from	their	support	for	good	works.	Moreover,	owning
the	 services	 and	 companionship	of	 the	 intellectually	 talented	would	have	been
both	a	source	of	pleasure	and	a	sign	of	prestige.

	

From	about	 the	end	of	 the	12th	century,	 scholars	were	more	 frequently	able	 to
obtain	 paid	 positions	 at	 endowed	 teaching	 institutions,	 the	madrasas,	 and	 so
became	 less	 dependent	 on	 the	 whims	 or	 preferences	 of	 individual	 rulers.	 To
examine	 more	 closely	 the	 shift	 from	 patronage	 to	 professional	 employment,
however,	we	will	now	turn	to	England	at	a	slightly	later	date.
	

From	patronage	to	professionalism

	

In	England,	 the	40	years	 from	1580	 to	1620	were	a	period	of	 transition,	when
patronage	 still	 existed	 but	 where	 we	 may	 also	 discern	 the	 first	 signs	 of
movement	towards	publicly	accountable	paid	positions.	The	careers	of	Thomas
Harriot,	William	Oughtred,	and	Henry	Briggs	illustrate	some	of	the	possibilities
and	opportunities	open	to	the	mathematically	talented	in	England	at	that	time.

	

Thomas	Harriot,	born	 in	1560,	 studied	at	Oxford	 in	 the	years	1577	 to	perhaps
1580.	He	did	not	 take	a	degree	 in	mathematics	(there	was	no	such	 thing	at	 the
time)	 but	 may	 have	 learned	 something	 of	 the	 subject	 from	 tutors	 or	 his	 own



reading.	Better	 attested	 is	 his	 interest	 in	 exploration	 and	 navigation,	which	 he
seems	 also	 to	 have	 acquired	 at	 Oxford,	 possibly	 from	 the	 lectures	 of	 the
adventurer	Richard	Hakluyt.	During	the	1580s	Harriot	came	under	the	patronage
of	 Walter	 Raleigh,	 who	 at	 the	 time	 was	 greatly	 interested	 in	 the	 potential
colonization	 of	 America.	 In	 1585	 Harriot	 sailed	 to	 the	 coast	 of	 what	 is	 now
North	 Carolina	 on	 a	 voyage	 financed	 by	 Raleigh,	 a	 year-long	 expedition	 that
ended	 in	 failure	but	which	enabled	Harriot	 and	his	 friend	 John	White	 to	bring
back	 a	 great	 deal	 of	 useful	 information	 and	 some	 beautiful	 drawings	 of	 the
people,	 flora,	 and	 fauna	 of	 the	 region.	 Unfortunately,	 he	 also	 brought	 back	 a
fondness	for	tobacco,	which	was	eventually	to	kill	him.
	

Before	the	trip,	Harriot	had	been	engaged	by	Raleigh	to	teach	navigation	to	the
sailors,	 though	 unfortunately	 the	 text	 he	 wrote	 is	 now	 lost.	 On	 his	 return,	 he
continued	 to	 live	 under	 Raleigh’s	 patronage,	 at	 first	 on	 Raleigh’s	 estates	 in
Ireland	 (another	 colonial	 venture),	 later	 at	 Raleigh’s	 London	 home,	 Durham
House	on	the	banks	of	the	Thames.	It	was	from	the	roof	of	Durham	House	that
Harriot	conducted	his	early	experiments	on	falling	bodies,	comparing	the	rates	of
fall	of	balls	of	metal	and	wax.	Harriot	continued	to	be	close	to	Raleigh	right	up
to	the	day	when	Raleigh	was	executed	in	1618:	notes	on	Raleigh’s	final	speech
from	 the	 scaffold	 survive	 in	 Harriot’s	 handwriting	 amongst	 his	 personal	 and
mathematical	papers.	By	the	early	1590s,	however,	Harriot	had	a	second	patron
in	Henry	Percy,	ninth	Earl	of	Northumberland.	Harriot	 spent	 the	 remaining	30
years	 of	 his	 life	 at	 Percy’s	 London	 home,	 Syon	 House	 in	 Middlesex	 on	 the
Thames,	 or	 at	 his	 country	 home,	 Petworth	 House	 in	 Sussex.	 Unfortunately,
neither	 of	 Harriot’s	 patrons	 successfully	 negotiated	 the	 political	 and	 religious
tensions	 of	 the	 day:	 Percy,	 like	 Raleigh,	 spent	 many	 years	 imprisoned	 in	 the
Tower	 of	 London.	 Nevertheless,	 he	 supplied	 Harriot	 with	 an	 income	 and	 the
freedom	 to	pursue	whatever	 studies	he	chose.	Harriot	never	 lost	his	 interest	 in
the	 problems	 of	 navigation	 at	 sea;	 he	 also	 later	 turned	 to	 astronomy,	 and
contemporaneously	with	Galileo	 used	 a	 telescope	 to	 observe	 sunspots	 and	 the
craters	of	the	Moon.	Through	one	of	his	Oxford	friends,	Nathaniel	Torporley,	he
managed	to	obtain	the	mathematical	works	of	Viète	(which	later	so	profoundly
influenced	Fermat),	so	becoming	one	of	the	first	people	anywhere,	and	certainly
the	 first	 Englishman,	 to	 appreciate	 and	 extend	 some	 of	 the	 exciting	 new
mathematical	ideas	that	were	being	developed	in	France.

	

Harriot	published	none	of	his	findings.	With	a	secure	private	income,	he	had	no



need	either	 to	prove	himself	 or	 earn	 a	 living.	Nor	did	he	 teach,	 though	he	did
discuss	his	 ideas	within	his	own	circle	of	 friends.	 In	one	sense,	Harriot’s	work
had	little	immediate	influence;	he	certainly	did	not	cause	the	kind	of	intellectual
stir	 that	Galileo	 later	did.	On	 the	other	hand,	his	 freedom	 to	work	as	he	chose
enabled	him	to	explore	a	wide	range	of	subjects,	some	of	them	fairly	arcane,	and
to	carry	his	investigations	to	some	important	conclusions.	The	modern	term	for
this	 is	 ‘blue	 skies	 research’.	 Harriot’s	 work	 could	 easily	 have	 been	 lost,	 but
fortunately	 his	 reputation	 amongst	 his	 contemporaries	 was	 such	 that	 after	 his
death	 in	 1621	 his	 papers	 were	 preserved,	 and	 some	 of	 the	 ideas	 in	 them
continued	 to	 circulate	 amongst	 his	 successors	 over	many	 years.	 In	 that	 sense,
Harriot	 can	 be	 said	 to	 have	 encouraged,	 albeit	 indirectly,	 both	 mathematical
discussion	 and	 the	 respect	 for	 mathematical	 and	 scientific	 studies	 that
characterized	the	fledgling	Royal	Society	half	a	century	later.	Indeed,	such	was
Harriot’s	reputation	that	 in	 its	first	 ten	years	 the	Royal	Society	more	than	once
instigated	searches	for	his	surviving	papers.
	

Less	 creative	 than	 Harriot	 but	 in	 some	ways	 of	 equal	 importance	 to	 the	 later
flourishing	 of	 mathematics	 in	 England	 was	William	 Oughtred.	 Born	 in	 1573,
Oughtred	was	only	a	few	years	younger	than	Harriot	but	outlived	him	by	about
40	years.	From	1610	or	earlier,	Oughtred	was	a	clergyman	in	Albury	in	Surrey;
he	seems	never	afterwards	to	have	moved	away	from	there	apart	from	occasional
visits	 to	 London.	 He	 became	 renowned	 as	 a	 teacher	 of	 mathematics,	 to	 both
children	and	adults.	Like	Harriot,	he	also	acquired	an	aristocratic	patron,	Thomas
Howard,	Earl	of	Arundel,	whose	country	 seat	 at	West	Horsley	was	only	a	 few
miles	from	Albury.	Oughtred	taught	Howard’s	son	William	as	he	taught	the	sons
of	other	local	gentry.	Through	Howard,	he	also	met	a	relative	of	the	family,	Sir
Charles	 Cavendish,	 who	 proved	 to	 be	 an	 important	 figure	 in	 English
mathematics	at	this	period.	Cavendish	was	not	particularly	good	at	mathematics
but	 for	 some	 reason	 was	 fascinated	 by	 it,	 and	 avidly	 collected	 and	 tried	 to
understand	 the	 latest	 books	 and	 papers.	After	Harriot’s	 death,	 for	 instance,	 he
copied	 out	 entire	 sections	 from	Harriot’s	manuscripts,	 though,	 he	 admitted,	 ‘I
doute	I	understand	not	all’.	It	was	Cavendish	who	brought	Oughtred	the	work	of
Viète	from	France	just	as	Torporley	had	earlier	brought	it	for	Harriot.

	

It	 was	 also	 Cavendish	 who	 encouraged	 Oughtred	 to	 write	 his	 first	 textbook,
dedicated	 to	 his	 pupil,	 the	 14-year-old	William	Howard.	 The	 book,	 published
early	in	1631,	became	known	by	its	abbreviated	title,	Clavis	mathematicae	(The



Key	 to	Mathematics),	 and	 it	 ran	 and	 ran,	 through	 five	 Latin	 editions	 and	 two
English	 translations.	The	content	was	elementary,	an	 introduction	 to	arithmetic
and	algebra,	but	by	that	time	Recorde’s	earlier	textbooks	were	almost	a	century
old	and	 there	was	a	desperate	need	 for	 something	 fresh.	When	new	professors
were	 installed	 at	 the	 University	 of	 Oxford	 after	 the	 years	 of	 civil	 war,	 it	 so
happened	 that	 both	were	 pupils	 or	 readers	 of	 Oughtred	 and	 they	 immediately
introduced	 the	Clavis	 to	 Oxford,	 making	 it	 the	 first	 mathematical	 book	 to	 be
printed	by	the	university.	Almost	every	17th-century	mathematician	of	note,	and
many	who	were	not,	 took	some	of	their	first	steps	with	the	Clavis,	Christopher
Wren,	Robert	Hooke,	and	Isaac	Newton	among	 them.	Thus	although	Oughtred
himself	 never	 made	 any	 great	 mathematical	 advances	 and	 taught	 only	 at	 a
relatively	 elementary	 level,	 he,	 like	 Harriot,	 indirectly	 encouraged	 the
dissemination	 and	 development	 of	 mathematical	 expertise	 in	 early	 modern
England.
	

Neither	Harriot	nor	Oughtred	could	have	done	what	they	did,	however,	without
the	 support	 of	 the	 three	 aristocrats	 who	 encouraged	 their	 work:	 Henry	 Percy,
Thomas	 Howard,	 and	 Charles	 Cavendish.	 A	 later	 member	 of	 the	 Cavendish
family	gave	his	name	to	the	Cavendish	Laboratory	in	Cambridge,	but	the	Percy
and	 Howard	 families	 have	 not	 usually	 been	 associated	 with	 science	 or
mathematics;	 nevertheless,	 without	 the	 trust	 and	 the	 intellectual	 and	 financial
support	offered	by	these	three	men,	it	might	have	taken	very	much	longer	than	it
did	for	a	mathematical	community	of	critical	size	to	emerge	in	England	during
the	first	half	of	the	17th	century.

	

At	 the	 same	 time,	 and	 by	 contrast,	 we	 should	 not	 overlook	 certain	 other
contemporary	 developments.	 In	 1597,	 a	 legacy	 left	 by	 the	 merchant	 and
financier	Thomas	Gresham	paid	for	seven	public	lectureships	(one	for	each	day
of	the	week)	in	astronomy,	geometry,	physic	(medicine),	 law,	divinity,	rhetoric,
and	music.	Gresham	College	(which	survives	 to	 this	day	and	still	offers	public
lectures)	 played	 its	 own	 role	 in	 strengthening	 the	 London	 mathematical
community;	meetings	 held	 after	 the	 lectures	 during	 the	 1650s	 helped	 to	 bring
about	 the	 establishment	 of	 the	 Royal	 Society	 a	 few	 years	 later.	 Twenty	 years
after	the	founding	of	the	Gresham	lectureships,	Henry	Savile	founded	the	chairs
of	 geometry	 and	 astronomy	 at	 Oxford.	 For	 many	 years	 there	 was	 fluid
movement	 between	 the	 posts	 at	 Gresham	 and	 Oxford.	 In	 particular,	 the	 first
Gresham	 professor	 of	 geometry,	 Henry	 Briggs,	 also	 became	 the	 first	 Savilian



professor	of	geometry	at	Oxford.
	

Briggs,	 from	Halifax	 in	Yorkshire,	was	almost	exactly	 the	same	age	as	Harriot
and	entered	St	 John’s	College,	Cambridge,	 in	1577,	 the	same	year	 that	Harriot
was	 registered	 at	 Oxford.	 Unlike	 Harriot,	 however,	 he	 followed	 a	 university
career,	lecturing	at	Cambridge	first	in	medicine,	later	in	mathematics,	before	he
moved	to	Gresham	College	in	1597.	He	was	there	for	over	20	years	until	he	took
up	the	Savilian	chair	in	Oxford,	where	he	remained	until	his	death	in	1630.

	

Briggs	 and	Harriot	make	 a	 fascinating	pair:	 one	 of	 the	 tantalizing	unanswered
questions	in	the	history	of	mathematics	of	this	period	is	whether	they	ever	met.
They	ought	 to	have	done.	During	 the	years	before	and	after	1600,	Briggs,	 like
Harriot,	 was	 intensely	 interested	 in	 problems	 of	 navigation.	 In	 1610,	 while
Harriot	 was	 observing	 sunspots,	 Briggs	 was	 working	 on	 eclipses.	When	 John
Napier	brought	out	his	‘wonderful	invention’	of	logarithms	in	1614,	both	Harriot
and	Briggs	soon	became	aware	of	it.	Briggs	immediately	travelled	to	Scotland	to
visit	Napier,	and	helped	him	to	develop	his	work	further;	Harriot	no	longer	made
long	journeys	and	in	any	case	was	already	becoming	seriously	ill,	but	he	made
notes	on	logarithms,	and	almost	certainly	recognized	their	relevance	to	much	of
his	own	earlier	work.
	

One	cannot	help	 thinking	 that	with	Harriot,	 as	with	Napier,	Briggs	could	have
engaged	in	lengthy	and	fruitful	conversations.	It	could	so	easily	have	happened
because	for	the	last	20	years	of	Harriot’s	life	they	lived	not	far	distant	from	each
other:	Harriot	at	Syon	House,	Briggs	close	to	Bishopsgate,	only	a	mile	from	the
Tower	of	London	where	Harriot	regularly	visited	Raleigh	and	Percy.	There	is	no
evidence,	 however,	 that	 their	 lives	 ever	 coincided.	Their	 circles	of	 friends	 and
spheres	 of	 influence	 were	 quite	 different:	 Briggs	 was	 employed	 by	 a	 public
institution,	 while	 Harriot	 worked	 privately	 from	 his	 own	 home.	 A	 treatise	 by
Briggs	 on	 ‘The	 northwest	 passage	 to	 the	 South	 Sea	 through	 the	 continent	 of
Virginia’,	which	would	 surely	 have	 interested	Harriot,	was	 published	 in	 1622,
the	 year	 after	Harriot’s	 death,	 and	Briggs’s	Arithmetica	 logarithmica	 not	 until
1624.	 During	 the	 1620s,	 Briggs	 did	 come	 into	 contact	 with	 Harriot’s	 friend
Nathaniel	 Torporley	 and	 was	 aware	 of	 attempts	 to	 publish	 some	 of	 Harriot’s
papers,	but	he	himself	died	in	1630,	the	year	before	the	posthumous	publication
of	Harriot’s	Praxis.	 Thus	 in	 print,	 as	 in	 life,	 they	 sailed	 close	 but	managed	 to



miss	each	other.

	

The	 lives	 of	 Harriot	 and	 Briggs	 offer	 a	 pertinent	 contrast	 between	 the	 older
habits	of	patronage	and	the	new	lives	of	professional	mathematicians,	properly
paid	 in	 return	 for	 clear	 responsibilities,	 particularly	 in	 teaching.	 The	 latter,	 of
course,	was	the	way	of	the	future.
	

Institutions,	publications,	and	conferences

	

The	life	of	Joseph-Louis	Lagrange,	one	of	the	finest	mathematicians	of	the	18th
century,	 epitomizes	 some	 of	 the	 new	 possibilities	 opening	 up	 to	 a	 talented
mathematician	 in	 western	 Europe	 150	 years	 after	 the	 deaths	 of	 Briggs	 and
Harriot.	 Lagrange	was	 born	 in	 1736	 into	 a	 French-Italian	 family	 in	Turin	 (his
baptismal	 name	 was	 Giuseppe	 Lodovico	 Lagrangia).	 At	 the	 age	 of	 17	 he
discovered	a	predilection	for	mathematics	and	two	years	later	was	appointed	to
teach	at	Turin’s	Royal	Artillery	School.	Lagrange	was	still	living	with	his	family
in	his	home	town,	but	intellectually	he	had	already	begun	to	move	further	afield.
Shortly	before	he	took	up	his	teaching	post,	Lagrange	had	sent	some	of	his	work
to	Leonhard	Euler,	director	of	mathematics	at	the	Royal	Academy	of	Sciences	in
Berlin.	Further	letters	to	Euler	rapidly	resulted	in	Lagrange’s	election	to	foreign
membership	of	the	Academy.	At	the	same	time,	he	and	others	founded	their	own
scientific	 society	 in	 Turin,	 one	 of	 many	 such	 societies	 founded	 in	 western
European	cities	during	the	1750s	and	the	forerunner	of	the	present	Academy	of
Sciences	of	Turin.

	

The	rise	of	scientific	societies	and	academies	 is	one	of	 the	defining	features	of
the	 intellectual	 history	 of	 the	 18th	 century.	 The	Royal	 Society	 of	 London	 had
been	founded	in	1660	and	the	Academy	of	Sciences	of	Paris	in	1699;	a	Prussian
Academy	of	Sciences	followed	 in	1700,	 restructured	as	 the	Royal	Academy	of
Sciences	of	Berlin	 in	1740,	while	 the	St	Petersburg	Academy	of	Sciences	was
founded	on	the	Parisian	model	in	1724.	These	institutions	offered	employment	to
a	small	number	of	mathematicians	and	scientists;	more	importantly,	their	regular



meetings	provided	a	forum	for	the	presentation	and	discussion	of	new	research.
Papers	presented	to	such	meetings	were	later	published	in	the	academy’s	Acta	or
Mémoires;	 this	 process	 could	 take	 some	 time,	 but	 the	 resulting	 volumes
eventually	 circulated	 to	 readers	 throughout	 Europe,	 and	 numerous	 important
exchanges	were	 carried	 out	 through	 the	 pages	 of	 academy	 journals.	 Lagrange
published	most	of	his	own	early	research	in	the	Mélanges	de	Turin,	 the	 journal
of	his	own	society	in	Turin.
	

The	Paris	Academy	also	established	a	tradition	of	prize	questions,	with	a	period
of	two	years	for	the	response.	Lagrange	sent	in	entries	for	the	prizes	of	1764	(on
why	 the	Moon	 always	 shows	 the	 same	 face)	 and	1765	 (which	he	won,	 on	 the
movement	of	the	satellites	of	Jupiter).	By	this	time,	therefore,	he	was	becoming
known	 and	 respected	 by	 the	 leading	mathematicians	 of	 Europe.	 Jean	 le	 Rond
d’Alembert,	 for	 example,	 who	 had	 earlier	 been	 the	 scientific	 editor	 of	 the
Encyclopédie,	 tried	 hard	 to	 find	 him	 a	 post	 beyond	 Turin.	 In	 1766,	 Euler	 left
Berlin	 for	 the	 Academy	 of	 St	 Petersburg	 and	 offered	 to	 secure	 a	 place	 for
Lagrange	in	Russia,	but	Lagrange	settled	instead	for	Euler’s	old	position	at	 the
Academy	of	Berlin.

	

The	long	relationship	between	Euler	and	Lagrange,	begun	before	Lagrange	was
20,	 thus	 remained	 both	 intimate	 and	 distant.	 Euler,	 the	 most	 prolific
mathematician	of	 the	18th	century,	 threw	out	one	brilliantly	 intuitive	 idea	after
another,	 but	 did	 not	 always	 linger	 long	 enough	 to	 work	 them	 through	 before
moving	on	 to	 the	next	 thing	 that	caught	his	 imagination.	The	person	who	very
often	followed	in	his	wake,	 turning	half-worked	ideas	 into	sound	and	beautiful
theories,	 was	 Lagrange.	 Nevertheless,	 the	 two	 never	 actually	 met;	 indeed,
Lagrange	always	retained	a	respectful	distance	from	Euler,	whom	he	regarded	as
his	 elder	 and	 superior.	He	 refused	 to	compete	directly	with	Euler	 for	 the	Paris
prize	of	1768	 (on	 the	motion	of	 the	Moon),	 though	 they	eventually	 shared	 the
prize	 of	 1772	 on	 a	 similar	 subject.	 Lagrange	 remained	 in	Berlin	 for	 20	 years,
during	 which	 time	 he	 published	 extensively	 (in	 French)	 in	 the	 Academy’s
Mémoires.
	

After	 the	 death	 of	 Frederick	 the	Great,	who	 had	 done	 so	much	 to	 support	 the
Berlin	Academy,	Lagrange	moved	once	again,	 this	 time	 to	 the	Paris	Academy,
where	 he	 arrived	 in	 1787.	 Two	 years	 later,	 every	 institution	 in	 France	 was



thrown	into	turmoil	by	the	Revolution,	but	Lagrange	somehow	managed	through
those	 years	 to	 keep	 his	 head	 and	 his	 reputation.	 In	 1795	 the	 Academy	 was
abolished	and	replaced	by	the	Institut	National;	Lagrange	was	elected	chairman
of	 the	 section	 dealing	 with	 physical	 and	 mathematical	 sciences.	 At	 the	 same
time,	the	Revolution’s	pressing	need	for	properly	trained	teachers	and	engineers
led	to	the	founding	of	new	institutions,	in	particular	the	École	Polytechnique	in
1794	 and	 the	 École	 Normale	 for	 the	 training	 of	 teachers	 in	 1795.	 Lagrange
taught	 at	 both.	 The	 École	 Polytechnique	 was	 to	 become	 the	 most	 prestigious
educational	 institution	 of	 early	 19th-century	 Paris.	 Anyone	 who	 has	 studied
mathematics	 beyond	 school	 level	 will	 almost	 certainly	 be	 familiar	 with	 the
names	of	Lagrange,	Laplace,	Legendre,	Lacroix,	Fourier,	Ampère,	Poisson,	and
Cauchy,	all	of	whom	taught	or	examined	at	the	École	Polytechnique	in	its	early
years.	Further,	the	École	published	its	lecture	notes	in	‘cahiers’	which	were	used
as	 textbooks	 throughout	France,	 especially	by	 those	aspiring	 to	be	accepted	as
students.

	

Lagrange	died	in	1813.	In	the	first	two-thirds	of	his	career,	in	Turin	and	Berlin,
he	 had	 both	 contributed	 to	 and	 benefited	 from	 national	 academies	 and	 their
respective	journals,	institutions	which	had	done	much	to	foster	the	creation	and
dissemination	of	new	research.	During	his	final	years	in	Paris,	Lagrange	saw	the
rise	of	a	new	kind	of	institution,	designed	to	offer	a	high	level	of	mathematical
and	 scientific	 training	 to	 the	 most	 able	 students.	 Unlike	 the	 universities,	 the
École	Polytechnique	offered	an	education	that	was	tightly	focused	and	practical,
and	would	 enable	 its	 graduates	 to	 consolidate	 the	 gains	 of	 the	Revolution	 and
later	the	Napoleonic	empire.
	

In	case	a	history	of	institutions	seems	somewhat	impersonal,	let	us	not	lose	sight
of	the	close	personal	relationships	that	also	ran	through	Lagrange’s	life,	notably
with	Euler	 and	d’Alembert.	When	Lagrange	died,	 his	 protégé,	Augustin-Louis
Cauchy,	son	of	a	family	friend,	was	just	embarking	on	his	own	long	career	and
was	 to	be	a	 leading	 figure	 in	French	mathematics	until	his	death	 in	1857.	 It	 is
possible	 to	 trace	unbroken	chains	of	personal	 friendships	and	collaborations	 in
western	European	mathematics,	 from	Leibniz	 in	 the	 late	 17th	 century	 through
the	Bernoulli	 family	and	Euler	 to	Lagrange	and	on	 to	Cauchy	 in	 the	mid-19th
century.

	



By	the	 time	of	Lagrange’s	death,	changes	were	under	way	 in	his	earlier	home,
Berlin.	 The	 University	 of	 Berlin	 was	 founded	 in	 1810	 by	 Wilhelm	 von
Humboldt,	 as	 an	 institution	 that	 would	 not	 simply	 pass	 on	 accumulated
knowledge	 but	 which	 would	 encourage	 and	 facilitate	 new	 research.	 German
university	 professors	 were	 free	 to	 make	 their	 own	 appointments	 and	 so	 to
determine	 the	 direction	 and	 emphasis	 of	 their	 departments.	 Research	 groups,
seminars,	 and	doctoral	 training	were	all	 established	 in	 the	German	universities
before	1900	and	are	now	imitated,	more	or	less,	in	every	university	in	the	world.
Academic	mathematicians,	Andrew	Wiles	 among	 them,	 are	 all	 in	 that	 sense	 a
product	of	19th-century	Germany.
	

The	 publication	 of	 mathematical	 research	 changed	 too.	 In	 the	 17th	 and	 18th
centuries,	the	main	outlets	for	mathematical	articles	had	been	academy	journals.
The	first	printed	mathematical	paper	appeared	in	the	Philosophical	Transactions
of	 the	 Royal	 Society	 in	 1668,	 written	 by	 the	 then	 president	 of	 the	 Society,
William	Brouncker.	 That	 paper	was	 only	 four	 pages	 long	 and	was	 juxtaposed
with	 letters	 to	 the	editor	on	‘Chymical,	Medicinal	and	Anatomical	particulars’,
on	 ‘the	Variety	of	 the	Annual	High-Tides’,	 and	 some	miscellaneous	notices	of
new	books.	Journals	 later	became	rather	better	organized:	 the	Acta	eruditorum,
for	instance,	had	separate	sections	on	medicine,	mathematics,	natural	philosophy,
law,	history,	geography,	and	theology;	but	scientific	journals	throughout	the	18th
century	continued	to	publish	on	a	wide	range	of	subjects	of	which	mathematics
was	just	one.

	

The	first	journal	dedicated	to	mathematics	alone,	the	Annales	de	mathématiques
pures	et	appliquées,	was	 founded	and	edited	by	 Joseph	Gergonne	 in	France	 in
1810,	and	became	known	as	Gergonne’s	journal.	Note	here	the	first	appearance
of	 a	 distinction	 that	 had	 not	 up	 to	 then	 existed	 in	 any	 formal	 sense	 between
‘pure’	and	‘applied’	mathematics.	Gergonne’s	journal	lasted	only	until	1832,	but
by	then	its	German	equivalent,	with	a	parallel	title,	had	been	established	in	1826
by	 August	 Crelle.	 The	 Journal	 für	 die	 reine	 und	 angewandte	 Mathematik
(Crelle’s	 journal)	 exists	 to	 this	 day.	 So	 does	 the	 replacement	 of	 Gergonne’s
journal,	first	edited	by	Joseph	Liouville	in	1836,	the	Journal	de	mathématiques
pures	 et	 appliquées	 (Liouville’s	 journal).	Mathematical	 journal	 publishing	 has
continued	to	flourish	and	increase	ever	since:	today,	journals	no	longer	specialize
in	mathematics	as	a	whole	but	in	the	branches	and	twigs	of	the	discipline.	One	of
the	 titles	 I	 like	 is	 the	Journal	of	 Ill-Posed	and	 Inverse	Problems,	 but	 there	 are



hundreds	of	others.
	

Specialized	 institutions,	 entrance	 examinations,	 lengthy	 training,	 dedicated
journals,	 professional	 societies,	 and	 regular	meetings	 and	 conferences,	 are	 the
hallmarks	of	 every	modern	profession,	 including	mathematics.	 International	 or
even	national	conferences	did	not	exist	in	Lagrange’s	day,	but	they	certainly	do
now,	 and	 absorb	 at	 least	 some	 of	 the	 time	 of	 all	 academic	mathematicians.	 In
particular,	mathematicians	are	always	ready	to	celebrate	each	other’s	 important
birthdays,	another	sign	of	the	strong	social	cohesion	of	the	discipline.

	

The	first	International	Congress	of	Mathematicians	was	held	in	Zürich	in	1897,
and	 was	 attended	 by	 representatives	 of	 several	 European	 countries	 and	 the
United	States.	The	second	Congress,	held	in	Paris	 in	1900	to	coincide	with	the
Exposition	Universelle,	 is	 best	 remembered	 for	 a	 speech	made	by	 the	German
mathematician	David	Hilbert,	 in	which	he	outlined	23	problems	 that	he	hoped
mathematicians	would	solve	 in	 the	new	century	(though	proving	Fermat’s	Last
Theorem	was	 not	 one	 of	 them).	After	 1900,	Congresses	were	 held	 every	 four
years	except	during	World	Wars	I	and	II.	The	exclusion	of	mathematicians	from
Germany,	 Austria,	 Hungary,	 Turkey,	 and	 Bulgaria	 during	 the	 1920s,	 however,
and	the	absence	of	others	who	objected	to	that	ruling,	led	to	debate	as	to	whether
these	congresses	could	be	called	‘international’.
	

A	 list	 of	 cities	 that	 have	 hosted	 the	 Congress	 tells	 its	 own	 story	 of	 the
increasingly	 global	 nature	 of	 mathematical	 research.	 Until	 the	 1960s,	 all	 the
meetings	 were	 held	 in	 western	 Europe,	 Canada,	 or	 the	 United	 States,	 but	 the
Congress	for	1966	was	held	in	Moscow	and	for	1982	in	Warsaw.	The	first	Asian
country	 to	host	 it	was	Japan,	 in	1990,	 followed	by	China	 in	2002	and	India	 in
2010.	When	Wiles	announced	his	proof	of	Fermat’s	Last	Theorem	in	his	home
city	of	Cambridge,	he	could	 just	 as	easily	have	spoken	 to	 similar	audiences	 in
Beijing,	Madrid,	or	Hyderabad,	the	venues	of	the	three	most	recent	Congresses.
Mathematics	 is	 now	 not	 only	 a	 highly	 professionalized	 discipline	 but	 a
thoroughly	international	one.

	

By	now	we	have	reached	the	 top	of	 the	mathematical	pyramid,	 the	 tightly	knit
community	 of	 professionals	 that	 has	 become	 associated	 with	 the	 words



‘mathematics’	 and	 ‘mathematician’.	 Compared	 to	 the	 number	 of	 people	 from
schoolchildren	 upwards	 who	 regularly	 practise	 mathematics,	 however,	 this
professional	 community	 is	 tiny,	 and	 the	 number	 of	women	 in	 it	 is	 even	 tinier.
One	 can	 wonder	 why	women	 are	 still	 so	 under-represented.	 There	 is	 no	 easy
answer	to	this	question,	but	we	should	recall	that	as	in	most	professional	spheres
the	rules	were	devised	by	and	for	men,	and	it	may	be	that	some	women	find	the
air	 at	 the	 top	 of	 the	 pyramid	 a	 little	 rarefied	 and	 the	 company	 not	 always
congenial.	 If	we	leave	elite	mathematics	 to	elite	historians,	 this	hardly	matters.
Just	 as	 mathematics	 itself	 has	 gone	 through	 many	 manifestations,	 so
mathematical	 lives	have	been	lived	in	a	multitude	of	ways,	none	more	valid	or
correct	than	any	other.
	



Chapter	6
Getting	inside	mathematics
	

So	far,	 I	have	avoided	 too	much	discussion	of	mathematical	 technicalities,	and
we	will	not	go	far	into	them	in	this	chapter	either,	but	a	historian	of	mathematics
is	bound	to	engage	not	only	with	the	social	context	of	mathematical	texts	written
in	the	past	but	also	as	closely	as	possible	with	their	content.	This	is	more	easily
said	 than	 done.	 At	 one	 level,	 the	 mathematics	 of	 the	 past	 can	 seem	 easy
compared	with	what	 is	expected	of,	say,	a	college	student	 today.	The	difficulty
for	the	historian	is	usually	not	so	much	understanding	the	mathematics	itself	as
entering	into	the	mind	and	mathematical	universe	of	someone	from	another	era.

	

As	an	example,	let	us	think	for	a	moment	about	Pythagoras’	Theorem,	which	has
now	been	mentioned	several	times	in	this	book.	Euclid’s	proof	of	the	theorem	is
illustrated	 in	Figure	9.	 It	 entails	 drawing	 the	 squares	 on	 the	 three	 sides	 of	 the
right-angled	 triangle,	dividing	 the	 largest	one	 into	 two	parts,	and	 then	showing
that	each	of	 those	parts	 is	equal	 to	one	of	 the	 two	smaller	squares.	The	details
were	cleverly	shown	in	colour	by	Oliver	Byrne	in	1847,	in	the	almost	wordless
proof	shown	in	Figure	10.	One	of	the	key	features	of	this	proof	is	that	it	applies
to	 any	 right-angled	 triangle,	 however	 you	 happen	 to	 draw	 it	 (indeed,	 David
Joyce’s	interactive	version	will	allow	you	to	push	and	pull	 the	original	 triangle
around	as	much	as	you	like	as	long	as	you	keep	the	right	angle).	In	other	words,
the	 proof	 does	 not	 depend	 on	 particular	measurements;	 there	 is	 no	 arithmetic
involved,	and	certainly	no	algebra.	This	is	completely	in	keeping	with	the	style
of	the	Elements:	Euclid	allowed	his	readers	a	straight	edge	and	a	compass	but	no
calculator.
	



	

9.	Euclid’s	 proof	 of	 Pythagoras’	Theorem:	AFGC	=	AMLE	and	CHKB	=
BDLM
	

Thābit	 ibn	 Qurra’s	 proof,	 shown	 in	 Figure	 8,	 also	 relies	 on	 cut-and-paste
geometry	 to	 demonstrate	 that	 the	 larger	 square	 can	 be	made	 to	 cover	 the	 two
smaller	ones.	For	Euclid	and	ibn	Qurra,	the	underlying	intuition	behind	both	the
theorem	and	its	proof	was	geometric.

	

Now	consider	 the	modern	 technique	of	 labelling	 the	 sides	of	 the	 triangle	a,	b,
and	c	and	writing	down	a2	=	b2	+	c2.	Does	this	represent	the	theorem	that	Euclid
had	in	mind?	In	one	sense,	yes.	We	know	that	the	area	of	a	square	with	side	a	is
a2,	so	the	formula	is	just	a	very	concise	way	of	encapsulating	a	geometric	fact.
There	is	even	continuity	in	the	language:	we	use	the	same	word	‘square’	for	the
quantity	a2	and	for	the	four-sided	geometric	shape.	But	in	another	sense,	no.	The
formula	 comes	 from	 a	 mathematical	 culture	 very	 different	 from	 Euclid’s,	 in
which	we	have	learned	to	let	letters	represent	lengths,	and	in	which	we	can	even
forget	 about	 geometry	 and	manipulate	 the	 letters	 according	 to	 their	 own	 rules.
Thus,	if	we	wish,	we	can	re-write	the	above	formula	as	c2	=	a2	−	b2	=	(a	−	b)(a	+
b),	 which	 is	 true	 but	 no	 longer	 has	 any	 obvious	 relevance	 to	 a	 right-angled
triangle.
	



	

10.	Oliver	Byrne’s	proof	of	Pythagoras’	Theorem
	

The	change	from	geometric	insight	to	algebraic	manipulation	is	not	a	trivial	one:
it	 takes	 some	 effort	 to	 learn	 how	 to	 do	 it.	 Historically,	 the	 shift	 from	 a
mathematical	 culture	 in	 which	 geometry	 was	 dominant	 to	 one	 in	 which	 the
language	of	algebra	began	to	take	precedence	came	about	in	western	Europe	in
the	17th	century.	(Fermat	was	one	of	the	earliest	mathematicians	to	experiment
with	the	possibility,	though	later	he	also	complained	bitterly	about	any	departure
from	 traditional	 ways	 of	 doing	 things.)	 Historians	 have	 studied	 this	 period
intensively	 because	 the	 changes	 were	 crucial	 to	 the	 development	 of	 modern
mathematics.	 To	 regard	 the	 algebraic	 version	 of	 Pythagoras’	 Theorem	 as
essentially	 the	 same	 as	 the	 geometric	 version	 is	 to	 ignore	 the	 historical	 gulf
between	them,	a	gulf	that	has	been	crossed	only	by	the	cumulative	endeavours	of
many	individual	thinkers.
	

Reinterpretation

	



The	example	we	just	looked	at	is	a	case	of	mathematical	reinterpretation,	in	this
instance	 taking	 a	 geometric	 theorem	and	 reinterpreting	 it	 algebraically.	This	 is
something	that	mathematicians	do	a	lot;	indeed	taking	an	earlier	piece	of	work,
their	own	or	someone	else’s,	exploring	 it,	extending	 it,	 trying	 it	out	under	new
conditions,	is	one	of	the	chief	ways	that	mathematicians	develop	their	subject.	It
is	 one	 thing	 for	 mathematicians	 themselves	 to	 re-write	 old	 mathematics,
however,	 and	 quite	 another	 for	 historians	 to	 do	 it.	 When	 the	 Arithmetica	 of
Diophantus	was	rediscovered	in	Europe	during	the	Renaissance,	it	turned	out	to
be	such	a	rich	source	of	problems	that	it	was	reinterpreted	in	several	ways,	both
mathematically	and	historically.	We	will	look	at	some	of	the	mathematics	first.

	

We	have	already	seen	how	Fermat	extended	Problem	II.8,	testing	it	out	on	cubes
or	 even	 higher	 powers	 as	well	 as	 squares.	Here	we	will	 look	 at	 another	 early
17th-century	reinterpretation,	of	a	different	problem	from	Diophantus,	this	time
by	the	English	mathematician	John	Pell.	Born	in	Southwick	in	Sussex	in	1611,
Pell	 lived	 at	 the	 same	 time	 as	 both	 Harriot	 and	 Oughtred	 (whom	 we	 met	 in
Chapter	5),	though	he	was	some	50	years	younger.	He	was	educated	at	the	newly
founded	Steyning	Grammar	School,	a	few	miles	north	of	Southwick,	and	then	at
Trinity	College,	Cambridge.	Afterwards	he	returned	to	Sussex	and	taught	at	an
experimental	school	in	Chichester	until	it	closed	a	few	years	later.	Pell	then	spent
several	years	searching	for	either	a	paid	post	or	a	patron	but	found	neither	that
suited	his	rather	particular	temperament.	At	the	end	of	1643	he	was	appointed	to
the	 Gymnasium	 in	 Amsterdam,	 and	 two	 years	 later	 to	 the	 Illustre	 School	 in
Breda	where	he	remained	until	1652.
	

During	this	time	Pell	gave	a	good	deal	of	attention	to	Diophantus.	We	know	this
because	 by	 the	 early	 1640s	 Pell	 had	 become	 acquainted	 with	 Sir	 Charles
Cavendish	(whom	we	also	met	in	Chapter	5)	and	they	corresponded	throughout
Pell’s	years	 in	 the	Netherlands.	They	had	 their	own	version	of	 a	mathematical
patronage	relationship:	Cavendish	would	ask	Pell	to	help	him	with	whatever	he
had	 failed	 to	 understand	 in	 his	 latest	 effort	 at	 mathematical	 reading	 and	 Pell
would	 duly	 respond.	 Cavendish	 clearly	 thought	 highly	 of	 Pell’s	 abilities	 and
expected	him	to	publish	a	number	of	important	books,	including	a	new	edition	of
Diophantus	 ‘which’,	 he	wrote,	 ‘I	 am	exceeding	greedie	 to	 see’.	Unfortunately,
Pell	was	almost	pathologically	incapable	of	finishing	or	publishing	anything,	but
there	is	evidence	that	he	at	least	began	to	work	on	such	an	edition.



	

That	 evidence	 comes	 from	 Pell’s	 voluminous	 notes	 (thousands	 of	 pages	 now
bound	in	more	than	30	large	volumes	in	the	British	Library).	The	reason	that	Pell
was	 so	 interested	 in	Diophantus	was	 that	 he,	Pell,	 had	developed	 a	method	of
problem-solving	 that	 he	 thought	 perfectly	 suited	 to	 the	 questions	 in	 the
Arithmetica.	The	method	was	this:	first,	for	any	question	set	down	the	unknown
quantities	 and	 the	 given	 conditions	 in	 numbered	 lines;	 second,	 work
systematically	 from	 the	 conditions	 to	 the	 required	 answer.	 To	 ensure	 that	 the
work	proceeds	properly,	it	is	set	out	in	three	columns,	with	line	numbers	in	the
narrow	 central	 column.	 For	 each	 line,	 the	 left-hand	 column	 contains	 a	 brief
instruction;	the	right-hand	column	shows	the	result	of	carrying	it	out.	The	whole
thing	has	much	the	look	and	feel	of	a	modern	computer	algorithm.
	

To	see	how	such	a	method	can	be	applied	to	the	ancient	work	of	Diophantus,	let
us	 look	 at	 Pell’s	 rendition	 of	 Problem	 IV.1	 of	 the	 Arithmetica:	 to	 find	 two
numbers	whose	sum	is	a	given	number	and	whose	cubes	sum	to	another	given
number.	Diophantus	suggested	that	the	sum	of	the	two	numbers	should	be	10	and
the	 sum	 of	 their	 cubes	 370,	 precisely	 the	 problem	 later	worked	 by	 the	 young
Anne	Davenant	under	her	 father’s	 instruction.	Pell	 solved	 it	 in	his	own	unique
style.	 His	 first	 two	 lines	 are	 the	 following,	 in	 which	 he	 calls	 the	 unknown
numbers	a	and	b.
	

	

Next,	 following	 Diophantus	 exactly,	 Pell	 introduced	 a	 third	 number,	 c,	 and
supposed	 that	a	=	c	+	5	 so	 that,	 necessarily,	b	=	5	−	c.	His	next	 two	 lines	 are
therefore

	

where	2′	−	3′	just	means	subtract	line	3	from	line	2.	Now	everything	is	set	up	and
the	work	can	proceed.	The	reader	who	wants	to	follow	the	detail	needs	to	know
that	Pell’s	instruction	3′	@3	means	take	the	cube	of	line	3,	while	10′	ω2	means
take	 the	 square	 root	 of	 line	 10.	 A	 further	 convention	 favoured	 by	 Pell	 is



switching	 from	 lower-to	 upper-case	 letters	 once	 the	 required	values	 have	been
found.
	

	

The	final	four	lines	check	that	the	problem	has	indeed	been	correctly	solved:
	

	

It	seems	that	Pell	planned	to	re-write	the	whole	six	books	of	the	Arithmetica	 in
this	 style,	 but	 if	 he	 ever	 completed	 them	 his	 manuscript	 is	 lost.	Many	 of	 his
contemporaries	 were	 impressed	 with	 his	 method,	 though.	 His	 friend	 John
Aubrey	even	invented	a	new	Latin	verb	for	it:	pelliare,	‘to	pelliate’.
	

It	is	clear	from	the	above	example	that	Pell	did	not	believe	in	wasting	words:	the
only	one	that	appears	in	his	19	lines	of	working	is	‘let’	(he	actually	wrote	it	 in
Latin	 as	 sit).	 But	 if	words	 are	 to	 disappear,	 there	must	 be	 symbols	 to	 replace
them,	and	here	Pell	was	a	master	of	invention.	The	symbols	@	and	ω	that	helped
to	keep	his	 left-hand	column	concise	have	 long	since	fallen	out	of	use,	but	his
division	 symbol	 ÷	 is	 still	 with	 us.	 Invention	 of	 notation	 was	 one	 of	 Pell’s
particular	 talents;	 in	 this	 he	was	 following	what	was	 something	 of	 an	English
tradition	at	 the	time.	By	1557	Robert	Recorde	had	devised	the	=	sign	based	on
two	parallel	 lines	‘bicause	noe	2	thynges,	can	be	moare	equalle’.	Around	1600
Thomas	Harriot	had	added	 the	 inequality	 signs	<	and	>	and	 the	convention	of



writing	ab	 for	 a	multiplied	 by	 b.	 In	 1631	William	Oughtred	 introduced	 the	 ×
sign,	though	he	rarely	used	it;	he	also	argued	passionately	that	notation	‘plainly
presenteth	 to	 the	 eye	 the	 whole	 course	 and	 processe	 of	 every	 operation	 and
argumentation’.	This	was	clearly	what	Pell	thought	too,	that	his	method	rendered
the	argument	plain	to	the	eye	without	need	for	further	explanation.	His	efforts	to
‘pelliate’	Diophantus	therefore	tell	us	rather	more	about	the	aspirations	of	early
17th-century	 English	 algebraists	 than	 they	 do	 about	 Diophantus	 and	 his
Arithmetica.

	

This	is	true	of	reinterpretations	of	a	historical	rather	than	mathematical	kind	too:
that	they	generally	reveal	more	about	the	interpreter	than	the	interpreted.	Stories
that	have	circulated	over	the	centuries	about	the	origins	of	algebra,	for	example,
have	 recorded	not	 just	historical	 fact	but	contemporary	understanding.	Algebra
first	 came	 to	 non-Islamic	 regions	 of	 western	 Europe	 in	 the	 late	 12th	 century
through	 translations	of	al-Khwārizmī’s	Al-jabr	wa’l	muqābalā,	but	by	 the	16th
century,	this	early	history	had	been	forgotten,	if	indeed	it	had	ever	been	properly
known.	Nevertheless,	the	Islamic	origins	of	the	subject	were	recognized,	if	only
from	the	strange-sounding	words	‘algebra’	and	‘almucabala’	associated	with	 it.
Thus	 early	 16th-century	writers	 ascribed	 the	 invention	 of	 algebra	 variously	 to
‘une	nome	Arabo	di	grande	intelligentia’	(‘a	certain	Arab	of	great	intelligence’),
sometimes	 to	 one	 Algeber	 (actually	 Jābir	 ibn	 Aflaḥ,	 a	 12th-century	 Spanish
Muslim	 astronomer	who	 had	 nothing	 to	 do	with	 it),	 or	 to	 the	 vaguely	 named
‘Maumetto	di	Mose	Arabo’	(a	rendering	of	Muḥammed	ibn	Mūsā,	an	Arab).
	

In	 1462,	 however,	 the	 German	 scholar	 Johannes	 Müller,	 usually	 known	 as
Regiomontanus	 after	 the	 Latinized	 name	 of	 his	 home	 town,	 Königsberg,
examined	a	manuscript	of	Diophantus	Arithmetica	 in	Venice.	Three	years	 later,
lecturing	in	Padua,	he	described	the	contents	as	‘the	flower	of	all	arithmetic	…
which	 today	 is	 called	 by	 the	 Arabic	 name	 of	 algebra’.	 His	 lecture	 was	 not
published	until	1537,	but	very	soon	after	that	other	writers	began	to	pick	up	the
same	 theme:	 that	 algebra	had	been	 invented	by	Diophantus	and	was	only	 later
adopted	by	‘the	Arabs’.	One	can	see	why	such	stories	were	accepted	at	a	 time
when	a	Greek	pedigree	conferred	instant	respectability	and	status.	The	fact	that
the	 problems	 handled	 by	 Diophantus	 were	 different	 in	 both	 style	 and	 content
from	those	found	 in	 Islamic	 texts	does	not	seem	to	have	deterred	anyone	from
thinking	that	the	latter	must	somehow	have	been	derived	from	the	former.



	

Even	 today,	 when	 there	 is	 much	 greater	 appreciation	 of	 the	 mathematics	 that
western	Europe	inherited	from	the	Islamic	world,	Diophantus	is	still	sometimes
credited	as	being	the	founder	of	algebra.	This	 is	a	debate	that	can	run	and	run,
but	we	should	 try	 to	understand	mathematically	what	 is	at	 stake.	 It	 is	 true	 that
Diophantus	posed	 several	 ‘find	a	number’	problems	 that	 are	 easily	handled	by
modern	algebraic	methods,	as	Pell’s	example	demonstrates.	But	he	also	posed	a
great	many	other	problems	that	are	‘indeterminate’,	that	is,	they	have	more	than
one	possible	answer.	In	such	cases,	Diophantus	was	usually	satisfied	if,	by	some
special	method,	he	could	show	just	one	of	those	answers.	In	fact	his	work	is	full
of	 ideas,	some	of	them	very	clever,	 that	work	for	specific	questions,	unlike	the
more	general	rules	of	the	later	Islamic	algebra	texts.	It	has	also	been	suggested
that	Diophantus	used	an	elementary	symbolic	notation	by	writing,	for	example,	ς
for	an	unknown	number	and	Δγ	 for	 its	 square,	but	 it	has	now	been	shown	 that
these	 abbreviations	 for	 the	 Greek	 words	 arithmos	 (number)	 and	 dynamis
(square),	 respectively,	 were	 introduced	 by	 9th-century	 copyists	 and	 cannot	 be
attributed	 to	Diophantus	 at	 all.	 Finally,	 the	mathematics	 that	 has	 been	 derived
from	 the	Arithmetica	 has	 been	 absorbed	 into	modern	 number	 theory,	 whereas
Islamic	 al-jabr	 texts	 gave	 rise	 much	 more	 directly	 to	 the	 algebra	 of	 western
Europe.	It	seems	to	me	that	the	word	‘algebra’	should	be	reserved	for	the	rules
and	procedures	that	were	described	by	the	participants	themselves	as	‘al-jabr’	or
‘algebra’,	and	that	we	should	not	impose	those	words,	nor	the	history	they	carry
with	 them,	 on	 a	 writer	 who	 was	 working	 in	 an	 earlier	 and	 very	 different
tradition.
	

Who	was	first	…?

	

The	 question	 we	 have	 just	 examined,	 ‘Who	 invented	 algebra?’,	 is	 typical	 of
those	sometimes	asked	of	historians	of	mathematics,	who	are	often	expected	to
be	 able	 to	 say	who	was	 first	 to	discover	or	 invent	 certain	 ideas.	Except	 in	 the
simplest	cases	such	questions	can	be	extraordinarily	difficult	to	answer.	Take,	for
example,	the	discovery	of	calculus.	This	is	the	branch	of	mathematics	that	can	be
used	for	describing	and	predicting	change.	It	is	used	today	in	biology,	medicine,
economics,	 ecology,	 meteorology,	 and	 every	 other	 science	 that	 works	 with



complex	 interactive	 systems.	 It	 is	 therefore	 not	 unreasonable	 to	want	 to	 know
‘Who	invented	calculus?’
	

The	 short	 answer	 is	 that	 two	 people	 did,	 almost	 simultaneously	 but
independently:	 Isaac	 Newton	 working	 in	 Cambridge	 and	 Gottfried	 Wilhelm
Leibniz	working	 in	Paris.	To	modern	historians,	 there	 is	no	 longer	any	dispute
about	 this	 because	we	 have	 the	manuscripts	 of	 both	men	 and	 can	 see	 exactly
when	and	 in	what	order	 their	 ideas	were	developed.	We	can	also	 see	 that	 they
approached	the	work	in	very	different	ways,	each	devising	their	own	vocabulary
and	notation	(Leibniz	spoke	of	‘differentials’	while	Newton	spoke	of	‘fluxions’;
Leibniz	invented	the	now	familiar	 	notation	whereas	Newton	used	the	now	less
common	ẋ).
	

For	their	contemporaries,	however,	the	story	was	not	clear	at	all.	The	basic	facts
are	that	Newton	developed	his	version	of	calculus	during	1664	and	1665	(before
his	23rd	birthday)	but	then	did	nothing	with	it.	By	the	early	1670s	he	had	already
engaged	in	an	intellectual	skirmish	with	Robert	Hooke	over	his	optical	findings
and	was	perhaps	reluctant	to	risk	another	over	the	calculus.	In	any	case,	by	that
time	his	interest	had	shifted	to	alchemy,	which	was	to	preoccupy	him	for	the	next
decade.	In	1673,	however,	Leibniz,	then	living	in	Paris,	independently	began	to
work	 on	 some	 of	 the	 same	 problems	 that	 had	 earlier	 intrigued	 Newton,	 and
published	his	 first	 paper	 on	 calculus	 in	 1684	 followed	by	others	 in	 the	 1690s.
Newton	 appears	 to	 have	 taken	 little	 notice,	 probably	 regarding	Leibniz’s	 early
work	as	rather	trivial	compared	with	what	he	himself	had	been	able	to	achieve.
Some	of	Newton’s	 friends	 felt	differently,	however,	and	around	 the	 turn	of	 the
century	his	English	supporters	began	to	hint	not	only	that	Newton	had	been	first
but	that	Leibniz	might	actually	have	stolen	the	seeds	of	his	ideas	from	Newton.
It	did	not	help	Leibniz’s	case	that	he	had	seen	some	of	Newton’s	papers	when	he
was	in	London	in	1675	and	had	received	letters	from	Newton	in	1676,	but	what
he	 had	 learned	 from	 them,	 and	 how	 that	 related	 to	 what	 he	 had	 discovered
already,	no-one	but	Leibniz	really	knew.

	

Both	Newton	and	Leibniz	held	back	 from	direct	 confrontation	but	 allowed	 the
battle	to	be	fought	out	through	their	henchmen,	who	were	thoroughly	belligerent
on	 both	 sides.	 Eventually,	 in	 1711,	 Leibniz	 appealed	 to	 the	 Royal	 Society,	 of
which	he	was	a	member,	to	adjudicate	in	the	dispute.	Newton,	as	President	of	the



Society,	set	up	a	committee	which	barely	needed	to	meet	because	Newton	was
already	 busy	writing	 its	 report.	 Not	 surprisingly,	 it	 found	 in	Newton’s	 favour.
And,	 also	 not	 surprisingly,	 that	 was	 not	 the	 end	 of	 the	 matter:	 the	 dispute
rumbled	on	until	after	Leibniz’s	death	in	1716.	The	dispute	explains	why	in	1809
the	 English	 schoolboy	 George	 Peat	 in	 Cumbria	 learned	 a	 subject	 called
‘fluxions’	rather	than	a	subject	called	‘calculus’.
	

It	 is	 an	 unedifying	 story	 from	 which	 no-one	 comes	 out	 well.	 The	 point	 of
retelling	it	 is	to	emphasize	how	difficult	 it	was	for	anyone	at	the	time	to	get	to
the	bottom	of	 it:	no	single	person	was	in	possession	of	all	 the	facts;	besides,	 it
was	difficult	to	know	whether	the	argument	was	about	the	calculus	as	a	whole	or
about	particular	aspects	of	it	(Leibniz	accused	the	English	of	shifting	ground	on
this);	and,	as	can	be	the	way	with	disputes,	several	disagreements	were	dragged
in	 that	 were	 never	 part	 of	 the	 original	 argument.	 Another	 point	 of	 the	 story,
however,	is	that	the	ultimate	evidence	for	the	truth	comes	not	from	what	people
at	the	time	wrote	or	said,	which	was	almost	always	partial	(in	both	senses	of	the
word),	but	from	the	mathematical	manuscripts	themselves.

	

In	mathematics	it	is	not	at	all	uncommon,	as	in	the	case	of	the	calculus,	for	two
people	 to	 come	up	with	 similar	 ideas	 at	more	or	 less	 the	 same	 time.	Once	 the
groundwork	has	been	laid,	one	mathematician	can	make	use	of	it	just	as	easily	as
another,	and	it	 then	becomes	very	difficult	 to	apportion	credit,	especially	 if	 the
two	have	had	some	contact	with	each	other.	It	was	for	precisely	this	reason	that
Wiles	shut	himself	away	so	carefully	during	his	years	of	work	on	Fermat’s	Last
Theorem.	In	the	case	of	the	calculus,	there	is	enough	documentary	evidence	for
historians	to	work	out	what	really	happened	but	this	is	not	always	so.	Two	early
19th-century	 mathematicians,	 Bernard	 Bolzano	 in	 Prague	 and	 Augustin-Louis
Cauchy	 in	 Paris,	 also	 developed	 some	 remarkably	 similar	 ideas,	 Bolzano	 in
1817,	Cauchy	 in	 1821.	Did	Cauchy	 ‘borrow’	 from	Bolzano	 or	 not?	Bolzano’s
work	was	published	in	a	little-known	Bohemian	journal	which	was	nevertheless
available	 to	 Cauchy	 in	 Paris.	 On	 the	 other	 hand,	 both	 could	 have	 built
independently	 on	 the	 earlier	work	 of	 Lagrange.	We	might	 also	 throw	 into	 the
assessment	circumstantial	evidence	about	Cauchy’s	way	of	working,	which	was
very	often	to	pick	up	good	ideas	from	someone	else	and	develop	them	at	length.
In	the	end,	for	lack	of	firm	evidence	either	way,	we	simply	cannot	say.
	



Another	 problem	 about	 saying	 who	 was	 first	 to	 make	 a	 discovery	 can	 be
defining	what	we	think	the	discovery	actually	consists	of.	At	what	precise	point
in	history,	for	example,	can	we	say	we	have	‘calculus’,	as	opposed	to	a	tangle	of
related	 ideas	 that	 gradually	 began	 to	make	 sense	 first	 to	 Newton	 and	 later	 to
Leibniz?	It	is	just	as	difficult,	as	we	have	already	seen,	to	pinpoint	where	algebra
began,	or	where	Pythagoras’	Theorem	became	a	formal	theorem	as	opposed	to	a
useful	fact	known	to	builders.	Almost	all	new	mathematics	is	built	on	previous
work,	and	sometimes	on	a	number	of	contributory	ideas.	Tracing	the	antecedents
of	a	particular	 technique	or	 theorem	 is	one	of	 the	 tasks	of	 the	historian,	not	 in
order	 to	 say	who	was	 first,	 but	 to	 understand	more	 clearly	 how	mathematical
ideas	have	changed	over	time.
	

Getting	things	right
	

Euclid’s	systematic	deductive	style,	in	which	every	theorem	is	carefully	proved
from	 the	 theorems	 and	 definitions	 that	 have	 gone	 before	 it,	 has	 stood	 for
centuries	as	the	gold	standard	of	mathematical	style.	But	even	Euclid	turned	out
not	 to	 be	 infallible.	Questions	were	 raised	 about	 one	 of	 Euclid’s	 postulates	 as
early	as	the	5th	century	AD	and	proved	very	difficult	to	answer.	The	troublesome
postulate	 is	 sometimes	 known	 as	 the	Parallel	 Postulate;	 it	 can	 be	 expressed	 in
different	ways,	but	the	simplest	is	to	say	that	if	we	have	a	line	l	in	a	plane,	and	a
point	P	not	on	the	line,	there	is	just	one	line	through	P	parallel	to	l.	Most	of	us
would	 have	 no	 difficulty	 accepting	 that.	 It	 leads	 to	 the	 consequence	 that	 the
angles	 in	 a	 triangle	 add	 up	 to	 180	 degrees,	 and	most	 of	 us	 have	 no	 difficulty
accepting	that	either.	Many	commentators	on	Euclid,	however,	 thought	 that	 the
Parallel	Postulate	should	not	be	a	postulate	but	a	theorem,	that	is,	that	it	should
somehow	be	possible	to	prove	it	from	the	other	definitions	and	postulates.	Thābit
ibn	Qurra	and	Umar	al-Khayyāmī	were	amongst	 those	who	 tried;	 so	was	 John
Wallis	 in	 Oxford	 in	 1663.	 Then	 in	 1733	 an	 otherwise	 little	 remembered
mathematician	called	Gerolamo	Saccheri,	professor	of	mathematics	at	Pavia	 in
northern	Italy,	tried	a	different	approach.	He	investigated	what	would	happen	if
he	assumed	that	 the	angles	of	a	triangle	add	up	to	either	less	or	more	than	180
degrees,	 hoping,	 of	 course,	 that	 the	 results	 would	 be	 absurd	 so	 that	 such
assumptions	could	be	dismissed.	He	was	wrong.	Assuming	 that	 the	angles	add
up	to	less	than	180	degrees	led	him	to	some	strange	but	nevertheless	consistent
results.	A	hundred	years	later,	Nicolai	Ivanovich	Lobachevskii,	professor	at	 the



university	of	Kazan	in	Russia,	and	János	Bolyai	from	the	town	that	is	now	Cluj
in	 northern	 Romania,	 took	 these	 ideas	 much	 further	 (another	 example	 of
independent	but	more	or	less	simultaneous	discovery);	they	both	realized	that	it
is	possible	to	construct	a	kind	of	geometry	that	is	mathematically	acceptable	but
definitely	 non-Euclidean.	 The	 idea	 was	 startling	 to	 19th-century	 thinkers:	 one
consequence	 was	 that	 no-one	 could	 know	 whether	 infinite	 space	 itself	 was
Euclidean	or	non-Euclidean,	any	more	than	we	can	tell	from	walking	down	the
street	 whether	 the	 Earth	 is	 round	 or	 flat.	 Mathematics	 was	 supposed	 to	 offer
indisputable	truths	about	the	world,	but	suddenly	such	truths	had	come	to	seem
less	secure.

	

One	 of	 the	 outcomes	 of	 all	 this	 was	 that	mathematicians	 began	 to	 look	more
carefully	at	their	underlying	assumptions,	formally	known	as	axioms.	Indeed,	in
the	late	19th	and	early	20th	centuries,	in	a	return	to	true	Euclidean	style,	entire
branches	of	mathematics	came	to	be	set	up	on	axiomatic	foundations,	imposing
on	 them	a	 logical	 rigour	 that	mathematics	had	not	known	since	 the	Greek	era.
For	 between	 the	 2nd	 century	 BC	 and	 the	 19th	 century	 AD,	 mathematics	 had
developed	 for	 the	 most	 part	 in	 a	 thoroughly	 haphazard	 way.	 The	 fact	 is	 that
mathematicians	 do	 not	 make	 discoveries	 by	 setting	 up	 axioms	 and	 thinking
logically	about	 them	but	by	 responding	 imaginatively	 to	problems	 that	 interest
them,	by	opening	up	questions	 in	new	directions,	or	by	seeing	how	apparently
different	bits	of	mathematics	might	 fit	 together	 in	a	 fresh	way.	Of	course,	 they
must	apply	their	skills	and	experience	correctly,	and	in	the	end	they	must	present
a	 watertight	 argument	 known	 as	 a	 ‘proof’,	 as	 Wiles	 did	 in	 his	 Cambridge
lectures,	but	that	is	likely	to	be	some	way	down	the	road	from	the	initial	insights
and	the	hard	work	that	almost	invariably	follows	them.
	

The	 discovery	 of	 the	 calculus,	 discussed	 in	 the	 previous	 section,	 is	 a	 supreme
example	of	mathematics	 that	 in	 its	 inception	was	not	 logical	 at	 all.	The	whole
idea	 was	 based	 on	 what	 17th-century	 mathematicians	 called	 ‘infinitely	 small
quantities’.	The	question	one	is	forced	to	ask	about	an	infinitely	small	quantity,
however,	is:	does	it	have	any	size	at	all?	If	it	does,	then	it	cannot	be	‘infinitely
small’;	but	if	it	has	no	size,	then	it	does	not	even	exist	and	one	cannot	use	it	in
any	sensible	way	in	one’s	calculations.	This	may	seem	like	nit-picking,	more	like
a	discussion	of	angels	on	a	pinhead	than	of	mathematics.	But	it	matters,	because
discussions	of	infinitely	small	quantities	can	rapidly	lead	to	contradictions;	and
since	 mathematics	 is	 supposed	 to	 be	 a	 unified	 logical	 edifice,	 a	 single



contradiction	 brings	 the	 whole	 lot	 tumbling	 down.	 (For	 this	 reason
mathematicians	often	deliberately	set	up	a	contradiction,	as	Saccheri	tried	to	do,
if	 they	 want	 to	 prove	 that	 something	 is	 impossible;	 the	 technique	 is	 called
reductio	ad	absurdum.)

Both	Newton	and	Leibniz	were	well	aware	of	the	paradox	of	the	infinitely	small
and	did	their	best	 to	deal	with	it,	Newton	by	addressing	it	head	on,	Leibniz	by
skirting	 round	 it.	 Those	 who	 came	 after	 them	were	 aware	 of	 it	 too,	 not	 only
mathematicians	 but	well-educated	members	 of	 the	 public	 also.	Bishop	George
Berkeley,	for	instance,	in	a	book	called	The	Analyst:	A	Discourse	Addressed	to
an	Infidel	Mathematician	asked	‘whether	mathematicians,	who	are	so	delicate	in
religious	points,	 are	 strictly	 scrupulous	 in	 their	 own	 science?	Whether	 they	do
not	submit	to	authority,	take	things	upon	trust,	and	believe	points	inconceivable?’
Did	such	concerns	stop	mathematicians	in	their	tracks?	No,	because	very	early	in
the	evolution	of	the	calculus	they	had	recognized	how	powerful	it	could	be	and
were	busy	applying	 it,	with	plenty	of	success,	 to	 rays	of	 light,	hanging	chains,
falling	 bodies,	 vibrating	 strings,	 and	 many	 other	 phenomena	 of	 the	 physical
world.	They	were	hardly	going	 to	give	up	all	 this	 for	what	 they	 regarded	as	 a
metaphysical	 rather	 than	mathematical	 difficulty.	 It	 took	 about	 150	 years	 until
the	problem	was	resolved	to	most	people’s	satisfaction,	in	ways	that	are	a	little
too	 technical	 to	 discuss	 here;	 during	 those	 same	 150	 years,	 however,
mathematics	 advanced	 beyond	 all	 expectations,	 despite	 the	 shakiness	 in	 its
foundations.

	

A	 similar	 story	 can	 be	 told	 for	 the	 19th	 century.	 In	 1822,	 Joseph	 Fourier,	 a
lecturer	at	the	École	Polytechnique	in	Paris,	published	a	treatise	on	the	diffusion
of	heat,	his	Théorie	analytique	de	la	chaleur.	In	it,	Fourier	investigated	the	idea
of	 using	 infinite	 sums	 of	 sines	 and	 cosines	 to	 describe	 periodic	 distributions;
these	 infinite	 sums	are	now	known	as	Fourier	 series,	 and	have	a	vast	 range	of
applications	 in	engineering	and	physics.	Fourier’s	original	derivation,	however,
was	riddled	with	errors	and	inconsistencies.	Some	of	these	cancelled	each	other
out,	but	many	of	them	Fourier	ignored,	if	indeed	he	ever	noticed	them.	In	other
words,	the	initial	theory	of	Fourier	series	was	no	more	firmly	grounded	than	the
calculus	had	been,	and	yet,	like	the	calculus,	it	proved	to	be	an	immensely	rich
and	useful	tool.	But	just	as	with	the	calculus,	many	mathematicians	after	Fourier
had	to	spend	a	great	deal	of	time	mending	the	holes.
	



These	 examples	 are	 not	 exceptional.	 As	 we	 have	 seen,	 Wiles,	 a	 far	 more
competent	mathematician	than	Fourier,	had	to	go	through	a	very	similar	process
of	 fixing	an	error,	 though	 in	his	case	 it	 took	only	 two	years	and	not	a	century.
Almost	every	new	discovery	in	mathematics	starts	out	in	a	rough	and	ready	state
and	has	to	be	improved	and	refined	before	it	can	be	presented	to	one’s	peers,	let
alone	taught	to	beginners.

	

Most	modern	 textbooks	 follow	 the	 same	pattern	 as	Euclid’s	Elements,	 starting
from	simple	beginnings	and	building	up	 the	mathematics	 in	a	 seamless	 logical
flow.	In	other	words,	we	allow	–	or	expect	–	students	to	follow	a	clear-cut	path
that	the	first	explorers	could	not	even	see.	If	students	are	given	the	opportunity
to	 go	 back	 to	 the	 original	 discoveries,	 they	 are	 likely	 to	 find	 something	 very
different:	 a	 process	 of	 trial	 and	 error,	 false	 starts,	 and	 dead	 ends;	 half-formed
ideas,	half	worked	out,	left	to	be	developed	by	someone	else;	better-formed	ideas
refined	over	months	or	years;	all	of	it	finally	adapted	by	teachers	who	may	not
be	 innovators	 but	who	must	 have	 the	 equally	 important	 gift	 of	 seeing	 how	 to
explain	things	to	novices.	In	other	words,	the	polished	exposition	of	a	textbook
tells	 us	 very	 little	 about	 the	 intuition	 and	 hard	 work,	 the	 imagination	 and
struggle,	that	went	into	the	mathematics	in	the	first	place.	That	is	the	task	of	the
historian.
	



Chapter	7
The	evolving	historiography	of	mathematics
	

Ways	 of	 doing	 and	 thinking	 about	 the	 history	 of	mathematics	 have	 changed	 a
great	deal	over	the	last	few	centuries,	some	of	them	in	keeping	with	changes	in
intellectual	history	more	generally,	some	of	them	peculiar	to	mathematics.	As	we
saw	in	Chapter	2,	the	approach	taken	by	John	Leland	in	the	1550s,	followed	by
Johann	Gerard	Vossius	a	century	later,	was	 to	record	as	many	facts	as	possible
about	 authors,	 dates,	 and	 texts,	 but	 without	 any	 analysis	 of	 what	 those	 texts
contained.	By	the	late	17th	century,	however,	it	was	clear	to	anyone	interested	in
mathematics	that	the	power,	scope,	and	techniques	of	the	subject	were	advancing
rapidly:	 ‘Geometry	 is	 improving	daily’,	wrote	 Joseph	Glanville	 in	1668,	while
just	a	few	years	 later	John	Wallis	extolled	 the	‘progress	and	advancement’	 that
had	brought	algebra	to	‘the	heighth	at	which	now	it	is’.

	

The	18th	century,	the	age	of	the	Encyclopédie,	saw	two	substantial	publications
concerned	with	the	history	of	mathematics,	Jean-Étienne	Montucla’s	Histoire	des
mathématiques	published	in	Paris	in	1758	(expanded	to	four	volumes	in	1799–
1802),	and	Charles	Hutton’s	Mathematical	and	Philosophical	Dictionary,	which
included	 a	 number	 of	 historical	 articles,	 published	 in	London	 in	 1795.	By	 the
late	 19th	 century,	 however,	 the	 focus	was	 shifting,	 as	 in	 other	 areas	 of	 study,
away	from	second-hand	accounts	to	scholarly	editions	and	translations	of	ancient
and	 medieval	 texts	 (as	 had	 also	 happened	 during	 the	 Renaissance).	 To	 take
examples	 from	 texts	 that	 have	 been	 discussed	 earlier	 in	 this	 book:	 the	 first
English	 rendering	of	 the	Arithmetica	 of	Diophantus	was	published	by	Thomas
Heath	 in	 1885;	 Heath’s	 edition	 of	 Euclid’s	 Elements,	 based	 on	 the	 best
scholarship	 then	 available,	 appeared	 in	 1908;	 Charles	 Louis	 Karpinski’s
translation	 of	 al-Khwārizmī’s	Al-jabr	 from	 a	medieval	 Latin	 version	 appeared
just	a	few	years	later,	in	1915.	Such	editions	were	and	remain	invaluable:	neither
the	Arithmetica	nor	the	Al-jabr	had	previously	been	available	in	English;	Heath’s
Elements	remains	the	standard	English	edition	to	this	day.
	



Modern	 historians,	 however,	 also	 treat	 such	 editions	 with	 some	 care.	 Heath’s
essay	 on	 the	Arithmetica	 is	 entitled	Diophantus	 of	 Alexandria:	 A	 Study	 in	 the
History	 of	 Greek	 Algebra,	 a	 title	 that	 raises	 questions	 that	 have	 already	 been
addressed	in	this	book.	Further,	a	commentator	on	Heath’s	edition	of	Apollonius
has	observed	that	‘thanks	to	skilful	compression	and	the	substitution	of	modern
notation	for	literary	proofs,	[it]	occupied	less	than	half	the	space	of	the	original’.
Again,	the	historian	might	not	thank	Heath	for	this	skill,	preferring	to	see	the	text
uncompressed	and	free	of	the	anachronisms	of	modern	notation.	A	good	deal	of
early	 20th-century	 scholarship	 in	 the	 history	 of	 mathematics,	 however,	 often
carried	 out	 by	 mathematicians	 rather	 than	 historians,	 proceeded	 in	 much	 the
same	 way,	 translating	 texts	 originally	 written	 in	 Egyptian	 hieroglyphics	 or	 in
Sumerian,	 Sanskrit,	 or	 Greek	 into	 the	 symbols	 and	 concepts	 of	 modern
mathematics.	 The	 motives	 of	 the	 translators	 were	 not	 in	 themselves
reprehensible:	in	trying	to	understand	ideas	that	at	first	seem	thoroughly	alien,	it
is	natural	to	try	to	relate	them	to	something	more	familiar;	the	danger	is	that	one
comes	to	regard	unfamiliar	ideas	as	no	more	than	archaic	renderings	of	what	we
can	 now	 do,	 as	 we	 see	 it,	 more	 efficiently.	 In	 this	 way,	 history	 comes	 to	 be
rewritten	from	our	own	perspectives	instead	of	those	of	the	original	authors.

	

Historians	 of	 ancient	 mathematics	 were	 among	 the	 first	 to	 rebel	 against	 the
distortions	 introduced	 by	modernization,	 and	 during	 the	 1990s	 led	 the	way	 in
attempting	 to	 recover	 and	 preserve,	 as	 far	 as	 possible,	 the	 idiom	 and	 thought
processes	of	the	originals.	As	Reviel	Netz,	editor	and	translator	of	Archimedes,
has	said	in	a	remark	now	often	quoted:	‘the	purpose	of	a	scholarly	translation	as
I	understand	it	 is	to	remove	all	barriers	having	to	do	with	the	foreign	language
itself,	 leaving	 all	 other	 barriers	 intact’.	 This	 forces	 the	 modern	 reader	 of
historical	mathematical	 texts	 to	work	much	harder	 than	 the	 reader	 of	 50	years
ago,	but	the	gains	in	historical	understanding	are	incomparably	greater.
	

Those	who	work	with	ancient	mathematical	writings	have	led	the	way	in	other
aspects	of	historiography	too,	partly	because	of	the	way	their	material	has	been
so	haphazardly	accumulated	in	the	past.	A	single	clay	tablet,	for	instance,	tells	us
very	 little	 unless	we	 know	where	 or	when	 it	was	written.	 Such	 information	 is
essential	if	we	are	to	build	up	a	picture	of	how	a	particular	text	relates	to	others
found	in	the	same	area	or	elsewhere.	Many	tablets	from	early	excavations	were
deposited	in	museums	with	minimal	information	on	their	provenance,	or	sold	on
the	antiquities	market	with	none,	making	it	exceedingly	difficult	for	historians	to



deduce	 useful	 information	 from	 them	 now.	 Fortunately,	 present-day
archaeologists	 record	 positions	 and	 surroundings	 with	 great	 care	 before
removing	each	layer	of	evidence.	Modern	technology	has	also	enabled	advances
in	reading	faded	or	damaged	pen	and	ink	texts.	Work	on	the	rediscovered	text	by
Archimedes	 mentioned	 in	 Chapter	 3	 has	 been	 particularly	 remarkable	 in	 this
respect.	Scholars	have	been	able	not	only	to	read	much	of	the	original	text	but	to
identify	the	scribe	who	scrubbed	the	parchment	clean	and	overwrote	it:	Ioannes
Myronas,	working	in	Constantinople	during	Lent	1229.	It	is	entirely	appropriate
that	recovery	of	the	text	and	recovery	of	the	story	of	the	text	should	go	hand	in
hand.

	

Historians	 of	 mathematics	 have	 increasingly	 moved	 away	 from	 a	 purely
‘internalist’	view	in	which	mathematical	developments	are	seen	to	come	about	of
their	own	accord,	regardless	of	outside	influences.	As	has	now	been	shown	over
and	over	again	in	this	book,	mathematical	activity	has	for	centuries	manifested
itself	 in	 a	 variety	 of	ways,	 all	 of	 them	 socially	 and	 culturally	 determined.	We
should	 not	 throw	 out	 the	 baby	 with	 the	 bathwater,	 however:	 mathematicians
often	devote	themselves	to	a	particular	problem	not	because	it	might	be	useful	or
because	anyone	 requires	 them	 to	do	 so,	but	because	 the	problem	 itself	 catches
their	imagination.	This	was	precisely	the	case	for	Newton	and	Leibniz	with	the
calculus,	Bolyai	and	Lobachevskii	with	non-Euclidean	geometry,	or	Wiles	with
Fermat’s	Last	Theorem.	 In	 such	 cases,	 progress	depends	 first	 and	 foremost	 on
deep	 and	 concentrated	 engagement	 with	 the	 mathematics,	 and	 in	 that	 sense
mathematical	 creativity	 can	 be	 said	 to	 be	 an	 internal	 process.	 But	 the
mathematical	 questions	 that	 are	 considered	 important	 at	 a	 particular	 time	 or
place,	 the	 way	 they	 have	 come	 to	 be	 there,	 the	 way	 they	 are	 understood	 and
interpreted,	are	all	influenced	by	a	multitude	of	factors	outside	the	mathematics
itself:	social,	political,	economic,	and	cultural.	Context	has	become	as	important
to	the	historian	as	content.
	

Another	significant	change	in	recent	years	has	been	the	growing	recognition	that
the	 mathematics	 done	 by	 a	 small	 number	 of	 famous	 mathematicians	 has	 not
reflected	 (though	 it	 has	 built	 on)	 the	 diversity	 of	 mathematical	 activity	 and
experience	 at	 other	 levels	 of	 society.	The	history	of	 non-elite	mathematics	 has
been	one	of	the	key	themes	of	this	book.	Historians	of	mathematics,	like	scholars
in	many	other	disciplines,	have	also	become	much	more	sensitive	to	questions	of
gender	 and	 ethnicity.	 Studies	 of	 cultures	 prior	 to	 or	 beyond	 modern	 western



Europe	 have	 been	 constrained	 in	 the	 past	 by	 lack	 of	 sources,	 or	 linguistic
barriers,	 but	 that	 situation	 is	 now	 beginning	 to	 change	 as	 web	 images,	 new
translations,	and	scholarly	commentary	are	making	increasing	amounts	of	source
material	 more	 readily	 accessible,	 intellectually	 as	 well	 as	 materially.
Consequently,	 the	 mathematics	 of	 the	 past	 is	 no	 longer	 regarded	 simply	 as	 a
precursor	 to	 the	mathematics	 of	 the	 present	 but	 as	 an	 integral	 part	 of	 its	 own
contemporary	culture.

	

As	 in	 all	 thriving	 academic	 disciplines	 these	 days,	 those	 who	 engage	 in	 the
history	of	mathematics	are	required	to	cross	boundaries.	Indeed,	one	of	the	great
pleasures	of	working	 in	 the	 subject	 is	 that	one	can	 learn	 from	 the	 expertise	of
archaeologists,	 archivists,	 sinologists,	 classicists,	 orientalists,	 medievalists,
historians	of	 science,	 linguists,	 art	historians,	 literary	critics,	museum	curators,
and	many	others.	The	range	of	sources	has	broadened	similarly	and	is	no	longer
restricted	 to	 the	books	or	manuscripts	 that	once	expounded	 the	 latest	 ideas	but
includes	 correspondence,	 diaries,	 rough	 notes,	 exercise	 books,	 measuring
instruments,	calculating	machines,	paintings,	 sketches,	diaries,	and	novels.	The
last	 item	 may	 sound	 surprising,	 but	 novelists	 may	 be	 the	 most	 astute	 and
articulate	recorders	of	contemporary	views	of	mathematics;	readers	interested	in
following	up	this	theme	will	find	more	under	‘Further	reading’.
	

The	questions	asked	by	historians	over	the	last	50	years	have	both	changed	and
diversified.	It	is	no	longer	enough	simply	to	ask	who	discovered	what	and	when.
We	also	want	to	know	what	mathematical	practices	engaged	groups	of	people	or
individuals,	and	why.	What	historical	or	geographical	influences	were	at	work?
How	were	mathematical	 activities	 perceived,	 by	 the	 participants	 or	 by	 others?
What	 aspects	 were	 particularly	 valued?	What	 steps	 were	 taken	 to	 preserve	 or
hand	on	mathematical	expertise?	Who	was	paying	for	it?	How	did	an	individual
mathematician	manage	his	(or	her)	time	and	skill?	What	were	their	motivations?
What	 did	 they	 produce?	What	 did	 they	 do	with	 it?	 And	with	whom	 did	 they
discuss,	collaborate,	or	argue	along	the	way?

	

Most	of	the	answers	to	most	of	these	questions	will	be	difficult	to	find	with	any
degree	 of	 certainty.	 Historians	 of	 mathematics,	 like	 all	 other	 historians,	 work
with	sparse	evidence,	from	which	they	must	reconstruct	as	carefully	as	possible



incomplete	stories	about	the	past.	The	attempt	remains	worthwhile	for	what	we
can	 learn	 about	 a	 human	 activity	 as	 ancient	 and	 as	 widespread	 as	 producing
literature	or	music,	and	which	has	manifested	itself	in	as	rich	a	variety	of	cultural
forms:	doing	and	creating	mathematics.
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