to the latest release for

Get access
creating po

Access 2007 VBA

Programming

werful databases and applications

* Contains
ready-to-use VBA
| code and Access
A Reference TV [procedures
for the

Rest of Us!

FREE eTips at dummies.com*

Joseph C. Stockman

Coauthor of Access 2007 Bible

Alan Simpson
Coauthor of Access 2003 All-in-One
Desk Reference For Dummies

Access 2007 VBA
Programming

DUMMIES

by Joseph C. Stockman and Alan Simpson

1807
{| 9)WILEY |;
2007 2

>

Wiley Publishing, Inc.

NNNNNNNNNNNN

Access 2007 VBA
Programming

FOR

DUMMIES

Access 2007 VBA
Programming

DUMMIES

by Joseph C. Stockman and Alan Simpson

1807
{| 9)WILEY |;
2007 2

>

Wiley Publishing, Inc.

NNNNNNNNNNNN

™

Access™ 2007 VBA Programming For Dummies®

Published by

Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Microsoft and Access are
trademarks or registered trademarks of Microsoft Corporation in the United States and/or other coun-
tries. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not asso-
ciated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2006939596
ISBN: 978-0-470-04653-1

Manufactured in the United States of America

WILEY

www.wiley.com

Dedication

Joe Stockman: To my mom and all my friends and family who supported me —
and left me alone — during this project.

Alan Simpson: To Susan, Ashley, and Alec, as always.

Authors’ Acknowledgments

Even though only two authors’ names appear on the cover, every book is a
team project. These authors would like to thank the many people who con-
tributed to this book. To Carole McClendon and everyone at Waterside
Productions, thank you for finding this project and making it happen. Also,
many thanks to Kyle Looper and Jean Rogers at Wiley for taking a chance on
a new author to help with the rewrite. And also, thanks to Microsoft for
making Access a wonderful development environment.

About the Author

Joe Stockman is an independent consultant, software designer, and author
who has been using Microsoft Access since its initial release. He’s also devel-
oped courseware and taught classes in Access and VBA. Joe developed his
first application in Access, and then migrated into Visual Basic and VB.NET,
where he specializes in creating applications for the Windows Mobile plat-
form. He worked for several software companies before forming his consult-
ing business in 2002, where he deals with all types of clients including
healthcare, financial, government, manufacturing, and small business. His
ability to turn his customers’ wishes into working applications keeps them
satisfied. Joe’s also writing the fundamentals column for the Advisor Guide to
Microsoft Access magazine.

Alan Simpson is the author of over 100 computer books on databases,
Windows, Web site design and development, programming, and networking.
His books are published throughout the world in over a dozen languages
and have millions of copies. Alan has also taught introductory and advanced
computer programming courses at San Diego State University and the UCSD
Extension. He has served as a consultant on high-technology, education-
oriented projects for the United States Navy and Air Force. Despite that,
Alan has no fancy job title because he has never had a real job.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form

located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acaquisitions, Editorial, and Media
Development

Associate Project Editor: Jean Rogers
(Previous Edition: Christopher Morris)
Acquisitions Editor: Kyle Looper
Copy Editor: Becky Whitney
Technical Editor: Russ Mullen
Editorial Manager: Kevin Kirschner

Media Development Specialists: Angela Denny,
Kate Jenkins, Steven Kudirka, Kit Malone

Media Development Coordinator:
Laura Atkinson

Media Project Supervisor: Laura Moss
Media Development Manager: Laura VanWinkle

Media Development Associate Producer:
Richard Graves

Editorial Assistant: Amanda Foxworth
Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www . the5thwave . com)

Composition Services
Project Coordinator: Jennifer Theriot

Layout and Graphics: Carl Byers,
Stephanie D. Jumper, Barbara Moore,
Barry Offringa, Alicia B. South

Proofreaders: Techbooks, Brian H. Walls
Indexer: Techbooks

Anniversary Logo Design: Richard Pacifico

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance

INEroductionc.coueeeeecceiecreeicnieirceienenncaseeesnneaseeans 1
Part I: Introducing UBA Programming..................ccec..... 7
Chapter 1: Where VBA FitS IN.....cccouiiiiiiiiiieccecececesestesee et 9
Chapter 2: Your VBA TOOIKItcccoooriiiiieieieeeeee et 21
Chapter 3: Jumpstart: Creating a Simple VBA Programccccoccevvevviinieniencnnennne. 35
Part 1I: UBA Tools and Techniquescccoeeeeeeees. 49
Chapter 4: Understanding Your VBA Building BIOCKScccceevvviivviiniiiniinieneeenee, 51
Chapter 5: Controlling Access through VBA.............cocveieiiiiieiecceeee e 71
Chapter 6: Programming Access FOImScccooeviririeiienieniineeeeeeseeeeeee 87
Part 111: UBA, Recordsets, and SOL..............ccccccceeeee. 115
Chapter 7: The Scoop on SQL and Recordsets.........ccccccveeiieciieiieccieeeecieeeeeee 117
Chapter 8: Putting Recordsets t0 WOrkcccecueviiniinieninninieniecieseeseeseeieeiens 147
Part IU: Applying VBA in the Real World 173
Chapter 9: Creating Your Own Dialog BOXES.......ccecueviivieiieniieieeieeiecieseesceieeiens 175
Chapter 10: Customizing Combo Boxes and List Boxes...........ccccccevenininenneenieenne. 201
Chapter 11: Creating Your Own FUNCLIONScocevviiviiniiniiiiiiienieeieseesteceieeeens 239
Chapter 12: Testing and Debugging Your Code............cocuerirriirvieniiensienienieneenieenienns 265
Part U: Reaching Out with UBAcccccceeeeeeaiaaannnnn 293
Chapter 13: Using VBA with Multiple Databases...........ccccccevivvieevieniiencienieneeieeiens 295
Chapter 14: Integrating with Other Office Applications...........cccceccevererencerneenieenne. 315
part UI: The Part of TensIllllllllliIllIlllllliIlllllllllillllllllll349
Chapter 15: Ten Commandments of Writing VBAcccovoirieiirinieen 351
Chapter 16: Top Ten Nerdy VBA TYiCKSccccevviiriiirieniinieeeieeieeiecie st eseesie e 357

Table of Contents

JOEEOAUCEION «...eeeeeeeeeeaaeeeeeeeeeennnnnaseseeeeeesnnnnnnsssseeeeesnnnnns]

ADOUL ThiS BOOK........oiiiiiieiieeeeeeeeeeeeeee et eeaee e 1
Conventions Used in This BOOKccccooeuiieiiiiiiiciiece e, 2
What You're Not to Read...........ccceieiiieiiiiieceee e 2
Foolish ASSUMPLIONScccueiiiiiciiiceecece e 3
How This Book Is Organized..........ccccooeeviiriiiniiinieniinieeeieeeeiesiesee e 3
Part I: Introducing VBA Programmingccccceveveeeciienceneceeeseennns 3
Part II: VBA Tools and Techniques..........ccccoeeveeieeieneeniienieeieeieeeenen. 3
Part III: VBA, Recordsets, and SQL..........ccccoovieeiieiiieeiceeeeeeeee 4
Part IV: Applying VBA in the Real Worldc.cccceevviniinieniniinnennen. 4
Part V: Reaching Out with VBA.........cccoooiiiiiieeee, 4
Part VI: The Part of TENScccoocvieeiiieeeeeeee ettt 4
Icons Used in This BOOK..........cccoiiioiiiiiieiceeeeeeee et 4
Web Site for ThiS BOOKoooviiiiiieieecee e 5
Where to GO from Here..........c.oooviiiiiiiiicecece et 5

Part I: Introducing VUBA Programming..............cccceeeueeee ¥

Chapter 1: Where VBAFitsInccciiiiiiiiiian, 9
Taking a LOOK @t ACCESScccuviieiieeieeeieeeee ettt 10
Understanding VBA..........cooiiiiiiieeeeece ettt 11
Seeing Where VBA LUIKScccooviriiiieiicecectect et 12

Finding standard modules............cccceevirviiriieniienieniereceeeeieeee e 13
Finding class modulesccccooieniiniiniiniiiniienieniccceceeesee e 13
From VBA tO ACCESS....cc.coueiriiiiieierieiecreteeeeetetseete et 15
Finding Out HOW VBA WOTKSccviiiieiieiieieeieeeeseee et 17
Discovering VBA procedures............ccccecevuererineneeiesienieneseeeeeenen 17
Recognizing VBA ProCcedures...........c.coevveevieeienienieenieesieeieeiesaeseenns 18

Chapter 2: Your VBAToolkitt 21

Using the Visual Basic EitOr.........ccccooiieiiiriiiniieniecieseeeceee e 21
Using Project EXPIOTer.........coocveviiiiinieiieieciecieceeeeeeeeieeve e 23
Using the Properties Window...........ccoceeverveniiiniieniieniceeieeieeieseene 24
Using the Immediate Window...........cccceevueviiriiiniiiniieniieeiecieeieseene 26
Using the Code WINAOWc.cccueiieiiieiiieiieiecie et 27

Referring to Objects from VBAcccoooiiiiiiiiiieeeeeeeeeeeeeeee 29

Setting References to Object Libraries........ccccoceeevievieneeneecieeieeieeeeeenne, 30

Using the Object BIOWSEYcc.coviiiiiiiiiiieieciectetcseee e 30

Searching the Object Libraryccoccoccevveriirieniienienieeeecieeieeeeseesieees 33

Xii Access 2007 VBA Programming For Dummies

Chapter 3: Jumpstart: Creating a Simple VBA Program 35
Creating a Standard ModULEcccoeereeieierieeneceeee e 35
Creating a Procedureoccooiiviiniiiiniiinieeetcteteee et 36
Understanding SYNtAXccccceeeerienienieeieereeieeeesee e sreeereeaeeaeeee s esseennes 38

Getting keyword help.........cocooiviriniiieeee e 40
Help with arguments..........ccoecveeieiienieneeecie e 43
About named arguMENtsc.ccoecverierienieerienierieeteee e saeeseeeeeas 45
Using EXisting Codecooviiviiiiiniiiiiiinieeieereetent ettt 46
Copy and paste code from the Web.c.cccocovviiniiininninninniinienene 46
Importing MOdUlesS..........ccooeiiiiieeieceeeee e 47
Modifying existing COde.........ccoueriiniinieiieieeiieieceeeeee e 48

Part I1: UBA Tools and Techniquesccccceueeeeeeeenee b9

Chapter 4: Understanding Your VBA Building Blocks 51
Commenting YOUY COAEoooveievierienirieieieiesiesieee e sae s ssesseennenees 52
Understanding VBA Data TYPESccccoeeeiieiieieciecieseeieeieeee e 53
Passing Data to Procedures...........cccoceeciieciieieeieeicseeeeeeee e 54

Storing data in variables and constants...........cccccceeveiieiieniecciennenne 57
Storing data in ArTAYS........ccccecvieieeeieieiene et esees 58
Module-level versus procedure-level............c.cccceeevrveecrieecreecneennnenn. 60
Naming conventions for variablesccccocevviiniiiniinnienninienieneene 61
Repeating Chunks of Code with LOOPS........cccceeievieiieiieeieciecieceeeeeee, 62
Using Do...Loop to create aloopccceeveeeveereenienieneniinienieneceeene 62
Using While...Wend to create a loopcccceeevveviercieneeneenieeiecieeiene 64
Using For...Next to create a loop.......cccceceevveeciiniencienieseeieciecieeeene 64
Making Decisions in VBA Code.........cccecuiriiriiniinieniiiecienieeieseeneeieees 66
Using If... End If statements...........cccceeviiviniiniiniiiniiececeeieeieneee 67
Using a Select Case blOCK........ccccveiieviieiiecieciecieceeceeeeeere e 68

Chapter 5: Controlling Access throughVBA n

Understanding Object MOdElS...........ccoeeevieiieieeienieneecieeieeie e 72
Distinguishing between objects and collections..........c.cccceevueeneenne 72
Understanding properties and methods..........ccceceeeeiieiiiecieeciennnnns 75
Identifying the icons for objects, properties, and methods 77

Manipulating Properties and Methods........c.cccecevvieniininneriiiniienieneeenne, 79
Getting the value of @ Property........cccceveecieniieniiniienenrenenieeeeseene 79
Changing the value of a Property........cccccccceeeviecieecieneeneeceececieeeee 81
Using an object’s methodsocoeieiiiiiniinininieeeeeeeeee 82
Seeking help with properties and methodscccccecvveviieieeiennns 84

Chapter 6: Programming AccessForms 87
Working with Class Procedures...........ccooveveeeieeieiiiisienieceeceeceeieeveeeene 87
Enabling or Disabling Form Controls...........ccccecervieniineenenciinienieneeseene 90

Using VBA to position the cursor...........ccocceecevvieniinennennenienieneene 91

Choosing an object and event for the code..........cccoevrirvnnennnnns 92

Table of Contents

Showing and hiding controlsc..cccceeerierininiencierieereeeeeeeeee 95
Making controls read-only...........ccccceevievieecieecieeciesieeeeee e 96
Responding to Form Events...........cccooveviieiieiieniinieneeseceeeeeeeeseeeeees 96
Changing the Appearance of ObjJectscccocevieviieniineineniieieeeeeeee, 99
Changing COLOTScovuiiiiiriirierteteteeeee ettt sae e 99
Controlling boldface, italics, and suchccccveeveviieiiecieeieennene, 103
Changing special effects.........ccoooieiiiiiininieeeeee e 104
Using the With...End With statements............cccccceevvevirviiecieccieennnne. 104
Filling form controls with datacccccoeveeirvieveniiceeceee, 105
Opening and Closing FOrMS.........cccccoviiriiniiiiiiniieciecieceeeteseese e 107
CloSING @ fOIM...uuiiiiiiiiiiiiiiieectete e 109
Adding a related record to another table.............ccccoovevierinnnnnnnee. 109
More DoCmd methods for forms..........ccoeceeercienienenenenneeieee 112

Part I1I: UBA, Recordsets, and SOL.............cccceeeeeeeecec 115

Chapter 7: The Scoop on SQL and Recordsets 117
What the Heck IS SQL?....cc.ooiiiiiieiiineeeetei ettt 117
Writing SQL without knowing SQLc.cccoveveevieeienieieceeeee 120
Select queries versus action qUETIEsccceceevierierenereneeieieene 121
Getting SQL into VBAc.ooiieeeeeeececeeeeee e 123
Hiding warning mesSages.......ccccceveevueerierrieeienieeneeneesieesseessessessesnns 124
Storing SQL statements in variables...........ccoccovviiviininninnienciennenne, 125
Creating Tables from VBAccccoriiiiiriiittececee et 128
Creating new tables from existing tablesccccceveviievieevennnnnne. 128
Creating a new, empty table from VBAccccoiivininineeiee 129
Closing and deleting tables through VBAc.cccocviieiiniennnnee. 130
Adding Records to a Table..........ccceeieiiieniienienieeiecieeeeeieee e 131
Appending a single record with SQL........c.cccocvvviiniiininniiinenienee 132
Query to append One reCordccocveveenieneeneesienienieeeeseeseeniees 133
Changing and Deleting Table Records..........ccccccveveeeieecieecieecieereeeeereenneen 134
Performing an Action Query on One Record...........ccocevuvveninenenceeneenene 136
Working with Select Queries and Recordsets..........cccceeeecieecieecieceenneenen. 137
Defining a coNNECHiONccccveviieiiieiiieiiciecieseecce e 140
Defining the recordset and data source..........ccccoeceevveevieeviereennnnne. 141
Filling the recordset with data..........ccccooeverviiniiniiniiniieeriee 142
Managing reCoOrdsets.........cceviiriiierieerieeereerreee e 143
Referring to fields in a recordset.........ccocooeeirierieieninienceeee 145
Closing recordsets and collections............cceceeeeveeniiesieesieeseennnene 146
Chapter 8: Putting RecordsetstoWork 147
Looping through ColleCtionsccceceeierienieniereeieeie e 147
Using For Each 100PSccccecieiiiiieiiciiceceeeeeceeeeee e 149

Using shorter names for ObJectsccovvvevvievcieneeniinenrieeieeieeeee 152

XI

X'i(/ Access 2007 VBA Programming For Dummies

Tips on Reading and Modifying Code..........ccocoviririeninneneninieieieieene 154
Square brackets represent NAMES..........ccecveeveereereenieenieesuesseeeeeenns 154
Other ways to refer to Objects........ccooevevieeeicieeeceeeeeeee 155
The continuation characterccccocevviirviiniienienienieeeeeeeee 157

Skipping Over Used Mailing Labelscccccoovevirircierienieneneeeeeeeeiens 159

Looking at How SkipLabels WOTKSccccccveiienieneecieeieeiecieere e 162
Passing data to SkipLabels..........ccccocerininininieieseereeee e 164
Declaring variables...........ccecieriieiieiieeieciecieeeeseese et ae e 165
Copying the label rePOrt........cccoceeeeeieciiieieceeeeeeeeee s 165
Getting a report’s reCOrdSOUICEcccevveriereeneenieenieeieeieeee e 165
Creating the recordsetcooevvirvienviiniiinienteeeeeeeee e 166
Creating LabelsTempTable from MyRecordSetccccuuen...... 166

Calling a Procedure from an Eventccocooevieiniienieneneneceeeeiene 171

Part 1U: Applying UBA in the Real World 173

Chapter 9: Creating Your Own Dialog Boxes 175
Displaying and Responding to Messages.........ccccoeevvverviervieniienieneeneennenn 176
Asking a qUESTIONcccueviiiiiiiiietce e 176
Designing a message DOX........ccccvveveeiieinciienieeeieeeee e 177
Responding to a MsgBox button click.........cccceevvevienienieciieieene, 180
Converting Forms to Dialog BOXEScccecueviiriineeniecienieeieeieeeeeeeeen 182
Storing dialog box Settings........ccccevveeviiriiiniieniiereeeeeeeeeee e 183
Setting form Propertiesccoceveevervierieniieniieneeneeseeeee e 184
Adding controls to the dialog boX........ccccecerviiniiniininniienieneee 187
Creating Custom Combo BOXES.........cccceeeeriieiieniieniicieeiecie e 189
Creating a Spin BoX CONtYOL........cccoeciieiiieieniecieceeeeecie e 195
Detecting a Right-ClCKcoceeiiiriiiiiiiriieesctceceee e 198
Chapter 10: Customizing Combo Boxes and List Boxes 201
Programming Combo and List BOXEScccocveviirieniieciinienieeieeeeseeeen 202
Listing field NAmMEScccceeviriiiiiirieeiecieeceeee e 204
Listing text OPtIONSccccovveeiiiriiiiiieieeiereeeeee e 207
Listing Table/Query field values.............ccceeveeveereenienieceeieeeeeee 212
LinKINgG LISTS ..coueieiieiiieteeeree ettt ettt st 216
Running code when a form opens..........cccccceevveveenienieneesieeieeene 218
Running code when the user makes a choice...........cccceevveevennnne. 219
Linking Lists aCross FOIMSccccvvivviiriiiniinienieeccceeeseee e 222
Updating a combo box or a list BOX........ccecuevieviinenninnenienieneee 223
Opening a form to enter a Nnew record..........cceeveeeveecieeieereeeenneennen. 225
Seeing whether a form is Openccccooceeivirienienenineeeee 226
Getting fOrms iN SYNC......ccveiiierieiieieeie et 227
More Combo BOX TTICKS......ccveiiiiiiiiieiieieeeetese et 228
Using hidden values in combo and list boxescccocceevvevvennnnnne. 228
Giving users a quick findcccoovevviiriiniinii 232

Avoiding retyping common entries............cccccceevveeeeneeneenieeceeeenenn 235

Table of Contents

Chapter 11: Creating Your Own Functions 239
The Role of Functions in VBA..........ccoooiriiiiiiiiicceeeeeeeee e 239
Creating Your Own FUNCHIONScociviiniiniiicitcecieceeeeseseee e 241

Passing data to a functioncccceevieeeiieciiencieeeeceeeeeee e, 242
Returning a value from a function..........c.cccceevveeeenienieneecieeieee, 243
Testing a custom funCtion.........cccceeceevieeiieciencieneeeeeeeeee e 244
A Proper Case FUNCHON.........ccoeiiiiiiieiieececiecccteeee e 245
Looking at how PCase() WOTKScccecveviiriinieniiicieeieeieeieeeee 247
Using the PCase() functioncocceevevvierienienienienenieeieeieeeee 248
A Function to Print Check AmMOuntscccceevevineneneencnnencenenreenen 251
Using the NumWord function............ccccooeveninienineneneneneceeee 254
Looking at how NumWord() WOTKSccceevieneenieeniienieeieeieeeeenes 256

Chapter 12: Testing and Debugging YourCode 265
Understanding Compilation and Runtimeccccoeeveieeviinciencienceeneennen. 266
Considering Types of Program Errors..........ccceceeveevieviniincencienceeneenen. 268
Conquering Compile EXrorsoccoeieveiiiienienienienieneeneesesie e 269

Expected: €XPreSSion........cociiiciieciieeiieeeeecreesie e 271
Expected: end of statementccceeveeeeiieiiiincieeeeceeeeeee e, 272
Expected: list SEPArator O)ccccecvevierieiiniieieieeere e 272
Dealing with Logical EXrors.........cccceeviecieiiieiieciecieceeseeeeieeieeveeneeenn 274
Checking on variables with Debug.Printccccccoevvvinviinniennnne. 275
Slowing dOWN COAEcuiviiiiiiiiiieeieeccecetee e 279
Getting back to normal in the Code windowccccceeeeviereennnnnne. 282
Wrestling Runtime Errors............ccooviieiiiiiciicieeeeee e 283
Responding to a runtime error.........cccceceeveeceeneeneesieeceeieeee e 283
Trapping runtime €rrorS........ccccvevveecieecienieeieeeeseese et sre e eee 285
Writing your own error handlers..........cccoeveveecienienieneeneeniennennn 288

Part U: Reaching Out with UBA...................ccccccceeeeeee.. 293

Chapter 13: Using VBA with Multiple Databases 295
Client-Server MiCrosoft ACCESScccevirierieriiriinieieeeietesie ettt 296
Importing from External Databases..........ccccoceevievieniieceeieeieeieceeceeeen 302
Linking to External Data through Code..........cccoceevivvinciinvinienienieeee. 304
Avoiding Multiple Tables and LinKs..........cccccoevvvvieinceeviereneneeeeeeeeeenen 305
Creating Recordsets from External Tablescccccoocevviniiniieniieniienennen. 308
Importing, Exporting, or Linking to Anythingcccccccevvvininincenennns 309

Using a macro to write the codec..coceeiiniiniiiiniinniicncneee 309
Quick and easy import/export/linK...........ccceceeveeceecieeciensienieeneennenn 312

Chapter 14: Integrating with Other Office Applications 315

Accessing the Object LiDrarycccccecvevieveecienienieeeeeeciecie e 315
Exploring a program’s object model............c.ccooceevirriirneeviencrennnenne 317
Meet the Application Object..........coccevviiviiiriiniiineeiceeeeeeeee e 318

Connecting to other Programsccccecevvieriieneeneenennennieneeseennes 319

xv

X(/i Access 2007 VBA Programming For Dummies

Sending E-Mail via OUtIOOKccevuiririiieiiiiniecicececeeee e 320
Sending Data to Microsoft Wordcccceeeevieniinienieciececiecveeeeeeeeen 325
Creating the Word template..........ccceeveviieeieeeiecienece e, 325
Creating the AcCess fOrmoccvevieviieriiiniiiniirieecece e 327
Writing the merge Codecooiiviiniiniiiiniiiienieteeeeeeee e 328
Interacting with Microsoft EXcelcccoviiieiiiiiiieeeeeeeee, 334
Creating the worksheet...........ccooceeiiiiiiininine e, 335
Creating a query and a fOrmcccceecveveieeieeiienienieseeseee e 336
Writing the Excel code........oooiviiiiiniinieiiciicecececeeeee e 337
Copying a table or query to a worksheet..........ccccceevvvvirvienciennnne. 342
Running Excel macros from ACCESScoceveeveeveenienniensienieneene 346

Part Ul: The Part of Tens........cccceceecceecareeseecsveeseeeeee 349

Chapter 15: Ten Commandments of WritingVBA 351
I. Thou Shalt Not Harbor Strange Beliefs about Microsoft Access........ 351
II. Thou Shalt Not Use VBA Statements in Vain.........cccceeevvieniienceeneennen. 351
IIl. Remember to Keep Holy the VBA Syntax......cccccoocevverviniieniienceneennen. 352
IV. Honor Thy Parens and Quotation Markscccccccceeevievcieenieeeeeennee. 353
V. Thou Shalt NOt GUESSccecveeieriieiieieeieeie ettt ete e ereeaeeseesseeseeas 354
VI. Thou Shalt Not Commit Help Adultery.........cccceeveveevieciencieeieeeenen. 354
VII. Thou Shalt Steal Whenever Possibleccceeeveevevievieneneeeceenen, 355
VIII. Thou Shalt Not Bear False Witness against Thy Object Browser355
IX. Thou Shalt Not Covet Thy Neighbor’s Knowledge...........ccccccceueeen. 356
X. Thou Shalt NOt SCIeamccccoeeeeeiriierieereeeeeeeeeee e 356

Chapter 16: Top Ten Nerdy VBA Tricks 357
Open a Form from VBA...........ccooiiiiiiieceeeeteeeeee et 357
See Whether a Form Is Already Open.........ccccocevieieienienienenenceeeeeeeeens 358
Refer to an Open FOImcooooiiiiiiieiiiciecccteeteeee e 358
Move the Cursor to @ Control........ccccoevveeienieiienieeeeeeee e 359
Change the Contents of @ COntrol.........cccoeceeviiniiniininienieeeeeeeeeeeen 360
Update a List Box or Combo BOXcccceeviieiiiiiicieeeee e, 360
Show a CUStOM MESSAZEc.veeuvieeiicereereeiiecteesre ettt reere e reesveas 361
Ask the User @ QUESTION........c.ecveeuieciieiiieieeieeieeeesee e 362
Print @ REPOTt ...ccuvieiiieieeeeeeee ettt 363
Get to Know the DoCmd ODbjectcccoeceeeieiieniineeieeieeieeieeeeseese e 364

JOACK «..neeeeeeeeaeeeeeeeeeeeaaeaaaaeaneseeeenaeaasannsssesesaaaananneeees 30T

Introduction

Welcome to Access 2007 VBA Programming For Dummies. As you already
know (we hope), Microsoft Access is a huge database management
program, offering lots of ways to manage data (information). Common uses of
Access include managing mailing lists, memberships, scientific and statistical
data, entire small businesses, and just about anything else that involves stor-
ing and managing large amounts of information.

As the title implies, this book is about using Visual Basic for Applications
(VBA) to enhance the power of Access databases. If you want Access to print
words on a check, skip mailing labels that you've already used, or manipulate
data behind the scenes, you have to write VBA code.

By the time you finish this book, you should know exactly what VBA is all
about and how it fits into Access. You’'ll discover the meanings of all those
obscure terms that programmers throw around — code, variable, array, loop,
object — as though they were common knowledge. You'll be able to write and
use your own, custom code, just like advanced programmers do.

This book covers VBA in Access 2007. Although many changes and improve-
ments to Access have occurred in all the versions that Microsoft has
released, the VBA programming language has hardly changed a bit over the
years. Although Access 2007 looks completely different from previous ver-
sions, the underlying objects are virtually unchanged. The code that you see
in this book should also work in Access 2000, 2002, and 2003. The vast major-
ity of the code in this book also works just fine even in last century’s ver-
sions, such as Access 97.

About This Book

We wish we could say that this book is exactly like a coffee-table book, where
you could just pick it up, flip to any page, and have everything make perfect
sense to you. Well, we could say that, but we’d be lying if we did. It’s not
because we want to break from the coffee-table book idea. It’s really more
because some stuff in life doesn’t make much sense until after you already
know something else.

2 Access 2007 VBA Programming For Dummies

Here, it isn’t really possible to make much sense of VBA code until you under-
stand what VBA code is and why it exists. And, we are talking about Microsoft
Access VBA here. To make sense of much of anything in this book, you have
to already be familiar with Microsoft Access tables, queries, forms, and
reports. We just don’t have enough room in this book to explain all that stuff
from scratch and still have enough pages left over to talk about VBA.

On the bright side, we did everything we could to make it easy to find what
you need to know, when you need to know it. You certainly don’t have to read
this book from cover to cover to make sense of things. After you find the
topic you're looking for, you should be able to read through the section and
be done with it quickly. Often, you can skip reading sections altogether and
get all you need to know from looking at the figures.

Conventions Used in This Book

While we’re on the topic of using this book without boring yourself to death
by attempting to read it, we also stuck with some conventions for displaying
text in these pages. For example, any VBA programming code appears in a
monospace font with a gray background, like this:

'VBA code to say Hello World on the screen.
Sub Hello()

MsgBox "Hello World"
End Sub

When we have just a little chunk of code to show in text, like this — Dim Wit
As Date — you can see what is and what isn’t VBA code.

The = symbol that you see in text separates individual menu options (com-
mands) that you choose in sequence. For example, rather than say “Choose
New from the File menu” or “Click File on the menu bar and then click New on
the drop-down menu,” we just say

Choose FilecoNew from the menu bar.

When you see something in bold, we want you to enter (type) it.

What Vou're Not to Read

Not many people in the world would put reading a computer book into the
Read for Fun category. We think that reading a computer book is more likely
to fall into the Read for Work or Don’t Read category. To minimize the time

Introduction

you have to spend away from the fun stuff, we put some information in side-
bars and beside Technical Stuff icons. That information is definitely optional
reading that you’re welcome to ignore.

Foolish Assumptions

To stay focused on VBA in this book, we need to assume that you're already
familiar with Access and that you're comfortable creating tables, forms,
reports, and queries. However, we don’t assume that you're a true Microsoft
Access expert. Let’s face it: Access isn’t exactly an easy program for most
people to tackle.

Another assumption we make is that you have already created an Access
database with at least some tables and forms in it. In fact, writing VBA code is
usually the last step in creating a custom Access database.

Finally, we don’t assume that you’re already an accomplished programmer
who is just picking up a new programming language. Rather, we assume that
you’ve never written any programming code in your life — and maybe you
aren’t even all that sure what programming code means or how it relates to
Microsoft Access.

How This Book Is Organized

All books contain a lot of information. That’s what makes them books. To
break down topics into smaller, more manageable chunks, we split this book
into six main parts.

Part I: Introducing VBA Programming

This part has all the information you need to get started. If you've already
been using VBA for a few months or years, you can skim this part. If you
don’t know a VBA procedure from a PTO meeting, you might want to take a
closer look at Part I before venturing forth to other parts.

Part II: UBA Tools and Techniques

Here you discover how to write VBA code to make Access do things for you.
For example, you’ll see how you can make Access open forms, respond to
button clicks, change the appearance of objects, and more.

4 Access 2007 VBA Programming For Dummies

Part I1I: UBA, Recordsets, and SOL

Here you get friendly with tools and techniques for managing your Access
tables by using VBA with SQL (Structured Query Language) and recordsets.
All those buzzwords make this process sound more technical than it really is.
But as you'll see, if you’ve done anything at all with queries, you’'ve already
been working with SQL recordsets. The idea is the same. We just use fancier
terminology in the VBA world.

Part 1U: Applying UBA in the Real World

In this part, you get into some more advanced programming tricks, mostly by
using techniques presented in earlier parts in new and creative ways. You'll
also see how to use the VBA debugging techniques, which can be real life-
savers when things go wrong and you just can’t figure out why the code you
wrote isn’t doing what you intended.

Part U: Reaching Out with UBA

VBA isn’t a programming language solely for Microsoft Access. You can also
use VBA to customize all the Microsoft Office application programs, including
Word, Excel, and Outlook. Furthermore, VBA can import data from, and
export data to, a variety of formats that extend its reach even beyond
Microsoft Access. Part V shows you how that’s all done.

Part Ul: The Part of Tens

What For Dummies book would be complete without a Part of Tens? Ten is such
a nice number to work with, given our ten fingers and all. Chapter 15 covers the
main strategies that you can adopt to avoid going crazy trying to get VBA to do
your bidding. Chapter 16 goes over the top ten nerdy programming tricks you're
most likely to want to do almost from your first day of using VBA.

Icons Used in This Book

As you flip through this book, you’ll notice little icons sprinkled throughout
its pages. These icons, as described here, point out little chunks of text that
deserve either a little extra attention or very little attention:

Introduction

A\

Tips point out handy tricks or techniques that can make things easier for you
when you’re working with VBA.

These icons point out techniques that, if you do things wrong, might create
problems. If you pay attention to the Warnings we give, you can avoid making
common blunders.

These icons point out tools and techniques that you’ll use often as you work
with VBA. Keep them in mind.

These icons point out text that describes how or why a thing works the way
it does from a technical standpoint. If you just want to get a thing to work and
don’t care about how or why it works, you can always skip these.

Web Site for This Book

If you can find a way to copy and paste — rather than type — VBA code into
your database, go for it. Much of the sample VBA code shown in this book is
the kind of thing you can just drop into an Access database and start using.
There’s no need to retype the whole thing. Anyway, we post all the useful
code at this Web site:

www . dummies.com/go/access2007vbaprog
When you get to the site, you'll see where to find the code and how to copy

and paste it into your own database, and find a link where you can send us
your questions.

Where to Go from Here

Now that you know what this book is about and how it’s organized, the next
question is “Where do I start?” Your best bet, if you're an absolute VBA begin-
ner, is at Chapter 1. Try to slog through the first three (short) chapters to get
your bearings.

Experienced VBA users can probably start anywhere that looks interesting. If
you get in over your head at some point, watch for cross-references to earlier
chapters where you can quickly fill in the knowledge gap that’s causing the
confusion.

6 Access 2007 VBA Programming For Dummies

Part|

Introducing VBA
Programming

The 5th Wave By Rich Tennant

“Omnce
based program, she seemed to warm vup to it.”

In this part . . .

u3A lets you do some pretty amazing stuff in an Access
database. With VBA, you can make Access do boring,
repetitive jobs that you might otherwise have to do on your
own. You can even get Access to do things that it couldn’t
possibly do on its own. Before you dive right in and try to
make such things happen, you need to step back a moment
and get a feel for how VBA fits into the whole Microsoft
Access scheme of things. Then you need to get friendly
with the tools available to you for turning ideas into stuff
that actually happens when you want it to happen. We lead
you through all of that in Chapters 1 and 2.

With your road map and tool kit in hand, you’ll be ready
to get into what Access VBA is really all about — writing
code (also known as programming) — to make Access do
exactly what you want it to do. Yes, you write code by
simply typing it, unless, of course, you can just copy and
paste the code, as is often the case. Chapter 3 talks about
both writing and swiping VBA code.

Chapter 1

Where VBA Fits In

In This Chapter

Describing Access

Discovering VBA

Seeing where VBA lurks
Understanding how VBA works

Fis book is about using Visual Basic for Applications (VBA), which is a
programming language that helps you program, tweak, and squeeze pro-
ductivity from Access. VBA, which is embedded in Access, is a sophisticated
set of programming tools that you can use to harness the power of a pack-
aged application like Access. Just like you need to know how to walk before
you can run, you need to know how to use Access before you can start to use
Access VBA.

Maybe you want to use Access to manage a large mailing list. Maybe you
need Access to manage your whole business, including customers, products,
and orders. Perhaps you need to manage enrollments in courses or events.
Whatever your reason for using Access, your first step is always to create the
tables for storing your data. From there, you can then create queries, forms,
reports, and macros to help manage that data. All these steps take place
before you even get into VBA, so in this book we have to assume that you're
already an experienced Access user who needs more than what queries, forms,
reports, and macros can provide. If you’re new to Access, this book isn’t a
good place to start. If you need to brush up on Access, Access 2007 For Dummies
(by John Kaufeld, Laurie Ulrich Fuller, and Ken Cook; Wiley Publishing) or
Access 2007 All-in-One Desk Reference For Dummies (Alan Simpson, Margaret
Levine Young, and Alison Barrows; Wiley) is a good place to start.

Although Access has progressed through many versions over the years, VBA
has remained relatively unchanged. We used Access 2007 to create this book,
but the code examples we present should work fine in just about any version
of Access. So now, before launching into VBA, take a moment to delve into
what tables, queries, forms, and reports are all about, and how VBA fits into
the overall scheme of things.

’ 0 Part I: Introducing VBA Programming

Taking a Look at Access

|
Figure 1-1:
The Access
Navigation
pane.
|

Access, part of the Microsoft Office suite, is a huge database management
system that you work with by using modern object-oriented methods. (The
term object-oriented stems from the fact that everything you create in Access —
a table, form, report, or whatever — is considered an object.

The Access Navigation pane, as shown in Figure 1-1, is the main container in
which you store all the main objects that make up a single database. The
Navigation pane breaks down the objects into groups — tables, queries,
forms, and so on — and each group contains the objects within that group.
The following list summarizes the types of objects.

I 5 i o e ox
@ el 9 - o s WBA Durnimies
G
| Home | Creste BxemalDats DatabaseTools @
v gt 2 vz @ % 2
v | o @ P[] AR i =
iewr 'aste ilter ize to ite iny
DS | 7] V|| Fit Form Windows = ||~

Wiews | Cliphoard T3 Font il Rich Text Sort & Filter i oy

All Access Objects IR

Tables
Queries

Forms

Reports

Macros
Modules

% initCaps
s Modulel

2 ||)|«

Ready | Num Lock |

Groups Navigation pane

v~ Tables: Tables contain the raw data that all other object types display and
manage. Data in tables is stored in records (rows) and fields (columns).

v Queries: Use qgueries to sort and filter data from one or more tables.

v Forms: Access forms are similar to printed fill-in-the-blank forms, but
they allow you to view and change data stored in Access tables.

v Reports: Reports define how data should be presented on printed pages.

v Macros: Macros provide a means of automating certain aspects of
Access without programming in VBA.

v Modules: The Modules group, as you soon discover, is one of the places
where you store VBA code. If you're not already familiar with modules,
that’s fine. Modules are what this book is really all about.

Chapter 1: Where VBA Fits In

One of the most important things to understand is that you don’t use VBA
“instead of” other objects, like tables and forms. You use VBA to enhance the
capabilities of other object types. Therefore, it makes no sense to even try
VBA until you have a firm grasp of the purpose and capabilities of those
other object types in Access.

Understanding VBA

|
Figure 1-2:
Some
sample VBA
code.
|

Visual Basic is a programming language — a language for writing instructions
that a computer can read and process. VBA is a programming language that’s
specifically designed to work with the application programs in Microsoft
Office including Word, Excel, Outlook, and, of course, Access.

When you write text in a programming language (as opposed to writing in
plain English), you're writing code. Programmers use the term code to refer to
anything that’s written in a computer programming language. For example,
Figure 1-2 shows some sample VBA code. The whole trick to mastering VBA is
finding out what all the various words in the language mean so that you can
write code that tells Access exactly how to perform a task.

Public Function PCase (anyText)
'Custom Access VEL function to fix all uppercase letters.

PCase = ZtrConvianyText, wvhProperCase
If Left |(PCase, 4) = "P.o."™ Then
PCase = "P.0." & Mid(PCase, 5)
End If
If Left (PCase, 2) = "Mc"™ Then
PCase = "Mc" & UCase (Mid(PCase, 3, 1)) & Mid(PCase, 4)
End If
If Left (PCase, 3) = "Mac" Then
PCase = "Mac" & UCase (Mid(PCase, 4, 1)) & Mid(PCa=se, 3}

End If

End Function

If the sample code shown in Figure 1-2 looks like meaningless gibberish to
you, don’t worry about it. People aren’t born knowing how to read and write
VBA code. Programming (writing code) is a skill you have to learn. For now,
it’s sufficient just to know what code looks like. Knowing what the code
means is one of the skills you master in this book.

Because VBA code looks like a bunch of meaningless gibberish typed on a sheet
of paper, it begs the question of why anybody would want to figure out how
to read and write a dreadful language like that one. The answer to that ques-
tion lies in the role that VBA plays in an application like an Access database.

11

12

Part I: Introducing VBA Programming

Do, not die

Think of the term execute in the sense of “to execute a procedure. Don't think of execute in
carry out,” as when you execute a U-turn or the sense of “terminate the life of.”

MBER
‘g&
&

Access does indeed have a ton of tools that let you create a database without
any programming. You could easily spend months or years just finding all the
things you can do in Access without writing any VBA code. Yet despite the
huge number of things you can do without programming, sometimes you
want your database to accomplish a task that’s not built into Access. That’s
where VBA comes in. When you want Access to perform a task that it doesn’t
already know how to perform, you write the steps to be performed in the
VBA programming language.

When you’re writing VBA code or just looking at some VBA code written by
someone else, Access doesn’t do anything. Access doesn’t start performing
the steps described by that code until Access executes the code. When you
write VBA code, you're writing a set of instructions that Access can perform
at any time, over and over again.

The ability to use the same code over and over again is the key to automating
mundane tasks in Access. For example, if you use Access to print checks, you
might have to manually type the part of the check where you spell out the
amount, like “Ninety-two and 99/100 Dollars” for $92.99 because Access can’t
make that translation on its own. But if you could write some code to trans-
late a number like $92.99 into words, you wouldn’t need to type all those
dollar amounts. Access would just print the correct information as it prints
each check.

Seeing Where VUBA Lurks

In an Access database, VBA code is stored in modules. Despite its fancy
name, a module is basically an electronic sheet of paper on which VBA code
is typed. A module in Access is either of these two types:

v~ Standard: A page that contains VBA code that’s accessible to all objects
in the database. A standard module always exists in the Modules group
in the Navigation pane.

v Class: A page of VBA code that’s attached to every form and report you
create. You can also create a class module that appears in the
Navigation pane.

|
Figure 1-3:
Standard
and class
modulesina
database.
|

\\3

Chapter 1: Where VBA Fits In ’3

The main difference between a standard module and a class module is that
you can create an instance of your class module in code. A standard module
contains procedures you can run from anywhere in your database. A class
module contains code that’s either attached to an existing form or report or
is its own entity in the Navigation pane.

We talk about the types of modules as they become relevant throughout this
book. Right now, they’re not terribly important. For now, the main thing to
keep in mind is that modules contain VBA code. Now take a look at where
modules are stored within an Access database.

Finding standard modules

A standard module contains VBA code that’s accessible to every table, query,
form, report, page, and macro within the current database. Like those other
objects, a standard module always gets its own group in the Navigation pane
(refer to Figure 1-1). When you open the Modules group, the list shows the
names of modules (if any) within the current database, as shown in the exam-
ple in Figure 1-3. This example contains standard modules and class modules.

All Access Objects v o«
Search., pel
Tables ¥
Queries ¥
Forms ¥
Reports ¥
Macros ¥
Modules S
] dsCustomerOrders
Bl cstventary
B cisprivileges — Class modules
B csPurchaseCrders
B cssafeRecordset
% ErrorHandling
& InventoryCheck
L |
@ Login Standard modules
& SafeDomainFunctions
i Utilities

Don’t be surprised if you open the Modules group in a database and the
group is empty. These modules don’t just happen: You have to create them.

Finding class modules

Like standard modules, class modules contain VBA code that tells Access
what to do. Unlike standard modules, however, not all class modules are

’ 4 Part I: Introducing VBA Programming

found in the Navigation pane. Class modules are often hidden behind forms
and reports in your database. You can also create a class module that
appears in the Navigation pane, as shown in Figure 1-3.

It might help to define the term class as a class of objects. In Access, tables are
one class of objects, queries are another class, forms are another class, and
reports are another, for example. Or, looking at it from the other direction, a
single form is an object within your database. That single form is also a
member of the class of objects known as forms.

We think that it helps to envision a form or report’s class module as literally

being hidden behind its form or report, as illustrated in Figure 1-4. This type
of class module might be hidden from you if you don’t know how to find it.

Class module behind form

Option Compare Database
oprion Explicic

Private Sub Form Loadi)

He. LotBaplogaall o Gctiurrencioerihl)

End Sub =
=8| Home -0

Private Sub lbl
on Error 6o
If (Mot Yesd

With Curre
.Execut
.Execut
.Execut
.Execur
.Execut
.Execun
.Execut
.Execut

—— End With
- Done:
Flg“re 1-4: e etresnsust
Exit Sub
Class
ErrorHandler:
modules LogError Ex
. Resume Dons
typ|ca||y End Sub

hide behind | rrivate sus ros
Refresh3ubt
formsand |z sw

repor‘ts.

4 Ll] 3

Form

You have several ways to get to a form’s or report’s class module, as you dis-
cover in upcoming chapters. For now, if you just want to open a class module
and have a look, here’s one way to do it:

1. In the Navigation pane, open the Forms group or Reports group,
depending on which type of object you want to open.

|
Figure 1-5:
Class
modules are
accessible
from form
and report
Design
views.
|

Chapter 1: Where VBA Fits In ’5

2. Right-click the name of any form or report and choose Design View.

3. To see the class module for the open form or report, click the (Form
Design Tools) Design tab, and then click the View Code command in
the Tools group (see Figure 1-5).

(@ w9 -« 5 WBA Durmies Farm Design Tools St
a ———
Harne Create External Data Database Tools Design Arange @
?l A @ [] & |abl BB~ [& db=S = - |k ‘I[‘j <A ﬁtk
- o =) =
R laBOFEDE®| =% B LA
View || Font | Gridlines Loga . o s | Peld Existing Property
. - R aEFBE @0 | ZL-s 2 Fields Sheet
Wiews Gridlines Contrals Taols
» [view code]
%lfrmcustumers - = x

O L R

|| # Form Header

Navigation Pane

DesignView | hum Lock 2= %l

Form open in Design view

From UBA to Access

When you open a module, whether it’s a standard module or a class module,
your screen changes radically. That’s because the module opens in the Visual
Basic Editor, which is a separate program window from Access. In fact, if you
look at the taskbar, you still see a taskbar button for Access and another for
the Visual Basic Editor. You can switch back and forth between Access and
the editor just by clicking their respective taskbar buttons, as shown in
Figure 1-6.

Alternatively, you can press Alt+F11 to switch back and forth between Access
and the VBA Editor at any time.

If the module you open contains any VBA code, that code is visible in the
Code window, also shown in Figure 1-6. If you upgraded a database from a
previous version of Access, a class module might contain VBA code, even if
you never wrote a line of VBA code in your life, because some of the control
wizards in Access 2003 and earlier automatically wrote VBA code for you
behind the scenes. In Access 2007, the wizards create embedded macros,
which is a new feature that we don’t cover in this book.

10

|
Figure 1-6:
Use the
taskbar to
switch
between the
Visual Basic
Editor
window
(shown) and
the Access
window
(hidden).

|
Figure 1-7:
The Visual
Basic Editor
File menu.
|

Part I: Introducing VBA Programming

[Cal Visual Basic - initCaps (Code)] DE|
& File Edit View Insert Debug Run Tocls Add-ns Window Help Type a question for helf » _ & x
Bz 3 (239 b0 @B W @ n2, calis -

X[(Generan v| |pcase ~
B33 = Option Compare Database [~
= & ¥BADummies (YBADUmmies) Option Explicit
=423 Microsoft Office Access Class Objects
-8 Form_frmCustomers Public Function PCase(strText)
455 Modules |Custom kccess VBL function to £ix all uppercase letters
A% initcaps
W& Module1 PCase = ScrConvistrText, vbProperCase)
If Left(PCase, 4] = "F.0.” Then
PCase = "P.0." & Mid(PCase, 5)
End If
If Left(PCase, 2] = "Me" Then
PCase = "Mc" & Ucase(Mid(PCase, 3, 1)) & Mid(PCase, 4}
End If
If Left(PCase, 3] = "Hac” Then
PCase = "Mac” & UCase (Mid(PCase, 4, 1)) £ Hid(FCase, S5)
End If
End Function
x| v
initCaps Madule ~| IZ= >

Alphabetic | Categorized *|
l{tlame) initCaps. 0

v
< 3]
ﬂ e o | 2 vea pummies 5:37 M

Code window

The main thing to keep in mind here is that every time you open a module,
you end up in the Visual Basic Editor. You discover how to use that program
in upcoming chapters. For now, the most important thing to know is how to
close the editor and get back to the more familiar Access program window.
Here are two easy ways to close the Visual Basic Editor and get back to the

Access program window:

v Choose File>Close and Return to Microsoft Office Access (see Figure 1-7).

v Press Alt+Q.

ﬁ Microsoft Visual Basic - ¥BADummies - [initCaps (Code]]
Edit Wiew Insert Debug BRun Tools Add-Ins Wincdow Help
[B] [Save vBADumiMmies cr+s B | @ |
Import File.., Ctrl+m
Export File.., Ctrl+E [ore pacabase
Remove initCaps... ieit
o Print.. Ctrl+P [tion PCase(s
X Close and Return to Microsoft Office Access Alt+Q Aoeess VEL
g Modulel Peaze ¥ Strlonvistr
If Left (PCase, 4) =
PCase = "P.O."
End If

Chapter 1: Where VBA Fits In ’ 7

The Visual Basic Editor closes, its taskbar button disappears, and you return
to the Access program window.

Finding Out How UBA Works

When you open a standard module or class module, there’s no telling exactly
what you see inside. Some modules are empty; others already contain some
VBA code. It all depends on the life history of the module you open. One
thing is for sure: If any VBA code is in the module, it’s likely organized into
one or more procedures.

The term procedure in everyday language usually refers to performing a
series of steps in order to achieve some goal. For example, the procedure of
getting to work every morning requires a certain series of steps. The same
definition holds true for VBA code.

Discovering UBA procedures

A VBA procedure is a series of instructions written in VBA code that tells an
application (like Access) exactly how to perform a specific task. In VBA code,
each step in the procedure is a single line of code: a statement. When Access
executes a VBA procedure, it does so step-by-step, from the top down. Access
does whatever the first statement tells it to do. Then it does whatever the
second statement tells it to do, and so forth, until it gets to the end of the
procedure.

Exactly when Access executes a procedure is entirely up to you. Typically,
you want to tie the procedure to some event that happens on-screen. For
example, you might want the procedure to perform its task as soon as some-
one clicks a button. Or perhaps you want your procedure to do its thing
whenever someone types an e-mail address into a form. We talk about how
that all works in Chapter 6. For now, just realize that you can tie any proce-
dure you create to any event you like.

When the event to which you've tied your procedure occurs, Access calls the
procedure. What that means is that Access does exactly what the VBA code
in the procedure tells it to do. You can envision the process as shown in
Figure 1-8 where

1. An event, such as clicking a button, calls a procedure.

2. Access executes the first line in the called procedure; then it executes
the second line in the procedure; and so on.

18

Part I: Introducing VBA Programming

|
Figure 1-8:
Executing a
procedure.
|

\\3

3. When Access encounters the end of the procedure (which is either End
Sub or End Function), it just stops executing code and returns to its
normal state.

(@
A&

1) Access events calls procedure

Fub Magic Click()
2) Do this Step —> Dim Answer is Byte, Msg ks String
3) Do this step — inswer = HsgBox ("Do you eat meat?”, vhVesNo, "Question”)
4) Do this Step —> Msg = "You are" & IIf(inswer = vhkNo, " not™, "") & " omnivorous."
5) Do this step —> Lnswer = MsgBox (Msg, vhOKOnly, "Info")

Do no more ena sun

If you think of a line of VBA code as a sentence containing words, a procedure
is a paragraph containing more than one sentence.

Recognizing UBA procedures

VBA has two types of procedures. One type is a Sub procedure. A Sub proce-
dure is always contained within a pair of Sub. . .End Sub statements, like this:

Sub subName(...)
'Any VBA code here
End Sub

The subName part of the example is the name of the procedure. The (.. .) part
after the name can be empty parentheses or a list of parameters and data types.
The 'Any VBA code here part stands for one or more lines of VBA code.

When looking at code that has already been written, you see that some Sub
procedures have the word Public or Private to the left of the word sub, as
in these examples:

Private Sub subName(...)
'Any VBA code here
End Sub

Public Sub subName(...)
'Any VBA code here
End Sub

|
Figure 1-9:
A module
containing
three
procedures.
|

Chapter 1: Where VBA Fits In ’ 9

Public or Private defines the scope of the procedure. Neither type is par-
ticularly important right now. All that matters is that you know that a Sub
procedure is a chunk of VBA code that starts with a Sub or Private Sub or
Public Sub statement and ends at the End Sub statement.

If you must know right now, a Public procedure has global scope (is avail-
able to all other objects). A Private procedure is visible to only the module
in which it’s defined. For example, Private Sub procedures in a class
module are private to the form or report to which the class module is
attached.

The second type of procedure that you can create in Access is a Function
procedure. Unlike a Sub procedure, which performs a task, a Function pro-
cedure generally does some sort of calculation and then returns the result of
that calculation. The first line of a Function procedure starts with the word
Function (or perhaps Private Function or Public Function) followed
by a name. The last line of a Function procedure reads End Function, as
illustrated here:

Function functionName(...)
'Any VBA code here
End Function

A module can contain any number of procedures. When you open a module,
you might at first think you’re looking at one huge chunk of VBA code. But in
fact you might be looking at several smaller procedures contained within the
module, as shown in the example in Figure 1-9. Notice how each procedure
within the module is separated by a black line that’s the width of the page.

£ VBA Dummies - Form_Form1 (Code) [S[E]=]
[PrevRecButton =] Jetick =

Option Compare Database

Zub Magic_Click()
Dim Answer ALs Bwyte, Msg As String

Procedure_ Answer = MsgBox ("Do wou eat meat?”, vhY¥esNo, "Question®)
Msg = "Vou are™ & IIfi(Answer = whNo, ™ not®™, ""] & " omnivorous.™
Answer = MsgBox (Msg, vhOKEOnly, "Info™)
End Zub
Priwvate Jub FirstRecButton_Click(
Procedure —|
DoCrd.GoToRecord , , acFirst
End Sub o

Function IsOpenistrFornMNewe As String) As Boolean
Dim myObject As AccessChject
et mylbject = CurrentProject.illForms (strFornlesme
If myChject.IsLoaded Then
If myChject.CurrentView <> acCurViewDesign Then
IsCpen = True
End If
End If
End Function

SRV sl

Procedure —

20 Part I: Introducing VBA Programming

That’s the view of Microsoft Access and VBA from 30,000 feet. Just remember
that VBA is a programming language that allows you to write instructions that
Access can execute at any time. You can write different sets of instructions
for different events. Each set of instructions is a procedure, which is a series
of steps carried out in a particular sequence to achieve a goal. You write and
edit VBA code in the VBA Editor.

The beauty of it all is that you can write lots of little procedures to handle
some of your more mundane tasks automatically and effortlessly. You can
also extend Access’s capabilities by writing procedures that do the tasks
Access can’t do on its own.

Chapter 2
Your VBA Toolkit

In This Chapter
Using the Visual Basic Editor
Understanding references and object libraries
Using the Object Browser

A s we discuss in Chapter 1, any time you want to work with Access VBA
code, you need to open (or create) a module. As soon as you open one,
you’re taken to a program window that’s separate from the Access program
window. The program that opens and allows you to create or edit VBA code
is the Visual Basic Editor (also called the VBA Editor).

It might seem strange that a whole separate program window opens each
time you want to write or edit VBA code, but there’s a reason: VBA is the pro-
gramming language for all the programs in Microsoft Office. Whenever you
want to create or edit VBA code in any Microsoft Office program window, you
use the same Visual Basic Editor. Read through this chapter for all the buzz-
words and skills needed to work in the Visual Basic Editor.

Using the Visual Basic Editor

The Visual Basic Editor — where you write, edit, and test your VBA code —
contains lots of optional tools and panes. There are so many of them, in fact,
that we can’t even tell you exactly how the editor will look on your screen the
first time you open it. However, it will likely contain at least some of the com-
ponents shown in Figure 2-1.

22 Part I: Introducing VBA Programming

[Microsoft Visual Basic - VBA Practice ==&
i File Edit View Insert Debug Run Tools Addlns Window Help Type aguestion for help =
HE I 88~ NP | [p 0 0 &R @ -]
T e | .
= | <4 VBA Practice - Module1 (Code) : =EE
%% VBA Practice (¥BA Practi Itcenem) El Imec'am'ons) :l'
=5 Modules Option Cowpare Database =
%% Modulet —
——— —EE | 2l
< I E
Figure 2-1: -] (=<'~ x
Some of the [Moduid1 modie = ! B
Visual Basic | #ehstpti | categoried |
Editor (Mame) Modulel
optional
panes. | =
4 | o
Properties window Immediate window Code window Standard toolbar

Project Explorer

Like most program windows, the Visual Basic Editor has a title bar and menu
bar at the top. Optional toolbars appear under the menu bar. You can hide or
show any toolbar at any time by choosing Views>Toolbars from the menu bar.
Select the check box for the toolbar you want to show; deselect the check
box to hide that toolbar.

The View menu also provides options for making the various panes shown in
Figure 2-1 visible. For example, if you don’t see the Immediate window,
choose View=Immediate Window from the menu bar to make it visible. To
close an open pane or window inside the VBA Editor, click the Close (X)
button in the upper-right corner of the pane that you want to close.

In Figure 2-1, the optional panes are docked (attached) to the VBA Editor pro-
gram window. You can undock any pane and change it to a free-floating window.
Just drag the item’s title bar toward the center of the program window and
release the mouse button. For example, Figure 2-2 shows the Project Explorer
pane still docked and the Properties window undocked. The title bar for each
item is also pointed out in the figure.

Chapter 2: Your VBA Toolkit 2 3

|
Figure 2-2:
Examples of
docked and
undocked
panes.
|

View Code
View Object

Toggle Folders

] Microsoft Visual Basic - VBA Practice

EEiI Edit View Insert Debug BRun Tools Add-Ins Window Help
H A= W EEE N N RN A N

Prﬁec - YB& Practice x|
M= B

Properties - Modulel x|
=-&3 YBA Practice (¥BA|Practice)
455 Modules IMnduIel Module ;I

i Madule1} Alphabetic | Categorized |
(Mame) Modulel

Docked Title bars Undocked

If you undock a pane, you can generally re-dock it by dragging it back to any
edge of the VBA Editor program window. If the pane refuses to dock, try right-
clicking within the pane and choosing Dockable from the contextual menu
that appears. Then drag the pane to an edge or border if it doesn’t dock right
on the spot.

You can size any pane (or free-floating window) by dragging any edge of the
item. For example, when both the Project Explorer and Properties panes are
docked, you can widen or narrow them both by dragging the right edge of
one of those panes. Drag the bottom edge of a pane to make it taller or shorter.

Whether you really need all the panes open depends on what you’re doing at
the moment within the VBA Editor. You'll probably spend the vast majority of
your time in the Code window. Before we discuss that window, take a quick
look at the optional Project Explorer and Properties windows.

Using Project Explorer

Project Explorer provides a list of all the modules contained in the current
database (which is whatever database happens to be open in Access at the
moment). The Toggle Folders button on the Project Explorer toolbar determines

24 Part I: Introducing VBA Programming

A\

A\

how the module names are displayed. When the Toggle Folders button is
turned on, module names are shown in these three separate folders:

1 Microsoft Office Access Class Objects: Lists the names of all form and
report class modules in the current database. The name of the class
module is the same as the form or report name, preceded by Form_ or
Report_.

1 Modules: Lists the names of all standard modules in the current database.

v Class Modules: Lists the names of class modules that appear in the
Navigation pane of the current database.

If a folder has a plus sign (+) next to its name, you can click that + to view
objects within the folder. Conversely, clicking the minus sign (-) next to
either folder name collapses the folder and hides its contents.

To open a module in the VBA Editor, just double-click its name in Project
Explorer. Each module that you double-click opens within its own Code
window (described a little later, in the section “Using the Code window”).

For form and report class modules, Project Explorer also provides quick
access to the form or report to which the module is attached. Just right-click
any class module name and choose View Object. The form or report opens in
Design view in Access. The VBA Editor might then be covered by the Access
window. However, the editor is still open, so you can get back to it by clicking
its taskbar button.

The buttons to the left of the Toggle Folders button — View Code and View
Object — also provide a means of switching between a class module and the
object to which it’s attached. Press Alt+F11 to switch back and forth between
the Access and VBA Editor program windows.

Using the Properties window

The Properties window in the VBA Editor can be quite perplexing because it
displays the properties of whatever object is selected in Access. If nothing is
selected in Access, the Properties window might show nothing. That’s often
the case when you’re working with standard modules because standard mod-
ules aren’t tied to any particular object or event.

To illustrate how things tie together, Figure 2-3 shows a portion of a form, in
Design view, in Access. A subform on the form is selected. In the VBA Editor
window, which also appears in Figure 2-3, the properties for that selected
subform appear in the VBA Editor Properties window.

\\3

|
Figure 2-3:
A sample
Properties
window and
Project
Explorer.
|

Chapter 2: Your VBA Toolkit 2§

In that same figure, you see an example of how Project Explorer might look in
a database that already contains some modules. The modules whose names
begin with the word Form_ are all class modules that are attached to forms in
that database.

Perhaps the most important thing to remember about Project Explorer and
the Properties window is that they’'re optional, and you really don’t need
them taking up space in your VBA Editor when you’re not using them. Most
of the time, you probably won’t use them, so feel free to close those panes
and forget about them if they just get in the way and confuse matters for you.

VBA Project Explorer lists all
modules in the current database

H 9 - 5 Farrm Design [Taols

-
-
Z
Harne Create External Data Database Tools Design Arrange
Ij A [0l _E1 | ahl BB M 2 S l=- 10
= fﬁMicrusuf{ Visual Basic - Northwind 2007 -
Wiem Font || Gridlines ; Log @ file Edit wiew Insert De ug Run

ieins Gridlines @ - =

===

E-ﬁ Northwind 2007 (Northwind 200[7) (]
B 5 Microsoft Office Access Class Objec
-8 Form_active Orders Subform|Fo
Farm_Haorme =
Form_Inventory List
Form_Order Details
Form_Order Subform for Order —
Form_Purchase Order Details
Form_Purchase Crder List
Form_Purchases Subform for PL
= -E8 Form_Recsiving Subform for Puis |
< I >

Navigation Pane

| sbfactiveorders SubForm B3|

J| Alphabetic |Categor\zad|

i (Mame) sbfactiveOrders ~
. ‘|| [Bordercalor 16251385 (||
< BorderStyle 1

Design Wiew Murm Lock | [Borderiwidth 1

H

EottomPadding 30

(CanGrow True
Canshrink False
ControlType

VBA Properties window shows
properties of selected Access object

Selected object on Access form

26

Part I: Introducing VBA Programming

|
Figure 2-4:
Testing a
simple
expression
in the
Immediate
window.
|

Using the Immediate window

The Immediate window in the Visual Basic Editor allows you to run code at
any time, right on the spot. This window is sometimes referred to as the
debug window because it’s mainly used for testing and debugging (removing
errors from) code. If the Inmediate window isn’t open in the Visual Basic
Editor, you can bring it out of hiding at any time by choosing View=
Immediate Window from the editor’s menu bar.

When the Immediate window is open, you can anchor it to the bottom of the
Visual Basic Editor by dragging its title bar to the bottom of the window. You
can optionally make the Immediate window free-floating by dragging its title
bar up and away from the bottom of the Visual Basic Editor’s program
window. You can also dock and undock the Immediate window by right-
clicking within the Immediate window and choosing Dockable.

The Immediate window allows you to test expressions, run VBA procedures
you created, and more. You see practical examples throughout this book. To
get your feet wet, test this simple expression in the Immediate window. Just
bear in mind that an Access expression is any formula. For example, the sim-
plest expression in the world is probably 1+1, which (as just about everyone
knows) results in 2.

To test an expression in the Immediate window, do the following:

1. Click inside the Immediate window.
You need your cursor in that pane.

2. Type a question mark (?) followed by a space and the expression you
want to test; then press Enter.

For example, click in the Inmediate window and then type ? 1+1.

The Immediate window immediately shows you the result — 2 — as
shown in Figure 2-4.

Immediate

Hx

? 1+l
z

Chapter2: Your VBA Toolkit 2/

\\3

You might think of the ? character at the start of the line as asking the
Immediate window “What is?” For example, if you think of ? 1+1 as meaning
“What is one plus one?”, it stands to reason that the Immediate window
would return 2. After all, 1+1 is 2!

When you start actually writing VBA code, you’ll use the Immediate window
to test and debug your code. For now, just know that the Immediate window
is another optional pane in the Visual Basic Editor that you can show and
hide as needed.

Using the Code window

The VBA Editor’s Code window is where you write, edit, and view VBA code.
The Code window is similar to a word processor or text editor in that it sup-
ports all the standard Windows text-editing techniques. For example, you can
type text and use the Backspace or Delete keys to delete text. And just like in
Word, you can press the Tab key to indent text, select text by dragging the
mouse pointer through it, and copy and paste text (to and from the Code
window). In short, the Code window is a text editor.

Like all panes in the Visual Basic Editor, the Code window can be docked or
undocked. Choosing one view or the other is just a matter of personal prefer-
ence and doesn’t affect how you write and edit VBA code. You can easily
switch between docked and undocked views.

When the Code window is undocked, it has its own title bar and can be
moved and sized independently. To dock an undocked Code window, click
the Code window’s Maximize button, as shown in Figure 2-5.

When the Code window is docked, it fills the available space in the VBA
Editor window, and its Minimize, Restore, and Close buttons appear near the
upper-right corner of the VBA Editor’s program window. Clicking the Code
window’s Restore Window button (also shown in Figure 2-5) undocks the
Code window and allows it to float freely.

As we mention earlier, the Code window is really a small word processor or
text editor. But word processors tend to be oriented around paragraphs of
text, whereas the Code window is built for typing individual lines of code.
Unlike a word processor — where you don’t press Enter until you get to the
end of a paragraph — in the Code window, you press Enter at the end of each
line you type.

28

|
Figure 2-5:
The Code
window
Restore
Window

and
Maximize
buttons.
|

|
Figure 2-6:
A compile
error in the
Code
window.
|

Part I: Introducing VBA Programming

B[

[Ins Window Help
& % | @] Lnd, Cal1

Type a question for help =

|clickereButtan

x| [click

£ VBA Dummies - Form_NumWord Demo Form {Code) E]@

Option Compare Database

-

Priwvate Sub ClickHereButton Click
e, Convertediunber . Visible

End Sub

True
Ne . Convertediumber . Value = NanlUord (Mhanoe:

-— Undocked

N Code window

\Word Demo Form (Codej]

SEE

AddIns Window Help Type & question for help— w

eI B

Restare Windaw

_x

|cliekHereButton

=] |ciiek

-

Option Compare Database

-

Frivate Sub ClickHereButton Click()

Me. Convertediluber . Wisible = True

Me. Convertediiurnber . Value = Numlord (Number)
End Sub

—Docked Code window

When you type a line of VBA code and press Enter, the Visual Basic Editor
compiles that line of code. For now, you can think of compiling as testing the

line of code to see whether it will work.

If you just type some line at random in

the Code window — or even if you try to type a legitimate line of VBA code but
make a mistake — you see a compile error message, as shown in Figure 2-6.

% VBA Dummies - Module1 (Code)

‘(General] j |(I]el:laratinns]

COption Compare Database

Hello. I want £0 be & programmer.

.

Microsoft Visual Basic

() Compile errar:
3

Expected: end of statement

Help |

== |

2y

We talk about ways of dealing with compile errors when we really get into
telling you how to write code in Chapter 3. For now, just realize that if you
type anything other than a valid line of VBA code into the Code window, you
see a compile error message as soon as you press Enter. So don’t waste your

time trying to type text at random into

the Code window.

Chapter 2: Your VBA Toolkit ~ 29

Referring to Objects from UBA

|
Figure 2-7:
Object
libraries
expose
objects to
VBA.

VBA is able to control objects in Access (and other programs in Microsoft
Office) because of Automation (with a capital A) technology. The idea behind
Automation is this: A program, database, document, or special capability
exposes (makes available) its objects through an object library. The object
library contains an organized set of names that VBA can refer to when it
wants to manipulate an object.

Think of an object library as sort of a steering wheel that’s sticking out of
some database or some program. When the steering wheel isn’t available,
VBA can’t manipulate objects in the program. However, when the steering
wheel is exposed, VBA can manipulate objects inside that program. As we
discuss in the following section, you control which steering wheels are avail-
able by setting references to object libraries.

Figure 2-7 shows a hypothetical example where the Access and Excel object
models (steering wheels) are exposed. VBA can therefore manipulate objects
in those programs. In the figure, Word and PowerPoint aren’t exposing their
objects, so VBA can’t manipulate objects in those programs.

Object libraries

Microsoft
PowerPoint

E Microsoft
‘Word

Microsoft
Access

Not all object libraries expose objects in specific Office programs. Some object
libraries expose programs; some object libraries expose documents; still
others expose technologies that simply help you bridge the gaps between
programs. Access, by itself, offers several object models. The important point
is, though, that before you start writing VBA code, you need to know what
object libraries are available to you.

30

Part I: Introducing VBA Programming

Setting References to Object Libraries

To manipulate the objects in an object model through VBA, you need to set a
reference to the appropriate object library. That part is easy because you just
have to put a check mark next to the appropriate object library’s name in the
References dialog box. To open the References dialog box and choose your
object libraries, follow these steps (in the Visual Basic Editor program window):

1. Choose Tools=>References from the Visual Basic Editor menu bar.

The References dialog box, as shown in Figure 2-8, opens.

References - Morthwind 2007
Avallable References:

] Yisual Basic For Applications ~
¥l Microsoft Access 2007 Object Library
| OLE Automation
vl Microsoft Office 2007 Access database engine Objec!
vl Microsoft Office 12,0 Obiject Librar
vl Microsoft Activer Data Obiecks 2.5 Librar | ﬂ
L] IAS Helper COM Component 1.0 Type Library
L] IA5 RADIUS Pratocol 1.0 Type Library Priority
[l acrobat Access 3.0 Type Library

I [AcrolEHelper 1.0 Type Library ﬂ

. L] Active DS II5 Extension DIl
F|gure 2-8: [Active D5 I15 Namespace Provider
. L] Active DS Type Library
S eto b] ect Active Setup Contral Library bt
< >
librar
y Microsoft ActiveX Data Objects 2.8 Library
refe rences Location: <:\Program Files\Common Files!Systemiadoimsadol5.dil
here_ Language: Standard
|

2. To set a reference to an object library, select its check box.

Some object libraries are already selected (checked), as shown in
Figure 2-8. The selected object libraries shown in Figure 2-8 are typical
and are a good starting point for any Access VBA programming.

3. When all the object libraries you need are selected, click OK to close
the dialog box.

Setting references to object libraries exposes objects to VBA immediately, but
it doesn’t expose anything to you — at least, not in a way that’s readily appar-
ent on-screen. To find out what objects are available to VBA (and you) at the
moment — and get help with them all — you need to use the Object Browser.

Using the Object Browser

Every object library provides VBA with a very large set of names that represent
objects that VBA can manipulate — so many names that we doubt anybody

Chapter 2: Your VBA Toolkit 3]

|
Figure 2-9:
The Object
Browser.
|

would even attempt to remember them all. To make it easy to find names of
things on an as-needed basis, VBA provides the Object Browser tool.

In this context, browser has nothing to do with the Internet or the World Wide
Web. Rather, the Object Browser is a tool for browsing the contents of all avail-
able object libraries. And those object libraries have no connection to the
Internet.

While you’re in the Visual Basic Editor, you can do any of the following to
open the Object Browser:

v Choose Viewr>Object Browser from the Visual Basic Editor menu bar.

1 Press F2.

v Click the Object Browser button on the VBA Editor’s Standard toolbar.
When the Object Browser opens, it doesn’t look like it’s any big help, but
there will be plenty of times when you need to use it. Now is a good time to

become familiar with how you work that darn thing. Figure 2-9 points out the
names of various tools within the Object Browser.

Project/Library list

Search box
%g- Object Browser = =[]
<All Libraries> vl =R
R M 3
Classes Members of AccessObject’
[[[@ colobals= |8 Curentiew 7]
mKAccessObJecI E& DateCreated

5.1 AccessObJecIPrUpef e8! DateModified
& AccessOhbjeciProper e8! FuliName

=P AcCloseSave <% GetDependencyinfo
=P AcColodndex =% |sDependentUpon |
=7 AcCommand rH 1sLoaded

H ||ZF AcCaontrolType E& Mame
=R AcCurrentview eE Parent
= AcCursorOnHover E5 Properties
ZF AcDataCbjectType e Type |
2P AcDataTransferType
2R AcDefReportyisw
2P AcDeiiew

L||=P AcDisplayas]
Class AccessObject
Member of Access |
Classes list Split bars Members list

Details pane

32 Part I: Introducing VBA Programming

Here’s a brief description of each tool:

v Project/Library list: From here, you choose either a single object library
to browse or <All Libraries> (where All Libraries means all object
libraries that are selected in the References dialog box).

v Search box: Here you type or choose a name to search for.

1 Classes list: This list shows the names of all classes in the selected
object library or all available libraries if <All Libraries> is selected in the
Project/Library list. A class is any class or group of objects, such as
AllForms (all the forms in the current database).

1 Members list: When you click a name in the Classes list, this pane shows
the members (objects, properties, methods, events, functions, and
objects) that belong to that class.

1 Details pane: When you click a member name in the Members list, the
Details pane shows the syntax (rules) for using the item that’s selected
in the Members list, as well as the name of the library to which the
member belongs.

v~ Split bars: Drag the split bars left or right (or up and down) to adjust the
size of the panes. (Drag any edge or corner of the Object Browser
window to size the window as a whole.)

Clicking the Project/Library drop-down list displays the names of all cur-
rently loaded object libraries (all the object libraries to which you've set a
reference in the References dialog box; refer to Figure 2-8). This list describes
the object libraries:

1 Access: The Microsoft Access 2007 Object Library lets you control the
Access program programmatically.

v ADODB: The Microsoft ActiveX Data Objects 2.8 Library allows you to
access all data in your database as well as data from outside databases.

v DAQ: The Microsoft Office 2007 Access database engine Object Library
is the primary method for working with the Microsoft Jet database
engine from code.

v Office: The Microsoft Office 12.0 Object Library lets you control aspects
of Access that are common across all Microsoft Office programs.

v stdole: The OLE Automation object library (where stdole is short for
standard OLE) provides programmable access to objects that use object-
linking and -embedding technologies, such as pictures in tables.

v VBA: The Visual Basic for Applications object library contains program-
mable access to objects built into the VBA programming language, such
as functions for doing math with dates, times, and dollar amounts.

Chapter 2: Your VBA Toolkit

In addition to listing the names of object libraries selected in the References
dialog box, the Project/Library list offers the name of the database you're
working in. Consider the name of the current database to be the project on
the Project/Library drop-down list. You don’t need to set a reference to that
object library because it’s built into the database that’s open in Access.

Searching the Object Library

MBER
é"
&

The real beauty of the Object Browser lies in its ability to help you find infor-
mation about an object as you need it. Because you probably don’t know
what library an object resides in, choose <All Libraries> from the
Project/Library drop-down list before you begin a search. Then you need to
know what name you’re searching for.

For example, as you discover a little later in this book, Access offers a DoCmd
(do command) object that lets VBA perform a variety of actions, from open-
ing forms to setting the values of controls. Suppose you're writing some code
and need some quick information about that object. You could get that infor-
mation by following these steps to search the Object Browser:

1. In the Search box in the Object Browser, type the word you’re search-
ing for.

For example, to search for information on the DoCmd object, type
DoCmd as the word to search for.

2. Click the Search button (the binoculars) next to the Search box.

The results of your search appear in the Search Results pane under the
Search box.

3. To get help with an item in the Search Results pane, click a name
there and then click the Help button (the question mark) on the
Object Browser toolbar.

The Help text appears in a separate Help window, as shown in the exam-
ple in Figure 2-10.

Admittedly, the Help text is technical documentation, written more for pro-
grammers than for VBA beginners. But you won’t be a beginner for long, and
knowing how to search the Object Browser will soon become a valuable skill.

As with other tools that we describe in this chapter, you can close the Object

Browser (as well as any open Help window) at any time by clicking its Close
(X) button.

33

34

Part I: Introducing VBA Programming

|
Figure 2-10:
Search the
Object
Browser

for help.

MBER
‘g'c
&

Help button
-
k=7 ©) Access Help _=ox
<All Libraries> v oo il NEMN MG R =
DoCmd v #h2 - P search ~
Access Deueloper Home » Access Object Model Reference » Docmd bject ~
Library Class Member
i, Accese & Docmd
W, Access @) Application g8 DoCmd
[Ciasses Members of Docrmd’
#ibocmd & AddWenu -~
1 Dosume & ApphyFilter [
) Documerfinspector & Beep ‘fou ean use the methods of the DeCmd object to run Microsoft Access actions from Visual
B} Documerftinspectors =@ CancelEvent Basic. An action performs tasks such as closing windows, opening farms, and setting the
3 Documerflibranver [<S CleaacroError value of cantrals
) Documerfilibranver =S Cloge
£ DocumerPropeties =S CloseDatabase Remarks
) DocurmerfProperty =& CopyDatabaseFile
& Docurnerfis 2)-S CopyQblect M| Far exarmpte, you can use the OpenForm method ofthe DoCmd abiectts apen 3 form, or use
Class DoCH the Hourglass method to change the mouse paifiter to an hourglass icon
Member of Access
Most ofthe methods of the DaCmd object have afguments — some are required, while others

are optional. Ifyou omit optional arguments, the frguments assume the default values for the
particular method. For example, the OpenForm method uses seven argurments, but anly the
firat armment_Ensmitama is renired The flloline sxamnla shows how o ean naen the

Develaper Reference (@ Connected to Office Online

Search Results pane Help window

We suppose right about now that you’re wondering how any of the tools in
this chapter will make your life easier. We’re working up to that. For now, just
being aware of the various panes and windows in the Visual Basic Editor is a
good start. Knowing that VBA works by manipulating objects in object libraries
is a good thing too. Even just being aware that the Object Browser and Help
windows exist is valuable as you start writing code.

Writing code is the actual programming part of VBA. You write VBA code to
automate activities, and you automate activities by manipulating objects via
object libraries. VBA has a lot of fancy buzzwords, but if you just think of
object libraries as steering wheels that VBA can grab onto and steer, you're
ahead of the game. Hop to Chapter 3 to start writing code.

Chapter 3

Jumpstart; Creating a Simple
VBA Program

In This Chapter

Starting out with a standard module
Creating procedures

Getting help with VBA keywords
Editing existing code

usual Basic for Applications (VBA) is a programming language for writing
instructions that tell Office applications — in this book, that means
Access — the steps needed to perform a task. You store code in Access mod-
ules. The tool that you use to create and edit VBA code is the Visual Basic
Editor, which opens automatically whenever you open an Access module. (If
you need a refresher on the basics of using the Visual Basic Editor, hop back
to Chapter 2.)

In this chapter, we get into some of the nitty-gritty of what’s really involved in
writing VBA code within Access. You discover how to create a module in
Access and how to create procedures within a module. You also read about
VBA syntax, which defines the rules you need to follow when writing a VBA
statement. Finally, this chapter shows you how to use preexisting code in
your own modules.

Creating a Standard Module

Before you start writing code, you need a place to put it. Putting your code in
standard modules is always a good bet because code in standard modules is
accessible to all objects within a database. Creating a new standard module
is easy. Just follow these steps:

36 Part I: Introducing VBA Programming

1. With your database open in Access, click the Create tab on the Ribbon.

2. Click the Macro button and select Module from the drop-down list that
appears, as shown in Figure 3-1.

Click the Create tab...

—~ P—— B = x
\/E'@ = | Northwind 2007
Home | Creste | ExternalData Database Tools @
3 Table E.j EE Form iz E‘ fe=| (2 Labels = @ =
E Table Templates + == | SplitForm (] == [Blank Report == O
. Table Farm || Report Report | Query Query | Macro
Flgure 3-1: [SharePaintLists = Design | £S5 Multipleltems T~ Design PO R Report Wizard Dgzgn N Dm;\“ , |
Begin b Tables Forms Reports Other
|
g 3 y Al Access Objects |«
Cl’eatlng |searctr. |
Tables ¥
anew Queries ¥
standard | form g
Reports ¥
module. || Macros ¥
Modules ¥
|

...and then select Module.

The new module opens in the VBA Editor. Most likely, it’s empty except
for the words Option Compare Database at the top. That line, a
module-level declaration, just tells VBA that when comparing values, it
should use the same rules as the rest of the database. The module might
also contain the words Option Explicit on the second line. That line
tells VBA to require you to declare variables before using them. If
Option Explicit appears, just highlight and delete that line. We talk
more about that later on.

As we discuss in Chapter 1, a module contains VBA code that’s organized into
one or more procedures. A procedure is simply the set of steps needed to per-
form some task. A new standard module contains no procedures because it’s
empty. Thus, the first step to writing code is to create a procedure.

Creating a Procedure

Adding a procedure to a module is a fairly simple task. The procedure that
you create can be either a Sub procedure or a Function procedure. For now,
it’s sufficient to know that a Sub procedure is like a command on a menu: When
called, it just does its job and doesn’t return anything. A Function procedure,
on the other hand, is more like a built-in function in that it returns a value.
However, the steps for creating either type of procedure are the same:

Chapter 3: Jumpstart: Creating a Simple VBA Program

A\

\\3

1. In the Visual Basic Editor, choose Insert->Procedure.
The Add Procedure dialog box appears.
2. Type a name for your procedure in the Name text box.

The name must begin with a letter and cannot contain any blank spaces
or punctuation marks. To create a practice procedure, enter a simple
name, like mySub.

3. Choose the type of procedure you want to create (Sub or Function)
by selecting the Sub or Function option button in the Type group.

For your first practice procedure, choose Sub. You can ignore the rest of
the options in the Add Procedure dialog box; the default settings are fine.

4. Click OK.

The Add Procedure dialog box closes. Your module contains a new pro-
cedure with the name that you provided in Step 2.

The two lines of VBA code that are needed to define the new procedure are
entered into your module as soon as you click OK. The first line begins with
Public Subor Public Function, followed by the procedure name and a
pair of closed parentheses. For example, if you create (in the Add Procedure
dialog box) a Sub procedure named mySub, the following VBA lines are
added to your module:

Public Sub mySub ()

End Sub

The Public keyword at the start of each procedure defines the scope of each
procedure. Because procedures in a standard module are public by default,
they’re visible to all objects in the current database. In a standard module,
you can omit the Public keyword and just begin the line with the Sub or
Function keyword. Either way, the procedure is public (visible to all objects
in the database).

In the module, the procedure name always ends in a pair of closed parenthe-
ses, as inmySub () or myFunc (). The parentheses are required, so they’re
added automatically when you click OK in the Add Procedure dialog box.
Each procedure ends with an End Sub or End Function statement.

Figure 3-2 shows an example where we used the Add Procedure dialog box
(twice) to create a Sub procedure named mySub and a Function procedure
named myFunc. The module is visible in the Visual Basic Editor’s Code
window.

37

38

Part I: Introducing VBA Programming

<2 VVBA Practice - Module1 {Code)

|(General) =] [myFunc Procedure menu
Option Compare Database
— Fublic Sub mySubi()
Figure 3-2: mySub () procedure
End Sub
Sub and 2
Function Public Function myFunc()
procedures myFunc() procedure
. End Function
ina
standard Code window
module. |||
==
| %

Any code that you type into the procedure must be typed between the two
lines that define the procedure. You can easily position the cursor within any
procedure by clicking within that procedure. You can also move the cursor
into a procedure just by choosing the procedure’s name from the Procedure
menu in the Code window.

Understanding Syntax

Writing code is the art of programming the computer to perform a specific
procedure by defining each step in the procedure as a single VBA statement.
For the code to work, every VBA statement must conform to rules of syntax,
which define exactly how the code is written. The syntax of a VBA statement
is the set of rules that define the exact order of words and where spaces,
commas, parentheses, and other punctuation marks are required.

Like any written language, the VBA language consists of words (keywords),
punctuation marks (for example, commas), and blank spaces. Keywords are
plentiful, and each has its own specific rules of syntax. The syntax rules are
so rigid that you’d never be able to figure them out by guessing. You have to
know how to get the information you need, when you need it.

The Visual Basic Editor provides several tools to help with syntax. For exam-
ple, you use the MsgBox () function in VBA to display a custom message on-
screen. Imagine that you already know about the MsgBox () function and were
about to use it in a program, and you type the following line into a procedure:

x = MsgBox (

Chapter 3: Jumpstart: Creating a Simple VBA Program

|
Figure 3-3:
Quick Info
(top) and a
list of
constants
(bottom).
|

As soon as the Visual Basic Editor sees the MsgBox (part, it shows a Quick
Info screen tip for the MsgBox keyword, as shown in the example at the top
of Figure 3-3. The Quick Info tip is a small syntax chart showing you the rules
for using MsgBox correctly. Within the Quick Info, the bold-italic word
Prompt means that you're expected to type a prompt next.

For example, you might type “Hello World” (with the quotation marks) and a
comma on the line:

x = MsgBox ("Hello World",

The comma lets the Visual Basic Editor see that you typed a valid first argu-
ment and are now ready to type the second argument. The second argument
in the syntax chart ([Buttons As vbMsgBoxStyle = vbOKOnly]) is then
boldfaced to indicate that you now should type the second argument. Also, a
list of meaningless-looking names (called constants) appears, as shown in the
bottom half of Figure 3-3.

Okay, you gotta trust us on this one: The Quick Info and list of constants are
there to help. Unfortunately, they're helpful only to those people who’ve used
the MsgBox () function a zillion times and need only brief reminders on
syntax and available constants. For someone who’s just starting out, more in-
depth information is needed. Fortunately, it’s always easy to get.

Quick Info Constants

& VBA Practice - Module1 (Code) D& %]
|[General) ﬂ |my5ub ﬂ

Option Compare Database

Public Sub mySub ()
® = MsgBox [‘
W =aBoxiPrompt, [Buftons As Vil sgBoxStyle = vhiOKOnly, [Tite], [HelpFik], [Contexd) As VbMsgBoxResult |
End Sub

Fublic

End Fu| [(General) | [mysub

% VBA Practice - Module1 {Code) S]]

Option Compare Database

Public Sub my3ub()
¥ = MsgBox ("Hello UDrld",|
MsnRox Prompt [Buttons As VbMsgBoxStyle = vhOKOnIy, [Tite], [HeipFits], [Contexd) As VbMsgBoxResult

End Sud & viApplicationModal
i i & whCritical
Public Function myFunc () & vbDefaullButtoni
End F) & vbDefaultButton2
pet Funerion ® vaDefaullButton |
3 vhDefauliButton4 v |
=)= 41 v

39

40 Part I: Introducing VBA Programming

Getting keyword help

Whether you're typing your own code or trying to modify someone else’s,
you can get information on any keyword at any time. Just select (double-
click) the keyword right in the Code window where it appears. Then press the
Help key (F1) on your keyboard. The Help window that opens describes the
command and its syntax.

P After you type a keyword into a procedure, you can use the Help window to
get detailed information. Just select (double-click) the keyword and press the
Help key (F1). Using the Help window is also an excellent way to find out
more about code other people have written because you can determine what
each line of code does.

When you press F1, the Help window that opens describes whatever keyword
you selected in your module. For example, if you double-click MsgBox in a
procedure (to select it) and then press F1, the Help page for the MsgBox key-
word opens, as shown in the example in Figure 3-4.

Selected keyword

] el |
Ble Edit Wiew [nset Debug Run Tooks Ad *)jA“E“_HE_‘p ~ -0
g) (3) @ AL] _
Pliag-H % EhEA 9> 0 @ k= 0B a g = &
~ AP search ~
[Generan o] [mysun MsgBox Function
Option Comgare Datshase
Public Sub |[mySub () .
x = HegBos ("1l Vorlan) MsgBox Function

End Sub

Public Function myFunc ()

Disnlays a messane in a dialog box, waits for the user to click 2 button, and retums an Integer indicating
End Function wihich button the uger clicked

Syntax

MsgBOx(prompt, huttons] |, tike] [helpfife, Context)

The MsgBox funetion syrtax has these named arguments:

I

prompt Required. String expression displayed as the message in the dialoy box. The maximum length
of prompt is approximately 1024 characters, depending on the width of the characters used. If
prompt consists of mare than ane line, vou can separate the lines using a cariage retumn
character (Chr(132)}, alinefeed character (Chr(1 0%, or cariage retum — linefeed character
combination (Chr(13) & Chr{10)) between each line.

I huttons Optional. Numeric expression thatis the sum ofvalues specifying the nurmber and tme of
buttons o display, the ivan style to use, the identity of the default buttan, and the modality of the
Figure 3_4- message box It omitted, the defaultvalue for butors is 0.
title Optional. String expression displayed in the title bar ofthe dialog box Ifyou omit ke, the
HEIp fOr the application name is placed in the title bar.
MsgBox helpfle Optional. String expression that identifies the Help file to use o provide coftext-sensitie Help
k d for the dialog box. If helpfie is provided, context must also be provided o
eywora. 3} = 0

— l Developer Reference | (@ Cofnected ta Office Online 1)

Help for MsgBox keyword

Chapter 3: Jumpstart: Creating a Simple VBA Program 4 ’

The Help window shows a ton of information about using the MsgBox key-
word. The first paragraph describes what the keyword does. Under the head-
ing, the syntax chart shows the same information that the Quick Info screen
tip does (namely, the arguments that you can use with the keyboard), as well
as the order in which you must use them. For example, the syntax chart for
MsgBox looks like this:

MsgBox (prompt[, buttons] [, title] [, helpfile, context])

The first word (MsgBox, in this example) is the keyword. The text and sym-
bols enclosed in parentheses represent arguments that you can use with the
MsgBox keyword. An argument is a piece of information that you give to the
keyword to use for something. (More on that in the upcoming section “Help

with arguments.”) The syntax chart uses square brackets, boldface, and ital-
ics as described here:

v Bold: Represents a required keyword.

v Italic or bold italic: Represents an argument.

v [1:Indicates that the argument is optional and can be omitted.
Beneath the syntax chart is a description of each argument that the keyword
supports. For example, scrolling down a short way through this Help page

reveals a description of each of the argument names that MsgBox supports,
as shown in Figure 3-5.

@) Access Help
G VAN EIMY @

MsgBox ~ P search -

characters, depending an the witth of the characters used. If prompt consists of mare than one line, you can separate the lnes usinga [
cartiage return character (Chr(13)}, a linefeed character (Chr(10y), or sarriage return — linefeed character combination (Chr{13) & Chr(10))
between each line

buttors Optional. Numeric expression that is the sum ofvalues specifying the number and type of buttons to display, the icon style to use, the
identity of the default button, and the modality ofthe message bos. If omitied, the default value for buttors is D

titfe Optional. String expression displayed in the fitle bar of the dialog box. Ifyou amit titke, the application name is placed in the tille bar

hefpfle Optional. String expression that identiies the Help file to Use to provide context-sensitive Help for the dialog box. If hefpfife is provided,
comtext must also be provided

comtext Optional. Numeric exprassion that is tha Help context number assigned to the appropriate Help tapic by the Help author. If context is
provided, hefpfie must also be provided

Settings

The barttons argument setings are

|

vhOKOnly o Display OK button only.
Flgure 3-5: vhOKCancel 1 Display OK and Cancel butions.
Find vhAbortRetryignore 2 Dizplay Abort, Retry, and lgnore butions,
vhYesNoCancel 3 Dizplay Yes, Mo, and Cancel butions.
argument
. f . vhYesNo 4 Display Yes and No huttons.
Infomna vhRetryCancel 5 Display Retry and Cancel buttons
keywo rd whcritical 16 Display Critical Message icon
H e | p vhQuestion 32 Display Warning Query icon.
H vhExclarnation 48 Display Warning Message icon [we]
window. | 3]

— | Developer Reference (@ Connected ta Office Online |3

52

Part I: Introducing VBA Programming

The description of an argument tells you whether the argument is required or
optional. If an argument is required, you must type an acceptable value for
that argument into your code (always within the parentheses that follow the
keyword). If an argument is optional, you can either type an acceptable value
for the argument or just not use the argument.

Never type square brackets into your VBA code: The square brackets in the
syntax chart are just there to indicate the optional arguments. If you type the
square brackets in your code, the code doesn’t work.

The argument acts as a placeholder for some actual value that you’ll later
pass to the procedure. If you have any experience in using Access expres-
sions, you're familiar with arguments. For example, in the expression

Sqgr (81), 81 is the value being passed to the Sgr () (square root) function.
When executed, the function returns 9 because 9 is the square root of 81.

What constitutes an acceptable value for an argument is usually the second
item listed in the Help chart. Typically, it’s one of these types of expressions:

v String: Can be literal text enclosed in quotation marks, as in "Hello
World", or an expression that results in text.

+ Numeric: Can be a number, like 1 or 10, or an expression that results in
a number.

That’s a lot to try to understand. Take it one step at a time, though, with an
example to try to make sense of it all. First, understand that the arguments of
a keyword are typed within parentheses, after the keyword. And multiple
arguments are always separated by commas. So the most general view of any
keyword that accepts three arguments would be

keyword (argumentl, argument2, argument3)

In other words, you don’t start typing the first argument until you've typed
the keyword and opening parenthesis. After you type the first argument, you
have to type a comma before you start typing the second argument, and so
forth. The Visual Basic Editor doesn’t know that you're ready to type the next
argument until you type that comma. Finally, you have to type the closing
parenthesis at the end of the statement. If you mess it up, you get a compile
error as soon as you press the Enter key. All you can do is click OK and try
again (or delete the whole line and start over).

Getting back to the MsgBox () keyword and its arguments, you can see at the
top of the first Help page (refer to Figure 3-4) that MsgBox () is a function that
returns a value. Although it’s not specifically stated in the syntax, to be able to
use the command properly in a procedure, you need to use this syntax:

x = Msgbox (prompt|[, buttons][, title][,helpfile,
context])

|
Figure 3-6:
Test VBA
statements
in the
Immediate
window.
|

Chapter 3: Jumpstart: Creating a Simple VBA Program 43

You can see on the Help page that the prompt argument is required and must
be a string expression. So if you want the message box to display Hello
World, you would type those words (remember to enclose them in quotation
marks) as the first argument, as in the following example. Because the
remaining arguments are optional, you could omit them and just end the
whole line with a closing parenthesis, like this:

x = MsgBox ("Hello World")

The Immediate window, which we discuss in Chapter 2, provides a handy
means of testing a VBA statement on the fly to see whether it will work when
it’s executed in your code. For example, if you type (exactly) x=MsgBox(“Hello
World”) into the Immediate window and press Enter, VBA executes the state-
ment. The result is a message box containing the words Hello World, as
shown in Figure 3-6. (You have to click the OK button in the message box to
get back to working in the Visual Basic Editor.)

2 SeT)
iﬁw\e Edit ¥iew Insert Debug Run Tools Add-ns Window Help Type a question for helf =
iPa-d b aBAI) e R @

|(Genera|) M |mySuh

Cption Compare Database

Public Sub mySub(j
x = MsgBox ("Hello World")
End Sub

Public Function myFune (]

End Function Microsoft Office Access &)

% = MsgBox ("Hello World")

Statement entered in Result of executing
the Immediate window the statement

Help with arguments

Refer to Figure 3-5 (of the Help page for the MsgBox keyword) to see the
Settings section (below the argument descriptions) that provides some spe-
cific info on using the buttons argument. You can use either the constant or
the value in the command. For example, if you want the MsgBox statement to
show both an OK button and a Cancel button (rather than just an OK button),
use either the value 1 or the constant vbOKCancel as the second argument

bb

Part I: Introducing VBA Programming

MBER
@&
&

|
Figure 3-7:
Testa
MsgBox
statement

in the
Immediate
window.
|

in the MsgBox statement. Arguments are always separated by commas, so
the correct syntax is either

X = MsgBox("Hello World",1)
or

x = MsgBox("Hello World", vbOKCancel)

A constant is a special word in VBA that has been assigned a value that never
changes. For example, the constant vbOKOnly is always the same as the
value 0. You can use vbOKOnly (which is easier to remember) in place of 0 in
a MsgBox statement.

As instructed on the Help page, you can combine values (by using a + sign) in
the buttons argument to use multiple options. For example, the vbyesNo
setting (value = 4) displays Yes and No buttons in the message box. The
vbQuestion setting (value = 32) setting displays a question mark icon in the
message box. Thus, if you want to display a message box that displays the
question Are you there?, a question mark icon, and Yes and No buttons,
you can type any of the following statements. (The 36 is allowed because the
sum of the two settings’ values, 4 and 32, equals 36.)

X MsgBox ("Are you there?",vbQuestion+vbYesNo)

x = MsgBox ("Are you there?",32+4)

x MsgBox ("Are you there?",36)

You can test any of these VBA statements by typing one into the Immediate
window and pressing Enter. Because all three statements produce the same
result, you see a message box with the prompt Are you there?, a question
mark icon, and Yes and No buttons, as shown in Figure 3-7.

¥

¥ = M=agBox ("Are you tlere?",vbouestion+vh¥eslNo)

Hicrosoft Dffice Access

\?/ Are you tere?

. [wes | [Mo 1

The third optional argument in the MsgBox keyword, title, allows you to
specify a title to display in the dialog box. If you omit that argument in
Access, the default title for all Access message boxes — Microsoft Office

Chapter 3: Jumpstart: Creating a Simple VBA Program

MBER
‘g'c
&

Access — appears in the message box. If you include a title (as text in quota-
tion marks), that title replaces the default title. For example, if you test the
following command in the Immediate window:

X = MsgBox ("Are you there?",vbQuestion+vbYesNo, "Howdy")

the message box opens with the word Howdy, rather than Microsoft
Office Access, on its title bar.

The order of arguments in a VBA statement is critical. For example, the title
for a MsgBox must be the third argument in the statement. If you want to use
a titleargument but not a buttons argument, you have to still include a
placeholder comma for the buttons argument and include a similar comma
for the title argument, as in the following example:

x = MsgBox("Hello World", , "Howdy")

In this statement, the first argument (prompt) is "Hello World", and the
second argument — which acts as a placeholder for the buttons argument —
is empty. Because you omitted the argument, Access uses the default value
for that argument, which is vbOKOnly (0). Thus, when the statement exe-
cutes, the message box appears with only the default OK button. The third
argument is "Howdy ", which appears on the message box title bar.

About named arguments

Named arguments provide an alternative to putting arguments in a specific
order. With named arguments, you can just type the argument name followed
by a colon and an equal sign (: =) and then the value you want for that argu-
ment. For example, the following statement is equivalent to x =

MsgBox ("Hello World", ,"Howdy"), but it uses argument names rather
than commas to specify which argument is receiving which value.

x=MsgBox (prompt:="Hello World", title:="Howdy")

Unfortunately, you can’t always easily tell whether a statement supports
named arguments. The Quick Info screen tip doesn’t provide any clues, and
the Help doesn’t often show the syntax with the optional names in place. About
the only clue you get to whether a statement supports named arguments is
from the sentence above the argument descriptions in Help. For example,
refer to the Help for the MsgBox function in Figure 3-4: namely, the sentence
The MsgBox function syntax has these named arguments, just
below the syntax chart for MsgBox () . But because named arguments are
entirely optional, you don’t have to worry about accidentally excluding them
when writing your own code.

b5

A7

Part I: Introducing VBA Programming

Using Existing Code

\\J

\\3

Just knowing how to read the Help screens is a challenge in itself. It just takes
time to practice. Programming isn’t the kind of skill you master overnight. It’s
a skill you acquire gradually by finding out about one keyword, and then
another, and then another, and so forth. VBA has so many keywords that it
would take years to memorize them all.

Fortunately, you don’t have to find out about every keyword before you start
writing code. Most programmers discover how to program by example. That
is, they look at other people’s code and perhaps even use that same code
themselves or modify it to suit their own needs.

Using other people’s code, when possible, certainly offers some advantages
because at least some of the work is done for you. Switch gears for a moment
and look at ways in which you can get prewritten code into a module in your
own database.

Copy and paste code from the Web

Many programmers start their careers not so much by writing code from
scratch but rather by using code that others have written and adapting it to
their own needs.

You can use your favorite search engine to find a wealth of code on the Web.
For example, to search for code examples for an If. . .Then statement, type
If Then in the search engine. You'll probably get all kinds of useless results.
To narrow the results to something more useful, add the words Access VBA
to your search. For example, typing Access VBA If Then provides a more
useful list of links.

Suppose your search turns up a Web page that gives the code for a sample
procedure. Rather than type the whole procedure into your own module, you
can copy it from the Web page. First, select the procedure (and nothing but
the procedure) by dragging the mouse pointer through the whole procedure —
from the starting Sub or Function statement to the ending End Sub or End
Function statement. After you select the code, press Ctrl+C or right-click
anywhere in the selected text and choose Copy, as shown in Figure 3-8.

After you select and copy the code, just click anywhere in a standard module
and press Ctrl+V or right-click and choose Paste. The exact code you selected
appears in your module.

You can find most of the code examples from this book at www . dummies . com/
go/access2007vbaprog. You can copy and paste any code from that site
into any module in your own database.

Chapter 3: Jumpstart: Creating a Simple VBA Program

|
Figure 3-8:
Use sample
VBA code
from a Web
page.

& Mid Function - Access - Microsoft Office Online - Micrasoft Internet Explorer [=olEd
File Edit View Favorites Tools Help “
- = »
(€ RS ﬁ ﬂ 5| search 5 Favorites {Z ~ g < E hof ol @ B e
~

&

HOTE | Examples that follow demonstrate the use of this function in a Visual
Biasic for Applications (vBA) module. For more information ahout working
with VBA, select Developer Reference in the drop-doinn st next to
Seareh and enter ane ar more terms in the search box

The first example uses the Mid function to return a specified number of
characters frarm a string

k Cut
Copy
Paste
Select All

The second example use MidB and a user-defined function (MidMbes) - v

&®| @ Internet

Importing modules

The copy-and-paste method works best with code that’s displayed on your
screen like plain text, but it’s not the only way to get code into your database.
You can also import modules from other databases.

Suppose you have a database named myAccessDB. accdb, and within that
database is a module named myModule. At the moment, though, some other
database is open, and you want to copy myModule from myAccessDB.accdb
into the current database. In that case, you can import the module from one
database into your current database:

1.

If you're in the Visual Basic Editor, press Alt+F11 to return to the
Access program window.

. Click the External Data tab on the Ribbon, and then click the Access

command in the Import group.

The Get External Data dialog box appears.

. Click the Browse button and navigate to the folder that contains the

database from which you want to import code (myAccessDB.accdb,
in this example).

. When you find the database that contains the code you want to

import, double-click the database’s icon.

. In the Get External Data dialog box, select the option labeled Import

Tables, Queries, Forms, Reports, Macros, and Modules into the
Current Database, and click OK.

The Import Objects dialog box appears.

b7

58

Part I: Introducing VBA Programming

6. Click the Modules tab.

7. Click the name of the module — or modules — you want to import;
then click OK.

8. Click Close to return to Access.

When you click Modules in the Navigation pane of your current data-
base, you see the imported module’s name. Double-click the module’s
name, as usual, to open that module in the Visual Basic Editor.

Modifying existing code

After you either copy and paste code or import a module, modifying that
code isn’t all that different from writing new code, because you still have to
know the exact meaning and syntax of every keyword used in the code. In
some cases, the existing code might work as-is in your database. In other
cases, you might have to edit the code to get it to work.

If you need to modify the code, you can’t do so unless you understand what
the code is doing and how it works. Thus, you have to know the purposes of
each statement. If you need to change a statement, you need to know the cor-
rect syntax. Like when you're writing code, you can get more information
about existing code by using either of these methods:

v To see the Quick Info screen tip for a line of code, right-click the line and
choose Quick Info.

v For detailed help with a keyword, select (double-click) that keyword and
press F1 to see the Help window.

Modifying existing code takes almost as much skill and knowledge as writing
your own code from scratch, so don’t expect to be able to get anything accom-
plished by taking wild guesses. You can see examples of modifying existing
code throughout this book. For now, just be aware that you can copy and
paste VBA code into a module. Or, if the code is already in some other data-
base’s module, you can import that module into your current database.

In Chapter 4, you can pick up more advanced skills for creating procedures.
For now, be aware that every VBA keyword has certain rules of syntax, which
you must follow to a T if you want your code to work. You can’t expect to mem-
orize and master every keyword and its syntax in a short time because VBA
has too darn many keywords. However, after you know how to get help with
keywords, you always have the information that you need at your fingertips.

Part I

VBA Tools and
Techniques

T_he 5th Wave By Rich Tennant

ﬁ

JARG &JAZE

32A8ATAd
2THAT.IUEHOD

“Your database is beygond repair, but before T tell you
our backup recommendation, let me ask you a question.
How many index cards do you think will £it on the

walls of your computer room?”

In this part . . .

rle only reason you would ever bother with VBA is to
make Access do stuff that it can’t do otherwise —
either that or to make Access do something you would
otherwise have to do yourself over and over again. You
coax Access into doing stuff by writing VBA code that
manipulates the objects in your database automatically
and behind the scenes. That’s the short description of
how it all works, anyway. More detailed explanations and
examples are in the three chapters herein.

Chapter 4

Understanding Your VBA
Building Blocks

In This Chapter

Commenting your code
Storing data in variables and constants
Repeating chunks of code with loops

Making decisions with If. . .End If statements

M any programmers begin their careers not so much by writing code
from scratch as by acquiring bits of code from books, Web sites, and

other resources because that’s easier than trying to figure it out from
scratch. Plenty of sample code is made available through books and Web
sites. Don’t worry about “stealing” the code: If folks didn’t want you copying
their code, they wouldn’t have made it accessible to you in the first place!

Whether you plan to write your own code or tweak other people’s code, you
need to understand some fundamental programming concepts for any of the
code to make sense.

You can think of the various programming concepts described in this chapter
as the basic building blocks from which all programs are created. As you
learn more about Visual Basic for Applications (VBA), you see the same
building blocks used to perform many different tasks, in many different set-
tings. The first step, though, is to just be aware that such things exist so that
you recognize them when you see them.

The variables, constants, arrays, loops, and decision-making techniques that
we present in this chapter are the basic building blocks from which all pro-
grams are written. Writing VBA code in Access requires both a basic knowl-
edge of those programming techniques and the ability to work with Access
objects (which we cover in Chapter 5).

52

Part ll: VBA Tools and Techniques

Commenting VYour Code

When you look at existing code, notice that some lines look like plain English
while others look like VBA code. The lines that look like English are program-
mer comments. Only humans see comments; the computer sees only the VBA
code. Thus, using comments is entirely optional to you, as a programmer and
a human.

Programmers add comments to their code for two reasons:

v To help others who are trying to understand how the code works

1 To jot down notes as you go — to remind yourself of the purpose of
different parts of your code

The first character of a comment must be an apostrophe ('). The comment
ends where you press Enter to end the line. After you type the apostrophe,
you can type any text you want on that same line because VBA doesn’t treat
it as code. When viewing existing code, you see the apostrophe at the start of
each comment within the code, as shown in the example in Figure 4-1. (In the
Code window, comments are also colored green.)

£ Microsoft Visual Basic - YBA Practice - [Modulef {Code)] B=]=]
& file Edit Wiew Isert Debug Run Tools Add-hs Window Help Type a question for hel =~ _ & X
[# < - 349 »ono@ b % FF S @ ng col7e -
|(G=nemn j Ils()pen j
Option Compare Database =1
Function IsOpen(ByVal lookFor As String) As Boolean
' Returns True if the specified form 1s open in Forw view or Datasheet view.
Diw myChject As AemessChiect
IsOpen = False
'Jee if object is a form open in Forw or Datashest view.
For Each myObject In CurrentProject.AallForms
If wmyChiect .Nawe = lookFor Then
If myObject.IsLoaded Then
I I=0pen = True
End If
F- 4 1. End If
igure 4-1: Next
Add 'Jee if object is a report open in Report or Datashest view.
For Each myObject In CurrentProject.illReports
COmmentS If myChiect . Newe = lookFor Then
If myObject.IsLoaded Then
to make IsOpen = True
End If
your code £na Iz
d d Next
End Function
== ol
|

Comments start with an apostrophe.

When you’re modifying existing code, the comments are for human consump-
tion only. Changing a comment doesn’t fix code or change how it works.
Comments are only notes jotted down within VBA code.

Chapter 4: Understanding Your VBA Building Blocks

As we mention, writing comments is easy because after you type the initial
apostrophe, you can type anything you want. Writing code, though, is a lot
harder because of the rules of syntax (word order and punctuation). Plus, there
are lots of rules concerning the data on which VBA can operate. One of the first
things you need to understand is that, like tables in Access, VBA has data types.

Understanding VUBA Data Types

When you create a table in Access, you need to define the data type of every
field in the table. Data types in tables include things like Text (for storing
short strings of text), Memo (larger chunks of text), Number (for numbers),
and Date/Time (for dates and times).

VBA can work with data stored in tables. But just like tables, VBA often needs
to know the type of information it’s working with. As you see shortly, VBA
code has a couple of places where you can define data types. You need to
know what the various data types mean.

Table 4-1 lists the data types that you work with in VBA. The data type names
are listed in the left column, each followed by a brief description. The Storage
Size column shows how many bytes each data type consumes. The Declaration
Character column shows an optional character that can be used at the end of a
name to specify a data type. That’s really more information than you need; just
knowing the names of the various data types is sufficient for now.

Table 4-1 VBA Data Types
Data Type Acceptable Storage Declaration
Values Size Character
Boolean True (-1) or False (0) 2 bytes
Byte 0to 255 1 byte
Currency —922,337,203,685,477.5808 8 bytes e
t0 922,337,203,685,477.5807
Date January 1, 100 to 8 bytes
December 31, 9999
Double —1.79769313486231E308 to 8 bytes #

—4.94065645841247E-324
for negative values;
4,94065645841247E-324 to
1.79769313486232E308 for
positive values

(continued)

53

54 Part ll: VBA Tools and Techniques

Table 4-1 (continued)

Data Type Acceptable Storage Declaration
Values Size Character
Integer —32,768 to 32,767 2 bytes %
Long —2,147,483,648 4 bytes &
1o 2,147,483,647
Object Name of any object 4 bytes
Single —3.402823E38 to 4 hytes !
—1.401298E-45 for
negative values;
1.401298E-45 to
3.402823E38 for
positive values
String Any text from 0 to 10 + string $
about 2,000,000,000 length
characters in length
Variant Any number up to 16 bytes
(no text) the range of the
Double data type
Variant Any text up to 22 + string
(with text) 2,000,000,000 length

characters long

In VBA code, you often use data types just to store little bits of information
for short periods. The reasons for storing data with VBA code vary. One of
the first places you're likely to encounter data types in VBA is when you want
to pass data to, or from, your custom procedure.

Passing Data to Procedures

You write a procedure to perform a series of steps. The exact object on which
the procedure performs its task can vary. For example, you might inherit a
database table of names and addresses, with everything typed in uppercase
letters, as in JOHN SMITH. You want to convert all that text to proper case
(John Smith), but you don’t want to retype it all.

TEC‘/’I'

Chapter 4: Understanding Your VBA Building Blocks 55

Boring technical stuff on the Decimal data type

When perusing the VBA Help and drop-down menus, you might come across the Decimal data
type. We omitted the Decimal data type from Table 4-1 because it just flat-out doesn’t work. If we
had included the Decimal data type in the table, its acceptable range would be
+/-79,228,162,514,264,337,593,543,950,335 with no decimal point; +/—7.9228162514264337593543950335
with 28 places to the right of the decimal; smallest non-zero number +/—0.0000000000000000000000000001.
The Decimal data type's storage size would be 14 bytes, and it would have no type declaration
character.

The obscure Decimal data type does exist, but you can’t declare an item as being of that data
type. Instead, you have to declare the item as a Variant data type with a subtype of Decimal.
For example, Dim X as Variant defines a variable X as a variant; X = CDec (value)
stores valuein X as a Decimal data type.

You could write a procedure to do the conversion for you, but you wouldn’t
want the procedure to fix just one name or one address. You want the proce-
dure to be flexible enough to fix all the names and addresses in the table with
the click of a button. In other words, you want Access to hand over some
piece of information, like JOHN SMITH, and then have the procedure return
John Smith. However, you want it to do that with any text you pass to it,
including JANE DOE and P.O. BOX 123 and HANK R. MCDOUGAL.

If you want a procedure to accept information from the outside world (so to
speak), you have to tell the procedure what type of data to expect and where
to put the data. You do so within the parentheses that follow a procedure’s
name within a module. What you type is the argument list (or arglist, for
short). The syntax for each argument is

name As type

where name is any name of your choosing and type is one of the data type
names listed in Table 4-1. For example, if you want to create a Sub procedure
named showMsg () and pass one parameter named msgText to it as text, the
first line of the procedure needs to contain msgText As String as an argu-
ment, as in the following example:

Sub showMsg (msgText As String)

End Sub

56

Part ll: VBA Tools and Techniques

|
Figure 4-2:
A sub
procedure
can accept
different
arguments.
|

\\3

These lines define a Sub procedure named showMsg () that accepts one argu-
ment: a string (text) named msgText. We just made up the msgText name —
we could have used any name we wanted. The As String tells the rest of
the procedure to expect text to be passed.

You can pass multiple bits of information to a procedure as long as each has
a unique name and you give each a data type. Separate each name and type
with a comma. For example, the Sub () first line in Figure 4-2 defines a proce-
dure named showMsg () that accepts three arguments: msgText, bttns, and
msgTitle (all names we made up off the top of our heads). As you can see,
msgText and msgTitle are both declared as the String data type, and
bttns is declared as the Integer data type.

Sub showlsg (wsgText ALs String, bttns As Integer, mwsgTitcle As Strlngf

End Sub

Sub procedure named showMsg () . . .
. . .accepts three arguments named

MsgText, bttns, andmsgTitle.

Although a Sub procedure can accept incoming data through its arguments,
it can’t return any data to Access or other VBA procedures. A Function pro-
cedure, on the other hand, can accept incoming data and return a value.
Thus, a Function procedure is like any function that’s built in to Access. For
example, the built-in Date () function always returns the current date.

To see for yourself that Date () always returns the current date, type ?
Date () in the Immediate window and press Enter. You see today’s date.

When you want your own custom procedure to return a value, you have to
define the data type of the value being returned. The name of the return value
is always the same as the function name, so you don’t include a name. And
because you're defining a return value, you place the declaration outside the
closing parenthesis, as shown here:

Function name(arglist) As type

End Function

where name is the name of the function, arglist defines any incoming argu-
ments (exactly as it does in a Sub procedure), and type is the data type of
the value that the function returns. The type placeholder must match one of
the data type names listed in Table 4-1.

Chapter 4: Understanding Your VBA Building Blocks

|
Figure 4-3:
Functions
accept
arguments
and return
values.
|

Figure 4-3 shows an example where the first line defines a Function proce-
dure named isOpen () that accepts a string as an argument and then returns
a True or False value. (Note: Those lines are only the first and last lines.
The programmer would have to add more code between them for the proce-
dure to do anything.)

functlon 150pen&frmName As Strlng)lﬁs EBoolean

End Function

...andreturns a True/False value.
.. .accepts an argument frmName. . .

The Function procedure named isOpen() . ..

From the standpoint of modifying existing code, the argument list inside the
parentheses tells you what data is passed to the procedure and as which data
type. Code within the procedure can then work on the data that was passed,
by simply referring to it by name. Within a procedure, you use variables to
store and manipulate little chunks of data, like the values passed to a proce-
dure. Variables are a big part of all programming languages, so spend some
time getting to know them.

Storing data in variables and constants

All programming languages, including VBA, have a means of storing little chunks
of information (data) in temporary cubbyholes called variables. Obviously, the
contents of the cubbyhole can vary. For example, a variable named LastName
might contain Smith, Jones, McDougal, or whatever. The VBA code can operate
on whatever value happens to be in the variable at the moment.

Creating a variable is a two-step process:

1. Declare the variable’s name and data type with a Dim statement.

2. Assign a value to the variable as needed.
The syntax usually involves two lines of code that follow this structure:

Dim name As type
name = value

where name is a name of your own choosing, type is one of the data types
listed in Table 4-1, and value is the data you want to store in the variable.

57

58

Part ll: VBA Tools and Techniques

A\

When naming a variable, stick to using short names with no spaces or punc-
tuation. Also make sure the name starts with a letter. You can use either let-
ters or numbers as part of the name after the first character.

Here’s an example of creating an Integer variable named x and storing the
number 10 in that variable:

Dim x As Integer
x = 10

Here’s an example of creating a string variable named LastName and putting
the name Jones in it:

Dim LastName As String
LastName = "Jones"

Note the use of the quotation marks around Jones. As in Access expres-
sions, the quotation marks signify a literal text: That is, after the statement
LastName = "Jones" executes, the variable LastName contains (literally)
the name Jones.

A constant is similar to a variable in that it’s a name that refers to some value.
However, after you assign a value to a variable, you can’t change it. Hence,
the value remains constant.

Lots of constants are built in to VBA, as you can see in many examples
throughout this book. If you ever want to create your own constant, the
syntax is

Const name As type = value

where, once again, name is a name of your choosing, type is a data type from
Table 4-1, and value is the data you want to store in the constant. For exam-
ple, the following VBA statement creates a constant named pi that stores the
number 3.14159265 as a double-precision number:

Const pi As Double = 3.14159265

Storing data in arrays

If you think of a variable or constant as one little cubbyhole in which you can
tuck away information, a collection of cubbyholes is an array. Each cubby-
hole is an element of the array, although each is just a variable in which you
can store information. The cubbyholes in an array, however, all have the
same name. You use a subscript in parentheses, which defines an element’s
position in the array, to refer to a specific item in the array.

Chapter 4: Understanding Your VBA Building Blocks 59

Declaring an array is a lot like declaring a single variable, but you have to tell
VBA how many items are in the array. The syntax looks like this:

Dim name(dimensions) As type

where name is a name that you give the array, dimensions specifies how many
items are in the array, and type is one of the data types listed in Table 4-1. For
example, the following VBA statement creates an array named shipOptions
that contains five elements (each element is one cubbyhole of information):

Dim shipOptions(5) As String

After VBA executes this statement, five little cubbyholes, each capable of
storing any text (string), are available. The first array element is named
shipOptions (1) (pronounced “shipOptions sub one”). The second element is
named shipOptions (2) (pronounced “shipOptions sub two”), and so forth:

shipOptions (1)
shipOptions(2)
shipOptions (3)
shipOptions (4)
shipOptions (5)

Because each of those array elements is a string variable, you could assign a
value to each by using the same syntax that you use to assign values to indi-
vidual variables, as shown here:

shipOptions (1) = "USPS Media"
shipOptions (2) = "USPS Priority"
shipOptions (3) = "UPS Ground"
shipOptions (4) = "UPS Second Day"
shipOptions (5) = "UPS Overnight"

The shipOptions array is a one-dimensional array because it has only one
dimension: length. Each item in the array contains exactly one subscript,
indicating the item’s position in the one-dimensional list of items. You can
also declare multidimensional arrays. For example, a two-dimensional array
has two dimensions — length and width — like a table.

The following VBA statement declares a two-dimensional array named
miniTable that contains three rows and two columns:

Dim miniTable(3,2) As String

Each element in the two-dimensional name has two subscripts. The first
subscript represents the row position of the element. The second subscript

60

Part ll: VBA Tools and Techniques

represents the column position of the element. Hence, you can envision the
following variable names (cubbyholes) created by that VBA statement:

miniTable(1,1) miniTable(1,2)
miniTable(2,1) miniTable(2,2)
miniTable(3,1) miniTable(3,2)

In Access, where you already have tables to store all your data in rows and
columns, you rarely need to use multidimensional arrays. However, from the
standpoint of modifying existing code, when you see a Dim statement that
declares a name followed by a number in parentheses, as in

Dim x(10) As String

you need to be aware that the statement is creating ten separate variable
names: x (1), x(2),x(3), and so forth, up to x(10).

Module-level versus procedure-level

Unlike data stored in Access tables, data stored in VBA variables (including
arrays and constants) doesn’t last long. Each variable has a lifetime that
defines how long it exists. Closely aligned with a variable’s lifetime is its
scope, which defines which objects in the database can and cannot access
the variable. The scope and lifetime of a variable depend on where you define
the variable within a module.

The top of a module, where you typically see Option Compare Database,
is the declarations area. Here you can declare (announce) settings, variables,
constants, and arrays to all procedures in the module.

For example, the line Option Compare Database is a module-level declara-
tion that announces to all procedures in the module that this code is running
within the context of a database. When you’re comparing values in code
using logic like equals or greater than, the code should use the same rules as
the rest of the database.

You can also declare and assign values to variables, arrays, and constants in
the declarations area of the module. Those variables have module-level
scope and lifetime. These variables can be private — available only to the
procedures in the module — or public — available to all other procedures in
the Access database.

Variables, constants, and arrays declared inside a procedure have procedure-
level scope and lifetime. Each variable defined within a procedure is visible to
only that procedure and exists only while that procedure is running.

The significance of module-level versus procedure-level becomes more appar-
ent as you gain experience coding in VBA. For now, the main thing to keep in

mind is that module-level variables, constants, and arrays are declared at the
top of a module, before the first procedure. Something that is procedure-level
refers to variables, constants, and arrays defined within a procedure. Figure 4-4

illustrates the difference.

Chapter 4: Understanding Your VBA Building Blocks

5 Microsoft ¥isual Basic - YBA Practice - [Module1 (Code)] =&
o Fle Edit View Isert Debug Eun Tools Add-ns Window Help T -8 X
A~ mal9 pou @B &AW @ lngcolin _
|(Genemn j I(I‘letlamlinns) j

Option Compasre Datszhase Tal

'Module-level variables, constants, and arrays declared helow.

'Public varisbles and constants are availshle to all procedures in all modules

Public Const pi is Double

= 3.1415926536

Public colors(S) As String

'Private varishles and constants are avai

Private length is Singld
Private width is Single

able to all procedures in THIS module only

|
Figure 4-4:
Module-

Sub anysub (]
'Warishles, constants, an

Const © s Double = 34
Dim energy As Double
Dim mass As Double

‘iny code can follow. .
Enf Sub

5960000008

arrays below afe only availahle in this procedure

level and
procedure-
level
declarations.

Fupetion anyFunc (frdiame

'Whrishles, constants, an
Dim answer is Boolean
Dim scales(3) As Inte

‘iny code can follow. .
Enfl Function

|= String) ks Bo

er

lean

arrays below efe only available in this procedure

Naming conventions for variables

Some programmers use naming conventions to identify the data type of a
variable as part of the variable’s or constant’s name. The naming conventions
are entirely optional; you don’t have to use them. A lot of VBA programmers
follow them, though, so you're likely to see them in any code you happen to

Procedure-level

come across.

The idea behind a naming convention is simple: When you define a new vari-
able, make the first three letters of the name (the tag) stand for the type of
variable or object. For example, the following line creates an Integer vari-

Module-level private

Module-level public

able named intMyVar, where int is short for integer:

Dim intMyVar as Integer

01

62

Part ll: VBA Tools and Techniques

The tag (int) added to the front of the name doesn’t affect how the variable
is stored or how you can use it. The tag serves only as a reminder that MyVvar
is an Integer. Table 4-2 summarizes the tags that you will most likely
encounter when reading other people’s code. In the Sample Declaration column
of the table, Name means that you can put in any variable name you choose.

Table 4-2 Naming Conventions Used among VBA Programmers

Tag Stands for This Data Type Sample Declaration

byt Byte Dim bytName As Byte
cur Currency Dim curName As Currency
dtm Date/Time Dim dtmName As Date
dbl Double Dim dblName As Double
int Integer Dim intName As Integer
1ng Long integer Dim lngName As Long
sng Single Dim sngName As Single
bln Boolean Dim blnName As Boolean
str String Dim strName As String
var Variant Dim varName As Variant

Repeating Chunks of Code with Loops

Occasionally a situation occurs in which you want to execute one or more
VBA statements multiple times. Suppose you write some VBA statements that
need to operate on each record in a table, and the table holds 1,000 records.
You have two choices: Write each set of statements 1,000 times or create a
loop that repeats the one set of statements 1,000 times. Needless to say, typing
the statements once rather than 1,000 times saves you a lot of time. A loop is
your best bet.

Using Do...Loop to create a loop

The Do. . .Loop block is one method of setting up a loop in code to execute
statements repeatedly. The loop requires two lines of code: one at the top and
one at the bottom. You have a lot of flexibility when defining a Do. . . Loop. In

Chapter 4: Understanding Your VBA Building Blocks 63

¢MBER
é@

|
Figure 4-5:
Statements
inside a
Do...Loop
loop are
executed
repeatedly.
|

fact, there are two forms of syntax for creating these loops. The first is the
following:

Do [{While | Until} condition]
[statements]
[Exit Do]
[statements]

Loop

The second form of syntax provides the option of defining the condition at
the bottom of the loop, like this:

Do
[statements]
[Exit Do]
[statements]
Loop [{While | Until} condition]

In both instances, statements refers to any number of VBA statements, and
condition is an expression that can result in either True or False. The ver-
tical bar (also called a pipe) indicates that you can use one word or the other.
For example, you can use the word while or the word Until, but you can’t
use both. Other types of loops use similar constructs. So rather than dwell on
this type of loop right now, look at some other ways to set up loops.

For now, just realize that when you look at existing code, any statements
between the Do and Loop statements are executed repeatedly. Statements
outside the loop are still executed once each, from top to bottom. Only the
statements inside the loop are executed repeatedly, as illustrated in Figure 4-5.

Code execution

'"Any VBA statement or comment
Uny VBA statement or comment
Uny VBA statement or comment

'Start of a Do... loop

Do While counter <= 100
'"Any VBA statement or comment
'"Any VBA statement or comment
"Uny VBA statement or conmment

Loop

'"End of Do... loop

'"Any VBA siaiement or commernt
'"Any VBA statement or comment
Uny VBA statement or comment

64

Part ll: VBA Tools and Techniques

MBER
\g&
&

|
Figure 4-6:
Statements
inside this
While. ..
Wend loop
execute
repeatedly.
|

Using While...Wend to create a loop

The while. . .Wend loop is similar to Do. . . Loop, but it uses the simpler
(and less flexible) syntax shown in the following code:

While condition
[statements]
Wend

where conditionis an expression that results in a True or False value,
and statements are any number of VBA statements, all of which execute
with each pass through the loop.

The condition is evaluated at the top of the loop. If the condition proves
True, all lines within the loop execute (down to the Wend statement), and
then the condition at the top of the loop is evaluated again. If the condition
proves False, all statements within the loop are ignored, and processing
continues at the first line after the wend statement.

Statements within a while. . .Wend loop execute repeatedly, just as they do
with a Do. . .Loop, as illustrated in Figure 4-6.

Code execution
Yy VBA statement or comment
'"Uny VBA statement or comment
'"Uny VBA statement or commment

'Start of a While... Wend loop

While counter <= 100
Yy VBA statement or comment
Yy VBA statement or comment
'"Uny VBA statement or commment

Wend

'End of While.. . Wend loop

'"Any VBA statement or comment
Yy VBA statement or comment
YUy VBA statement or comment

Using For...Next to create a loop

A third pair of commands for creating loops in code is the For. . .Next block
of statements. The syntax for a For. . .Next loop is shown here:

Chapter 4: Understanding Your VBA Building Blocks 65

For counter = start To end [Step step]
[statements]
[Exit For]
[statements]

Next [counter]

where

V¥ counter is any name that you want to give to the variable that keeps
track of passes through the loop.

V¥ start is a number that indicates where the loop should start counting.
V¥ end is a number that indicates when the loop should end.

V step is optional and indicates how much to increment or decrement
counter with each pass through the loop. If omitted, counter incre-
ments by 1 with each pass through the loop.

v statements are any number of VBA statements that execute with each
pass through the loop.

You can see many For . . .Next examples throughout this book. For now,
when you’re looking at existing code and see a For . . .Next pair of state-
ments, realize that the statements inside that loop are executed repeatedly,
as illustrated in Figure 4-7.

Code execution

'"Any VBA statement or comment
YUny VBA statement or comment
YUny VBA statement or comment

'Start of a For...Next loop
For counter =1 To 100

__ '"Any VBA statement or comment
Figure 4-7: '"Any VBA statement or comment
Statements "Asrv VBA statement or comment

inside this Next

For... 'End of For...Next loop
Next
el)?eocpu?erg '"Any VBA statement or comment
'"Any VBA statement or comment
repeatedly.

YUy VBA statement or comment
|

66 Part Il: VBA Tools and Techniques

Making Decisions in UBA Code

Decision-making is a big part of programming because most programs need
to be smart enough to figure out what to do, depending on the circumstances.
Often, you want your code to do one thing if such-and-such is true but do some-
thing else if such-and-such is false. You use conditional expressions to deter-
mine whether something is true or false. A conditional expression is one that
generally follows this syntax:

Value ComparisonOperator Value

where Value is some chunk of information, and the ComparisonOperator
is one of those listed in Table 4-3.

Table 4-3 Comparison Operators
Operator Meaning

= Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
<> Not equal to

For example, the expression
[Last Name] = "Smith"

compares the contents of the [Last Name] field with the string "Smith". If
the [Last Name] field does indeed contain the name Smith, the expression
is (returns) True. If the [Last Name] field contains anything other than
Smith, the expression returns False.

Another example is the following statement:
[oty] >= 10
The contents of the Qty field are compared with the number 10. If the number

stored in the Qty field is 10 or greater, the expression returns True. If the
number stored in the Qty field is less than 10, the expression returns False.

\\J

Chapter 4: Understanding Your VBA Building Blocks 6 7

You can combine multiple conditional expressions into one by using the logi-
cal operators summarized in Table 4-4.

Table 4-4 Logical Operators

Operator Meaning

AND Both are true

OR One or both are true

NOT Is not true

XOR Exclusive or: One — not both —is true

The following conditional expression requires that the [Last Name] field
contain Smith and the [First Name] field contain Janet in order for the
entire expression to be True:

[Last Name]="Smith" and [First Name]="Janet"
You can include spaces on either side of the equal sign or not. Either way works.

The following example is an expression that returns True if the State field
contains either NJ or NY:

[State]="NJ" or [State]="NY"

Using If...End If statements

You have a couple of ways to write VBA code that’s capable of making a deci-
sion. The simplest — and by far the most common — is the If...End If
block of code, which uses this syntax:

If condition Then
[statements]. ..
[Else]
[statements]. ..
End If

where conditionis an expression that results in True or False, and
statements refers to any number of valid VBA statements. If the condition
proves True, the statements between Then and Else execute, and all other
statements are ignored. If the condition proves False, only the statements
after the E1se statement execute, as illustrated in Figure 4-8.

68

Part ll: VBA Tools and Techniques

|
Figure 4-8:
The basic
idea behind
theIf. ..
End If
statement.
|

If conditiorr Then
statemerntl
statement2 If condition proves True,
statement3 only these statements are executed.
Else
srazememj} If condition proves False,
statement. only these statements are executed.
End If

You have a little bit of flexibility when using If. . .End If.If only one line of
code executes for a True result and only one line executes for a False
result, you can put the whole statement on a single line and omit the End If
statement, as this line shows:

If State="NY" Then TaxRate=0.075 Else TaxRate=0

Using a Select Case block

In some situations, you might need to have your code make a decision based
on several possibilities. For example, perhaps you need to perform different
statements depending on which of ten product types a person ordered. In
that case, you can set up a Select Case block of code, which performs a
particular set of instructions depending on some value. Typically, the value is
stored in a variable or field in a table and is also a number that represents
some previously made selection.

The basic syntax of a Select Case block of code looks like this:

Select Case value
[Case possibleValue [To possibleValuel
[statements]]
[Case possibleValue [To possibleValuel
[statements]]...
[Case Else
[statements]]
End Select

where value is some value (like a number), and possibleValue is any
value that could match the value. You can have any number of Case
possibleValue statements between the Select Case and End Select
statements. Optionally, you can include a Case Else statement, which
specifies statements that execute only if none of the preceding Case
possibleValue statements proves True.

Chapter 4: Understanding Your VBA Building Blocks 69

Each Case statement can have any number of statements beneath it. When the
code executes, only those statements after the Case statement that matches
the value at the top of the block execute. Figure 4-9 shows the general concept.

Select Case vahie

Case possibleVahiel
Statements
statements — These statements executed only if
—! possibleValuel equalsvalue.
Case possibleValue2
statemernts | .
ctatements — These statements executed only if
possibleValueZ2equals value.
Case possibleValue3
— statements | .
] statements — These statements executed only if
Figure 4-9: —' possibleValue3equalsvalue.
A select
Case block Case Elstet o
runs only igéggﬁ; — These statements executed only if no
certain lines —' possibleValue above equalsvalue.
of code.
Fnd Select

70 Part Il: VBA Tools and Techniques

Chapter 5
Controlling Access through VBA

In This Chapter

Working with objects and collections
Understanding properties and methods
Using properties and methods in VBA code
Help with objects, properties, and methods

u sing Visual Basic for Applications (VBA) in Access is all about writing
code to manipulate Access objects, which is just about everything you
see on your screen in Access. Coming up with a simple example is difficult
because virtually everything is an object. Every table, query, form, report,
macro, and module is an object. Every record and field in every table and
query is an object. Every control on every form and report is an object. Even
the Access Ribbon is an object that you can manipulate with VBA. (See a pat-
tern here?)

Every object in a database has a unique name. Most objects have properties
and methods that VBA can manipulate. The properties and methods exposed
by an object are the steering wheels, if you will, that allow VBA to grab hold
of an object and take control. The names that define all the objects that VBA
can manipulate are organized into an object model.

Using VBA in Access is largely a matter of manipulating database objects to
achieve a goal. In this chapter, we walk you through the basics of objects that
Access exposes to VBA. Access has so many objects, properties, and meth-
ods that we have no hope of explaining them all in a single book. You have no
real hope of ever memorizing them all, either, because there’s just too darn
many of them. What you really need is the skill of being able to find the infor-
mation you need, exactly when you need it. Thus, much of this chapter
focuses on that skill.

72 Part ll: VBA Tools and Techniques

Understanding Object Models

|
Figure 5-1:
A small
portion of
the Access
object
model.
|

An object model is a road map, or the view from 30,000 feet, of all the objects
and properties that VBA can manipulate. Because there are so many thou-
sands of objects, you need a sort of road map to find them, just like you need
a map to navigate unfamiliar territory.

When you view an object model (or portion of an object model), all you see
are color-coded boxes arranged in a vertical hierarchy. For example, Figure 5-1
shows a graphical representation of the Access object model. Notice the
legend in this figure, which points out that some boxes represent an object
only, and others represent both an object and a collection.

|Fnrm5 |

|—|F|:|rm |

L{Enntrnls |

|—{El.'ml:rl.'nl |

|—|Pruperties |

Legend

|:| Cbject and collection
|:| Cbject only

Distinguishing between
objects and collections

You’re no doubt wondering how (or why) a thing could be both an object and
a collection at the same time. Start with a simple, real world example: a can
of peas. The can of peas itself is an object — a unit — that you can buy at
most any store and easily carry in your hand. The can, however, is also a
collection — a repository — of individual peas. Thus, it’s both an object and
a collection. The same could be said for a carton of eggs: The carton itself is
an object, but it can also be a collection because it holds the eggs inside.

Chapter 5: Controlling Access through VBA

MBER
@&
&

|
Figure 5-2:
Forms hold
controls;
controls
hold
properties.

Refer to Figure 5-1, and take a look at what each box refers to. The Forms col-
lection is a collection of all the open forms in a database. When your VBA
code is running, it can access any form within that collection of open forms.
Notice how the word Form is indented under the word Forms. This illustrates
that each object in the Forms collection is a Form. (Seems reasonable.)

In the object model hierarchy, Forms is color-coded as an object and a collec-
tion. How can a form (an object) be a collection? If you look at just about any
form, you see that it contains controls. In fact, a form is a collection of con-
trols. From a programming standpoint, a form is an object that you can
manipulate (open, close, print, and so forth) as a unit (an object). However,
it’s also a Controls collection, which contains smaller individual objects
(each called a control) that you can manipulate with VBA.

Wait a minute. According to the object model, Controls is both an object and
a collection. What collection of things does a control contain? Each control
has its own collection of properties that uniquely define its name and many
other properties. You can see those properties in form design when you select
a single control and view its property sheet. For example, in Figure 5-2, the
combo box control named Company is selected in the form’s Design view. The
property sheet in the figure is showing the properties for only that control.

Every form has its own collection of controls.

%Emp\uyee Details - = x

=Nz{[Employee Name.f' Untl e

] uround v| i | mote s o selesi |
i

C | General | orders

fE|

il [First Name First Name Bttachments || [E-mal
1 et ame Last Narme el Pa Property Sheet ¥R
-l Selection type: Combo Box
B C foomesny M Company ~]
=1|iE| Vo Tite lob Title
S Format| Data | Event | Other| Al
.. Name Company]
2 ‘"‘““5 COr s H | Control Source Company
i Format
- ||| [Business Phone Business Phone Notes Deimal Places Auto
- Wisible Yes
R e Phoos Home Phone Datasheet Caption
- ||| Mokile Prone Mobile Phone Eg::m x:xi A}
R
||| [Feox umper Fax Number Column Heads o
A u List Rows 16
R —— » List width Auto

Separator Characters System Separator

Width

Height 0.2188"

Top 11681"

Left 1.5104" v

Every control has its own collection of properties.

/3

74

Part ll: VBA Tools and Techniques

\P . . .

) When you’re in the Access forms Design view, you have several ways to open
the property sheet. Use whatever method seems most convenient. Your
options are

v Double-click the control whose properties you want to view.
v Right-click a control and choose Properties.
v Press the F4 key.
v On the (Form Design Tools) Design tab, click the Property Sheet com-
mand in the Tools group.
As you work with VBA in Access, you often see little chunks of object mod-
ules (like the example shown in Figure 5-1). The complete Access object
model is too big to even fit on-screen and would be a tight squeeze on a
printed page in this book. However, you can always browse the Access object
model by following these steps:
1. If you're in the Access program window, press Alt+F11 to switch to the
VBA Editor.
2. Press F1 or choose Help~>Microsoft Visual Basic Help to show the
main Access Developer help screen.
3. In the Help window, click Access Object Model Reference.
The Help window, shown in Figure 5-3, shows the subcategories of the
Access object model. Click one of the subcategories to drill down into
each object’s specific properties, methods, and collections. (You see a
lot of them, so warm up your clicking finger.)
@) Access Help - o x
D@ @@ 0 EMe e
Acess Developer Home -
AccessObiect Ohjerd AccessObjectProperties Object
AccessObjectProperty Object AdditionalData Object
Alipatabaseliagrams Object AllForms Object
AlIFunctions Dbiect AlMacros Object
AllMadules Object Allqueries Object
|
AllReports Object AllstoredProcedures Obdect
Figure 5-3: AllTables Object Allvizws Object
V| ew an Application Object Attachment Object
. AutoCorrect Object BoundOhjectFrame Object
object .
CheckBox Object CodeData Obiject
model from | | coroia onees S
H e | p . CommandButton Object Contral Object rel
Developer Reference ‘ ‘& Connected to Office Online .
|

Chapter 5: Controlling Access through VBA

|
Figure 5-4:
Find menus
of proper-
ties and
methods.
|

Understanding properties and methods

Every object and every collection exposes at least one property and method
to VBA. The difference between a property and a method is described here:

v Property: A characteristic of an object, such as size, color, or font

1 Method: An action that can be performed on an object, such as open,
close, or copy

The standard syntax for referring to a specific object (or collection) property
is to follow the object name or collection name with a period and the prop-
erty name:

ObjectCollectionName.property

where ObjectCollectionName is a name from the object model, and
propertyis a valid property name for that object.

When you type a valid object or collection name followed by a period into
the Code or Immediate window of the VBA Editor, it immediately displays a
list of properties and methods for that object. For example, if you type

Forms.

into the Code or Immediate window, Access immediately displays a menu of
properties supported by the Forms collection, as shown at the top of Figure 5-4.

FDrmSJ
&
E& Count
B Itam
E& Parent

DoCrad. |
=B hddheny i
=B ApplyFilter
=@ Beep
=& CancelEvent
=% Close
=& CopyDatabaseFile
= CopyOhject v

Look at the bottom half of Figure 5-4. DoCmd is another object in the Access
object model (which we haven’t mentioned yet) that offers many methods.
Type its name followed by a period

75

76

Part ll: VBA Tools and Techniques

DoCmd.

into the Code window or Immediate window, and you see a list of methods
supported by the DoCmd object. After the menu is visible, you can just click
any property or method name to add it to the command.

égN\BEI? The drop-down lists of property and method names, known as IntelliSense,
<
&

serve as useful reminders for experienced programmers, but beginners need
more information than the little lists provide. You can get help with objects
and collections by using the same basic techniques that you use for getting
help with VBA statements. For example, you can select (double-click) an
object or collection name in your code and then click Help (or press F1). Or,
you can search the Object Browser for the object name or collection name
and get help from there. Here’s how:

1. In the VBA Editor, open the Object Browser by pressing F2 or by
choosing Viewr=>Object Browser from the menu bar.

2. In the left column, scroll to and then click the name for which you
want help.

For example, for help with the DoCmd object, scroll down through the
left column and then click DoCmd. Alternatively, you can use the Search
tool in the Object Browser to find a specific word. The Members Of pane
on the right changes to show only properties, methods, and events for
the item you selected in the Classes pane on the left.

3. Optionally, if you want Help for a name in the right column, click the
name for which you want help.

4. Press F1 or click the Help button in the Object Browser.

For example, if you click DoCmd in the left column and then press F1 or
click the Object Browser’s Help button, you see the Help page for the
DoCmd object, as in the right half of Figure 5-5.

When you’re viewing the Help information for an object or collection, be sure
to look at the headings under See Also. Those offer help with the specific
properties and methods exposed by the object.

Classes and members

Don'tlet the Classes and Members Of headings can act as a container (an object or a collection).
in the Object Browser confuse you. Thisisn‘tthe Think of the members of as things (properties,
feudal system, so think of a c/ass as anythingthat methods, other collections) within the collection.

|
Figure 5-5:
Find help in
the Object
Browser.

Chapter 5: Controlling Access through VBA

Click for help with methods.

%4 Object Browser B[]
[<an Libraries: = A
=l Al
— Search Results
Libra | Class
Classes Members of DoCmd
) Dependencyina (4 [-® Addmenu ~
@ Dependencyhjects = AppiyFilter
gl - Beep
Tl =& CancelEvent
2 Document & ClearMacraErrar
@ D @ Close
) Documentinspectors |<& CloseDatabase
) DocumentLibranjver | |-& CopyDatahaseFile
) DocumentLibraniver |<® CopyQhject
) DocumentProperties |<@ DeleteOhject
& DocumentPraperty =S DaMenultern
£ Documents & Echo
=R DrivetPramptEnum =& Findhext
= EditModeEnum =& FindRecard
|27 EncryptionCiphemor |- GoToContral
) EncryptionProvider |- GoToPage
|27 EncryptionProviderD |- GoToRecard
&%) EmObiect & Hourglass
@) Eror | |2® LockNavigationPane v
Clags DoCmdd
Member of Access

L2}
XOH U Ay e B
- P search -
Aceess Devsloper Home - Access Object Model Reference = DoCmd Object 'S
Access Developer Reference
DoCmd Dbject
B show &l
You can use the methods of the DoCmd objsct to run Microsoft Access actions from Yisual Basic, An action
performs tasks such as dlosing windows, opening forms, and setting the valus of controls.
Remarks
For example, you can use the DpenForm method of the DoCmd objert to open a form, or use the
Hourglass method ta change the mouse pointer to an hourglass icon.
Mast of the methods of the DoCmd object have arguments — some are recuired, while others are optional. IF
ou omit eptional arguments, the arguments sssume the defaul values For the particular methed, Far
example, the DpenForm methad uses saven arguments, but only the First arqument, FormAlame, is required.
The fallawing example shows how you can apen the Employees form in the current database, Orly employees
with the title Sales Representative are includes
DoCmd.OpenForm "Employees™, , ,"[Title] = 'Sales Representative'"
The DoCmd objct doesrit suppart methods correspanding ko the following actions:
= Addheny,
= MsgBox, Use the MsgBox function.
= Runfpp. Lise the Shell function ta run anather application,
= RunCode. Run the function directly in Yisual Basic,
= sendkeys. Use the SendKeys statemert.
= Gabizhis Cab ke oslis diveckl in Vieos] Racie 1]
< >
Developer Reference | @ Connected ta Office Online .=

Methods of the selected object

DoCmd)

Identifying the icons for objects,
properties, and methods

The Object Browser, as well as the menus that appear in the Code and
Immediate windows, uses icons to help you visually discriminate between
objects, properties, methods, and other items in the object model. Table 5-1
lists each icon. Refer to the Object Browser shown in Figure 5-5 (left side) to
see some of the icons in action.

Table 5-1 Icons Used in the Object Browser and the Code Window

Icon

Name

e

Property

i

Default Property

(continued)

/7

78 Part Il: VBA Tools and Techniques

Table 5-1 (continued)

Icon Name
___' Method
o Default Method
Event

Constant

Module

Class (object or collection)

User Defined Type

Global

Object Library

Project

VBA Keyword or Data

o &) 5 @ =| B B B w

Enum

%

Chapter 5: Controlling Access through VBA

Manipulating Properties and Methods

When you write in any language, your ultimate goal is to be clearly under-
stood. You accomplish this goal by following basic rules of word order and
punctuation (syntax). In a sentence in English, for example, nouns, verbs,
objects, articles, modifiers, and punctuation fall (usually) in a set way. (The
sentence “my the ate. dog homework” is unintelligible; “The dog ate my
homework.” is correct.)

Likewise, when you write code, you're manipulating the properties and meth-
ods exposed by that object and considering the basic rules of syntax for how
to refer to objects, properties, and methods. Understanding those rules is
critical to being able to write VBA code that works. Knowing how it all works
also helps you understand and modify existing code.

Getting the value of a property

The syntax for referring to an object (or collection) property follows this gen-
eral form:

objectCollectionName.property

where objectCollectionName is any valid object or collection name, and
property is any valid property for that object. The dot (.) is the delimiter
that separates the object name from the property name.

For example, all collections have a Count property that contains the number
of items in the collection. Remember that the Forms collection is an object
that contains all open forms in Access. Thus, Forms . Count returns the
number of open forms in the database. You could see this for yourself by
typing the following line in the Immediate window and pressing Enter:

? Forms.Count

As always in the Immediate window, the question mark asks “What is?” In this
case, you're asking the Immediate window, “What is the forms count in this
database?” (or, “How many forms are open right now in this database?”).

If no forms are open in Access, Forms . Count returns 0 (zero). If you open a
form (in Form view) in Access and then execute the ? Forms.Count state-
ment again, it returns 1. In other words, the value returned by Forms.Count
is equal to the number of forms that are open in Access — 0 (zero) if no
forms are open, 1 if one form is open, 2 if two forms are open, and so forth.

79

80

Part ll: VBA Tools and Techniques

Bang (!) versus dot (.) in identifiers

To refer to specific objects in a database, VBA
uses the same identifier syntax that's used in
Access expressions. An identifier can use two
different characters as delimiters (separators)
between words: either an exclamation point(!)
or a period (.). Programmer lingo for these
characters is bang and dot, respectively. The
general rules for using them are listed here:

v | (bang): Use the bang character to pre-
cede any name you made up yourself, such
as the name of a form you created or the
name of a control you created on the form.

v . (dot): Use a dot to precede a property
name or any “official” name that you didn't
make up yourself.

For example, in Forms !myForm!myButton.
Visible, both myForm and myButton are

names that we made up. We did so while creat-
ing those objects in Access. Both names are
preceded by a bang (!) character because
they're both names we made up.

The final name in the identifier, Visible, is a
reference to the object’s Visible property.
We didn't make up the name visible our-
selves: Rather, that's the Access name for the
property, as you can see in the property sheet
shown in Figure 5-6. Because Visible is an
“official” property name, its name is preceded
with a dot (.) rather than a bang (!).

For more information on identifiers, your best
betis to consult an Access book (as opposed to
an Access VBA book, like this one). Or you can
just search the Access Help (not VBA Help) for
the word identifier.

A\

To reexecute a statement in the Immediate window, just move the cursor
back to the end of the statement that you want to execute and then press
Enter. To quickly delete text in the Inmediate window, drag the mouse

pointer over it and press Delete.

Every control on every form has a Visible property that determines whether

the control is visible on the form. When Visible equals True (Yes), the con-

trol is visible. Conversely, when the visible property is False (No), the

control is not visible.

When creating your own forms, you might find instances when you want a
control to be visible to the user and instances when you don’t want it to be
visible. For example, on a form that allows a user to enter payment informa-
tion for an order, you might want to make controls for entering credit card
information visible only when the customer is paying by credit card. If the
customer pays by check or cash, you might want to make those same con-

trols invisible so that the user doesn’t accidentally choose Cash or Check and

then also type in credit card information.

The syntax for referring to the visible property of a control named myButton

is myButton.Visible. However, as with Access expressions, getting to a
specific object from outside its container requires using an identifier, which
provides the complete path to the object. For example, the line

Chapter 5: Controlling Access through VBA

|
Figure 5-6:
Forms!
myForm!
myButton.
Visible
from an
Access
viewpoint.
|

Forms !myForm!myButton.Visible

refers specifically to the Visible property of a control named myButton on
a form named myForm. The Forms! part at the beginning refers to the Forms
collection, which contains all forms that are open in Access. Figure 5-6 illus-
trates how Forms !myForm!myButton.Visible refers to the Vvisible
property of the myButton control.

Forms collection (all open forms)

| %lmyForm = = =

4
iy
Iy Button

Property Sheet - X
Selection type: Command Button
myButton [v]
Format| Data | Event | Other | Al |
Marne myButton 2
Caption My Button
Picture Caption Arrar Bottom

[Record: 14 < [Torft M & Seaf| Msible tes
Cursor On Hover Default
Picture (image]
Picture Type Embedded
Width 1.0417"
Height 075"
Top 0.5"
Left 0.625"
Back Style Mormal
Transparent No
Font Mame Calibri
Fant Size 11
Alignment Center Lv]

myButton Properties of

myButton
myForm

Changing the value of a property

To change the value of a property, follow the property name with an equal
sign and a valid value for the property. For example, the Visible property
of a control can be True (Yes) or False (No). For example, the following
statement makes invisible a control named myButton by setting its Visible
property to False (No):

Forms !myForm!myButton.Visible = False

81

82

Part ll: VBA Tools and Techniques

To make that same control visible again from VBA, set its Visible property
back to True (Yes), as shown here:

Forms !myForm!myButton.Visible = True

Using an object’s methods

Methods are actions that you can perform on objects. The syntax for referring
to an object’s methods in VBA varies. In some cases, referring to a method is
the same as referring to a property. You simply follow the object or collection
name with a period and the method that you want to apply.

For example, the DoCmd (do command) object in the Access object model
exposes commands on Access menus and other capabilities to VBA. One of
the simplest methods exposed by the DoCmd object is the Beep method.
When applied, it simply makes Access sound the default beep sound. In your
own code, you might use DoCmd . Beep to sound a beep when a form opens —
or when the user makes a mistake — to call attention to the screen.

You can try out the DoCmd . Beep method right now via the Immediate window.
Just type the following line into the Imnmediate window and then press Enter:

DoCmd . Beep

The Beep method is straightforward in that it’s just one word: beep. Some
methods support one or more arguments, acting as placeholders for informa-
tion that you want to pass to the statement later. For example, one of the
many methods offered by the DoCmd object is OpenForm. The syntax for
using the OpenForm method of the DoCmd object looks like this:

DoCmd.OpenForm FormName, [View], [FilterName],
[WhereCondition], [DataMode], [WindowMode],
[OpenArgs]

The first argument, FormName, is required. The remaining arguments, enclosed
in brackets, are all optional. (As in the syntax charts you see in Help and the
Quick Info screen tip, we use square brackets to indicate optional parameters
in this book.) For example, if the current database contains a form named
Customers, the following VBA statement opens it:

DoCmd.OpenForm "Customers"
Multiple arguments must be separated by commas. For example, the follow-
ing VBA statement uses the View argument and the acbesign constant to

open the form named OpenForm in Design view:

DoCmd.OpenForm "Customers", acDesign

Chapter 5: Controlling Access through VBA

Single versus double quotation marks

VBA uses the same syntax as Access expres-
sions, where literal numbers are just typed as
numbers (like 10), but literal text and dates
must be delimited (surrounded by characters).
Literal dates need to be enclosed in # charac-
ters. For example, the date December 31, 2007,
needs to be expressed as #12/31/074# inan
Access expression as well as in VBA. Literal
text, like the name Smith, needs to be enclosed
in either double quotation marks (" Smith") or
single quotation marks (' Smith').

When the syntax of a VBA statement re-
quires its own quotation marks, like the
WhereCondition argument in DoCmd.
OpenForm, the literal needs to be contained
within the entire argument. For example, the fol-
lowing entire expression StartDate =
#12/31/074is an entire WhereCondi tion,
enclosed within quotation marks to satisfy the
syntax rules:

"StartDate = #12/31/07# "

It gets tricky when the expression itself contains
quotation marks because you need one pair to
delimit the literal text and another pair to delimit
the entire expression. You need to use single quo-
tation marks for one pair and double quotation
marks for the other pair. Otherwise, Access can't
tellwhich quotation mark belongs to which chunk
of text. For example, if the WhereCondition
isLastName = “Smith"” andthatwhole part
needs to be in quotation marks, the following
statement does notwork:

"LastName = "Smith" "

The reason it doesn’t work is that the computer
always reads one character at a time, from left

to right. When the computer “sees” the first
quotation mark, to the left of LastName, it
“knows” that this is the start of some chunk of
text enclosed in quotation marks. The computer
keeps reading one character at a time, left to
right. When it then sees the double quotation
mark in front of Smith, it “thinks” that's the end
of the whole chunk and then gets all befuddled
and stops working when it sees more charac-
ters after that second quotation mark.

Alternating the single and double quotation
marks, as follows, solves the problem:

"LastName = 'Smith' "

When the computer reads the preceding line,
one character at a time from left to right, it
“sees,” as always, the first quotation mark to
the left of LastName. When it gets to the first
single quotation mark before Smi th, there’s no
confusion with the first double quotation mark.
Access just “knows"” that this single quotation
mark is the start of some new literal within the
current chunk of text.

As the computer continues from left to right, it
sees the second single quotation mark as the
end of the first one that started with Smi th. By
the time it gets to the second double quotation
mark, it really js at the end of the whole chunk of
text, so it doesn't get befuddled and fail.

For more information on using literals in Access,
refer to a book about Access or search the
Access Help (not the VBA Help) for the keyword
literal. Optionally, you can search the Access
Help for the word expressions and get more
information about literal values from the Help
page titled About Expressions.

If you want to use multiple arguments and skip over others, you need to
type enough commas to get to the right place. For example, the optional

WhereCondition argument lets you specify records to display in the form.

83

84

Part ll: VBA Tools and Techniques

|
Figure 5-7:
Menu of
valid entries
for the first
word after
DoCmd.
|

|
Figure 5-8:
Get Quick
Info syntax
help.
|

MBER
\g&
&

The following VBA statement opens the Customers form, displaying only
records that have CAa in the field named State:

DoCmd.OpenForm "Customers", , ,"[State]='CA'"

The empty commas leave the optional Viewand FilterName arguments
empty, ensuring that [State]="'CA" is passed as the fourth argument,
WhereCondition.

Seeking help with properties and methods

When you’re typing VBA statements that involve objects, properties, and
methods, you get all the usual quick-reminder Help on-screen. You can always
get more help, though. For example, as soon as you type DoCmd. (remember
to type the period as per the syntax for DoCmd), you see a menu of methods
that DoCmd provides, as in Figure 5-7. The menu is lengthy, so you have to use
the scroll bar to see all the available methods of the DoCmd object.

% VBA Practice - Module1 (Code) —
|(General) x| [Test S ‘
Sub Test () ‘
Docrd.|
P e —
=@ ApphyFilter
-® Beep
=@ CancelEvent
=% ClearhlacroError
== =S Close i
==l =® CloseDatahase e i

After you type a method name and a blank space, you see the entire syntax
for the method in a Quick Info screen tip, as in Figure 5-8. For the lowdown on
how to read Quick Info tips (what all the brackets, bold, italics, and other ele-
ments mean), check out Chapter 3.

<48 VBA Practice - Module1 (Code) =&

|Generan x| [rest | ‘
Sub Test () =
DoCmd. OpenForm
End 5ub | OpsnFormif , (Viw As AcFortVisi= I , [WhereConcition], [0stsMocie As ACFormOpanDatanode =
acFomPropertySetiings], As Aeindowhlode = aciWindowhormall, (Opendrgs)y

= =11 | 2.z

As always, quick reminders don’t provide any detail. When you're first finding
out how to master VBA, frequent visits to the VBA Help are necessary. VBA
has far too many objects, properties, methods, and keywords to list them all
in this book (or even a 1,000-page book). The best skill that you can learn in
VBA is how to get exactly the help you need, when you need it.

85

Chapter 5: Controlling Access through VBA

|
Figure 5-9:
Help for the
OpenForm
method.
|

Fortunately, all the Help methods that work with other VBA keywords also
work with objects, properties, and methods. For example, for help with the
OpenForm method of the DoCmd object, you can do the following:

v In the Code window: Type DoCmd.OpenForm into the Code window,
double-click OpenForm to select it, and then press F1 for Help.

v In the Object Browser: Find DoCmd in the left column, click OpenForm in
the right column, and click the Help (?) button in the Object Browser.

As always, a Help window pops up, as in the example shown in Figure 5-9,
where you can get more information on the OpenForm method.

Selected keyword

| # Microsoft Visual Basid - VBA Practice BE=]
: file Edit Wiew Inset Debug @) Access Help ——
FAE-HED2B3R I 00O EME =

- P search -

Arccess Develaper Home = Acezss Ghbject Madel Reference » Domd Object = Methods

<43 vBA Practice - Mod

I(Genernl)

le1 (Code)

Suh Test()
Docud . OpenFarm
End Sub

OpenForm Method

Access Developer Reference

DoCmd.OpenForm Method
P Show Al

The OpenForm methad carries out the OperFarm action in Visual Basic,

rammon. (. View, ., VWherefondition,
Opendrgs)
expresmon A vatiable that represents a DoCmd object.
Parameters
Name Required/Optional Data Type Description
Formfeme Required Variant & string expression that's the valid name
of a farm in the current database. If vou
execute Visual Basic code containing the
OpenForm rethod in a library
datahase, Microsoft Access looks for the
form with this name first in the ibrary
database, then in the current database.
Viaw Optional AcForm¥iew i AcFormView constark that specifies
the view in which the Form wil open, The
default value is acNormal,
Filterfame Optianal Variant # string expression that's the valid name
<] m = =] 3]

|| @ Connected to Office Online |z

Developer Reference

Help for selected keyword

Trying to figure out how to write a line of new code, or modify an existing line
of code by just guessing, is likely to turn into an exercise in hair-pulling frus-
tration. Nobody was ever born already knowing VBA syntax, and even the
experts have to make frequent visits to Help to get specific information when
they need it. The Help system in VBA is your best friend. Use it well!

86 Part Il: VBA Tools and Techniques

Chapter 6
Programming Access Forms

In This Chapter
Using VBA with Access forms
Enabling and disabling form controls
Changing colors, fonts, and special effects

Opening and closing forms from VBA

0ne of the most common uses of VBA is to make your Access forms
better and easier to use. As a database developer, you always want your
forms to make data entry as quick and error-free as possible. Although you
can do plenty along those lines in Access without using VBA, you can often
make things just a bit better by writing a little VBA code.

In this chapter, we focus on VBA programming techniques that apply specifi-
cally to forms. You’ll discover how to open forms, change things on a form,
and close a form automatically from VBA.

Working with Class Procedures

Every form in a database has a class module in which you can store code
that’s used only by that form. To get to a form’s class module, you first have
to click the Forms group in the Navigation pane and then open an existing
form in Design view or create a new form. Typically, you want to tie your
code to an object and event.

For example, a button on a form is an object. Every button has an on Click
event that occurs whenever a user clicks the button in Form view. If you want
to write code that runs every time someone clicks that button, you want to
tie the code to that button’s On Click event.

To see which events an object on a form offers, first select the object. The
name of the object appears in the property sheet. In the property sheet, click
the Event tab. All the events to which you can tie code appear in the property
sheet.

88

Part ll: VBA Tools and Techniques

|
Figure 6-1:
Sample
control,
event, and
Build button.

s Selected object (myButton)

When you click an event name in the property sheet, a Build button (look for
an ellipsis) appears to the right (see Figure 6-1). To write code that is exe-
cuted each time the event occurs, click that Build button. The first time you
do, you see a Choose Builder dialog box. Choose Code Builder and then click
OK. The form’s class module opens in the VBA Editor Code window.

EFurml - =
[T T i R R R

-
Detail §‘

Click Me operty Sheet

1 Selection type: Command Button

myButtan |

{[Farmat| Data | Event | other | anl

| onclick
On Got Focus

1| Onlost Focus

3| On Dbl Click

3 On Mouse Down
*| On Mouse Up

- On Mause Mave
- On Key Down

4 I On Key Up

O Key Press

On Enter

On Exit

Selected event property (On Click)

Build button

The first and last lines of the procedure that will execute in response to the
event are already typed into the class module for you. The name of the proce-
dure is a combination of the object and event name followed by a pair of
parentheses. For example, the procedure that executes whenever someone
clicks a button named myButton is myButton_OnClick (). The first and
last lines of VBA code for that procedure look like this in the class module:

Private Sub myButton_ Click()

End Sub

Any VBA code that the event is to execute needs to be typed between those
two lines of code. After you write your code, choose File>Save and then
choose File>Close and Return to Microsoft Office Access from the VBA
Editor menu bar. The VBA Editor closes, and you're back in the form’s Design
view. There you see the words

[Event Procedure]

in the property sheet, next to the name of the property for which you wrote
the code. In the future, whenever you click that property and click the Build

Chapter 6: Programming Access Forms 89

SMBER

button, you're taken straight to the form’s class module, with the cursor
already placed inside the procedure.

Every type of control has a unique combination of events to which you can tie
code. When you click a control in the form’s Design view, the Event tab in the
property sheet shows you all the events the control exposes. Some controls
offer quite a few more events than the button control shown in Figure 6-1.

You don’t need to memorize all the events supported by all the different con-
trols. There are too many of them, many of which you’ll probably never use.
Just to give you some examples of events to which you can tie code, we offer
the following quick list:

» On Click (Click): Occurs when the user clicks the control (points to
the control and clicks the left mouse button)

» On Mouse Down (MouseDown): Occurs when the user points to the con-
trol and then clicks either the left or right mouse button

» On Change (Change): Occurs when the contents of a TextBox or
ComboBox control change, such as when the user edits the contents of
a field

v Before Update (BeforeUpdate): Occurs after the user makes a
change to data in the control but before the new data is inspected and
before the underlying record is updated

V¥ After Update (AfterUpdate): Occurs after the user changes the con-
tents of the control, the new data has passed any data validation rules,
and the underlying record has been updated

Here’s the reason each item in the preceding list is shown with two names.
The first part, outside parentheses, is the name as it appears in the property
sheet. The name in parentheses (like C11ck) is the official VBA name and
also the name used in any VBA procedure that you tie to the event. For exam-
ple, if you tie a procedure to the On Change event property of a control
named PaymentMethod, that procedure is automatically named
PaymentMethod_Change ().

That, in a nutshell, is how you work with class procedures. Examples always
help, so your first forays into programming Access forms all use class proce-
dures to illustrate their techniques.

A module is a container that contains VBA code, where that code is organized
into chunks called procedures. A class module is a module that contains class
procedures. The module and the procedures within it belong to the form (or
report) to which the class module is attached.

90 Part Il: VBA Tools and Techniques

Enabling or Disabling Form Controls

|
Figure 6-2:
Enabled and
disabled
controls.
|

When you work in most programs and dialog boxes, Windows disables (dims)
controls that aren’t relevant at the moment. You can add that same capability to
your Access databases by using some VBA code. For example, you might create
a form that allows a user to choose from among different payment options.
When the user chooses Credit Card, you want all the fields for entering credit
card information to be enabled. When the user selects any other payment
method, you want to disable those same controls, as illustrated in Figure 6-2.

Controls enabled

Z§| Enable Dizable Controls ———
Enable/Disable Controls

Method: |Credit Card w| PO Nurber:
Credit Card: IMaster Card w| Card #: |1234432112344321
Credit Card Expiration Date Month: | 10[+| ‘Year: I E v

Authorization: |1234321 Faid

Record: 14 4 2of 5 LTS i Search

E Enable Disable Controls R
EnabieiDisable Controls

Method: ICheck | PO Murmber:

Credit Card: I Card #: I

Credit Card Expiration Date Month: [0 Year: | 00

Autharization: | Crad

Recard: 4 4 50f5 P HE i Search

Controls disabled

For the sake of example, assume that the controls in Figure 6-2 are named
(from top to bottom) PaymentMethod, PONumber, CCType, CCNumber,
CCExpireMonth, CCExpireYear, and CCAuthorization. We refer to those
control names in the sections that follow.

Every control on a form has an Enabled property. When that property is
True (or Yes), the control looks normal. When the Enabled property is
False, the control is disabled and therefore appears dimmed on the form.

To enable or disable a control on a form through VBA, use the general syntax

controlName.Enabled = True|False

Chapter 6: Programming Access Forms 9 ’

where controlName is the name of the control and True /False means that
you can use True to enable the control and conversely use False to disable
the control.

For example, the following VBA statement enables a control named CCType:

[CCType] .Enabled = True

The following VBA statement disables a control named CCType:
[CCType] .Enabled = False

P In a class module, any field names without identifiers refer to the current
form. For example, it’s sufficient to use a field name like [PaymentMethod]
rather than Forms ! [formName] ! [PaymentMethod] because the current
form is assumed.

Note this one catch to enabling and disabling controls from VBA: You can’t
disable a control if the cursor is in that control. So, in addition to knowing
how to enable and disable controls, you need to know how to position the
cursor with VBA, as we explain in the following section.

Using UBA to position the cursor

With VBA, you can move the cursor to any control on a form. In programmer
lingo, moving the cursor to a control is called giving that control the focus.
When you type, your text appears in whatever control on a form now has
the focus.

Square brackets and field names

VBA itself doesn't use square brackets. In fact,
about the only time you see square brackets in
VBA is when you're looking at a syntax chart,
where square brackets are used to identify
optional (as opposed to required) arguments.

name are required. If the name contains no
spaces, square brackets are optional.

Most VBA programmers use square brackets
around all Access object names even when
they’re not required, as in the case of the

Access, however, uses square brackets when [CCType] .Enabled = False example.

an object name — such as a field, query, form,
control, or report name — contains one or more
blank spaces. Then, square brackets around the

Using the square brackets makes it easier to
distinguish between names that refer to Access
objects and words that belong to VBA.

92

Part ll: VBA Tools and Techniques

|
Figure 6-3:
The
Payment
Method
control’s
After
Update
event
property.

You can have VBA automatically move the cursor to any control on your
form. This can be handy when your code can anticipate where the user is
most likely to type next. You can have VBA position the cursor to the appro-
priate control automatically so that the user can just keep typing and not
move the cursor on his own.

The same technique also lets you avoid error messages caused by trying to
disable (or hide or lock) the control that has the focus. The VBA syntax for
setting the focus to a specific control is

controlName.SetFocus

where controlName is the name of the control to which you want to move
the cursor. For example, the following statement moves the cursor to a con-
trol named CCType on the form:

[CCType] . SetFocus

Choosing an object and event for the code

In the example shown in Figure 6-2, assume that you want your code to either
enable or disable the various credit-card-related controls (CCType through
CCAuthorization) depending on the current contents of the PaymentMethod
control. The AfterUpdate event of PaymentMethod occurs whenever a
user chooses a valid option from the PaymentMethod control, so you want
to tie the code to the PaymentMethod control’s AfterUpdate event.

In the form’s Design view, click the PaymentMethod control to select it and
then click AfterUpdate on the Event tab of the property sheet. The next
step is to click the Build button, as shown in Figure 6-3. In the Choose Builder
dialog box that opens, choose Code Builder and then click OK.

=l enable Disable Controls - =
1| L Boovolo oo T P ﬁ‘
- SHEY

TR

1 = — Before Update
: [Beitorization: || [EEAURGri2ten —after Update =

- On Dirty
J“ﬂ" Footer on Change
T o On Motin List

On Got Focus
On Lost Focus

On Dbl Click

On Mouse Down

On Mouse Up

On Mouse Move v

Selected control
Event property Build button

Chapter 6: Programming Access Forms

\\3

The form’s class module opens, displaying a new, empty Sub procedure
named PaymentMethod_AfterUpdate (), based on the object and event
names. In the Code window, the empty procedure appears this way:

Private Sub PaymentMethod_ AfterUpdate ()

End Sub

Any VBA code that you place between those two lines is executed every time
a user changes the contents of the PaymentMethod control.

Every time the PaymentMethod_AfterUpdate () procedure executes, its code
needs to make a decision: Should it enable or disable the credit card controls?
You can use the VBA If. . .Else...End If keywords to make the decision.

See Chapter 4 for more information on the VBA If...Then...End If
keywords.

Withinthe If.. .Else...End If statements, the code positions the cursor
and enables or disables controls based on the current contents of the
PaymentMethod control. The logic of the procedure (not written in VBA
code yet) looks like this:

If "Credit Card" is selected in the PaymentMethod Field
Then
Enable the various Credit Card Controls
Move the cursor to Credit Card Type (CCType) control
Else
Disable the various Credit Card Controls
End If

Writing the code

For the procedure to work, that logic needs to be written in VBA language
and syntax. Listing 6-1 shows the procedure; the sections that follow look at
each step in the procedure more closely.

Listing 6-1: PaymentMethod_AfterUdate() Procedure
Private Sub PaymentMethod_AfterUpdate ()

If [PaymentMethod] = "Credit Card" Then
'Enable controls for entering credit card info.
CCType.Enabled = True
CCNumber .Enabled = True
CCExpireMonth.Enabled = True
CCExpireYear.Enabled = True
CCAuthorization.Enabled = True

(continued)

93

94 Part ll: VBA Tools and Techniques

Listing 6-1 (continued)

'Move the cursor to the CCType control.
CCType. SetFocus

Else
'Disable controls for entering credit card info.
CCType.Enabled = False
CCNumber .Enabled = False
CCExpireMonth.Enabled = False
CCExpireYear.Enabled = False
CCAuthorization.Enabled = False

End If

End Sub

The first line of code in the PaymentMethod_AfterUpdate procedure com-
pares whatever is now stored in the control named Payment Method. That
line, on its own, reads

If [PaymentMethod] = "Credit Card" Then

Translated to English, the line says, “If the control named PaymentMethod
contains the words Credit Card, then do the following lines up to E1se; other-
wise (else), skip the lines under E1se.” The same statement also means, “If
the PaymentMethod field does not contain the words Credit Card, then only
do the lines between Else and End If.” Thus, if the PaymentMethod con-
trol contains the words Credit Card, these lines of code execute:

'Enable controls for entering credit card info.
CCType.Enabled = True

CCNumber .Enabled = True

CCExpireMonth.Enabled = True
CCExpireYear.Enabled = True
CCAuthorization.Enabled = True

'Move the cursor to the CCType control.
CCType.SetFocus

Those lines ensure that all the credit card controls are enabled and then posi-
tion the cursor to the CCType control (where the user is most likely to make
her next selection).

If the PaymentMethod control doesn’t contain the words Credit Card, only
the following lines execute to disable the various credit card controls:

'Disable controls for entering credit card info.
CCType.Enabled = False

CCNumber.Enabled = False

CCExpireMonth.Enabled = False
CCExpireYear.Enabled = False
CCAuthorization.Enabled = False

Chapter 6: Programming Access Forms

Saving the procedure

After you type your procedure, choose Fileo>Save and then choose Filew>
Close and Return to Microsoft Office Access. In the form’s Design property
sheet, the words [Event Procedure] appear as the property. To test the
procedure, switch to Form view and choose a different option from the
Payment Method control.

Showing and hiding controls

Just like every control on a form has an Enabled property, every control also
has a visible property. When the Visible property is True (Yes), the con-
trol is visible on the form. When the Visible property is False (No), the
control is invisible in Form view. You can use this property to make controls
on the form appear or disappear, depending on values in other controls.

For example, the earlier PaymentMethod_AfterUpdate () procedure uses
the .Enabled property to make controls either enabled or disabled. You can
simply change Enabled to Visible in that procedure, as shown here:

If [PaymentMethod] = "Credit Card" Then
'Show controls for entering credit card info.
CCType.Visible = True
CCNumber .Visible = True
CCExpireMonth.Visible = True
CCExpireYear.Visible = True
CCAuthorization. Visible = True

Else
'Hide controls for entering credit card info.
CCType.Visible = False
CCNumber.Visible = False
CCExpireMonth.Visible = False
CCExpireYear.Visible = False
CCAuthorization. Visible = False

End If

This procedure causes the credit card controls to disappear from the form
when Credit Card isn’t selected in the PaymentMethod field. The controls are
visible only when Credit Card is selected as the PaymentMethod.

Making controls appear and disappear instead of enabling and disabling them
is a matter of preference. Generally, it’s bad practice to have things appear
and disappear as you change data on a screen. A disabled control lets a user
know that they can probably do something (check a check box or change a
value, for example) to make that control available. If the control is invisible,
the user doesn’t know that it’s there, which may be desirable in other situa-
tions, such as configuring a form when you first open it so that it doesn’t
change while the form is being used.

95

90

Part ll: VBA Tools and Techniques

\\J

Making controls read-only

You can lock and unlock controls on a form by using the . Locked property.
When a control is locked, the user can see the data and place the cursor in
the control but cannot change the data. (Hence, you say that the information
in the control is read-only.) To lock a control from VBA, use the syntax

controlName.Locked=True
An unlocked control is a normal control in which the user can see and change
the data (called a read/write control). To unlock a control from VBA, use the
syntax

controlName.Locked=False
Lock a control when you don’t want users to change the data, but you still

want to give them the ability to select and copy text from the control. If you
just disable a control, users cannot select and copy text.

Responding to Form Events

Your code isn’t limited to responding to events that happen in form controls.
You can also write code that responds to things that happen to the form as a
whole. A common example is writing code that executes as soon as a form
opens or each time a user scrolls from one record to the next in a table.
Things that happen to the event as a whole are form events.

You can see all the form event properties whenever you're designing a form
in Design view. Choose Form from the drop-down list near the top of the
property sheet (as shown in Figure 6-4) and then click the Event tab. The on
Current event (also shown in Figure 6-4) occurs each time the user moves
to another record in the form. To write a procedure that executes each time
the On Current event occurs, click the On Current event property and
click the Build (ellipsis) button that appears to the right. In the Choose
Builder dialog box, choose Code Builder and then click OK.

The VBA Editor opens, and you see the form’s class module in the Code window.
The name of the event procedure that you created is Form_OnCurrent (). The
word Form in this context means the entire form, and OnCurrent refers to
the event. The lines that start and end the procedure look like these:

Private Sub Form_Current ()

End Sub

Chapter 6: Programming Access Forms

|
Figure 6-4:
Form event
properties in
the property
sheet.
|

Form object selected

Ea Enable Disable Contrals - =2 x
_||‘-‘|‘-‘|‘-‘n‘-‘z---n---a--|---4---|A
Form Header r‘
: | Property Sheet r X
Selpction type: Form
Form »
I(Format| Data | Event |Other | Al
L.on Current v’@_/-
| On Load
B — 2n Click
JlCCAuthDrlzatlon after Update
............. [) i
Befare Insert
4 m] After Insert
Eefare Del Confirm
On Delete
After Del Confirm
Qn Dirty
©On Got Focus ha

On Current event property

Any code that you place between those lines is executed each time the user
scrolls to a new record in the form. As it turns out, this would be a handy
addition to the Payment Methods example described earlier. Only one event
now enables and disables credit card controls — changing the contents of
the PaymentMethod control. The controls don’t change when scrolling
through records, even when they should.

To remedy the situation, you can use the same code that you used in the
PaymentMethod_AfterUpdate () procedure to enable and disable controls
in the Form_Current () procedure. Listing 6-2 shows an example where

the Form_Current () procedure moves the cursor to a control named
PaymentMethod and then enables or disables credit card controls on the
form based on the contents of the PaymentMethod control.

Listing 6-2: Form_Current() Procedure

Private Sub Form_Current ()
'Move cursor to PaymentMethod field.
PaymentMethod. SetFocus

If [PaymentMethod] = "Credit Card" Then
'Enable controls for entering credit card info.
CCType.Enabled = True
CCNumber .Enabled = True

CCExpireMonth.Enabled = True

(continued)

97

98 Part Il: VBA Tools and Techniques

<MBER
43“

Listing 6-2 (continued)

CCExpireYear.Enabled = True
CCAuthorization.Enabled = True

Else
'Disable controls for entering credit card info.
CCType.Enabled = False
CCNumber .Enabled = False
CCExpireMonth.Enabled = False
CCExpireYear.Enabled = False
CCAuthorization.Enabled = False

End If
End Sub

After you write the code and choose Close and Return to Microsoft Office
Access, the On Current event property in the property sheet shows
[Event Procedure]. To test the code, switch to Form view (assuming that
the form was bound to a table that contains multiple records).

You don’t need to study all the details of every event for every control. There
are just too many of them. Here’s a quick rundown of some of the more com-
monly used form events for executing VBA code:

v On Load (Load): Occurs as soon as a form opens in Form view and dis-
plays the first record

V¥ On Current (Current): Occurs when the form is open in Form view
and the user scrolls to a different record in the underlying table or query

v After Insert (AfterInsert): Occurs when the user adds a new
record to the underlying table (but not when code or a macro adds a
new record to the table)

v On Delete (Delete): Occurs when a user deletes a record

V¥ On Close (Close): Occurs after a form is closed and cleared from the
screen

The name listed first in these bulleted items (like On Load) is the name as it
appears in the property sheet. The second name (like Load) is the VBA name
that’s added to the procedure name automatically when you tie code to an
event. For example, as you can read earlier in this chapter, tying code to a
form’s On Current event creates a procedure named Form_Current (). If
you create a procedure that executes as soon as a form loads, its name is
Form_Load().

The event to which you tie a procedure simply defines when the procedure
runs. You define what the procedure does, when it’s called, by writing the
VBA code within the procedure.

Chapter 6: Programming Access Forms

Changing the Appearance of Objects

|
Figure 6-5:
Some
appearance
properties
fora
TextBox
control.
|

A form, and each object on a form, contains certain properties that describe
the general appearance of the object. Different types of objects have different
combinations of appearance properties. When you’re working in the form’s
Design view, the Format tab of the property sheet shows the properties that
the selected object (or objects) support. For example, Figure 6-5 shows some
of the appearance properties available for the selected TextBox control on
the form.

E_lForml = = =

[T T T e L

i Property Sheet v X
Selection type: Text Box

DueDate ¥

Format | Data | Event | Other | &l

Back Calar #FFFFFF
Border Style Solid
Border Width Hairline
Border Calor #C0C0co
Back Shile Mormal
Special Effect Flat
Scrall Bars Mone
Font Mame Calibri

o Fontk Size 1

- Text Align General
Font Weight Mormal
Font Underline Mo
FontIfalic Mo ~

e [[

4 I

Changing colors

Your VBA code can change the color of objects on forms. Such changes can
be handy to use color-coding to call attention to specific items on a form. For
example, if a payment is more than 30 days overdue, you might want to
choose the amount due to show up in red (to call attention to the value).

The exact color properties available to you depend on the object for which
you’re writing code. Some common coloring properties include

» BackColor: Defines the background color of a text box, combo box, or
form section

v BorderColor: Sets the color of the border surrounding a control (as
long as that border isn’t transparent)

V¥ ForeColor: Sets the color of text in controls that show text, such as a
text box, combo box, or label

99

1 00 Part Il: VBA Tools and Techniques

When writing code to change the color of any property in the preceding list,
use the syntax

objectName.property = rgbColor

where objectName is the name of the object to color, property is one of the
properties that accepts a color, and rgbColor is a color defined as a VBA
ColorConstant or an expression that defines a color as a mixture of red,
green, and blue. ColorConstants are just predefined keywords that specify
some of the most basic colors, as shown in Table 6-1.

Table 6-1 Basic Color Constants and RGB Values
Color ColorConstant RGB Equivalent

Black vbBlack RGB(0,0,0)

Blue vbBlue RGB(0,0,255)

Cyan vbCyan RGB (0,255, 255)
Green vbGreen RGB(0,255,0)
Magenta vbMagenta RGB(255,0,255)
Red vbRed RGB(255,0,0)
White vbWhite RGB (255,255,255)
Yellow vbYellow RGB (255,255, 0)

The RGB () function allows you to express any of millions of colors. You can
use the Colors dialog box in Access to determine the correct RGB numbers
to use to express any color. In the form’s Design view, click the BackColor,
BorderColor, or ForeColor property, and then click the Build (ellipsis)
button that appears next to the property name and choose More Colors from
the menu. The Colors dialog box opens, initially showing just the basic
colors. Click the Custom tab to define your own colors.

To see the RGB numbers for a color, first click in the large rainbow-looking
area and then choose a brightness level to the right of that. The selected
color appears in the top half of the New/Current box, and the RGB numbers
for that color appear under the rainbow area. Figure 6-6 shows the basic pro-
cedure for finding the three numbers necessary to define a color from the
Colors dialog box.

Chapter 6: Programming Access Forms ’ 0 ’

Colors (B[]
Standard | Custom
|
Figure 6-6:
Use the
Colors Calor mpdel: | RGB d
. Red:
dialog box || = =
. Green: ml
to determine || g,
RGB.
Current
|
i ju
Click a color Drag to adjust
brightness
RGB values of Selected color

selected color

Notice in Figure 6-6 how the selected color is expressed as a mixture of Red
(60), Green (222), and Blue (85). The way to express that color by using the
RGB function is simply RGB (60,222, 85).

Be aware that backgrounds and borders can also be fransparent, or not even
visible, no matter how you color them. Properties that determine whether an
item is transparent or opaque include

v BackStyle: When set to 0 (zero), the background is transparent. When
set to 1, the background is opaque and can therefore show color.

v BorderStyle: When set to 0 (zero), the border is transparent. When
set to 1, the border is opaque and can therefore show color.

In the following simple example, your form contains a control named DueDate
that contains the date when a payment is due. As you scroll through records
in the table, you want DueDate to appear in red whenever the payment is
more than 30 days past due. Because you want the control to change while
you’re scrolling through records on the form, you could attach the code to
the form’s On Current event. The code would appear in a class module, as
shown in the following example. (The comment above each line of code tells
what the line beneath it does.)

7 02 Part Il: VBA Tools and Techniques

Private Sub Form_Current ()
If Date - [DueDate] > 30 Then
'Make control background opaque.
DueDate.BackStyle = 1
'Make control background color white.
DueDate.BackColor = vbWhite
'Make font color red.
DueDate.ForeColor = vbRed
Else
'Make control background transparent.
DueDate.BackStyle = 0
'Make font color black.
DueDate.ForeColor = vbBlack
End If
End Sub

When working with more than the basic colors, many programmers prefer to
define colors in advance by storing them in variables. To use this method,
you must first declare the variable or constant as a Long (long integer
number) and then use the RGB function to assign a value to the variable. For
example, the following Dim statements declare a bunch of color names as
variables containing Long Integer data. Lines below the Dim statements
assign colors to those names:

'Declare some color names as Long Integer variables.

Dim Beige As Long, Brown As Long, Chartreuse As Long

Dim DarkBlue As Long, DarkGreen As Long

Dim Fuschia As Long, Gold As Long, Gray As Long

Dim HotPink As Long, Dim Lavender As Long, Maroon As Long
Dim Navy As Long, Olive As Long, Orange As Long

Dim Pink As Long, Purple As Long, Salmon As Long

Dim Silver As Long, Teal As Long

'Assign colors to variables as RGB values.
Beige = RGB (245, 245, 220)
Brown = RGB(165, 90, 33)
Chartreuse = RGB(127, 255, 0)
DarkBlue = RGB(0, 0, 139)
DarkGreen = RGB(0, 100, 0)
Fuschia = RGB (255, 0, 255)
Gold = RGB(255, 215, 0)

Gray = RGB (128, 128, 128)
HotPink = RGB (255, 105, 180)
Lavender = RGB(230, 210, 250)
Maroon = RGB (128, 0, 64)

Navy = RGB(0, 0, 128)

MBER
é"
&

Chapter 6: Programming Access Forms ’ 03

Olive = RGB(128, 128, 0)
Orange = RGB(255, 165, 0)
Pink = RGB (255, 192, 203)

Purple = RGB(128, 0, 128)
Salmon = RGB(241, 128, 114)
Silver = RGB(192, 192, 192)

Teal = RGB(0, 192, 192)

After the color name has been assigned a value, you can use it in your code.
For example, the following lines set the background color of the form’s Detail
section to a Salmon color:

Dim Salmon as Long
Salmon = RGB(241, 128, 114)
Forms!Forml .Detail .BackColor = Salmon

For details on creating variables, see Chapter 4.

Controlling boldface, italics, and such

If a control displays text or numbers, you can change the font or style of text
by using VBA. The property names are self-explanatory, as are most of their
settings. As always, controlName stands for the name of a control on a form.
Wherever you see a pipe (|) separating options, you can use one or the
other:

controlName.FontBold = True | False
controlName.FontItalic = True | False
controlName.FontName = stringExpression
controlName.FontSize = numberPoints
controlName.FontUnderline = True | False

The .ForeColor property described in the earlier section “Changing colors”
determines the color of text in a box. In other words, the . ForeColor prop-
erty defines the font color.

For example, to set the font of a control named Notes to Courier New, 12
point, with boldface, italics, and underline all turned on (and to make the text
red, for added overkill), use these statements:

Notes.FontName "Courier New"
Notes.FontSize 12
Notes.FontBold True
Notes.FontItalic = True
Notes.FontUnderline = True
Notes.ForeColor = vbRed

1 04 Part Il: VBA Tools and Techniques

Changing special effects

Text boxes and some other controls on forms have a Special Effect prop-
erty that defines their general appearance on the form. When you’re creating
a form in the form’s Design view, you set a control’s Special Effect prop-
erty in the property sheet. If you want your code to change a control’s special
effect, use the syntax

controlName.SpecialEffect = setting

where controlName is the name of the control whose effect you want to
change, and settingis either the number or constant, as shown in Table 6-2.

Table 6-2 Using a Constant or Number As a SpecialEffect Setting

Appearance Number Constant

Flat 0 acEffectNormal
Raised 1 acEffectRaised
Sunken 2 acEffectSunken
Etched 3 acEffectEtched
Shadowed 4 acEffectShadow
Chiseled 5 acEffectChisel

As an example, the following line of code sets the special effect of a control
named ContactID to the flat appearance:

ContactID.SpecialEffect = acEffectNormal

The following line achieves exactly the same result as the preceding line but
uses a number rather than the constant for the setting:

ContactID.SpecialEffect = 0

Using the With...End With statements

If you want your code to change several properties of a control, you can use a
With...End With block of code to make your code easier to read. For
example, if you want your code to change several properties of a control
named myControl on a form named myForm (and the code isn’t in a class

A\

Chapter 6: Programming Access Forms ’ 05

module), you could include that lengthy identifier on every line of code, as
shown here:

Forms !myForm.myControl .BackStyle = 1
Forms !myForm.myControl .BackColor = vbWhite
Forms !myForm.myControl .ForeColor = vbRed

Forms !myForm.myControl .SpecialEffect = acEffectNormal
Forms !myForm.myControl.FontBold = True

Or, you can use awWith. . .End wWith block of code:

With Forms!myForm.myControl
.BackStyle = 1
.BackColor vbWwhite
.ForeColor vbRed
.SpecialEffect = acEffectNormal
.FontBold = True

End With

Most programmers prefer to write using the latter format because the code
is easier to read. When executing the code, VBA understands that with
Forms !myForm!myControl means that all the property settings to follow
(up to the End with statement) are to be applied to the object named
Forms !myForm.myControl.

Filling form controls with data

Controls that can contain data, like TextBoxes, ComboBoxes, CheckBoxes,
and such, all have a .value property that defines the contents of the control.
To put data into a control, use the following syntax, where controlName is
the name of the control, and value is the data you want to put in the control:

controlName.Value = value

If controlName refers to a control that’s bound to an underlying table, the
field in the current record of that table receives the same value as the control.

Suppose that your form includes controls named State, SalesTaxRate,
OrderSubtotal, SalesTaxAmt, and GrandTotal, as in Figure 6-7. You
want to write some code that does the following:

1. If stateis CA, put 0.0725 (7.25%) in the SalesTaxRate control.

2. If state is not CA, put 0 (zero) in the SalesTaxRate control.

3. Calculate and display the SalesTaxAmt.

4. Calculate and display the GrandTotal amount.

1 06 Part Il: VBA Tools and Techniques

ESalesTaxFurm - = x
Sales Tax Form
b
Name Tori Pines
| Address 345 Pacific Coast Huey
Figure 6-7: City Del Mar CA || 98765
A sample Subtptal $252.00
form with Saleg Tax 516.82
calculated Sales Tax Rate 7.25% Granfl Total 524582 —
sales tax.
[Record: 4« zofd | b b | 4 [seatkn |
|

State GrandTotal

SalesTaxRate SalesTaxAmt

OrderSubtotal

Youneed an If...Then. . .Else block of code to make the decision in your
VBA code. For the calculations, just use the * (multiplication) and + (addi-
tion) operators, as shown here:

If [State] = "CA" Then 'If State is CA then...
'...Set SalesTaxRate to 7.25% for CA
[SalesTaxRate] .Value = 0.0725

Else
'Otherwise, set SalesTaxRate to zero.
[SalesTaxRate] .Value = 0

End If

'Calculate and show SalesTaxAmt and GrandTotal
SalesTaxAmt.Value = [SalesTaxRate] * [OrderSubtotall]
GrandTotal.Value = [OrderSubtotal] + [SalesTaxAmt]

When assigning values to controls, make sure to use the correct data type.
For example, if you want to put text in a Text, Memo, or Hyper1ink control,
enclose the text in quotation marks, as in the following examples (all of which
use completely hypothetical control names):

anyTextbox.Value = "Smith"
anyHyperlink.Value = "myname@mycompany.com"
anyHyperlink.Value = "www.dummies.com"

To put a check mark into a check box, set the check box’s value to True, as
in anyCheckbox.Value = True. To clear a check box, set its value to
False, as in anyCheckbox.Value = False.

\\3

Chapter 6: Programming Access Forms ’ 0 7

If you want to put a specific date into a Date/Time field on a form (or in a
table), enclose the date in pound signs (#). For example, the following line
assumes that DateEntered is the control for a Date/Time field named
DateEntered. The code places the date 12/31/07 into that control:

[DateEntered] .Value = #12/31/07#

To put today’s date into a Date/Time field, use the word Date, alone, to the
right of the equal sign, as in DateEntered.Value = Date.

Far be it from us to confuse things, but we should point out that for many
controls, the .vValue property is assumed if you don’t include it in your
code. This is because .Vvalue is the default property of the text box and
combo box controls. you must understand this point when modifying existing
code because some programmers might prefer to omit the .vValue property
name. For example, when you see something like this line in your code:

[SalesTaxRate] = 0
it means exactly the same thing as
[SalesTaxRate] .Value = 0

Both these VBA statements put the value 0 into a control named
SalesTaxRate

Opening and Closing Forms

VBA doesn’t limit you to working with individual controls on forms. You can
work with entire forms as objects, too. For example, VBA can open a closed
form and display it on-screen. The OpenForm method of the DoCmd (do com-
mand) object gives you great flexibility in exactly how VBA opens a form. The
syntax for using the OpenForm method of the DoCmd object is

DoCmd.OpenForm formName, [View], [FilterName],
[WhereCondition], [DataMode], [WindowMode]
[OpenArgs]

Only the first argument, formName, is required. If you omit other arguments,
the form opens as it would when you just double-click the form’s name in the
Navigation pane, with all the property settings that are defined in the form’s
basic design. The optional arguments that allow you to change how the form
opens are described here:

1 08 Part Il: VBA Tools and Techniques

v View: Specify how you want to open the form that’s displayed using
any of the constants acDesign, acLayout, acFormDs (datasheet),
acFormPivotChart, acFormPivotTable, acNormal (the default), or
acPreview.

Vv FilterName: If you previously created and named a filter, use this
option to filter records that the form displays. If you didn’t create and
name a filter, you can use the optional WhereCondition argument
instead to filter records.

v WhereCondition: Use this option to specify a record or records without
using a named filter. For example, the WhereClause " [ContactID]=
1001 displays only records where the ContactID field contains 1001.
The WhereClause "[State]="NY' " displays only records that have
NY in a field named State.

v DataMode: Determines how the form opens using the constants
acFormAdd (user can add new records but not edit existing records),
acFormEdit (users can add or edit data), and acFormReadOnly (users
can view, but not change, data). The default argument, acFormProperty
Settings, is used if you omit the argument and opens the form in Normal
view, honoring the A11owEdits, AllowDeletions, AllowAddItems,
and DataEntry properties defined in the form’s properties.

v windowMode: Specifies the style of the window when opened using one
of these constants:

e acDialog: Opens a dialog box with Modal and PopUp properties
set to True

¢ acHidden: Opens the form in Form view but isn’t visible on-screen
e acIcon: Opens the form minimized in the Access window

® acWindowNormal: Opens the form with settings defined in its
property sheet

Setting a form’s Modal and PopUp properties to True makes the form
open as a dialog box. When a form is modal, it must be closed before the
user can perform any other action. When the PopUp property is
enabled, the form stays on top of other open windows on the desktop.

v OpenArgs: Specifies additional arguments that can be passed to the
form and then processed by other code that manipulates the form.

For example, to open a form named MyForm with no special settings (as
though you just double-clicked the form’s name in the Navigation pane), use
this simple syntax:

DoCmd.OpenForm "MyForm"

Chapter 6: Programming Access Forms ’ 09

The following statement opens the form named MyForm in Design view:
DoCmd.OpenForm "MyForm",acDesign

The following statement opens the form named MyForm in Form view but
limits the display of records to those that have (215) as the first five charac-
ters of the Phone field:

DoCmd.OpenForm "MyForm",,, "Left (Phone,5)="'(215)"'"

Closing a form

To close a form that’s already open, use the Close method of the DoCmd
object and the syntax

DoCmd.Close objectType, objectName, SaveOptions
where
V¥ objectType: Describes the type of object being closed. Use acForm for
forms (acReport for reports).

¥ objectName: The name of the form (or other object) to close.

V¥ SaveOptions: Specifies whether to save changes made to the object by
using one of these constants:

acSaveYes: The current object is saved automatically.

acSaveNo: Any changes made to the object are discarded and not
saved.

acPrompt: Displays a prompt asking the user whether he wants to
save the changes to the object.

As an example, the following VBA statement closes a form named Address
Book Form and automatically saves any changes made to the form:

DoCmd.Close acForm, "Address Book Form",acSaveYes

Adding a related record to another table

One of the most common uses of opening forms from VBA is to allow the user
to easily enter a record of information with some data already provided. For

1 ’ 0 Part Il: VBA Tools and Techniques

|
Figure 6-8:
Sample
address
book form
and Place
Order
button.
|

example, Figure 6-8 shows a sample form named Address Book Form. It
displays records from a table of names and addresses, where each customer
has a unique ContactID number.

ContactID
EAddress EBook - o x
Address Book QuickFind i
b Type |Customer ! “Contact 10: 1
First Mame |Tori LastName [Pines
Commpaity |arbor Classics
Address 1 (345 Pacific Coast Hwy
Address 2 [Suite 3232
city [Del Mar ICA v |98765
Country [USa | State/Province ZIP Postal Code
Phone |(618)555-4949 Fax |(618)555-4343
Email ITUr\@arbUrcIasswcs.cUn I Exarnpit Clstormer
\ieb Iwww‘arborclassms.con Exempt ID
Motes
H |1i Ml‘!,l 3 | }Il New Contact | =] ml "fﬂ'l Place Order | Close |

PlaceOrder bhutton

Suppose that a user has just finished entering the name and address and
other information for a new customer and now wants to switch over to an
order form and enter a new order for that customer. When the order form
opens, you want it to have already created a new record for the order, put the
current customer’s ContactID value into that order form, and position the
cursor to where the user is most likely to type next, such as the Payment
Method control, as shown in Figure 6-9.

To make these tasks work, you need to tie some code to the Place Order
button’s On Click event procedure. That code needs to perform these
steps:

1. Open the order form so that it’s ready to add a new record.

2. Copy the customer’s ContactID to the ContactID control on the
order form.

|
Figure 6-9:
Sample
order form.

Chapter 6: Programming Access Forms

3. Move the cursor to a convenient control on the order form.

4. Close the address book form and save its record.

ContactID Orders Main Form
Zglorders ‘ - =
Orders Form

LContact 10 1 OrderlD: 7| Date: 104142006
Customer: |F‘|nes‘ Tari g

345 Parific Coast Hwy
NEw | pel Mar ch 98765
Customer

O Tax Exernpt Tax Exempt ID:

—Method: s| PO Murmber:
Credit Card: | Card #: |
Ionth: ID_ ‘fear: l?
suthorization: | I Paid
Product/D + | @« | Unit Pric - |ExtPrice - | Taxable ~ | T
* v O

. T

Taxable srmount: Order Subtotal:
Sales Tax Rate: 7.00% Sales Tax:
Weight: Lbs Qzs Subtotal:

Ship Yia: I i Shipping Charge: £0.00
Grand Total:

= Recalcl Mext Mew Order | Close |

Record: M < [1of1 | b b | [searen

Payment Method

To start this programming endeavor, open Address Book Form in Design
view, click the P1laceOrder button, click the Event tab in the property sheet,
click the Build button in the property sheet, and choose Code Builder. As
always, you're taken to the class module for the form. The cursor is in a new
Sub procedure whose name reflects the button and the on C1ick event, as

shown here:

Private Sub PlaceOrder_Click()

End Sub

Next, you convert into VBA code the plain-English steps that the procedure
needs to take. The complete procedure, as it appears in the VBA Editor Code

window, is shown in Listing 6-3.

111

’ ’ 2 Part Il: VBA Tools and Techniques

Listing 6-3: Form_Address Book Form

Private Sub PlaceOrder_Click()

'Open the order form ready to add a new record.
DoCmd.OpenForm "Orders Main Form", acNormal, ,

, acFormAdd

'Copy customer's ContactID to ContactID control on order form.
Forms! [Orders Main Form]!ContactID.Value = Me! [ContactID].Value

'Move cursor to convenient field in order form.
Forms! [Orders Main Form] ! [Payment Method].SetFocus

'Close the address book form and save its changes.

DoCmd.Close acForm, "Address Book Form",

End Sub

acSaveYes

More DoCmd methods for forms

The DoCmd object used in the example in the preceding section to open and
close forms provides many methods for working with data on forms. Table 6-3
summarizes some of the more commonly used DoCmd methods for working

with forms and data in forms.

Table 6-3 Commonly Used DoCmd Methods
To Do This Use This

Move cursor to a specific control DoCmd.GoToControl
Select object DoCmd.SelectObject
Move to a specific record DoCmd .GoToRecord
Find a record DoCmd.FindRecord
Find next matching record DoCmd.FindNext

Filter records in a form DoCmd.ApplyFilter
Remove filter DoCmd. ShowAllRecords
Sound a beep DoCmd . Beep

Print form (or other object) DoCmd.PrintOut

Save form (or other object) DoCmd . Save

Chapter 6: Programming Access Forms ’ ’3

\\3

To Do This Use This

Perform a command from the Ribbon DoCmd . RunCommand
Copy a form (or other object) DoCmd.CopyObject
Rename a form (or other object) DoCmd .Rename

Delete a form (or other object) DoCmd.DeleteObject
Send object electronically DoCmd . SendObject

You don’t need to study and memorize all these methods now because you
can easily get detailed information as needed. Just type the beginning of the
statement into your code, like this:

DoCmd . GoToRecord

Just double-click the method name (such as GoToRecord) to select it and
then press F1.

The Object Browser, which is always available in the VBA Editor, provides
another great resource for getting quick information on methods of the
DoCmd object (as well as every other object in your database). To open the
Object Browser in the VBA Editor, choose Viewr>Object Browser from the
VBA Editor’s menu bar or press F2 while you're in the VBA Editor.

See Chapter 2 for more information on using the Object Browser.

After the Object Browser is open, click DoCmd in the left column. The meth-
ods that DoCmd supports are listed down the right pane. For help with a par-
ticular method, click its name in the right column and then click the Help
button near the top of the Object Browser (see Figure 6-10).

|
Figure 6-10:
Methods of
the DoCmd
objectin the
Object
Browser.
|

’ ’ 4 Part ll: VBA Tools and Techniques

DoCmd selected Help
ﬁ Object Browser =)l
<Al Libraries> _;l 4 | 3 Ha _J
DoCmd _LI il 2
. Search Results
Library | Class | Member
W Access £ DoCmd
W Access B 2pplication & DoCmd
Classes Members of DoCmd'
21 DisplayUnitLabel % AddMenu :"
T DISPPARAMS ApplyFilter
B DistListitern % Beep
md & CancelEvent
1 Document ClearMacroError
1 Document & Close
21 Documentinspector CloseDatabase
21 Documentinspectors CopyDatabaseFile
21 Documentitern & CopyOhject
@1 DocumentLibranersion <@ DeleteObject
@1 DocumentLibranersions DomMenultern
@ DocumentProperties <@ Echo
21 DocumentProperty Findhest
2 Documents =% FindRecord
21 Documents =& GoToControl
21 Documertindow =& GoToRage
21 Documentiindows =% GoToRecord
21 DownBars =% Hourglass v
Class DoCmd
Member of Access
DoCmd methods

Part ||

VBA, Recordsets,
and SOL

The 5th Wave By Rich Tennant

ORIUTE gy

“VYes, I know how to query information £rom
the program,but what i€ T just want to
leak it insteadz”

In this part . . .

m suppose that the first thing the title of this part
brings to mind is “What is a SQL recordset (and
why would I care to know)?” If you’ve been faced with any
VBA code in the past, you've probably seen the word
recordset sprinkled throughout many a VBA procedure.
Either way, SQL recordsets are basically a means of letting
VBA work directly with the data in your tables, where it
can do all kinds of useful work for you. This part is mostly
about managing data in Access tables with VBA and
recordsets.

Chapter7
The Scoop on SQL and Recordsets

In This Chapter

Understanding SQL and writing it without knowing it
Creating tables and deleting tables with VBA

Adding, changing, and deleting table records with VBA
Creating and using recordsets

ou don’t have to be involved with database management for long before

the SQL acronym starts rearing its head. SQL (most often pronounced
“sequel”) stands for Structured Query Language. As the name implies, SQL is a
language for defining which fields and records you want from a table. Actually,
it’s not just a language: It’s more like the language for getting data from tables
because it can be used in virtually all database management systems.

In this chapter, you discover what SQL is all about, how it applies to Access,
and how you can use SQL in VBA to do the jobs that queries do in regular
interactive Access. As you'll see, a SQL statement is basically a query that
has been converted to words. And although you can’t just drop the Query
Design screen into code (because it’s a screen and not words), you can cer-
tainly drop a SQL statement (which is just words) into your code.

What the Heck Is SOL?

Although you might not realize it, every time you create a query in Access,
you create a SQL statement. This is a good thing because as a rule, creating a
query in Access is a lot easier than writing a SQL statement from scratch.

To illustrate how every query is really a SQL statement in disguise, Figure 7-1
shows a basic Access Select query that displays (in Datasheet view) some
fields and records from a table.

118

Part Ill: VBA, Recordsets, and SQL

|
Figure 7-1:
Simple,
sample
select

query.
|

|
Figure 7-2:
sSaL
statement
for the
query
shown in
Figure 7-1.
|

B queryt - = x
-
Address Book E
w
i ContactD
First Mame
Last Mame
Campany
Addressl
Address2
-
o [4
Field: | Last Mame First Mame StateProv Tax Exempt :_
Table: |&ddress Book Address Book Address Book Address Book I_El
Sort! | Ascending Ascending Rt
Show
Criteria: =True
ar: -
o] »

So where’s the SQL statement in Figure 7-1? Well, it’s not visible when you’re
looking at the query in Design view. To see the SQL statement that defines a
query, right-click the title bar of the query Design screen and choose SQL
View. The whole window changes, by hiding the QBE (Query By Example) grid
and displaying the SQL statement that the query performs, as in Figure 7-2.

ii Queryl —
SELECT [&ddress Book].[Last Name], [Address Book].[First Name], [Sddress Book].StateProv, [Address Book].[Tax Exempt] [&
FROM [Address Book]

WHERE [[[[&ddress Book].[Tax Exempt])=True))

ORDER BY [&ddress Book].[Last Mame], [address Book].[First Mame]:

At first glance, the SQL statement and query might seem to be unrelated.
However, if you look closely at the SQL statement, you see that it is indeed a
reflection of what the query says. The syntax of a SQL statement generally
looks like this:

SELECT fieldnames FROM tableName WHERE condition ORDER BY
field(s)

where
V¥ SELECT fieldnames lists the fields from the underlying table to be dis-

played by the query (or SQL statement).

V* FROM tableName specifies the name of the table from which the data is
being drawn.

V¥ WHERE condition is an expression specifying which records to include
in the query.

|
Figure 7-3:
How parts
of a query
translate to
a SaL
statement.
|

Chapter 7: The Scoop on SQL and Recordsets ’ ’ 9

» ORDER BY field(s) lists the names of fields used for sorting
(alphabetizing) records in the query results.

If we take the repetitive table name [Address Book] out of the sample SQL
statement shown in Figure 7-1 (just to make the statement a little easier to
read), the SQL statement looks like this:

SELECT [Last Name], [First Name], [StateProv], [Tax
Exempt]

FROM [Address Book]

WHERE ((([Tax Exempt])=True))

ORDER BY [Last Name], [First Name] ;

Figure 7-3 shows how the various parts of the QBE grid correspond in fact to
text in the SQL statement. Note the following:

v The fields listed across the Field row specify the fields to display (for
example, SELECT [Last Name], [First Name], [StateProv],
[Tax Exempt]).

v The table name in the top half of the grid specifies where the fields and
records come from (for example, FROM [Address Book]).

v The WHERE clause gets its expression from the Criteria rows of the QBE
grid (for example, WHERE [TaxExempt] = True).

v The ORDER BY fields come from the Sort row in the grid (for example,
ORDER BY [Last Name], [First Namel).

SELECT FROM
B queryl -5 x
Address Book =
ress Bool =
e El
¥ ContactD
First Name
Last Mame
Campary
Address1
Address2
-
4w 4
—Field: | Last Name First Mame StateProw Tax Exempt :_
Table: |Address Book Address Book Address Book Address Book L:|
Sork |Ascending Ascending A
Shaw:
Criteria: =True
or =
A 3

— WHERE

ORDER BY

] 2(0) Partiii: vBA, Recordsets, and SQL

Writing SOL without knowing SOL

The example we show you in the preceding section illustrates that every
query has a corresponding SQL statement. You can prove this by opening any
query in any Access database, anywhere. Right-click that query’s title bar and
choose SQL View, and there you see that query’s SQL statement. Right-click
the title bar again and choose Design View, and you’re back to the Query
Design grid.

The beauty of it all is that you really don’t need to master SQL in order to
write SQL statements. If you know how to create an Access query, you know
how to write SQL statements because you can just create your query to do
whatever you want it to do, right-click the title bar, and choose SQL View —
and there’s your SQL statement. Drag the mouse pointer through that state-
ment to select it, and press Ctrl+C to copy it, and then you can just paste the
SQL statement wherever you want.

You can even discard the original query after you have the SQL statement
because the SQL statement and query are essentially one and the same. The
only real difference is in how you use them. To perform a query in Access,
you create the query and switch to Datasheet view to see the results. To per-
form the query from VBA, you execute the SQL statement instead.

The bond between Access queries and SQL is a two-way street. Suppose that
the current database has a table, such as Address Book shown in earlier fig-
ures in this chapter, and you type the following SQL statement into a text
editor, such as Notepad:

SELECT [Last Name], [First Name], [City], [StateProv]
FROM [Address Book]

WHERE (((StateProv)="CA"))

ORDER BY [Last Name], [First Name] ;

Now suppose that you create a new query in Access but don’t add any tables
to it. You just have a blank QBE grid to start with. In that query, you right-
click the title bar and choose SQL View. Then you copy and paste (or type)
the preceding SQL statement into the window that displays the SQL state-
ment. Intuitively, this process might seem weird because, normally, building
the query creates the SQL statement, not the other way around. Given the
two-way street of SQL and Access queries, however, going back to Query
Design view after entering the SQL statement almost miraculously translates
the SQL statement into a QBE grid, as in Figure 7-4.

It’s a lot easier to create a query in the Query Design grid and convert it to
SQL than it is to write a SQL statement and convert it to a query. If you put an
incorrectly written SQL statement into the query, it doesn’t translate. In
truth, we doubt that anyone would ever go to the trouble of writing out a SQL
statement first to create a query. The point is that a SQL statement is an

Chapter 7: The Scoop on SQL and Recordsets

|
Figure 7-4:
Sample SQL
statement
translated to
an Access
query.
|

|
Figure 7-5:
The (Query
Tools)
Design tab
in Access.
|

Access query. It’s just that a SQL statement is a query expressed in words
(which can be placed in VBA code) rather than a query expressed as informa-
tion in a QBE grid (which can’t be dropped into VBA code).

B queryt -5 x
a
Address Book E
“
¥ ContadtD
First Mame
Last Mame
Campany
Address1
Address2
-
A »
Field: | Last Mame First Mame City StateProv :_
Table: [Address Book Address Book Address Book Address Book E
Sarti | Ascending Ascending
Show:
Criteria: "CA"
ar: b il
LR 3

Exactly how you use SQL in VBA is a long story, which this chapter and the
next describe in detail. Also, not all SQL statements contain exactly the
words SELECT, FROM, WHERE, and ORDER BY. Although you can use lots of
different words in SQL to perform different kinds of tasks, the first thing you
need to realize is that a SQL statement is just an Access query expressed as
words rather than graphically on a grid.

Select queries versus action queties

To this point in this chapter, we talk only about Access select queries. That
type of query gets its name from the fact that it only selects fields and records
from a table. A select query never alters the contents of a table.

An action query is different from a select query in that an action query
changes the contents of a table. In Access, you create action queries in much
the same way you create select queries. You start off by creating a new, regu-
lar query so that you're at the Query Design grid. Then you choose the type
of action query you want to create from the Query Type group on the (Query
Tools) Design tab, shown in Figure 7-5.

c'n,] = ¥ CQuery Tools

i)

— Horme Create External Data Database Tools Design
jil Q lﬁ‘ = ’ IJ_:J' /q ’ 0D Unian

Z A B X
¢ ¢ ° ° ¢ @ Pass-Through

Wiey Run Select | Make Append Update Crosstab Delete .

- Table g{, Data Definition

Results Query Type

] 22 Partiil: VBA, Recordsets, and SOL

\NG/
$

The main types of action queries that you can create and their purposes and
relevant SQL buzzwords (described in the sections that follow) are summa-
rized in Table 7-1.

Table 7-1 Access Action Query Types and
Corresponding SQL Keywords

Action Query Purpose Relevant SQL

Type Keywords

Make-Table Create a new table by using data from SELECT. . .INTO
an existing table.

Update Change multiple fields and records within UPDATE. . .
a table.

Append Add records from one table to INSERT INTO...

another table.

Delete Remove multiple records from a table. DELETE

The changes that an action query makes to a table can be extensive and per-
manent! Never test or play around with action queries on data you need. It
would be a shame (to put it mildly) to test out a delete query on your only
copy of 10,000 names and addresses, only to realize that it worked — and
now you have 11 names and addresses in your table and no backup. Always
make a copy of your database, and test your action queries on the copy.

After you create an action query in Access, you still have to run the query
before it makes any changes to your database. To run an action query in
Access, the action query must be open and visible on-screen in Design view.
From there, you click the Run (!) button in the Results group on the (Query
Tools) Design tab to run the query.

Every action query that you create is also a SQL statement, just like when
you create select queries. You get to an action query’s SQL statement just like
you get to a select query’s — by right-clicking the title bar in Query Design
and choosing SQL View. For example, Figure 7-6 shows an update query that
changes the value of a field named SentWelcome to True wherever that
City field contains "Houston". (Note the Update To row in the QBE grid.)

Right-clicking the title bar shown in Figure 7-6 and choosing SQL View reveals
the SQL version of the query. Because this is an update query, the SQL state-
ment doesn’t start with SELECT. Rather, it starts with UPDATE, as shown here:

UPDATE [Address Book] SET SentWelcome = True
WHERE (((City)="Houston")) ;

Chapter 7: The Scoop on SQL and Recordsets ’ 23

H Quent R
-
Address Book E
City
StakeProv
ZIPPastalCode
| Country
. Tax Exempt
Flgure 7-6: Sentielcome
-
Sample | @ 5
update .
p . Field: | Sentyvelcome City :=
query in Table: Address Boak Address Boak E
Update To: [True
O.Uery Criteria: “Houston”
. or
Design. 1
A L »
|

Still, the SQL statement is perfectly valid and runs just fine as VBA code. You
can select and copy the SQL statement just as you could any other.

Getting SQL into UBA

The bottom line (again) is that if you know how to create queries in Access,
you know how to write (most) kinds of SQL statements. We mention earlier
that you can copy and paste a SQL statement just like you can copy and
paste any other hunk of text that you see on-screen. But we would be lying if
we said that you just have to drop the SQL statement into your VBA code to
make it work. Here are the reasons that it’s not that simple:

» You need to get rid of the semicolon (;) at the end of the SQL statement
in SQL view. (VBA doesn’t like that last semicolon.)

v~ If the SQL statement is broken into multiple lines, unbreak it back to a
single line. (Make sure to place a blank space where the line breaks used
to be.)

v The whole statement needs to be placed inside quotation marks
(alternating single and double quotation marks).

v If the SQL statement represents an action query, the whole SQL state-
ment needs to be preceded by DoCmd . RunSQL in your code.

Look at an example starting with the UPDATE SQL statement shown earlier.
When you copy and paste the statement into VBA code, the entire statement
turns red, indicating a problem. The only real problem, though, is that things
need to be reformatted a bit.

1. Move the cursor to the end of the top line, press Delete (Del) to
unbreak the line, and then press the spacebar to insert a blank space
where the line break used to be.

Repeat this step as necessary until the whole SQL statement is on one,
long line in the code.

124 Partui:vBA, Recordsets, and SQL

2. Delete the semicolon at the end of the statement and put the whole
statement into quotation marks.

You can use either single (') or double (") quotation marks. However, if
any quotation marks are already in the statement, you can’t use the
same type. For example, the sample SQL statement has a pair of double
quotation marks around the word "Houston", as shown here:

(City) = "Houston"

To avoid a conflict with the embedded quotation marks, you have to
either use single quotation marks to enclose the whole SQL statement:

'UPDATE [Address Book] SET SentWelcome = True WHERE
(((City)="Houston"))'

or change the inner quotation marks to single quotes and then use
double quotation marks around the whole statement — which is the
preferred method:

"UPDATE [Address Book] SET SentWelcome = True WHERE
(((City)='"Houston'))"

3. Tell VBA that the statement is SQL and that you want VBA to execute
the statement by adding DoCmd . RunSQL to the start of the line:

DoCmd.RunSQL "SELECT [City], [StateProv] FROM [Address
Book] WHERE ((([StateProv])='CA'"'))"

Adding DoCmd . RunSQL to the SQL statement is necessary because, oth-
erwise, VBA doesn’t recognize the SQL as being different from any other
code in the procedure.

The final statement in the VBA Editor, after making all the necessary changes,
looks like this:

Sub whatever ()

'Set SentWelcome field to True for all Houston addresses.
DoCmd.RunSQL "UPDATE [Address Book] SET SentWelcome = True WHERE
(((City)="'Houston'))"

End Sub

Hiding warning messages

Typically when you run an action query — whether from Access or VBA —
you get a warning message about what the query is about to do. That gives
you a chance to change your mind before the query executes. However,
when you’re running action queries from VBA, you might want them to just
“do their thing” without displaying any warnings or asking the user for
permission.

Chapter 7: The Scoop on SQL and Recordsets ’ 25

The DoCmd object provides a simple means of hiding those warning mes-
sages. To prevent a warning message from appearing when your code runs
an action query, place the following line anywhere above the line that runs
the action query:

DoCmd.SetWarnings False

To get warning messages back to normal after the query runs, use this state-
ment in your code:

DoCmd. SetWarnings True

The following example shows the sample procedure from the end of the pre-
ceding section with appropriate code added to hide warning messages just
before the query runs and then set the warnings back to normal:

Sub whatever ()

'Hide warning messages presented by action queries.
DoCmd. SetWarnings False

'Set SentWelcome field to True for all Houston addresses.
DoCmd.RunSQL "UPDATE [Address Book] SET SentWelcome = True WHERE
(((City)="Houston'))"

'Get warning messages back to normal.
DoCmd. SetWarnings True

End Sub

You might be wondering whether select queries show warnings, because they
don’t change data. The answer is a definite no. In fact, if you just run a select
query by using DoCmd . RunSQL in code, absolutely nothing happens on-
screen. That’s because, to use select queries in VBA, you have to store the
results of the query in a recordset. We talk about how recordsets work in
Chapter 8. In this chapter, we stay focused on action queries (and SQL state-
ments) that make changes to data stored in tables.

Storing SOL statements in variables

You can store SQL statements in variables, just as you can store text in vari-
ables. This can help with those extremely long SQL statements that seem to
extend forever past the right margin of the Code window. Many programmers
use this technique of building a long SQL statement from smaller chunks and
storing the statement in a variable. As an example, here’s a series of VBA
statements that build and execute a single lengthy SQL statement from
smaller chunks:

] 26 Partiii: vBA, Recordsets, and SOL

N\\j

\\3

'Create string variable (storage place) named mySQL.
Dim mySQL As String

'Add lengthy SQL statement to mySQL in chunks.
mySQL = "UPDATE Orders SET"
'Leading spaces below ensure spaces between words.
mySQL = mySQL & " InvRecPrinted = True, LabelPrinted = True"
mySQL = mySQL & " WHERE (((PONumber) Is Null)"
mySQL = mySQL & " AND ((CCType)='MC'))"
'Line above uses single quotation marks inside double quotation marks.

'Now, mySQL contains the complete SQL statement,
'so hide warnings and execute the SQL statement.
DoCmd. SetWarnings False

DoCmd . RunSQL mySQL

'Update query has now been performed. Back to normal warnings.
DoCmd. SetWarnings True

For the goods on variables, read about storing data in variables and con-
stants in Chapter 4.

As daunting as the preceding code looks, it’s not so bad if you read it as it
would execute, one step at a time from top to bottom. The first statement,
Dim mySQL As String, sets aside a cubbyhole of storage space in which
you can store some text. In code, refer to the contents of that cubbyhole as
mySQL (although we could have used any name here).

The next statement, mySQL = "UPDATE Orders SET", stores the chunk of
text in the quotation marks in the mySQL variable. So now the cubbyhole con-
tains "UPDATE ORDERS SET".

The next statement changes the contents of that variable by creating a new

string that consists of the current contents of the variable (mySQL) concate-
nated with (&) the string " InvRecPrinted = True, LabelPrinted =

True". By the time that line is finished being executed, the mySQL variable

contains this line:

UPDATE Orders SET InvRecPrinted = True, LabelPrinted =
True

Notice the addition of the blank space at the start of the second string. That
blank space is added to make ensure that a blank space appears between SET
and InvRecPrinted.

The ampersand (&) is used to concatenate — or join — two strings. Use the
ampersand when you want to join one or more smaller string values into one
string value. This character is especially useful when you’re creating SQL
statements in code because these statements can get quite long.

Chapter 7: The Scoop on SQL and Recordsets ’ 2 7

\\J

The following two lines of code do the same as the previous line in that each
adds more text to the string stored in mySQL. The mySQL = mySQL & "
WHERE (((PONumber) Is Null) " statement tacks part of a WHERE clause
(criterion) onto the string (again preceded by a blank space). Then the state-
ment mySQL = mySQL & " AND ((CCType)='MC'))" tacks on a blank
space and its chunk of text.

The single quotation marks inside the string are required in order to avoid
conflict with the double quotation marks surrounding the whole string.

By the time the final mySQL = mySQL & ... statement has executed, the
variable named mySQL contains the following SQL statement, which exactly
matches all the syntax required of a valid SQL statement:

UPDATE Orders InvRecPrinted = True, LabelPrinted = True WHERE (((PONumber) Is
Null) AND ((CCType)='MC'))

The statement is too lengthy to show on one line in this book, but in the
mySQL variable, it’s definitely one long, valid SQL statement. (Like most SQL
statements that you see in this book, this example is just a copy-and-paste
job from a query’s SQL view.)

The next statement in the code, DoCmd . SetWarnings False, just hides the
warning message that action queries otherwise show. Then comes the execu-
tion of the SQL statement in this statement:

DoCmd . RunSQL mySQL

By the time VBA gets to this statement, it knows that the name mySQL refers
to a cubbyhole that we told it to create earlier. So it knows that it really needs
to replace the name mySQI with the contents of the variable named mySQL
before it does anything else. First, it does a quick substitution, by replacing
the variable name with its contents, as shown here:

DoCmd.RunSQL "UPDATE Orders SET InvRecPrinted = True, LabelPrinted = True WHERE
(((PONumber) Is Null) AND ((CCType)='MC'))"

The preceding statement is what VBA does when it executes the statement. It
runs the update query specified in the SQL statement. (Technically, it’s all exe-
cuted as one long line — it’s just too wide to show it that way in this book.)

When the action query is finished, the next statement — DoCmd . SetWarnings
True — sets the warning messages to their normal status.

Because code is building the SQL statement, the code can also make deci-

sions about how to build the statement along the way. Thus, a VBA proce-

dure could customize a SQL statement to a particular need or situation. In
short, a procedure can make decisions about how to “write itself” before it
executes itself. (Funky but true.)

] 28 Partiil: vBA, Recordsets, and SQL

Creating Tables from VBA

As you know (we hope), you can create tables in Access interactively, by
using Table Design. If you've ever created a Make-Table action query, you
know that you can build a new table from any existing table or query. VBA
can also create new tables, either from existing tables and queries or from
scratch.

Creating new tables from existing tables

The easiest way to use VBA to create a new table from an existing table is to
first design a Make-Table query in Access. [In Query Design view, click the
Make Table command in the Query Type group on the (Query Tools) Design
tab, and then specify the name of the table to create. Refer to Figure 7-5.]
Figure 7-7 shows an example of a Make-Table query that selects fields from a
couple of related tables, where the Paid field contains False. This query
creates a new table named UnpaidOrdersSummaryTable, which is set in
the query’s Destination Table property.

Property Sheet
Selection type: Query Properties

= UnpaidOrdersMakeTable Gry General
= Description
Orders Order Details Output Al Fields No
* =] * Top Values All
G Ordenn OrderD Unique Values Mo
Order Date 3 Productld Unique Records Mo
ContactiD aty Source Database fcurrent]
| Payment Method v Unit Price Source Cornedt str
= Destination Table UnpaidOrd
. A B e
Figure?7-7. - ———+——
Samnple Field: | OrderD Order Date ProductiD aty Unit Price Faid =
p Table: | Orders Orders Order Details | Order Details Order Details | Orders B
Sort
Make-Table st
Criteria: False
uery. or -
query i 1l
|

Viewing the SQL statement for the Make-Table query shown in Figure 7-7
reveals the following:

SELECT Orders.OrderID, Orders.[Order Date], [Order Details].ProductID, [Order
Details] .Qty, [Order Details].[Unit Price], Orders.Paid
INTO UnpaidOrdersSummaryTable FROM Orders INNER JOIN [Order
Details] ON Orders.OrderID = [Order Details].OrderID WHERE
(((Orders.Paid)=False));

Even in the SQL statement, the only indication that this is a Make-Table query
are the words INTO UnpaidOrdersSummaryTable, which tell the query to
store a copy of the records that the query produces into a table named
UnpaidOrdersSummaryTable.

Chapter 7: The Scoop on SQL and Recordsets ’ 29

\NG/
Vs“

When a Make-Table query executes, it first checks whether the destination
table (UnPaidOrdersSummaryTable, in this example) exists. If that table
exists, it’s deleted before the new table is created. If you want to add new
records to an existing table, use an Append query rather than a Make-Table

query.

Of course, the Make-Table query shown here is just an example. The technique
for converting the Make-Table query to code is the same for any query — it’s
simply a matter of copying the SQL statement to the Code window and tweak-
ing the statement so that it works in VBA. The following code shows how the
Make-Table query shown in Figure 7-7 looks after being properly formatted to
work in a VBA procedure:

'Declare a variable to store SQL statement.
Dim mySQL As String

'Build mySQL string from query's SQL statement.

mySQL = "SELECT Orders.OrderID, Orders.[Order Date], [Order Details].ProductID,"

mySQL = mySQL & " [Order Details].Qty, [Order Details].[Unit Price],
Orders.Paid"

mySQL = mySQL & " INTO UnpaidOrdersSummaryTable"

mySQL = mySQL & " FROM Orders INNER JOIN [Order Details]"

mySQL = mySQL & " ON Orders.OrderID=[Order Details].OrderID"

mySQL = mySQL & " WHERE (((Orders.Paid)=False))"

'Now turn off warning and execute the SQL statement.
DoCmd.SetWarnings False

DoCmd . RunSQL mySQL

DoCmd. SetWarnings True

Creating a new, empty table from UBA

You can also create tables programmatically from VBA by using a SQL
CREATE TABLE statement with the syntax

CREATE TABLE tableName (field type (size)) [, ...1"
where

V¥ tableName is the name of the table to create.

Vv field specifies the name of one field in the table.
V¥ type specifies the data type of the field.

v sizeindicates the size of the field.

v ... indicates that you can repeat the field type (size) combination for
each field you want to define in the table.

130 Partin:vBa, Recordsets, and SL

For example, the following SQL statement creates a new, empty table named
myTable that contains a Text field named ProductID that’s 5 characters
wide and a Text field named VendorList that’s 255 characters wide:

CREATE TABLE myTable ([ProductID] text (20), [VendorList] text (255))

To create that table from within a procedure, use DoCmd . RunSQL to execute
the CREATE TABLE statement

DoCmd.RunSQL "CREATE TABLE myTable ([ProductID] text (20), [VendorList] text
(255))"

as one long line in your code. As always, if the SQL statement is lengthy, you
can break it into chunks, as shown here:

Dim mySQL As String

mySQL = "CREATE TABLE myTable"
mySQL = mySQL & " ([ProductID] text (20),"
mySQL = mySQL & " [VendorList] text (255))"

DoCmd . RunSQL mySQL

Closing and deleting tables through UBA

In some situations, you might want your VBA code to close a table if it’s open,
or even delete an entire table from the database. (You can’t delete an open
object, so if you want to delete a table, you have to close it first.) Suppose
that you want to write a procedure that checks whether a table named
myTable already exists in the current database. If that table already exists
and is open, you want the procedure to close it. Finally, assuming that the
table exists, you want your code to delete the table.

You could write the procedure as follows. In your own code, replace the table
name myTable with the name of the table you want to close and delete. The
rest of the code will work as it stands:

'Look at each object in All Tables collection.
Dim obj As AccessObject
For Each obj In Application.CurrentData.AllTables

'If the current table is named myTable. ..
If obj.Name = "myTable" Then
'and if MyTable is open (loaded)...
If obj.IsLoaded Then
'...close myTable
DoCmd.Close acTable, "myTable", acSaveNo
End If

Chapter 7: The Scoop on SQL and Recordsets ’3 1

'Now delete the closed myTable table.
DoCmd.DeleteObject acTable, "myTable"
End If

Next obj

'By the time execution gets here, the table named
'myTable no longer exists in the current database.

To close the open table, the code uses the Close method of the DoCmd
object. To delete the table, the code uses the DeleteObject method of the
DoCmd object. All the rest of the code is really about finding out whether the
table already exists and is open to make sure that the code doesn’t attempt
to close an open or a nonexistent table. Those steps are necessary because if
the code attempts to close an open or nonexistent table, the code fails and
throws an error message on-screen.

Adding Records to a Table

VBA can also append (add) records to any table that already exists in the
database without deleting or changing any records that might already be in
the table. If the records to be appended to the table already exist in some
other table, you can use a simple append query (in Access) to generate the
appropriate SQL statement.

For example, Figure 7-8 shows an append query that selects several fields
and records from two related tables in a database. The name of the destina-
tion table, PaidOrderSummary, is visible in the query’s Destination
Table property. You specify the destination table’s name after choosing
Append Query from the Query Type group on the (Query Tools) Design tab.
When you view the SQL statement for the query, you also see the destination
table’s name there, as shown here:

INSERT INTO PaidOrderSummary (OrderID, [Order Date], ProductID, Qty, [Unit
Price]) SELECT Orders.OrderID, Orders.[Order Date], [Order
Details].ProductID, [Order Details].Qty, [Order Details].[Unit
Price] FROM Orders INNER JOIN [Order Details] ON Orders.OrderID =
[Order Details].OrderID WHERE (((Orders.Paid)=True));

Because an append query is an action query, you can execute it by using
DoCmd . RunSQL just as you can execute other action queries shown in this
chapter. You can add the various portions of the lengthy SQL statement to a
variable and then execute the statement in the variable:

] 32 Partini: vBA, Recordsets, and SL

'Declare a string variable named mySQL.
Dim mySQL As String

'Put a lengthy SQL statement into mySQL (in chunks) .

mySQL = "INSERT INTO PaidOrderSummary"

mySQL = mySQL " (OrderID, [Order Date], ProductID, Qty, [Unit Price]) "
mySQL = mySQL SELECT Orders.OrderID, Orders.[Order Date], "

mySQL = mySQL [Order Details].ProductID, [Order Details].Qty,"

mySQL = mySQL [Order Details].[Unit Price]"

mySQL = mySQL FROM Orders INNER JOIN [Order Details]"

mySQL = mySQL ON Orders.OrderID = [Order Details].OrderID"

mySQL = mySQL WHERE (((Orders.Paid)=True))"

R R R R R R R

'Turn off warnings and append the records as specified in the SQL.
DoCmd. SetWarnings False

DoCmd.RunSQL mySQL

DoCmd.SetWarnings True

Property Sheet v x
= querst Selection type: Query Properties
General

Orders

Order Details

Description A
Output Al Fields Mo

Top Walues All

Unique Walues No

Unigue Records Mo

Source Database [current]

Source Connect Str
append Destination Table FaidOrdersSummary r

queryin |<@

Access Field: | OrderID Order Date ProductD Oty Unit Price Paid
Table: | Orders Orders Order Details Order Details Order Details Orders
Query sor
Append To: | OrderD [Order Date] ProductiD Oty [Unit Price]
Criteria

Design. - free
4 [»

-
7 OrderlD B
Order Date |

ContactiD

OrderlD
PraduciD
Qty

Unit Price

Figure 7-8:
A sample

Fayment Method .

-

[am) »

4

Appending a single record with SOL

You can also use the SQL. INSERT INTO statement to add a single record to
a table. However, the syntax is a little tricky, as are the rules that determine
how you do it. For example, you can’t append an entirely blank record to a
table that contains required fields because the table doesn’t accept the
record until all requirements have been met.

The basic syntax for inserting a single record into a table in SQL is

INSERT INTO tblName [(fldName [,...]) VALUES (value
[yoool)

where

v tblName is the name of the table to which the record should be
appended.

Vv fldName is the name of the field that is assigned a value.

Chapter 7: The Scoop on SQL and Recordsets ’33

v value is the value you want to store in the field.

v [, ...] means that you can list multiple fields and values, if you want,
as long as you separate their names with commas.

The order of values being assigned to fields must match the order of the field
names in the statement. For example, the database might contain a table
named Stats that contains a Date/Time field named Submitted, a Yes/No
field named Paid, and a Text field named Status (among other fields). The
following SQL statement adds one record to that table, by placing the current
date in the Submitted field, False in the Paid field, and No Reply in the
Status field:

INSERT INTO Stats (Submitted, Paid, Status) VALUES (Date(), False, 'No Reply')

To execute the statement from VBA, just put the whole SQL statement in quo-
tation marks next to a DoCmd . RunSQL statement, as usual. Or you can build
it from shorter lines, as shown here:

Dim mySQL As String

mySQL = "INSERT INTO Stats (Submitted, Paid, Status)"
mySQL = mySQL & " VALUES (Date(), False, 'No Reply')"
DoCmd . RunSQL mySQL

Ouery to append one record

You can create a query that appends a single record to a table, although

the way you create the query is a little weird. The resulting SQL statement
doesn’t exactly match the syntax that we described earlier, either. But it all
works and would definitely be easier than trying to write a lengthy SQL state-
ment by hand.

The trick is to create a new query that doesn’t have any tables at the top

of the Query design window. Or, if a table is at the top of the query, right-click
the table and choose Delete so that no tables are at the top. Click the Append
button on the (Query Tools) Design tab to change the query to an append
query, and specify the name of the table into which the query should append
its record.

In the Field row of the QBE grid, you need to provide a value for at least one
field in the table. The syntax is name: value, where name can be any name,
and valueis the value that you want to store in a field. Then, in the Append
To row, choose the field into which you want to place the value. For example,
the query in Figure 7-9 appends a single record with the current date in the
Submitted field, False in the Paid field, and No Reply inthe Status
field. The figure also shows the SQL statement for the query.

134 Partui:vBA, Recordsets, and SaL

|
Figure 7-9:
Sample
append
query and
its SQL
view.
|

*'j'-‘ AppendOneRecord - 2 x
-
-
o] »
Field: | submitted: Datef) Paid: False Status: Mo Reply” | S
Tahle: |E|
Sort:
Append Ta: | Submitted Paid Status v
Criteria:
or: -
LR »
*j_'—‘ AppendOneRecord -2 x

IMSERT IMTO Stats [Submitted, Paid, Status | rS
SELECT Date() AS Submitted, False AS Paid, "MNo Reply” AS Status;

Even though the syntax of the SQL statement for the query doesn’t look like
the syntax that we describe earlier, the statement executes just fine in VBA.
Here’s how you can write the code to execute that statement (and temporar-
ily turn off warning messages):

Dim mySQL As String

mySQL = "INSERT INTO Stats (Submitted, Paid, Status)"

mySQL = mySQL & " SELECT Date() AS Submitted, False AS Paid,"
mySQL = mySQL & " 'No Reply' AS Status"

'Note single quotation marks inside double quotation marks above.

DoCmd. SetWarnings False
DoCmd . RunSQL mySQL
DoCmd. SetWarnings True

Changing and Deleting Table Records

Any Access update query or delete query also converts nicely to VBA. For
example, you might keep track of which new customers you've sent e-mail to
by using a Yes/No field named SentWelcome in a table. Customers who
have been sent the message have SentWelcome set to True; customers who
haven’t been sent the message have SentWelcome set to False. For the
sake of example, say that this table also has a field named Email that’s either
the Text or Hyperlink data type that contains each customer’s e-mail
address.

Now suppose that you want to write some code that automatically changes
the contents of the SentWelcome field to True for all AOL customers. You
create an update query that includes the SentWelcome field and set its
Update To row to True to change the contents of that field to True. Then
you also need a criterion to prevent the change from occurring in all records.
In this case, where you want to update only records that have @aol.com in

Chapter 7: The Scoop on SQL and Recordsets ’35

|
Figure 7-10:
A sample
update
query (two
views).
|

\NG/
&*Q\“

the Email field, the criterion expression is InStr ([Email], '@aol.com')>0.
The entire update query would look like Figure 7-10. (Because it’s a small
query, we managed to fit both the Query Design and SQL views of the query
into one figure.)

£ quernt == =
-
Customers E
EMail
Date Entered
Tax Exempt
Tax ExernptlD
Motes
Sentielcome
-
oA [l 4
Field: | sentyelcome =
Table: | Customers El
Update To: |True
Criteria: |InStr{{EMalil], @aol com’)=0
ot
-
A i 3
H queryt - =x

UPDATE Customers SET Customers.SentiWelcome = True ~
WHERE [[InStr{[EMail], @aal.com’)=0]):

Don’t experiment with a delete query or an update query against a table that
contains data that you can’t afford to lose or ruin. Your best bet is to work in
a copy of your database so that you don’t have to worry about losing any
important information.

When you use the standard method of getting a SQL statement into a variable
and executed from VBA, the code that’s needed to turn off warnings, do the
update, and turn warnings back on looks like this:

'Build SQL statement into string variable named mySQL.
Dim mySQL As String

mySQL = "UPDATE Customers"

mySQL = mySQL & " SET Customers.SentWelcome = True"
mySQL = mySQL & " WHERE (InStr([Email], '@aol.com')>0)"

'Hide warning and do the update.
DoCmd.SetWarnings False
DoCmd . RunSQL mySQL
DoCmd.SetWarnings True

If you want your code to delete records from a table, just create a delete
query that specifies the records to be deleted and put its SQL statement into
VBA code. For example, Figure 7-11 shows an Access delete query in both
Query Design view and SQL view. That particular query deletes all records
from a table named PaidOrderSummary.

] 36 Partin:vBa, Recordsets, and SL

|
Figure 7-11:
Sample
delete

query.
|

I query - e x
-
PaidOrdersSurnimary =
OrderlD
Grder Date
ProdudiD
Oty
Unit Price
-
oA [»
Field: | PaidOrdersSummary.* ~ :
Table: |PaidCrdersSummary LEl
Ceelete: |From
Criteria
or! -
A) »
"_3,=—|Queryl - = x

DELETE PaidOrderssummary.* ~
FROM PaidOrderssummary;

As with any action query, to get the SQL statement to execute from VBA and
delete all records from the table, you need to execute the SQL statement with
DoCmd . RunSQL. Because this particular SQL statement is so short, there’s no
need to store it in a variable in chunks. The following statement is sufficient:

DoCmd.RunSQL "DELETE PaidOrderSummary.* FROM PaidOrderSummary"

Performing an Action Query
on One Record

No rule says that an action query must work on multiple records in a table.
Any action query can perform its task on just one record in the table, as long
as there’s a way to uniquely identify the record. If the table has a primary key,
isolating a record by a value in that field is simple.

Suppose that you have a table named Customers that contains an
AutoNumber field named CustID that acts as the primary key. You can easily
isolate any customer in the table by using the customer’s CustID value as the
Criteria entry for the CustID field. Figure 7-12 shows a delete query that
uses such a criterion to delete only Customer #14 from the Customers table.
The SQL statement reflects the criterion that the CustID field equals 14 by
the addition of WHERE (((Customers.CustID)=14)) to the SQL statement.

Not all the parentheses in that WHERE clause are necessary, nor is the table
name Customers. The WHERE clause could be written more simply as
WHERE CustID=14 or with the field name in square brackets, as in WHERE
[CustID]=14.

Chapter 7: The Scoop on SQL and Recordsets ’3 7

Figure 7-12:
Sample
query to
delete one
record.
|

"_i‘DeIeteOneRecord - =3 x
-
Custormersl =
2 E
¥ CustiD
Firsthlame
LastMame
Campany
-
4] L2
Field: | CustiD :,
Table: | Customersl E‘
Delete: |wihere
Criteria: |14
o =
o [»

"j:J DeleteCneRecord -8 x
DELETE Customers, CustiD

FROM Customers

WWHERE ([[Customers.CustiD)=14));

Working with Select Queries
and Recordsets

\\3

To this point in this chapter, we focus mainly on Access action queries that you
execute from VBA by using DoCmd . RunSQL. Select queries, which only display
data (and never change the contents of a table), are a completely different
story. In Access, you don’t run a select query. You simply switch from Query
Design view to Datasheet view to see the records returned by that query. And
in VBA, you don’t use DoCmd . RunSQL to execute a select query. Rather, you
store the results of the query in a weird, invisible thing called a recordset.

When you click Queries in the Access Navigation pane, icons for saved action
queries generally include an exclamation point (!), and icons for saved select
queries have no exclamation point.

Look at an example, starting in Access. The left side of Figure 7-13 shows a
fairly simple select query (in Query Design view) that displays the fields
named FirstName, LastName, and Email from a table named Customers.
The criteria expression, Like "*@aol.com*" ,limits the display to those
records that have the characters @aol.com somewhere in the e-mail
address. Switching that query to Datasheet view shows the query results, as
in the lower-right half of that same figure.

In VBA, that Datasheet view of the query shows exactly what a recordset that
uses the same SQL statement of the query produces. As with any query, you
can easily view (and copy) a select query’s SQL statement by right-clicking
the query’s title bar and choosing SQL View. However, unlike in the Datasheet
view of a query, which is plainly visible on-screen, a recordset is visible only
to VBA, not to humans.

] 38 Partini: vBA, Recordsets, and SL

|
Figure 7-13:
Simple
select query
and its
datasheet
results.
|

A\

B queryt -=x
-
Custormers =
- -
% CustD Z
Firsthame 1
Lasthame
Company
-
-
A 3
. -
Field: | FirstName Lastharne EMail =
Table: | Customers Customers Customers _=|
Sort
Shiow:
Criteria: Like ™ @aal.com*"
or
@ [EFPauem - = x
Firsthame - LastMarme - EMail -
Hortense Higglebottorn frankly@aol.corn
lohn Miller john@aol.com
MMary IWonahan mary@aol.com
*
Record: 14 lof3 LI i Search

Creating a recordset in VBA usually takes several lines of code. As always,
you have a ton of options for how to write the code. The syntax of statements
that you need in order to create a recordset from one or more tables in the
current database generally looks like this:

Dim cnnX As ADODB.Connection

Set cnnX = CurrentProject.Connection
Dim myRecordSet As New ADODB.Recordset
myRecordSet .ActiveConnection = cnnX

myRecordSet .Open SQLstatement
where

Vv cnnis a variable name of your choosing that defines the connection.

V¥ myRecordSet is the name that you want to give to your recordset. (You
use whatever name you put here to refer to the recordset from else-
where in the procedure.)

V¥ SQLstatement is a valid SQL statement that isn’t an action query (for
example, the SQL from any select query’s SQL view, or the name of a
table or query in the current database).

If the code shows you an error message stating that it doesn’t know what the
ADODB.Connection is, you have to tell VBA where to look for it. Choose
Tools=>References from the VBA Editor menu bar, scroll down to Microsoft
ActiveX Data Objects 2.8 Library in the Available References list, and check
the box next to it. Click OK and VBA knows what an ADODB.Connection is,
even if you don’t.

Chapter 7: The Scoop on SQL and Recordsets ’39

Start with a simple example. Suppose that you want to create a recordset
named myRecordSet that contains all the fields and records from a

table named Customers. In that case, you don’t need SQL because using the
table name in the myRecordSet . Open statement is sufficient, as shown here:

Dim cnnl As ADODB.Connection

Set cnnl = CurrentProject.Connection
Dim myRecordSet As New ADODB.Recordset
myRecordSet .ActiveConnection = cnnl

myRecordSet.Open "[Customers]"

If you want the recordset to contain only some fields and records from the
Customers table, use a valid SQL statement in place of the whole table
name. For example, the SQL statement SELECT FirstName, LastName
FROM Customers creates a recordset that contains only the FirstName and
LastName fields from the Customers table. Using that SQL statement in
place of the table name in the code looks like this:

Dim cnnl As ADODB.Connection

Set cnnl = CurrentProject.Connection
Dim myRecordSet As New ADODB.Recordset
myRecordSet.ActiveConnection = cnnl

myRecordSet.Open "SELECT FirstName, LastName FROM Customers"

As with action queries, the SQL statement for a select query can be very long.
To prevent super-wide lines in your code, you can store the SQL statement in
a variable in chunks. Then use the variable name in place of a table name or
SQL statement in the myRecordSet . Open statement. For example, the
following SQL statement is from a query that shows the CustID, FirstName,
LastName, and Email fields from a table named Customers but only for
records where the Email address field is now empty (or null, in programmer
lingo):

SELECT Customers.CustID, Customers.FirstName,
Customers.LastName, Customers.Email

FROM Customers

WHERE (((Customers.Email) Is Null));

To use that SQL statement in VBA, you could write the code this way:

Dim cnnl As ADODB.Connection

Set cnnl = CurrentProject.Connection
Dim myRecordSet As New ADODB.Recordset
myRecordSet .ActiveConnection = cnnl

140 Partui: vBA, Recordsets, and SaL

'We'll put lengthy SQL statement in variable named mySQL.
Dim mySQL As String
mySQL = "SELECT Customers.CustID, Customers.FirstName, "

mySQL = mySQL & " Customers.LastName, Customers.Email"
mySQL = mySQL & " FROM Customers"
mySQL = mySQL & " WHERE (((Customers.Email) Is Null))"

'Now we use mySQL variable name in statement below.
myRecordSet .Open mySQL

We suppose that any way you slice it, the code needed in order to create a
recordset is just plain ugly and intimidating. All those Dim and Set state-
ments at the top of each example shown to this point in this section need to
be executed before the recordset is created with the . Open method. You
wouldn’t have to use those exact lines: They’re just the standard lines that
you use to build a recordset from a table or query in the current database.
However, you do have to define a connection and name for a recordset before
you can open it.

Defining a connection

Although a recordset is invisible to a human, it’s a real object that VBA can
manipulate. You can think of a recordset as sort of an invisible, ghost image
of a datasheet that invisible VBA can manipulate (at lightning speeds, we
might add). But before VBA can even create such a ghost, it needs to know
where the tables for the ghost reside. That’s where the first two statements,
shown as follows, come in:

Dim cnnl As ADODB.Connection
Set cnnl = CurrentProject.Connection

The first line declares to all VBA statements to all lines of code that follow
that it is creating a thing named cnn1l that will be an ADODB connection.
ADO, which stands for ActiveX Data Objects, is the object model we use to
create recordsets throughout this book. ADO isn’t built into Access: It’s an
object library that many programs use to manipulate data in Access tables.
For example, you could write VBA code in a Microsoft Excel or Word macro
to grab data from an Access table, if you use ADO.

To use ADO in VBA, you need to set a reference to Microsoft ActiveX Data
Object Library in the References dialog box. Like all object libraries, ADO is a
highly organized collection of objects, properties, and methods that you can
boss around with VBA to make databases do things. And, like all other things
you can manipulate with VBA, ADO objects, properties, and methods are
found in the Object Browser and also in the VBA Help.

Chapter 7: The Scoop on SQL and Recordsets ’4 1

DAO is not DOA, but ADO is A-OK

Originally, Access offered only one way to
create a recordset: DAO (Data Access Objects).
DAO used different words, like DBEngine and
WorkSpace, to create recordsets. You might
still see that in other code examples (but not in
this book). In this book, we use the ADO
(ActiveX Data Objects) technology to create
and manipulate recordsets.

Ever since the introduction of ADQ, a battle has
taken place over which one is best to use. Some
developers swear by ADO; others prefer DAO.
Many developers thought that DAO would even-
tually go away as ADO grew in popularity, but
Microsoft has added functionality to DAO for
Access 2007. You can do a lot of the same things
with ADO and DAO — just be aware that their

syntax in VBA code is different.

So, what the heck does Dim cnnl As ADODB.Connection mean? Well, the
Dim statement is declaring to the rest of the code, “From this point on in this
procedure, the name cnnl shall refer to an ActiveX Data Objects Database
connection.” The cnnl part is just a name we made up. It can be any valid
variable name, including X, myConnection, Connection0l — whatever you
want it to be.

The next line of code, Set cnnl = CurrentProject.Connection, gets
more specific about what cnn1 is all about. It says, “More specifically, cnnl is
the connection to that data in the database we’re working on.” Both lines are
required because there are lots of other things to which you can set a con-
nection (none of which is particularly relevant to this book, though).

Defining the recordset and data source

Referring to most of the previous recordset examples, the second two lines of
code declare what the recordset is and where it gets its data, as shown here:

Dim myRecordSet As New ADODB.Recordset
myRecordSet .ActiveConnection = cnnl

The first line declares to all the code that follows (within the current proce-
dure) that the name myRecordSet refers from here on out to an ActiveX
Data Objects Database recordset. That tells the rest of the code a lot about
what myRecordset is, but it doesn’t say anything about where this
myRecordsSet thing will find data from which it can create recordsets. The
next line of code, myRecordSet .ActiveConnection = cnnl, takes care of
that problem, though, by setting the myRecordsSet active connection to the
connection we already defined as cnnl.

142 Partii: vBA, Recordsets, and QL

Filling the recordset with data

With the VBA statements that define a connection and name for the recordset
out of the way, you can finally write the code that adds data to the table.
That’s where the . Open method comes into play. In all our earlier examples,
we use a relatively simple statement to open the recordset. The full syntax
for creating an ADO recordset looks like this:

myRecordSet.Open SQLStatement [,Connection] [,CursorTypel [,LockType]

All the arguments after SQL statements are optional, so that’s why you don’t
see them used in any of the preceding myRecordSet . Open statements in
this chapter. Chances are that if you omit those arguments in your own
myRecordSet.Open statements, your recordsets will work just fine, too. We
bring them up here just so you know that other options are available, which
can be particularly useful when modifying code written by other people.
Here’s what each of the optional arguments allows you to specify:

V¥ Connection is the connection (not required if you already defined the
connection by using myRecordSet .ActiveConnection in code).

v CursorType defines how VBA can access records in the recordset, and
how simultaneous changes to the recordsets underlying data affect the
contents of the recordset by using any of the following constants:

® adOpenDynamic: Code can freely move the cursor through the
records. Other users’ additions, changes, and deletions carry over
to the recordset.

® adOopenKeyset: Code can freely move the cursor through the
records. Other users’ additions, changes, and deletions don’t carry
over to the recordset.

adopensStatic: The recordset contains a snapshot of data that’s
no longer connected to the live data in any way, so other users’
changes to the underlying table or query have no effect on the
recordset. VBA can move the cursor freely through the recordset.

adOpenForwardOnly: The cursor can scroll down through
records only; additions, changes, and deletions from other users
are ignored. This is preferred when VBA just needs quick, brief
access to a table to search for something or to count things (and
also the default setting if you don’t include this argument in your
.Open statement).

V¥ LockType determines how other users’ simultaneous changes to the
table or query are handled. The more commonly used constant names
and lock types are listed here:

® adLockOptimistic: Indicates optimistic locking, where records
are locked only when you call the . Update method in your VBA
code.

Chapter 7: The Scoop on SQL and Recordsets ’43

® adlLockPessimistic: Indicates pessimistic locking, where records
are locked automatically after a change (without calling the
.Update method).

¢ adl.ockReadOnly: Indicates read-only records, whereby no
changes are allowed to data in the recordset.

As an example of using a couple of arguments in a recordset’s . Open method,
the following code creates a forward-only, read-only recordset that gets its
records from a table named Customers:

Dim myRecordSet As New ADODB.Recordset
myRecordSet.Open "[Customers]", CurrentProject.Connection, adOpenForwardOnly,
adLockReadOnly

The syntax for ADO recordsets also allows you to specify optional arguments
individually, using the syntax recordSetName . property = value. For
example, the following lines create a recordset that connects to the current
database (CurrentProject.CurrentConnection), sets the cursor type to
adOpenDynamic, and sets the LockType to adLockOptimistic:

'Set up the connection, name it cnnl.
Dim cnnl As ADODB.Connection
Set cnnl = CurrentProject.Connection

'Define a new recordset and pre-define optional arguments.
Dim myRecordSet As New ADODB.Recordset

myRecordSet .ActiveConnection = cnnl
myRecordSet.CursorType = adOpenDynamic

myRecordSet .LockType = adLockOptimistic

'Fill recordset with data from Customers table
myRecordSet.Open "SELECT * FROM Customers"

Managing recordsets

After a recordset’s . Open method has been executed, the recordset contains
the fields and records specified by the table or SQL statement in the . Open
statement. You don’t see this recordset anywhere on-screen, but your VBA
code can see and move through the records in the recordset.

For example, assuming that the current database contains a table named
Customers — which in turn contains fields named LastName, FirstName,
and Email (among other fields) — the following statements create a record-
set of records from that table that have @aol .com in the Email field.

144 Partui:vBA, Recordsets, and SaL

Dim cnnl As ADODB.Connection
Set cnnl = CurrentProject.Connection

Dim myRecordSet As New ADODB.Recordset
myRecordSet .ActiveConnection = cnnl

'Store the SQL statement in a variable.

Dim mySQL As String

mySQL = "SELECT FirstName, LastName, Email"

mySQL = mySQL & " FROM Customers"

mySQL = mySQL & " WHERE ([Email] Like '*@aol.com*')

myRecordSet .Open mySQL

Assume that the table named Customers contains three records that have
@aol.comin the recordset. The invisible recordset named myRecordSet
that’s created in the preceding code would look something like Figure 7-14
(if you could see it).

I
Figure 7-14:
Whata [FirstName | LastNzme EMail
recordset Hortense Higglebottorn frankly@aol.com
John Miller john@aol.com
WOUld look IMary torahan rmary@aol.corm
like if you
could see it.
I

After the recordset exists in code, you can use numerous methods of
the ADODB recordsets to move the cursor through the recordset. (Like
the recordset itself, the cursor is invisible, but VBA can still move that
invisible cursor into any record in the recordset.) The syntax is generally
myRecordSet.method where myRecordSet is the name of the recordset
on which the method should be performed followed by a dot (.) and a
valid method.
WING/
§g~ The cursor type of the recordset puts severe restrictions on which methods
you can use. For maximum flexibility, use the adOpenDynamic cursor type

option, described earlier in this chapter.

V¥ myRecordSet.MoveFirst: Moves the cursor to the first record in the
recordset

V¥ myRecordSet .MoveNext: Moves the cursor to the next record in the
recordset

V¥ myRecordSet .MovePrevious: Moves the cursor to the previous
record in the recordset

|
Figure 7-15:
Referring to
recordset
fields by
position.
|

Chapter 7: The Scoop on SQL and Recordsets ’ 45

V¥ myRecordSet .MoveLast: Moves the cursor to the last record in the
recordset

In addition to the preceding methods, you can use the BOF (Beginning of File)
and EOF (End of File) properties to determine whether the cursor is pointing
at a specific record. For example, the following statement returns True only
if the cursor is sitting above the first record in the recordset:

myRecordSet . BOF

The following statement returns True only if the cursor is already past the
last record in the set (pointing at nothing):

myRecordSet . EOF

You often see these properties used in code that loops through records in a
set one record at a time. For now, it’s sufficient to know that the properties
exist. Take a look next at how you can refer to fields in a record from VBA.

Referring to fields in a recordset

The columns (fields) in a recordset all have names, just as they do in tables.
However, in VBA, each record is also a collection of fields, with the first (left-
most) field numbered 0; the next field, 1; the next, 2; and so forth. The full ref-
erence to a field by its number is myRecordSet.Fields (x) where xis a
number. For example, VBA can refer to the columns in the recordset named
myRecordSet as myRecordSet .Fields (0), myRecordSet.Fields (1),
and myRecordSet.Fields (2), as illustrated in Figure 7-15.

myRecordSet.Fields (0)

Firsthame LastMame Ehdail
Hortense Higglebottorn frankly@aol.com
John Idiller john@anl.com
Iary Ionzhan rmary@aol.com

| |

myRecordSet.Fields (1)

myRecordSet.Fields (2)

Each field has properties and methods, too — for example, the Name prop-
erty. When used as follows, it returns the name of the field at that position:

myRecordSet.Fields (0) .Name

156 Parti:vBA, Recordsets, and SaL

The value property of a field, when used as follows, returns the field’s
contents:

myRecordSet.Fields (0) .Value

You can refer to a field in a recordset by its name rather than by its number.
To refer to a field by its name, replace the number in the preceding syntax
with the name of the field enclosed in quotation marks. For example, the fol-
lowing statement returns the value of the field named Email in the current
record in the recordset:

myRecordSet .Fields ("Email") .Value

Closing recordsets and collections

To close an open recordset, use the Close method with the recordset name.
For example, to close an open recordset named myRecordSet, use the
statement

myRecordSet.Close

You should also close the connection — after you close the recordset because
the recordset uses the connection object — with the similar statement

cnnl.Close

The preceding statements close the recordset and connection only in terms
of being able to manipulate data from VBA. The recordset and its connection,
which you originally defined by using Dim and Set statements, should be
cleared from memory too. Anytime you use a Set keyword to define some-
thing, you should clear it from memory after you're done using it by setting it
to the keyword Nothing. For example, the following statements remove the
recordset myRecordSet and the cnnl connection from memory:

Set myRecordSet = Nothing
Set cnnl = Nothing

Recordsets aren’t the easiest things in the world to create and manipulate.
Fortunately, you can often avoid creating and using recordsets to get a job
done just by creating an action query to perform the job and executing the
query’s SQL statement by using DoCmd . RunSQL.

When an action query just doesn’t cut it, you can always fall back on creating
and manipulating table data through a recordset. You see a practical example
of using recordsets in the next chapter.

Chapter 8
Putting Recordsets to Work

In This Chapter

Working with objects and collections

Making reading and modifying existing code easier
Creating a procedure to skip over used mailing labels
Tying a Sub procedure to a form event

n this chapter, you put to work many of the concepts and techniques from

earlier chapters by creating a custom procedure named SkipLabels ().
This procedure is handy for anyone who prints mailing labels on individual
label sheets by printing on sheets that are missing some labels.

Before you get into writing SkipLabels (), though, you need to know a few
more general techniques. In particular, you need to discover what program-
mers call looping through collections, or enumerating, for short. You also look
at some general info on reading and modifying existing code.

Looping through Collections

As we mention in Chapter 5, Access contains objects and collections whose
properties and methods can be controlled through VBA. Each collection has
a specific name. For example, the CurrentProject.AllForms collection
contains the names of every form in the current database.

Every collection has a . Count property that describes how many objects are
in the collection. For example, CurrentProject.AllForms.Count repre-
sents the number of forms in the current database. For example, if you type
? CurrentProject.AllForms.Count into the VBA Editor’s Immediate window
and press Enter, you see the number of forms contained within the database.

148 Partin:vBA, Recordsets, and SQL

|
Figure 8-1:
Current
Project.
AllForms
collection
and
members.
|

Objects within a collection are always enumerated (numbered), starting with 0
(zero). For example, the first item in the A11Forms collection is A11Forms (0)
(pronounced “all forms sub zero”); the second item in the A11Forms collection
is AllForms (1); the third is A11Forms (2); and so on. In the collection shown
in Figure 8-1, Address Book Form is A11Forms (0) ; Email Messages Form is
AllForms (1); EmailWarningDialog is A11Forms (2); and so on.

All Access Objects =
Tables

Queries

Forms

Address Book Form

|»« </l
2

Email Messages Form
EmailarningDizlog
Main Switchboard

My Business Main Farm
My Business Subfarm
Grder Details Subform
e Main Form — CurrentProject.AllForms collection
Frint from Order Form
Products Form
Report Switchboard
Sales Tax Calcs

Fales Tax Farm

Sales Tax Subform
SkiplLabels Form

WesMo Inwoices Form

e e e e e O o e e O e e s |

esMo Labels Form

Reports
Macros
Maodules

W[

As discussed in Chapter 5, an object can also be a collection. That is, it can
be both an object and a collection at the same time. For example, a form is an
object, but a form is also a collection of controls. From VBA (or an Access
expression), you refer to an open form’s Controls collection by using the
syntax

Forms! (" formName") .Controls

where formName is the name of an open form. As with any collection, the
controls in a form are enumerated (numbered starting with zero). For exam-
ple, the first control on a form is formName.Controls (0), the next is
formName.Controls (1), and so forth. Figure 8-2 shows an example using a
form named MyForm that contains nine controls, numbered this way:

Chapter 8: Putting Recordsets to Work ’ 4 9

BizName text box MyForm.Controls (0)
Biz Name label MyForm.Controls (1)
BizPhone text box MyForm.Controls (2)
Phone label MyForm.Controls (3)
BizURL text box MyForm.Controls (4)
Web Site label MyForm.Controls (5)
BizEmail text box MyForm.Controls (6)
Email label MyForm.Controls (7)
Close button MyForm.Controls (8)
2] MyForm - B ox
I T e T e T
Detail
Figure 8-2: | - e
Afg) B wWeb Site
ormasa | 1|%
BIEH Email i
collection of | -
controls. | - s
4 1l 3

Using For Each loops

The specific number assigned to each item in a collection isn’t terribly impor-
tant. What is important is that VBA provides some special commands for
looping through (or enumerating) a collection, where the code looks at each
object in a collection either to get information about it or to change it. The
special code is a slight variation on the For. . .Next loop called a For

Each. . .Next loop. The basic syntax for the For Each. . .Next loop is

For Each objectType in collectionName

'...code to be performed on each object
Next

where objectType is one of the object type names listed in Column 2 of

Table 81, and collectionName is the name of a collection from Column 3.
Note that some collections are specific objects, too. For example, in Table 8-1,
formName needs to be replaced with the name of an open form, and ctriName
needs to be replaced with the name of a specific control on an open form.

150 Partiii:vBA, Recordsets, and SaL

MBER
\g&
&

Table 8-1 Object Types and Collection Names

for For Each...Next Loops
Object Object Type Collection Name
Table AccessObject CurrentData.AllTables
Query AccessObject CurrentData.AllQueries
Form AccessObject CurrentProject.AllForms
Report AccessObject CurrentProject.AllReports
Open form Form Application.Forms (Openforms)
Open report Report Application.Reports

(Open reports)

Control Control Forms! (" formName") .Controls
Property Property Forms! [formName] !

[ctriName] .Properties

Recordsetfield ADODB.Field recordsetName.Fields

The Forms collection refers to all forms that are open. The 2A11Forms collec-
tion refers to all forms in the current database, whether they’re open or not.

For example, this For Each. . .Next loop looks at each object in the Forms
collection:

For Each AccessObject in CurrentProject.AllForms
'...code to act on each form goes here
Next

Here’s a For Each. . .Next loop that looks at each control on an open form
named MyForm:

For Each Control in Forms!MyForm.Controls
'...code to act on each control goes here
Next

For an example you can try out, open a database that already contains some
tables and forms. Within that database, click the Create tab, and then select
the Module command from the Macro drop-down menu to create a new,
empty module. Now you’re in the VBA Editor.

From the menu bar in the VBA Editor, choose Insert=>Procedure. In the Add
Procedure dialog box that opens, type a simple name (like test), choose
Sub as the function procedure type, and click OK. You see the lines Public
Sub test () and End Sub in the Code window.

Chapter 8: Putting Recordsets to Work

\\3

|
Figure 8-3:
Testing
some code
in the
Immediate
window.
|

Within the procedure, type some code to test. For example, you could type
the following For Each loop to try out looping through the A11Forms
collection:

For Each AccessObject In CurrentProject.AllForms
Debug.Print AccessObject .Name
Next

When executed, the For Each. . .Next loop repeats once for each form
that’s contained within the current database. Within the loop, the Debug.
Print statement just prints the name of the current object in the collection
(using the AccessObject’s Name property).

As you can read in Chapter 12, Debug. Print is often used as a debugging
tool. Here, you use Debug. Print just to see the name of each object that the
For Each...Next loop encounters.

Whenever you add a Sub procedure to a module, you can test it out just by
typing its name (without the following parentheses). In this case, the proce-
dure is named test. After you get the whole procedure typed into the Code
window, as in the top of Figure 8-3, type test into the Inmediate window
and press Enter to run the code. With each pass through the loop, the code
prints the name of the next form in the database; you see the results in the
Immediate window. For example, Figure 8-3 shows the results of running the
test procedure in one of our databases.

4 Flle Edit View Insert Debug Run Tools Add-Ins Window Help Type a question for helf - _ & x
B4 -d WC) PSSR @ :
Ao O =2 6 <
I(General) j |1est j
Option Compare Database Tal
Public Sui test()
'Loop through LllForms Collection and show each form's name.
For Each iecessobject In CurrentProject.hllForms
Debug.Print lecessObject.Name
Next
End Sub -
Immediate %
teat] =
MyForm
Address Book Form
Emmil Hessages Form
TesNo Invoices Form
SkipLabels Form
Sales Tax Cales
Orders Main Form
Order Details Subform
My Business Main Form
My Business Subform
gales Tax Subform
Products Form
Main Switchhoard
YesNo Lakels Form
Report Switchbosrd
Print from Order Form
EmailWarningbialog
Sales Tax Form
4 | I _
S=4 »

151

152 Partiii:vBA, Recordsets, and SQL

¢MBER

If you change the name CurrentProject.AllForms to CurrentData.
AllTables in the test procedure shown in Figure 8-3 and then run the proce-
dure again, the code lists the name of every table in the current database.
Likewise, changing CurrentData.AllTables to CurrentData.
AllQueries lists all the queries in the current database.

Assume now that you want to create a For Each loop that looks at each con-
trol on an open form named Products Form. (This code works only in a
database that has a form named Product Form and when that form is open.)
In this case, Forms ! [Products Form] .Controls is the name of the collec-
tion, and each object in the collection is a control. Thus, a For Each loop to
display the name of each control in the Inmediate window looks like this:

For Each Control In Forms! [Products Form] .Controls
Debug.Print Control.Name
Next

All objects in Access have a . Name property that returns the name of that
particular object. All collections have a . Count property that reflects the
number of items in the collection.

Using shorter names for objects

When you look at code written by other people, you often see a slight varia-
tion on the For Each loop where programmers use Dim statements to assign
an object to a short variable name. Then the programmer uses that short
name in the For Each loop. This helps prevent long lines of code that are
hard to read.

Even though you use a Dim statement to create a short name, you don’t
assign a data type to the variable. Rather, you assign an object type. For
example, each of the following Dim statements is perfectly valid. The com-
ment after each Dim statement describes what that Dim statement declares:

Dim myObject As AccessObject 'MyObject is a placeholder for any object

Dim myForm As Form 'MyForm is a placeholder for any form

Dim myReport As Report 'MyReport is a placeholder for any report
Dim myControl As Control 'MyControl is a placeholder for any control
Dim MyProp As Property 'MyProp is a placeholder for any property

Each Dim statement in the preceding list is declaring an object variable. The
difference between a regular variable and an object variable is that a regular
variable just stores a number or some text in a cubbyhole. An object variable
refers to an entire object. The syntax for assigning an object to an object
variable is

Set name = object

Chapter 8: Putting Recordsets to Work ’53

For example, the following lines of code declare the short name Ctrl as a
placeholder for any control object and the short name Frm as a placeholder
for any form. The Set statement then assigns the open form named
Products Form to the Frm object variable name:

Dim Ctrl As Control
Dim Frm As Form
Set Frm = Forms! [Products Form]

In a loop that looks at each control of the form, you can use the short name
ctrl where you would have used the full word Control. And you can use
Frm where otherwise you would have had to type Forms![Products Form], as
shown here:

For Each Ctrl In Frm.Controls
Debug.Print Ctrl.Name
Next

Suppose that you have an open form named Products Form and on that
form is a control named Selling Price. Remember that every control has
its own, unique set of properties. To create a For Each loop that lists the
name of every property for the Selling Price control on Products
Form, you could either use this syntax

For Each Property In Forms! [Products Form].[Selling Price].Properties
Debug.Print Property.Name
Next

or write the code this way:

Dim ectrl As Control
Dim prp As Property
Set ctrl = Forms! [Products Form].[Selling Price]
For Each prp In ctrl.Properties
Debug.Print prp.Name
Next

The result is the same either way — the name of each property for the con-
trol named Selling Price appears in the Inmediate window.

In real life, you wouldn’t create such loops just to have them print names of
objects in the Debug window. More likely, you’ll do other types of operations
on objects in a collection. You can place as many statements as you want
between the For Each and Next statements. Any code between those state-
ments is executed once for each object in the collection, just like the Debug.
Print statement is executed once for every object in each preceding collec-
tion example.

154 Partui:vBA, Recordsets, and QL

One main reason we even mention all this business with For Each loops and
Dim statements is that when you try to modify existing code, you're likely to
come across many situations where the programmer uses a For Each loop
to look at each object in a collection. While we’re on the topic of reading
other people’s code, look in the next section at some more VBA rules and
how you can use those rules to make more sense of any VBA code that you
ever choose to read or modify.

Tips on Reading and Modifying Code

Many programmers start their careers by trying to modify existing code
rather than trying to write their own code from scratch. Before you can
modify existing code to suit your purposes, though, you need to be able to
read and understand what the existing code is doing.

When you’re viewing existing code in the Code window, you can easily get
help with any keyword in that code. Just select (double-click) the keyword
with which you need help. Then press F1 to summon the Help window.
However, not every single word in VBA code is a VBA keyword. For example,
variable names and field names — which you make up on your own — aren’t
part of the VBA language, so you can’t get any help with those in the VBA
Editor. For example, in the statement

Dim X As String

X is just a made-up variable name, not a keyword that’s built into VBA. You
could, though, select either the Dim or String term and press F1 to get help
with either of those keywords.

Square brackets represent names

The rules for referring to field names in VBA are the same rules used in
Access expressions. When referring to a field name that contains blank
spaces, you must enclose the field name in square brackets, like this: [Sales
Tax Rate]. If the field name contains no blank spaces, the square brackets
are optional. For example, the name SalesTaxRates in VBA refers to a field
named SalesTaxRates, even without the square brackets.

Many programmers put square brackets around all field names for a couple
of reasons. For one, it’s a good habit to get into so that you don’t forget to
use the square brackets when you need them. Second, the square brackets
visually identify which parts of a statement are names, thus making the code
easier to read. For example, you can tell that SalesTaxRate and State are
names of things just by looking at the following example:

Chapter 8: Putting Recordsets to Work ’55

If [State]l="CA" Then

[SalesTaxRate] = 0.0775
Else

[SalesTaxRate] = 0
End If

The square brackets around names apply to form names and object names,
too. For example, in the following statement, Products Form is the name of
aform, and Selling Price is the name of a field on that form. Both names
are enclosed in square brackets because each name contains a blank space:

Forms! [Products Form].[Selling Price]

Some programmers put square brackets around every part of an identifier,
even parts of the name that don’t require square brackets. For example, nei-
ther the following form name nor field name contains a space — nor does the
word Forms. But because square brackets are optional when there’s no
space in the name, you can include them or not. Because none of the follow-
ing hypothetical names contains a space, either version of the statement is
perfectly okay (as long as an open form named ProdForm really contains a
control named SellPrice in the current database):

[Forms] ! [ProdForm] . [SellPrice]

Forms ! ProdForm.SellPrice

Use the exclamation point (!), also called a bang operator by programmers,
to separate object names in an identifier. For example, Me ! MyCombo refers to
the object named MyCombo on the current form. Use the period to precede a
property or method name, such as Controls.Count. For more information,
search the Access Help (not VBA Help) for identifier.

Other ways to refer to objects

You don’t always have to refer to an object by its specific name. You can use
some special names in code to refer to objects in Access, as listed here:

v Me: In a class module, the term Me refers to the form or report to which
the class module is attached. For example, Me! [Selling Pricel] is
short for “the control named Selling Price on the form to which this code
is attached.”

V¥ CodeContextObject: This refers to the name of the object in which
the code is running. (In a class module, it’s always the same as the form
or report to which the class module is attached.)

V¥ Screen.ActiveControl: This refers to whatever control has the focus
right now.

156 Partiii:vBA, Recordsets, and SaL

Each of the preceding names supports a Name property, which you can use to
determine the name of the control. For example, take a look at the sample
form named MyForm in Figure 8-4. Note the names of the controls on the

form.
E-TlMyFurm - = x
My Carnbo Artichoke i
BE]
IyBttn I = ICIitk |
'This is a class module behind the form nawed MyForm
Private Sub MyBttn Click()
'Shows the nawe of the current form
Debug.Print Me.Name
|
'Shows how many controls are on me (this form) .
- N Debug.Print Me.Controls.Count
Figure 8-4:
'Shows the contents of the control nawed MNyCombo
A form, Debug.Print Me!MyCombo.Valus
some 'ilso shows the neame of the current form (in this class wodule) .
Debug.Print CodeContextObject . Hame
controls,
'Shows the nawe of the control that has the focus
and a class Debug.Print Screen.Activecontrol.Nane
procedure. End Sub =
—— =l Lp|

The class module shown in Figure 8-4 is the class module for that tiny
MyForm form in the same figure. Note the use of various names in the code.
Here’s what each of those names returns when the module is run:

V¥ Me .Name: Displays MyForm because MyForm is the name of the form to
which the module is attached.

V¥ Me.Controls.Count: Displays 3 because there are three controls on
MyForm:

e MyCombo label
e MyCombo combo box
* MyBttn button

Note that Me.Controls refers to the current form’s Controls collec-
tion. The . Count property returns the number of items in the collection.

V” Me ! MyCombo . Value: Displays Artichoke, which is the value of the
control named MyCombo on the current form.

V¥ CodeContext .Name: Returns MyForm in this example because the class
module always runs within the context of the current form, whose name
in this case is MyForm.

V¥ Screen.ActiveControl.Name: When executed in this example,
returns MyBttn because the user clicks MyBttn to execute the code.
MyBttn gets the focus when the user clicks it.

\\3

MBER
\g&
&

Chapter 8: Putting Recordsets to Work ’5 7

Screen.ActiveControl.Value returns whatever value is stored in what-
ever control on-screen now has the focus. Be careful when you’re using
Screen.ActiveControl.Value because not every control has a Vvalue

property.

The continuation character

When writing VBA code, you can break a long line into two or more lines by
using a continuation character, which is just an underscore (_). Many pro-
grammers use continuation characters to break lengthy VBA statements into
two or more lines, especially in code you see printed in books and such
because the code needs to fit within the margins of the book.

For example, this fairly long line of code barely fits within the margins in this
book:

Public Sub MySum(anyName As String, anyNum as Number)
Here’s the same line broken into two lines by using a continuation character:

Public Sub MySum(anyName As String,
anyNum as Number)

When VBA sees the continuation character at the end of a statement, it
knows that the line to follow is a continuation of the current statement, so it
treats the two (or however many) lines as one long line.

If you want to use the continuation character when writing your own code, be
aware that the continuation character never inserts blank spaces. If you need
a blank space before the next word in a broken line, put a blank space in front
of the continuation character. For example, the preceding example ends with
a blank space and then the continuation character.

Also, be aware that you can’t use a continuation character within a literal
string in code. A literal string is any text that’s enclosed in quotation marks.
For example, the following line assigns a fairly long line of literal text to a con-
trol named MyCombo on the current form:

Me!MyCombo.Value = "Literal text in quotation marks"

It’s perfectly okay to break the preceding line as follows because the continu-
ation character isn’t inside the literal text:

Me.MyCombo.Value = _
"Literal text in quotation marks"

158 Partiii:vBA, Recordsets, and SQL

\\3

However, if you try to break the line within the literal text this way:

Me.MyCombo.Value = "Literal text _
in quotation marks"

the code fails when executed, and you get a syntax error.

We should mention, though, that you can break long strings of literal text in
code in a couple of ways. One is to just keep adding chunks of text to a string
variable by using

variableName = variableName & "nextString"
You can see an example of that when building the mySqgl variable in Chapter 7.

The other way in which you can use an alternative to building a variable is to
break the large literal into smaller literals, each surrounded by quotation
marks. Concatenate (join) the strings by using the & sign, and break the line
with a continuation character immediately after the & sign. For example, you
could break the long literal, shown in the previous example, like this:

Me.MyCombo.Value = "Literal text" & _
" in quotation marks"

Don’t forget to include any blank spaces between words inside your quota-
tion marks. For example, in the preceding line, the space before in is the
blank space between the words text and in.

When VBA “unbreaks” the line, like this:
Me.MyCombo.Value = "Literal text" & " in quotation marks"

the whole line still makes sense and executes perfectly, by placing the words
Literal text in quotation marks inside a control named MyCombo on
the open form.

The first line in the following code example declares a string variable named
SomeString. The next four lines are actually one long line that stores a
lengthy chunk of text in the variable. Again, notice how each portion is con-
tained within its own quotation marks. Each broken line ends with an & sign
(to join strings) and an underscore (to continue the same line):

Dim SomeString As String

SomeString = "You can break VBA statements using" & _
" an underscore, but not inside a literal. If" & _
" you want to break a long literal, you have to" & _
" enclose each chunk in its own quotation marks."

Chapter 8: Putting Recordsets to Work ’59

Okay, that’s enough talk about general VBA stuff. The title of this chapter is
“Putting Recordsets to Work,” and you do that in the next section. It shows
you how to create a real solution to a real problem (for some people,
anyway) by using VBA, some recordsets, and a little bit of everything else
described in previous chapters.

Skipping Over Used Mailing Labels

I
Figure 8-5:
Skip
Labels
Form form.
I

Suppose that you often use Access to print mailing labels on individual
sheets. Each time you print a partial sheet of labels, you end up with some
extra, unused labels on the sheet. If you reuse that sheet of labels in the
printer, Access prints right on the missing labels. Basically, you can’t reuse a
sheet of labels that’s already partially used. That’s not good because labels
aren’t cheap.

A solution to the problem is to pop up a dialog box like the one shown in
Figure 8-5 just before Access is about to print the labels. There, the user can
specify how many empty places are on the first sheet. Then the user clicks
the Print button. Access prints the labels and skips over the places left
behind by used labels. No more wasted labels!

zs_l Skip Labels Form x
Skip Labels

Skip how many labels?: 11e

The solution to the problem requires a form and some VBA code. The form is
needed because you need some way of telling the procedure how many
labels to skip. In the example shown in Figure 8-5, the form itself is named
SkipLabelsForm. The control in which the user types the number of labels
to skip is named LabelsToSkip. The form also contains a Cancel button and
a Print button named CancelBttn and PrintBttn, respectively, to which
you can tie code later. Figure 8-6 shows the exact name of the form and con-
trols in Design view.

The procedure you're about to create doesn’t print labels. Your database
needs a report for that. You can easily create a report for printing labels via
the Access Label Wizard. In Access, click a table or query in the Navigation
pane from which the report gets names and addresses. Click the Create tab,
and then click Labels in the Reports group to start the Label Wizard. Follow
the instructions to create a report for the desired labels, which fields you
want on the labels, and how you want them to appear on each label. Don’t
forget to put spaces between the fields as you add them.

JOO Partui: vBA, Recordsets, and SOL

|
Figure 8-6:
The Skip
Labels
Form
shown in
Design

view.
|

|
Figure 8-7:
The Label
report
(Report
Name; left
window)

and record-
source
(Rec
Source;
right
window).
|

%SkipLabelsForm - =X

A

Form Header

Form Footer -
4 I »

For this example, we created a label format report named Avery 8462
Labels that’s bound to a query named SkipLabelsSampleQry. However,
you don’t use those names in the VBA code because you want your
SkipLabels procedure to work with any label-printing report, regardless of
which table or query that report is bound to. So within the VBA code, refer to
the report that prints the labels as ReportName and to the report’s underly-
ing table or query as RecSource (see Figure 8-7).

B8 svery 8462 Labels —

Dbt

i, A T4 i

36 Petcea vy

Bellte 6 sEPs

Vmainkrrese by s
e B e lsSampleqry S
e ~|LastName - Addressl - Address2 < =
Pines 345 Pacific Coast Hwy Suite 3232
Smpon 2
IOk e Midcalf 500, 993-6th Street SW
axcrgan, PA €05
wannabe 1121 River Road Suite 121
Unctuous 734 N. Rainbow Dr.
Harrtnci e t Angstrom PO, Box 1255
2 Ur, W
Do soun, P 151 Excrdbio, Ak TBe Sarah 1370 Washington Lane
Haverston Square 1182Lincoln Blvd.
ey s temaoELy e Higglebotton P.0. Box 1014 11224 €l Secreto
Newibape . PR Sermmr ok 521 Lopez 0. Bax 10
Starbuck 323 shire Lane
S we ures peiremy d Natz Schumack 228 Hollywood Drive
== Haea e [
Mol L 11 Fdmend, 1% 8752 Peterson 823 Paseo Cancun
¥asha 1788 Part Carla Circle
e ey Utege & 97 Roberts Dr.
S Pl o e = Rt b,
Framkg i, WA [T Kryzwicki 45 Albany Road
ry Stickler 1205 Huntingdan Ct.

615 Levick Street

fMunkhousen & Qakeliff Dr.

Miller 7707 Will Road -
1035 | b M F |« »

Kane

Search

For skipLabels to work, it needs to pad the top of the recordsource for the
report with one blank record for each label to be skipped over. For example, if
SkipLabels needs to skip over seven empty spots on a sheet of labels, it
inserts seven blank records at the top of the label report’s recordsource. That
way, when the sheet prints, the empty records get “printed” first (on the empty
spots), and real data starts printing on the first available label. Figure 8-8 illus-
trates the basic idea.

Chapter 8: Putting Recordsets to Work

|
Figure 8-8:
Blank
records
equal
skipped-
over labels.
|

{8l (abelsTempReport —

= LabelsTempTable o=
CustlD - FirstNarme ~-| Lasthame ~ | Addressl -

ﬂ

1 Tori Pines 345 PacificCoa !
2 Marilou Miclealf 500, 333-6th st
3 Wilrma wWannabe 1121 River Roar:
4 Frankly Unctuous 734 M. Rainbow
S Margaret Angstrom P.0. Box 1295

6 Simpson Sarah 1370 Wiashirgt
7 Haverston Squ:
8 Hortense Higglebottorm P.O. Box 1014

3 Penny Lopez P.0. Box 10

10 Matildz Starbuck 323 5hire Lane

11 Scott and Matal Schurmack 228 Hollywood
12 Linda Petersan B823Paseo Canc
13 Ino ¥asha 1788 Port Carlo

Page: 1 r M 14 97 RobertsDr.

15 Dominic Kryzwicki 45Albany Roac +
Record: H 4 Tofd2 | b M b [searcn |«@»

Getting those blank records to the top of the report’s recordsource is no small
feat. Plus, you don’t want SkipLabels to insert blank records into any real
tables or make changes to any real reports in your database. SkipLabels
creates and works with copies of the necessary objects: It always creates a
report named TempLabels report that prints data from a table named
LabelsTempReport. It creates both those objects, on-the-fly, each time.

Of course, you can’t write SkipLabels in such a way that it always skips the
same number of labels on the same report. You need to make it flexible enough
to work with any number of empty labels on any label report. To provide flexi-
bility, treat the number of labels to skip and the report names as parameters
(values that get passed to an argument). In other words, write the SkipLabels
procedure so that it can be executed at any time, using the syntax

SkipLabels (ReportName, LabelsToSkip)

where ReportName is the name of the report to print, and LabelsToSkip is
a number indicating the number of blank labels at the top of the page. For
example, the following statement tells SkipLabels to print the report
named Avery 8462 Labels and skip over the first seven used labels on the
first page:

SkipLabels ("Avery 8462 Labels",7)

The code required to meet all these goals isn’t brief, but you don’t even need to
look at it if you don’t want to. All you need to really know about SkipLabels is
how to get it into a standard module in your own database and how to call it to

101

]G 2 Partiii: vBA, Recordsets, and SOL

work with your own labels. You can skip to the section “Calling a Procedure
from an Event,” later in this chapter, if you would rather skip the morbid details
for now.

Looking at How SkipLabels Works

If you're ready to look at some VBA code in detail, continue reading here. Be
forewarned that the SkipLabels procedure (see Listing 8-1), which you're
about to see in its entirety, isn’t short. It probably looks more intimidating
than need be. However, like all procedures, SkipLabels is just a series of
small steps carried out in a specific order to achieve a goal; SkipLabels just
has to go through more steps than most procedures.

Listing 8-1: SkipLabels

Sub SkipLabels (ReportName As String, LabelsToSkip As Byte, _
Optional PassedFilter As String)

'Declare some variables.
Dim MySQL As String

Dim RecSource As String
Dim FldNames As String
Dim MyCounter As Byte
Dim MyReport As Report

'Turn off warning messages.
DoCmd. SetWarnings False

'Copy the original label report to LabelsTempReport
DoCmd.CopyObject , "LabelsTempReport", acReport, ReportName

'Open LabelsTempReport in Design view.
DoCmd.OpenReport "LabelsTempReport", acViewDesign

'Get name of report's underying table or query,
'and store it here in the RecSource variable.
RecSource = Reports!LabelsTempReport.RecordSource

'Close LabelsTempReport
DoCmd.Close acReport, "LabelsTempReport", acSaveNo

'Declare an ADODB recordset named MyRecordSet
Dim cnnl As ADODB.Connection

Dim MyRecordSet As New ADODB.Recordset

Set cnnl = CurrentProject.Connection
MyRecordSet.ActiveConnection = cnnl

Chapter 8: Putting Recordsets to Work ’ 63

'Load data from RecSource into MyRecordSet
MySQL = "SELECT * FROM [" & RecSource & "]"
MyRecordSet.Open MySQL, , adOpenDynamic, adLockOptimistic

'Grab field names and data types from Fields collection.
Dim MyField As ADODB.Field
For Each MyField In MyRecordSet.Fields
'Convert AutoNumber fields (Type=3) to Longs
'to avoid insertion problems later.
If MyField.Type = 3 Then
FldNames = FldNames & "CLng([" & RecSource & _

"].[" & MyField.Name & "]) As " & MyField.Name & ","
Else
FldNames = FldNames & _
"[" & RecSource & "].[" & MyField.Name & "],"
End If
Next

'Remove trailing comma.
FldNames = Left (FldNames, Len(FldNames) - 1)

'Create an empty table with same structure as RecSource,
'but without any AutoNumber fields.
MySQL = "SELECT " & FldNames & _
" INTO LabelsTempTable FROM [" & _
RecSource & "] WHERE False"
MyRecordSet.Close

DoCmd . RunSQL MySQL

'Next we add blank records to empty LabelsTempTable.
MySQL = "SELECT * FROM LabelsTempTable"
MyRecordSet.Open MySQL, , adOpenStatic, adLockOptimistic
For MyCounter = 1 To LabelsToSkip

MyRecordSet . AddNew

MyRecordSet.Update
Next

'Now LabelsTempTable has enough empty records in it.
MyRecordSet.Close

'Build a SQL string to append all records from original
'recordsource (RecSource)into LabelsTempTable.
MySQL = "INSERT INTO LabelsTempTable"
MySQL = MySQL & " SELECT [" & RecSource & _
"].* FROM [" & RecSource & "]"

'Tack on the PassedFilter condition, if it exists.
If Len(PassedFilter) > 1 Then

MySQL = MySQL & " WHERE " & PassedFilter
End If

(continued)

164 Partui.vBA, Recordsets, and SaL

Listing 8-1 (continued)

'Append the records
DoCmd.RunSQL MySQL

'LabelsTempTable is done now.

'Next we make LabelsTempTable the RecordSource for LabelsTempReport.
DoCmd.OpenReport "LabelsTempReport", acViewDesign,
Set MyReport = Reports! [LabelsTempReport]

MySQL = "SELECT * FROM LabelsTempTable"
MyReport.RecordSource = MySQL

DoCmd.Close acReport, "LabelsTempReport", acSaveYes

, , acWindowNormal

'Now we can finally print the labels.
DoCmd.OpenReport "LabelsTempReport", acViewPreview, , , acWindowNormal

'Note: As written, procedure just shows labels in Print Preview.
'To get it to actually print, change acPreview to acViewNormal

'in the statement above.

End Sub

Okay, that was intimidating. In the next few sections, we pick apart
SkipLabels to see exactly what makes it tick. If you lost your appetite to
get into the details of it all, you can still skip ahead to the section “Calling a
Procedure from an Event,” later in this chapter.

Passing data to SkipLabels

The first line of SkipLabels gives the procedure its name and sets it up to
accept either two or three arguments from whatever programmer runs it. The
first argument, Repor tName, stores the name of the report to skip. The
second argument stores the number of labels to skip as a number. The
optional third parameter, if passed, is stored under the name PassedFilter:

Sub SkipLabels (ReportName As String, LabelsToSkip As Byte, _
Optional PassedFilter As String)

For the sake of this example, say that an event procedure calls on
SkipLabels by using this command:

Call SkipLabels ("My8462Labels",7)

Right away, the variable named ReportName gets the value My8462Labels,
and LabelsToSkip gets the value 7. The PassedFilter gets no value
because it wasn’t used in the calling command.

Chapter 8: Putting Recordsets to Work ’ 65

If a procedure calls SkipLabels by using all three parameters, like this:
Call SkipLabels ("My8462Labels",7,"[CustID]=123")

the variable named PassedFilter would store [CustID]=123 as its value.

Declaring variables

The next task within SkipLabels is to create some variables for storing
information as the code executes. Those statements are shown as follows.
You see those variable names put to use later in the procedure:

'Declare some variables
Dim MySQL As String

Dim RecSource As String
Dim FldNames As String
Dim MyCounter As Byte
Dim MyReport As Report

The SkipLabels procedure executes some action queries (SQL statements)
while doing its job. To prevent those queries from displaying warnings, the
next line of code turns off the warning messages:

DoCmd.SetWarnings False

Copying the label report

To play it safe with original objects, SkipLabels works with copies of those
objects. This next statement uses the CopyObject method of the DoCmd
object to make a copy of the label report. Notice how it uses ReportName,
passed to the procedure in an argument, to determine which report to copy:

DoCmd.CopyObject, "LabelsTempReport", acReport, ReportName

Referring to the earlier examples of calling SkipLabels with the syntax
Call SkipLabels ("My8462Labels",7), after the preceding line exe-
cutes, the report format named LabelsTempReport would be an exact copy
of the report named My8462Labels.

Getting a report’s recordsource

To work with data from a report, SkipLabels needs to figure out where
that report is getting its data. Every form and report has an exposed
.RecordSource property that VBA can query to find out the name of the

]GO Partiii: vBA, Recordsets, and SaL

table or query to which the form or report is attached. However, VBA can
get that information only if the report (or form) is open in Design view. In
SkipLabels, this next statement opens Label sTempReport in Design view:

'Open LabelsTempReport in Design view.
DoCmd.OpenReport "LabelsTempReport", acViewDesign

In the following lines of code, the first line stores in the variable named
RecSource the name of the table or query from which the report gets its
data. The second line then closes Label sTempReport because there’s no
need for it to be open in Design view any more:

RecSource = Reports!LabelsTempReport.RecordSource

DoCmd.Close acReport, "LabelsTempReport", acSaveNo

Remember that from this point on in the code, the name RecSource refers to
the name of the table or query in which data to be printed on labels is stored.
The code can let that variable sit for now and move on to the task of creating
LabelsTempTable, which is the table that SkipLabels uses to store blank

records and data to be printed on labels.

Creating the recordset

SkipLabels uses a recordset (and some action queries) to do its job. The
next lines in the procedure, as follows, create a recordset named
MyRecordSet, which you see put to use shortly:

'Declare a recordset named MyRecordSet that gets its
'data from the current database's tables.

Dim cnnl As ADODB.Connection

Dim MyRecordSet As New ADODB.Recordset

Set cnnl = CurrentProject.Connection

MyRecordSet .ActiveConnection = cnnl

Creating LabelsTempTable
from MyRecordSet

At this point in the code, an empty recordset named MyRecordSet is just
waiting to get filled with some data. The following statement creates a SQL
statement using whatever is stored in RecSource as the name of the table
from which to get records:

MySQL = "SELECT * FROM [" & RecSource & "]"

Chapter 8: Putting Recordsets to Work ’ 6 7

For the sake of example, say that the recordsource is a query named New
Customers Qry. In that case, the MySQL variable would receive as its value
the string

SELECT * FROM [New Customers Qry]

At this point in the procedure, MyRecordSet has the same fields as the origi-
nal table. The code now needs to create a new table from that recordset, but
there’s a snag: If the current table contains any AutoNumber fields, you can’t
append blank records to the top of the table. So rather than create an exact
clone of the original table, the procedure creates a semi-clone where any
AutoNumber fields are converted to Long Integer fields. That way, you
can append blank records to the final table.

To determine the name and data type of each field in the recordset, the fol-
lowing loop looks at each field in MyRecordSet’s structure, particularly the
.Name and . Type (data type) property of each field. When used in a record-
set, the . Type property of a recordset returns a number indicating the data
type of the field, as listed here:

AutoNumber 3
Text 202
Memo 203
Date/Time 7
Currency 6
Yes/No 11
OLE Object 205
Hyperlink 203
Byte 17
Integer 2
Long Integer 3
Single 4
Double 5

The next big step in the SkiplLabels procedure involves creating a string of
field names in the F1dNames variable (declared earlier in the procedure as a
string). To do this, the following code uses a For Each. . .Next loop to ana-
lyze the name (.Name property) and data type (. Type property) of each field
in the recordset. If the field’s data type is an AutoNumber field, the code uses
the built-in CLng () (Convert to Long) function to convert it to a regular long
integer:

]O8 Partiii: vBA, Recordsets, and SaL

Dim myField As ADODB.Field
For Each myField In myRecordSet.Fields
'Convert AutoNumber fields (Type=3) to Longs
'to avoid insertion problems later.
If myField.Type = 3 Then
FldNames = FldNames & "CLng([" & RecSource & _

"].[" & myField.Name & "]) As " & myField.Name & ","
Else
FldNames = FldNames & _
"[" & RecSource & "].[" & myField.Name & "],"
End If
Next
FldNames = Left (FldNames, Len(FldNames) - 1) 'Remove trailing comma.

Suffice it to say that when the last statement is executed, the F1dNames vari-
able contains a list of field names organized in such a way that they can be
used in a SQL statement to create a new table with a structure similar to the
original recordsource table’s (or query’s) structure. For example, if the record-
source table contains an AutoNumber field named CustID and some text
fields named FirstName, LastName, Addressl, and so forth, F1dNames
ends up containing something like this (as one long line that’s too wide for the
margins here):

CLng ([CustID]) As CustID, [FirstName], [LastName],
[Company], [Addressl], [Address2], [City],
[StateProv], [ZIPPostalCode], [Country]

When executed as part of a SQL statement, the CL.ng () function converts the
AutoNumber CustID field to a long integer, which makes it easier to append
records to the top of the LabelsTempTable. The next line creates a SQL
statement using field names from the recordset and the additional text
needed to create a table:

mySQL = "SELECT " & FldNames & " INTO LabelsTempTable FROM
[" & RecSource & "] WHERE False"

Recall that RecSource is the name of the table or query that contains the
data to print on labels. If that table is named Customers and it has field
names, as in the preceding example, mySQL ends up being a valid SQL state-
ment, something like this:

SELECT CLng ([CustID]) As CustID, [FirstName], [LastName],
[Company], [Addressl], [Address2], [City],
[StateProv], [ZIPPostalCode], [LabelCountry]
INTO LabelsTempTable FROM [Customers] WHERE
False

The WHERE False part of the SQL statement prevents any records from
being copied into the new LabelsTemp table. When executed, the following
statements create LabelsTempTable as a new, empty table and then close

Chapter 8: Putting Recordsets to Work ’ 69

the recordset (which was needed only to determine field names and data
types from the original report’s recordsource):

myRecordSet.Close

DoCmd . RunSQL mySQL

After the preceding statements execute, LabelsTempTable is an empty
table that’s nearly identical to the report’s underlying table but with
AutoNumber fields defined as Long Integer fields. The chunk of code cre-
ates a new recordset that matches the empty LabelsTempTable table. The
.AddNew and .Update methods within the loop add one new, blank record
to LabelsTempTable. Notice how those statements are in the For. . .Next
loop that counts from 1 to LabelsToSkip. That LabelsToSkip variable
contains the number of labels to be skipped over. The following code basi-
cally adds as many blank records to LabelsTempTable as are needed to
skip over the appropriate number of labels:

'Next we add blank records to empty LabelsTempTable.
MySQL = "SELECT * FROM LabelsTempTable"
MyRecordSet.Open MySQL, , adOpenStatic, adLockOptimistic

For MyCounter = 1 To LabelsToSkip
MyRecordSet . AddNew
MyRecordSet .Update

Next

'Now LabelsTempTable has enough empty records in it.
MyRecordSet.Close

The next statements form a SQL statement to append all records from the
original recordsource onto LabelsTempTable. For example, if the name of
the original recordsource table is Customers, mySQL ends up being

INSERT INTO LabelsTempTable SELECT [Customers].* FROM
[Customers]

That statement is basically an append query that adds all the records from
the original table to LabelsTempTable. When the SQL statement executes,
the records from the original table are appended onto LabelsTempTable
beneath the blank records that are already in LabelsTempTable:

mySQL "INSERT INTO LabelsTempTable"
mySQL mySQL & " SELECT [" & RecSource & _

"].* FROM [" & RecSource & "]"

DoCmd . RunSQL mySQL

* Il

After the preceding code runs, LabelsTempReport is an exact clone of the
original label report. LabelsTempTable is a clone of all the records to be
printed on the labels, with blank records on top, as shown in Figure 8-8.

] 70 Partui:vBA, Recordsets, and SaL

MBER
é&
&

The next statements open LabelsTempReport in Design view and set its
recordsource to print all records from LabelTempTable. These state-
ments accomplish this task by changing the RecordSource property of
LabelsTempReport to a SQL statement that retrieves all records from
LabelsTempTable

DoCmd.OpenReport "LabelsTempReport", acViewDesign, , , acWindowNormal
Set myReport = Reports! [LabelsTempReport]

mySQL = "SELECT * FROM LabelsTempTable"

myReport.RecordSource = mySQL

DoCmd.Close acReport, "LabelsTempReport", acSaveYes

At this moment, everything is ready to go. LabelsTempReport is bound to
LabelsTempTable, which in turn contains all the necessary blank records
on top followed by all the records that need to be printed. Now VBA just
needs to print the report. As written, the code just displays the results in
Print Preview, by using this statement:

'Now we can finally print the labels.
DoCmd.OpenReport "LabelsTempReport", acViewPreview, , , acWindowNormal

Using Print Preview is just a means of testing and debugging the code without
wasting a lot of paper on trial runs. In a live working environment, you want
the code to print the labels. That’s simple to do: Just change the work
acViewPreview to acNormal in that last statement:

DoCmd.OpenReport "LabelsTempReport", acViewNormal, , , acWindowNormal

SkipLabels is now done. The final two statements set the object variables
named cnnl and MyReport (defined earlier in the procedure with Set state-
ments) to Nothing. This is just a little housekeeping step before the proce-
dure ends:

'Free up the object variables.
Set cnnl = Nothing
Set MyReport = Nothing

End Sub

By the time the End Sub statement is executed, the labels are printing (or
getting ready to print), and SkipLabels is done. You can give the standard
module any name you like and then close and save the module.

Chapter 8: Putting Recordsets to Work ’ 7 1

Calling a Procedure from an Event

At this stage of the game, your database contains a standard module that
contains a Sub procedure named SkipLabels (). Because you haven’t yet
tied the SkipLabels procedure to any event, nothing is in the database yet
to take advantage of SkipLabels ().

Recall that earlier in this chapter, we show a form with a control named
LabelsToSkip (it stores the number of labels to be skipped over) as well as
a Cancel button and a Print button (refer to Figure 8-6). If the user clicks
Cancel, you just want SkipLabelsForm to close without doing anything. If
the user clicks the Print button, you want the form to call SkiplLabels with
the appropriate label report name and number of labels.

When you want an event procedure on a form to call a standard procedure,
use the syntax

Call procedureName (arguments)

where procedureName is the name of the procedure to call, and arguments
are values for whatever required arguments the procedure is expecting.
SkipLabels () requires at least two arguments: the name of the labels
report and the number of labels to skip. Here’s how you could get the Print
button in the SkipLabels form to call SkipLabels () when clicked:

1. Open SkipLabelsForm (or whatever form you created) in Design
view and click the button that will call SkipLabels.

2. On the Event tab of the Properties sheet, click the on click event
property for the Print button.

3. Click the Build button and choose Code Builder. You see the VBA
Editor with the cursor inside the event procedure.

4. Type the following line into the procedure:

Call SkipLabels (" [YourReportNamel]",
[LabelsToSkip] .Value)

and substitute YourReportName with the name of the report in your
database that prints labels.

For example, if your database contains a report named Avery 8462
Labels, you type Call SkipLabels(“Avery 8462 Labels”, [LabelsToSkip].
Value), as shown in the second procedure — PrintBttn_Click() in
Figure 8-9.

172

Part Ill: VBA, Recordsets, and SQL

|
Figure 8-9:
The Print
Bttn_
Click()
procedure
called the
Skip
Labels
Sub.
|

\NG/
‘gﬁ

%1 8-SkiplLabels - Form_SkipLabelsForm (Code) ol
I(General} j I(Declaraliuns}

s

Option Cowmpare Datsbase

Private Sub CancelBttn Click()
DoCmwd.Close acForm, "SkipLabelsForm™, acSaveNo

End Sub

Private Sub PrintBttn Click()
Call 3kiplabels("Avery 5462 Labels", [LabelsToZkip].Value)

End Sub

L | M4

0

The first procedure in that figure — CancelBttn_Click () —in that
class module just closes SkipLabelsForm without doing anything and
is tied to the On Click event of the form’s Cancel button.

The syntax for calling a custom VBA function from an Event procedure
is = functionName (arguments), which is clearly different from calling
a Sub procedure with Call procedureName (arguments).We talk
more about custom functions in Chapter 11.

5. Choose Filer>Save and Return to Microsoft Office Access from the VBA
Editor’s menu bar.

The button’s On C1lick event property shows Event Procedure, as usual.
Now you can close and save the form and then reopen it in Form view to try
it out.

You can do some fancier things with SkipLabelsForm in later chapters. For
example, you can allow the user to choose any one of several label formats,
or you can let the user specify a filter condition by using simple options on a
form. For now, if you got this far, you did great. You created a Sub procedure
named SkipLabels () that you can easily drop into just about any database
you create.

Part IV
Applying VBA In
the Real World

The 5th Wave By Rich Tennant
(CRICHTENNANT

“We’re here to clean the code.”

In this part . . .

S)me of the programming techniques in these chap-
ters are a bit trickier than techniques from previous

chapters, but they're not just stupid pet tricks. They’re
useful tricks. What makes them tricky has more to do with
the way you use VBA to trick Access into doing things it
couldn’t possibly do on its own. In the real world, people
rarely write code that works perfectly right off the bat.
Even experienced programmers have to spend some time
testing and debugging their code. In this part, you also
discover the many tools that VBA offers to help you with
testing and debugging.

Chapter 9
Creating Your Own Dialog Boxes

In This Chapter

Asking questions, responding to answers
Storing dialog box settings

Creating custom dialog boxes

Creating spin box controls

Detecting a right-click

ou see dialog boxes in Windows and other programs all the time. Each

dialog box presents some options for you to choose from. The name
dialog box stems from the fact that the user and the dialog box carry on a
sort of conversation. The dialog box presents some options, and the user
makes selections from those options and then clicks OK.

When you’re creating a database, you might want to put your own dialog box
(or other message) on-screen so that the user can make some choices.
Creating dialog boxes in Access is easier than you might think because each
dialog box is just an Access form with certain settings that make the form
look and act more like a dialog box than a regular Access form.

In addition to displaying dialog boxes, your database can display small,
custom messages on-screen. A message is a dialog box of sorts because it
presents information or a question to the user and waits for the user to
respond. And you don’t even have to create an entire dialog box to display a
small message on-screen: You can just use the VBA MsgBox () function
instead.

In this chapter, we look at message boxes and dialog boxes, showing exam-
ples of programming each. We start with message boxes because those are
the easiest to create.

7 76 Part IV: Applying VBA in the Real World

Displaying and Responding to Messages

|
Figure 9-1:
Examples of
message
boxes.
|

When you want your database to give the user a little feedback or have the
user answer a simple Yes/No question, you can use a message box. The mes-
sage box can be a simple feedback message with a single OK button, like the
example shown at the left side of Figure 9-1. Or, the message box can ask a
question and wait for an answer, as in the right side of Figure 9-1.

Microsoft Office Access Question

Finished exporting records _?/ Did labels print Ok?

There are two syntaxes for the MsgBox keyword. If you just want the message
to show some text and an OK button, use the syntax

MsgBox "YourMessageHere"

where YourMessageHere is the text that you want the message box to display.
For example, here’s the complete VBA code to display the message on the left
side of Figure 9-1:

MsgBox "Finished exporting records"

If you type that exact statement into the VBA Editor Inmediate window and
press Enter, you see the message box on-screen. When you click its OK
button, the message box closes.

The preceding syntax, where you just follow the MsgBox statement with a
message enclosed in quotation marks, works only when you don’t specify
buttons to display in the message box. The message box has only an OK
button, and clicking that button closes the message box.

If you want your message box to ask a question and give the user some choices
about how to respond, you have to use a different syntax, as discussed next.

Asking a question

If you want your message box to ask a question and show Yes/No buttons,
you have to use the MsgBox () function with the following syntax:

Dim Variable As Integer
Variable = MsgBox ("YourQuestion", buttons, ["title"])

Chapter 9: Creating Your Own Dialog Boxes ’ 77

where

Vv Variableis a variable name of your choosing.
V¥ YourQuestion is the text to be displayed in the box.

V¥ buttons is a number or constant defining buttons to display and other
message box properties, as discussed in the upcoming section
“Designing a message box.”

V» titleis an optional title that appears on the title bar of the
message box.

For example, the following lines of code display the message box shown on
the right side of Figure 9-1. When the user clicks a button, the variable named
Answer stores a number indicating which button the user clicked.

Dim Answer As Integer
Answer = MsgBox ("Did labels print OK?", vbQuestion + vbYesNo, "Question")

Whenever VBA displays a message box, it stops executing code in your pro-
cedure. In other words, any lines below the statement in the code are ignored
until the user clicks a button in the message box. At that point, VBA can
decide what to do based on which button the user clicked. Before we get to
that topic, look in the next section at all the different ways you can control
the appearance and behavior of a message box.

Designing a message box

You can use the buttons argument of the MsgBox keyword to define the
exact appearance and behavior of your message box. Each possible value for
the buttons argument can be expressed as either a constant or a number.
You can add the constants or numbers together to combine properties.

For example, the constant vbYesNo (or number 4) tells MsgBox to display
Yes and No buttons in the form. The constant vbQuestion (or number 32)
tells MsgBox to display a question mark icon in the form. Combining the two
arguments with a plus sign (+) in the MsgBox statement applies both proper-
ties. For example, using vbYesNo + vbQuestion together as the buttons
argument in the following example displays the dialog box shown on the right
side of Figure 9-1. There you can see the question mark icon and Yes/No but-
tons in the message box.

Answer = MsgBox ("Did labels print OK?", vbQuestion + vbYesNo, "Question")

Whenever VBA encounters a MsgBox statement in code, it displays the mes-
sage box on-screen and then waits for the user to respond to the box. Code
beneath the MsgBox statement within the procedure isn’t executed until the
user responds to the message box.

] 78 Part1v: Applying VBA in the Real World

Modal and pop-up messages

The buttons argument lets you define how the message box looks when it
first opens and also how it behaves while it’s open. By default, a message box
is always application modal. That is, after the message box is on-screen, the
user can’t do anything else in Access until he or she replies to the message.
With the buttons argument, you can make the message box system modal,
which means that the user can’t do anything in any other program until he
responds to the message.

With the buttons argument, you can also make the message box a pop-up. As
a pop-up, the message box always jumps to the top of the stack of whatever
other windows happen to be open on-screen, therefore guaranteeing that the
message box is visible to the user on-screen.

Message box default buttons

You can even define a default button for the message. The default button is
the button that’s automatically selected when the message box first opens.
It’s also the button that gets clicked if the user just presses the Enter key to
close the message box. For example, the following statement displays a mes-
sage box with Yes, No, and Cancel buttons with the third button (Cancel)
already selected (highlighted) in the box:

Answer = MsgBox("Hello World", vbYesNoCancel + vbDefaultButton3)

Because the Cancel button is the default button in that example, if the user
just presses the Enter key in response to the message, that’s the same as the
user clicking the Cancel button.

The complete set of MsgBox buttons argument settings are shown in

Table 9-1. The first six settings (0 through 5) specify buttons to show in the
message box. Those settings also specify which values the variable at the left
side of the statement could get when the user clicks a button, as we discuss

next.
Table 9-1 Constants and Numbers Used for the
MsgBox buttons Argument

Constant Number Displays Returns

vbOKOnly 0 OK button vbOK

vbOKCancel 1 0K, Cancel buttons vbOXK or

vbCancel

vbAbortRetryIgnore 2 Abort, Retry, vbAbort,

Ignore buttons vbRetry,

vbIgnore

Chapter 9: Creating Your Own Dialog Boxes ’ 79

Constant Number Displays Returns
vbYesNoCancel 3 Yes, No, Cancel vbYes, vbNo,

buttons vbCancel
vbYesNo 4 Yes, No buttons vbYes, vbNo
vbRetryCancel 5 Retry, Cancel vbRetry,

buttons vbCancel
vbCritical 16 Red Xicon
vbQuestion 32 Question icon
vbExclamation 48 Exclamation icon
vbInformation 64 Information icon
vbDefaultButtonl 0 First button as

default
vbDefaultButton2 256 Second button as

default
vbDefaultButton3 512 Third button as

default
vbDefaultButton4 768 Fourth button as

default
vbApplicationModal 0 Access objects

suspended until

user replies
vbSystemModal 4096 All applications

suspended until

user replies
vbMsgBoxHelpButton 16384 Help button in box
VbMsgBoxSetForeground 65536 Message box as top

window (pop-up)
vbMsgBoxRight 524288 Textright-aligned

in box
vbMsgBoxRt1lReading 1048576 Textfrom rightto

left for Hebrew or
Arabic

180 rartiv: Applying VBA in the Real World

Adding the vbMsgBoxHelpButton argument displays a Help button in the
message box. However, the button doesn’t work unless you create custom
Help files, and that’s a large topic that’s beyond the scope of this book. If
you're interested in learning more, search the following site for adding
custom help access:

http://msdn.microsoft.com/

Responding to a MsgBox button click

If your message box asks a question, you presumably want your VBA code to
respond to whatever button the user clicked. That’s fairly easy to do because
when the user clicks a button, the variable to the left side of the MsgBox ()
function returns a value indicating which button the user clicked. Each
button that you can show in a message box returns a unique value. For exam-
ple, when the user clicks the Yes button, MsgBox () returns 6 (which also
equals Access’s built-in vbYes constant). If the user clicks the Cancel button,
MsgBox returns 2 (which equals the vbCancel constant).

In your code, you can use either the constant or the number, but it’s always
easier to read the code later if you use the constant. Table 9-2 lists the
value — expressed as both a constant and a number — that each message
box button returns when clicked.

Table 9-2 Values Returned by Buttons

If User Clicks MsgBox Returns (Constant) MsgBox Returns (Integer)
0K vbOK 1

Yes vbYes 6

No vbNo 7

Cancel vbCancel* 2

Abort vbAbort 3

Retry vbRetry

Ignore vbIgnore 5

*MsgBox () alsoreturnsvbCancel (2) ifthe user presses the Esc key or clicks the
box’s Close button.

Code execution always stops at the line when a message box is on-screen.
Thus, the next line of code in your procedure can make a decision based on
the contents of the variable used at the start of the VBA MsgBox () statement.

Chapter 9: Creating Your Own Dialog Boxes

For example, if the message box contains Yes and No buttons, you can use an
If statement to perform one set of steps if the user clicks Yes and another set
of steps if the user clicks No. Here’s the basic idea:

Dim Answer As Integer
Answer = MsgBox ("Click a button",vbYesNo, "Test")

'Make a decision based on button user clicked.
If Answer = vbYes Then

'Code to execute if user clicked Yes goes here.
Else

Code to execute if user clicked No goes here.
End If

Here’s how the preceding code executes. The Dim statement creates a vari-
able named Answer. The next statement displays a message box with Yes
and No buttons. Code execution stops there until the user clicks a button in
the message box. When the user clicks a button, the Answer variable
receives a value indicating which button the user clicked. In this example,
that value is either vbyes (6) or vbNo (7). Code execution then resumes nor-
mally at the next line in the procedure.

In the preceding example, the first executable line of code is an If. . .Then
statement that compares the value of the Answer variable with vbyes.
Then...

v If the value of Answer is vbYes, only the code between If and Else is
executed; code between Else and End If is ignored.

v If the value of Answer value is not vbYes, code between If and Else is
ignored, and only code between Else and End If executes.

Either way, code execution then resumes normally at the next statement after
the End If statement.

If you want to try it for yourself, you can type a little procedure like the
following example into any standard module:

Sub MsgTest2 () 'Show message with Yes and No Buttons
Dim Answer As Integer
Answer = MsgBox("Ready?", vbYesNo)

If Answer = vbYes Then
'Code to execute if user clicked Yes button.
Debug.Print "You clicked Yes"
Beep 'Sound a beep too.

Else
'Code to execute if user clicked No button.
Debug.Print "You clicked No"

End If

End Sub

181

] 82 rartiv: Applying VBA in the Real World

\\3

After you type the entire procedure, you can just type its name, MsgTest?2,
into the Immediate window and try it. When you see the message box, click
Yes. You hear a beep and see You clicked Yes in the Immediate window.
Run the procedure a second time and click No, and you see You clicked
No in the Immediate window.

You might have a situation where you want your code to do one thing if the
user clicks Yes, do another thing if the user clicks No, and do something else
if the user clicks Cancel or closes the dialog box without clicking a specific
button. You can use a Select Case block of code to specify a different
action for each of the three buttons’ possibilities.

For example, when executed, the following Answer = MsgBox(...) state-
ment displays a message box with Yes, No, and Cancel buttons. After the user
clicks a button, the Select Case...End Select block takes one of three
possible actions. If the user clicks the Yes button, only the code under
Select Case vbYes executes. If the user clicks No, only the code under
Select Case vbNo executes. If the user clicks the Cancel button or closes
the message box by using the Close button or Esc key, only the code under
Select Case vbCancel executes.

Dim Answer As Integer
Answer = MsgBox ("Ready again?", vbYesNoCancel + _
vbDefaultButton3)

Select Case Answer
Case vbYes
'Code to execute if user clicked Yes.
Debug.Print "You clicked Yes"
Case vbNo
'Code to execute if user clicked No.
Debug.Print "You clicked No"
Case vbCancel
'Code to execute if user cancelled.
Debug.Print "You didn't click Yes or No."
End Select

For more informationon If...Then...End If and Select Case...End
Select, see Chapter 4.

Converting Forms to Dialog Boxes

Message boxes are fine when your code just needs to ask users a simple ques-
tion, but sometimes you want to give them several options to choose from. You
might want to use a variety of controls, such as check boxes and combo boxes,
to present those options. (Read about this topic in the upcoming section
“Creating Custom Combo Boxes.”) When your code needs more than a simple
answer to a single question, use a dialog box rather than a message box.

|
Figure 9-2:
Structure

of the
Settings
Table
table.
|

Chapter 9: Creating Your Own Dialog Boxes ’ 83

A dialog box (often called a dialog, for short) in an Access database is basi-
cally the same thing as a dialog box in Windows or any other program. It’s a
group of options from which the user can make choices. For example, if you
right-click the Windows Start button and choose Properties, the Windows
Taskbar and Start Menu Properties dialog box opens, giving you options for
customizing your Windows desktop.

Storing dialog box settings

Although creating a dialog box is easy, you need to first think about how you
want to deal with the settings that the user chooses. If you want your dialog
box to remember settings from one session to the next, you need to store
those settings in some sort of table. Otherwise, Access forgets all the user’s
settings each time the user closes the database.

The table that you create for storing dialog box settings needs only one
record, with a field to store each dialog box setting that needs to be remem-
bered. In this chapter, we show you how to create a fancy dialog box for the
SkipLabels procedure you create in Chapter 8. We show you how to make
the procedure remember which report the user last used for printing labels
and how many labels the user skipped on each run. This makes it a little
easier for the user to reuse settings in the dialog box.

For this example, create a tiny table that stores the name of the report as
Text and the number of labels last skipped as Number. Figure 9-2 shows the
structure of the table that we use here. You don’t need to define a primary
key in this table because the table never contains any more than one record.
We named the table SettingsTable.

= SettingsTable - ox
Field Narme Data Type Description =
ReportName Text settingstable for skipLabel dialog box. =
LabelsToSkip Nurmber Nurmber of labelsto skip
L
Field Properties
General | ookup!
Field Size Byte
Format
Decimal Places Auto
Input Mask
Caption
Default Value 0 A field name can be up to 64 charackers long,
“alidation Rule induding spaces. Press F1for help on field
“Walidation Text (ELEE:
Required Mo
Indexed Mo
Smart Tags
Text Align General

184 Partiv: Applying VBA in the Real World

|
Figure 9-3:
One table
record
stores

dialog box
settings.
|

After you close and save the table, you need to open that table and type in the
value of at least one field. That’s because when you bind a dialog box to that
table later, it works only if the table already contains one record. For example,
Figure 9-3 shows one record that we typed into the SettingsTable table.
The blank record beneath the filled record isn’t an actual record in the table.
That empty record appears only as a placeholder for any new record that you
want to add to the table in Datasheet view.

A SettingsTable - o x
Reporthame - LabelsToskip -
Avery 8462 Labels 10
#*

Record: 14 lofl LI g S¢

You can see an example of using the SettingsTable values in a dialog box a
little later in this chapter. For now, in the next section, you master how to
create a dialog box in the first place.

Setting form properties

Creating a dialog box in Access is similar to creating any other form. You
don’t even need any VBA code to create the box. Rather, you just create a
form and set its form properties so that the form looks and acts like a dialog
box. Here’s how:

1. Click the Create tab, and then click the Form Design command in the
Forms group.
This step creates a new, blank form in Design view.

2. If the property sheet isn’t visible, click the (Form Design Tools) Design
tab and click Property Sheet in the Tools group, or press F4.

3. In the property sheet, make sure that Form is selected in the Selection
Type drop-down list, and then click the All tab (see Figure 9-4).

4. Set the properties as indicated in Table 9-3.

5. Save the form by clicking the Save button on the Quick Access
toolbar.

|
Figure 9-4:
Setting form
properties
fora

dialog box.
|

Property Sheet
Selection type: Form

Farm

Record Source

Display on SharePaint Site
Defaut view

1) Allow Form View

= Allow Datashest View

1] Allow PivotTable View
Allow PivatChart View

i1 Allow Layout View
31 Picture

311 Ficture Tiling
Ficture Alignment
Ficture Type
Ficture Size Mode
width

Auto Center

Auto Resize

4 I

Fit.to Screen
Border Style
Record Selectors
Navigation Buttons

Format| Data | Event | Other

Chapter 9: Creating Your Own Dialog Boxes

v
Al
SettingsTable

No

no

Fallow Table Setting
Single Form
Yes

[

No

no

Yes

(hone]

No

Center
Embedded
Ciip
5.2043"
Yes

Yes

Yes

Dizlag

Mo

Mo

185

Table 9-3 Properties to Make a Form into a Dialog Box

Property Setting Reason

Record Source SettingsTable This is the table the form is
bound to.

Default View Single Form Make it look like a dialog box.

Allow Form View Yes Make it look like a dialog box.

Allow Datasheet View No Dialog boxes have no such
view.

Allow PivotTable View No Dialog boxes have no such
view.

Allow PivotChart View No Dialog boxes have no such
view.

Allow Layout View No User doesnt need to see this
view.

Allow Edits Yes User needs to change data on
the form.

Allow Deletions No Underlying table (if any) must
contain only one record.

Allow Additions No Underlying table (if any) must

contain only one record.

(continued)

186 Partiv: Applying VBA in the Real World

Table 9-3 (continued)

Property Setting Reason

Allow Filters No Underlying table (if any) has only
one record.

Data Entry No Underlying table (if any) must
contain only one record.

Scroll Bars Neither Dialog boxes don't have scroll
bars.

Record Selectors No Dialog boxes don't have record
selectors.

Navigation Buttons No Dialog boxes don't have naviga-
tion buttons.

Dividing Lines No Dialog boxes don't need them.

Pop Up Yes Keep dialog box on top of other
open windows.

Modal Yes Disable other open windows until
user responds to dialog box.

Border Style Dialog Make it look like a dialog box
border.

Control Box Yes Need to make Close button
visible.

Min Max Buttons None Dialog box can’t be minimized or
maximized.

Close Button Yes Dialog boxes have a Close button,

which acts like a Cancel button.

Cycle Current Record Only one record is in underlying
settings table.

To color your dialog box, click the Detail section in Design view, click its
Back Color property, and choose a color. For example, for a slightly off-
white color, set the Back Color property of the Detail section to 16316664.

|
Figure 9-5:
Controls

on a form
(dialog box).
|

Chapter 9: Creating Your Own Dialog Boxes ’8 7

Adding controls to the dialog box

The form properties that you change to control the appearance and behavior
of a form don’t affect how you add controls to the form. You can still use all
the standard techniques that you use in Access to create a form for scrolling
through records. For example, to add a bound control to the form, click a
control type in the Controls group on the (Form Design Tools) Design tab.
Then drag the underlying field’s name from the Field List to the form. To add
an unbound control to the form, click a control type in the Toolbox and then
click the form’s Design grid.

If the Control Wizard opens after you drop a control on the form, you can
step through the wizard as you normally would. If you're planning to attach
custom code to the control later and don’t want the wizard to create the con-
trol, just click the wizard’s Cancel button. Then you can assign a name, a cap-
tion, and some events to the control by using the control’s property sheet.

For example, the top half of Figure 9-5 shows in Design view a sample dialog
box with four main controls: ReportName, LabelsToSkip, CancelBttn,
and PrintBttn. In that example, the controls ReportName and
LabelsToSkip are bound to fields in the SettingsTable described earlier
in this section. Thus, the dialog box remembers the settings in those controls
from one session to the next. The lower half of Figure 9-5 shows the same
form open in Form view.

Z§| Unfancy SkipLabels Dialog Box - = x

o toofooof oo o(Qoo0o0®o oo o0 000000 o0foo0o0 0o oo

E SkipLakels x

Print which label report? Avery 8462 Labels

5kip howr many labels? 10

Cancel }E Print

] 88 rartiv: Applying VBA in the Real World

In the sample form shown in Figure 9-5, the CancelBttn and PrintBttn
controls aren’t bound to any table field. Instead, each just has some custom
code tied to its On Click event. For example, the On Click event proce-
dure for CancelBttn is DoCmd.Close acForm, Me.Name, acSaveNo,
which closes the form without saving any changes or printing.

The On Click event procedure for PrintBttn can execute any VBA code or
macro. For instance, to call the Skipl.abels procedure described in Chapter 8,
have that procedure execute the statement

Call SkipLabels ([ReportName] .Value, [LabelsToSkip] .Value)

Doing so prints whatever report name appears in the ReportName control,
skipping the number of labels specified in the LabelsToSkip control. The
procedure also closes the dialog box. The following code shows the On
Click event procedure for both controls in the class module for the sample
form:

Private Sub CancelBttn_Click()

'Close the SkipLabels form without doing anything.
DoCmd.Close acForm, Me.Name, acSaveNo

End Sub
Private Sub PrintBttn_Click()

'Print the specified labels, skipping specified blanks.
Call SkipLabels ([ReportName].Value, [LabelsToSkip].Value)

'Then close the SkipLabels form.
DoCmd.Close acForm, Me.Name, acSaveNo

End Sub

We help you create a much fancier SkipLabels dialog box in the sections
that follow. For now, you should be able to see how it works. The controls
named ReportName and LabelsToSkip on the form serve as data to pass to
the SkipLabels () Sub procedure. Clicking the Print button on the form
calls the skipLabels routine using the syntax

Call SkipLabels ([ReportName] .Value, [LabelsToSkip] .Value)
When SkipLabels runs, it prints whatever report name appears in the

ReportName control on the form and also skips however many labels are
specified in the LabelsToSkip control on the form.

Chapter 9: Creating Your Own Dialog Boxes ’ 89

Creating Custom Combo Boxes

|
Figure 9-6:
Sample
reports in

an Access
database.
|

A combo box in Access is a control that acts as both a text box and a drop-
down list of options. As you probably know, you can create two types of
combo boxes in Access: those that get their values from a table or query and
those that get their values from a simple value list that you type manually.

Suppose you have a database that contains a number of reports, as in the
example shown in Figure 9-6. Ideally, you'd like to create a SkipLabels
dialog box that provides a drop-down list of report names that the user can
print labels on.

All Access Objects
Tables
Forms

Ll
ES

K|

Reports

Awery 5197 Labels
Awery G462 Labels
Awery G463 Labels

Awery Mame Tag Labels
Customer Directory
Inwoices and Receipts Rpt
LabelsTempReport

Sales Tax Due Rpt

il EE

“wendor Directory

Modules ¥

One way to do this is to add a ComboBox control to your SkipLabels form
and simply type into the control’s Value List the names of reports on which
the user can print labels. For example, you might already have a TextBox
control named ReportName on a form, and you want to change the text box
to a combo box. Open the form in Design view, right-click the ReportName
control, and choose Change To>Combo Box. The ReportName text box
becomes a combo box (still named ReportName).

On the Data tab of the control’s property sheet, set the Row Source Type to
Value List and then set the Row Source property to the names of reports that
you want to see in the drop-down list. Note: You need to spell each report
name exactly as it’s spelled in the database. Enclose each report name in
quotation marks and also separate names with semicolons. To ensure that
the user can choose only a report name from the list, set the Limit to List
property to Yes.

190 Part1v: Applying VBA in the Real World

|
Figure 9-7:
The
Report
Name
control as a
combo box.
|

Figure 9-7 shows an example where we converted the TextBox control
named ReportName to a ComboBox control. On the Data tab of that control’s
property sheet, we set the Row Source Type to Value List and the Row Source
to the list of report names, as shown here:

"Avery 5197 Labels";"Avery 8462 Labels";"Avery 8463 Labels";
"Avery Name Tag Labels"

The lower-right section of Figure 9-7 shows the same combo box open in
Form view. The drop-down list shows the report names in the value List
property of the control.

The drop-down list in the example shown in Figure 9-7 is static: It never
changes. If you add, delete, or rename reports, those changes aren’t automat-
ically reflected in the drop-down list. To get the drop-down list to work cor-
rectly, open the form in Design view and manually change the value List
property to reflect current report names.

Selected control in Design view

E Fancy SkipLabels Dialog Box - x

...... H B Cancel

Bl Property Sheet - x
([selection type: Combo Box
Reporthame ~|
Format| Data | Event | Gther | &l
Control source Repartiiame [~
Row Source “tvery 5197 Labels"s Bwery 8462 Labels” "Avery 8463 Labels"; Avery Mame Tag Labels” (=
R Source Type Value List
Bound Column 1
Limit To List Yer
Allow alue List Edits Yes
List Ttems Edit Form — =
Inherit Walue List =] skipLabels
Printvrhich label report? |MUS4ER PR BT v

A 5197 Label
Skip how many labels?

Avery 8462 Labels
Avery 8463 Labels
Avery Name Tag Labels

Drop-down list properties Drop-down list in
Form view

An easier approach is to make the drop-down list dynamic so that each time
the form opens, VBA can build an accurate, up-to-date list of valid report
names for the combo box. That way, the drop-down list always works, even if
you add, change, or delete reports or drop the whole chunk of code into an
entirely separate database.

Chapter 9: Creating Your Own Dialog Boxes ’ 9 1

The CurrentProject.AllReports collection in VBA contains the names of
all reports in the current database. If you want the drop-down list to show the
names of all reports each time the form opens, you need some sort of code
that builds the combo box’s Value List from those report names. You also
need to attach that code to the form’s On Load event, which is triggered each
time the form opens and displays any data from its underlying table or query.

In this example, assume that the form is named and the control for which you
want to build the Value List is named ReportName. The first step is to open
Fancy SkipLabels Form in Design view and get to its property sheet.
Choose Form from the property sheet’s drop-down list so that you're setting
properties for the form as a whole. Then click the Event tab, click the on
Load event, click the Build button, click Code Builder, and then click OK.

The VBA Editor opens with the cursor inside an event procedure named
Form_Load (), like this:

Private Sub Form_Load()

End Sub

Any code that you place inside that procedure executes each time the form
opens. In this case, you want that code to loop through the A11Reports col-
lection, building a string of report names separated by semicolons that you
can use as the ValuelList for the ReportName drop-down list. The following
code creates that semicolon-delimited list of report names from all reports in
the current database:

Private Sub Form Load()
'ValueList variable will store a string that can
'be used as the Value List property for a combo box.
Dim ValueList As String
ValueList = ""

'Loop through all report names.
For Each AccessObject In CurrentProject.AllReports
'Add current report name and semicolon to ValueList variable.
ValueList = ValueList & Chr(34) & AccessObject.Name & Chr(34) & ";"
Next

'Now make ValueList the Value List for the ReportName combo box.
Debug.Print ValueList
ReportName.RowSource = ValueList
ReportName.Requery
End Sub

Take a moment to see how this example works. The For Each. . .Next loop
loops through each report in the database’s Reports collection. For each
report, the code adds a quotation mark (specified as Chr (34) in the code),
the report name, another quotation mark, and a semicolon.

192 Part1v: Applying VBA in the Real World

\\3

Every character on your keyboard has an ASCII number assigned to it. For
example, a double quotation mark is character number 34. A single quotation
mark is character number 39. Using Chr (34) in code tells VBA to insert a
double quotation mark in place of Chr (34).

With each pass through the loop, the variable named valueList gets
another report name enclosed in quotation marks, followed by a semicolon.
As written, the loop just adds every report name to the ValuelList variable.
So, referring back to the report names shown in Figure 9-6, by the time the
loop has looked at every report name in the database, the Valuelist vari-
able contains this:

"Avery 8463 Labels";"Avery 8462 Labels"; "Avery 5197
Labels"; "Customer Directory"; "Avery Name Tag
Labels"; "Vendor Directory"; "Invoices and
Receipts Rpt";"Sales Tax Due
Rpt"; "LabelsTempReport";

The next lines change the ReportName control’s RowSource property to the
value of the ValueList variable:

ReportName.RowSource = ValueList
ReportName.Requery

The ReportName . Requery statement just makes sure that the form is aware
of the change so that the combo box always shows the correct names. By the
time the procedure has run, in this example, the ReportName combo box
drop-down list would contain these options:

1 Avery 8463 Labels

v Avery 8462 Labels

v Avery 5197 Labels

v Customer Directory

v Avery Name Tag Labels

v Vendor Directory

v Invoices and Receipts Rpt

v Sales Tax Due Rpt

1 LabelsTempReport
There are a couple of little problems here. For one, not all these reports print
mailing labels, so not all the report names are appropriate for the SkipLabels

procedure. Also, LabelsTempReport isn’t really a valid report name: It’s just a
temporary report name created by the SkipLabels procedure.

Chapter 9: Creating Your Own Dialog Boxes ’ 93

If you want to exclude LabelsTempReport from the drop-down list, you
need to modify the code so that the name isn’t added to the valuelList
variable. The necessary lines to be added are shown here in boldface:

Dim ValueList As String
ValueList = ""
'Loop through all report names.
For Each AccessObject In CurrentProject.AllReports
'Don't add LabelsTempReport to drop-down menu.
If Not AccessObject.Name = "LabelsTempReport" Then
'Add current report name and semicolon to ValueList variable.
ValueList = ValueList & Chr(34) & AccessObject.Name & Chr(34) & ";"
End If
Next

'Now make ValueList the Value List for the ReportName combo box.
ReportName.RowSource = ValueList
ReportName.Requery

By the time all the preceding code is executed, the ValueList property
for the ReportName control contains all report names except
LabelsTempReport, which got skipped over by the statement

If Not AccessObject.Name = "LabelsTempReport" Then

You can narrow the list of report names to just those reports that can print
labels, but you need some means of being able to tell those reports apart from
other ones. Suppose that we make this rule: Any report in this database that
prints labels must have the word labels in its name. If we make that rule and
stick to it, we can rewrite the preceding code so that only reports with the
word labels in the name are added to ValuelList, as shown in boldface here:

'ValueList variable will store a string that can

'be used as the Value List property for a combo box.
Dim ValueList As String

ValueList = ""

'Loop through all report names.
For Each AccessObject In CurrentProject.AllReports
'Don't add LabelsTempReport to the Value List.
If Not AccessObject.Name = "LabelsTempReport" Then
'Only add report names that contain the word "labels".
If InStr(AccessObject.Name, "Labels") > 1 Then
'Add current report name and semicolon to ValueList variable.
ValueList = ValueList & Chr(34) & _
AccessObject.Name & Chr(34) & ";"
End If
End If
Next

194 Partiv: Applying VBA in the Real World

'Now make ValueList the Value List for the ReportName combo box.
ReportName.RowSource = ValueList
ReportName.Requery

Excluding LabelsTempReport and any other reports that don’t have the
word labels in their names creates the following string in the Valuel.ist
variable and ultimately in the Valuel.ist property of the ReportName
combo box. Hence, the ValueList string ends up containing

"Avery 8463 Labels";"Avery 8462 Labels";"Avery 5197 Labels";

i

"Avery Name Tag Labels";

which means that the drop-down list for the ReportName combo box ends
up containing these options:

v Avery 8463 Labels

v Avery 8462 Labels

v Avery 5197 Labels

v Avery Name Tag Labels

Listing 9-1 shows the complete procedure with the ability to build the list of
report names from only those reports that have the word labels in their
name, excluding the report named LabelsTempTable.

Listing 9-1: Building a List of Report Names

Private Sub Form_Load()
'ValueList variable will store a string that can
'be used as the Value List property for a combo box
Dim ValueList As String
ValueList = ""

'Loop through all report names.
For Each AccessObject In CurrentProject.AllReports
'Don't add LabelsTempReport to the ValueList.
If Not AccessObject.Name = "LabelsTempReport" Then
'Only add report names that contain the word "labels".
If InStr(AccessObject.Name, "Labels") > 1 Then
'Add current report name and semicolon to ValueList variable.
ValueList = ValueList & Chr(34) & _
Access Object.Name & Chr(34) & ";"
End If
End If
Next

'Now make ValueList the Value List for the ReportName combo box.
ReportName.RowSource = ValueList
ReportName.Requery

End Sub

MBER
\g&
&

Chapter 9: Creating Your Own Dialog Boxes ’ 95

The main point to glean from this example, though, is that the drop-down list
for a combo box need not be set in concrete. With VBA, you can customize
the drop-down list as needed by changing the control’s . RowSource prop-
erty. In this example, the code to build the ReportName drop-down list is
executed each time Fancy SkipLabels Form opens. Hence, if any reports
have been added, renamed, or deleted since the last time the form opened,
the drop-down list still accurately reflects the names of all reports in the cur-
rent database that contain the word labels.

If you import Fancy SkipLabels Form into an existing database, the drop-
down list automatically displays all report names that contain the word labels
(excluding LabelsTempReport) in that database. Of course, if that other
database didn’t follow the rule of including the word labels in all label reports,
the procedure as it stands wouldn’t work. you would need to either rename
reports in that database to follow the rule (which could be disastrous for any
existing macro or code that refers to existing report names) or make copies of
all existing label reports and rename the copies to include the word labels.

If you already have some other means of uniquely identifying label reports in
your database, you can change the rule in the code accordingly. For example,
if all the label reports contain the word Avery, you can change the inner
If...End If blockto exclude report names that don’t contain the word
Avery, as shown here:

'Only add report names that contain the name "Avery".

If InStr (AccessObject.Name, "Avery") > 1 Then
'Add report name and semicolon to ValueList variable.
ValueList = ValueList & Chr(34) & _
AccessObject.Name & Chr(34) & ";"

End If

The Form_Load () procedure executes as soon as you open the form. To
fully test the form after creating or changing the Form_OnLoad () event pro-
cedure, close and save the form first. Then open it in Form view from the
Navigation pane.

Creating a Spin Box Control

Many Windows dialog boxes offer a spin box control, which lets you change a
number without typing. Oddly enough, there’s no spin box control in the
Controls group to let you create such a control on your Access forms. If you
want to add a spin box control to an Access form, you have to fudge it.
Writing the code for the spin buttons is easy; creating the little buttons is the
real challenge.

’ 96 Part IV: Applying VBA in the Real World

|
Figure 9-8:
Spin button
images in

a program
(top) and on
aform
(bottom).
|

We've used numerous techniques to create the spin buttons. We’ve imported
ActiveX controls, used command buttons with special characters, like up or
down arrows, and even used transparent-background GIFs to put a tiny arrow
on each command button. Because the spin buttons are so tiny, though, get-
ting the command button to look right is difficult.

We finally just gave in and drew each button as a tiny graphical image. (It
really doesn’t matter whether you use a command button or a picture for the
spin button because buttons and pictures both have On C1ick event proper-
ties to which you can tie code.) Figure 9-8 shows buttons that we drew for
this example magnified 800 percent in Paint. The lower half of that figure
shows the buttons in place on a form. To get the button images onto the
form, we just used the Image control in the Controls group on the (Form
Design Tools) Design tab.

1 SpinUp.gif - Paint PEx)| T aif - Paint

dit View Image Colors Help

%SkipLabels
= mrpeegenre
Print which label report? ‘Avervs]s? Labels [v]
For Help, click Help Ti the Helj
or Help, click Help Topics on the Help Skip how many labels? @7
Spin buttons

Regardless of whether you use command buttons or pictures to get spin but-
tons onto a form, getting them to work is the same. You can name each
button or image as you would any other control (via the Name property on
the All tab of the property sheet). We named our two image controls
SpinUpBttn and SpinDownBttn.

After you have the controls on the form in Design view, click the Spin Up image
control, click Events in the property sheet, click the on Click event property,
click the Code button, and then choose Code Builder. The VBA Editor opens
with the cursor already in a procedure named SpinUpBttn_Click() (assum-
ing that you named your Spin Up button SpinUpBttn). In our example, we
want each click of the Spin Up button to increase the value in the
LabelsToSkip control by 1.

Chapter 9: Creating Your Own Dialog Boxes ’ 9 7

Usean If...Then...End If statement to put an upper limit on how high
the value can go. We chose 80 as an upper limit (because we doubt that many
label sheets offer more than 80 labels per page), but you can set your upper
limit to any value you want. The following code increases the value in the
LabelsToSkip control each time a user clicks the form’s SpinUpBttn
control:

Private Sub SpinUpBttn_Click()
'Increase LabelsToSkip by 1 to a maximum of 80.
If Me!LabelsToSkip.Value < 80 Then
Me!LabelsToSkip.value = Me.LabelsToSkip.Value + 1
End If
End Sub

After writing the code for the SpinUpBttn and returning to your form in
Design view, click the SpinDownBttn control on your form. Again, get to that
control’s On Click event property in the property sheet and write a routine
like the one that follows. In that example, we put a lower limit of 0 (zero) on
the value in the LabelsToSkip control:

Private Sub SpinDownBttn_Click()
'Decrease LabelsToSkip by 1 to a minimum of 0.
If Me!LabelsToSkip.Value > 0 Then
Me!LabelsToSkip.value = Me.LabelsToSkip.Value - 1
End If
End Sub

The following code shows both procedures in place in the class module for
our Fancy SkipLabels dialog box example. Again, the biggest trick to get-
ting spin buttons on a form is getting buttons that are small enough to fit next
to the control. After you have a command button or picture in place, you can
program its On Click event procedure to increase or decrease the value in a
numeric field by 1 with each click.

Private Sub SpinDownBttn_Click()
'Decrease LabelsToSkip by 1 to a minimum of 0.
'If Me!LabelsToSkip.Value > 0 Then
Me!LabelsToSkip.Value = Me.LabelsToSkipValue - 1
End If
End Sub

Private Sub SpinUpBttn_ Click()
'Increase LabelsToSkip by 1 to a maximum of 80.
If Me!LabelsToSkip.Value < 80 Then
Me!LabelsToSkip.Value = Me.LabelsToSkip.Value + 1
End If
End Sub

] 98 Part1v: Applying VBA in the Real World

Detecting a Right-Click

You might have noticed that just about every control has an On Click event
to which you can tie code. The On Click event occurs only when the user
points to the item and then presses and releases the left mouse button.
There’s no On Right-Click event that you can use to detect whether the
user right-clicks an item.

If you want to write different code for different types of clicks, you have to
use the On MouseDown event. When you click an object’s On MouseDown
event in the property sheet and choose the Code Builder, the procedure
that’s created looks something like this (where objectName is the name of
the object to which you're tying the code):

Private Sub objectName MouseDown _
(Button As Integer, Shift As Integer,
X As Single, Y As Single)

End Sub

The arguments that get passed automatically to the procedure are listed as
follows:

v Button: Returns a number or constant indicating which mouse button
the user pressed.
¢ Left mouse button: Button argument contains acLeftButton.

e Middle mouse button (or mouse wheel): Button contains
acMiddleButton.

¢ Right mouse button: Button contains acRightButton.

v Shirft: Returns a constant indicating whether the user held down the
Shift, Alt, or Ctrl key while pressing the mouse button. Possible values
for Shift include

¢ acshiftMask: The Shift key was held down.
¢ acCtrlMask: The Ctrl key was held down.
® acAltMask: The Alt key was held down.

v X: Returns a number indicating the horizontal position of the mouse
pointer.

v v: Returns a number indicating the vertical position of the mouse
pointer.

Chapter 9: Creating Your Own Dialog Boxes ’ 99

In your procedure, you can use If...Then...End If statements to write
different code for different mouse activities. For example, Listing 9-2 shows
the basic skeletal structure that responds differently to a left, middle, or right
mouse click.

Listing 9-2: Skeletal Structure of Code to Distinguish
between Left and Right Mouse Clicks

Private Sub ObjectName MouseDown (Button As Integer,
Shift As Integer, X As Single, Y As Single)

'Code for left mouse button.
If Button = acLeftButton Then
'Code to execute for left button goes here.
MsgBox "You pressed the Left mouse button"
End If

'Code for right mouse button.
If Button = acRightButton Then
'Code to execute for left button goes here.
MsgBox "You pressed the Right mouse button"
End If

'Code for middle mouse button.
If Button = acMiddleButton Then
'Code to execute for middle button goes here.
MsgBox "You pressed the Middle mouse button"
End If

End Sub

As it stands, the sample procedure just provides a little message on-screen
indicating which mouse button you pressed. In your actual code, you replace
the MsgBox statements with the VBA code that you want to execute after the
left, middle, or right mouse click.

In the next chapter, we dig deeper into the whole topic of creating custom
drop-down lists by using VBA code. The techniques that you can see there
apply to any form that you create, whether that form is a dialog box or just a
regular Access form for scrolling through table records.

200 Partiv: Applying VBA in the Real World

Chapter 10

Customizing Combo Boxes
and List Boxes

In This Chapter

Programming combo boxes and list boxes
Linking lists

Updating one form’s control from another form
Discovering cool combo box tricks

rlping information into forms takes time, and typing always means the
possibility of making typographical errors. Whenever you can eliminate
typing by giving the user something to click, you’re making your data entry
quicker and more accurate.

Combo boxes and list boxes are both good tools for giving the user options
to choose from when typing would otherwise be necessary. A combo box is
basically a text box with a drop-down arrow on the right, as in the left side of
Figure 10-1. The options available to the user — also shown on the left side
of Figure 10-1 — aren’t visible until she clicks the drop-down arrow. The user
can either type in the text box or choose an option from the drop-down list.

The right side of Figure 10-1 shows an example of a list box. Like a combo
box, the list box shows a list of options, but it has no hidden drop-down list:
The list (or at least some portion of it) is plainly visible. Also, with a list box,
there’s no place to type text. The user has to choose an option from the list
by clicking it. The selected option is highlighted in the control.

Because both combo and list boxes display a list of values on-screen, they
have many similar properties. For example, every combo box and list box has
aRow Source property that defines where the list of options comes from.
When you use the Control Wizards to create a combo or list box, the wizard
sets the Row Source property according to how you answer its questions.

In forms Design view, you can set the Row Source property via the property
sheet. From VBA, you can change the Row Source property by using the
.RowSource keyword.

202 Partiv: Applying VBA in the Real World

|
Figure 10-1:
Sample
combo
boxes and a
list box.
|

Programming Combo and List Boxes

When working with combo and list boxes through VBA, you often want to
start with just a simple unbound control (one that’s not attached to any field in
the form’s underlying table or query) and then let VBA control the properties.

|
Figure 10-2:
List box and
combo box
buttons in
the Controls
group.
|

\\3

Combo box

E CorhhoAndListBoxes
»

First ltem

Third Item
Fourth Iterm
Fifth Item
Sixth Itern
Seventh ltem
Eighth Item
1oL

Record: [I¥

4l

Firstiier
Second Iterm

Third Itern

Fourth Item

Fifth Item

Sixth Item

Seventh ltern

Eighth Item -

Search ‘

Combo box with drop-down list visible List box

To add an unbound ComboBox or a ListBox control to a form, first make
sure that the form is open in Design view. Then click the (Form Design Tools)
Design tab to see the Controls group (see Figure 10-2). To prevent the Control
Wizards from helping you create the control, click the Use Control Wizards
command so that it’s no longer highlighted. Then follow these steps:

Combo box

_’J 5] Title

] Page Mumbers
Loga
5 Date and Tirme

Bb] Ag = B NC1Z @2

Text Label Button)
Box

[Du’gr 0|5

HEOFMOES

Controls

1. Click the (Form Design Tools) Design tab on the Ribbon, and then
in the Controls group, click either the Combo Box or List Box tool,
depending on which one you want to create.

If it’s hard to tell one button from the other in the Controls group, just
hover the mouse pointer over any button in the Controls group to see

List box

its name appear in a ScreenTip.

‘,\y Select
‘:}_\ Use Cantral Wizards

Chapter 10: Customizing Combo Boxes and List Boxes 203

\\3

2. In the form, click where you want the left edge of the control to
appear.

3. If the wizard appears and you don’t want to use it, click the Cancel
button in the wizard.

After the combo box or list box is on your form, you can view its properties
in the property sheet. As always, if the property sheet isn’t already open, you
can press F4 or right-click the control and choose Properties.

Like all controls, combo boxes and list boxes have lots of properties. The ones
that you’re most likely to refer to from VBA are summarized in the following
list. The first name (in bold) is the property name as it appears in the property
sheet; the following name in parentheses is the name of the property as written
in VBA:

v+ Name (.Name): Defines the name of the control.

1 Row Source Type (.RowSourceType): Specifies where the list gets its
data: from records in a Table/Query, from a simple Value List typed into
the Row Source property, or from a Field List of field names from a
table or query.

1 Row Source (.RowSource): Depending on the Row Source Type, this
can be a SQL statement that gets data from a table or query, a typed list
of options, or the name of a table or query.

v Default Value (.DefaultValue): The item that’s automatically selected
when you’re adding a new record.

v List Rows (. ListRows): (Combo box only) The number of items to
shown in the drop-down list.

v List Width (. Listwidth): (Combo box only) The width of the drop-down
list. If it’s set to Auto, the drop-down list width is equal in width to the
ComboBox control.

v Limit To List (.LimitToList): (Combo box only) If Yes, the user’s
entry in the combo box must match an item in its drop-down list.
Otherwise, whatever the user typed is rejected as an invalid entry.

v Value (.Value): (VBA only) The value contained within the control.

To name a control on a form, first click the control to select it. Then click the
All tab in the property sheet. Set the Name property at the top of the All tab
to whatever you want to name your control.

In addition to the properties from the property sheet, VBA has an
ItemData (x) property (where xis a number) that lets you refer to each
item in the list by its position in the list. The first item is always zero (0), so
the first item in the list can be referred to as ITtemData (0), the next item as
ItemData (1), and then ItemData (2) down to the end of the list.

20/ PartIv: Applying VBA in the Real World

|
Figure 10-3:
Row Source
properties
for a Field
List combo
box.
|

Alist box doesn’t have a List Rows or List Width property because
there’s no drop-down list in a list box. The width and height of the ListBox
control, as a whole, determine the width and length of the list. There’s no
Limit To List property for a list box because there’s no optional text
box in which the user could type a value. With a list box, the user is always
required to choose an option in the list.

Combo boxes and list boxes are both examples of list controls (in that they
show some sort of list to the user). After the preceding quick peek at some
commonly used properties of those controls, read on to take a look at how
you work those puppies.

In the form’s Design view, you can easily change a text box to a combo box or
to alist box or whatever. Just right-click the control that you want to change
and then choose Change To>xx (the type of control you want).

Listing field names

If you want a list box or combo box to list the names of fields in a table or
query, set the control’s Row Source Type property to Field List and set
its Row Source property to the name of the table or query that contains the
fields whose names you want to list.

For example, Figure 10-3 shows a ComboBox control named F1dNamesCombo
on a form. As you can see in the property sheet, its Row Source Type is set
to Field List, and its Row Source is set to Customers. The names in the
control’s drop-down list (CustID, FirstName, LastName, and so forth) are field
names from a table named Customers.

E Forml x

EZ Query
Search which Fiald?

Property Sheet v X
Selection type: Combo Box

FldMamesComba e

Format| Data | Ewent | Other | Al

Contral Source ™
Row Source Customers A
Row Source Type Field List

Bound Column 1

Limit To List es

Allow alue List Edits Ma

List Ttems Edit Farm

Inherit alue List Mo

Record: M 1ofl M Show Only Row Source Yalue Mo

Input Mask

Default value
Walidation Rule [

Chapter 10: Customizing Combo Boxes and List Boxes 205

MWNG/
&

From a VBA standpoint, if you want the F1dNamesCombo control to show
field names from a different table or query in response to some event, change
the control’s . RowSource property to the name of the table or query from
which you want the control to get field names. For example, this statement
sets the Row Source property of the control named F1dNamesCombo to a
table named Products (so the control shows field names from the
Products table):

Me ! FldNamesCombo . RowSource = "Products"

The Me'! in these examples refers to the form to which the control is attached
and works only from a class module. From a standard module, Me ! would
have to be replaced with the full identifier for the open form — for example:

Forms! [EzQueryFrm] ! [FldNamesCombo] . RowSource = "Products"
if the control is on an open form named EZQueryFrm.

In your code, you can take extra steps to make sure that the control’s Row
Source Type is set correctly to Field List before putting in the new table
name. After the field receives its new list, you can use the statement

Me!FldNamesCombo.Value = Me!FldNamesCombo.ItemData (0)

to set the selected option in a combo box to the first item in the drop-down
list. Here’s all the code together to change the drop-down list:

'Make sure the control's Row Source Type is Field List.
Me ! FldNamesCombo . RowSourceType = "Field List"

'Change the Row Source table to Products table.
Me!FldNamesCombo .RowSource = "Products"

'Set combo box value to first item in drop-down list.
Me!FldNamesCombo.Value = Me!FldNamesCombo.ItemData (0)

Using the keyword Me'! in the preceding examples assumes that the code is
in the class module for whatever form the F1dNamesCombo control is on. To
change the F1dNamesCombo properties from a standard module or another
form’s class module, include the complete identifier for the open form. For
example, if the F1dNamesCombo control is on a form named EZQueryFrm,
the complete identifier for the form is Forms! [EzQueryFrm] ! rather than
Me'!. The complete identifier to the F1dNamesCombo control is

Forms! [EzQueryFrm] ! [FldNamesCombo].

200 PartIv: Applying VBA in the Real World

In code, you can spell out the complete identifier in each line of code, like this:

'Make sure the control's Row Source Type is Field List.
Forms! [EzQueryFrm] ! [FldNamesCombo] .RowSourceType = "Field List"

'Change the Row Source table to Products table.
Forms! [EzQueryFrm] ! [FldNamesCombo] .RowSource = "Products"

'Set combo box value to first item in drop-down list.
Forms! [EzQueryFrm] ! [FldNamesCombo] .Value _
= Forms! [EzQueryFrm] ! [FldNamesCombo] .ItemData (0)

To avoid typing Forms ! [EzQueryFrm] ! [FldNamesCombo] repeatedly in
your code, define a Control object variable that refers to the control
through a shorter name:

'Make short name MyControl refer to

'Forms ! [EZQueryFrm] ! [F1ldNamesCombo]

Dim MyControl As Control

Set MyControl = Forms! [EZQueryFrm] ! [FldNamesCombo]

'Make sure the control's Row Source Type is Field List.
MyControl .RowSourceType = "Field List"

'Change the Row Source table to Products table.
MyControl.RowSource = " Products"

'Set combo box value to first item in drop-down list.
MyControl.Value = MyControl.ItemData (0)

For example, the first line of the preceding code (Dim MyControl As
Control) defines a new, empty Control object variable named MyControl.
The second line

Set MyControl = Forms! [EzQueryFrm] ! [FldNamesCombo]

makes the short name MyControl refer specifically to the control named
FldNamesCombo on the form named EZQueryFrm. The last two lines are the
same as the last two lines in this example except that they use the shorter
name MyControl to refer to Forms! [EzQueryFrm] ! [F1dNamesCombo]
(which makes the code a little easier to read).

The main point here though is that if you have a combo box or list box on a
form, you can programmatically change the contents of the list (or drop-down
list) to show the field names from any table or query in the database. Now
turn your attention to the second type of list — one that gets its values from
a Value List.

Figure 10-4:
Row Source
properties
fora

Value List.
|

Chapter 10: Customizing Combo Boxes and List Boxes 20 7

Listing text options

A combo box or list box can get its values from a simple string called a Value
List. The string just contains each item in the list separated by semicolons. If the
items in the list are all text, you should enclose each item in quotation marks.

For example, Figure 10-4 shows a combo box (named OpsCombo) added to

a form. You can see the items in the open combo box: =, Like, <, >, and so
forth. You can also see the properties for the control. Notice that the Row
Source Type is Value List, and the Row Source is a bunch of little chunks of
text enclosed in quotation marks and separated by semicolons. On the form,
each little chunk of text is shown as an option on the control’s drop-down list.

== euenyfrm -
EZ Query
Property Sheat v X

Search which Fleld? Comparison | Seledtion bpe: Combo Box
v | OpsCombo d

Like Control Source ~
< Row Source Pk e e =

> Row Source Type Value List v
Bound Column 1

Limit To List Ves

Allow Value List Edits Na

List Items Edit Form

Inferit value List e

Show Gnly Row Source Valus No

Recard: M [1of1 " g ¢ Input Mask

Default Value -

validation Rule v

Format| Data | Event | Other | Al

AW
n

The Row Source for the OpsCombo control is
L L S L PSP P P e

which is why the drop-down list displays the various comparison operators.
You can programmatically change the contents of a Value List combo or list
by using the RowSource property. The new Row Source value must follow
the rules of syntax, though, with each item separated by a semicolon and
each string enclosed in quotation marks.

In code, you can represent a quotation mark as Chr (34) (the 34th ASCII
character). That’s generally easier than trying to add quotation marks by
enclosing them in single quotation marks, like ' " ', which doesn’t always
work and is difficult to read. For example, Listing 10-1 declares a string vari-
able named NewValList and then adds some text, quotation marks, and
semicolons to that string.

208 Partiv: Applying VBA in the Real World

Listing 10-1: Filling a Combo Box Value List Property

'Create a string variable named NewVallList
Dim NewValList As String

'Build NewValList string in chunks.

NewValList = Chr(34) & "First Item" & Chr(34) & ";"

NewValList = NewVallList & Chr(34) & "Second Item" & Chr(34) & ";"
NewValList = NewValList & Chr(34) & "Third Item" & Chr(34) & ";"
NewValList = NewValList & Chr(34) & "Fourth Item" & Chr(34)

'At this point, NewValList contains...

'""First Item";"Second Item";"Third Item";"Fourth Item"

'Make new string the Row Source for value list named OpsCombo
Me ! OpsCombo .RowSourceType = "Value List"

Me ! OpsCombo.RowSource = NewValList

'Set selection to first item in drop-down list.
Me.OpsCombo.Value = Me.OpsCombo.ItemData (0)

When you create a list box or combo box with its Row Source Type set to
Value List, you can leave the Row Source property empty. When the form
first opens, the list is also empty, which means that the user can’t select any-
thing. However, you can write some code that fills the list and then attach it
to the form’s On Load event. This allows you to create dynamic, flexible lists
that adapt themselves to the current database. We look at some examples in
the sections that follow.

Making a list of table and query names

Sometimes you might want a combo box or list box to display a list of all the
tables, or all the queries, or both. There isn’t a simple property setting that
lets you do that. You need to programmatically fill the list with names as
soon as the form opens. Whenever you want code to execute as soon as a
form opens, attach that code to the form’s On Load event.

For example, Figure 10-5 shows an empty control named Tb1QryCombo. Its
Row Source Type is set to Value List, but its Row Source property is empty.
So without any code, when the form opens, Tb1QryCombo displays nothing.

Suppose now that when the form opens, you want it to display a list of all
table names in the current database. You can write some code that loops
through the A11Tables collection and adds the name of each table to a
string. Then use that string as the Row Source for the control.

Note this catch, though. The A11Tables collection includes hidden system
tables that Access uses behind the scenes. Because the names of those
system tables normally don’t appear in the Navigation pane, you should
exclude them from the drop-down list as well.

Figure 10-5:
Sample
empty
combo box
named
TblQry
Combo.
|

Chapter 10: Customizing Combo Boxes and List Boxes 209

=& Form1 x

Choose a Table or Query
| W

Property Sheet v X
Selection type: Combo Box

TolQryCombo »

Format| Data | Event | Other | Al

Control Source fad
Row Source

Roww Source Type Walue List hd
Bound Calumn 1

Limit Ta List MNa

Allow value List Edits Mo

List Items Edit Farm

Inherit Walue List Mo

Show Only Row Source Walue Mo

Input Mask

Default ‘alue

Validation Rule 2

Luckily, all the system tables have names that start with the letters MSys.
To eliminate those table names from the drop-down list, you can use an
If...Else...End If block to skip over any name that starts with MSys.
The complete code to fill Tb1QryCombo with a list of table names as soon as
the form opens is shown in Listing 10-2. Each comment refers to the line or
lines that follow the comment.

Listing 10-2: Creating a Combo Box of Table Names

Private Sub Form_Load()
'Declare an empty string to store a value list.
Dim TblNames As String
TblNames = ""

'Loop through AllTables connection, add each table's name to TbhlNames
'variable, each enclosed in quotation marks and followed by a semicolon.
Dim tbl As AccessObject
For Each tbl In CurrentData.AllTables

'Exclude system tables, whose names all start with Msys.

If Not Left(tbl.Name, 4) = "Msys" Then
TblNames = TblNames & Chr(34) & tbl.Name & Chr(34) & ";"
End If
Next tbl

'ThlNames string now has all table names (except system tables).
'Make it the Row Source for the TblQryCombo control.
Me!TblQryCombo.RowSourceType = "Value List"

Me ! Tb1QryCombo.RowSource = TblNames

'Show first item as selected item in control.
Me!Tb1lQryCombo.Value = Me!TblQryCombo.ItemData (0)
'Make sure user can only select a valid name.
Me!TblQryCombo.LimitToList = True

End Sub

210 Partiv: Applying VBA in the Real World

If you want the combo box to show a list of all queries rather than all tables,
you basically just have to change the word A11Tables to Al1Queries so
that the loop gathers up names of queries rather than tables. Also, there are
no system queries, so you wouldn’t need the If...Then...End If blockto
exclude names that begin with MSys.

Taking it a step further, suppose that you want the list to display the names
of all tables and queries in the current database, with the word Table: in
front of table names and the word Query: in front of query names. You need
two loops in the form’s On Load procedure: one to add the table names and
one to add the query names. The entire procedure is shown in Listing 10-3.

Listing 10-3: Creating a Combo Box of Table and Query Names

Private Sub Form_Load()
'Declare an empty string to store a value list.
Dim TblNames As String
TbhlNames = ""

'To keep lines below short, we'll store the quotation mark
'as a variable named QM, and just refer to it by

'name (QM) in code that follows.

Dim QM As String

QM = Chr(34)

'Loop through AllTables connection, add each table's
'name to ThlNames variable, each enclosed in quotation
'marks and followed by a semicolon.
Dim tbl As AccessObject
For Each tbl In CurrentData.AllTables

'"Exclude MSys table names from list.

If Not Left(tbl.Name, 4) = "MSys" Then
TblNames = TblNames & QM & "Table: " & tbl.Name & QM & ";"
End If
Next tbl

'Next we loop through the AllQueries collection and add their names.
Dim gry As AccessObject
For Each gry In CurrentData.AllQueries
ThlNames = ThlNames & QM & "Query: " & gry.Name & QM & ";"
Next qry

'ThlNames string now has all table and query names.
'Make it the Row Source for the TblQryCombo control.
Me ! Tb1QryCombo.RowSourceType = "Value List"
Me!TblQryCombo.RowSource = TblNames

'Show first item as selected item in control.
Me!Tb1lQryCombo.Value = Me!TblQryCombo.ItemData (0)
'Make sure user can only select a valid name.
Me!Tb1lQryCombo.LimitToList = True

End Sub

Chapter 10: Customizing Combo Boxes and List Boxes 2 ’ 1

Referring to the empty Tb1QryCombo control shown at the start of this
section — and assuming that the code in Listing 10-3 is tied to that form’s
On Load event — by the time the form is visible to the user, the control will
contain the names of all tables and queries in the current database, as in the
example shown in Figure 10-6.

Zﬂ_| Carnbo Box of Tables and Queries x

Choose a Table or Query
: tg v
Table: Sales Reports iad
Figure 10-6: Table: Shippers

Thblor Table: Stats
Qry Table: Strings
Combo Table: Suppliers

control after

. d
Query: Customers Extended

Form
- Query: DeleteOneRecord
Load () Cuuery: Emplovees Extended
procedure Query: Inventory
X) Query: Inventory MNeeding Restocking
executes Qugry: Invenitory On Hold v
I

Matking a list of form or report names

You can use a similar technique to Listing 10-2 to make a drop-down list
display the names of all forms or all reports in the current database. For
example, Figure 10-7 shows an empty ComboBox control named ObjCombo
(for lack of a better name).

Zi_| Carnba Box of Form Mames - = x

5 00 o00f 000 600 o0@o0o0o00 00 0@ 000000 o0f 000000 E o0 o

L 1 g =
Property Sheet v X

Selection type: Combo Box

OhjCombo v

Format| Data | Event | Other | Al

[B Contral Source ™
2- Ry Source
¥ -7 - Rowe Source Type “Walue List
Flgure 10-7: = Bound Column 1
Sample | - Limit To List Mo
Allow Value List Edits Mo
combo box - List [tems Edit Farm
| Inherit Walue List Mo
named 1 l—”" Show Only Row Source Walue Mo
ObjCombo. fput Mask

Default value
“alidation Rule]

212 Partiv: Applying VBA in the Real World

To fill the ObjCombo with a list of all form names in the current database, tie
the form’s On Load event to a procedure that creates a value list of form
names, as we do in Listing 10-4.

Listing 10-4: Filling a Combo Box with Form Names

Private Sub Form_Load()
'Define string variable to store new Value List.
Dim NewValList As String
NewValList = ""

'Loop through collection and add each object name
'with quotation marks and semicolons to NewValList.
Dim obj As AccessObject
For Each obj In CurrentProject.AllForms
NewValList = NewValList & Chr(34) & obj.Name & Chr(34) & ";"
Next obj

'Now NewValList contains all object names in proper format.
'Make that string the Row Source for objCombo control.
Me!0ObjCombo.RowSourceType = "Value List"
Me!ObjCombo.RowSource = NewValList

'Set option to first item in list.
Me!ObjCombo.Value = Me!ObjCombo.ItemData (0)
End Sub

If you want that combo box to list all reports rather than all forms in the cur-
rent database, change the code to loop through the A11Reports collection
rather than the A11Forms collection. That just involves changing the collec-
tion name in the For Each. . .Next loop code block, as shown in boldface:

'Loop through collection and add each object name
'with quotation marks and semicolons to NewValList.
Dim obj As AccessObject
For Each obj In CurrentProject.AllReports
NewValList = NewVallList & Chr(34) & obj.Name & Chr(34) & ";"
Next obj

The basic idea is still the same in all these examples. When the form opens,
the form’s On Load event occurs, which then triggers the code in the
Form_Load () procedure, which in turn creates a valid, up-to-date list of
object names to show in the list box or combo box.

Listing Table/Query field values

The third type of combo box or list box that you can create gets its values
from a field (or fields) in a table or query. The Row Source Type for such a
list is Table/Query, and the Row Source is generally a SQL statement that

Figure 10-8:
Sample
unique
values
query for a
text field.

MBER
@&
&

Chapter 10: Customizing Combo Boxes and List Boxes 2 ’3

specifies which fields and values to show in the list. Back up a moment and
take a look at the bigger picture.

Suppose that you want to create a drop-down list that shows an alphabetized
list of all unique company names from a table. By unique, we mean that if a
given company name appears multiple times in the table, it still appears only
once in the drop-down list (or list box). To create such a query in the query’s
Design view, you add the field name to the Query By Example (QBE) grid and
also choose Ascending as the sort order. To prevent empty records from show-

ing up in the query results, set a criterion to Is Not Null, as in the example
shown in Figure 10-8.

i?—‘ UnigueCompaniesLookupQry - o

Customers

] » | %

-

¥ CustD

Firsthame
LastMame
Company
Addressl

Field:
Table

Sork:
Show

Address2

i | Company
b | Customers
Ascending

c3]

Property Sheet

Selection type: Query Properties

General

Description
Default Wiew
Output Al Fields

|| Top Walues

Unigue Walues
Unique Records
Source Database
Source Connect Str
Record Locks

Datasheet
Mo

All

fes

Mo
[current]

Mo Locks

Criteria: |Is Mot Mull Recordset Type Dynaset
or: QDEBC Timeout 1]

L] Filter

Order By

Max Records

Qtientation

Subdatasheet Na

Link Child Fields

ﬁ-‘uniquecampaniesmokupqr}r - =2 x
SELECT DISTINCT Customers.Company "~
FROM Custamers

WHERE (([Customers.Company) Is Mok Mull))

QRDER BY Customers,.Company;

To see the SQL view of a query on your own screen, as shown on the bottom

of Figure 10-8, right-click the query’s title bar and choose SQL View. For more
information, see Chapter 7.

To ensure that only unique addresses appear, you then need to double-click
the gray area at the top of the query to open the Query property sheet. In the
Query property sheet, set the Unique Values property to Yes, as in the
example shown in Figure 10-8.

We also managed to sneak the SQL view of the same query into Figure 10-8.
Like any SQL statement, it describes in words what the query will do when
it’s opened. In this case, those words are

SELECT DISTINCT Customers.Company
FROM Customers

WHERE (((Customers.Company)
ORDER BY Customers.Company;

Is Not Null))

2 14 Partiv: Applying VBA in the Real World

The SQL statement says the same thing that the items in the QBE grid say,
which is “Select unique Company names from the Customers table, exclud-
ing blanks (nulls), and put them in alphabetical order.”

The Unique Values property eliminates duplicate values within a single
field. If a query contains multiple fields and you want only records with
identical values in every field to be considered a duplicate, set the Unique
Records property to Yes (or True). The SQL keyword for Unique Values is
DISTINCT, and the SQL keyword for Unique Records is DISTINCTROW.

The SQL statement would work as the Row Source property for a ListBox
or ComboBox control. In VBA, however, you’d probably prefer to use the fol-
lowing slightly different syntax, partly because you can omit all the parenthe-
ses and partly because the table name in front of the field name (for example,
Customer .Company) is required only when the query involves two or more
tables with identical field names. In the following syntax, tableName is the
name of a table in the current database, and fieldName is the name of any
field within that table:

SELECT DISTINCT [fieldName]
FROM [tableName]

WHERE [fieldName] Is Not Null
ORDER BY [fieldName]

For example, Figure 10-9 shows a ComboBox control named Searchval with
its drop-down list already visible. That drop-down list contains an alphabetized
list of company names from a table named Customers because the control’s
Row Source Type is set to Table/Query, and its Row Source property is set to
the following SQL statement (shown as one lengthy line within the property):

SELECT DISTINCT [Company] FROM Customers WHERE [Company] Is Not Null ORDER BY
[Company] ;

Now, suppose that you want to programmatically change the Searchval
combo box so that it shows all unique zip codes from the Customers table.
This example assumes that the Customers table stores zip codes in a field
named ZipCode. But the idea is to create a new SQL statement that refers to
the zipCode field rather than to the Company field, as follows. Then use that
new SQL statement as the Row Source property for the Searchval control:

'Create a string named MySqgl, and put a SQL statement in
it.
Dim MySQL As String

MySQL = "SELECT DISTINCT [ZipCode] FROM [Customers]"
MySQL = MySQL & " WHERE [ZipCode] Is Not Null"
MySQL = MySQL & " ORDER BY [ZipCode]"

'Now MySQL contains a valid SQL statement. Use that SQL

Chapter 10: Customizing Combo Boxes and List Boxes 2 ’5

|
Figure 10-9:
Search
Valisa
ComboBox
control.
|

'statement as the Row Source for the SearchVal control.
Me!SearchVal.RowSource = MySQL

'Make the first menu option the selected item in list.
Me!SearchVal.Value = Me.SearchVal.ItemData (0)

3l ezqueryFrm x
EZ Query
Search which Field? Comparison Value
Company v = ~
ABC Productions
Arbor Classics
Creative Designs
Gadgets Inc
Property Sheet v X
Selection type: Combo Box
Searchial ~

Format| Data | Event | Other | Al

Control Source [~
Row Source SELECT DISTINCT [Campany] FROM Customers WHERE [Compary] Is Not Null ORDER BY [Company]; (v]
Row Source Type Table/Query

Bound Column 1

Limit To List Yes

Allow Value List Edits No

List It Edit Form

Inherit Value List No

Shows Ortly Raw Source Valut No

Input Mask

Default value

Validation Rule

Validation Text

Enabled Yes

Locked o v

Even though the SQL statement is built in chunks in the code (just to make
the lines short enough to fit inside these margins), the SQL statement that’s
created and stored in the MySQL variable is one long line of text composed of
all the chunks. By the time the last MySQL = MySQL & ... statement has
executed, the My SQL variable contains

SELECT DISTINCT [ZipCode] FROM [Customers] WHERE [ZipCodel]
Is Not Null ORDER BY [ZipCode]

In the procedure, the statement Me ! Searchval .RowSource = MySQL puts
the complete SQL statement into the Row Source property of the control.
When the user clicks the drop-down button, the control shows all unique zip
codes from the Customers table, as in Figure 10-10.

The bottom line here is that programmatically, you can do anything you want
with a ListBox or ComboBox control. Like with anything you do through
VBA, controlling when a combo box gets changed is a matter of choosing an
appropriate event. Often the triggering event is a change to some other con-
trol on the form or even a different form. In this way, you can control what
appears in a combo or list box based on the contents of some other control,
which brings us to linking lists.

216 Partiv: Applying VBA in the Real World

Figure 10-10:
Result of
changing

a combo
box’s Row
Source
property.

=] ezQueryFrm

EZ Query
Search which Field?
ZIPCode v

FldTosearch

Just an example of linked lists

Property Sheet

Selectinn type: Combo Box
Searchial v

Format| Data | Event | Other | Al

Control Source

Row Source

Row Source Type
Bound Column
Limit Ta List

Allow Value List Edits
List Items Edit Form
Inherit Value List Ma
Show Only Row Source Valur No
Input Mask
Default Value
Validation Rule
Validation Text
Enaied
Locked

Table/Query
1

es
No

a3
Ho

Linking Lists

One of the many reasons for programming Li st Box and ComboBox controls
is to create linked lists, where the options in one control depend on what’s
selected in another control. As an example, Figure 10-11 shows a form named
Fancy SkipLabels Dialog Box that contains three dynamic combo boxes
named LabelRpt, F1dToSearch, and ValueToFind. Because the fourth
combo box (not pointed out) is static, its drop-down list never changes.

Figure 10-11:
Fancy
SkipLabels
form
dynamic
controls.
|

SELECT DISTINCT Zipcode] FROM Custamers WHERE Zipcode] Is Mot Null ORDER BY Zipcodel|

Comparison
= v

OpsComba

[~

S

LabelRpt

E Fancy SkipLakels Dialog Box
Fancy SkipLabel

Print which reporty Avery 5197 Labels

Labels to Skip 3 E
Print What?
O all records

@ Only records specified below

Search Fisld Comparison Look For Yalue
Lastharme ~ = | (Costello ~
[CIose ”Previe H Print]
FldToSearch ValueToFind

Chapter 10: Customizing Combo Boxes and List Boxes 2 ’ 7

The names of the dynamic controls and the relationships between the control
are summarized here:

V¥ LabelRpt: This ComboBox lists names of all reports in the current
database that contain the word label. It needs to be filled once — the
moment when the form opens.

V* FldToSearch: This ComboBox lists the names of fields from the
selected report’s underlying table or query. The list needs to be updated
each time the user chooses a report to print from the LabelRpt control.

» ValueToFind: This displays a list of all unique values in the field
selected in the F1dToSearch combo box. Each time the user chooses a
field to search on, this combo box needs to be changed to list values
from the selected field.

You can envision the relationships between the combo boxes as dependencies,
in the sense that the exact items in a combo box depend on what’s selected
and available at the moment. For example, what appears in the F1dToSearch
combo box depends on what report is selected at the moment in LabelRpt.
Similarly, what appears in the ValueToFind combo box depends on what
field name is selected in the F1dToSearch control. As is always the case, just
writing the code to make these controls always show the “right stuff” is only
part of the problem. You also have to control exactly when that code runs.
Look at some examples of that first, which we follow with some of the code.

To make life simpler, we encapsulated the code that updates each combo

box as its own little procedure. The fancy programming term encapsulation
translates to something along the lines of Save yourself from having to deal
with this problem more than once. For example, if we create a procedure
named UpdateFldToSeachCombo () and make its job to ensure that the
FldToSearch control is up-to-date, we don’t have to worry about when the
code gets executed. We can just tie the statement UpdateFl1dToSeachCombo
to any event on any control in the form when we want that event to update
the F1dToSearch control.

That’s sort of a programming strategy. To encapsulate the code needed to
update each of the three dynamic controls shown in Figure 10-11, we wrote
three separate procedures and named each one so that it describes what it
does. The names of those procedures are

V¥ Sub UpdateLabelRptCombo (): This procedure updates the list of
reports in the LabelRpt combo box on the form to accurately reflect
label reports in the current database.

V¥ Sub UpdateFldToSearchCombo (): This procedure ensures that the
F1ldToSrch combo box accurately reflects the names of fields in the
selected report’s recordsource. It allows the user to choose a field name
on which to create a filter.

2 18 Partiv: Applying VBA in the Real World

V¥ Sub UpdateValueToFindCombo (): As its name suggests, this proce-
dure ensures that the unique values displayed in the ValueToFind
combo box accurately reflect the contents of the field specified in the
FldToSearch control.

The advantage of creating these procedures is that we could just concentrate
on getting each one to work (at all) without worrying about when the procedure
will do its thing. In our code, when we want to tie the procedure to a particular
event, the triggered procedure need only call the appropriate Sub procedure to
get its job done. Again, we look at each procedure in a moment. Just focus on
the when for now.

Running code when a form opens

If you want a procedure to execute as soon as a form opens and any data
from the form’s underlying table or query has been loaded into the form, tie a
procedure to the forms On Load event. The name of that procedure, in every
form, is Form_Load (). The Form_Load () procedure for the sample form
shown in Figure 10-11 looks something like this:

Private Sub Form_Load/()
Call UpdateLabelRptCombo
Call UpdateFldToSearchCombo
Call UpdateValueToFindCombo
End Sub

JNG/ In the form’s Design view, make sure that the property sheet shows the word
Form in the drop-down list. Double-clicking the gray area behind the form’s
Design grid or the gray box where the rulers meet instantly displays Form
properties in the property sheet.

The basic logic of the Form_Load () procedure is straightforward: It simply
updates each of the three ComboBox controls in the order that they need

to be updated. When the form opens, each ComboBox control has actual,
reasonable data in its drop-down list.

Suppose that the form is open and the user chooses a report name from

the LabelRpt drop-down list. When that happens, the two controls beneath
LabelRpt need to have their drop-down lists updated. First the FieldToSearch
drop-down list needs to be updated to reflect field names from the selected
report’s recordsource (underlying table or query). Then, after that control

gets a new value, the ValueToFind drop-down list needs to be updated to reflect
legitimate values for the selected field name. To make that happen, a change

to the LabelRpt control needs to run two of the update procedures. Here’s
the AfterUpdate event procedure for the LabelsRpt control:

Chapter 10: Customizing Combo Boxes and List Boxes 2 ’ 9

Private Sub LabelRpt_AfterUpdate ()
Call UpdateFldToSearchCombo
Call UpdateValueToFindCombo

End Sub

The preceding procedure says, “After the user chooses a different report to
print, update the F1dToSearch and ValueToFind combo boxes on this form.”

Running code when the user makes a choice

To make a procedure execute after the user chooses an option from a combo
or list box, tie the procedure to the control’'s After Update event property.
For example, when the user chooses a different field to search on from the
Search Field option on the Fancy SkipLabels form (the F1dToSearch control),
the Look For Value drop-down list needs to be updated to show unique values
from that field. To make sure that the valueToList control gets updated
whenever the user chooses a different field to search, we added the following
procedure to the form’s class module:

Private Sub FldToSearch_AfterUpdate ()
Call UpdateValueToFindCombo
End Sub

The preceding class procedure says, “After the user chooses a different field
to search on, update the Value to Find combo box to list unique values from
the specified field.”

Getting fancy SkipLabels

You can download the Fancy SkipLabels
Dialog Box form and all its code from www .
dummies.com/go/access2007vbaprog.
You won'tfind any standard modules in that data-
base. All the code for Fancy SkipLabels
Dialog Box are inthe form's class module. If
you look at that code, you see more than just
what's shown in this chapter. (That's because
much of the code there isn't relevant to this
chapter’s topic.)

Touse Fancy SkipLabels Dialog Box
in your own database, you first need to create
at least one report for printing labels and also
make sure to save that report with the word
label in its name so that SkipLabels finds
the report. Then you need to import Label
SettingsTable and Fancy SkipLabels
Dialog Box Form from the downloaded
database into your own database. The Web site
provides more information.

22() Partiv: Applying VBA in the Real World

Getting back to the encapsulation strategy, you can see that it wouldn’t be too
tough to make other events on other controls update any dynamic list on the
form. Just click the control, click its After Update event property, and add
the code needed to call the appropriate procedures in the event procedure.

The various preceding called procedures all follow the examples presented
earlier in this chapter. For example, the LabelRpt control, which displays a
drop-down list of reports with the word label in their names, gets its informa-
tion from the A11Reports collection (see Listing 10-5):

Listing 10-5: Updating a Combo Box of Report Names

'** UpdateLabelRptCombo () updates the LabelRpt control.
Private Sub UpdateLabelRptCombo ()
'ValListVar variable will store a string that can
'be used as the Value List property for a combo box.
Dim ValListVar As String
ValListVar = ""

'Get names of label reports from AllReports collection,
'and assemble into a valid Value List for a Combo Box.
Dim rpt As AccessObject
For Each rpt In CurrentProject.AllReports
'Don't add LabelsTempReport to the ValListVar.
If Not rpt.Name = "LabelsTempReport" Then
'Only add report names that contain the word "label".
If InStr(rpt.Name, "Labels") > 1 Then
'Add label report names to ValListVar with Double Quotes.
VallListVar = ValListVar & Chr(34) & rpt.Name & Chr(34) & ";"
End If
End If
Next

'ValListVar now contains valid report names, so next
'lines make it the Row Source property for LabelRpt.
Me!LabelRpt.RowSourceType = "Value List"
Me!LabelRpt.RowSource = ValListVar
Me!LabelRpt.Requery

End Sub

The UpdateFldToSearchCombo procedure updates the drop-down list in
the F1dToSearch control. The code gets the name of the label report to print
from the LabelRpt control on the form (referred to as Me ! LabelRpt.Value
in the code). It then (invisibly) opens that report in Design view and copies its
Record Source property (which is the name of the report’s underlying table
or query) into its own variable named LabelRecSource. After that, the rest
of the code sets the control’s Row Source Type to Field List and the Row
Source to the name that’s stored in that LabelRecSource variable. Listing
10-6 shows the whole procedure with comments to help explain each step.

Listing 10-6: Updating a Combo Box with Field Names

'** UpdateFldToSearchCombo () updates the FldToSearch Combo Box.
Private Sub UpdateFldToSearchCombo ()

'Open specified report in Design view.
DoCmd.OpenReport Me!LabelRpt.Value, acViewDesign, , , acHidden

'Copy its recordsource name to LabelRecSource variable.
Dim LabelRecSource As String

'Placeholder for record source.

LabelRecSource = Reports (Reports.Count - 1).RecordSource

'Close the report (only needed to grab record source).
DoCmd.Close acReport, Me!LabelRpt.Value, acSaveNo

'Set FldToSearch Combo Box Row Source properties.
Me!FldToSearch.RowSourceType = "Field List"
Me!FldToSearch.RowSource = LabelRecSource
Me!FldToSearch.Requery

End Sub

The last dynamic control on the form, VvalueToFind, gets updated by a Sub
procedure named UpdateValueToFindCombo. This procedure updates the
list of unique values in the control’s drop-down list to accurately reflect unique
values in whatever field the user specified in the F1dToSearch control. The
Row Source Type for the control needs to be Table/Query, and the Row Source
has to be a valid SQL statement that specifies what to display. The code in
Listing 10-7 builds a valid SELECT DISTINCT. .. query for whatever field’s
name is selected in the F1dToSearch control (Me!F1ldToSearch.Value in
VBA). Listing 10-7 holds the whole procedure with comments.

Listing 10-7: Updating a Combo Box from a Table

Private Sub UpdateValueToFindCombo ()

'Build a SQL statement to pull unique values

'from whatever field name is selected in form.

' (If FldToSearch is empty, do nothing)

If Not IsNull (Me!FldToSearch.Value) Then
Dim MySQL As String
MySQL = "SELECT DISTINCT [" & FldToSearch.Value & "]"
MySQL = MySQL & " FROM [" & LabelRecSource & "]"
MySQL = MySQL & " WHERE [" & FldToSearch.Value & "] Is Not Null"
MySQL MySQL & " ORDER BY [" & FldToSearch.Value & "]"

'Now that we have the right SQL statement, make it the
'Row Source for the ValueToFind control.
Me!ValueToFind.RowSourceType = "Table/Query"
Me!ValueToFind.RowSource = MySQL
Me!ValueToFind.Requery
End If
End Sub

Chapter 10: Customizing Combo Boxes and List Boxes 22 1

222 PartIV: Applying VBA in the Real World

In case you’re wondering about the If Not IsNull (!FldToSearch.Value)
Then...End If statements, we originally wrote the procedure without those.
At first, the procedure seemed to work fine when tested. But then we discov-
ered that if the F1dToSearch control is null (empty) when UpdatevalueTo
FindCombo is called, the procedure crashes and yelps out an error message.
To ward off that irritant, we make execution of the code dependent on the
FldToSearch control’s not being null. In other words, the procedure executes
only if a field name is selected in the F1dToSearch control. Otherwise, the
procedure does nothing to prevent the error from occurring.

From a programming perspective, the main thing to remember is that every
ListBox and ComboBox control that you create exposes many properties to
VBA. Two of those properties, Row Source Type and Row Source, give you
strong programmatic control over the choices presented by those controls.

Linking Lists across Forms

Working with list controls (such as ListBox and ComboBox controls) isn’t
always a matter of controlling the Row Source Type and Row Source proper-
ties of the control. In some cases, it’s just getting the darn control to show
what’s in the underlying table or query — or worse yet, getting it to accept

a value that should be acceptable to the control, but isn’t. These types of
problems happen a lot when two or more forms are involved in the scenario.

We suppose that a typical example is a user who is trying to type in a new
order, perhaps coming in over the phone. The user might be sitting there
looking only at the Orders form shown on the left side of Figure 10-12. To
start typing an order, she can choose an existing customer from the CustID
combo box (labeled “Customer:”) on the Orders form, or she can click the
New Customer button (NewCustBttn) to enter name and address info for a
new customer.

Disclaimer: All the names and e-mail addresses shown in these figures are
fictional, and any resemblance to real people or e-mail addresses is purely
coincidental.

If your user clicks the New Customer button, the NewCust form (also shown
in Figure 10-12) opens at a blank record, ready to type in a new customer’s
info. Then the user types in the info and clicks the Done - Fill Order button
(named DoneBttn). At that point, the NewCust form closes, and the user

is returned to the Orders form. That moment — when the NewCust form
closes and the focus returns to the Orders form — is where most troubles
begin. The problem has to do with when a combo box or list box gets its data
from an underlying table or query, which (in general) is only once — when
the form opens.

Chapter 10: Customizing Combo Boxes and List Boxes 223

=l orders - mx
OrderiD: |1 =
Orders Form
Date: 7/10/2007
7|
Custormer : Crusher, iCirmerbly| v| PONurnber:
New Custarner | |ABCProductions nancy@a hara.com]
Angstrom, Margaret margaret@angstrom.com =
Paymentiethod: |Bebop, Stacey stacey@hehop.corm fhi
ocType: Biasini, Carlos carlos@biasini.com
Citrus, Michael michael @citrus.com
CCNumber: Costello, Karen karen@costello.com
Expiretarths Creative Designs mark@cranvedaslgns.cum
Crusher, Kimerbly kimerbly@crusher.corn R
CCExpireYear: 2007 | LEDEEANTED I
2] NewCust - = ox
Record: M ¢ [1of7
Customers Custin: (New)
»
FirstName: Phone:
— Lasame: Fe
F_ 10 12 Company: Emnail:
gur -1Z.
gu e Address1: DateEntered:
Sample Addressz: TaxExernpt: O
open City: TaxExempt/D:
Orders and StateProv:]
. Done - Fill Order
NewCust
Country: |USA v
forms.
Recordi 4 ¢ 1of1 M q Search 1 | >
|

Updating a combo box or a list box

A typical combo box or list box gets the values that it shows in its list only
once, right after the form opens. For example, the CustID control in the
Orders form pictured earlier gets its list of customers from a field in a table
named Customers. It gets that list when the Orders form opens. When a user
adds a new record to the Customers table via the NewCust form, the Orders
table knows nothing of the new record. The drop-down list in the CustID con-
trol just continues to show the same names it did before the NewCust form
added a new record to the Customers table.

The solution to the problem is the Requery method, which every list box
and combo box control exposes to VBA. As its name implies, the Requery
method forces a list box to update its list or a combo box to update its drop-
down list immediately. The syntax for using the method is

controlName.Requery

where controlName is the name of the combo box or list box that needs
updating. When you need to update a control on a form (other than the
one in which the code is running), you need a complete identifier at the

22/ PartIV: Applying VBA in the Real World

Figure 10-13:
Tables
underlying
Orders and
NewCust
forms.
|

N\\3

start of the name, specifying the name of the form on which the control
resides. For example, the following line updates the CustID control in the
Orders form from code that’s in the class module for the NewCust form
(or any other form):

Forms! [Orders] ! [CustID] .Requery

The preceding statement says “Update the control named CustID on the open
form named Orders.”

Go back to the sample Orders and NewCust forms shown in Figure 10-12.
First, clarify that the Orders form there is bound to a table named Orders.
The CustID control on the Orders form is bound to the CustID control in
the Orders table, which is a Long Integer. The CustID control on the
NewCust form is bound to the CustID control in the Customers table,
where it’s defined as an AutoNumber field and Primary key (ensuring that
every new customer automatically gets a unique, unchangeable CustID
value the moment a new record is added). Figure 10-13 shows the structures
of the Orders and Customers tables.

£ orders - = x
Field Narme Data Type Description =
% |ordenn AutoNurnber Auto-assigned order nurber =
OrderDate Date/Time Date order placed {auto-entered)
CustiD Nurmber Custormer's CustlD in Customers Table
Paymentiethod Text How paid? —
Field Properties
General || aokup
Field Size Lang Integer
Format
Decimal Place: Auto EH custorners - = x
Input Mask Field Name Data Type Description -
caption ¥ custip AutoNumber Auto-assigned ID number =)
Default Value]
T E FirstName Text Contact'sfirst name
Walidation Text LastNarme Text Contact's surname
Reguired Ho Carpany Text Campany affiliation L
Indexed Yes (Duplicates
SmartTags Field Properties
Text lign General General |Lankun
Field size Long Integer
Hewr Values Increment
Format Afield name can be up to 64 characters long,
Caption including spaces. Press F1 for help on field
Indexea Yes (Mo Duplicates) nemes:
Smart Tags
Text Align General

When you look at the CustID combo box in Figure 10-12, it doesn’t look

like it’s bound to an Integer field in a table because the control displays text.
However, the actual value in that CustID control is an integer; the integer

is just hidden from view. Read more on that in the upcoming section “Using
hidden values in combo and list boxes.”

Suppose that you have a form like the Orders form that has a button to add
a new record through some other form. The first thing you need to do is get
the button to open the appropriate form pointing at a new, blank record.
Tackle that problem first.

Chapter 10: Customizing Combo Boxes and List Boxes 225

Opening a form to enter a new record

Suppose that you have the Orders form open in Design view and you need to
get that New Customer button to open the NewCust form poised to accept a
new record. You can do that with a macro, or you can assign the following
procedure to the New Customer button’s (NewCustBttn) On Click event

property:

Private Sub NewCustBttn_Click()
'Open NewCust form at new, blank record (asFormAdd) .
DoCmd.OpenForm "NewCust", acNormal, , , acFormAdd
End Sub

That’s it for the Orders form’s role in all of this, so you close and save that
form. When the user clicks the New Customer button on the Orders form (in
Form view), the NewCust form opens. Presumably, the user then types in the
new customer’s information, clicks the Done button, and returns to the Orders
form. That’s where the CustID control on the Orders form gets out of sync.

When the NewCust form closes and saves the new record, the CustID control
on the Orders form doesn’t know about the new record. Hence, its drop-down
list is out of sync. Somehow you have to get the NewCust form to tell the
Orders form, “Hey, update your CustID control” before the form closes.

To solve the problem, write some code that updates the CustID control

on the Orders form every time the NewCust form adds a new record to the
Customers table. As it turns out, anytime a form adds a new record to its
underlying table or query, that form’s After Insert event occurs. Thus,
a guaranteed way to ensure that the Orders form’s CustID combo box is
up-to-date is to requery that control every time the NewCust form’s After
Insert event occurs.

To make that happen, do the following:
1. First make sure to open the NewCust form (not the Orders form) in

Design view.

2. Make sure Form is selected in the property sheet (so that you're
setting Form properties).

. Click the Event tab in the property sheet.

. Click the Build button next to the After Insert event property.
. Choose Code Builder.

. Click OK.

. Type the VBA statement needed to requery the control on the
Orders form:

N S G e W

Forms! [Orders] ! [CustID] .Requery

220 PartIv: Applying VBA in the Real World

The entire Form_AfterInsert procedure in the NewCust form’s class
module looks like this:

Private Sub Form_AfterInsert ()
'Update CustID combo on open Orders form.
Forms! [Orders] ! [CustID] .Requery

End Sub

The problem is now solved because every time the user adds a customer to
the Customers table from the NewCust form, the CustID control on the
Orders form is automatically requeried to include that new record. You
could leave it at that. However, in solving that problem, you created a new
problem, as described next.

Seeing whether a form is open

VBA can requery a control only on a form that’s open. If a form is closed, you
have no way to (and no reason to) requery any of its controls because any
list controls on the form are created (and hence up-to-date) the moment the
form opens. If VBA code tries to requery a control on a form that’s closed,
the procedure crashes, and an error message appears on-screen. Not good.

To get around the problem of the Form_AfterInsert () procedure crashing
when the Orders form isn’t open, put the statement that updates the control
insidean If...End If block. Make the condition of the If statement
CurrentProject.AllForms ("FormName") . IsLoaded in your code but
substitute FormName with the name of the form that needs to be open. For
example, the following modified Form_AfterInsert () procedure requeries
the Orders form’s CustID control only if the Orders form is open when the
procedure executes:

Private Sub Form_AfterInsert ()

'If the Orders form is open (loaded...)

If CurrentProject.AllForms ("Orders") .IsLoaded Then
'...update CustID combo on open Orders form.
Forms! [Orders] ! [CustID] .Requery

End If

End Sub

If the Orders form is closed when the preceding procedure is executed,
the procedure does absolutely nothing. That’s good because as we mention,
there’s no need to requery a control on a closed form.

Chapter 10: Customizing Combo Boxes and List Boxes 22 7

Getting forms in sync

Requerying the CustID control on the Orders form keeps the combo box’s
drop-down list up-to-date with the current contents of the Customers table
at all times. However, it doesn’t change the value that’s displayed in that con-
trol. In other words, requerying a ComboBox control fixes the combo box’s
hidden drop-down list, but it doesn’t change which option on that menu is
now selected and visible in the control. You can always add some code to
take care of that.

A perfect example is when the user adds a new customer via the NewCust
form and returns to the Orders form. Ideally, you want the Orders form to
already show a new, blank order form with the new customer already chosen
as the one placing the order. From a VBA perspective, when the user closes
the NewCust form, it makes sense to add a new, blank record to the Orders
form and set the CustID control on the Orders form to the new customer’s
CustID value. In other words, when the user clicks the Done - Fill Order
button, you want VBA to

v Copy the new customer’s CustID to a variable for holding

1 Close the NewCust form, saving the new customer’s record

1 Make sure you're at new, blank record in Orders form

v Copy the new customer’s CustID into Orders form’s CustID control

v On the Orders form, put the cursor in whatever control the user is most

likely to resume typing the order

Making those steps happen whenever someone clicks the DoneBttn button
in the NewCust form requires the procedure in Listing 10-8 in the NewCust
form’s class module.

Listing 10-8: Updating a Control on a Separate Form

Private Sub DoneBttn_Click()

'Do these steps only if Orders form is open.
If CurrentProject.AllForms ("Orders") .IsLoaded Then

'Copy the new customer's CustID to a variable.
Dim NewCustID As Long
NewCustID = Me!CustID.Value

'Close the NewCust form.
DoCmd.Close acForm, "NewCust"

'Make sure were at new, blank record in Orders form

(continued)

228 PartIv: Applying VBA in the Real World

Listing 10-8 (continued)

DoCmd.GoToRecord acDataForm, "Orders", acNewRec

'Copy new CustID into Orders form's CustID control
Forms! [Orders] !CustID.Value = NewCustID

'Move cursor to PaymentMethod control in Orders
form.
Forms! [Orders] ! [PaymentMethod] . SetFocus
End If

End Sub

You might notice that none of the statements in the preceding procedure
requeries the CustID control on the Orders form. That’s because you
already wrote a Form_AfterInsert () procedure to ensure that anytime
any record gets added to Customers via the NewCust form, code immediately
updates the CustID control on the Orders form. When VBA executes the
statement DoCmd.Close acForm, "NewCust", it saves the current record
(because when you close a form, the current record is saved automatically).
Right after the form inserts the new record into the Customers table, the
Form_AfterInsert () procedure runs, updating the CustID combo box

on the Orders form.

In other words, by the time execution reaches the first statement under the
DoCmd.Close acForm, "NewCust" statement,the Form AfterInsert ()
event has already occurred and updated the CustID control on the Orders
form to include the new customer’s record.

More Combo Box Tricks

In this section, we show you a few more combo box tricks, starting with an
explanation of why what you see in a combo box isn’t always what you get in
VBA. For example, the CustID control on the Orders form shown in Figure
10-12 is bound to a Long Integer field in its underlying table, yet its combo
box shows a bunch of names and addresses. How can that be?

Using hidden values in combo and list boxes

A combo box or list box can show any data from a table or query even though
the control contains some simple value like a Long Integer. The long inte-
ger, which is usually a primary key value, can be hidden in the control as the
control’s actual value while some more meaningful (to humans) text is shown

Chapter 10: Customizing Combo Boxes and List Boxes 229

to the user. This disappearing-value act works thanks to multicolumn lists and
the Bound Column property. Here, in a nutshell, is how it works:

v Whatever is in the first visible column of the list is what shows (visibly)
in the control.

1 Whatever value is defined as the Bound Column is the value that’s actu-
ally stored in the control, although it might not be visible to the user.

For example, to create the drop-down list of customer names and e-mail
addresses shown back in the Orders form (refer to Figure 10-12), we first
created a query based on the Customers table. In that query, we used some
fancy expressions to display the name and e-mail address of each customer
in the list. The first column in the query, as shown in Figure 10-14, contains
the calculated field (which is too wide to show completely in the figure):

SortName: IIf(IsNull([LastName]), [Company], [LastName] & ", " & [FirstName])

= customerlookupQry _oox
-
Customers E
% custio
Firsthiame
Lasthlame
Company
Address1
Address2
A »
I Field: | Sorthiame: OFTsNuII(L3stName]), [Company], [Lasthame] & 7, * & Firstham) EmailText: HyperLinkPart((Ermaill0) | CustD =
Table: v Customers =)
. Sort: | Ascending
F|g|_||‘e 10-14: Show: 3 customertookupQry - o x
iRy Sorthame = Ermnail Text v CustiD » =
or:
ABCProductions nancy@ohara.com 7
The il a h I
Angstrom, Margaret margaret@angstrorm.com S Iy
mer
CHStO € Bebop, Stacey stacey@bebop.com 34
Lookup Biasini, Carlos carlos@biasini.com 5
Citrus, Michael michael @citrus.com 24
Qry query Costells, Karen karen@costello.com 22
H H Creative Designs mark@ecreativedesigns.com 3z
in Design : :
Crusher, Kirmerbly kirnerbly@crusher.com 31
and Doerr, Monica monica@doerr.com 6
Escovedo, George george@escovedo.com 2
Datasheet eadets nc rrarsaggcers nccorn)
H Harkins, Tiffar tiffany@harkins.com 21
views. " .
Higalebattorn, Hortense frankly@an.com 8 v
Record: 4 < [1of35 | b bobe| Search
|

The preceding expression says, “If the Last Name field in this record is
null (empty), just show the company name. Otherwise, show the person’s
LastName followed by a comma and a space and then the FirstName.”
The second column in the query contains the calculated field:

EmailText: HyperLinkPart ([EmailAddress],0)

230 PartIv: Applying VBA in the Real World

In this example, EmailAddress refers to a Hyperlink field in the underlying
Customers table. Hyperlink fields can look weird in drop-down lists. The
HyperLinkPart () function there isolates just the display portion of the
field. That basically ensures that the e-mail address looks like an e-mail
address in the query results.

The third column in the CustomerLookupQry represents the CustID
control from the Customers table, which is defined as an AutoNumber

field in the table’s design. The lower-right window in Figure 10-14 is the

same CustomerLookupQry in Datasheet view. Notice how the names are
presented in the first column; the e-mail address in the second column; and
the CustID value — a Long Integer — in the third column. Later, when
you use that query as the drop-down list for a combo box, you can make
that third column the Bound Column while still showing the fancy SortName
value in the control.

If you create, close, and save a query like CustomerLookupQry, you might
want to use that query’s columns as a drop-down list for a combo box that
allows the user to choose a customer by name or e-mail address. To get
started, you need a form open in Design view. Optionally, you can turn on the
Control Wizards by clicking the Use Control Wizards button in the Controls
group on the (Form Design Tools) Design tab.

Next, create the combo box as you normally would. For example, to create
the CustID combo box on the Orders form, you click the Combo Box tool
in the Controls group and then drag the CustID control from the Orders
table’s Field List onto the form. (Dragging the CustID control to the form
after you click the Combo Box tool binds the new combo box to the CustID
control.)

When the Combo Box Wizard starts, just follow its instructions to design the
combo box. For example, tell it to get its values from the CustomerLookupQry
described earlier. When it asks which fields from that query to display, choose
all three field names. When you get to the wizard page where you set column
widths, you initially see all the columns from the query, as in the top-left side
of Figure 10-15. To hide the CustID number from the user, narrow its column
to the point that it’s not visible. Set the widths of the other two columns to
whatever fits best, as in the lower-right portion of that same figure.

The next page of the wizard asks which field from the query should be stored
in the ComboBox control. In this case, you choose CustID because you want to
store the selected customer’s CustID value (not the name or e-mail address)
in the CustID field of the Orders form. The last wizard page asks which field
should store that value; choose CustID. We clicked Next, and the last wizard
page asked for a label. We typed Customers and then clicked Finish.

Chapter 10: Customizing Combo Boxes and List Boxes 23 1

Combo Box Wizard
How wide would you like the columns in your comba bax?

To adjust the widkh of a column, drag its right edge to the width you want, o double-click the
right edge of the column heading to get the best it.

Sorthiame EmailText CustiD
ABC Productions nancy@ohara.com 7
Angstrom, Margare margaret@angstra 5
Bebop, Stacey stacey@bebop.con 34
| Biasii, Carlos carlos@biasini,com | 25

Citrus, Michael michael@citrus, con| 24

Fig ure 1 0_1 5. Costello, Karen karen@costello.cor| 23

Creative Designs _ marki@creativedesi 32
How wide would you lke the columns in your combe box?

sizing | ottt oatorm, daptsgHiattetio mumms o i

tight edge of the column heading to get the best fit,

(my

Combo Box Wizard

columns
(top) and
. Sorthlame EmaiText -
after sizing ABC Productions nancy@ohara,com =
Angstrom, Margaret margaret@angstram. com
columns Gy cotor | camobmncon
(bottom) in ol oo
the Combo Creative Designs mark@creativedesigns. com -
Box Wizard.
Cancel] [< Back l et >] [Firish
|
The ComboBox control is now on the form. Figure 10-16 shows the results
with the combo box drop-down list visible. You can also see the property
sheet there, and that’s where you can see what’s really going on. For example,
the Column Count property shows that the drop-down list contains three
columns. The column widths are 1.5", 2.5", and 0", which makes the third
column invisible (zero inches wide). The Bound Column property (3) tells
you that whatever is in that third column is what gets stored in the CustID
control that the drop-down list is attached to.
Eorders = x
“=] Orders Form clEi b 7
Date: 7/10/2007
7]
Customer : Crusher, Kimerbly| | PONumber:
New Custorner | |ABCProductions nancy@ohara.corm i
Angstrorm, Margaret |margaret@angstrom.com - |
Paymentiethod: |Bebop, Stacey stacey@bebop.com i
CCTye: Biasini, Carlos carlos@biasini.com
e Citrus, Michael michael @citrus.com
CCMurnber: Costello, Karen karen@costello.com
I CcExpireMonth: Creative Designs
. Bl Crusher, Kimerbly L
Figure 10-16: CCExpirevear: ==
CustID
Record: M« Lofd | b M b | o Search| CustlD ™
COntrOl Format| Data | Event | Other | Al
using it o g
Customer- FD:T;;I Places suto
LOOkUp— g':é:‘;;eet(aptmn -
er' S gm:mﬁs i.s";z.s”;n"
Column Heads No
columns. List Rowws p

List Width I
—— Separator Characters System Separator -

232 PartIv: Applying VBA in the Real World

Because a combo box always shows whatever is in the first visible column of
the drop-down list, only the selected person’s name appears in the combo
box after the user makes a selection because that SortName control is the
first visible column in the CustomerLookupQry query. The only purpose of
the e-mail column in that query is to act as a tiebreaker. For example, if two
customers happen to have the same first and last names, the user can tell
which is which by the e-mail address.

The most important thing to glean from all this is that what you see in a
ComboBox control isn’t always what Access and VBA see. What'’s stored in
the combo box is whatever is defined as the combo box’s Bound Column
property. What you see in the control is whatever is in the first visible
column of the drop-down list.

P If you add an unbound text box control to your form that contains an expres-
sion like =fieldname.Value as its control source (where fieldname is the
name of a ComboBox or ListBox control), that control shows you the true
value of the fieldname control as opposed to what appears in the control.

Giving users a quick find

You can use a combo box as a tool for allowing a user to quickly find a specific
record in a table. For example, you might have a form that allows a user to find
and edit customers. At the top of that form, you can provide a drop-down list,
perhaps named Quick Find, as in Figure 10-17. When the user chooses a name
from the drop-down list, the form instantly displays that customer’s record.
(We also point out some of the properties for the QuickFind control in that
figure.) You can assign those properties when you use the Control Wizards to
create the initial combo box.

3] Editcust _aox
Customers Quick Find: v
| ABCProductions nancy@ohara.com
2 Angstrorn, Margaret margaret@angstrormn.com
FirstName: |Tori Phone: Bebop, Stacey stacey@bebop.comn
Biasini, Carlos carlos@biasini.com
LastName: |Pines Fax: Citrus, Michael richael@citrus.com
Company: |Arbor Classics Ernail: Costelln, Karen karen@costello.cam
I Creative Designs mark@creativedesigns.co
Addressl: 345 Pacific Caast Hwy BESE S Crusher, Kimerbly kimerbly@crusher.com
i -17. Addressz: |Suite 3232 TaxExernpt:
Figure 10-17: o -
. : . 324 Selection type: Combo Box
A Quick- City Del Mar TaxExemptID: |32 =
Find StateProv: [CA | QuiekFin M
in Format | Data | Event | Other | &l
ZIPCode: 98785
control Format i
Country: |USA - Decimal Places Auta
wisible Yes
offers fast |[eew « oz 1+ s = - !
Calumn Widths 15%2.5%0"
customer Column Heads Ho
List Rows]
name List Width ¥
Separator Characters System Separator
|00kup_ width 27517
Height 0.2493°
Top 0.1667" ~
|

Chapter 10: Customizing Combo Boxes and List Boxes 233

Look at an example of creating a QuickFind control. Like with any combo

or list box, you can begin by creating a query that defines the columns to be
displayed in the list. For this example, you can use the CustomerLookupQry
shown a little earlier in this chapter as the drop-down list for a combo box
named QuickFind. Here are the basic steps for creating such a control:

1. In the Access Navigation pane, right-click the name of the form to
which you want to add a Quick Find capability, and then choose
Design View.

2. If you want to use the Combo Box Wizard to create the initial control,
make sure that the Use Control Wizards button in the Controls group
is highlighted. Then click the Combo Box tool and click where you
want to place the control on your form.

The Combo Box Wizard opens.

3. On the first wizard page, select the] Want the Combo Box to Look Up
the Values in a Table or Query option button and then click Next.

4. On the second wizard page, choose the Queries option button and
then select the query that contains the values to be displayed in the
drop-down list. Then click Next.

In our example, we clicked Queries and then CustomerLookupQry.

5. On the third wizard page, click the >> button to add all the fields from
your query to the drop-down list; then click Next.

6. (Optional) You can choose a sort order on the fourth wizard page. If
your query already has all the records in order, you can just ignore
that page and click Next.

7. On the fifth wizard page, size your columns; then click Next.

As shown in Figure 10-15, earlier in this chapter, you can hide any
column by narrowing it to the point where it’s invisible.

8. The sixth wizard page asks which value from the query the combo
box should store. Click whichever field name would provide the most
accurate search; then click Next.

In our example, CustID is unique to each customer, so we specify the
CustID field.

9. On the seventh wizard page, select the Remember the Value for Later
Use option button and then click Next.

Because you aren’t storing the value in a field, this step creates an
unbound combo box.

10. On the last wizard page, type a label for the control and then click
Finish.

We gave our combo box the label Quick Find.

234

Part IV: Applying VBA in the Real World

That takes care of creating the initial unbound combo box. To get it to act as a
Quick Find procedure, you need to write some VBA code. First, we suggest that
you go to the All tab of the property sheet and change the Name property to
something more meaningful — for example, QuickFind rather than Combo01
or whatever Access named the control. Then click the Event tab in the prop-
erty sheet and click the After Update event property. You're taken to the
VBA Editor with the cursor in a procedure named control_AfterUpdate ()
where control is the name of your unbound ComboBox control.

The basic skeleton structure needed for a Quick Find procedure looks like this:

Private Sub controlName AfterUpdate ()
'Clone the form's table/query into a recordset.
Dim MyRecSet As Object
Set MyRecSet = Me.Recordset.Clone

'Find first matching record in the recordset.
MyRecSet.FindFirst "[fieldName] = " & Me! [controlName]

'Set the form's record to found record.
Me.Bookmark = MyRecSet.Bookmark
End Sub

where controlName is the name of the unbound combo box, and fieldName
is the name of the field being searched in the form’s underlying table or query.
In our example, the QuickFind control contains a long integer value that
matches the CustID value of the customer you're searching for. (Both values
are long integers.) The code for the QuickFind control, which searched the
CustID control in the Customers table, looks like this:

Private Sub QuickFind_ AfterUpdate ()
'Clone the form's table/query into a recordset.
Dim MyRecSet As Object
Set MyRecSet = Me.Recordset.Clone

'Find first matching record in the recordset.
MyRecSet.FindFirst "[CustID] = " & Me! [QuickFind]

'Set the form's record to found record.
Me.Bookmark = MyRecSet.Bookmark
End Sub

Like all procedures, this one is a series of steps. Starting at the first line, the
name of the procedure defines when it runs. In this case, the procedure runs
after a user chooses a customer from the QuickFind control’s drop-down list:

Private Sub QuickFind_AfterUpdate()

Chapter 10: Customizing Combo Boxes and List Boxes 235

The following lines provide for a speedy search without any activity on the
screen by using an invisible recordset to do the search behind the scenes.
The Dim statement declares a general object named MyRecSet. The Set
statement makes MyRecSet into a recordset that’s an exact clone of the
table or query underlying the current form:

'Clone the form's table/query into a recordset.
Dim MyRecSet As Object
Set MyRecSet = Me.Recordset.Clone

With a simple clone recordset like this, you can use the FindFirst method
to quickly locate a specific value in a single field. You can’t do any sort of
fancy SQL WHERE clause — only a simple fieldname = value type expres-
sion is allowed, which is all you need when searching in the primary key field.

The next statement in the procedure uses the FindFirst method to locate
CustID value in the recordset that matches whatever value is stored in the
QuickFind control:

MyRecSet.FindFirst "[CustID] = " & Me! [QuickFind]

It takes less than an eyeblink’s time for the preceding statement to search
the custID field in the recordset. After the record is found, the recordset’s
Bookmark property contains a value that indicates that record’s position
in the recordset. To get the form to show the record that was found in the
recordset, the next statement sets the form’s underlying table or query
Bookmark property equal to the Bookmark property of the recordset:

Me.Bookmark = MyRecSet.Bookmark

The job is done after the form is displaying the requested record, so the End
Sub statement marks the end of the procedure:

End Sub

After the procedure is written, you can close the VBA Editor, as usual, save the
form, and try out the new control in Form view. The lookup should work when
you open the form and choose a customer from the QuickFind combo box.

Avoiding retyping common entries

Here’s another situation where a dynamic combo box can be very helpful in
data entry. Suppose that you have a table like Customers that includes a
City field, and as it turns out, most of your customers are from a few nearby
cities. Thus, you find yourself typing the same city name over and over again
as you enter customers’ data.

236 PartIv: Applying VBA in the Real World

Figure 10-18:
Unique
Cities
Qry lists

unique
city names
from the
City field.

As an alternative to typing the same city name repeatedly, you can make

the City field on the form a self-referential combo box that automatically lists
every unique city name that has ever been typed into the form. For example,
the first time you type Los Angeles as the city entry, that name gets added
to the City field’s drop-down list. In the future, when it’s time to type Los

Angeles into another record, you can just choose that name from the drop-
down list rather than retype it again.

To get started, you need a drop-down list of unique city names. You can use
a query to design the initial drop-down list. For example, Figure 10-18 shows
a query named UniqueCitiesQry that lists, in alphabetical order, every
unique city name in a field named City. Setting the Unique Values property
in the query’s property sheet to Yes provides the unique city names.

=j=:| UnigueCitiesQry - o

i) » | *

Custormers
Addressl

Address2
City

StateProv
TPCode
Country
Fhone
Fax

Property Sheet hd
Selection type: Query Properties
General

1 IEI ““““““ Description i
| DefaultView Datasheet
Field: | City Output &1l Fields Mo
Table: | Customers Top Walues Al
Sort: | Ascending ™ Unigque Walues Ves e
Shous: Unique Records Mo
Criteria: Source Database [current]
Source Cannect Str
() Record Locks Mo Locks
Recardset Type Dynaset
QDBC Timeout 60
Filter
Crder By
Max Records b

ar

In the query, switch to Datasheet view to make sure the query shows each
city name only once, and then close and save the query. You can then use the
query as the Row Source for any combo box or list box that’s bound to the
City field. For example, on any form that will display the City field from the

Customers table, you can create a unique value’s combo box by following
these steps:

1. In the Controls group, make sure the Use Control Wizards button is
highlighted, and then click the Combo Box tool.

2. Drag the City field from the Field List onto your form.
The Combo Box Wizard opens.

Chapter 10: Customizing Combo Boxes and List Boxes 23 7

3. On the first wizard page, select the] Want the Combo Box to Look Up
the Values in a Table or Query option button and then click Next.

4. On the second wizard page, choose the Queries option button and
then choose the query that shows the unique values
(UniquecCitiesQry in our example). Then click Next.

5. On the third wizard page, click the >> button to add the field to the
Selected Fields column; then click Next.

6. On the fourth wizard page, you can just click Next rather than a sort
order (because the query has already defined a sort order).

7. On the fifth wizard page, adjust your column width (if necessary),
and then click Next.

8. On the sixth wizard page, select the Store That Value in This Field
option button and the name of the field to which the combo box is
attached; then click Next.

Most likely, the correct options are already selected for you because
you already dragged the bound field’s name to the form in Step 2.

9. Type in a label for the control (City in our example) and then click
Finish.

That’s it. When you switch to Form view, the City drop-down list should display
the name of each unique city that’s in the Customers table. It might seem like
you're done, but there’s just one small problem: As you add and edit records in
the Customers table, the drop-down list in the City field cannot keep up at
first because the City field’s drop-down list doesn’t automatically requery with
each change.

The problem is easily solved with a single line of code that requeries the
City control every time a record is updated in the Customers table. To
requery a control with each update, follow these steps:

1. In the form’s Design view, double-click the gray area behind the
Design grid to get to the Form properties in the property sheet.

2. In the property sheet, click the Event tab and choose the After Update
event property.

3. Click the Build button next to the After Update event property and
choose Code Builder.

You're taken to a procedure named Form_AfterUpdate (), which runs
every time the current form updates a record in its underlying table.

23& PartIv: Applying VBA in the Real World

4. Within the procedure, type Me!fieldName.Requery where fieldName is
the name of the control that contains the self-referential combo box.

In our example, it’s
Me! [City] .Requery
5. Choose Filer>Close and Return to Microsoft Office Access.
6. Close and save your form.
In the future, whenever you add or change records in the Customers table
through the form, you can either type a new city name or choose an existing
city name from the City drop-down list. If you type a new city name, that

name is added to the drop-down list of existing field names automatically,
thanks to the little, one-line VBA procedure.

Chapter 11
Creating Your Own Functions

In This Chapter

Creating custom functions

Passing data to and from custom functions
Creating a function to fix upper- and lowercase problems
Creating a function to print check amounts

A s you might already know, Access has lots of built-in functions that you

can use in creating expressions. When you use the Expression Builder in
Access to create an expression, you can view a list of all the built-in functions
and also choose any function that you want to incorporate into the expression
you're writing.

First, you need to get to a place where one might actually write an expres-
sion. For example, if you're designing a table and decide to set a Default Value
for a field, as soon as you click the Default Value field property, a Build button
appears. Clicking that Build button opens the Expression Builder. If you set
the Default Value to =Date (), =Date () is an expression that uses the built-in
Date () function to return the computer’s date.

You can also use expressions to create calculated fields. For example, in
Chapter 10, you can read how the CustomerLookupQry query uses expres-
sions to create fields named SortName and EmailText. You can also use
expressions to create calculated controls on forms, where the control’s
Control Source property contains an expression that does some math

or returns some value based on other data in the same form.

The Role of Functions in VUBA

All the functions that are available to you in Access are also available to you
in VBA. In VBA, you use the same function syntax that you use in Access. In
Access, the Expression Builder is a good tool for finding out which functions
are available as well as how to use them. To open the Expression Builder,
open a form in Design view, click a text box control, click a property that

240 PartIv: Applying VBA in the Real World

\\J

|
Figure 11-1:
Click the
Build button
to open the
Expression
Builder.

can accept an expression (like Control Source or Default Value), and
then click the Build button in that property.

After you're in the Expression Builder, click the plus sign (+) next to functions
and then click Built-In Functions. If you then select <All> from the top of the
middle column, the right column lists all the built-in functions in alphabetical
order, as in Figure 11-1. Optionally, you can click a category name in the middle
column to limit the third column’s list to just the functions in that category.

When you click the name of a specific function in the third column, the syntax
for using that function appears in the lower-left corner of the Expression
Builder. For example, the Abs function is selected in Figure 11-1, so the window
shows Abs (number) . That just tells you that the Abs function expects a single
number to be passed to it. For more information about the selected function,
click the Help button in the Expression Builder.

Before you go trying to create your own custom functions, we recommend
knowing which functions are already available to you as built-in functions.
You don’t need to reinvent the wheel by creating a custom function that
duplicates a built-in function.

Build button

Selection type: Text Box
Textl v
Format| Data | Ewent | Other | Al
Mame Textl)
Control Source ol £
Format
Decimal Places Auta
Wisible = =
TextFormat | Expression Builder B3]
Datasheet Cap
Ok
Show Date Pic f
Width Cancel
Height
Top Unda
Left + -0 % &|=><<x and or mot Lke| ¢) paste Help
CiFomt <Al Abs e
[¥] Tables Arrays Asc 1
: Canversion Atn
3 Queries Database Avg
(3 Forms DatefTime CBool
(3 Reports Domain Aggregate CByte
[=1 Functions Errar Handling CCur

Financial
General
Inspection
Math
Messages
Program Flow
S0L Aggregate
Text

CDate
Cobl
Chec
Choose
Chr
Chr§
CInk
Clng
Cos
Count
C3ng
CStr
CurrentUser
faTe

(= Built-In Functions
(3 11-Pase Function
[Constants
|} Operatars
23 Common Expressions

Absinumbery
| =]

Function syntax Selected function

\\3

Chapter 11: Creating Your Own Functions

Every function returns some value. For example, the Date () function returns
the current date. You can see this for yourself right in the VBA Editor
Immediate window. For example, if you type this line

? Date ()

into the Immediate window and press Enter, the Immediate window shows
the value returned by the Date function, which is the current date.

We suppose we should point out that sometimes in VBA, you can often omit
any empty parentheses that follow a function name. In fact, the VBA Editor
might even remove the parentheses for you, and the statement will still work
after the VBA Editor removes the parentheses. For example, if you enter ?
Date in the Immediate window, you get the same result if you enter ? Date().
However, if the parentheses aren’t empty, you should definitely include both
the opening and closing parentheses in your code.

Look at another example. The Sgr () function accepts a single number as an
argument and returns the square root of that number. For example, if you
type the line

? Sgr(81)

into the VBA Editor Immediate window, you get back 9, which is the square
root of 81.

It often helps to imagine that the word of follows a function’s name. For
example, think of ? Sgr (81) in the Immediate window as “What is the
square root of 81?”

Creating Your Own Functions

In VBA, you can create your own, custom functions to add to those that are
built into Access. As a rule, put all custom functions in a standard module
rather than in a class module because putting a custom function in a standard
module makes the function available to all the objects in the current database.
In other words, any function that you create in a standard module can be used
just as though it were a built-in function throughout the current database.

Work through the whole process, starting with a simple example of a custom
function that calculates and returns the sales tax for any numeric value that’s
passed to it. You can put the function in any standard module — it doesn’t really
matter which. For this case, just start with a new, empty standard module.

1. In the Access database, click the Create tab.

241

2042 PartIv: Applying VBA in the Real World

\\3

2. In the Other group, select Module from the drop-down list on the far
right side of the Ribbon.

You’re taken to the VBA Editor with a brand-new, almost empty module
to work with.

All modules have the words Option Compare Database at the top
already, so that’s why we say that the module is almost empty. That first
declaration, Option Compare Database, just tells the module that
any comparisons using operators like = or > should be performed using
the same rules as the rest of the current database. There’s no need to
change that line.

3. Choose Insert=>Procedure from the VBA Editor menu bar.

The Add Procedure dialog box opens, asking for the name, type, and
scope of the procedure.

The name must start with a letter and cannot contain any blank spaces.
For this example, you can name the function SalesTax.

4. Choose Function as the type (because you're creating a custom func-
tion) and Public as the scope (so that all other objects within the data-
base can use the function).

5. Click OK in the Add Procedure dialog box.
The module contains the first and last lines of the procedure:

Public Function SalesTax()

End Function

Passing data to a function

In most cases, you want your function to accept one or more values that
you pass to it as data for the function to operate on. For example, the Sqr ()
function accepts a single argument, which must be a number. To define the
arguments that your custom function accepts, use the following syntax,
inside the parentheses that follow the function name:

name As Type

where name is just some name that you make up to use as a placeholder for
the incoming value, and Type is a valid data type. For example, you might
want the custom SalesTax () function to accept a single numeric value as
an argument. You need to make up a name for that, so just call it AnyNum. You
also have to define that incoming value as some sort of number. Most likely,
the passed value is a Currency value anyway, so you can modify the custom
SalesTax () function as follows to accept a single number as an argument:

Chapter 11: Creating Your Own Functions 243

Public Function SalesTax (AnyNum As Currency)

End Function

What the first line really means is “Expect some number to be here when
called. Refer to that number as AnyNum and treat it as a Currency number.”

A function can accept any number of arguments. If you want a function to
accept multiple arguments, give each argument a name and data type by
using the same preceding syntax. Separate each definition with a comma. The
SalesTax () function needs to accept only one argument, so don’t modify
that one. However, just as a general example, if you want a function to accept
two arguments, you define each as in this example:

Public Function funcName(AnyNum As Currency, AnyText As String)

End Function

Returning a value from a function

A function can also return a value — that is, only one value because a function
can’t return multiple values. To make your function return a value, you just add

As Type

where Type is a valid data type, to the end of the first statement, outside the
closing parenthesis of the function name. You specify only the data type of
the returned value — don’t give it a name. For example, you might want the
SalesTax () function to return a single value that’s a Currency number. In
that case, modify the SalesTax () function this way:

Public Function SalesTax (AnyNum As Currency) As Currency
End Function

The custom function doesn’t return its value until all the code in the procedure
has been executed. To define the value returned by the function, use the syntax

functionName = value

where functionName is the same as the name of the function itself, without
the parentheses, and value is the value that you want the function to return
(although the value can be an expression that calculates a return value).

24/, PartIv: Applying VBA in the Real World

Suppose you want to be able to pass to the SalesTax () function some
Currency value, like $100.00 or $65.45 or whatever, and have it return the
sales tax for that amount. To pick a number out of a hat, the sales tax rate is
6.75 percent. The following SalesTax () function performs the appropriate
calculation (by multiplying the number that’s passed to it by 0.0675) and then
returns the results of that calculation:

Public Function SalesTax (AnyNum As Currency) As Currency
'Multiply passed value by 6.75% (0.0675) and
'return the result of that calculation.
SalesTax = AnyNum * 0.0675

End Function

Testing a custom function

You might remember, earlier in this chapter, when we said that a public

custom function in a standard module can be used anywhere that a built-in
function can be used. After you type in the SalesTax () function, you can
see that for yourself by testing it the same way that you test a built-in func-
tion. For example, if you type the following line into the Inmediate window

? SalesTax(100)
and then press Enter, you get

6.75
because the sales tax on $100.00 is $6.75. If you type
? SalesTax(14.99)
and press Enter, you get 1.0118 because the sales tax on $14.99 is about $1.02.

In case you're wondering why all the numbers aren’t automatically rounded
off, it’s because the Immediate window always displays its results as sort of
a plain number. In real life, you don’t create a function just to use it in the
Immediate window. More likely, you use the custom function in queries,
forms, reports, or macros.

Suppose you create the preceding SalesTax () function and then choose
Filew>Close and Return to Microsoft Office Access from the VBA Editor menu
bar. Next, you want to create a query that lists the unit price and sales tax for
all the records in a table. Because you can use a custom function just like you
use a built-in one, you can set up the query as shown in the Query Design
portion of Figure 11-2, where the Unit Price column refers to a field in the
Order Details table, and Tax is a calculated field that uses the custom
SalesTax () function.

Figure 11-2:
Custom
Sales
Tax ()
function
used in

aquery's
calculated
field.

Chapter 11: Creating Your Own Functions 245

Fawem S
-
Order Details E
w
OrderIDr
Praducil
Qhy
Unit Price
-
L »
Field: | Unit Price Tax: SalesTax([Unit Price]] :=
Table: | Order Details E)
Sort:
Shiot :j:-‘ Queryl - o x
GRS UnitPrice - Tax - >
or:
$100.00 $6.75
4 [$1,000.00 467.50 1
$10.00 S0.68
$500.00 533.75
429,99 $2.02
59,95 $0.67
$7.99 50.54
532,99 $2.70
fon oo B am b
Record: M 4 [1of13 | b M b { Search

The lower half of Figure 11-2 shows the results of the query in Datasheet view.
The Unit Price column displays the unit price from each record in the underly-
ing table. The Tax column shows the sales tax amount for each unit price.

The query in Figure 11-2 is just an example, of course. You can use the custom
SalesTax () function anywhere that you could use a built-in function, such as
in the Control Source property of a calculated control or wherever you
would use a built-in function in a VBA statement.

A Proper Case Function

Take a look now at a somewhat larger custom function that does more than

a simple match calculation. Suppose you have a table filled with names and
addresses, but for whatever reason, all the text is in uppercase (or lowercase)
letters. For example, maybe the table has a Name field containing names like
JOE SMITH or joe Smith. You want to tidy that up, but you certainly don’t want
to go in and edit all the data manually.

Technically, you could just use the built-in StrConv (string, vbProperCase)
function to solve this problem. For example, StrConv ("JOE SMITH",
vbProperCase) returns Joe Smith. Problem solved — except that StrConv ()
doesn’t take into consideration little quirks like the uppercase D in McDonald.
StrConv ("MCDONALD", vbProperCase) returns Mcdonald. Likewise,
StrConv("p.o. box 123", vbProperCase) returns P.o. Box 123,
which doesn’t look quite right because the O should be uppercase.

2056 Part\v: Applying VBA in the Real World

\\J

To get around that, you can create your own, custom function that takes any
string as its argument and then returns that string with initial caps (the first
letter of each word is capitalized), just like the StrConv () function does.
But your custom function can then use some If...End If statements to
correct any little problems, like the Mcdonald and P.o. Box examples.

You don’t really have to type any of the functions shown in this book into
your own database. You can download them from www . dummies.com/go/
access2007vbaprog and just import them into a database.

You might want to use this function to fix several fields in several tables, so
you want the function to be public, like any built-in function. For starters, you
need to open or create a standard module. Think up a name for your function
(we call this one PCase ()) and create an appropriate function. In this case,
you need to pass a string (which we refer to as AnyText) to the function. The
return value for the function is also a string (whatever text was passed is con-
verted to initial caps). Listing 11-1 shows the function in its entirety. We take
a look at how it works in a moment.

Listing 11-1: Sample PCase() Custom Function

'The PCase() function accepts any string, and returns
'a string with words converted to initial caps (proper case).
Public Function PCase(AnyText As String) As String
'Create a string variable, then store AnyText in that variable already
'converted to proper case using the built-in StrConv() function
Dim FixedText As String
FixedText = StrConv(AnyText, vbProperCase)

'Now, take care of StrConv() shortcomings

'"If first two letters are "Mc", cap third letter.
If Left(FixedText, 2) = "Mc" Then
FixedText = Left (FixedText, 2) & _
UCase (Mid (FixedText, 3, 1)) & Mid(FixedText, 4)
End If

'If first three letters are "Mac", cap fourth letter.
If Left(FixedText, 3) = "Mac" Then
FixedText = Left (FixedText, 3) & _
UCase (Mid (FixedText, 4, 1,)) & Mid(FixedText, 5)
End If

'"If first four characters are P.o. then cap the "O".

If Left(FixedText, 4) = "P.o." Then
FixedText = "P.0." & Mid(FixedText, 5)
End If

'Now return the modified string.
PCase = FixedText
End Function

\\J

Chapter 11: Creating Your Own Functions 24 7

Looking at how PCase () works

Before we talk about using the PCase () function, take a moment to see how
it works. PCase () uses several built-in Access functions — StrConv (),
Left (), UCase (), and Mid () — to work with chunks of text in the passed
string. For the sake of example, see what happens when PCase () gets called
with something like PCase ("MACDONALD") .

When PCase () is called in this example, AnyText becomes a string variable
that contains the text MACDONALD. The AnyText argument is defined as a
string in the Function () statement itself, as shown here:

Public Function PCase (AnyText As String) As String

The next two statements declare a new string variable named FixedText,
which acts as a placeholder for text being operated on by the function. The
Dim statement just declares the variable as a string. The second statement
stores a copy of AnyText, already converted to the proper case by using the
StrConv () method:

Dim FixedText As String
FixedText = StrConv (AnyText, vbProperCase)

In VBA, you can use constants (like vbProperCase) rather than numbers
(like 3) in built-in functions. For a list of other available constants for the
StrConv () function and how to use them, highlight the word StrConv in
the code and then press F1 to open the Help feature for that function.

Back in the example of calling the function, by the time the two preceding
statements have been executed, the FixedText variable contains Macdonald.
That’s close to what you need, but the function isn’t done working yet.

The next statements say, “If the first two letters of FixedText are Mc, leave
the first two characters of FixedText unchanged, followed by changing the
third letter to uppercase, followed by all the rest unchanged.”

'If first two letters are "Mc", cap third letter.
If Left (FixedText, 2) = "Mc" Then
FixedText = Left (FixedText, 2) & _
UCase (Mid (FixedText, 3, 1)) & Mid(FixedText, 4)
End If

Because FixedText at this moment contains Macdonald, this block of code
is ignored because its first two letters are ma, not mc. By the time the preced-
ing statements execute (in this example), FixedText still contains
Macdonald. Nothing has changed there.

248 PartIv: Applying VBA in the Real World

The following block of code says, “If the first three characters are mac,
change FixedText to the first three letters of itself, followed by the fourth
letter in uppercase, and then leave the rest of the string unchanged.”

'If first three letters are "Mac", cap fourth letter.
If Left (FixedText, 3) = "Mac" Then
FixedText = Left (FixedText, 3) & _
UCase (Mid (FixedText, 4, 1)) & Mid(FixedText, 5)
End If

In the current example, FixedText contains Macdonald when code execution
reaches the If statement. And the first three letters of FixedText are indeed
mac; thus, the code inside the If. . .End If block executes. In doing so, it
changes FixedText to its own first three letters unchanged (Mac), plus the
fourth letter in uppercase (D), plus the rest of the string, unchanged (onald).
By the time execution gets past the End If statement in this example,
FixedText contains MacDonald.

The following block of code does basically the same thing as the two preced-
ing blocks: It looks to see whether the first four letters of the string are Po. —
and if so, changes those first four letters to PO. Of course, the first four let-
ters of MacDonald aren’t P.O., so that whole block of code is skipped over.

These final statements assign the current contents of the FixedText vari-
able (MacDonald, now) to the function name sans parentheses (PCase).
The End Function statement then ends the function and returns the con-
tents of PCase (MacDonald) to the code (or object) that called the function:

PCase = FixedText
End Function

If you type ? PCase(“macdonald”) into the Immediate window, it returns
MacDonald. If you type ? PCase(“P.O. BOX 123”) into the Immediate window,
you get P.O. Box 123.If you type ? PCase(*“HELLO WORLD”) into the
Immediate window, you get Hello World. The StrConv () function inside
PCase () still does its thing. The If...End If statement just makes minor
corrections for Mc, Mac, and P.O..

Using the PCase () function

Like with any custom function, you can use PCase () wherever you would
use a built-in function. Look at an example where you have a large table of
names and addresses and everything is in uppercase, as in Figure 11-3. For
the sake of example, call this table UglyCustomers (which isn’t an insult

to the customers — just the way their names are typed in!).

Figure 11-3:
Sample
problem
table in all
uppercase.
|

\NG/
Vg\\\

Figure 11-4:
Query to fix
uppercase
problems in
a table.
|

Chapter 11: Creating Your Own Functions 24 9

juglyCusmmers - =
CustlD - FirstName - LastName - Company - Address - City
1 TORI PINES ARBOR CLASSICS 345PACIFIC COAST HWY ESCONDIDO
2 MARILOU MIDCALF 500, 939-6TH STREET SW EDMONTON
3 WILMA WANNABE WANNABE WHISTLES 1121 RIVER ROAD, SUITE 23 CORNBALL
4 FRANKLY UNCTUOUS 734 N. RAINBOW DR. STATEN ISLAMC
5 MARGARET ~ ANGSTROM P.O.BOX 1295 DANEVILLE
S MARGIE MCDONALD 1370 WASHINGTON LANE BUCKINGHAM
8 HORTENSE HIGGLEBOTTOM ABCPRODUCTIONS P.0. BOX 1014 ESCONDIDO
9 PENNY MACDOUGAL P.O.BOX 10 MEW HOPE
10 MATILDA STARBUCK 323SHIRELANE SKEEDADLE
11 SCOTT AND N4 SCHUMACK 225 HOLLYWOOD DRIVE HOLLYWODOD
12 LINDA PETERSON B23PASEQ CANCUN REDMOND
13 INO YASHA 1783 PORT CARLO CIRCLE FRAMINGTOM
15 DOMINIC MCFERRIN 45 ALBANY ROAD MARITIME
16 ROSEMARY STICKLER 1205 HUNTINGDON CT. WILLOW GROV
17 EDMUND KANE 615 LEVICK STREET PINE VALLEY w
Record: M < [1of33 | b M b | O Search L —T— >

Now that you have a PCase () function that can convert text to the proper
case — without messing up the Mc’s, Mac’s and P.O.’s — you can use that
function in an update query to convert all the text fields to the proper case.

Test your function on a copy of your original table first. That way, if you make
any mistakes that mess up the data, only the copy of the table gets ruined.

To create an update query to do the job, close the VBA Editor to get back to
Access. Then create a new query that uses the problem table as its source.
Next, in the (Query Tools) Design tab, choose Update from the Query Type
group to convert the query to an update query. The Query By Example
(QBE) grid gains an Update To column, in which you can add an expression
that defines the new value for a field. Thus, you can add any Text field that
needs converting to the QBE grid, and then you can use the expression
=PCase ([fieldname]) (wWhere fieldname is the same name as the field
at the top of the column) to convert that field to the proper case.

Figure 11-4 shows an example in which we’re fixing the FirstName,
LastName, Company, Address, and City fields. Notice that the Update To
row for the FirstName field is PCase ([FirstName]). The Update To row
for the LastName field is PCase ([LastName]), and so forth. In other words,
when the query runs, you want it to change the contents of that field, in
every record, to the proper case.

’3:—‘ Fix UglyCustomers Qry = = -
a
UglyCustomers E
- N
¥ custin]
Firsthame H
Lasthiame
Compary
Aderess -
-
o fim] »
Field: |Firsthame | LastHame Company Address City =
Table: | UglyCustamers UglyCustomers UglyCustomers UglyCustomers UghyCustomers E
Update To: | PCasel[FirstMame]l PCasellLastName]l | PCaselMzl[Company]l| PCasel[Address)l | PCase([Cityl)
Criteria:
ar: -
4] 3

250 PartIv: Applying VBA in the Real World

MBER
@@
&

Figure 11-5:
Convert text
fields by
using the
custom
PCase()
function.
|

The query shown in Figure 11-4 wouldn’t work in a database that doesn’t
contain the PCase () function. It works only in a database that has the
PCase () function defined in one of its standard modules.

Because the query shown in Figure 11-4 is an action query, you need to run
the query before it can do anything. Follow these steps:

1. Click the Run button in the Results group of the (Query Tools)
Design tab.

You get the standard warning message (You are about to update
X TOWS . . .).

2. Click Yes and wait a second. Then just close and save the query.

3. Back in the Navigation pane, click Tables, and then click the table that
you changed.

If all went well, the fields are in the proper case. Figure 11-5 shows the
result of running the sample query on the UglyCustomers table.

& ughyCustomers = x
CustlD - FirstName - LastName - Carmpany - Address - City - -
1/Tori Pines Arbor Classics 345 Pacific Coast Hwy Escondido
2 Marilou Midealf 500, 999-6th Street Sw Edmonton |
3 Wilma Wannabe Wannabe Whistles 1121 River Road, Suite 23 Cornball 1
4 Frankly Unctuous 734 M. Rainbow Dr. Staten Island
5 Margaret Angstrom P.0. Box 1295 Daneville
6 Margie MeDanald 1370 Washington Lane Buckingharn
8 Hortense Higglebottorn Abc Productions P.O. Box 1014 Escondido
39 penny MacDougal P.0.Box 10 Mew Hope
10 Matildz Starbuck 323 Shire Lane Skeedadle
11 Seott And Nat: Schurnack 228 Hollywood Drive Hollywood
12 Linda Peterson 823 Paseo Cancun Redmond
13 Ino Yasha 1783 Port Carlo Circle Framington
15 Dorminic MeFerrin 45 Albany Road IMaritime
16 Rosermary stickler 1205 Huntingedon Ct. Wwillow Grove
17 Edrmund Kane 615 Levick Street Pine Valley -
Record: M ¢ (1of33 | b M b Search L} E—TT— »

As you can see, the names and addresses in the fixed UglyCustomers table
look a lot better than those in the original table. And the Mc and Mac last
names — as well as the P.O. Box entries — look okay, too. Still, not everything
is perfect. For example, Abc Productions probably should be ABC Productions.
However, it would be pretty tough to write a function that deals with every
conceivable exception to the standard use of uppercase letters in proper
nouns. You might have to polish some fields manually, but editing a few of
them is a heck of a lot easier than retyping them all!

Chapter 11: Creating Your Own Functions 25 1

A Function to Print Check Amounts

Suppose you want to use Access to print checks from a table of payable
amounts. You have your printer and your preprinted checks, and maybe you
already created a report format to print the checks. What about the part of
the check where you’re supposed to write out the dollar amount, such as
“One Hundred Thirty-Five and 49/100”? How can you get that part of the
check printed? No built-in function is capable of doing that for you. And
heaven knows you don’t want to type all those words!

The solution is a custom function, like Numword (), that takes as its argument
any number and returns that number translated to words. For example, typing
? NumWord(1234.56) returns One Thousand Two Hundred Thirty-Four
and 56/100. Because the NumWord () function is fairly lengthy, download it
from www . dummies.com/go/access2007vbaprog rather than try to type it
in yourself. Just in case, Listing 11-2 holds the whole kit and caboodle, which
you can place in any standard module in any database.

Listing 11-2: Custom NumWord() Function

'NumWord () converts a number to its words.

'For example, NumWord(999.99) returns

'Nine Hundred Ninety-Nine and 99/100.

Public Function NumWord (AmountPassed As Currency) As
String

'Declare some general working variables.

Dim English As String, strNum As String

Dim Chunk As String, Pennies As String

Dim Hundreds As Integer, Tens As Integer

Dim Ones As Integer, StartVal As Integer

Dim LoopCount As Integer, TensDone As Boolean

'Make array of number words called EngNum.
Dim EngNum(90) As String

EngNum(0) = ""
EngNum(l) = "One"
EngNum(2) = "Two"
EngNum(3) = "Three"
EngNum(4) = "Four"
EngNum(5) = "Five"
EngNum(6) = "Six"
EngNum(7) = "Seven"
EngNum(8) = "Eight"
EngNum(9) = "Nine"
EngNum(10) = "Ten"

(continued)

252 PartIv: Applying VBA in the Real World

Listing 11-2: (contmued)

EngNum (11) "Eleven"
EngNum (12) "Twelve"
EngNum (13) "Thirteen"
EngNum (14) "Fourteen"
EngNum (15) "Fifteen"
EngNum (16) "Sixteen"
EngNum (17) "Seventeen"
EngNum (18) "Eighteen"
EngNum (19) "Nineteen"
EngNum (20) "Twenty"
EngNum (30) "Thirty"
EngNum (40) "Forty"
EngNum (50) "Fifty"
EngNum (60) "Sixty"
EngNum (70) "Seventy"
EngNum (80) "Eighty"
EngNum (90) "Ninety"

'** Tf Zero or Null passed,
If Nz (AmountPassed) = 0 Then
NumWord =

"VOID"

Exit Function

End If

just return "VOID".

'** gtrNum is the passed number converted to a string.
strNum = Format (AmountPassed, "000000000.00")

'Pennies variable contains last two digits of strNum
Pennies = Mid(strNum, 11, 2)

'Prep other variables for storage.
English = ""

LoopCount = 1

Startval = 1

'** Now do each 3-digit section of number.
Do While LoopCount <= 3
Chunk = Mid(strNum, StartVal, 3) '3-digit chunk.

Hundreds = Val (Mid(Chunk, 1, 1)) 'Hundreds portion.
Tens = Val (Mid(Chunk, 2, 2)) 'Tens portion.
Ones = Val (Mid(Chunk, 3, 1)) 'Ones portion.

'** Do the hundreds portion of 3-digit number.
If val (Chunk) > 99 Then
English = English & EngNum(Hundreds) & " Hundred

"

End If

Chapter 11: Creating Your Own Functions 253

'** Do the tens & ones portion of 3-digit number.
TensDone = False

'**% Is it less than 107

If Tens < 10 Then

English = English & " " & EngNum(Ones)
TensDone = True
End If

'** Is it a teen?

If (Tens >= 11 And Tens <= 19) Then
English = English & EngNum (Tens)
TensDone = True

End If

'** Tg it evenly divisible by 10°?

If (Tens / 10) = Int(Tens / 10) Then
English = English & EngNum (Tens)
TensDone = True

End If

'** Or is it none of the above?

If Not TensDone Then
English = English & EngNum((Int(Tens / 10)) * 10)
English = English & "-" & EngNum(Ones)

End If

'** Add the word "Million" if necessary.

If AmountPassed > 999999.99 And LoopCount = 1 Then
English = English & " Million "

End If

'** Add the word "Thousand" if necessary.

If AmountPassed > 999.99 And LoopCount = 2 Then
English = English & " Thousand "

End If

'** Do pass through next three digits.
LoopCount = LoopCount + 1
Startval = Startval + 3
Loop

'** Done: Return English with Pennies/100 tacked on.
NumWord = Trim(English) & " and " & Pennies & "/100"

End Function

That function is too long to show in the Code window (and too boring to
discuss in any detail right now). Just assume that you already stuck the
entire NumWord () procedure into a standard module in your database
and now you want to use the procedure to print checks.

25/, PartIv: Applying VBA in the Real World

Figure 11-6:
Sample field
names and
data types
for printing
checks.
|

Figure 11-7:
Sample
report
format for
printing
checks.
|

Using the NumWord function

For the sake of example, assume that you already put NumWord () into a stan-
dard module in your database. You already have a table that contains data to
be printed on checks. Just to give this whole example some context, suppose
that you have a table with field names and data types similar to those shown
in the sample Payables table in Figure 11-6. The top-left side of the figure
shows the table’s structure, and the bottom-right side of the figure shows
some sample data in the table.

EH payables - = x
Field Name Data Type Description &)
¥ | CheckiD AutoNurmber Primary Key Bl
PayTo Text Make check out to whom?
CheckArmt Currency Amount of Check
DatePrinted Date/Time Date Check was printed (blank if not printed)?
Field Properties
General |Laokup
Format Currency
Decimal Places
Input Mask
Caption
Default Value]
Validation Rule Afield name can be up to 64 characters long,
Validation Text induding spaces, Press FLfor help on field
Required No names.
Indexced [
Smart Tags & payables - = x
Text Align Right ChecklD - PayTo CheckArmt ~ |DatePrinted - |~
]
1 Tori Pines 41,331.47 =
2 Marilou Midcalf $123,456.78
3 Wilma Wannabe $9,876,543.00
4 Frankly Unctuous 864445
5 Margaret Angstrom 519.37 L
Record: M 1ef33 F MK Search Al »

Next, you need to create a report format for printing on the checks. When you
get to the part of the report where the check amount needs to be printed, just
add a calculated control that prints the NumWord of the numeric check amount.
For example, in the PrintChecks report shown in Figure 11-7, you can see
where we placed various controls to line up with blanks on each check (even
though we don'’t really have a preprinted check here to show you). Presumably,
all the other info the check needs is already printed on the check.

B8 printchecks Rpt = x

A T e e

Detail

=Datef)

CheckAr

=Num\ord{[CheckAmt])

4 m | »

|
Figure 11-8:
Print
preview of

a sample
check-
printing
report.
|

Chapter 11: Creating Your Own Functions 255

In the report format shown in Figure 11-7, the PayTo and Checkamt fields
come straight from the underlying Payables table. The check date and check
amount in words are both calculated controls. The calculated control for
printing the check date has as its Control Source property the expression
=Date (), which prints the current date on the check. The calculated control
for printing the check amount in words contains this expression as its

Control Source property:

=NumWord ([CheckAmt])

There, the field name Checkamt refers to the field named Checkamt, which
contains the check amount expressed as a number. Once again, the example
illustrates how after you add a custom function to a standard module, you
can use that function anywhere that you would use a built-in function. For
example, the check date is printed by using the built-in Date () function, and
the check amount (in words) is printed by the custom Numword () function.

Figure 11-8 shows a print preview for the report in Figure 11-7 (with some
dashed lines artificially thrown in to make it easier to see where each check
begins and ends). As mentioned, we assume that any other information that
needs to be printed on the check is already on the checks.

B&l printchecks Rpt

Tori Pines

One Thousand Three Hundred Thirty-One and 470100

Tinrz2007

§1,331.47

Marilou Midealf

One Hundred Twenty Three Thousand Four Hundred Fifty-Six and 78100

Tioz007

$123,456.78

Wilma ¥Wannabe

Sewenty Six Thousand Five Hundred Forty-Three and 000100

Tioz007

§76,543.00

I »

Looking at how NumWord () works

NumWord () is a fairly lengthy procedure mainly because the rules for con-
verting numbers to words, in English, are a little complicated. But like any

250 PartIv: Applying VBA in the Real World

procedure, NumWord () is just a series of small decisions and steps needed
to get the job done.

The first line of the procedure, as follows, defines the name of the procedure,
NumWord (), and declares that it will accept a number Currency value
(number) as an argument. Whatever number gets passed to the argument is
referred to as AmountPassed in the rest of the procedure. The As String
part at the end declares that NumWord () returns a string (text) to whatever
called the function:

Public Function NumWord (AmountPassed As Currency) As
String

The next lines declare some variables used for temporary storage by the
procedure. Because there are lots of things to keep track of in this procedure,
you need quite a few variables to store bits of information. In the following
Dim statements, we're just declaring the names and data types of the vari-
ables. You can see how to put them to use later in the procedure:

'Declare some general working variables.
Dim English As String, strNum As String
Dim Chunk As String, Pennies As String
Dim Hundreds As Integer, Tens As Integer
Dim Ones As Integer, StartVal As Integer
Dim LoopCount As Integer, TensDone As Boolean

Next, the statement Dim EngNum(90) As String declares any array of vari-
ables, all containing text. The variables created by the statement are named
EngNum (0), EngNum (1), EngNum (2), and so forth, up to EngNum (90) . The
Dim statement, as always, just sets aside space for those 90 variables. The
variables don’t contain any data at first:

Dim EngNum(90) As String

The next statements assign text to some of the variables that the Dim state-
ment just declared. You don’t need all 90 variables here — just enough of
them to cover every possible unique number word. For example, you need
ninety as a unique word, but you don’t need ninety-one as a unique word
because it can be built from two words: ninety and one.

The subscript for each variable matches the word that the variable contains.
For example, EngNum (1) contains "One", EngNum(11) contains "Eleven",
EngNum (70) contains "Seventy", and so forth. In a sense, you already
solved part of the problem just by having the array subscript match the word
that you need:

A\

Chapter 11: Creating Your Own Functions 25 7

EngNum(0) = ""
EngNum(l) = "One"
EngNum (2) = "Two"
EngNum(3) = "Three"
EngNum(4) = "Four"
EngNum(5) = "Five"
EngNum(6) = "Six"
EngNum (7) = "Seven"
EngNum(8) = "Eight"
EngNum(9) = "Nine"
EngNum (10) = "Ten"
EngNum(11l) = "Eleven"
EngNum(12) = "Twelve"
EngNum(13) = "Thirteen"
EngNum(14) = "Fourteen"
EngNum(15) = "Fifteen"
EngNum(16) = "Sixteen"
EngNum(17) = "Seventeen"
EngNum(18) = "Eighteen"
EngNum(19) = "Nineteen"
EngNum (20) = "Twenty"
EngNum (30) = "Thirty"
EngNum (40) = "Forty"
EngNum (50) = "Fifty"
EngNum (60) = "Sixty"
EngNum (70) = "Seventy"
EngNum(80) = "Eighty"
EngNum (90) = "Ninety"

For the lowdown on arrays, see Chapter 4.

With all the needed variables declared, the procedure can get to work on
translating whatever number was passed to it. The first If. . .End If block
takes care of the problem of a zero or null value being passed to the function.
The built-in Nz () (null-to-zero) converts a null value to a zero. Thus, the If
statement Nz (AmountPassed) = 0 Then really says, “If the amount that’s
passed to me to work on is zero (or a null), then do the following lines up to
End If.Otherwise, ignore those statements.”

What happens if AmountPassed is a zero or null? The statement NumWord =
"vOID" makes the return value for the function into the word vOID, and the
Exit Function statement tells VBA to just bail out of the procedure now
without doing anything else:

'** Tf Zero or Null passed, just return "VOID".
If Nz (AmountPassed) = 0 Then

NumiWord = "VOID"

Exit Function
End If

258 PartIv: Applying VBA in the Real World

Assuming that the amount passed to NumWord () is not a zero or null, execu-
tion then picks up at the following statement. This one is a little tricky. It uses
the built-in Format function to make a string named strNum that exactly
matches the amount passed. However, this string has exactly nine zeroes to
the left of the decimal point and also two to the right. Suppose NumiWord gets
called with NumiWord (7609511.98). By the time the following statement
executes, the AmountPassed variable (a number) contains 7609511.98,
and strNum contains (as a string) 007609511 . 98. Having those leading
zeroes in place makes it easier to make decisions about how to handle the
number later in the procedure:

'** gtrNum is the passed number converted to a string.
strNum = Format (AmountPassed, "000000000.00")

Getting back to the NumWord (7609511 .98) call, after the preceding statement
executes, you have two copies of the amount that’s passed to work with: the
original AmountPassed (a number) and strNum, which is basically that same
number with a fixed amount of leading zeroes:

AmountPassed = 7609511.98
strNum = "007609511.98"

Next, the following statement grabs the last two digits from StrNum and
stores that value in a variable named Pennies:

'Pennies variable contains last two digits of strNum
Pennies = Mid(strNum, 11, 2)

In this example, where we're using 7609511.98 as the number that’s passed,
the variable named Pennies contains the following line after the preceding
statement executes:

Pennies = "98"

Now you need to get some starting values in some variables for the code
to follow. The variable named English (which will eventually contain the
entire number word) starts off as a zero-length string ("). LoopCount and
StartVval each get values of 1. You can see how to use those variables in
the code that follows the line ' Prep other variables for storage.

'Prep other variables for storage.
English = ""
LoopCount = 1
Startval = 1

Chapter 11: Creating Your Own Functions 259

Next, start a loop that repeats until the LoopCount variable is greater than 3.
Within that tool, the first thing you do is peel off chunks of the strNum variable
and assign them to integer variables:

'** Now do each 3-digit section of number.

Do While LoopCount <= 3
Chunk = Mid(strNum, Startval, 3) '3-digit chunk
Hundreds = Val (Mid(Chunk, 1, 1)) 'Hundreds portion
Tens = Val (Mid(Chunk, 2, 2)) 'Tens portion
Ones Val (Mid (Chunk, 3, 1)) 'Ones portion

Getting back to the initial st rNum number, 007609511.98, by the time
the preceding statements execute, the following variables contain the
corresponding values:

Chunk = "007"
Hundreds = 0
Tens = 7
Ones = 7

The next statement says, “If the value of chunk (007, right now) is greater
than 99, add EngNum (Hundreds) plus the word hundred to the string.” In the
current example, where Chunk is not greater than 99, nothing happens in this
If...End If block:

'** Do the hundreds portion of 3-digit number
If Val (Chunk) > 99 Then

English = English & EngNum(Hundreds) & " Hundred "
End If

The next statements set the Boolean variable TensDone to False. Then the
next statement says, “If the Tens portion is less than 10, add a blank space and
EngNum (Ones) to the English variable, and change TensDone to True.”

'** Do the tens & ones portion of 3-digit number
TensDone = False

'** Tg it less than 107

If Tens < 10 Then

English = English & " " & EngNum(Ones)
TensDone = True
End If

In this case, where Tens contains 7, the statement is true. By the time the
preceding statements have executed (given the sample number), the follow-
ing variables have the corresponding values:

English = " Seven"
TensDone = True

26() PartIv: Applying VBA in the Real World

The next If...End If statement deals with numbers in the range of 11-19.
It says, “If the Tens number is between 11 and 19, add EngNum (Tens) to
English and set TensDone to True.” In this example, Tens is 7, which is
not between 11 and 19, so this If block is skipped over. The contents and
English and TensDone haven’t changed:

'** Tg it a teen?

If (Tens >= 11 And Tens <= 19) Then
English = English & EngNum (Tens)
TensDone = True

End If

The next block deals with Tens values that are evenly divisible by 10, such as
10, 20, 30, and so forth, up to 90. In this case, where Tens contains 7 (which
is not evenly divisible by 10), nothing happens, so the English and
TensDone variables hang on to their current values:

'** Tg it evenly divisible by 10°?

If (Tens / 10) = Int(Tens / 10) Then
English = English & EngNum(Tens)
TensDone = True

End If

The next Tf block kicks in only if the Tens portion of the number is still
unresolved: that is, only if TensDone is still False. In this case, where
TensDone got set to True already, the whole If...End If blockis once
again skipped over:

'** Or is it none of the above?

If Not TensDone Then
English = English & EngNum((Int(Tens / 10)) * 10)
English = English & "-" & EngNum(Ones)

End If

Next, look at adding the word million to the word. The If statement says,
“If the amount that’s passed is greater than 999,999.99 and the LoopCount
variable equals one, add the word Million to English.”

'** Add the word "Million" if necessary

If AmountPassed > 999999.99 And LoopCount = 1 Then
English = English & " Million "

End If

Using the running example, the number that’s passed is greater than
999,999.99, and right now LoopCount equals 1. By the time the preceding If
statement executes, the English variable has had the word Million tacked
onto it, like this:

English = "Seven Million"

Chapter 11: Creating Your Own Functions 26 1

The next statement says that if the amount that’s passed is greater than
999.99 and LoopCount equals 2, tack on the word Thousand. In the running
example, where LoopCount now equals 1, this whole block of code is
skipped over:

'** Add the word "Thousand" if necessary

If AmountPassed > 999.99 And LoopCount = 2 Then
English = English & " Thousand "

End If

The next statements increase the value of the LoopCount variable by 1 and
increase the value of the Startval variable by 3; then the Loop statement
sends execution back up to the Do While LoopCount <= 3 statement for
the next pass through the loop.

Converting the rest of the number involves more of the same. The next pass
through the loop just has to work with the next three-digit chunk of strNum.
In this example, where strNum contains 007609511 .98, the next three
digits after 007 are 609. By the time Chunk, Hundreds, Tens, and Ones have
received their new values near the top of the loop, those variables contain
these values:

Chunk = 609
Hundreds = 6
Tens = 9
Ones = 9

Looking through just the If. . .End If statements that prove true for this
second pass through the loop, the statement val (Chunk) > 99 is true this
time. Thus, the statement English = English & EngNum(Hundreds) &
" Hundred " executes, adding EngNum (6) plus the word "Hundred" to
EngNum. By the time that statement has executed, the English variable has
a new value:

English = "Seven Million Six Hundred"

The statement If Tens < 10 Then is also True on this second pass
through the loop, so the statement English = English & " " &
EngNum (Ones) adds a space and EngNum (9) to the English variable:

English = "Seven Million Six Hundred Nine"

No other If statement proves True here until If AmountPassed >
999.99 And LoopCount = 2 Then executes. Because it’s true that
AmountPassed is greater than 999.99 and LoopCount = 2 right now,
the statement English = English & " Thousand " executes, and
the English variable contains this line:

English = "Seven Million Six Hundred Nine Thousand"

262 PartIv: Applying VBA in the Real World

Now you're at the bottom of the loop again, where LoopCount gets increased
by 1 and StartVval gets increased by 3. By the time the Loop statement
sends control back up to the Do While statement, those variables contain
these values:

LoopCount = 3
StartvVal = 9

At the top of the loop, the Chunk, Hundreds, Tens, and Ones variables all
get new values, as follows, by peeling off the last three digits to the left of the
decimal point:

Chunk = "511"
Hundreds = 5
Tens = 11
Ones = 1

Once again, execution goes through all the statements, but only certain
If...End If statements prove true. For example, the first True statement,
If val (Chunk) > 99, executes the statement English = English &
EngNum(5) & " Hundred ".Bythetimethat If...End If blockhas
executed, the English variable contains this line:

English = "Seven Million Six Hundred Nine Thousand Five Hundred"

Going through the procedures that follow, the next If statement to prove
Trueis If (Tens >= 11 And Tens <= 19) Then. So the statement
English = English & EngNum(11) executes, making the English
variable contain this line:

English = "Seven Million Six Hundred Nine Thousand Five Hundred Eleven"

No other If...End If statements execute. At the bottom of the loop
where LoopCount = LoopCount + 1,the value of LoopCount increases
to 4. The Do while loop repeats only while LoopCount is less than 4,

so execution falls through the Loop statement, executing the statement
NumWord = Trim(English) & " and " & Pennies & "/100".At
that moment, NumWord (which is also the name of the function) gets " and
", the Pennies variable’s value, and " /100" tacked on. The procedure then
ends with an End Function statement. The value returned after calling
NumWord (7609511.98) is

Seven Million Six Hundred Nine Thousand Five Hundred Eleven and 98/100

which, happily, is exactly right.

Chapter 11: Creating Your Own Functions 263

¢MBER

The procedure is designed to translate any number in the range of
0-999,999,999.99 where NumWord (999,999, 999.99) returns

Nine Hundred Ninety-Nine Million Nine Hundred Ninety-Nine
Thousand Nine Hundred Ninety-Nine and 99/100

If that’s not big enough for you (because you print checks for a billion dollars
or more), you could probably talk us into personally modifying the procedure
to accommodate your needs.

You can download the NumWord () custom function from www.dummies.com/
go/access2007vbaprog.

To get away from the nitty-gritty details of how a complex procedure like
NumWord () works, the most important concepts to remember are that you
can create your own custom function in Access. To make the function freely
available to all other objects in your database, you just have to put the
custom function in a standard module. After you do that, you can treat
your custom function as though it were any built-in function.

We admit that we got into some fairly intense code in this last example. If
you’re thinking that we just made up that procedure in our heads and jotted
it down so that it worked the first time, you're way off base. Programming
rarely works that way. It’s all a matter of breaking down a large problem into
small pieces. Then you attack one piece of the problem at a time, and get
each little piece to work before moving on to the next one.

Along the way, you generally run into a whole lot of error messages because
it’s tough to write code that works right off the bat. You really need to create,
test, and debug every little piece of code as you go along. Chapter 12 describes
debugging strategies for building your code so that it always works and never
crashes.

20/ Part\v: Applying VBA in the Real World

Chapter 12
Testing and Debugging Your Code

In This Chapter

Identifying types of errors (bugs)
Eradicating compile errors
Coping with logical errors

Trapping and fixing runtime errors

Writing code is nothing like writing in English. When you write in
English, you can make all kinds of spelling and grammatical mistakes,
and the reader can still get your meaning because a human reader has a
brain that can figure out what you mean just by the context of the message
you send.

Unfortunately, writing code for a computer to read doesn’t work that way.
Computers don’t have brains and can’t figure out anything. When it comes to
writing code, every letter of every word that you type has to be exactly right.
Punctuation marks such as commas, periods, and blank spaces are critical
and must be typed exactly as specified in the statement’s syntax chart. If you
have one small typographical error, the statement doesn’t work.

Because it’s nearly impossible to type every statement correctly every time,
every program will have some bugs (errors) in it that need to be corrected.
Diagnosing and fixing these errors, called debugging, is something that begin-
ning and seasoned programmers alike spend quite a bit of time doing. In fact,
debugging is so commonplace that the VBA Editor offers several debugging
tools designed strictly for finding and fixing those bugs.

Before we get to specific debugging tools and techniques, though, we think it
helps to understand a little bit about what’s going on behind the scenes as
you’re pounding away at the keyboard and trying to write some code that
does something other than throw up error messages.

260 PartIv: Applying VBA in the Real World

Understanding Compilation and Runtime

How a machine (like your computer) works and how your brain works are
two entirely different concepts. All machines are basically as dumb as rocks
because they’re just machines. Your computer is nothing more than a mind-
less machine that can pump a few billion instructions per second through a
little toenail-size chip. No thought or thinking or awareness is involved in any
of that. It’s all just electrons zooming around at the speed of light in a con-
trolled manner inside a small area.

Each of those zooming electron creates a little friction as it travels, like when
you rub the palms of your hands together really fast. That friction is what
causes your computer to heat up.

Programmers often refer to how a machine processes information as low-level.
For example, by the time information gets to the processor in your computer,
that information is nothing more than a string of ones and zeroes, something
like this:

0010101001100010101011010100001110101011010101101010101010101011
0101000111110101011000111110101010111000001010101100011001110001
1111010011000110001100111110000011101010111000111001101011011

In ProgrammerSpeak, you refer to the preceding lines as low-level machine
language or machine code.

Human brains don’t process information as ones and zeroes. Human brains
process and communicate information by using higher-level concepts, like
words, sentences, and paragraphs (not to mention pictures, sound, and
video). Although you could write code by using just the 1 and 0 characters
on your keyboard, it would be neither easy nor quick — thus the invention
of high-level programming languages.

A high-level programming language is one that uses words and sentences,
rather than ones and zeroes, to control the computer. For example, VBA is
a high-level language. When you want VBA to do something — like open a
form named MyForm — you don’t have to type a bunch of ones and zeroes.
Instead, you can type a sentence that looks more like words, like this:

DoCmd.OpenForm "MyForm"

Figure 12-1:
Sample
compile

error

caused by a

mistyped
statement.
|

\\3

Chapter 12: Testing and Debugging Your Code 26 7

The code that you type into the VBA Editor is often referred to as source
code. Every line of source code that you type needs to be compiled
(translated) into a lower-level language that the computer can process.

To keep you from writing a whole lot of code that makes no sense to the
computer (which makes for extremely difficult debugging), the VBA Editor
quickly compiles each line of code you type the moment you finish typing
that line.

Note that the VBA Editor doesn’t run (or execute) each line the moment you
type it. Rather, it just compiles each line to make sure that when you do run
the code, each statement in that code will work. When you type a line of code
that VBA can’t translate to lower-level machine code, the VBA Editor gives
you a Compile error message, like the example shown in Figure 12-1, to let
you know that there’s a problem with that line.

I(Geneml] d IAddNewCustnmer j
Option Compare Database =l
Public Sub AddNewCustomer ()

DoCmd, OpenForm EHENEIEEY Microsoft Visual Basic
] Compile error:
.
End Sk Expected: end of staternent
Help |
= ST o

The real problem with the statement in Figure 12-1 is the comma (,) between
DoCmd and OpenForm. That comma should be a period.

Programmers refer to the brief instant when your code is converted

to a lower-level language as compilation or compile time. At compilation,
the source code gets converted to the lower-level language that the
computer needs in order to do what the code tells it to do. Later, when
you run the code, the lower-level compiled code is what gets executed.
The moment when the code is executed is runtime. Figure 12-2 illustrates
the basic idea.

268 rartIv: Applying VBA in the Real World

<8 12ChapExamples - Module1 (Code) [BE[=]
I(Genernl) j IPCase j
End Sub j
Public Function PCase (AnyText As String) As Scring
PCase = JtrConvilinyText, vhProperCase)
If Left{PCase, 2) = "Mc" Then

PCase = Left{PCase, 2] & _
UCase (Mid(PCase, 3, 1]] & Mid(FCase, 4)
End If

VBA 'If first three letrers are "Mac®, ecap fourth letrer.

If Left(PCase, 3] = "Mac' Then
source — PCase = Left{PCase, 3] & _

code UCase (Hid(PCase, 4, 1)] € Mid(PCase, 5)
End If
'If first four characters are P.o. then cap the "o,
If Left(PCase, 4] = "P.o." Then

PCase = "P.0." £ Mid(FCase, §)

End IT

End Function

==

e

Compile: Convert source
code to “machine code”

Runtime: Execute
machine code

’
I (]L‘.I'lL‘.nl'J-D'lL‘.I-Dl1CL‘.|G'11'1L‘.-101'1L‘.|1L‘.|1'1‘
Figure 12-2. | 0110100111010110101101010101
VBA source §1011011010100111100000101010
1011011011001011011010101111
0000001111101011010110110001
1110101101101101100110110110
1101101101010110110011001011

executed. 01r5.110&1011&1101101101101010J
I

code gets
compiled
before being

Considering Types of Program Errors

Errors in code can happen at any time in the create-compile-execute
sequence. Programmers generally categorize the types of errors that
they have to deal with in three ways:

v Compile errors: Any problem that prevents the VBA Editor from trans-
lating a line of source code to something executable generates a compile
error, like the example shown in Figure 12-1. Such errors are usually
syntax errors, which means that you didn’t obey the rules of syntax for
that statement when typing the code.

v Logical errors: If your code runs without generating an error message
but fails to do what you expected it to do, that’s a logical error. In other
words, the code can and does run, but the logic of the procedure isn’t
the right logic for achieving the desired result.

+* Runtime errors: The code compiles, but when you run the code, it
doesn’t work. Instead, it pops a runtime error message on-screen,
perhaps looking something like the example shown in Figure 12-3.

Chapter 12: Testing and Debugging Your Code 269

|
Figure 12-3:
Sample
runtime
error
message.
|

Microsoft Visual Basic

Rur-time error ‘2494

The action ar methad requires & Form Name argument.

Continue: End {Bebug Help

In the following sections, we look at the tools and techniques for dealing with
each type of error, starting with the ubiquitous compile error, which rears its
ugly head quite often.

Conquering Compile Errors

Vs

Common error messages that you face are the compile errors that happen in
the VBA Editor Code window. Every time you type a complete VBA statement
and then move the cursor to some other line in the procedure, VBA quickly
compiles that line of code. It doesn’t run the code — it just compiles the one
line to make sure that it runs when you run the procedure.

When you’re first learning to program, compile errors might seem incessant
and unstoppable. That’s only because you're not yet familiar enough with the
VBA language to write valid statements. And perhaps you haven’t yet
accepted the fact that when it comes to writing code, guessing never works.
Either you know how to use a particular statement or you don’t. You really
have to know how to use all the help that’s available to you — and use it well.

For more information on the various types of help available to you in the
VBA Editor, read about understanding syntax in Chapter 3 and objects and
collections in Chapter 5.

Compile error messages are rarely specific about what the problem is. For
example, Figure 12-4 shows an Expected: = message, triggered by the
MsgBox statement shown in the code. The error message tells you that the
compiler was expecting to find an equal sign (=) in that statement, but it
doesn’t tell you where the equal sign belongs. (If it knew, it wouldn’t have
to show the message. It could just put in the equal sign for you.)

Clicking the Help button in the error message box rarely helps much. In this
case, you would just get a brief description of the problem and a few exam-
ples. However, the examples aren’t necessarily relevant to the code that
you’re writing now: They’re just general examples.

270 Part\v: Applying VBA in the Real World

|eneran) =] [sampte =l
Option Compare Database =
Public Sub Sample ()
NagBox ("Hello World",vbInformation,"Test")
| - S = 3
Microsoft Visual Basic
. End Sub T
Figure 12-4: g D
.
Sample Expected: =
compile 1 en
error.
== ¥z

The only real solution is to find out the correct syntax for the MsgBox key-
word. As it turns out, there are two syntactical forms of MsgBox. The first
form, which you can use to just show a simple message with an OK button, is

MsgBox prompt

where prompt is the message to display in the box (either as literal text
enclosed in quotation marks or the name of a variable that contains text).

The second form allows you to retrieve a value while using multiple argu-
ments, such as the title, buttons, and icon to show. Using MsgBox in that
manner requires the following syntax (note the parentheses):

variable = MsgBox (prompt[,buttons][,title] [,helpfile,context])

Here’s where you get a clue to the whereabouts of the missing equal sign.
Because the MsgBox statement in the code uses parentheses, we have to use
variable = at the left side of MsgBox (), with parentheses around its argu-
ments. The value returned by MsgBox () is a number indicating which button
the user clicked, so the variable accepting that value should be declared as
an integer. Thus the correction to the problem code in Figure 12-4 is this bit
of corrected code:

Public Sub Sample ()

Dim Answer As Integer

Answer = MsgBox ("Hello World", vbInformation, "Test")
End Sub

The main point here is that the error message Expected: = really didn’t tell
you how to solve the problem. The only real solution to the problem was to
find out how to use the MsgBox () statement and to see some examples of its
use in Help. That’s typical of compile error messages: They might give you a
vague hint of what the problem might be, but they neither solve the problem
for you nor even tell you how to solve it.

Chapter 12: Testing and Debugging Your Code

|
Figure 12-5:
Sample
Expected:
expres-
sion
compile
error.
|

Take a look at some more common (and usually unhelpful) compile error
messages and the solutions to the problems they found.

Expected: expression

The Expected: expression compile error means that while trying to com-
pile the line, things went haywire because the compiler was expecting to find
an expression but found nothing. This error usually happens if you leave one
or more dangling commas at the end of a statement.

For example, the MsgBox statement in Figure 12-5 generated the compile
error shown in the figure. If you look closely, you might also notice that the
closing parenthesis in the code is highlighted. The compile error is trying to
help out by highlighting the place where it ran into the problem.

I(Genernl) j ISample j
Option Compare Database =
Public 5wy Sawple()

Dim Answer is Integer
inswer = MsgBox ("Hello World",vhInformation,J
Microsoft Visual Basic
Compile error:
End Sub !
Expected: expression
= B
S| 1z

The problem with the line of code is that last comma, just to the left of the
closing parenthesis. You use a comma only when you’re about to type another
expression into the list of arguments. In other words, while compiling that line
of code, the compiler saw that last comma and expected to find an expression
after that comma, but instead found a closing parenthesis.

One solution to the problem is to get rid of that last comma:

Answer = MsgBox ("Hello World", vbInformation)
Or, you can leave the comma but add the argument that belongs in that spot.
For example, in the MsgBox statement, the third argument is the title to show
in the message box. To make that title read as Test, just go ahead and make

that word the third argument (after the last comma):

Answer = MsgBox ("Hello World", vbInformation, "Test")

271

272 PartIv: Applying VBA in the Real World

—
Figure 12-6:
Expected:
end of
statement
compile
error.
—

Expected: end of statement

The Expected: end of statement message is another common (and
rarely helpful) compile error. Once again, all the message is telling you is that
you have some sort of syntactical error in the statement. In Figure 12-6, the
string literal "MyForm" at the end of the statement is highlighted, but it tells
only you that the compiler got lost at that point.

I(Genernl) j ISample j
Option Compars Database =
Public Sub Semple ()

Dim Answer As Integer
Docmd, OpenForm PHyForm”
Microsoft Visual Basic
Compile error:
End Sub ! 5 B
Expected: end of statement
== 2

The real problem with the statement shown in Figure 12-6 is the comma
between DoCmd and OpenForm. The correct syntax for using the DoCmd
object is

DoCmd.method. . .

where a period — not a comma — appears between the first two words. The
fix for the problem is to replace that comma with a period:

DoCmd.OpenForm "MyForm"

Expected: list separator or)

The Expected: list separator or) error message tells you that the
compiler was expecting to find either a list separator (such as the comma that
separates arguments in a function) or a closing parenthesis in the statement.
In most cases, it highlights where the problem began. For example, the follow-
ing statement, when compiled, generates an Expected: list separator
or) error message with the word wor1d highlighted:

Answer = MsgBox (Hello World, vbInformation, "Test")
The problem with the preceding line is that the words Hello World are sup-

posed to be a string literal enclosed in quotation marks, but we forgot the
quotation marks. The blank space between the words Hello and Wor1d has

\\3

Figure 12-7:
Counting
open and

closed
parentheses
ina
statement.
|

Chapter 12: Testing and Debugging Your Code 2 73

sent the compiler into a tizzy because it was expecting something else there.
To correct the problem, put the quotation marks around the string literal:

Answer = MsgBox ("Hello World", vbInformation, "Test")

With the quotation marks in place, the compiler can see that the entire string
of text "Hello World" is the first argument, vbInformation is the second
argument, and "Test" is the third argument.

Sometimes the Expected: list separator or) error message points
out a missing parenthesis in a statement. For example, the following statement
generates such an error message when compiled:

PCase = "Mc" & UCase(Mid(PCase, 3, 1) & Mid(PCase, 4)

It’s rarely easy to see where a parenthesis needs to be added to a statement,
especially if the statement contains lots of them. One fact is always true,
though: Any statement that uses open parentheses must also use an equal
number of closed parentheses.

Here’s a little trick that programmers use to see whether they have the right
number of parentheses. You start with the number 0 in mind. Then you read
from left to right. Each time you encounter an open parenthesis, add 1 to that
0. Each time you come to a closed parenthesis, subtract 1 from that number.
By the time you get to the end of the line, you should be back to 0. If you end
up at any other number, you have a problem.

As an example, Figure 12-7 shows the preceding troublesome line after count-
ing open and closed parentheses. After you add 1 for each open parenthesis
and subtract 1 for each closing parenthesis, you end up with 1. That number
shows that you either have one too many open parentheses or you're lacking
one closed parenthesis.

Needless to say, you can’t just stick an extra closing parenthesis into the
statement at random. Rather, you need to understand the syntax rules of the
various functions used in the expression. The example in Figure 12-7 uses two
functions named UCase () and Mid (). Each function needs its own, complete
pair of parentheses.

0 +1 +1 -1 =1

bbb) e

PCase = "Mc" & Ucase(Mid(PCase, 3, 1) & Mid(PCase, 4)

270 PartIV: Applying VBA in the Real World

|
Figure 12-8:
Equal
number of
open and
closed
parentheses.
|

The Mid (PCase, 4) function at the end of the statement is fine because the
Mid () function requires exactly one open and one closed parenthesis. The
larger Mid () function, Mid (PCase, 3, 1), is also okay because it has one
open and one closed parenthesis.

The problem occurs with the UCase () function. That larger Mid (PCase, 3,
1) function is the argument for the UCase () function, and there’s no closing
parenthesis for UCase (). That needs to be added right after the closing paren-
thesis for Mid (). Each of the Mid () functions also has a pair of open and
closed parentheses. If you count the parentheses in the modified statement
shown in Figure 12-8, the count ends up at 0, which is exactly what you want.

0 VW b

PCase = "Mc” & UCase(Mid(PCase,3,1)) & Mid(PCase,4)

Regardless of which compile error message you get, you have to fix the prob-
lem before you can even run the procedure. Don’t expect the compile error
message to pinpoint the solution for you. The message in a compile error is
often too vague and too general for that. In most cases, your only recourse

is to look up the correct syntax in Help (or through the Object Browser) and
apply it to whatever you're trying to accomplish.

Dealing with Logical Errors

Even if your code compiles and runs without generating an error message,
the code isn’t necessarily perfect. It can also contain logical errors. Unlike a
compile error, which is an error in syntax or a typographical error, a logical
error is an error in your thinking (logic). The computer always does exactly
what the code tells it to do, even if you tell it to do the wrong thing.

Suppose that you intend to write a line of code to open some form, but you
accidentally write the code to close the form. When you run the code, the
computer (of course) closes — not opens — the form. The computer would
never look at your code and think, “Hmmmm. [bet she meant to open a form
here, so I'll do that instead.” Computers just don’t work that way. The com-
puter always does exactly what the code tells it to do.

Chapter 12: Testing and Debugging Your Code 2 75

Pinpointing logical errors in your code is often difficult mainly because when
you run a procedure, everything happens in less time than it takes to blink
your eyes. Often it helps to take a look at what’s going on behind the scenes
while the code is running. The VBA Editor provides a few tools that allow you
to see what’s going on behind the scenes.

Checking on variables with Debug.Print

In earlier chapters, you can see examples of using the VBA Editor Inmediate
window to test procedures and try out expressions. For example, typing a
simple expression like ? 1+1 (What is one plus one?) results in 2, which is the
sum of one plus one. Typing the expression ? CurrentProject.AllForms.Count
displays the number of forms in the current database.

You can also force your code to display information in the Immediate
window. However, in code, you use a Debug . Print expression rather than a
? expression to make the code print to the Inmediate window. This is an easy
way to watch what’s happening to variables behind the scenes while your
code is running.

The real beauty of Debug . Print is that it allows you to write a little code,
test it to see what’s going on, and make sure that all is well before writing
more code. For example, in Chapter 11, we show you an example of a func-
tion named PCase () that can convert any text to proper noun case (the first
letter of each word in uppercase).

When you look at a completed procedure like that, you might think that the
programmer just typed it like typing a note, and the thing just ran perfectly
right off the bat. That’s not even close to how programmers really work. A
programmer knows that every line of code is just one step in the overall pro-
cedure. For the procedure as a whole to work, make sure that each individual
piece is doing exactly what you think it’s doing.

To write the PCase () function, we started out by just writing this bit of code:

Public Function PCase (anyText) As String
PCase = StrConv (anyText, vbProperCase)
Debug.Print "PCase = " & PCase

End Function

That was the entire function, at first. To test it, we typed ? PCase(*“MARVIN
DODoskY”) into the Inmediate window and pressed Enter. When we did, the
Debug.Print statement in the code displayed the following line in the
Immediate window:

PCase = Marvin Dodosky

2 76 Part IV: Applying VBA in the Real World

To test it again, we typed ? PCase(“123 OAK TREE LANE”) into the
Immediate window and got back PCase = 123 0Oak Tree Lane. At this
point, we knew that the basic problem — converting the first letter of each
word to uppercase and making all other letters lowercase — was solved.

Granted, having the procedure show a small result like that in the Immediate
window is of no value to a potential user of the function. But the result
showed us — the programmers — that after the statement PCase =

StrConv (anyText, vbProperCase) executes, the PCase variable contains
the passed text with the first letter of each word capitalized. At that point, we
knew that the basic problem of capitalizing the first letter of each word was
solved, so we could then move on to writing code to solve the next problem.

We decided to tackle the Mc problem next. First, we had to figure out how to
tell the procedure that if the first two letters are mc, change PCase so that
the first and third letters are uppercase. We already knew that we could use
the Mid () function to grab any portion of any string and that we could use
the UCase () function to convert any letter to uppercase.

So we typed out the If. . .Else...End If block of code to handle any
string that starts with the letters Mc and moved the Debug.Print "PCase
= " & PCase statement below that, as shown here:

Public Function PCase (anyText) As String
PCase = StrConv(anyText, vbProperCase)

If Left(PCase, 2) = "Mc" Then
PCase = "Mc" & UCase(Mid(PCase, 3, 1)) & Mid(PCase,
3)
End If
Debug.Print "PCase = " & PCase

End Function

To test our progress, we typed? PCase(*“MCDONALD”) into the Immediate
window and pressed Enter. The Immediate window showed PCase =
McDdonald. Oops — that should have been McDonald — not McDdonald
(with three d’s rather than two). This is a logical error in the sense that the
code ran without generating any error messages. The problem lies in the
logic of how we handled the problem.

After studying the code more closely, we realized that the last Mid statement —
& Mid(PCase, 3) — was wrong: It should have been Mid (PCase, 4) . So we
changed the code, as shown here:

Public Function PCase (anyText) As String
PCase = StrConv(anyText, vbProperCase)

If Left(PCase, 2) = "Mc" Then

Chapter 12: Testing and Debugging Your Code 2 77

PCase = "Mc" & UCase(Mid(PCase, 3, 1)) & Mid(PCase,
4)
End If
Debug.Print "PCase = " & PCase

End Function

Once again, we tested the procedure by entering ? PCase(*“MCDONALD”)
into the Immediate window. We got back

PCase = McDonald

in the Immediate window. Now we knew that the Mc problem was solved. On
to the next problem — dealing with the Mac last names. From there on out, it
was more of the same. We wrote a little code, tested our progress, and fixed
any problems that we discovered. By making sure that each piece of the
puzzle worked at each step in the process, we could finally create a custom
function that did what we wanted it to.

The much larger NumWord () procedure from Chapter 11 was harder to write,
of course. Again, it was all a matter of doing a little at a time, testing our
progress, fixing all compile and logical errors, and then moving on to the next
problem. Basically, we started out by declaring variables, setting up the
array, and typing the first statement, followed by a couple of Debug. Print
statements. Here’s the basic idea: To save space, we put an ellipsis (. . .) in
place of most of the array element definitions:

Function NumWord (AmountPassed As Currency) As String
'Declare all variables and arrays.
Dim English As String, strNum As String
Dim Chunk As String, Pennies As String
Dim Hundreds As Integer, Tens As Integer
Dim Ones As Integer, LoopCount As Integer
Dim StartVal As Integer, TensDone As Boolean
Dim EngNum(90) As String

EngNum(0) = ""
EngNum(1l) = "One"
EngNum(2) = "Two"
EngNum(3) = "Three"
EngNum(80) = "Eighty"
EngNum(90) = "Ninety"

strNum = Format (AmountPassed, "000000000.00")
'strNum is original number converted to string

Debug.Print "AmountPassed = " & AmountPassed
Debug.Print "strNum = " & strNum

End Function

278 PartIv: Applying VBA in the Real World

To test our progress at this point, we typed ? NumWord(1234.56) into the
Immediate window and then pressed Enter. The Immediate window returned
this result:

AmountPassed = 1234.56
strNum = 000001234.56

We could then see what we really had to work with before writing more code.
Also, we knew that because strNum is a string, we could use the built-in Mid ()
function to isolate portions of the string and still use AmountPassed to check
for other things, like how large of a number was being translated to English.

Knowing that we had AmountPassed and strNum to work with, we then
wrote a little more code for the procedure, tested the code, and worked out
any kinks until all was well to that point. And so it goes: You write a little
code, maybe use the Help system to work out any compile errors, test the
code, fix any errors in logic, and then move on to the next bit of code.

If we had tried to just type the whole procedure in one fell swoop before
testing it, any problems would have been more difficult to find because they
could have been anywhere in the code. By writing a little, testing a little, and
debugging a little along the way, we were gradually able to solve all the prob-
lems and come up with a procedure that works.

The only purpose of using Debug . Print in the code is to give yourself some
feedback about what’s going on behind the scenes as that code is running.
After any problems are solved at a given point in a procedure, you can delete
any Debug . Print statements that you don’t need any more. After all, the
Debug.Print statements aren’t of any value to the users of your custom func-
tion. Debug . Print statements serve only as a programmer’s debugging tool.

Testing Function and Sub procedures

The syntax for calling a Sub procedure from
code, as well as from the Immediate window, is
different from the syntax for calling a function.
To run a Sub procedure from the Immediate
window, just type the procedure’s name (with-
out the parentheses) and press Enter — for
example, if your module contains a Sub proce-
dure declared as Sub.

To test a custom Sub procedure from the
Immediate window, just type the procedure’s

name without any quotation marks and then
press Enter. To test a function from the Immediate
window, use the syntax ? functionName
(arguments) where functionName is the
name of your custom function and arguments
represents any sample data that you want to
pass to the function for testing. After the func-
tion runs, the Immediate window displays the
value returned by your function.

Chapter 12: Testing and Debugging Your Code 2 79

\\3

Slowing down code

Using Debug.Print in code to get a little feedback about what’s happening
in your procedure is helpful, but when you run the procedure, it still executes
in an eyeblink. To get things to slow down, you can set breakpoints in your
code via the VBA Editor Code window. A breakpoint in your code doesn’t
make the code run in slow motion; rather, it forces the VBA Editor to suspend
execution of the code at that point so that you can explore the values of vari-
ables or whatever in the Immediate window.

To set a breakpoint in a procedure, follow these steps:

1. Make sure that the procedure you want to test is open and visible in
the Code window.

2. Move the cursor to the line where you want to suspend code execution;
then do whichever of the following is most convenient:

¢ Right-click the line and choose Toggler>Breakpoint from the short-
cut menu.

¢ Choose Debugr>Toggle Breakpoint from the VBA Editor menu bar.
¢ Press the F9 key.

¢ Click in the gray area on the left side of the code window next to
the line where you want to suspend the code’s execution.

¢ Click the Toggle Breakpoint button on the Debug toolbar.

If the Debug toolbar isn’t visible in your VBA Editor, choose Views>
Toolbars>Debug from the menu bar to make that toolbar visible.

After the breakpoint is set, test your code normally from the Immediate
window. Your code executes at its usual blazing speed until execution
reaches the line that you defined as a breakpoint. Rather than get compiled
and executed, the breakpoint line of code gains a bright yellow highlighter in
the Code window and doesn’t execute until you press F8. Basically, you can
then make your code slam on the brakes and go into step mode, where you
miraculously take over all code execution yourself.

Of the several ways to use step mode, just take a look at the easiest and
most common way to set a breakpoint and use step mode. Suppose that
while creating the NumWord () procedure earlier in this chapter, you want
to take a look at all your variables just before the line that reads strNum =
Format (AmountPassed, "000000000.00") executes. In the Code
window, you would right-click that line and choose Togglem>Breakpoint.
Then you would run the function and pass some huge number to it, as a
test, by entering something like ? NumWord(123456789.00).

The procedure would run at its usual blazing speed up to the breakpoint line
and then slam on the brakes. If you wanted to take a quick look at some variable

28() Partiv: Applying VBA in the Real World

|
Figure 12-9:
Checking
out the
locals in
step mode.
|

defined in the code before the breakpoint line executes, you could ask the
Immediate window by typing ? variableName. For example, if you enter ?
strNum into the Immediate window while the code is suspended, you get
nothing in return because strNum is empty before the breakpoint line
executes. Still, getting nothing in response to the ? strNum expression is
confusing. The following section presents a much quicker and easier way to
check out the contents of your procedure’s variables: the Locals window.

Using the Locals window

While your code is suspended in a breakpoint and in step mode, you can easily
check the value and data type of every variable defined in your code up to that
breakpoint. This saves you from having to type a bunch of ? variableName
statements in the Immediate window. To see an overview or all the variables in
the procedure, just choose Viewr>Locals Window from the VBA Editor menu
bar or click the Locals Window button on the Debug toolbar.

The Locals window opens, showing the name, value, and data type of every vari-
able defined to that point in your code. Figure 12-9 shows an example where we
opened the Locals window while code was suspended in the sample NumWord ()
procedure. There you can see the name, value, and data type of every variable
that exists in NumWord () just before the breakpoint line executes.

Debug toolbar Immediate window

P Microsoft Visual Basic - 12ChapExamples [break] - [NumWord Function (Code)] ===
8 File Edit View [sert Debug Run Tools Add-hs Window Help Type a question for helf § _ & X
Blag-d LG) 0B EFE R @ _

W r 0 om B & s s
|(G=neral) =l IHumWnrd = x|
2 NumUord (12345678900} 2l
zl ? Chunk
) 123
'#% Do the hundreds portion of 3-digit nuder 3 tens
If Wal(Chunkj > 33 Then 2
English = English £ EngMumiHundreds) £ " Hundred " 5 ones
End If
3
2 English
1%% Do the tens & ones portion of 3-digit mmdber one Hundred
[litensbone = False |
'#% Is it less than 107
If Tens < 10 Then
English = English & " " & EngMum{Ones)
TensDone = True = -
= LlJ =11 BT

[2ChapExanizsT] [humword Function] Humiord =
Ekpression [value | Type P
] Humord Function Numiord FunclionNumiAford Function
BAmountPassed 123456788 Cunrency
Numiard Siring =
English "One Hundred ™ String
strhum *123955789.00" String
Churk 230 String
Pennies 00" String
Hundreds 1 Integer
Tens 23 Integer

Ones 3 Integer
Startval 1 Integer
LoopCaunt 1 Integer
TensDane Faise Booizan
] Enchium Stringi0 to 90)
L Enghium(m String
L Enghum() “One” String =

Code suspended at breakpoint Locals window

Chapter 12: Testing and Debugging Your Code

Moving and sizing editor windows

As with all windows in the VBA Editor, you can
anchor the Locals window to any edge of the
program window. While it's anchored, you can
change its height or width by dragging the
border just above its title bar. You can also drag
it by the title bar toward the center of the screen
to make it a free-floating window. To put the
Locals window back into hiding, click the Close
(X) button on its title bar.

To get the Immediate and Locals windows to
stack up as they're shown in Figure 12-9, first
make sure that both windows are open. Drag one
window's title bar right to the middle of the other’s
title bar and then release the mouse button. To
resize them, drag the border line that separates
the two panes up or down or drag the leftmost
border to the right. To reverse the stack order of
the two panes, drag the bottom pane’s toolbar up
to the middle of the top pane’s window.

In the Locals window, you can easily see the strNum variable that you previ-
ously checked on in the Immediate window. The Locals window lets you know

that the variable contains "123456789.00" as its value and String as its
data type. That’s all true and correct because a Dim statement near the top
of the procedure has already declared strNum a string variable.

The Locals window shows the name, value, and data type of every variable

created before the highlighted line of code. And knowing about all your vari-

ables at an exact moment can be a great aid to debugging your code. Keep
reading because things really get good when you learn to use step mode.

Stepping through code in step mode

Suppose that you set your breakpoint, code execution stops at the break-
point line, and you’re looking at variables in the Locals window. The real

question is “What next?” The answer is that you basically have four choices:

1 To execute the highlighted line of code (only) or step through a
procedure being called by the current line: Press F8 or choose

Debug=Step Into.

1 To execute the highlighted line of code and not step through another

procedure being called by the current line: Press Shift+F8 or choose

Debuge>Step Over.

1 To execute all lines of code up to — but excluding — a specific line of
code: First click the line to which you want execution to run. Then press

Ctrl+F8 or choose Debugr>Run to Cursor from the menu bar.

v To bail out of break mode: Press Ctrl+Shift+F8 or choose Debugr>Step Out.

The best way to use step mode (as a beginner, anyway) is to just press F8 to exe-
cute the selected line of code. When you do so, the line executes. Any changes

to variables made by executed statements appear in the Locals window.

281

282 Partiv: Applying VBA in the Real World

\\3

Figure 12-10:
Exit options
when
closing in
step mode.
|

Even better, you can sit there and just tap the F8 key to watch the procedure
execute one line at a time. You can see how code execution jumps over
If...End If statements and how it goes around in circles in a loop. If the
Locals window is open, you can watch variables appear and receive values
just as they do when the code is really executing. It’s code execution in super-
slow motion, where you control the speed of things by tapping the F8 key.

If the code that you're debugging affects an open form in Access, you might
notice the Access program window flash on-screen as the code executes. If
you want to take a look at that open form — without losing your place in the
VBA Editor — just click the Access taskbar button or press Alt+F11 to switch
back and forth between Access and the VBA Editor.

Getting back to normal in the Code window

When you finish debugging or just want to start over with a clean slate, do
one of the following:

1 To get out of step mode: Press Ctrl+Shift+F8 or choose Debuge>Step Out.
Code execution continues, and things go back to normal.

+* To remove a breakpoint: Right-click the line and choose Toggler>
Breakpoint from the shortcut menu.

v To clear all breakpoints from your code: Choose Debug=>Clear All
Breakpoints.

1 To clear the Locals window of its value: Right-click any text within the
window and choose the Reset option from the shortcut menu.

Closing the VBA Editor window also terminates step mode. For instance, if
you choose File=>Close and Return to Microsoft Office Access while in step
mode, you see the prompt This command will stop the debugger
(see Figure 12-10). If you click OK, the Visual Basic Editor then closes, step
mode is terminated, and you return to the Access program window. (Clicking
Cancel closes the dialog box without doing anything to the code. Clicking
Help shows some confusing information about the dialog box.)

Microsoft Yisual Basic

! 5 This command will stop the debugger.

QK | Cancel Help |

Chapter 12: Testing and Debugging Your Code 283

Wrestling Runtime Errors

Figure 12-11:
Sample
runtime

error
message.
|

Some VBA errors are caused by environmental conditions rather than
anything that’s wrong with the logic of the code or a compile error. As an
extreme example, take a look at an environmental condition that could pre-
vent code from executing. Say you drag and drop some icons from a folder to
the icon for your floppy drive in My Computer. If no floppy disk is in the drive
when you release the mouse button, you create an environmental condition
in which no program could complete its task. There’s just no way that any
program in the world can copy files to an empty floppy disk drive!

In your VBA code, environmental conditions can be much more subtle than
the missing floppy disk example. A more common example is a line of code
that attempts to move the cursor to a specific control when the form isn’t
even open. For example, the following line of code attempts to move the
cursor (SetFocus) to a control named StateProv on an open form named
Customers (Forms! [Customers] . SetFocus).

Forms!Customers. [StateProv] .SetFocus

The preceding line of code executes just fine as long as the form named
Customers is open in Form view when the line executes. If the form
named Customers is open in Design view when that line executes, a
runtime error like the one shown in Figure 12-11 occurs.

Microsoft Visual Basic

Run-time error '2478"

Microsoft Office Access doesn't allow you ko use this method in the
current wiew,

Continue End | I Debug I Help

Responding to a runtime error

When your code generates a runtime error and you're given the choices
shown in Figure 12-11, you can choose to click one of these buttons:

1 Continue: If code execution was suspended when the error occurred,
resumes execution at the next line of code in the procedure. This option
is disabled (not available) in most cases.

v+ End: Terminates code execution and takes you back to the Code window
without going into step mode.

284 PartIv: Applying VBA in the Real World

1 Debug: Stops code execution and takes you back to the Code window.
The line of code that generated the error is highlighted, and you're in
step mode.

v Help: Provides brief help with debugging VBA code.

Most often, you just click End to get back to your code normally or click
Debug to get back to your code with the faulty line highlighted and in step
mode. If the problem is something that you can fix in that particular line, you
can just modify the line and try again although it often takes a little more
brain power than that to figure out what’s really wrong.

For example, after inspecting the code that caused the runtime error, you dis-
cover that the line above the faulty line opens the Customers form in Design
view (acDesign) rather than in the normal Form view, as shown here:

DoCmd.OpenForm "Customers", acDesign
Forms!Customers. [StateProv] .SetFocus

Even though the error message was generated by the second line, the real
problem is in the first line. The fix is to change acDesign to acNormal in
the top line, as follows, so that the second line can do its job of moving the
cursor to the SstateProv control of that form:

DoCmd.OpenForm "Customers", acNormal
Forms!Customers. [StateProv] .SetFocus

After you make the correction, you can just run the entire procedure again to
test it.

If seeing the error is difficult, you can still use step mode to watch what’s
going on in your code and in Access. For example, in your code, you can set
a breakpoint a few lines above the line that’s causing the error. Then press
the F8 key to step through your code one line at a time. After you press F8,
you can press Alt+F11 to see what (if anything) happened in Access as a
result of that statement’s execution. Then press Alt+F11 again to return to
VBA, press F8 to execute the next statement, and then press Alt+F11 again

to see that statement’s effect on Access. Just keep doing that, and eventually
you'll discover which statement is really causing the situation that’s making
the faulty line fail.

Unfortunately, not all runtime errors are the kind that you can fix by correct-
ing your existing code. Some runtime errors are caused by peculiar situations
in the environment, like the missing floppy disk in the copy-to-floppy exam-
ple, and there’s really no way to write code to fix that error. The best that you
can do with those kinds of errors is to trap them and give the user some kind
of more friendly feedback and options than the VBA runtime error message
box would provide.

Chapter 12: Testing and Debugging Your Code 285

Figure 12-12:
Err.
Number
and Exrr.
Descrip-
tionina
runtime
error.
|

Trapping runtime errors

As you can see in the preceding example, when a runtime error occurs, you
get two pieces of information in the message box that appears (see Figure
12-12). Note the error number (referred to as Err . Number or the Number
property of the Err object in programmer lingo). That number is of no value to
a typical user, but can be handy for a programmer. The other piece of infor-
mation that the error message provides is the error description, referred to
as Err.Description in VBA. The error description is the text that
(vaguely) describes why the error occurred.

Err.Number

Microsoft Yisual Bagic

Run-time error ‘2475 -

Microsoft Office Access doesn't allow you ko use this method in the —
current view,

Confinue End Bebiig Help |

Err.Description

When you see a runtime error on your screen, two things have happened.
The obvious first thing is the message on-screen. But behind the scenes,
VBA has raised a runtime error, and the Err object has also received two
values that describe that error. Those values are stored in the Number and
Description properties of the Err object (expressed as Err . Number and
Err.Description in VBA code). Just like you can see the number and
description of an error by looking at the message on-screen, VBA can “see”
that same information by looking at the contents of the Err . Number and
Err.Description properties.

Trapping runtime errors is basically a matter of anticipating which runtime
errors might occur when the code runs, and also writing code to gracefully
handle each type error without causing the whole procedure to crash. The
code that you write to deal with runtime errors is often referred to as an error
handler because that’s exactly what the code does — it handles the error in
some way without causing the whole procedure to crash.

To create an error handler, you first need to add an On Error statement to
your code, preferably just after the Sub or Function statement that marks
the beginning of the procedure. Use one of the following three different ways
to create an On Error statement:

280 PartIv: Applying VBA in the Real World

¥ On Error GoTo label: When an error occurs as a statement runs,
code execution jumps to the section of code identified by label within
the same procedure.

» On Error Resume Next:If an error occurs as a statement runs, that
statement is ignored, and processing just continues with the next line of
code in the procedure.

V» On Error GoTo 0:Disables any previous OnError GoTo or On
Error Resume Next statements so that future runtime errors are
handled by VBA rather than by your own code.

The Resume statement can be used in any error-handling code to tell VBA
exactly where to resume code execution after the runtime error occurred.
The syntax for the Resume statement can take any of the following forms:

1 Resume: Causes VBA to reexecute the statement that caused the error.
You want to use this statement only if the error-handling code fixed the
problem that caused the error in the first place. Otherwise, executing
the same statement again just causes the same error.

»” Resume Next: Causes execution to resume at the first statement after
the statement that caused the error. The statement that caused the error
doesn’t execute.

v Resume label: Causes execution to resume at the label that’s specified.

Code created by Control Wizards in Access 2003 and earlier and macro con-
versions might already have error-handling code written into it. For example,
if you create a macro named CloseCustForm to close a Customers form, you
can convert this macro to VBA by highlighting it in the Navigation pane and
then clicking the Convert Macros to Visual Basic command in the Macro group
of the Database Tools tab. In the dialog box that appears, make sure to check
the box to add error handling to the generated functions, and then click
Convert. Access creates a module with a function named CloseCustForm().
The macro and the VBA function are shown in Figure 12-13.

In the CloseCustForm () procedure that the conversion created, only the
line DoCmd.Close acForm, "Customers" closes the form. Technically,
the code would work just fine if DoCmd.Close acForm, "Customers"
were the only statement in the entire procedure, but the conversion adds
error handling to the code that it generates if you tell it to. And most of the
lines in the procedure are there to handle errors in case some problem arises
that prevents the form from closing.

Near the top of the procedure, you see the statement On Error GoTo
CloseCustForm_Err. When executed, that statement tells VBA, “If a runtime
error occurs while this procedure is executing, don’t ‘crash.’ Instead, stop
what you're doing and resume execution at the CloseCustForm_Err label.”

Chapter 12: Testing and Debugging Your Code 28 7

Figure 12-13:
Macro

(top) and
converted
function
with error
handling

in VBA
(bottom).
|

<MBER
SO

@ CloseCustForm - mx
Action Argumnents Comment
Close M| Form, Custormers, Prompt

Action Arguments

Object Type Form
Object Name Customers
Save Prompt

Closes the specified window, or the active
window if nane is specified. Press F1 for help
on this action,

| &8 12ChapExamples - Converted Macro- CloseCustForm (Code) |BE=)
|tGeneral) =] [closecustForm =l
Option Compare =
' CloseCustForm
Function CloseCustForm()
On Error GoTo CloseCustForm Err
DoCmwd.Close acForm, "Customers"
ClosecCuscForm Exit:
Exit Function
€loseCustForm Err:
MsgBox Error§
Resume CloseCustForm Exit
End Function ul
== | 2

Then the code tries to execute the next statement, DoCmd.Close acForm,
"Customers". If VBA can close the form when executing that statement, no
runtime error occurs. Instead, the code execution drops to the next actual
statement in the procedure, Exit Function, which ends the procedure. In
other words, if no error occurs when DoCmd.Close acForm, "Customers"
executes, the code runs and ends normally without calling on any error-
handling code.

However, if a runtime error does occur when VBA tries to execute the DoCmd .
Close acForm, "Customers" statement, the procedure doesn’t crash.
Rather, it passes control to the first statement under the CloseCustForm_
Err: label. There, the MsgBox Error$ statement shows the description of
the error in a simple message box, and code execution drops to the line that
reads Resume CloseCustForm_Exit, which tells the procedure to go to
the CloseCustForm_Exit: label and resume execution. The first statement
under that label reads Exit Function. When executed, that statement just
ends the procedure normally.

A key component of understanding how error handling works is realizing that
any line that ends with a colon is a label in code. A label is different from a reg-
ular line of code in that it’s not an instruction to the computer to do something.
Rather, its just a placeholder in code to which GoTo and Resume statements
can pass control. The sample CloseCustForm function has two labels, which
are pointed out in Figure 12-14.

A label text can be any text at all, as long as it starts with a letter and con-
tains no blank spaces. Using the words Err or Exit somewhere in the label
is customary but not required. However, the colon at the end of the label is
mandatory because it’s the only character that lets the compiler know that
the line is a label rather than a regular VBA statement.

288 Partiv: Applying VBA in the Real World

Figure 12-14:
Lines ending
with a colon
(:)are
labels, not
statements.
|

<28 12ChapExamples - Converted Macro- CloseCustForm (Code) ZEE
I(Generall j ICIuseCustFurm

|»|LI

Option Compare Datshase

' CloseCustForm
'

Function CloseCustFormi()
On Error GoTo CloseCustForm Err

DoCmwd.Close acForm, "Custowers™

rCloseCustForm Exit:
Exit Function

—CloseCustForm Err:
MsgBox Error$

Resume CloseCustForm _Exit

End Function

S=al | AP

Label lines

Writing your own error handlers

When writing your own code and your own error handlers, it’s not realistic to
assume that you can anticipate every possible environmental condition that
might cause the procedure to crash. For starters, you can just write the basic
code to trap the error, display the error number and description in a simple
message box, and then exit the procedure gracefully.

Assume that you've already written a procedure, and now you want to add
some error-handling to that procedure. Exactly what the procedure does is
irrelevant, so rather than show a bunch of VBA statements here, we just refer
to the existing statements as the main body of code below. First, you need to
add an On Error. .. statement at or near the top of the procedure so that any
runtime error that occurs during execution branches control to some label.

Next, you need to define the label to which the On Error statement refers.
Typically, you can add an Exit Sub or Exit Function statement just
above the End Sub or End Function procedure that’s currently in the
code. That ensures that if the code runs without generating an error, code
execution doesn’t fall through to the error handler and make you think that
there’s an error when there isn’t.

Finally, just above the Exit Sub or Exit Function statement at the bottom
of the procedure, add whatever label you specified in your On Error state-
ment. It’s rarely possible to anticipate every conceivable error message. For
starters, you can just have the error handler display the error number and
description in a standard message box. Here’s the basic skeleton of what the
starting error-handling code might look like in a Sub procedure (where the

Chapter 12: Testing and Debugging Your Code 289

main body of code represents any number of VBA statements that define what
the procedure does normally):

Sub anySub ()
On Error GoTo MyErrorHandler

Main body of code
Main body of code
Main body of code

Exit Sub
MyErrorHandler:
Dim Msg As String
Msg = Err.Number & ": " & Err.Description
MsgBox Msg
End Sub

The same skeleton structure works in a function. You just have to replace the
Exit Sub with Exit Function, like this:

Function anyFunction ()
On Error GoTo MyErrorHandler

Main body of code
Main body of code
Main body of code

Exit Function
MyErrorHandler:
Dim Msg As String
Msg = Err.Number & ": " & Err.Description
MsgBox Msg
End Function

Take a look now at how even a simple generic handler like the preceding
example can be adapted to deal with unexpected runtime errors. Suppose
that somewhere in the main body of code is a statement that attempts to
write some data from a query to an HTML file on a floppy disk. For instance,
the following VBA statement copies data from a table named Customers to
a file named Customers.html on a floppy disk:

DoCmd.OutputTo acOutputTable, "Customers",
acFormatHTML, "A:\Customers.html"

Figure 12-15 shows that code added to the main body of the basic skeletal
structure for error handling. Once again, .. .Main body of code. .. refers
to any other numbers of statements in the same procedure.

Suppose that you run the procedure without a floppy disk in the floppy
drive. Naturally, when VBA tries to execute the statement that tries to

write to a floppy disk, the empty floppy drive causes a major environmental
problem. That problem, in turn, raises an error message. However, by the

29() Part\v: Applying VBA in the Real World

|
Figure 12-15:
Procedure
writes a file
to a floppy.

—
—
Figure 12-16:
Err.
Number
and Err.
Descrip-
tionina
message

box.
|

time the DoCmd.OutputTo. . . statement executes, the On Error GoTo
MyErrorHandler code has already been executed. So rather than just crash
at the DoCmd.OutputTo. . . statement, execution gets passed down to the
MyErrorHandler label.

The MyErrorHandler code then creates a little message string from the
Number and Description properties of the Err object. That message is
then displayed on-screen, as in Figure 12-16.

<8 12ChapExamples - Modulel {Code) ===
(General) | Write ToFloppy ~
Option Compare Database 7‘

Public Sub WriteToF loppvi()
On Error GoTo MyErrorHandler
Dim Msg As S3tring
'... Main body of code...

DoCmd.OutputTo acOutputTable, "Customers", _
acFormatHTHL, "A:%\Customers.html"

Exit Sub

'"Everything below here iz Error handler stuff.
MyErrorHandler:

Msg = Err.Nurber & ": " & Err.Description
MsgBox Msg
End Sub
v
EE >
Microsoft Office Access

2302: Microsoft Office Access can't save the output data to the file you've selected,

As a programmer, you just found out something very useful about your pro-
cedure. When a user tries to run this procedure without a floppy disk in the
drive, Access raises Err.Number 2302 (the number at the start of the mes-
sage). As a programmer, you also don’t care about anything else, other than
finding some graceful way of handling this situation that doesn’t leave the
poor user at a complete loss about what to do next. As a programmer, you
click OK and get back to doing what programmers do — writing code.

You also know that when any error occurs in your code, execution always
transfers to the MyErrorHandler label. To trap that 2302 error, you can
placean If...End If statement right there under the label that reads, If

Chapter 12: Testing and Debugging Your Code 29 1

the error that got us here was error number 2302, then . . . (handle it this way).
Here we start (as we always do in real life) by just typing the If...End If

lines for trapping error 2302. These need to be inserted just under the label

MyErrorHandler:, as shown in boldface in the following example (we also
added a couple of comments to the code):

'Everything below here is Error handler stuff.
MyErrorHandler:

'Trap "missing floppy" error (2302).
If Err.Number = 2302 Then

'Deal with missing floppy problem.
End If

'Just show error number and description, then end Sub.
Msg = Err.Number & ": " & Err.Description
MsgBox Msg

End Sub

So now you have an If...End If block of code in your handler that can
deal specifically with error 2302 when it arises. We suppose the smart thing
to do would be to show a message that tells the user to put a floppy in the
floppy drive, click an OK button, and let the code take another shot at copy-
ing to the floppy. The following code sample shows the appropriate code
added between the If...End If statements for error 2302:

'Everything below here is Error handler stuff.
MyErrorHandler:
'Trap "missing floppy" error (2302).
If Err.Number = 2302 Then
'Deal with missing floppy problem.
'Tell user what to do.
Msg = "Please put a floppy disk in drive A:."
Msg = Msg & " Then click OK. "
MsgBox Msg

'Re-execute line that copies to floppy.
Resume
End If

'Just show error number and description, then end Sub.
Msg = Err.Number & ": " & Err.Description
MsgBox Msg

End Sub

Notice that now a block of code is executed if (and only if) error number 2302
is raised (If Err.Number = 2302 Then...End If). Within that block of
code is more code written specifically to handle that error. If the user runs
the procedure without a floppy in the drive, the user first sees the message
box defined in the code, which looks like Figure 12-17 on the user’s screen.

292 Part\v: Applying VBA in the Real World

Figure 12-17:
CUStom error Microsoft Office Access

message for' Please put 5 floppy disk in drive A:. Then clidk OK,
the missing
floppy (error
2302).

For starters, your custom error-handler has replaced the generic error mes-
sage Microsoft Office Access can't save the output data to
the file you've selected with a specific instruction telling the user
exactly what to do. That’s because the message being displayed now is the
one defined by these lines of code within the If Err.Number = 2302
Then...End If block:

Msg "Please put a floppy disk in drive A:."
Msg ErrMsg & " Then click OK. "
MsgBox Msg

When the MsgBox Msg statement executes and displays the message on-
screen, code execution halts until the user clicks OK (not because of any-
thing special we did but rather because that’s how MsgBox. . . statements
always execute). When the user does as instructed and clicks OK, the next
statement executed is

Resume

That statement forces execution to try the error-generating line again
(DoCmd.OutputTo. . .). This time, because a floppy disk is in the drive, the
statement runs just fine. Code execution then resumes normally under that
line, and everything remains just as though the error never occurred.

That’s what handling runtime errors gracefully is all about. By adding a gen-
eral error-handler to the code, you can trap — and take a look at — whatever
runtime errors that particular procedure might generate. When you find a
specific runtime error, find some way of handling it that allows the code to
keep running and keep working rather than just leave the user staring dumb-
founded at the screen.

PartV

Reaching Qut
with VBA

The 5th Wave By Rich Tennant
—%__;——

O RICKTENNANT

< _ . ‘O
“Roger! Check the sewing machine’s connection

to thePC. T'm getting macros stitched across
my curtains again.”

In this part . . .

E/en though the focus of this book is on using VBA to
program Microsoft Access, that doesn’t mean that
VBA works only in Access. VBA is a programming language
for all the programs in Microsoft Office, including Word,
Excel, and Outlook. In this part, you'll discover some tools
and techniques for using VBA to automate transferring
data among those programs — and even programs that
aren’t part of Microsoft Office.

Chapter 13

Using VBA with Multiple
Databases

In This Chapter

Importing data from external tables and queries
Linking to external Access tables
Creating recordsets from external data

Importing, exporting, and linking to anything

u sually an Access database (an ACCDB file) contains all the tables,
queries, forms, reports, and other objects that make up a single data-
base. However, you find situations where it’s to your advantage to split things
into two or more database files. For example, you might want to put some
tables for a database into a single ACCDB file that’s located in a shared folder
on a network and then put all the other stuff (queries, forms, reports, and
code) in a separate database file. You can then distribute the front-end data-
base to multiple users on the network, thus allowing several people to work
with the same tables simultaneously from multiple computers.

Splitting a database into two allows you to set up a client-server relationship
between the data in the tables and the queries, forms, reports, pages, macros,
and modules that manage and access those tables. The computers that can
get to the data are the clients. The computer that stores and serves the tables
to the clients is the server. There are many ways to split up data into a client-
server relationship. In this chapter, take a look at one of the most common
methods — the Access Database Splitter.

296 Partv: Reaching Out with VBA

Client-Server Microsoft Access

Figure 13-1:
Arrows next
to table
names
indicate
linked
tables.
|

As you might (or might not) know, you can use Access’s built-in Database
Splitter to split any existing database into two separate databases (two sepa-
rate ACCDB files). The Database Splitter is a wizard that takes you through
the steps necessary to split the database. In the process, the wizard creates a
database that contains only the tables. To open the Database Splitter, click
the Database Tools tab, and then click the Access Database button in the
Move Data group.

For example, you might want to split a database file named MOM. accdb by
using the Database Splitter. Follow the instructions in the Database Splitter
and click the Split Database button. In the Create Back-end Database dialog
box, choose a filename for your database. In our example, we named the file
MOM_be .accdb. After the database is split, you end up with a file named
MOM_be . accdb, which contains all of that database’s tables. You also still
have your original MOM. accdb database containing all the original queries,
forms, reports, pages, macros, and modules.

However, MOM. accdb doesn’t contain any tables. Instead, the Navigation
pane shows links to external tables. In the Navigation pane, each linked table
has an arrow to the left of its icon, as in the example shown in Figure 13-1.
Pointing to a linked table’s icon or name displays the table’s true location in a
ScreenTip at the mouse pointer.

All Access Objects v«
Tables
’j Address Book

"=
=
=
*F My Business
i}
|
|
"=
"=
Queries
Forms

»

Countrylookup
Email Messages Table

LabelsTermpTable

Qrder Details %

Qrders |C:\SecureData\MOM,be-aCCdb

Products
Sales Tax Rates

Statelookup

| KK

Reports
Modules

Splitting the database in two lets you keep the back end separate from the
front end. The back end is the database file that contains only the tables. On
a network, you can place the back-end ACCDB file on any shared folder in a
network so that all computers in the network can get to the tables.

Chapter 13: Using VBA with Multiple Databases 29 7

When not to split a database

Splitting a database isn't something to be taken
lightly, just for the heck of it. After you split a
database file in two, changing or deleting a field
in a table becomes a real headache. You have
to open the back-end database table and
change the field there. Furthermore, Name
AutoCorrect can’t propagate a field name
change through other objects as it normally
would. So you might have to manually change
the same field name in several objects in the
front-end database file.

Splitting a database across multiple computers
also slows things down because now there’s
the extra step of transferring all data to and from
tables over the network. To keep life simple
and not slow things down while you're trying

to create a database, keep your tables, queries,
forms, reports, macros, and modules all in
one ACCDB file. Don’t even think about split-
ting things until you've created everything
you need — and are sure that everything is
working.

If you want to try it, start with a copy of a data-
base (so that you still have the original unsplit
database available to you). Open that database
with Access in the usual manner, and then
use the Database Splitter to split the database.
For more information on the whole shebang,
open Access Help go to or http://
search.microsoft.com and search for
the keywords Database Splitter, Linked Table
Manager, and Name AutoCorrect.

After you place the back-end database in a shared folder, the next step is just
a matter of opening the front-end database to make sure that it can find the
linked tables. If you've changed the location of the back-end database since
splitting the tables, you can use the Linked Table Manager — available in the
Database Tools group on the Database Tools tab — to reestablish a link with
those tables at any time.

Back in the MOM. accdb and MOM_be . accdb example, you might put
MOM_be .accdb in a shared folder named MOMFolder on a computer named
NetPC and then open the front-end database, MOM. accdb, on a computer
other than NetPC. If the links to the back-end database fail, just click the
Linked Table Manager button on the Database Tools tab and set the path
for all of the tables to the new location. In this example, it’s \ \NetPC\
MOMFolder\MOM_be.accdb.

After you reestablish the links, you can install the front-end database on any
computer in the network that has Microsoft Access installed. For example,
Figure 13-2 shows how the back-end database is installed on one computer,
which acts as the server by serving table data to all who request it. Each of
the other computers has a copy of the MOM. accdb front-end database
installed, so each of those computers has access to exactly the same back-
end tables.

298 PartV: Reaching Out with VBA

|
Figure 13-2:
Front-end
clients and
back-end
server.
|

Everything we discuss to this point in the chapter can be done without using
any VBA. The Database Splitter and Linked Table Manager tools are both
right on the Database Tools tab in Microsoft Access. After you establish a
valid link between the front-end and back-end databases, everything else is
automatic. As far as queries, forms, reports, macros, and modules go, a
linked table is no different from a local table (a table that’s actually in the cur-
rent database, not just linked).

Back-end server
(tables only)

2

= Microsoft Access and
MOM_be.accdb

Front-end T
clients

Microsoft Access and MOM.accdb

Here’s a downside to the whole business of splitting the tables from the other
objects: network traffic. It takes time to get things across a network. The
heavier the traffic on the network, the longer it takes.

You might have situations where a certain external table needs to be
accessed only occasionally. Perhaps only a snapshot of some data is all that’s
required. In such cases, you can use VBA to open and close external links as
needed. For example, you can attach code to a form’s On Load and On
Unload event procedures to interact across the network only while that form
is open or only at the moment when the data is required.

Changing linked tables back to local tables

To convert a linked table back to a local table, 3. Inthe Paste Table As dialog box that opens,
do the following: type the original table name (same as the
linked table’s name), choose Structure and

1. Right-click the linked table’s icon in the Data (Local Table), and then click OK.

Navigation pane and choose Cut.

2. Press Ctrl+V, or right-click some empty
space in the Navigation pane and choose
Paste.

A\\J

To illustrate the various techniques shown in this chapter, we use an example
of a single Access ACCDB file named MOMSecure.accdb. To keep names
short, this table is stored in a folder named SecureData on drive C:. Thus, the
path to the database file is C: \ SecureData\MOMSecure.accdb from any
other Access database. (Most of the code that follows is copy-and-paste stuff.
In most code, you need to change the path to reflect the actual location of
your own external ACCDB file.)

If MOMSecure.accdb were in a shared folder named SecureData on a com-
puter named Max in a local network, the path would be \ \Max\Secure
Data\MOMSecure.accdb from any Access database on the LAN.

To keep things relatively simple, say that MOMSecure.accdb contains only
two objects: one table and one query. The table’s name is CCSecure; its
structure is shown in Design view on the top-left side of Figure 13-3. The
figure also shows some sample data in the CCSecure table, in Datasheet
view.

Disclaimer: All the names and credit card numbers shown in these figures
are fictional, and any resemblance to real people or credit card numbers is
purely coincidental. (So don’t bother trying to use them to shop online.)

As you might have guessed already, the CC in the field names is short for
credit card. Here’s a quick overview of the purpose of each field in the
CCSecure table:

V¥ ContactID: A Long Integer that relates each record to a specific cus-
tomer in a separate Customers table. ContactID is the foreign key
here in the CCSecure table and the primary key in the Customers
table.

Chapter 13: Using VBA with Multiple Databases 299

300 Partv: Reaching Out with VBA

Figure 13-3:
CCSecure
tablein
Design and
Datasheet
views.
|

E5 cesecure -ox
Field Name Data Type Description =
ContactiD Nurmber Foreign Key to Custornerstable =)
CCPreferred Text Arnex, Master Card, Visa, etc.
CCHolder Text Cardholder Name (on credit card)
CCAcctNurmText Text Account Number {stored as Text)
CCExpireMonth Number Expiration Month
CCExpireYear Nurmber Expiration Year
CCridCode Text CID Code L
Field Properties
General |Lookup
Field Size Long Integer
Format = |General Humber]
Decimal Places Auto
Input Mask
Caption
£ cesecure = ox
ContactlD - CCPreferred - CCHolder - CCAcctNumText ~ | CCExpireMo - | CCExpireYe: - | CCcidCode -
11 Master Card Tori Pines 1234567887654321 3 2008 040
13 Arnex Marilou Midealf 5730823847236492 6 2007 187
16 Armex Wilma Wannabe 165781685198G755 1 2008 269
17 Visa Frankly Unctuous 3479037375652035 11 2007 218
22 Visa MNancy O'Hara 0434387154987413 12 2007 427

*

Record: M ¢ [1of5 | » M b | Search

V¥ CCPreferred: Contains the name of a preferred credit card, such as
AMEX, Master Card, or VISA.

»* CCHolder: Contains the cardholder name as it appears on the card.

V¥ CCAcctNumText: Stores the card account number as text: for example,
1234567898765432.

»* CCExpireMon: The month when the card expires, as an integer (1-12).

» CCExpireYr: The year when the card expires, as an integer: for
example, 2007 or 2008.

V¥ CCcidcCode: The three-digit CID code that appears on the back of the
credit card.

The second object of MOMSecure is a query named CCSecureQry. For this
example, we created a query named CCSecureQry. This query displays all
records from the CCSecure table except the account number and CID fields.
In place of the account number is a calculated field named CCHint, which is
a calculated control based on the expression shown here:

CCHint: "XXXX-XXXX-Xxxx-" & Right ([CCAcctNumText], 4)

Figure 13-4 shows the CCSecureQry query in both Design and Datasheet
views. We omitted the CCcidcCode field from the query for no particular
reason other than to have an example of leaving fields out of a query. As you
can see in Datasheet view, the CCHint field displays xxx-xxx-xxx-1234,
where 1234 is the last four digits of the account number. Thus, the query is
hiding some information from the CCSecure table.

Chapter 13: Using VBA with Multiple Databases 30 1

"_i‘CCSecuraer - = x
-
CCSecure E
CantacD
CCPreferred
CCHalder
CCAccthlumText
CCExpirebonth
CCExpireYear
-
[JKim| »
e
] _A- Field: | Contactlh | CCPreferred | CCHolder | CCHint: “osermeocecon” & Right{[CCAcctNumText], 4) | CCExpirehonth | CCExpirevear =
Flgure 13-4: Table: |CCSecure | CCSecure CCSecure CCsecure RENTE
Sort
CCSecure Shovr:
. Criteria: | —
er IncC: o ’_iCCSecureer - o x
4 ContactlD - | CCPreferred - CCHolder - CCHint - CCExpireMo - | CCExpireYez -
\Secure 11 Master Card Tari Pines RAKR-KAKRKXKK-4321 3 2008
13 Amex Marilou Midcalf XXXK XXX XXX -G452 & 2007
Data\MOM
16 Armex Wilma Wannabe Kxxx-X6d%-xiKx-6755 1 2009
Secure. 17 Visa Frankly Unctuous XXxX-XXXX-XXXX-2085 11 2007
22 Visa Mancy O'Hara XXNK-XRRX-XXNK-T419 12 2007
accdb. *
E—— Record: M < [1of5 | b M ko[Search

CCAcctNumText is a text field, so you use the expression
Right ([CCAcctNumText], 4) to refer to the last (rightmost) four
characters of that field’s contents.

In a sense, you've turned the MOMSecure.accdb database into a little black
box from which you can zap some credit card info out of a query (or the
table, if need be) from any other Access database in the network. We suppose
you could call it your customer credit card information server. We also suppose
you can'’t call it your secure server right now because making it secure would
require some close encounters of the network administration kind, which has
nothing to do with Access or VBA.

How can any Access database on the network reach into MOMSecure.accdb

and grab data, even when that database is closed? Here are the three answers
to this question, and you can use whichever method seems most appropriate
to the occasion:

v Import (a snapshot): You can import a snapshot of a table or query, stor-
ing it as a table in the current database. The imported table becomes a
local table and doesn’t reflect any changes made to the source table
since the snapshot was taken.

v Link: You can create a link to any table in any external database. This
type of link is identical to that created by the Database Splitter. Changes
made to the source table are reflected in the linked table.

1 Recordset: You can create an ActiveX Data Objects Database (ADODB)
recordset of any table or query from an external database. Recordsets
are useful when you need only a brief snapshot of external data, such as
when you're using that data for only a single VBA procedure.

302 Partv: Reaching Out with VBA

Each of the methods has its pros and cons. Which method is most appropri-
ate at any given time depends on the situation. If the situation calls for a
quick snapshot of current data, you can import data. If the situation calls
for an open link to the table, like when both tables need to be up-to-date
with each other, you need either a link or a recordset. Start with the easiest
scenario first — the quick-zap grab of a snapshot of current data.

Importing from External Databases

You can import data from any external Access table or query into a table in
the current database. There are a couple of advantages to this approach.
When you import, you create a table, within the current database, that con-
tains an exact clone of the external table or query. Second, the imported data
is stored in a normal, local Access table. After the table exists in the current
database, all other objects in the database that depend on that table work
just fine. No special handling is required.

The only disadvantage is that any changes made to the copy of the table in
the current database don’t carry over to the original table — or vice versa
because the local table and external table are no longer connected in any
way. So you want to import data from an external source whenever

v The external table is one that doesn’t change much

v The current database needs the external table’s data for only a short
length of time

The TransferDatabase method of the DoCmd object is the easiest way to
import an external table or query with VBA. The general syntax is shown
here. Note that when typing your own code, you should type it in as one long
line without the continuation characters (_). Or, if you want to break the
statement into shorter lines, make sure that you end each of the first two
lines with a blank space and an underscore, as shown here:

DoCmd.TransferDatabase acImport, "Microsoft Access",
"pathToExternalDB", acTable, _
"externalThblQry", "localTableName"

where
V¥ pathToExternalDB is the complete path and filename of the database

file that contains the table or query.

V¥ externalTblQry is