
Richard Wagner
Inventor and chief architect of the
JavaScript tool NetObjects ScriptBuilder

Learn to:
• Build rich Internet applications (RIAs)

that run on the desktop and access
Web services

• Create cross-platform apps that run on
both Windows and Mac

• Use AIR to access XML and RSS data

• Develop apps that run seamlessly
online and offline

Adobe® AIR
™

Making Everything Easier!™

Visit the companion Web site at

www.dummies.com/go/adobeairfd

to find all the code used in this book

 Open the book and find:

• Secrets for creating Internet-savvy
apps

• How to set the environment path
in Vista, Windows® XP, or Mac OS® X

• Tips for using HTML and CSS as
building blocks

• Ways to use Webkit extensions

• How to handle events in the HTML
DOM

• Ten terrific RIAs to check out

• How to add drag-and-drop
capability in Flex, Flash, and
HTML apps

• Advice for instant downloading
and auto-updating

Richard Wagner is an experienced Web designer and developer who

has written more than a dozen Web-related books. Previously, he was

vice president of product development for NetObjects, where he was the

inventor and chief architect of the award-winning JavaScript tool called

NetObjects ScriptBuilder.

$29.99 US / $32.99 CN / £19.99 UK

ISBN 978-0-470-39044-3

Programming/Software Development

Go to dummies.com®

for more!

Build full-fledged Web apps
with JavaScript, Flex, or HTML —
it’s a breath of fresh AIR
With Adobe AIR, you can create rich Internet applications
using Web technologies. They run on desktops and across
multiple operating systems, and they’re more than mere
wimpy widgets. This book gives you the scoop on AIR,
working with local file systems and databases, setting up
security, and all the stuff you need to know to create cool
AIR apps.

• Get out in the AIR — find out how to create AIR apps using Flex®,
Flash®, and HTML with Ajax

• Play in the sandbox — understand the AIR security model and
how application sandboxes protect your code and data

• Connect — learn about the database connectivity of Adobe AIR
and how to work with SQL when building database applications

• Banish bugs — see how to use the AIR Debug Launcher, the alert
command, and the AIR HTML Introspector to debug your apps

• Surf the AIRwaves — create apps for network connectivity,
monitor remote network services, and work with audio files

A
dobe

® A
IR

™

Wagner

Spine: .72”

01_196113-ffirs.qxp 12/12/08 10:46 PM Page ii

by Richard Wagner

Adobe® AIR™

FOR

DUMmIES
‰

Adobe® AIR™ For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission.
Adobe and AIR are trademarks or registered trademarks of Adobe Systems Incorporated. All other trade-
marks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any prod-
uct or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2008942265

ISBN: 978-0-470-39044-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3

About the Author
Richard Wagner is an experienced Web developer as well as

author of several Web-related books. These books include Building
Facebook Applications For Dummies, Professional iPhone and iPod
touch Programming, XSLT For Dummies, Creating Web Pages All-in-
One Desk Reference For Dummies, XML All-in-One Desk Reference
For Dummies, Web Design Before & After Makeovers, and JavaScript
Unleashed (1st, 2nd ed.). Richard was previously vice president

of product development at NetObjects. He was also inventor and

chief architect of the award-winning NetObjects ScriptBuilder. A

versatile author with a wide range of interests, he is also author of

The Expeditionary Man and The Myth of Happiness. His tech blog is

at subcreatif.richwagnerwords.com.

Dedication
To Kim and the J-boys

Author’s Acknowledgments
Thanks so much to all of the great folks on the Dummies team at

Wiley. Terrific job, as always. In particular, I would like to thank

Susan Christophersen for doing a terrific job managing the book

from cover to cover. Hats off also to Russ Mullen for his technical

prowess to ensure the accuracy of the code and technical details

of the book.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form located

at http://dummies.custhelp.com. For other comments, please contact our Customer Care

Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media

Development

Project and Copy Editor:

Susan Christophersen

Acquisitions Editor: Katie Feltman

Technical Editor: Russ Mullen

Editorial Manager: Jodi Jensen

Media Development Project Manager:

Laura Moss-Hollister

Media Development Assistant Project

Manager: Jenny Swisher

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant

(www.the5thwave.com)

Composition Services

Project Coordinator: Patrick Redmond

Layout and Graphics: Andrea Hornberger,

Christin Swinford, Ronald Terry,

Christine Williams, Erin Zeltner

Proofreaders: Melissa Bronnenberg,

Caitie Kelly, Penny L. Stuart

Indexer: Broccoli Information Management

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance
Introduction .. 1

Part I: Airing It Out with Adobe AIR 5
Chapter 1: Getting Started with Adobe AIR ... 7

Chapter 2: Building and Deploying Your First AIR Application

with HTML and JavaScript ... 21

Chapter 3: The Air Feels Different: Building with Flex Builder and Flash 39

Chapter 4: Exploring the Adobe AIR API ... 55

Part II: AIR Application Design 75
Chapter 5: Using HTML and CSS as Building Blocks .. 77

Chapter 6: Anyone Listening? Working with Events ... 93

Chapter 7: Windows: Creating Native Application Shells ... 101

Chapter 8: Working with Menus and Tray and Dock Icons 129

Part III: Programming the Adobe AIR API 161
Chapter 9: Don’t Be a Drag: Interacting with the Clipboard

and Drag-and-Drop .. 163

Chapter 10: A New Developer Freedom: Working with the Local File System 193

Chapter 11: From AIRhead to Datahead: Working with Databases 227

Chapter 12: Surfi ng the AIRwaves: Net Connectivity .. 257

Chapter 13: Working with Audio .. 275

Chapter 14: Quick and Easy: Instant Downloading and Auto-Updating 285

Part IV: The Part of Tens .. 301
Chapter 15: Ten Tips for Successful AIR Debugging ... 303

Chapter 16: Ten Killer RIAs to Explore ... 315

Index .. 327

Table of Contents
Introduction ... 1

About This Book .. 1

Foolish Assumptions ... 2

Conventions Used in This Book ... 2

What You Don’t Have to Read .. 2

How This Book Is Organized .. 3

Part I: Airing It Out with Adobe AIR .. 3

Part II: AIR Application Design .. 3

Part III: Programming the Adobe AIR API ... 3

Part IV: The Part of Tens .. 3

Icons Used in This Book ... 4

Where to Go from Here ... 4

Part I: Airing It Out with Adobe AIR 5

Chapter 1: Getting Started with Adobe AIR .7
Discovering Adobe AIR .. 8

Creating Internet-savvy apps .. 8

Peeking inside Adobe AIR runtime ... 9

Blurring the lines between HTML and Flash 11

Understanding the AIR Security Model ... 11

Playing in sandboxes ... 12

Additional restrictions within the application sandbox 12

Digitally Signing an Application ... 14

Setting Up Your AIR Development Environment 16

Installing the Adobe AIR runtime .. 16

Installing the Adobe AIR SDK .. 17

Prepping Dreamweaver and Flash for AIR .. 19

Chapter 2: Building and Deploying Your First AIR Application
with HTML and JavaScript .21

Overviewing Jot ... 22

Preparing the Application Folder .. 22

Creating the HTML-Based UI ... 23

Adding Styles .. 25

Adding the JavaScript Code ... 27

Creating the Application Descriptor File ... 32

Adobe AIR For Dummies x
Testing Your Application Using ADT .. 35

Creating a Self-Signed Certifi cate ... 36

Generating an AIR Installer File to Deploy Your Application 37

Chapter 3: The Air Feels Different: Building
with Flex Builder and Flash .39

Developing an AIR Application with Flex Builder 3.0 39

Creating the project .. 40

Adding MXML and ActionScript source code 42

Confi guring the application descriptor fi le 45

Testing the app .. 46

Preparing the app for deployment ... 47

Creating an AIR Application with Flash CS4 .. 49

Designing the user interface .. 49

Adding ActionScript code ... 51

Confi guring and compiling the AIR application 53

Chapter 4: Exploring the Adobe AIR API .55
Exploring the Relationship between AIR

and JavaScript Environments .. 55

Calling the AIR API ... 57

Calling from JavaScript ... 57

Calling from ActionScript .. 58

Touring the Adobe AIR API .. 58

Native OS windows ... 58

Local fi les .. 60

Menus .. 61

Inter-application data exchange .. 64

Multimedia .. 65

Keyboard and mouse .. 66

Database.. 68

Communication .. 70

Part II: AIR Application Design 75

Chapter 5: Using HTML and CSS as Building Blocks77
Working with HTMLLoader ... 77

Accessing and sizing the HTMLLoader ... 78

Loading HTML content ... 78

Setting the transparency of a window ... 79

Launching a URL in the default system browser 79

History, HTML history that is, can teach you something 80

Taking Advantage of WebKit Extensions .. 81

Creating rounded rectangles .. 82

Making links into push buttons .. 83

Setting alpha values ... 84

xi Table of Contents

Drawing Graphics on the HTML Canvas ... 86

Adding a canvas ... 86

Getting a context .. 87

Drawing a rectangle .. 87

Stroking and fi lling nonrectangular shapes 88

Working with color and transparency ... 90

Chapter 6: Anyone Listening? Working with Events 93
Responding to Events ... 93

Event handling in the HTML DOM .. 94

Registering events in the AIR event model 95

Working with Event Objects ... 95

Overriding Default Behaviors .. 97

Understanding the Flow of Events .. 98

Chapter 7: Windows: Creating Native Application Shells101
Exploring AIR Windows .. 101

Creating the Initial Window ... 102

Setting the Window Style .. 106

System chrome ... 106

Transparency .. 108

Window type ... 110

Creating a Window Programmatically .. 112

Creating an HTML window ... 112

Creating a Flex mx:Window .. 114

Creating an ActionScript NativeWindow 115

Creating Nonrectangular Windows ... 120

Nonrectangular windows in HTML .. 120

Nonrectangular windows in Flex ... 124

Chapter 8: Working with Menus and Tray and Dock Icons 129
Exploring the Types of Native Menus ... 129

Creating a Menu ... 131

Creating a root menu ... 132

Creating submenus ... 133

Creating menu commands .. 134

Creating menu separators .. 135

Adding keyboard shortcuts to menu items 136

Adding mnemonic key assignments .. 137

Selecting and deselecting menu items ... 138

Disabling and enabling menu items ... 138

Attaching an object to a menu item .. 139

Setting the Application, Window, Pop-Up, and Context Menus 139

Setting a window menu (Windows) .. 139

Setting an application menu (Mac) ... 140

Setting a context menu .. 140

Setting a pop-up menu .. 141

Adobe AIR For Dummies xii
Handling Menu Events .. 142

Responding to menu selections ... 142

Updating menus before they display .. 143

Enabling Your App for the Windows System Tray

and Mac OS X Dock .. 145

Enabling your app for the Windows system tray 145

Enabling your app for the Mac OS X dock 146

Putting It All Together with MenuAIR .. 146

MenuAIR: The HTML Edition .. 147

MenuAIR: The Flex Edition ... 152

Part III: Programming the Adobe AIR API 161

Chapter 9: Don’t Be a Drag: Interacting
with the Clipboard and Drag-and-Drop .163

Working with the Clipboard .. 163

Adding basic cut, copy and paste functionality............................. 164

Using an alternate Clipboard method

in HTML environments ... 166

Copying and pasting images using ActionScript 167

Don’t Be a Drag: Adding Drag-and-Drop ... 169

Adding drag-and-drop in Flex and Flash .. 170

Adding drag-and-drop functionality in HTML apps 181

Chapter 10: A New Developer Freedom: Working
with the Local File System .193

Identifying the File Classes ... 193

Working with Files and Directories .. 194

Working with paths .. 194

Pointing to a directory ... 196

Pointing to a fi le ... 198

Allowing Users to Browse For a Directory and Files 199

Displaying a Choose Directory dialog box 199

Displaying a File Open and File Save dialog box 200

Displaying a Select Multiple Files dialog box 203

Performing Directory and File Operations ... 206

Creating a directory .. 206

Creating a temporary directory or fi le ... 207

Copying and moving directories and fi les 207

Deleting and moving to trash .. 209

Reading and Writing to Files .. 210

Read from a fi le .. 210

Write to a fi le .. 211

xiii Table of Contents

AIRWrite: Creating a Simple Text Editor .. 212

HTML version ... 212

Flex version... 220

Chapter 11: From AIRhead to Datahead: Working
with Databases. .227

Working with Local Databases ... 227

Introducing the Basics of SQL ... 228

Handpicking records with SELECT .. 229

Adding conditions with WHERE ... 230

Sorting with ORDER BY ... 231

Adding records with INSERT INTO ... 232

Modifying records with UPDATE .. 232

Getting rid of records with DELETE ... 233

Creating a table with CREATE TABLE .. 233

Opening a Database Connection .. 235

Performing Database Operations with SQLStatement 237

Creating a Database Table ... 238

Inserting a Record ... 240

Requesting Data from a Table .. 251

Chapter 12: Surfi ng the AIRwaves: Net Connectivity.257
Detecting Network Connectivity ... 257

Monitoring Remote Network Services .. 258

Enabling HTML apps for service monitoring 259

Monitoring connectivity to a Web site .. 259

Monitoring socket connections ... 261

Making an XML Socket Connection .. 262

Creating a basic socket server ... 262

Adding a socket connection .. 265

Creating a “Server Push” Socket Connection ... 268

Chapter 13: Working with Audio .275
Working with Sounds ... 275

Playing a sound fi le .. 276

Pausing and resuming playback .. 279

Adding sound effects ... 281

Mike Me Up: Working with the Microphone .. 283

Chapter 14: Quick and Easy: Instant Downloading
and Auto-Updating .285

Seamlessly Installing an AIR App with badge.swf 286

Auto-Updating Your AIR Application .. 289

Adding the AIR update framework ... 290

Creating the updater descriptor fi le .. 291

Adding the updater to your source code 292

Adobe AIR For Dummies xiv
Part IV: The Part of Tens ... 301

Chapter 15: Ten Tips for Successful AIR Debugging303
Use ADL (AIR Debug Launcher) as the Starting Point 304

Make Aptana Studio Your Home Base for HTML-Based Apps 304

Quick and Easy Debugging: Use the alert Command 306

Better Yet: Use the trace() Method Instead of alert() 307

Create Your Own Debug Window .. 308

Outputting to a Log File with AIRLogger .. 309

Debug HTML-Based Apps with the AIR HTML Introspector 310

Debug with Flex Builder .. 312

Test on Multiple Platforms .. 312

View Source Code .. 312

Chapter 16: Ten Killer RIAs to Explore .315
Pure Usefulness: Google Analytics Reporting Suite 316

Pure Power: eBay Desktop ... 317

Innovative Use of Media: AOL Music — Top 100 Videos 318

Web App Upgrades: twhirl and Snitter ... 319

Business Use: AgileAgenda .. 320

For the Niche Crowd: RichFLV ... 321

The Cool Factor: Snackr .. 322

For the Geek Crowd: Snippely .. 323

Groundbreaking Look and Feel: uvLayer .. 324

Index ... 327

Introduction

Although Adobe AIR is a still new product release, it’s already proving

to be one of those technologies that is changing the rules of the game.

Until AIR was introduced, the runtime environments of the desktop and Web

were cleanly divided and clearly distinct from each other. Sure, you had Web-

enabled desktop apps and technologies, such as Google Gears, that allowed

Web apps some local capabilities. But by and large, the desktop was a stuffy

world inhabited by the C++ and Objective-C programmers.

Enter Adobe AIR. It has become a breath of fresh air to Web developers. For

the first time, developers can now use Web technologies — such as HTML,

JavaScript, Flash, or Flex — to create rich Internet applications (RIAs) that

run on desktops and across multiple operating systems. These apps need not

be mere “widgets” or “applets” but can be full-fledged, professional, and per-

haps even “air-cooled” applications.

About This Book
Adobe AIR For Dummies serves as your friendly, no-nonsense guide to design-

ing and developing Adobe AIR applications. Throughout the book, I focus on

covering the essentials you need to successfully deploy your own AIR appli-

cations. Using this book, you can

 ✓ Get a solid understanding of the Adobe AIR API

 ✓ Build AIR apps in three different ways: HTML/Ajax, Flex, and Flash

 ✓ Design apps using HTML and CSS

 ✓ Work with local file systems and databases

 ✓ Make sense of application sandboxing and security

You can create Adobe AIR apps using standard Web technologies (HTML,

CSS, JavaScript, and Ajax), Flex, or Flash. It would take a book three times as

thick as this one to fully cover AIR development equally across these tech-

nologies. Consequently, although I give some coverage to Flex and Flash,

the book focuses primarily on HTML, CSS, JavaScript, and Ajax. However,

because the AIR runtime environment is independent of technologies used to

develop the app, Flex and Flash developers can also able to follow along to

better their understanding of AIR. You can find source code for many of this

book’s examples at www.dummies.com/go/adobeairfd.

2 Adobe AIR For Dummies

Foolish Assumptions
In Adobe AIR For Dummies, I don’t expect you to have any previous experi-

ence with Adobe AIR, Flex Builder, or Flash. I do, however, assume that you

have at least a working knowledge of HTML, CSS, JavaScript, and Ajax. Oh,

yeah, I also assume that you understand the word arroyo. (Not that I talk

about a deep gully, mind you.)

Conventions Used in This Book
Keep in mind the following conventions, or typographical rules, which I use

throughout the book:

 ✓ Text formatting: I italicize new terms that I define. Bold text is used to

indicate specific commands that you are to perform. Source code and

URLs stand out from normal text with a monospaced font.

 ✓ Markup terminology: When working with Adobe AIR, you often work

with markup style languages, including Hypertext Markup Language

(HTML) and Extensible Markup Language (XML). A markup language

consists of many elements (also called tags), each of which has a start
tag, end tag, and content in between. For example:

<h1>Are you an AIRhead?</h1>

 The <h1> is the start tag, </h1> is the end tag, and Are you an
AIRhead? is the content. The entire piece of code is called the h1 element

or tag.

What You Don’t Have to Read
Before you begin the book, let me point out a couple of “optional” modules

that you can feel free to avoid without missing the information you absolutely

need to know:

 ✓ Text marked with a Technical Stuff icon: Paragraphs with this icon

beside them let you know that this “techie” material provides additional

details to round out your understanding. But it is not required reading.

 ✓ Sidebars: Once or twice, I stick some info in a shaded sidebar, which

gives you some “ancillary info” but isn’t critical to your understanding of

the chapter.

3 Introduction

How This Book Is Organized
This book is carved up neatly and cleanly into four distinct parts, like so:

Part I: Airing It Out with Adobe AIR
You begin soaring with AIR after you read Part I. In this part, discover the

essentials of the AIR runtime environment and its Web-based framework.

Adobe AIR apps can be created using three different Web technologies —

standard HTML and Ajax, Flex, and Flash. In this section, I also show you how

you can use each of these to build AIR apps. Even if you’re familiar with just

one of these technologies, you can still find it helpful to work with the other

development environments because each has certain advantages and disad-

vantages over the other.

Part II: AIR Application Design
In Part II, you begin to get deeper into the design of AIR applications using

HTML and JavaScript. You will explore how to create HTML/CSS-based user

interfaces and add native operating system windows, menus, and icons.

Part III: Programming the Adobe AIR API
Part III is the heart of the book. It is where you discover all aspects of the

AIR API. You explore how to interact with the operating system and the file

system. If you’re developing a database application, this is where you can

find out how to work with both local and remote databases. This part also

covers deploying your app.

Part IV: The Part of Tens
Part IV is the traditional close to every For Dummies book — The Part of

Tens. In this action-packed part, you explore ten strategies for security and

sandboxing of your application, followed by ten tips to keep in mind for suc-

cessful AIR debugging. Finally, I close out the book with a survey of ten killer

RIAs.

4 Adobe AIR For Dummies

Icons Used in This Book
For Dummies books aren’t content with just plain, ordinary pages with ordi-

nary paragraphs. No, we like to make things more interesting and helpful by

providing a few icons to point out material of special interest. These are the

following

 The Remember icon indicates a paragraph that is particularly significant to

your understanding of Adobe AIR development.

 The Tip icon points out key development tips and techniques that you want to

be sure and take note of.

 The Warning icon acts as your early warning system, alerting you to potential

pitfalls that you may encounter along the way.

 As I mention in the “What You Don’t Have to Read” section, the Technical Stuff

icon points out technical but not required info.

Where to Go from Here
Although you can read this book from cover to cover like a John Grisham novel,

it’s structured so that you don’t have to. Here’s a roadmap that will get you going

to exactly where you want to go:

 ✓ To explore Adobe AIR and its components, turn the page over and begin

reading Chapters 1.

 ✓ To create your first Adobe AIR application using HTML, skip over to

Chapter 2.

 ✓ If you’re a Flex or Flash developer, you may want to begin with Chapter 3.

 ✓ To dive head first into AIR app design, head over to Part II.

 ✓ To explore the local file and database storage capabilities of AIR, read

Chapters 10 and 11.

Part I
Airing It Out with

Adobe AIR

In this part . . .

Perhaps you’re a Web developer and the idea of the

desktop environment of Adobe AIR seems foreign. Or

perhaps you’re a desktop programmer but are unfamiliar

with Web technologies such as Ajax, Flex, or Flash. If so,

then start here. You explore the Adobe AIR environment

and the structure of an AIR application. Finally, you roll

up your sleeves and develop your first AIR app.

Chapter 1

Getting Started with Adobe AIR
In This Chapter
▶ Understanding exactly what Adobe AIR is

▶ Discovering the significance of a new acronym — RIA

▶ Exploring the AIR security and signing model

▶ Setting up your development environment for Adobe AIR

Web developers, unite! For all too long, Web developers have been

oppressed by the shackles of the browser window, their creativity

stifled by cross-browser compatibility issues, their self-image hurt by the

scoffs of desktop app programmers who trivialize browser-based solutions. . .

But that was then; this is now. Or, to mimic the voiceover from an overly dra-

matic movie trailer, Everything you know about Web development is about to
change. Introducing Adobe AIR. . .

Adobe AIR promises to liberate developers from the snares, toils, and

oppression of their browser-based prisons and enable them to create “rich

Internet applications” (RIAs) for the desktop. In true Braveheart fashion,

maybe you will find yourself shouting from your office or cubicle, “You can

take my life, but you can never take my Adobe AIR!”

Okay, perhaps I am guilty of being just a wee bit over-the-top as I introduce

Adobe AIR, but I hope the melodrama does serve a purpose. It helps show

you that AIR really is not just another flavor of the week. AIR really does pro-

vide a greater freedom to do things that HTML/Ajax, Flash, and Flex develop-

ers can’t do inside the browser.

In this chapter, I introduce you to this “breath of fresh AIR” and get you

started working with it. Viva la RIAs!

8 Par t I: Airing It Out with Adobe AIR

Discovering Adobe AIR
Adobe AIR enables Web developers to create cross-platform desktop applica-

tions using and combining familiar Web technologies that they are already

skilled in — such as HTML, JavaScript, Ajax, Flash, and Flex.

Even though the technologies used to create it are Web based, an AIR appli-

cation looks and feels like a normal Windows or Mac OS X program. It runs

in its own window, has its own icon, and integrates with the menu system

or taskbar. And it generally has the performance you would expect from a

native operating system application. In fact, users will interact with an AIR

app (see Figure 1-1) just the same as they do with any other application on

their desktop.

Creating Internet-savvy apps
An AIR application is technically not standalone. It is actually “powered by”

the Adobe AIR runtime that must be installed on any computer in order to

run the application. Therefore, when an AIR app is launched, the AIR runtime

is automatically loaded behind the scenes prior to the loading of the app.

Figure 1-1:
Analytics
Reporting

Suite
delivers a
traditional

Web appli-
cation to the

desktop.

9 Chapter 1: Get ting Star ted with Adobe AIR

When you create an AIR application, you build the app using Adobe Dreamweaver,

Adobe Flex, Adobe Flash, or any text editor. (In Chapter 2, I show you how to

create a basic HTML-based app in a text editor and Dreamweaver. Chapter 3

shows you how to create a basic app in Flex and Flash.)

As you can see, many parts of the application use Web techniques and tech-

nologies that you’re already used to working with. However, core to Adobe

AIR is an application programming interface (API) that you can tap into to do

real “desktop stuff,” such as get access to local files, open native UI windows,

create menus, and so on. I walk you through the API in Chapter 4.

As you begin to explore the AIR API, you will see that the key strength of

Adobe AIR is not in creating word processors or spreadsheets (although you

can), but rather in enabling Web developers to shed the browser and safely

deploy Internet-savvy apps onto the desktop.

An AIR application is easily delivered to users with a single downloadable

installer (which has an .air extension) regardless of the operating system.

(See Chapter 14 for more on deployment.)

Developers can create Internet-based desktop apps to some extent through

widgets and Java, but both of these technologies have restrictions or limita-

tions that have kept them as niche players. Widgets are intended for limited

single screen, display-oriented purposes (such as a stock ticker). Cross-

platform applications using Java runtime have traditionally suffered in com-

parison to native OS apps — in terms of both performance and “look and

feel” issues. Also, both widgets and Java apps are much weaker in working

with rich media than Flash has been.

In fact, you may want to jump over to Chapter 16 to take a quick look at ten

great AIR applications that help demonstrate the power of the platform.

Peeking inside Adobe AIR runtime
The Adobe AIR runtime may be a relatively new platform, but it actually

embeds three highly mature and stable cross-platform technologies to power

AIR applications. These are the following:

 ✓ WebKit: Used for rendering HTML content inside an AIR app. WebKit is

an open source, cross-platform browser and is the underlying rendering

engine on which Apple’s Safari browser is built.

 WebKit is known for its strong support of W3C standards, such as HTML,

XHTML, Document Object Model (DOM), Cascading Style Sheets (CSS),

and ECMAScript. However, it also provides support for enhanced func-

tionality — enabling the creation of cool stuff such as rounded corners

using CSS. Because you’re developing solely for WebKit and not for every

10 Par t I: Airing It Out with Adobe AIR

browser under the sun, you’re free to take advantage of these nonstan-

dard extensions.

 For more info on WebKit, go to www.webkit.org.

 ✓ Adobe Flash Player: Used for playing Flash media (SWF files). Flash

Player is a cross-platform virtual machine used to run media created in

the Adobe Flash authoring environment and full SWF-based applications

created using Adobe Flex. Flash Player has an embedded JavaScript-like

scripting language called ActionScript 3.

 Inside your app, you can access existing Flash Player API calls as well as

some enhanced functionality for vector-based drawing, multimedia sup-

port (see Chapter 13), and a full networking stack (see Chapter 12).

 ✓ SQLite: A database engine for enabling local database access. It’s an

extremely lightweight, open source, cross-platform SQL database engine

that is embedded in many desktop and mobile products. In contrast to

most SQL databases, it doesn’t require a separate server process, and it

uses a standard file to store an entire database (tables, indexes, and so

on). If you’d like to explore how to work with SQLite to create database

apps, see Chapter 11.

 For more info on SQLite, go to www.sqlite.org.

Figure 1-2 shows an overview of the AIR runtime architecture.

Figure 1-2:
Simplistic

view of
Adobe AIR

runtime.

11 Chapter 1: Get ting Star ted with Adobe AIR

Blurring the lines between
HTML and Flash
Having Flash Player and the WebKit rendering engine integrated inside AIR so

tightly opens many possibilities for AIR developers. An AIR app can consist of

several different possibilities:

 ✓ HTML/JavaScript only

 ✓ HTML and Ajax

 ✓ Flash only

 ✓ Flex only

 ✓ Flash/Flex and HTML

In fact, AIR blurs the lines between Flash media, a Flex app, and a traditional

HTML-based app. In many cases, an AIR application can be a combination of

all these. Consider how these technologies can speak to each other:

 ✓ You can access the Flash Player and ActionScript Library APIs from

within JavaScript. (See Chapter 5 for more details.)

 ✓ ActionScript inside Flash can call JavaScript and access and modify the

HTML DOM. (See Chapter 5.)

 ✓ You can register JavaScript and ActionScript events anywhere — in

Flash, Flex, or JavaScript. (You can thumb over to Chapter 6 to dive fully

into events.)

 Because an AIR app can use all these technologies interchangeably, you can

see that Adobe AIR breaks down the traditional walls that have existed in Web

development architecture.

Understanding the AIR Security Model
One of the concepts that is important for you to understand from the get-go

is application security. Desktop apps get permission in terms of what they

can do and cannot do from the OS and the available permissions of the cur-

rently logged-in user. They receive this level of access because the user

needs to explicitly install the app — effectively telling the computer that the

user trusts the app he or she is about to launch. As a result, native apps have

access to read and write to the local file system and perform other typical

desktop functions.

12 Par t I: Airing It Out with Adobe AIR

Web apps, however, are far more restrictive because of the potentially mali-

cious nature of scripting. Consequently, Web apps limit all local file access,

can perform web-based actions only inside the context of a browser, and

restrict data access to a single domain.

Playing in sandboxes
The hybrid nature of an AIR application puts it somewhere in between

both of these traditional security models. On the one hand, with AIR, you

create a desktop application that runs on top of the normal OS security

layer. Therefore, it can read and write from the local file system. However,

because AIR uses Web technologies that, if unchecked, could be hijacked by

a malicious third party and used in harmful ways when accessing the local

system, Adobe AIR has a security model to guard against such an occurrence.

Specifically, AIR runtime grants permissions to each source or data file in an

AIR application based on its origin and places it into one of two kinds of con-

tainers it calls sandboxes.

The application sandbox contains all content that is installed with the app

inside the home directory of an application. These are typically HTML, XML,

JS, and SWF files. You can think of files inside the application sandbox as

the equivalent of premium frequent flyer members that get full access to the

special airport restaurants. Only these files have access to the AIR API and its

runtime environment.

Adobe AIR does allow you to link in other local and remote content that is

not inside the root directory of the application, but places that content in a

nonapplication sandbox. Content inside the nonapplication sandbox is essen-

tially handled from a security standpoint just as a traditional Web app is, and

is not granted access to the AIR APIs (see Figure 1-3).

Check out Chapter 17 for more on application security and sandboxing.

Additional restrictions within
the application sandbox
AIR places strict restrictions over script importing of remote content and the

dynamic evaluation of JavaScript code — even inside the application sandbox.

Many JavaScript programmers use the eval() function as a way to gener-

ate executable code on the fly. However, if you’re loading data from a remote

source, a hacker could potentially inject malicious code into your app without

your knowledge. To prevent these security vulnerabilities, eval() and other

dynamic code methods are prohibited after the onload event occurs.

13 Chapter 1: Get ting Star ted with Adobe AIR

Figure 1-3:
Sandboxing
is an impor-
tant part of
Adobe AIR

architec-
ture.

Local OS
File I/O, Network,

UI, etc.

Application Sandbox Non-application Sandbox

Root
Directory

Files

Bridge

AIR API

Remote
Files

Local
Files

As it is in Web applications, code being executed inside the application sand-

box is free to load data using Ajax (the XMLHttpRequest object). However,

any content received using XMLHttpRequest is treated purely as data and

cannot be dynamically changed into executable JavaScript code (such as by

using eval()).

Table 1-1 lists the specific restrictions of what can be done inside an applica-

tion sandbox.

Table 1-1 Allowed and Nonallowed JavaScript Activities
Language component Before onload After onload

eval() Permitted. Not permitted after an
application loads, except
when you use with a JSON
type parameter to convert
JSON strings into objects.

document.write() Permitted. Not permitted.

Function constructor Permitted. Not permitted.

(continued)

14 Par t I: Airing It Out with Adobe AIR

Table 1-1 (continued)
Language component Before onload After onload

setTimeout() and
setInterval() timing
functions

Permitted. Not permitted when using
string parameters.

JavaScript protocol URLs
(javascript:)

Not permitted. Not permitted.

innerHTML,
outerHTML properties

Permitted. Attributes of inserted ele-
ments cannot be trans-
formed into executable
code.

XMLHttpRequest Synchronous calls
outside the appli-
cation sandbox
prohibited.

Asynchronous calls trig-
gered in onload always
finish after onload.

Remote URL for a
<script> src
attribute

Not permitted. Not permitted.

Digitally Signing an Application
Because users open their computer to an AIR app, their trust in the software

publisher is crucial. They need to know that you won’t do bad things to their

private data or trash their hard drive. That’s why digital signing is a required

final step of the AIR application development process before you can deploy it.

To provide a degree of confidence and trust, an AIR application must be

signed by a code-signing certificate. There are two types of certificates:

 ✓ Self-signed certificates: “Do-it-yourself” certificates that you can gener-

ate with the AIR SDK and then sign your app with. Self-signed certificates

provide a minimal degree of trust, but because you have no outside

confirmation that you are who you say you are, you are, in effect, tell-

ing users, “Hey, you can trust me. Really. Really!” When users install an

app with a self-signed certificate, they are warned that the publisher is

UNVERIFIED (see Figure 1-4).

 Self-signed certificates are intended mainly for internal use when

debugging and testing your app.

15 Chapter 1: Get ting Star ted with Adobe AIR

Figure 1-4:
Self-signed
certificates

give no
assurance

to users.

 ✓ Commercial code-sign certificates: These certificates are purchased

from a certification authority (CA), such as Verisign and Thawte, who

authenticate your identity. A commercial certificate enables you to

be considered a “trusted” publisher and gives users a much higher

degree of confidence in working with your app. A commercial certificate

enables users to verify the corporate or organizational affiliation of the

application and ensures that users can say, “They are who we thought

they were!” (see Figure 1-5).

 Commercial certificates, however, are not cheap. Fees are generally around

$300 for one year and $549 for two years for a code-sign certificate.

Figure 1-5:
Commercial
certificates

add trust.

16 Par t I: Airing It Out with Adobe AIR

Setting Up Your AIR Development
Environment

As you begin to work with Adobe AIR, you should begin by configuring your

development environment. First, you should install the runtime and SDK.

The SDK comes with two command-line tools that you can use to debug and

deploy Adobe AIR apps:

 ✓ ADL is used for testing purposes only, enabling you to run an app

without installing it.

 ✓ ADT is used for deploying your app. It packages the app into an

installation package.

Adobe also integrates the ability to package AIR apps inside Adobe Flash,

Flex, and Dreamweaver (CS3 and later). However, if you use Dreamweaver,

you should install the AIR extension to enable you to create AIR apps directly

inside the Dreamweaver environment.

The instructions to set up your environment are explained in the sections

that follow.

Installing the Adobe AIR runtime
Adobe AIR runtime is the underlying engine that drives any AIR application.

As a developer, you need the runtime installed on your machine in order to

test and debug your apps. Users also need to download and install it on their

computers in order to run an AIR application.

Fortunately, installing the runtime is a quick, “no brainer” process. To install

it, follow these four steps:

 1. Go to get.adobe.com/air in your browser.

 The Adobe AIR Web page opens.

 2. On the page, click the Download Now button.

 The installer file is downloaded onto your computer.

 3. Double-click the downloaded Adobe AIR Installer to launch the setup

process.

 4. Follow the on-screen instructions to complete the setup.

17 Chapter 1: Get ting Star ted with Adobe AIR

Installing the Adobe AIR SDK
Although the Adobe AIR runtime has a standard installer that you can use for

installing on your computer, installing the SDK involves a few more manual

steps. Follow these instructions to get it working on your computer:

 1. Go to www.adobe.com/products/air/tools/sdk in your browser.

 2. After reading the Adobe AIR SDK license, indicate that you agree with

its terms by selecting the check box.

 3. Click the download link appropriate for your computer (Windows or Mac).

 The compressed SDK file — AdobeAIRSDK.zip (Windows) or

AdobeAIRSDK.dmg (Mac) is downloaded to your machine.

 4. Create a folder on your machine for the SDK.

 I recommend something easy such as c:\airsdk for Windows or /
Users/[username]/airsdk for Mac.

 5. Uncompress the SDK file and copy the folders and files into the SDK

folder you created in Step 4.

 The directory structure under your SDK folder (for example, c:\
airsdk) will look like this:

\bin

\frameworks

\lib

\runtime

\samples

\src

\templates

 You now need to add the bin subdirectory to your system path before

being able to execute the SDK utilities. Follow the appropriate steps

below, depending on your operating system.

Setting the environment path in Windows Vista
 1. Press the Windows key and the Pause/Break key at the same time.

 The System section of the Control Panel is displayed.

18 Par t I: Airing It Out with Adobe AIR

 2. Click the Advanced System Settings link.

 A User Account Control dialog box is displayed.

 3. If required, enter the password for an Administrator account.

 4. Click the Continue button.

 5. Click the Advanced tab in the System Properties dialog box.

 6. Click the Environment Variables button.

 7. Edit the system variable named Path.

 8. At the far right end of the existing path value, type a semicolon and

then the path for the bin subdirectory of the Adobe AIR SDK.

 9. Test the new path by opening a new Console window and typing adt

at the command prompt.

 If you see a listing of the various usage options available when calling

the utility, then you know you have successfully installed the SDK. If not,

go back and check to ensure that you correctly added the SDK bin path.

Setting the environment path in Windows XP
 1. Press the Windows key and the Pause/Break key at the same time.

 The System Properties dialog box is displayed.

 2. Click the Advanced tab in the System Properties dialog box.

 3. Click the Environment Variables button.

 4. Edit the system variable named Path.

 5. At the far right end of the existing path value, type a semicolon and

then the path for the bin subdirectory of the Adobe AIR SDK.

 6. Test the new path by opening a new Console window and typing adt

at the command prompt.

 If you see a listing of the various usage options available when calling

the utility, you know you have successfully installed the SDK. If not, go

back and check to ensure that you correctly added the SDK bin path.

Setting the system path in Mac OS X
Follow these steps to add the path of the AIR SDK to your system path:

 1. Open the Terminal application in your /Applications/Utilities

folder.

 By default, you will be in your home directory.

19 Chapter 1: Get ting Star ted with Adobe AIR

 2. Enter ls –la at the command prompt.

 Terminal will display a list of all files in your home directory.

 3. Check to see whether a file called .profile exists.

 If so, go on to Step 5. Otherwise, go to Step 4.

 4. If needed, create the .profile file by typing touch .profile at the com-

mand prompt.

 5. Type open -a TextEdit .profile at the command prompt.

 6. Add your AIR SDK bin subdirectory to the export PATH=$PATH:

line.

 Here’s how mine looks:

export PATH=$PATH:/Users/rich/airsdk/bin

 If you already have an export PATH line, add the SDK bin folder to the

far right, separating it with a semicolon. For example:

export PATH=$PATH:/usr/local/bin;/Users/rich/airsdk/
bin

 7. Save the file.

 8. Quit Terminal.

 9. Restart your computer.

 10. Open Terminal.

 11. Type the following in a Terminal window to load the new settings:

. .profile

 12. Confirm the path by typing echo $PATH at the command prompt.

 You should see the SDK bin path in the output line.

 13. Test the SDK installation by typing adt at the command prompt.

 If you see a listing of the various usage options available when calling

the utility, you know you have successfully installed the SDK. If not, go

back and check to ensure that you correctly added the SDK bin path.

Prepping Dreamweaver and Flash for AIR
If you use Dreamweaver or Flash CS3 or higher, you can package and preview

applications directly inside the authoring environment, eliminating the need

to use the command-line SDK tools.

20 Par t I: Airing It Out with Adobe AIR

To do so, begin by going to www.adobe.com/products/air/tools and

downloading the appropriate software. For Dreamweaver, Adobe provides an

MXP extension that you can install using the Adobe Extension Manager. For

Flash CS3, you need to install a software update to enable this functionality.

Chapter 2

Building and Deploying Your First
AIR Application with HTML and

JavaScript
In This Chapter
▶ Building an AIR app from scratch

▶ Creating an AIR interface using HTML and CSS

▶ Creating the application descriptor file

▶ Generating a self-signed certificate

▶ Producing an AIR installer file

Ahhhhh, I get it.

I can talk all day about Adobe AIR capabilities and architecture, but in order

for you to really understand how to develop apps, nothing works better than

walking through each step of the development process. In the experience of

many developers, it is only when they build their first Hello World app that

those precious words “Ahhhhh, I get it” are uttered.

Developers, quite obviously, do not become instant experts after creating

one simple application. But that first app does provide a context and a foun-

dation for understanding the programming and procedural landscape of the

platform on which they are working.

In that light, this chapter is intended as the Ahhhhh, I get it chapter. I show

the steps you need to take to build and deploy a basic Adobe AIR application

using HTML and JavaScript.

22 Par t I: Airing It Out with Adobe AIR

Overviewing Jot
The application I walk you through in this chapter is one I call Jot. Jot has

one limited purpose — to allow a user to enter text in a box and save the

text to a file on the desktop. I spice things up a bit by adding my own custom

“chrome” user interface. You can follow along with my code to build a dupli-

cate version or download the entire source code at www.dummies.com.

To help you build Jot, I walk you through a series of eight steps, as follows:

 1. Prepare the application folder.

 2. Create the HTML-based UI.

 3. Define CSS styles.

 4. Add the JavaScript code.

 5. Create the application descriptor file.

 6. Create a self-signed certificate.

 7. Compile the application.

 8. Take a test drive.

The remaining sections of this chapter present the details of each of these steps.

Preparing the Application Folder
Your first step in creating Jot is simply to prepare a folder on your hard drive

that will serve as the root for the application files. To prepare that folder,

follow these three steps:

 1. On your hard drive, create a new folder named jot.

 This folder will serve as the root folder containing all the application

files.

 2. Inside the new jot folder, create two subdirectories: assets and

icons.

 The assets folder will store your .js and .css styles. The icons

folder will contain the application icons.

 3. Copy the AIRAliases.js file into the assets folder.

 The AIRAliases.js file is located inside the SDK frameworks folder.

With your application folder ready to go, it’s time to begin creating the

application itself.

23 Chapter 2: Building and Deploying Your First AIR Application

Creating the HTML-Based UI
In this section, you create the Jot application using an ordinary HTML page

as the user interface (UI). You’ll be putting styles and script code elsewhere,

so the actual application file contains basic markup only. Here are the steps

to create the Jot application:

 1. Use the following code to create a basic XHTML document shell.

 Yes, an HTML-based AIR application begins its life looking an awful lot

like a normal Web page. It’s even named index.html by default. That’s

because it is a normal HTML file. Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0
Transitional//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html;

charset=utf-8” />
<title>Jot</title>
</head>
<body>

</body>
</html>

 2. Add a link reference to a stylesheet named jot.css inside the head

element.

 You’ll create the jot.css file in the next section, but for now, add the

link:

<link type=”text/css” href=”assets/jot.css”
rel=”stylesheet” />

 3. Add script tag references to AIRAliases.js and jot.js in the

head element.

 As with the style sheet above, you’ll create the jot.js later on. For

now, just add the following reference:

<script type=”text/javascript” language=”JavaScript”
src=”assets/AIRAliases.js”></script>

<script type=”text/javascript” language=”JavaScript”
src=”assets/jot.js”></script>

 You use the AIRAliases.js file to access the AIR API.

 4. Insert a div element with an id=canvas on the line below the

opening body tag.

 The canvas div will serve as the container for the UI:

<div id=”canvas”>
</div>

24 Par t I: Airing It Out with Adobe AIR

 5. Add an h1 tag on the first line inside of the div element.

 Because this app has a custom UI, it will not have a normal title bar for

the window. So, the h1 tag will serve as the app title:

 <h1>Jot</h1>

 6. Add a textarea element on the line below the h1 element.

 The textarea box will be used for text entry:

 <textarea id=”jotText”>Enter your text here</
textarea>

 7. Insert two input buttons on the lines below the textarea.

 These will be used for saving the text file and for closing the application.

Here’s the code:

<input id=”btnSave” type=”submit” value=”Save Jot” />
<input id=”btnClose” type=”submit” value=”Close” />

The complete source code to index.html is as follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0
Transitional//EN” “http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html;

charset=utf-8” />
<title>Jot</title>

<link type=”text/css” href=”assets/jot.css”
rel=”stylesheet” />

<script type=”text/javascript” language=”JavaScript”
src=”assets/AIRAliases.js”></script>

<script type=”text/javascript” language=”JavaScript”
src=”assets/jot.js”></script>

</head>

<body>

<div id=”canvas”>
 <h1>Jot</h1>
 <textarea id=”jotText”>Enter your text here</textarea>
 <input id=”btnSave” type=”submit” value=”Save Jot” />
 <input id=”btnClose” type=”submit” value=”Close” />
</div>
</body>
</html>

You’re now ready to give this basic XHTML file some style.

25 Chapter 2: Building and Deploying Your First AIR Application

Adding Styles
Because this is an HTML-based application, I have you add styles and format-

ting using CSS. You already added the link to jot.css in the HTML file, so

now you can create this style sheet. To do so, follow these steps:

 1. Create a blank text file and save it as jot.css in your assets folder.

 2. Insert a #canvas rule to define styles for the canvas div.

 The code contains both standard CSS and WebKit extensions:

#canvas {
 font-family: ‘Lucida Grande’, Verdana, Geneva, Sans-

Serif;
 font-size: 10px;
 text-align:center;
 color: #ffffff;
 padding:5px;
 background:url(‘background.png’) repeat-x 0 0;
 -webkit-background-size: 100%;
 -webkit-border-radius: 5px;
}

 The –webkit-background-size: 100% rule prevents the back-

ground image from tiling and stretches the background image to be the

size of the div.

 You can use your own background image or else use the one I did by

downloading it from the book’s Web site at www.dummies.com/go/
adobeair.

 Notice my use of the –webkit-border-radius property. This WebKit

extension is used for rounding the corners of the div. That’s certainly

much easier than adding rounded corners using graphics!

 If you’re a Web developer, designing for a single browser rather than for

all browsers can be a difficult adjustment to make. However, because

you’re developing your AIR application only for WebKit, be sure to take

advantage of WebKit-specific extensions.

 3. Add styles for the h1 and textarea elements.

 The textarea rule defines the dimensions of the element. It also

assigns the transparent value to the background-color property:

h1 { font-size:1.3em; }

textarea {
 width:210px;
 height: 200px;
 padding:5px;
 margin-bottom: 5px;

26 Par t I: Airing It Out with Adobe AIR

 background-color: transparent;
 color: #ffffff;
 border: 0;
 -webkit-border-radius: 5px;

}

 Note that I define rounded corners for the textarea, which is displayed

when the element receives focus.

 4. Add styles for the submit buttons.

 To give the submit buttons a rounded look (like everything else in Jot), I

turn once again to -webkit-border-radius. However, I also want to give

the buttons more of a 3D feel by styling the border-color as follows:

input[type=submit] {
 width: 66px;
 color: #ffffff;
 background-color: #222222;
 border: 1px outset #444444;
 border-color: #444444 #000000 #000000 #444444;
 -webkit-border-radius: 8px;
}

input[type=submit]:hover {
 color:#ffffff;
 background-color: #333333;
}

 As you can see, I added a :hover pseudo-class definition so that the

color changes as the mouse hovers on it.

The full listing for the jot.css file is follows:

#canvas {
 font-family: ‘Lucida Grande’, Verdana, Geneva, Sans-

Serif;
 font-size: 10px;
 color: #ffffff;
 text-align:center;
 padding:5px;
 background:url(‘background.png’) repeat-x 0 0;
 -webkit-background-size: 100%;
 -webkit-border-radius: 5px;
}

h1 { font-size:1.3em; }

textarea {
 width:210px;
 height: 200px;
 padding:5px;
 color: #ffffff;

27 Chapter 2: Building and Deploying Your First AIR Application

 background-color:transparent;
 margin-bottom: 5px;
 border: 0;
 -webkit-border-radius: 5px;

}

input[type=submit] {
 width: 66px;
 color:#ffffff;
 background-color:#222222;
 border: 1px outset #444444;
 border-color: #444444 #000000 #000000 #444444;
 -webkit-border-radius: 8px;
}

input[type=submit]:hover {
 color:#ffffff;
 background-color: #333333;
}

The user interface of the application is now ready to go. Now you can add the

scripting. Read on!

Adding the JavaScript Code
Jot is powered by the JavaScript code that is placed inside of the jot.js file

that you linked in earlier into the index.html file. You need to code Jot to

perform four simple functions:

 ✓ Save text to a file when the Save button is pressed.

 ✓ Allow a user to move a window when the mouse button is held down.

 ✓ Automatically resize the application to the size of the HTML content.

 ✓ Close the app when the Close button is clicked.

You begin by adding some basic JavaScript utility routines, and then you can

add the custom code for Jot.

 Note I’ve placed in bold type all AIR API-specific calls that I make in the code

in some of the following steps.

 1. Add basic JavaScript utility functions for accessing the DOM and binding

objects to functions.

 These core utility functions are both handy and important to have for

even the simplest of projects. Here’s the code:

28 Par t I: Airing It Out with Adobe AIR

// Shortcut function to access DOM id
function $(id){
 return document.getElementById(id);
}

// Bind objects to functions
Function.prototype.bind = function(o, args){
 var f = this;
 return function(){
 f.apply(o, args || arguments);
 }
}

 2. Define a Jot object and an initialize() method.

 You structure this code by putting all the application logic inside a Jot

object. At the same time, you define an initialize() method that will

be called when the application loads. Here’s the code:

var Jot = {

 initialize:function(){
 }

}

 You add the Jot.initialize() as a listener to the window load event

later on, in Step 10.

 3. Inside Jot, define the basic shell structure for the save(), close(),

and refreshSize() methods.

 You can go ahead and leave these empty for the moment, but it’s helpful

to define them first before you fill in the initialization routine. The code

(with empty functions) is as follows:

var Jot = {

 initialize:function(){
 },

 save:function(){
 },

 close:function(){
 },

 refreshSize:function(){
 }

}

29 Chapter 2: Building and Deploying Your First AIR Application

 4. Inside initialize(), attach the onclick handlers of the buttons to

the newly defined save() and close() methods.

 Here’s where the utility functions come in handy:

 $(‘btnSave’).onclick = Jot.save.bind(Jot);
 $(‘btnClose’).onclick = Jot.close.bind(Jot);

 You want to place the following code on the first lines inside

initialize().

 In this code, the Jot.save() and Jot.close() methods are assigned

as the handlers to the buttons’ onclick events. The bind() methods

bind the associated functions to the Jot object.

 5. Register an event listener with the window closing event.

 This is the first interaction you make with the AIR API. You want your

app to be able to “listen” to the closing event that is dispatched by the

window when it is getting ready to close. This event could be triggered

when the Mac OS X Quit command or a Windows Close command is

performed. In this case, I want to call the Jot.close() method:

window.nativeWindow.addEventListener(air.Event.
 CLOSING, Jot.close.bind(Jot));

 The air object is defined in AIRAliases.js that you included previ-

ously in the index.html file.

 6. Assign a handler to the onmousedown event of the document body.

 Because I’m having you use a custom chrome window rather than a

normal system window, you need to add the ability for the user to move

the window around. You do that by writing your own custom handler for

the onmousedown event:

document.body.onmousedown = function(e){
 if(e.target.tagName != ‘input’) nativeWindow.

startMove();
};

 This function calls the startMove() method of the AIR runtime object

nativeWindow, which controls the application window. (Note: AIR’s

nativeWindow is technically not the same object as the JavaScript

window object.)

 The initialize() method is now complete.

 7. Define the save() method.

 Enter the code as follows (you don’t have to use bold, as I do here; the

bolded sections just highlight the AIR-specific functionality of the function):

30 Par t I: Airing It Out with Adobe AIR

 save:function(){
 var file = air.File.desktopDirectory.resolvePath(

‘myjot.txt’);
 var jot = $(‘jotText’).value;
 var stream = new air.FileStream();
 stream.open(file, air.FileMode.WRITE);
 stream.writeMultiByte(jot, air.File.systemCharset

);
 stream.close();
}

 The resolvePath() method creates a reference (the file variable)

to a file named myjot.txt in the desktop folder of the user. Next, the

value of the jotText textarea element is assigned to the jot vari-

able. You then use the AIR file I/O routines to create a file stream, open

it up for writing, write the jot variable to the stream, and then close it.

 8. Define the close() method.

 Before the application quits, the close() method checks to see

whether the user wants to save the text. If yes, then the Jot.save()

method is called. Here’s the code:

close:function(evt){
 var doSave = confirm(‘Do you wish to save your

jot? Click OK to save. Click Cancel to close
without saving.’);

 if(doSave) {
 Jot.closeAfterSave = true;
 Jot.save.call(Jot);
 }

 air.NativeApplication.nativeApplication.exit();

}

 NativeApplication is an object created automatically by AIR that

contains various application-level properties and methods. However,

to actually call any of its members, you access it through its air.
NativeApplication.nativeApplication property. This property

represents the “singleton” instance of the object. The exit() method, as

you would certainly expect, gives the old curtain call to the application.

 9. Define the refreshSize() method.

 Although you will be defining a default height and width for the Jot

window, you want to be sure to automatically size the height of the

window to match the document body. You can accomplish this feat by

adding the following code:

31 Chapter 2: Building and Deploying Your First AIR Application

refreshSize:function(){
 nativeWindow.height = document.body.offsetHeight;
}

 Given the simplicity of this application, I actually could certainly get by

with hard coding the height value for the nativeWindow. But this gives

you an example of the flexibility you can have in dynamically changing

the size of the window during the running of the app.

 There’s just one more thing you need to do in jot.css: trigger Jot.
initialize() when the document loads, which the next step covers.

 10. Outside the Jot definition, add an event listener for the window load

event.

 Returning to normal JavaScript stuff, you need to be sure that Jot.
initalize() is triggered when the app finishes loading:

window.addEventListener(‘load’, Jot.initialize,
false);

If you have followed each of the preceding steps, your full source code in

jot.js should look like the following:

// Utility functions (based on Prototype.js)
function $(id){
 return document.getElementById(id);
}

// Bind objects to functions
Function.prototype.bind = function(o, args){
 var f = this;
 return function(){
 f.apply(o, args || arguments);
 }
}

var Jot = {

 initialize:function(){
 $(‘btnSave’).onclick = Jot.save.bind(Jot);
 $(‘btnClose’).onclick = Jot.close.bind(Jot);

 window.nativeWindow.addEventListener(air.Event.

CLOSING, Jot.close.bind(Jot));

 document.body.onmousedown = function(e){
 if(e.target.tagName != ‘input’) nativeWindow.

startMove();

 Jot.refreshSize();

 };

32 Par t I: Airing It Out with Adobe AIR

 },

 save:function(){
 var file = air.File.desktopDirectory.
 resolvePath(‘myjot.txt’);
 var jot = $(‘jotText’).value;
 var stream = new air.FileStream();
 stream.open(file, air.FileMode.WRITE);
 stream.writeMultiByte(jot, air.File.systemCharset);
 stream.close();
 },

 close:function(evt){

 var doSave = confirm(‘Do you wish to save your jot?

Click OK to save. Click Cancel to close without
saving.’);

 if(doSave) {
 Jot.save.call(Jot);
 }

 air.NativeApplication.nativeApplication.exit();

 },

 refreshSize:function(){
 nativeWindow.height = document.body.offsetHeight;
 }

}

window.addEventListener(‘load’, Jot.initialize, false);

Creating the Application Descriptor File
Accompanying your main source files is a separate XML file known as the

application descriptor file. This file is required to define metadata for your

application and specify your initial window properties. You can follow these

steps to define the application descriptor file.

 1. In your root application directory, create a blank text file and name it

application.xml.

 Technically, you can name the .xml file anything you want, such as

jot.xml. However, because the name of this file is not related to the

actual filename of your AIR application, you may find it helpful to keep

the file generic and use application.xml.

33 Chapter 2: Building and Deploying Your First AIR Application

 2. Add the XML header and root application element at the start of

the application.xml file.

 The application element serves as the root element for the file and

goes immediately under the XML header, like so:

<?xml version=”1.0” encoding=”utf-8” ?>
<application xmlns=”http://ns.adobe.com/air/

application/1.0” minimumPatchLevel=”5331”>
</application>

The xmlns namespace specifies that your application targets the 1.0 version

of AIR. The minimumPatchLevel attribute helps the AIR runtime determine

whether a user needs to download and install a required version or patch.

 3. Add basic metadata descriptors inside the application element.

 There are several elements that you will want to define for almost any

application. These include:

 <id>com.dummies.jot</id>
 <version>1.0</version>
 <filename>jot</filename>
 <name>Jot</name>
 <description>Jot smart and silly notes</description>
 <copyright>Copyright © 2008, Rich Wagner</copyright>

 The required id element specifies a unique identifier for every AIR

application. As you can see, it uses reverse domain format, starting with

the domain suffix, the domain name, and then the application name. By

using every developer’s unique domain name, reverse domain format-

ting ensures that the application can have a unique identifier across the

namespace.

 The version element is required and indicates the version of your

application. The actual notation you use is up to you. AIR doesn’t try to

determine which version is earlier or later than the next from this value.

 The filename element is also required. It defines the filename (without

the extension) of your application. The .air installer file and actual appli-

cation executable (Windows .exe or Mac OS X .app) will use this value.

 The name, description, and copyright elements are optional. If

defined, they are displayed in the installer dialog box.

 4. Add descriptive details for the initial window inside the application

element.

 The initialWindow element is used by the AIR runtime to create the

opening window based on the settings you specify. Here are the details

for Jot:

34 Par t I: Airing It Out with Adobe AIR

 <initialWindow>
 <content>index.html</content>
 <height>350</height>
 <width>250</width>
 <systemChrome>none</systemChrome>
 <visible>true</visible>
 </initialWindow>

 The content element indicates the main HTML or SWF (Flash) file of

the application. The height and weight specify the dimensions of the

window.

 The systemChrome element specifies whether to add “chrome” to the

window. Possible values are standard and none. Because this is a

custom chrome application, I am specifying none.

 The visible element determines whether the window should be visible

as soon as it is created. The default is false, meaning that your code

would need to show the window.

 5. Specify icon files.

 You can specify icon files to represent your application on the user’s

computer. Because different parts of a UI use different sizes of an icon,

you can specify 16 x 16, 32 x 32, 48 x 48, and 128 x 128 files.

 I created four png icons and copied them to the icons directory inside

of the application root. Here’s the code:

 <icon>
 <image128x128>icons/128.png</image128x128>
 <image48x48>icons/48.png</image48x48>
 <image32x32>icons/32.png</image32x32>
 <image16x16>icons/16.png</image16x16>
 </icon>

 If you don’t specify any icon files, the AIR compiler will use a default

AIR icon.

The application.xml file is all set. Here is the full file:

 <?xml version=”1.0” encoding=”utf-8” ?>
<application xmlns=”http://ns.adobe.com/air/

application/1.0” minimumPatchLevel=”5331”>
 <id>com.dummies.jot</id>
 <version>1.0</version>
 <filename>jot</filename>
 <name>Jot</name>
 <description>Jot smart and silly notes</description>
 <copyright>Copyright © 2008, Rich Wagner</copyright>
 <initialWindow>
 <content>index.html</content>
 <height>350</height>
 <width>250</width>

35 Chapter 2: Building and Deploying Your First AIR Application

 <systemChrome>none</systemChrome>
 <visible>true</visible>
 </initialWindow>
 <icon>
 <image128x128>icons/128.png</image128x128>
 <image48x48>icons/48.png</image48x48>
 <image32x32>icons/32.png</image32x32>
 <image16x16>icons/16.png</image16x16>
 </icon>
</application>

Testing Your Application Using ADT
If you’ve followed along through the previous sections of this chapter, you’ve

now assembled all the parts of the core application. It is time to test your

application on your computer to make sure it works properly. To do so,

you’ll use ADT, a command-line utility that is included as part of the AIR SDK.

 Before continuing, be sure that you have installed the AIR SDK and that the

AIR SDK bin directory is in your system path. If either of these need to be

done, see Chapter 1 for step-by-step instructions.

 1. To test your application, open a Console (Windows) or Terminal

(Mac) window.

 2. Using the CD command, change to your application’s root directory.

 This is the directory in which all your application’s source code is

located.

 3. Enter adl application.xml at the command prompt and press Enter.

 Figure 2-1 shows the Mac OS X command prompt.

Figure 2-1:
Testing the

AIR app
using ADT.

36 Par t I: Airing It Out with Adobe AIR

 Jot will launch in debug mode, as shown in Figure 2-2.

 4. Perform the following tasks to confirm the functionality that you pro-

grammed into the application:

 • Type something into the text box and click Save. Open the myjot.
txt file on your desktop in Notepad or another text editor and

check out the contents. If your app is working, you see exactly the

same text.

 • Click the mouse somewhere on the app (except for the buttons)

and drag the window. If your app is functioning correctly, the

window moves around the way any other native OS window does.

 • Click the Close button and test the save options. If you modified

text in the text box, the app should ask you whether you want to

save the contents.

 If you modified text and the app just closes, something went awry. In

that case, go back through this example and double-check your code.

Figure 2-2:
Jot comes

to life.

Creating a Self-Signed Certificate
As I note in Chapter 1, every AIR application needs to be digitally signed. You

can sign the app either through a Certification Authority or through the do-it-

yourself econo-mode method of a self-signed certificate. Chapter 1 explains

the differences between these two methods and the advantages and disad-

vantages of each. But for the Jot application you develop in this chapter, you

want to keep things simple with a test self-signed certificate. Here’s how to

create one using the ADT utility.

 1. Open a Console (Windows) or Terminal (Mac) window.

 2. Enter CD at the command prompt to change to your application root

directory.

37 Chapter 2: Building and Deploying Your First AIR Application

 3. Enter the following at the command prompt: adt -certificate -cn cert1

1024-RSA testcert.p12 password to generate the certificate.

 The basic syntax for creating a self-signed certificate is as follows:

adt -certificate -cn commonName keyType
certificateFile password

 When you use this syntax in the command line, you instruct ADT to

create a certificate with a common name of cert1, a 1024-RSA key

type, a filename of testcert.p12, and a password of password.

 The testcert.p12 file is created in your application root directory.

Given its weak password, you would not want to use this certificate on an

application you intended to distribute. The certificate would work fine for

your own internal testing, though.

 Also, don’t worry: You don’t need to create a new certificate for each applica-

tion. You can use one certificate multiple times.

You’re now ready to perform the final step in building and deploying an

application: generating a distributable AIR file.

Generating an AIR Installer File
to Deploy Your Application

If you’ve been following along through this chapter, you are nearly finished

with your first AIR application. By now, you have all the pieces of the Jot

application assembled. Now, you have one final step: produce the .air file

that you will use to deploy your app.

To generate the .air file, follow these steps:

 1. Open a Console (Windows) or Terminal (Mac) window.

 2. Enter CD at the command prompt to change to your application root

directory.

 3. Type in the following command at the prompt:

adt -package -storetype pkcs12 -keystore testcert.p12
jot.air application.xml index.html assets/jot.
css assets/jot.js assets/AIRAliases.js assets/
background.png icons/128.png icons/48.png
icons/32.png icons/16.png.

38 Par t I: Airing It Out with Adobe AIR

 This long-winded command-line instruction tells ADT to produce jot.
air using the application.xml descriptor file and include all the files

of the application. The self-signed certificate testcert.p12 (created in

the previous section) is used as the signing option.

 Note that you need to have the proper icons and background image file

in the assets subfolder in order to make that work. If you don’t have

your own, go to www.dummies.com/go/adobeairfd and download

the ones I use.

 You will be prompted for the certificate password.

 4. Enter password at the command prompt.

 ADT will do its magic and generate the jot.air file in your application

directory.

Now, when you double-click the jot.air installer file, the Application Install

dialog box is displayed, as shown in Figure 2-3.

Figure 2-3:
Installing

Jot with a
self-signed
certificate.

Chapter 3

The Air Feels Different: Building
with Flex Builder and Flash

In This Chapter
▶ Creating an AIR app with Flex

▶ Using Flash to create an AIR app

Flash and its newer sibling Flex Builder enable developers to create rich

media and applications for the Web. However, because Adobe AIR is

built on top of underlying Flash technology, they also serve as ideal envi-

ronments for creating AIR apps for the desktop. In this chapter, I walk you

through the steps of creating a basic AIR app in Flex and Flash.

I don’t explain how to use Flex or Flash in this chapter or elsewhere in the

book; instead, this chapter covers how to access the AIR functionality that

you can utilize within these Web development environments.

Developing an AIR Application
with Flex Builder 3.0

When you create a new Flex project in Flex Builder, you can choose whether

the application you’re building is for the Web or for the desktop. Follow these

soup-to-nuts instructions to create a sample desktop-based AIR app in Flex

Builder that I’m calling JotFlex.

40 Par t I: Airing It Out with Adobe AIR

Creating the project
Your first step in creating an AIR-based Flex app is to use the Create Project

Wizard to generate the basic files for the project. Follow these steps:

 1. Choose File➪New➪Flex Project.

 The New Flex Project dialog box appears, as shown in Figure 3-1.

Figure 3-1:
The New

Flex Project
dialog box.

 2. In the Project name box, enter JotFlex as the name of the AIR project.

 3. In the Project location box, specify the location of your project.

 Flex defaults to its own project folder in your Documents folder. Use the

default or specify another of your choice.

 4. Select the Desktop Application (Runs in Adobe AIR) option in the

Application type box.

 5. Leave the Server technology box alone.

 6. Click the Next button to continue.

 The Configure Output page is displayed.

 7. Specify the desired output location for the compiled application in the

Output folder box.

 Go ahead and leave this at the default folder, bin-debug.

 8. Click the Next button to continue.

 The Create a Flex project is displayed.

41 Chapter 3: The Air Feels Different: Building with Flex Builder and Flash

 You can ignore the top part of the dialog box for this basic example. You

use that section to add source code or Flash library files into your app.

 9. If desired, modify the values in the Main source folder and Main appli-

cation file boxes.

 You’ll probably want to just leave these as is, because these are the typi-

cal settings used in Flex apps.

 10. Modify the Application ID to give it a unique, package-like name. To

do so, add a com.yourdomain. prefix to the application name.

 The application ID I use for this example is com.dummies.JotFlex.

 Be sure to specify a “reverse domain name” — in other words, it’s like a

Web site address in reverse. The com comes first, followed by a unique

domain name, followed by your app name. Flex Builder will not compile

your application successfully if you leave the value as is.

 Figure 3-2 shows the dialog box.

 11. Click the Finish button.

 The new project is created and added to the Flex Navigator, and the

main MXML source file is displayed in the editor window, as shown in

Figure 3-3.

Figure 3-2:
Specifying

the name
of the

application.

42 Par t I: Airing It Out with Adobe AIR

Figure 3-3:
Flex Builder

is ready to
begin.

 Notice the root element used in the MXML file. Whereas mx:Application is

the root element for Flex Web applications, mx:WindowedApplication is the

root for an AIR application.

Adding MXML and ActionScript
source code
After you’re created your basic files, you’re ready to work with MXML and

ActionScript to create your app. Follow these steps to continue.

 1. Specify five attributes to the mx:WindowedApplication element.

 In addition to the default settings, specify the title, width, height,
verticalScrollPolicy, and horizontalScrollPolicy values, as

follows:

<mx:WindowedApplication xmlns:mx=”http://www.adobe.com/2006/mxml”
 layout=”absolute” title=”JotFlex” width=”321” height=”297”
 verticalScrollPolicy=”off” horizontalScrollPolicy=”off”>

 By setting the verticalScrollPolicy and horizontalScroll
Policy properties to “off,” you are disabling scroll bars and keeping

them from appearing.

43 Chapter 3: The Air Feels Different: Building with Flex Builder and Flash

 2. Inside the mx:WindowedApplication element, add an mx:TextArea

element.

 This element will be used for text entry:

<mx:TextArea id=”taEditor” x=”13.5” y=”10” width=”292” height=”197”/>

 3. Add two mx:Button elements below the mx:TextArea:

<mx:Button id=”btnClose” x=”100.5” y=”215” label=”Close”
click=”closeApp()”/>

<mx:Button id=”btnSave” x=”161.5” y=”215” label=”Save” click=”saveApp()”/>

 Note the click event handlers added in this step. You’ll see how to

define the closeApp() and saveApp() functions in Steps 5 and 6.

 4. Add an mx:Script element just after the mx:WindowedApplication

start tag:

<mx:Script>
</mx:Script>

 5. Type the saveApp() function inside the script:

public function saveApp():void {
 var file:File = File.desktopDirectory.resolvePath(

“myjot.txt”);

 var jot:String = taEditor.text;
 var stream:FileStream = new FileStream();
 stream.open(file, FileMode.WRITE);
 stream.writeMultiByte(jot, File.systemCharset);
 stream.close();
}

 If you’ve used Flex before for Web development, the File and

FileStream objects may look foreign to you. That’s because you can’t

use those objects with Web-based apps. (See Chapter 10 for more on

File and FileStream.)

 In this function, the file variable is assigned as a reference to the

myjot.txt in the desktop folder of the user. The text contents of

taEditor are assigned to the jot variable. You then use the AIR file

I/O routines to create a file stream, open it for writing, write the jot

variable to the stream, and then close it.

 6. Type the closeApp() function inside the script:

public function closeApp():void {
 NativeApplication.nativeApplication.exit();
}

44 Par t I: Airing It Out with Adobe AIR

 NativeApplication contains various application-level properties and

methods. However, to actually call any of its members, you access it

through its NativeApplication.nativeApplication property. Its

exit() method closes the application.

Here’s the full source for the JotFlex.mxml file:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.

adobe.com/2006/mxml” layout=”absolute”
title=”JotFlex”

 width=”321” height=”297” verticalScrollPolicy=”off”
horizontalScrollPolicy=”off”>

 <mx:Script>
 <![CDATA[

 public function saveApp():void {
 var file:File = File.desktopDirectory.resolvePath(

“myjot.txt”);
 var jot:String = taEditor.text;
 var stream:FileStream = new FileStream();
 stream.open(file, FileMode.WRITE);
 stream.writeMultiByte(jot, File.systemCharset);
 stream.close();
 }

 public function closeApp():void {
 NativeApplication.nativeApplication.exit();
 }

]]>
 </mx:Script>

 <mx:TextArea id=”taEditor” x=”13.5” y=”10” width=”292”

height=”197”/>
 <mx:Button id=”btnClose” x=”100.5” y=”215” label=”Close”

click=”closeApp()”/>
 <mx:Button id=”btnSave” x=”161.5” y=”215” label=”Save”

click=”saveApp()”/>

</mx:WindowedApplication>

You’re now ready to work with the application descriptor file.

45 Chapter 3: The Air Feels Different: Building with Flex Builder and Flash

Configuring the application descriptor file
Now you need to configure the application descriptor file, which is an XML

file that provides basic application-level details about the application. Follow

these steps next.

 1. In the Flex Navigator, double-click the application descriptor file for

the AIR project.

 You’ll find it located in the src file, with the filename application-
Name-app.xml. For the example project being developed in this sec-

tion, it’s called JotFlex-app.xml.

 The file is displayed in the editor, as shown in Figure 3-4.

 2. Locate the systemChrome element and uncomment it.

 This property specifies the type of system chrome to use. (See Chapter

7 for more on system chrome.) The standard value gives the native OS

chrome, whereas none removes it.

 By default, the systemChrome element is commented out in the XML

document. To get a sense of what a Flex chromed AIR app looks like,

specify none here.

 3. Add none as the systemChrome value.

 The element will look like this:

<systemChrome>none</systemChrome>

Figure 3-4:
Application
descriptor

file in the
Flex Builder

editor.

46 Par t I: Airing It Out with Adobe AIR

 4. Locate the transparent element and uncomment it.

 The transparent element is commented by default.

 5. Add true as the transparent value.

 The element is as follows:

<transparent>true</transparent>

 6. Choose File➪Save All from the menu to save all changes.

 With all the code added to the app, you are ready to test the example

application that you’ve developed in this section.

Testing the app
You now have all the pieces ready for your first AIR app coded and are ready

to roll. You can test the app by following these steps:

 1. Choose Run➪Run JotFlex from the top Flex menu.

 The JotFlex application is displayed, as shown in Figure 3-5.

 2. Test the functionality of the Save and Close buttons before finishing

your testing.

 When you’re satisfied with the state of the application, you’re ready to

create an installable .air file.

Figure 3-5:
Testing

the JotFlex
sample app.

47 Chapter 3: The Air Feels Different: Building with Flex Builder and Flash

Preparing the app for deployment
Your AIR app is coded and tested. The final step is to prepare the application

for deployment.

 1. Choose Project➪Export Release Build from the top Flex menu.

 You can also click the Export Release Build icon on the toolbar.

 The Export Release Build dialog box is displayed, as shown in Figure 3-6.

Figure 3-6:
Exporting an
AIR project.

 You can keep all the default values for this application.

 2. Click the Next button to continue.

 The Digital Signature page is displayed (see Figure 3-7).

 You now need to create a self-signed digital certificate for this sample

application.

48 Par t I: Airing It Out with Adobe AIR

Figure 3-7:
Specifying

a digital
signature

during the
export

process.

 3. Click the Create button.

 The Create Self-Signed Digital Certificate dialog box is displayed, as

shown in Figure 3-8.

Figure 3-8:
Creating a

self-signed
certificate in

Flash.

 4. Enter your name in the Publisher Name box.

 5. Enter a password in the Password and Confirm Password boxes.

49 Chapter 3: The Air Feels Different: Building with Flex Builder and Flash

 6. Click the Browse button.

 The Save dialog box appears.

 7. Enter the filename of the certificate file and click Save.

 The Create Self-Signed Certificate dialog box appears again.

 8. Click the OK button.

 The Digital Certificate page is displayed again.

 9. Click the Finish button.

 The JetFlex.air file is created and now ready for deployment.

 If you would like to deploy the app, jump on over to Chapter 14.

Creating an AIR Application
with Flash CS4

Flash has become the clear standard for creating rich media within the

browser, so “Flash” and “Web page” are nearly synonymous terms these

days. But now, Flash developers are no longer limited to browser-based solu-

tions. Instead, you can take advantage of AIR to create apps for the desktop.

This section offers an example of creating a basic AIR application using Flash.

Designing the user interface
Begin creating your application by designing its user interface. I keep the

steps short and sweet for this sample app:

 1. Start Flash and, in the first screen that appears, choose the Flash file

(Adobe AIR) item.

 Figure 3-9 shows the opening screen.

 2. From the Properties inspector, resize the document to 300 x 260px.

 The width and height properties are adjustable here.

 3. Add a textarea component onto the stage.

 I have my textarea sized at 250 x 200px. I positioned it at 23 (x) and 13

(y). These sizes and positioning are appropriate for the scope of this app.

 4. From the Properties inspector, change the id of the textarea to

taEditor.

 5. Add two Button components onto the stage, positioning them side by

side under the textarea.

50 Par t I: Airing It Out with Adobe AIR

Figure 3-9:
Creating an
Adobe AIR
application
starts here.

Choose this item to start creating your app.

 6. Label the first button Save and give it an id value of btnSave.

 7. Label the second button Close and give it an id value of btnClose.

 Figure 3-10 shows the stage after the components have been added and

aligned.

Figure 3-10:
UI of the

AIR app is
ready.

51 Chapter 3: The Air Feels Different: Building with Flex Builder and Flash

Adding ActionScript code
Now you can attach AIR-based ActionScript code to the user interface by

going through these steps:

 1. In the Timeline, select the first frame.

 The Timeline is at the top section of the Flash window.

 2. Right-click the frame and choose Actions from the pop-up menu.

 The Actions window is displayed.

 3. Add event listeners for the click events of the two buttons.

 Event listeners are functions you create that respond to events, in this

case the clicking of the buttons.

 Type the following code in the Actions window:

btnClose.addEventListener(MouseEvent.CLICK,
closeHandler);

btnSave.addEventListener(MouseEvent.CLICK,
saveHandler);

 4. Add the closeHandler() function.

 Type the following code in the Actions window:

function closeHandler(event:Event):void {
 NativeApplication.nativeApplication.exit();
}

 This function calls the AIR API to close the app. The

NativeApplication.nativeApplication object is used to access

several application level properties and methods, including exit().

 5. Add the saveHandler() function.

 In the Actions window, enter the following code below the

closeHandler() function:

function saveHandler(event:Event):void {
 var file:File = File.desktopDirectory.resolvePath(“myjot.txt”);
 var jot:String = taEditor.text;
 var stream:FileStream = new FileStream();
 stream.open(file, FileMode.WRITE);
 stream.writeMultiByte(jot, File.systemCharset);
 stream.close();
 }

52 Par t I: Airing It Out with Adobe AIR

 The preceding code is some bona fide desktop-related code. This code

provides you with the ability to programmatically save files to the

user’s desktop. The file variable, which is an AIR-based File object,

is assigned as a reference to the myjot.txt file in the desktop folder of

the user. The text contents of the textarea taEditor is assigned to

the jot variable. After that, the code opens a file stream, writes the con-

tents of the jot file to it, and then closes the stream.

 Figure 3-11 shows the code added in the Actions window.

 Save your changes before continuing. Then you’ll be ready to test the

code you just added to the Flash project.

 6. Choose Control➪Test Movie to test your AIR app.

 Your AIR application will run under ADL in its own window. Try typing

something in the textarea and then clicking Save. A myjot.txt text

file will be saved to your desktop.

Figure 3-11:
The AIR

application
now coded

and ready
to go.

53 Chapter 3: The Air Feels Different: Building with Flex Builder and Flash

Configuring and compiling
the AIR application
With the application design and coding now complete, you’re ready to estab-

lish the AIR settings and compile the application by walking through the fol-

lowing steps:

 1. In the Properties inspector (with the Document selected), click the

Edit button beside the AIR Settings label.

 The AIR – Application & Installer Settings dialog box, shown in Figure 3-12,

is displayed. This dialog box is where you specify most of your application-

level settings.

 2. If desired, modify the Application ID, Description, and Copyright.

 The Application ID needs to use a “reverse domain” syntax, which is kind of

like a Web site address in reverse. Flash adds the com.adobe.example.

prefix. Feel free to change to something specific to your context.

Figure 3-12:
AIR –

Application
& Installer

Settings
dialog box.

54 Par t I: Airing It Out with Adobe AIR

 You can modify any of the settings that you want, or you can stay with

the defaults. But the one task that’s mandatory before you publish the

application is to create a self-signed digital certificate.

 3. Click the Set button next to the Digital Signature area.

 The Digital Signature dialog box appears (see Figure 3-13).

Figure 3-13:
The Digital

signature
dialog box.

 4. Click the Create button.

 The Create Self-Signed Digital Certificate dialog box appears (refer

 to Figure 3-8).

 5. Enter your name in the Publisher Name box.

 6. Enter a password in the Password and Confirm Password boxes.

 7. Click the Browse button.

 The Save dialog box appears.

 8. Enter the filename of the certificate file and click Save.

 The Create Self-Signed Certificate dialog box appears again.

 9. Click the OK button.

 The main AIR – Application & Installer Settings dialog box appears.

 10. Click OK.

 Flash compiles the application and creates the installable .air file

for you.

Chapter 4

Exploring the Adobe AIR API
In This Chapter
▶ Showing the relationship between Adobe AIR and JavaScript runtime environments

▶ Accessing the AIR API from within JavaScript and ActionScript

▶ Surveying the Adobe AIR API classes

Anytime I travel around a new city or country, I’m always sure to throw

a reliable map into my suitcase. Before I get out on city streets or coun-

try roadways, I want to know what’s there, how to get from point A to point

B, and what the distances are between major spots of interest. As long as

I study my trusty map on the plane trip there, I never feel that I’m going in

blind, however foreign the locale may be to me.

In the same way, when it comes to starting to develop applications with

Adobe AIR, you can find it helpful to get a lay of the land, by surveying its

application programming interface (API). Exploring the Adobe AIR API can

give you a solid understanding on what AIR is built for and what you can do

to create applications for this new platform.

With that in mind, this chapter walks you through the API. First, however, I

show you how you can make API calls from within your code.

Exploring the Relationship between
AIR and JavaScript Environments

If you’re an HTML/JavaScript developer, it’s important for you to have a solid

grasp of the impact of AIR on the scripting environment that you’re already

used to working within. After all, in a traditional Web page, the window is the

top-level object that you interact with. The document and other DOM objects

(as well as such browser-related objects as history and navigator) are all

children of window.

56 Par t I: Airing It Out with Adobe AIR

The AIR runtime environment brings in more players:

 ✓ The NativeWindow object: The NativeWindow object is a container

for all objects in a window and provides an interface to the native OS

window. You can perform such functions as creating windows and modi-

fying their look through the NativeWindow object.

 ✓ The HTMLLoader object: Inside the NativeWindow object, the

HTMLLoader object serves as a container for HTML content. Each HTML

window contains an HTMLLoader object. You can use this object to con-

trol how HTML content is loaded and displayed.

 ✓ The JavaScript window object: The JavaScript window object keeps

its traditional role as container for the DOM. However, it also pro-

vides three properties that enable you to access the outer world of

AIR: the current instance of the NativeWindow container (window.
nativeWindow); the current instance of the HTMLLoader container

(window.htmlLoader); and the rest of the AIR runtime API library

(window.runtime).

 Because of security considerations, only top-level, sandboxed HTML

documents have access to the nativeWindow, htmlLoader, and run-
time properties. You can’t access them from a document inside an

iframe or frame.

Figure 4-1 shows the relationships between the JavaScript and AIR objects.

 The HTMLLoader object has a window property, which is a pointer to the

JavaScript window object inside of the JavaScript/DOM environment. This

property isn’t meant to be redundant and is actually not used when you’re

working inside JavaScript. Instead, ActionScript routines can access the

JavaScript/DOM environment using HTMLLoader.window as a gateway.

Figure 4-1:
Relationship

of AIR and
JavaScript

environ-
ments.

57 Chapter 4: Exploring the Adobe AIR API

Calling the AIR API
The heart of almost any AIR app is the interaction that takes place between

the host scripting environment (JavaScript for HTML apps, ActionScript for

Flex and Flash apps) and the Adobe AIR runtime. In this section, I provide an

overview of how to call the API from inside JavaScript and ActionScript.

Calling from JavaScript
The Adobe AIR API is accessible from JavaScript through a special object

called window.runtime. The runtime object, unique to AIR applications,

is used as a gateway to access AIR runtime classes from your code. AIR’s

classes are logically organized into numerous ActionScript packages. Each

package is represented as a property of runtime. For example, the flash

package contains, among other things, the File class. So, if you wanted to

create an instance of a File object, you could use the following declaration:

var file = new window.runtime.flash.filesystem.File();

That’s the long way of doing things, however, and requires you to know the

package name for any given object with which you wish to work. Fortunately,

there’s a better way.

 Adobe provides an “aliased” object named air that you can use to simplify

the access calls and eliminate the requirement of specifying the package name

inside the declaration. For example, using the alias definition, you can create a

File instance using the following, much simpler, syntax:

var file = new air.File();

To use aliases, include an external script library file called AIRAliases.js

inside your HTML file, and the world of air aliases opens to you:

<script src=”AIRAliases.js” />

A second benefit to using the AIRAliases.js file is that the API syntax

closely parallels the ActionScript syntax. The only difference is that you need

to add the reference to the air object in JavaScript, but not in ActionScript.

So, here’s the JavaScript code to assign the application directory to a vari-

able named dir:

var dir = air.File.applicationDirectory;

58 Par t I: Airing It Out with Adobe AIR

The ActionScript code looks remarkably similar:

var dir:File = File.applicationDirectory;

Calling from ActionScript
You reference Adobe AIR API classes in ActionScript just as you do with

other ActionScript packages and classes: Import the package using the

import statement and then access the class in your code. For example, to

use the File object, you need to import its package flash.filesystem.
File. Here’s some pseudo code to demonstrate:

// first import the package. . .
import flash.filesystem.File;
// . . .and then use the object
var file = new File();

Touring the Adobe AIR API
When beginning to work with a new technology, one of the biggest hurdles

developers often have is just understanding the lay of the land. In other

words, it’s hard to develop an application when you don’t know exactly the

tools you have to work with.

The Adobe AIR API sports a healthy supply of classes that you can use to create

desktop-based RIAs. The sections that follow take you on a round-the-world tour

of the API to give you a basic understanding of what AIR runtime offers you as a

developer and how you can interact with all aspects of the native operating sys-

tems. The other chapters of the book give you additional details.

Native OS windows
The Adobe AIR API enables you to create native OS windows, making your

application look just like a standard Windows or Mac OS X application.

You can also go your own route and create custom window styles and even

window shapes.

The following JavaScript function shows you how to create a new, empty

window through the API:

 function createWindow() {
 //Set up the initialization options
 var options = new air.NativeWindowInitOptions();

59 Chapter 4: Exploring the Adobe AIR API

 options.systemChrome = air.NativeWindowSystemChrome.
STANDARD;

 options.type = air.NativeWindowType.NORMAL;
 options.transparent = false;

 //create the native window
 var nativeWindow = new air.NativeWindow(options);
 nativeWindow.title = “The NativeWindows Are Restless”;
 nativeWindow.width = 400;
 nativeWindow.height = 300;

 //activate and show the new window
 nativeWindow.activate();
 }

The NativeWindowInitOptions() object enables you to set up certain

options related to a window. You then use this options object when you

create the NativeWindow instance. Basic window properties (title,

width, and height) are assigned. Finally, the window is activated.

I tell you much more about working with native windows in Chapter 7.

Table 4-1 shows you the window-related classes of the API.

Table 4-1 Window Classes
Class Description ActionScript

Package

[air.]NativeWindow Creates and controls native
desktop windows

flash.display
.NativeWindow

[air.]NativeWindow
DisplayState

Defines constants for the
names of the window
display states

flash.display.
NativeWindow
DisplayState

[air.]NativeWindow
InitOptions

Defines the initialization
options used to construct
a new
NativeWindow instance

flash.display.
NativeWindow
InitOptions

[air.]NativeWindow
SystemChrome

Defines constants for the
systemChrome
property of the Native
WindowInitOptions
object

flash.display.
NativeWindow
SystemChrome

(continued)

60 Par t I: Airing It Out with Adobe AIR

Table 4-1 (continued)
Class Description ActionScript Package

[air.]NativeWindow
Resize

Defines constants for
the possible values
of the edgeOrCor-
ner parameter of the
NativeWindow.star-
tResize() method

flash.display.
Native
WindowResize

[air.]Native
WindowType

Defines constants for
the type property of the
NativeWindow
InitOptions object

flash.display.
NativeWindow
Type

Local files
The AIR API lets you work with files and folders with all the usual capabili-

ties: You can create files and directories, copy and move files around on the

user’s hard drive, and display native OS Open and Save dialog boxes. What’s

more, you can read and write files from disk or URL (any Internet location).

Following is an example of local file and directory access using JavaScript.

The following function copies a directory to another location and then copies

a text file to the user’s desktop:

function backup() {

 // Copying user’s folder for backup
 var userFolder = air.File.documentsDirectory.
 resolvePath(“Giggles”);
 var backupFolder = air.File.documentsDirectory.
 resolvePath(“Giggles.backup”);
 userFolder.copyTo(backupFolder);

 // Copying a file
 var readme = air.File.documentsDirectory.
 resolvePath(“Giggles/giggles_readme.txt”);
 var readmeDesktop = air.File.desktopDirectory.
 resolvePath(“readme_now_or_else.txt”);
 readme.copyTo(readmeDesktop, true);

In this code, the userFolder variable is assigned the Giggles folder,

which is a subfolder inside the user’s documentsDirectory (the user’s My

Documents directory in Windows or Documents directory in Mac OS X). Note

the resolvePath() method, which allows you to get a path (Giggles) that

is relative to another path (Documents directory). The backupFolder

61 Chapter 4: Exploring the Adobe AIR API

variable is assigned to a backup directory. The copyTo() method then

copies the Giggles directory to the backupFolder.

The second part of the function assigns the giggles_readme.txt file to the

readme variable, and readmeDesktop is a variable assigned to a file on the

user’s desktop folder. The copyTo() method copies the readme file to the

new location.

See Chapter 10 for more about files and folders.

Table 4-2 lists the file-related classes of the AIR API.

Table 4-2 File Classes
Class Description ActionScript Package

[air.]File Pointer a path to a file
or directory

flash.filesystem.
File

[air.]
FileStream

Used to read and write
files

flash.filesystem.
FileStream

[air.]
FileMode

Defines constants used
when opening files with
FileStream

flash.filesystem.
FileMode

[air.]
FileFilter

Defines what files on
the user’s system are
displayed in the file
browse dialog box

flash.net.FileFilter

Menus
Menus — both top level and right-click contextual menus — are one of the

fundamental UI building blocks of any Windows or Mac OS X application. The

Adobe AIR API provides capabilities to create robust native menus in your

application. The following JavaScript code creates a top-level File menu with

a single Open item:

// Create root menu
var rootMenu = new air.NativeMenu();

// Add a File menu item
var fileMenuItem = rootMenu.addItem(“File”);

// Create menu and assign it as the submenu
var fileSubmenu = new air.NativeMenu();
fileMenuItem.submenu = fileSubmenu;

62 Par t I: Airing It Out with Adobe AIR

// Add Open item
var fileOpenItem = fileSubmenu.addItem(“Open”);

// Add event handler
fileOpenItem.addEventListener(air.Event.SELECT,

fileOpen);

// If running on Windows, add as window menu
if (air.NativeWindow.supportsMenu) {
 nativeWindow.menu = rootMenu;
}

// If running on Mac OS X, add as application menu
if (air.NativeApplication.supportsMenu) {
 air.NativeApplication.menu = rootMenu;
}

// Handler for the File Open menu item
function fileOpen() {
 alert(“An open file can do no harm, so they say.”);
}

The rootMenu NativeMenu instance serves as the container for the sub-

menu and menu items of this example. A File menu item (fileMenuItem) is

added to the rootMenu and then a submenu is created and assigned to it.

Next, the Open menu item is added to the fileSubmenu.

To have the menu item do anything when a user selects it, you need to add

an event handler to it, which I do with the addEventListener() method.

It tells AIR to execute the fileOpen() function (defined at the end of the

code) when the fileOpenItem is selected.

The final step is to assign the rootMenu to the application as a top-level

menu. However, Windows and the Mac handle top-level menus differently. A

top menu under Windows is contained by the window, whereas under Mac

OS X, the top menu becomes the system-wide application menu at the top of

the screen. Therefore, before assigning it as a window or application menu,

the code checks to see whether that capability is supported at runtime by

checking the result of the supportsMenu property.

See Chapter 8 for more of the scoop on menus.

Table 4-3 highlights the menu-related classes as well as other UI-related

classes in Adobe AIR.

63 Chapter 4: Exploring the Adobe AIR API

Table 4-3 User Interface Classes
Class Description ActionScript Package

[air.]NativeMenu Defines a native
menu (Application,
Window, Dock icon,
System tray, Context,
Pop-up)

flash.display.
NativeMenu

[air.]
NativeMenuItem

Represents a menu
item

flash.display.
NativeMenuItem

[air.]Screen Defines properties to
indicate the display
screens available

flash.display.
Screen

[air.]Icon Represents an icon flash.desktop.
Icon

[air.]DockIcon Represents a Mac OS
X style dock icon

flash.desktop.
DockIcon

[air.]
InteractiveIcon

Abstract base class
for icons associated
with an application

flash.desktop.
InteractiveIcon

[air.]
NotificationType

Defines constants for
the priority param-
eter of DockIcon.
bounce() and the
type parameter of
NativeWindow.
notifyUser()

flash.desktop.
NotificationType

[air.]
SystemTrayIcon

Represents a
Windows system tray
icon

flash.desktop.
SystemTrayIcon

[air.]Loader Loads SWF files or
image (JPG, PNG, or
GIF) files

flash.display.
Loader

[air.]Bitmap Represents a bitmap
image

flash.display.
Bitmap

[air.]BitmapData Provides a means to
work with the pixel
data of a bitmap

flash.display.
BitmapData

64 Par t I: Airing It Out with Adobe AIR

Inter-application data exchange
The Adobe AIR API taps into the familiar inter-application exchange

mechanism in Windows and Mac OS X, what is ubiquitously known as the

Clipboard. You can use the Clipboard’s data-exchange capabilities through

Copy and Paste routines as well as through drag-and-drop. Tables 4-4 and 4-5

list the Clipboard and drag-and-drop classes of the API.

The following JavaScript example shows you how to copy a piece of text to

the Clipboard:

function copyMe() {
 var txt = “This little text went to the market.”;
 air.Clipboard.generalClipboard.clear();
 air.Clipboard.generalClipboard.setData(air.

ClipboardFormats.TEXT_FORMAT, txt);
}

The clear() method of the Clipboard object is used to remove existing

contents from the Clipboard. Then, the setData() method adds the txt
String variable to the Clipboard as plain text.

Chapter 9 dives into more detail on working with the Clipboard and

drag-and-drop.

Table 4-4 Clipboard Classes
Class Description ActionScript

Package

[air.]Clipboard Defines a container for trans-
ferring data and objects via the
Clipboard and drag-and-drop

flash.desktop.
Clipboard

[air.]Clipboard
Formats

Defines constants for standard
data formats used with the
Clipboard

flash.desktop.
Clipboard
Formats

[air.]Clipboard
TransferMode

Defines constants for the
transferMode parameter
of the Clipboard.get-
Data() method

flash.desktop.
Clipboard
TransferMode

65 Chapter 4: Exploring the Adobe AIR API

Table 4-5 Drag-and-Drop Classes
Class Description ActionScript Package

[air.]NativeDrag
Manager

Coordinates drag-and-drop
operations

flash.desktop.
NativeDragManager

[air.]NativeDrag
Options

Declares the drag-and-drop
actions that are relevant to
a drag operation

flash.desktop.
Native
DragOptions

[air.]NativeDrag
Actions

Defines constants for the
NativeDragManager.
dropAction property

flash.desktop.
NativeDragActions

Multimedia
Adobe AIR provides various media-related classes (see Table 4-6) to work

with audio files as well as to interact with such hardware as the system

microphone or camera. You can use these multimedia capabilities to add

sound effects to your app or develop a full-fledged video, audio, and camera

capture app.

The following JavaScript code shows you how to play a sound:

var sndFile = new air.URLRequest(“ping.mp3”);
var snd = new air.Sound(sndFile);
snd.play();

The sndFile variable references the ping.mp3 sound file. An instance of a

Sound object is created using that sndFile variable, and then it is played

using the play() method.

Flip to Chapter 13 for the full scoop on working with audio.

Table 4-6 Media Classes
Class Description ActionScript Package

[air.]ID3Info Provides proper-
ties representing
ID3 metadata for an
MP3 file

Flash.media.
ID3Info

(continued)

66 Par t I: Airing It Out with Adobe AIR

Table 4-6 (continued)
Class Description ActionScript Package

[air.]Sound Provides access to
sound capabilities,
such as playing an
audio file

Flash.media.
Sound

[air.]SoundChannel Controls sound in
an app (a sound is
assigned to a sound
channel)

Flash.media.
SoundChannel

[air.]SoundLoader
Context

Used to perform
security checks for
files that load sound

Flash.media.
SoundLoader
Context

[air.]SoundMixer Provides global
sound and mixing
control

flash.media.
SoundMixer

[air.]
SoundTransform

Provides properties
for volume and pan
control

flash.media.
SoundTransform

[air.]Microphone Captures audio
from a microphone
attached to the
computer

flash.media.
Microphone

[air.]Video Captures video from
a video camera
attached to the
computer

flash.media.
Video

[air.]Camera Captures images
from a digital
camera attached to
the computer

flash.media.
Camera

Keyboard and mouse
The AIR API provides access to the keyboard and mouse of the system run-

ning your application. You can use it to trap for keyboard or mouse events.

Here’s an example of how to use JavaScript to listen to keyboard input and

then add custom functions when the user clicks the left, right, top, and down

arrows. The first thing is to call addEventListener() to listen for the key-
Down key in the initialization routine of the app:

67 Chapter 4: Exploring the Adobe AIR API

window.nativeWindow.stage.addEventListener(“keyDown”,onKe
y);

As a result, when any key is pressed, a function called onKey() is triggered,

which follows:

function onKey(event){

 switch(event.keyCode) {
 case air.Keyboard.LEFT :
 alert(“Turn left to surf!”);
 break;
 case air.Keyboard.RIGHT :
 alert(“Turn right to get chowda!”);
 break;
 case air.Keyboard.UP :
 alert(“Go up for Hockey!”);
 break;
 case air.Keyboard.DOWN :
 alert(“Go down for great TexMex!”);
 break;
 default
 break;
 }
 }

In this routine, the switch statement evaluates the keycode of the key

pressed. If the keycode matches the air.Keyboard.LEFT, air.Keyboard.
RIGHT, air.Keyboard.UP, and air.Keyboard.DOWN, an alert() mes-

sage box displays. Otherwise, the key passes through without incident.

Table 4-7 shows the classes related to the keyboard and mouse.

Table 4-7 User Interaction Classes
Class Description ActionScript Package

[air.]Keyboard Defines constants
representing keyboard keys
and provides an interface to
the keyboard

flash.ui.
Keyboard

[air.]Key
Location

Defines constants on the
location of a key pressed on
the keyboard

flash.ui.Key
Location

[air.]Mouse Allows you to show/hide the
mouse pointer

flash.ui.Mouse

68 Par t I: Airing It Out with Adobe AIR

Database
The SQLite database engine is built inside the Adobe AIR runtime. The AIR

API provides a host of database classes (see Table 4-8) for storing and

working with local data. You can use the database to store user data or

application-specific data.

Consider the following JavaScript example, which uses the API to connect to

a database named chuckles.db and insert a new record into the contacts

table:

var conn = new air.SQLConnection();
var dbFile = air.File.documentsDirectory.resolvePath
 (“chuckles.db”);
// open the database
conn.open(dbFile, air.OpenMode.UPDATE);

// add the customer record to the database
var insertStmt = new air.SQLStatement();
insertStmt.sqlConnection = conn;
insertStmt.text =
 “INSERT INTO contacts (firstName, lastName, phone) “ +
 “VALUES (‘Rocky’, ‘Burky’, ‘719-555-1212’)”;
insertStmt.execute();

conn.close();

In this example, a connection is established to the chuckles.db database

file and opened in update mode. The conn variable is used to represent the

connection.

The insertStmt variable is an instance of SQLStatement and is used to

send a SQL statement to the database. After that statement is assigned to the

text variable, its execute() method is called.

Table 4-8 Database Classes
Classs Description ActionScript

Package

[air.]Encrypted
LocalStore

Manages getting and
setting objects in the
encrypted local data store

flash.data.
Encrypted
LocalStore

69 Chapter 4: Exploring the Adobe AIR API

Class Description ActionScript
Package

[air.]
SQLCollationType

Defines constants for the
defaultCollation
Type parameter of the
SQLColumnSchema
constructor, as well as the
SQLColumnSchema.
defaultCollation-
Type property

flash.data.SQL
CollationType

[air.]SQLColumn
NameStyle

Defines constants for the
SQLConnection.col-
umnNameStyle property

flash.data.SQL
ColumnName
Style

[air.]SQLColumn
Schema

Provides info for the speci-
fied column within a data-
base table

flash.data.SQL
ColumnSchema

[air.]SQLConnection Manages the creation of
and connection to local
SQL database files

flash.data.
SQLConnection

[air.]SQLError Provides details about a
failed database operation

flash.errors.
SQLError

[air.]SQLError
Event

Triggered by
SQLConnection or
SQLStatement when a
database error occurs in
asynchronous execution
mode

flash.events.
SQLErrorEvent

[air.]SQLError
Operation

Defines constants for the
SQLError.operation
property

flash.errors.
SQLError
Operation

[air.]SQLEvent Dispatched when a
SQLConnection or
SQLStatement instance
completes successfully

flash.events.
SQLEvent

[air.]SQLIndexSchema Provides info for the speci-
fied index in a database
table

flash.data.
SQLIndexSchema

[air.]SQLMode Defines the constants for
the openMode parameter
of the SQLConnection.
open() and SQL
Connection.
openAsync() methods

flash.data.
SQLMode

(continued)

70 Par t I: Airing It Out with Adobe AIR

Table 4-8 (continued)
Classs Description ActionScript Package

[air.]SQLResult Provides access to
data returned by a
SQLStatement instance

flash.data.
SQLResult

[air.]SQLSchema Serves as base class for
schema for database
objects

flash.data.
SQLSchema

[air.]
SQLSchemaResult

Provides info from a call to
the SQLConnection.
loadSchema() method

flash.data.SQL
SchemaResult

[air.]SQLStatement Execute a SQL statement
against a local SQL data-
base that is open through
a SQLConnection
instance

flash.data.
SQLStatement

[air.]SQLTableSchema Defines the specified table
in a database

flash.data.
SQLTableSchema

[air.]SQL
Transaction
LockType

Defines constants for the
option parameter of
the SQLConnection.
begin() method

flash.data.SQL
Transaction
LockType

[air.]SQLTrigger
Schema

Defines the specified trig-
ger within a database

flash.data.SQL
TriggerSchema

[air.]SQLUpdateEvent Dispatched by a
SQLStatement object
when data changes as a
result of a SQL statement
or trigger

flash.events.
SQLUpdateEvent

[air.]SQLViewSchema Provides info for the
specified view within a
database

flash.data.
SQLViewSchema

Communication
Adobe AIR is all about creating RIAs — rich internet applications. Not surpris-

ingly, then, its API sports a healthy supply of internet communication-related

classes and functions, as shown in Tables 4-9 and 4-10. You can use this part

of the API to do simple tasks, such as calling a URL:

71 Chapter 4: Exploring the Adobe AIR API

var url = “http://www.dummies.com”;
var urlRequest = new air.URLRequest(url);
air.navigateToURL(urlRequest);

In this JavaScript code, the url variable is assigned the value of a Web site.

Not just any site, mind you. This variable is then passed as a parameter when

a URLRequest instance is created. The navigateToURL() method is then

called using this variable as a parameter.

Chapter 12 tells you more about network connectivity.

Table 4-9 Network Connection Classes
Class Description ActionScript Package

[air.]URLLoader Downloads data from
a URL as text, binary
data, or URL-encoded
variables

flash.net.
URLLoader

[air.]URLLoader
DataFormat

Defines values to
specify how down-
loaded data is
received

flash.net.
URLLoaderData
Format

[air.]URLRequest Captures data in a
single HTTP request

flash.net.URL
Request

[air.]URLRequest
Defaults

Defines static prop-
erties for defining
default values for
URLRequest class

flash.net.
URLRequest
Defaults

[air.]
URLRequestHeader

Encapsulates a single
HTTP request header
in the form of a name/
value pair

flash.net.
URLRequestHeader

[air.]
URLRequestMethod

Determines whether
the URLRequest
object should use
POST or GET method
when sending data to
a server

flash.net.
URLRequestMethod

[air.]URL
Stream

Provides low-level
access to download-
ing URLs (compared to
URLLoader which
is used when a file is
completed)

flash.net.
URLStream

(continued)

72 Par t I: Airing It Out with Adobe AIR

Table 4-9 (continued)
Class Description ActionScript Package

[air.]URL
Variables

Allows you to transfer
variables between an
app and a server

flash.net.
URLVariables

[air.]Socket Establish a socket
connection and read/
write raw binary data

flash.net.Socket

[air.]XML
Socket

Establish a socket
connection to commu-
nicate with a server
computer identified
by an IP address or
domain name

flash.net.
XMLSocket

[air.]Responder Used by
NetConnection.
call() to handle
return values from the
server

flash.net.
Responder

[air.]Object
Encoding

Defines serializa-
tion settings in
classes that serialize
objects to work with
legacy versions of
ActionScript.

flash.net.
ObjectEncoding

[air.]NetStream Defines a one-way
streaming connec-
tion between app and
Flash Media Server

flash.net.
NetStream

Table 4-10 URL-Related Functions
Function Description ActionScript Package

[air.]
navigate-
ToURL()

Opens a URL in the
default system browser

flash.net.
navigateToURL

[air.]
send-
ToURL()

Sends a URL request
to server (ignores
response)

flash.net.sendToURL

73 Chapter 4: Exploring the Adobe AIR API

In addition to using remote network connections, such as URLs or app serv-

ers, you can use the AIR API to connect to other AIR applications, other

objects within the same AIR app, and even Flash media running inside the

browser (see Table 4-11). For example, if you want to set up your app to con-

verse with another app in the same domain, you write the following:

// Create local connection
var clientConn = new air.LocalConnection();
clientConn.connect(“rockdude”);

// Create object that will be called remotely
var clientCommunicator = new Object();
//
clientCommunicator.talkToMe = function() {
 air.trace(“Hey, you rock, dude!”);
 }
clientConn.client = clientCommunicator;

This code creates a LocalConnection object named lc and then defines a

custom JavaScript object named clientCommunicator. The client prop-

erty of lc is then assigned to the custom object.

A second application could call the talkToMe() method by establishing

a local connection with the rockdude connection and then specifying the

method in the send() method:

var serverConn = new air.LocalConnection();
serverConn.connect(“rockdude”);
serverConn.send(“rockdude”, “talkToMe”);

Table 4-11 Application Communication Classes
Class Description ActionScript

Package

[air.]
LocalConnection

Establish a connection to
communicate between two
files (SWF<->HTML, SWF<-
>SWF, etc.)

flash.net.Local
Connection

[air.]NetConnection Defines a bidirectional
connection

flash.net.Net
Connection

[air.]SharedObject Enable data sharing
between multiple files/
objects on local computer
or server

flash.net.
Shared
Object

[air.]SharedObject
FlushStatus

Defines return values
for SharedObject.
flush() method

flash.net.
Shared
ObjectFlush
Status

74 Par t I: Airing It Out with Adobe AIR

Part II
AIR Application

Design

In this part . . .

The introductions are over. It’s time to get down to

business and focus on application design. You focus

in this part on the basics of UI design using HTML and

CSS, and on and creating windows and menus from your

app. You then explore how to work with menus and icons.

Chapter 5

Using HTML and CSS
as Building Blocks

In This Chapter
▶ Understanding the HTMLLoader object

▶ Exploring the WebKit CSS extensions

▶ Drawing with the canvas element

In Chapter 2, I walk you through the basics of creating an HTML-based AIR

application. Using that process as a guide helps you realize that working

with the content and presentation layer in AIR is nearly identical to designing

a traditional Web application. HTML and CSS work the same way. The HTML

DOM is still the way in which you access and manipulate the document

through scripting. JavaScript works much the same way as it does within a

normal Web page.

However, AIR’s HTML environment gives you some additional capabilities

(such as extended styles or the canvas element) that you should understand,

regardless of whether you’re creating an HTML-based application or even

integrating an HTML window inside your Flex or Flash application.

In this chapter, you explore the familiar world of HTML, but do so within this

new AIR environment.

Working with HTMLLoader
Whether you’re creating an HTML-based AIR application or displaying

HTML content in your Flex or Flash app, each HTML document you display

is contained in its own HTMLLoader object. The HTMLLoader manages the

behavior and aspects of the appearance of the HTML display. As you work

through this section, you explore how to access HTMLLoader and display

content in it.

78 Part II: AIR Application Design

Accessing and sizing the HTMLLoader
In an HTML application, an instance of the HTMLLoader object is created

automatically for you. You can access this HTMLLoader instance by accessing

the htmlLoader property of the JavaScript window object:

window.htmlLoader

When you’re creating an HTML-based app, you can set the initial size of the

application through the application descriptor XML file. However, you can

also set the size through the width and height of the HTMLLoader, like so:

window.htmlLoader.width = 500;
window.htmlLoader.height = 400;

In a Flex or Flash application, you need to explicitly create an instance of

HTMLLoader by using the following code:

var htmlLoader:HTMLLoader = new HTMLLoader();
var urlRequest:URLRequest = new URLRequest(“local_help.

html”);
htmlLoader.width = myPanel.stageWidth;
htmlLoader.height = myPanel.stageHeight;
htmlLoader.load(urlRequest);
myPanel.addChild(htmlLoader);

The htmlLoader instance uses urlRequest to specify the URL to open

using load(). Also, notice that I set the dimensions of htmlLoader. That’s

because when you’re creating an HTMLLoader in ActionScript, the width

and height properties are 0, so you need to specify them.

Loading HTML content
HTMLLoader allows you to load HTML content using the load() and

loadString() methods. The load(url) method loads the specified URL.

For example:

window.htmlLoader.load(“http://www.dummies.com”);

You can also use the loadString(htmlContent) method to load HTML

content through a string parameter. Here’s an ActionScript example:

79 Chapter 5: Using HTML and CSS as Building Blocks

var htmlLoader:HTMLLoader = new HTMLLoader();
var htmlText:String = getHTMLContent();
htmlLoader.loadString(htmlText);

Setting the transparency of a window
One of the visual settings that many HTML developers will want to consider

when creating an AIR app is the ability to make the background of the

window transparent — something that can’t be done with a traditional

Web app.

 However, HTML developers who want to set a transparent background for

their applications can become perplexed when they try to do so. It is not so

intuitive. When you forget about HTMLLoader, the natural inclination is to

set the transparency property of the application descriptor file to false

and then set the CSS background to transparent. But, as you’ll discover if

you try to do both of those things, that’s not enough. The reason is that the

HTMLLoader container has an opaque background by default.

Therefore, you need to set the paintsDefaultBackground to false:

window.htmlLoader.paintsDefaultBackground = false;

The HTML document itself does not support alpha blending (other than by

using a blended PNG graphic as a background-image). Technically, the

HTMLLoader does have an alpha property that you can use for alpha

blending, although this property is not used much in HTML applications.

Launching a URL in the
default system browser
When you click a link inside of an HTML document or assign a URL to

window.location, the requested page will be displayed inside the same

HTMLLoader object. However, if you want to launch the URL in the default

system browser (typically Internet Explorer, Firefox, or Safari) instead, then

you can set the navigateInSystemBrowser property to true:

window.htmlLoader.navigateInSystemBrowser = true;

80 Part II: AIR Application Design

History, HTML history that is,
can teach you something
By now, you can see how similar the behavior of HTMLLoader is to a

browser. It should not be much of a surprise, therefore, that the HTMLLoader

is also responsible for maintaining a history list for the URLs that are

accessed inside of it.

When a URL is added to the history list, it is stored as a HistoryListItem.

You can then use the HTMLLoader history-related properties and methods,

as listed in Table 5-1, to work with a HistoryListItem collection to create

a virtual browser-like experience inside your application.

Table 5-1 HTMLLoader History-Related Members
Member Description

historyBack() Goes back in the history list.

historyForward() Goes forward in the history list.

historyGo(x) Goes forward or backward x number of spaces.

getHistoryAt(index) Returns an HTMLListItem element at index
position in the list.

HistoryLength Gives the length of the history list.

HistoryPosition Shows the current position in the history list.

The following code shows an example of how you can use the history-related

functionality in your app:

function back()
{
 window.htmlLoader.historyBack();
}

function forward()
{
 window.htmlLoader.historyForward();
}

function getItemInfo(idx)
{
 item = window.htmlLoader.getHistoryAt(idx);
 alert(“URL:” + item.url +
 “ Title: “ + item.title +
 “ Original URL: “ + item.originalURL);
}

81 Chapter 5: Using HTML and CSS as Building Blocks

Taking Advantage of WebKit Extensions
When you create an HTML-based application in Adobe AIR, you finally have

a great excuse to forget about all the cross-browser compatibility issues that

continually dog Web developers. Because you’re developing for the browser

embedded inside the AIR runtime, your only requirement is to ensure that

your page looks and performs properly with WebKit. What’s more is that

although WebKit is standards based, it also features some nonstandard

extensions that you can feel free to take advantage of as you develop your

interface.

Use this section to help you identify several little secret compartments in

that Web developer toolbox of yours.

Table 5-2 lists the major extensions to CSS that you can use in your Adobe

AIR applications.

Table 5-2 Major WebKit Extensions to CSS
CSS Property Name Description

-webkit-background-size Specify the size of a
background image.

-webkit-border-horizontal-spacing Horizontal component of
the border spacing.

-webkit-border-vertical-spacing Vertical component of the
border spacing.

-webkit-border-radius Define the rounding radius
for the four corners of a
box.

-webkit-border-bottom-left-radius

-webkit-border-bottom-right-radius

-webkit-border-top-left-radius

-webkit-border-top-right-radius

Define radius for one of the
four corners of a box.

-webkit-line-break Line break rule to use for
Chinese, Japanese, and
Korean (CJK) text.

-webkit-margin-bottom-collapse Determines how the
bottom margin of a table
cell collapses.

(continued)

82 Part II: AIR Application Design

Table 5-2 (continued)
CSS Property Name Description

-webkit-margin-collapse Determines how the top
and bottom margins of a
table cell collapses.

-webkit-margin-start Width of the starting
margin (usually left side).

-webkit-margin-top-collapse Determines how the top
margin of a table cell
collapses.

-webkit-nbsp-mode Behavior of nonbreaking
spaces within the enclosed
content.

-webkit-padding-start Width of the starting
padding (typically left side).

-webkit-rtl-ordering Overrides the default
handling of mixed left-to-
right and right-to-left text.

-webkit-text-fill-color Text fill color.

-webkit-text-security Replacement shape to use
in a password field.

-webkit-user-drag Use when you need to
override the automatic
drag behavior.

-webkit-user-modify Indicates whether the
content of an element can
be edited.

-webkit-user-select Indicates whether a user
can select the content of
an element.

Although some of the extensions are fairly obscure, there are a few jewels to

take advantage of, as described next.

Creating rounded rectangles
The -webkit-border-radius and its related properties allow you to define

the radius of the border of a block level element. You can use this extension

to easily create rounded rectangles rather than resort to image-based

corners. The following example creates rounded corners on the top of a div

element, but keeps the bottom corners square:

83 Chapter 5: Using HTML and CSS as Building Blocks

 -webkit-border-bottom-left-radius: 0px;
 -webkit-border-bottom-right-radius: 0px;
 -webkit-border-top-left-radius: 15px;
 -webkit-border-top-right-radius: 15px;

Figure 5-1 shows the result.

Figure 5-1:
Rounded

rectangles
made possi-
ble through

a WebKit
extension.

See Chapter 2 for another example of using -webkit-border-radius in an

HTML app.

Making links into push buttons
The -webkit-appearance property is a WebKit extension that is designed

to change the appearance of an HTML element and transform it into a variety

of different UI controls. Adobe AIR supports -webkit-appearance:push-
button, which can enable you to easily turn a link or other element into a

push button. To demonstrate, begin with a link assigned to a class named

special:

Visit Our
Home Page

The a.special style can then be defined as follows:

a.special
{
 display: block;

84 Part II: AIR Application Design

 width: 180px;
 font-size: 14px;
 font-weight: bold;
 line-height: 30px;
 color: #000000;
 text-decoration: none;
 text-align: center;
 margin: 15px auto;
 -webkit-appearance: push-button;
}

The -webkit-appearance: push-button property transforms the

appearance of the a link into a push button. The remaining properties set the

formatting and positioning of the element.

Figure 5-2 shows the transformation when the AIR application runs.

Figure 5-2:
As if by

magic, an
a link has
become a

push button.

Setting alpha values
WebKit enables you to set an alpha value when declaring an RGB color with

the new rgba() declaration. Using rgba(), you can add translucent color

overlays using CSS and avoid transparent PNGs or GIFs. The syntax for the

declaration is as follows:

85 Chapter 5: Using HTML and CSS as Building Blocks

rgba(r, g, b, alpha)

The r, g, and b values are integers between 0–255 that represent the red,

green, and blue values. The a is the alpha value between 0 and 1 (0.0 is

transparent, 1.0 is fully opaque). For example, to set a green background

with a 40 percent transparency value, you use the following:

background: rgba(0, 255, 0, 0.4);

The following example shows five div elements, each with a different alpha

value for the background-color. The text-shadow property also uses

rgba. Here is the full source code:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://
www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html;

charset=iso-8859-1” />
<title>WebKit CSS Extensions</title>
<script type=”text/javascript” src=”AIRAliases.js”></

script>
<style>
div.blockHead
{
 font-size: 46px;
 text-align: center;
 color: #ffffff;
 text-shadow: rgba(0,0, 0, 0.7) 0 1px 0;
 line-height: 76px;
}
</style>
</head>
<body>
<div class=”blockHead” style=”background-color: rgba(0, 0,

0, 0.2);”>20%</div>
<div class=”blockHead” style=”background-color: rgba(0, 0,

0, 0.4);”>40%</div>
<div class=”blockHead” style=”background-color: rgba(0, 0,

0, 0.6);”>60%</div>
<div class=”blockHead” style=”background-color: rgba(0, 0,

0, 0.8);”>80%</div>
<div class=”blockHead” style=”background-color: rgba(0, 0,

0, 1.0) ;”>100%</div>
</body>
</html>

Figure 5-3 shows the effect of this code when the application runs.

86 Part II: AIR Application Design

Figure 5-3:
The varying

alpha values
for these

divs form a
gradient.

Drawing Graphics on the HTML Canvas
Although ActionScript developers have the ability to draw graphics on a

canvas in their Web or AIR applications, HTML developers have never had

this same level of programming power. You can use JavaScript to create or

animate DOM elements, but not to create lines or other shapes from scratch.

However, WebKit supports the HTML canvas element that defines a drawing

region in the document that you then draw on using the WebKit Canvas API.

 Canvas drawing can be intimidating because you need to draw on-screen by

defining a series of x,y coordinates for lines and rectangles. As you begin, I

recommend using a piece of old fashioned graph paper to sketch out the

shapes in a grid.

Adding a canvas
You can think of a canvas as a flat, two-dimensional surface that has a

default origin (0,0) in the top-left corner. As in an HTML document, all the x,y

coordinates that you specify are relative to this position.

To define a canvas in your JavaScript code:

<canvas id=”whiteboard” style=”width:350px;height:350px;”/>

You can place as many canvas elements on a page as you want. Each just

needs to have its own unique id value.

87 Chapter 5: Using HTML and CSS as Building Blocks

You can now draw inside the surface region using JavaScript. The following

sections show you how.

Getting a context
The canvas element serves as the container for your drawing area, but

you don’t actually work with the canvas to do so. Instead, you work with

something called a 2d context object. All the drawing properties and methods

that you work with are called from the context object.

To get a context object to work with, you call the canvas element’s

getContext() method:

var canvas = document.GetElementById(“canvasElement”);
var context = canvas.getContext(“2d”);

Drawing a rectangle
In order to draw a rectangle onto a canvas, you can use one of three methods

of the context object:

 ✓ context.fillRect(x,y,w,h) draws a filled rectangle.

 ✓ context.strokeRect(x,y,w,h) draws a rectangular outline.

 ✓ context.clearRect(x,y,w,h) clears the specified rectangle and

makes it transparent.

For example, suppose you’d like to draw a rectangular outline and a solid box

inside it. Here’s the JavaScript code to draw these two shapes:

var canvas = document.getElementById(‘whiteboard’);
var context = canvas.getContext(‘2d’);
context.strokeRect(10,10,100,50);
context.fillRect(15,15,90,40);

The strokeRect() method creates a rectangular outline starting at the

coordinate (10,10) and is 100 x 50 pixels in size. The fillRect() method

paints a 90 x 40 rectangle starting at coordinate (15,15). Figure 5-4 shows the

result of the preceding code.

88 Part II: AIR Application Design

Figure 5-4:
Drawing

rectangular
shapes on

the canvas.

Stroking and filling nonrectangular shapes
To create a shape other than a rectangle, you first need to create a path, a

sort of connect-the-dots outline of subpaths. After you’ve defined a path, you

can then either stroke a line along the path or else fill in the area inside the

path.

The following methods of the context object are used for drawing

nonrectangular shapes:

 ✓ beginPath() creates a new path and sets the starting point to the

coordinate (0,0).

 ✓ lineTo(x,y) adds a line segment from the current point to the specified

coordinate.

 ✓ moveTo(x,y) moves the starting point to a new coordinate that you

define with the x,y values.

 ✓ closePath() closes an open path and draws a line from the current

point to the original starting point of the path.

 ✓ stroke() draws a line along the current path.

 ✓ fill() closes the current path and paints the area within it. If you use

fill(), you don’t need to call closePath() because fill() closes

the path automatically.

89 Chapter 5: Using HTML and CSS as Building Blocks

Here’s sample code for a drawing that uses these methods to create two

adjacent triangles:

 var canvas = document.getElementById(‘whiteboard’);
 var context = canvas.getContext(‘2d’);
 // Triangle outline
 context.beginPath();
 context.moveTo(10,10);
 context.lineTo(10,75);
 context.lineTo(100,40);
 context.lineTo(10,10);
 context.stroke();
 context.closePath();
 // Filled triangle
 context.beginPath();
 context.moveTo(110,10);
 context.lineTo(110,75);
 context.lineTo(200,40);
 context.lineTo(110,10);
 context.fill();

Figure 5-5 shows the incredible work of art that was just created.

Figure 5-5:
Two

adjacent
triangles.

90 Part II: AIR Application Design

Working with color and transparency
The context object has fillStyle and strokeStyle properties that

enable you to define the color, style, and alpha value of your drawing. Table

5-3 lists all the properties of the context object.)

Table 5-3 Available Properties of the context Object
Property Description

FillStyle Provides CSS color or style (gradient,
pattern) of the fill of a path.

GlobalAlpha Specifies the level of transparency of
content drawn on the canvas. Floating
value between 0.0 (fully transparent) and
1.0 (fully opaque).

GlobalCompositeOperation Specifies the compositing mode to deter-
mine how the canvas is displayed relative
to background content. Values include:
copy, darker, destination-atop,
destination-in, destination-
out, destination-over, lighten,
source-atop, source-in,
source-out, source-over, xor.

LineCap Defines the end style of a line. String
values include: “butt” for flat edge,
“round” for rounded edge, “square”
for square ends. (Defaults to “butt”.)

LineJoin Specifies the way lines are joined
together. String values include: “round”,
“bevel”, “miter”. (Defaults to
“miter”.)

lineWidth Specifies the line width. Floating point
value greater than 0.

miterLimit Specifies the miter limit for drawing a
juncture between line segments.

shadowBlur Defines the width that a shadow covers.

shadowColor Provides CSS color for the shadow.

shadowOffsetX Specifies the horizontal distance of the
shadow from the source.

shadowOffsetY Specifies the vertical distance of the
shadow from the source.

StrokeStyle Defines the CSS color or style (gradient,
pattern) when stroking paths.

91 Chapter 5: Using HTML and CSS as Building Blocks

You can set color values by using either hex or rgb values:

context.fillStyle=”#111202”;
context.strokeStyle=rgb(255,120,125);

The alpha value can be assigned to the shape you’re filling in using the

rgba(). For example:

context.fillStyle = “rgba(13,44,50, 0.9)”;

For example, the following code draws two circles in the canvas. The large

circle has a 60 percent transparency value, whereas the smaller circle has a

50 percent transparency value:

var canvas = document.getElementById(‘myCanvas’);
var context = canvas.getContext(‘2d’);
context.fillStyle = “rgba(23,44,70, 0.6)”;
context.beginPath();
context.arc(50,90,50,0, 360, false);
context.fill();
context.fillStyle = “rgba(0,100,0,0.5)”;
context.beginPath();
context.arc(80,70,70,0, 360, false);
context.fill();

Figure 5-6 shows the two colored, semitransparent circles.

Figure 5-6:
Showing off

color and
alpha

values.

92 Part II: AIR Application Design

Chapter 6

Anyone Listening? Working
with Events

In This Chapter
▶ Understanding how events work

▶ Introducing the AIR model

▶ Preventing default behaviors

▶ Understanding event flow

When you create an AIR application, one of your major objectives is to

be able to respond to events that occur from the time your application

loads to the time it finishes. When the app loads, you will probably have an

initialization routine. When the user clicks the Save button, perhaps you have

a saveToFile() function that is called. Or, suppose a user wants to retrieve a

list of customer records she needs to contact. Your application sends off a data-

base query and then waits for the database engine to deliver results before pro-

cessing them. Each of these is an example of an event-driven

application.

In this chapter, I show you to how to work with and respond to user and

system events in Adobe AIR.

Responding to Events
The heart of Adobe AIR event system is a matching pair of events consisting

of an event and an event listener. To illustrate the nature of this pair, I’ll draw

some parallels with the real world. Suppose you’re charged to go to a press

conference introducing a new soft drink and are responsible for writing an

article on that beverage for Soda Monthly magazine. You don’t think much

about it, but actually much of what you do to cover that conference is listen

and wait for something to happen and then respond to those events when

they transpire. For example:

94 Part II: AIR Application Design

 ✓ At the start of the press conference, you get your notepad out.

 ✓ When the maker of the soda makes an outrageous claim, you laugh and

write it down.

 ✓ When two reporters behind you are bickering, you choose not to listen

to their conversation.

 ✓ When samples of the new carbonated soda called Gel-ola are passed out,

you eagerly jump in line to get your free drink.

 ✓ When you taste the new beverage, you nearly gag as you drink the

sickeningly sweet, cola-tasting liquid with a semi-solid, gel-like

substance.

 ✓ When the conference ends, you travel back to the office to finish the

story, armed with a case of Gel-ola to hand out to your coworkers.

Bringing this back to the world of AIR development, much of the normal

operation of an AIR app operates in the same event-driven manner. AIR has

a vast cornucopia of events that you can choose whether to react (or, in

programming terms, listen) to. For those events that you want to listen to,

you define functions that are called when the event occurs during the

execution of the application. A function that responds to an event is called

an event listener or event handler.

Event handling in the HTML DOM
Since the early days of JavaScript, Web pages have had the idea of event

handlers. In fact, if you’ve ever worked with client-side JavaScript, you are

very familiar with event handlers. HTML elements have certain “on” events

associated with them that you can assign JavaScript functions to. For example,

the following code uses several “on” events to respond to both browser and

user events:

<body onload=”init()”></body>
<input type=”submit” onclick=”submitForm()”></input>

Or, in a normal Web page, you could also use a callback function, such as:

document.getElementById(“btnSubmit”).onclick = submitNow;

Using this, you tell the submitNow() function to execute when the btnSubmit

object is clicked.

95 Chapter 6: Anyone Listening? Working with Events

Perhaps most significant, however, the W3C DOM Level 2 event model

introduced the concept of “event listeners” with the addEventListener()

method. Event listeners are arguably the best way to attach an event with its

handler. Not only can you define a listener all inside of your script, but you

can also attach multiple event handlers to the same event.

Here’s an example of adding the init() function as a listener to the load

event of the window object:

window.addEventListener(“load”, init);

Notice that the function does not have parentheses included when you assign

it as a handler.

You can continue to associate events to handlers in any of these three fashions

for standard DOM object events in HTML applications.

Registering events in the AIR event model
The Adobe AIR event model is based on the W3C DOM Level 3 events

specification. As a result, to “register” an event listener to the event of an

AIR object, you need to call the associated object’s addEventListener()

method. This method says, in effect: “Hey, Mr. Object, when event X occurs,

you need to execute function Y.” The basic structure looks like this:

eventTarget.addEventListener([air.]EventClass.EVENT_NAME,
eventHandler);

For example, suppose you want to execute a function after an AIR File

object (with the instance name fs) has opened a local file for reading and

writing. The associated AIR event is [air.]Event.COMPLETE. Here is the

code:

fs.addEventListener(air.Event.COMPLETE, onFileRead);

Working with Event Objects
When the event occurs and triggers the event handler, it dispatches an event

object to the handler. This object is an instance of the Event class or one of

its many subclasses, such as HTTPStatusEvent or IOErrorEvent. You will

often use this object instance to help you process the event successfully.

96 Part II: AIR Application Design

For example, an HTTPService object dispatches a FaultEvent in case

something goes awry during an HTTP request. The FaultEvent instance

is passed to its handler as a parameter. The handler can then use the event

object as needed. In the case of an error handler like this, you can display the

message property of the event object (see the bolded call that follows) to let

the user know what went wrong. Here’s the JavaScript code:

httpService.addEventListener(air.FaultEvent.FAULT,
onFetchError);

function onFetchError(event)
{
 alert(“The following error occurred when fetching the

RSS feed: “ + event.message);
}

Here’s a second example of using the event object (see bolded code) to

display details of an error that occurs during a SQL database operation. In

ActionScript:

private function onDatabaseError(event:SQLErrorEvent) :
void

{
 Alert.show(event.error.message + “ Details: “ + event.

error.details);
}

But event objects are far more useful than just providing error details.

Consider the handler of a drag drop event. In the following code, the handler

uses the event.clipboard.hasFormat() and event.clipboard.get-
Data () methods of the NativeDragEvent object (see bolded code) to cap-

ture the data being dropped onto the application:

public function onDragDrop(event:NativeDragEvent) : void
 {
 if (event.clipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)) {
 var s:String = (event.clipboard.getData(ClipboardFormats.TEXT_FORMAT,

ClipboardTransferMode.ORIGINAL_PREFERRED) as String);
 processDroppedText(s);
 }
 }

When you register an event to be captured, you identify it by its event class

and its type property (which is expressed as a constant value). For example,

the NativeDragEvent class has several specific events that you can capture:

NativeDragEvent.NATIVE_DRAG_COMPLETE
NativeDragEvent.NATIVE_DRAG_DROP
NativeDragEvent.NATIVE_DRAG_ENTER

97 Chapter 6: Anyone Listening? Working with Events

NativeDragEvent.NATIVE_DRAG_EXIT
NativeDragEvent.NATIVE_DRAG_OVER
NativeDragEvent.NATIVE_DRAG_START
NativeDragEvent.NATIVE_DRAG_UPDATE

Therefore, if you wanted to assign a listener to the NativeDragEvent.
NATIVE_DRAG_ENTER and NativeDragEvent.NATIVE_DRAG_DROP events,

your code would look like this:

addEventListener(NativeDragEvent.NATIVE_DRAG_ENTER,
onDragIn);

addEventListener(NativeDragEvent.NATIVE_DRAG_DROP,
onDragDrop);

For the onDragIn() and onDragDrop() functions, the NativeDragEvent

is passed as a parameter. So, in ActionScript, the empty functions are shown

as follows:

private function onDragIn(event:NativeDragEvent): void
{
}

private function onDragOut(event:NativeDragEvent): void
{
}

Event is the base class of all AIR event objects. However, most AIR objects

that you work with will have events that are subclasses of the base Event.

There are far too many to simply list here, so you’ll want to check the event

type for each event you want to listen to in your application.

Overriding Default Behaviors
In addition to the handlers that you explicitly define in your source code, you

should also be aware of default behaviors, or behaviors that automatically are

performed when an event is triggered. You can prevent most default behaviors

from occurring by adding preventDefault() in an error handler. For example,

the cut, copy, and paste commands automatically send data to or receive it from

the Clipboard in edit boxes of an AIR application (such as a textarea). To

prevent this default behavior, you need to define a handler and then add

preventDefault(). The handler code might look something like this in

JavaScript:

98 Part II: AIR Application Design

function onCopy(event)
{
 var sel = window.getSelection();
 event.clipbardData.setData(selection + “ (Text portions

copyright © 2009, WackyTacky, Inc. So there.)”
);

 event.preventDefault();
}

In this sample code, the default onCopy event is intercepted so that a

copyright notice can be appended to the end of the text selection.

If you want to test to see whether you can cancel an event using prevent
Default(), you can check its cancelable property. For example:

if (event.cancelable)
{
 event.preventDefault();
}
else
{
 cry();
}

Understanding the Flow of Events
When a nonvisual AIR object, such as HTTPRequest or File, is the target

of an event, AIR dispatches the event object directly to it. If there is a default

behavior, that behavior executes. Or, if an event listener is attached, that

routine is called.

However, when there is a visual object that is in the Flash/Flex display list

(the list of visible UI objects) or in the HTML DOM, the flow of events is

trickier. The reason is that some events can be associated with more than

one element on-screen. For example, if a user clicks a textarea, the click

event could potentially be associated with the textarea, its div container,

or maybe even the document itself. Suppose you have click event handlers

defined for each of these DOM objects. Which handler is triggered first?

Given this reality, you should have an understanding of the event flow of an

AIR app to help you anticipate how your AIR application will respond. The

following sections show you the event flow in the Flex/Flash display list as

well as the HTML DOM.

99 Chapter 6: Anyone Listening? Working with Events

In a Flex/Flash application, for example, the stage object is at the top of the

display list. The rest of the display objects are then structured in a hierarchy

node list beneath the stage object. When AIR dispatches an event object for

a display list event, the event object travels through the display list in three

distinct phases, as follows:

 ✓ Capture phase: During the capture phase, the event object travels from

the stage object down the node list to the target object.

 ✓ Target phase: During the target phase, the event object is at the target

object.

 ✓ Bubbling phase: In the bubbling phase, the event object travels back up

through the hierarchy all the way back to the stage.

 The practical implication of this event flow is that you can add event listeners to

any object within the display list hierarchy rather than just to a single target.

 By default, events are ignored during the capture phase and captured first at

the target phase followed by the bubbling phase. That’s the normal event flow

and will work for you under most situations.

 However, if you’d prefer to capture during the capture phase, you need to

add a new parameter to addEventListener() that I have not mentioned

yet. Specifically, you need to include the optional useCapture parameter to

addEventListener() and set it to true:

var useCapture = true;
eventTarget.addEventListener([air.]EventClass.EVENT_NAME,

eventHandler, useCapture);

When useCapture is true, the listener processes the events during the

capture phase and the events in the target and bubbling phase are ignored.

If you wanted to listen for an event in all three phases, you would actually

need to call addEventListener() two times, toggling the value of the

useCapture parameter.

Figure 6-1 shows the display list of a Flex application.

Now suppose the following handlers are defined:

stage.addEventListener(MouseEvent.CLICK,
stageClickHandler);

text1.addEventListener(MouseEvent.CLICK,
textClickHandler;

100 Part II: AIR Application Design

Figure 6-1:
Event flow

of an AIR
application.

When the user clicks the mx:Text element, AIR runtime sends the event

object to the stage. However, since useCapture=false, its listener is not

dispatched during the capture phase. Instead, the event object continues

down the hierarchy to the mx:HDividedBox, to the mx:Box, and finally

to the target mx:Text. Once here, its event listener is triggered, calling

textClickHandler(). The event object then bubbles back up through

the display list hierarchy. When it reaches the stage this time around, the

stageClickHandler() is called.

Chapter 7

Windows: Creating Native
Application Shells

In This Chapter
▶ Understanding the kinds of AIR windows

▶ Creating the initial window of an application

▶ Setting the style of a window

▶ Creating a window programmatically

▶ Creating nonrectangular windows

One of the ways in which college students or young adults know that

they’re on their own and away from the apron strings of their parents

is when they get their own digs — their own place to live in and call home.

Likewise, the primary way in which an AIR-based rich Internet application is

distinct from a browser-based app is that it has its own on-screen home — a

window independent from the browser in which it can do its own thing.

In this chapter, I show you how to create and work with windows as you

develop your Adobe AIR applications. You discover how to “style” them like

other native windows. Heck, I even show you how to create nonrectangular

windows.

Although it may be more work to deal with native windows than with a

normal Web application, you’ll find your efforts paying off in terms of the

power and control doing so brings you.

Exploring AIR Windows
There are three different categories of native windows that can be part of an

AIR application. In most cases, the type that you use will often depend on the

development tool you’re working with to create your app. The three categories

of windows are as follows:

102 Part II: AIR Application Design

 ✓ HTML window: An HTML window contains a normal HTML document,

which displays content using a mixture of HTML, CSS, and JavaScript. It

is created from the air.HTMLLoader object.

 HTML windows are a special type of NativeWindow window (see the

next bullet). You can access the NativeWindow instance of an HTML

window through its nativeWindow property.

 HTML developers will primarily work with HTML windows, although

Flex and Flash developers can create HTML windows as well.

 ✓ ActionScript NativeWindow: A NativeWindow window contains Flash or

Flex content and is created programmatically using the NativeWindow

class.

 Flash developers will typically work with ActionScript windows

using the Flash stage and display list, although they can be created

programmatically by Flash, Flex, and HTML developers.

 ✓ Flex mx:Window: When working with Flex Builder, you create windows

typically composed of MXML components that you add inside Flex

Builder or through ActionScript code. These windows are contained by

mx:WindowedApplication or mx:Window elements.

 As you would expect, the Flex windows are available only for Flex

developers.

Creating the Initial Window
The main window of an application is created by AIR runtime based on the

property settings inside of the initialWindow element of the application

descriptor file (typically application.xml).

 Because you can specify the visibility of the initial window, the main window

can serve as your main application window, or it can remain hidden and be

used to open other windows.

There are several required and optional properties that are defined as child

elements inside of initialWindow. These are listed in Table 7-1.

Table 7-1 Initial Window Properties
Property Values Description Required

content Filename HTML or SWF filename
containing the main
content of the app. URL
is relative to the root
application folder.

Yes

103 Chapter 7: Windows: Creating Native Application Shells

Property Values Description Required

title Apptitle Title of the main application
window. (Note: A title
defined in the content file
will override this setting.)

No

systemChrome standard,
none

Indicates whether to use
the chrome of the native
OS. (See the “Setting the
Window Style” section
below.)

No

transparent true,
false
(default)

Indicates whether the
main window supports
alpha blending. When set
to true, then system
Chrome must be none.
(See the “Setting the
Window Style” section.)

No

visible true,
false
(default)

Specifies whether to make
the main window visible
when it loads.

However, in Flex-based
apps, this property is
ignored. Instead, Flex
apps use the visible
property in mx:Win
dowedApplication
instead.

No

minimizable true
(default),
false

Determines whether the
window can be minimized.

No

maximizable true
(default),
false

Determines whether the
window can be maximized.
(On Mac OS X, both
maximizable and
resizable must be
set to false to prevent
resizing.)

No

resizable true
(default),
false

Determines whether the
window can be resized.
(On Mac OS X, both
maximizable and
resizable must be
set to false to prevent
resizing.)

No

(continued)

104 Part II: AIR Application Design

Table 7-1 (continued)
Property Values Description Required

width Integer Specifies initial width
(in pixels) of the main
window.

No. If not
specified,
then size
and posi-
tioning
are deter-
mined by
the OS
(for HTML
files) or
the root
file (SWF
files).

height Integer Specifies initial height
(in pixels) of the main
window.

x Integer Specifies initial x position
of the main window.

y Integer Specifies initial y position
of the main window.

minSize width height
(in pixels)

Indicates the minimum
size of the window.

No

maxSize width height
(in pixels)

Indicates the maximum
size of the window.

No

Here’s an example of the initialWindow section of the application

descriptor file, using all the available properties:

<initialWindow>
 <content>index.html</content>
 <title>My Application</title>
 <systemChrome>standard</systemChrome>
 <transparent>false</transparent>
 <visible>true</visible>
 <minimizable>true</minimizable>
 <maximizable>true</maximizable>
 <resizable>true</resizable>
 <width>600</width>
 <height>400</height>
 <x>10</x>
 <y>10</y>
 <minSize>200 200</minSize>
 <maxSize>900 900</maxSize>
</initialWindow>

You can also set some of the properties of the initial window in your code when

the application loads. If your changes would be noticeable on-screen, you want

to set the visible property to false (<visible>false</visible>). Setting

this property to false enables the processing to occur without noticeable

redraws on-screen when the window’s position, size, or layout is changing. Then,

after your changes are made, you can activate the window to make it visible.

105 Chapter 7: Windows: Creating Native Application Shells

 However, if you’re using Flex Builder to create your app, forget the visible

property in the application descriptor file. It is ignored. Instead, set the

visibility through the visible property of the mx:WindowedApplication

element.

In HTML, you add the code in the window’s load handler:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0
Transitional//EN” “http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html;

charset=utf-8” />
<title>Test</title>
<script type=”text/javascript” language=”JavaScript”

src=”assets/AIRAliases.js”></script>
<script type=”text/javascript” language=”JavaScript”

src=”assets/util.js”></script>
<script type=»text/javascript» language=»JavaScript»>

 window.addEventListener(‘load’, initialize, false);

 function initialize() {
 window.nativeWindow.y = 10;
 window.nativeWindow.x = 10;
 window.nativeWindow.activate();
 }

</script>
</head>

<body>
<div id=”canvas”>
<h1>Welcome to Adobe AIR.</h1>
<p>Don’t go messin’ with my Adobe AIR.</p>
<input id=”btnLaunch” type=”submit” value=”Launch” />
</div>
</body>
</html>
For a Flex mx:WindowedApplication, assign a handler to its

windowComplete event:
<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.

adobe.com/2006/mxml” layout=”absolute”
title=”AIRBaby!” width=”429” height=”209”
windowComplete=”initWindow()” visible=”false”>

<mx:Style source=”default.css”/>

<mx:Script>
 <![CDATA[

106 Part II: AIR Application Design

 private function initWindow():void {
 stage.nativeWindow.maximize();
 stage.nativeWindow.visible = true;
 }

]]>
</mx:Script>

 <mx:Label text=”Super!” x=”17” y=”19”/>

</mx:WindowedApplication>

In this example, the window instance is referenced using stage.
nativeWindow. The maximize() method is then called to maximize the

window. Finally, the stage.nativeWindow.visible property is set to

true.

Setting the Window Style
The initial window and additional windows you create on your own have

several style options that you can specify at the time you create the window.

After the window is created, you can’t change its properties. You can define a

window style by its system chrome, transparency, and type.

System chrome
Normal windows that you work with have chrome around them. Chrome is a

techie term that refers to the UI controls of the operating system that are

outside the content area of a window. So, just as a car might have shiny

chrome trimming, a bumper, and a grill that cover the vehicle, so the chrome

of an OS window surrounds and complements the window itself. Examples of

chrome include the title bar, the Minimize/Maximize/Restore buttons, menu

bars, and toolbars.

 AIR does not support the following chrome UI elements: Windows title bar

icon, Mac OS X proxy icon (icon on the toolbar), Mac OS X toolbars, and

alternate or nonstandard system chrome.

You can set the chrome of an application by setting the systemChrome

property of the NativeWindowInitOptions object and, for initial windows,

the systemChrome element of the application descriptor file. I discuss

the NativeWindowInitOptions object more in the “Creating a Window

Programmatically” section, later in this chapter, but for now, I show you how

to assign the systemChrome value from code. In HTML, you write:

107 Chapter 7: Windows: Creating Native Application Shells

var options = new air.NativeWindowInitOptions();
options.systemChrome = “standard”;

Or, using Flex/Flash:

var options:NativeWindowInitOptions = new
NativeWindowInitOptions();

options.systemChrome = NativeWindowSystemChrome.STANDARD;

There are three types of chrome:

 ✓ Standard OS chrome: When you assign standard (HTML) or

NativeWindowSystemChrome.STANDARD (Flex/Flash) to the system
Chrome property, the window uses the system chrome of the native OS.

Figures 7-1 and 7-2 show the standard chrome surrounding the same

AIR window running under Windows and Mac. Notice that the chrome

changes based on OS, but the content inside the window remains the

same.

Figure 7-1:
Standard

chrome
(Windows).

Figure 7-2:
Standard

chrome
(Mac).

 ✓ Custom chrome: By assigning none (HTML) and NativeWindow
SystemChrome.NONE (Flex/Flash) to the systemChrome property, you

disable the standard chrome of the OS. When you use none with HTML

or NativeWindow windows, you need to handle user interactions with

the window, such as window movement.

108 Part II: AIR Application Design

 When you’re working with transparent or nonrectangular windows, you

need to use none.

 ✓ Flex chrome: When you assign systemChrome = NativeWindow
SystemChrome.NONE for a Flex mx:Window or mx:Windowed
Application window, Flex adds its own custom titlebar, Minimize/

Maximize/Restore buttons, status bar, and resize gripper. Figure 7-3

shows the customized Flex chrome running on Windows.

Figure 7-3:
Flex style

chrome
(Windows).

 You can get rid of the Flex chrome by setting the window’s showFlex
Chrome property to false. (You can see an example of this in the

“Creating a Window Programmatically” section, later in the chapter.) Or

if you want to hide a single chrome element, you can do that by setting

the showTitleBar, showGripper, or showStatusBar property to

false.

 Although the Flex chrome appears to surround the window content

replacing the native OS chrome, the custom chrome is actually drawn

by Flex inside the window boundaries and is automatically programmed

to handle user interactions. However, when sizing your window, you’ll

need to account for the extra height that the custom chrome takes up.

 Flex chrome is available only for AIR applications written in Flex Builder

that use mx:Window or mx:WindowedApplication windows. If you

create a Flash or HTML-based app and want your own custom chrome,

you need to create it yourself.

Transparency
Adobe AIR supports alpha blending, which is the process of combining a window

with the desktop or other windows to create partial or full transparency.

The AIR window and each UI object contained by the window has an assignable

alpha value from 0 to 1.0 that determines the level of transparency: 1.0 means

fully opaque, and 0 means fully transparent (elements default to 1.0). Therefore,

when a window is set to transparent, its background is partially or fully hidden

(depending on its alpha value), and any window area that does not contain a UI

element is not visible.

109 Chapter 7: Windows: Creating Native Application Shells

To enable this functionality, you need to do the following:

 ✓ Set the transparent property to true at the time the window is created.

 ✓ Because a transparent window can’t have system chrome, set the

systemChrome property to false.

 ✓ Because HTML apps display windows with an opaque background even

when you set transparent property to true, you also need to set the

air.HTMLLoader.paintDefaultBackground property to false.

 ✓ Optionally assign an alpha value to the window.

 You can do this in HTML through the alpha property for a window

you create with air.HTMLLoader.createRootWindow(). Flex also

enables you to specify an alpha value through the Property Inspector

when you’re designing an mx:WindowedApplication or mx:Window.

The following HTML code shows you how to create a transparent window:

var options = new air.NativeWindowInitOptions();

options.systemChrome = “none”;

options.transparent = “true”;

var windowBounds = new air.Rectangle(200,250,300,400);

htmlLoader = air.HTMLLoader.createRootWindow(true,
options, true, windowBounds);

htmlLoader.paintsDefaultBackground = false;

htmlLoader.load(new air.URLRequest(“win2.html”));

I cover the createRootWindow method in the upcoming section “Creating

a Window Programatically,” so don’t concern yourself with the particulars of

window creation for now. Instead, notice how the three bolded property assign-

ments in the preceding code are used to create a transparent HTML window.

For Flex/Flash, use the following code to set up the initialization options for a

window you will be creating:

var options:NativeWindowInitOptions = new
NativeWindowInitOptions();

options.systemChrome = NativeWindowSystemChrome.NONE;
options.transparent = true;

Figure 7-4 displays a transparent window with Flex chrome. As you can see,

the desktop wallpaper partially shows through the semitransparent window

(set at 0.5). Figure 7-5 shows a fully transparent window, with just its controls

showing up.

110 Part II: AIR Application Design

Figure 7-4:
Transparent

window
with Flex

style
chrome

(Mac).

Figure 7-5:
Chromeless,
transparent

window
with desk-

top showing
through

(Mac).

Window type
You can use the type property of an AIR window as a shortcut to define both

the chrome and visibility attributes of a window you create programmatically.

There are three types of AIR windows that you can define using the type

property:

 ✓ Normal is a standard OS window. The initial window of an AIR application

is always defined as a normal window. See Figures 7-1 and 7-2.

 ✓ Utility is a palette style window. See Figures 7-6 and 7-7.

 ✓ Lightweight is designed for notification type windows.

Figure 7-6:
 Utility

window
(Windows).

111 Chapter 7: Windows: Creating Native Application Shells

Figure 7-7:
Utility

window
(Mac).

 The type property is not available for the initial window of an application.

Table 7-2 shows the support of OS chrome and other UI features based on the

window type.

Table 7-2 AIR Window Types
Type Descrip-

tion
Chrome Win-

dows
Task
Bar

Win-
dows
System
Menu

Mac
OS X
Win-
dow
Menu

Initial
win-
dow

system
Chrome
value

Normal Normal
window

Full Yes Yes Yes Yes standard

Utility Palette
window

Slim No Yes No No standard

light
weight

“Light-
weight”
notifica-
tionstyle
widows

None No No No No none

To create a utility window in HTML, you use the following windows initializa-

tion options:

var options = new air.NativeWindowInitOptions();

options.systemChrome = “standard”;

options.transparent = false;

options.type = “utility”;

Or, to set the initialization settings for a lightweight window in Flex/Flash:

112 Part II: AIR Application Design

var options:NativeWindowInitOptions = new
NativeWindowInitOptions();

options.systemChrome = NativeWindowSystemChrome.NONE;
options.transparent = false;
options.type = NativeWindowType.LIGHTWEIGHT;

Table 7-3 shows all the window initialization properties that you can work

with.

Table 7-3 Window Initialization Properties
Property Values Default value Valid for initial

window

systemChrome standard,
none

standard Yes

Type normal,
utility,
lightweight

normal No (initial window
is always normal)

Transparent true, false false Yes

Maximizable true, false true

Minimizable true, false true

Resizable true, false true

Creating a Window Programmatically
Although the initial window is created automatically by AIR on app launch,

additional windows must be explicitly created programmatically. The follow-

ing sections show you how to create HTML windows, mx:Windows (Flex),

and NativeWindows (Flash, Flex, or HTML).

Creating an HTML window
In a typical HTML-based AIR application, when you’re working with addi-

tional windows, you want to display sandboxed HTML content inside the new

window. To do so, you want to do four tasks:

 ✓ Set the basic window style properties through air.
NativeWindowInitOptions().

 ✓ Set the dimensions and position of the window using an air.
Rectangle() instance.

113 Chapter 7: Windows: Creating Native Application Shells

 ✓ Create the window using the air.HTMLLoader.createRootWindow()

method, passing along the info specified by the first two tasks.

 ✓ Load the HTML page using the window’s load() method.

Using this four-step process, here’s how you can create a utility window to

display an HTML named win2.html:

function launch(){

 var options = new air.NativeWindowInitOptions();
 options.systemChrome = “standard”;
 options.transparent = false;
 options.type = “utility”;

 var windowBounds = new air.Rectangle(100,100,300,200);

 newWindow = air.HTMLLoader.createRootWindow(true,

options, true, windowBounds);
 newWindow.load(new air.URLRequest(“../win2.html”));
 }

Figure 7-8 shows the window that is created.

Figure 7-8:
Utility win-

dow shown
on a Mac.

The following code is used to create a chrome-less, transparent window with

an alpha value of 0.7. Note the property assignments in bold:

function launch(){

 var options = new air.NativeWindowInitOptions();
 options.systemChrome = “none”;
 options.transparent = true;

 var windowBounds = new air.Rectangle(100,100,300,200);

 newWindow = air.HTMLLoader.createRootWindow(true,

options, true, windowBounds);
 newWindow.alpha = 0.7;
 newWindow.paintsDefaultBackground = false;

 newWindow.load(new air.URLRequest(“../win2.html”));
 }

114 Part II: AIR Application Design

 The windows that you create with createRootWindow() are independent of

the opening window.

Figure 7-9 displays the same win2.html content, but in a different style of

window container.

Figure 7-9:
Transparent

window
with

desktop
windows
showing
through.

If you’re trying to display nonsandboxed content in a window you’re creating,

use the JavaScript window.open() method. For example, the following code

creates a new window:

newWindow = window.open(‘http://www.dummies.com/air/
 getsupport.php’, ‘Get Application Support’,
 ‘width=400,height=303’);

Note that this nonsandboxed window would not have access to the AIR API.

Creating a Flex mx:Window
When working with Flex Builder, you typically create your application

windows as separate MXML files, each of which uses mx:Window as the root

tag of the document.

Listing 7-1 lists the contents of the MXML file for this example.

Listing 7-1: SecondWindow.mxml

<?xml version=”1.0” encoding=”utf-8”?>

<mx:Window xmlns:mx=”http://www.adobe.com/2006/mxml”
layout=”absolute” width=”300” height=”200”
styleName=”sanschrome”>

<mx:Style>
.sanschrome { showFlexChrome: false; background-color:””;}

115 Chapter 7: Windows: Creating Native Application Shells

</mx:Style>

<mx:Script>
 <![CDATA[
 private function closeWindow():void {
 this.close();
 }

]]>
</mx:Script>

 <mx:Button x=”217” y=”151” label=”Close”
click=”closeWindow()”/>

 <mx:Text x=”39” y=”49” text=”This is an extraordinary
second window” color=”#000000”/>

</mx:Window>

Note that the mx:Window element is assigned the sanschrome CSS style.

This style hides the default Flex chrome and any background color.

When you want to open a chrome-less, transparent instance of this window

in your app, you simply call the following routine:

public function openWindow():void {
 secWindow = new SecondWindow();
 secWindow.systemChrome = NativeWindowSystemChrome.NONE;
 secWindow.transparent = true;
 secWindow.open();
}

In this example, I create an instance of the mx:Window contained in

SecondWindow.mxml called secWindow. SecondWindow() is the name of

the subclass of the Window class. Its name is taken from the MXML filename.

After you set the basic property settings of the window, you use open() to

display it.

Creating an ActionScript NativeWindow
The third kind of window you can create is a NativeWindow through

ActionScript. When creating an HTML or mx:Window window, you typically

already have content defined by the HTML or MXML file that you reference.

However, a NativeWindow does not have an associated content file, mean-

ing that you need to programmatically add the content yourself at the time

the window is created.

116 Part II: AIR Application Design

The following example creates a NativeWindow window:

 public function createWindow():void {

 // Set init options
 var options:NativeWindowInitOptions = new

NativeWindowInitOptions();
 options.systemChrome = NativeWindowSystemChrome.

STANDARD;
 options.transparent = false;
 options.type = NativeWindowType.NORMAL;

 // Create new NativeWindow
 var newWindow:NativeWindow = new

NativeWindow(options);
 newWindow.title = “You’ve Gone Native”;
 newWindow.width = 500;
 newWindow.height = 400;

 // Create HTML container
 var htmlViewer:HTMLLoader = new HTMLLoader();
 htmlViewer.width = 490;
 htmlViewer.height = 390;

 // Add to stage
 newWindow.stage.align = StageAlign.TOP_LEFT;
 newWindow.stage.scaleMode = StageScaleMode.NO_SCALE;
 newWindow.stage.addChild(htmlViewer);

 // Load URL
 htmlViewer.load(new URLRequest(“http://www.dummies.

com”));

 // Make visible
 newWindow.activate();
}

The ActionScript routine begins by setting the initialization options. It then

creates a NativeWindow instance called newWindow and assigns basic size

properties. An HTML viewer is created to be displayed as content inside the

window, which is added to the newWindow stage through the addChild()

method. The window is activated and made visible through the activate()

method.

Listing 7-2 lists the source code for FlexAir.mxml. (See Figure 7-1 for a view

of the window during runtime.) It’s an example of creating a window based

on the input of the user.

117 Chapter 7: Windows: Creating Native Application Shells

Listing 7-2: FlexAir.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.

adobe.com/2006/mxml” layout=”absolute”
title=”Flexible AIR” width=”429” height=”209”>

<mx:Style source=”default.css”/>

<mx:Script>
<![CDATA[
 import mx.controls.Label;
 import mx.controls.Text;
 import mx.collections.ArrayCollection;
 import mx.controls.HTML;

 private var secWindow:SecondWindow;

 [Bindable]
 public var chromeOptions:ArrayCollection = new

ArrayCollection(
 [{label:»standard», data:NativeWindowSystemChrome.

STANDARD},
 {label:»none», data:NativeWindowSystemChrome.NONE}
]);

 [Bindable]
 public var transparentOptions:ArrayCollection = new

ArrayCollection(
 [{label:»false», data:false},
 {label:»true», data:true}
]);

 [Bindable]
 public var typeOptions:ArrayCollection = new

ArrayCollection(
 [{label:»any», data:null},
 {label:»normal», data:NativeWindowType.NORMAL},
 {label:»utility», data:NativeWindowType.UTILITY},
 {label:»lightweight», data:NativeWindowType.

LIGHTWEIGHT}
]);

 [Bindable]
 public var flexOptions:ArrayCollection = new

ArrayCollection(
 [{label:»Flex», data:true},
 {label:»NativeWindow», data:false}
]);

(continued)

118 Part II: AIR Application Design

Listing 7-2 (continued)

 public function createWindow():void {

 // Set init options
 var options:NativeWindowInitOptions = new

NativeWindowInitOptions();
 options.systemChrome = cbSystemChrome.selectedItem.

data;
 options.transparent = cbTransparent.selectedItem.data;
 if (cbType.selectedItem.data != null)
 options.type = cbType.selectedItem.data;

 // Create new NativeWindow
 var newWindow:NativeWindow = new

NativeWindow(options);
 newWindow.title = «You’ve Gone Native»;
 newWindow.width = 500;
 newWindow.height = 400;

 // Create HTML container
 var htmlViewer:HTMLLoader = new HTMLLoader();
 htmlViewer.width = 490;
 htmlViewer.height = 390;

 // Add to stage
 newWindow.stage.align = StageAlign.TOP_LEFT;
 newWindow.stage.scaleMode = StageScaleMode.NO_SCALE;
 newWindow.stage.addChild(htmlViewer);

 // Load URL
 htmlViewer.load(new URLRequest(«http://www.dummies.

com»));

 // Make visible
 newWindow.activate();
}

 public function launchWindow():void {

 // Flex style window or native?
 if (!cbFlexStyle.selectedItem.data) {
 createWindow();
 }
 else {
 // Create window and assign title
 secWindow = new SecondWindow();
 // Assign chrome value
 secWindow.systemChrome = cbSystemChrome.

selectedItem.data;
 // Assign transparent

119 Chapter 7: Windows: Creating Native Application Shells

 secWindow.transparent = cbTransparent.selectedItem.
data;

 // Assign window type
 if (cbType.selectedItem.data != null)
 secWindow.type = cbType.selectedItem.data;
 // Open window

 if ((secWindow.systemChrome ==

NativeWindowSystemChrome.NONE) &&
 (secWindow.transparent == true)) {
 secWindow.title = «You’re Flexible»;
 }
 else {
 secWindow.title = «You’ve Been Chromed»;
 }

 secWindow.open();
 }
 }

]]>
</mx:Script>

<mx:Label text=»Create an AIR window automagically!»
x=»17» y=»19»/>

<mx:Button x=»289.75» y=»140» label=»Launch Window»
click=»launchWindow()»/>

<mx:ComboBox x=»127.75» y=»49» id=»cbSystemChrome»
dataProvider=»{chromeOptions}» width=»100»/>

<mx:ComboBox x=»127.75» y=»79» id=»cbTransparent» dataProv
ider=»{transparentOptions}» width=»100»/>

<mx:ComboBox x=»127.75» y=»110» id=»cbType»
dataProvider=»{typeOptions}» width=»100»/>

<mx:ComboBox x=»127.75» y=»140» id=»cbFlexStyle»
dataProvider=»{flexOptions}» width=»100»/>

<mx:Label x=»25.75» y=»51» text=»systemChrome:»/>
<mx:Label x=”25.75” y=”81” text=”transparent:”/>
<mx:Label x=»25.75» y=»112» text=»type:»/>
<mx:Text x=»25.75» y=»142» text=»Style:» width=»74»/>

</mx:WindowedApplication>

In this example, the user specifies the window properties through the

mx:ComboBox controls and then clicks the Launch Window button. The

Launch Window button calls the launchWindow() function, which first

determines whether the type of window should be NativeWindow or Flex.

If NativeWindow, then the createWindow() function is called. Otherwise,

the launchWindow() creates an instance of the SecondWindow window

(SecondWindow.mxml).

120 Part II: AIR Application Design

Creating Nonrectangular Windows
Taking advantage of windows transparency, you can create nonrectangular

windows for your AIR apps. Although you can use ActionScript advanced

drawing techniques to draw nonrectangular shapes, the most straightforward

way to achieve a common nonrectangular window is to combine transparency

with an image background.

 Because nonrectangular windows have no chrome, you need to code basic

window functionality, such as Move, Close, and Minimize.

Nonrectangular windows in HTML
To create a nonrectangular window in an HTML application, begin by defin-

ing a basic HTML file that includes a div element to contain any content.

Also included here is the reference to include the AIRAliases.js file:

<html>
<head>
<title>CirculAIR</title>
<script type=”text/javascript” src=”AIRAliases.js”></

script>
</head>
<body>
<div id=”canvas”>
</div>
</body>
</html>

Next, assign a background image to the body. The following example uses a

circular image named badge.png. The example also adds a basic style for

the canvas div:

<style media=”all”>
 body { background:url(‘badge.png’) no-repeat 0 0; }
 #canvas { text-align: center; }
</style>

You can add any content to the HTML file. In this example, some basic text

and two images are added, which are being used for Minimize and Close but-

tons inside the div container:

<img id=”btnMinimize” src=”minimize.png”
onclick=”minimizeWindow()”/>

<img id=”btnClose” src=”close.png”
onclick=”closeWindow()”/>

<p class=”circleCaption”>This may be a lame app, but what
do you expect?

It’s a circle!</p>

121 Chapter 7: Windows: Creating Native Application Shells

As you can see, this code assigns onclick event handlers to the two image

buttons. The minimizeWindow() and closeWindow() functions are

defined shortly.

Add styles as needed for the page elements. Here’s the code:

 #btnMinimize {
 position: absolute;
 top: 55px;
 left: 220px;
 }

 #btnClose {
 position: absolute;
 top: 55px;
 left: 235px;
 }

 .circleCaption {
 margin: 150px 50px 30px 50px;
 color: #ffffff;
 font-family: ‘Lucida Grande’, Verdana, Geneva, Sans-

Serif;
 font-size: 17px;
 }

To give basic functionality to the app, you define handlers for the two image

buttons:

 function closeWindow() {
 air.NativeApplication.nativeApplication.exit();
 }

 function minimizeWindow() {
 window.nativeWindow.minimize();
 }

Because the window has no chrome, you need to add window move function-

ality. (If you don’t, the user won’t be able to move the AIR app around the

screen.) The handiest way is to trap for the onmousedown event, which you

can do when the page is loaded, like so:

 function initialize() {
 document.body.onmousedown = function(e){
 window.nativeWindow.startMove();
 };
 }

 window.addEventListener(‘load’, initialize, false);

Before building the app, you need to make sure that the application descriptor

file contains the appropriate settings for the initialWindow tag:

122 Part II: AIR Application Design

<initialWindow>
 <content>index.html</content>
 <systemChrome>none</systemChrome>
 <transparent>true</transparent>
</initialWindow>

Figure 7-10 displays the AIR app when it is run.

Figure 7-10:
Non-

rectangular
AIR app.

Listing 7-3 shows the HTML source file.

Listing 7-3: index.html

<html>
<head>
<title>CirculAIR</title>
<style media=”all”>

 body {
 background:url(‘badge.png’) no-repeat 0 0;

 }

 #canvas {
 text-align: center;
 }

 #btnMinimize {
 position: absolute;
 top: 55px;
 left: 220px;
 }

123 Chapter 7: Windows: Creating Native Application Shells

 #btnClose {
 position: absolute;
 left: 235px;
 }

 .circleCaption {
 margin: 150px 50px 30px 50px;
 color: #ffffff;
 font-family: ‘Lucida Grande’, Verdana, Geneva, Sans-

Serif;
 font-size: 17px;
 }

</style>
<script type=”text/javascript” src=”AIRAliases.js”></

script>
<script type=”text/javascript”>

 function initialize() {
 //window.nativeWindow.addEventListener(air.Event.

CLOSING, closeWindow);

 document.body.onmousedown = function(e){
 window.nativeWindow.startMove();
 };
 }

 function closeWindow() {
 air.NativeApplication.nativeApplication.exit();
 }

 function minimizeWindow() {
 window.nativeWindow.minimize();
 }

 window.addEventListener(‘load’, initialize, false);

</script>

</head>
<body>
<div id=”canvas”>
<img id=”btnMinimize” src=”minimize.png”

onclick=”minimizeWindow()”/>

(continued)

124 Part II: AIR Application Design

Listing 7-3 (continued)

<img id=”btnClose” src=”close.png”
onclick=”closeWindow()”/>

<p class=”circleCaption”>This may be a lame app, but what
do you expect?

It’s a circle!</p>

</div>
</body>
</html>

Nonrectangular windows in Flex
A background image can also be used with mx:WindowedApplication and

mx:Window elements in Flex Builder to create nonrectangular windows. The

first step is to create an mx:WindowedApplication and set its showFlex
Chrome property to false and be sure that no background is set:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.

com/2006/mxml” layout=”absolute” height=”378”
width=”356”

 styleName=”sansChrome”>
 <mx:Style>
 .sansChrome { showFlexChrome: false; background-

color:””;}
 </mx:Style>

</mx:WindowedApplication>

Next, you can use an mx:Image element to display the background image:

 <mx:Image id=”imgCircle” x=”0” y=”0” source=”badge.png”
width=”354” height=”376”/>

Now you add desired content to the mx:WindowedApplication. In this

example, I add basic text and two mx:Image elements for the Minimize and

Close buttons. (You can use mx:Button elements instead.) Here’s the code:

 <mx:Text id=”txtLabel” x=”81” y=”126” text=”This
may be a lame app, but what do you expect?
It’s a circle!” width=”192”
height=”131” color=”#FFFFFF” fontSize=”17”
textAlign=”center” enabled=”true”
selectable=”false” useHandCursor=”true”/>

 <mx:Image x=”211” y=”54” source=”minimize.png”
click=”minimizeWindow()” id=”ibtnMinimize”/>

 <mx:Image x=”226” y=”54” source=”close.png”
click=”closeWindow()” id=”ibtnClose”/>

125 Chapter 7: Windows: Creating Native Application Shells

As you can see, I add click event handlers to the images. You can define

these in an mx:Script, as follows:

 <mx:Script>
 <![CDATA[

 public function closeWindow():void {
 this.close();
 }

 private function minimizeWindow():void {

 stage.nativeWindow.minimize();
 }

]]>
 </mx:Script>

To add window movement functionality, mouse down events need to be cap-

tured for the image and text elements. These are defined in an initialization

routine to be triggered when the application is loaded adding application
Complete=”initWindow()” in the mx:WindowedApplication. Here’s the

attached function:

 private function initWindow():void {
 this.imgCircle.addEventListener(MouseEvent.
 MOUSE_DOWN, onMouseDown);
 this.txtLabel.addEventListener(MouseEvent.
 MOUSE_DOWN, onMouseDown);
 }

One final effect that you can add using ActionScript is a drop shadow for the

image (named imgCircle) using a DropShadowFilter. To do so, declare a

shadowFilter variable:

 public var shadowFilter:DropShadowFilter;

Then add the following to initWindow():

 shadowFilter = new DropShadowFilter();
 shadowFilter.color = 0x000000;
 shadowFilter.alpha = 0.5;
 shadowFilter.blurX = 5;
 shadowFilter.blurY = 5;
 shadowFilter.distance = 3;
 addShadow(this.imgCircle);

Finally, add the addShadow() function, which is referenced in the preceding

code. This adds the shadowFilter to the image:

126 Part II: AIR Application Design

 public function addShadow(comp:DisplayObject):void {
 comp.filters = [this.shadowFilter];
 }

Before building the app, you need to make sure the application descriptor file

contains the appropriate settings for the initialWindow tag:

<initialWindow>
 <content>index.html</content>
 <systemChrome>none</systemChrome>
 <transparent>true</transparent>
</initialWindow>

Figure 7-11 displays the running nonrectangular AIR app.

Figure 7-11:
Non-

rectangular
AIR app

written in
Flex Builder.

Listing 7-4 shows the main MXML source file for the application.

Listing 7-4: CirculAIR.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.

com/2006/mxml” layout=”absolute” height=”378”
width=”356”

 styleName=”sansChrome” applicationComplete=”initWindow()
”>

 <mx:Style>
 .sansChrome { showFlexChrome: false; background-

color:””;}
 </mx:Style>

127 Chapter 7: Windows: Creating Native Application Shells

 <mx:Script>
 <![CDATA[

 public var shadowFilter:DropShadowFilter;

 private function initWindow():void {
 this.imgCircle.addEventListener(MouseEvent.
 MOUSE_DOWN, onMouseDown);
 this.txtLabel.addEventListener(MouseEvent.
 MOUSE_DOWN, onMouseDown);

 shadowFilter = new DropShadowFilter();
 shadowFilter.color = 0x000000;
 shadowFilter.alpha = 0.5;
 shadowFilter.blurX = 5;
 shadowFilter.blurY = 5;
 shadowFilter.distance = 3;
 addShadow(this.imgCircle);

 }

 public function closeWindow():void {
 this.close();
 }

 private function onMouseDown(evt:MouseEvent):void {
 stage.nativeWindow.startMove();
 }

 private function minimizeWindow():void {
 stage.nativeWindow.minimize();
 }

 public function addShadow(comp:DisplayObject):void {
 comp.filters = [this.shadowFilter];
 }

]]>
 </mx:Script>

 <mx:Image id=”imgCircle” x=”0” y=”0” source=”badge.

png” width=”354” height=”376”
doubleClick=”closeWindow()”/>

(continued)

128 Part II: AIR Application Design

Listing 7-4 (continued)

 <mx:Text id=”txtLabel” x=”81” y=”126” text=”This
may be a lame app, but what do you expect?
It’s a circle!” width=”192”
height=”131” color=”#FFFFFF” fontSize=”17”
textAlign=”center” enabled=”true”
selectable=”false” useHandCursor=”true”/>

 <mx:Image x=”211” y=”54” source=”minimize.png”
click=”minimizeWindow()” id=”ibtnMinimize”/>

 <mx:Image x=”226” y=”54” source=”close.png”
click=”closeWindow()” id=”ibtnClose”/>

</mx:WindowedApplication>

Chapter 8

Working with Menus and
Tray and Dock Icons

In This Chapter
▶ Understanding the types of native menus

▶ Creating a menu

▶ Working with menu items

▶ Processing menu events

▶ Enabling your app for the Windows system tray and Mac OS X Dock

Mindlessly going along with the crowd may be a bad thing in the real

world, but I strongly recommend that you go along with the “in”

crowd when it comes to creating applications. The cool kids, in this case,

are apps that conform to the basic UI standards and core functionality of

the native OS. UI conventions help ensure that users instantly know how to

interact with your app, where to go to find it, and how to get it to perform an

action.

With that in mind, Adobe AIR enables developers to build apps that

conform to the user interface conventions and functionality of the native

OS. In addition to windows (discussed in Chapter 7), an AIR application also

interacts with other key parts of a native OS user interface, including the

menu system, taskbar (Windows), and Dock (Mac OS X). In this chapter, you

discover how to add these capabilities to your AIR app.

Exploring the Types of Native Menus
For Web applications, menus are typically used as a way to navigate to different

pages of the application. However, these menus are implemented inside a page

as an on-screen control — not that much different from a button or text field.

Native OS menus, however, are foreign territory for Web apps; these menus are

stuff the browser deals with. But Adobe AIR empowers you to use menus as a

primary way in which a user interacts with your native application.

130 Part II: AIR Application Design

There are several types of menus that you can implement, depending on the

needs of your app. Table 8-1 lists each of the menu types and indicates the

native OS for which they are applicable. Also note the Default column in the

table. Adobe AIR automatically adds a default application menu, as well as

some context (right-click) menus, to your app when running under Mac OS X.

Table 8-1 Menu Types
Menu Type Description Accessed By Windows Mac

OS
X

Default

Application
menu

Top menu of
app displayed
in Mac OS X
Menubar

Native
Application.
native
Application.
menu

No Yes Default
is
provided
under
Mac
OS X

Window
menu

Top menu of a
window
displayed
below its title
bar

NativeWindow.
menu

Yes No

Pop-up
menu (also
called a
context
menu)

Generic right-
click pop-up
menu that can
be displayed
anywhere in
an AIR window

Interactive
Object.
context
Menu

Yes Yes Default
is pro-
vided for
selected
text in a
TextField
object

HTML/SWF
context
menu

Right-click
menu dis-
played when
an HTML doc
or SWF file is
right-clicked

Interactive
Object.
context
Menu

Yes Yes Default
is pro-
vided for
selected
text/
images
in HTML

System
tray icon
menu

Menu
displayed
when the app’s
Windows
system tray
icon is clicked

Native
Application.
native
Application.
icon.menu

Yes No

131 Chapter 8: Working with Menus and Tray and Dock Icons

Menu Type Description Accessed By Windows Mac
OS
X

Default

Dock icon
menu

Menu
displayed
when the app’s
Mac OS X
Dock icon is
clicked

Native
Application.
native
Application.
icon.menu

No Yes Default
is pro-
vided
under
Mac
OS X

mx:Flex
Native
Menu

Flex-based
non-visual
component
that acts as a
wrapper for the
NativeMenu
class

Enables you
to work with
native menus
through a Flex
component

Instance of Flex
Native
Menu

Yes Yes

Creating a Menu
Adobe AIR menus are created using the NativeMenu and NativeMenuItem

classes. These menus and menu items that you create in code are distinct

and independent from the various application, window, and context menus

that appear on-screen. You can therefore designate a NativeMenu object to

serve as any of these types of menus.

Keep in mind the following basic rules of thumb to consider when you create

AIR menus:

 ✓ You have a hierarchy of menu objects. When you create a menu, you

are creating a hierarchy. A NativeMenu object, which is always at the

top level of the hierarchy, contains one or more NativeMenuItem

objects.

 ✓ NativeMenuItem objects are flexible. A NativeMenuItem can represent

one of three things: a command item, a separator, or a submenu.

132 Part II: AIR Application Design

 ✓ The root menu is boss. The NativeMenu instance you designate to

serve as the application and/or window menu is often called the root
menu or top-level menu. Its NativeMenuItem children are displayed

horizontally to form a Menu bar.

 ✓ Submenus are implemented through two objects. A submenu is just

another NativeMenu instance. However, it is always contained by a

NativeMenuItem and is never directly added to a NativeMenu. Given

those facts, you can think of a submenu as consisting of two components:

 • A NativeMenuItem instance that serves as the container of the

submenu and displays a menu label for the submenu.

 • The actual menu, a NativeMenu instance that is assigned to the

submenu property of a NativeMenuItem instance.

 Because a submenu is a NativeMenu instance contained by a

NativeMenuItem, be wise in your variable naming, or your code can

become confusing to read and work with. For example, if you assign

fileMenu as the NativeMenuItem instance that contains the File

submenu, you can be confused as to whether you’re working with the

container item or the actual submenu.

 ✓ Two names for right-click menus. Adobe AIR features both context
menus and pop-up menus. However, these two menus are essentially

the same thing — namely, a menu displayed in place when the mouse is

right-clicked. The only difference is in usage; context menus have menu

items specific to a particular on-screen object, whereas a pop-up menu

is more general purpose in nature.

 ✓ Root menus and context menus have structural differences. The menu

item children of a root menu should be submenus, not commands or

separators. However, context and pop-up menus often have commands

and separators in the highest level of their menu structure.

 ✓ Menus trigger two events. NativeMenu and NativeMenuItem objects

dispatch displaying and select events:

 • The displaying event is triggered just before the menu or menu

item is displayed.

 • The select event is triggered when a NativeMenuItem com-

mand item is selected by the user. (Separators and submenus

don’t trigger a select event.)

Creating a root menu
To create an application (Mac OS X) and window (Windows) menu for your

application, you create a NativeMenu instance that will serve as your root

menu. You can assign this same NativeMenu object to serve as both the

application and window menu.

133 Chapter 8: Working with Menus and Tray and Dock Icons

In JavaScript, you create the top-level NativeMenu instance using air.
NativeMenu():

var rootMenu = new air.NativeMenu();

In ActionScript, use the following:

var rootMenu:NativeMenu = new NativeMenu();

Creating submenus
A root NativeMenu isn’t much good on its own, however. Instead, it needs a

set of NativeMenuItem objects to serve as submenus. To do so, create the

NativeMenuItem and then assign a new NativeMenu instance to its

submenu property. You then add new items to the submenu.

Here’s the code in JavaScript:

var fileMenuItem = rootMenu.addItem(“File”);

var fileSubmenu = new air.NativeMenu();
fileMenuItem.submenu = fileSubmenu;
var newFileItem = fileSubmenu.addItem(“New”);

A NativeMenuItem is added to the rootMenu instance using air.
NativeMenuItem(). As you can see from the preceding code, the

addItem() creates a new menu item with the menu label specified in the

parameter.

Using ActionScript, you write the following:

var fileMenuItem:NativeMenuItem = rootMenu.
addItem(“File”);

var fileSubmenu:NativeMenu = new NativeMenu();
fileMenuItem.submenu = fileSubmenu;
var newFileItem:NativeMenuItem = fileSubmenu.

addItem(“New”);

You could also use the addSubmenu() method as a shortcut to eliminate one

line of code. It enables you to assign a NativeMenu instance as a submenu at

the same time that you create the menu item. In JavaScript:

var fileSubmenu = new air.NativeMenu();
var fileMenuItem = rootMenu.addSubmenu(fileSubmenu,

“File”);

134 Part II: AIR Application Design

Using this shortcut, you can go one step further and create separate routines

for creating each submenu. The following example creates a root menu and

then adds four submenus to it, each of which is created in a helper function:

var rootMenu = new air.NativeMenu();
var fileMenuItem = rootMenu.addSubmenu(createFileMenu(),”File”);
var editMenuItem = rootMenu.addSubmenu(createEditMenu(),”Edit”);
var viewMenuItem = rootMenu.addSubmenu(createViewMenu(),”View”);
var helpMenuItem = rootMenu.addSubmenu(createHelpMenu(),”Help”);

The following syntax is also valid, although you would not be able to refer-

ence by name the NativeMenuItem children of rootMenu:

var rootMenu = new air.NativeMenu();
rootMenu.addSubmenu(createFileMenu(),”File”);
rootMenu.addSubmenu(createEditMenu(),”Edit”);
rootMenu.addSubmenu(createViewMenu(),”View”);
rootMenu.addSubmenu(createHelpMenu(),”Help”);

Creating menu commands
A menu command is created using the NativeMenu addItem() method

and then adding an event listener that triggers a function when the item is

selected. Consider the following JavaScript:

var fileSubmenu = new air.NativeMenu();

var newFileItem = fileSubmenu.addItem(new air.
NativeMenuItem(“New”));

newFileItem.addEventListener(air.Event.SELECT, fileNew);

function fileNew() {
 alert(“You created a new document. You must be proud!”);
}

newFileItem is added as a new NativeMenuItem under fileSubmenu

and given the label of New. A select event listener is added to execute the

fileNew() function.

Consider a slightly more complete ActionScript example. Pay special atten-

tion to the bolded lines, which create a menu item and attach a SELECT event

handler to it:

135 Chapter 8: Working with Menus and Tray and Dock Icons

private function initWindow():void {
 var rootMenu:NativeMenu = new NativeMenu();
 var fileSubmenu:NativeMenu = new NativeMenu();

 var fileMenuItem:NativeMenuItem = rootMenu.addItem(new

NativeMenuItem(“File”));
 fileMenuItem.submenu = fileSubmenu;

 var newFileItem:NativeMenuItem = fileSubmenu.addItem(new

NativeMenuItem(“New”));
 newFileItem.addEventListener(Event.SELECT, fileNew);
}

public function fileNew(evt: Event):void {
 mx.controls.Alert.show(“You created a new document. You

must be proud!”);
}

Notice that the event handler function needs to pass the Event instance as a

parameter even if you don’t plan on using it.

Creating menu separators
A menu separator is a horizontal line that does what its name implies — sep-

arates items in your menu into logical groupings. To create a menu separator,

you set to true an optional isSeparator parameter in the NativeMenuItem

constructor.

The following JavaScript code adds separators between the New, Save, and

Exit menu items:

var fileSubmenu = new air.NativeMenu();
var newFileItem = fileSubmenu.addItem(new air.

NativeMenuItem(“New”));
newFileItem.addEventListener(air.Event.SELECT, fileNew);
var sep1 = fileSubmenu.addItem(new air.NativeMenuItem(“”,

true));
var saveFileItem = fileSubmenu.addItem(new air.

NativeMenuItem(“Save”));
saveFileItem.addEventListener(air.Event.SELECT,

fileSave);
var sep2 = fileSubmenu.addItem(new air.NativeMenuItem(“”,

true));
var exitFileItem = fileSubmenu.addItem(new air.

NativeMenuItem(“Exit”));
exitFileItem.addEventListener(air.Event.SELECT,

fileExit);

136 Part II: AIR Application Design

The equivalent ActionScript looks like this:

 var fileSubmenu:NativeMenu = new NativeMenu();
 var newCommand:NativeMenuItem = fileSubmenu.addItem(new

NativeMenuItem(«New»));
 newCommand.addEventListener(Event.SELECT, fileNew);
 var sep1:NativeMenuItem = fileSubmenu.addItem(new

NativeMenuItem(«B», true));
 var saveCommand:NativeMenuItem = fileSubmenu.addItem(new

NativeMenuItem(«Save»));
 saveCommand.addEventListener(Event.SELECT, fileSave);
 var sep2:NativeMenuItem = fileSubmenu.addItem(new

NativeMenuItem(«B», true));
 var exitCommand:NativeMenuItem = fileSubmenu.addItem(new

NativeMenuItem(«Exit»));
 exitCommand.addEventListener(Event.SELECT, fileExit);
 return fileSubmenu;

Adding keyboard shortcuts to menu items
You can add keyboard shortcuts (or accelerators) to your menu items to

enable users to select a menu command directly through the keyboard rather

than navigate the menu.

A keyboard shortcut normally consists of two parts: a primary (or normal)

key plus one or more modifier keys (such as Shift, Alt, Ctrl, and, for Mac

users, Command [Ô]). Take the familiar Paste command as an example.

Under Windows, the keyboard shortcut is Ctrl+P. Under Mac OS X, the

shortcut is Ô+P.

Adobe AIR has a default modifier key when running under Windows and

Mac — the Ctrl key for Windows and Ô key for Mac. Each of these is

automatically added as a modifier key unless you specify otherwise.

Keyboard shortcuts are applicable only to application and window menus.

Setting the primary key
To set the key for a NativeMenuItem, assign a single character string to its

keyEquivalent property. For example:

fileNewItem.keyEquivalent = “n”;

The lowercase n in this code assigns Ctrl+N as a shortcut key for the

fileNewItem menu item for Windows; it assigns Ô+N under Mac.

137 Chapter 8: Working with Menus and Tray and Dock Icons

If you use an uppercase letter, the Shift key is added as one of the modifiers.

Therefore, the following:

fileNewItem.keyEquivalent = “N”;

assigns the shortcut keys of Shift+Ctrl+N (Windows) and Shift+Ô+N (Mac).

Setting the modifier keys
To change the set of modifiers, assign the keyEquivalentModifiers array

property one or more of the following values:

 ✓ air.Keyboard.CONTROL

 ✓ air.Keyboard.COMMAND

 ✓ air.Keyboard.SHIFT

 ✓ air.Keyboard.ALTERNATE

In ActionScript, you want to lose the initial air. reference.

Because the property is an array type, you can add multiple modifiers inside

the brackets. For example, to set Ctrl+Alt+N, you use

fileNewItem.keyEquivalent = “N”;
fileNewItem.keyEquivalentModifiers = [air.Keyboard.

CONTROL+air.Keyboard.ALTERNATE];

When you change the keyEquivalentModifiers property, the default

modifier values are overwritten, so you need to include the Ctrl or Ô key as

part of the new modifier array.

Adding mnemonic key assignments
Both Windows and Mac allow users to access and navigate menus through

the keyboard through what is known as mnemonics.

On Windows, a menu command is assigned a mnemonic, which is usually the

first character of the label. If that character is already used by another item,

then the next significant character is used. A user is then able to select the

menu command by pressing and holding the Alt key (to access the window

menu) while then pressing the mnemonic key. The mnemonic key is often

underlined (for example, File).

138 Part II: AIR Application Design

On Mac, the mnemonic is slightly different. After one of the top-level applica-

tion menus is selected, a user types the first letter or two of the command.

The closest match is highlighted. If that’s the desired item, press Return to

select the item.

To assign a Windows mnemonic key, you specify the zero-based index of the

desired character inside the string. The first character is 0, the second 1, and

so on. Therefore, to assign the F as the mnemonic key for the File command,

for example, you use the following:

fileMenuItem.mnemonicIndex = 0;

Selecting and deselecting menu items
You may wish to use a menu command to show the state of your application,

such as whether a toolbar or status bar is visible. A check mark appearing

next to the label means that the item is selected and is the standard way to

indicate an “on” or “true” state. To display a check mark:

viewStatusBarItem.checked = true;

To remove the check mark:

viewStatusBarItem.checked = false;

Disabling and enabling menu items
Menu items can be disabled, causing the item to be grayed out. To disable

a menu item, use the enabled property of a NativeMenuItem. Here’s an

example:

editCutItem.enabled = false;

When selected, disabled menu items do not trigger a select event.

See the section “Updating menus before they display,” later in this chapter,

for more on working with the enabled property.

139 Chapter 8: Working with Menus and Tray and Dock Icons

Attaching an object to a menu item
You can take advantage of the data property of a NativeMenuItem instance

to attach data or an object to it. A common example in which this storage

mechanism can come in handy is for a Recent Documents submenu. You can

assign a File object to the associated menu item and then open the File

instance when the menu item is selected. For example, here’s a JavaScript

snippet that assigns an image to the data property of a recent item:

var imgFile = air.File.applicationStorageDirectory.
 resolvePath(“wallpaper-1.jpg”);
recentItem1.data = imgFile;

Setting the Application, Window,
Pop-Up, and Context Menus

You can set NativeMenu objects to the application, window, pop-up, and

context menus. (You can also assign them to the taskbar icon and Dock icon

menus as well, but I cover that later in the chapter.)

Before assigning application and window menus, you first want to check to

see whether the OS that the app is running on supports the associated menu.

Therefore, evaluate the OS before making these menu assignments.

Setting a window menu (Windows)
A window menu is supported on the Windows OS, but only for windows that

have system chrome. Therefore, you want to perform two checks before

assigning the window menu. In JavaScript, the code to perform these checks

is as follows:

if (air.NativeWindow.supportsMenu &&
 nativeWindow.systemChrome != air.

NativeWindowSystemChrome.NONE) {
 nativeWindow.menu = rootMenu;
}

140 Part II: AIR Application Design

Here’s how you check for proper OS support in ActionScript:

if (NativeWindow.supportsMenu &&
 nativeWindow.systemChrome !=

NativeWindowSystemChrome.NONE) {
 nativeWindow.menu = rootMenu;
}

Setting an application menu (Mac)
To set the application menu for Mac OS in JavaScript, use this code:

if (air.NativeApplication.supportsMenu) {
 air.NativeApplication.menu = rootMenu;
}

In ActionScript, use this code to set the application menu:

if (NativeApplication.supportsMenu) {

 NativeApplication.nativeApplication.menu = rootMenu;
}

Setting a context menu
A context menu is a menu that you can add to your app that is context aware —

in other words, the menu choices that are displayed are applicable to that

particular UI control or part of the app in which the user is working. It is

accessible in your app by right-clicking an on-screen object.

Setting a context menu in an HTML app
For HTML apps, you can set a NativeMenu instance as the context menu for

an HTML element. To do so, you begin by adding an event handler to the ele-

ment’s oncontextmenu event, as follows:

<div id=”canvas” oncontextmenu=»displayContextMenu
(event)»>

<p>Content is good. </p>
</div>

Next, define the event handler:

function displayContextMenu(event) {
 event.preventDefault();

141 Chapter 8: Working with Menus and Tray and Dock Icons

 rootMenu.display(window.nativeWindow.stage, event.
clientX, event.clientY);

}

Because text selections and images have their own default menus, you can

disable any built-in menus by calling preventDefault(). The display()

method of the NativeMenu instance rootMenu is called, using the stage

object and the mouse x,y coordinates received from the event parameter.

You can prevent text selection (and the text selection context menu from

being displayed) by adding the style rule -khtml-user-select:none. This

WebKit extension selector disallows text selections.

Setting a context menu in Flex
In Flex Builder, every mx: UI element contains a contextMenu property. You

can assign a NativeMenu menu instance to this property either in your code

or in the designer.

Using ContextMenu and ContextMenuItem
When creating AIR apps in Flex and Flash, you can also use ContextMenu

and ContextMenuItem to create context menus. However, ContextMenu

and ContextMenuItem are used primarily when you need to output to a

SWF for in-browser use, because Flash Player doesn’t support NativeMenu

and NativeMenuItem. Therefore, if you’re focused on developing AIR

apps and not Flash media, I recommend sticking with NativeMenu and

NativeMenuItem.

Setting a pop-up menu
As are context menus, pop-up menus are accessible anywhere inside sand-

boxed content of your app by right-clicking an on-screen object. You can

display a NativeMenu instance as a pop-up simply by calling its display()

method.

In an HTML application, you can trap for the onmouseup handler:

<div id=”canvas” onmouseup=”displayPopupMenu(event)”>
<p>Content is good. </p>
</div>

The handler then calls the display() method of the NativeMenu instance

named popupMenu:

142 Part II: AIR Application Design

function displayPopupMenu(event) {

 popupMenu.display(window.nativeWindow.stage, event.
clientX, event.client

}

In Flex, you can usually get the functionality you’re looking for by

assigning a NativeMenu instance to the contextMenu property of the

mx:WindowedApplication element. But you can also show a pop-up menu

anywhere in your code simply by calling the display() method:

private function onMouseClick(event:MouseEvent):void {
 popupMenu.display(event.target.stage, event.stageX,

event.stageY);
}

Handling Menu Events
As I mention earlier in the chapter, NativeMenu and NativeMenuItem

objects dispatch select and displaying events. To make menu items

functional, you need to respond to these events. In this section, I walk you

through how to add support in your apps.

Responding to menu selections
NativeMenuItem commands are the only part of a menu that can respond

to a user selection. This makes sense because the root menu, submenus, and

separators exist only to allow the user to easily navigate a logical grouping of

selectable menu commands.

You can respond to select events directly from each menu command by adding

an event listener (also called an event handler). (See Chapter 6 for more on event

listeners.) The following JavaScript example assigns the fileNew() function to

serve as the select event handler for the newFileItem menu command:

newFileItem.addEventListener(air.Event.SELECT, fileNew);

However, because select events of menu items bubble up to the menu, you

can also listen for all select events in the menu. When you do so, you can

use the target property of the event object to determine the specific menu

command that was selected.

The following code assigns the selectTrapper() function as the official

event listener for rootMenu, which is a top-level menu used throughout the

project. Here’s the JavaScript version:

143 Chapter 8: Working with Menus and Tray and Dock Icons

function selectTrapper(event) {
 var menuItem = NativeMenuItem(event.target);
 alert(menuItem.label + “ has been selected, so don’t

try to stop it!”);
}

rootMenu.addEventListener(air.Event.SELECT,
selectTrapper);

Here’s the ActionScript version:

public function selectTrapper(evt: Event):void {
 var menuItem:NativeMenuItem = evt.target as

NativeMenuItem;
 mx.controls.Alert.show(menuItem.label + “ has been

selected, so don’t try to stop it!”);
}

rootMenu.addEventListener(Event.SELECT, selectTrapper);

When the application runs, the selectTrapper() function will serve as the

handler for all menu commands.

If you add listeners to both the NativeMenuItem and its NativeMenu con-

tainer, both event handlers will be triggered. The NativeMenuItem’s select

event is dispatched first and then the event bubbles up to its parent. If you

have a listener at the container level, it will be called as well.

Updating menus before they display
Menus and menu items also dispatch a displaying event just before the

menu is displayed on-screen. By attaching a listener to this event, you can

update the contents of a menu or the state of a menu item before the user

sees it. For example, the following code sample updates the enabled state

of a menu item depending on settings stored in an object called appProper-
ties. In JavaScript, you write:

rootMenu.addEventListener(air.Event.DISPLAYING,
updateMenuState);

function updateMenuState(event):void {
 var menuItem = NativeMenuItem(event.target);0
 if (menuItem.label = ‘Allow Updates’) {
 menuItem.enabled = appProperties.allowUpdates;
 }
 if (menuItem.label = ‘Offline Mode’) {
 menuItem.enabled = appProperties.offlineMode;
 }
}

144 Part II: AIR Application Design

In ActionScript, you write it this way:
rootMenu.addEventListener(Event.DISPLAYING,

updateMenuState);

public function updateMenuState(evt: Event):void {
 var menuItem:NativeMenuItem = evt.target as

NativeMenuItem;
 if (menuItem.label = ‘Allow Updates’) {
 menuItem.enabled = appProperties.allowUpdates;
 }
 if (menuItem.label = ‘Offline Mode’) {
 menuItem.enabled = appProperties.offlineMode;
 }
}

The FlexNativeMenu Alternative
F lex deve lopers can use the
mx:FlexNativeMenu component as
an alternative to working directly with
NativeMenu. mx:FlexNativeMenu
serves as a nonvisual wrapper for
NativeMenu, allowing you to interact with
native menus in your MXML file much the same
as you would with Flex’s other visual menu
components. For example, the following code
defines a root menu:

<mx:FlexNativeMenu id=”rootMenu”
dataProvider=”{rootMenuData}”

labelField=”@label” keyEquivalentField=”@
key” showRoot=”false”/>

The dataProvider property points to an
XML hierarchy of menu items that I define as
follows:

<mx:XML format=”e4x” id=”rootMenuData”>
 <root>
 <menuitem label=”_File”>
 <menuitem label=”_New” key=”n”

ctrlKey=”true” cmdKey=”true”/>
 <menuitem type=”separator”/>
 <menuitem label=”_Save” key=”s”

ctrlKey=”true cmdKey=”true”/>
 <menuitem type=”separator”/>
 <menuitem label=”Exit”/>
 </menuitem>

 <menuitem label=”_Edit”>
 <menuitem label=”_Undo” key=”z”

ctrlKey=”true” cmdKey=”true”/>
 <menuitem label=”_Redo” key=”y”

ctrlKey=”true” cmdKey=”true”/>
 <menuitem type=”separator”/>
 <menuitem label=”Cut” key=”x”

ctrlKey=”true” cmdKey=”true”/>
 <menuitem label=”_Copy” key=”c”

ctrlKey=”true” cmdKey=”true”/>
 <menuitem label=”_Paste” key=”v”

ctrlKey=”true” cmdKey=”true”/>
 </menuitem>
 <menuitem label=”_Help”>
 <menuitem label=”_About MyApp”/>
 </menuitem>
 </root>
 </mx:XML>

You can attach an event listener to the
FlexNativeMenu instance much the same
as you would with NativeMenu:

rootMenu.addEventListener(FlexNat
iveMenuEvent.ITEM_CLICK,
rootMenuHandler);

See http:// livedocs.adobe.com/
flex/3/html/help.html?content
=FlexApolloComponents_10.html
for more complete details on working with the
mx:FlexNativeMenu component.

145 Chapter 8: Working with Menus and Tray and Dock Icons

Enabling Your App for the Windows
System Tray and Mac OS X Dock

Windows and Mac OS X each have dock areas that display icons of opened

applications.

Windows has two areas:

 ✓ Taskbar: Displays currently running apps as buttons across the bar.

 ✓ System tray: The notification section of the taskbar, usually located at

the bottom right of the desktop. It contains icons for access to system

functions or minimized apps.

By default, your AIR app displays in the taskbar, not the system tray.

However, if you add a bitmap array to your app for display as the system

tray icon, the app moves to the system tray. Although you can’t modify the

taskbar icon or menu, you can customize the system tray icon, icon Tool

Tip, and icon menu.

The Mac OS X Dock displays application icons. It’s used both to launch apps

and indicate opened apps by displaying a triangle or dot below the icon. The

right side of the Dock is used for showing application windows that are open.

You can customize the Dock icon and icon menu, but app window Dock icons

always use your application’s default icon.

You can work with the icon and its menu on both Windows and Mac through

the NativeApplication.nativeApplication.icon property. The

object type is SystemTrayIcon under Windows and DockIcon under Mac.

Before accessing the icon property, you want to check OS support by

checking the NativeApplication.supportsSystemTrayIcon or

NativeApplication.supportsDockIcon property. If you attempt to

access a property specific to SystemTrayIcon or DockIcon on an OS that

doesn’t support it, you’ll trigger a runtime exception. And that’s not good for

anyone!

Enabling your app for the
Windows system tray
You can transform your application to work in the system tray by assigning

one or more bitmaps to the NativeApplication.nativeApplication.
icon.bitmaps array property. If that property is assigned, Adobe AIR

assumes that you’d like your app displayed in the system tray using the

146 Part II: AIR Application Design

designated bitmap. You can provide one or more image sizes in the array.

When more than one image is included, AIR displays the image that is most

appropriate to the size of system tray icons, typically 16 x 16 pixels.

The following code shows how to add system tray support. First, assign an

array of images to the bitmaps property (see the upcoming “Putting it All

Together with MenuAIR” section for more details on how trayDockIcons is

loaded):

air.NativeApplication.nativeApplication.icon.bitmaps = [trayDockIcons];

Next, add the icon menu and Tool Tip:

if (air.NativeApplication.supportsSystemTrayIcon) {
 SystemTrayIcon(air.NativeApplication.nativeApplication.icon).menu =

createDockMenu();

 SystemTrayIcon(air.NativeApplication.nativeApplication.icon).tooltip =
“MenuAIR Command & Control”;

}

Remove the air. for ActionScript.

Enabling your app for the Mac OS X dock
By default, the icons you assign in the application descriptor file are used as

the Dock icon for your application. However, you can also assign a separate

icon through the air.NativeApplication.nativeApplication.icon.
bitmaps property.

AIR automatically defines a Dock icon menu for your app. However, you can

append additional menu commands above the default menu items. To assign

a menu for your app’s icon on the Mac OS X Dock, use the following:

if (air.NativeApplication.supportsDockIcon) }
 DockIcon(air.NativeApplication.nativeApplication.icon).menu = iconMenu;
}

Once again, remove the air. for ActionScript.

Putting It All Together with MenuAIR
Previous sections of this chapter walk you through the process of creating

and enabling menus. Here, it’s time to get practical. The following sample app

makes use of the menu-building techniques discussed in this chapter.

147 Chapter 8: Working with Menus and Tray and Dock Icons

MenuAIR: The HTML Edition
Listing 8-1 shows the HTML version of my simple menu demo, MenuAIR.

Listing 8-1: MenuAIR.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/TR/html4/

strict.dtd”>
<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1” />
<title>MenuAIR</title>
<script type=”text/javascript” src=”AIRAliases.js”></script>
<script type=”text/javascript”>

 window.addEventListener(‘load’, initialize, false);
 var contextMenu;

 /**
 * Initializes the app after loading
 *
 */
 function initialize() {

 // Create root menu
 var rootMenu = new air.NativeMenu();

 // Create root submenus
 rootMenu.addSubmenu(createFileMenu(),”File”);
 rootMenu.addSubmenu(createEditMenu(),”Edit”);
 rootMenu.addSubmenu(createViewMenu(),”View”);
 rootMenu.addSubmenu(createHelpMenu(),”Help”);

 // Attach event listener routine to root menu
 rootMenu.addEventListener(air.Event.SELECT, dispatchMenuCommand);

 // Assign application menu (Mac OS X)
 if (air.NativeApplication.supportsMenu) {
 air.NativeApplication.nativeApplication.menu = rootMenu;
 }

 // Assign window menu (MS Windows)
 if (air.NativeWindow.supportsMenu) {
 window.nativeWindow.menu = rootMenu;
 }

 // Assign context (right-click) menu
 contextMenu = createContextMenu();
 contextMenu.addEventListener(air.Event.SELECT, dispatchMenuCommand);

 var iconLoader = new air.Loader();

(continued)

148 Part II: AIR Application Design

Listing 8-1 (continued)
 iconLoader.contentLoaderInfo.addEventListener(air.Event.COMPLETE,

iconLoadComplete);

 // Mac OS X dock support
 if (air.NativeApplication.supportsDockIcon) {
 iconLoader.load(new air.URLRequest(«../icons/128.png»));
 air.DockIcon(air.NativeApplication.nativeApplication.icon).menu =

createDockMenu();
 }

 // Windows system tray support
 if (air.NativeApplication.supportsSystemTrayIcon) {
 // Load icon image
 iconLoader.load(new air.URLRequest(«../icons/16.png»));
 air.SystemTrayIcon(air.NativeApplication.nativeApplication.icon).menu =

createDockMenu();
 air.SystemTrayIcon(air.NativeApplication.nativeApplication.icon).tooltip =

«MenuAIR Command & Control»;
 }
 }

 /**
 * Context menu event handler
 *
 */
 function displayContextMenu(event) {
 event.preventDefault();
 contextMenu.display(window.nativeWindow.stage, event.clientX, event.

clientY);
}

 /**
 * Fills trayDockIcons with loaded icons
 *
 */
 function iconLoadComplete(event) {
 trayDockIcon = event.target.content.bitmapData;
 air.NativeApplication.nativeApplication.icon.bitmaps = [trayDockIcon];
 }

 /**
 * createMenuCommand()
 * Creates a «fully loaded» menu command based on parameters
 *
 */
 function createMenuCommand(menuContainer, itemLabel, itemKey, itemModifiers,

itemMnemonic,
 selectHandler) {
 var cmd = air.NativeMenu(menuContainer).addItem(new air.

NativeMenuItem(itemLabel));
 cmd.mnemonicIndex = itemMnemonic;

149 Chapter 8: Working with Menus and Tray and Dock Icons

 cmd.keyEquivalent = itemKey;
 if (itemModifiers != null) {
 cmd.keyEquivalentModifiers = itemModifiers;
 }
 if (selectHandler != null) {
 cmd.addEventListener(air.Event.SELECT, selectHandler);
 }
 return cmd;
 }

 /**
 * createMenuSeparator()
 * Creates a menu separator
 */
 function createMenuSeparator(menuContainer) {
 var sep = air.NativeMenu(menuContainer).addItem(new air.NativeMenuItem(«sep»,

true));
 return sep;
 }

 /**
 * Creates the File menu for app
 */
 function createFileMenu() {
 var mnu = new air.NativeMenu();
 createMenuCommand(mnu, ‘New’, ‘n’, null, 0, fileNew);
 createMenuCommand(mnu, ‘Open’, ‘o’, null, 0, null);
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Save’, ‘s’, null, 0, fileSave);
 createMenuSeparator(mnu);
 // If Mac OS X, then use Quit label
 if (air.NativeApplication.supportsMenu) {
 createMenuCommand(mnu, ‘Quit’, ‘q’, null, 0, fileExit);
 }
 // If Windows, then use Exit
 else {
 createMenuCommand(mnu, ‘Exit’, ‘x’, null, 0, fileExit);
 }
 return mnu;
 }

 /**
 * Creates the Edit menu for app
 */
 function createEditMenu() {
 var mnu = new air.NativeMenu();
 createMenuCommand(mnu, ‘Undo’, ‘z’, null, 0, null);
 createMenuCommand(mnu, ‘Redo’, ‘y’, null, 0, null);

(continued)

150 Part II: AIR Application Design

Listing 8-1 (continued)
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Cut’, ‘x’, null, 2, null);
 createMenuCommand(mnu, ‘Copy’, ‘c’, null, 0, null);
 createMenuCommand(mnu, ‘Paste’, ‘v’, null, 0, null);
 return mnu;
 }

 /**
 * Creates the View menu for app
 */
 function createViewMenu() {
 var mnu = new air.NativeMenu();
 var rulerCommand = createMenuCommand(mnu, ‘Ruler’, ‘r’, null, 0, null);
 rulerCommand.checked = true;
 var statusBarCommand = createMenuCommand(mnu, ‘Status Bar’, ‘s’, null, 0,

null);
 statusBarCommand.checked = true;
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Current Status’, ‘C’, [air.Keyboard.ALTERNATE], 0,

null);
 return mnu;
 }

 /**
 * Creates the Help menu for app
 *
 */
 function createHelpMenu() {
 var mnu = new air.NativeMenu();
 createMenuCommand(mnu, ‘Help on MenuAIR’, ‘h’, null, 0, null);
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘About MenuAIR’, ‘’, null, 0, null);
 return mnu;
 }

 /**
 * Creates a context menu for app
 */
 function createContextMenu() {
 var mnu = new air.NativeMenu();
 createMenuCommand(mnu, ‘Cut’, ‘’, null, 2, null);
 createMenuCommand(mnu, ‘Copy’, ‘’, null, 0, null);
 createMenuCommand(mnu, ‘Paste’, ‘’, null, 0, null)
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Refresh Status’, ‘’, null, 0, null)
 return mnu;
 }

 /**

151 Chapter 8: Working with Menus and Tray and Dock Icons

 * Creates a dock/system tray icon menu
 *
 */
 function createDockMenu() {
 var mnu = new air.NativeMenu();
 createMenuCommand(mnu, ‘Current Status’, ‘’, null, 0, null);
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Refresh’, ‘’, null, 0, null)
 return mnu;
 }

 /**
 * Catch-all menu dispatcher for all menus
 *
 */
 function dispatchMenuCommand(event) {
 var menuItem = air.NativeMenuItem(event.target);

 if (!menuItem.hasEventListener(‘select’)) {
 alert(menuItem.label + « has been selected, so don’t try to stop it!»);
 }
 }

 /**
 * Simple handlers for certain menu commands
 *
 */
 function fileNew(event) {
 alert(«You created a new document. You must be proud!»);
 }

 function fileSave(event) {
 alert(«Save that document before this buggy app crashes!»);
 }

 function fileExit(event) {
 air.NativeApplication.nativeApplication.exit();
 }

</script>

</head>
<body oncontextmenu=»displayContextMenu(event)»>
<div style=»font-family: ‘Lucida Grande’, Verdana, Geneva, Sans-Serif; font-

size: 10px;
 text-align:center;vertical-align:middle»>
<p style=»-khtml-user-select:none;» oncontextmenu=»displayContextMenu(event);»>M

enus are more than just for restaurants anymore!</p>
</div>
</body>
</html>

152 Part II: AIR Application Design

MenuAIR: The Flex Edition
Listing 8-2 provides the full source code of the Flex version of MenuAIR.

Listing 8-2: MenuAIR.mxml
<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute” height=”218” width=”346” applicationComplete=”i
nitWindow()”>

 <mx:Script>
 <![CDATA[7

 import flash.display.NativeMenu;
 import flash.display.NativeMenuItem;
 import flash.display.NativeWindow;
 import mx.controls.Alert;

 private var trayDockIcon:BitmapData;

 /**
 * Initializes the app after loading
 *
 */
 private function initWindow():void {

 // Create root menu
 var rootMenu:NativeMenu = new NativeMenu();

 // Create root submenus
 rootMenu.addSubmenu(createFileMenu(),»File»);
 rootMenu.addSubmenu(createEditMenu(),»Edit»);
 rootMenu.addSubmenu(createViewMenu(),»View»);
 rootMenu.addSubmenu(createHelpMenu(),»Help»);

 // Attach event listener routine to root menu
 rootMenu.addEventListener(Event.SELECT, dispatchMenuCommand);

 // Assign application menu (Mac OS X)
 if (NativeApplication.supportsMenu) {
 NativeApplication.nativeApplication.menu = rootMenu;
 }

 // Assign window menu (MS Windows)
 if (NativeWindow.supportsMenu &&
 nativeWindow.systemChrome != NativeWindowSystemChrome.NONE) {
 nativeWindow.menu = rootMenu;
 }

 // Assign pop-up (right-click) menu
 this.contextMenu = createPopupMenu();

153 Chapter 8: Working with Menus and Tray and Dock Icons

 this.contextMenu.addEventListener(Event.SELECT, dispatchMenuCommand);

 // Mac OS X dock support
 if (NativeApplication.supportsDockIcon) {
 DockIcon(NativeApplication.nativeApplication.icon).menu = createDockMenu();
 }

 // Windows system tray support
 if (NativeApplication.supportsSystemTrayIcon &&
 nativeWindow.systemChrome != NativeWindowSystemChrome.NONE) {

 if (NativeApplication.supportsSystemTrayIcon) {
 var iconLoader:Loader = new Loader();
 iconLoader.contentLoaderInfo.addEventListener(Event.COMPLETE,

iconLoadComplete);
 iconLoader.load(new URLRequest(«../icons/16.png»));
 SystemTrayIcon(NativeApplication.nativeApplication.icon).menu =

createDockMenu();
 SystemTrayIcon(NativeApplication.nativeApplication.icon).tooltip =

«MenuAIR Command & Control»;
 SystemTrayIcon(NativeApplication.nativeApplication.icon).

addEventListener(MouseEvent.CLICK, activateApp);
 stage.nativeWindow.addEventListener(NativeWindowDisplayStateEvent.DISPLAY_

STATE_CHANGING, diyMinimize);
 }
 }

 /**
 * Fills trayDockIcons with loaded icons
 *
 */
 public function iconLoadComplete(event:Event):void {
 trayDockIcon = event.target.content.bitmapData;
 NativeApplication.nativeApplication.icon.bitmaps = [trayDockIcon];
 }

 /**
 * Hide app when minimized to system tray (Windows)
 *
 */
 public function minimizeToSystemTray():void {
 stage.nativeWindow.visible = false;
 NativeApplication.nativeApplication.icon.bitmaps = [trayDockIcon];
 }

 /**
 * Show app again after minimize to system tray (Windows)
 *
 */
 public function activateApp(evt:Event):void {
 stage.nativeWindow.visible = true;

(continued)

154 Part II: AIR Application Design

Listing 8-2 (continued)
 stage.nativeWindow.orderToFront();
 NativeApplication.nativeApplication.icon.bitmaps = [];
 }

 /**
 * Custom minimize event handler (Windows)
 *
 */
 private function diyMinimize(displayStateEvent:NativeWindowDisplayStateEvent)

:void {
 if(displayStateEvent.afterDisplayState == NativeWindowDisplayState.

MINIMIZED) {
 displayStateEvent.preventDefault();
 minimizeToSystemTray();
 }
 }

 /**
 * createMenuCommand()
 * Creates a «fully loaded» menu command based on parameters
 *
 */
 public function createMenuCommand(menuContainer:NativeMenu, itemLabel:String,

itemKey:String,
 itemModifiers:Array, itemMnemonic:int, selectHandler:Function):

NativeMenuItem {
 var cmd:NativeMenuItem= NativeMenu(menuContainer).addItem(new

NativeMenuItem(itemLabel));
 cmd.mnemonicIndex = itemMnemonic;
 cmd.keyEquivalent = itemKey;
 if (itemModifiers != null) {
 cmd.keyEquivalentModifiers = itemModifiers;
 }
 if (selectHandler != null) {
 cmd.addEventListener(Event.SELECT, selectHandler);
 }
 return cmd;
 }

 /**
 * createMenuSeparator()
 * Creates a menu separator
 */
 private function createMenuSeparator(menuContainer:NativeMenu): NativeMenuItem

{
 var sep:NativeMenuItem= NativeMenu(menuContainer).addItem(new

NativeMenuItem(«sep», true));
 return sep;
 }

155 Chapter 8: Working with Menus and Tray and Dock Icons

 /**
 * Creates the File menu for app
 */
 private function createFileMenu():NativeMenu {
 var mnu:NativeMenu = new NativeMenu();
 createMenuCommand(mnu, ‘New’, ‘n’, null, 0, fileNew);
 createMenuCommand(mnu, ‘Open’, ‘o’, null, 0, null);
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Save’, ‘s’, null, 0, fileSave);
 createMenuSeparator(mnu);
 // If Mac OS X, then use Quit label
 if (NativeApplication.supportsMenu) {
 createMenuCommand(mnu, ‘Quit’, ‘q’, null, 0, fileExit);
 }
 // If Windows, then use Exit
 else {
 createMenuCommand(mnu, ‘Exit’, ‘x’, null, 0, fileExit);
 }
 return mnu;
 }

 /**
 * Creates the Edit menu for app
 */
 public function createEditMenu():NativeMenu {
 var mnu:NativeMenu = new NativeMenu();
 createMenuCommand(mnu, ‘Undo’, ‘z’, null, 0, null);
 createMenuCommand(mnu, ‘Redo’, ‘y’, null, 0, null);
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Cut’, ‘x’, null, 2, null);
 createMenuCommand(mnu, ‘Copy’, ‘c’, null, 0, null);
 createMenuCommand(mnu, ‘Paste’, ‘v’, null, 0, null);
 return mnu;
 }

 /**
 * Creates the View menu for app
 */
 public function createViewMenu():NativeMenu {
 var mnu:NativeMenu = new NativeMenu();
 var rulerCommand:NativeMenuItem = createMenuCommand(mnu, ‘Ruler’, ‘r’,

null, 0, null);
 rulerCommand.checked = true;
 var statusBarCommand:NativeMenuItem = createMenuCommand(mnu, ‘Status Bar’,

‘s’, null, 0, null);
 statusBarCommand.checked = true;

(continued)

156 Part II: AIR Application Design

Listing 8-2 (continued)
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Current Status’, ‘C’, [Keyboard.ALTERNATE], 0,

null);
 return mnu;
 }

 /**
 * Creates the Help menu for app
 *
 */
 public function createHelpMenu():NativeMenu {
 var mnu:NativeMenu = new NativeMenu();
 createMenuCommand(mnu, ‘Help on MenuAIR’, ‘h’, null, 0, null);
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘About MenuAIR’, ‘’, null, 0, null);
 return mnu;
 }

 /**
 * Creates a pop-up menu for app
 */
 public function createPopupMenu():NativeMenu {
 var mnu:NativeMenu = new NativeMenu();
 createMenuCommand(mnu, ‘Cut’, ‘’, null, 2, null);
 createMenuCommand(mnu, ‘Copy’, ‘’, null, 0, null);
 createMenuCommand(mnu, ‘Paste’, ‘’, null, 0, null)
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Refresh Status’, ‘’, null, 0, null)
 return mnu;
 }

 /**
 * Creates a dock/system tray icon menu
 *
 */
 public function createDockMenu():NativeMenu {
 var mnu:NativeMenu = new NativeMenu();
 createMenuCommand(mnu, ‘Current Status’, ‘’, null, 0, null);
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Refresh’, ‘’, null, 0, null)
 return mnu;
 }

 /**

157 Chapter 8: Working with Menus and Tray and Dock Icons

 * Catch-all menu dispatcher for all menus
 *
 */
 public function dispatchMenuCommand(evt: Event):void {
 var menuItem:NativeMenuItem = evt.target as NativeMenuItem;

 if (!menuItem.hasEventListener(‘select’)) {
 Alert.show(menuItem.label + “ has been selected, so don’t try to stop

it!”);
 }
 }

 /**
 * Simple handlers for certain menu commands
 *
 */
 public function fileNew(evt: Event):void {
 Alert.show(“You created a new document. You must be proud!”);
 }

 public function fileSave(evt: Event):void {
 Alert.show(“Save that document before this buggy app crashes!”);
 }

 public function fileExit(evt: Event):void {
 NativeApplication.nativeApplication.exit();
 }

]]>
 </mx:Script>

<mx:Label id=»lblApp» text=»Menus aren’t just for restaurants anymore!»
verticalCenter=»0» horizontalCenter=»0»/>

</mx:WindowedApplication>

When MenuAIR runs under Mac OS X, the main window (see Figure 8-1) is

displayed, as you would expect without a window menu. However, the Mac

menu bar displays the new application menu. Figures 8-2, 8-3, and 8-4 show

the File, View, and Help submenus. Figure 8-5 shows the pop-up menu.

158 Part II: AIR Application Design

Figure 8-1:
MenuAIR

running
under Mac

OS X.

Figure 8-2:
File menu.

Figure 8-3:
View menu

sports
checked

menu items.

Figure 8-4:
Mac OS X

contains
the Search
menu item.

Figure 8-5:
Pop-up
menu.

159 Chapter 8: Working with Menus and Tray and Dock Icons

The MenuAIR Dock icon shows the custom menu items appended to the

default menu (see Figure 8-6).

Figure 8-6:
Dock icon

menu.

When MenuAIR runs under Windows, the main window (see Figure 8-7) now

comes complete with a window menu. The File menu items, shown in Figure

8-8, provide the Windows-specific shortcut keys.

Figure 8-7:
Window

menu.

Figure 8-8:
The File

submenu
is ready for

action.

160 Part II: AIR Application Design

Figure 8.9 shows the tool tip displayed above the app’s taskbar icon, and

Figure 8.10 displays the pop-up menu for the taskbar icon.

Figure 8-9:
Tool Tip is
displayed
above the
MenuAIR

taskbar
icon.

Figure 8-10:
Menu

displayed
for the

MenuAIR
taskbar

icon.

Part III
Programming the

Adobe AIR API

In this part . . .

In this part, you continue to develop your knowledge

of the essentials of AIR application development. You

explore how to interact with the local file system. For

database applications, I show you how to work with both

local and remote data sources. ActionScript developers

will want to know how to access their libraries, so I show

you how to access libraries in your HTML and Flex apps.

Chapter 9

Don’t Be a Drag: Interacting with
the Clipboard and Drag-and-Drop

In This Chapter
▶ Exploring how to cut, copy, and paste with the Clipboard

▶ Adding native drag-and-drop to your apps

▶ Working with HTML drag-and-drop functionality

One of the advantages that AIR has over browser-based apps is the

ability to interact with other native applications. Yes, you can do some

cool bleeding-edge inter-application communication techniques. However,

on a practical, real world basis, you’ll find yourself using the Clipboard and

drag-and-drop for most inter-application data transfer. In this chapter, you

discover how to work with the Clipboard and drag-and-drop within your AIR

applications.

Working with the Clipboard
The Clipboard is one part of the OS that is easily taken for granted these days.

It’s certainly not sexy like drag-and-drop or hip like XML data transfer. Having

said that, I hasten to add that the good ol’ commands Cut, Copy, and Paste

remain the fundamental means of data interchange between desktop apps.

As a citizen of the native OS, Adobe AIR enables you to work with the full

capabilities of the Clipboard through the Clipboard object. Although it’s

easy to think of just Cut/Copy/Paste when working with the Clipboard, the

Clipboard is also used for drag-and-drop operations.

What’s more, not only can you use the Clipboard to copy and paste text, but

you can also work with several different data formats, such as images or a file

list. As a result, you can decide which formats your application will support.

The [air.]ClipboardFormats class provides the constants for the various

data formats supported by AIR. Table 9-1 lists the various formats you can

support.

164 Part III: Programming the Adobe AIR API

Table 9-1 Clipboard Formats
Format [air.]ClipboardFormats

Constant
MIME Type

Text TEXT_FORMAT “text/plain”

HTML HTML_FORMAT “text/html”

URL .URL_FORMAT “text/uri-list”

Bitmap BITMAP_FORMAT “image/x-vnd.adobe.
air.bitmap”

File list FILE_LIST_FORMAT “application/x-vnd.
adobe.air.file-list”

Rich
Text
Format

RICH_TEXT_FORMAT Not available in HTML context

Data placed in the Clipboard may have multiple formats, which increases the

usefulness of the Clipboard data. For example, a fragment of HTML text may

be placed in the Clipboard by Dreamweaver as HTML_FORMAT and TEXT_
FORMAT. You can then decide whether to implement support for one or both

of these data formats.

 You can also implement your own data format for use in the Clipboard to

transfer objects as references within the same AIR app or serialized copies

between AIR apps. However, note that you can’t paste this data into a non-

AIR application. For technical details on how to implement custom data

formats, visit http:// livedocs.adobe.com/flex/3/html/help.
html?content=CopyAndPaste_6.html.

Adding basic cut, copy, and
paste functionality
Perhaps the most basic implementation of the Clipboard is to provide

services that allow you to cut, copy, and paste text-related data. To add this

functionality to an AIR app, I define three functions for this purpose:

editCopy(), editCut(), and editPaste().

Copy text to the Clipboard
Copying text to the Clipboard involves the following code. Here’s the

JavaScript version:

165 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

editCopy(event) {
 var str = “You’re all grown up now, AIR text. You are now heading “
 + “to Clipboardopolis to make a name for yourself.”;
 air.Clipboard.generalClipboard.clear();
 air.Clipboard.generalClipboard.setData(air.ClipboardFormats.TEXT_FORMAT, str);
}

The generalClipboard property is used to access the native OS Clipboard.

The clear() method clears the Clipboard, followed by a setData() com-

mand that adds the contents of the str variable to the Clipboard, specifying

its data format with the first parameter.

Here’s an ActionScript version of editCopy() that copies the text selection

(TextRange object) of an mx:TextArea to the Clipboard:

public function editCopy(evt:Event):void {
 var tr:TextRange = new TextRange(taEditor, true);
 var textToCopy:String = tr.text;
 Clipboard.generalClipboard.clear();
 Clipboard.generalClipboard.setData(ClipboardFormats.TEXT_FORMAT,

textToCopy);
}

Cut text to the Clipboard
From a Clipboard standpoint, cutting text to the Clipboard is the same task

as copying it. The only difference is cleaning up the text inside your applica-

tion. For example, here’s an ActionScript version that removes the text inside

a selection after the selected text is copied to the Clipboard:

 public function editCut(evt: Event):void {
 var tr:TextRange = new TextRange(taEditor, true);
 var textToCopy:String = tr.text;
 Clipboard.generalClipboard.clear();
 Clipboard.generalClipboard.setData(ClipboardFormats.TEXT_FORMAT,

textToCopy, false);
 tr.text = “”;
 }

Paste text from the Clipboard
Retrieving text that is in the Clipboard involves first testing the format of the

Clipboard contents and making sure that the format is what you expect. If it is,

you can use getData() to retrieve the contents. In JavaScript, here’s a

function that gets Clipboard text and then displays the result in a message box.

166 Part III: Programming the Adobe AIR API

function editPaste(event) {
if(air.Clipboard.generalClipboard.hasFormat(air.ClipboardFormats.TEXT_FORMAT)){
 var text = air.Clipboard.generalClipboard.getData(ClipboardFormats.TEXT_

FORMAT);
alert(text);
 }

Here’s an ActionScript example that pastes text into a text memo:

public function editPaste(evt: Event):void {
 var tr:TextRange = new TextRange(taEditor, true);
 if(Clipboard.generalClipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)) {
 var str:String = Clipboard.generalClipboard.getData(ClipboardFormats.TEXT_

FORMAT) as String;
 tr.text = str;
 }

In this example, the Clipboard contents are assigned to the str variable,

which is then assigned to replace the current text selection (if any).

Using an alternate Clipboard method
in HTML environments
The Clipboard object is great for use inside the application sandbox when

using ActionScript or JavaScript. However, because of security restrictions,

you can’t access the AIR Clipboard object outside the sandbox.

Coming to the rescue, AIR provides a basic implementation of cut, copy, and

paste if you’re using TextField or HTMLLoader objects or their descen-

dants; it does this by calling the NativeApplication.nativeApplica-
tion methods cut(), copy(), and paste(). For example:

editCopy() {
 air.NativeApplication.nativeApplication.copy();
}

editCut() {
 air.NativeApplication.nativeApplication.cut();
}

editPaste() {
 air.NativeApplication.nativeApplication.paste();
}

When one of these functions is called, the command is called for the display

object receiving focus. However, the display object needs to be a TextField

or HTMLLoader object (or descendant) or the command is ignored.

167 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

Copying and pasting images
using ActionScript
The Clipboard can support data formats beyond ordinary text. You can also

use it to support other formats, such as images. Here’s an example of enabling

an AIR application to support the copying and pasting of images. You still use

the Clipboard.generalClipboard.setData() and Clipboard.general
Clipboard.getData() methods as before. You just need to specify the

different data format to the Clipboard (ClipboardFormats.BITMAP_
FORMAT) and convert the data into the format that the OS expects (for example,

bitmap data).

Copying an image
To copy an image from your app to the Clipboard, you can’t just send an

instance of an Image object to the Clipboard using setData(). That’s

not in the expected format if you want to use the image in an image editing

application, such as Photoshop. Instead, you need to convert the Image

instance into bitmap data, which is represented by the BitmapData class in

ActionScript. The following code takes an image (named srcImage) and

converts it into the more portable BitmapData type:

var bitmapData:BitmapData = new BitmapData(srcImage.width, srcImage.height);
bitmapData.draw(srcImage);

After you’ve converted the image into the appropriate bitmap format, you’re

ready to place the image on the Clipboard:

Clipboard.generalClipboard.clear();

Clipboard.generalClipboard.setData(ClipboardFormats.BITMAP_FORMAT, bitmapData);

The setData() method specifies that the bitmapData object instance

should be classified as BITMAP_FORMAT.

Pasting an image
When you paste an image from the Clipboard and put it into a usable format,

you essentially want to reverse the process of copying an image — retrieve

the bitmap data and convert it into an image that you can then display in

your app.

First, you need to use hasFormat() to determine whether there is a bitmap

to paste in the Clipboard. If there is, then you need to cast the incoming

object as BitmapData:

168 Part III: Programming the Adobe AIR API

if(Clipboard.generalClipboard.hasFormat(ClipboardFormats.BITMAP_FORMAT)) {
 var bitmapData:BitmapData =
 Clipboard.generalClipboard.getData(ClipboardFormats.BITMAP_FORMAT) as

BitmapData;

You can’t just add bitmapData to the stage for display. Instead, you need to

add its bitmapped data into an Image instance. To do so, you need to use a

Bitmap instance as an intermediary format:

 var bitmap:Bitmap = new Bitmap(bitmapData);
 var img:Image = new Image();
 img.addChild(bitmap);

At this point, you just need to determine where to locate the incoming object

onto the stage (the visible display area of an AIR app). After setting the x and

y properties, you add img as a child to a Canvas instance:

 img.x = stage.stageWidth/4;
 img.y = stage.stageHeight/4;
 canvas.addChild(img);

The full source code is shown in Listing 9-1.

Listing 9-1: ImagePaster.mxml
<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.com/2006/mxml”
 layout=”absolute” width=”500” height=”400”>
<mx:Script>
 <![CDATA[
 import mx.controls.Image;

 public function editCopy(evt:Event):void {
 var bitmapData:BitmapData = new BitmapData(srcImage.width, srcImage.

height);
 bitmapData.draw(srcImage);
 Clipboard.generalClipboard.clear();
 Clipboard.generalClipboard.setData(ClipboardFormats.BITMAP_FORMAT,

bitmapData, false);
 }

 public function editPaste(evt:Event):void {
 if(Clipboard.generalClipboard.hasFormat(ClipboardFormats.BITMAP_FORMAT)) {
 var bitmapData:BitmapData = Clipboard.generalClipboard.

getData(ClipboardFormats.BITMAP_FORMAT) as BitmapData;
 var bitmap:Bitmap = new Bitmap(bitmapData);
 var img:Image = new Image();
 img.addChild(bitmap);
 img.x = stage.stageWidth/4;
 img.y = stage.stageHeight/4;
 canvas.addChild(img);
 }

169 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

 }

]]>
</mx:Script>
<mx:Canvas id=»canvas» width=»100%» height=»100%» backgroundColor=»#FFFFFF»>
<mx:Button x=»0» y=»0» label=»Paste» id=»btnPaste» click=»editPaste(event)» />
<mx:Image id=»srcImage» source=»door.png» x=»40» y=»191»

click=»editCopy(event)»/>
</mx:Canvas>
</mx:WindowedApplication>

Don’t Be a Drag: Adding Drag-and-Drop
Just over a decade ago, drag-and-drop gestures were innovative and ground-

breaking in UI design — enabling users to perform an action simply by

moving their mouse rather than clicking a button or menu item. Although

drag-and-drop may not seem to be cutting-edge technology these days, it has

proven itself to be far more than a fad or gimmick. With its usefulness and

ease of use, drag-and-drop should be something all AIR developers should

consider enabling in their application.

You can implement drag-and-drop within your application, such as the ability

to move display objects around on your stage. You can also add drag-and-drop

support to exchange data between other native apps. Consider a typical

scenario. Suppose you want to drag text from a Web page and drop it into

your AIR app. When the text is dragged outside the browser, information

about the text data is placed into the Clipboard, which is then used by the

AIR app during the drag-and-drop process.

For a given drag-and-drop operation, you have two important actors — the

drag initiator and the drop target. The drag initiator is the source display

object selected by the user to be dragged and dropped. The drop target is

the object on which the user drops the drag initiator. You need to explicitly

enable an object to initiate a drag operation or receive a drop.

A drag-and-drop sequence occurs in three distinct actions:

 ✓ Start drag: A drag sequence begins when a user clicks an object and

holds the mouse button down (the drag initiator) and then moves the

mouse while continuing to hold the mouse button down.

 ✓ Dragging: While the mouse button is down, the user drags the clicked

object to another part of the app, to another native application, or to the

desktop.

 ✓ Drop: A drag-and-drop sequence ends when a user releases the mouse

over a valid drop target.

170 Part III: Programming the Adobe AIR API

Most of the AIR functionality I talk about in this book is identical whether

you’re creating an app using HTML, Flex, or Flash. However, here’s one

place where you want to implement drag-and-drop differently depending on

whether you’re working in an HTML, Flash, or Flex environment.

For HTML apps, you use the HTML drag-and-drop API, which is nicely

integrated with the Document Object Model (DOM). Technically, you could

use the AIR drag-and-drop API calls, but these are less effective than the

HTML drag-and-drop API inside the HTML environment.

In Flex and Flash, you want to use the NativeDragManager class and work

with the nativeDragEnter, nativeDragOver, and nativeDragDrop

events when you want to perform drag-and-drop actions with other native

apps.

In this section, I show you how to work with drag-and-drop in Flex and Flash,

and then in HTML-based apps.

Adding drag-and-drop in Flex and Flash
A typical drag-and-drop action for any native application that works with text

is the ability to drag text onto the app and paste the text into the appropri-

ate text control. Another common action is dragging a file from the Windows

Explorer or Mac OS X Finder window and dropping it into an app. I show

you how to add support for these two drag-and-drop actions in a Flex-based

sample AIR app named AIRWrite. (The ActionScript code would be equivalent

in a Flash app.)

To make the application serve as a drop target for drag operations, you begin

by adding event listeners for the NATIVE_DRAG_ENTER and NATIVE_DRAG_
DROP events. You add these inside an init() function that is triggered when

the app is done loading:

addEventListener(NativeDragEvent.NATIVE_DRAG_ENTER, onDragIn);

addEventListener(NativeDragEvent.NATIVE_DRAG_DROP, onDragDrop);

The onDragIn() function serves as the event handler for the NATIVE_
DRAG_ENTER event. Its purpose is to determine the drag-and-drop actions

that the app will support. For AIRWrite, you want to support text and file

drop actions.

The first task is to define the dropAction, which could be to either copy,

move, or link. The following code chooses copy:

NativeDragManager.dropAction = NativeDragActions.COPY;

171 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

Next, you need to check the format of the Clipboard data. If it is

ClipboardFormats.TEXT_FORMAT, you want to accept the drag action:

 if (event.clipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)) {
 NativeDragManager.acceptDragDrop(this);
 }

You also want to check to see whether incoming data is of

ClipboardFormats.FILE_LIST_FORMAT. If it is, you want to accept the

drag action. However, because AIRWrite works as an editor only with a single

text file, you want to support only one file being dragged in, not multiple

ones. Here’s the ActionScript code:

if (event.clipboard.hasFormat(ClipboardFormats.FILE_LIST_FORMAT)) {
 var files:Array = event.clipboard.getData(ClipboardFormats.FILE_LIST_

FORMAT) as Array;
 if (files.length == 1) {
 NativeDragManager.acceptDragDrop(this);
 }

You use the getData() method to return the file list as an Array type

instance. After you do that, you check the length of the array to determine

whether to accept the drag action.

The onDragDrop() function handles the NativeDragEvent.NATIVE_
DRAG_DROP events that are dispatched by the app. Depending on the needs

of the app, you may need to handle incoming text data. If so, begin by check-

ing to see whether the data being dropped is ClipboardFormats.TEXT_
FORMAT. If so, you can assign the text to a String variable:

if (event.clipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)) {
 var txt:String = String(event.clipboard.getData(ClipboardFormats.TEXT_FORMAT,
 ClipboardTransferMode.ORIGINAL_PREFERRED));
}

You then place the contents of txt to the drop target in your app.

If you’re instead using an mx:TextArea for the text editor for AIRWrite, it

handles the drop action for text data for you automatically. In other words,

you don’t even need to deal with text data in the onDragDrop() if the built-

in drop action suits your needs.

However, you do need to account for ClipboardFormats.FILE_LIST_
FORMAT and open the file that is being dropped onto the target:

if (event.clipboard.hasFormat(ClipboardFormats.FILE_LIST_FORMAT)) {
 var array:Array = event.clipboard.getData(ClipboardFormats.FILE_

LIST_FORMAT) as Array;
 file = File(array[0]);
 onFileSelect(event);

172 Part III: Programming the Adobe AIR API

The first item in the file list array is assigned to the file variable. The onFile
Select() function is called, which is AIRWrite’s handler for opening text files:

 public function onFileSelect(evt:Event):void {
 var fs:FileStream = new FileStream();
 fs.openAsync(file, FileMode.READ);
 fs.addEventListener(Event.COMPLETE, onFileRead);
 fs.addEventListener(IOErrorEvent.IO_ERROR, onIOReadError);
 isDirty = false;
 isNewFile = false;
 this.status = “”;
 title = “AIRWrite - “ + file.name;
 taEditor.setFocus();
 }

 See Chapter 10 for more details on how to read text files.

Figures 9-1 and 9-2 demonstrate the drag action of text data. Figures 9-3 and

9-4 show a file being dragged onto the editor.

Figure 9-1:
Drag action

begins in
Microsoft

Word. . .

173 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

Figure 9-2:
. . .and ends

in the ever
popular

AIRWrite.

Figure 9-3:
File drag

action
begins in

the Mac OS
X Finder. . .

Figure 9-4:
. . .and

AIRWrite
opens the

file dropped
onto the

app.

174 Part III: Programming the Adobe AIR API

Listing 9-2 provides the full source code for AIRWrite.mxml.

Listing 9-2: AIRWrite.mxml.
<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute” width=”764” height=”454”
 applicationComplete=”init()” styleName=”sansChrome”

backgroundGradientAlphas=”[0.3, 0.3]”>

 <mx:Style>
 .sansChrome { background-color:””;}
 </mx:Style>

 <mx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import flash.display.NativeMenu;
 import flash.display.NativeMenuItem;
 import mx.events.*;
 import flash.desktop.NativeDragManager;
 import flash.events.NativeDragEvent;
 import flash.desktop.Clipboard;
 import flash.desktop.ClipboardFormats;
 import flash.filesystem.File;
 import flash.filesystem.FileMode;
 import flash.filesystem.FileStream;
 import mx.controls.textClasses.TextRange;

 private var file:File;

 public function onDragIn(event:NativeDragEvent):void {
 // Define drop action - copy, move, link?
 NativeDragManager.dropAction = NativeDragActions.COPY;
 // Check to see if the data is TEXT_FORMAT
 if (event.clipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)) {
 NativeDragManager.acceptDragDrop(this);
 }
 else if (event.clipboard.hasFormat(ClipboardFormats.FILE_LIST_FORMAT)

) {
 var files:Array = event.clipboard.getData(ClipboardFormats.FILE_LIST_

FORMAT) as Array;
 if (files.length == 1) {
 NativeDragManager.acceptDragDrop(this);
 }
 }
 }

 public function onDragDrop(event:NativeDragEvent):void {
 if (event.clipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)) {

175 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

 var text:String = String(event.clipboard.getData(ClipboardFormats.
TEXT_FORMAT,

 ClipboardTransferMode.ORIGINAL_PREFERRED));
 }
 else if (event.clipboard.hasFormat(ClipboardFormats.FILE_LIST_FORMAT))

{
 var array:Array = event.clipboard.getData(ClipboardFormats.FILE_

LIST_FORMAT) as Array;
 file = File(array[0]);
 onFileSelect(event);
 }
 }

 private function init():void {
 file = new File();
 addEventListener(NativeDragEvent.NATIVE_DRAG_ENTER, onDragIn);
 addEventListener(NativeDragEvent.NATIVE_DRAG_DROP, onDragDrop);
 }

 public function onFileSelect(evt:Event):void {
 var fs:FileStream = new FileStream();
 fs.openAsync(file, FileMode.READ);
 fs.addEventListener(Event.COMPLETE, onFileRead);
 fs.addEventListener(IOErrorEvent.IO_ERROR, onIOReadError);
 isDirty = false;
 isNewFile = false;
 this.status = “”;
 title = “AIRWrite - “ + file.name;
 taEditor.setFocus();
 }

 private function onFileRead(evt:Event):void {
 var fs:FileStream = evt.target as FileStream;
 var str:String = fs.readUTFBytes(fs.bytesAvailable);
 taEditor.text = str;
 fs.close();
 }

 private function onIOReadError(evt:Event):void {
 Alert.show(“Something wacky happened. We are unable to open “ + file.

nativePath, “Error”, Alert.OK, this);
 }

 private function onIOWriteError(evt:Event):void {
 Alert.show(“We are really sorry, but the file cannot be saved. It’s not

our fault...really!”, “Error”, Alert.OK, this);
 }

]]>

(continued)

176 Part III: Programming the Adobe AIR API

Listing 9-2 (continued)
 </mx:Script>

 <mx:TextArea id=”taEditor” x=”0” y=”0” width=”100%” height=”100%”
backgroundAlpha=”0.8”

 fontFamily=”Courier New” fontSize=”14” backgroundColor=”#000000”
color=”#FFFFFF” />

 <mx:Canvas x=”352” y=”169” width=”200” height=”200” backgroundColor=”#982A2A”
label=”ddd”>

 </mx:Canvas>
</mx:WindowedApplication>

If you want to perform drag-and-drop actions with images, you can program

your application in much the same manner, with one difference. Although

the mx:TextArea and related text controls handle the drag initiator action

automatically, you need to explicitly add code to enable drag actions when

working with a nontext display object such as mx:Image.

Suppose you’d like to drag an image into other native apps as well as accept

new images from outside the application. Here’s a very basic UI:

<mx:Canvas id=”canvas” width=”100%” height=”100%”>
<mx:Image id=”doorImage” source=”door.png”/>
</mx:Canvas>

To begin, you’d want to add event listeners when the app loads, just as you

did in the AIRWrite example:

private function init():void {

 addEventListener(NativeDragEvent.NATIVE_DRAG_ENTER, onDragIn);
 addEventListener(NativeDragEvent.NATIVE_DRAG_DROP, onDragDrop);

}

These event handlers are designed to enable the app as a drop target. The

onDragIn() function simply checks to see whether the incoming drop initia-

tor is a bitmap. If it is, it’s accepted. The code is as follows:

public function onDragIn(event:NativeDragEvent):void {
 NativeDragManager.dropAction = NativeDragActions.COPY;
 if (event.clipboard.hasFormat(ClipboardFormats.BITMAP_FORMAT)) {
 NativeDragManager.acceptDragDrop(this);
 }
}

The onDragDrop() function uses getData() to retrieve the bitmap data. A

new Image instance is then created using that bitmap data and is added as a

child to the Canvas object:

177 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

public function onDragDrop(event:NativeDragEvent):void {
 if (event.clipboard.hasFormat(ClipboardFormats.BITMAP_FORMAT)) {
 var bitmapData:BitmapData = event.clipboard.getData(ClipboardFormats.

BITMAP_FORMAT) as BitmapData;
 var bitmap:Bitmap = new Bitmap(bitmapData);
 var img:Image = new Image();
 img.addChild(bitmap);
 img.x = event.localX;
 img.y = event.localY;
 canvas.addChild(img);
 }
 }

Figures 9-5 and 9-6 demonstrate the drag-and-drop sequence. I start out

dragging an image from Photoshop and wind up dropping it onto my AIR app.

Figure 9-5:
Image

dragged
from

Photoshop.

Figure 9-6:
The dragged

image is
dropped
onto an

AIR app.

To enable the mx:Image object as a drag initiator for other native applications,

you need to add a handler for the mouseMove event:

178 Part III: Programming the Adobe AIR API

 <mx:Image id=”doorImage” source=”door.png” mouseMove=”onMouseMove(event)”/>

The onMouseMove() function is defined as follows:

private function onMouseMove(event:MouseEvent):void {
 var dragInitiator:Image=Image(event.currentTarget);
 var transferClipboard:Clipboard = new Clipboard();
 var bitmapData:BitmapData = new BitmapData(doorImage.width, doorImage.

height);
 bitmapData.draw(doorImage);
 transferClipboard.setData(ClipboardFormats.BITMAP_FORMAT, bitmapData);
 NativeDragManager.doDrag(dragInitiator,transferClipboard,bitmapData, new

Point(-mouseX,-mouseY));
}

The image being dragged is assigned to the dragInitiator instance.

A Clipboard instance named transferClipboard is created, which

serves as the container for the data the app will transfer. The bitmapData

instance will store the bitmap image. The image is then added to transferClip-

board through its setData() method. Finally, the NativeDragManager.
doDrag() method is called to begin the drag and provide this data to out-

side applications if the mouse moves beyond the window.

Figure 9-7 shows the image being dragged in the AIR app, and Figure 9-8

shows the end result when the image is dropped into Microsoft Word.

Figure 9-7:
Image

dragged
from the
AIR app.

179 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

Figure 9-8:
Dragged
image is

dropped into
Microsoft

Word.

Listing 9-3 shows the full source code for this application.

Listing 9-3: ImageMover.mxml.
<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
 applicationComplete=”init()”>

 <mx:Script>

(continued)

180 Part III: Programming the Adobe AIR API

Listing 9-3 (continued)
 <![CDATA[
 //Import classes so you don’t have to use full names.
 import flash.events.MouseEvent;
 import flash.desktop.NativeDragManager;
 import flash.events.NativeDragEvent;

 private function init():void {
 addEventListener(NativeDragEvent.NATIVE_DRAG_ENTER, onDragIn);
 addEventListener(NativeDragEvent.NATIVE_DRAG_DROP, onDragDrop);
 }

 public function onDragIn(event:NativeDragEvent):void {
 NativeDragManager.dropAction = NativeDragActions.MOVE;
 if (event.clipboard.hasFormat(ClipboardFormats.BITMAP_FORMAT)) {
 NativeDragManager.acceptDragDrop(this);
 }
 }

 public function onDragDrop(event:NativeDragEvent):void {
 if (event.clipboard.hasFormat(ClipboardFormats.BITMAP_FORMAT)) {
 var bitmapData:BitmapData = event.clipboard.

getData(ClipboardFormats.BITMAP_FORMAT) as BitmapData;
 var bitmap:Bitmap = new Bitmap(bitmapData);
 var img:Image = new Image();
 img.addChild(bitmap);
 img.x = event.localX;
 img.y = event.localY;
 canvas.addChild(img);
 }
 }

 private function onMouseMove(event:MouseEvent):void {
 var dragInitiator:Image=Image(event.currentTarget)
 var transferClipboard:Clipboard = new Clipboard();
 var bitmapData:BitmapData = new BitmapData(doorImage.width,

doorImage.height);
 bitmapData.draw(doorImage);
 transferClipboard.setData(ClipboardFormats.BITMAP_FORMAT,

bitmapData);
 NativeDragManager.doDrag(dragInitiator,transferClipboard,bitmapDa

ta, new Point(-mouseX,-mouseY));
 }

]]>
 </mx:Script>

 <!-- The Canvas is the drag target -->
 <mx:Canvas id=”canvas” width=”100%” height=”100%” backgroundColor=”#DDDDDD”
 dragEnter=”onDragEnterCanvas(event);”

181 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

 dragDrop=”onDragDropCanvas(event);”>

 <!-- The image is the drag initiator. -->
 <mx:Image id=”doorImage” source=”door.png” mouseMove=”onMouseMove(event

);”/>

 </mx:Canvas>

</mx:WindowedApplication>

Adding drag-and-drop functionality
in HTML apps
Adobe AIR enables you to take advantage of built-in support for drag-and-

drop of key elements within the WebKit environment when creating HTML

apps. These elements include text, images, and URLs. However, you can also

declare other elements, such as div elements, as draggable by setting the

-webkit-user-drag CSS property to element. You still need to determine

how you want to use the draggable elements in the drop target, though.

In this section’s example, I show you how to make various elements drag-

gable for both inside and outside the AIR app. I then show you how to create

a drop zone for working with drag-and-drop data. The HTML file that I start

the example with is as follows:

<html>
<head>
<title>DragMeDropMe</title>

<style>

 #droptarget {
 float:right;
 background-color: #999999;
 margin: 10px;
 padding: 10px;
 height: 500px;
 width: 300px;
 color: white;
 }

 #draginit-text {
 font-size: 18pt;
 }

182 Part III: Programming the Adobe AIR API

 #draginit-div {
 width: 300px;
 height: 200px;
 text-align:center;
 color: white;
 background-color: #888888;
 border: 1pt solid black;
 }

</style>

<script type=»text/javascript» src=»AIRAliases.js»></
script>

<script type=»text/javascript»>

function init() {
 // do something, anything
}

</script>
</head>

<body onload=»init()»>

<div id=»droptarget»>Drop Target Zone</div>

<p>

 Draggable text.</

span>
</p>

<div id=»draginit-div»>Draggable div</div>

</div>

</body>
</html>

The following HTML elements will be enabled as draggable elements: drag
init-text, draginit-div, and doorImg. The droptarget div will be

enabled to serve as a drop target.

183 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

Creating draggable elements
The draginit-text and doorImage elements are already enabled for

drag-and-drop; however, you need to prepare the draginit-div for this

purpose. To do so, add the following CSS rule to its style attribute:

<div id=”draginit-div” style=”-webkit-user-
drag:element;”>Draggable div</div>

The ondrag event is the key event that you need to account for. It is dis-

patched when a user clicks an element and begins to drag. Given that, you’re

now ready to add ondragstart attributes to the three elements:

<p>
 <span id=”draginit-text” ondragstart=”onDragStartText

(event);”>
 Draggable text.</

span>
</p>

<img id=”doorImg” alt=”Close the door” src=”door.png”
style=”-webkit-user-drag:element;” ondragstart=
”onDragStartImg(event)”/>

<div id=”draginit-div” style=”-webkit-user-drag:element;”
ondragstart=”onDragStartDiv(event)”>Draggable
div</div>

The handler function for the draginit-text element is as follows:

function onDragStartText(event) {
 // event.dataTransfer object contains info on the data

being dragged

 // Determines the “effect” on the data being dragged -
copied, moved, linked

 // In this case, we’re flexible and will let the drag
target decide

 event.dataTransfer.effectAllowed = “copy”;

 // Adds data in one or more formats as specified by the
mimeType parameter

 event.dataTransfer.setData(“text/plain”, “Imagine a
world without drag and drop. What a horrible
world that would be.”);

 event.dataTransfer.setData(“text/uri-list”, “http://www.
worldsansdraganddrop.com”);

}

184 Part III: Programming the Adobe AIR API

The event.dataTransfer object is the focus of the drag-and-drop code in

the ondrag handler. It contains the information on the data being dragged.

You first set the effectAllowed property to allow for copying of the data

from the source to the drop target. The setData() method determines the

data and its format that you want to transfer using the drag-and-drop opera-

tion. Instead of using the air.ClipboardOperations constants that you

used with the Clipboard examples earlier in the chapter, you need to specify

the format by its MIME type. (See Table 9-1 at the start of the chapter for a

listing of the MIME types.) You can specify one or more formats, depending

on the data you’re working with. Because the span contains a link, this exam-

ple uses both plain text and a URL list.

Here’s the ondrag handler for the draginit-div element:

function onDragStartDiv(event) {
 event.dataTransfer.effectAllowed = “copy”;
 event.dataTransfer.setData(“text/plain”, “Divs are

people, too!”);

}

The final ondrag handler is used for the doorImg element. For this example,

I demonstrate how to use setDragImage(), which enables you to set an

image that is displayed when the element is being dragged. The example then

uses setData() to set the image as the data to be copied:

var dragImage = new Image();

dragImage.src = “plaque.png”;

function onDragStartImg(event) {
 event.dataTransfer.effectAllowed = “copy”;

 event.dataTransfer.setDragImage(dragImage, 0, 0);

 var ddImage = document.getElementById(“doorImg”);
 event.dataTransfer.setData(“image/x-vnd.adobe.air.

bitmap”, ddImage);
 var ddFile = new air.File(ddImage.src);
 event.dataTransfer.setData(“text/plain”, “Close the door

on your way out”);
 event.dataTransfer.setData(“application/x-vnd.adobe.air.

file-list”, new Array(ddFile));

}

185 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

The example also specifies plain text and a file list as alternative formats that

will be supported by the app for a drag-and-drop operation.

These three drag initiator elements are now draggable either inside or

outside the application. Figure 9-9 shows the elements of the AIR app. For

example, if you drag the draggable text, the text and URL are displayed as

you move your mouse (see Figure 9-10). Dropping the text into the Mac OS X

TextEdit app inserts the text into the current file (see Figure 9-11).

Figure 9-9:
DragMe
DropMe

app.

Figure 9-10:
Dragging

the text.

186 Part III: Programming the Adobe AIR API

Figure 9-11:
Dropping

the text into
an outside

app.

Enabling a drop target
For this sample application, I also want to show you how to create a drop

target. I use the droptarget div for this great and mighty purpose. To

enable the div as a drop target, you need to add handlers for the three drop

target events:

 ✓ ondragenter dispatches when the mouse enters the element.

 ✓ ondragover is fired continuously while mouse hovers over the

element.

 Be careful with this event if you have an ondragenter event han-

dler, because ondragover will quickly override changes you make in

that handler unless you disable it with event.preventDefault().

Alternatively, you can simply assign the same handler to both events.

 ✓ ondrop is dispatched when the user lifts the mouse button to drop the

element on the drop target.

Here’s the updated div declaration with the event attributes assigned (note

that drag event code is bolded):

<div id=”droptarget” ondragenter=”onDragEnter(event);”
 ondragover=”onDragOver(event);”
 ondrop=”onDrop(event)”>Drop Target Zone</div>

187 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

The onDragEnter() function, which follows, indicates that the div element

will support copy drag-and-drop operations:

function onDragEnter(event) {
 event.dataTransfer.dropEffect = “copy”;
 }

The onDragOver() function disables the default ondragover event:

function onDragOver(event) {
 event.preventDefault();
}

The onDrop event handler is where all the action is for the drop target. For

demo purposes, I use getData() to retrieve any text, URL, and image data:

// Dispatched when the user lifts the mouse button to drop
// the element on the drop target.
function onDrop(event) {
 // Gets the data as specified by the specified mimeType
 var dropText = event.dataTransfer.getData(“text/plain”);
 var dropUrl = event.dataTransfer.getData(“text/uri-

list”);
 var dropImg = event.dataTransfer.getData(“image/x-vnd.

adobe.air.bitmap”);
 var targetDiv = document.getElementById(‘droptarget’);
 targetDiv.innerHTML = “<p>Text:” + dropText + “</p>” +
 “<p>URL:” + dropUrl + “</p>”;

 if ((event.dataTransfer.types.toString()).search(“image/
x-vnd.adobe.air.bitmap”) > -1) {

 targetDiv.appendChild(dropImg);
 }
}

The text and URL data is added as text inside the div using innerHTML. For

a real application, you would obviously want to check to see whether these

strings were null. However, I do use the types property to check whether

bitmap data is being dragged. If its MIME type is found, the image is added as

a child element to the div.

Figure 9-12 shows the draggable text being dragged over the droptarget
div. Because you specified copy as the dropEffect, the copy cursor is

displayed while the mouse is on top of the div. After the text is dropped

onto the div, the text and URL info are displayed as text (see Figure 9-13).

188 Part III: Programming the Adobe AIR API

Figure 9-12:
Dragging

text over the
drop target.

Figure 9-13:
Dropping

the text onto
the div
element.

189 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

Listing 9-4 displays the full source code for the sample app.

Listing 9-4: dragmedropme.html.
<html>
<head>
<title>DragMeDropMe</title>

<style>

 #droptarget {
 float:right;
 background-color: #999999;
 margin: 10px;
 padding: 10px;
 height: 500px;
 width: 300px;
 color: white;
 }

 #draginit-text {
 font-size: 18pt;
 }

 #draginit-div {
 width: 300px;
 height: 200px;
 text-align:center;
 color: white;
 background-color: #888888;
 border: 1pt solid black;
 }

</style>

<script type=”text/javascript” src=”AIRAliases.js”></script>
<script type=”text/javascript”>

var dragImage;

// Called when app loads
function init() {
 dragImage = new Image();
 dragImage.src = “plaque.png”;
}

// ****** Drag initiator event handlers ******

(continued)

190 Part III: Programming the Adobe AIR API

Listing 9-4 (continued)

// Dispatched when the user begins a drag action on the text span
// If you want to disable, then you could use event.preventDefault();
function onDragStartText(event) {
 // event.dataTransfer object contains info on the data being dragged

 // Determines the “effect” on the data being dragged - copied, moved, linked
 // In this case, we’re flexible and will let the drag target decide
 event.dataTransfer.effectAllowed = “copy”;

 // Adds data in one or more formats as specified by the mimeType parameter
 event.dataTransfer.setData(“text/plain”, “Imagine a world without drag-and-

drop. What a horrible world that would be.”);
 event.dataTransfer.setData(“text/uri-list”, “http://www.worldsansdraganddrop.

com”);
}

// Dispatched when user drags the img
function onDragStartImg(event) {
 event.dataTransfer.effectAllowed = “copy”;
 // Set the drag image
 event.dataTransfer.setDragImage(dragImage, 0, 0);

 var ddImage = document.getElementById(“doorImg”);
 event.dataTransfer.setData(“image/x-vnd.adobe.air.bitmap”, ddImage);
 var ddFile = new air.File(ddImage.src);
 event.dataTransfer.setData(“text/plain”, “Close the door on your way out”);
 event.dataTransfer.setData(“application/x-vnd.adobe.air.file-list”, new

Array(ddFile));

}

// Dispatched when users drag the div
function onDragStartDiv(event) {
 event.dataTransfer.effectAllowed = “copy”;
 event.dataTransfer.setData(“text/html”, “<div id=\”draginit-div\” style=\”-

webkit-user-drag:element;\” “ +
 “ondragstart=\”onDragStartDiv(event)\”>Draggable div</div>”);
 event.dataTransfer.setData(“text/plain”, “Divs are people too!”);
}

// ***** Drop target event handlers *****

// Dispatched when the mouse enters the element
function onDragEnter(event) {
 // Specifies the copy effect when dropped
 event.dataTransfer.dropEffect = “copy”;
// event.preventDefault();
 }

191 Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop

// Fires continously while mouse is over the element
// Be careful if you have onDragEnter, since it will quickly
// override changes you make in that handler. Therefore,
// it is a good idea to prevent default handling from taking place
function onDragOver(event) {
 event.preventDefault();
}

// Dispatched when the user lifts the mouse button to drop the
// element on the drop target.
function onDrop(event) {
 s// Gets the data as specified by the specified mimeType
 var dropText = event.dataTransfer.getData(“text/plain”);
 var dropUrl = event.dataTransfer.getData(“text/uri-list”);
 var dropImg = event.dataTransfer.getData(“image/x-vnd.adobe.air.bitmap”);
 var targetDiv = document.getElementById(‘droptarget’);
 targetDiv.innerHTML = “<p>Text:” + dropText + “</p>” +
 “<p>URL:” + dropUrl + “</p>”;

 if ((event.dataTransfer.types.toString()).search(“image/x-vnd.adobe.air.

bitmap”) > -1) {
 targetDiv.appendChild(dropImg);
 }
}

</script>
</head>

<body onload=”init()”>

<div id=”droptarget” ondragenter=”onDragEnter(event);” ondragover=”onDragOver(ev
ent);”

 ondrop=”onDrop(event)”>Drop Target Zone</div>

<p>

 Draggable text.
</p>

<img id=»doorImg» alt=»Close the door» src=»door.png» style=»-webkit-user-
drag:element;» ondragstart=»onDragStartImg(event)»/>

<div id=»draginit-div» style=»-webkit-user-drag:element;» ondragstart=»onDragSta
rtDiv(event)»>Draggable div</div>

</body>
</html>

192 Part III: Programming the Adobe AIR API

Chapter 10

A New Developer Freedom:
Working with the Local

File System
In This Chapter
▶ Knowing how to point to files and directories

▶ Allowing users to browse for files

▶ Performing basic file operations

▶ Reading and writing to files

▶ Building a basic text editor

One of the basic operations of a desktop application is the ability to read

and write files and work with the local file system. Adobe AIR opens

this functionality to HTML, Flex, and Flash developers. And although you can

still access files over the Internet, the ability to work with local files gives you

as an application developer considerable flexibility.

In this chapter, I introduce you to how to work with files and directories in

your application. You find out how to perform basic file operations, display

native OS open and save dialog boxes, and read and write data to a file. I

close out the chapter by walking you through the creation of a text editor.

Identifying the File Classes
When you work with native files, you work primarily with three file-related

classes:

194 Part III: Programming the Adobe AIR API

 ✓ File represents a file or a directory on the local file system. You use a

File instance for basic file operations (such as copy and delete) and

directory-related tasks (such as list files, create directory, and get

directory path).

 ✓ FileStream is used for reading and writing to files.

 ✓ FileMode is used by FileStream to determine the permissions

available during reading and writing operations.

In Flex and Flash, these classes are contained in the flash.filesystem

package.

Working with Files and Directories
Whether you’re working with files or directories, you use a File instance to

point to a file or directory. As I mention previously in this chapter, the File

object is used for basic file or directory operations. It doesn’t muddy its

hands working with the content or data of a file. The FileStream object acts

on a File instance to do that grunt work.

Working with paths
The File object can work with an OS-specific path or a URL to point to a

directory or file.

Native paths
The nativePath property is used for getting or setting a native path. Its

path is based on the current running OS. For example, suppose a File

object points to a user’s documents directory. On Windows, the nativePath

would be something like C:\Documents and Settings\userName\my
Documents. On Mac, it would be Users\userName\Documents.

URLs
The url property provides a URL-based way to point to a file. Once again,

the formatting of the path is dependent on the current OS. For example,

pointing to the user’s documents directory, the url property would

be something like file:///c:/Documents%20and%20Settings/
userName/My%20Documents on Windows and file:///Users/
userName/Documents.

 The url property returns the path as in a URI-encoded form. As a result,

spaces are substituted with %20.

195 Chapter 10: A New Developer Freedom: Working with the Local File System

File URLs
The file:/// scheme is the standard URL scheme used for referencing

local files. (Yes, that’s three forward slashes, not the standard two.)

In addition to file:///, there are two additional schemes that you can use

with the url property. These are discussed below.

Application root directory URL
The app: scheme points to the root directory of the application. You can

then reference files and directories relative to this folder. For example, to

point to an icon image in an icons subdirectory of the root folder, you can

use app:/icons/128.png.

 Notice that the directory separators of nativePath are based on the native

OS: \ for Windows and / for Mac. However, the url property (which is dis-

cussed next in the “Application storage directory” section) always uses the /

slash.

Application storage directory
The app-storage: scheme points to the application storage directory for

your app. The application storage directory is a unique path that the AIR run-

time automatically defines for every user of your app. You can use this loca-

tion to store preferences, user settings, or other files.

On Windows, the path is as follows:

C:\Documents and Settings\userName\Application Data\
applicationID.publisherID\Local Store

Here’s the path on the Mac:

Users/userName/Library/Preferences/applicationID.
publisherID/Local Store

The applicationID and publisherID values are defined in the application

descriptor file. The application ID is defined in the application descriptor

file, and is typically structured like this: com.dummies.PrefManager. The

publisher ID, on the other hand, is obtained from the certificate used to sign

the AIR installation package. You can actually retrieve the publisher ID at

runtime through the [air.]NativeApplication.nativeApplication.
publisherID property.

When you’re testing your app before deployment, you usually don’t have a

publisher ID defined yet, so the publisherID portion of the application storage

path is left blank. For example, I’m working with the following path in testing

my PrefManager app:

196 Part III: Programming the Adobe AIR API

Users/rich/Library/Preferences/com.dummies.PrefManager/
 Local Store

Pointing to a directory
You can use the File object to point to several pre-defined directories, each

of which is accessed as properties of the File object. For example, to point

to the application directory, use the following in JavaScript:

var dir = air.File.applicationDirectory;

In ActionScript, you use:

private var dir:File = File.applicationDirectory;

You can then access a subdirectory or file by using the resolvePath()

method. For example, to point to an assets subdirectory:

dir = dir.resolvePath(“assets”);

If you want to access a nested subdirectory, be sure to use a forward slash.

For example:

dir = dir.resolvePath(“assets/css”);

You can also use a shortcut syntax to put all the code in one line. Here’s the

JavaScript version:

var dir = air.File.applicationDirectory.
 resolvePath(“assets/css”);

You can use the File object to point to several other predefined directories

that are shown in Table 10-1.

Table 10-1 Predefined File System Directories
Directory File Object

Property/
Method

Windows Path Mac OS X Path

Application
directory

[air.]File.
application
Directory

197 Chapter 10: A New Developer Freedom: Working with the Local File System

Directory File Object
Property/
Method

Windows Path Mac OS X Path

Application
storage

[air.]File.
application
Storage
Directory

C:\
Documents
and
Settings\
userName\
Application
Data\appli
cationID.
publish
erID\Local
Store

Users/user
Name/Library/
Preferences/
applicationID.
publisherID/
Local Store

User’s
home
directory

[air.]File.
user
Directory

C:\
Documents
and
Settings\
userName

Users/userName

User’s
document
directory

[air.]File.
documents
Directory

C:\
Documents
and
Settings\
userName\My
Documents

Users/userName/
Documents

User’s
desktop
directory

[air.]File.
desktop
Directory

C:\
Documents
and
Settings\
userName\
Desktop

Users/userName/
Desktop

File system
root

[air.]File.
getRootDir
ectories()

Returns C: and
all other root
volumes

Returns the / root
directory

Temporary
directory

[air.]File.
create
TempDirec
tory();

C:\
Documents
and
Settings\
rich\Local
Settings\
Temp\temp
DirName

/private/var/
tmp/folders.
501/Temporary
Items/temp
DirName

198 Part III: Programming the Adobe AIR API

In addition to the predefined directories, you can access any arbitrary direc-

tory on the file system through the [air.]File.nativePath property. For

example, to access a C:\Air directory on a Windows machine in JavaScript:

var dir = new air.File();
dir.nativePath = “C:\\Air\”;

You can use the url property as well. Here’s an ActionScript example on a

Mac:

var dir:File = new File();
var urlString:String = “file:///Users/rich/Books”;
dir.url = urlString;

Pointing to a file
Big surprise, but the File object also is used to point to specific files.

Using the resolvePath() method, you can point to a specific file. Here’s a

JavaScript example, pointing to a prefs.xml file in the application storage

directory:

var prefFile = File.applicationStorageDirectory;
prefFile = prefFile.resolvePath(“prefs.xml”);

Or, in ActionScript:

public var prefFile:File = File.
applicationStorageDirectory;

prefFile = prefFile.resolvePath(“prefs.xml”);

You can also use the nativePath and url properties to point to a specific

file. Here’s a JavaScript example for a Windows machine:

var myFile = new air.File();
myFile.nativePath = “C:\\Air\\text.txt”;

Here’s a second JavaScript example using the url property, which is prefer-

able for working across operating systems:

var myFile = new air.File();
myUrl = “file:///C:/Air/text.txt”;
myFile.url = myUrl;

199 Chapter 10: A New Developer Freedom: Working with the Local File System

As a shortcut, you can also pass a path as a parameter to the File() con-

structor function. The following ActionScript example uses both a Windows

native path and URL string:

var file1:File = new File(“C”\\Books\\dummies_toc.txt”);
var file2Path:String = “file:///C:/Books/dummies_toc2.

txt”);
var file2:File = new File(file2Path);

Allowing Users to Browse
For a Directory and Files

The File object builds in the functionality to allow users to browse and

select a directory, file, or set of files using native OS dialog boxes.

Displaying a Choose Directory dialog box
If you’d like to allow users to browse and pick a directory from inside your

application, use the File.browseForDirectory() method. When you use

this method in conjunction with an Event.SELECT event handler, you can

capture the directory selected by the user and do something with it.

For example, the following JavaScript snippet displays a Select Directory

dialog box. The user then selects the desired directory and clicks OK (or

Choose).The directory selected is automatically saved in the nativePath

and url properties. The selectDirectory() event handler then does

something with the user’s path. Here’s the code:

var folder = air.File.userDirectory;

function showDirBrowser() {
 folder.addEventListener(air.Event.SELECT,

selectDirectory);
 folder.browseForDirectory(“Select your coolest folder”);
}

function selectDirectory(evt) {
 var userDreamFolder = folder.nativePath;
 // do something cool here with that cool folder
}

200 Part III: Programming the Adobe AIR API

Or, in ActionScript:

public var folder:File = File.userDirectory;

public function showDirBrowser():void {
 folder.addEventListener(Event.SELECT, selectDirectory);
 folder.browseForDirectory(“Select your coolest folder”);
}

public function selectDirectory(evt:Event):void {
 var userDreamFolder:String = folder.nativePath;
 // do something cool here with that cool folder

}

Figures 10-1 and 10-2 show the dialog box displayed on Windows and Mac,

respectively.

Figure 10-1:
The Select

Directory
dialog box in

Windows.

Displaying a File Open and
File Save dialog box
The ubiquitous File Open dialog box can be displayed using the File.
browseForOpen() method. Its functionality is quite similar to File.
browseForDirectory(), except you can also define an optional file filter

array to specify the types of files you’d like to allow to be selected and opened.

201 Chapter 10: A New Developer Freedom: Working with the Local File System

Figure 10-2:
The Select

Directory
dialog box

in Mac.

You define a listener to Event.SELECT to do something with the file after

the user has selected it. Here’s sample JavaScript code:

var file = air.File.documentsDirectory;

function fileOpen() {
 var filter:FileFilter = new air.FileFilter(“Documents”,

“*.txt;*.html;*.pdf;*.doc;”);
 file.addEventListener(air.Event.SELECT,

fileOpenHandler);
 file.browseForOpen(“Select your most awesomest file”,

[filter]);
}

function fileOpenHandler(evt) {
 var openedFile = file.nativePath;
 // do something. anything.
}

Or, if you prefer ActionScript, use:

 public var file:File = File.documentsDirectory;

 public function fileOpen():void {
 var filter:FileFilter = new FileFilter(“Documents”,

“*.txt;*.html;*.pdf;*.doc;”);
 file.addEventListener(Event.SELECT, fileOpenHandler);

202 Part III: Programming the Adobe AIR API

 file.browseForOpen(“Select your most awesomest file”,
[filter]);

 }

 public function fileOpenHandler(evt:Event):void {
 var openedFile:String = file.nativePath;
 }

Figure 10-3 shows the dialog box in Windows.

Figure 10-3:
File Open

dialog box in
Windows.

You can also use the File.browseForSave() method to display a File Save

dialog box. It works the same basic way, although no FileFilter parameter

is available for this method. Here’s a JavaScript snippet:

var file = air.File.documentsDirectory;

function fileSave() {
 file.addEventListener(air.Event.SELECT,

fileSaveHandler);
 file.browseForOpen(“Save your most precious file now! Or

else...”);
}

function fileSaveHandler(evt) {
 var savedFile = file.nativePath;
 // I will do something with this var now. Really!
}

203 Chapter 10: A New Developer Freedom: Working with the Local File System

Displaying a Select Multiple
Files dialog box
You may have occasion to allow the user to select multiple files from a dialog

box for processing. Rather than call File.browseForOpen() multiple

times, the friendlier option is to use File.browseForOpenMultiple().

This method allows users to select multiple files in the dialog box and returns

the selection as an array of filenames.

As with browseForOpen(), you can specify an optional [air.]
FileFilter instance to define the types of files you’d like to allow to be

selected and opened.

The following JavaScript code attaches an event listener to air.
FileListEvent.SELECT_MULTIPLE and then displays the Select Multiple

Files dialog box. When the user selects one or more files, fileOpenList-
Handler() is called. Here’s the code:

var file = air.File.documentsDirectory;

function fileOpenFileList() {
 file.addEventListener(air.FileListEvent.SELECT_MULTIPLE,

fileOpenListHandler);
 file.browseForOpenMultiple(“Select your most awesomest

files”);
}

 function fileOpenListHandler(evt) {
 var str = “”;
 for (var i=0;i<evt.files.length; i++) {
 str += evt.files[i].nativePath + “\n”;
 }
 alert(str);
 }

The ActionScript code that follows performs the same basic process, except

that the files selected are assigned to the text property of an mx:TextArea

element:

public var file:File = File.documentsDirectory;

public function fileOpenFileList():void {
 file.addEventListener(FileListEvent.SELECT_MULTIPLE,

fileOpenListHandler);
 file.browseForOpenMultiple(“Select your most awesomest

files”);

204 Part III: Programming the Adobe AIR API

}

public function fileOpenListHandler(evt:FileListEvent):vo

id {
 var str:String = “”;
 for (var i:uint = 0; i < evt.files.length; i++) {
 str += evt.files[i].nativePath + “\n”;
 }
 taFavoriteList.text = str;
}

Figure 10-4 shows the mx:TextArea control that displays filenames returned

from browseForOpenMultiple().

Figure 10-4:
Selected
files are

displayed in
the text area

control.

Listing 10-1 provides the Flex source code of a sample app that illustrates

how to use browseForDirectory(), browseForOpen(), and browse-
ForOpenMultiple(). The user selection for a dialog box is displayed in a

corresponding text control.

Listing 10-1: Filer.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.

com/2006/mxml” layout=”absolute” height=”332”
width=”540” alpha=”0.67”>

<mx:Script>
 <![CDATA[

 public var folder:File = File.userDirectory;
 public var file:File = File.documentsDirectory;

 public function showDirBrowser():void {

205 Chapter 10: A New Developer Freedom: Working with the Local File System

 folder = new File();
 folder.addEventListener(Event.SELECT,

selectDirectory);
 folder.browseForDirectory(“Select your coolest

folder”);
 }

 public function selectDirectory(evt:Event):void {
 tiFavoriteFolder.text = folder.nativePath;
 }

 public function fileOpen():void {
 var filter:FileFilter = new FileFilter(“Documents”,

“*.txt;*.html;*.pdf;*.doc;”);
 file.addEventListener(Event.SELECT,

fileOpenHandler);
 file.browseForOpen(“Select your most awesomest

file”, [filter]);
 }

 public function fileOpenHandler(evt:Event):void {
 tiFavoriteFile.text = file.nativePath;
 }

 public function fileOpenFileList():void {
 file.addEventListener(FileListEvent.SELECT_MULTIPLE,

fileOpenListHandler);
 file.browseForOpenMultiple(“Select your most

awesomest files”);
 }

 public function fileOpenListHandler(evt:FileListEvent)

:void {
 var str:String = “”;
 for (var i:uint = 0; i < evt.files.length; i++) {
 str += evt.files[i].nativePath + “\n”;
 }
 taFavoriteList.text = str;
 }
]]>
</mx:Script>
 <mx:Form x=”10” y=”10” width=”464” height=”284”>
 <mx:FormItem label=”Favorite Folder:”>
 <mx:TextInput width=”320” id=”tiFavoriteFolder”

editable=”false” enabled=”true”/>
 </mx:FormItem>
 <mx:FormItem label=”Favorite File:”>
 <mx:TextInput width=”320” id=”tiFavoriteFile”

editable=”false” enabled=”true”/>
 </mx:FormItem>
 <mx:FormItem label=”Favorite List:”>

(continued)

206 Part III: Programming the Adobe AIR API

Listing 10-1 (continued)
 <mx:TextArea id=”taFavoriteList” width=”320”

height=”187” wordWrap=”false” editable=”false”
enabled=”true”/>

 </mx:FormItem>
 </mx:Form>
 <mx:Button x=”477” y=”56” label=”...” width=”37”

id=”btnOpenFile” click=”fileOpen()”/>
 <mx:Button x=”477” y=”82” label=”...”

width=”37” id=”btnOpenFileList”
click=”fileOpenFileList()”/>

 <mx:Button label=”...” width=”37” id=”btnSelectFolder”
click=”showDirBrowser()” x=”477” y=”28”/>

</mx:WindowedApplication>

Performing Directory and File Operations
There are several file utility functions that you can perform inside your

Adobe AIR application using the File object. You can use these when you

need, for example, to create a directory, create a temporary file or directory,

or copy a file.

Creating a directory
When you want to create a new directory, use the resolvePath() method

to navigate to the location in which you want the directory to be; then,

follow that up with a call to File.createDirectory(). The File.create
Directory() method first checks to see whether that directory already

exists. If not, then it creates the directory. The following code snippet creates

a wallpaper subdirectory inside the desktop folder. Here’s the JavaScript:

var folder= air.File.desktopDirectory.
 resolvePath(“wallpaper”);
folder.createDirectory();

Or, in ActionScript:

var folder:File = File.desktopDirectory.
 resolvePath(“wallpaper”);
folder.createDirectory();

207 Chapter 10: A New Developer Freedom: Working with the Local File System

Creating a temporary directory or file
It’s a common need, when you’re working with local files and storage, to have

a temporary place to store some data. Rather than come up with your own

routine to identify and create a unique directory name, you can use File.
createTempDirectory(). This method creates a unique folder inside the

main temporary directory of the operating system. For JavaScript, you use:

var tmp = air.File.createTempDirectory();

ActionScript looks like this:

var tmp:File = File.createTempDirectory();

What’s more, if you want to create a temporary file, you can use the File.
createTempFile() method. When called, AIR returns a pointer to a

uniquely named temporary file in the temporary directory of the OS. For

example:

var tmpFile = air.File.createTempFile();
alert(tmpFile.name);

 AIR does not remove the directory automatically when your app closes.

Therefore, be sure to add a clean-up routine to execute when the app closes to

remove any temporary directories and files that you create.

Copying and moving directories and files
You can synchronously copy a file or the entire contents of one directory

to another using the File.copyTo() method. Consider the following

JavaScript example to see how this works for directories:

var sourceFolder = air.File.desktopDirectory.resolvePath(“wallpaper”);
var targetFolder = air.File.desktopDirectory.resolvePath(“son of wallpaper”);
sourceFolder.copyTo(targetFolder);

In this code, the wallpaper directory is copied to a new directory named

son of wallpaper directory inside of the system’s desktop folder.

By default, if the target directory already exists, the operation will fail.

However, the copyTo() method contains an optional overwrite parameter

that, if true, will first delete the target directory first and create a new one for

this usage.

208 Part III: Programming the Adobe AIR API

The following ActionScript sets the overwrite parameter to true:

var sourceFolder:File = File.desktopDirectory.resolvePath(“wallpaper”);
var targetFolder:File = File.desktopDirectory.resolvePath(“son of wallpaper”);

sourceFolder.copyTo(targetFolder, true);

If you’d prefer to move the directory to a different location rather than

copy its contents, use File.moveTo(). It takes the same parameters as

copyTo() but performs a move routine rather than a copy.

Files are synchronously copied and moved in the exact same way. The follow-

ing JavaScript code copies text1.txt to a new file named text2.txt:

var sourceFile = air.File.desktopDirectory.resolvePath(“wallpaper/text1.txt”);
var targetFile = air.File.desktopDirectory.resolvePath(“wallpaper/text2.txt”);
sourceFile.copyTo(targetFile);

Both of these methods also have asynchronous versions — copyToAsync()

and moveToAsync() — when you prefer to perform these operations asyn-

chronously. After these operations are completed, they dispatch a complete

Event (or an ioError event if the operation failed). You can add event lis-

teners to these events for processing after the operation completes or fails.

Here’s an example of copying a directory asynchronously. First, for HTML

developers, here is the JavaScript:

function createBackupCopy() {

 var sourceFolder = air.File.applicationDirectory.

resolvePath(“Data”);
 var targetFolder = air.File.applicationDirectory.

resolvePath(“Data_backup_1”);

 sourceFolder.addEventListener(air.Event.COMPLETE,

onCopyComplete);
 sourceFolder.addEventListener(air.IOErrorEvent.IO_ERROR,

onCopyError);
 sourceFolder.copyToAsync(targetFolder);

}

function onCopyComplete(evt) {
 alert(“Wow, our backup operation actually worked. Is

that cool or what?”);
 }

function onCopyError(evt) {
 alert(“Something really, really bad just happened.”);
}

209 Chapter 10: A New Developer Freedom: Working with the Local File System

And, for Flex and Flash developers, here’s the ActionScript:

 import mx.controls.Alert;

 public function createBackupCopy():void {
 var sourceFolder:File = File.applicationDirectory.

resolvePath(“Data”);
 var targetFolder:File = File.applicationDirectory.
 resolvePath(“Data_backup_01”);

 sourceFolder.addEventListener(Event.COMPLETE,
onCopyComplete);

 sourceFolder.addEventListener(IOErrorEvent.
 IO_ERROR, onCopyError);
 sourceFolder.copyToAsync(targetFolder);
 }

 public function onCopyComplete(evt:Event):void {
 Alert.show(“Wow, our backup operation actually

worked. Is that cool or what?”);
 }

 public function onCopyError(evt:IOErrorEvent):void {
 Alert.show(“Something really, really bad just

happened.”);
 }

Deleting and moving to trash
If you want to delete a file or directory or else just move it to the trash (recy-

cle bin), use one of the following methods:

 ✓ File.moveToTrash()

 ✓ File.moveToTrashAsync()

 ✓ File.deleteFile()

 ✓ File.deleteFileAsync()

The following snippet sends a file to the trash:

var doomedFile = air.File.applicationStorageDirectory.
 resolvePath(“pref.xml”);
doomedFile.moveToTrash();

If you’re using the asynchronous versions of these methods, you can assign a

handler to the complete event when the process has been finished.

210 Part III: Programming the Adobe AIR API

Reading and Writing to Files
After you point to a file using the File object, you probably want to do

something with it, such as adding or saving data inside it. That’s where the

FileStream object comes in. It takes a File instance you’ve already initial-

ized and allows you to read from or write to it.

Whether you read or write to a file stream, you first need to open it using

either the open() or openAsync() method:

fileStream.open(file, fileMode);
fileStream.openAsync(file, fileMode);

Both methods have a fileMode parameter that specifies the capabilities of

the FileStream object. There are four possible file modes:

 ✓ [air.]FileMode.READ specifies that the file is open for reading only.

 ✓ [air.]FileMode.WRITE indicates that the file is open for writing. If

the file already exists on the system, the existing contents are deleted.

(Use FileMode.APPEND if you don’t want to overwrite the contents.) If

the file does not exist, it is created.

 ✓ [air.]FileMode.APPEND tells AIR that the file is open in “append

mode,” meaning that new data is added to the end of the file instead of

replacing existing data. If the file does not exist, the file is created.

 ✓ [air.]FileMode.UPDATE specifies that the file is open for both read-

ing and writing. Use this mode when you need random read/write access

to the file. When a file is being written to, only the bytes at the current

location are overwritten. As you might expect by now, if the file doesn’t

exist, it is created.

After you’ve opened a file, you’re reading for the two R’s — reading and ’riting.

(Okay, it’s technically an R and a W, but two R’s has a better ring to it.)

 If you’d like to see how to asynchronously read/write to a file, skip over to the

“AIRWrite: Creating a Simple Text Editor” section, later in this chapter.

Read from a file
You can use several read methods for reading data from a file stream. For

general-purpose use with text files, you’ll often want to use readMulti-
Byte() or readUTFBytes(). The readMultiByte() method reads a

mutibyte string from the file stream using a character set you specify. The

readUTFBytes() method reads data into a string using the UTF-8 character

set. (See the “AIRWrite: Creating a Simple Text Editor” section, later in this

chapter, for examples of this method.)

211 Chapter 10: A New Developer Freedom: Working with the Local File System

To read a file and assign the data to a variable using readMultiByte(), you

use the following JavaScript code:

var file = air.File.desktopDirectory;
file = file.resolvePath(“text1.txt”);
var fs = new air.FileStream();
fs.open(file, air.FileMode.READ);
var str = fs.readMultiByte(file.size, air.File.

systemCharset);
// do something with str
fs.close();

Here’s the ActionScript version:

var file:File = File.desktopDirectory;
file = file.resolvePath(“text1.txt”);
var fs:FileStream = new FileStream();
fs.open(file, FileMode.READ);
var str:String = fs.readMultiByte(file.size, File.

systemCharset);
// do something with str
fs.close();

The open() method opens the file instance for reading. The second file-
Mode parameter is used to specify the capabilities of the FileStream object.

Using FileMode.READ enables the FileStream instance to read from the

file.

The readMultiByte() method reads a multibyte string from the file stream

using the character set specified by File.systemCharset and returns it as

a string. The size of the file stream is indicated by the file.size property.

When you’re done reading, call the close() of the FileStream instance to

close the file stream.

There are also additional reading methods, including readBytes() (for

assigning to a ByteArray) and the lesser used readUTF() (for files that

have the length of the file’s text data precede the data itself).

Write to a file
The write methods used to write to a file stream parallel the read methods.

To write to a file using writeMultiByte(), here’s the JavaScript code:

var file = air.File.desktopDirectory;
file = file.resolvePath(“text1.txt”);
var fs = new air.FileStream();
fs.open(file, air.FileMode.WRITE);
var str = “This is amazing!”

212 Part III: Programming the Adobe AIR API

fs.writeMultiByte(str, air.File.systemCharset);
fs.close();

Or, in ActionScript:

var file:File= File.desktopDirectory;
file = file.resolvePath(“text1.txt”);
var fs:FileStream = new FileStream();
fs.open(file, FileMode.WRITE);
var str:String = “This is amazing!”
fs.writeMultiByte(str, File.systemCharset);
fs.close();

Check out the following section to discover more techniques related to writ-

ing to a file stream.

AIRWrite: Creating a Simple Text Editor
Building a text editor is perhaps the best way to demonstrate the basic read

and write capabilities of Adobe AIR. You can then visually see how the read

and write operations work inside your own app.

In this part of the chapter, I create both an HTML and Flex version of the

editor and walk you through the code of the HTML version. Both versions

offer essentially the same functionality.

HTML version
The following sections walk you through the construction of the AIRWrite

text editor.

Build the UI
You begin by defining a very simplistic UI — just a single textarea element:

<p><textarea id=”TextEditor”></textarea></p>

For this example, make the textarea fill the contents of the window and be

in monospaced font by adding the following style:

#TextEditor {
 width:100%;
 height:100%;
 font-family: “Courier New”, Courier, monospace;
 font-size:14px;
}

213 Chapter 10: A New Developer Freedom: Working with the Local File System

That’s all the UI design you need to do for this app, so you’re ready to move

on to the JavaScript coding.

Add the AIRAliases.js file
Before adding the app specific code, you first need to add the AIRAliases.
js file, as follows:

<script type=”text/javascript” src=”AIRAliases.js”></script>

Add a root menu
Keeping the UI minimal, you can have the users control the file open and save

processes through a top-level menu. Add four menu items: New, Open, Save,

and Exit/Quit. (See Chapter 8 for the full scoop on working with menus.)

In an init() function that executes when the app is loaded (by calling

window.addEventListener(“load”, init, false), you create the

NativeMenu object that serves as the root menu:

var rootMenu = new air.NativeMenu();
rootMenu.addSubmenu(createFileMenu(),”File”);

// Mac
if (air.NativeApplication.supportsMenu) {
 air.NativeApplication.nativeApplication.menu = rootMenu;
}
// Windows
if (air.NativeWindow.supportsMenu) {
 window.nativeWindow.menu = rootMenu;
}

The createFileMenu() called by the rootMenu.addSubmenu() line is

defined as follows:

 /**
 * Creates the File menu for app
 */
 function createFileMenu() {
 var mnu = new air.NativeMenu();
 createMenuCommand(mnu, ‘New’, ‘n’, null, 0,

fileNew);
 createMenuCommand(mnu, ‘Open’, ‘o’, null, 0,

fileOpen);
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Save’, ‘s’, null, 0,

fileSave);
 createMenuSeparator(mnu);
 // If Mac OS X, then use Quit label
 if (air.NativeApplication.supportsMenu) {
 createMenuCommand(mnu, ‘Quit’, ‘q’, null, 0,

fileExit);

214 Part III: Programming the Adobe AIR API

 }
 // If Windows, then use Exit
 else {
 createMenuCommand(mnu, ‘Exit’, ‘x’, null, 0,

fileExit);
 }
 return mnu;
 }

The createMenuCommand() and createMenuSeparator() functions are

helper routines that create a menu command or separator based on the sup-

plied parameters. (These are shown in Listing 10-2, which appears a little

later.)

Opening a file asynchronously
When the Open menu item is selected, the following routine is called:

function fileOpen(evt) {
 file.addEventListener(air.Event.SELECT, onFileSelect);
 file.browseForOpen(“Open”);
}

The addEventListener() method attaches onFileSelect() as a han-

dler to process the file that is selected from the dialog box displayed using

browseForOpen().

The onFileSelect function calls openAsync() to open the file asynchro-

nously. When using openAsynch(), you need to define handlers to trigger

when the reading process has finished or when an error has occurred. Here’s

the code:

function onFileSelect(evt) {
 var fs = new air.FileStream();
 fs.openAsync(file, air.FileMode.READ);
 fs.addEventListener(air.Event.COMPLETE, onFileRead);
 fs.addEventListener(air.IOErrorEvent.IO_ERROR,

onIOReadError);
 isDirty = false;
 isNewFile = false;
 document.title = “AIRWrite - “ + file.name;
}

The isDirty variable is used to determine whether a file has been modified

by the user. The isNewFile variable is used to determine whether a file has

ever been saved before.

For asynchronous reads, you want to place the file stream reading code

inside the complete event handler:

215 Chapter 10: A New Developer Freedom: Working with the Local File System

function onFileRead(evt) {
 var fs = air.FileStream(evt.target);
 var str = fs.readUTFBytes(fs.bytesAvailable);
 document.getElementById(“TextEditor”).value = str;
 fs.close();
}

In this function, the readUTFBytes() routine assigns the contents of the file

to the str variable. This value is then set as the value for the textarea

element.

In case something goes wrong during the file open process, here’s a handler

to deal with it:

function onIOReadError(evt) {
 alert(“Something wacky happened. We are unable to open “

+ file.nativePath);
}

Saving a file asynchronously
The Save menu item calls the fileSave() function:

 function fileSave(evt) {
 if (!isNewFile) {
 var fs = new air.FileStream();
 fs.openAsync(file, air.FileMode.WRITE);
 fs.addEventListener(air.IOErrorEvent.IO_ERROR,

onIOWriteError);
 var str = document.getElementById
 (“TextEditor”).value;
 str = str.replace(/\n/g, air.File.lineEnding);
 fs.writeUTFBytes(str);
 fs.close();
 isDirty = false;
 }
 else {
 fileSaveAs(evt);
 }
 }

For files that have been previously saved, a file stream is opened for writ-

ing using openAsync(). The content of the textarea is then assigned to

the str variable. Before writing this string to the file, you replace the new

line characters (\n) with a platform specific line ending character (the air.
File.lineEnding property). The file stream is written using writeUTF-
Bytes() and then closed.

216 Part III: Programming the Adobe AIR API

For new files, the fileSaveAs() function is called, as follows:

 function fileSaveAs(evt) {
 file.addEventListener(air.Event.SELECT,

onFileSaveAsSelect);
 file.browseForSave(“Save As”);
 }

This function calls the Save dialog box and sets the handler for the file selec-

tion process to onFileSaveAsSelect(), as follows:

 function onFileSaveAsSelect(evt) {
 document.title = “AIRWrite - “ + file.name;
 isNewFile = false;
 fileSave(evt);
 }

By the time this routine nears completion, the file will have a name and be

read for saving. As a result, the fileSave() function is called again.

Listing 10-2: AIRWriteHtml.html

<html>
<head>
<title>AIRWriteHtml</title>
<style type=”text/css”>
#TextEditor {
 width:100%;
 height:100%;
 font-family: “Courier New”, Courier, monospace;
 font-size:14px;
}
</style>
<script type=”text/javascript” src=”AIRAliases.js”></

script>

<script type=”text/javascript”>

 var file;
 var isDirty= false;
 var isNewFile = false;

 window.addEventListener(“load”, init, false);

 /**
 * Initializes the app after loading
 *
 */
 function init() {
 file = new air.File();
 var rootMenu = new air.NativeMenu();

217 Chapter 10: A New Developer Freedom: Working with the Local File System

 rootMenu.addSubmenu(createFileMenu(),”File”);

 // Mac
 if (air.NativeApplication.supportsMenu) {
 air.NativeApplication.nativeApplication.menu =

rootMenu;
 }
 // Windows
 if (air.NativeWindow.supportsMenu) {
 window.nativeWindow.menu = rootMenu;
 }

 // Start out with a blank doc
 fileNew(null);
 }

 /**
 * Creates new blank file
 */
 function fileNew(evt) {
 file = air.File.desktopDirectory;
 file = file.resolvePath(“Untitled.txt”);
 isDirty = false;
 isNewFile = true;
 document.getElementById(“TextEditor”).value = “”;
 document.title = “AIRWrite - “ + file.name;
 }

 /**
 * Displays File Open dialog box
 */
 function fileOpen(evt) {
 file.addEventListener(air.Event.SELECT, onFileSelect);
 file.browseForOpen(“Open”);
 }

 /**
 * Opens selected file for editing
 */
 function onFileSelect(evt) {
 var fs = new air.FileStream();
 fs.openAsync(file, air.FileMode.READ);
 fs.addEventListener(air.Event.COMPLETE, onFileRead);
 fs.addEventListener(air.IOErrorEvent.IO_ERROR,

onIOReadError);
 isDirty = false;
 isNewFile = false;
 document.title = “AIRWrite - “ + file.name;
 }

 /**
 * Handler for reading file

(continued)

218 Part III: Programming the Adobe AIR API

Listing 10-2 (continued)
 */
 function onFileRead(evt) {
 var fs = air.FileStream(evt.target);
 var str = fs.readUTFBytes(fs.bytesAvailable);
 document.getElementById(“TextEditor”).value = str;
 }

 /**
 * Write file to disc
 */
 function fileSave(evt) {
 if (!isNewFile) {
 var fs = new air.FileStream();
 fs.openAsync(file, air.FileMode.WRITE);
 fs.addEventListener(air.IOErrorEvent.IO_ERROR,

onIOWriteError);
 var str = document.getElementById(“TextEditor”).

value;
 str = str.replace(/\r/g, “\n”);
 str = str.replace(/\n/g, air.File.lineEnding);
 fs.writeUTFBytes(str);
 fs.close();
 isDirty = false;
 }
 else {
 fileSaveAs(evt);
 }
 }

 /**
 * Displays File Save dialog box
 */
 function fileSaveAs(evt) {
 file.addEventListener(air.Event.SELECT,

onFileSaveAsSelect);
 file.browseForSave(“Save As”);
 }

 /**
 * Calls FileSave based on dialog box selection
 */
 function onFileSaveAsSelect(evt) {
 document.title = “AIRWrite - “ + file.name;
 isNewFile = false;
 fileSave(evt);
 }

 /**
 * Exit the app
 */
 function fileExit(evt) {
 air.NativeApplication.nativeApplication.exit();

219 Chapter 10: A New Developer Freedom: Working with the Local File System

 }

 /**
 * Error handlers

 */
 function onIOReadError(evt) {
 alert(“Something wacky happened. We are unable to open

“ + file.nativePath);
 }

 function onIOWriteError(evt) {
 alert(“We are really sorry, but the file cannot be

saved. It’s not our fault...really!”);
 }

 /**
 * Creates the File menu for app
 */
 function createFileMenu() {
 var mnu = new air.NativeMenu();
 createMenuCommand(mnu, ‘New’, ‘n’, null, 0,

fileNew);
 createMenuCommand(mnu, ‘Open’, ‘o’, null, 0,

fileOpen);
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Save’, ‘s’, null, 0,

fileSave);
 createMenuSeparator(mnu);
 // If Mac OS X, then use Quit label
 if (air.NativeApplication.supportsMenu) {
 createMenuCommand(mnu, ‘Quit’, ‘q’, null, 0,

fileExit);
 }
 // If Windows, then use Exit
 else {
 createMenuCommand(mnu, ‘Exit’, ‘x’, null, 0,

fileExit);
 }
 return mnu;
 }

 /**
 * Creates a “fully loaded” menu command based on

parameters
 *
 */
 function createMenuCommand(menuContainer, itemLabel,

itemKey, itemModifiers, itemMnemonic,
selectHandler) {

 var cmd = air.NativeMenu(menuContainer).addItem(new
air.NativeMenuItem(itemLabel));

 cmd.mnemonicIndex = itemMnemonic;

(continued)

220 Part III: Programming the Adobe AIR API

Listing 10-2 (continued)
 cmd.keyEquivalent = itemKey;
 if (itemModifiers != null) {
 cmd.keyEquivalentModifiers = itemModifiers;
 }

 if (selectHandler != null) {
 cmd.addEventListener(air.Event.SELECT,

selectHandler);
 }
 return cmd;
 }

 /**
 * Creates a menu separator
 */
 function createMenuSeparator(menuContainer) {
 var sep = air.NativeMenu(menuContainer).addItem(new

air.NativeMenuItem(“sep”, true));
 return sep;
 }

</script>
</head>

<body>
<p><textarea id=”TextEditor”></textarea></p>
</body>
</html>

Flex version
The Flex version of the AIRWrite editor is shown in Listing 10-3.

Listing 10-3: AIRWrite.html

<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.

com/2006/mxml” layout=”absolute” width=”764”
height=”454”

 applicationComplete=”init()” styleName=”sansChrome”
backgroundGradientAlphas=”[0.3, 0.3]”>

 <mx:Style>
 .sansChrome { background-color:””;}
 </mx:Style>

221 Chapter 10: A New Developer Freedom: Working with the Local File System

 <mx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import flash.display.NativeMenu;

 import flash.display.NativeMenuItem;
 import mx.events.*;

 private var file:File;

 public var isDirty:Boolean = false;
 public var isNewFile:Boolean = false;

 /**
 * Initializes the app after loading
 *
 */
 private function init():void {

 file = new File();

 // Create root menu
 var rootMenu:NativeMenu = new NativeMenu();
 rootMenu.addSubmenu(createFileMenu(),”File”);

 // Mac
 if (NativeApplication.supportsMenu) {
 NativeApplication.nativeApplication.menu =

rootMenu;
 }

 // Windows
 if (NativeWindow.supportsMenu) {
 nativeWindow.menu = rootMenu;
 }

 // Start out with a blank doc
 fileNew(null);
 }

 public function fileNew(evt: Event):void {
 file = File.desktopDirectory;
 file = file.resolvePath(“Untitled.txt”);
 isDirty = false;
 isNewFile = true;
 taEditor.text = “”;
 title = “AIRWrite - “ + file.name;
 this.status = “”;

(continued)

222 Part III: Programming the Adobe AIR API

Listing 10-3 (continued)
 taEditor.setFocus();
 }

 public function fileOpen(evt: Event):void {

 file.addEventListener(Event.SELECT, onFileSelect);
 file.browseForOpen(“Open”);
 }

 public function onFileSelect(evt:Event):void {
 var fs:FileStream = new FileStream();
 fs.openAsync(file, FileMode.READ);
 fs.addEventListener(Event.COMPLETE, onFileRead);
 fs.addEventListener(IOErrorEvent.IO_ERROR,

onIOReadError);
 isDirty = false;
 isNewFile = false;
 this.status = “”;
 title = “AIRWrite - “ + file.name;
 taEditor.setFocus();
 }

 private function onFileRead(evt:Event):void {
 var fs:FileStream = evt.target as FileStream;
 var str:String = fs.readUTFBytes(fs.

bytesAvailable);
 taEditor.text = str;
 fs.close();
 }

 public function fileSave(evt: Event):void {
 if (!isNewFile) {
 var fs:FileStream = new FileStream();
 fs.openAsync(file, FileMode.WRITE);
 fs.addEventListener(IOErrorEvent.IO_ERROR,

onIOWriteError);
 var str:String = taEditor.text;
 str = str.replace(/\r/g, “\n”);
 str = str.replace(/\n/g, File.lineEnding);
 fs.writeUTFBytes(str);
 fs.close();
 isDirty = false;
 this.status = “”;
 }
 else {
 fileSaveAs(evt);
 }
 }

 public function fileSaveAs(evt: Event):void {

223 Chapter 10: A New Developer Freedom: Working with the Local File System

 file.addEventListener(Event.SELECT,
onFileSaveAsSelect);

 file.browseForSave(“Save As”);
 }

 public function onFileSaveAsSelect(evt: Event):void
{

 if (isNewFile) {
 title = “AIRWrite - “ + file.name;
 isNewFile = false;
 }
 fileSave(evt);
 }

 public function fileExit(evt: Event):void {
 NativeApplication.nativeApplication.exit();
 }

 private function onIOReadError(evt:Event):void {
 Alert.show(“Something wacky happened. We are

unable to open “ + file.nativePath, “Error”,
Alert.OK, this);

 }

 private function onIOWriteError(evt:Event):void {
 Alert.show(“We are really sorry, but the file

cannot be saved. It’s not our fault...really!”,
“Error”, Alert.OK, this);

 }

 private function onChange(evt:Event):void {
 this.status = “Modified”;
 isDirty = true;
 }

 /**
 * Creates the File menu for app
 */
 private function createFileMenu():NativeMenu {
 var mnu:NativeMenu = new NativeMenu();
 createMenuCommand(mnu, ‘New’, ‘n’, null, 0,

fileNew);
 createMenuCommand(mnu, ‘Open’, ‘o’, null, 0,

fileOpen);
 createMenuSeparator(mnu);
 createMenuCommand(mnu, ‘Save’, ‘s’, null, 0,

fileSave);
 createMenuSeparator(mnu);
 // If Mac OS X, then use Quit label
 if (NativeApplication.supportsMenu) {

(continued)

224 Part III: Programming the Adobe AIR API

Listing 10-3 (continued)
 createMenuCommand(mnu, ‘Quit’, ‘q’, null, 0,

fileExit);
 }
 // If Windows, then use Exit
 else {
 createMenuCommand(mnu, ‘Exit’, ‘x’, null, 0,

fileExit);
 }
 return mnu;
 }

 /**
 * Creates a “fully loaded” menu command based on

parameters
 *
 */
 public function createMenuCommand(menuContainer:

NativeMenu, itemLabel:String, itemKey:String,
 itemModifiers:Array, itemMnemonic:int,

selectHandler:Function): NativeMenuItem {
 var cmd:NativeMenuItem= NativeMenu(menuContainer).

addItem(new NativeMenuItem(itemLabel));
 cmd.mnemonicIndex = itemMnemonic;
 cmd.keyEquivalent = itemKey;
 if (itemModifiers != null) {
 cmd.keyEquivalentModifiers = itemModifiers;
 }
 if (selectHandler != null) {
 cmd.addEventListener(Event.SELECT,

selectHandler);
 }
 return cmd;
 }

 /**
 * Creates a menu separator
 */
 private function createMenuSeparator(menuContainer:

NativeMenu): NativeMenuItem {
 var sep:NativeMenuItem= NativeMenu(menuContainer).

addItem(new NativeMenuItem(“sep”, true));
 return sep;
 }

]]>
 </mx:Script>

 <mx:TextArea id=”taEditor” x=”0” y=”0” width=”100%”
height=”100%” backgroundAlpha=”0.8”

225 Chapter 10: A New Developer Freedom: Working with the Local File System

 fontFamily=”Courier New” fontSize=”14”
backgroundColor=”#000000” color=”#FFFFFF”
change=”onChange(event)”/>

</mx:WindowedApplication>

Figure 10-5 shows the Flex version of the app, which uses custom Flex

chrome and features a semitransparent window.

Figure 10-5:
Opening a
text file in
AIRWrite.

226 Part III: Programming the Adobe AIR API

Chapter 11

From AIRhead to Datahead:
Working with Databases

In This Chapter
▶ Introducing the SQLite local database engine

▶ Using SQL to communicate with the database

▶ Connecting to a local database

▶ Performing database commands

▶ Inserting data into a table

▶ Working with data that originated from a database

Databases and Web apps have long been “peas in a pod,” two parts of a

solution that just work well together. The duo combine to serve as the

foundation for the majority of Web apps. Adobe AIR enables you to connect

to remote database servers through sockets or HTTP calls. However, it goes

one step further: As does a true desktop app, Adobe AIR allows you to store

database info in a local SQL database.

In this chapter, I introduce you to the database connectivity of Adobe AIR.

I begin by showing you how to connect your app to the SQLLite database

engine to store and retrieve local data. I then walk you through various SQL

commands to interact with the database. In fact, you could find yourself feel-

ing so productive with databases that you might even begin thinking of your-

self as a datahead.

Working with Local Databases
I mention in Chapter 1 that Adobe AIR runtime includes SQLite, a SQL rela-

tional database engine that enables you to work with a local database. Here

are some facts to keep in mind when working with databases in AIR:

228 Part III: Programming the Adobe AIR API

 ✓ The database file that you work with is a local file with a name and

extension you specify (often with a .db extension).

 ✓ You can connect to multiple databases within the same app.

 ✓ The AIR API database commands enable you to work local database

files, not server-based systems.

A local database provides several added capabilities for your AIR app. You

can develop a stand-alone database app that does not require a live connec-

tion to the Internet. You can create an application that stores network data

as a local copy in the SQLite database, resynching with the main server-side

database periodically. You can also use a database to store application-spe-

cific data rather than use a local file to store that information.

For info on SQLLite, go to www.sqlite.org.

Introducing the Basics of SQL
All operations you perform on the database are not done with JavaScript

or ActionScript. Instead, you use SQL. In case you’re not familiar with SQL,

the acronym stands for Structured Query Language, which is the standard

database access language for interacting with databases. Using SQL, you can

create or restructure tables, perform queries, and insert or modify records.

In this section, I give you an overview of the basics of SQL. However, you

need to keep in mind that SQL is a complex language. In fact, I could fill an

entire For Dummies book on the subject. Oh, wait . . . someone already did

that. For more on the SQL language, let me point you to SQL For Dummies,
6th Edition, by Allen G. Taylor; you might also want to check out SQL Server
2008 For Dummies, by Mike Chapple (both published by Wiley).

In human speak, the basic form of a SQL statement is generally the following:

Perform this operation on these fields in this table. For example, this statement:

SELECT * FROM employee

means select all records and all fields from the employee table. As you can

infer, the * means all.

Or, you can deal with specific fields:

SELECT first_name, last_name FROM contact

which means select all the first name and last name values from the employee
table.

229 Chapter 11: From AIRhead to Datahead: Working with Databases

Of course, SQL commands can get much more complex, but these examples

give you the basic idea.

In contrast to JavaScript and ActionScript, SQL is not case sensitive.

Therefore, both of the following two commands are valid:

select order_num from orders
SELECT ORDER_NUM FROM ORDERS

 To help create readable code, the standard convention is to capitalize

reserved words, such as SELECT and FROM, and enter field names and table

names as lowercase. I follow this convention in the examples of this chapter.

Let’s look at the common SQL commands. I reference the sample database

table in Table 11-1 for many of the examples in this chapter.

Table 11-1 Sample Customer Table
id first_name last_name City state

100 Art Vandelay Holden MA

101 Clark Kent Smallville KS

102 Nelson Rockenfelder Jericho KS

103 Kyle Exwhy Lapel IN

104 Roy Kent Jericho KS

104 Rachel Armstrong Boston MA

Handpicking records with SELECT
The SELECT command is used to retrieve records from a table. The basic

syntax is as follows:

SELECT field_name(s) FROM table_name

The set of records that is returned from the query is called the result set.

For example, to return all the records from the customer table, you write:

SELECT * FROM customer

To return just the first and last names from the customer table, write this

instead:

SELECT first_name, last_name FROM customer

230 Part III: Programming the Adobe AIR API

The result set of the preceding query looks like the following:

first_name last_name

Art Vandelay

Clark Kent

Nelson Rockenfelder

Kyle Exwhy

Roy Kent

Rachel Armstrong

In some cases, fields in a table may contain duplicate values, which can be

reflected in your result set. For example, if you want to return the states of

the customer table, you can write:

SELECT state FROM customer

The following result set includes duplicate values:

MA
KS
KS
IN
KS
MA

However, if you use the SELECT DISTINCT statement instead, the result set

includes only unique values. Therefore:

SELECT DISTINCT state FROM customer

returns a result set with no duplicate values:

MA
KS
IN
KS

Adding conditions with WHERE
The WHERE command enables you to specify conditions on the records that

you want to return. The syntax is

SELECT field_name(s) FROM table_name WHERE field_name operator value

231 Chapter 11: From AIRhead to Datahead: Working with Databases

For example, if you want to return the names of the customers who live in

Kansas, you can use the following statement:

SELECT * FROM customer WHERE state=’KS’

Note that the string value KS is enclosed in single quotation marks. Numeric

values, however, are not enclosed in quotation marks. For example:

SELECT * FROM customer WHERE id>101

You use the greater than sign (>) as the operator in this query. The result set

returns all the customer records that have an id value of greater than 101.

You have several operators that you can use, as specified in Table 11-2.

Table 11-2 SQL WHERE Operators
Operator Description

= Equal

<> Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

LIKE Search for a specific pattern

Sorting with ORDER BY
You can specify the sort order of the result set by using the ORDER BY com-

mand. Here’s the general structure:

SELECT field_name(s) FROM table_name ORDER BY field_name(s) ASC|DESC

By default, the result is sorted in ascending order (ASC). However, you can

instead add the DESC keyword at the end to sort in descending order.

Here’s an example of a sort:

SELECT first_name, last_name FROM customer ORDER BY last_name, first_name DESC

232 Part III: Programming the Adobe AIR API

The result set looks like this:

first_name last_name

Art Vandelay

Nelson Rockenfelder

Roy Kent

Clark Kent

Kyle Exwhy

Rachel Armstrong

Adding records with INSERT INTO
To insert a new record into a database table, you use the INSERT INTO

statement. Follow the general syntax shown here:

INSERT INTO table_name (field1, field2, field3)
 VALUES (‘value1’, ‘value2’, ‘value3’)

As you can see, the field names themselves are not enclosed in quotation

marks, but string values are inside the VALUES parentheses.

Here’s an example of adding a new record to the customer table:

INSERT INTO customer (id, last_name, first_name, city, state)
 VALUES (105, ‘Hammer’, ‘Jack’, ‘Chicago’, ‘IL’)

Modifying records with UPDATE
You can use the UPDATE statement to update existing records in your data-

base table with new values. Check out the structure of a typical UPDATE

statement:

UPDATE table_name SET field1=’value1’, field2=’value2’, ...
 WHERE fieldX=’valueY’

 In most cases, you want to have the WHERE clause on the end of an UPDATE

statement to determine which record or set of records to update. If you don’t

add the WHERE clause, all the records in the table are updated to the values

specified in the SET clause.

233 Chapter 11: From AIRhead to Datahead: Working with Databases

Getting rid of records with DELETE
The DELETE statement removes all the records from a table that match the

criteria specified by the WHERE clause. Check out the syntax:

DELETE FROM table_name WHERE fieldX=’value1’ AND fieldY=’value2’

The following example deletes all customers from MA:

DELETE FROM customer WHERE state=’MA’

Or, if you really, really want to, you can delete all records in the table by leav-

ing off the WHERE clause. For example:

DELETE FROM customer

You can also use the * keyword:

DELETE * FROM customer

Creating a table with CREATE TABLE
You use the CREATE TABLE statement to create a table in your database. In

its simplest form, the syntax is as follows:

CREATE TABLE table_name
(
field1 data_type,
field2 data_type,
field3 data_type
}

Unsupported SQL Features in Adobe AIR
The following SQL features are not available in
Adobe AIR:

✓ The triggers FOR EACH STATEMENT
and INSTEAD OF, as well as recursive
triggers

✓ The FOREIGN KEY statement

✓ Nested transactions

✓ RIGHT OUTER JOIN and FULL OUTER
JOIN

✓ Updateable VIEW

✓ GRANT and REVOKE

Also, most ALTER TABLE options are not
supported, including DROP COLUMN, ALTER
COLUMN, and ADD CONSTRAINT.

234 Part III: Programming the Adobe AIR API

The data type for a given field can be one of the types shown in Table 11-3.

When a record is saved, the AIR runtime will attempt to convert the data value

from its JavaScript or ActionScript type into the type (more specifically called

the affinity) of the field you specify. You can specify whether you want to allow

NULL values in the field when you define the CREATE TABLE statement.

Table 11-3 Adobe AIR Database Data Types
Type Description

TEXT (or STRING) Allows normal storage of text.

NUMERIC Allows you to store real, integer, or null values.

INTEGER Integer values.

REAL (or NUMBER) Forces numbers into floating point representation.

BOOLEAN Contains true or false values.

DATE Date values.

XML For storing of XML structures. The ActionScript function
XML() is called to convert the incoming data into an XML
structure.

XMLLIST For storing of XML structures. The ActionScript function
XMLList() is called to convert the incoming data into
an XML list.

OBJECT For storing JavaScript or ActionScript object instances.
Data is serialized in AMF3 format.

NONE Data is inserted into the field without conversion.

The following statement creates the customer table. Notice the IF NOT
EXISTS clause, which tells the database to create the customer table only if

the table has not been created before:

CREATE TABLE IF NOT EXISTS customer
(
 id INTEGER,
 first_name TEXT,
 last_name TEXT,
 city TEXT,
 state TEXT
)

If you want to define a primary key to a field, you add PRIMARY KEY after the

desired field:

 id INTEGER PRIMARY KEY,

235 Chapter 11: From AIRhead to Datahead: Working with Databases

A common desire is to have the primary key field be autoincrementing,

freeing you from needing to generate a unique field value on your own. For

example, suppose you’d like the id field to be autoincrementing. To make it

so, you type:

 id INTEGER PRIMARY KEY AUTOINCREMENT,

Following is a full example. If you want the id of your customer table to be

autoincrementing, you define the table as follows:

CREATE TABLE IF NOT EXISTS customer
(
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 first_name TEXT,
 last_name TEXT,
 city TEXT,
 state TEXT
)

Then, when a new record is added, you don’t specify the autoincrement field

value but instead provide the remaining values:

INSERT INTO customer (last_name, first_name, city, state)
 VALUES (‘Hammer’, ‘Jack’, ‘Chicago’, ‘IL’)

Opening a Database Connection
Your first step in performing any database operation is to open a connection

to a local database file. Just as with file system files, you can create either

synchronous or asynchronous connections. (See Chapter 10 for an explana-

tion of the difference between synchronous and asynchronous connections.)

You create synchronous connections using open(), and the commands on the

database are performed sequentially in the order in which they occur in the

source code. What’s more, the app will wait on result of the operation from

the database engine before continuing.

For asynchronous connections, you use openAsync() and add a handler to

the connection’s OPEN event to perform operations on an open connection.

When you establish an asynchronous connection, your AIR app hands off a

SQL statement to the database engine for processing but doesn’t wait for the

results. The database engine takes the request and processes it in the back-

ground. When the SQL statement has been completed, an event is dispatched

in your app.

236 Part III: Programming the Adobe AIR API

 Perhaps the most practical distinction between open() and openAsynch()

is that open() waits to execute any more lines of code until the database

open operation finishes. In contrast, openAsynch() fires off the database

connection call but continues processing lines of code that appear below it.

Therefore, if you have code that’s dependent on the database connection

being established, you want to place that code within the OPEN event handler.

 When you open a connection, AIR looks for the local file you specify. If that file

is not found, a new database file is created for you.

The following JavaScript function establishes a synchronous connection to

a database called rss.db, located in the rssfeed subfolder of the user’s

documents directory:

function connectDatabase() {
 var dbRoot = air.File.documentsDirectory.resolvePath(“rssdrop”);
 dbRoot.createDirectory();
 dbFile = dbRoot.resolvePath(“rss.db”);
 sqlConnection = new air.SQLConnection();
 sqlConnection.open(dbFile);
 // do something now
}

The resolvePath() method assigns the rssfeed folder to the dbRoot

variable. This folder is then created if necessary. The dbFile is assigned to

the rss.db, which is the database file, which is then used as the parameter

in the connection’s open() method.

Here’s the ActionScript equivalent:

private function connectDatabase():void {
 var dbRoot: File = File.documentsDirectory.resolvePath(“rssdrop”);
 dbRoot.createDirectory();
 dbFile = dbRoot.resolvePath(“rss.db”);
 sqlConnection = new SQLConnection();
 sqlConnection.open(dbFile);
 // do something now
}

Alternatively, you can open the database asynchronously. To do so in

JavaScript, use this code:

function connectDatabase() {
 var dbRoot = air.File.documentsDirectory.resolvePath(“rssdrop”);
 dbRoot.createDirectory();
 dbFile = dbRoot.resolvePath(“rss.db”);
 sqlConnection = new air.SQLConnection();
 sqlConnection.addEventListener(air.SQLEvent.OPEN, onDatabaseOpen);
 sqlConnection.addEventListener(air.SQLErrorEvent.ERROR, onDatabaseError);
 sqlConnection.openAsync(dbFile);

237 Chapter 11: From AIRhead to Datahead: Working with Databases

}

function onDatabaseOpen(event) {
 // here’s where you would do something with the open database
}

private function onDatabaseError(event) {
 alert(event.error.message + “ Details: “ + event.error.details);
}

As you can see, two event listeners are added. They are triggered when

the database opens or when a database error occurs. The openAsynch()

method is then called to open the rss.db database.

The ActionScript code is as follows:

private function connectDatabase(): void {
 var dbRoot: File = File.documentsDirectory.resolvePath(‘rssdrop’);
 dbRoot.createDirectory();
 dbFile = dbRoot.resolvePath(DATABASE_FILE);
 sqlConnection = new SQLConnection();
 sqlConnection.addEventListener(SQLEvent.OPEN, onDatabaseOpen);
 sqlConnection.addEventListener(SQLErrorEvent.ERROR, onDatabaseError);
 sqlConnection.openAsync(dbFile);
}

private function onDatabaseOpen(event:SQLEvent): void {
 // here’s where you would do something with the open database
}

private function onDatabaseError(event:SQLErrorEvent): void {
 Alert.show(event.error.message + “ Details: “ + event.error.details);
}

After a database connection is established, you can either create a database

table or perform an operation on an existing table.

Performing Database Operations
with SQLStatement

You send SQL commands to the database by using a SQLStatement object.

The SQLStatement object uses an open database connection to execute

a SQL statement on the database. Adobe AIR allows you to work with the

results of the SQL statement by attaching a handler to the RESULT event,

which is dispatched when the database finishes processing. In case of a prob-

lem, you should also add a listener to the ERROR event.

238 Part III: Programming the Adobe AIR API

Here’s a basic framework for opening a database and executing a SQL

command:

// Assign File object instance to local database file
database_file = database_path.resolvePath(“database.db”);
// Create SQL connection
sqlConnection = new air.SQLConnection();
// Open either synchronous or asynchronous connection on the database file
sqlConnection.open(database_file);
// Create SQL statement
var statement = new air.SQLStatement();
// Connect the dots
statement.sqlConnection = sqlConnection;
// Create SQL statement
var sql = “MY SQL STATEMENT GOES HERE”
statement.text = sql;
// Add event handlers
statement.addEventListener(air.SQLEvent.RESULT, onDatabaseCreated);
statement.addEventListener(air.SQLErrorEvent.ERROR, onDatabaseError);
// Execute SQL - process results in the SQLEvent.RESULT handler
statement.execute();

The following sections show you how this framework works with a variety of

SQL statements.

Creating a Database Table
Unless you are delivering your app with a pre-populated database, your first

step will typically be to create one or more tables in which to store data. You

do this by passing a CREATE TABLE SQL statement to the database.

The following code assigns an open connection called sqlConnection to

the SQLStatement instance’s sqlConnection property. A SQL statement

is created as a String variable and assigned to the text property of the

SQLStatement. This SQL statement is passed to the database engine using

execute() for processing. The SQL statement itself tells the database to

create a table named rssfeeds if it does not already exist. Event handlers

are provided to process the result of the statement.

Check out the JavaScript code:

function initializeDatabase() {
 var createStmt = new air.SQLStatement();
 createStmt.sqlConnection = sqlConnection;

239 Chapter 11: From AIRhead to Datahead: Working with Databases

 var sql =
 “CREATE TABLE IF NOT EXISTS rssfeeds (“ +
 “ feedId INTEGER PRIMARY KEY AUTOINCREMENT, “ +
 “ url TEXT UNIQUE, “ +
 “ name TEXT, “ +
 “ homeURL TEXT, “ +
 “ lastFetched DATE” +
 “)”;
 createStmt.text = sql;
 createStmt.addEventListener(air.SQLEvent.RESULT, onDatabaseCreated);
 createStmt.addEventListener(air.SQLErrorEvent.ERROR, onDatabaseError);
 createStmt.execute();
}

function onDatabaseCreated() {
 air.trace(“You created your very own database table!!!!!”);
}

function onDatabaseError() {
 air.trace(“Bummer, something went majorly wrong.”);
}

Here is the ActionScript code:

private function initializeDatabase(): void {
 var createStmt:SQLStatement = new SQLStatement();
 createStmt.sqlConnection = sqlConnection;
 var sql:String =
 “CREATE TABLE IF NOT EXISTS rssfeeds (“ +
 “ feedId INTEGER PRIMARY KEY AUTOINCREMENT, “ +
 “ url TEXT UNIQUE, “ +
 “ name TEXT, “ +
 “ homeURL TEXT, “ +
 “ lastFetched DATE” +
 “)”;
 createStmt.text = sql;
 createStmt.addEventListener(SQLEvent.RESULT, onDatabaseCreated);
 createStmt.addEventListener(SQLErrorEvent.ERROR, onDatabaseError);
 createStmt.execute();
}

private function onDatabaseCreated(event:SQLEvent): void {
 (“You created your very own database table!!!!!”);
}

private function onDatabaseError(): void {
 trace(“Bummer, something went majorly wrong.”);
}

240 Part III: Programming the Adobe AIR API

Inserting a Record
The following code inserts a database record into the rssfeed database.

Notice how it uses script variables in the SQL statement.

In JavaScript:

function addRecord() {
 var url = “http://www.richwagnerwords.com/rss.xml”;
 var name = “Rich Wagner Blog”;
 var homeURL = “http://www.richwagnerwords.com”;
 var lastFetched = 12/31/2008 as Date;
 insertRecord(url, name, homeURL, lastFetched);
}

function insertRecord(url, name, homeURL, lastFetched) {
 var insertStmt = new air.SQLStatement();
 insertStmt.sqlConnection = sqlConnection;
 var sql:String =
 “INSERT INTO rssfeeds (url, name, homeURL, lastFetched) “ +
 “VALUES (‘” + url + “’, ‘” + name + “’, ‘” + homeURL + “’, “ + lastFetched +

“)”;
 insertStmt.text = sql;
 insertStmt.addEventListener(air.SQLEvent.RESULT, onDatabaseInsert);
 insertStmt.addEventListener(air.SQLErrorEvent.ERROR, onDatabaseError);
 insertStmt.execute();
}

In ActionScript:

private function addRecord() : void {
 var url:String = “http://www.richwagnerwords.com/rss.xml”;
 var name:String = “Rich Wagner Blog”;
 var homeURL:String = “http://www.richwagnerwords.com”;
 var lastFetched:Date = 12/31/2008 as Date;
 insertRecord(url, name, homeURL, lastFetched);
}

private function insertRecord(url:String, name:String, homeURL:String,
 lastFetched:Date): void {
 var insertStmt:SQLStatement = new SQLStatement();
 insertStmt.sqlConnection = sqlConnection;
 var sql:String =
 “INSERT INTO rssfeeds (url, name, homeURL, lastFetched) “ +
 “VALUES (‘” + url + “’, ‘” + name + “’, ‘” + homeURL + “’, “ + lastFetched +

“)”;
 insertStmt.text = sql;
 insertStmt.addEventListener(SQLEvent.RESULT, onDatabaseInsert);
 insertStmt.addEventListener(SQLErrorEvent.ERROR, onDatabaseError);
 insertStmt.execute();
}

241 Chapter 11: From AIRhead to Datahead: Working with Databases

Here’s a more complex Flex-based data entry example combining several of

these database tasks as well as some other techniques that I discuss in other

chapters.

First, this example shows how to develop an app that provides a form-based

interface in which to enter information on an RSS feed (see Figure 11-1). This

information is then added into the database table.

Figure 11-1:
Simple data
entry form.

The MXML layout is as follows:

<mx:Text x=”88” y=”28” text=”URL:” textAlign=”left”/>
<mx:Text x=”84” y=”61” text=”Title:” textAlign=”left”/>
<mx:Text x=”56” y=”93” text=”Home URL:” textAlign=”left”/>
<mx:Text x=”42” y=”155” text=”Last Fetched: “ textAlign=”left”/>
<mx:TextInput id=”tiURL” x=”138” y=”26” width=”185”/>
<mx:TextInput id=”tiTitle” x=”138” y=”59” width=”185”/>
<mx:TextInput id=”tiHomeURL” x=”138” y=”91” width=”185”/>
<mx:DateField id=”dfLastFetched” x=”138” y=”153”/>
<mx:Button x=”270” y=”192” label=”Insert” click=”onInsertClick()”/>
<mx:Text x=”56” y=”121” text=”Feed type:” textAlign=”left”/>
<mx:ComboBox id=”cbType” x=”138” y=”119” width=”185”>
 <mx:dataProvider>
 <mx:String>RSS 2.0</mx:String>
 <mx:String>RSS 1.0</mx:String>
 <mx:String>Atom</mx:String>
</mx:dataProvider>
</mx:ComboBox>

The following code shows the initialization routine in which the database is

opened and the table is created if it does not exist:

 static private const DATABASE_FILE: String = “rssfeeds.db”;

 private var dbFile: File;
 private var sqlConnection:SQLConnection;
 private var feedURL: String;
 private var feedTitle: String;

242 Part III: Programming the Adobe AIR API

 private var homeURL: String;
 private var lastFetched: String;
 private var feedType: String;

 // Initialize app
 private function init() : void
 {
 connectDatabase();
 }

 // Connect to database
 private function connectDatabase() : void
 {
 var dbRoot: File = File.documentsDirectory.resolvePath(‘rssdrop’);
 dbRoot.createDirectory();
 dbFile = dbRoot.resolvePath(DATABASE_FILE);
 sqlConnection = new SQLConnection();
 sqlConnection.addEventListener(SQLEvent.OPEN, onDatabaseOpen);
 sqlConnection.addEventListener(SQLErrorEvent.ERROR, onDatabaseError);
 sqlConnection.openAsync(dbFile);
 }

 // Initialize database once the connection is opened
 private function onDatabaseOpen(event:SQLEvent) : void
 {
 initializeDatabase();
 }

 // Database error
 private function onDatabaseError(event:SQLErrorEvent) : void
 {
 Alert.show(event.error.message + “ Details: “ + event.error.details);
 }

 // Create database table, if it does not exist
 private function initializeDatabase() : void
 {
 var createStmt:SQLStatement = new SQLStatement();
 createStmt.sqlConnection = sqlConnection;
 var sql:String =
 “CREATE TABLE IF NOT EXISTS rssfeeds (“ +
 “ feedId INTEGER PRIMARY KEY AUTOINCREMENT, “ +
 “ url TEXT UNIQUE, “ +
 “ title TEXT, “ +
 “ feedType TEXT, “ +
 “ homeURL TEXT, “ +
 “ lastFetched DATE” +
 “)”;
 createStmt.text = sql;

243 Chapter 11: From AIRhead to Datahead: Working with Databases

 createStmt.addEventListener(SQLEvent.RESULT, onDatabaseCreated);
 createStmt.addEventListener(SQLErrorEvent.ERROR, onDatabaseError);
 createStmt.execute();
 }

 // Creation handler
 private function onDatabaseCreated(event:SQLEvent) : void
 {
 trace(“Table created.”);
 }

Note that the url field adds a new SQL operator named UNIQUE, which

ensures that only unique RSS feeds can be added to the system.

Next, when the user clicks the Insert button, the contents of the fields are

used in a SQL statement to the open database. Here’s the code related to

inserting user data into the database:

 // Insert record into the table
 private function insertRecord(url:String, title:String, feedType: String,

homeURL:String, lastFetched:String) : void
 {
 var insertStmt:SQLStatement = new SQLStatement();
 insertStmt.sqlConnection = sqlConnection;
 var lfDate:Date = lastFetched as Date;
 var sql:String =
 “INSERT INTO rssfeeds (url, title, feedType, homeURL, lastFetched) “ +
 “VALUES (‘” +
 url + “’, ‘” + title + “’, ‘” + feedType + “’, ‘” + homeURL + “’,

“ + lfDate
 + “)”;
 insertStmt.text = sql;
 insertStmt.addEventListener(SQLEvent.RESULT, onDatabaseInsert);
 insertStmt.addEventListener(SQLErrorEvent.ERROR, onDatabaseError);
 insertStmt.execute();
 }

 // When insert is successful...
 private function onDatabaseInsert(event:SQLEvent) : void
 {
 Alert.show(“Feed successfully inserted!”);
 clearFields();
 }

 // Handler for Insert button click
 private function onInsertClick(): void
 {
 var d:String = dfLastFetched.selectedDate as String;

244 Part III: Programming the Adobe AIR API

 insertRecord(tiURL.text, tiTitle.text, cbType.text, tiHomeURL.text, d);
 }

 // Clear all UI fields
 private function clearFields() : void
 {
 tiURL.text = “”;
 tiHomeURL.text = “”;
 tiURL.text = “”;
 cbType.text = “”;
 }

Figure 11-2 shows the result that appears on-screen.

Figure 11-2:
The data-

base is
happy it

got a new
record.

Rather than stop there, you can add one additional way to add data into the

database table: through drag-and-drop of an RSS feed onto the app. To do so,

you begin by adding two drag-and-drop event listeners to the init() function:

 addEventListener(NativeDragEvent.NATIVE_DRAG_ENTER, onDragIn);
 addEventListener(NativeDragEvent.NATIVE_DRAG_DROP, onDragDrop);

You then add the two handlers for these events to accept dragged-in URLs:

 // Drag In handler
 public function onDragIn(event:NativeDragEvent) : void
 {
 NativeDragManager.dropAction = NativeDragActions.COPY;
 if (event.clipboard.hasFormat(ClipboardFormats.URL_FORMAT))
 {
 NativeDragManager.acceptDragDrop(this);
 }
 }

 // Drop handler
 public function onDragDrop(event:NativeDragEvent) : void
 {

245 Chapter 11: From AIRhead to Datahead: Working with Databases

 if (event.clipboard.hasFormat(ClipboardFormats.URL_FORMAT)) {
 feedURL = (event.clipboard.getData(ClipboardFormats.URL_FORMAT,

ClipboardTransferMode.ORIGINAL_PREFERRED) as String);
 dropFeed(feedURL);
 }
 }

The onDragDrop() function captures the URL dropped onto the app and

passes it to the dropFeed() function, which follows:

// Retrieve feed info via HTTPService
 public function dropFeed(url:String): void
 {
 CursorManager.setBusyCursor();
 var httpService:HTTPService = new HTTPService();
 httpService.resultFormat = “object”;
 httpService.addEventListener(ResultEvent.RESULT, onFetchComplete);
 httpService.addEventListener(FaultEvent.FAULT, onFetchError);
 httpService.url = url;
 httpService.send();
 }

 See Chapter 9 for more details on drag-and-drop.

Before the app can add the RSS feed as a record into the table, it needs

to gather additional field-related info. To have it do so, you can use an

HTTPService object to retrieve that information directly from the feed itself.

(See Chapter 12 for more on connecting to network resources in AIR apps.)

Note that the onFetchComplete() function is the handler that is triggered

when the HTTPService object returns a result. Here’s the code:

 // Handler for HTTPService result event
 // Retrieve info for record
 private function onFetchComplete(event:ResultEvent) : void
 {
 // RSS 2.0
 if (event.result.hasOwnProperty(“rss”))
 {
 feedTitle = event.result.rss.channel.title as String;
 homeURL = event.result.rss.channel.link as String;
 lastFetched = event.result.rss.channel.lastBuildDate as String;
 feedType = “RSS 2.0”;
 }
 // RSS 1.0
 else if (event.result.hasOwnProperty(“RDF”))
 {
 feedTitle = event.result.RDF.channel.title as String;
 homeURL = event.result.RDF.channel.link as String;
 lastFetched = event.result.RDF.channel.lastBuildDate as String;
 feedType = “RSS 1.0”;
 }
 // Atom

246 Part III: Programming the Adobe AIR API

 else if (event.result.hasOwnProperty(“feed”))
 {
 feedTitle = event.result.feed.title as String;
 homeURL = event.result.feed.link[0] as String;
 lastFetched = event.result.feed.updated as String;
 lastFetched = lastFetched.replace(/-/g, “/”);
 lastFetched = lastFetched.replace(“T”, “ “);
 lastFetched = lastFetched.replace(“Z”, “ GMT-0000”);
 feedType = “Atom”;
 }
 // Unsupported
 else
 {
 trace(“Unable to retrieve RSS feed: Unsupported format.”);
 return;
 }

 clearFields();
 insertRecord(feedURL, feedTitle, feedType, homeURL, lastFetched);
 CursorManager.removeBusyCursor();
 }

 // Error handler for HTTPService
 private function onFetchError(event:FaultEvent) : void
 {
 CursorManager.removeBusyCursor();
 trace(“The following error occurred when fetching the RSS feed: “ + event.

message);
 }

Listing 11-1 provides the full source code for this app.

Listing 11-1: rssdrop.mxml
<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
 applicationComplete=”init()” height=”276” width=”378”>

<mx:Script>
 <![CDATA[
 import mx.rpc.http.HTTPService;
 import flash.data.SQLConnection;
 import flash.data.SQLStatement;
 import flash.events.SQLErrorEvent;
 import flash.events.SQLEvent;
 import mx.controls.Alert;
 import mx.collections.ArrayCollection;
 import mx.managers.CursorManager;
 import mx.rpc.events.FaultEvent;

247 Chapter 11: From AIRhead to Datahead: Working with Databases

 import mx.rpc.events.ResultEvent;

 static private const DATABASE_FILE: String = “rssfeeds.db”;

 private var dbFile: File;
 private var sqlConnection:SQLConnection;
 private var feedURL: String;
 private var feedTitle: String;
 private var homeURL: String;
 private var lastFetched: String;
 private var feedType: String;

 // Initialize app
 private function init() : void
 {
 connectDatabase();
 addEventListener(NativeDragEvent.NATIVE_DRAG_ENTER, onDragIn);
 addEventListener(NativeDragEvent.NATIVE_DRAG_DROP, onDragDrop);
 }

 // Connect to database
 private function connectDatabase() : void
 {
 var dbRoot: File = File.documentsDirectory.resolvePath(‘rssdrop’);
 dbRoot.createDirectory();
 dbFile = dbRoot.resolvePath(DATABASE_FILE);
 sqlConnection = new SQLConnection();
 sqlConnection.addEventListener(SQLEvent.OPEN, onDatabaseOpen);
 sqlConnection.addEventListener(SQLErrorEvent.ERROR, onDatabaseError);
 sqlConnection.openAsync(dbFile);
 }

 // Initialize database once the connection is opened
 private function onDatabaseOpen(event:SQLEvent) : void
 {
 initializeDatabase();
 }

 // Database error
 private function onDatabaseError(event:SQLErrorEvent) : void
 {
 Alert.show(event.error.message + “ Details: “ + event.error.details);
 }

 // Create database table, if it does not exist
 private function initializeDatabase() : void
 {
 var createStmt:SQLStatement = new SQLStatement();

(continued)

248 Part III: Programming the Adobe AIR API

Listing 11-1 (continued)
 createStmt.sqlConnection = sqlConnection;
 var sql:String =
 “CREATE TABLE IF NOT EXISTS rssfeeds (“ +
 “ feedId INTEGER PRIMARY KEY AUTOINCREMENT, “ +
 “ url TEXT UNIQUE, “ +
 “ title TEXT, “ +
 “ feedType TEXT, “ +
 “ homeURL TEXT, “ +
 “ lastFetched DATE” +
 “)”;
 createStmt.text = sql;
 createStmt.addEventListener(SQLEvent.RESULT, onDatabaseCreated);
 createStmt.addEventListener(SQLErrorEvent.ERROR, onDatabaseError);
 createStmt.execute();
 }

 // Creation handler
 private function onDatabaseCreated(event:SQLEvent) : void
 {
 trace(“Table created.”);
 }

 // Insert record into the table
 private function insertRecord(url:String, title:String, feedType: String,

homeURL:String, lastFetched:String) : void
 {
 var insertStmt:SQLStatement = new SQLStatement();
 insertStmt.sqlConnection = sqlConnection;
 var lfDate:Date = lastFetched as Date;
 var sql:String =
 “INSERT INTO rssfeeds (url, title, feedType, homeURL, lastFetched) “ +
 “VALUES (‘” +
 url + “’, ‘” + title + “’, ‘” + feedType + “’, ‘” + homeURL + “’,

“ + lfDate
 + “)”;
 insertStmt.text = sql;
 insertStmt.addEventListener(SQLEvent.RESULT, onDatabaseInsert);
 insertStmt.addEventListener(SQLErrorEvent.ERROR, onDatabaseError);
 insertStmt.execute();
 }

 // When insert is successful...
 private function onDatabaseInsert(event:SQLEvent) : void
 {
 Alert.show(“Feed successfully inserted!”);
 clearFields();
 }

 // Handler for Insert button click
 private function onInsertClick(): void
 {
 var d:String = dfLastFetched.selectedDate as String;

249 Chapter 11: From AIRhead to Datahead: Working with Databases

 insertRecord(tiURL.text, tiTitle.text, cbType.text, tiHomeURL.text, d);
 }

 // Clear all UI fields
 private function clearFields() : void
 {
 tiURL.text = “”;
 tiHomeURL.text = “”;
 tiURL.text = “”;
 cbType.text = “”;
 }

 // Drag In handler
 public function onDragIn(event:NativeDragEvent) : void
 {
 NativeDragManager.dropAction = NativeDragActions.COPY;
 if (event.clipboard.hasFormat(ClipboardFormats.URL_FORMAT))
 {
 NativeDragManager.acceptDragDrop(this);
 }
 }

 // Drop handler
 public function onDragDrop(event:NativeDragEvent) : void
 {
 if (event.clipboard.hasFormat(ClipboardFormats.URL_FORMAT)) {
 feedURL = (event.clipboard.getData(ClipboardFormats.URL_FORMAT,

ClipboardTransferMode.ORIGINAL_PREFERRED) as String);
 dropFeed(feedURL);
 }
 }

 // Retrieve feed info via HTTPService
 public function dropFeed(url:String): void
 {
 CursorManager.setBusyCursor();
 var httpService:HTTPService = new HTTPService();
 httpService.resultFormat = “object”;
 httpService.addEventListener(ResultEvent.RESULT, onFetchComplete);
 httpService.addEventListener(FaultEvent.FAULT, onFetchError);
 httpService.url = url;
 httpService.send();
 }

 // Handler for HTTPService result event
 // Retrieve info for record
 private function onFetchComplete(event:ResultEvent) : void
 {
 // RSS 2.0
 if (event.result.hasOwnProperty(“rss”))
 {

(continued)

250 Part III: Programming the Adobe AIR API

Listing 11-1 (continued)
 feedTitle = event.result.rss.channel.title as String;
 homeURL = event.result.rss.channel.link as String;
 lastFetched = event.result.rss.channel.lastBuildDate as String;
 feedType = “RSS 2.0”;
 }
 // RSS 1.0
 else if (event.result.hasOwnProperty(“RDF”))
 {
 feedTitle = event.result.RDF.channel.title as String;
 homeURL = event.result.RDF.channel.link as String;
 lastFetched = event.result.RDF.channel.lastBuildDate as String;
 feedType = “RSS 1.0”;
 }
 // Atom
 else if (event.result.hasOwnProperty(“feed”))
 {
 feedTitle = event.result.feed.title as String;
 homeURL = event.result.feed.link[0] as String;
 lastFetched = event.result.feed.updated as String;
 lastFetched = lastFetched.replace(/-/g, “/”);
 lastFetched = lastFetched.replace(“T”, “ “);
 lastFetched = lastFetched.replace(“Z”, “ GMT-0000”);
 feedType = “Atom”;
 }
 // Unsupported
 else
 {
 trace(“Unable to retrieve RSS feed: Unsupported format.”);
 return;
 }

 clearFields();
 insertRecord(feedURL, feedTitle, feedType, homeURL, lastFetched);
 CursorManager.removeBusyCursor();
 }

 // Error handler for HTTPService
 private function onFetchError(event:FaultEvent) : void
 {
 CursorManager.removeBusyCursor();
 trace(“The following error occurred when fetching the RSS feed: “ + event.

message);
 }

]]>
</mx:Script>
 <mx:Text x=”88” y=”28” text=”URL:” textAlign=”left”/>
 <mx:Text x=”84” y=”61” text=”Title:” textAlign=”left”/>
 <mx:Text x=”56” y=”93” text=”Home URL:” textAlign=”left”/>
 <mx:Text x=”42” y=”155” text=”Last Fetched: “ textAlign=”left”/>
 <mx:TextInput id=”tiURL” x=”138” y=”26” width=”185”/>
 <mx:TextInput id=”tiTitle” x=”138” y=”59” width=”185”/>

251 Chapter 11: From AIRhead to Datahead: Working with Databases

 <mx:TextInput id=”tiHomeURL” x=”138” y=”91” width=”185”/>
 <mx:DateField id=”dfLastFetched” x=”138” y=”153”/>
 <mx:Button x=”270” y=”192” label=”Insert” click=”onInsertClick()”/>
 <mx:Text x=”56” y=”121” text=”Feed type:” textAlign=”left”/>
 <mx:ComboBox id=”cbType” x=”138” y=”119” width=”185”>
 <mx:dataProvider>
 <mx:String>RSS 2.0</mx:String>
 <mx:String>RSS 1.0</mx:String>
 <mx:String>Atom</mx:String>
 </mx:dataProvider>
 </mx:ComboBox>

</mx:WindowedApplication>

Requesting Data from a Table
When you perform a SELECT query on a table, you execute the SQL

statement in much the same way as you do the CREATE NEW and INSERT

examples shown in the previous sections. However, the key aspect of a

SELECT statement is processing the result set that is returned to you from

the database.

Consider the following HTML/JavaScript example that demonstrates how to

work with the result set of the rssfeed.db database that is created earlier

in this chapter. The app is simple (see Figure 11-3); it consists of a single

button that, when clicked, queries the database and returns all the records

from the rssfeeds table. The title and URL of the RSS feed are then dis-

played in a bulleted list.

Figure 11-3:
Ready to get
a list of RSS

feeds with
the push of

a button.

252 Part III: Programming the Adobe AIR API

Here is the initial HTML file:

<html>
<head>
<title>DataDisplay</title>

<link href=”style.css” rel=”stylesheet” type=”text/css”/>
<script type=”text/javascript” src=”AIRAliases.js”></script>

<script type=”text/javascript”>

</script>
</head>
<body>

<div id=”container”>
<p style=”text-align:center”>
<button type=”button”>Display RSS Feeds</button></p>

</div>
</body>
</html>

After this document shell is created, you’re ready to establish a connection

to the database file when the app opens. Here’s the code:

 // Add event listener when app loads
 window.addEventListener(“load”, init, false);

 // Global vars
 var DATABASE_FILE = “rssfeeds.db”;
 var sqlConnection;

 // Initialize app
 function init()
 {
 connectDatabase();
 }

 // Connect to database
 function connectDatabase()
 {
 var dbRoot = air.File.documentsDirectory.resolvePath(‘rssdrop’);
 dbRoot.createDirectory();
 dbFile = dbRoot.resolvePath(DATABASE_FILE);
 sqlConnection = new air.SQLConnection();
 sqlConnection.addEventListener(air.SQLEvent.OPEN, onDatabaseOpen);
 sqlConnection.addEventListener(air.SQLErrorEvent.ERROR, onDatabaseError);
 sqlConnection.openAsync(dbFile);
 }

 // Initialize database once the connection is opened

253 Chapter 11: From AIRhead to Datahead: Working with Databases

 function onDatabaseOpen(event)
 {
 air.trace(“Database connection is opened.”);
 }

 // Database error
 function onDatabaseError(event)
 {
 alert(event.error.message + “ Details: “ + event.error.details);
 }

The init() function is executed when the app loads and then calls the

connectDatabase() function. If you read the earlier section on connecting

to a database, this code should look familiar.

The database connection is now open and ready for action.

Next, you add an onclick event handler for the HTML button named

selectFromDatabase(). This function is responsible for calling the SQL

query on the rssfeeds table:

// Insert record into the table
function selectFromDatabase()
{
 selectStmt = new air.SQLStatement();
 selectStmt.sqlConnection = sqlConnection;
 var sql = “SELECT * FROM rssfeeds”;
 selectStmt.text = sql;
 selectStmt.addEventListener(air.SQLEvent.RESULT, onSelectResult);
 selectStmt.addEventListener(air.SQLErrorEvent.ERROR, onDatabaseError);
 selectStmt.execute();
}

In this function, the SELECT SQL statement is passed onto the database

engine for processing. The onSelectResult() function is assigned to be

the handler for the RESULT event, which is triggered when the SQL query

finishes.

The selectStmt is defined globally so that it can be accessed from the

onSelectResult() function.

Here’s the onSelectResult() function, which takes the results and adds

the content to the DOM:

function onSelectResult(event)
{
 var result = selectStmt.getResult();
 var len = result.data.length;
 for (i = 0; i < len; i++)
 {

254 Part III: Programming the Adobe AIR API

 var record = result.data[i];

 var c = document.getElementById(‘container’);
 var ul_tag = document.createElement(‘ul’);
 c.appendChild(ul_tag);
 var li_tag = document.createElement(‘li’);
 li_tag.appendChild(document.createTextNode(record.title + “ (“ + record.url

+ “)”));
 ul_tag.appendChild(li_tag);
 }
}

Figure 11-4 shows the results when this code is performed on the rssfeeds

database table.

Figure 11-4:
Data that

came fresh
from a local

database.

Listing 11-2 provides a full listing of the HTML/JavaScript source code.

Listing 11-2: DataDisplay.html
<html>
<head>
<title>DataDisplay</title>

<script type=”text/javascript” src=”AIRAliases.js”></script>

<script type=”text/javascript”>

 // Add event listener when app loads
 window.addEventListener(“load”, init, false);

 // Global vars
 var DATABASE_FILE = “rssfeeds.db”;

255 Chapter 11: From AIRhead to Datahead: Working with Databases

 var sqlConnection;
 var selectStmt;

 // Initialize app
 function init()
 {
 connectDatabase();
 }

 // Connect to database
 function connectDatabase()
 {
 var dbRoot = air.File.documentsDirectory.resolvePath(‘rssdrop’);
 dbRoot.createDirectory();
 dbFile = dbRoot.resolvePath(DATABASE_FILE);
 sqlConnection = new air.SQLConnection();
 sqlConnection.addEventListener(air.SQLEvent.OPEN, onDatabaseOpen);
 sqlConnection.addEventListener(air.SQLErrorEvent.ERROR, onDatabaseError);
 sqlConnection.openAsync(dbFile);
 }

 // Initialize database once the connection is opened
 function onDatabaseOpen(event)
 {
 air.trace(“Database connection is opened.”);
 }

 // Database error
 function onDatabaseError(event)
 {
 alert(event.error.message + “ Details: “ + event.error.details);
 }

 // Insert record into the table
 function selectFromDatabase()
 {
 selectStmt = new air.SQLStatement();
 selectStmt.sqlConnection = sqlConnection;
 var sql = “SELECT * FROM rssfeeds”;
 selectStmt.text = sql;
 selectStmt.addEventListener(air.SQLEvent.RESULT, onSelectResult);
 selectStmt.addEventListener(air.SQLErrorEvent.ERROR, onDatabaseError);
 selectStmt.execute();
 }

 // When insert is successful...
 function onSelectResult(event)
 {
 var result = selectStmt.getResult();
 var len = result.data.length;

(continued)

256 Part III: Programming the Adobe AIR API

Listing 11-2 (continued)
 for (i = 0; i < len; i++)
 {
 var record = result.data[i];

 var c = document.getElementById(‘container’);
 var ul_tag = document.createElement(‘ul’);
 c.appendChild(ul_tag);
 var li_tag = document.createElement(‘li’);
 li_tag.appendChild(document.createTextNode(record.title + “ (“ + record.

url + “)”));
 ul_tag.appendChild(li_tag);
 }
 }

</script>
</head>
<body>
<div id=”container”>
<p style=”text-align:center”><button type=”button” onclick=”selectFromDatabase()

;”>Display RSS Feeds</button></p>

</div>
</body>
</html>

Chapter 12

Sur fing the AIRwaves:
Net Connectivity

In This Chapter
▶ Detecting network connectivity

▶ Monitoring a remote network resource

▶ Establishing an XML socket connection

▶ Creating a push server connection

As I say at the start of this book, Adobe AIR is designed to create rich

Internet applications (RIAs). Given that “Internet” is the middle word of

that acronym, it’s natural that AIR would provide network support.

In this chapter, I introduce you to some key network capabilities of AIR that

you’ll find yourself wanting to incorporate into your app. You can discover

how to detect whether the app has access to the Internet. You also explore

how to communicate with a server using XML sockets. Finally, I round out the

discussion by showing you how to push data from a server right into your

AIR app.

Detecting Network Connectivity
If you’re developing a traditional Web application, you can assume the need

for Internet connectivity for your app when you’re building it. After all, if

users do not have a connection, they’ll either be unable to access it at all or

they won’t be able to complete a task because a server is required.

258 Part III: Programming the Adobe AIR API

An Adobe AIR application, however, is different. A live connection when running

in a desktop environment may or may not be available. As a result, AIR enables

you to detect changes to Internet connectivity in two ways. First, you can detect

basic changes by trapping for the event of the nativeApplication object.

Second, if you want to detect changes to a specific network resource, such as

an IP address or Web site, you can use a service monitor. (For information on

remote service monitoring, see the upcoming “Monitoring Remote Network

Services” section.)

If you’d simply like to know whether a change has occurred in the connection

status of your app, add an event listener to the NETWORK_CHANGE event of

the application. In JavaScript, you can add the following code:

// Add event listener to init() function
air.NativeApplication.nativeApplication.addEventListener
 (air.Event.NETWORK_CHANGE, onNetworkChange);

function onNetworkChange(event){
 Alert(“Network change detected. Seek shelter immediately.”);
}

The ActionScript equivalent is the following:

// Add event listener to init() function
NativeApplication.nativeApplication.addEventListener(Event.NETWORK_CHANGE,

onNetworkChange);

public function onNetworkChange(evt:Event):void {
 mx.controls.Alert.show(“Network change detected. Seek shelter immediately.”);
}

Suppose you run an app with this code in it and unplug your network cable

to disconnect your laptop from your home network. The app would quickly

notice that a change occurred and show the alert message. Then, when you

reconnected to the Internet using WIFI, the alert message would trigger once

again.

 You can’t use this event to detect the exact nature of the network change, only

that some sort of connection change occurred.

Monitoring Remote Network Services
Although the application’s NETWORK_CHANGE event can be helpful, it also can

be incomplete. Specifically, in a real world situation, when you want to deter-

mine whether you’ve experienced a connectivity change, what you really

want to know is whether a change in connection has occurred with a specific

network resource your application needs.

259 Chapter 12: Surfing the AIRwaves: Net Connectivity

Adobe AIR provides network service monitoring capabilities to detect

changes in connectivity to a given HTTP or socket connection. For HTTP

URLs, you use the URLMonitor class, whereas socket connections require

you to use SocketMonitor. Both URLMonitor and SocketMonitor are

children of the ServiceMonitor base class.

The ServiceMonitor class and its children use an event-based approach to

respond to network connectivity changes. To do so, they dispatch a STATUS

event whenever a change in network connection is discovered. You can then

add an event listener to do something based on the change.

To activate an instance of ServiceMonitor, call its start() method.

 By default, a service monitor kicks in and polls the specified network resource

only after the start() method is called and when the network status changes

(from the application’s NETWORK_CHANGE event). However, by setting its

pollInterval property to a specified number of milliseconds, you can

have the service monitor check periodically independent of the application’s

NETWORK_CHANGE event.

Enabling HTML apps for
service monitoring
For HTML apps, network service monitoring is outside the normal AIR appli-

cation framework that you’re used to working with by now. As a result, you

need to perform two tasks to enable your app for monitoring:

 1. Copy the servicemonitor.swf file from the frameworks subdirec-

tory of the Adobe AIR SDK into your root application directory.

 This gives you access to ServiceMonitor and its descendents.

 2. Add the following script reference to your document head to include

servicemonitor.swf in your app:

 <script source=”servicemonitor.swf” type=”application/x-shockwave-flash”/>

After you’ve added this reference, you’re ready to go perform network moni-

toring to your heart’s content.

Monitoring connectivity to a Web site
The URLMonitor object comes in handy when you need to check on the con-

nectivity to make HTTP or HTTPS requests to a given URL. The URLMonitor

object is designed for checking connectivity at port 80, the standard port for

HTTP communication.

260 Part III: Programming the Adobe AIR API

The typical way to use URLMonitor is to create an instance of the class,

assign a URL to it, and attach an event listener to it when the connection

status changes.

For example, use the following HTML/JavaScript code to detect connectivity

to google.com:

<script src=”servicemonitor.swf” type=”application/x-shockwave-flash” />

<script>
var urlMonitor;

function init() {
 urlMonitor = new air.URLMonitor(new air.URLRequest(‘http://www.google.com’));
 urlMonitor.addEventListener(air.StatusEvent.STATUS, onStatusChange);
 urlMonitor.start();
 }

 function onStatusChange(event) {
 if (urlMonitor.available) {
 alert(“The current network status is A-OK!”);
 }
 else
 alert(“The current network status is BAD, AWFUL, and OTHERWISE TERRIBLE.”);
 }
 }
 </script>

As you can see, the URLMonitor instance uses a URLRequest instance in

its constructor to determine the exact resource to monitor. After assign-

ing a listener to the STATUS event, the onStatusChange handler tests the

URLMonitor’s available property to determine whether the resource is

available.

Here’s a similar example using ActionScript:

 import air.net.SocketMonitor;
 import mx.controls.Alert;
 import air.net.URLMonitor;
 import flash.net.URLRequest;
 import flash.events.StatusEvent;

 private static const TEST_URL:String = ‘http://www.dummies.com’;
 private static const CODE_UNAVAILABLE:String = “Service.unavailable”;
 private static const CODE_OK:String = “Service.available”;
 private static const MSG_OK:String = “Site is accessible”;
 private static const MSG_UNAVAILABLE = “Site is unavailable. Please check

your internet connection.”;

 public function init():void {
 var urlMonitor:URLMonitor;

261 Chapter 12: Surfing the AIRwaves: Net Connectivity

 var socketMonitor:SocketMonitor;

 urlMonitor = new URLMonitor(new URLRequest(TEST_URL));
 urlMonitor.addEventListener(StatusEvent.STATUS, onConnectionStatusChange);
 urlMonitor.start();
 }

 public function onConnectionStatusChange(evt:StatusEvent):void {
 if (evt.code == CODE_OK) {
 Alert.show(MSG_OK);
 }
 else if (evt.code == CODE_UNAVAILABLE) {
 Alert.show(MSG_UNAVAILABLE);
 }
 }

Notice the code property of the StatusEvent instance in the onConnection
StatusChange handler. You can use it to determine whether the service is

available. It has two values:

 ✓ Service.available

 ✓ Service.unavailable

 However, in general, it is considered better practice to use the available

property of the ServiceMonitor instance rather than the event code.

Monitoring socket connections
The SocketMonitor object provides the same functionality as URLMonitor

does when you need to work with socket connections to ports other than 80.

Here is a JavaScript example that connects to an FTP server:

<script src=”servicemonitor.swf” type=”application/x-shockwave-flash”/>

<script>
var socketMonitor;

function init() {
 socketMonitor= new air.SocketMonitor(new air.URLRequest(‘ftp://ftp.dummies.

com’, 21));
 socketMonitor.addEventListener(air.StatusEvent.STATUS, onStatusChange);
 socketMonitor.start();
 }

 function onStatusChange(event) {
 if (socketMonitor.available) {
 alert(“The current socket connection is working!”);
 }

262 Part III: Programming the Adobe AIR API

 else
 alert(“Houston, we have a socket problem.”);
 }
 }
</script>

Making an XML Socket Connection
Adobe AIR provides a framework for creating both XML and binary socket

connections with a server. An XML socket is useful when you want to keep

a live connection open between your app and a server for exchanging data.

So, not only can your app request data from or upload data to a server, but

you can also have a server push information down to your app without user

intervention. An XML socket, implemented through the XMLSocket class, is

intended for XML data, but AIR does actually enforce an XML structure in the

data you interchange.

Establishing TCP/IP socket connection is a two-sided project. First, you need

to enable your AIR client app for the data interchange. Second, a server-

side process must be able to monitor the port and then process the data or

instructions of your app when a connection is established. The server side

app can be written in any traditional app server language, such as Java, PHP,

Cold Fusion, Python, and so on.

 Keep in mind a couple of security restrictions when working with XML sock-

ets. First, you can’t connect to any port you want with XMLSocket. Because

lower number ports are reserved for core services such as FTP, POP3, or

HTTP, you can connect only to a port greater than or equal to 1024. Second,

nonsandboxed content can connect to a server only in the same domain as

the one in which the content resides.

To show you how to create a socket connection, I first show you how to

create a very basic Java server to handle your socket connection. I then walk

you through creating the socket connection in your AIR app.

Creating a basic socket server
A socket connection is much like a phone line. You can have the coolest

phone in the world, but if no one is on the other end of the phone line to talk

with you, what’s the point? In the same way, if your AIR application is going

to be able to converse with a remote server using a socket connection, then

you need to have a backend server to talk to.

263 Chapter 12: Surfing the AIRwaves: Net Connectivity

With that in mind, in this section I show you how to create a very simplistic

Java server for this task. The server’s job is simply to listen for a socket con-

nection at a specified port, and when a conversation is started, the server

simply prints that text to a console window. Because this book is about

Adobe AIR and not Java or any other server-side technology, I don’t dwell on

many of the details concerning how the server works. At a minimum, you can

read the source code comments to get a better idea of what the Java server

does. But if you’d like to know more about Java or how to create Java serv-

ers, I recommend checking out Java For Dummies, 4th Edition, by Barry Burd

(Wiley Publishing).

 If you expect to spend any time at all working with a Java server, I strongly

recommend downloading the Eclipse IDE at http:// eclipse.org. It’s a

free download and is an excellent way to work with and debug the Java server,

even if you’re a Java newbie. If not, find yourself a text editor and command

prompt.

 1. If necessary, install the JDK (Java SE Developer’s Kit).

 Before proceeding, you need to have the JDK installed. Mac OS X users

already have this on their system. Windows users need to download and

install from http:// java.sun.com/javase/downloads/index.
jsp.

 2. Create or download ReallySimpleServer.java.

 Listing 12-1, which follows these steps, shows the Java code for the

simple server. You can type this code into a new text-based file and save

it as ReallySimpleServer.java.

 Or, much easier, simply download ReallySimpleServer.java from

this book’s Web site at www.dummies.com/go/adobeairfd.

 3. Open a command-line window and change the directory to the loca-

tion of the ReallySimpleServer.java file.

 4. From a command-line window, enter the following instruction from

the same directory that the .java file is in:

javac ReallySimpleServer.java

 This command compiles the source code and generates a

ReallySimpleServer.class file.

 If javac is unrecognized, make sure that the JDK path is in your path.

 5. Run the Java server by typing the following command in a command-

line window:

java –classpath . ReallySimpleServer

 If you’re using Eclipse, you can compile and run the server right from within

the IDE.

264 Part III: Programming the Adobe AIR API

Listing 12-1: ReallySimpleServer.java.
 import java.io.*;
 import java.net.*;

 class ReallySimpleServer {
 private static ReallySimpleServer server;
 ServerSocket socket;
 Socket incomingSocket;
 BufferedReader inputReader;
 PrintStream outputStream;

 // Called when ReallySimpleServer is launched
 public static void main(String[] args) {
 int port = 6101;
 try {
 port = Integer.parseInt(args[0]);
 }
 catch (ArrayIndexOutOfBoundsException e) {
 // Catch exception
 }
 // Create new server socket listener at specified port
 server = new ReallySimpleServer(port);
 }

 private ReallySimpleServer(int port) {
 System.out.println(«>>>>>>> Starting ReallySimpleServer - the Server to the

Masses...Really!»);
 System.out.println(«Hey ya - talk to me. When you are done, send me a

<closeConnection/> to quit.»);
 try {
 // Listen for socket connections
 socket = new ServerSocket(port);
 incomingSocket = socket.accept();
 // Incoming text
 inputReader = new BufferedReader(new InputStreamReader(incomingSocket.

getInputStream()));
 outputStream = new PrintStream(incomingSocket.getOutputStream());
 boolean completed = false;

 while (!completed) {
 String str = inputReader.readLine();
 // If incoming text is null
 if (str == null) {
 printOut(«NULL VALUE: Hey, gimme a break. You gave me nothing!»);
 completed = true;
 }
 // If all goes well, here’s where the code will go to
 else {
 printOut(«Here’s what you wrote: « + str + «\r»);
 // If client closes connection, mark flag as true to leave loop
 if(str.trim().equals(«<closeConnection/>»)) {

265 Chapter 12: Surfing the AIRwaves: Net Connectivity

 completed = true;
 }
 }
 incomingSocket.close();
 }
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }

 // Prints output
 private void printOut(String str) {
 outputStream.println(str);
 System.out.println(str);
 }
 }

Adding a socket connection
With the Java server waiting patiently for someone to talk to, it’s time to

develop a simple AIR app that sends data to it. After you have created the

application shell in HTML, Flex, or Flash, you want to establish a socket con-

nection to the server using the XMLSocket object.

Begin by creating an instance of XMLSocket. Here’s the code in JavaScript:

var xmlSocket = new air.XMLSocket();

In ActionScript:

var xmlSocket:XMLSocket = new XMLSocket();

You want to add event listeners to xmlSocket. For a simple conversation,

you’re concerned only with listening to CONNECT and IO_ERROR events:

xmlSocket.addEventListener([air.]Event.CONNECT, onConnect);
xmlSocket.addEventListener([air.]IOErrorEvent.IO_ERROR, OnIOError);

With that groundwork laid, you’re ready to connect to the socket. For this

demo, you’re connecting to localhost at port 6101.

xmlSocket.connect(“localhost”, 6101);

266 Part III: Programming the Adobe AIR API

After a connection is made, the server can accept XML data from the AIR app.

To enable the server to do so, you use the send() method.

 However, keep in mind a couple of important points on sending data:

 ✓ Each string you send over the socket connection needs to be terminated

with a \n character combo.

 ✓ Be sure to place send() statements in the onConnect handler. If you

place them just after a connect() statement, they could be called

before the connection has been established.

Here’s the code in JavaScript:

 function onConnect(evt){
 var cmdConnect = “<connect/> \n”;
 var cmdLogin = “<login username=\”ivan\” password=\”noneofurbiz\”/>\n”;
 var cmdClose = “<closeConnection/>\n”;
 xmlSocket.send(cmdConnect);
 xmlSocket.send(cmdLogin);
 xmlSocket.send(cmdClose);
 }

And in ActionScript:

 private function onConnect(evt:Event):void {
 var cmdConnect:String = “<connect/> \n”;
 var cmdLogin:String =
 “<login username=\”ivan\” password=\”noneofurbiz\”/>\n”;
 var cmdClose:String = “<closeConnection/>\n”;
 xmlSocket.send(cmdConnect);
 xmlSocket.send(cmdLogin);
 xmlSocket.send(cmdClose);
 }

When the AIR app runs, the following output is generated by the server:

>>>>>>> Starting ReallySimpleServer - the Server to the Masses...Really!
Hey ya - talk to me. When you are done, send me a <closeConnection/> to quit.
Here’s what you wrote: <connect/>
Here’s what you wrote: <login username=”ivan” password=”noneofurbiz”/>
Here’s what you wrote: <closeConnection/>

Listings 12-2 and 12-3 show the full source code for this example.

267 Chapter 12: Surfing the AIRwaves: Net Connectivity

Listing 12-2: SockIt2Me.html.
<?xml version=”1.0” encoding=”utf-8”?>
<html>
<head>
<title>SockIt2Me</title>
<script type=”text/javascript” src=”AIRAliases.js”></script>

<script type=”text/javascript”>
 private var xmlSocket;

 function init(){
 xmlSocket = new air.XMLSocket();
 xmlSocket.addEventListener(air.Event.CONNECT, onConnect);
 xmlSocket.addEventListener(air.IOErrorEvent.IO_ERROR, onIOError);
 xmlSocket.connect(“localhost”, 6101);
 }

 function onConnect(evt){
 var cmdConnect = “<connect/> \n”;
 var cmdLogin = “<login username=\”ivan\” password=\”noneofurbiz\”/> \n”;
 var cmdClose = “<closeConnection/>\n”;
 xmlSocket.send(cmdConnect);
 xmlSocket.send(cmdLogin);
 xmlSocket.send(cmdClose);
 }

 function onIOError(evt){
 alert(“Error: “ + evt);
 }
</script>
</head>
<body>
<p>XMLSocket’s Done Right!</p>
</body>
</html>

Listing 12-3: SockIt2Me.mxml.
<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute” applicationComplete=”init()”>
 <mx:Script>
 <![CDATA[
 import flash.events.*;
 import flash.net.XMLSocket;

(continued)

268 Part III: Programming the Adobe AIR API

Listing 12-3 (continued)

 private var xmlSocket:XMLSocket;

 public function init():void{
 xmlSocket = new XMLSocket();
 xmlSocket.addEventListener(Event.CONNECT, onConnect);
 xmlSocket.addEventListener(IOErrorEvent.IO_ERROR, onIOError);
 xmlSocket.connect(“localhost”, 6101);
 }

 private function onConnect(evt:Event):void {
 var cmdConnect:String = “<connect/> \n”;
 var cmdLogin:String = “<login username=\”ivan\” password=\”noneofurbiz\”/>

\n”;
 var cmdClose:String = “<closeConnection/>\n”;
 xmlSocket.send(cmdConnect);
 xmlSocket.send(cmdLogin);
 xmlSocket.send(cmdClose);
 }
 private function onIOError(evt:IOErrorEvent):void {
 trace(“Error: “ + evt);
 }
]]>
</mx:Script>
</mx:WindowedApplication>

Creating a “Server Push”
Socket Connection

In the previous section, I walk you through the process of establishing an XML

socket connection to a server and sending information to it. However, in this

section, I expand on this basic functionality and allow the server to push data

to the AIR client application and have the AIR app handle the incoming data.

The major advantage to server push is that it eliminates the need for multiple

clients to continually poll the server to look for new information. Clients

simply remain in listen mode and wait for the server to come to them. Your

AIR app is thus easier to implement, and it lessens the load on the server.

However, because a server push solution is driven and controlled by the

server-side process, much of the development effort will be on the server

side. (For example, the server will need to be multithreaded, devoting a

thread for each client that connects to it.)

269 Chapter 12: Surfing the AIRwaves: Net Connectivity

The server side part of the server push solution is beyond the scope of

this book. However, to give you a kick start, you can download the Java

SimplePushServer.class from www.dummies.com/go/adobeairfd and

use it for initial testing and experimenting with your AIR app.

In this example, I show you how to create a status monitor for a fictional

company that displays status info (OK or NOT OK) for its local branches

when the server pushes that info to it. (I’m not sure what, exactly, the status

refers to, but you can be sure that it’s of national importance!)

The connection to the server happens much in the same way as how I walk

you through it in the “Making an XML Socket Connection” section, earlier in

this chapter. However, you need to add a DATA event handler to handle the

incoming data.

This example focuses on Flex to take advantage of its data-binding capabili-

ties. However, the same logic applies to an HTML app as well.

To begin, you define a basic grid UI to display status info. The data grid is

linked to an ArrayCollection object called cities:

 <mx:VBox>
 <mx:DataGrid width=”100%” height=”100%” dataProvider=”{cities}”>
 <mx:columns>
 <mx:Array>
 <mx:DataGridColumn headerText=”Test ID” dataField=”id”/>
 <mx:DataGridColumn headerText=”City” dataField=”city”/>
 <mx:DataGridColumn headerText=”Time” dataField=”time”/>
 <mx:DataGridColumn headerText=”Status” dataField=”status”/>
 </mx:Array>
 </mx:columns>
 </mx:DataGrid>
 </mx:VBox>

Next, you add the initial code:

private var xmlSocket:XMLSocket;
[Bindable] private var cities:ArrayCollection = new ArrayCollection();

private function init():void {
 connectToServer();
}

private function connectToServer():void {
 xmlSocket = new XMLSocket();
 xmlSocket.addEventListener(Event.CONNECT, onConnect);
 xmlSocket.addEventListener(IOErrorEvent.IO_ERROR, onConnectError);
 xmlSocket.addEventListener(DataEvent.DATA, onDataReceived);
 xmlSocket.connect(“localhost”, 6102);
}

270 Part III: Programming the Adobe AIR API

The citiesCollection array is created as bindable. The init() function

is called when the page loads. It calls the connectToServer() function to

establish the XML socket connection to the server.

You then add handlers for the CONNECT and IO_ERROR events. Here’s the

ActionScript code:

private function onConnect(evt:Event):void {
 subscribe(“Denver”);
 subscribe(“Seattle”);
 subscribe(“Boston”);
}

private function subscribe(cityName:String):void {
 var cmd:String = “<subscribe event=\”” + cityName + “\”/>\n”;
 xmlSocket.send(cmd);
}

private function onIOError(evt: IOErrorEvent): void {
 mx.controls.Alert.show(“Error. Unable to connect to server.”);
}

The onConnect() handler is called when a connection is established. It

calls the subscribe() function, which sends an XML fragment to the server

using send().

The key event handler for dealing with server push is defined as onData
Received():

 public function onDataReceived(evt:DataEvent):void {
 var xml:XML = new XML(evt.data);
 var element:String = xml.name().toString();

 if (element == “city”) {
 var obj:Object = new Object();
 obj.id = nextId++;
 obj.city = xml.@name;
 obj.time = xml.property.@time;
 obj.status =xml.property.@status;
 cities.addItem(obj);
 }
 }

This function is called each time data is pushed from the server in the XML

socket. In this simple example, you need to account only for city elements,

but a real-world app could account for many different messages from the

server by testing the value of the incoming element.

When a city element is received, the XML structure looks like the following:

271 Chapter 12: Surfing the AIRwaves: Net Connectivity

<city name=”Denver”>
<property time=”12/01/2008 11:20:12PM” status=”OK”/>
</city>

The values from the XML document are then placed into an object, which is

added to the cities array.

The final task is to close the connection with the server when the app closes.

To do so, you add a listener for the EXITING event:

NativeApplication.nativeApplication.addEventListener(Event.EXITING, onAppExit);

Here’s the handler:

private function onAppExit(evt:Event):void {

 disconnectFromServer();

}

private function disconnectFromServer():void {

 var cmd:String = “<closeConnection />\n”;

 xmlSocket.send(cmd);

}

The disconnectFromServer() function sends a <closeConnection/>

element to the server, telling it to close the socket connection and end the

conversation.

Figure 12-1 shows the AIR client with data provided from the server.

Figure 12-1:
Data pushed

from the
server.

272 Part III: Programming the Adobe AIR API

Listing 12-4 shows the full source code for this section’s example app.

Listing 12-4: TwoSocks.mxml.
<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
 applicationComplete=”init()”>

 <mx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import mx.collections.ArrayCollection;

 private var xmlSocket:XMLSocket;
 private var nextId:int;

 [Bindable] private var cities:ArrayCollection = new ArrayCollection();

 private function init():void {
 connectToServer();
 NativeApplication.nativeApplication.addEventListener(Event.EXITING,

onAppExit);
 }

 private function onAppExit(evt:Event):void {
 disconnectFromServer();
 }

 private function connectToServer():void {
 xmlSocket = new XMLSocket();
 xmlSocket.addEventListener(Event.CONNECT, onConnect);
 xmlSocket.addEventListener(DataEvent.DATA, onDataReceived);
 xmlSocket.addEventListener(IOErrorEvent.IO_ERROR, onIOError);
 xmlSocket.connect(“localhost”, 6102);
 }

 private function onIOError(evt: IOErrorEvent): void {
 mx.controls.Alert.show(“Error. Unable to connect to server.”);
 }

 private function subscribe(cityName:String):void {
 var cmd:String = “<subscribe event=\”” + cityName + “\”/>\n”;
 xmlSocket.send(cmd);
 }

 public function onDataReceived(evt:DataEvent):void {
 var xml:XML = new XML(evt.data);

273 Chapter 12: Surfing the AIRwaves: Net Connectivity

 var element:String = xml.name().toString();

 if(element == “response”) {
 // do something
 }
 else if (element == “city”) {
 var obj:Object = new Object();
 obj.id = nextId++;
 obj.city = xml.@name;
 obj.time = xml.property.@value;
 obj.status =xml.property.@status;
 cities.addItem(obj);
 }
 }

 private function onConnect(evt:Event):void {
 subscribe(“Denver”);
 subscribe(“Seattle”);
 subscribe(“Boston”);
 }

 private function disconnectFromServer():void {
 var cmd:String = “<closeConnection />\n”;
 xmlSocket.send(cmd);
 }
]]>
 </mx:Script>

 <mx:VBox>
 <mx:DataGrid width=”100%” height=”100%” dataProvider=”{cities}”>
 <mx:columns>
 <mx:Array>
 <mx:DataGridColumn headerText=”Test ID” dataField=”id”/>
 <mx:DataGridColumn headerText=”City” dataField=”city”/>
 <mx:DataGridColumn headerText=”Time” dataField=”time”/>
 <mx:DataGridColumn headerText=”Status” dataField=”status”/>
 </mx:Array>
 </mx:columns>
 </mx:DataGrid>
 </mx:VBox>

</mx:WindowedApplication>

274 Part III: Programming the Adobe AIR API

Chapter 13

Working with Audio
In This Chapter
▶ Playing sounds

▶ Adding sound effects

▶ Accessing the microphone

Whether you want to create a full-fledged media player or simply add

sound effects, you can include AIR’s sound capabilities inside your

application.

Adobe AIR allows you to take advantage of Flash’s capabilities to work with

audio inside your apps. What’s more, AIR enables you to connect with and

use a computer’s microphone.

In this chapter, I take you into the world of audio. No longer will your AIR

apps be forced into library-like silence. Instead, you can discover how to add

sounds to respond to events in your apps. I also walk you through how to

work with a microphone.

Working with Sounds
Adobe AIR allows you to work with sound files in your app through the

Sound class. Each instance of Sound is used for playing a specific sound file

inside your app directory, local file, or a network resource. However, several

related classes can also act upon these sounds. Table 13-1 lists these classes.

276 Part III: Programming the Adobe AIR API

Table 13-1 Sound-Related Classes
Class Description

[air.]Sound Manages basic sound load and playback.

[air.]SoundChannel Controls the playback of a particular Sound
instance, including the volume of left/right
channels. Each Sound instance has a
companion SoundChannel.

[air.]SoundMixer Manages the playback and security properties
to all sounds in an app.

[air.]SoundTransform Controls volume and panning for a specific
SoundChannel, the SoundMixer object, or the
Microphone object.

[air.]
SoundLoaderContext

Manages buffering time and policy
permissions during sound loading.

[air.]Microphone Controls the computer microphone and its
audio stream properties.

[air.]ID3Info Provides access to the ID3 metadata of an
MP3 file.

Playing a sound file
If you’re simply playing a sound file, you just need to create a Sound

instance, load the URL, and then play it. Here’s how it looks using JavaScript:

function playSound() {
 var soundFile = new air.URLRequest
 (“app:/assets/iphone.mp3”);
 var snd = new air.Sound();
 snd.load(soundFile);
 snd.play();
}

Or, in ActionScript:

private function playSound():void {
 var soundFile:URLRequest = new URLRequest
 (“app:/assets/iphone.mp3”);
 var snd:Sound = new Sound();
 snd.load(soundFile);
 snd.play();
}

277 Chapter 13: Working with Audio

In this example, the snd instance of Sound loads the sound file referenced by

soundFile. After it’s loaded, it’s played using play().

This example is fine for small or local sound files, but you typically want to

account for possible delays in the loading process before you attempt to

play a sound back. Therefore, it’s good practice to add an event listener to

the [air.]Event.COMPLETE event to start playback after the resource has

been loaded. Note the bolded lines of JavaScript code, which connect the

event listener:

function playSound() {
 var soundFile = new air.URLRequest
 (“app:/assets/iphone.mp3”);
 var snd = new air.Sound();
 snd.addEventListener(air.Event.
 COMPLETE, onSoundLoaded);
 snd.load(soundFile);
}

function onSoundLoaded(event) {
 loadedSound = event.target;
 loadedSound.play();
}

Here’s the ActionScript version:

private function playSound():void {
 var soundFile:URLRequest = new URLRequest(“app:/assets/
 iphone.mp3”);
 var snd:Sound = new Sound();
 snd.addEventListener(Event.COMPLETE, onSoundLoaded);
 snd.load(soundFile);
}

private function onSoundLoaded(event):void {
 var loadedSound:Sound = event.target as Sound;
 loadedSound.play();
}

What’s more, if you’re loading a large audio file from the Web, you can use

the [air.]ProgressEvent.PROGRESS to monitor and display the prog-

ress of the loading process. When you trap for this event, you can access the

bytesLoaded and bytesTotal properties of the event.

As always, you should also trap for loading errors by listening to the [air.]
IOErrorEvent.IO_Error.

278 Part III: Programming the Adobe AIR API

Here’s an updated version of the sound-playing example with these two event

handlers. Note that the new event handlers are shown in bold. The JavaScript

code is shown first.

function playSound() {
 var soundFile = new air.URLRequest(“http://www.
 richwagnerwords.com/really-long.mp3”);
 var snd = new air.Sound();
 snd.addEventListener(air.Event.COMPLETE, onSoundLoaded);
 snd.addEventListener(air.ProgressEvent.PROGRESS,

onLoadProgress);
 snd.addEventListener(air.IOErrorEvent.IO_ERROR,

onLoadError);
 snd.load(soundFile);
}

function onSoundLoaded(event) {
 loadedSound = event.target;
 loadedSound.play();
}

function onLoadProgress(event) {
 var myText = event.bytesLoaded + “ of “ + event.

bytesTotal “ loaded.”;
}

function onLoadError(event) {
 alert(“The request sound file could not be loaded. But

thanks for trying!”);
}

And here’s the ActionScript code:

private function playSound():void {
 var soundFile:URLRequest = new URLRequest
 (“app:/assets/iphone.mp3”);
 var snd:Sound = new Sound();
 snd.addEventListener(Event.COMPLETE, onSoundLoaded);
 snd.addEventListener(ProgressEvent.PROGRESS,

onLoadProgress);
 snd.addEventListener(IOErrorEvent.IO_ERROR,

onLoadError);
 snd.load(soundFile);
}

private function onSoundLoaded(event):void {
 var loadedSound:Sound = event.target as Sound;
 loadedSound.play();
}

private function onLoadProgress(event:ProgressEvent):

279 Chapter 13: Working with Audio

 void {
 statusUpdate.text = String(event.bytesLoaded) + “ of “

+ String(event.bytesTotal) + “ loaded.”;
}

private function onLoadError(event:IOErrorEvent):void {
 alert(“The request sound file could not be loaded. But

thanks for trying!”);
}

Pausing and resuming playback
Although the play() method is sufficient for working with short sound

effects or clips, you probably want to allow users to pause or stop the play-

back of longer audio files. To do so, use the SoundChannel object (which is

assigned to every Sound object) to provide this additional layer of control.

This section shows you how to set up this functionality.

Begin by declaring the Sound variable and creating the instance inside the

init() function. You need to refer to its accompanying SoundChannel

object, so you can declare that now as well. The JavaScript code looks like

this:

var snd;
var soundChannel;

function init() {
 snd = new air.Sound(new air.URLRequest(“app:/assets/you-

could-be-happy.mp3”));
}

Or, in ActionScript:

private var snd:Sound;
private var soundChannel:SoundChannel;

private function init():void {

 snd = new Sound(new URLRequest(“app:/assets/you-could-
be-happy.mp3”));

}

The sound file is ready to roll when you’re ready to play it.

The key to creating pause/resume functionality is the ability to track the

current position of the playback as it plays. You use the position property

of the SoundChannel for this purpose. You can use the variable playback
Position to store the latest position.

280 Part III: Programming the Adobe AIR API

Here’s the code in JavaScript:

var playbackPosition = 0;

And in ActionScript:

var playbackPosition:int = 0;

Then, when you play the sound file, you want to use playbackPosition as

the startTime parameter for play(). Here’s the JavaScript:

function playSong() {
 soundChannel = snd.play(playbackPosition);
 }

Or, in ActionScript:

private function playSong():void {
 soundChannel = snd.play(playbackPosition);
}

To pause playback, you use the stop() method of the SoundChannel.

However, before doing so, you capture the current playback position:

Here’s the code in JavaScript:

function pauseSong() {
 playbackPosition = soundChannel.position;
 soundChannel.stop();
}

And in ActionScript:

private function pauseSong(): void {
 playbackPosition = soundChannel.position;
 soundChannel.stop();
}

The entire JavaScript code is as follows:

var snd;
var soundChannel;
var playbackPosition = 0;
// Called on document load
function init() {
 snd = new air.Sound(new air.URLRequest(“app:/assets/you-

could-be-happy.mp3”));
}

function playSong() {

281 Chapter 13: Working with Audio

 soundChannel = snd.play(playbackPosition);
}
function pauseSong() {
 playbackPosition = soundChannel.position;
 soundChannel.stop();
}

Not to be forgotten is the ActionScript code:

import flash.events.Event;
import flash.media.Sound;
import flash.media.SoundChannel;

private var snd:Sound;
private var soundChannel:SoundChannel;
private var playbackPosition:int = 0;

// Called when application loading is complete
private function init():void {
 snd = new Sound(new URLRequest(“app:/assets/you-could-

be-happy.mp3”));
}

private function playSong():void {
 soundChannel = snd.play(playbackPosition);
}

private function pauseSong():void {
 playbackPosition = soundChannel.position;
 soundChannel.stop();
}

Adding sound effects
You can use the SoundTransform class to control volume and panning (the

relative balance between left and right speakers) of a sound channel. Using

SoundTransform on a channel can give you some interesting effects. Here’s

an example of using SoundTransform to create a swirl-like effect across the

speakers as the sound file plays.

You begin by declaring Sound, SoundChannel, and SoundTransform vari-

ables. You also declare a counter variable, which I use in the example. Here’s

the code in JavaScript:

var snd;
var counter = 0;
var channel;
var transformerSoundTransform;

282 Part III: Programming the Adobe AIR API

And here’s the code in ActionScript:

private var snd:Sound;
private var counter:Number = 0;
private var channel:SoundChannel;
private var transformer:SoundTransform;

A playSound() function begins by loading the file.

Use this code in JavaScript:

function playSound() {
 var soundFile = new air.URLRequest(“app:/assets/
 iphone.mp3”);
 var snd = new air.Sound();
 snd.load(soundFile);
}

Or, in ActionScript:

private function playSound():void {
 var soundFile:URLRequest = new URLRequest(“app:/assets/
 iphone.mp3”);
 var snd:Sound = new Sound();
 snd.load(soundFile);
}

After the sound file is loaded, you need to create a new SoundTransform

instance. The first parameter specifies the volume level and the second speci-

fies the panning (–1.0 is all left, 1.0 is all right, 0 is a balance). The play()

method uses the SoundTransform instance. One last task: You need to

attach event handlers to the SoundChannel COMPLETE event and ENTER_
FRAME events. Here’s the JavaScript code:

transformer = new SoundTransform(0.5, 1.0);
 channel = snd.play(0, 1, transformer);
 channel.addEventListener(Event.SOUND_COMPLETE,

onPlaybackComplete);
 channel.addEventListener(Event.ENTER_FRAME,

onEnterFrame);

The full ActionScript function looks like this:

private function playSound():void {
 var soundFile:URLRequest = new URLRequest(“app:/assets/
 iphone.mp3”);
 var snd:Sound = new Sound();
 snd.load(soundFile);
 transformer = new SoundTransform(0.5, 1.0);
 channel = snd.play(0, 1, transformer);

283 Chapter 13: Working with Audio

 channel.addEventListener(Event.SOUND_COMPLETE,
onPlaybackComplete);

 channel.addEventListener(Event.ENTER_FRAME,
onEnterFrame);

}

The event handlers for the SoundChannel events are as follows, beginning

with the JavaScript:

function onEnterFrame(event) {
 transformer.pan = Math.sin(counter);
 channel.soundTransform = transformer;
 counter += 0.05;
 }

function onPlaybackComplete(event) {
 removeEventListener(air.Event.ENTER_FRAME,

onEnterFrame);
 }

Now for the ActionScript code:

private function onEnterFrame(event:Event):void {
 transformer.pan = Math.sin(counter);
 channel.soundTransform = transformer;
 counter += 0.05;
 }

private function onPlaybackComplete(event:Event):void {
 removeEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

Mike Me Up: Working
with the Microphone

Adobe AIR enables access to the microphone or other input device of a com-

puter. Here’s an example of accessing the microphone and adjusting several

of the sound properties. In JavaScript, use this code:

var mic = air.Microphone.getMicrophone();

mic.setUseEchoSuppression(true);
mic.setLoopBack(true);
mic.gain = 30;
mic.rate = 11;

284 Part III: Programming the Adobe AIR API

Here’s the ActionScript equivalent:

var mic:Microphone = Microphone.getMicrophone();

mic.setUseEchoSuppression(true);
mic.setLoopBack(true);
mic.gain = 30;
mic.rate = 11;

Of special note, the setLoopBack(true) method sends incoming audio to

the local speakers.

Chapter 14

Quick and Easy: Instant
Downloading and

Auto-Updating
In This Chapter
▶ Using badge.swf for easy downloads of your app

▶ Adding auto-update functionality to your app

Some of the best aspects of normal Web applications are that installation

and maintenance issues are a breeze to deal with. Because the app

resides on a server you control, you simply copy a new version of the app,

and all the users accessing it from their browser instantly receive the latest

version.

Not so with traditional desktop apps. Because the app exists on hundreds,

if not thousands, of computers, the issues of installation and app updates

become quite problematic.

Fortunately, Adobe thought about this problem in the construction of Adobe

AIR. In fact, AIR offers point-and-click install and no-hassle updates as two

built-in capabilities of Adobe AIR that AIR developers can take advantage of.

In this chapter, I walk you through how to add these capabilities to your app,

putting on that finishing touch that makes your app usable and professional

looking.

286 Part III: Programming the Adobe AIR API

Seamlessly Installing an
AIR App with badge.swf

The AIR SDK comes with the badge.swf file (located in the samples/badge

subdirectory) that enables you to provide a seamless installation of your app

from a Web page. The benefits of using the badge.swf file are as follows:

 ✓ The badge.swf installer checks to see whether the AIR runtime is

installed. If the AIR runtime isn’t detected, the runtime is automatically

installed prior to installation of your app.

 ✓ The user has a choice of whether to install the AIR app without saving

the .air file onto his or her computer.

 ✓ You can easily customize the graphic, badge color, and button color

by setting parameters. You can even customize the badge.swf source

code to give the badge a personalized look and feel.

 ✓ Using badge.swf provides a seamless, friendly installation experience

for your users that will make them smile uncontrollably at their computer

monitor.

To set up the badge.swf file for your AIR app, follow these steps:

 1. Locate three files in your samples/badge subdirectory of the AIR

SDK: badge.swf, AC_RunActiveContent.js, and default_
badge.html.

 You’ll copy these files up to your Web server in a moment.

 2. Open default_badge.html in your HTML editor.

 The default_badge.html file contains boilerplate code for including

the “install badge” (the Flash-based installer) on a Web page.

 You can customize the default_badge.html page to use it on your

Web site. Or, more likely, you’ll want to simply copy and paste the

install badge code into your existing Web page.

 3. Locate the AC_FL_RunContent() function call in the JavaScript code.

 It’s the one with a bunch of parameters inside its parentheses.

287 Chapter 14: Quick and Easy: Instant Downloading and Auto-Updating

 4. Customize the flashvars parameter (the string parameter that fol-

lows ‘flashvars’).

 You have three required parameters to update:

 • appname: Enter the name of your application that you want to be

displayed in a message under the Install button (shown only if the

AIR runtime is not present).

 These parameters need to be escaped, so use a %20 in place of a

space in your app’s name. For example, AIR Mate is

AIR%20Mate

 • appurl: Enter the full (not relative) URL of the .air file.

 • airversion: If necessary, update the version of the AIR runtime

required for your app.

 In addition, you may want to customize three optional parameters:

 • imageurl: Indicates the URL of the .jpg file to display in the

badge interface.

 • buttoncolor: Specifies a hex color value for the button back-

ground.

 • messagecolor: Provides a hex color value for the color of the text

message displayed under the Install button.

 Here’s an example:

‘appname=AIR%20Mate&appurl=http://www.dummies.com/air/
airmate.air&airversion=1.0&imageurl=test.jpg’

 5. If needed, adjust the width and height parameters of the AC_FL_
RunContent() function call.

 The badge.swf needs a minimum size of 217 x 180 pixels. If you need to

make it bigger, then adjust.

 6. Save the HTML file or copy and paste the source code to another Web

page.

 7. Upload the badge.swf, AC_RunActiveContent.js, and default_
badge.html files (or your own Web page) to your Web server.

 Figure 14-1 shows the customized badge displayed for my AIR app.

288 Part III: Programming the Adobe AIR API

Figure 14-1:
The badge

.swf
displayed
on a Web

page.

When the badge is clicked by the user, helper text is displayed that indi-

cates to the user what to do next to begin the installation. See Figure 14-2 for

details.

Figure 14-2:
When

clicked,
the badge

informs the
user of the
download

action.

289 Chapter 14: Quick and Easy: Instant Downloading and Auto-Updating

If clicked again, the installation process begins (see Figures 14-3 and 14-4).

Figure 14-3:
Application

Setup dialog
box.

Figure 14-4:
User has

the option
of saving

or opening
without
saving.

 The AIR SDK also includes the source files for the badge.swf file. These files

are included in the src folder of the SDK. The badge.fla is the source Flash

CS3 file, and AIRBadge.as is an ActionScript 3.0 class that defines the base

class used in badge.fla.

Auto-Updating Your AIR Application
As I mention at the start of this chapter, one of the major benefits of a Web

app is that it’s easy to update. Because users access it remotely, all the appli-

cation code is located on the server. Therefore, when a bug is fixed or a new

feature is introduced, a developer can seamlessly update the application

code base without any user intervention.

290 Part III: Programming the Adobe AIR API

By contrast, because desktop apps run off a locally installed file, versioning

and performing updates have always been much more complicated tasks for

desktop applications. Fortunately, Adobe AIR comes with an auto-updating

framework that makes the task of updating your app a snap. In fact, after you

integrate the update framework into your app, you receive several features

for free:

 ✓ Checking for updates periodically based on a specific interval or user

request

 ✓ Displaying version info to user

 ✓ Downloading an updated version and displaying Install dialog box

 ✓ Informing the user the first time the new version is being run

To add these capabilities to your app, you need to do four tasks:

 1. Add the update framework to your app.

 2. Update the updater descriptor file for your app/version.

 3. Upload the descriptor file and updated .air file to your Web server.

 4. Add update framework code to your app.

I describe these tasks in the following sections.

Adding the AIR update framework
Before beginning the task of dealing with the specifics of your app, you need

to add the AIR Update Framework to your application. To do so, follow these

steps:

 1. Download the AIR Update Framework at http:// labs.adobe.com/
wiki/index.php/Adobe_AIR_Update_Framework.

 At the time of writing, this framework was still in development and not

considered part of the final SDK.

 2. After you download and decompress the framework, copy the folder

to your AIR SDK directory so that you can have it on hand.

 3. Add the appropriate framework file to your project.

 For HTML apps, you’ll want to reference either ApplicationUpdater.
swf or ApplicationUpdater_UI.swf. (The UI version includes addi-

tional calls to display a UI for showing update and install options.) After

copying the desired .swf file to your application directory, add the fol-

lowing script element:

<script src=”applicationUpdater_UI.swf” type=”application/
x-shockwave-flash”/>

291 Chapter 14: Quick and Easy: Instant Downloading and Auto-Updating

 For Flex apps, you want to use either ApplicationUpdate.swc or

ApplicationUpdate_UI.swc. (As with the .swf files mentioned pre-

viously, the UI equivalent includes additional calls to display a UI for

showing update and install options.) To do so, copy the .swc to the lib

directory of your app or add its existing directory to your library path.

You can then import the updater UI and event packages with the follow-

ing declarations:

import air.update.ApplicationUpdaterUI;

import air.update.events.UpdateEvent;

 For most purposes, I recommend using the _UI versions of the framework

files. You’ll save yourself a lot of time. I’ll focus on the UI versions in the

remainder of this chapter.

Creating the updater descriptor file
The update framework uses an XML-based updater descriptor file to define

the update versioning. An AIR app accesses this XML file from a Web server

when it performs a version check, checking to see whether a new version has

been uploaded.

Here’s a sample file:

<?xml version=”1.0” encoding=”utf-8”?>
<update xmlns=”http://ns.adobe.com/air/
 framework/update/description/1.0”>
 <version>2.0</version>
 <url>http://richwagnerwords.com/air/AIRUpdates.air</url>
 <description><![CDATA[
AIRUpdates has an exciting new version for you. Version

2.0 update includes:

 * Bug fixes
 * New UI

]]>
</description>
</update>

The version element specifies the new version of the app. This value is

compared to the version element in the application descriptor file. The

url element indicates the location of the new .air file to download. The

description element is optionally used to provide release notes and other

info you want the user to see prior to installation.

After you’ve updated this file, you want to upload it to the Web server.

292 Part III: Programming the Adobe AIR API

Adding the updater to your source code
After you have the update framework added to your AIR app project and

the updater descriptor file set, you’re ready to add the updater to your

application code.

Creating an instance of ApplicationUpdaterUI
You first want to create an instance of the ApplicationUpdaterUI object.

In JavaScript, use

var appUpdater = new ApplicationUpdaterUI();

In ActionScript, use:

private var appUpdater:ApplicationUpdaterUI = new
ApplicationUpdaterUI();

Customizing the updater from code
You can customize the settings of the updater by working with the

properties of the ApplicationUpdaterUI instance. The properties are

shown in Table 14-1.

Table 14-1 ApplicationUpdater and
 ApplicationUpdaterUI Settings
Application
UpdaterUI or
Application
Updater Property

XML Configuration
File Element/Attribute

Default Description

updateURL <url></url> Specifies the
URL of the XML-
based updater
descriptor file
that you create in
the “Creating the
updater descrip-
tor file” section

delay <delay><
/delay>

1 Specifies the
interval (number
of days) in which
the app should
check for an
update

293 Chapter 14: Quick and Easy: Instant Downloading and Auto-Updating

Application
UpdaterUI or
Application
Updater Property

XML Configuration
File Element/Attribute

Default Description

isCheckFor
UpdateVisible

<defaultUI>

<dialog name=
”check
ForUpdate”
visible=”true
|false” />

</defaultUI>

true Indicates
whether the
Check for Update,
No Update, and
Update Error
dialog boxes are
visible

isDownload
UpdateVisible

<defaultUI>

<dialog name=
”downloadUp
date” visible=
”true|false” />

</defaultUI>

True Indicates
whether the
Download Update
dialog box is
visible

isInstall
UpdateVisible

<defaultUI>

<dialog name=
”installUpdate”
visible=”true
|false” />

</defaultUI>

true Determines
whether the
Install Update
dialog box is
visible

isDownload
Progress
Visible

<defaultUI>

<dialog name=
”download
Progress”
visible=”true
|false” />

</defaultUI>

true Specifies
whether the
Download
Progress and
Download Error
dialog boxes are
visible

isFile
UpdateVisible

<defaultUI>

<dialog name=
”fileUpdate”
visible=”true
|false” />

</defaultUI>

true Determines
whether the
Install Update
dialog box shows

(continued)

294 Part III: Programming the Adobe AIR API

Table 14-1 (continued)
Application
UpdaterUI or
Application
Updater Property

XML Configuration
File Element/Attribute

Default Description

isUnexpected
ErrorVisible

<defaultUI>

<dialog name=
”unexpected
Error” visible=
”true|false” />

</defaultUI>

true Indicates
whether the
Unexpected Error
dialog box can be
visible

The following code sets the URL, prompts the updater to check every half

day, and hides the Check for Updates dialog box:

appUpdater.updateURL = “http://dummies.com/air/AIRUpdates_versions.xml”;
airUpdater.delay = 0.5;
airUpdater.isCheckForUpdateVisible = false;

Customizing the updater from an XML configuration file
You can also configure the updater through an XML configuration file. Table

14-1 shows the elements and attributes you can use in the markup. The fol-

lowing file provides identical configuration as the earlier scripting code:

<?xml version=”1.0” encoding=”utf-8”?>
<configuration xmlns=”http://ns.adobe.com/air/framework/
 update/configuration/1.0”>
 <url>http://dummies.com/air/AIRUpdates_versions
 .xml</url>
 <delay>0.5</delay>
 <defaultUI>
 <dialog name=”checkForUpdate” visible=”false” />
 </defaultUI>
</configuration>

To load the configuration file, add the following line to your app code:

appUpdater.configurationFile = new [air.]File(“update-
config.xml”);

295 Chapter 14: Quick and Easy: Instant Downloading and Auto-Updating

Initializing the ApplicationUpdaterUI instance
The next step is to add event listeners to the updater and then initialize it.

The code looks like this:

appUpdater.addEventListener([air.]UpdateEvent.INITIALIZED,
onUpdate);

appUpdater.addEventListener([air.]ErrorEvent.ERROR,
onError);

appUpdater.initialize();

You want to add this code to the init() function that is executed when the

application loads.

Adding event handlers
Next, you need to add event handlers that will kick off when appUpdater is

ready to check for an update or when an error occurs. Here’s the JavaScript:

 function onUpdate(event) {
 // Add code here
 }

 private function onError(event) {
 alert(event.toString());
 }

In ActionScript:

 private function onUpdate(event:UpdateEvent):void {
 // Add code here
 }

 private function onError(evt:ErrorEvent):void {
 Alert.show(evt.toString());
 }

Checking for updates
Your final step is for the appUpdater instance to check for a new version

using the checkNow() method. You want to add this code to the onUpdate()

event handler:

appUpdater.checkNow();

Listings 14-1 and 14-2 provide full source code for an HTML and Flex app.

296 Part III: Programming the Adobe AIR API

Listing 14-1: AIRUpdates.html
<html>
<head>
<title>AIRUpdates</title>
<script type=”text/javascript” src=”AIRAliases.js” />
<script src=”applicationUpdater_UI.swf” type=”application/x-shockwave-flash”/>
<script type=”text/javascript”>

var appVersion:String;
var file:File;
var airFileURL:String = “http://richwagnerwords.com/air/AIRUpdates.air”;

var appUpdater = new air.ApplicationUpdaterUI();

 function init() {
 initAutoUpdate();
 }

 function initAutoUpdate() {
 appUpdater.updateURL = “http://richwagnerwords.com/air/AIRUpdates_

versions.xml”;
 appUpdater.addEventListener(air.UpdateEvent.INITIALIZED, onUpdate);
 appUpdater.addEventListener(air.ErrorEvent.ERROR, onError);
 appUpdater.initialize();
 }

 function onError(event) {
 alert(event.toString());
 }

 function onUpdate(event) {
 appUpdater.checkNow();
 }

</script>
</head>
<body onload=”init()” bgcolor=”#0080C0”>
<p>AIRUpdates</p>
</body>
</html>

As you consider the Flex version, note that there is additional code that

checks to see whether the app has been run before. If not, a welcome mes-

sage is displayed. The updater process kicks in after this initial check.

297 Chapter 14: Quick and Easy: Instant Downloading and Auto-Updating

Listing 14-2: AIRUpdates.mxml
<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical” title=”AIRUpdates”
 applicationComplete=”init()”>
 <mx:Script>
 <![CDATA[
 import flash.filesystem.*;
 import mx.controls.Alert;
 import flash.events.ErrorEvent;
 import air.update.ApplicationUpdaterUI;
 import air.update.events.UpdateEvent;

 [Bindable] public var appVersion:String;
 public var file:File;
 private var airFileURL:String = “http://richwagnerwords.com/air/

AIRUpdates.air”;

 private var appUpdater:ApplicationUpdaterUI = new ApplicationUpdaterUI();

 public function init():void {
 var appDescriptor:XML = NativeApplication.nativeApplication.

applicationDescriptor;
 var ns:Namespace = appDescriptor.namespace();
 appVersion = appDescriptor.ns::version;
 checkRunStatus();
 initAutoUpdate();
 }

 private function initAutoUpdate():void {
 appUpdater.updateURL = “http://richwagnerwords.com/air/AIRUpdates_

versions.xml”;
 appUpdater.addEventListener(UpdateEvent.INITIALIZED, onUpdate);
 appUpdater.addEventListener(ErrorEvent.ERROR, onError);
 appUpdater.initialize();
 }

 private function onError(evt:ErrorEvent):void {
 Alert.show(evt.toString());
 }

 private function onUpdate(event:UpdateEvent):void {
 appUpdater.checkNow();

(continued)

298 Part III: Programming the Adobe AIR API

Listing 14-2 (continued)
 }

 private function checkRunStatus():void {
 file = File.applicationStorageDirectory;
 file = file.resolvePath(«Preferences/vercheck.txt»);
 if (file.exists) {
 checkAppVersion();
 } else {
 runFirstTime();
 }
 }

 private function checkAppVersion():void {
 var fs:FileStream = new FileStream();
 fs.open(file, FileMode.READ);
 var prevVersion:String = fs.readUTFBytes(fs.bytesAvailable);
 fs.close();
 var av:Number = Number(appVersion);
 var pv:Number = Number(prevVersion);
 if (av > pv) {
 Alert.show(«Welcome to the updated version of AIRUpdates, the coolest

app in the biz.»);
 saveVersionToFile();
 }
 }

 private function runFirstTime():void {
 Alert.show(«Welcome to AIRUpdates, the coolest app in the biz.»);
 saveVersionToFile();
 }

 private function saveVersionToFile():void {
 var stream:FileStream = new FileStream();
 stream.open(file, FileMode.WRITE);
 stream.writeUTFBytes(appVersion);
 stream.close();
 }
]]>
 </mx:Script>

 <mx:VBox backgroundColor=»#6AA16A» x=»0» y=»0» width=»100%» height=»100%»
horizontalAlign=»center» verticalAlign=»middle»>

 <mx:Label color=»white» text=»{appVersion}» fontSize=»134»/>
 </mx:VBox>

</mx:WindowedApplication>

When the app runs, the updater kicks in. Because the isCheckForUpdate
Visible property defaults to true, the Check for Updates dialog box is

displayed (see Figure 14-5).

299 Chapter 14: Quick and Easy: Instant Downloading and Auto-Updating

Figure 14-5:
Check for

Updates
dialog box.

When the Check for Updates button is clicked, the updater checks the server-

based XML file. Because the remote file is for 2.0 and the current app is 1.0,

the Update Available dialog box is displayed (see Figure 14-6). If the Release

Notes text is clicked, the description content of the XML is displayed (see

Figure 14-7).

Figure 14-6:
Update

Available
dialog box.

Figure 14-7:
Release

notes are
shown.

300 Part III: Programming the Adobe AIR API

Figure 14-8 shows the Download Progress dialog box. When the download is

complete, the Install Update dialog box is displayed (Figure 14-9).

Figure 14-8:
Down-

loading the
update.

Figure 14-9:
Installing

the update.

Part IV
The Part of Tens

In this part . . .

If one is the loneliest number, ten is surely the “dumbest”:

the the Part of Tens section is a tradition in For

Dummies books. This book therefore offers you a Part of

Tens for “AIR-heads.” In this part, you’re privy to ten use-

ful tips to help you with that oh-so-fun task of debugging

your app. Also, if you’re looking for AIR application exam-

ples, you’ve come to the right place; here I present my

choices for the ten best ones.

Chapter 15

Ten Tips for Successful
AIR Debugging

In This Chapter
▶ Adding ADL and Aptana Studio to your toolbox

▶ Using the alert command for quick and easy debugging

▶ Using the trace() method for intelligent debug reporting

▶ Working with the AIR HTML Introspector

Debugging is one of those necessary evils of application development.

It’s never much fun but is essential to producing a quality, bug-free app.

Adobe AIR provides various ways of debugging depending on the type of AIR

application you’re making. HTML-based apps can take advantage of the AIR

HTML Introspector, which comes with the SDK. Flex Builder sports its own

powerful debugger environment. Flash allows you to tap into the Adobe Flash

Debugger.

In this chapter, I introduce you to these powerful tools as well as other tips

and techniques that you’ll want to be sure to incorporate into your debugging

process.

304 Part IV: The Part of Tens

Use ADL (AIR Debug Launcher)
as the Starting Point

As I mention in Chapter 2, the AIR Debug Launcher (or ADL) is a command-

line utility that comes with the Adobe AIR SDK. You can use ADL to test

your apps without packing them up into an installable AIR app. Not only is

it much quicker to test your app, but also any runtime errors that occur will

be output to the ADL console window. Therefore, as you test your apps, con-

sider ADL as your starting point for any debugging that you perform.

To use ADL from the command line, be sure it is in your path and then enter

the following at a prompt, where application.xml is your AIR application

descriptor file:

adl application.xml

 Better yet, if you’re using Flex Builder or Aptana Studio, you can launch ADL

directly through the IDE. See related tips later in this chapter for more details.

 ADL will run until your app closes. However, if your app freezes or you forgot

to add a Close button to your app, simply close the command-line window.

Make Aptana Studio Your Home
Base for HTML-Based Apps

To be effective in your development and debugging processes, you need to

be equipped with the right tools. If you’re creating HTML/Ajax-based AIR

apps, you need to check Aptana Studio.

Aptana Studio is a full-featured integrated development environment (IDE)

for Web developers. It offers an optional Adobe AIR plug-in that, when you

install it, turns Aptana Studio into an IDE for Adobe AIR applications.

Using Aptana Studio, you can quickly create AIR apps with its AIR Project

Creation Wizard (shown in Figure 15-1), use AIR API-supported auto comple-

tion in its source editor, and deploy final releases using its AIR package

exporter (shown in Figure 15-2). However, what’s most beneficial for debug-

ging is that Aptana Studio frees you from the command line when working

with ADL. It lets you run a test version of the app by clicking a toolbar button

rather than typing everything at the command line (shown in Figure 15-3).

305 Chapter 15: Ten Tips for Successful AIR Debugging

Figure 15-1:
Creating a

new AIR
project in

Aptana
Studio.

Figure 15-2:
Package
your app

inside the
Aptana

Studio IDE.

306 Part IV: The Part of Tens

Figure 15-3:
Debugging

inside of
the Aptana
Studio IDE.

 To download the free community edition or purchase the professional edition,

visit www.aptana.com/air.

Quick and Easy Debugging:
Use the alert Command

Sure, the alert command is usually considered the “poor man’s debug-

ger.” Despite its clumsiness, it can be a handy quick and easy way to initially

debug part of your application.

In JavaScript, you use the ubiquitous window.alert() method:

alert(“Yikes, a problem occurred.”);

In ActionScript, you call the Alert object’s show() method:

import mx.contols.Alert;
Alert.show((“Yikes, a problem occurred.”);

307 Chapter 15: Ten Tips for Successful AIR Debugging

The alert command is particularly handy when you are doing initial testing

on event handlers. In most cases, you will want to replace these alerts with

more sophisticated techniques before final deployment. Here’s a handler for

a File IO error that lets you know whether something went awry when a file

was being read:

function onIOReadError(evt) {
 alert(“Something wacky happened. We are unable to open “

+ file.nativePath);
}

 Although alert() can be useful, I recommend using it in your code during

initial development phases and stripping out the alert() calls from your

code as your app gets closer to being final.

Better Yet: Use the trace()
Method Instead of alert()

The alert() debugging method displays debug info in a message box, and

the execution of the app is interrupted to show those details. Adobe AIR

enables you to use an alternative method, the global method called trace(),

which enables you to output debugging info to the ADL console window.

Here’s the syntax:

 [air.]trace(“This text will be output”);

Any nonstring objects that you add to trace() will automatically be con-

verted to a string (its toString() method is called for you) during the

output.

Here’s a JavaScript example of using trace() to output the error message

that is generated during a SQLErrorEvent.ERROR event:

sql.addEventListener(air.SQLErrorEvent.ERROR, function
error(event) {

 air.trace(event.error.message);
 sql.removeEventListener(air.SQLErrorEvent.ERROR, error);
});

The trace() method offers two key advantages over “alert box debugging.”

First, one of the problems when using alert boxes to display debugging info

is that the dialog box itself can get in the way of normal flow of events in the

execution of the app. However, because trace() doesn’t require any user

input, it never gets in the way of normal flow. Second, although debug alert

308 Part IV: The Part of Tens

boxes will need to be cleaned out of application code before the app is final,

you can leave trace() commands in the code without the info ever being

visible to users when run outside of ADL.

Create Your Own Debug Window
Although the trace() command is a great way to output debugging info,

sometimes you may want to view debugging info outside the ADL console

window.

If you’re developing an HTML/JavaScript-based AIR app, you use a div

element inside your app for this task and toggle its visibility, depending on

whether you’re in debug mode. Follow these steps:

 1. Add the following div to the bottom of your HTML document:

<div id=”debugConsole”>
</div>

 2. Add the following CSS rule to your stylesheet:

div#debugConsole
{
 display: none;
}

 You can add any additional formatting properties you want.

 3. In your JavaScript code, add a global variable that indicates whether

you’re in debug mode:

var debugMode = false;

 4. Add a function that toggles visibility of the debug div:

enableDebugMode(state)
{
 debugMode = state;
 d = document.getElementById(“debugConsole”);

 if (debugMode)
 d.style.display = “block”;
 else
 d.style.display = “none”;
}

309 Chapter 15: Ten Tips for Successful AIR Debugging

 5. Create a doDebug() function that outputs any debugging data you

specify into the debugConsole div:

function debug(output)
{
 if (debugMode)
 {
 d = document.getElementById(“debugConsole”);
 d.appendChild(document.createTextNode(output));
 }
}

To use the window, simply enable debug mode when your app loads. For

example:

function init()
{
 enableDebugMode(true);
}

Then, add the following line of code to output to the debug console:

debug(“debug text you want to display”);

Outputting to a Log File with AIRLogger
AIRLogger is a handy utility available from the ear-fung.us developer blog

that enables you to create a log file for debugging your HTML-based AIR app.

To enable this utility, all you need to do is add a downloadable script file

called AIRLogger.js to your HTML document. You can then write to the log

file by using the following command:

log.write(“my debugging info”);

The debugging info is output to a log file called application.log on your

desktop.

To download AIRLogger.js, go to: www.ear-fung.us/wp-content/
uploads/2008/08/airlogger10.js.

For more general AIRLogger info, go to www.ear-fung.us/apps/airlogger.

310 Part IV: The Part of Tens

Debug HTML-Based Apps with
the AIR HTML Introspector

The AIR HTML Introspector is an interactive debugging utility that you can

use to test your HTML-based AIR applications. The AIR HTML Introspector

goes beyond the basic debugging output that you get with alert boxes,

trace(), your own homegrown debug console, or even AIRLogger. You can

use the AIR HTML Introspector to navigate the UI and DOM, adjust JavaScript

properties, and even access local files in the application root directory.

To enable the AIR HTML Introspector, you need to include the

AIRIntrospector.js file in your HTML application source.

You can find the AIRIntrospector.js file in the frameworks subdirec-

tory of the Adobe AIR SDK. You should copy the JavaScript file to your appli-

cation directory and then add the following code to every HTML file in your

app that will be visible:

<script type=”text/javascript” src=”AIRIntrospector.js”></
script>

When the code is executed, a Console class is created and is accessible by

calling air.Introspector.Console.

The log() method can be used to send objects to the Introspector:

new file = new air.File();
air.Introspector.Console.log(file);

When that line is encountered, the AIR HTML Introspector is displayed, as

shown in Figure 15-4.

After the AIR HTML Introspector is shown, you may find yourself becom-

ing like a kid in a candy store. You can access the current state of UI

elements (see Figure 15-5) and DOM, view application assets, and view

application source files. What’s more, the XHR tab allows you to watch all

XMLHttpRequest communications of the app.

 The AIR HTML Introspector is designed to work primarily with sandboxed

content (HTML files in your application directory). However, you can use the

Introspector with nonsandboxed content that is inside an iframe or frame. To

enable the AIR HTML Introspector, both the parent and frame HTML files need

to include the AIRIntrospector.js file.

311 Chapter 15: Ten Tips for Successful AIR Debugging

Figure 15-4:
Inspecting a

File object.

Figure 15-5:
Inspecting

elements of
the UI.

312 Part IV: The Part of Tens

Debug with Flex Builder
If you’re already using Flex Builder to develop Adobe AIR applications, this

tip is a no-brainer. However, if you have not checked out Flex Builder’s IDE, I

recommend doing so. Flex Builder provides a full-featured debugging environ-

ment for your AIR apps, including breakpoints, the ability to step line-by-line

through code, variable/object inspection, and so on. After you debug AIR

apps inside Flex Builder (as shown in Figure 15-6), it becomes hard to want to

ever leave its environment.

Figure 15-6:
Flex Builder

provides
powerful

debugging.

Test on Multiple Platforms
Because Adobe AIR apps work in Windows, Mac, and Linux, testing your

application across multiple platforms is important. Although much of the

functionality of your app will work as you designed, it could have some UI

glitches or inconsistencies that you don’t expect. Therefore, before your final

release, at a minimum, do a sanity check on your app.

View Source Code
You can enable the source code of your app to be viewed by users of your

application or by yourself in a deployed environment. For HTML apps, you

want to add the following script element to your page header:

313 Chapter 15: Ten Tips for Successful AIR Debugging

<script type=”text/javascript” src=”AIRSourceViewer.js”/>

By including that JavaScript file, you have access to the air.SourceViewer

object. You can access a SourceViewer instance through the getDefault()

method and then view the source by calling the viewSource() method.

Here’s the code:

function viewAppSource() {
 var sourceViewer = air.SourceViewer.getDefault();
 sourceViewer.viewSource();
}

You can exclude certain files or folders from the code that is displayed by

specifying a configObject array as the parameter when calling viewS-
ource(). For example:

function viewProtectedSource() {
 var sourceViewer = air.SourceViewer.getDefault();
 var configObj = {};
 configObj.exclude = [“supersensitive.html”, “trade-

secrets.html”, “TopSecret”]
 sourceViewer.viewSource(configObj);
}

Figure 15-7 shows the viewer when called.

Figure 15-7:
Sharing

your source
code with

others.

314 Part IV: The Part of Tens

Chapter 16

Ten Killer RIAs to Explore
In This Chapter
▶ Google Analytics Reporting Suite

▶ eBay Desktop

▶ AOL Music – Top 100 Videos

▶ twhirl and Snitter

▶ AgileAgenda

▶ RichFLV

▶ Snackr

▶ Snippely

▶ uvLayer

Since the official release of the Adobe AIR SDK, hundreds of rich Internet

applications (RIAs) have been developed and released on the Web. Some

are new takes on desktop utilities and widgets. Some are parts of existing

Web apps. A few are even full-scale commercial apps.

Rather than show you the ten most useful RIAs, I use this chapter to highlight

ten killer examples that demonstrate the power and flexibility of the AIR plat-

form. Consider these ten to be inspiration for the type of applications that

you can develop using Adobe AIR.

 One of the most beneficial aspects of surveying these RIAs is that they help

you see how you can take a Web app that you’ve been working with online

for years — such as eBay or Google Analytics — and seeing how AIR offers an

entirely new take on how to tackle its respective problem domain.

316 Part IV: The Part of Tens

Pure Usefulness: Google Analytics
Reporting Suite

www.aboutnico.be

Google Analytics is one of the most popular Web site traffic analysis tools

available. The Google Analytics Reporting Suite takes much of the functional-

ity of what Google offers on its Web site and packages it into a well-designed,

visually attractive, and very responsive AIR application (see Figure 16-1).

Figure 16-1:
Google

Analytics.

The Google Analytics Reporting Suite is an ideal desktop-based monitoring

tool for Web site owners and administrators, eliminating the need to have a

browser open to www.google.com/analytics. The application, written in

Flex, makes effective use of charts, tabs, tabular lists, and a variety of other

UI elements. You can also export data to PDF, Excel, or XML format.

 One of the smart moves that its developer Nicholas Lierman made was to lay

out and organize the UI in a format complementary to the Google Analytics

Web site, thereby making the transition to the AIR app a no-brainer for exist-

ing Web app users. If you’re porting an app from the Web to AIR, check out

what Nicholas did.

317 Chapter 16: Ten Killer RIAs to Explore

 You can read an article about the development of this app by its developer at

the following URL: www.adobe.com/devnet/air/flex/articles/
analytics_reporting_suite_print.html.

Pure Power: eBay Desktop
http:// desktop.ebay.com

eBay Desktop may well be the poster child demonstrating the power of

Adobe AIR. Inside of its desktop UI, it packs a huge amount of features for

searching, bidding, watching, and buying items on eBay (see Figure 16-2).

Figure 16-2:
eBay

Desktop
packs a true

AIR punch.

If you’ve bid on an item before at the end of the auction, you’ve probably

found yourself constantly hitting the browser Refresh button to see the latest

bid. eBay Desktop eliminates that hassle because it offers live updating of

bids in the main auction screen.

318 Part IV: The Part of Tens

However, perhaps the most impressive part of eBay Desktop is how it trans-

forms searching for items. Because the UI can be more sophisticated than the

ordinary HTML version on the Web site, the AIR app delivers an intuitive and

speedy way to search for items and drill down for products inside categories

and subcategories.

 The app was built using Adobe Flex. You can view a case study of the app at

www.adobe.com/cfusion/showcase/index.cfm?event=casestudyde
tail&casestudyid=383833.

Innovative Use of Media: AOL Music —
Top 100 Videos

http:// music.aol.com/help/syndication/desktop-widgets

AOL’s entry into the AIR world is AOL Music — Top 100 Videos, a stylish

media player for browsing (see Figure 16-3), playing (see Figure 16-4), shar-

ing, bookmarking, and rating popular music videos. Top 100 Videos provides

a great example of how you can combine the slickness and savvy of a Flash-

based UI with the speedy performance of a desktop app.

Figure 16-3:
 Top 100

Videos
makes

browsing
for videos

easy.

319 Chapter 16: Ten Killer RIAs to Explore

Figure 16-4:
Integrated

video player
provided

for playing
videos.

Top 100 Videos also shows you how to toggle between normal, full-screen,

and side Dock views with an AIR app.

Web App Upgrades: twhirl and Snitter
www.twhirl.org

http:// snook.ca/snitter

Some Web apps are used so frequently throughout the day that you don’t

want to have a browser open to work with them. Twitter is one such exam-

ple. For the uninitiated, Twitter is a social-networking app in which you can

communicate quick messages to friends and colleagues. Rather than con-

stantly refresh your Twitter page, you can use either of these two Twitter cli-

ents: twhirl (see Figure 16-5) and Snitter (see Figure 16-6).

Both encapsulate the functionality of Twitter for the desktop and do what a

desktop client can do best — be instantly available when you need it.

The full-featured functionality of twhirl (which was built using Flex) goes

beyond basic emulation. It allows you to connect to Twitter using multiple

accounts, cross-post to Pownce and Jaiku, and post images to TwitPic. You

can also follow other users and search tweets using the tweenScan and ter-

raminds Web services.

320 Part IV: The Part of Tens

Figure 16-5:
twhirl is a

full-featured
desktop
Twitter
client.

Figure 16-6:
Snitter

also brings
Twitter

functionality
to the

desktop.

Business Use: AgileAgenda
www.agileagenda.com

I include AgileAgenda in this chapter because it’s a good example of a

real-world, business-oriented AIR application. AgileAgenda is a project

321 Chapter 16: Ten Killer RIAs to Explore

scheduling and management system (shown in Figure 16-7) that enables you

to manage tasks, milestones, resources, and schedule. One of the advantages

of AgileAgenda over a pure Web app is its ability to store project data either

locally or remotely on AgileAgenda’s Web service.

Figure 16-7:
Agile

Agenda
allows you
to manage

your
projects.

For the Niche Crowd: RichFLV
www.richapps.de/?p=48

RichFLV, shown in Figure 16-8, is one of those useful niche apps that, by the

way, just so happens to be written in AIR. You can use it to edit Flash Video

(FLV) files, such as modify metadata, edit cuepoints, and trim down videos.

RichFLV also allows you to convert FLV files into different formats, including

SWF, audio MP3, or a JPG image.

Yes, RichFLV could have been written as a native app, but the fact that it was

written in AIR is a good testimonial to the power of AIR.

322 Part IV: The Part of Tens

Figure 16-8:
RichFLV is a

handy FLV
editing tool.

The Cool Factor: Snackr
http:// snackr.net

Snackr (see Figure 16-9) is an RSS aggregator that continuously displays

newsfeed entries as a scrolling ticker on your desktop. If you see a story

that looks interesting, you can click it and Snackr displays the full story in a

pop-up window.

You can dock Snackr to one of the edges of your screen — top, left, right,

bottom — and can tweak the speed of the scrolling. You can also import

feeds from another reader using an OPML file or simply paste a new feed

address into its dialog box.

Snackr’s main selling point is its simple yet slick UI. It just looks cool docked

to your desktop. However, in terms of overall RSS reading functionality,

Snackr is bare bones. Clearly, Snackr is not meant as a replacement to a full-

featured RSS reader, such as Google Reader or NetNewsWire.

Snackr is one of those apps that you’ll probably either love or hate.

When I first tried it docked to the top of the desktop, I found it completely

323 Chapter 16: Ten Killer RIAs to Explore

distracting. However, when I slowed the scroll and moved it to the right side,

it actually started to grow on me.

Figure 16-9:
Snackr dis-

plays RSS
entries as a

ticker.

If nothing else, Snackr provides a great example of a well-designed RIA that

solves a problem in a way that a Web app alone can’t do.

 The developer, Narciso Jaramillo, wrote the app in Adobe Flex and has

a write-up about his development approach at www.rictus.com/
muchado/2008/05/12/snackr-an-rss-ticker-built-using-air-
and-flex.

For the Geek Crowd: Snippely
http:// code.google.com/p/snippely

Snippely is a rather nifty utility you can use to organize source code and

random text snippets. It uses a simple method of organizing snippets into

distinct categories. Each snippet has a title, optional description, and one or

more snippets. When you’re working with source code, you can specify the

language, which Snippely then uses to provide syntax highlighting.

Snippely is a handy way for me to get rid of countless .txt files all over my

hard drive in which I store a script, CSS style, or serial number for my software.

324 Part IV: The Part of Tens

Figure 16-10 shows the Snippely user interface.

Figure 16-10:
Snippely

looks just
like a Mac
OS X app.

 Snippely is written in HTML and JavaScript and stores data locally using AIR’s

SQLite database.

Groundbreaking Look and Feel: uvLayer
www.uvlayer.com/download

uvLayer, shown in Figure 16-11, is a social video application for discovering

videos, sharing video media with friends, and organizing your own online

video content. What is immediately striking about uvLayer is its innovative

drag-and-drop desktop canvas, using tiles as a primary UI metaphor.

You can search for media across multiple sources and then add them to your

desktop canvas. Search results are displayed as tiles. You can fan them out

over your desktop or create stacks of videos.

You can share videos you collect with your friends through Facebook, Google

Talk, or AIM, simply by dragging the video on top of the user’s icon.

325 Chapter 16: Ten Killer RIAs to Explore

Figure 16-11:
uvLayer

sports an
innovative

futuristic UI
metaphor.

326 Part IV: The Part of Tens

Index
Numerics
2D context object, 87

• A •
AC_FL_RunContent() function, 286

ActionScript

application menus, setting, 140

audio playback, pausing and resuming,

279–281

calling AIR API from, 58

connectivity, detecting, 258, 260–261

database records, inserting, 240–251

debugging, 306

description of, 10

directories

copying, 209

creating temporary, 207

pointing to, 196

fi les

copying, 209

creating temporary, 207

reading, 211

in Flash, 11

Flash-based apps, 50–52

Flex Builder-based apps, 42–44

handlers for menu commands, selecting,

142

images

copying, 166–169

pasting, 167–169

menu commands, creating, 134–135

microphone, accessing, 283

root menus, creating, 133

Select Directory dialog box, displaying,

199, 201–202

socket connections, 265–266, 270

sound effects, adding, 282–283

submenus, creating, 133

syntax, 57

text

copying to clipboard, 165

cutting, 165

pasting into text memo, 166

ActionScript NativeWindow window,

102, 115–119
addEventListener() method,

61–64, 95, 99, 214

addItem() method, 134

addSubmenu() method, 133

ADL (AIR Debug Launcher) utility, 304

Adobe AIR

API

calling from ActionScript, 58

calling from JavaScript, 57

communication, 70–73

database, 68–70

inter-application data exchange, 64–65

keyboard, 66–67

local fi les, 60–61

menus, 61–64

mouse, 66–67

multimedia, 65–66

native OS windows, 58–60

syntax, 57

applications

auto-updating, 289–299

building with Flash CS4, 49–54

building with Flex Builder 3.0, 39–49

building with HTML and JavaScript,

21–38

digital signature, 14–15

installing with badge.swf, 286–289

overview, 8–9

security, 11–14

Web technologies in, 11

development environment, 16–20

overview, 7–8

runtime

HTMLLoader object, 56

installing, 16

NativeWindow object, 56

328 Adobe AIR For Dummies

runtime (continued)

overview, 8–10

WebKit, 9–10
window object, 56

SDK

ADT utility, 35–36

installing, 17–19

windows

categories of, 101–102

display states, 59

HTML, creating, 112–114

initial, creating, 58–59, 102–106

initialization, 59, 112

mx:Window, creating, 114–115

native OS, 58–59

NativeWindow, creating, 115–119

nonrectangular, Flex, 124–128

nonrectangular, HTML, 120–124

properties of, 102–104

resizing, 60

system chrome, 59, 106–108

transparency, 108–110

type property, 60, 110–112

Adobe Flash Player, 10

ADT utility, 35–37

AgileAgenda, 321

AIR - Applications & Installer Settings

dialog box (Flash), 53–54

AIR Debug Launcher (ADL) utility, 304

.air fi les, 9, 37–38

AIR HTML Introspector, 310–311

AIR Update Framework, 290–291

[air.]Bitmap class, 63

[air.]BitmapData class, 63

[air.]Camera class, 66

[air.]Clipboard class, 64

[air.]ClipboardFormats class, 64

[air.]ClipboardTransferMode

class, 64

[air.]DockIcon class, 63

[air.]EncryptedLocalStore class, 68

[air.]File class, 60–61

[air.]FileFilter class, 60–61

[air.]FileMode class, 60–61

[air.]FileStream class, 60–61

[air.]Icon class, 63

[air.]ID3Info class, 65, 276

[air.]InteractiveIcon class, 63

[air.]Keyboard class, 67

[air.]KeyLocation class, 67

[air.]Loader class, 63

[air.]Local Connection class, 73

[air.]Microphone class, 66, 276

[air.]Mouse class, 67

[air.]NativeDragActions class, 65

[air.]NativeDragManager class, 65

[air.]NativeDragOptions class, 65

[air.]NativeMenu class, 63

[air.]NativeMenuItem class, 63

[air.]NativeWindow class, 59

[air.]NativeWindowDisplayState

class, 59

[air.]NativeWindowInitOptions

class, 59

[air.]NativeWindowResize class, 60

[air.]NativeWindowSystemChrome

class, 59

[air.]NativeWindowWindowType

class, 60

[air.]NetConnection class, 73

[air.]NetStream class, 72

[air.]NotificationType class, 63

[air.]ObjectEncoding class, 72

[air.]Responder class, 72

[air.]Screen class, 63

[air.]SharedObject class, 73

[air.]SharedObjectFlushStatus

class, 73

[air.]Socket class, 72

[air.]Sound class, 66, 276

[air.]SoundChannel class, 66, 276

[air.]SoundLoaderContext class,

66, 276

[air.]SoundMixer class, 66, 276

[air.]SoundTransform class, 66, 276

[air.]SQLCollationType class, 69

[air.]SQLColumnNameStyle class, 69

[air.]SQLColumnSchema class, 69

[air.]SQLConnection class, 69

[air.]SQLError class, 69

[air.]SQLErrorEvent class, 69

[air.]SQLErrorOperation class, 69

[air.]SQLEvent class, 69

[air.]SQLIndexSchema class, 69

[air.]SQLMode class, 69

[air.]SQLResult class, 70

329329 Index

[air.]SQLSchema class, 70

[air.]SQLSchemaResult class, 70

[air.]SQLStatement class, 70

[air.]SQLTableSchema class, 70

[air.]SQLTransactionLockType

class, 70

[air.]SQLTriggerSchema class, 70

[air.]SQLUpdateEvent class, 70

[air.]SQLViewSchema class, 70

[air.]SystemTrayIcon class, 63

[air.]URLLoader class, 70–73

[air.]URLLoaderDataFormat class, 71

[air.]URLRequest class, 71

[air.]URLRequestDefaults class, 71

[air.]URLRequestHeader class, 71

[air.]URLRequestMethod class, 71

[air.]URLStream class, 71

[air.]URLVariables class, 72

[air.]Video class, 66

[air.]XMLSocket class, 72

AIRAliases.js fi le, 57, 213

AIRBadge.as fi le, 289

AIRLogger, 309

AIRUpdates.html fi le, 296

AIRUpdates.mxml fi le, 297–298

airversion parameter, 287

AIRWrite app, 170–179

AIRWrite text editor

AIRAliases.js fi le, 213

drag-and-drop support, adding, 220–225

fi les

opening asynchronously, 214–215

saving asynchronously, 215–216

root menus, 213–214

user interface, 212–213

AIRWriteHtml.html fi le, 216–220

Ajax, 11

alert command, 306–307

aliased objects, 57

alpha blending, 103, 108

alpha values, 84–86

Analytics Reporting Suite, 8

AOL Music - Top 100 Videos media player,

318–319

API (application programming interface)

calling

from ActionScript, 58

from JavaScript, 57

communication, 70–73

database, 68–70

inter-application data exchange, 64–65

keyboard, 66–67

local fi les, 60–61

menus, 61–64

mouse, 66–67

multimedia, 65–66

native OS windows, 58–60

overview, 9

syntax, 57

app: scheme, 194

application communication classes, 73

application descriptor fi le, 32–35, 45–46

application directory, 196

application element, 33

application folder, 22

application ID, 41, 53

application menu, 130, 140

application programming interface (API)

calling

from ActionScript, 58

from JavaScript, 57

communication, 70–73

database, 68–70

inter-application data exchange, 64–65

keyboard, 66–67

local fi les, 60–61

menus, 61–64

mouse, 66–67

multimedia, 65–66

native OS windows, 58–60

overview, 9

syntax, 57

application root directory URL, 195

Application Setup dialog box, 289

application storage directory, 195, 197

applicationID, 195

applications, Adobe AIR

auto-updating, 289–299

building with Flash CS4

ActionScript code, adding, 50–52

application ID, 53

compiling, 53–54

confi guring, 53–54

overview, 39

user interface, designing, 49–50

330 Adobe AIR For Dummies

applications, Adobe AIR (continued)

building with Flex Builder 3.0

ActionScript, 42–44

application ID, 41

creating project, 40–42

descriptor fi le, 45–46

location of project, 40

MXML, 42–44

naming projects, 40–41

preparing for deployment, 47–49

testing, 46

building with HTML and JavaScript

application folder, 22

descriptor fi le, 32–35

HTML-based user interface, 23–24

installer fi le, generating, 37–38

JavaScript code, adding, 27–32

overview, 21

self-signed certifi cate, 36–37

styles, adding, 25–27

testing with ADT, 35–36

digital signature, 14–15

installing with badge.swf, 286–289

overview, 8–9

security, 11–14

Web technologies in, 11

ApplicationUpdaterUI instance,

292, 295

application.xml fi le, 32–33

appname parameter, 287

appProperties object, 143–144

app-storage: scheme, 194

appurl parameter, 287

Aptana Studio, 304–306

ArrayCollection object, 269

asynchronous connections, 235

audio fi les

microphone, accessing, 283–284

pausing playback, 279–281

playing, 276–279

resuming playback, 279–281

sound effects, adding, 281–283

auto-updating

AIR Update Framework, 290–291

AIRUpdates.html fi le, 296

AIRUpdates.mxml fi le, 297–298

checking for updates, 300

download progress, 300

installing updates, 300

overview, 289–290

release notes, 299

source code, adding update to, 292–295

updater descriptor fi le, 291

• B •
backupFolder variable, 60–61

badge.fla fi le, 289

badge.swf installer

benefi ts of, 286

flashvars parameters, 287

helper text, 287

setting up, 286–289

source fi les, 289

beginPath() method, 88

bind()method, 29

Bitmap class, 63

bitmap format, 164

BitmapData class, 63, 167

bitmaps property, 146

BOOLEAN data type, 234

browseForDirectory() method, 199

browseForOpen() method,

200–202, 214

browseForOpenMultiple() method,

203–206

browseForSave() method, 202

bubbling phase, 99

buttoncolor parameter, 287

ByteArray() method, 210–211

• C •
Camera class, 66

canvas element

adding, 86–87

color, 91

context object, 87

nonrectangular shapes, drawing, 88–89

overview, 86

rectangles, drawing, 87

transparency, 91

#canvas rule, 25

capture phase, 99

331331 Index

Cascading Style Sheets (CSS)

styles, adding with, 25–27

WebKit extensions, 81–82

CD command, 35–36

certifi cates

creating

in Flash CS4, 54

in Flex Builder, 47–49

overview, 36–37

overview, 14–15

Check for Updates dialog box, 299

Chinese text, linebreak rule for, 81

chrome. See also windows

custom, 107–108

Flex, 108

standard, 107

CirculAIR.mxml fi le, 126–128

classes

application communication

Local Connection, 73

NetConnection, 73

SharedObject, 73

SharedObjectFlushStatus, 73

clipboard

Clipboard, 64

ClipboardFormats, 64

ClipboardTransferMode, 64

database

EncryptedLocalStore, 68

SQLCollationType, 69

SQLColumnNameStyle, 69

SQLColumnSchema, 69

SQLConnection, 69

SQLError, 69

SQLErrorEvent, 69

SQLErrorOperation, 69

SQLEvent, 69

SQLIndexSchema, 69

SQLMode, 69

SQLResult, 70

SQLSchema, 70

SQLSchemaResult, 70

SQLStatement, 70

SQLTableSchema, 70

SQLTransactionLockType, 70

SQLTriggerSchema, 70

SQLUpdateEvent, 70

SQLViewSchema, 70

fi le

File, 60–61, 194

FileFilter, 60–61

FileMode, 60–61, 194

FileStream, 60–61, 194, 210–211

identifying, 193–194

media

Camera, 66

ID3Info, 65

Microphone, 66

Sound, 66

SoundChannel, 66

SoundLoaderContext, 66

SoundMixer, 66

SoundTransform, 66
Video, 66

network connection

NetStream, 72

ObjectEncoding, 72

Responder, 72

Socket, 72

URLLoader, 71

URLLoaderDataFormat, 71

URLRequest, 71

URLRequestDefaults, 71

URLRequestHeader, 71

URLRequestMethod, 71

URLStream, 71

URLVariables, 72

XMLSocket, 72

user interface

Bitmap, 63

BitmapData, 63

DockIcon, 63

Icon, 63

InteractiveIcon, 63

Loader, 63

NativeMenu, 63

NativeMenuItem, 63

NotificationType, 63

Screen, 63

SystemTrayIcon, 63

window

NativeMenu, 63

NativeWindow, 59

NativeWindowDisplayState, 59

NativeWindowInitOptions, 59

NativeWindowResize, 60

332 Adobe AIR For Dummies

window (continued)

NativeWindowSystemChrome, 59

NativeWindowWindowType, 60

SystemTrayIcon, 63

clear() method, 164–165

Clipboard. See also drag-and-drop support

classes, 64–65

formats, 164

in HTML environments, 166

images

copying, 167

pasting, 167–169

overview, 163–164

pasting text from, 165–166

text

copying to, 164–165

cutting to, 165

Clipboard class, 64–65

ClipboardFormats class, 64

ClipboardTransferMode class, 64

close() method, 28–30

Close command, 29

closeApp() function, 43

closeHandler() function, 51

closePath() method, 88

code-signed certifi cates, 14–15

commercial certifi cates, 15

configObject array, 313

CONNECT event, 270

connectDatabase() function, 253

connectToServer() function, 270

content element, 34

content property, 102

context menu

defi ned, 140

description of, 130

in Flex, 141

in HTML, 140–141

versus pop-up menu, 132

context object, 87, 90

ContextMenu class, 141

ContextMenuItem class, 141

copyright element, 33

copyTo() method, 61, 207–209

copyToAsync() method, 207–209

Create Project Wizard (Flex Builder), 40–42

Create Self-Signed Certifi cate dialog box

Flash, 54

Flex Builder, 47–49

CREATE TABLE statement (SQL), 233–235

createDirectory() method, 206

createFileMenu() function, 213

createMenuCommand() function, 214

createMenuSeparator()

function, 214

createTempDirectory() method, 207

createTempFile() method, 207

CSS (Cascading Style Sheets)

styles, adding with, 25–27

WebKit extensions, 81–82

custom chrome, 107–108

• D •
data types, 234–235

database

connections

asynchronous, 235

opening to, 235–237

synchronous, 235

data types, 234–235

encrypted local store, 68

local, 227–228

records

adding, 232

adding conditions on, 230–231

deleting, 233

inserting, 240–251

retrieving from tables, 232

updating, 232

sort order, 231–232

tables

creating in, 233, 238–239

requesting data from, 251–256

retrieving records from, 229–230

database classes

EncryptedLocalStore, 68

SQLCollationType, 69

SQLColumnNameStyle, 69

SQLColumnSchema, 69

SQLConnection, 69

SQLError, 69

333333 Index

SQLErrorEvent, 69

SQLErrorOperation, 69

SQLEvent, 69

SQLIndexSchema, 69

SQLMode, 69

SQLResult, 70

SQLSchema, 70

SQLSchemaResult, 70

SQLStatement, 70

SQLTableSchema, 70

SQLTransactionLockType, 70

SQLTriggerSchema, 70

SQLUpdateEvent, 70

SQLViewSchema, 70

DataDisplay.html, 254–256

DATE data type, 234

debugging

AIR Debug Launcher, 304

AIR HTML Introspector, 310–311

AIRLogger, 309

alert command, 306–307

Aptana Studio, 304–306

debug window, creating, 308–309

description of, 303

Flex Builder, 312

multiple platforms, 312

source code, viewing, 312–313

trace method, 307–308

default behaviors, 97–98

delay property, 292

deleteFile() method, 209

deleteFileAsync() method, 209

description element, 33

descriptor fi le, 32–35, 45–46

desktop directory, 197

digital signature

creating

in Flash CS4, 54

in Flex Builder, 47–49

overview, 36–37

overview, 14–15

Digital Signature dialog box (Flash), 54

directories

application, 196

application storage, 195, 197

choosing, 199–201

copying, 207–209

creating, 206

deleting, 209

desktop, 197

document, 197

fi le system root, 197

home, 197

moving, 207–209

paths, 61

pointing to, 196–198

root, 195

temporary, 197, 207

user’s desktop, 197

user’s document, 197

user’s home, 197

disconnectFromServer()

function, 271

displaying event, 132

div element, 23

dock icon menu, 131

DockIcon class, 63

document directory, 197

document.write() component, 13

Download Progress dialog box, 300

downloading

Adobe AIR runtime, 16

Adobe AIR SDK, 17

updates

AIR Update Framework, 290–291

AIRUpdates.html fi le, 296

AIRUpdates.mxml fi le, 297–298

checking for updates, 300

download progress, 300

installing updates, 300

overview, 289–290

release notes, 299

source code, adding update to, 292–295

updater descriptor fi le, 291

drag-and-drop support

adding

in Flash, 170–181

in Flex, 170–181

in HTML, 181–191

drag initiator, 169

draggable elements, 183–185

drop target, 169, 186–187

sequence in, 169

dragdropme.html fi le, 189–191

334 Adobe AIR For Dummies

draggable elements, 183–185

draginit-div element, 183–184

draginit-text element, 183

Dreamweaver, 19–20

dropFeed() function, 245

• E •
eBay Desktop, 317–318

Eclipse IDE, 263

editCopy() command, 164–165

EncryptedLocalStore class, 68

environment path

Windows Vista, 17–18

Windows XP, 18

eval() component, 13

event handling, 94–95

event listener, 94

event objects, 95–97

events

bubbling phase, 99

capture phase, 99

fl ow, 98–100

registering, 95

responding to, 93–94

target phase, 99

exit() method, 30

EXITING event, 271

Export Release Build dialog box (Flex

Builder), 47

extensions, WebKit

-webkit-appearance, 83–84

-webkit-background-size, 24, 81

-webkit-border-bottom-left-
radius, 81

-webkit-border-bottom-right-
radius, 81

-webkit-border-horizontal-
spacing, 81

-webkit-border-radius, 22, 26–27,

81, 82–83

-webkit-border-top-left-
radius, 81

-webkit-border-top-right-
radius, 81

-webkit-border-vertical-
spacing, 81

-webkit-line-break, 81

-webkit-margin-bottom-
collapse, 81

-webkit-margin-collapse, 82

-webkit-margin-start, 82

-webkit-margin-top-collapse, 82

-webkit-nbsp-mode, 82

-webkit-padding-start, 82

-webkit-rtl-ordering, 82

-webkit-text-fill-color, 82

-webkit-text-security, 82

-webkit-user-drag, 82, 181

-webkit-user-modify, 82

-webkit-user-select, 82

• F •
FaultEvent event, 96

File class, 60–61, 194

fi le classes

File, 60–61, 194

FileFilter, 60–61

FileMode, 60–61, 194

FileStream, 60–61, 194, 210–211

identifying, 193–194

fi le list format, 164

File Open dialog box, 200–202

File Save dialog box, 200–202

file:/// scheme, 194

fi le system directories

application, 196

application storage, 195, 197

fi le system root, 197

pointing to, 196–198

root, 195, 197

temporary, 197

user’s desktop, 197

user’s document, 197

user’s home, 197

fi le URLs, 195

File.browseForDirectory() method,

199

File.browseForOpen() method, 200–

202

File.browseForOpenMultiple()

method, 203–206

335335 Index

File.browseForSave() method, 202

File.copyTo() method, 207–209

File.deleteFile() method, 209

File.deleteFileAsync()

method, 209

FileFilter class, 60–61

FileMode class, 60–61, 194

fileMode parameter, 210–211

File.moveTo() method, 207–209

File.moveToTrash() method, 209

File.moveToTrashAsync()

method, 209

filename element, 33

fileNew() function, 142

fileOpen() function, 61–64

Filer.mxml fi le, 204–206

fi les

audio

microphone, accessing, 283–284

pausing playback, 279–281

playing, 276–279

resuming playback, 279–281

sound effects, adding, 281–283

copying, 207–209

creating temporary, 207

displaying multiple, 203–206

fi ltering, 61

icon, 34

local, 60–61

modes, 210

moving, 207–209

MP3, 65

opening, 61, 200–202

paths, 61

pointing to, 198–199

reading, 210–211

writing to, 211–212

fileSaveAs() function, 216

FileStream class, 60–61, 194, 210–211

fill() method, 88

fillRect() method, 87

FillStyle property, 90

Flash CS3, 19–20

Flash CS4

ActionScript code, adding, 50–52

building applications with, 49–54

confi guring and compiling, 53–54

drag-and-drop support, adding, 167–169

user interface, designing, 49–50

Flash media, 11

Flash Player, 10

flashvars parameter, 287

Flex, 11

Flex Builder 3.0

ActionScript, 42–44

building applications with, 39–49

creating project, 40–42

debugging with, 312

description of, 39

descriptor fi le, 45–46

drag-and-drop support, adding, 170–181

MXML, 42–44

naming applications, 40–41

preparing for deployment, 47–49

project, creating, 40–42

testing, 46

Flex chrome, 108

FlexAir.mxml fi le, 116–119

FlexNativeMenu instance, 144

folder, application, 22

Function constructor, 13

• G •
getContext() method, 86

getData() method, 187

getHistoryAt() member, 80

getMicrophone() function, 283–284

GlobalAlpha property, 90

GlobalCompositeOperation

property, 90

Google, detecting connectivity to, 259

Google Analytics Reporting Suite, 316–317

• H •
h1 tag, 24–25

hasFormat() method, 167

head element, 23

height property, 104

historyBack() member, 80

historyForward() member, 80

HistoryLength() member, 80

336 Adobe AIR For Dummies

HistoryPosition() member, 80

home directory, 197

HTML

building applications with, 21–38

Clipboard format, 164

context menu, 130, 140–141

drag-and-drop support, adding, 181–191

for network service monitoring, 259

overview, 11

pop-up menu, 141–142

windows, 102, 112

HTMLLoader object, 56

accessing, 78

history-related members, 80

HTML content, loading, 78–79

overview, 77

sizing, 78

URL, launching in default system

browser, 79

• I •
Icon class, 63

icon fi les, 34

ID3Info class, 65, 276

IF NOT EXISTS clause, 234

ImageMover.mxml fi le, 179–181

imageurl parameter, 287

init() function, 95, 170

initialize() method, 28–29, 31

initialWindow element, 33–34, 102–106

innerHTML component, 14

INSERT INTO statement (SQL), 232

Install Update dialog box, 300

installer fi le, generating, 37–38

INTEGER data type, 234

InteractiveIcon class, 63

inter-application data exchange, 64–65

Internet-savvy apps, 9–10

IO_ERROR event, 270

isCheckForUpdateVisible property,

293

isDirty variable, 214

isDownloadProgressVisible property,

293

isDownloadUpdateVisible property,

293

isFileUpdateVisible property, 293

isInstallUpdateVisible property, 293

isNewFile variable, 214

• J •
Japanese text, linebreak rule for, 81

Java apps, 9

Java For Dummies, 263

Java SE Developer’s Kit, 263

JavaScript

audio

pausing playback, 279–281

playing, 65

resuming playback, 279–281

building applications with, 21–38

calling AIR API from, 57

canvas, defi ning, 86

connecting to database, 68

connectivity, detecting, 260

database record, inserting, 240

debugging, 306

directories

copying, 207–208

copying to another location, 60

creating, 206

creating temporary, 207

displaying

Choose Directory dialog box, 199–200

File Save dialog box, 202

Select Directory dialog box, 199, 201

Select Multiple Files dialog box, 203–204

fi les

copying, 207–208

creating temporary, 207

writing to, 211–212

keyboard input, 67

menu commands

creating, 134

selecting handlers for, 141–142

menus

application, 140

attaching objects to, 139

updating, 143–144

window, 139–140

microphone, accessing, 283

337337 Index

overview, 11

reading fi le, 211

rectangles, drawing, 87

root menus, creating, 133

socket connection, 266

sound effects, 281–283

submenus, creating, 133

text

copying to clipboard, 64

copying to desktop, 60

pasting from clipboard, 165–166

window through API, creating, 58–59

Jot

descriptor fi le, 27–32

folder, preparing, 22

HTML-based user interface, 23–24

installer fi le, generating, 37–38

JavaScript code, adding, 27–32

styles, adding, 25–27

testing with ADT utility, 35–37

• K •
keyboard

accessing, 66–67

key location, 67

mnemonic key assignments, 137–138

user interaction classes, 67

Keyboard class, 67

keyEquivalent property, 136–137

KeyLocation class, 67

Korean text, linebreak rule for, 81

• L •
Lierman, Nicholas, 316

Lightweight window, 110–111

LineCap property, 90

LineJoin property, 90

lineTo (x,y) method, 88

lineWidth property, 90

link reference, 23

links, 83–84

load() method, 78

Loader class, 63

loadString() method, 78

Local Connection class, 73

local databases, 227–228

local fi les, 60–61

log() method, 310

• M •
Mac OS X

enabling apps for dock, 146

setting system path in, 18–19

maximizable property, 103, 112

maxSize property, 104

media classes

Camera, 66

ID3Info, 65

Microphone, 66

Sound, 66

SoundChannel, 66

SoundLoaderContext, 66

SoundMixer, 66

SoundTransform, 66

Video, 66

menu items

attaching objects to, 139

deselecting, 138

disabling, 138–139

enabling, 138–139

selecting, 138

MenuAIR

Dock icon, 159

File menu items, 159

Flex version, 152–157

HTML version, 147–151

pop-up menu, 160

Search menu item, 160

Tool tip, 160

View menu, 160

menus

Adobe AIR API, 61–64

application, 130, 140

classes, 63

commands, 134–135

creating, 61–62, 131–132

dock icon, 131

HTML/SWF context, 130

mnemonic key assigments, 137–138

338 Adobe AIR For Dummies

menus (continued)

modifi er keys, setting, 137

mx:Flex NativeMenu, 131

pop-up, 130, 141–142

primary key, setting, 136–137

root, 132–133

selecting events, 142–143

separators, 135–136

submenus, 133–134

system tray icon, 130

types of, 130–131

updating, 143–144

window, 130, 139–140

messagecolor parameter, 287

microphone, 283–284

Microphone class, 66, 276

Microsoft Windows Vista, 17–18

Microsoft Windows XP, 18

minimizable property, 103, 112

minimumPatchLevel attribute, 33

minSize property, 104

miterLimit property, 90

mnemonic keys, assigning, 137–138

modifi er keys, 137

mouse, 66–67

Mouse class, 67

moveTo() method, 207–209

moveTo (x,y) method, 88

movetoAsync() method, 207–209

moveToTrash() method, 209

moveToTrashAsync() method, 209

MP3 fi les, 65

multimedia classes

Camera, 66

ID3Info, 65

Microphone, 66

Sound, 66

SoundChannel, 66

SoundLoaderContext, 66

SoundMixer, 66

SoundTransform, 66

Video, 66

multiple platforms, testing on, 312–313

mx:Button element, 43

mx:Flex NativeMenu menu, 131

MXML

adding, 42–44

layout, 241

mx:Script element, 43

mx:Window element

creating, 114–115

nonrectangular, 124–128

overview, 102

mx:WindowedApplication element,

42–43

• N •
native OS windows, creating, 58–60

native paths, 194

NativeApplication class, 30, 43–44

NativeDragActions class, 65

NativeDragEvent class, 96–97

NativeDragManager class, 65, 170

NativeDragOptions class, 65

NativeMenu class, 63, 131–132

NativeMenuItem class, 63, 131–132

nativepath property, 194

NativeWindow class, 56, 59

NativeWindowDisplayState class, 59

NativeWindowInitOptions()

object, 59

NativeWindowResize class, 60

NativeWindowSystemChrome class, 59

NativeWindowWindowType class, 60

navigateToURL() function, 72

NetConnection class, 73

NetStream class, 72

network connection classes

NetStream, 72

ObjectEncoding, 72

Responder, 72

Socket, 72

URLLoader, 71

URLLoaderDataFormat, 71

URLRequest, 71

URLRequestDefaults, 71

URLRequestHeader, 71

URLRequestMethod, 71

URLStream, 71

URLVariables, 72

XMLSocket, 72

339339 Index

network connectivity

detecting, 257–258

HTML apps for service monitoring, 259

monitoring, 258–261

socket connections, 261–262

NETWORK_CHANGE event, 258–259

New Flex Project dialog box (Flex

Builder), 40

NONE data type, 234

nonrectangular shapes, creating, 88–89

nonrectangular windows

creating, 120–128

in Flex, 124–128

in HTML, 120–124

Normal window, 110–111

NotificationType class, 63

NUMBER data type, 234

NUMERIC data type, 234

• O •
OBJECT data type, 234

ObjectEncoding class, 72

onConnect() handler, 270

oncontextmenu event, 140

onDataReceived() function, 270

onDragDrop() function, 97, 171, 245

onDragEnter() function, 187

ondragenter event, 186

onDragIn() function, 96–97, 170, 176

onDragOver() function, 187

ondragover event, 186

ondrop event, 186

onFetchComplete() function, 245

onFileSaveAsSelect() function, 216

onFileSelect() function, 172, 214

onmousedown event, 29

onMouseMove() function, 178

onSelectResult() function, 253

openAsync() function, 214

ORDER BY command (SQL), 231–232

• P •
password, 37

paths

app: scheme, 195

app-storage: scheme, 195

file:/// scheme, 195

nativePath property, 194

url property, 194

playSound() function, 276–278, 282

pollInterval property, 259

pop-up menu, 130, 132, 141–142

pre-defi ned fi le system directories

application, 196

application storage, 195, 197

fi le system root, 197

pointing to, 196–198

root, 195

temporary, 197

user’s desktop, 197

user’s document, 197

user’s home, 197

preventDefault() method, 97–98, 141

primary key, setting, 136–137

Properties inspector (Flash), 49

publisherID, 195

push buttons, 83–84

• Q •
Quit command (Mac OS x), 29

• R •
readBytes() method, 210–211

readMultiByte() method, 210–211

readUTF() method, 210–211

readUTFBytes() method, 210–211

REAL data type, 234

ReallySimpleServer.java fi le, 263–265

rectangles, drawing, 87

refreshSize() method, 28, 30–31

release notes, 299

remote network services

detecting, 257–258

HTML apps for service monitoring, 259

monitoring, 258–261

socket connections, 261–262

resizable property, 103, 112

resolvePath() method,

30, 60, 198–199, 236

Responder class, 72

reverse domain format, 33

reverse domain name, 41, 53

340 Adobe AIR For Dummies

rgba() declaration, 84, 91

RIAs (rich Internet applications)

AgileAgenda, 321

AOL Music - Top 100 Videos, 318–319

eBay Desktop, 317–318

Google Analytics Reporting Suite, 316–317

overview, 7

RichFLV, 321–322

Snackr, 322–323

Snippely, 323–324

Snitter, 319–320

twhirl, 319–320

uvLayer, 324–325

Rich Text Format (RTF), 164

RichFLV, 321–322

root menu, 132–133

rootMenuNativeMenu instance, 61–64

rounded rectangles, creating, 82–83

rssdrop.mxml fi le, 246–251

rssfeed folder, 236

RTF (Rich Text Format), 164

runtime object, 57

• S •
sandboxes

JavaScript activities, 13–14

overview, 12

restrictions, 12–14

save() method, 28–30

saveApp() function, 43

saveHandler() function, 51

Screen class, 63

script tag, 23

SecondWindow.mxml fi le, 114–115

SELECT command (SQL), 229–230

Select Directory dialog box, 199–201

select event, 132

Select Multiple Files dialog box, 203–204

selectDirectory() event handler, 199

SelectFromDatabase() function, 253

selectTrapper() function, 142–143

self-signed certifi cates

creating

in Flash CS4, 54

in Flex Builder, 47–49

overview, 36–37

overview, 14–15

sendToURL() function, 72

separators, 135–136

server push socket connection, 268–273

service monitoring. See also network

connectivity

HTML apps for, 259

overview, 258–259

socket connections, 261–262

Web site connectivity, 259–261

ServiceMonitor class, 259

setData() method, 64, 164–165,

178, 184

setDragImage() method, 184

setInterval() method, 13

shadowBlur property, 90

shadowColor property, 90

shadowOffsetX property, 90

shadowOffsetY property, 90

SharedObject class, 73

SharedObjectFlushStatus class, 73

SimplePushServer class, 269

Snackr, 322–323

Snippely, 323–324

Snitter, 319–320

Socket class, 72

socket connections. See also network

connectivity

ActionScript, 72

adding, 265–268

monitoring, 261–262

overview, 262

server, 262–265

server push, 268–273

SocketMonitor class, 259, 261–262

SockIt2Me.html fi le, 267

SockIt2Me.mxml fi le, 267–268

Sound class, 66, 276

341341 Index

sound fi les

microphone, accessing, 283–284

pausing playback, 279–281

playing, 276–279

resuming playback, 279–281

sound effects, adding, 281–283

SoundChannel class, 66, 276, 279–281

SoundLoaderContext class, 66, 276

SoundMixer class, 66, 276

SoundTransform class, 66, 276, 281–283

source code, viewing, 312–313

SourceViewer object, 312–313

SQL (Structured Query Language)

classes, 68–70

connections

asynchronous, 235

opening, 235–237

synchronous, 235

CREATE TABLE statement, 233–235

data types, 234–235

INSERT INTO statement, 232

local, 227–228

ORDER BY command, 231–232

overview, 228–229

records

adding, 232

adding conditions on, 230–231

deleting, 233

inserting, 240–251

retrieving from tables, 229–230

updating, 232

SELECT command, 229–230

sort order, 231–232

tables

creating, 233, 238–239

requesting data from, 251–256

retrieving records from, 229–230

unsupported features in AIR, 233

UPDATE statement, 232

WHERE command, 230–231

SQL For Dummies, 228

SQL statement

creating database tables, 238–239

inserting records, 240–251

requesting data from tables, 251–256

SQLCollationType class, 69

SQLColumnNameStyle class, 69

SQLColumnSchema class, 69

SQLConnection class, 69

SQLError class, 69

SQLErrorEvent class, 69

SQLErrorOperation class, 69

SQLEvent class, 69

SQLIndexSchema class, 69

SQLite, 10, 68, 228

SQLMode class, 69

SQLResult class, 70

SQLSchema class, 70

SQLSchemaResult class, 70

SQLStatement class, 70

SQLTableSchema class, 70

SQLTransactionLockType class, 70

SQLTriggerSchema class, 70

SQLUpdateEvent class, 70

SQLViewSchema class, 70

stageClickHandler() method, 100

standard chrome, 107

start() method, 259

startMove() method, 29

StatusEvent instance, 261

stroke() method, 88

strokeRect() method, 87

StrokeStyle property, 90

Structured Query Language (SQL)

classes, 68–70

connections

asynchronous, 235

opening, 235–237

synchronous, 235

CREATE TABLE statement, 233–235

data types, 234–235

INSERT INTO statement, 232

local, 227–228

ORDER BY command, 231–232

overview, 228–229

records

adding, 232

adding conditions on, 230–231

deleting, 233

inserting, 240–251

retrieving from tables, 229–230

updating, 232

342 Adobe AIR For Dummies

Structured Query Language (continued)

SELECT command, 229–230

sort order, 231–232

tables

creating, 233, 238–239

requesting data from, 251–256

retrieving records from, 229–230

unsupported features in AIR, 233

UPDATE statement, 232

WHERE command, 230–231

stylesheets. See CSS

submenus, 133–134

submitNow() function, 94

subscribe() function, 270

SWF context menu, 130

synchronous connections, 235

system chrome

custom, 107–108

Flex, 108

overview, 106–107

standard, 107

system path, Mac OS X, 18–19

system tray

enabling apps for, 145–146

icon menu, 130

systemChrome property, 34, 45, 103, 112

SystemTrayIcon class, 63

• T •
taEditor ID, 49–50

talkToMe() method, 73

target phase, 99

taskbar, 145

TCP/IP socket connection, 262

temporary directory, 197, 207

Test Movie (Flash), 52

testcert.p12 fi le, 37–38

text

copying

to clipboard, 64, 165

to desktop, 60

cutting, 165

pasting

from clipboard, 165–166

into text memo, 166

TEXT data type, 234

text format, 164

textarea element, 24, 25–26, 49–50, 98

textClickHandler() method, 100

Thawte, 15

Timeline (Flash), 50

title property, 103

trace method, 307–308

transparency, 108–110

transparent property, 46, 103, 112

twhirl, 319–320

Twitter, 319

2D context object, 87

TwoSocks.mxml fi le, 272–273

Type property, 112

• U •
UNIQUE operator, 243

Update Available dialog box, 299

UPDATE statement (SQL), 232

updater, application

adding to source code, 292–295

AIRUpdates.html fi le, 296

AIRUpdates.mxml fi le, 297–298

ApplicationUpdaterUI instance,

292, 295

checking for updates, 295, 299

customizing from code, 292–294

descriptor fi le, 291–292

downloading updates, 300

event handlers, 295

installing updates, 300

XML confi guration fi le, 294

updateURL property, 292

URL

launching in default system browser, 79

network connection classes, 71–72

URL format, 164

url property, 194

URLLoader class, 71

URLLoaderDataFormat class, 71

URLMonitor class, 259–261

URLRequest class, 71

URLRequestDefaults class, 71

URLRequestHeader class, 71

343343 Index

URLRequestMethod class, 71

URLStream class, 71

URLVariables class, 72

useCapture parameter, 99

user interaction classes, 67

user interface

classes, 63

Flash-based Air apps, 49–50

HTML-based, 23–24

user’s desktop directory, 197

user’s document directory, 197

user’s home directory, 197

Utility window, 110–111

uvLayer, 324–325

• V •
Verisign, 15

version element, 33

Video class, 66

viewSource() method, 312–313

visible property, 34, 103

• W •
W3C DOM Level 2 event model, 95

Web applications

AgileAgenda, 321

AOL Music - Top 100 Videos, 318–319

eBay Desktop, 317–318

Google Analytics Reporting Suite, 316–317

overview, 7

RichFLV, 321–322

Snackr, 322–323

Snippely, 323–324

Snitter, 319–320

twhirl, 319–320

uvLayer, 324–325

Web sites

Adobe AIR, 16

AgileAgenda, 321

AIRLogger, 309

AOL Music - Top 100 Videos, 318–319

Aptana Studio, 306

eBay Desktop, 317–318

Google Analytics Reporting Suite, 316–317

RichFLV, 321–322

Snackr, 322–323

Snippely, 323–324

Snitter, 319–320

SQLite, 10

twhirl, 319–320

uvLayer, 324–325

WebKit, 9–10

WebKit

Adobe Flash Player, 10

creating round rectangles, 82–83

description of, 81–82

making links into push buttons, 83–84

overview, 9–10

setting alpha values, 84–86

SQLite, 10

-webkit-appearance extension, 83–84

-webkit-background-size extension,

24, 81

-webkit-border-bottom-left-
radius extension, 81

-webkit-border-bottom-right-
radius extension, 81

-webkit-border-horizontal-
spacing extension, 81

-webkit-border-radius extension,

22, 26–27, 81, 82–83

-webkit-border-top-left-radius

extension, 81

-webkit-border-top-right-radius

extension, 81

-webkit-border-vertical-spacing

extension, 81

-webkit-line-break extension, 81

-webkit-margin-bottom-collapse

extension, 81

-webkit-margin-collapse

extension, 82

-webkit-margin-start extension, 82

-webkit-margin-top-collapse
extension, 82

-webkit-nbsp-mode extension, 82

-webkit-padding-start extension, 82

-webkit-rtl-ordering extension, 82

344 Adobe AIR For Dummies

-webkit-text-fill-color

extension, 82

-webkit-text-security extension, 82

-webkit-user-drag extension, 82, 181

-webkit-user-modify extension, 82

-webkit-user-select extension, 82

WHERE command (SQL), 230–231

widgets, 9

width property, 104

window classes

NativeMenu, 63

NativeWindow, 59

NativeWindowDisplayState, 59

NativeWindowInitOptions, 59

NativeWindowResize, 60

NativeWindowSystemChrome, 59

NativeWindowWindowType, 60

SystemTrayIcon, 63

window closing event, 29

window menu, 130, 139–140

window object, 56

windows

categories, 101–102

content, 102

display states, 59

height, 104

HTML, creating, 112–114

initial, creating, 58–59, 102–106

initialization options, 59

initialization properties, 112

lightweight, 110–111

maximizing, 103–104

minimizing, 103–104

mx:Window, creating, 114–115

native OS, 58–59

NativeWindow, creating, 115–119

nonrectangular

in Flex, 124–128

in HTML, 120–124

normal, 110–111

properties, 102–104

resizing, 60, 103

system chrome, 59, 106–108

title, 103

transparency, 103, 108–110

type property, 60, 110–112

utility, 110–111

visible, 103

width of, 104

Windows Vista, 17–18

Windows XP, 18

writeMultiByte() method, 211–212

• X •
x property, 104

XHTML document shell, 23

XML data type, 234

XML socket connection. See also network

connectivity

ActionScript, 72

adding, 265–268

overview, 262

server, 262–265

server push, 268–273

XMLHttpRequest object, 13, 310

XMLLIST data type, 234

XMLSocket class, 72

• Y •
y property, 104

BUSINESS, CAREERS & PERSONAL FINANCE
Accounting For Dummies, 4th Edition*
978-0-470-24600-9

Bookkeeping Workbook For Dummies†
978-0-470-16983-4

Commodities For Dummies
978-0-470-04928-0

Doing Business in China For Dummies
978-0-470-04929-7

E-Mail Marketing For Dummies
978-0-470-19087-6

Job Interviews For Dummies, 3rd Edition* †
978-0-470-17748-8

Personal Finance Workbook For Dummies* †
978-0-470-09933-9

Real Estate License Exams For Dummies
978-0-7645-7623-2

Six Sigma For Dummies
978-0-7645-6798-8

Small Business Kit For Dummies,
2nd Edition* †
978-0-7645-5984-6

Telephone Sales For Dummies
978-0-470-16836-3

FOOD, GARDEN, HOBBIES & HOME

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

BUSINESS PRODUCTIVITY & MICROSOFT OFFICE
 Access 2007 For Dummies
978-0-470-03649-5

Excel 2007 For Dummies
978-0-470-03737-9

Office 2007 For Dummies
978-0-470-00923-9

Outlook 2007 For Dummies
978-0-470-03830-7

PowerPoint 2007 For Dummies
978-0-470-04059-1

Project 2007 For Dummies
978-0-470-03651-8

QuickBooks 2008 For Dummies
978-0-470-18470-7

Quicken 2008 For Dummies
978-0-470-17473-9

Salesforce.com For Dummies,
2nd Edition
978-0-470-04893-1

Word 2007 For Dummies
978-0-470-03658-7

HEALTH, SELF HELP, PARENTING & PETS

* Separate Canadian edition also available
† Separate U.K. edition also available

Bridge For Dummies, 2nd Edition
978-0-471-92426-5

Coin Collecting For Dummies, 2nd Edition
978-0-470-22275-1

Cooking Basics For Dummies, 3rd Edition
978-0-7645-7206-7

Drawing For Dummies
978-0-7645-5476-6

Etiquette For Dummies, 2nd Edition
978-0-470-10672-3

Gardening Basics For Dummies*†
978-0-470-03749-2

Knitting Patterns For Dummies
978-0-470-04556-5

Living Gluten-Free For Dummies†
978-0-471-77383-2

Painting Do-It-Yourself For Dummies
978-0-470-17533-0

Anger Management For Dummies
978-0-470-03715-7

Anxiety & Depression Workbook
For Dummies
978-0-7645-9793-0

Dieting For Dummies, 2nd Edition
978-0-7645-4149-0

Dog Training For Dummies, 2nd Edition
978-0-7645-8418-3

Horseback Riding For Dummies
978-0-470-09719-9

Infertility For Dummies†
978-0-470-11518-3

Meditation For Dummies with CD-ROM,
2nd Edition
978-0-471-77774-8

Post-Traumatic Stress Disorder For Dummies
978-0-470-04922-8

Puppies For Dummies, 2nd Edition
978-0-470-03717-1

Thyroid For Dummies, 2nd Edition†
978-0-471-78755-6

Type 1 Diabetes For Dummies*†
978-0-470-17811-9

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION
African American History For Dummies
978-0-7645-5469-8

Algebra For Dummies
978-0-7645-5325-7

Algebra Workbook For Dummies
978-0-7645-8467-1

Art History For Dummies
978-0-470-09910-0

ASVAB For Dummies, 2nd Edition
978-0-470-10671-6

British Military History For Dummies
978-0-470-03213-8

Calculus For Dummies
978-0-7645-2498-1

Canadian History For Dummies, 2nd Edition
978-0-470-83656-9

Geometry Workbook For Dummies
978-0-471-79940-5

The SAT I For Dummies, 6th Edition
978-0-7645-7193-0

Series 7 Exam For Dummies
978-0-470-09932-2

World History For Dummies
978-0-7645-5242-7

GRAPHICS, DESIGN & WEB DEVELOPMENT

NETWORKING AND PROGRAMMING

INTERNET & DIGITAL MEDIA

AdWords For Dummies
978-0-470-15252-2

Blogging For Dummies, 2nd Edition
978-0-470-23017-6

Digital Photography All-in-One
Desk Reference For Dummies, 3rd Edition
978-0-470-03743-0

Digital Photography For Dummies, 5th Edition
978-0-7645-9802-9

Digital SLR Cameras & Photography
For Dummies, 2nd Edition
978-0-470-14927-0

eBay Business All-in-One Desk Reference
For Dummies
978-0-7645-8438-1

eBay For Dummies, 5th Edition*
978-0-470-04529-9

eBay Listings That Sell For Dummies
978-0-471-78912-3

Facebook For Dummies
978-0-470-26273-3

The Internet For Dummies, 11th Edition
978-0-470-12174-0

Investing Online For Dummies, 5th Edition
978-0-7645-8456-5

iPod & iTunes For Dummies, 5th Edition
978-0-470-17474-6

MySpace For Dummies
978-0-470-09529-4

Podcasting For Dummies
978-0-471-74898-4

Search Engine Optimization
For Dummies, 2nd Edition
978-0-471-97998-2

Second Life For Dummies
978-0-470-18025-9

Starting an eBay Business For Dummies,
3rd Edition†
978-0-470-14924-9

Adobe Creative Suite 3 Design Premium
All-in-One Desk Reference For Dummies
978-0-470-11724-8

Adobe Web Suite CS3 All-in-One Desk
Reference For Dummies
978-0-470-12099-6

AutoCAD 2008 For Dummies
978-0-470-11650-0

Building a Web Site For Dummies,
3rd Edition
978-0-470-14928-7

Creating Web Pages All-in-One Desk
Reference For Dummies, 3rd Edition
978-0-470-09629-1

Creating Web Pages For Dummies,
8th Edition
978-0-470-08030-6

Dreamweaver CS3 For Dummies
978-0-470-11490-2

Flash CS3 For Dummies
978-0-470-12100-9

Google SketchUp For Dummies
978-0-470-13744-4

InDesign CS3 For Dummies
978-0-470-11865-8

Photoshop CS3 All-in-One
Desk Reference For Dummies
978-0-470-11195-6

Photoshop CS3 For Dummies
978-0-470-11193-2

Photoshop Elements 5 For Dummies
978-0-470-09810-3

SolidWorks For Dummies
978-0-7645-9555-4

Visio 2007 For Dummies
978-0-470-08983-5

Web Design For Dummies, 2nd Edition
978-0-471-78117-2

Web Sites Do-It-Yourself For Dummies
978-0-470-16903-2

Web Stores Do-It-Yourself For Dummies
978-0-470-17443-2

LANGUAGES, RELIGION & SPIRITUALITY

Arabic For Dummies
978-0-471-77270-5

Chinese For Dummies, Audio Set
978-0-470-12766-7

French For Dummies
978-0-7645-5193-2

German For Dummies
978-0-7645-5195-6

Hebrew For Dummies
978-0-7645-5489-6

Ingles Para Dummies
978-0-7645-5427-8

Italian For Dummies, Audio Set
978-0-470-09586-7

Italian Verbs For Dummies
978-0-471-77389-4

Japanese For Dummies
978-0-7645-5429-2

Latin For Dummies
978-0-7645-5431-5

Portuguese For Dummies
978-0-471-78738-9

Russian For Dummies
978-0-471-78001-4

Spanish Phrases For Dummies
978-0-7645-7204-3

Spanish For Dummies
978-0-7645-5194-9

Spanish For Dummies, Audio Set
978-0-470-09585-0

The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies
978-0-7645-5391-2

The Historical Jesus For Dummies
978-0-470-16785-4

Islam For Dummies
978-0-7645-5503-9

Spirituality For Dummies,
2nd Edition
978-0-470-19142-2

ASP.NET 3.5 For Dummies
978-0-470-19592-5

C# 2008 For Dummies
978-0-470-19109-5

Hacking For Dummies, 2nd Edition
978-0-470-05235-8

Home Networking For Dummies, 4th Edition
978-0-470-11806-1

Java For Dummies, 4th Edition
978-0-470-08716-9

Microsoft® SQL Server™ 2008 All-in-One
Desk Reference For Dummies
978-0-470-17954-3

Networking All-in-One Desk Reference
For Dummies, 2nd Edition
978-0-7645-9939-2

Networking For Dummies,
8th Edition
978-0-470-05620-2

SharePoint 2007 For Dummies
978-0-470-09941-4

Wireless Home Networking
For Dummies, 2nd Edition
978-0-471-74940-0

Richard Wagner
Inventor and chief architect of the
JavaScript tool NetObjects ScriptBuilder

Learn to:
• Build rich Internet applications (RIAs)

that run on the desktop and access
Web services

• Create cross-platform apps that run on
both Windows and Mac

• Use AIR to access XML and RSS data

• Develop apps that run seamlessly
online and offline

Adobe® AIR
™

Making Everything Easier!™

Visit the companion Web site at

www.dummies.com/go/adobeairfd

to find all the code used in this book

 Open the book and find:

• Secrets for creating Internet-savvy
apps

• How to set the environment path
in Vista, Windows® XP, or Mac OS® X

• Tips for using HTML and CSS as
building blocks

• Ways to use Webkit extensions

• How to handle events in the HTML
DOM

• Ten terrific RIAs to check out

• How to add drag-and-drop
capability in Flex, Flash, and
HTML apps

• Advice for instant downloading
and auto-updating

Richard Wagner is an experienced Web designer and developer who

has written more than a dozen Web-related books. Previously, he was

vice president of product development for NetObjects, where he was the

inventor and chief architect of the award-winning JavaScript tool called

NetObjects ScriptBuilder.

$29.99 US / $32.99 CN / £19.99 UK

ISBN 978-0-470-39044-3

Programming/Software Development

Go to dummies.com®

for more!

Build full-fledged Web apps
with JavaScript, Flex, or HTML —
it’s a breath of fresh AIR
With Adobe AIR, you can create rich Internet applications
using Web technologies. They run on desktops and across
multiple operating systems, and they’re more than mere
wimpy widgets. This book gives you the scoop on AIR,
working with local file systems and databases, setting up
security, and all the stuff you need to know to create cool
AIR apps.

• Get out in the AIR — find out how to create AIR apps using Flex®,
Flash®, and HTML with Ajax

• Play in the sandbox — understand the AIR security model and
how application sandboxes protect your code and data

• Connect — learn about the database connectivity of Adobe AIR
and how to work with SQL when building database applications

• Banish bugs — see how to use the AIR Debug Launcher, the alert
command, and the AIR HTML Introspector to debug your apps

• Surf the AIRwaves — create apps for network connectivity,
monitor remote network services, and work with audio files

A
dobe

® A
IR

™

Wagner

Spine: .72”

	Adobe AIR for Dummies
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Conventions Used in This Book
	What You Don’t Have to Read
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Airing It Out with Adobe AIR
	Chaper 1: Getting Started with Adobe AIR
	Discovering Adobe AIR
	Understanding the AIR Security Model
	Digitally Signing an Application
	Setting Up Your AIR Development Environment

	Chapter 2: Building and Deploying Your First AIR Application with HTML and JavaScript
	Overviewing Jot
	Preparing the Application Folder
	Creating the HTML-Based UI
	Adding Styles
	Adding the JavaScript Code
	Creating the Application Descriptor File
	Testing Your Application Using ADT
	Creating a Self-Signed Certificate
	Generating an AIR Installer File to Deploy Your Application

	Chapter 3: The Air Feels Different: Building with Flex Builder and Flash
	Developing an AIR Application with Flex Builder 3.0
	Creating an AIR Application with Flash CS4

	Chapter 4: Exploring the Adobe AIR API
	Exploring the Relationship between AIR and JavaScript Environments
	Calling the AIR API
	Touring the Adobe AIR API

	Part II: AIR Application Design
	Chapter 5: Using HTML and CSS as Building Blocks
	Working with HTMLLoader
	Taking Advantage of WebKit Extensions
	Drawing Graphics on the HTML Canvas

	Chapter 6: Anyone Listening? Working with Events
	Responding to Events
	Working with Event Objects
	Overriding Default Behaviors
	Understanding the Flow of Events

	Chapter 7: Windows: Creating Native Application Shells
	Creating the Initial Window
	Setting the Window Style
	Creating a Window Programmatically
	Creating Nonrectangular Windows
	Exploring AIR Windows

	Chapter 8: Working with Menus and Tray and Dock Icons
	Exploring the Types of Native Menus
	Creating a Menu
	Setting the Application, Window, Pop-Up, and Context Menus
	Handling Menu Events
	Enabling Your App for the Windows System Tray and Mac OS X Dock
	Putting It All Together with MenuAIR

	Part III: Programming the Adobe AIR API
	Chapter 9: Don’t Be a Drag: Interacting with the Clipboard and Drag-and-Drop
	Working with the Clipboard
	Don’t Be a Drag: Adding Drag-and-Drop

	Chapter 10: A New Developer Freedom: Working with the Local File System
	Identifying the File Classes
	Working with Files and Directories
	Allowing Users to Browse For a Directory and Files
	Performing Directory and File Operations
	Reading and Writing to Files
	AIRWrite: Creating a Simple Text Editor

	Chapter 11: From AIRhead to Datahead: Working with Databases
	Working with Local Databases
	Introducing the Basics of SQL
	Opening a Database Connection
	Performing Database Operations with SQLStatement
	Creating a Database Table
	Inserting a Record
	Requesting Data from a Table

	Chapter 12: Sur fing the AIRwaves: Net Connectivity
	Detecting Network Connectivity
	Monitoring Remote Network Services
	Making an XML Socket Connection
	Creating a “Server Push” Socket Connection

	Chapter 13: Working with Audio
	Working with Sounds
	Mike Me Up: Working with the Microphone

	Chapter 14: Quick and Easy: Instant Downloading and Auto-Updating
	Seamlessly Installing an AIR App with badge. swf
	Auto-Updating Your AIR Application

	Part IV: The Part of Tens
	Chapter 15: Ten Tips for Successful AIR Debugging
	Use ADL (AIR Debug Launcher) as the Starting Point
	Make Aptana Studio Your Home Base for HTML-Based Apps
	Quick and Easy Debugging: Use the alert Command
	Better Yet: Use the trace() Method Instead of alert()
	Create Your Own Debug Window
	Outputting to a Log File with AIRLogger
	Debug HTML-Based Apps with the AIR HTML Introspector
	Debug with Flex Builder
	Test on Multiple Platforms
	View Source Code

	Chapter 16: Ten Killer RIAs to Explore
	Pure Usefulness: Google Analytics Reporting Suite
	Pure Power: eBay Desktop
	Innovative Use of Media: AOL Music — Top 100 Videos
	Web App Upgrades: twhirl and Snitter
	Business Use: AgileAgenda
	For the Niche Crowd: RichFLV
	The Cool Factor: Snackr
	For the Geek Crowd: Snippely
	Groundbreaking Look and Feel: uvLayer

	Index

R
Adobe AIR

