
Erick Tejkowski
Author of REALbasic For Dummies

Learn to:
• Create your own Mac OS X application

• Use all the exciting Cocoa development
features

• Work with Xcode® and Interface
Builder tools

• Program with Cocoa in Objective-C

Cocoa® Programming

for Mac OS
® X

Making Everything Easier!™

Go to www.dummies.com/go/cocoafd to find project files

for the examples in the book

 Open the book and find:

• Tips for building a good interface

• How to work with Cocoa numbers,
arrays, Booleans, and dates

• Advice on managing files

• Ten tips for easier Cocoa
programming

• How to simplify with key-value
coding

• What to do with Cocoa on the
Internet

• How to add bindings to your
application

• Steps for building document-
based applications

Erick Tejkowski was still in elementary school when he began helping to

instruct teachers on Apple computers. As a professional developer, he has

designed software for clients as varied as Chicken of the Sea, Energizer,

Nextel, Edys-Dreyers, Rigid Medical, and Leap Pad.

$34.99 US / $41.99 CN / £22.99 UK

ISBN 978-0-470-43289-1

Programming/Software Development

Go to dummies.com®

for more!

Cocoa is hot! Stir up apps
for Mac OS X, iPhone™,
and iPod® Touch
It’s a great time to go for Cocoa, because it’s not only Apple’s
preferred framework for developing software, it’s also
the best way for you to create software for Mac OS X and
iPhone. This book gives you a solid foundation in Cocoa and
the unusual syntax of Objective-C. You’ll learn what’s new in
Cocoa frameworks and create applications step by step.

• X marks the start — see how Xcode underlies your applications as
the main component of Apple’s Developer Tools

• Be objective — examine the basics of the Objective-C language
and the elements of a Cocoa interface

• Add bells and whistles — spruce up your apps with audio, video,
Internet features, stylized text, and more

• Graphically speaking — create applications with the stunning
graphics for which Macs are famous

• High-end Cocoa — see how to build apps with multiple
documents or even have Xcode build an interface for you

Cocoa
® Program

m
ing

for M

ac O
S

® X

Tejkowski

spine=.816”

Cocoa® Programming
for Mac OS® X

FOR

DUMmIES
‰

by Erick Tejkowski

Cocoa® Programming
for Mac OS® X

FOR

DUMmIES
‰

Cocoa® Programming for Mac OS® X For Dummies®
Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affi liates in the United States and other countries, and may not be used without written permission. Cocoa
and Mac OS are registered trademarks of Apple, Inc. All other trademarks are the property of their respec-
tive owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN
IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2009920903

ISBN: 978-0-470-43289-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

About the Author
Erick Tejkowski is a freelance author and software developer. He is the

author of Cocoa For Dummies, Mac OS X Tiger Simplifi ed, and Mac OS X
Panther: Top 100 Simplifi ed Tips and Tricks, among others. He has also served

in editorial and writing roles for popular Macintosh publications, such as

MacTech, MacWorld, and RB Developer. When he’s not computing, he enjoys

spending his free time with his wife, Lisa, and their children, Mercedes,

Leopold, and Emil.

Dedication
This book is dedicated to Maria Paredes, PhD. Good job!

Author’s Acknowledgments
Thank you to Greg Croy, Dennis Cohen, and especially Rebecca Senninger for

editing this book. The quality of the final transcript can be attributed to their

suggestions, recommendations, and editing expertise.

Thank you to Mixi, Mister, and Emil for inspiration.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form

located at http://dummies.custhelp.com. For other comments, please contact our Customer

Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media

Development

Project Editor: Rebecca Senninger

Executive Editor: Gregory S. Croy

Acquisition Editor: Katie Mohr

Copy Editor: Jen Riggs

Technical Editor: Dennis R. Cohen

Editorial Manager: Leah Cameron

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant

(www.the5thwave.com)

Composition Services

Project Coordinator: Erin Smith

Layout and Graphics: Samantha Allen,

Reuben W. Davis, Melissa K. Jester,

Sarah Phillipart, Christine Williams

Proofreaders: David Faust, Toni Settle

Indexer: Broccoli Information Management

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance
Introduction .. 1

Part I: Developer Tools ... 5
Chapter 1: A Brief Tour of Cocoa Development ... 7

Chapter 2: Creating Your First Cocoa Application .. 17

Chapter 3: Xcode.. 41

Chapter 4: Interface Builder ... 63

Chapter 5: Putting Polishing Touches on Your Application 89

Part II: Instant Cocoa and the
Objective-C Language .. 107
Chapter 6: The Basics of Objective-C .. 109

Chapter 7: MVC Design ... 133

Chapter 8: A Window with a View ... 149

Chapter 9: Working with Interface Controls ... 167

Chapter 10: Cocoa Data Types ... 191

Part III: Putting It All Together:
Cocoa Programming in Depth 199
Chapter 11: Text... 201

Chapter 12: Graphics ... 221

Chapter 13: Managing Your Files ... 247

Chapter 14: Printing with Cocoa .. 267

Chapter 15: Cocoa on the Internet... 279

Chapter 16: Multimedia ... 295

Part IV: Advanced Cocoa Topics 315
Chapter 17: Document-Based Applications .. 317

Chapter 18: Cocoa Bindings ... 329

Chapter 19: Core Data ... 341

Part V: The Part of Tens ... 359
Chapter 20: Ten Tips to Make Cocoa Programming Easier 361

Chapter 21: Ten Great Web Sites for Cocoa Developers .. 367

Index .. 371

Table of Contents
Introduction ... 1

About This Book .. 1

Conventions Used in This Book ... 2

Foolish Assumptions ... 2

How this Book Is Organized ... 3

Part I: Developer Tools.. 3

Part II: Instant Cocoa and the Objective-C Language 3

Part III: Putting It All Together: Cocoa Programming in Depth 3

Part IV: Advanced Cocoa Topics ... 3

Part V: The Part of Tens .. 4

Icons Used in This Book ... 4

Where to Go From Here .. 4

Part I: Developer Tools .. 5

Chapter 1: A Brief Tour of Cocoa Development .7
Mac OS X Is a Programmer’s Dream ... 7

Why Program with Cocoa? ... 8

The Tools You Need .. 10

Xcode ... 10

Interface Builder .. 13

Chapter 2: Creating Your First Cocoa Application17
Creating a Cocoa Application in Six Simple Steps 17

Beginning a Project ... 19

Thinking of an idea .. 19

Getting started with your Cocoa project .. 20

Building an Interface ... 23

Adding controls to the interface .. 26

Wiring the interface ... 29

Making connections ... 33

Adding Code to Make Your App Work .. 36

Debugging and Building the Application .. 37

Chapter 3: Xcode. .41
Xcode: The Core of Apple’s Development Tools 42

Customizing Xcode Preferences .. 43

Cocoa Programming for Mac OS X For Dummies xiv
Working with Project Files ... 45

Class models ... 48

File comments .. 49

Using favorites to speed up development .. 50

Debugging Your Project .. 51

Adding breakpoints ... 52

Stepping through the debugger ... 53

Fixing the code ... 55

Removing breakpoints .. 57

Where to Go for Help .. 58

Building an Application .. 60

Chapter 4: Interface Builder .63
A Tour of Interface Builder ... 64

The interface builder project window... 66

Design window ... 68

Library window .. 70

Inspector window .. 72

Menu editor window .. 74

The Interface Building Process .. 77

Adding a pop-up menu .. 78

Adding a menu ... 80

Creating a Controller class ... 81

Connecting the interface ... 81

Using an Interface in Xcode .. 83

Chapter 5: Putting Polishing Touches on Your Application.89
Adding an About Panel ... 90

Setting an icon .. 92

Setting the name or title .. 93

Displaying a version number, a copyright date, and credits 94

Assigning an Icon to Your Project ... 97

Icon Composer ... 98

Managing your icons ... 101

Creating a Disk Image for Distribution .. 102

Part II: Instant Cocoa and
the Objective-C Language ... 107

Chapter 6: The Basics of Objective-C. .109
Why Use Object-Oriented Programming? ... 109

Class Is No Object! ... 110

Declaring instance variables .. 111

Declaring methods ... 112

Defi ning methods in an interface fi le ... 114

xv Table of Contents

Coding in Objective-C .. 115

Sending messages to objects.. 115

Passing parameters ... 115

Returning values .. 116

Instantiating an object... 117

Managing memory ... 117

Working with Your Own Classes ... 120

Defi ning the class ... 125

Implementing the class ... 127

Using the class ... 128

Testing ... 130

Chapter 7: MVC Design .133
Taking a Look at MVC Design ... 134

Building a Project with an MVC Design .. 135

Adding a View ... 139

Adding a Controller ... 141

Chapter 8: A Window with a View .149
Working with Windows ... 149

Opening and closing a window .. 150

Hiding and showing a window ... 150

Positioning windows ... 151

Keeping track of windows ... 152

Putting windows to work for you ... 153

Changing the Appearance of Windows ... 155

Using different windows for different tasks 155

Sizing up your windows .. 157

Setting a window’s title ... 157

Windows that you can see through ... 158

Beneath the Sheets .. 159

Responding to Window Events by Delegating Authority 165

Chapter 9: Working with Interface Controls .167
Button Controls ... 167

Push button .. 169

Round button ... 171

Check box ... 173

Square and rounded bevel buttons ... 174

Radio Control ... 175

Slider Control ... 178

Tab Views ... 179

Making Progress at the Bar .. 182

Table Control ... 184

Cocoa Programming for Mac OS X For Dummies xvi
Chapter 10: Cocoa Data Types .191

Working with Numbers ... 191

Working with Arrays ... 192

NSArray ... 193

NSMutableArray ... 194

Working with Boolean Data Types .. 195

Working with Dates ... 196

Part III: Putting It All Together:
Cocoa Programming in Depth 199

Chapter 11: Text .201
Working with Text ... 201

Building an interface.. 202

Adding a controller class .. 204

Wiring the interface ... 205

Adding the code ... 206

Doing Style the Easy Way! .. 208

Manipulating Text .. 210

Pasteboard manipulations .. 210

Manual editing .. 211

Saving Text for a Rainy Day .. 213

Retrieving Text ... 216

Chapter 12: Graphics .221
Cocoa and the Art of Graphics ... 221

Points ... 221

Rects and sizes ... 222

Colors .. 223

Building a Graphics Interface ... 227

Painting with Lines and Shapes ... 230

Starting with Beziér paths .. 230

Filling a path ... 231

Drawing a path ... 234

Creating fancy-pants paths ... 236

Drawing Text .. 239

Displaying an Image .. 242

Chapter 13: Managing Your Files .247
About Files and Folders in Mac OS X .. 247

Opening and Using Files ... 249

Building the interface .. 249

Creating a Controller class ... 251

Open sesame . . . er, panel .. 254

xvii Table of Contents

Finding a fi le’s path, name, and more ... 256

Viewing a fi le’s icon ... 258

Reading from and writing to documents .. 261

Working with Files and Folders ... 261

Copying fi les and folders .. 262

Moving fi les and folders .. 263

Deleting fi les and folders .. 264

Creating folders .. 265

Chapter 14: Printing with Cocoa .267
How Printing Works in Cocoa .. 267

Tweaking the Page Settings .. 270

Setting Up the Print Job and Printing the View 274

Printing to Places Other Than a Printer ... 275

Chapter 15: Cocoa on the Internet .279
Interacting with the Web .. 279

Loading a Web page in a browser .. 280

Downloading fi les ... 281

Building a Web browser .. 283

Sending E-Mail from a Cocoa Application .. 287

Sending e-mail from your favorite client ... 288

Sending e-mail from your own apps .. 290

Adding e-mail functions to the project ... 291

Chapter 16: Multimedia .295
Listening to Audio ... 295

Playing system sounds .. 296

Loading and playing sound fi les .. 297

Building a simple audio player ... 299

Watching Movies with Cocoa ... 305

QTMovie .. 306

QTMovieView ... 307

Building a simple movie player .. 310

When a movie isn’t a movie .. 312

Part IV: Advanced Cocoa Topics 315

Chapter 17: Document-Based Applications .317
Creating a Document-Based Project ... 317

Building the Interface for a Document-Based Project 322

Adding the Code .. 325

Cocoa Programming for Mac OS X For Dummies xviii
Chapter 18: Cocoa Bindings .329

What Are Bindings? ... 330

Starting a Project with Bindings .. 331

Making Your Bindings Work: KVC and KVO ... 333

Implementing Bindings ... 334

Chapter 19: Core Data .341
What’s So Great about Core Data Anyway? ... 341

Creating a Core Data Project .. 342

Defi ning the Model .. 344

Building the Interface .. 354

Part V: The Part of Tens .. 359

Chapter 20: Ten Tips to Make Cocoa Programming Easier 361
Use Keyboard Shortcuts ... 361

Read the Documentation .. 362

Use Class Browser ... 363

Adjust the Window Count .. 363

Use Drag and Drop .. 363

Initialize and Awaken! ... 364

Remember the Superclass .. 364

Position Items with Cocoa Coordinates ... 365

Use Guidelines in Interface Builder ... 365

Reuse Your Code ... 366

Chapter 21: Ten Great Web Sites for Cocoa Developers 367
Apple Developer Connection ... 368

Borkware Quickies .. 368

Cocoa Is My Girlfriend .. 368

Theocacao .. 369

Call Me Fishmeal .. 369

Domain of the Bored ... 369

Dan Wood: The Eponymous Weblog ... 370

Apple Forums ... 370

Cocoa Dev Central ... 370

CocoaDev .. 370

Index ... 371

Introduction

Welcome to Cocoa Programming for Mac OS X For Dummies. This book

shows you how to create applications for Mac OS X, complete with

beautiful Aqua interfaces and advanced functionality. The best part is that

Cocoa provides you with programming skills that you could only dream of a

few short years ago.

About This Book
Cocoa Programming for Mac OS X For Dummies is a newcomer’s guide to

Cocoa programming for Mac OS X. This book guides you through the basics

of Cocoa application development, so you can finally realize the full potential

of your Macintosh. Although Cocoa isn’t the easiest thing on earth to figure

out, it’s easy enough that beginners can create applications. Furthermore,

even beginner projects can have features that rival professional applications.

You’ll be surprised at how easy it is to add complex features — features that

would have taken an army of engineers to build in the past.

This book won’t make you a certified Cocoa expert, but it will give you a good

start on your way to becoming proficient with Cocoa. From the beginning

of the book to the very end, you’ll explore Cocoa programming by using it.

Each chapter guides you through the process of creating at least one simple

application that illustrates the features presented in that chapter.

Cocoa Programming for Mac OS X For Dummies covers the fundamentals of

Cocoa programming as well as advanced features. The weird thing about

Cocoa is that you sometimes can’t tell which is which. In Cocoa, the simple

is complex, and the complex simple. You’ll gasp in awe as you add sophisti-

cated graphics, multimedia, and professional typography to your application

in minutes. Then you’ll turn around and bang your head against the wall

trying to remember how to create a simple list of items in Cocoa. The great

part about Cocoa is that after you get the hang of the basics, you can build

applications with high-quality features that would’ve been near impossible

for a beginner to achieve in the past.

2 Cocoa Programming for Mac OS X For Dummies

Conventions Used in This Book
This book guides you through the process of building Cocoa applications.

Throughout, you create interfaces and make them functional with the use of

Objective-C code. The code examples in this book appear in a monospaced

font. For instance:

#import <Cocoa/Cocoa.h>

Objective-C is intimately connected to the C language, which is a case-

sensitive language. Therefore, it’s a good idea to enter the code that appears

in this book exactly as it appears in the text. Some capitalization may not be

mandatory, but until you’re familiar with the rules, it’s best not to stray from

the text. If you’re ever uncertain about case sensitivity, you can always use

the source code on the For Dummies Web site, at www.dummies.com/go/
cocoafd. All URLs in this book appear in a monospaced font as well:

www.apple.com

Foolish Assumptions
To begin programming Cocoa applications, you need a Macintosh computer,

a copy of Mac OS X (preferably 10.4 or higher), and the Developer Tools,

which Apple offers for free as a download. If you’re not sure how to install

the Developer Tools, the appendix can lead you through the steps necessary

to prepare your Mac for Cocoa development.

In addition to the computer and software, you’ll also need some computing

skills. For starters, you should be familiar with using the Macintosh operating

system. You should know how to launch applications, save files, work with

Finder, and use the Internet.

You should also have at least a passing knowledge of some computer

language. Ideally, you should have working skills in the C programming

language. Even a passing experience with an object-oriented language,

such as C++ or Java, would also be beneficial, but it’s not an absolute must.

This isn’t to say that you’ll be completely lost without these skills. Different

computer languages tend to share many features in common. Whether you

have a Pascal, a JavaScript, or an AppleScript background, you’ll find that

Objective-C, although strange looking at first, is easy to learn, and many

aspects will feel familiar.

The examples in this book stay focused on the Cocoa aspects of program-

ming. Although some accessory C code is necessary to make this happen,

the examples are not obfuscated code that an average beginning programmer

can’t grasp. If you’re still not sure that you’re ready for Cocoa, jump on in

3 Introduction

anyway. There’s a good chance that you’ll understand what’s going on. When

you get lost, you can always refer to one of the many C language references

on the Internet for extra help.

How This Book Is Organized
Cocoa Programming for Mac OS X For Dummies has five main parts.

Part I: Developer Tools
Part I introduces you to the world of Cocoa programming. You explore the

tools that you need to write Cocoa software and in the process build your

first Cocoa application.

Part II: Instant Cocoa and
the Objective-C Language
In Part II, you continue your quest for Cocoa enlightenment by examining

the basics of the Objective-C language, the elements of a Cocoa interface,

and object-oriented programming. These chapters give you the fundamental

background knowledge that you need to use the features presented

throughout the rest of the book.

Part III: Putting It All Together:
Cocoa Programming in Depth
Now that you have the basics behind you, it’s time to dive in to the fun

features of Cocoa. In Part III, you add some glitz and glamour to your

applications using graphics, audio, video, Internet features, and stylized

text. It’s the stuff that applications are made of!

Part IV: Advanced Cocoa Topics
Part IV takes you into the realm of advanced Cocoa programming topics.

Until now, applications remained simple one-window affairs. With Cocoa,

you can easily create applications with multiple documents or even other

executables that aren’t traditional Mac applications at all. In this part, you

discover some of the more advanced features of Cocoa and find out how to

use them in your own projects.

4 Cocoa Programming for Mac OS X For Dummies

Part V: The Part of Tens
Part V consists of useful Cocoa tips, tricks, and pointers. Whether it’s advice

about how to make the most of Cocoa or help for what to do when things

go wrong, Part V covers some common issues you’ll encounter when using

Cocoa.

Icons Used in This Book
 When you see this icon, you can be sure that the code on the For Dummies

Web site applies to the current example. The Web site contains the code for

all projects in this book for those who don’t feel like typing the code. Just go

to www.dummies.com/go/cocoafd.

 This icon indicates a useful pointer that you shouldn’t skip.

 This icon represents a friendly reminder. It describes a vital point that

you should keep in mind while proceeding through a particular section of

the chapter.

 This icon signifies that the accompanying explanation might be informative

(dare I say, interesting?), but it isn’t essential to understanding Cocoa. Feel

free to skip past these tidbits if you’re a technophobe.

 This icon alerts you to potential problems that you may encounter along the

way. Read and obey these blurbs to avoid trouble.

Where to Go From Here
It’s time to explore Cocoa! If you’re apprehensive about embarking upon this

journey, relax in the knowledge that anyone can program in Cocoa. This book

will show you how to get started.

Part I
Developer Tools

In this part . . .
Your first sip of Cocoa begins with an introduction to

the Cocoa development process. Next, it’s on to

Apple’s Developer Tools, where you’ll put that process

into practice.

Part I guides you through the basics of Cocoa development

using Xcode and Interface Builder. These two applications

form the foundation of your Cocoa experience, and you’ll

use the knowledge you gain from them throughout the

book. To help you understand how they work, you’ll build

your own working Cocoa application. As you progress

through Part I, you’ll continue to improve that application,

adding features and improving functionality as you go.

After you’re happy with the results, the end of Part I shows

you how to prepare the final application for public

consumption.

Chapter 1

A Brief Tour of Cocoa Development
In This Chapter
▶ Programming for Mac OS X

▶ Discovering the Cocoa development process

▶ Exploring the tools for programming Cocoa applications

These are exciting times for Macintosh users. When Apple unleashed Mac

OS X upon the world, it ushered in a new era of computing for the Mac

faithful. Besides the rock-solid stability of UNIX, Mac OS X offered functional-

ity and features that Mac users could have only dreamt of a few years earlier.

Along with this great operating system, Apple saw fit to remember Macintosh

developers and have done so ever since. Principal among Apple’s achieve-

ments is Cocoa, the subject of this book. This chapter introduces you to the

world of Mac OS X programming and, in particular, Cocoa programming.

Mac OS X Is a Programmer’s Dream
Macintosh programming has never been as easy or as accessible as it is with

Mac OS X. For starters, Apple, the friendly folks that they are, thought it’d

be a great idea to give away the development tools. For free. Apple provides

the Xcode Developer Tools as a free download on the Apple Developer

Connection Web site. By installing the Xcode Developer Tools download,

you instantly gain access to a complete collection of tools, utilities, documen-

tations, and example source codes to get you started programming for the

Mac OS. In the past, a developer bundle this comprehensive would have cost

hundreds of dollars. Today, Apple provides it for no additional charge.

 Some older versions of Mac OS X ship with a Developer Tools disc; newer

versions don’t. If you’re searching for the disc and can’t find it, you may have

an installation of Mac OS X that doesn’t include the Developer Tools disc.

You needn’t worry, however, because you can download the Xcode Developer

Tools by signing up for a free ADC membership at Apple’s developer site

(https://connect.apple.com). In fact, even if you already have a

Developer Tools disc, check Apple’s developer site for updates because each

8 Part I: Developer Tools

version of Xcode Developer Tools is specific to a particular OS X release.

Note: Xcode Developer Tools installations can total in the hundreds of mega-

bytes, so you’ll probably want a fast Internet connection to download them.

Apple Developer Connection (ADC) is Apple’s support program for develop-

ers. You can register at different tiers (and pay different prices) for member-

ship, which gives you varying amounts of support and other perks, such

as Worldwide Developers Conference (WWDC) tickets. The lowest tier is

completely free, so it doesn’t cost you anything to download the Xcode

Developer Tools.

Just because the Xcode Developer Tools is a free download doesn’t mean

that the software is second-rate. On the contrary, Xcode Developer Tools are

world class. When developing software for the Macintosh with these tools,

you can take advantage of the following benefits:

 ✓ Write code in a variety of programming and scripting languages: C,

Objective-C, Python, Ruby, Java, or even AppleScript.

 ✓ Create beautiful interfaces that follow Apple’s Human Interface

Guidelines.

 ✓ Develop applications with rich features, some of which you can add to

your project without writing a single line of code.

Further, because Mac OS X has a UNIX flavor at its core, you can take

advantage of the decades of work by UNIX users. For example, most open-

source software run on different varieties of UNIX, so you can leverage

thousands of compatible source-code examples for use in your own Mac OS X

applications as well.

Why Program with Cocoa?
Cocoa is one kind of programming that you can perform with the Apple

Xcode Developer Tools. Cocoa is a collection of tools and libraries (or

frameworks) that allows you to get the most out of Mac OS X programming.

Many features make Cocoa great; some include

 ✓ Modular object-oriented design

 ✓ Use of frameworks

 ✓ Visual interface design

9 Chapter 1: A Brief Tour of Cocoa Development

Object-oriented programming is in common use these days, and for good

reason. By programming with an object-oriented design, your code can more

closely model items in the real world. This book isn’t an object-oriented text;

in fact, you should come to Cocoa with at least an idea of how to program

in an object-oriented fashion. This book does, however, discuss the object-

oriented nature of Cocoa and examines its primary language: Objective-C.

Objective-C, as you might induce from its name, is an object-oriented super-

set of the C language. It permits you to program in an object-oriented fashion

without some of the messy baggage that C++ has. Because Objective-C is a

superset of C, you can also take advantage of the C that you know. Everything

that you can do in C is valid code to the Objective-C compiler.

The use of frameworks is another great aspect of Cocoa development.

Experienced programmers may be tempted to call frameworks by another

name — libraries. Frameworks are collections of classes that provide you,

the Cocoa developer, with a specific type of functionality. Mac OS X ships

with several frameworks for you to choose from, but two big ones stand

out: AppKit and Foundation. The AppKit Framework provides you with scores

of classes and functions for working with interfaces, and the Foundation
Framework gives you utilitarian functions relating to data manipulation and

program execution. You use them a lot when writing Cocoa software.

The object-oriented nature of Cocoa and its rich set of frameworks form an

unbeatable code-reuse duo. Computer programmers can be a lazy bunch, not

wanting to repeat a single task. To aid developers in their pursuit of reusable

code, Cocoa offers a wide array of reusable classes. After you complete some

programming tasks, you can even store the results in your own framework

for use in other projects. Apple gives you reusable code out of the box, and

you can reuse your own code as well. The object-oriented design of Cocoa

makes this reuse possible.

Reusable code is good for a variety of reasons: It lets you create software

quickly, it reduces the number of bugs in your code, and it prevents you from

reinventing the wheel each time you sit down to program. By reusing the

frameworks that Apple provides with the Xcode Developer Tools, you gain

all sorts of great functionality without having to know how it works under

the hood.

Besides the geekier benefits, you’ll love many other aspects of Cocoa pro-

gramming. For starters, the frameworks that accompany Mac OS X provide

a rich set of interface elements that you can use to build sophisticated

interfaces demanded by professional software. Moreover, Cocoa program-

ming gives you instant access to a wide range of free classes. Whether you

need an About box, a spell-checker, or QuickTime movies in your application,

Cocoa has a solution for you.

10 Part I: Developer Tools

The Tools You Need
To facilitate your Cocoa development, Apple was nice enough to provide

you with a large selection of tools and utilities. With these tools, you can

begin creating Cocoa software from the ground up. When you’re finished

programming, the tools will even build the application, prepare it for

distribution, and put together an installer.

To begin programming with Cocoa, find the development tools. If you

installed them in the default location, they reside in the following directory

on your hard drive:

/Developer/Applications

 If you discover that you don’t have the development tools on your system,

visit developer.apple.com to download the latest version.

You won’t need all the applications that Apple provides in the /Developer/
Applications directory. In fact, for many tasks you can probably get away

with using only two: Xcode and Interface Builder.

Xcode
Xcode is the main application that you’ll use for all your Cocoa projects.

Xcode serves a number of roles in the Cocoa development process:

 ✓ Xcode acts as the central repository for all the files in your Cocoa

projects. Using a familiar document approach, Xcode lets you organize

the components of a Cocoa project in one easy-to-use document.

Figure 1-1 shows a Cocoa project opened in Xcode.

 ✓ You also use Xcode to write and edit Cocoa source code. When you

write code for a project, Xcode guides you by coloring the syntax,

indenting code automatically, and providing auto-completion features to

reduce the amount of typing (and remembering) that you have to do. It

also offers convenient one-click access to all the functions in your code,

as shown in Figure 1-2.

 ✓ Your Cocoa project may have other types of files beyond code, and

Xcode is prepared to help you work with them. For example, if you

want to include images in your project, Xcode lets you view them in the

main project window without skipping a beat. You don’t need to use

another application to view those images. Xcode displays them right in

the code editor, as shown in Figure 1-3.

11 Chapter 1: A Brief Tour of Cocoa Development

Figure 1-1:
Xcode acts

as your
primary tool

for writing
Cocoa

software.

Figure 1-2:
Edit your

code in
Xcode.

12 Part I: Developer Tools

Figure 1-3:
You can

view other
types of files

in Xcode.

 ✓ When you get stuck, Xcode gives you access to the complete collection

of Cocoa, Xcode, and other developer documentation. You can view

and navigate the documentation with Xcode in much the same way as

you would a Web browser. Figure 1-4 shows what the screen looks like

when documentation is loaded into Xcode.

After you complete your Cocoa project, you use Xcode to compile, link,

and build a final application. You can then distribute the application to

friends, co-workers, and even the world (as long as they use Mac OS X).

Xcode wears many hats. If you’re accustomed to other development environ-

ments, you may be surprised to discover that Xcode performs tasks

that require multiple tools in other environments. For example, Xcode

functions as a

 ✓ Project organizer, managing files and resources in your Cocoa projects

 ✓ Code editor, allowing you to write and edit Cocoa code

 ✓ Browser, displaying built-in documentation or other kinds of resources

in your Cocoa projects

 ✓ Compiler and linker, spitting out a complete Cocoa application at the

end of the development process

13 Chapter 1: A Brief Tour of Cocoa Development

Figure 1-4:
You can

view
the Cocoa
documen-

tation in
Xcode.

Interface Builder
Interface Builder is a constant companion to Xcode. As you can probably

guess, Interface Builder’s main purpose is to create interfaces. With it, you

can build interfaces that adhere to Apple’s interface guidelines.

Interface Builder provides a complete set of controls that you can add to

your application. From windows and drawers to buttons and sliders,

Interface Builder gives you drag-and-drop access to a full suite of interface

elements to make your software the best it can be. Don’t forget that Interface

Builder is an Apple product. No one knows the Macintosh user interface

better than Apple, because they created it, so you can be certain that the

controls in Interface Builder follow the strictest Apple guidelines.

Figure 1-5 shows an example interface with many different types of controls

available to you in Interface Builder. The interface won’t win any design

awards, but it does show you the range of elements that you can use in your

own Cocoa software.

14 Part I: Developer Tools

Do you speak the language?
Cocoa programming (like most kinds of com-
puter programming) requires the use of a pro-
gramming language. To create Cocoa
applications, you need to know Objective-C,
Python, Ruby, Java, or AppleScript. This book
uses Objective-C because it’s the “native lan-
guage” of Cocoa. Objective-C is a superset of
the traditional C programming language. If you
have experience with C, you’re well on your
way to understanding Objective-C. All the C
functions you know and love are available to

you in Cocoa. Objective-C, however, goes one
step further and enhances C by adding object-
oriented features to the language.

Objective-C has a syntax that may look a little
foreign to you at first, unless you’re also familiar
with SmallTalk. But after you get the hang of it,
you’ll find that it isn’t hard to understand at all.
Chapter 6 goes into the details of Objective-C,
but you start using it in Chapter 2 to build your
first Cocoa project.

Figure 1-5:
Interface

Builder has
a complete

set of
interface

controls for
you to use in

your Cocoa
projects.

Interface Builder’s features aren’t limited to WYSIWYG (what you see is what

you get) interface editing. You can also create classes that have no visual

representation. Although you don’t actually write the code in Interface

Builder for your classes, you do define the basic structures and methods for

them there. You can also connect the interface to your classes with simple

drag-and-drop techniques, as shown in Figure 1-6.

15 Chapter 1: A Brief Tour of Cocoa Development

Figure 1-6:
Connecting

an interface
element to a

class is
a simple

drag-and-
drop

operation.

After you complete an interface, Interface Builder goes the extra mile and

creates the header and implementation files for you and then inserts them

into the desired Xcode project. Although Interface Builder’s strongest

features pertain to designing and creating great-looking interfaces, many

other features make it much more than an interface-building tool. It plays a

big part in the Cocoa programming experience.

16 Part I: Developer Tools

Chapter 2

Creating Your First
Cocoa Application

In This Chapter
▶ Attaining fame and fortune with Cocoa in six easy steps

▶ Creating a project

▶ Building your interface

▶ Adding code to the project

▶ Testing and building a completed application

Programming computers can be grueling. Apple tries to simplify that task

by offering a complete set of tools, an easy-to-understand programming

language, and a sophisticated object-oriented framework to help you produce

great software. The complete package is so well honed that you can create an

application in one sitting with only a small amount of code.

This chapter shows you how to create your first Cocoa application from

scratch with Apple’s Xcode Developer Tools. Whether you’re building an

interface, adding code to make the interface functional, or building the

finished product, the Apple Xcode Developer Tools offer a professional

development environment that lets you work quickly to produce amazing

applications.

Creating a Cocoa Application
in Six Simple Steps

Writing your own software is a process. Much like following a recipe, you

proceed through a sequence of steps until you end up with a working

application. Here’s the six-step process to creating a Cocoa application:

18 Part I: Developer Tools

 1. Think of an application.

 For some people, this can be the toughest step in the programming

process. For others, it’s the simplest. Consider a task that you want

your computer to perform. Then think of a computer program that

would do it. What would the program look like? How would it operate?

What behaviors must it possess?

 2. Create a Cocoa project in Xcode.

 You usually begin your Cocoa development in the Xcode application.

Xcode is the tool at the center of Cocoa programming; it’s where you

create and work with the various parts of your Cocoa projects. Chapter 3

covers Xcode in depth.

 3. Build an interface in Interface Builder.

 After you create a project in Xcode, launch Interface Builder to work

on your application’s interface. In traditional Mac fashion, creating an

interface is as easy as dragging and dropping. Using only the tools in

Interface Builder, you can quickly build attractive interfaces in minutes.

Chapter 4 covers Interface Builder.

 4. Return to Xcode and add code.

 After you create the interface, return to Xcode and add code to make

the interface functional. This part of the programming process gives

functionality to the interface you just created. Fortunately, Interface

Builder can help the process along by laying out a basic shell in Xcode

where you can enter your code.

 5. Test your work.

 No one gets everything right the first time, especially not with some-

thing as potentially complex as programming a computer. To assist,

Xcode gives you a complete set of tools for testing your application

before you unleash it on the world.

 6. Build an application.

 You’ve created an interface, added the code, and tested your project.

Now it’s time to build an application. With one click, you can build an

application that you can run on almost any Mac OS X computer.

 If you’re using a version of Mac OS X prior to Leopard (version 10.5), you may

not be able to run your application on later versions of Mac OS X. Because

Apple is always improving the operating system, a time may come when

frameworks from a newer version of the operating system are incompatible

with an older version of the operating system. To ensure that you have the

necessary frameworks to target the latest version of Mac OS X, always

upgrade to the most recent version of Mac OS X and its corresponding Xcode

Developer Tools.

19 Chapter 2: Creating Your First Cocoa Application

Now that you have a basic understanding of the steps that you must perform

to create a Cocoa application, it’s time to create your own project! The

remainder of this chapter guides you through the process of building, coding,

and creating your first Cocoa application.

Beginning a Project
To begin creating your first piece of Cocoa software, come up with an idea of

what you want to create. After you establish the type of software that you

want to build, you’ll create a new project with Xcode to begin programming it.

Thinking of an idea
Instead of putting you through the sometimes-arduous task of dreaming up

your own idea, here’s one to get started. Everyone needs a calculator.

Whether you want to add your earnings from selling great Cocoa software or

figure out how soon you can retire from said earnings, a calculator is a handy

tool for the task. Sure, Mac OS X has a few different calculators, but no one

ever said that you weren’t allowed to build a better one.

One troublesome aspect of traditional calculator applications rears its head

when you press an operator key (+, -, *, /) and enter another number. You

can’t see the first number that you entered. Your application solves this

problem by always displaying the two numbers you’re working with.

Unlike a traditional calculator interface, your calculator will look more like

a form. You enter numbers in the various fields of the interface and press

a button to calculate the result. Figure 2-1 shows what the completed

application looks like.

Figure 2-1:
When

thinking of
an idea for

an applica-
tion, try to

imagine
what it will

look like.

20 Part I: Developer Tools

As you can see, you now have an idea (build a better calculator), you’ve

thought about how to do it (with a form-like interface), and you’ve con-

structed a mental image of what it will look like. Of course, in this example,

the mental image is an image of the finished product (refer to Figure 2-1). But

because you can’t read my mind, I provided an image of the finished product.

Getting started with your Cocoa project
Now that you have an idea in mind, you can begin the Cocoa development

process:

 1. Launch Xcode by double-clicking its icon.

 The icon is on your hard drive at the following location:

/Developer/Applications/Xcode

 When you first launch Xcode, a handy window may open welcoming you

to Xcode, as shown in Figure 2-2. This window also offers convenient

one-click access to documentation and tutorials for using Xcode. If it

opens, close the Welcome to Xcode window to reduce window clutter.

It opens again the next time you launch Xcode, unless you deselect the

Show at Launch check box.

 2. Chose File➪New Project.

 The New Project window appears, asking you what kind of project you

want to create, as shown in Figure 2-3.

Figure 2-2:
Welcome to

Xcode!

21 Chapter 2: Creating Your First Cocoa Application

 3. Select the Application template on the left side of the New Project

window.

 On the left side of the New Project window is a list of project templates

that Apple has created for you. You use the Application template

for building standard Mac OS X applications. Figure 2-3 shows the

Application template selected on the left.

 4. Select Cocoa Application from the list of choices on the right side of

the New Project window.

 On the right side of the New Project window is a list of application

templates from which you can choose. For most applications in this

book, choose Cocoa Application, as shown in Figure 2-3.

 5. Click the Choose button.

 A Save As dialog opens.

 6. Type a name for your project in the Save As dialog.

 For example, you can name the project My First Project, as shown in

Figure 2-4.

 When you first open a Save As dialog, it may not appear like the one in

Figure 2-4. Instead it may appear smaller and it may not display the

expanded list of files. To expand the dialog, click the triangle button

that’s adjacent to the Save As field.

Figure 2-3:
Choose

the Cocoa
Application

option.

22 Part I: Developer Tools

Figure 2-4:
Give your
project a

descriptive
name and

select a
location for
saving the

project.

 7. Select a location for the project and click the Save button.

 Your hard drive buzzes and whirs for a few seconds, and then Xcode

displays a project window. In the Finder, the project files are contained

within a folder that has the same name as the one you designated in

Step 6. In Xcode, the project window displays a list of elements in

the project, grouped into folders (which, unsurprisingly, Xcode calls

Groups & Files), as shown in Figure 2-5. Your project is comprised of the

components on the left side of the project window. These components

include class files, source code files, interface files, and images, among

other items.

 8. Open the Resources group folder and double-click the MainMenu.xib

file.

 MainMenu.xib is the default interface file for your project. Your project

opens in Interface Builder.

Files in your project reside in one of a handful of group folders in Xcode. You

can read all about these group folders in Chapter 3, which covers the opera-

tion of Xcode. For now, the only group folder that you need to be concerned

with is the Resources folder.

23 Chapter 2: Creating Your First Cocoa Application

Figure 2-5:
MainMenu.
xib contains

the inter-
face for

your project.

Building an Interface
When you double-click the MainMenu.xib file in Xcode, the Interface Builder

application launches. Figure 2-6 shows the MainMenu.xib file open in

Interface Builder.

By default, the project’s main window should be open, ready for adding new

controls. If you don’t see an open window in Interface Builder, double-click

the Window object in the XIB project window.

This window is the starting point for your application’s interface. Because

other people may use this application, it’s a good idea to make it look as nice

as possible. Begin by changing the window’s title:

 1. Open the Inspector window by choosing Tools➪Inspector.

 The Inspector window appears, showing you properties that pertain to

the window, as shown on the right side of Figure 2-7. The Inspector

window can display different types of information, but when it’s showing

properties relating to a window, it’s titled Window Attributes.

 2. In the Inspector window, change the Title property to the name of

your window.

 For example, you can change the title to Simple Calculator. The name

shows up in the title bar of your window, as shown on the left side of

Figure 2-7.

24 Part I: Developer Tools

Figure 2-6:
Interface
Builder is

where you
design and
create your

application’s
interface.

Figure 2-7:
The

Inspector
window lets
you change

many
aspects of
a window,

including
its title.

 3. (Optional) Change the size of the window.

 To change the size of the window, simply click and drag the resize

widget at the bottom-right corner of your window, as you would resize a

window in Finder.

25 Chapter 2: Creating Your First Cocoa Application

 4. To prevent users from resizing the window while they use your

application, deselect the Resize option in the Controls section of the

Inspector window (refer to Figure 2-7).

 5. Open the Library window by choosing Tools➪Library if it is not

showing by default.

 To continue constructing the interface, you must drag controls from the

Library window, which displays a variety of controls for you to use in

your Cocoa interfaces.

 The Library window has two tabs: Objects and Media. Click Objects to

see the available controls, as shown in Figure 2-8.

Figure 2-8:
The Library

window
has all the

controls
you need

for creating
attractive

Cocoa
interfaces.

26 Part I: Developer Tools

Adding controls to the interface
Controls are the interactive elements that make up an application’s interface.

You’re probably already familiar with many different types of controls

because you use them every time you use your computer. Some common

interface controls include buttons, check boxes, radio buttons, scroll bars,

and text fields.

For your first project, you’ll use a handful of controls in your interface.

Perform the following steps to add the controls you’ll need for this project:

 1. Drag a Push Button control from the Library window to your

application’s interface window.

 To locate the Push Button control quickly, enter Push Button in the

search field at the bottom of the Library window.

 2. Change the button’s label.

 To change the button’s label, double-click it and begin typing the text.

For example, you can type Calculate, as shown in Figure 2-9.

Figure 2-9:
Double-click

a button to
edit its text.

27 Chapter 2: Creating Your First Cocoa Application

 3. Drag three large text field controls to the window.

 The user will enter numbers (the operands) in the first two text fields

that you add to the window. The result of the mathematical operation is

displayed in the third text field. You need not change the properties for

the first two text fields, but the third one needs a minor adjustment. The

answer to the calculation will appear in the third text field, so you need

to make its contents unalterable by the user.

 4. Select the third text field and then choose Tools➪Inspector to display

the Inspector window. From the list of properties, deselect the

Editable option (see Figure 2-10).

 The text field is now uneditable, as you might have guessed.

 5. Add two Label controls to serve as visual cues in the interface.

 The Label controls have a cosmetic function. They make the interface

look nice and help the user know how the interface works. Type Label in

the Library’s search field to locate the Label control easily. Because

you’re laying out this interface to look like a traditional math problem,

change the title of one text field to + and the other to =. Figure 2-11

shows the completed interface with the new text field controls. In this

chapter and Chapter 3, you worry only about addition. In Chapter 4, you

add subtraction, multiplication, and division to the project.

Figure 2-10:
Deselect

the Editable
property of
a text field

so your
users can’t
change its
contents.

28 Part I: Developer Tools

Figure 2-11:
The

completed
interface.

Table 2-1 lists the controls that make up your interface. Before you go on,

now is a good time to double-check that everything is arranged like you

want it.

Table 2-1 Controls in a Calculator Interface
Control Type Quantity Identifying It in the Library Window Other Info

Button 1 Search for Button Title is
Simple
Calculator

Text Field 2 Search for Text Field
Text Field 1 Search for Text Field Deselect

the
Editable
option

Label 1 Search for Label Title is +

Label 1 Search for Label Title is =

29 Chapter 2: Creating Your First Cocoa Application

Wiring the interface
Now that you’ve constructed your interface, it’s time to wire it. After all, a

light switch in your house can’t turn on a lamp without a wire that connects

the two; your interface is no different. At the center of a typical home’s

electrical system is a fuse box, or a circuit breaker box. All wires in the home

lead back to the centrally located fuse box. Cocoa interfaces follow a similar

pattern. Instead of a fuse box, however, you use a class. A class is an abstract

representation of something that you want to model from the real world in

your program — for now, you can think of it as a virtual fusebox. Chapter 6

has more information about classes in Objective-C programs. You then add

outlets to connect the main Fusebox class to the elements of your interface.

Creating classes
To create a class in Xcode:

 1. Return to your project in Xcode and choose File➪New File.

 A New File Wizard opens, displaying possible file templates.

 2. Select Cocoa in the left column.

 The wizard displays Cocoa file templates.

 3. Select Objective-C Class from the section on the right side of the

screen.

 The Objective-C class is the appropriate type of class for this Cocoa

project because you’re using the Objective-C language to write this

program.

 4. Click Next.

 5. Name the new file Fusebox.m and make sure that the Also Create

“Fusebox.h” check box is selected, as shown in Figure 2-12.

 An Objective-C class has two parts — an implementation file with a .m

file extension and an interface file with a .h file extension.

 6. Click Finish.

 Xcode creates and adds Fusebox.m and Fusebox.h files to the project.

You may discover that the Fusebox.m and Fusebox.h files aren’t in the

correct folder of your project. It’s perfectly fine for you to drag the

new files to the desired folder. In fact, they can reside anywhere in the

project — in any folder or even outside the folders. Xcode is smart

enough to find them for you come build-time.

30 Part I: Developer Tools

Figure 2-12:
The Fusebox

class
connects

the interface
elements

to your
application.

Adding outlets
Next, add outlets to this new class. Outlets are references that connect your

source code to elements in the interface.

In the Simple Calculator project, users will enter numbers for a calculation in

two text fields. The third text field displays the result of the calculation.

Therefore, you need to make three outlets — one for each text field.

To add outlets to a class in Xcode, add them to the Fusebox.h file.

IBOutlet id answerField;
IBOutlet id numberField1;
IBOutlet id numberField2;

These three outlets must appear between the Fusebox interface brackets,

like this:

#import <Cocoa/Cocoa.h>

@interface Fusebox : NSObject {
 IBOutlet id answerField;
 IBOutlet id numberField1;
 IBOutlet id numberField2;
}
@end

31 Chapter 2: Creating Your First Cocoa Application

Adding an action
In addition to three outlets, add an action to the class. An action is a function

that executes when based on some event that you assign in Interface Builder.

The new action in this class calculates the answer to the math problem

posed by the interface. You can name the new action calculateAnswer and

define it this way:

- (IBAction)calculateAnswer:(id)sender;

This definition also appears in Fusebox.h after the closing bracket, but before

the @end statement. The completed Fusebox.h file looks like this:

#import <Cocoa/Cocoa.h>

@interface Fusebox : NSObject
{
 IBOutlet id answerField;
 IBOutlet id numberField1;
 IBOutlet id numberField2;
}
- (IBAction)calculateAnswer:(id)sender;
@end

Adding the class to the interface
With the class definition complete, switch to Interface Builder.

 1. In Interface Builder, choose File➪Read Class Files.

 An Open dialog appears, as shown in Figure 2-13.

 2. Select Fusebox.h and click the Open button.

 You won’t see much happen yet, but you have just informed your

interface about the new Fusebox class.

Figure 2-13:
Read the

Fusebox.h
class.

32 Part I: Developer Tools

 3. Add a new object to the project in Interface Builder.

 In the Library window, search for object and drag an instance of Object

into the project window, as shown in Figure 2-14.

 4. Open the Identity Inspector by choosing Tools➪Identity Inspector.

 5. In the Identity Inspector, choose Fusebox from the Class drop-

down list.

 You can either select Fusebox from the drop-down list or simply type

Fusebox in the drop-down’s field, as shown in Figure 2-15. After you’ve

changed the class to Fusebox, the outlets and action appear in the

Identity Inspector.

Figure 2-14:
Add a new

Object
instance to
the project.

33 Chapter 2: Creating Your First Cocoa Application

Figure 2-15:
Change the
class of the

object to
Fusebox.

Making connections
Now that you’ve created a Fusebox class and added three outlets and an

action, it’s time to make connections between Fusebox and your interface.

You’ve just created a new Fusebox object based on the Fusebox class.

You’ll make connections between this new instance and your interface with

the outlets and action you added earlier. For starters, connect the three

outlets to the three corresponding text fields in the interface. To get you

started, here’s how to connect the numberField1 outlet to the interface:

 1. Select the Fusebox instance in MainMenu.xib.

 2. Control+drag from the Fusebox instance to the leftmost text field in

the interface.

 Figure 2-16 shows what the Control+drag operation looks like.

34 Part I: Developer Tools

Figure 2-16:
To make a

connection
to an outlet,

Control+
drag from

an instance
to an

interface
element.

 When you Control+drag to the text field and let go of the mouse, a black

connections list overlay appears with the list of outlets available in your

instance.

 3. Select the instance you want.

 To follow along with the example, select numberField1, as shown in

Figure 2-17.

Figure 2-17:
Select an

outlet.

35 Chapter 2: Creating Your First Cocoa Application

 4. Repeat Steps 2–3 for the other two outlets, numberField2 and

answerField.

 Make sure to Control+drag from the instance to the appropriate control

in the interface before selecting the outlet to connect.

The process for wiring your action works in a similar fashion, except for one

important point: It proceeds in reverse! Instead of Control+dragging from

the instance to the interface, you drag from the interface to the instance. To

connect your action to the interface, follow these steps:

 1. Control+drag from the button in your interface to the Fusebox

instance in MainMenu.xib.

 2. Select an action from the list.

 To follow along with the example, select the calculateAnswer action

from the black overlay, as shown in Figure 2-18. It will be the only action

available in the Fusebox class.

You’ve now finished creating and wiring your interface! To wrap up this part

of the project, save your MainMenu.xib file:

 1. Save the interface by pressing Ô+S.

 2. Quit Interface Builder.

 You have completed the interface. It’s safe to quit Interface Builder now

and return to the project in Xcode.

In the next section, you add code to your application.

Figure 2-18:
Select the

action from
the black

overlay that
appears.

36 Part I: Developer Tools

Adding Code to Make Your App Work
Back in Xcode, click the Fusebox.m file to reveal its contents. This is your

main source code file and the place where you add functions to make this

application do something. The file isn’t empty. Interface Builder was kind

enough to add some code to get you started:

#import “Fusebox.h”

@implementation Fusebox

@end

 Cocoa programmers are a special breed. Instead of using the term header
files, they speak of interface files. Likewise, source code files are called

implementation files.

Don’t worry if you don’t understand everything just yet. This code is a shell

for you to use when you begin coding the project. This code uses the header

file with this line:

#import “Fusebox.h”

If you’re a seasoned C programmer, remember that #import in Cocoa is

like #include in standard C. The directive lets your code know where the

definition of your class is.

After the header, the source code lists the implementation of the Fusebox

class:

@implementation Fusebox

One part of that Fusebox class is a calculateAnswer action. By adding the

calculateAnswer action, you can make your application functional. All

code that appears between the two empty braces of the calculateAnswer

method executes whenever a user clicks the button in your interface. The

user clicks the button, which in turn fires the calculateAnswer action,

which then executes your code.

Add the following action to the Fusebox.m file:

#import “Fusebox.h”

@implementation Fusebox

- (IBAction)calculateAnswer:(id)sender
{
 int num1, num2, answer;

37 Chapter 2: Creating Your First Cocoa Application

 num1 = [numberField1 intValue];
 num2 = [numberField2 intValue];
 answer = num1 + num2;

 [answerField setIntValue:answer];
}

@end

Here’s what the code does:

 1. Add a line to create three integer variables for temporarily storing

three integer numbers in memory:

int num1, num2, answer;

 The code then assigns values to the num1 and num2 variables. The

values it uses are ones that it pulls from the corresponding interface

elements numberField1 and numberField2. These two elements are

text fields. To get the integer value from a text field, send the intValue

message to a corresponding outlet, which returns the integer value of

the text in that field.

 2. To send a message to an object, such as an interface element, enclose

the object name and message name in square brackets:

num1 = [numberField1 intValue];
num2 = [numberField2 intValue];

 The code adds the two numbers and puts the result in the answer

variable.

 The answer is displayed by sending answerField a setIntValue

message. This particular message requires a parameter: an integer

value.

 3. Add the answer variable to display the answer:

answer = num1 + num2;
[answerField setIntValue:answer];

 4. Save the Fusebox.m file with its new source code by choosing

File➪Save.

Debugging and Building the Application
You’ve constructed an interface, wired it to your Fusebox instance, and

added the code. Now it’s time to see the results of your hard work. To test

the project, choose Build➪Build and Go (Run) or click the Build and Go

button in Xcode, as displayed in Figure 2-19.

38 Part I: Developer Tools

Figure 2-19:
Click the

Build and
Go button
to see the

fruit of your
efforts.

As Xcode builds your application, the debugger window appears with lots of

text flying by at a rapid rate. This process is normal. If anything goes wrong

during the build (such as an error in your code), the debugger is the first

place you’ll want to look for clues as to what exactly did go wrong. When the

build is finished, the debugger tells you so (see Figure 2-20).

After your build succeeds, Xcode launches the completed application, as

shown in Figure 2-21. Your next step in the programming process is to test

the functionality of the application. Enter numbers in the first two text fields

and then click the Calculate button. Does it display the answer you expect?

Figure 2-20:
If a build
goes off

without a
hitch, the
debugger

displays
Succeeded

in the
bottom-right

corner.

39 Chapter 2: Creating Your First Cocoa Application

Figure 2-21:
The

completed
application

in action.

 Keep in mind that because you’re working with only integers; you won’t get

correct results if you enter numbers with fractional values (see Figure 2-22). If

you use a number with a decimal in it, you’ll get a result without the fractional

part. Clearly, the calculator isn’t as robust as you might need.

In Chapter 3, you expand on this project to account for decimal numbers.

For now, bask in the glory of having built your first Cocoa application. The

resulting executable file resides in your project’s folder in Finder. Open the

MyFirstProject folder and locate the Build folder within it. Open the Build

folder to reveal your MyFirstProject application. You built that application,

and it can run on any Mac OS X computer.

Figure 2-22:
Oops! The
calculator
only adds

integers
so far.

40 Part I: Developer Tools

Chapter 3

Xcode
In This Chapter
▶ Jumping headfirst into Xcode

▶ Customizing the Xcode window

▶ Adjusting the settings for your project

▶ Editing source code with Xcode

▶ Debugging your Cocoa projects to remove errors

▶ Using the built-in Help features of Xcode

▶ Building an application from your project

Cocoa programming requires the use of some sophisticated development

tools. Chief among these is Xcode. With Xcode, you can manage your

Cocoa projects: write code, assemble, organize, and test your project, and

finally build an application that you can run on any Mac OS X computer.

Xcode is the main component of Apple’s integrated development environment
(IDE). Xcode has everything you need for managing Cocoa projects, editing

and debugging source code, and building applications. As you discover the

different features of Xcode, you’ll continue to improve on the calculator

project you created in Chapter 2. By the end of this chapter, you’ll have a

calculator application that has improved functionality and is free of bugs.

These two goals are what all professional programmers want from their

software, and Xcode can help you achieve them.

 If you didn’t build the simple calculator in Chapter 2, you can find the project

files for this chapter on the For Dummies Web site at www.dummies.com/go/
cocoafd. The chapter starts with the My First Project file.

42 Part I: Developer Tools

Xcode: The Core of Apple’s
Development Tools

Because Xcode is a first-class development tool, its collection of windows,

menus, and settings can look daunting to a budding Cocoa programmer.

Xcode is professional software, so don’t be surprised if you have a bit of a

learning curve. Apple created Mac OS X for use by the average Joe (and

Jane), but it made Xcode for developers. Xcode has a classic Macintosh

interface with windows and menus like other software, but the subject matter

is technical, so don’t feel too intimidated if you don’t understand everything

at once.

With Xcode, you can do many types of programming. Because of this fact,

Xcode offers tools, documentation, and settings for doing all these different

kinds of programming.

As a Cocoa programmer, you’re focusing on only one aspect of Xcode’s total

capabilities. Thus, you’ll need to use only the tools, documentation, and

settings that pertain to Cocoa programming. Some features in Xcode you may

use only occasionally, rarely, or never at all.

Think of Xcode as a hardware store. You might customarily go to the hard-

ware store to buy nails, screws, or wood glue. Once in a while, you pick up a

hammer, a screwdriver, or even a tape measure. Every so many years, you

even buy paint for the exterior of your house. You dare not go into the

roofing aisle, though. You’re afraid of heights and always leave that work to

the professionals.

You use Xcode in the same way you use the local hardware store. You

perform some kinds of tasks all the time (writing code for your application),

some tasks less frequently (assigning an icon to your application), and

some rarely (adjusting the preferences for an Xcode setting). Others you

may never approach at all (creating drivers for a CD burner). This isn’t to

say that adjusting preferences in Xcode is a task you’ll seldom perform and

that CD drivers are only for professionals. It’s that Xcode is a tool for many

kinds of development. Like a hardware store, everyone uses Xcode for

specific needs. Maybe your neighbor likes to do plumbing and CD driver

development. You, on the other hand, stick to furniture repair and Cocoa

application development. The hardware store and Xcode can assist both

you and your neighbor in your endeavors even if neither of you understands

what the other does.

43 Chapter 3: Xcode

Customizing Xcode Preferences
Open the project file by double-clicking its icon in Finder. Xcode launches,

displaying the project and its components. The default Xcode settings appear

in Figure 3-1. If you’ve read Chapter 2, this window should look familiar

because you used it to create your first project.

Xcode displays the code and other components of your project in its main

window. It displays a single project window by default, but you aren’t limited

to this setup. Follow these steps to change your layout:

 1. Close any open projects.

 Xcode demands that all project windows be closed before it lets you

change the Layout setting.

 2. Open the Xcode Preferences window by choosing Xcode➪Preferences.

 Across the top of this window is a row of buttons.

 3. Click the General button.

 The Xcode settings appear, as shown in Figure 3-2.

Figure 3-1:
Xcode

displays
the main
window

when you
first open a

project.

44 Part I: Developer Tools

Figure 3-2:
You can

choose how
many

windows
Xcode

displays
during

develoment.

 Xcode has three choices for the Layout setting that affect the main

project window:

 • All-in-One: All tasks appear within one window: code, build results,

build log, and debugging. If you have very limited space (like on a

small laptop), perhaps All-in-One is best for you.

 • Condensed: Tasks appear in separate windows: code, build results,

build log, and debugging. If you have a large monitor or a multiple-

monitor configuration, you may prefer the Condensed approach to

spread out your work.

 • Default: The Default layout uses some elements from All-in-One

and some from Condensed. The main project window contains

most views, but displays additional windows in some cases, most

notably for the debugger and console. Neat freaks love this setting,

and it’s the one I use in this book.

 4. Choose the setting you want from the Layout pop-up menu.

 5. Click OK to apply the setting and dismiss the Preferences window.

 6. Reopen your project and choose Build➪Build and Go.

 Your application runs as usual.

 7. Quit the application to return to Xcode.

 8. Choose Run➪Console to see the status of the last run.

 If your project executed without a hitch, the Console window displays a

message like this:

My First Project has exited with status 0.

45 Chapter 3: Xcode

 The status 0 message indicates that Xcode encountered no errors

during execution of the application. This is a good thing and means that

your project is free from certain kinds of errors.

 If you’re using the Default layout, the Console window appears as a

separate window, as shown in Figure 3-3.

Figure 3-3:
The Console

window
provides

additional
information

about the
progress of

a build.

Working with Project Files
In Chapter 2, you discovered how to make a simple calculator that could add

integers but not numbers with decimals. To change the way the application

operates, you’ll need to alter the code in the project:

 1. In your main project window of Xcode, click to expand the Classes

group.

 The Classes group opens and displays the class files in your project.

What you probably recognize as a folder, Xcode calls a group. The small

folder icons that appear to the left side of the project window are

groups. Clicking the disclosure triangle located on the left side of each

group displays the files in that group.

 2. Click the Fusebox.m file.

 The code for the Fusebox.m file displays, as shown in Figure 3-4.

46 Part I: Developer Tools

Figure 3-4:
The Classes

group
organizes

the source
code files in

your project.

 3. Change the code in the Fusebox.m file to read like this:

#import “Fusebox.h”

@implementation Fusebox

- (IBAction)calculateAnswer:(id)sender
{
 float num1,num2,answer;

 num1 = [numberField1 floatValue];
 num2 = [numberField2 floatValue];
 answer = num1 + num2;

 [answerField setFloatValue:answer];
}

@end

 This code has three important changes:

 • You’re changing the three variables from an int type to a float

type. The float data type supports numbers with decimals.

 float num1,num2,answer;

 • Because you’re working with float data types now, use the

floatValue function to retrieve decimal data from the two

number fields.

47 Chapter 3: Xcode

 num1 = [numberField1 floatValue];
 num2 = [numberField2 floatValue];

 • Use the setFloatvalue function instead of the setIntValue

function to display the float result in answerField.

 [answerField setFloatValue:answer];

 4. Now that you’ve edited the source code in Fusebox.m, select the

Fusebox.h file to view its contents.

 Fusebox.h holds the definitions for your interface.

 5. In the Groups & Files list, open the Other Sources group folder and

select the main.m file.

 In this file, you see code that looks like this:

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

 This code appears in every Cocoa application project that you create.

It’s responsible for making your application go, much like a set of keys

makes an automobile run. The nice part is that Xcode automatically

adds it to the project for you, and you usually don’t need to make any

changes to this file.

 6. Choose Build➪Build and Go or press Ô+R to see your code changes

in action.

 7. After Xcode compiles and launches the project, test the Simple

Calculator application, with decimal numbers.

 The calculator now adds decimals properly (see Figure 3-5).

Figure 3-5:
The

calculator
supports

decimals!

48 Part I: Developer Tools

Class models
Class models are your next stop on the Xcode tour (see Chapter 2 for more

about classes). Xcode can provide you with a visual representation of

the classes in your project. This can be helpful for design and debugging

purposes. To view a class model, select the desired class and choose

Design➪Class Model➪Quick Model. Xcode displays a graphical model of

your class.

The calculator has only one class: the Fusebox class. Select the Fusebox

class and choose Design➪Class Model➪Quick Model to view the Fusebox

model. In this class, you implemented one function (calculateAnswer)

and three outlets for the three text fields, as shown in Figure 3-6. NSObject

also appears in the Quick Model because it’s the superclass of the Fusebox

class. All classes, except NSObject, are based on some other class in a class

hierarchy. The Fusebox class is based on the NSObject class, so NSObject

is said to be its superclass.

As your project grows, the class models help you with the big picture. The

graphs show you how items in the project interconnect.

Figure 3-6:
The Quick

Model
displays the

classes in
your project.

49 Chapter 3: Xcode

File comments
You can assign comments to any project items in Xcode. These kinds of

comments differ from source comments in that you can assign them to any

element in your project, not just source code files. This is a handy feature

when you’re working with very large projects or with other people because

you can use the comments to document changes or keep other notes. Follow

these steps to add comments to your project:

 1. Select Fusebox.m in the Classes group.

 Fusebox.m holds the declarations for your implementation.

 2. Click the Info button in the project toolbar or press Ô+I.

 The File Info window opens, as shown in Figure 3-7.

 3. Click the Comments button at the top of the File Info window.

 The Comments field appears where you can enter information about

the file for later retrieval while keeping the information out of your

source code.

Figure 3-7:
The File Info
window can

help you
document

project
elements.

50 Part I: Developer Tools

Using favorites to speed up development
As your projects grow, you’ll find that locating code can sometimes become

problematic. For large projects, jumping among dozens of source code files

isn’t uncommon. To help you, Xcode has a Favorites Bar, similar to a Web

browser. Instead of pointing to URLs on the Web, though, the Xcode Favorites
Bar points to specific places in your source code. It’s useful when you want

to quickly jump to certain spots in your code without the hassle of surfing

through the numerous files that might make up your project.

To begin working with favorites in Xcode, follow these steps:

 1. Choose View➪Layout➪Show Favorites Bar.

 The list of favorites for your project appears at the top of the project

window, as shown in Figure 3-8.

 2. Drag any file from your project to the Favorites Bar.

 Choose a file that you want to return to quickly. Favorites appear in the

Favorites Bar at the top of the window, as shown in Figure 3-8.

 3. To delete a favorite from your project, drag it off the Favorites Bar.

 The favorite instantly vanishes in a puff of smoke.

Figure 3-8:
Favorites
appear at
the top of

the window.

Favorites bar

51 Chapter 3: Xcode

Debugging Your Project
Because computer programming can be a complex process, it’s easy to make

mistakes. You can introduce errors to your code in a number of ways. Here

are two:

 ✓ Syntax errors are errors in the grammar of your code that make Xcode

unable to interpret the code. Typographical mistakes in your code may

lead to syntax errors in your project.

 ✓ Runtime errors have nothing to do with the syntax of your code. Rather,

the logic of your code contains errors that produce an application that

doesn’t function properly. These mistakes might be syntactically correct

and still allow Xcode to compile and link your code into an application,

yet produce unexpected or incorrect results. The application may run

and even work as expected sometimes, but at some point, your applica-

tion will do something wrong. A purple apple might be displayed instead

of a red one in your graphics application, an enemy invader won’t die

when shot in your video game, or a miscalculation yields an incorrect

numerical result in your spreadsheet application.

The only way to know if you have any bugs in your code is to thoroughly

test your projects. When you debug a project, you build, run, and test your

application until you’re convinced that it’s bug free.

To begin debugging, follow these steps:

 1. Build and run the project you’ve been working with throughout this

chapter.

 2. Type values in the two number fields and then click the Calculate

button.

 3. Change the numbers and click the Calculate button again.

 4. Repeat Step 3 until you’re convinced that the project operates as it

should.

For example, three consecutive tests of the project yield the following

results:

1 + 2 = 3

3.25 + 4.75 = 8

3.2 + 4.75 = 7.949999809265137

Uh oh! That last test didn’t produce results that you might expect. What’s

going on here? There seem to be three problems:

52 Part I: Developer Tools

 ✓ The code is calculating the sum of the two numbers incorrectly in some

situations.

 ✓ The problem seems to occur only when using decimal numbers.

 ✓ The error happens only when some decimal numbers are used, but not

others. For example, 0.25 + 0.75 works as expected, but 4.2 + 4.2 does

not. The reason that this happens is because the computer can’t display

fractional values (the numbers after the decimal point) if the values can’t

be represented as a non-repeating sequence in binary. If you want to

know more about this topic (a word of warning; it can get very mathy),

search for IEEE 794 on Google.com.

To help you figure out where things are going wrong, Xcode includes a

powerful debugger. With the debugger, you can follow along as your project’s

code executes and watch for any indication of a problem.

Adding breakpoints
To begin debugging this code, first set some breakpoints. Breakpoints are

small markers that appear in the column to the left of the code. To insert a

breakpoint, simply click in that leftmost column next to the line of code that

you want to check with the debugger, as shown in Figure 3-9.

Figure 3-9:
Click in the

leftmost
column of
the code
editor to

set a
breakpoint.

53 Chapter 3: Xcode

For this example, it’s a good idea to set three breakpoints: one for each time

you assign a value to a variable (that is, num1, num2, and answer).

 Notice that the breakpoints in Figure 3-9 appear after the line of code in

question. The line of code that sets a variable has to execute before you can

check the variable’s value to see its result.

Stepping through the debugger
Now that you’ve set some breakpoints, it’s time to debug the project:

 1. Choose Build➪Build and Debug.

 Xcode begins building your project just as it always has, but then

something happens. Xcode opens the Debug tab.

 For now, you won’t see any information in the debugger. Rather, your

project’s main window comes to the foreground and looks like it

always has.

 2. Enter numbers in your application’s interface (for example, 3.2 and

4.2) and click the Calculate button.

 The debugger comes to the foreground and displays all sorts of data in

the Debug tab. In the left side of the debugger, you see the name of the

class and the method that the code is currently executing. In this case,

it’s the Fusebox class and the calculateAnswer method. The bottom

section of the debugger displays the code for the calculateAnswer

method.

 Because you set breakpoints, the debugger stops at the first one it

encounters. This indicates the next line of code that the debugger will

execute.

 3. In the upper-right section of the debugger, view the current state of all

variables in your code.

 So far, only this code has executed:

float num1,num2,answer;
num1 = [numberField1 floatValue];

 Therefore, you might expect that the debugger displays only a value for

the num1 variable. Figure 3-10 shows the debugging process thus far.

 If you don’t see the debugger window when your application stops at

the first breakpoint, choose Run➪Debugger.

54 Part I: Developer Tools

Figure 3-10:
As the

debugger
executes

code, it
displays the

values of
variables.

 The debugger already found a problem (refer to Figure 3-10). The value

of num1 isn’t 3.2 as you might expect. Instead, it has a value of

3.20000005.

 4. Click the Continue button in the project toolbar to continue executing

the code.

 The debugger then displays the value of num2, 4.19999981, not the

expected value of 4.2.

 5. Click the Continue button again to make the debugger jump to the

third breakpoint.

 The debugger now displays the answer value, 7.39999962, not 7.4 as you

might expect.

 6. Click Continue again.

 The debugger disappears, and the application reappears and waits for

you to press the Calculate button again.

 7. Bring the project window to the foreground and click the Stop button

in the project window toolbar to halt the debugging process.

 8. Choose Run➪Deactivate Breakpoints to prevent the debugger from

stopping on the next run.

55 Chapter 3: Xcode

Although the numbers that your code displays are very close to the actual

values entered in the interface at runtime, they aren’t the exact values.

Clearly, you need a solution that formats numbers according to some guide-

lines. For example, you may only care about two decimal points of precision.

Fixing the code
Without getting into a bunch of technicalities, a float variable can have

many digits in the decimal portion of its value. When num1, num2, or their

sum has decimal digits that can’t be represented by a non-repeating

sequence in binary, rounding and truncation problems exist. These problems

are an inherent fact of life based on how your computer works with floating

point numbers.

To get around this problem, one solution is to format the answer variable

before displaying it. A few lines of code and Cocoa’s NSNumberFormatter

class take care of the problem:

NSNumberFormatter *answerFormatter =
 [[[NSNumberFormatter alloc] init] autorelease];

 [answerFormatter

setFormat:@”#,###.00;0.00;(#,##0.00)”];
 [[answerField cell] setFormatter:answerFormatter];

Don’t be frightened if you don’t understand this intimidating blurb of code.

This chapter is about Xcode, not Objective-C code like Chapter 6.

The first two lines of code (which incidentally are just one function that

appears on two lines) create an NSNumberFormatter object. The purpose

behind an NSNumberFormatter object is to regulate the format of numbers.

Next, the code sends the setFormat message to the answerFormatter

object, passing it a string of text. This string designates what formats are

allowed for this NSNumberFormatter object. The string is a series of three

formats, each separated by a semicolon. You don’t have to worry about the

precise format of these three strings, but, to give you a hint, the first one

defines the format of positive numbers, the second one accounts for cases

when the number is 0, and the last bit formats negative numbers.

Finally, the code applies the NSNumberFormatter object to answerField

in the interface. To help you understand where this bit of code fits into the

big picture, here’s the listing of the completed source code for Fusebox.m

(the NSNumberFormatter object is in bold). Note that when you add the

code, the last breakpoint moves accordingly.

56 Part I: Developer Tools

#import “Fusebox.h”

@implementation Fusebox

- (IBAction)calculateAnswer:(id)sender
{
 float num1,num2,answer;

 num1 = [numberField1 floatValue];
 num2 = [numberField2 floatValue];
 answer = num1 + num2;

 NSNumberFormatter *answerFormatter =
 [[[NSNumberFormatter alloc] init] autorelease];

 [answerFormatter

setFormat:@”#,###.00;0.00;(#,##0.00)”];
 [[answerField cell] setFormatter:answerFormatter];

 [answerField setFloatValue:answer];
}

@end

Now that you’ve formatted answerField properly, choose Build➪Build and

Go to see your changes in action. You see results, as shown in Figure 3-11.

Figure 3-11:
With the

NSNumber
Formatter

object, you
can dictate

how your
application

displays
floating-point

numbers.

Before you leave the debugging section of this chapter, you may come across

one more kind of error when using Xcode to program Cocoa applications.

Change the last line of your code in Fusebox.m to this:

[answerField setFloatValue:answer]

57 Chapter 3: Xcode

This time you’re intentionally leaving off the trailing semicolon (a common

mistake that even pros make). Choose Build➪Build and Go to see what hap-

pens. The result is that the application doesn’t run as expected, and an error

overlay appears beneath the code in question, as shown in Figure 3-12. A

circle with a white X also appears in the gutter to the left of the code showing

where the error occurred.

The error shows you exactly where the problem is. In this case, the error is

syntax error before } token. Just before the } token is where the

semi-colon should be. Fix the code and save it.

The point behind this demonstration is to show you that you may encounter

different kinds of errors when programming with Xcode. Some errors, like

this last one, occur during the build and debug process, and Xcode shows

you where they occur. Other bugs are trickier to track down, such as the

earlier example, because the application is otherwise functional. For those, it

never hurts to use the built-in debugger to solve the problem.

Figure 3-12:
Xcode

displays
errors in
the code

editor when
you click

Errors and
Warnings

on the left.

Removing breakpoints
Now that you’re finished debugging your project, you may want to remove

the breakpoints that you added. In Xcode, click the Fusebox.m file and

look for the breakpoints on the left side of the code editor. Control+click a

58 Part I: Developer Tools

breakpoint and choose Remove Breakpoint from the contextual menu that

appears. Do the same for the remaining breakpoints. Figure 3-13 shows the

contextual menu prior to deletion of a breakpoint.

 Nothing prevents you from keeping the breakpoints set in the project. You can

safely leave them in place without causing any problems for yourself, so long

as you deactivate them when you don’t need them.

Figure 3-13:
Control+

click a
breakpoint

to remove it.

Where to Go for Help
At some point, you’ll want more information about how Xcode operates.

Fortunately, Apple has you covered with its built-in documentation.

Choose Help➪Xcode Workspace Guide to view the built-in documentation

about Xcode.

The built-in Help offers documentation on each aspect of Mac OS X develop-

ment. It also includes a few helpful tutorials for getting started with

programming Cocoa in Xcode.

Besides the standard Help, Xcode offers one-click access to information

about Cocoa classes and frameworks in the code editor. To test this feature,

do the following:

59 Chapter 3: Xcode

 1. Select the Fusebox.m source code file.

 Xcode displays the file in the code editor.

 2. Locate a keyword in the source code that you want to investigate.

 For example, you may want to find out more about the setFloatValue

method.

 3. While holding down the Option key, double-click setFormatter in

the Fusebox.m file.

 A reference window opens, listing the various setFloatValue methods

in Cocoa (see Figure 3-14).

 4. Choose a keyword from the menu.

 Select the appropriate setFloatValue method to view the correspond-

ing documentation.

Figure 3-14:
Option-
double-

click any
valid

keyword in
the code
editor to

view
its docu-

mentation.

60 Part I: Developer Tools

Building an Application
Now that you’ve set up your project, altered its source code, and browsed

the classes in it, you’re ready to build the final application. Choose Build➪
Build and Go. Xcode then compiles, links, and executes the resulting

application.

 You don’t always have to build and run, although it’s probably the most

common method of working in Xcode. You can build your project without

running it by choosing Build➪Build. This compiles, links, and creates the

target application but doesn’t execute it. If you’d prefer to use the debugger,

choose Build➪Build and Debug. Table 3-1 lists the keyboard shortcuts for the

various Build commands.

Table 3-1 Keyboard Shortcuts for the Build Menu
Function(s) Keyboard

Shortcut
What It Does

Build Ô+B Builds an application from the current project

Build and Run Ô+R Builds an application and then executes it

Build and Debug Ô+Y Builds and launches an application from the
current project and then starts the debugger

Clean Ô+Shift+K Cleans the current project by removing all
object code from it

In addition to the standard menu items and corresponding keyboard short-

cuts, Xcode gives you easy access to the Build and Run function by means of

a button in the toolbar project window. Figure 3-15 shows the location and

function of this button.

Whenever you click the Build and Go toolbar button, it turns into a stop sign.

While the build or debugging proceeds, you can halt the process. Sometimes

it takes a while to complete a build. If you forget to do something before

building, it’s handy to be able to stop the build operation. That way, you can

avoid the wait of completing the build and get back to work.

After you complete a successful build, your new application appears in the

Build folder of your project’s main folder in Finder. You can then distribute

and run this application on any other computer that uses Mac OS X, which is

the main goal of programming in Cocoa.

61 Chapter 3: Xcode

Figure 3-15:
Click the

Build and
Go button
in project

window
toolbar to

run your
project.

62 Part I: Developer Tools

Chapter 4

Interface Builder
In This Chapter
▶ Finding your way around Interface Builder

▶ Adding controls to an interface

▶ Editing attributes of a control

▶ Editing and creating new menus

▶ Wiring an interface

▶ Implementing code to use an interface

The second most important component of Cocoa development (Xcode is

the first; see Chapter 3) is the eponymous Interface Builder application,

which you use to build interfaces for your Cocoa projects. Interface Builder

gives you the ability to construct beautiful interfaces for your software with

drag-and-drop ease — without a lick of code. More importantly, the inter-

faces you create in Interface Builder follow Apple’s stringent Human Interface

Guidelines, so you have a good chance of producing applications that Mac

users (they can be a finicky bunch) like to look at and ultimately use.

In this chapter, you take a tour of Interface Builder, examining its functionality

as you go. To help you acclimate to Interface Builder, you improve the calcula-

tor application that you created in Chapter 3. By the end of this chapter, your

calculator will have a new menu, additional interface elements, and added

functionality.

 You can find the project files for this chapter on the For Dummies Web site at

www.dummies.com/go/cocoafd.

64 Par t I: Developer Tools

A Tour of Interface Builder
To begin working with Interface Builder, make a copy of the finished Chapter 3

project folder. Always make sure that your Cocoa projects and associated

files reside on write-enabled media, which is most likely your hard drive.

After you have the code copied to your hard drive, do the following to begin

working on the project in Interface Builder:

 1. Open the My First Project.xcodeproj file.

 Xcode launches, and the project opens.

 2. Expand the project’s Resources folder in Xcode to reveal the

MainMenu.xib file.

 MainMenu.xib is the interface file for your calculator project. Figure 4-1

shows the location of the MainMenu.xib file in Xcode.

 3. In Xcode, double-click the MainMenu.xib file to open it in Interface

Builder.

 Although Xcode and Interface Builder are two different applications,

they work together to provide you with an integrated Cocoa experience.

Figure 4-1:
MainMenu.
xib contains

the inter-
face for

your project.

65 Chapter 4: Interface Builder

 Incidentally, the XIB file extension in MainMenu.xib indicates that it’s a newer

Interface Builder project file format, introduced in Xcode 3. Previously, the file

format had a NIB extension, which is short for NeXT Interface Builder. Why

NeXT? NeXT is the name of the company that Steve Jobs headed before his

return to Apple. Apple purchased the NeXT operating system, which became

the core of Mac OS X. The XIB file is a carryover from those days. Cocoa geeks

still call these NIB files — old habits die hard. Besides that, have you ever tried

to pronounce “XIB?” Furthermore, the NS that appears at the beginning of

class names in Cocoa stands for NextStep, another historical tidbit in Cocoa

left over from NeXT.

When you first launch Interface Builder, you may see as many as five different

windows. Figure 4-2 shows the various windows as they appear in Interface

Builder. Although it isn’t one of the five main windows, the Strings window

might make an appearance, too. The Strings window is less likely to be pres-

ent than the others but if you see it, feel free to close it. You don’t use it in

this chapter.

Figure 4-2:
Interface

Builder has
five main

windows.

Project window

Design window Menu editor

Attributes window Library

66 Par t I: Developer Tools

Table 4-1 describes why you need each window and how to display one if it

isn’t currently visible.

Table 4-1 Main Windows of Interface Builder
Window How to Display It What You Do With It

Project
window

Double-click the XIB file in
Xcode

Store the components of
your interface file.

Design
window

Double-click the Window icon in
the XIB project window

Use the window as part of
your application’s interface.

Inspector
window

Choose Tools➪Inspector View and edit attributes of
your interface and other
classes in the project.

Library Choose Tools➪Library Drag controls from the
Library window to a design
window to create an
interface.

Menu
editor

Double-click the MainMenu icon
in the XIB project window

Create, delete, or edit menus
for your application.

Together these five windows form the main tools of Interface Builder. Using

these tools in concert, you can build a complete interface for use in a Cocoa

application. That’s not all Interface Builder can do, though. You can

 ✓ Create and add classes to your project.

 ✓ Connect classes to the elements of your interface by clicking and drag-

ging. These connections serve as a bridge between an interface and your

Xcode project.

 ✓ Allow Interface Builder to do the dirty work of writing some of the code

for your interface. With one click, it produces the necessary interface

and implementation files in Xcode, where you add code later.

The interface builder project window
The NIB project window is the heart of your project’s interface. This is where

you store the components of your project’s interface. The NIB project

window has three different views much like the Finder:

 ✓ Icon: List the objects in your XIB file as a grid of large icons. Figure 4-3

shows the Icon view format of the Interface Builder project window.

67 Chapter 4: Interface Builder

Figure 4-3:
Use the

Icon view to
get a quick
glimpse of
the items
in an XIB

document.

 ✓ List: Lists the objects in your XIB file as a vertical hierarchy. The List

view is useful for quickly locating controls within a window. It comes in

handy when you want to select a control that’s embedded within other

controls (see Figure 4-4). It’s also useful when you want to move or copy

an embedded control to another object or control or when you want to

view embedded controls in context.

 ✓ Column: Lists the objects in your XIB file as a horizontal hierarchy (see

Figure 4-5). The Column view is similar to List view, except that it dis-

plays the hierarchical arrangement of project items horizontally.

Figure 4-4:
Use the List
view to see

the class
hierarchy

of your XIB
project.

68 Par t I: Developer Tools

Figure 4-5:
The Column

view
displays

hierarchical
information

horizontally.

Each new NIB file that Xcode creates for you as part of a new project has six

items by default:

 ✓ File’s Owner

 ✓ First Responder

 ✓ Font Manager

 ✓ Application

 ✓ MainMenu

 ✓ Window

MainMenu and Window are what you need to concern yourself with for now.

As you can probably guess, the MainMenu is where you edit the menus for

your interface. The Window is a window object that you can use in your

interface.

Design window
The Design window represents a window in your interface and is where you

add controls. Your user then uses these controls to operate your application.

To view a Design window:

 1. In the NIB project window, double-click Window.

 The contents of the Window object are displayed, as shown in Figure 4-6.

 2. With the window opened, select a control.

 For example, select the Calculate button.

69 Chapter 4: Interface Builder

Figure 4-6:
The Design
window is
where you
lay out the

controls for
your inter-

face.

 3. Press and hold the Option key and move your cursor around the

window.

 As you pass over each control, Interface Builder displays guidelines and

numbers informing you of the distance between the selected control

and the one with the cursor over it. Figure 4-7 illustrates the distance

between the button and the answer field.

Figure 4-7:
Select a

control and
hold the

Option key
to display

guidelines.

 4. With the button still selected, press and hold the Option key and

move your cursor into a section of the window where no control

resides.

 You see guidelines that define the location of the selected button. Figure

4-8 shows the position of the button in the Calculator interface.

 You can move the controls in a Design window by dragging them with the

mouse. You can also select a control and move it with the arrow keys. As you

move a control around a window, Interface Builder displays guides to help

you accurately position the control.

70 Par t I: Developer Tools

Figure 4-8:
Hold the

Option key
and move
the cursor

outside the
selected

element to
see its

coordinates.

Library window
To create an interface, you need an assortment of buttons, sliders, and other

controls. The Library window provides these controls for you to use in your

interface. To view the controls that are available to you, follow these steps:

 1. Choose Tools➪Library.

 The Library window appears, with a row tabs across the top, as shown

in Figure 4-9.

 2. Click the Objects tab to see the controls and other objects that are

available to you.

 3. Select Cocoa from the frameworks listed at the top of the Library.

 The Library window is organized by framework. Selecting Cocoa dis-

plays the controls that are available to you via the Cocoa framework.

 4. Search for a control.

 You can search for specific class names, such as NSButton. Or, you can

search for controls using descriptive terms like button.

Table 4-2 describes the sets of controls available in the Library window.

Table 4-2 Objects in the Library Window
Frameworks Reveals These Types of Controls and Objects

Cocoa Windows, menus, toolbars, controllers, buttons, views,
radio groups, image well, sliders, progress indicators,
and others

Interface Builder Kit Library template (for advanced users)

Web Kit Web view

71 Chapter 4: Interface Builder

Frameworks Reveals These Types of Controls and Objects

Address Book Address Book People Picker view

Automator Objects for integrating applications with Automator

DiscRecording MSFormatter, an object for use with disc burning

Image Kit Image Kit browser and image views

Open Scripting Kit Objects used in making applications scriptable

PDFKit PDFView and PDFThumbnailView for displaying PDF
documents

QuickTime Kit QuickTime Movie view for playing movies and
QuickTime Capture view for displaying video previews
while capturing video

Quartz Composer Objects for displaying and manipulating Quartz
Composer compositions

Custom Objects Third-party controls or your own custom controls and
objects

Figure 4-9:
The Library

window
contains a

variety of
objects and

controls
that you can

use in your
interface.

72 Par t I: Developer Tools

Chapter 9 goes into greater detail about the controls in the Library window.

Most chapters throughout this book also deal with some aspect of the

Library window because it’s an important window! In particular, you’ll use

controls and objects in the Cocoa section of the Library window most often

because that collection has all the most common interface controls.

 The Library window is the starting point and main toolbox for creating

attractive interfaces. You’ll use it frequently.

Inspector window
The Inspector window is another important window that you’ll use frequently

when building an interface. The Inspector window displays important con-

textual information about whatever element you’re working with in Interface

Builder. To see how the Inspector window works, perform these steps:

 1. Choose Tools➪Inspector.

 The Inspector window appears. The purpose of the Inspector window

is to give you the opportunity to view and edit the attributes of the con-

trols and objects in your NIB file.

 2. Open a window from your XIB file.

 The Inspector window displays the attributes for that window (see

Figure 4-10).

 The Inspector window is a bit of a chameleon, altering to match its sur-

roundings. Figure 4-10 shows the properties of a window. If you have a

window open and its properties don’t appear in the Inspector window,

click the window’s title bar.

 3. Click the Calculate button in the Design window to select it.

 The Inspector window immediately changes to display the attributes of

that button.

 4. Alter the window properties as you need.

 For example, to add a key assignment in the Inspector window, click the

Key Equiv. field to select it and then press Return. An icon appears in

the Key Equiv. field, representing the Return key (see Figure 4-11).

73 Chapter 4: Interface Builder

Figure 4-10:
For win-

dows, the
Inspector

window
gives you
access to

a variety
of window
attributes.

Figure 4-11:
Choose

Return to
give users

one-key
access to

calculations.

 This assignment has two effects:

 • It changes the Calculate button to a blue pulsating color in

Interface Builder, indicating that it’s the default button in that

window. The purpose is to draw a user’s attention to the button

because the button triggers the functionality that the user most

likely wants to perform in that window.

 • The Key Equiv. assignment causes that button to respond to the

Return or Enter key on the keyboard. Now, instead of forcing users

to click the button with a mouse, they can simply press Return or

Enter to make a calculation. And, you gained all that functionality

with only one click. Fantastic!

74 Par t I: Developer Tools

Menu editor window
The last window to discuss is the Menu editor. The Menu editor window

displays a miniature version of your application’s menu bar. You can click a

menu to display its menu items. It’s also easy to change the text or keyboard

shortcut for a menu item or to add a new menu item altogether.

To prepare the menu for your application, follow these steps:

 1. In the XIB project window, double-click the MainMenu icon.

 The Menu editor appears.

 2. Open the New Application menu.

 3. Double-click the About MyFirstProject menu item and rename it.

 For example, rename it to About SimpleCalculator.

 You can also rename the About menu (or any other menu, for that

matter) by single-clicking it and making the change in the Info window.

 4. Change the Hide NewApplication and Quit NewApplication menus.

 For example, change them to Hide SimpleCalculator and Quit

SimpleCalculator, respectively. Figure 4-12 shows all three menus;

About, Hide, and Quit changed in the Menu editor.

Figure 4-12:
Change the

text of menu
items with
the Menu

editor.

75 Chapter 4: Interface Builder

 5. Edit the text of the top Application menu item.

 Figure 4-13 shows I’ve changed the menu to Simple Calculator.

 6. Choose File➪Save to save the interface changes.

 7. Press Ô+R to test the interface.

 Interface Builder hides your XIB project window and displays your inter-

face as it would appear in a running application.

 8. Select menu items, move the calculator window, and type numbers in

the fields of the window.

 When you click the Calculate button, though, nothing happens. That’s

because you aren’t using the actual application. This is just an

interface test.

 Although the About SimpleCalculator menu item looks just fine, the

Application menu isn’t displaying its name properly. Rather, it displays

Cocoa Simulator to let you know that you’re viewing an Interface Builder

preview of your application and not your actual application.

 9. Choose Cocoa Simulator➪Quit Cocoa Simulator to return to Interface

Builder.

 If you check your application by running it in Xcode, you’ll see the

changes that you made to the interface in Interface Builder.

Figure 4-13:
Change the
name of the
Application

menu.

76 Par t I: Developer Tools

 10. Bring Xcode to the foreground and press Ô+R to run your application.

 Something isn’t quite right, as shown in Figure 4-14. The Application

menu is still stuck with MyFirstProject.

 What’s going on here? Your application supplies the text for your

Application menu item by using a string in its Info.plist file, not from the

text you entered in Interface Builder. Go figure!

 The Info.plist file is a text file that contains information about your appli-

cation. You can find the version number for your application, assign an

icon to the application, and set the default language for the application,

among other tasks.

Figure 4-14:
Despite

changes to
the menu

in Interface
Builder, the

project
is still

displaying
the wrong

name in the
Application

menu.

 11. Change the Info.plist file as follows:

 a. In Xcode, expand the Resources group.

 b. Select the InfoPlist.strings.

 The Code editor displays the contents of this file, which you

can edit.

 c. Change the first line of code to read

CFBundleName = “SimpleCalculator”;

 12. In Xcode, press Ô+R.

 The Application menu appears with the corrected name. Figure 4-15

shows the results of the InfoPlist change.

 13. Click the Interface Builder icon on the Dock to return to it.

77 Chapter 4: Interface Builder

Figure 4-15:
Make

adjustments
to the

InfoPlist.
strings file

in Xcode
to cause

the name
of your

application
to appear

in the
Application

menu.

The Interface Building Process
Now that you’ve surveyed the basics of Interface Builder, it’s time to put it to

use. If you built the interface in Chapter 2, you have a Simple Calculator that

adds two numbers together. That limited functionality doesn’t make for a

very useful calculator.

If you haven’t built the Simple Calculator in Chapter 2, you can use the My

First Project.xcodeproj file.

To give users a choice of mathematical operations, you can add a pop-up

menu. Instead of being limited to addition, a user can also, subtract, multiply,

or divide. This additional functionality clearly makes for a more useful

calculator.

If you simply drag a new pop-up button into your application’s interface and

connect it to a new outlet in the Controller class (Fusebox), your source

and header files in Xcode have no way of knowing about the change. Either

you have to alter the source code files by hand or merge new files with the

ones you already created. When doing so, you run the risk of deleting all

your existing work. Interface Builder offers a solution to this dilemma. When

you attempt to create header and implementation files that already exist,

Interface Builder asks (see Figure 4-16) whether you’d prefer to overwrite

existing files (thus deleting your previous work) or merge the new files with

the existing ones (thus retaining your previous work).

78 Par t I: Developer Tools

Figure 4-16:
To retain
previous

work, merge
your new

header and
implemen-

tation
files with

existing
files.

Because of this special consideration, you need to create the files and add

them to Xcode. If files already exist in your Xcode project, you can edit them

by hand or merge them with the new files:

 ✓ If your project doesn’t have header (.h) or implementation (.m) files,

create them by choosing File➪Write Class Files.

 ✓ If the files already exist in your project in Xcode, choose File➪Write

Class Files and click Merge when queried in the dialog that appears.

When you choose to merge files, Interface Builder launches the

FileMerge application, which handles the sometimes complex task of

merging source code and header files.

 If you’re making small changes to your interface, sometimes it’s just as

easy to edit the header and source code files in Xcode by hand rather

than to go through the merge process.

Improving your existing project to include addition, subtraction, multiplica-

tion, and division is simple. I show you how in the next sections.

Adding a pop-up menu
One way to give readers a choice of functions is through a pop-up menu.

Follow these steps:

 1. Open an XIB file in Interface Builder.

 If you don’t have your calculator’s MainMenu.xib open in Interface

Builder, double-click it from your project in Xcode.

 2. Open the window for your interface by double-clicking Window in the

XIB file window.

 Your interface currently displays a plus sign text field between numField1

and numField2 to indicate that the calculator performs addition only.

79 Chapter 4: Interface Builder

 3. Click the plus sign text field to select it and then press Delete to

remove it.

 4. Open the Library window and search for popup, drag a pop-up button

from the Library window to the calculator interface, and click the

pop-up button again to reveal its contents.

 By default, a popup has three menu items — Item 1, Item 2, and Item 3.

 5. Select the last menu item in the pop-up button and choose

Edit➪Duplicate to add a new item to the pop-up button.

 6. Edit the title of each menu item by double-clicking the item and

changing the text to mathematical symbols for addition, subtraction,

multiplication, and division.

 See Figure 4-17.

 7. Change the Tag property of each menu item. Starting with 0 (zero),

assign 0, 1, 2, and 3 to addition, subtraction, multiplication, and divi-

sion, respectively.

 When a user uses the calculator, you can identify which pop-up item is

selected based on its Tag value.

 8. Resize the pop-up button to its smallest width and place it between the

two number fields. Because the pop-up button won’t quite fit between

the two fields as is, resize the window and move the controls around

until the button fits properly.

Figure 4-17:
Change

the items
in the pop-

up button
to math-
ematical

symbols that
represent

addition,
subtraction,

multiplica-
tion, and
division.

80 Par t I: Developer Tools

Adding a menu
In addition to the pop-up button, giving a user menu access to the different

mathematical computations would be handy. It’s a cinch to add keyboard

shortcuts to menus, which in turn can give your users keyboard access to

the mathematical choices in the pop-up button. To create a new menu item,

follow these steps:

 1. Open the Menu editor for MainMenu from the project window.

 2. Drag a menu item from the Library window and drop it onto the

menu bar.

 3. Rename the new menu Calculate and press Return to accept the

new name.

 4. Drag a menu from the Library window to the new Calculate menu item.

 A new menu appears with three items by default.

 5. Select the last of the three menu items, Item 3, and press Ô+D to

duplicate the item and add it to the menu.

 6. Select the first menu item, Item 1, and press Ô+1 to open the Inspector

window.

 7. Alter the attributes of the menu item to match Figure 4-18. Change the

Title attribute to Add, click the Key Equiv. field, and press + on your

keyboard to assign + as the keyboard shortcut for that menu item.

Figure 4-18:
Users can

choose
their favorite

math-
ematical

operation
via a

menu item.

81 Chapter 4: Interface Builder

 8. Alter the new menu items to look like Figure 4-19 by following a

similar procedure as in Steps 6 and 7.

 9. Change the Key Equiv. attribute for each item to the appropriate

symbol: +, -, *, and /. Assign a unique Tag value to each menu item,

starting with 0 (zero).

Figure 4-19:
Users can

now choose
from all

four math-
ematical

operations.

Creating a Controller class
Because you’re updating an existing project, this one already has a Controller

class (Fusebox). Therefore, you can skip this step. Normally this step would

be required but not this time. If you weren’t updating an existing project,

create a Controller class by dragging an NSObject from the Library window

to the project window and change its type in the Inspector window.

Connecting the interface
When you have your interface done, you must connect it to the actions and

outlets. Follow these steps:

 1. In the XIB project window, select the Fusebox object and press Ô+6.

 The Inspector window appears, displaying the outlets and actions for

Fusebox.

 2. Add an operationPopup outlet, which corresponds to the pop-up

button in your project’s window.

82 Par t I: Developer Tools

 3. In the Inspector window, create one new action: changeOperation:,

making sure to include the trailing colon.

 Figure 4-20 shows the new outlet and two actions for the Fusebox class.

 4. To connect your interface, Control+drag from the Fusebox object in

the XIB file window to the new popupButton in the interface. In the

black connections list overlay that appears, select the operation
Popup outlet.

 5. Open the Menu editor by double-clicking the MainMenu item in the

project window.

 6. Select the Add menu item from the Calculate menu and Control+drag

from it to the Fusebox class. From the black connections list overlay,

select the changeOperation action.

 7. For each menu item in the Calculate menu, Control+drag from the

menu item to Fusebox and connect it to the same changeOperation

action.

 When you’re finished, the Inspector window looks like Figure 4-21.

Figure 4-20:
Add an

action to
Fusebox
to cover

the opera-
tions in the

Calculate
menu.

83 Chapter 4: Interface Builder

Figure 4-21:
Connect the

individual
menu

items in the
Calculate

menu to the
new action.

 8. Create files and add them to Xcode. If the files already exist, edit them

by hand or merge them with the new files.

 Because your project files already exist in Xcode, you have to tread

carefully here. You’ve added only one new action and one new outlet to

your Fusebox controller, so it won’t be difficult to add them by hand to

the existing files, which you will do in the next section.

 9. Choose File➪Save to save the XIB file.

 You’re finished with Interface Builder.

Using an Interface in Xcode
Now that you have the interface improvements completed, you need to

return to Xcode and add some code. For starters, you need to define a few

items in the Fusebox.h file. Because you added an outlet and an action to the

controller, you do the same in Fusebox.h:

84 Par t I: Developer Tools

 1. Change Fusebox.h to read as follows:

/* Fusebox */

#import <Cocoa/Cocoa.h>

@interface Fusebox : NSObject
{
 IBOutlet id answerField;
 IBOutlet id numberField1;
 IBOutlet id numberField2;
 IBOutlet id operationPopup;
}
- (IBAction)calculateAnswer:(id)sender;
- (IBAction)changeOperation:(id)sender;
@end

 2. Choose File➪Save to save the header file.

 3. Select Fusebox.m to edit its code.

 4. Modify the calculateAnswer function by adding an integer that

keeps track of the currently selected item in the pop-up button:

int operation;

 5. Find out which item the user has selected from the pop-up button by

sending it the selectedTag message.

 When you do, the pop-up button returns the tag of its currently selected

menu item, which you then store in the operation variable. The first

menu item in a pop-up button has a tag of 0 (zero), so all items in the

operationPopup control are covered by the indices 0 through 3:

operation = [operationPopup selectedTag];

 6. After you know which item the user selected from operationPopup,

do the math based on that index:

switch (operation) {
 case 0://addition
 answer = num1 + num2;
 break;
 case 1://subtraction
 answer = num1 - num2;
 break;
 case 2://multiplication

 answer = num1 * num2;
 break;
 case 3://division
 answer = num1 / num2;
 break;
}

85 Chapter 4: Interface Builder

 The completed calculateAnswer action looks like this.

- (IBAction)calculateAnswer:(id)sender
{
 float num1,num2,answer;
 int operation;

 num1 = [numberField1 floatValue];
 num2 = [numberField2 floatValue];

 operation = [operationPopup selectedTag];
 switch (operation) {
 case 0://addition
 answer = num1 + num2;
 break;
 case 1://subtraction
 answer = num1 - num2;
 break;
 case 2://multiplication
 answer = num1 * num2;
 break;
 case 3://division
 answer = num1 / num2;
 break;
 }

 NSNumberFormatter *answerFormatter =
 [[[NSNumberFormatter alloc] init]

autorelease];

 [answerFormatter

setFormat:@”#,###.00;0.00;(#,##0.00)”];
 [[answerField cell] setFormatter:answerFormatter];
 [answerField setFloatValue:answer];
}

 7. To account for the Calculate menu that appears in your menu bar, add

a new action to Fusebox.m: changeOperation.

 When a user selects a particular menu item, the code changes the

operationPopup control to match the operation in that menu item. For

example, if a user selects the Add menu item, the code sets the index of

the operationPopup control to 0 (zero). The Subtract menu item sets

the index of the operationPopup control to 1, and so on. The code

looks like this:

- (IBAction)changeOperation:(id)sender
{
 [operationPopup selectItemAtIndex:[sender tag]];
}

86 Par t I: Developer Tools

 The completed Fusebox.m source code file combines the calculate
Answer action and the new menu item action into one file. To keep your

bearings straight, here’s the completed Fusebox.m file:

#import “Fusebox.h”

@implementation Fusebox

- (IBAction)calculateAnswer:(id)sender
{
 float num1,num2,answer;
 int operation;

 num1 = [numberField1 floatValue];
 num2 = [numberField2 floatValue];

 operation = [operationPopup selectedTag];
 switch (operation) {
 case 0://addition
 answer = num1 + num2;
 break;
 case 1://subtraction
 answer = num1 - num2;
 break;
 case 2://multiplication
 answer = num1 * num2;
 break;
 case 3://division
 answer = num1 / num2;
 break;
 }

 NSNumberFormatter *answerFormatter =
 [[[NSNumberFormatter alloc] init]

autorelease];

 [answerFormatter

setFormat:@”#,###.00;0.00;(#,##0.00)”];
 [[answerField cell] setFormatter:answerFormatter];
 [answerField setFloatValue:answer];
}

- (IBAction)changeOperation:(id)sender
{
 [operationPopup selectItemAtIndex:[sender tag]];
}
@end

87 Chapter 4: Interface Builder

 8. Choose File➪Save to save the Fusebox.m file.

 9. Choose Build➪Build and Go to see your work in action.

 The result is an application that performs addition, subtraction, mul-

tiplication, and division. You can choose a mathematical operation by

selecting it from the popupButton in the interface, choosing it from

the Calculate menu in the menu bar, or using the keyboard shortcuts

listed in the Calculate menu. Figure 4-22 shows the completed calculator

application.

Figure 4-22:
The

completed
calculator

can add,
subtract,

multiply, and
divide.

 If you get lost somewhere during the interface-building process or the code

additions, you can get the completed project from www.dummies.com/go/
cocoafd. The finished project is in the following directory:

Chapter 4/End Code/Calculator

88 Par t I: Developer Tools

Chapter 5

Putting Polishing Touches
on Your Application

In This Chapter
▶ Implementing an About Panel

▶ Renaming an application

▶ Setting an application’s version

▶ Creating and setting an application’s icon

▶ Distributing applications

After you finish building an interface, writing code, and debugging your

application, you’ll want to prepare it and build it for use as a stand-

alone executable file to distribute. You may think that after you design and

write an application, it’s ready for the world to see, but you still have a few

more steps to complete before it passes muster with Mac users (they can be

a demanding bunch!) and before it’s truly ready for public consumption.

Mac users expect particular things to be present in a “good” Mac application.

In this chapter, I show you some of the most common features that you can

add to an application and settings that you need to tweak before releasing it

to friends, family, co-workers, or the public.

The bulk of your development tasks take place in Xcode and Interface

Builder. Some of the items in this chapter can be completed using features

found in Xcode and Interface Builder. However, these aren’t the only tools

Apple gives you for creating Cocoa applications. Nestled in the Applications

folder of your Developer folder, you’ll find more than a dozen additional tools

and utilities that can help you create great Cocoa software. I show you how

to use a couple of them in this chapter: Icon Composer to create icons and

icns Browser to manage the icons in your project. Disk Utility, which comes

stock with all Macs, also makes an appearance in this chapter.

90 Par t I: Developer Tools

Adding an About Panel
Within every application menu is a menu item titled About My Application,
where My Application is the name of your application. This is commonly

known as the About Menu, and clicking it opens an About Panel. The About
Panel typically conveys important information about the application (imagine

that!). For many years, developers created their own About Panel (sometimes

also called an About Box or About Window), but Apple has standardized this

use. Following Apple’s guidelines, an About Panel can display the following

information about an application:

 ✓ Name or title: The name of the application

 ✓ Icon: The application’s icon

 ✓ Version number: A number, such as 1.0, indicating which version this is

 ✓ Copyright date: A copyright note stating the year that the application

copyrighted

 ✓ Credits: Other pertinent information about the application, which

usually includes names of the team that built the application and other

acknowledgements

An application doesn’t have all these elements in the About Panel by default.

You must either add them to the project or alter the project settings for

them to appear in the About Panel. Figure 5-1 shows the default About Panel,

with the name of the application and the version number, when you create a

Cocoa Application (in this case, the application is named Utility).

Figure 5-1:
The default

About Panel
of a Cocoa
application

is pretty
bland.

After you alter the appropriate settings and add a couple items to your proj-

ect, the resulting About Panel is far more interesting to look at and is much

more useful to users. Figure 5-2 shows an About Panel that includes the basic

elements of an About Panel.

91 Chapter 5: Put ting Polishing Touches on Your Application

Surely an improvement as big as that requires some code, right? Nope! By

setting a few parameters and adding the necessary files, Cocoa takes care of

the rest!

Figure 5-2:
The

enhanced
About Panel

looks a lot
better and

is helpful
to users.

Most of the settings you need to address to customize an About Panel are

in the Info.plist file of your project. The Info.plist file resides within the

Resource folder of your project. Figure 5-3 shows its location in the project

window.

 The Info.plist file is somewhat unique. At its heart, it’s nothing more than a

text file. But, that text file consists of XML (eXtensible Markup Language),

which is parsable by special applications, such as the Property List Editor,

one of the tools that resides in the Applications folder within your Developer

folder. (Property List Editor resides within the Utilities folder there.)

Figure 5-3:
The Info.
plist file

contains
important

settings
for your

applcation.

92 Par t I: Developer Tools

There’s no need to pull out the big guns though because Xcode can also

parse the data in Info.plist. Instead of displaying the file as plain old text,

Xcode parses the data and displays it as a hierarchical tree (the way XML is

formed structurally). Each element in the hierarchy consists of a key/value

combo. You can double-click any value and alter it from within Xcode.

Setting an icon
Toward the top of the About Panel stands the application’s icon, which iden-

tifies your application at a glance but is present mostly for cosmetic reasons.

Set the icon for an application, and as a result, you set the icon in the About

Panel. You need to do two things to set the icon:

 1. Add an icon file (with an .icns file extension) to the project window

by dragging and dropping it from Finder.

 It’s customary for the icon file to reside in the Resources folder of a

project. Later in this chapter, I show you how to build an icon with Icon

Composer.

 2. In Info.plist, enter the name of the icon in the Icon File field.

 Type the name of the icon file exactly as you see it in Finder. The file

extension (.icns), however, is optional.

 Figure 5-4 shows that an icon file UtilityIcon.icns has been added to the

project.

Figure 5-4:
Set the Icon

File field in
Info.plist to

establish
the icon for
your appli-
cation and
the About

Panel.

93 Chapter 5: Put ting Polishing Touches on Your Application

Setting the name or title
Next, you need to change the Bundle Name to affect the application name that

appears in the About Panel. This is probably the single-most important ele-

ment in the About Panel because it’s the panel that appears when you click the

About This Application menu. The title simply identifies that application.

 You might be tempted to change the data next to the Bundle Name key in Info.

plist, but don’t. Instead, you set the application’s name in the Info window for

your project’s target. By default, projects assign the value ${PRODUCT_NAME}

to the Bundle Name key in Info.plist. Thismeans that the product name comes

from elsewhere in your project because ${PRODUCT_NAME} is a variable.

When you change the value in the Info window for your project’s target, the

Info.plist automatically reflects those changes at runtime.

The default name of the product usually matches the name of your project,

but it doesn’t have to. To change the product name, and in turn, the applica-

tion name that appears in the About Panel, follow these steps:

 1. Locate and expand the Targets folder in the project.

 The Targets folder has a red bull’s-eye icon, so it should be easy to spot.

 2. Select the application target within the Targets folder.

 The target will have a name that you recognize; probably the same name

as the project itself. Figure 5-5 shows the Utility target selected.

Figure 5-5:
Select the

appropriate
target.

94 Par t I: Developer Tools

 3. Click the Info button in the project’s toolbar to open the Info window.

 4. In the Info window, click the Build tab.

 5. Locate and change the Product Name key value.

 The Product Name resides within the Packaging section of the Info

Window, as shown in Figure 5-6. Changing the Product Name here

causes your built application to have a new name, and that new name is

reflected in the About Panel.

Figure 5-6:
Change the

Product
Name in the
Build tab of
the target’s

Info window
to change

the applica-
tion name

that appears
in the About

Panel.

Displaying a version number, a
copyright date, and credits
Besides using a title to identify your application, it’s also a good idea to

provide a version number, a copyright, and credits in the About Panel:

 ✓ The version number helps users know at a quick glance what version of

the application they’re using, in case they want to know when it comes

time to download a newer version of the application.

95 Chapter 5: Put ting Polishing Touches on Your Application

 ✓ The copyright date is useful for reminding users that your work is copy-

righted, and it also provides a convenient time stamp.

 ✓ The credits in the About Panel permit you to credit the various team

members that helped create the application. This element isn’t strictly

necessary, but sometimes it feels good to brag about your application.

To include the version number of your application in the About Bundle,

change the Bundle Version key value in the Info.plist. Figure 5-7 shows

version 1.5.

Figure 5-7:
Change

the Bundle
Version key

to affect
the version

number that
appears in
the About

Panel.

You can display a copyright date at the bottom of the About Panel with the

Copyright key in Info.plist. By default, the Copyright key doesn’t exist, so you

must add it. Follow these steps:

 1. In Info.plist, select the top item in the hierarchy, Information Property

List, as shown in Figure 5-8.

 2. Click the button to the right of the Value column to add a new key to

the Info.plist. Select Copyright (Human-Readable) from the list of pos-

sible key names.

 3. Change the Value of the Copyright (Human-Readable) key to whatever

you desire at the bottom of your About Panel.

 Figure 5-9 shows a completed Copyright (Human-Readable) key.

96 Par t I: Developer Tools

Figure 5-8:
Select

Information
Property List

in Info.plist.

Figure 5-9:
Add the

Copyright
(Human-

Readable)
key to Info.

plist to
display the

copyright at
the bottom

of the About
Panel.

You can display all sorts of interesting and useful credits in a scrolling text

field in the middle of the About Panel. All you have to do is add a Credits file

to your project’s Resource folder. The Credits file can be either a rich text file

(.rtf or .rtfd) or an HTML (HyperText Markup Language) file. Both for-

mats can display stylized text and images. HTML has the added benefit that

it can display clickable links, which can be useful for adding your company’s

URL or an e-mail address for support. Be forewarned, though, HTML files

don’t contain images; instead they reference separate image files. So, if you

plan on using HTML, more files are involved than just the HTML if you want

to display graphics. Figure 5-10 shows a rich text Credits file in the project.

97 Chapter 5: Put ting Polishing Touches on Your Application

Figure 5-10:
Add a

Credits
file to the
project to

display
stylized

text and
graphics in

the About
Panel.

Assigning an Icon to Your Project
One of the first things that users notice about your application is its

icon. When you first build an application with Xcode, it assigns a Generic

Application icon, as shown in Figure 5-11.

Figure 5-11:
Xcode

assigns a
generic

icon to all
applications

that
it builds.

You can assign a different icon to your application by adding an icon (ICNS)

file to your project and setting the Icon key in Info.plist. Before you do that,

though, you need an icon file in the first place. Apple gives you two utilities

to help you work with icon files: Icon Composer and icns Browser.

98 Par t I: Developer Tools

Icon Composer
Icon Composer is a tool for constructing ICNS icon files. You can use it to

gather, in one ICNS file, all the possible sizes for a particular icon. You can

find Icon Composer here:

/Developer/Applications/Icon Composer

To create your own ICNS file, you need an image-editing application, such

as Adobe Photoshop, Photoshop Elements, Pixelmator, GIMP, or Graphic

Converter. Then follow these steps:

 1. In your image-editing application, create a new RGB (red, green, blue)

document with dimensions of 512 x 512 pixels.

 This is the document you’ll use to create an icon image.

 2. With the various graphics tools in the application, create the image

that you want to use as your icon.

 3. If the image doesn’t consume the entire 512 x 512 pixels, delete the

unused portions.

 Leave unused portions of the image blank because icons can be trans-

parent. Also, deactivate any background layer to maintain transparency.

 4. Save the result as a PNG document.

 The PNG format supports transparency. Figure 5-12 shows a sample

Photoshop image for use in an icon. Note the checkerboard pattern

that appears in the background. It represents the transparent portion

of the image. It will also be transparent when added to an icon in Icon

Composer.

After you complete the design and creation of your icon artwork, you can use

Icon Composer to build an icon file:

 1. Launch Icon Composer by double-clicking its icon in Finder.

 An empty icon template opens, as shown in Figure 5-13.

 2. Drag the PNG image from Finder to the 512 x 512 square in Icon

Composer.

 Icon Composer displays a sheet asking if you want to use this PNG image

for all the other image components in the icon, as shown in Figure 5-14.

99 Chapter 5: Put ting Polishing Touches on Your Application

Figure 5-12:
Don’t forget

to remove
the unused

portions
from the

background.

Figure 5-13:
Icon

Composer
presents

you with a
blank icon
template.

100 Par t I: Developer Tools

Figure 5-14:
When you

add an
image to

an icon
document,

Icon
Composer
asks if you

want to use
the image

for other
icon sizes

as well.

 3. Select Copy to All Smaller Sizes and click the Import button.

 Icon Composer imports the image and adds it to all image sizes, as

shown in Figure 5-15.

Figure 5-15:
Icon

Composer
can auto-
matically

scale
icon sizes

for you.

101 Chapter 5: Put ting Polishing Touches on Your Application

 4. Choose File➪Save to save the icon template and then give it a name.

 5. Choose File➪Export to export the icon as an ICNS file.

 Be sure to use the ICNS file format for Xcode.

 6. To use the ICNS file, drag it into the Resources folder of your Xcode

project folder.

 7. Change the Bundle Icon entry in the Info.plist file.

 I describe how in the “Setting an icon” section earlier in this chapter.

The next time you build this project, the resulting application uses the newly

added ICNS file as its icon. Double-click the application to launch it, and

you’ll see the new icon in the Dock as well.

Managing your icons
Unlike the Icon Composer application, which lets you create icon files, the

icns Browser application is strictly an icon viewer. With icns Browser, you

can view the contents of any ICNS file, but you can’t change those contents.

 The icons Browser utility is handy for finding out why a particular application

isn’t displaying an icon properly. For example, your application might display

a nice-looking icon when viewed at 128 x 128, but display nothing at the 32 x 32

size. The icns Browser can help you discover which icon elements are missing

so you can correct the situation.

icns Browser resides here:

/Developer/Applications/icns Browser

To see how icns Browser works, launch it and choose File➪Open to open the

ICNS file you created with Icon Composer. You see something that looks like

Figure 5-16. Notice that several elements of the icon file are missing.

 This ICNS file doesn’t contain all the elements possible in an ICNS file because

you made it for Mac OS X only. The blank elements in this ICNS file are for

maintaining compatibility with earlier versions of the Mac OS. As a Cocoa

programmer, you can’t target earlier versions of the Mac OS anyway, so forget

about that old technology! The Mac OS is smart enough that it can scale down

larger icons for use at smaller sizes. You’ll notice the icns Browser application

is getting a little dated because it doesn’t yet support 512 x 512 or 256 x 256

icons. It’s still a useful tool for sanity checks, though.

102 Par t I: Developer Tools

Figure 5-16:
Viewing the
contents of

an ICNS file.

Creating a Disk Image for Distribution
After you build a finished application with Cocoa, you’ll no doubt want to

distribute it to friends, co-workers, or maybe even the world via the Internet.

The easiest way to provide your users with an application is to put it on a

disk image. Disk Utility is a tool that accompanies the Mac OS, and if you

aren’t familiar with it already, it’s located here:

/Applications/Utilities/Disk Utility

To create a new disk image for your application, perform these steps:

 1. Launch Disk Utility.

 2. Choose File➪New➪Blank Disk Image.

 A window opens asking you to name the new disk image, as shown in

Figure 5-17.

 3. Name the file and volume name and assign a volume size, volume

format, and image format:

 • Save As: The name of your disk image.

 • Volume Name: The name that appears on the mounted volume

when a user double-clicks the disk image.

 • Volume Format: You can create disk images in a variety of formats,

but generally speaking, you want to use Mac OS Extended format

for distributing your application to others.

103 Chapter 5: Put ting Polishing Touches on Your Application

 • Volume Size: Make sure that the volume size is large enough to

hold your application and any auxiliary files you wish to include.

Don’t worry if the volume size is too large; you can compress it

later. In fact, make sure that the volume size is larger than the

size of the application and auxiliary files in case you want to add

something else to the image later. You can find the combined size

of your application and its auxiliary files by selecting the parent

folder of the application in Finder and choosing Files➪Get Info.

 • Encryption: You can encrypt disk images, but for most purposes,

you don’t need this feature and you can safely set it to None. If you

need your disk image secure from other eyes, encrypting the disk

image lets you password-protect the image. Only those who know

the password can open the disk image.

 • Partitions: The Partitions setting lets you split a disk image into

multiple sections. In general, this isn’t a setting you need to adjust

if you want to make your software available on a disk image. Unless

you’re creating a disk-image master for burning CDs, usually select

Single Partition — Apple Partition Map in the Partitions popup.

 • Image Format: Set as read/write. This permits you to read from and

write to the disk image and is handy when you want to add more

files to the disk image later.

Figure 5-17:
Name the

disk image
and set its

properties.

104 Par t I: Developer Tools

 4. Click Create.

 Disk Utility churns for a second and produces the desired disk image at

the location you specified.

 5. Locate the disk image in the location that you specified in Step 4 and

double-click it.

 The disk image mounts a new volume if it hasn’t done so automatically

already.

 6. Copy your application and any extra files to the new volume.

 7. With the disk image in the foreground and eject the volume by

pressing Ô+E.

 8. Return to Disk Utility and open the disk image via File➪Open Disk

Image.

 Disk Utility opens and mounts the image, as shown in Figure 5-18.

 9. Choose Images➪Convert to convert the disk image to a compressed

format. Name the new disk image and select Compressed from the

Image Format drop-down list, as shown in Figure 5-19.

 10. Click Save to create the new compressed disk image.

 When Disk Utility is finished, you can upload the resulting disk image to

a Web server or send it to others via e-mail.

Figure 5-18:
Disk Utility
opens the

disk image
and mounts

its volume
when

opened.

105 Chapter 5: Put ting Polishing Touches on Your Application

Figure 5-19:
Create
a new

compressed
disk image

to eliminate
the extra

space from
the original
disk image.

106 Par t I: Developer Tools

Part II
Instant Cocoa and

the Objective-C
Language

In this part . . .

Cocoa programmers use their own language, a big

brother to the popular C language, called Objective-C.

Part II starts by giving you the information you need to

make sense of this funny-looking language. You see how the

Objective-C language works, how it handles object-oriented

programming, and what it shares with its kid sister, C.

Throughout the remainder of Part II, you continue to

expand your Cocoa interface knowledge by working with

classes, windows, and the huge collection of controls that

the Cocoa frameworks have to offer.

Chapter 6

The Basics of Objective-C
In This Chapter
▶ Using object-oriented programming

▶ Knowing the differences among classes, variables, and methods

▶ Understanding and coding in Objective-C

▶ Using your own classes

Objective-C is the language that most developers use to program Cocoa

applications. Although it’s not the only language that you can use for

Cocoa development, it’s by far the most popular. Objective-C is a superset

of the popular C programming language that bears an uncanny resemblance

to SmallTalk (which is no accident). If you’re an experienced C programmer

already, you’ll find that Objective-C makes you feel like you’re in familiar

surroundings, with a few language oddities thrown in. If you aren’t well

versed in C but know another programming language, you can probably

figure out what’s going on anyway.

This chapter examines the basics of object-oriented programming and the

Objective-C language. After you get the hang of how Objective-C works, the

chapter helps solidify your skills by building a project and using Objective-C.

In the process, you find out how to create objects in code. Next, the chapter

runs you through another important topic in Objective-C: class methods.

The chapter concludes with a look at the way you should name things in

Objective-C. Naming schemes plays an important role in Objective-C. As

you can see, this chapter is a collection of several small facts. These bits of

knowledge form a larger body of information that you’ll use every time you

program with Cocoa using the Objective-C language.

Why Use Object-Oriented Programming?
Objective-C, as you may have already guessed, extends C by adding object-

oriented features to it. Object-oriented programming is a paradigm whereby

you group related data and functionality into a construct called an object.

110 Par t II: Instant Cocoa and the Objective-C Language

Because an object bundles together data and functionality into one

“package,” your programming efforts gain several benefits:

 ✓ It’s easier to design and write software that’s object-oriented. Objects in

object-oriented computer programming (OOP, not to be confused with an

OOPS!) are analogous to objects in the real world. Consider an everyday

object like a kitchen window, which has properties like height, width,

glass color, thickness, and so on. Likewise, an OOP object like a computer

window has properties like height, width, color, and transparency.

 You can do several things to an object like a kitchen window. You can

open it, close it, wash it, and even break it. Again, the analogy follows

with an OOP window. You can open it, close it, and can change its size.

But, I hope you don’t try to break one.

 ✓ You classify various elements of your application as objects in a sort

of modular relationship to one another, making the process of pro-

gramming applications proceed much quicker. The structure that OOP

enforces helps you to build very sophisticated software, but still be able

to keep track of things.

 ✓ Because OOP makes your software modular, your software is much

easier to maintain, to repair if it’s broken, or to modify later when you

want to upgrade it.

Class Is No Object!
Objects in OOP, like objects in the real world, have properties and functions.

Objective-C calls these instance variables and methods, respectively. The

methods determine what functionality an object has, and they operate on the

instance variables, or the properties of the object.

For instance, every GUI (Graphical User Interface) application uses windows.

A window object might have instance variables that describe its height,

width, and color. Its methods would then do something with those instance

variables. One method might change the width of the window. Another

method might change its height. Yet another method might change the color.

Methods of an object are like gatekeepers for the instance variables. In

Objective-C, other objects and their methods can’t access instance variables

directly. Instead, they must access instance variables via methods.

111 Chapter 6: The Basics of Objective-C

Declaring instance variables
Instance variables, as the name implies, are variables that belong to an

instance of a class. Instance is another name for object. Objective-C variables,

like variables in many other programming languages, are references to data

about a particular state of the object. For example, to declare an instance

variable that references a button control, called aButton, your class inter-

face would look like this:

@interface MyClass : NSObject
{
 NSButton *aButton;
}

@end

Here’s how this code works:

 ✓ The @interface line begins the class declaration and @end denotes the

end of the class declaration.

 ✓ MyClass is the name of the class, and NSObject is the superclass from

which MyClass inherits. NSObject is a generic class type, and it is ulti-

mately the superclass of all classes.

 ✓ Within the class declaration are two curly brackets. You must declare

instance variables within those brackets of the interface file.

The interface file is the file in your project with an .h file extension, and in C

you’d call it a header file. Interface files usually begin with an import state-

ment to load appropriate frameworks. C programmers would load libraries

(and in fact, libraries are allowed in Objective-C too!):

#import <Cocoa/Cocoa.h>

Pointers to objects aren’t the only type that can be declared as instance vari-

ables. All the usual C variable types are fair game too in a class interface:

@interface MyClass : NSObject
{
 NSButton *aButton;
 int age;
 float percent;
}

@end

112 Par t II: Instant Cocoa and the Objective-C Language

Objective-C also has new and improved versions of data types that you might

recognize from C. For example, bool in C is BOOL in Objective-C, and it too

can be used to declare an instance variable:

@interface MyClass : NSObject
{
 NSButton *aButton;
 int age;
 float percent;
 BOOL collapsed;
}

@end

Declaring methods
Besides instance variables, you find method declarations in the interface. Unlike

the instance variables, however, method declarations appear after the curly

braces (but before the @end). Here’s a declaration for a doSomething method:

@interface MyClass : NSObject
{
 NSButton *aButton;
 int age;
 float percent;
 BOOL collapsed;
}
-(void)doSomething;
@end

If you’re coming to Objective-C from C, you notice something different

right away. All method declarations in Objective-C begin with a dash (-).

Thereafter, you assign a return type (in this case void) with parentheses. A

return type works just like those found in C. A method can return a value, or

not, in which case you assign void, just like in C. Following the return type

is the method name. It’s customary to name methods beginning with a lower-

case letter in Objective-C. Notice too, that the doSomething method has no

parameters. In the following example, doSomethingElse is declared with a

single parameter, an NSString:

@interface MyClass : NSObject
{
 NSButton *aButton;
 int age;
 float percent;
 BOOL collapsed;
}

113 Chapter 6: The Basics of Objective-C

-(void)doSomething;
-(void)doSomethingElse:(NSString *)aString;
@end

The method name is followed by a colon and then the parameter’s data type

in parentheses. The parameter’s name appears in the declaration, as it’s used

in the method itself. This is slightly different than what you might be accus-

tomed to in C function declarations, but so far it’s not too strange.

When you begin adding additional parameters to a method, however, things

start looking really weird to a C programmer. Besides having a name,

every parameter after the first one also has a label. In the following example,

drawAString has two parameters: aString and an int. The second

parameter has the label atThisXPosition.

@interface MyClass : NSObject
{
 NSButton *aButton;
 int age;
 float percent;
 BOOL collapsed;
}
-(void)doSomething;
-(void)doSomethingElse:(NSString *)aString;
-(void)drawAString:(NSString *)aString

atThisXPosition:(int)xPos;
@end

This can look very peculiar to seasoned C developers, but you’ll quickly

adjust to it. In fact, you may find that you prefer it because each parameter

is documented in the declaration itself. As you add additional parameters,

simply append a label, a colon, a data type in parentheses, and the parameter

name. For example, here’s the drawAString method with three parameters

instead of two:

@interface MyClass : NSObject
{
 NSButton *aButton;
 int age;
 float percent;
 BOOL collapsed;
}
-(void)doSomething;
-(void)doSomethingElse:(NSString *)aString;
-(void)drawAString:(NSString *)aString

atThisXPosition:(int)xPos atThisYPosition(int)
yPos;

@end

114 Par t II: Instant Cocoa and the Objective-C Language

Defining methods in an interface file
After you define a class in the interface file, you can move on to the imple-

mentation file. The implementation file has a filename extension of .m as in

MyClass.m. It’s where you define the various methods for your class. The

implementation file usually begins with an import statement to load the

interface file:

#import “MyClass.h”

The implementation and end lines come after the import statement,

within which you define the methods for the class:

#import “MyClass.h”

@implementation MyClass
@end

So far, this is all done for you by Xcode when you create a new class. You

then define the various methods that appear in the interface file. Following

the previous example interface file, the implementation file looks like this:

#import “MyClass.h”

@implementation MyClass
-(void)doSomething {

}

-(void)doSomethingElse:(NSString *)aString {

}

-(void)drawAString:(NSString *)aString
atThisXPosition:(int)xPos atThisYPosition(int)
yPos {

}
@end

Each of the class methods are defined here. They look just like their decla-

ration counterparts in the interface file, but instead of each ending with a

semi-colon, curly braces begin and end the method. You put the code for

each method between those braces. Again, C programmers should feel more

or less at home here because C does the same thing (as does C++, Java, and

even JavaScript).

115 Chapter 6: The Basics of Objective-C

Coding in Objective-C
After you declare a class, add instance variables and methods to its declara-

tion, and set up the shell of the implementation file, it’s time to write some code!

Sending messages to objects
One of the most basic ideas in Objective-C is the capability to send messages

from one object to another. To do this in Objective-C, you typically send

a message to an object telling it to perform that method. Objective-C uses

square brackets to denote that you’re sending a message to an object.

Sending messages is similar to calling functions in other programming

languages.

For a generic object (named object), you’d send a message (named

message) like this:

[object message];

Note two things:

 ✓ The syntax of this statement makes it behave much like a command in

English. For example, you might say this to a taxicab driver:

Driver, go!

 In Objective-C, the same command looks like this:

[driver go];

 ✓ Each line of code ends with a semicolon. Except for the usual places where

you might leave one out in C (for example, an if statement), Objective-C

also requires a semicolon at the end of each line of code. Objective-C

is C, after all!

Passing parameters
Like traditional C functions, Objective-C lets you pass parameters (also

known as arguments) to methods. Going back to the taxi analogy, you might

want to tell the driver where to go:

Driver, go left!

116 Par t II: Instant Cocoa and the Objective-C Language

In Objective-C, the command might look like this:

[driver go:left];

For C programmers, the go method should seem roughly analogous to a

standard C function. If you add another parameter, though, the analogy

breaks down. Suppose, for example, that you want to pass two parameters

(direction and distance) to the go method:

[driver go:left distance:10];

In Objective-C, the first parameter follows the colon after the name of the

method (in this case go:left). Each subsequent parameter has a name,

followed by a parameter (in this instance, distance:10). In contrast, a

parallel C function might be

go(left,10);

 In Objective-C, the meaning of the first parameter is usually obvious based on

the name of the method. Additional parameters have names to help you

identify their purpose.

Returning values
Like C functions, an Objective-C method can also return a value. If you tell a

taxicab driver to go a particular direction and distance, the next you’re likely

to hear is the price of the fare. You tell the driver to do something. The driver

replies with a price. In Objective-C, this works much like it does in C.

price = [driver go:left distance:10];

Because some methods can return values, Cocoa programmers are fond of

nesting them within other methods. Suppose that you based your directions

to the cabbie on a map. You know that the driver should go left, but not nec-

essarily how far. In this situation, you might use a map object to find the dis-

tance to the desired location, embedding it in the go method.

[driver go:left
distance:[map startAt:location1

destination:location2]];

Returning to the class that you defined earlier in this chapter, you’ll want to

write code in each of those methods that sends messages to other methods in

the same class. To call other methods within the same class, use self like this:

-(void)doSomething {
[self drawAString:@”hello” atThisXPosition:10

atThisYPosition:6];
}

117 Chapter 6: The Basics of Objective-C

Instantiating an object
After you create a class, you’ll want to use it as an object. When you want to

create an Objective-C object, you send the alloc message to the class, like so:

MyClass* anInstance = [MyClass alloc];

The alloc message allocates memory and creates the class. An instantiated

object must also be initialized. You do so by sending the init method to the

instance, like this:

[anInstance init];

Because alloc and init are both required for a generic instantiation, it’s

customary to embed them in one statement:

MyClass * anInstance = [[MyClass alloc] init];

Then, you’re free to work with the object (anInstance) as you need. You

could send the drawAString message to the instance:

[anInstance drawAString:@”hello” atThisXPosition:10
atThisYPosition:6];

Because you used alloc to create the instance, you must free up that

memory using release.

[anInstance release];

Managing memory
Recent versions of Cocoa provide support for garbage collection, but histori-

cally Cocoa hasn’t had garbage collection. Garbage collection is the process

whereby Cocoa dynamically frees memory that you’ve allocated for various

objects. Because this is a newer feature and because so many sources of

sample code do things the old way, it’s best that you understand memory

management in Cocoa without garbage collection.

Cocoa keeps track of memory by way of reference counting. This is a simple

counter that runs behind the scenes, keeping track of how many objects have

allocated memory and how many objects have released that memory. When

you create an object with alloc, you increase the reference count by one.

When you send a release message to the object, you decrease the count by

one. The name of the game here is that your reference count should end up

being zero after you’re finished using an object. If the count is greater than

zero, you’re leaking memory. And if the reference count is less than zero,

118 Par t II: Instant Cocoa and the Objective-C Language

you’ve freed an object in memory that you still need. Your code will crash

when you try to access this freed object.

As you saw in the previous section, an object is allocated with the alloc

method. The alloc method increases the reference count by one, so it

needs a corresponding release.

SomeClass *someObject = [[SomeClass alloc] init];
… do stuff with someObject here…
[someObject release];

So far, this is pretty simple because the allocation and release of the object

are all within the same block of code. Where things get a little mind-bending

is in the case of instance variables. Although it’s legal to access instance vari-

ables by name in your methods, it’s far wiser to access them only via acces-

sor methods.

 Because of memory management issues, things can get ugly quickly if you

don’t use accessor methods to access instance variables. If you don’t use

accessor methods, there’s a very real possibility that your application will leak

memory or that it will crash when you try to release an object that’s already

been released.

For example, suppose that you have a class that has an NSString instance

variable called name. Declare two methods for accessing the instance vari-

able. A getter (name) and a setter (setName):

@interface MyClass : NSObject {
 NSString *name;
}
-(NSString *)name;
-(void)setName:(NSString *)aName;
@end

Then, in your implementation file, define the methods like this:

@implementation MyClass
-(NSString *)name {
 return name;
}
-(void)setName:(NSString *)aName{
 [aName retain];
 [name release];
 name = aName;
}
@end

119 Chapter 6: The Basics of Objective-C

The setName method sends the retain message to aName. The retain

method, just like alloc, increases the reference count by one. (It might help

to think of retain as the opposite of release.) So, the code keeps aName

around in memory for use elsewhere in the class. And because you’re done

with whatever object name is pointing to, you then release name. The method

assigns aName to name. Following this simple plan prevents you from leaking

memory because each time name is used, whatever it was pointing to previ-

ously is released and the new thing it’s pointing to is retained.

If you’re following along so far, you might be wondering what happens when

the object is finally destroyed. Won’t you still have a reference count of one

for the name instance variable? The answer is yes! You must release the last

lingering name object in the dealloc method of the class.

-(void)dealloc {
 [name release];
}

Here are some special cases where you don’t have to worry about retaining

and releasing objects:

 ✓ When you create an object with one of the built-in convenience

methods of a class: That object is said to be autoreleased, which means

you don’t have to release it. Cocoa does the releasing for you. For example,

the NSString class has a stringWithString convenience method.

You can use it instead of alloc to create an NSString object:

+ (id)stringWithString:(NSString *)aString

 Note that the definition of stringWithString begins with a + charac-

ter. This means that it’s a class method, and instead of sending the mes-

sage to an object, you send it to the class itself. For example, to create

an NSString with this method, you’d do something like this:

*aString = [NSString stringWithString:@”Hello,
World!”];

 You don’t have to use alloc to create the object. And, because you use

a convenience method, stringWithString, it’s autoreleased, so no

need to release it yourself.

 ✓ When objects are autoreleased in code: For example, if you see an

object that has autorelease, there’s no need to release that object either:

SomeClass *someObject = [[[SomeClass alloc] init]
autorelease];

 The autorelease method decreases the reference count by one, which

negates the increase by one of the reference count by alloc.

120 Par t II: Instant Cocoa and the Objective-C Language

Working with Your Own Classes
Because classes form the basis of your Cocoa projects, you use them fre-

quently. Most often, you create a class to store and manipulate the data for

your application. Cocoa geeks call this type of class a Model. The class that

takes care of displaying your data is the View. A third class — a Controller —

mediates between the Model and the View.

Here’s how you create and use your own class in broad terms:

 1. Create a class.

 2. Build an interface.

 3. Add a Controller class and connect it to the interface.

 4. Define the methods for the class.

 5. Define an action for the class.

To try your hand at working with classes in Objective-C, follow these steps:

 1. Create a Cocoa project.

 Launch Xcode and choose File➪New Project. In the dialog that appears,

choose Cocoa Application from the list of choices, name the project, and

create it.

 2. Create a class.

 You can create classes in Xcode or Interface Builder. For this class, use

Xcode:

 a. Choose File➪New File.

 b. In the window that appears, choose Objective-C Class and click Next.

 c. In the next pane that appears, name the implementation file of the
new class. Name it Driver.m, as shown in Figure 6-1.

 This is the class you’ll use to create a taxi driver object. When you

create the Driver class, the header and implementation files —

Driver.h and Driver.m, respectively — appear in your project.

 3. Create a new Controller class:

 a. Double-click the MainMenu.xib file in Xcode to switch to Interface
Builder.

 b. In the Library window, search for object and drag an NSObject item
to the project window.

 c. Press Ô+D and name the new class MyController in the Identity
Inspector, as shown in Figure 6-2.

 This class will communicate with your interface.

121 Chapter 6: The Basics of Objective-C

 4. Create an interface:

 a. In Interface Builder, open the default window in your NIB file.

 b. From the Library window, drag a push button (an NSButton), a
check box, and four Label controls to your window.

 You use two of the Label controls to display the name of your cab

driver and the fare for your trip. The other two Label controls are

simply labels for the interface (Fare: and Driver:).

Figure 6-1:
Create a
class to

represent a
taxi driver.

Figure 6-2:
Name the
class My

Controller in
the Identity

Inspector
window.

122 Par t II: Instant Cocoa and the Objective-C Language

 Figure 6-3 shows the interface with the two empty Label controls

selected.

Figure 6-3:
Add four

Label
controls, a

push button,
and a check

box to the
interface.

 5. Add outlets to the MyController class.

 For this project, you need to define three outlets as part of the

MyController class:

 a. In the XIB project window, select the MyController class (see
Figure 6-2).

 b. Press Ô+6 to open the Identity Inspector window and add three out-
lets (distanceCheckbox, driverDisplay, and fareDisplay)
to the class.

 The driverDisplay and fareDisplay outlets give you

access to the two Label controls in the interface, so you can

display the fare and the name of the driver there. The third

outlet (distanceCheckbox) permits you to find out whether

the Distance > 10 miles check box is selected.

 Figure 6-4 shows the new outlets.

 6. Add an action to the MyController class.

 Add one action to MyController and name it calculateFare: (note

the required trailing colon), as shown in Figure 6-5. This is the action

that the Calculate Fare button triggers. When a user clicks this button,

the application displays the name of the cabbie and calculates the fare

based on one parameter: distance. If the trip is longer than ten miles,

the program returns a fare. If the trip is less than ten miles, the program

returns a different fare.

123 Chapter 6: The Basics of Objective-C

Figure 6-4:
Add three
outlets to

the My
Controller

class.

Figure 6-5:
Add a

calculate
Fare: action

to the My
Controller

class.

124 Par t II: Instant Cocoa and the Objective-C Language

 7. Wire the interface to the MyController instance.

 You can’t do anything with the three outlets and one action in your code

until you connect them to the interface.

 a. Control+drag from the MyController instance in the NIB file
window to the Label control that’s adjacent to the Fare label.

 b. In the small black connections list overlay that appears when you let
go of the mouse, choose fareDisplay.

 With MyController selected in the project window, press Ô+5 to

see the connections while you make them.

 c. Repeat the same process for the other Label controls and the
NSButton that looks like a check box by connecting them to their
respective outlets (driverDisplay and fareCheckbox).

 Figure 6-6 shows the completed connections.

 8. Create the files for MyController.

 Select the MyController class in the project window and then choose

File➪Write Class Files. The MyController.h and MyController.m files are

added to your project in Xcode.

Figure 6-6:
The My

Controller
outlets and

actions.

125 Chapter 6: The Basics of Objective-C

 9. After you complete your work in Interface Builder, choose File➪Save

to save the NIB file.

 10. Return to Xcode to add code that makes your project work.

 You find the following four files: Driver.h, Driver.m, MyController.h, and

MyController.m. See Figure 6-7. If the Driver and MyController header

and implementation files aren’t in the Classes folder already, move them

there. When you create them, they appear in whatever folder was last

selected in the project. It helps you keep things organized.

Continue with the following sections to finish your project.

Figure 6-7:
Move the

Driver and
My

Controller
header and

implementa-
tion files to

the Classes
folder in

Xcode.

Defining the class
Click the Driver.h file to view its contents. The Driver class serves as the

model. To this file, add the following code to define the class interface:

#import <Cocoa/Cocoa.h>

@interface Driver : NSObject {
 NSString *firstName;
}

126 Par t II: Instant Cocoa and the Objective-C Language

- (int)go:(int)direction theDistance:(BOOL)distance;
- (NSString *)firstName;
- (void)setFirstName:(NSString *)name;

@end

The code begins by including the appropriate header files:

#import <Cocoa/Cocoa.h>

The Cocoa framework provides basic functionality for your Cocoa

applications.

The code then defines a Driver class, which inherits functionality from

NSObject:

@interface Driver : NSObject {
 NSString *firstName;
}

Almost all classes that you use in Cocoa inherit from NSObject. In fact, all
classes in this book inherit from the NSObject superclass. NSObject is the

primary base class for programming in Cocoa. You can think of NSObject

as a kind of generic class that contains methods and variables for creating

objects. When you aren’t creating a class based on a window, a button,

or some other existing class, use an NSObject. In this example, you’re

defining a class (Driver), which is an NSObject. The Driver class has

one firstName instance variable that stores the taxi driver name.

The rest of the code defines the three methods for the Driver class:

- (int)go:(BOOL)distance;

The first method, go, is what your code executes when a user wants the

driver to take him somewhere. go has one parameter: a Boolean that repre-

sents the distance. For this example, imagine that the cab driver charges one

rate for short trips (less than ten miles) and another rate for longer trips.

Because this rate scheme includes only two prices, you can use a Boolean

variable to determine which rate to charge. A Boolean can have one of two

possible values: YES or NO.

The remaining two methods set and get the name of the cab driver. Later,

you assign the name of the cab driver with setFirstName when you create

an instance from this class:

- (void)setFirstName:(NSString *)name;

127 Chapter 6: The Basics of Objective-C

Then when you want to display the name, you ask the Driver instance for it

with the firstName method:

- (NSString *)firstName;

The @end marks the end of the Driver class declaration.

Implementing the class
Click the Driver.m file to reveal its code. To this file, add the following code:

@implementation Driver

- (int)go:(BOOL)distance {
 if (distance)
 return 10;
 else
 return 5;
}

- (NSString *)firstName {
 return firstName;
}

- (void)setFirstName:(NSString *)name {
 [name retain];
 [firstName release];
 firstName = name;
}

- (void)dealloc {
 [firstName release];
 [super dealloc];
}

@end

Here’s how the code works:

 ✓ This code begins by importing the Driver.h interface, where the declara-

tion of your Driver class resides.

 ✓ The code then defines the methods for that class. All methods appear

within the @implementation and @end lines.

 As you know from the header file, this class has three methods. The go

method returns a value of 5 or 10 based on the distance parameter.

128 Par t II: Instant Cocoa and the Objective-C Language

The firstName method returns the value of the firstName variable

that belongs to the instance.

 It’s perfectly valid to give the same name to a variable and a method of

the same class.

 ✓ The Driver.m file defines the setFirstName method.

 This is where things can get a bit strange. A newcomer to Cocoa might

assume that you could assign a value to firstName like this:

firstName = name;

 Unfortunately, it’s not as simple as that. Because the name param-

eter (which is part of the setFirstName method) is a pointer to an

NSString object, you must be careful to clean house. (“Out with the old

and in with the new.”) If the name value is different than the firstName

value, you must release the firstName pointer and retain the name

pointer. This has to do with memory management in Objective-C, as I

describe earlier in this chapter.

 Because the firstName and setFirstName methods give you access

to the firstName variable of the Driver class, programmers call these

accessor methods. It’s best to provide accessor methods when you want

to access variables that are internal to a class, rather than have a user

poke around in the guts of your class.

 ✓ The final method in the Driver.m file is the dealloc method, which

takes care of releasing the firstName pointer and de-allocating the

superclass.

 [firstName release];
 [super dealloc];

Using the class
Now that you’ve defined a Driver class, you may be wondering how you go

about using it.

Click the MyController.m file in Xcode and change the
code to look like the following listing:#import
“MyController.h”

#import “Driver.h”

@implementation MyController

- (IBAction)calculateFare:(id)sender
{

 NSString *name = @”Frederick”;
 Driver *driver = [[Driver alloc] init];

129 Chapter 6: The Basics of Objective-C

 int fare;

 [driver setFirstName:name];

 [driverDisplay setStringValue:[driver firstName]];

 fare = [driver go:[distanceCheckbox state]];
 [fareDisplay setIntValue:fare];

 [driver release];
}

@end

Here’s how the code works:

 ✓ It declares and assigns a value to an NSString. Your taxicab company

is a small one; it has only one driver, Frederick:

NSString *name = @”Frederick”;

 Working with strings in C can be a nuisance. To get around this problem,

Objective-C gives you a convenient method for assigning string literals.

Simply place the @ character before the string. The @ character signifies

the beginning of a string literal in Objective-C.

 ✓ The code uses the alloc and init methods to create a driver object:

Driver *driver = [[Driver alloc] init];

// code here

[driver release];

 When you create objects using the alloc and init method, it’s crucial

that you also release them after you’ve finished using them. If you don’t,

you’ll leak memory.

 Notice that the object name (driver) has a lowercase spelling, but its

class (Driver) has an uppercase spelling. See the “Naming things in

Objective-C” sidebar to see why.

 ✓ After you create a driver object, you can begin using its various meth-

ods. The code assigns a name to the driver object:

 [driver setFirstName:name];

 ✓ You calculate the cab fare with the go method:

fare = [driver go:[distanceCheckbox state]];
[fareDisplay setIntValue:fare];

 ✓ The code passes a second parameter based on the current state of

distanceCheckbox. The go method returns a value for the parameters

you pass to it, which you can then display in the interface with the

fareDisplay outlet.

130 Par t II: Instant Cocoa and the Objective-C Language

Testing
Press Ô+R to test your handiwork. You see something that looks like

Figure 6-8.

Figure 6-8:
 The

completed
project
assigns

Frederick
a fare.

When the user clicks the button in the interface, the calculateFare method

of the MyController class creates the driver object, uses its methods, and

releases it. Therefore, each time the user clicks the button, the code creates a

new object, works with it, and releases it.

Naming things in Objective-C
Most programming languages have naming
conventions, and Objective-C is no exception.
Although these so-called rules aren’t manda-
tory, they have the following benefits:

 ✓ Improve the legibility of your code.

 ✓ Give you hints about code functionality.

 ✓ Make your code work with Key-Value
Coding (KVC) and bindings (Chapter 18).

 ✓ Make it easier for others to interpret your
code.

Class names: Class names in Objective-C
begin with an uppercase letter. Using the
class presented earlier in this chapter, Driver
is the (capitalized) name of the class. This

convention doesn’t pertain to only the classes that
you create. It applies also to the classes that Apple
provides in the Cocoa framework. For example,
look at the following built-in class names:

 ✓ NSString

 ✓ NSNumber

 ✓ NSArray

 ✓ NSImage

Each of these classes begins with a capital
letter. Further, they begin with the same two
capital letters, N and S. The classes have this
naming system because they’re refugees of
the NeXT STEP operating system, upon which
Apple based Mac OS X. With this little naming

131 Chapter 6: The Basics of Objective-C

convention, you can instantly tell which classes
in your code are your own and which ones
come from the Cocoa framework.

Xcode and Interface Builder try to help you
remember to capitalize class names. Each time
you create a new class with either application,
it provides you with a default class name that’s
capitalized.

Instance names: In contrast to class names,
instances begin with a lowercase letter. For
example, earlier in this chapter, you created an
instance of the Driver class like this:

Driver *driver = [[Driver
alloc] init];

The name of the instance is driver. You cre-
ated an instance of NSString similarly:

NSString *name =
@”Frederick”;

When you use the lowercase names for
your instances, it’s easy to discern between
instances and classes. This is especially handy
when the class and instance names are the
same.

Filenames: Cocoa source code files must follow
the prescribed naming scheme. You’ve already
witnessed that Objective-C classes consist of
a header file and an implementation file. For
example, the Driver class has the following two
files.

 ✓ Driver.m: The implementation file

 ✓ Driver.h: The interface (or header) file

132 Par t II: Instant Cocoa and the Objective-C Language

Chapter 7

MVC Design
In This Chapter
▶ Getting familiar with the Model-View-Controller (MVC) design pattern

▶ Building a project with MVC

▶ Adding a View and a Controller

If you read Chapter 6, you looked at some of the basics of object-oriented

programming with Cocoa. You examined how to define a class and how

to create an object with that class. Along the way, I promised that this would

make programming simpler and, more importantly, reusable.

Sure, you can make classes and objects all day long, but how do they actu-

ally fit together to make an application? This chapter takes object-oriented

programming to the next level and shows you at a more abstract level how to

design an application with all these classes. A thoughtful Cocoa programmer

doesn’t just throw a bunch of classes together and come out on the other

side with a masterpiece. Instead, a Cocoa programmer thinks about how the

various parts of an application work together and then designs the applica-

tion using the famous Model-View-Controller (MVC) design pattern.

 By following this design pattern, you can build applications that are modular,

easier to read, and consist of components that you can reuse in other applica-

tions. One of the great benefits of object-oriented programming is the ability

to reuse code. By reusing code, you can reduce the amount of time you need

to spend programming, reduce the number of bugs you have in your code, and

ultimately create better software. All is not necessarily smiles and sunshine

when it comes to code reuse, however. You must rigorously debug your code

and maintain a single version. If you don’t, you might inject a bug that

propagates across all applications where you use the code.

134 Par t II: Instant Cocoa and the Objective-C Language

Taking a Look at MVC Design
MVC stands for the Model-View-Controller design pattern. Don’t let the words

scare you, though. What it really means is that you can design your software

according to a specific pattern that gives you the most bang for your buck. In

case you haven’t guessed already, an application that follows the MVC design

pattern has three different objects (at a minimum):

 ✓ Model: An object that provides data to your application.

 ✓ View: An object that displays data in your application.

 ✓ Controller: An intermediary object that obtains data from the Model and

passes it to the View for display. Alternatively, the Controller might take

data that’s changed in a View and inform the Model that it has changed,

so the Model too can change.

For a real-world example analogy, suppose you’re a student sitting in a class-

room with a chalkboard and a dictionary:

 ✓ The dictionary is a storage of information, or in MVC terms, the Model.

 ✓ The chalkboard is the View, a place to display information.

 ✓ You, the student, are the Controller.

Someone asks for a definition of a word. You (the Controller) consult the dic-

tionary (the Model), and report the definition to the chalkboard (the View).

What makes the MVC pattern so great is that at any time, you could

replace any of the objects:

 ✓ You could replace the Model (the dictionary), with a different Model (a

dictionary from a different publisher). The Controller and the View stay

the same, but the Model changes. You (the Controller) and the chalk-

board (the View) keep doing the same tasks that you always do. The

Controller looks up a new word, and the View displays it.

 ✓ You could replace the chalkboard with a dry-erase board. This time, the

View changes, but the Controller (you) and the Model (the dictionary)

remain the same. You look up a word in the dictionary (the Model) and

display it on the dry-erase board (the View) instead.

 ✓ Someone else could take your place as the Controller. A new student could

step in as your replacement. The Model (the dictionary) and the View (the

chalkboard) don’t change, but a new Controller (another student) takes

your place. He can look up the word in the same dictionary (the Model) and

display the definition on the same old chalkboard (the View).

135 Chapter 7: MVC Design

With MVC, the Dictionary-Chalkboard-Person pattern can also work in

reverse. For example, suppose that a new definition appears on the chalk-

board (the View). The Controller would see the new definition and, knowing

that the definition isn’t already in the dictionary (the Model), could tell the

Model that it needs to be updated with the new definition. The analogy starts

to break down a little here, but hopefully you get the gist.

By separating the tasks that your Cocoa objects perform, you can make your

software much more modular. This permits you to reuse classes quite easily.

You can always move the chalkboard into a different classroom completely

and use it there. Similarly, you can move dictionary, or even the student, into

a different classroom, and they’ll function in much the same way as they did

in the original classroom.

 By following the MVC design pattern, your Cocoa objects can gain the same

benefits. If you have an interesting or useful Model in one application, you can

easily move it for use in another application. Similarly, if you have a really nice-

looking View in one application, you can use it in other applications as well.

Another great benefit of using MVC design patterns in your applications is

that several Cocoa technologies rely on MVC. By using MVC in your applica-

tions, you can take advantage of these other Cocoa technologies. For example,

Cocoa’s bindings technology requires the use of MVC design. By incorporating

MVC into your own application, you can then take advantage of all the goodies

that bindings provide. Check out Chapter 18 for more on bindings.

Building a Project with an MVC Design
To design an application that follows the MVC design pattern, you differenti-

ate the classes in your application based on the functions they perform. For

example, suppose that you want to create a banking application to track the

money in your bank account. Your design works like this:

 ✓ A Model class stores the balance in the account. The View class, the inter-

face of the application, displays information to the user and accepts data

input from that user. The Controller sits between the Model and the View.

 ✓ When the application wants to display the current balance, the

Controller gathers the information from the Model and passes it to the

View for display.

 ✓ When a user changes something in the View (for example, via a deposit

or a withdrawal), the Controller gathers the information from the inter-

face and passes it to the Model, so the Model can update the information.

And in a round-trip fashion, the Controller can then ask the Model what

the new account balance is and pass it to the View for display.

136 Par t II: Instant Cocoa and the Objective-C Language

To see how the MVC design works in a Cocoa application, follow these steps

to build a project:

 1. Launch Xcode and choose File➪New Project.

 The New Project window opens (see Figure 7-1).

 2. Select Application from the left column and then Cocoa Application

from the list of project templates and click the Choose button.

Figure 7-1:
Select
Cocoa

Application
from the

templates
listed.

 3. Name the project and click the Save button.

 For example, you can name your project Bank Account, as shown in

Figure 7-2.

 4. Select the Classes folder in the Groups and Files list of the Xcode

project window.

 When you create a new class, it appears in this folder because you

selected it before creating the new class.

 5. Choose File➪New File.

 The New File window opens, as shown in Figure 7-3.

 6. Select Objective-C Class from the Cocoa option and then click the Next

button.

137 Chapter 7: MVC Design

Figure 7-2:
Name the

new project.

Figure 7-3:
Create
a new

Objective-C
class.

138 Par t II: Instant Cocoa and the Objective-C Language

 7. Name the new class and then click the Finish button.

 For example, you can name your class filename Account.m, as shown in

Figure 7-4.

 8. Open the BankAccount.h file and add this code:

#import <Cocoa/Cocoa.h>

@interface Account : NSObject {
 float balance;
}

-(float)balance;
-(void)setBalance:(float)aBalance;

-(void)deposit:(float)anAmount;
-(void)withdraw:(float)withdrawAmount;

@end

 This code defines a balance as an instance variable, adds accessor meth-

ods for the balance so the Controller object can retrieve and set the

balance, and includes a couple methods for depositing and withdrawing

money from the account.

Figure 7-4:
Name the
new class

filename
Account.m.

139 Chapter 7: MVC Design

 9. Open the Account.m implementation file and add the following code:

#import “Account.h”

@implementation Account

-(float)balance {
 return balance;
}

-(void)setBalance:(float)aBalance {
 balance = aBalance;
}

-(void)deposit:(float)depositAmount {
 balance += depositAmount;
}

-(void)withdraw:(float)withdrawAmount {
 balance -= balance withdrawAmount;
}

- (id) init
{
 //initialize the superclass and assign it to self
 if (self = [super init]) {
 //now that you know self has been inited,
 //you can work with its instance variables
 balance = 100.0f;
 }
 return self;
}

@end

 This code implements the two accessor methods and the deposit

and withdraw methods, as well as initializes the balance by giving the

account $100 to start.

Adding a View
You could build and run the project as it stands now, but it won’t do anything

particularly interesting because it consists of only a Model and no interface.

You still need the interface, which serves as the View in the Model-View-

Controller paradigm.

140 Par t II: Instant Cocoa and the Objective-C Language

 1. Double-click MainMain.xib to open Interface Builder.

 2. In Interface Builder, open the Library window and drag two Label

controls and two push buttons to the window of your interface.

 Change the text in one of the Label controls to Balance: and leave the

other Label blank. Figure 7-5 shows the blank Label selected. Change the

text of the two buttons to Withdraw and Deposit, respectively.

Figure 7-5:
Add two

labels and
two buttons

to the
interface.

 3. Select the window’s title bar and press Ô+1 (or choose Tools➪Window

Attributes) and change the window’s title.

 Figure 7-6 shows the Attributes Inspector with the window’s title

changed to Bank Account.

 4. Choose File➪Save to save the interface and press Ô+R to test the

interface.

Figure 7-6:
Change the

window’s
title in the
Attributes
Inspector.

141 Chapter 7: MVC Design

Adding a Controller
You have now created a Model (Account) and a View (the interface). To get

these two objects to talk to each other, you need a Controller class that sits

in between them. You could return to Xcode and implement a Controller, but

for now it’s easier to just do it in Interface Builder.

 1. In Interface Builder, open the Library window and search for object.

Drag a new NSObject to the project window.

 Figure 7-7 shows the newly added object.

 2. With the new object selected in the project window, press Ô+6 and

change the class name to AccountController.

 This is the Controller class that stands between the Model and the View

in this project. Figure 7-8 shows the new Controller class.

 3. Add an outlet and two actions to the AccountController in the

same Attributes Inspector window.

 The display outlet points to the Label field where you want to display

the current balance. The withdraw: and deposit: actions correspond

to the same functionality in the Model. Figure 7-9 shows the newly

defined outlet and actions.

Figure 7-7:
Add a new

object to the
project.

142 Par t II: Instant Cocoa and the Objective-C Language

Figure 7-8:
Name the
new class

Account
Controller.

Figure 7-9:
Add an out-
let and two

actions to
Account

Controller.

143 Chapter 7: MVC Design

 4. Connect the interface by Control+dragging from the Withdraw button

to the AccountController in the project window. Select withdraw:

in the small black connections list overlay that appears.

 Figure 7-10 shows the connection being made.

 5. Connect the interface by Control+dragging from the Deposit button to

the AccountController in the project window. Select deposit: in

the small black connections list overlay that appears.

 Figure 7-11 shows the connection.

 6. Control+drag from the AccountController to the empty Label field

in your interface. Select display in the small black connections list

overlay that appears.

 Figure 7-12 shows the process.

Figure 7-10:
Connect the

Withdraw
button to the

withdraw:
action in the

Account
Controller.

144 Par t II: Instant Cocoa and the Objective-C Language

Figure 7-11:
Connect

the Deposit
button to

the deposit:
action in the

Account
Controller.

Figure 7-12:
Connect the

Account
Controller to

the empty
Label field
and select

display from
the list of
choices.

145 Chapter 7: MVC Design

 7. To create files for the Controller, select the AccountController in

the project window and choose File➪Write Class Files, save the file as

AccountController, and click the Save button, as shown in Figure 7-13.

Figure 7-13:
Write the

files, saving
as Account
Controller.

 8. Click the Add button to add the files to the Xcode project (see

Figure 7-14).

 9. Quit Interface Builder by pressing Ô+Q and return to Xcode.

 10. In Xcode, click the AccountController.h file to view its contents and

find the line that says:

@interface AccountController : /* Specify a superclass
(eg: NSObject or NSView) */ {

Figure 7-14:
Add

Account
Controller

to the Bank
Account
project.

146 Par t II: Instant Cocoa and the Objective-C Language

 11. Specify a superclass for the AccountController class by changing it

to this:

@interface AccountController : NSObject {

 12. Add an Account instance variable (account) to the interface file:

@interface AccountController : NSObject {
 IBOutlet id display;
 Account *account;
}
- (IBAction)deposit:(id)sender;
- (IBAction)withdraw:(id)sender;
@end

 13. Open the AccountController.m file, where two actions are in place:

#import “AccountController.h”

@implementation AccountController
- (IBAction)deposit:(id)sender {

}

- (IBAction)withdraw:(id)sender {

}
@end

 14. Implement the two actions by adding the code for deposit and with-

draw. Also add an awakeFromNib and a dealloc method to the file.

 In awakeFromNib, you can create an account object and assign it to

the Account instance variable (account). Then, update the display in

the interface by setting its value to the account balance.

 For this example, the deposit will always be $20 (or whatever denomina-

tion you wish), and the withdraw will always be $5.

#import “AccountController.h”

@implementation AccountController

-(void)awakeFromNib {
 account = [[Account alloc] init];
 [display setFloatValue:[account balance]];
}

- (IBAction)deposit:(id)sender {
 [account deposit:20.00f];
 [display setFloatValue:[account balance]];
}

147 Chapter 7: MVC Design

- (IBAction)withdraw:(id)sender {
 [account withdraw:5.00f];
 [display setFloatValue:[account balance]];
}

-(void)dealloc {
 [account release];
 [super dealloc];
}

@end

 15. In Xcode, choose Run➪Go to test your work.

 Figure 7-15 shows the completed application.

Figure 7-15:
The com-

pleted Bank
Account
applica-

tion after
a couple
deposits.

When you run the application, the AccountController creates a new

object based on the Account class and displays the current balance in the

View, which the Account has initialized to 100. When you click the Deposit

button, you send a deposit message to the account object and update the

interface. Likewise, when you click the Withdraw button, the code sends a

withdraw message to the account object and updates the interface.

Hopefully you’re beginning to appreciate the merits of this sort of application

design pattern. With the Model, View, and Controller all separated, you can

reuse these classes in other projects. Suppose that you need to create a new

application for tracking another kind of account. You wouldn’t need to re-

create an Account class. You could just use the existing Account class.

If at some point in the future, you must change your accounting model radi-

cally, you can pull out the Account class and replace it with a new one. The

rest of the code and interface could remain the same. All these benefits stem

from using the Model-View-Controller design pattern.

148 Par t II: Instant Cocoa and the Objective-C Language

Chapter 8

A Window with a View
In This Chapter
▶ Opening, closing, and hiding windows

▶ Positioning windows anywhere on the screen

▶ Tracking open windows

▶ Changing the appearance of windows

▶ Resizing windows

▶ Seeing through a window

▶ Using sheets and delegates

Perhaps the most important element of any GUI-based application is

the window. In fact, the window is so important that those guys from

Redmond used it to name their operating system. The windows in an applica-

tion are like pieces of paper that you use to collect ideas, display information,

and record input.

Windows in Cocoa are equally important. Mac OS X continues using the fine

window traditions that made the Mac OS famous, but Cocoa builds on and

improves those ideas from the past with exciting new features. In this chapter,

you examine some of the most common window features of Cocoa applications.

In the process, you create two projects that demonstrate these features.

Working with Windows
Because windows form the basis for nearly all interfaces, you’ll use them

often as part of your projects. Some of the most common functions that you’ll

perform include

 ✓ Opening and closing windows

 ✓ Moving windows

 ✓ Adding windows to the Windows menu

150 Par t II: Instant Cocoa and the Objective-C Language

In the following sections, you discover how to accomplish all these tasks

and more.

Opening and closing a window
When you work with windows in your Cocoa projects, you’ll often use Interface

Builder to design them. Further, if you leave a window open in Interface Builder

when you’re designing an interface for an application, that window opens

automatically when the application runs. Thus, if you’re building a one-window

application, you may not even have to issue a command to open a window.

Assume that theWindow is an outlet in your project. Closing the window in

code is as simple as

[theWindow close];

The close method hides the window from view. If you want the window to

also be released from memory when you close it, also use the set
ReleasedWhenClosed method:

[theWindow setReleasedWhenClosed:YES];
[theWindow close];

When you close a window in this fashion, the window is gone. Its contents

are gone from memory. It is no more. That means to see the window again,

you have to create a new window object altogether. If the window has been

released from memory, you have to create a new window like so:

theWindow = [[NSWindow alloc] init];

Then, to show the window, send it the makeKeyAndOrderFront message

like this:

[theWindow makeKeyAndOrderFront:self];

Hiding and showing a window
If you’d prefer to keep a window around instead of deleting it from memory,

you can hide it instead of closing it. Hiding a window is also an easy task to

perform. Suppose you have an outlet (named theWindow) as part of your

object class. The outlet represents a window in your interface. To hide that

window, a hideWindow action might look like this:

- (IBAction)hideWindow:(id)sender
{

151 Chapter 8: A Window with a View

[theWindow orderOut:sender];
}

The orderOut method of the NSWindow class hides a window from view.

The window still exists in memory; it just isn’t visible anymore. To find

out whether a window is visible, you can check the return value of the

isVisible method:

- (IBAction)hideWindow:(id)sender
{

if ([theWindow isVisible])
[theWindow orderOut:sender];

}

To make the window reappear, use the orderFront method, but first check

to see if the window is already visible:

- (IBAction)showWindow:(id)sender
{

if (![theWindow isVisible])
 [theWindow orderFront:sender];

}

 If you want a specific window to appear on the screen and act as the main

window, thus intercepting keystrokes, use the makeKeyAndOrderFront
method. You might use this method in the awakeFromNib method to force a

main window to the foreground:

- (void)awakeFromNib {
 [theWindow makeKeyAndOrderFront:nil];
}

Positioning windows
Positioning windows is another important task that you’ll need to perform.

Before you go bossing around a window, you first need to find out its current

position on the screen. Use the frame method of the NSWindow class to dis-

cover the origin and size of a window. The frame method returns an NSRect

structure, which contains NSPoint and NSSize elements that describe the

window’s origin and size, respectively:

typedef struct _NSRect {
 NSPoint origin;
 NSSize size;
} NSRect;

When you know the origin of a window, it’s a trivial matter to reposition

it. First, define an origin to your liking and then call the setFrameOrigin

152 Par t II: Instant Cocoa and the Objective-C Language

method to apply the new origin. This code moves a window 20 pixels to the

right of its current position:

- (IBAction)moveRight:(id)sender
{
 NSRect theFrame = [theWindow frame];
 NSPoint theOrigin = theFrame.origin;
 theOrigin.x = theOrigin.x + 20;
 [theWindow setFrameOrigin:theOrigin];
}

To position a window in the middle of the screen, use the handy center

method. This code centers a window on the screen:

- (IBAction)centerWindow:(id)sender
{
 [theWindow center];
}

Keeping track of windows
Most Cocoa applications have a Window menu to help users keep track of

open windows. Normally, this menu lists the open document windows. (You

probably wouldn’t display, say, a toolbar window in the Window menu.) The

great thing about the Window menu is that Cocoa takes care of it for you auto-

matically. If your window has the following properties, Cocoa automatically

adds it to the Window menu:

 ✓ Has a title bar

 ✓ Is resizable

 ✓ Can become the main window

You can exclude a window from the Window menu by altering any one of

these properties.

 If you have a window that obeys each of these rules but you still want it left out

of the Window menu, use the setExcludedFromWindowsMenu method. The

awakeFromNib method is a good place to use this call because the method

takes effect when your application launches and the window resources is

loaded from the NIB file.

- (void)awakeFromNib {
 [theWindow setExcludedFromWindowsMenu:nil];
}

153 Chapter 8: A Window with a View

Putting windows to work for you
To see how these window features work, do the following:

 1. Launch Xcode and create a new Cocoa application project:

 a. Double-click the Xcode icon in the Finder to launch it.

 b. Choose File➪New Project.

 c. In the window that appears, select Cocoa Application and click OK.

 2. Create a new window in the MainMenu.xib file.

 a. Double-click the MainMenu.xib file in the Resources Group of your
project to open the file in Interface Builder.

 b. In the XIB project window, double-click to open the default window if
it’s not open already.

 c. Press Ô+1 to open the Attributes window and name the window
MenuWindow.

 3. Add three buttons to MenuWindow, as shown in Figure 8-1, and label

them Hide Window, Move Left, and Center Window, respectively.

 For more information on adding buttons, see Chapter 2.

Figure 8-1:
The Menu

Window has
three

buttons.

 4. Add an object to the project:

 a. Drag an Object item from the Library window to the project window.

 b. Name the object MyWindowController.

 5. Double-click the new MyWindowController instance and add outlets

and actions to the instance in the Inspector window.

 a. Add these outlets: theMenuWindow, theShowButton, and
theWindow.

 b. Add these actions: centerWindow, moveRight, and showWindow.

 For details on adding outlets and actions, see Chapter 2.

154 Par t II: Instant Cocoa and the Objective-C Language

 c. Connect the three new actions to the buttons in MenuWindow by
Control-dragging from each button to the MyWindowController
instance and then click Connect in the Inspector window to connect
each action.

 d. Connect the two window-related outlets to their corresponding win-
dows: Control-drag from the MyWindowController instance to each
window in the MainMenu.xib file window and then click Connect in
the Inspector window to connect to the appropriate outlet.

 e. Connect the theShowButton outlet to the top button in the
MenuWindow.

 6. Double-click the MyWindowController instance, choose

Classes➪Create Files for MyWindowController, and add the header

and implementation files for the instance.

 7. Return to Xcode and add this code to the MyWindowController.m file

to implement the functionality of the three buttons:

#import “MyWindowController.h”

@implementation MyWindowController

- (IBAction)centerWindow:(id)sender
{
 [theWindow center];
}

- (IBAction)moveRight:(id)sender
{
 NSRect theFrame = [theWindow frame];
 NSPoint theOrigin = theFrame.origin;
 theOrigin.x = theOrigin.x + 20;
 [theWindow setFrameOrigin:theOrigin];
}

- (IBAction)showWindow:(id)sender
{
 if ([theWindow isVisible])
 {
 [theWindow orderOut:sender];
 [theShowButton setTitle:@”Show Window”];
 }
 else
 {
 [theWindow orderFront:sender];
 [theShowButton setTitle:@”Hide Window”];
 }
}

155 Chapter 8: A Window with a View

- (void)awakeFromNib {
 [theWindow makeKeyAndOrderFront:nil];
 [theMenuWindow makeKeyAndOrderFront:nil];
}

@end

 8. Choose Build➪Build and Go to test the project.

Changing the Appearance of Windows
Beauty may be only skin deep, but when it comes to using your application,

an attractive interface is mandatory. In this section, you explore some of

the possible window settings for nice-looking interfaces. These features also

enhance the functionality of your applications, so you have some brawn to go

with that beauty.

Using different windows
for different tasks
The standard Mac window style has a gray background, as shown in Figure

8-2. However, this isn’t the only appearance a window can have. Apple

has strict guidelines about how windows should look, which are outlined

in the famous Human Interface Guidelines document available online at

developer.apple.com. The basic gist of the Apple guidelines is that

windows should look the same for the same tasks. A document window looks

one way. A toolbar window looks a different way. A window in a one-window

application should look yet another way. Always follow Apple’s guidelines

when designing interface windows because your users expect windows to

look and behave identically across applications.

Open the default XIB file from a Cocoa application in Interface Builder. You

can change the appearance of a window by following these steps:

 1. Open the default window in Interface Builder.

 Double-click it in the XIB project window.

 2. Press Ô+1 to open the Inspector window.

 In the Attributes section of the Inspector window, you find the Textured

check box for the window.

156 Par t II: Instant Cocoa and the Objective-C Language

Figure 8-2:
A standard

Mac
window is
light gray.

 3. Toggle the Textured check box to change the appearance of the

window.

 If the Inspector doesn’t display the textured attribute, click the window’s

toolbar to display the Inspector appropriate to the window.

 The window now has a textured appearance (see Figure 8-3).

Figure 8-3:
The textured

appear-
ance gives
windows a

metallic look
by drawing
a gradient

in the
background.

157 Chapter 8: A Window with a View

In addition to the new look, the textured property also changes the behavior of

windows that have the property set. Whereas a non-textured window permits

dragging from its title bar, you can drag textured windows by clicking and drag-

ging anywhere in the window that isn’t within the bounds of a control.

The first time you see the cool metallic look of the textured window, you’ll be

tempted to make the windows in every application with this style. After all,

Apple does with many of its applications (such as iTunes and iPhoto).

 Before you start giving every window in sight a textured look, keep in mind

that the Apple guidelines recommend that you use a textured window only

when hardware is involved. This explains why you see it in many Apple appli-

cations, such as iMovie and iPhoto, which use hardware in one way or another.

Although textured windows look tempting, try to use them only when neces-

sary. Your users will thank you.

Sizing up your windows
When you want to know the size of a window in code, use the frame method

in the same way that you did earlier in this chapter. It gives you access to

the window’s position and size. To alter the size of a window in code, use the

setFrame method. You can use the following code to resize a window to half

its current width:

- (IBAction)halfAsWide:(id)sender
{
 NSRect theFrame = [theWindow frame];
 theFrame.size.width = theFrame.size.width/2;
 [theWindow setFrame:theFrame display:YES];
}

If you want to zoom a window without forcing the user to click the zoom

button on that window, all you have to do is call the window’s zoom method.

[theWindow zoom];

Setting a window’s title
Sometimes you’ll want to change the title that appears in the title bar of a

window. This is an easy task to perform with the setTitle method:

[theWindow setTitle:@”My New Window Title”];

 Of course, you can also set the title of the window in the Inspector window of

Interface Builder.

158 Par t II: Instant Cocoa and the Objective-C Language

If the window title is the name of a document, use the setTitleWith
RepresentedFilename method instead of setTitle. This method

converts from a file path to a window title suitable for viewing:

[theWindow setTitleWithRepresentedFilename:theFileName];

Windows that you can see through
Cocoa windows have an alpha setting that enables you to set the translu-

cency of a window. To see this magic in action, use the setAlpha method of

NSWindow, passing it a value between 0.0 and 1.0. A value of 1.0 means that

a window is fully visible; a value of 0.0 displays a window that’s completely

transparent. This line of code makes a window 50-percent transparent:

[theWindow setAlphaValue:0.5];

Figure 8-4 shows the difference between a window with setAlpha values

of 0.5 and 1.0.

Figure 8-4:
Use the

setAlpha
method
to make

windows
transparent.

159 Chapter 8: A Window with a View

Beneath the Sheets
Besides the run-of-the-mill windows that you’ve used so far, Cocoa offers a

special animated window — a sheet. A sheet is sort of a parasitic window,

in that it needs a host, or a parent, from which to spring. Because its func-

tionality is directly connected to another window, it appears from out of the

blue at the top of its parent window, as shown in Figure 8-5. You’re probably

already familiar with sheets because many common applications use them —

often when working with files.

Besides looking neat when they open, sheets also serve a useful purpose.

Because they’re attached to a parent window, they indicate a specific scope for a

task: that of the parent window. In other words, if a sheet appears, you can be

certain that any actions you perform in that sheet are pertinent to the parent

window when the sheet closes. This is a subtle, but important, distinction.

Figure 8-5:
When the

functional-
ity of your
window is

directly tied
to another

window,
display it as

a sheet.

A sheet behaves in a particular manner — modally; it takes over a window

and doesn’t let the user perform any other action in the parent window until

you dismiss it. Usually the user has to make some kind of decision before the

sheet can be dismissed.

Implementing sheets takes some special preparation. To see how they work,

launch Xcode and create a new Cocoa application. In the project window,

double-click MainMenu.xib to open the interface in Interface Builder and then

perform the following steps to add a sheet to your project:

160 Par t II: Instant Cocoa and the Objective-C Language

 1. Drag a panel from the Library (as shown in Figure 8-6) to your

MainMenu.xib file window.

 2. Change the panel settings.

 Open the Inspector window by choosing Tools➪Inspector and deselect

all the Style and Controls settings for the new panel, as shown in Figure

8-7. Also change the new Panel’s title to Sheet.

 3. Open the default window in the project (named Window) and add a

push button to the window; then, open the new panel from Step 1 and

add a push button to it too.

 At runtime, the button in the default window causes the panel to open

as a sheet. The button in the sheet causes the sheet to close. Figure 8-8

shows the buttons as they appear in their respective windows.

Figure 8-6:
Add a Panel

to your
project.

161 Chapter 8: A Window with a View

Figure 8-7:
Adjust the

attributes of
the panel.

Figure 8-8:
Add one
button to

the project’s
default

window and
one to the

sheet.

162 Par t II: Instant Cocoa and the Objective-C Language

 4. Add a new object to the project.

 Drag an object class from the Library to the XIB window (as shown in

Figure 8-9) and name it MySheetController. If you have problems

locating the object class in the Library, search for it via the search field

at the bottom of the Library window.

 5. Add outlets and actions to the object.

 Press Ô+6 to open the Identity Inspector and add two outlets MySheet
Controller class to the Class Outlets section of the Identity Inspector.

To follow along with the example, name the two outlets theWindow
 and theSheet, respectively. Likewise, add two actions to the MySheet
Controller class and rename the actions as openSheet and close
Sheet. Figure 8-10 demonstrates what the Inspector window looks like.

 6. Connect the outlets and actions:

 a. Control-drag from the MySheetController instance to the main
window and connect it to the theWindow outlet.

 b. Control-drag from the MySheetController instance to the panel in
MainMenu.xib and connect it to the theSheet outlet.

 c. Control-drag from the button in the main window to the MySheet
Controller instance and connect it to the openSheet action.

 d. Control-drag from the button in the Sheet panel to the MySheet
Controller instance and connect it to the closeSheet action.

Figure 8-9:
Drag an

object from
the Library

to the
project

 window.

163 Chapter 8: A Window with a View

Figure 8-10:
Add outlets
and actions

to the
controller.

 7. Create the class files.

 a. Click MySheetController in the project window, choose Classes➪
Write Files, and save as MySheetController.

 b. Make sure that the Create ‘.h’ file check box is selected, as shown in
Figure 8-11.

 c. Click the Save button.

Figure 8-11:
Writing

class files.

 8. Add the new files to the Xcode project.

 When you write the files for MySheetController, Interface Builder

asks whether you want to add the files to the current Xcode project (see

164 Par t II: Instant Cocoa and the Objective-C Language

Figure 8-12). Toggle the check box for the desired project and click the

Add button.

 9. Exit Interface Builder and return to Xcode where you find the new files.

Figure 8-12:
Add the new
class files to

the Xcode
project.

 10. Tweak the header.

 Change the interface definition by adding NSObject in the MySheet

Controller.h file like this (the changed line is shown in boldface):

#import <Cocoa/Cocoa.h>

@interface MySheetController : NSObject {
 IBOutlet id theSheet;
 IBOutlet id theWindow;
}
- (IBAction)closeSheet:(id)sender;
- (IBAction)openSheet:(id)sender;
@end

 11. Change the MySheetController.m file.

 The file looks like this (changed lines are shown in boldface):

#import “MySheetController.h”

@implementation MySheetController

- (IBAction)closeSheet:(id)sender
{
 [theSheet orderOut:nil];
 [NSApp endSheet:theSheet];
}

- (IBAction)openSheet:(id)sender

165 Chapter 8: A Window with a View

{

 [NSApp beginSheet:theSheet
 modalForWindow:theWindow
 modalDelegate:self
 didEndSelector:NULL
 contextInfo:nil];
}

@end

 The openSheet method displays the sheet with the beginSheet class

method of NSApp. The closeSheet method hides the sheet with the

orderOut method and disposes of the sheet with endSheet.

 12. Choose Build➪Build and Go to see the project in action.

This sheet demonstration is purposely simple, so you can see how to display

a sheet in your own projects. You can enhance the sheet by adding controls

to the sheet and wiring them to outlets and actions depending on the desired

effect.

Responding to Window Events
by Delegating Authority

Cocoa has an interesting construct — delegates — which lets a class take

over the task of handling certain events for you. Much like you might del-

egate authority to another person in the workplace, you can delegate the

authority of a class to handle things when a particular event(s) occurs.

For example, you can tell a class to be a delegate for window events like min-
iaturizing (also known as minimizing). Therefore, every time a window minia-

turizes, your delegate class would do something in response.

Open MainMenu.xib in Interface Builder and perform these steps to see how

delegates work:

 1. Assign delegate status to MySheetController:

 a. Control-drag from Window to MySheetController in the project
window.

 When you let go of the mouse, a black connections list overlay

appears listing options (see Figure 8-13).

 b. Select Delegate from the list.

 Delegate status is assigned to the MySheetController class.

166 Par t II: Instant Cocoa and the Objective-C Language

 2. Close Interface Builder and return to Xcode.

 3. Add the following delegate method to the MySheetController.m file:

- (void)windowDidMiniaturize:(NSNotification *)
notification {

 NSBeep();
}

 4. Choose Build➪Build and Go to test the code changes.

The windowDidMiniaturize method is a special delegate method that

Apple has predefined for you. You can see what delegates are available by

searching for a specific class in the built-in Help. For example, search for

NSWindow to see the delegates that respond to window events.

In the previous example, the application plays a system beep whenever the

user miniaturizes the window. If you prefer to do something just before the

window miniaturizes instead, here’s a delegate method for that:

- (void)windowWillMiniaturize:(NSNotification *)
notification {

 NSBeep();
}

Many of the built-in classes have delegate methods like this that you can use.

NSWindow has more than 24.

Figure 8-13:
 Make

MySheet
Controller a

delegate.

Chapter 9

Working with Interface Controls
In This Chapter
▶ Working with button controls

▶ Using radio and slider controls in your project

▶ Working in tab views

▶ Animating a progress indicator

▶ Displaying data in a table

The Mac OS has long been renowned for its graphical user interface, which

probably stems from the fact that people like interacting with comput-

ers by using metaphors that relate to the real world. Interface Builder is your

tool for creating these metaphors. With it, you build your interface by adding

different elements that your users will use to control the application. Because

they’re controlling the application, Cocoa calls these elements controls.

Cocoa has a rich set of interface controls for you to use in your own applica-

tions. With drag-and-drop and a few lines of code, you can add a variety of

useful controls to your projects. This chapter guides you through the basics

of interface controls in Interface Builder. You’ll see how to use each of these

controls by adding them to small projects.

By the end of the chapter, you’ll have enough experience with controls to strike

out on your own. The Cocoa framework is a vast one, and nothing prepares

you better for programming than practice and experimentation.

Button Controls
Perhaps the most ubiquitous interface control is the button. From the bank’s

automatic teller machine to the doorbell at your front door, buttons are a

nearly universal piece of hardware. Even your mouse and keyboard have

button interfaces. Because so many people recognize buttons and know how

to use them in the real world, it makes sense that they’re popular in the virtual

world as well.

168 Par t II: Instant Cocoa and the Objective-C Language

Cocoa provides many kinds of useful and attractive buttons for your inter-

faces. All buttons in Cocoa are the NSButton type. Most NSButton controls

look and act the way you’d expect, but some may alter your notion of what

constitutes a button.

This section looks at the different types of buttons available to you in Cocoa.

To begin working with buttons, follow these steps:

 1. Launch Project Builder and create a new Cocoa application.

 2. Double-click the MainMenu.xib file to open it in Interface Builder.

 3. Open the window found in the NIB file window.

 4. Choose Tools➪Library and enter Button in the Library’s search field

to find all the NSButton controls in Interface Builder.

 Figure 9-1 shows the Library with the various buttons listed.

Figure 9-1:
The Library
provides a
multitude

of buttons
for your

interfaces.

169 Chapter 9: Working with Interface Controls

Although each button in Figure 9-1 looks and behaves differently, they’re all

examples of the NSButton class. This means you could drag a push button

to your interface, for example, and later convert it to a square button. You’ll

see how the buttons differ through the remainder of this section.

Push button
Perhaps the most recognizable form of NSButton, the push button is a staple

of nearly all applications. The push button works simply: A user clicks the

button, and your program does something in response. Probably the most

common buttons are the OK and Cancel buttons, but you can also use but-

tons to perform almost any task. To add a push button to your interface,

simply drag it from the Library to a window in your project. A default push

button has a centered text label, as shown in Figure 9-2. You can change

the text in a button by double-clicking it or by altering the Title entry in the

Inspector window (also shown in Figure 9-2). (The Inspector window changes

its title based on context, so its title is now Button Attributes.)

Figure 9-2:
Push

buttons
typically

display only
a text label.

170 Par t II: Instant Cocoa and the Objective-C Language

Besides the Title property, NSButton controls have many properties that you

can customize. One that you’ll use frequently is Key Equiv (see Figure 9-3). Click

in this box and enter a keystroke that acts as if the user clicked the button with

the mouse. The symbol representing that key then appears in the Key Equiv.

field. One common keyboard equivalent is Return, which means a user can

trigger the push button by pressing Return (or Enter) on the keyboard. When

you set it to respond to the Return key, ; appears in the Key Equiv. box,

and the button automatically takes on a pulsating colorized appearance at

runtime (but not when you’re designing in Interface Builder). The color of the

button will be aqua or graphite, depending on which appearance setting the

user selected in System Preferences. This colorized appearance suggests to

users that this button performs the default action for the window in which

it appears. For example, when a window has OK and Cancel buttons, OK is

often the default button. This offers a hint to users that OK is probably the

button that they want to click.

In addition to appearance, an NSButton can play a sound when clicked.

Follow these steps to make your button play a sound when it’s clicked:

 1. Find a sound to play.

 Click the Media tab at the top of the Library window. You find all the famil-

iar system sounds that you can use. You can also drag your favorite audio

files into the Xcode project window (yes, Xcode, not Interface Builder),

and then those sounds appear in the Media section of the Library window.

Figure 9-3:
Set the

Key Equiv
property to

Return to
make the

button
pulsate.

171 Chapter 9: Working with Interface Controls

 2. In your application’s interface window in Interface Builder, click the

NSButton that you want to alter and open the Inspector window. In

the Sound field, type the name of the sound file that you want to play

or select it from the drop-down list.

 Alternatively, you can drag sound files from the Media tab of the Library

window directly on top of the push button that you want to play the

sound. The sound filename appears automatically in the Sound field of

the Inspector window as if you typed it by hand.

 Figure 9-4 shows a button that plays the frog system sound.

 3. Press Ô+R in Interface Builder to test your work.

 A frog sound plays when you press Ô+R.

Figure 9-4:
Type the
name of
a sound

file in the
Sound field.

(Ribbit.)

Round button
A close relative to the push button is the round button. As its name implies,

the round button has a circular shape, and that’s the main difference between a

round button and a push button. In addition to text, a round button can display

icons. For example, one common use for a round button is as an arrow button.

172 Par t II: Instant Cocoa and the Objective-C Language

To set the icon displayed on a button, perform the following steps:

 1. Drag a round button from the Library to the main window of your

interface.

 2. Select an image to use as the button’s icon from the Image drop-down

list in the Button Attributes window.

 Interface Builder provides you with many different default system icons

that you can use. For example, Figure 9-5 shows the NSRefreshTemplate

image name. Note: The vertical alignment of the button doesn’t look so

great. Step 3 fixes this.

 Conversely, you could add an image file to your project window in

Xcode (again, Xcode, not Interface Builder). The new image automati-

cally appears in the list of choices in Interface Builder.

Figure 9-5:
To assign
an image

to a button,
select it in
the Image

drop-down
list.

 3. Set the alignment of the button image.

 In the Inspector window, click the second button in the Position button.

The image on the button now centers vertically, as shown in Figure 9-6. The

other elements of the segmented Position button vary the manner in which

the button image is aligned in relation to text on the button. The segments

display an icon to give you a visual indicator of how that segment aligns

the button image.

173 Chapter 9: Working with Interface Controls

Figure 9-6:
The button’s

image is
centered
vertically

now.

Check box
So far, you’ve looked at buttons that users click to perform an action. Not all

buttons have to trigger an action, though. The check box button, for example,

can behave more passively. Rather than firing some action, a check box

button might simply indicate a binary state, such as toggling a feature on and

off or for answering a Yes/No question. A check box can act like a button,

however, in that it’s also capable of triggering an action just like a push

button. Figure 9-7 shows a check box control.

You can add a check box to your interface by dragging one from the Library

window in Interface Builder. In the Inspector window, you can set the default

state of the check box as well as its title and other cosmetic features.

When using check box controls, your code typically checks the state of the

control and performs an appropriate operation. To demonstrate, this snippet

of code checks the state of a check box control outlet, prefsCheckbox, and

acts accordingly:

if ([prefsCheckbox state])
 // Save Preferences
else
 // Don’t Save Preferences

174 Par t II: Instant Cocoa and the Objective-C Language

Figure 9-7:
A check

box button
shows the
state of a

setting.

Square and rounded bevel buttons
Bevel buttons are another style of button available to you. They come in two

varieties: square and rounded. Besides the beveled appearance, they differ

from standard push buttons and round buttons in that they often are used to

display both text and icons. Further, they can perform other functions that a

push button can’t.

To add a bevel button to your application, search for Bevel Button in the

Library window of Interface Builder and then drag one to your interface.

You can use a bevel button like a standard button to trigger an action

when a user clicks it. Beyond this simple button behavior, bevel buttons

can also mimic other controls. Like the check box, a bevel button can indi-

cate state by displaying a depressed look. Bevel buttons can also act like a

menu by displaying a selection from a list of choices. Figure 9-8 shows the

square and rounded bevel buttons with the pre-supplied NSEveryone and

NSFolderBurnable images assigned to each button respectively.

175 Chapter 9: Working with Interface Controls

Figure 9-8:
Bevel

buttons can
display text
and icons.

Radio Control
The radio control is a specialized form of the button that gives a user multiple

options. When the user chooses one of these options, the other radio buttons

become deselected. Because you typically use more than one radio button at

a time, it is customary to use an NSMatrix of radio buttons instead of sev-

eral individual buttons set to the radio style. An NSMatrix is a collection of

cells. A radio button resides in each cell in the NSMatrix.

Follow these steps to add radio buttons to your interface:

 1. Drag the Radio Group control from the Library window.

 Interface Builder adds a matrix (or group) of radio buttons to your

window.

 Figure 9-9 shows the NSMatrix that appears in your window when you

drag a radio button control from the Library window.

 2. Double-click the cell and edit the Title text.

 The Title text becomes editable until you click elsewhere in the interface

or press Return.

 You can also change the Title of an NSMatrix element by using the

Inspector window.

176 Par t II: Instant Cocoa and the Objective-C Language

Figure 9-9:
Radio but-

tons usually
appear as
part of an

NSMatrix.

 3. Click the NSMatrix in your interface and add more radio controls to

the NSMatrix. Open the Matrix Attributes Inspector window by choos-

ing Tools➪Inspector and change the Rows field of the Cells section, as

shown in Figure 9-10.

 Figure 9-10 shows an NSMatrix with three rows that have edited titles.

Figure 9-10:
Add rows to

an NSMatrix
in the

Matrix
Attributes
Inspector

window for
that control.

177 Chapter 9: Working with Interface Controls

 4. Connect the NSMatrix to an outlet of a Controller class by

Control+dragging from the controller to the NSMatrix control.

 When connecting an outlet to an NSMatrix, make sure that you

Control+drag from the Controller class to the entire matrix, not to

an element of the matrix. If one element becomes highlighted when you

Control+drag from the controller to the NSMatrix, move the cursor

around until a dark outline appears around the entire NSMatrix (see

Figure 9-11).

Figure 9-11:
When you

connect an
outlet to an
NSMatrix,

make
certain to

attach it to
the entire

control, not
just one of

its elements.

After you have an outlet to the NSMatrix, you can find out which element

the user selected in code by using the selectedRow method of NSMatrix.

The selectedRow method returns an integer indicating the index of the

currently selected row. Row numbers start from the top, with the first row

having an index of 0. To illustrate, here’s a sample action that checks the

selectedRow of colorRadios. Based on the index, it displays a message in

the console telling you which color was chosen:

- (IBAction)doSomething:(id)sender
{

 switch ([colorRadios selectedRow])
 {
 case 0:
 NSLog(@”User chose red.”);
 break;
 case 1:
 NSLog(@”User chose green.”);
 break;
 case 2:
 NSLog(@”User chose blue.”);
 break;
 };

}

178 Par t II: Instant Cocoa and the Objective-C Language

Slider Control
Sliders are the controls you use to represent a range of values. The control

gives users an opportunity to select a value in that range by moving (or sliding)

the knob of the slider control. NSSlider is the class behind the slider func-

tions in Cocoa. Again, the NSSlider control appears in the Library window, as

shown in Figure 9-12.

Sliders come in a variety of styles. They can span horizontally or vertically or

even in a circular fashion. They can also display tick marks. Figure 9-13 illus-

trates the different combinations of styles that sliders can have.

Sliders have two modes of operation: continuous and not continuous. When

you check the Continuous property of an NSSlider in the Inspector window,

that slider fires its action any time the user moves it. Conversely, when you

deselect the Continuous property, the slider triggers its action when, and

only when, the user lets up on the mouse.

Figure 9-12:
The

sliders are
located in

the Library
window.

179 Chapter 9: Working with Interface Controls

Figure 9-13:
Sliders are
highly con-

figurable.

 Because sliders represent a range of values, they have minimum and maximum

values. They also have a current value, which represents the position of the

slider button in the range of minimum and maximum values. You can set these

values in the Inspector window.

If you want to find out what the current value of the slider is in code, do

something like this:

float x = [theSlider floatValue];

You can also set the current position of the slider by using the setFloat
Value method:

[theSlider setFloatValue:3.14];

You aren’t restricted to the setFloatValue method, however. Because

NSSlider inherits from NSControl, among other classes, you can use

the methods of NSControl to work with the slider. The setFloatValue

method is just one method of NSControl. There are others, which you can

view in the built-in documentation. For example, if you don’t care about

slider values that contain decimal points, you can use the setIntValue

method of the NSControl:

[theSlider setIntValue:5];

Tab Views
If you need to reduce clutter or if space is at a premium, tab views are for

you. The NSTabView is the class in the Application Kit that provides you

with tab views for your interface. A tab view, as its name implies, is a view

consisting of multiple tabs that when clicked display a particular pane of

the view. Figure 9-14 shows a tab view with four tabs. Each pane can hold

180 Par t II: Instant Cocoa and the Objective-C Language

any number of other controls. When a user clicks a tab, the controls from all

other tabs disappear and the controls for the selected tab come into view.

Figure 9-14:
The tab

view
controls

help
organize

many
controls

into a
reduced

space.

To use a tab view, follow these steps:

 1. Drag a tab view control from the Library window to your interface.

 2. Click once on the tab view and change the number in the Tabs field in

the Tab View Attributes Inspector window to add tabs to the tab view,

as shown in Figure 9-15.

Figure 9-15:
Add tabs to
a tab view

with the
Tabs field.

181 Chapter 9: Working with Interface Controls

 3. Change the label at the top of each tab by clicking the tab’s text once

and change the Label field in the Tab View Item Attributes Inspector

window, as shown in Figure 9-16.

 4. Add the controls to each tab.

 Select a tab and then drag the desired controls to that tab. Repeat for

the other tabs until you’ve populated the tab view.

Figure 9-16:
Change the

Label field
to alter the

text that
appears at

the top of
each tab.

When the application is running, you may want to know which tab a user

selected. An NSTabView control can have any number of tabs, which are

instances of the NSTabViewItem class. Each TabViewItem in a TabView

has a corresponding index, beginning with 0 (zero). To find out which tab

index a user selected, you must first figure out which NSTabViewItem is

selected. Then you pass that TabViewItem to the indexOfTabViewItem to

get the index of the tab.

NSInteger selectedTabViewItem;
selectedTabViewItem = [theTabView

indexOfTabViewItem:[theTabView
selectedTabViewItem]];

NSLog(@”selectedTabViewItem = %d”, selectedTabViewItem);

In this snippet, NSLog sends text output to the console. To view the Xcode’s

Debugger Console, choose Run➪Console. Figure 9-17 shows the open

Console window.

182 Par t II: Instant Cocoa and the Objective-C Language

Figure 9-17:
Use the
console

to display
text when

debugging.

Making Progress at the Bar
Anyone who has ever used a computer knows that some functions —

such as creating a large movie in iMovie or ripping a bunch of MP3 files in

iTunes — require a long time to process. As lengthy operations proceed,

the thoughtful programmer displays some sort of feedback to let the user

know that the computer is working on something. To do this in Cocoa, use

the NSIndicator control. To add an NSIndicator control to your project,

search for Indicator in the Library window of Interface Builder and then

drag one to your interface.

NSIndicator can display two kinds of progress bars:

 ✓ Indeterminate: Display an indeterminate progress indicator when you

don’t know how long the process will take, such as when you’re searching

for files on a hard drive. The indeterminate progress indicator has two dif-

ferent looks — one variety looks like a barber pole and the other spins.

 ✓ Determinate: Use determinate progress indicators when you know how

long a process takes to complete, such as when you repeat a task ten times.

183 Chapter 9: Working with Interface Controls

The window in Figure 9-18 displays each type of NSIndicator.

Figure 9-18:
The inde-
terminate

NSIndicator
looks like a
barber pole
or spin in a
circle. The

determinate
NSIndicator

shows the
progress of

an opera-
tion, step

by step.

Indeterminate progress

Determinate progress

Indeterminate progress

To use the indeterminate NSIndicator control, call the startAnimation

method. This causes the barber pole to move. The following example calls

the startAnimation method using an indeterminateProgress outlet

from within an action:

 - (IBAction)startIndeterminateProgress:(id)sender {
 [theIndeterminateProgress startAnimation:sender];
}

When you’ve finished processing whatever you need to process, you can

stop the animation by using the stopAnimation method:

- (IBAction)stopIndeterminateProgress:(id)sender {
 [theIndeterminateProgress stopAnimation:sender];
}

With a determinate NSIndicator, you set the value of the control with

the setDoubleValue method. This code snippet sets the indicator to the

middle position, assuming that the control has a minimum and maximum of 0

to 100, respectively:

[theDeterminateProgress setMinValue: 0.0];
[theDeterminateProgress setMaxValue: 100.0];
[theDeterminateProgress setDoubleValue: 50.0];

184 Par t II: Instant Cocoa and the Objective-C Language

Table Control
One of the most versatile controls that you can add to your applications is

the table control. Unfortunately, it’s also one of the trickiest to use. With an

NSTableView, you can display a table or list of data with all sorts of display

options. You’ll find the NSTableView control in the Library window, as

shown in Figure 9-19.

Figure 9-19:
The NS

TableView
control

can display
information

in tabular
form.

To begin using an NSTableView in a Cocoa project, follow these steps:

 1. Launch Xcode, choose File➪New Project to create a new project, and

name the project SimpleTable.

 2. Double-click the MainMenu.xib file to open it in Interface Builder and

drag an NSTableView control from the Library window to the default

window of your interface.

185 Chapter 9: Working with Interface Controls

 3. Assign the first column identifier.

 Double-click the white space below the text at the top of the first column

to select the first column. Set its identifier to launchedApplications.
NSApplicationName, as shown in Figure 9-20.

Figure 9-20:
Assign an
identifier

to the first
column.

 The reason you’re doing this is because NSWorkSpace has defined keys

for elements in the launchedApplications dictionary. This key rep-

resents the name of an application. Using keys like this one can greatly

simplify your code.

 4. Assign the second column identifier.

 Double-click the NSTableView twice until you’ve selected its

second column. Set its identifier to launchedApplications.
NSApplicationPath, as shown in Figure 9-21.

 5. Add a controller:

 a. Drag a new Object control from the Library window to the XIB project
window.

 b. Name the new object MyDataController.

 c. To this new object, add an outlet named tableView, as shown in
Figure 9-22.

186 Par t II: Instant Cocoa and the Objective-C Language

Figure 9-21:
Assign an

identifier to
the second

column.

Figure 9-22:
Add an

outlet to the
Controller

class.

187 Chapter 9: Working with Interface Controls

 6. Connect the controller.

 Control+drag from the MyDataController class to the center of the

NSTableView in your interface, and then select tableView from the

list of choices in the black connections list overlay that appears.

 Be sure to drag to the center of the control. The NSTableView lies

within another control called the NSScrollView. As you slowly

Control+drag to the center of the control, you see the focus ring high-

light the outer NSScrollView first and then the NSTableView, which

is what you want.

 7. Connect the data source.

 Control+drag from the NSTableView to the MyController class.

Select the dataSource outlet from the black connections list overlay

that appears. A TableView control must have a data source class that

feeds it data.

 8. Select MyDataController in the Interface Builder project window

and choose File➪Write Class Files to create the class files for

MyDataController.

 9. Click Save in the Save dialog that appears and add the class to the

current Xcode project in the dialog that appears after that.

 10. Return to Xcode and select the MyDataController.h file.

 11. Replace the code in MyDataController.h with the following:

#import <Cocoa/Cocoa.h>

@interface MyDataController : NSObject
{
 IBOutlet id tableView;
 NSArray *_launchedApps;
 NSWorkspace *_workSpace;
}
@end

 The code begins by declaring the tableView outlet and a pointer to an

*_launchedApps array. The array holds the names of all currently run-

ning applications. The *_workSpace variable assists you in retrieving

the application names and paths later.

 12. Select the MyDataController.m file and add the following code to it:

#import “MyDataController.h”

@implementation MyDataController

188 Par t II: Instant Cocoa and the Objective-C Language

- (void)awakeFromNib {
 _workSpace = [NSWorkspace sharedWorkspace];
 _launchedApps = [_workSpace launchedApplications];
 [tableView reloadData];
}

- (int)numberOfRowsInTableView:(NSTableView *)
tableView {

 return [_launchedApps count];
}

- (id)tableView:(NSTableView *)tableView
objectValueForTableColumn:(NSTableColumn *)tableColumn

row:(int)row {
 return [[_workSpace valueForKeyPath:[tableColumn

identifier]] objectAtIndex:row];
}

- (void)dealloc {
 [super dealloc];
}

@end

Here’s what the code does:

 ✓ The awakeFromNib method starts the source code off by populating

the _launchedApps array. It does this using an NSWorkspace object to

find the names of the currently running applications.

 ✓ Next comes the numberOfRowsInTableView method. Because the

number of rows in the table matches the number of elements in

the _launchedApps array, you return the size of the array.

 ✓ The objectValueForTableColumn method takes care of returning

the data to the NSTableView. To distinguish between the two columns,

this method passes the valueForKeyPath method the identifier of the

requested column. Because _launchedApps is really an array of diction-

ary objects, you need to extract the information from the dictionary if you

want something suitable for display. The first column displays the name

of the running application, and the second column displays its path.

Without adding any other code, this table would display the running applica-

tions on your computer. The background of the table is white with black text.

 To spruce up the interface a little bit, you can colorize the background of the

rows in the table. Return to Interface Builder and select the NSTableView in

the interface. Select the Alternating Rows check box, as shown in Figure 9-23.

189 Chapter 9: Working with Interface Controls

Figure 9-23:
Adding

alternate
row colors

is as
simple as

selecting a
check box.

Figure 9-24 shows what the table view looks like at runtime. The names of the

running applications vary depending on which computer you’re using and

which applications are running at the time you launch this app.

Figure 9-24:
The

completed
table lists

the
currently

running
applications

on a
computer.

190 Par t II: Instant Cocoa and the Objective-C Language

Chapter 10

Cocoa Data Types
In This Chapter
▶ Using the NSNumber class

▶ Working with an array

▶ Understanding Cocoa’s Boolean type

▶ Finding out what day it is

One of the main tasks that computers do well is manipulate data.

Whether you need to calculate the national debt or keep track of the

telephone numbers of the players in your poker club, computer programs

can ease the task of handling information. Cocoa improves upon the various

ways that you work with data in C.

This chapter takes you on a tour of some data types unique to Cocoa. The

Foundation Framework defines these data types. You can continue to use the

data types that you know from C, but after you see what Cocoa has to offer,

you just might stop thinking about those old C types altogether.

Working with Numbers
When you program in Objective-C, you can use all the usual standard C numeri-

cal data types for making calculations. If you want to use these values with

Cocoa’s array objects, however, you’re left out in the cold. For this reason,

Cocoa offers you the NSNumber class. One of its great uses is to wrap numbers

in a Cocoa object, for use with other objects, such as NSArray. The NSArray

class is an array class that comes with the Foundation Kit. You hear more

about it later in this chapter.

To create an NSNumber object based on an integer value of 42, use code

like this:

NSNumber *n = [NSNumber numberWithInt:42];

192 Par t II: Instant Cocoa and the Objective-C Language

Here are methods for creating NSNumbers based on a variety of numerical

types:

 ✓ numberWithDouble

 ✓ numberWithFloat

 ✓ numberWithInt

 ✓ numberWithLong

 ✓ numberWithUnsignedShort

To retrieve values from an NSNumber, use one of the many NSNumber accessor

methods. Some of these include

 ✓ doubleValue

 ✓ floatValue

 ✓ intValue

 ✓ longValue

 ✓ unsignedShort

If you want to compare the values of two NSNumber instances, use the

isEqualToNumber method. Because an NSNumber is an object, you can’t

opt for the brevity in C of “if (num1==num2)”. This example shows how to

compare two NSNumbers named num1 and num2:

if ([num1 isEqualToNumber:num2])
 NSLog(@”Numbers are equal”);
else
 NSLog(@”Numbers are not equal”);

Working with Arrays
One of the most common programming tasks that you’ll encounter is working

with a list of data. To pull off this task, Cocoa programmers use NSArray and

NSMutableArray, which are storage units for a list of data. You use arrays

when you need to keep track of a list of information, such as the titles of books

in your bookcase, the people in your family, or the number of windows that

are open currently. What makes Cocoa arrays unique is the fact that, unlike

traditional C arrays, they can store references to objects.

193 Chapter 10: Cocoa Data Types

NSArray
The NSArray class is handy for storing a group of objects in one place.

To demonstrate, here’s one way you might create and populate an array with

NSString objects:

 NSArray *theArray;
 NSString *name1;
 NSString *name2;
 NSString *name3;
 NSString *name4;

 //assign values to the four names
 name1 = @”Maria”;
 name2 = @”Mercedes”;
 name3 = @”Leopold”;
 name4 = @”Frederick”;

 //create and populate the array

 theArray = [NSArray arrayWithObjects:name1, name2,
name3, name4, nil];

Note the arrayWithObjects method lets you create an NSArray by listing

the objects in that array. The last object must always be nil to indicate the

end of the array.

If you want to find out how many items were in that array, use the count

method:

int i = [theArray count];

You can then use the size of the array to retrieve the objects within that

array, based on the index. This code snippet displays each item in the array

that you just created:

 NSLog(@”object1 = %@”,[theArray objectAtIndex:0]);
 NSLog(@”object2 = %@”,[theArray objectAtIndex:1]);
 NSLog(@”object3 = %@”,[theArray objectAtIndex:2]);
 NSLog(@”object4 = %@”,[theArray objectAtIndex:3]);

 Don’t forget that the index is always zero-based.

194 Par t II: Instant Cocoa and the Objective-C Language

Put it all together, and the code looks like this:

 int i;
 NSArray *theArray;
 NSString *name1;
 NSString *name2;
 NSString *name3;
 NSString *name4;

 //assign values to the four names
 name1 = @”Maria”;
 name2 = @”Mercedes”;
 name3 = @”Leopold”;
 name4 = @”Frederick”;

 //create and populate the array
 theArray = [NSArray arrayWithObjects:name1, name2,

name3, name4, nil];

 NSLog(@”object1 = %@”,[theArray objectAtIndex:0]);
 NSLog(@”object2 = %@”,[theArray objectAtIndex:1]);
 NSLog(@”object3 = %@”,[theArray objectAtIndex:2]);
 NSLog(@”object4 = %@”,[theArray objectAtIndex:3]);

 i = [theArray count];
 NSLog(@”theArray count = %d”,i);

The resulting output looks like this:

2008-07-28 04:45:54.518 CocoaData2[944] object1=Maria
2008-07-28 04:45:54.520 CocoaData2[944] object2=Mercedes
2008-07-28 04:45:54.520 CocoaData2[944] object3=Leopold
2008-07-28 04:45:54.520 CocoaData2[944] object4=Frederick
2008-07-28 04:45:54.520 CocoaData2[944] theArray count = 4

NSMutableArray
The NSArray class’s one shortcoming is that you can’t alter it after you’ve

created it. When you can’t change something (such as an array), it’s immu-
table. Conversely, those that you can change are mutable arrays. Thus, Cocoa

also offers the NSMutableArray. To create an NSMutableArray, you can

use its arrayWithCapacity method:

NSMutableArray *theArray = [NSMutableArray
arrayWithCapacity:0];

 Because you can grow or shrink NSMutableArrays at will, it’s safe to create the

array with space for zero items.

195 Chapter 10: Cocoa Data Types

With an NSMutableArray, you can change elements in the array after you

create it. This makes it more suitable for maintaining dynamic lists of

information:

 ✓ Add items to an NSMutableArray: Use the addObject method:

[theArray addObject:name1];
[theArray addObject:name2];
[theArray addObject:name3];

 ✓ Remove an item from the array: Use the removeObjectAtIndex

method. This method removes an object from the array and resizes the

array in the process. For example, to remove the second name (which is

at index 1), use code like this:

[theArray removeObjectAtIndex:1];

 ✓ Insert an object: Use the insertObject method. The method inserts

an object into the array, resizing it as a result. This example reinserts

the second name (name2) into the array:

[theArray insertObject:name2 atIndex:1];

 ✓ Replace an element of the array with another object: Use the replace
ObjectAtIndex method. This snippet replaces the second name in the

array with name3:

[theArray replaceObjectAtIndex:1 withObject:name3];

Because NSMutableArray inherits from NSArray, you can use the methods

from earlier in this section to find out the size of the array and to query it for

specific elements.

Working with Boolean Data Types
A Boolean data type represents information that can occur in two, and only

two, states. For example, an On/Off switch acts in a Boolean fashion because

you have only two options. A Yes/No question works similarly. Objective-C

has its own Boolean data type: BOOL. Instead of the usual TRUE and FALSE

values, Objective-C uses YES and NO. This code snippet shows some of the

ways in which you’d typically use BOOL variables:

BOOL answerWasFound;

answerWasFound = FindTheAnswer();

if (answerWasFound)
// OR
if (answerWasFound == YES)

196 Par t II: Instant Cocoa and the Objective-C Language

Besides using YES or NO for the Objective-C BOOL type value, it’s important

for another reason: It works with other objects in Cocoa. Again, arrays and

other types of collection objects expect their elements to be objects them-

selves. If you wanted to create an NSArray of Boolean values in Cocoa, you’d

pass the BOOL type to the numberWithBool class method of NSNumber:

 //create an NSNumber with a BOOL
 n = [NSNumber numberWithBool:YES];

 //add the NSNumber to an array
 [theArray addObject:n];

Working with Dates
The NSCalendarDate class gives you many options when it comes to work-

ing with dates and times. One of the most common tasks you perform is

finding the current date or time. You can do this in one line of code with an

NSCalendarDate class method:

NSDate *theDate = [NSCalendarDate date];

After you retrieve this date, you can easily convert it into an NSString, suit-

able for display. Simply use the description method to display the date in

standard international format. In this example, NSLog displays the date in the

console:

NSLog(@”theDate = %@”,[theDate description]);

This yields results like this:

theDate = 2008-08-05 05:08:13 -0500

The description method is okay for quick-and-dirty date displays, but

sometimes you want to display the date in a more human-friendly format.

The descriptionWithCalendarFormat method can help you build an

NSString that holds the date or time. The descriptionWithCalendar
Format method has three parameters. The first parameter is the only one

that you have to worry about for simple date work. That parameter is an

NSString that represents the date in the format you desire.

197 Chapter 10: Cocoa Data Types

Cocoa gives you lots of flexibility when it comes to formatting your date for

display. For example, the following code snippet formats a date as you might

expect to see it in the United States:

NSLog(@”theDate = %@”,
 [theDate descriptionWithCalendarFormat:@”%A, %B %d, %Y

(%I:%M)” timeZone:nil locale:nil]);

This results in a date formatted like so:

theDate = Monday, August 04, 2008 (10:15)

That odd-looking string that you pass to the descriptionWithCalendar
Format method dictates which elements of the date you want to display.

Apple calls those strange characters date conversion specifiers. Each specifier
is a one-letter code that corresponds to some aspect of the date. In the pre-

ceding example, %A represents the name of the day of the week, which in this

case is Monday. Next comes %B, which stands for the name of the month (in

this case, August). You can continue to string together these specifiers until

you’ve built a date in the format you prefer. Table 10-1 details some of the

more common specifiers.

Table 10-1 Date Format Specifiers
Code What It Represents

%B Month name

%m Month as an integer

%e Day of the month as an integer

%d Day of the month as a two-digit integer

%A Weekday name

%I Hours

%M Minutes

%S Seconds

%Y Year

198 Par t II: Instant Cocoa and the Objective-C Language

Part III
Putting It All

Together: Cocoa
Programming

in Depth

In this part . . .
You know how the Developer Tools work, you have

a handle on the Objective-C language, and you’ve

even built your own applications. Now it’s time to step it

up a notch.

Part III elevates your Cocoa skills to new heights. You

discover how to add the features found in every cool

Cocoa application by creating a variety of programs with

a range of functions from text and graphics to audio and

video. Every Mac user expects an application to work with

files, so Part III covers that, too.

Chapter 11

Text
In This Chapter
▶ Displaying text

▶ Changing the style of text

▶ Editing text

▶ Saving text to a file

▶ Opening and displaying text files

Ever since the first Macintosh computer, Apple has led the consumer

computer world in design, layout, and typography. Mac OS X continues

this tradition by providing some of the best-looking text that you’ll ever see

on a computer monitor. Cocoa gives programmers instant access to these

wonderful features of OS X.

This chapter shows you how to work with text for a variety of purposes.

First, you display some text in a window. Then, you manipulate that text, con-

torting its sizes and altering its hue. Next, you discover how easy it is to add

professional text-editing features to your applications with little or no code.

Finally, you save the text from your interface to a file for later recall. Stylized

text is a great feature for many types of applications, and Cocoa gives you a

wide range of tools for manipulating that text.

Working with Text
Cocoa has many different controls for working with text in applications.

Some text controls display text as a label; other controls permit full editing

like a word processor. Interface Builder offers several controls for working

with text, but they generally inherit from one of two controls:

 ✓ NSTextField: Displays static or dynamic text. Use this control to

display one line of text.

 ✓ NSTextView: The star of the text fields in Cocoa. This baby can work

with multiple lines of text. When you think of a word processor, think of

NSTextView.

202 Par t III: Put ting It All Together: Cocoa Programming in Depth

This chapter focuses on the NSTextView control because it’s the most full-

featured. If you can work with it, you can easily handle the other controls for

displaying text.

Building an interface
To get started working with text, you need a project and an interface.

Perform the following steps to prepare a project for the examples in this

chapter:

 1. Create a project in Xcode.

 2. Double-click the MainMenu.xib file in Xcode in the Resources folder.

 3. In Interface Builder, open the Window window from the XIB project

window if it isn’t already open. Add an NSTextView to the window.

 You can find the NSTextView in the Library window by scrolling or

searching for NSTextView or simply TextView, as shown in Figure 11-1.

Figure 11-1:
The

NSTextView
control is

located in
the Library

window.

203 Chapter 11: Text

 4. Add two NSButton check box controls to the interface.

 One check box toggles the display of a ruler in the NSTextView. The

other check box causes text color changes to affect only that text which

is selected. You can find the check box control in the Library window

by searching for Check Box. Change the title of the check boxes by

double-clicking each control and typing the new label. Figure 11-2 shows

the check boxes with new titles. Select the Selected property for

the top check box, so Apply to Selection is activated only when the

application launches. Also, deselect the Selected property in the

Button Attributes Inspector for the bottom Rulers check box because

the NSTextView rulers aren’t visible when the application launches.

 5. Drag two NSColorWell controls and two NSTextField labels from

the Library to the interface.

 You can find the NSColorWell control in the Library window by

searching for Color Well. To label the NSColorWell controls, drag

two NSTextField controls to the window. The Library has more than

one NSTextField control available. Search for Label to find the one

that you want here. A Label control is an NSTextField with properties

set to make the NSTextField display text that a user can’t edit. One

NSColorWell dictates the color of the text in the NSTextView. The

other represents the background color of the view. Figure 11-3 shows

the completed interface.

Figure 11-2:
Add two

NSButton
check boxes

to the
window.

204 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 11-3:
Add two

Color Well
controls and

two labels
to the

window.

Adding a controller class
As you might be expecting, the next step is to create a class that controls

your interface:

 1. In the Library window of Interface Builder, search for the NSObject

class and add it to the XIB project window.

 2. With the new object selected, press Ô+6 to open the Identity Inspector.

 By default, the Class is NSObject.

 3. Change the class name.

 To follow along with the example, name the class MyTextController.

Figure 11-4 shows the result.

 4. Add outlets to the class.

 Define the following outlets for the new class in the same Identity Inspector:

 • applyCheckbox

 • backgroundColorWell

 • textColorWell

 • textView

 You may notice that one of the NSButton check boxes is missing from

the list. That’s because you won’t need to reference it by name in code.

Instead, it performs its function through an action.

205 Chapter 11: Text

 5. Add the following actions to the MyTextController class:

 • setBackgroundColor:

 • setTextColor:

 • toggleRuler:

Figure 11-4:
Create a

new class
to act as the

controller.

Wiring the interface
To wire the components of your interface to the new Controller class, per-

form the following steps:

 1. Connect the outlets of MyTextController to the controls in the

interface.

 Control+drag from the XIB window MyTextController object to each

of the four controls in turn, selecting the corresponding outlet from

the black connections list overlay that appears. Figure 11-5 shows the

appleCheckbox outlet connecting to the Apply to Selection check box.

 2. Connect the actions of the MyTextController object to the two

ColorWells and the ruler check box.

 To connect them, Control+drag from each control to the MyText
Controller object. Figure 11-6 shows the toggleRuler action

connected to its switch.

 3. Select the MyTextController class in the project window and choose

File➪Write Class Files to create the class files and add them to your

project in Xcode.

206 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 11-5:
Connect the

outlets
for the

interface.

Figure 11-6:
Connect the

actions
for the

interface.

Adding the code
Now that you’ve assembled the interface for this chapter, it’s time to quit

Interface Builder and add some code in Xcode. For starters, you need to spec-

ify which superclass MyTextController will use. Follow these steps:

 1. In MyTextController.h, change this line:

@interface MyTextController : /* Specify a superclass
(eg: NSObject or NSView) */ {

 to this:

@interface MyTextController : NSObject {

 The NSColorWell controls in this project display the standard Color

panel when a user clicks them. Depending on which NSColorWell a

user clicks, it alters either the text color or the background color of the

NSTextView in the window respectively.

207 Chapter 11: Text

 2. Add the code to alter both Color panels in the setBackgroundColor

and setTextColor actions in MyTextController.m:

@implementation MyTextController
- (IBAction)setBackgroundColor:(id)sender {
 [textView setBackgroundColor:[backgroundColorWell

color]];
}

- (IBAction)setTextColor:(id)sender {
 if ([applyCheckbox state]) {
 [textView setTextColor:[textColorWell color]

range:[textView selectedRange]];
 }
 else {
 [textView setTextColor:[textColorWell color]];
 }
}

 Setting the background and text colors is as easy as using the set
BackgroundColor and setTextColor methods of the NSTextView

class. If the state of applyCheckbox is YES, the setTextColor method

sets the color of the text of the currently selected text, passing the range

as one of its parameters. This allows you to choose which portion of the

text you want to colorize.

 3. To have the two ColorWells display particular colors by default, set

them in Interface Builder or do so programmatically in the awake
FromNib function.

 For example, the following code sets the default colors for a white back-

ground and black text:

- (void)awakeFromNib
{
 //set the NSColorWells to preset colors
 [textColorWell setColor:[NSColor blackColor]];
 [backgroundColorWell setColor:[NSColor

whiteColor]];
}

 The NSTextView control can perform all sorts of other fantastic text

manipulation operations besides color. One of these great features is the

ruler.

 4. In Xcode, add the following code to the toggleTheRuler action to

add a full-fledged ruler:

- (IBAction)toggleTheRuler:(id)sender
{
 [textView toggleRuler:[sender state]];
}

208 Par t III: Put ting It All Together: Cocoa Programming in Depth

 5. Choose Build➪Build and Go to see your handiwork.

 Figure 11-7 illustrates the use of a ruler in an NSTextView.

Figure 11-7:
With one

line of code,
you can add

a ruler!

Doing Style the Easy Way!
You can continue to add style functions to this project by manipulating the

NSTextView programmatically. This may work great for some projects,

but for others, there’s a much easier way to stylize text in an NSTextView.

If you’re looking for traditional word-processor styles in your application,

Cocoa can deliver!

Follow these steps to stylize your text:

 1. In Xcode, click the Build and Go button in the toolbar to launch the

application.

 2. Choose Format➪Font➪Show Fonts.

 Yes, that’s right . . . Cocoa has already implemented a Font menu for

you. You don’t need to add a single line of code nor make any changes in

Interface Builder. That’s all there is to it!

 3. Select a font and use it while typing in the text view.

 Figure 11-8 shows the Fonts panel after being opened by the Font menu.

209 Chapter 11: Text

Figure 11-8:
Cocoa pro-
vides fonts

for free.

You’ll quickly discover that all the items in the Font menu work. No code is

necessary. No connections are necessary. It doesn’t get any simpler than

that. Because many types of applications use a Font menu, Apple decided to

include this feature for you. That way, you can add a standardized Font menu

to your project without worrying about how to implement it. And don’t forget

about the ruler. When you show the ruler, many of the Font menu items are

also displayed just above the section that the ruler occupies. Figure 11-9

shows the Styles menu above the ruler.

By now, you should begin to see the power of Cocoa. The high-level classes

that Apple includes with Cocoa ensure that your projects maintain a consis-

tent look and feel while providing the full features your users expect from an

application.

Figure 11-9:
Wow! The

ruler comes
equipped
with font

formatting
too.

210 Par t III: Put ting It All Together: Cocoa Programming in Depth

Manipulating Text
So far in this chapter, I’ve shown you how to create style over substance.

Other important aspects of working with text in NSTextView are the capabil-

ity to edit, copy, paste, and alter its text.

Pasteboard manipulations
One common feature that every Mac OS X application has is access to the

Pasteboard (or Clipboard). Like the Font menu, Cocoa takes care of the Edit

menu too; you don’t have to do anything to implement it. The Edit menu just

works! The Edit menu in OS X offers the typical cut, copy, and paste features

that you might expect and also implements full-blown spell check and find

functions. Figure 11-10 shows the spell-checker.

Figure 11-10:
You don’t

have to do a
bit of work

to give your
application

Edit menu
functions,

such as
spell check.

The Edit menu hasn’t enabled its Undo and Redo menu items. The fix for this

is simple enough:

 1. In Xcode, double-click the MainMenu.xib file to open it in Interface

Builder.

 2. Open the window for your interface and double-click the NSTextView.

 Make sure to double-click; a single click only selects its Scroll View

container.

 3. Press Ô+1 to open the Text View Attributes Inspector window.

 4. In the Attributes section of the Info window, select the Undo check

box, as shown in Figure 11-11.

 Now, your users can undo any actions that they perform in the text view.

You managed to add this useful functionality by clicking one check box.

211 Chapter 11: Text

Figure 11-11:
Select the

Undo check
box to turn

on the Undo
functions for

an NSText
View.

Manual editing
Sometimes you may want to alter the text in an NSTextView without using

the Pasteboard. Perhaps the most common editing task that you’ll want

to perform is to change the text that appears in an NSTextView. You can

accomplish this task by using the setString method of the NSString class.

Create an NSString and assign a string to it:

NSString* someString = @”Cocoa says Hello!”;

 Note the @ character preceding the string. The @ character is an Objective-C

operator that tells the compiler to allocate a constant NSString object with

the stated value.

After you have an NSString, it’s a simple matter to display it in an

NSTextView:

[textViewsetString:someString];

To see how it works, follow these steps:

 1. In Xcode, declare the displayAsString method by adding the

following line to the MyTextController.h file.

- (IBAction)displayAString:(id)sender;

212 Par t III: Put ting It All Together: Cocoa Programming in Depth

 2. Define the displayAsString method in MyTextController.m.

 The code creates a string, someString, and then tells the textView to

set its string to someString:

- (IBAction)displayAString:(id)sender
{
 NSString* someString = @”Cocoa says hello!”;
 [textView setString:someString];
}

 3. Double-click the MainMenu.xib file to open the project’s interface in

Interface Builder.

 4. Add an NSButton to the window in your interface.

 5. Change the button’s Title Attribute in the Inspector window to display

NSString.

 6. Control+drag from the button to the MyTextController instance and

connect it to the displayAString: action in the black connections

list overlay that opens.

 Notice that Interface Builder has read the MyTextController.h file on

opening the interface and now an action named displayAString: is

available in MyTextController.

Replacing specific text is another task that you might want to perform. To

replace some portion of the text in an NSTextView, you must first define an

NSRange variable. This range describes which part of the string you want

to replace. In the preceding example, you used the string “Cocoa says
hello!”. If you want to change hello to goodbye, you’d first find the location

of that word in the string. Because the numbering begins at 0, the first letter

of hello is the 11th character in the string. Further, the length of hello is 5.

Thus, to make an NSRange for hello, you’d use code like this:

NSRange theRange;
theRange = NSMakeRange(11, 5);

To replace hello with goodbye, call the replaceCharactersInRange

method of the NSTextView:

[textView replaceCharactersInRange:theRange
withString:@”Goodbye”];

Besides editing the text, you’ll sometimes want to programmatically select

portions of the text in an NSTextView. For example, suppose you want to

perform a Select All operation. Create an NSRange representing the

entire length of the text and then call the setSelectedRange method of the

NSTextView to select the text:

213 Chapter 11: Text

NSRange theRange;
theRange = NSMakeRange(0, [[textView string] length]);
[textView setSelectedRange:theRange];

Saving Text for a Rainy Day
Eventually, your users will want to save the text on which they’ve been work-

ing so hard. Cocoa lets you save text in two ways:

 ✓ Plain: Plain text is text without any formatting. You see this type of text

in HTML and XML documents, and plain text files (such as when you

press Ô+Shift+T in the TextEdit application). When all you care about is

the text data in a file and not its formatting, use the plain text format.

 ✓ Rich: Rich text conveys information about the formatting. You may rec-

ognize the rich text format from popular Microsoft applications, such

as Word. The rich text file format saves formatting data, such as fonts,

colors, and styles in the file along with the actual text data. If you’re

building a word processor or a similar type of application in which for-

matting matters, use the rich text format.

To see how these two file formats work with Cocoa, follow these steps:

 1. In Xcode, add the following lines of code to the MyTextController.h

file to define two new actions:

- (IBAction)saveRichTextFile:(id)sender;
- (IBAction)saveTextFile:(id)sender;

 2. Navigate to the MyTextController.m file and implement the two

actions:

- (IBAction)saveTextFile:(id)sender
{
 NSSavePanel *savePanel = [NSSavePanel savePanel];
 [savePanel setRequiredFileType:@”txt”];
 [savePanel setTitle:@”Save as Plain Text”];
 if ([savePanel runModal] == NSOKButton)
 {
 [[textView string] writeToFile:[savePanel

filename] atomically:YES
encoding:NSUTF8StringEncoding error:NULL];

 }
}

- (IBAction)saveRichTextFile:(id)sender
{

214 Par t III: Put ting It All Together: Cocoa Programming in Depth

 NSSavePanel *savePanel = [NSSavePanel savePanel];
 [savePanel setRequiredFileType:@”rtf”];
 [savePanel setTitle:@”Save as Rich Text”];
 if ([savePanel runModal] == NSOKButton)
 {
 [[textView RTFFromRange:
 NSMakeRange(0, [[textView string]

length])]
 writeToFile:[savePanel filename] atomically:YES];
 }
}

 3. Open the MainMenu.xib file in Interface Builder.

 4. To the existing Window object in your interface, add two NSButton

controls and change their Title Attributes in the Inspector window to

 • Save Plain Text

 • Save Rich Text

 Figure 11-12 shows these new buttons.

 5. Control+drag from each NSButton in the interface to the

MyTextController instance in MainMenu.xib and then when you let

go of the mouse, assign the appropriate action to that button with the

black connections list overlay that appears.

Figure 11-12:
Add two

NSButtons
that will

save rich
and plain
text files.

215 Chapter 11: Text

The code for both actions works similarly, with a few exceptions:

 ✓ Both actions display a SavePanel so that users can select the name

and destination of the file they want to save.

 ✓ The two methods differ on the file type and title that they display in the

SavePanel and the fact that plain text files need an encoding.

To display the panel, each method uses this line of code:

if ([theSavePanel runModal] == NSOKButton)

The runModal method of the SavePanel takes care of displaying the modal

window. A modal window is one in which users are forced into a mode of

operation — they must make a decision (saving a file or halting the opera-

tion) before proceeding any further.

When a user clicks a file and clicks the Save button in the SavePanel, the

runModal function of the SavePanel returns a value. Instead of worrying

about what numerical value it returns, Cocoa provides you with the constant

NSOKButton indicating that the user clicked the Save button. The following

code example checks for the Save button. Conversely, you could check for

the Cancel button by using the appropriate constant for that button:

if ([theSavePanel runModal] == NSCancelButton)

If the users click Save in the SavePanel, the code writes the text from the

TextView to a plain or rich text file.

For plain text files, this means using the writeToFile method of the

NSString class:

[[textView string] writeToFile:[savePanel filename]
atomically:YES encoding:NSUTF8StringEncoding
error:NULL];

You retrieve the text from the text view as an NSString using the [text
Viewstring] method. The text file is saved with the writeToFile method,

passing it four parameters:

 ✓ The name of the file that the user entered in the SavePanel.

 ✓ A Boolean value titled atomically: If you pass YES as the atomically

parameter, the writeToFile method first writes the data to a temporary

file and renames that file after the write operation is finished. If it has a

value of NO, writeToFile writes the data directly to the file returned by

the filename method. Set the atomically parameter to YES.

216 Par t III: Put ting It All Together: Cocoa Programming in Depth

 ✓ An encoding: The encoding is best set to UTF8, as it accounts for

languages beyond English.

 ✓ An error routine should something go wrong: The error parameter can

be set to NULL, as I won’t trap errors in this demo.

The second method in the code listing saves the file to a rich text file. Much

of the code in it is identical to the plain text version, with one big excep-

tion. Instead of retrieving text from text view with the string method of the

NSString class, you use the RTFFromRange method for rich text. This has

the effect of retrieving the text with its style information (bold, size, color,

and so on) intact:

[[textViewRTFFromRange:
 NSMakeRange(0, [[textViewstring] length])]
 writeToFile:[theSavePanel filename]

atomically:YES];

The only parameter of the RTFFromRange method is an NSRange value indi-

cating the portion of text that you want to retrieve from text view. To retrieve

all the text, you supply the method with the starting point of the text and the

length of text to grab. In this instance, you grab all the text found in the text

view, starting from position 0 (zero) and extending the length of the text in

the text view:

NSMakeRange(0, [[textView string] length])

After you have NSString from TextView, writeToFile works the same as

it does for plain text files, with a minor caveat. When you use the writeTo
File method, the resulting plain text files have the .txt file extension and

rich text files have the .rtf extension.

Retrieving Text
Another important task that you’ll likely need to perform regularly is opening

text files. To open and read a text file, your code should do the following:

 ✓ Display an OpenPanel so users can choose which file they want to open.

 ✓ Read the text data from the file.

 ✓ Display that data in an NSTextView.

217 Chapter 11: Text

To add the capability to open and view plain and rich text files, add a few

items to the interface:

 1. In Xcode, add the following lines of code to the MyTextController.h

file to define these two actions:

- (IBAction)openRichTextFile:(id)sender;
- (IBAction)openTextFile:(id)sender;

 2. Navigate to the MyTextController.m file and implement those two

actions:

- (IBAction)openTextFile:(id)sender
{
 NSOpenPanel *theOpenPanel = [NSOpenPanel

openPanel];
 if ([theOpenPanel runModal] == NSOKButton)
 {
 NSString *theFileName = [theOpenPanel

filename];
 NSString *theFileContents = [NSString
 stringWithContentsOfFile:theFileName];
 [textView setString:theFileContents];
 }
}

- (IBAction)openRichTextFile:(id)sender
{
 NSOpenPanel *theOpenPanel = [NSOpenPanel

openPanel];
 if ([theOpenPanel runModal] == NSOKButton)
 {
 NSString *theFileName = [theOpenPanel filename];
 NSData *theRTFData = [NSData dataWithContentsO

fFile:theFileName];
 [textView replaceCharactersInRange:
 NSMakeRange(0, [[textView string] length])

withRTF:theRTFData];
}
}

 3. Open the MainMenu.xib file in Interface Builder.

 4. To the existing window object in the XIB project window, add two

additional NSButton controls and then change their Title Attributes

in the Inspector window to Open Plain Text and Open Rich Text.

 Figure 11-13 shows the new buttons.

218 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 11-13:
Add two

NSButtons
to the

interface
for opening

plain and
rich text

files.

 5. Control+drag from each NSButton in the interface to the MyText
Controller instance in MainMenu.xib and then when you let go of

the mouse, assign the appropriate action to that button with the black

connections list overlay that appears.

In contrast to the examples from earlier in this chapter in which you saved

text files, opening text files requires the use of the NSOpenPanel class.

Opening files works in much the same manner as the NSSavePanel. In the

two methods for opening text files, you aren’t setting the title displayed in

the NSOpenPanel (with setTitle) like you did for the NSSavePanel ear-

lier. You certainly could, though.

Like the NSSavePanel, you display the NSOpenPanel with the runModal

method:

NSOpenPanel *theOpenPanel = [NSOpenPanel openPanel];

If the user selects a text file and clicks OK to open it, runModal returns

NSOKButton:

if ([theOpenPanel runModal] == NSOKButton)

From there, you open the text file, read its contents, and display them in an

NSTextView. For plain text files, it’s a straightforward process to read in a

text file with the stringWithContentsOfFile method of NSString:

NSString *theFileName = [theOpenPanel filename];
 NSString *theFileContents = [NSString
 stringWithContentsOfFile:theFileName];

219 Chapter 11: Text

To display the text in an NSTextView, you need only one line of code:

 [textView setString:theFileContents];

After you’re finished working with the NSString objects, don’t forget to dis-

pose of them:

[theFileName release];
[theRTFData release];

Reading rich text files requires a bit of extra work, but not too much. Instead

of using an NSString to read text from a rich text file, you must use an

NSData object. Call the dataWithContentsOfFile method of the NSData

class to load stylized text from the file into the NSData object:

NSData *theRTFData = [NSData dataWithContentsOfFile:theFil
eName];

To display it in the text view, use the replaceCharactersInRange

method:

[textView replaceCharactersInRange:
 NSMakeRange(0, [[textView string] length])

withRTF:theRTFData];

The replaceCharactersInRange method takes two parameters:

 ✓ NSRange: The location in the NSTextView where you want to display

the text

 ✓ NSData: The rich text data that you read from the file

To test your code, choose Build➪Build and Go in Xcode.

220 Par t III: Put ting It All Together: Cocoa Programming in Depth

Chapter 12

Graphics
In This Chapter
▶ Defining colors

▶ Creating a custom view

▶ Drawing rectangles and ovals

▶ Painting irregular shapes

▶ Creating text

▶ Displaying images

From the beautiful fonts in a word processor to the shiny Finder interface,

the Mac OS has always prided itself on fantastic looking graphics. Mac

OS X is no different. With its sophisticated Quartz graphics engine, Mac OS X

can produce stunning graphics. Cocoa gives you direct access to these

powerful features of Mac OS X.

This chapter covers the basics of working with graphics in Cocoa. You create

a custom view for displaying your graphics and draw on it with a variety of

colors, shapes, and images. You even write code to change the opacity of

your graphics, giving them the coveted see-through look.

Cocoa and the Art of Graphics
Before jumping head first into graphics, you need to familiarize yourself with

a few important Cocoa data types: NSPoint, NSRect, NSSize, and NSColor.

You need them to do any type of graphics programming in Cocoa, so they

make a good starting point.

Points
Just like in geometry, Cocoa uses points to designate positions on a square

grid. To work with points in Cocoa, you use an NSPoint structure. NSPoint

222 Par t III: Put ting It All Together: Cocoa Programming in Depth

is a structure comprised of two floats (x and y, respectively). Quartz, the

graphics engine on the Mac OS, defines the bottom-left corner of a view as

the origin (0,0). The x value increases as you move to the right. The y value

increases as you advance up.

 The bottom-left origin is different than what you might be accustomed to in

other programming environments, where the origin is in the top-left corner.

This bottom-left arrangement comes from PostScript, upon which OS X’s

underlying PDF (Portable Document Format) graphics model is based.

The following structure shows how the Quartz framework defines a point:

typedef struct _NSPoint {
 float x;
 float y;
} NSPoint;

The x and y portion of the structure are the coordinates of the point that you

want to represent. To use an NSPoint variable, you must first declare it like

you would any other variable or structure:

NSPoint thePoint;

Then to assign values to the x and y members of an NSPoint structure, use

the NSMakePoint function. This example creates an NSPoint at the location

(100,100):

thePoint = NSMakePoint(100,100);

Rects and sizes
Closely related to the NSPoint structure is the NSRect structure. An NSRect

(Rect is short for rectangle) is a structure comprised of an NSPoint, the origin

of the rectangle, and an NSSize, the size of the rectangle:

typedef struct _NSRect {
 NSPoint origin;
 NSSize size;
} NSRect;

To understand how this works, you also need to know about the NSSize

structure:

typedef struct _NSSize {
 float width;
 float height;
} NSSize;

223 Chapter 12: Graphics

Thus, an NSRect is really a structure of four float values: two for the NSPoint

and two for the NSSize. The NSPoint portion describes where the NSRect

begins, and the NSSize variable describes the dimensions of the NSRect.

To create an NSRect, first declare the NSRect variable:

NSRect theRect;

Then initialize that variable with the NSMakeRect function. NSMakeRect

takes four parameters: x, y, width, and height. For example, this line of

code creates an NSRect with an origin at (100,100) and dimensions of 50 x 50:

theRect = NSMakeRect(100,100, 50, 50);

Later, if you want to find the origin or size of theRect, use code like this:

float theOriginX, theOriginY;
float theSizeW, theSizeH;

theOriginX = theRect.origin.x;
theOriginY = theRect.origin.y;

theSizeW = theRect.size.width;
theSizeH = theRect.size.height;

Colors
Cocoa’s AppKit includes the NSColor data type to help you work with color

in your graphics projects. You have two ways of working with color.

Using convenience colors
The easiest way to create and define an NSColor object is to use one of the

color convenience methods. You’ll recognize immediately the colors that

each NSColor convenience method represents because it has a plain-English

name. For example, to create an NSColor object that stores the color black,

use code like this:

//Declare a pointer to an NSColor object
NSColor *aColor;

// assign the color black to it
aColor = [NSColor blackColor];

224 Par t III: Put ting It All Together: Cocoa Programming in Depth

As you may have guessed, this technique works for many other colors too

(blueColor, redColor, and so on). Table 12-1 lists common colors that you

can use.

Table 12-1 Preset Color Components
Preset Component Color It Produces

blackColor Black

blueColor Bright blue

brownColor Brown

clearColor Clear/transparent

cyanColor Light blue

darkGrayColor Dark gray (for the Canadians, dark grey)

grayColor Medium gray

greenColor Bright green

lightGrayColor Light gray (you were expecting something else?)

magentaColor Pinkish purple color . . . or is it a purple-ish pink
color

orangeColor Orange

purpleColor Purple

redColor Bright red

whiteColor White

yellowColor Bright and sunny yellow

Using device-dependent color spaces
Eventually, you’ll want some colors that the convenience methods don’t cover.

In that case, you have to resort to some of the more sophisticated color meth-

ods in the AppKit. The AppKit has three kinds of color spaces that you can use

to create colors:

 ✓ Device dependent (or device): When you use device colors, you can’t be

sure that you’ll always see the same color across devices. You’re prob-

ably most familiar with this kind of color because most home computer

monitors and printers display it. Stand any two computer monitors next

to each other, and you’ll soon discover that they don’t produce colors

equally. Sure, it’s good enough to view Web pages, play games, and even

create graphics. It also works for many kinds of home-printing chores.

It’s not so good, however, for professional printing, color correction,

and similar color tasks.

225 Chapter 12: Graphics

 ✓ Device independent (or calibrated): Computer and printer manufacturers

began creating hardware and software solutions to calibrate their equip-

ment. The idea was that you could see the same kind of output no matter

what device you used. The calibration is supposed to account for the

peculiarities of your particular device and adjust it to produce

accurate colors.

 ✓ Named: This color space is for even more sophisticated work with color.

You can disregard it for this book.

The device-dependent color space has three color spaces. A color space is just

a fancy way of saying “ways of creating color.” Normally, you create colors by

mixing different amounts of specific base colors. The three mixing schemes

that you can use in device-dependent color are

 ✓ DeviceRGB: Red, green, blue, and alpha components

 ✓ DeviceCMYK: Cyan, magenta, yellow, black, and alpha components

 ✓ DeviceWhite: White and alpha components

For the rest of this chapter, you have to worry only about DeviceRGB because

it’s the best choice for displaying graphics on a monitor. The colors that

emanate from a monitor are produced by mixing varying amounts of red,

green, and blue light, hence RGB. As you combine colors in RGB, the color

approaches white. CMYK, on the other hand, is used for printing color. As

you combine colors in CMYK, the color approaches black. After you get the

hang of the DeviceRGB color space, it’s easy to use the DeviceCMYK and

DeviceWhite color spaces. You’re not missing anything by forgetting about

them for the time being because this chapter deals solely with color on a

monitor, not a printer.

Now, it’s time to get to the code. You define your own RGB (red, green, blue)

colors with the colorWithDeviceRed function. The function takes four floats

as parameters. These four numbers correspond to the three color channels

(red, green, and blue) and the alpha channel. Each parameter can have a

value between 0.0 and 1.0; 1.0 is fully on for that particular color channel.

The alpha parameter dictates how opaque the color is. A value of 1.0 is com-

pletely opaque, and a value of 0.0 is fully transparent.

 This numbering scheme contrasts with the colors used in familiar applications,

such as Web pages and Photoshop documents, where the numbering usually

has a range between 0 and 255. To correlate with the Cocoa way of doing things,

add 1 to the value of each color component and divide by 256. For example, if

you want to convert a Photoshop color with RGB values of (127,63,255) to the

RGB values for an NSColor, perform this simple calculation:

226 Par t III: Put ting It All Together: Cocoa Programming in Depth

127 + 1 = 128/256 = 0.5
63 + 1 = 64/256 = 0.25
255 + 1 = 256/256 = 1.0

To create an NSColor object in the DeviceRGB color space, use code

like this:

//Declare a pointer to an NSColor object
NSColor* theColor;

//create the object
//and assign the color black to it
theColor = [NSColor colorWithDeviceRed:(float)0.0

green:(float)0.0 blue:(float)0.0
alpha:(float)1.0];

Notice that the red, green, and blue parameters are all set to 0.0, which yields

the color black. If you wanted to create a red color object, you’d use code

like this:

//create the object
//and assign the color red to it
theColor = [NSColor colorWithDeviceRed:(float)1.0

green:(float)0.0 blue:(float)0.0
alpha:(float)1.0];

The red parameter has a value of 1.0, and the green and blue components

have a value of 0.0. By adjusting the alpha value, you can create different

shades of the same color. I discuss color in more detail later in this chapter,

in the “Painting with Lines and Shapes” section.

After you create a color object, the only other thing you need to do before

working with it is to use the set function. This sets the graphics pen to your

desired color:

[theColor set];

Yes, it’s as easy as that. Again, you’ll see more clearly how Cocoa colors work

in the code examples in the remainder of this chapter.

227 Chapter 12: Graphics

Building a Graphics Interface
To begin coding your graphics masterpiece, you need an interface in which

to display graphics:

 1. Launch Xcode and choose File➪New Project to create a new Cocoa

project, as shown in Figure 12-1.

 2. Expand the Resources folder and double-click the MainMenu.xib file

to open it in Interface Builder.

 3. In Interface Builder, open the Library window by choosing Tools➪
Library and searching for Custom View, as shown in Figure 12-2.

 4. Drag a Custom View control from the Library to the main window of

the project’s interface.

Figure 12-1:
Create a

new Cocoa
project.

228 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 12-2:
Locate the

Custom
View

control.

 5. With the new control selected in the interface, press Ô+6 to open the

Identity Inspector and rename the class.

 For example, you can name it MyCanvas, as shown in Figure 12-3.

Figure 12-3:
Rename

the control
MyCanvas.

229 Chapter 12: Graphics

 6. Press Ô+3 to change the Autosizing of the view.

 The Autosizing properties affect how the view behaves when a user

resizes the parent window.

 7. Click twice inside the Autosizing square to activate the horizontal and

vertical arrows, as shown in Figure 12-4.

 With the horizontal and vertical arrows activated within the Autosizing

square, the view stretches with the parent window when a user resizes it.

 8. Select the MyCanvas view in the interface.

 9. Choose File➪Write Class Files to create and add the header and imple-

mentation files to your Xcode project.

 10. Back in Xcode, change this line in MyCanvas.h:

@interface MyCanvas : /* Specify a superclass (eg:
NSObject or NSView) */ {

 to this:

@interface FileInfoController : NSView {

 In MyCanvas.m, you focus mainly on the drawRect method. This is

where you put drawing commands to draw to the MyCanvas view. The

MyCanvas.m file doesn’t have the drawRect method defined, so you

have to add it.

Figure 12-4:
Set the

horizontal
and vertical
Autosizing.

230 Par t III: Put ting It All Together: Cocoa Programming in Depth

 11. Add the drawRect method to the MyCanvas.m file:

- (void)drawRect:(NSRect)rect {
 // Drawing code here.
}

 The drawing code appears in this method. The drawRect function takes

care of redrawing your Custom View by automatically refreshing the

view from your application’s event loop.

Painting with Lines and Shapes
With your interface and custom view ready for displaying graphics, you can

now add some code to make it actually display something. Before you draw

something, you have to define what that something is. When it comes to defin-

ing shapes in Cocoa, paths are the name of the game.

Starting with Beziér paths
If you’ve ever played connect the dots, you’re already well on your way to

understanding how paths work. A path is a collection of points that together

form the outline of a shape. For example, a square-shaped path has four points,

an octagon-shaped path has eight points, and so on. Cocoa represents paths

with the NSBezierPath type. Typically you begin working with paths by

declaring a pointer to a NSBezierPath:

NSBezierPath *thePath;

Then you create a path. Your path might form a square, a circle, or some

other shape. Because you’ll want to create different shapes, Cocoa gives you

several methods for creating paths.

One of the most common paths you’ll create is the shape of a rectangle. For

that, you can use the bezierPathWithRect method of the NSBezierPath

class. The bezierPathWithRect method takes a Rect (which defines its

origin and size) as its sole parameter. Because the drawRect function passes

in a Rect that describes the dimensions of the MyCanvas object, you can

easily create a rectangular path around MyCanvas:

- (void)drawRect:(NSRect)rect {

NSBezierPath *thePath;
thePath = [NSBezierPath bezierPathWithRect:rect];

}

231 Chapter 12: Graphics

Similarly, you can create an oval path within a bounding box by using the

bezierPathWithOvalInRect method and passing it the rect you want to

use as the bounding box:

- (void)drawRect:(NSRect)rect {
 // Drawing code here.

NSBezierPath *thePath;
thePath = [NSBezierPath bezierPathWithOvalInRect:rect];

}

Other times, you may not want to limit your Rect to the size of MyCanvas.

In these instances, simply create a Rect structure and pass that to the

NSBezierPath functions. The following example creates a 50 x 50 circular

path in the bottom-right corner of the view:

NSRect theRect;
theRect = NSMakeRect(0, 0, 50, 50);

NSBezierPath *thePath;
thePath = [NSBezierPath bezierPathWithOvalInRect:theRect];

 Just because you have a Beziér path doesn’t mean you’ve drawn anything yet.

Beziér paths strictly define the path that you’ll fill or stroke later.

Filling a path
After you create a path, filling it in with your color of choice is a simple

matter. Send the path the fill message, and you’re finished!

[thePath fill];

Of course, you’ll want to create and set a color first. For example, to fill the

entire background of the view with black, your code might look like this:

- (void)drawRect:(NSRect)rect {

 //create a path
 NSBezierPath *thePath = [NSBezierPath

bezierPathWithRect:rect];

 //create a black color object
 NSColor *theColor = [NSColor blackColor];

 //set the color
 [theColor set];

232 Par t III: Put ting It All Together: Cocoa Programming in Depth

 //fill the path with the current color (black)
 [thePath fill];

}

Figure 12-5 shows the results of this code.

Figure 12-5:
Fill the

entire view
with a solid

color.

You can use the same plan of attack to fill an NSRect that doesn’t cover the

entire background of the Custom View. For example, to draw a white

rectangle at the top of the view, use this code:

- (void)drawRect:(NSRect)rect {

 //create and define an NSRect
 NSRect theRect = NSMakeRect(70, rect.size.height-235,

120, 230);

 //define a rectangular path
 thePath = [NSBezierPath bezierPathWithRect:theRect];

 //define a white color object
 NSColor *theColor = [NSColor whiteColor];

 //set the color
 [theColor set];

 //fill the path with white
 [thePath fill];
}

233 Chapter 12: Graphics

Put the black and white together, and you’ll see a result like the one shown in

Figure 12-6.

Figure 12-6:
Fill the

background
in black and

fill a white
rectangle

toward
the top of
the view.

You aren’t limited to filling rectangular paths. Remember that oval-shaped

path you created earlier in this chapter? Now is a good time to put it to use.

By creating three oval paths and filling them with red, yellow, and green,

respectively, you can create a simple traffic-light image. Add this code to the

end of the drawRect function:

//**************************************
// DRAW THE LIGHTS
//**************************************
 //create oval path
 theRect = NSMakeRect(100, rect.size.height-220, 60, 60);
 thePath = [NSBezierPath bezierPathWithOvalInRect:theRec

t];

 //fill oval in green
 theColor = [NSColor colorWithDeviceRed:(float)0.0
 green:(float)1.0 blue:(float)0.0

alpha:(float)1.0];
 [theColor set];
 [thePath fill];

 //create oval path
 theRect = NSMakeRect(100, rect.size.height-150, 60, 60);
 thePath = [NSBezierPath bezierPathWithOvalInRect:theRec

t];

234 Par t III: Put ting It All Together: Cocoa Programming in Depth

 //fill oval in yellow
 theColor = [NSColor colorWithDeviceRed:(float)1.0
 green:(float)1.0 blue:(float)0.0

alpha:(float)1.0];
 [theColor set];
 [thePath fill];

 //create oval path
 theRect = NSMakeRect(100, rect.size.height-80, 60, 60);
 thePath = [NSBezierPath bezierPathWithOvalInRect:theRec

t];

 //fill oval in red
 theColor = [NSColor colorWithDeviceRed:(float)1.0
 green:(float)0.0 blue:(float)0.0

alpha:(float)1.0];
 [theColor set];
 [thePath fill];

Figure 12-7 shows the results.

Figure 12-7:
Add a few

round ovals
to create an

image of
a simple

traffic light.

Drawing a path
You don’t have to fill all paths that you run across. You can also stroke a

path, which has the effect of drawing an outline around a path. Stroking a

path is just as simple as it is to fill one:

235 Chapter 12: Graphics

[thePath stroke];

 You can also use a combination of fill and stroke for different effects.

When you do, make sure to perform the stroke functions after the fill

function so that the outline draws on top of the filled path. For example, sup-

pose you wanted to draw a black ring around one of the traffic lights. Your

code might look like this:

//stroke oval in black
theColor = [NSColor blackColor];
[theColor set];
[thePath stroke];

This code draws a thin outline around the light. If you’d prefer a thicker out-

line, use the path’s setLineWidth function. The default line width is 1, so

anything larger produces thicker lines:

[thePath setLineWidth: 5];

To draw an outline around each of the lights, adjust your drawRect function

by adding the boldface code:

- (void)drawRect:(NSRect)rect
{

... code omitted ...

//**************************************
// DRAW THE LIGHTS
//**************************************
 //create oval path
 theRect = NSMakeRect(100, rect.size.height-220, 60, 60);
 thePath = [NSBezierPath bezierPathWithOvalInRect:theRec

t];

 //fill oval in green
 theColor = [NSColor colorWithDeviceRed:(float)0.0
 green:(float)1.0 blue:(float)0.0

alpha:(float)1.0];
 [theColor set];
 [thePath fill];

 //stroke oval in black
 theColor = [NSColor blackColor];
 [theColor set];
 [thePath setLineWidth: 5];
 [thePath stroke];

236 Par t III: Put ting It All Together: Cocoa Programming in Depth

 //create oval path
 theRect = NSMakeRect(100, rect.size.height-150, 60, 60);
 thePath = [NSBezierPath bezierPathWithOvalInRect:theRec

t];

 //fill oval in yellow
 theColor = [NSColor colorWithDeviceRed:(float)1.0
 green:(float)1.0 blue:(float)0.0

alpha:(float)1.0];
 [theColor set];
 [thePath fill];

 //stroke oval in black
 theColor = [NSColor blackColor];
 [theColor set];
 [thePath setLineWidth: 5];
 [thePath stroke];

 //create oval path
 theRect = NSMakeRect(100, rect.size.height-80, 60, 60);
 thePath = [NSBezierPath bezierPathWithOvalInRect:theRec

t];

 //fill oval in red
 theColor = [NSColor colorWithDeviceRed:(float)1.0
 green:(float)0.0 blue:(float)0.0

alpha:(float)1.0];
 [theColor set];
 [thePath fill];

 //stroke oval in black
 theColor = [NSColor blackColor];
 [theColor set];
 [thePath setLineWidth: 5];
 [thePath stroke];
}

@end

Figure 12-8 shows the result of the code change.

Creating fancy-pants paths
So far, you’ve worked with rectangular and oval paths. Paths need not con-

form to these two simple shapes, though. A path can be as simple or as com-

plex as you want.

237 Chapter 12: Graphics

Figure 12-8:
Draw an

outline
around each
of the lights

for an added
effect.

Suppose that you want to display a stop sign next to your traffic-light

graphic. A stop sign is an octagon. To create a stop-sign-shaped path, simply

create eight NSPoint variables and populate them with points that repre-

sent the shape of a stop sign. Because tracking the various points in complex

paths can get tedious, Cocoa gives you the ability to define paths relative to

the last point in the path. That way, you can define the starting point with the

actual coordinates and define the rest of the path relative to that point.

 If you want to move that path to another location later, you have to change only

one point — the first one. The rest of the path follows the first point without

any other code changes.

The following code creates the points for a path in the shape of a stop sign.

This code uses points that are relative to the first point:

//**************************************
// DRAW A STOP SIGN
//**************************************

 // Create the eight points of an octagon (stop sign)
 NSPoint pt1,pt2,pt3,pt4,pt5,pt6,pt7,pt8;

 //Define the points
 pt1 = NSMakePoint(300, rect.size.height-220);
 pt2 = NSMakePoint(100, 0);
 pt3 = NSMakePoint(50, 50);
 pt4 = NSMakePoint(0, 100);
 pt5 = NSMakePoint(-50, 50);
 pt6 = NSMakePoint(-100, 0);
 pt7 = NSMakePoint(-50, -50);
 pt8 = NSMakePoint(0, -100);

238 Par t III: Put ting It All Together: Cocoa Programming in Depth

The first point is relative to the origin of the view. Each of the last seven

points has a value that’s relative to the point that precedes it in the list.

Here’s how to create a path with relative points:

 1. Define relative point positions for a path.

 Use the following guidelines:

 • Positive x value: Path moves to the right.

 • Negative x value: Path moves to the left.

 • Positive y value: Path moves up.

 • Negative y value: Path moves down.

 2. After you define the various points on the path, create the

NSBezierPath with the bezierPath class method of the

NSBezierPath class.

// Create a stop sign path
NSBezierPath *stopSign = [NSBezierPath bezierPath];

 3. Add the points to the path.

 For the first point, use the moveToPoint function. For subsequent

points, use the relativeLineToPoint function because you should

position these points relative to the first point:

[stopSign moveToPoint:pt1];
[stopSign relativeLineToPoint:pt2];
[stopSign relativeLineToPoint:pt3];
[stopSign relativeLineToPoint:pt4];
[stopSign relativeLineToPoint:pt5];
[stopSign relativeLineToPoint:pt6];
[stopSign relativeLineToPoint:pt7];
[stopSign relativeLineToPoint:pt8];

 4. Close the path with the closePath function:

[stopSign closePath];

 5. With a path defined, you can apply the usual color, fill, and

stroke commands to it.

 For example, to fill in the stop sign with red and outline it in white, use

code like this:

// Draw the path
[[NSColor redColor] set];
[stopSign fill];

// Draw the path
[[NSColor whiteColor] set];
[stopSign setLineWidth: 5];
[stopSign stroke];

239 Chapter 12: Graphics

Combined, the code in this section produces result like those shown in

Figure 12-9.

Figure 12-9:
Fill and

stroke the
path to see

the stop
sign appear
before your

eyes.

Drawing Text
Besides shapes and paths, Cocoa is quite adept at displaying text in graphics.

Before you start drawing text, you need to load that text into an NSString

variable. For example, to add STOP to a stop sign, follow these steps:

 1. Create the NSString variable:

NSString *theString;
theString = @”STOP”;

 2. Determine the location in the view where you want to display the text

and store that position in an NSPoint:

NSPoint theTextPos;
theTextPos = NSMakePoint(275, rect.size.height-150);

 3. Draw the string with the drawAtPoint method, passing it the

NSPoint:

[theString drawAtPoint:theTextPos withAttributes:nil];

This line of code draws the text at the position determined by the NSPoint.

When you run the example, you may be disappointed with the results, as

shown in Figure 12-10. The STOP string appears in a tiny font, and the letters

are black, the default text settings.

240 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 12-10:
 So far, this

doesn’t look
much like a

stop sign.

Clearly, you want to define how the font looks. To accomplish this, pass some-

thing other than nil in the withAttributes parameter of the drawAtPoint

function. The withAttributes parameter takes an NSDictionary, so you

need to declare and create one of those.

An NSMutableDictionary is a container for a collection of items; in this

case, a collection of text attributes. NSMutableDictionary is a subclass of

NSDictionary, so it works in place of an NSDictionary. A mutable object

is one that you can change sometime after you create it. An immutable object

is one that you can’t change after you create it. Mutable objects (such as

NSMutableDictionary) have mutable in their names. Immutable objects

(such as NSDictionary) don’t.

Follow these steps to define your font:

 1. Create an NSMutableDictionary:

 In this situation, you use a predefined set of attributes, so you can use

an immutable dictionary.

NSMutableDictionary *theAttributes;

//create the NSDictionary object
theAttributes = [[NSMutableDictionary alloc] init];

 2. Add objects to the NSMutableDictionary that represent some text

attribute.

241 Chapter 12: Graphics

 For example, to set the font to Helvetica with a size of 62, use code

like this:

[theAttributes setObject:
[NSFont fontWithName: @”Helvetica” size: 62]
forKey: NSFontAttributeName];

 3. Set the color of the text.

 This code adds a white text color attribute to the NSDictionary:

[theAttributes setObject:
 [NSColor whiteColor] forKey:

NSForegroundColorAttributeName];

 4. When you finish adding text attributes to the NSDictionary object,

pass the dictionary object in the withAttributes parameter of the

drawAtPoint function:

[theString drawAtPoint:theTextPos withAttributes:
theAttributes];

 5. Dispose of the NSDictionary:

[theAttributes release];

The combined code to draw the string on the stop sign looks like this. Note

that theTextPos has a value of 267 for its first parameter instead of 275, to

account for the larger Helvetica font.

//**************************************
// DRAW STOP SIGN TEXT
//**************************************
 //Define a string
 NSString *theString;
 theString = @”STOP”;

 //Position the text
 NSPoint theTextPos;
 theTextPos = NSMakePoint(267, rect.size.height-150);

 //Create the NSDictionary object
 NSMutableDictionary *theAttributes;
 theAttributes = [[NSMutableDictionary alloc] init];

 //Add attributes to the NSDictionary
 [theAttributes setObject:
 [NSFont fontWithName: @”Helvetica” size: 62]
 forKey: NSFontAttributeName];

242 Par t III: Put ting It All Together: Cocoa Programming in Depth

 [theAttributes setObject:
 [NSColor whiteColor] forKey:

NSForegroundColorAttributeName];

 //Draw the text
 [theString drawAtPoint:theTextPos withAttributes:

theAttributes];

 //Dispose of the NSDictionary
 [theAttributes release];

You can view the results in Figure 12-11.

Figure 12-11:
That’s more

like it!

Displaying an Image
Eventually, you’ll grow tired of creating your own graphics and want to dis-

play an image file instead. The easiest way to display an image file in your

Cocoa application is to add the file directly to the project. For example, if you

were to drag a face.jpg image from Finder to Xcode, your project might

look like Figure 12-12.

243 Chapter 12: Graphics

Figure 12-12:
Drag an

image from
Finder to

your project
for easy
access.

To draw this image in a view, you need to add only a few lines of code:

 1. Create an NSPoint to hold the coordinates for where you want to

display the image.

 This code creates an NSPoint for the lower-left corner of the view:

NSPoint theImagePos;
theImagePos = NSMakePoint(0, 0);

 2. Create an NSImage object and load the image into it.

NSImage* theImage;
theImage = [NSImage imageNamed:@”face.jpg”];

 3. Display the image in the view by calling the dissolveToPoint function.

[theImage dissolveToPoint: theImagePos
fraction:(1.0)];

 Figure 12-13 demonstrates the dissolveToPoint function in action.

The fraction parameter of the dissolveToPoint function represents

the opacity of the image. The smaller the value you use for the fraction, the

more transparent it is. A value of 1.0 indicates no transparency; a value of

0.0 denotes complete transparency. Figure 12-14 shows the effect of different

opacity settings.

244 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 12-13:
Draw an
image in

a view by
using the
dissolve
ToPoint

function.

Figure 12-14:
Change the

opacity of
an image

for different
effects.

245 Chapter 12: Graphics

To see how opacity works, add this code to the end of your drawRect function:

 NSPoint theImagePos;
 theImagePos = NSMakePoint(0, 0);

 NSImage* theImage;
 theImage = [NSImage imageNamed:@”face.jpg”];

int i;
 for (i=3; i<7; i++)
 {
 [theImage dissolveToPoint: theImagePos

fraction:(i*0.1)];
 theImagePos.x = theImagePos.x + 130;
 }

 theImagePos = NSMakePoint(0, 130);
 for (i = 7;i<=10;i++)
 {
 [theImage dissolveToPoint: theImagePos

fraction:(i*0.1)];
 theImagePos.x = theImagePos.x + 130;
 }

 In this example, you used a literal value of 130 to position elements on the

screen. This is simply for demonstration purposes to make the code easier to

read, but don’t do such things in the real world. Instead, base your values on

the height and width of the view.

246 Par t III: Put ting It All Together: Cocoa Programming in Depth

Chapter 13

Managing Your Files
In This Chapter
▶ Using file paths in Cocoa

▶ Opening files

▶ Finding out about files

▶ Displaying a Files icon in your interface

▶ Copying, moving, creating, and deleting files and folders

▶ Creating a folder

Almost every device that Apple ships sports some kind of storage device.

Whether it’s the hard drive in your old iPod, a SuperDrive in your desk-

top Macintosh, or a flash drive in your MacBook Air, all storage devices share

one common trait — they store data. To facilitate this storage, the Mac OS X

operating system uses a hierarchical system of files.

Cocoa has a large array of functions that you can use to make your file manip-

ulation tasks easier. With only a few lines of code, it’s a cinch to open, copy,

move, and delete any file or folder on your hard drive, assuming that you

have adequate privileges for the file or folder. This chapter shows you how.

About Files and Folders in Mac OS X
Mac OS X has several types of files. You are undoubtedly familiar with the most

basic file type — a document. You use document files every time you save work

in your favorite word processor. When you want to view the document, you

simply reopen it with your word processor.

Documents aren’t the only type of file on your Mac, however. Another impor-

tant file type is the application. You’re probably also very familiar with this

file type because you use applications to surf the Web, send e-mail, draw pic-

tures, or program with Xcode. In fact, the whole point of Cocoa programming is

to create applications. Cocoa applications come in a special directory (or bundle)

248 Par t III: Put ting It All Together: Cocoa Programming in Depth

that the Finder treats as a single file. An application bundle contains directo-

ries and individual files that contain the executable and supporting files for

your application. The idea here is that an application can store its resources

(such as pictures, audio, and data) in the same bundle as the application. The

accessory files are kept with the application, while also hiding them from the

user. That way, users are less likely to delete files that are important to the

operation of an application. Many documents also come as bundles, such as

iMovie and iDVD projects, RTFD files from TextEdit, and iPhoto Library files.

To help you keep your documents and applications in order, Mac OS X orga-

nizes files in a hierarchical structure of folders. Folders are containers of files.

A folder can hold documents, applications, or even other folders. Some folders

contain your operating system; others are ones that you create and modify

yourself.

 Computer geeks also refer to folders as directories. This chapter uses the

terms folder and directory interchangeably. Not content to keep things simple,

geeks also refer to applications as executables. The two terms are synonyms,

so whenever you hear someone say, “place the executable in the directory,”

you can be sure that he could also mean “place the application in the folder.”

To confuse naming matters even further, you’ll also hear the terms package

and bundle used to mean the same thing. Control-click a bundle in Finder, and

you’ll find a Show Package Contents menu item. Choosing it opens the bundle

as a folder to reveal its contents.

For years, Macintosh users have happily navigated the files on their hard

drives by double-clicking a folder icon to open it. With Mac OS X, most Mac

users got their first taste of the command line by using the Terminal, which

uses the strange and frightening world of paths. Paths are a textual method of

describing where a file or folder resides on a drive. For example, the Mac OS

X Fonts folder resides in the following location:

/Library/Fonts

Whenever you see the / character, think folder or directory. The preceding

example reveals that the Fonts folder resides in the Library folder. If your

username is Fred, your home folder is located at this path:

/Users/Fred

These two examples of paths assume that you’re describing a file folder or

file on your boot drive (assuming that the /Users file system mount point

resides on the boot volume). The boot drive contains the operating system

that you’re using at any one time. If you have other drives connected to

your machine, the path of a file or folder located on that machine is pre-

ceded by Volumes and the name of the drive. For example, if you have a

249 Chapter 13: Managing Your Files

VacationPhoto.jpg image file that resides on a Drive2 drive, its path looks

like this:

/Volumes/Drive2/VacationPhoto.jpg

Opening and Using Files
The project for this chapter, File Demo, displays important information about

any file or folder that a user selects. You’ll be familiar with the information

because it all appears in the Get Info window of Finder.

Building the interface
The interface consists of a button and several NSTextField controls. Users

click the button to select a file or folder, after which the application displays

information about that file or folder in the various NSTextField controls. To

create the interface for this project, perform these steps:

 1. Create a new Cocoa project in Xcode, name it File Info, and then after

it opens, expand its Resources folder and double-click the MainMenu.

xib file to open it in Interface Builder.

 2. In Interface Builder, open the default window in the XIB project

window and add six NSTextField Label controls from the Library

window and one Wrapping Label control.

 You can locate the controls by searching for Label from the Library

window’s search field.

 The wrapping label type is similar to the other labels, except that it’s preset

to be a multiple line label. The multiple lines help display long file paths.

 Starting with the wrapping label, these seven labels display the following

information about a selected file or folder:

 • File path

 • Filename

 • File exists: Displays YES if it exists; NO, if it doesn’t

 • File directory: Displays YES if the selection is a folder; NO, if it isn’t

 • File creation date

 • File modification date

 • File size in bytes

250 Par t III: Put ting It All Together: Cocoa Programming in Depth

 3. Change the Title attribute of each NSTextField to blank (that is,

delete all the text in each field).

 You’ll use these controls to display information about a file or folder.

 4. Add seven more NSTextField Label controls to the window and

change the Title attribute in the Identity Inspector window for each of

these new Labels to match the descriptions in the previous step.

 Figure 13-1 shows what the interface looks like at this point with all

14 NSTextField controls. Note that the wrapping label is taller than

the other labels to give it some space to display long file paths. A large

number of handles are around the border of each NSTextField to

show you the position of each NSTextField, even though half of them

are currently displaying nothing.

Figure 13-1:
Add 14

NSTextField
controls to

the window.

 5. Add an NSButton control to the window and with the Identity

Inspector window, change the Title attribute of the button to Select

File or Folder.

 Figure 13-2 shows what the button now looks like.

 6. Add an NSImageView Image Well to the window and resize it to 128

x 128 with the Inspector window.

 The image well is where you’ll display a file’s icon later in this chap-

ter. You may have to move the File Path label and associated text field

around to make room for the image well. Figure 13-3 shows the interface

with the addition of the image well.

251 Chapter 13: Managing Your Files

Figure 13-2:
Add an

NSButton
that users

click to
select a file

or folder.

Figure 13-3:
Add an

image well
to the

interface.

Creating a Controller class
When you have the interface in place, you need to create a Controller class.

Perform the following steps:

 1. Drag an NSObject from the Library window to the XIB project

window to add a new controller.

 2. Press Ô+6 to open the Identity Inspector and change the class name to

FileInfoController, as shown in Figure 13-4.

252 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 13-4:
Name the

object
FileInfo

Controller.

 3. Add eight outlets to the FileInfoController class.

 These eight outlets should have descriptive names that tell you the pur-

pose of each. You’ll connect seven of them to the NSTextFields. The

eighth outlet connects to the NSImageView. Name them fileCreated
Display, fileDirDisplay, fileExistsDisplay, fileIconDisplay,

fileModifiedDisplay, fileNameDisplay, filePathDisplay, and

fileSizeDisplay, as shown in Figure 13-5.

 4. Add an action to the class in the Identity Inspector window and name

it selectTheFile:.

 5. Wire the interface to the FileInfoController outlets:

 a. Control+drag from the FileInfoController instance to each
of the NSTextFields in your interface’s main window. Select
the appropriate outlet from the black connections list overlay that
appears after the Control+drag operation.

 b. Control+drag from the FileInfoController to the NSImageView
control. Connect NSImageView to the fileIconDisplay outlet.

 6. Connect the interface to the FileInfoController action.

 Control+drag from the NSButton in the interface to the FileInfo
Controller instance in the MainMenu.xib file window. Connect the

NSButton to the selectTheFile action (see Figure 13-6).

253 Chapter 13: Managing Your Files

Figure 13-5:
Add eight
outlets to
the class.

Figure 13-6:
Connect the

button in
your inter-
face to the
selectThe

File action.

254 Par t III: Put ting It All Together: Cocoa Programming in Depth

 7. Create the files for the FileInfoController class:

 a. In the XIB project window, click the FileInfoController class.

 b. Choose File➪Write Class Files to create the files for
FileInfoController and to add them to the Xcode project.

 8. In Xcode, assign an NSObject superclass to the FileInfoController.h file.

 Change this line:

@interface FileInfoController : /* Specify a
superclass (eg: NSObject or NSView) */ {

 to this:

@interface FileInfoController : NSObject {

Open sesame . . . er, panel
When you have the interface built, you can add some code in Xcode to make

the interface functional. Don’t forget about the goal of this project — to select

a file and report information about it. To display information about a specific

file or folder, you use Cocoa’s OpenPanel class. With the OpenPanel class,

you can display an Open dialog that allows a user to select a file or folder.

When you use an OpenPanel, you typically follow four basic steps:

 1. Create an instance of OpenPanel.

 2. Set the attributes of the OpenPanel instance.

 3. Display the OpenPanel for the user and wait for the user to do something

with it: Select a file and click OK or cancel the operation.

 4. Perform a function with the file that the user selected.

To see how OpenPanel works in Cocoa, perform these four steps.

 1. Create an OpenPanel instance.

 You do so in the same way that you create other objects in Cocoa:

NSOpenPanel *openPanel = [NSOpenPanel openPanel];

 2. Alter the attributes of OpenPanel by calling one or more of its

methods.

 For example, to change the title of OpenPanel, use the setTitle

method.

[openPanel setTitle:@”Choose a File or Folder”];

255 Chapter 13: Managing Your Files

 The setTitle method of OpenPanel is a method provided by the

NSWindow superclass. Because OpenPanel is a subclass of NSWindow,

it can take advantage of the NSWindow methods.

 The OpenPanel class also has methods of its own too, of course. For

example, you’ll want to tell Open Panel which files a user may open or

select. By default, Open Panel lets users choose any document or appli-

cation that they want, but they can’t choose folders. You can remedy the

situation by adding a call to the setCanChooseDirectories method

of OpenPanel. This method takes one parameter: a Boolean. If you pass

YES, users can select folders in OpenPanel. If you pass NO (or if you

don’t use this setCanChooseDirectories method at all), users can’t

choose folders in OpenPanel.

[openPanel setCanChooseDirectories:YES];

 3. Display OpenPanel.

 You have several options when it comes to displaying OpenPanel.

The most basic way to display it is to use its runModal method, which

returns an integer upon completion.

NSInteger i = [openPanel runModal];

 The result of this line of code is the dialog, as shown in Figure 13-7.

Figure 13-7:
Display an

OpenPanel
with the

runModal
method.

256 Par t III: Put ting It All Together: Cocoa Programming in Depth

 4. Find out what the user did with the OpenPanel.

 To find out whether the user clicked OK or Cancel in the OpenPanel,

you must examine the value that runModal returns. If the user clicked

OK, the return value is NSOKButton, a constant that Cocoa provides for

you. If the user cancels the open operation instead, the return value is

NSCancelButton.

NSInteger i = [openPanel runModal];
if (i == NSOKButton)
{
 NSLog(@”The user clicked OK!”);
}

 Rather than create a new variable just to check the return value, wrap-

ping the runModal command into the if statement is easier:

if ([openPanel runModal] == NSOKButton)
{
 NSLog(@”The user clicked OK!”);
}

Finding a file’s path, name, and more
After you discover that a user has clicked OK in OpenPanel, you need to find

out which file or folder the user selected. By using the filename method of

the OpenPanel class, you can get the path to that file or folder in the form of

an NSString:

NSString *theFilePath = [openPanel filename];

To display the path in the interface, call the setStringValue method of the

filePathDisplay outlet:

[filePathDisplay setStringValue:theFilePath];

Besides the path of the file, you can discover all sorts of interesting informa-

tion about a file with the NSFileManager class. Follow these steps:

 1. Create a new NSFileManager object using the defaultManager class

method:

NSFileManager *theManager = [NSFileManager
defaultManager];

 2. Call the various NSFileManager methods to find out information

about a file:

 • To retrieve the filename from the selected file, use the display
NameAtPath method. Because the method returns an NString,

257 Chapter 13: Managing Your Files

you can nest the call to display it in the interface. In this case, dis-

play it with the fileNameDisplay outlet:

 [fileNameDisplay setStringValue:
[theManager displayNameAtPath:theFilePath]];

 • To know whether the file exists, use the fileExistsAtPath

method of the NSFileManager:

if ([theManager fileExistsAtPath:theFilePath]) {
 [fileExistsDisplay setStringValue:@”YES”];
 }
 else {
 [fileExistsDisplay setStringValue:@”NO”];

 }

 • To find out whether the selected file is a directory, use the alternate ver-

sion of the fileExistsAtPath method. The alternate version has

two parameters: the file’s path and a pointer to a Boolean. After this

call completes its execution, the Boolean value holds a value of YES if

the file in the first parameter is a directory:

if ([theManager fileExistsAtPath:theFilePath
isDirectory:&isFolder]) {

 [fileExistsDisplay setStringValue:@”YES”];
}
else {
 [fileExistsDisplay setStringValue:@”NO”];

 }

You can also find out a fair amount about a file with the fileAttributes
AtPath method:

NSDictionary *theFileAttributes = [theManager fileAttribut
esAtPath:theFilePath traverseLink:YES];

Note that the fileAttributesAtPath method returns an NSDictionary.

An NSDictionary is a data structure that holds a collection of different

values. This NSDictionary returns a collection of data about a file or folder,

including the following:

 ✓ File size: The size of a file or folder, measured in bytes

 ✓ Creation date: The date the file or folder was created

 ✓ Modification date: The date the file or folder was last modified

 Use an NSDictionary instead of an NSMutableDictionary because you

don’t need to change the data in that dictionary. You’re simply filling in the

NSDictionary so you can read its contents.

258 Par t III: Put ting It All Together: Cocoa Programming in Depth

To extract this data from the NSDictionary object, use the objectForKey

method of the NSManager instance:

NSNumber *theFileSize;
NSDate *theModificationDate;
NSDate *theCreationDate;

if (theFileSize = [theFileAttributes
objectForKey:NSFileSize]) [fileSizeDisplay
setIntValue:(int)theFileSize];

if (theModificationDate = [theFileAttributes objectForKey:
NSFileModificationDate]) {

 [fileModifiedDisplay setStringValue:(NSString*)
theModificationDate];

}
if (theCreationDat = [theFileAttributes objectForKey:NSFil

eCreationDate]) {
 [fileCreatedDisplay setStringValue:(NSString*)

theCreationDate];
}

Viewing a file’s icon
The icon is another great feature of Finder. Without icons, you’d be stuck in

the dark days of text-only interfaces like DOS. Yikes! Fortunately, it’s easy to

work with icons in Cocoa. But before you grab an icon from a file, you must

create an NSFileWrapper. An NSFileWrapper is an object that stores a

file’s data in memory. For this example, though, you use it to load the file’s

icon into memory.

 1. Initialize the NSFileWrapper instance with this path to create it:

NSFileWrapper *theFileWrapper = [[[NSFileWrapper
alloc]

initWithPath:theFilePath] autorelease];

 2. Extract the icon from the file with the icon method of the

NSFileWrapper.

 This call returns an NSImage, which you can then display in the

NSImageView of the interface.

NSImage *theIcon = [theFileWrapper icon];

 3. To view the icon at dimensions of 128 x 128, for example, stretch the

icon to the size of the NSImageView with setImageScaling before

displaying it:

 [fileIconDisplay setImageScaling:NSScaleToFit];
[fileIconDisplay setImage:theIcon];

259 Chapter 13: Managing Your Files

 NSScaleToFit is just one of a few scaling values that you can place in

this parameter. To see the others, Option-double-click NSScaleToFit

to view the online documentation for this call.

 With your icon code in place, the complete code listing for the select
TheFile action is as follows:

- (IBAction)selectTheFile:(id)sender
{
 NSOpenPanel *openPanel = [NSOpenPanel openPanel];
 [openPanel setTitle:@”Choose a File or Folder”];
 [openPanel setCanChooseDirectories:YES];

 if ([openPanel runModal] == NSOKButton)
 {
 NSString *theFilePath = [openPanel filename];

 //display the file path
 [filePathDisplay setStringValue:theFilePath];

 NSFileManager *theManager = [NSFileManager

defaultManager];
 [fileNameDisplay setStringValue:[theManager di

splayNameAtPath:theFilePath]];

 //does the file really exist at this path?
 if ([theManager fileExistsAtPath:theFilePath

]) {
 [fileExistsDisplay setStringValue:@”YES”];
 }
 else {
 [fileExistsDisplay setStringValue:@”NO”];
 }

 //is it a directory?
 BOOL isFolder;
 if ([theManager fileExistsAtPath:theFilePath

isDirectory:&isFolder] && isFolder) {
 [fileDirDisplay setStringValue:@”YES”];
 }
 else {
 [fileDirDisplay setStringValue:@”NO”];
 }

 //GET FILE ATTRIBUTES
 NSNumber *theFileSize;
 NSDate *theModificationDate;
 NSDate *theCreationDate;

 NSDictionary *theFileAttributes =
[theManager fileAttributesAtPath:theFilePath
traverseLink:YES];

260 Par t III: Put ting It All Together: Cocoa Programming in Depth

 if (theFileSize = [theFileAttributes
objectForKey:NSFileSize]) {

 [fileSizeDisplay setIntValue:(int)
theFileSize];

 }

 if (theModificationDate = [theFileAttributes o
bjectForKey:NSFileModificationDate]) {

 [fileModifiedDisplay
setStringValue:(NSString*)
theModificationDate];

 }

 if (theCreationDate = [theFileAttributes objec
tForKey:NSFileCreationDate]) {

 [fileCreatedDisplay
setStringValue:(NSString*)theCreationDate];

 }

 //display an icon
 NSFileWrapper *theFileWrapper

= [[[NSFileWrapper alloc]
initWithPath:theFilePath] autorelease];

 NSImage *theIcon = [theFileWrapper icon];
 [fileIconDisplay setImageScaling:NSScaleToFit];
 [fileIconDisplay setImage:theIcon];

 }
}

 4. Choose Build➪Build and Go to test your work.

 Figure 13-8 shows the result.

Figure 13-8:
With the

NSFile
Manager

and NSFile
Wrapper,

you can
easily

display a
variety of

information
about a file.

261 Chapter 13: Managing Your Files

Reading from and writing to documents
Many types of files are on your hard drive. Each file type has its own format,

whether it’s text, graphics, fonts, or audio. Cocoa has built-in functions to deal

with common file formats. For example, Cocoa is adept at working with text doc-

uments of all sorts. See Chapter 11 to get the scoop on working with text files.

Graphics is another place where Cocoa shines. Whether you need to view a

PICT file, save a JPEG file, or convert a view to PDF, Cocoa and the underlying

QuickTime engine of Mac OS X have you covered. You can find information

about working with graphics files in Chapter 12.

Multimedia is yet another highlight of the Mac OS. Chapter 16 discusses the

use of audio and video files in your applications. There, you’ll find the code

you need to view QuickTime movie files as well as play a variety of audio files.

Working with Files and Folders
Copying and moving files are important functions that you may want to

perform in your applications. To add these features to your project, follow

these steps:

 1. Open your MainMenu.xib file in Interface Builder.

 2. To your main window, add two new NSButtons and change their titles.

 To follow along with the example, change the Title attribute of one button

to Copy File to Desktop. As you may have guessed, when users click

this button, they can select a file. The application then duplicates that file,

placing it on the desktop.

 Change the Title attribute of the other NSButton to Move File to
Desktop.

 3. Add a new action to the FileInfoController class in the Identity

Inspector window.

 To follow along with the example, name the action copyTheFile.

 4. Connect the action to the button.

 To do so, Control+drag from the button to the FileInfoController

instance in the NIB file.

 5. Save your interface and return to Xcode.

262 Par t III: Put ting It All Together: Cocoa Programming in Depth

 6. In Xcode, add the new actions to the FileInfoController.h file, placing

them after the selectTheFile action.

The resulting header file looks like this with the new actions in boldface:

/* FileInfoController */

#import <Cocoa/Cocoa.h>

@interface FileInfoController : NSObject {
 IBOutlet id fileCreatedDisplay;
 IBOutlet id fileDirDisplay;
 IBOutlet id fileExistsDisplay;
 IBOutlet id fileIconDisplay;
 IBOutlet id fileModifiedDisplay;
 IBOutlet id fileNameDisplay;
 IBOutlet id filePathDisplay;
 IBOutlet id fileSizeDisplay;
}
- (IBAction)selectTheFile:(id)sender;
- (IBAction)copyTheFile:(id)sender;
- (IBAction)moveTheFile:(id)sender;
- (IBAction)createAFolder:(id)sender;
@end

Copying files and folders
To copy a file or folder, you need two things:

 ✓ Source path: The path to the file that you want to copy

 ✓ Destination path: Where you want the file copy to reside

You can get the source file from the OpenPanel class covered earlier in

this chapter. You could do something similar for the destination with the

SavePanel, but this time you know where you want the resulting file to

appear: on the desktop. Therefore, you can create your own path that points

to a new file on the desktop.

To do so, follow these steps:

 1. Gain access to the Desktop folder with the NSHomeDirectory func-

tion in the Foundation class.

NSString *theDestination = [[NSHomeDirectory()

 2. Tack on additional parts of the path with the stringByAppending
PathComponent method (say that five times fast!).

263 Chapter 13: Managing Your Files

 stringByAppendingPathComponent:@”Desktop”]
 stringByAppendingPathComponent:theFileName];

 3. Copy the file by using the copyPath method of the NSFileManager

class, pass it the source path, the destination path, and nil for the

handler:

[theManager copyPath:theFilePath
toPath:theDestination handler:nil];

The resulting copyTheFile action looks like this:

- (IBAction)copyTheFile:(id)sender
{
 NSOpenPanel *theOpenPanel = [NSOpenPanel openPanel];
 [theOpenPanel setTitle:@”Choose a File or Folder to

copy”];
 [theOpenPanel setCanChooseDirectories:YES];

 if ([theOpenPanel runModal] == NSOKButton)
 {
 NSString *theFilePath = [theOpenPanel filename];
 NSFileManager *theManager = [NSFileManager

defaultManager];
 NSString *theFileName = [theManager

displayNameAtPath:theFilePath];

 NSString *theDestination = [[NSHomeDirectory()
 stringByAppendingPathComponent:@”Desktop”]
 stringByAppendingPathComponent:theFileName];
 [theManager copyPath:theFilePath

toPath:theDestination handler:nil];
 }
}

Moving files and folders
Moving a file is just as simple as duplicating one. In fact, the code is identical

to the copyTheFile action, except for one line. Instead of the copyPath

method, you use the movePath method. The code for the moveTheFile

action looks like this:

- (IBAction)moveTheFile:(id)sender
{
 NSOpenPanel *theOpenPanel = [NSOpenPanel openPanel];
 [theOpenPanel setTitle:@”Choose a File or Folder to

move”];
 [theOpenPanel setCanChooseDirectories:YES];

264 Par t III: Put ting It All Together: Cocoa Programming in Depth

 if ([theOpenPanel runModal] == NSOKButton)
 {
 NSString *theFilePath = [theOpenPanel filename];
 NSFileManager *theManager = [NSFileManager

defaultManager];
 NSString *theFileName = [theManager

displayNameAtPath:theFilePath];

 NSString *theDestination = [[NSHomeDirectory()
 stringByAppendingPathComponent:@”Desktop”]
 stringByAppendingPathComponent:theFileName];
 [theManager movePath:theFilePath

toPath:theDestination handler:nil];
 }
}

Deleting files and folders
Sometimes you’ll want to delete files from a drive. Rather than bore you with

another identical code example, I’ll simply tell you that the code to delete a

file resembles the copyTheFile and moveTheFile except for the last com-

mand. Look up the removeFileAtPath method in the NSFileManager

documentation. Doing so gives you experience in looking up calls in the docu-

mentation and provides you with an ample amount of time to consider why

you’d want to use this call.

 Delete a file, and it’s gone! Permanently. Make sure that your users know that

a deletion will occur and always give them a way out. One way to do this is to

display an alert:

 NSOpenPanel *theOpenPanel = [NSOpenPanel openPanel];
 [theOpenPanel setTitle:@”Choose a File or Folder to

Delete”];
 [theOpenPanel setCanChooseDirectories:YES];

 if ([theOpenPanel runModal] == NSOKButton)
 {
 NSString *theFilePath = [theOpenPanel filename];
 NSFileManager *theManager = [NSFileManager

defaultManager];

 NSInteger n;
 n = NSRunAlertPanel (NSLocalizedString(@”Are you

sure you want to delete the file?”,nil),

 NSLocalizedString(@”You cannot undo this

deletion.”, nil),

265 Chapter 13: Managing Your Files

 NSLocalizedString(@”Yes”,nil),
NSLocalizedString(@”No”,nil),

 nil);

 if (n == NSAlertDefaultReturn) {
 [theManager removeFileAtPath:theFilePath

handler:nil];
 }
 }

The code asks the user which file to delete using the NSOpenPanel. After

creating theFilePath and theManager objects, the code displays an Alert

panel by calling the NSRunAlertPanel function. NSRunAlertPanel takes

five parameters that correspond to the title of the alert, the message on the

alert, the text on the default button, the text on the alternate button, and

finally text for a third button, which you ignore this time by passing nil. If

NSRunAlertPanel returns a value of NSAlertDefaultReturn, which cor-

responds to the default button in the alert, the code deletes the file with the

removeFileAtPath method.

Creating folders
To create a folder on your drive, use the createDirectoryAtPath method

of the NSFileManager. You need to pass it two parameters:

 ✓ The first parameter is the path where you want to create the folder.

 ✓ The second parameter lets you set various attributes of the folder. You

won’t use this second parameter very often, so you can simply set it to nil.

To show the createDirectoryAtPath method in action, follow these steps:

 1. Add the following code to FileInfoController.m to create a

MyNewFolder folder on the desktop:

- (IBAction)createAFolder:(id)sender
{
 NSString *theDestination = [[NSHomeDirectory()
 stringByAppendingPathComponent:@”Desktop”]
 stringByAppendingPathComponent:@”MyNewFolder”

];

 [theManager createDirectoryAtPath:theDestination

attributes:nil];
}

266 Par t III: Put ting It All Together: Cocoa Programming in Depth

 If you use the createAFolder action, don’t forget to define it in the

header file:

- (IBAction)createAFolder:(id)sender;

 2. Add an action to FileInfoController and connect it to a new

NSButton in Interface Builder.

 Figure 13-9 shows the completed interface.

 Sometimes it’s easiest to simply add actions and outlets to your project

in Xcode and your NIB file in Interface Builder, rather than relying on

those applications to talk to each other.

 3. To test your work, return to Xcode and press Ô+R.

Figure 13-9:
The

completed
Files project
can display
information
about a file

or folder
as well as
perform a
variety of
file tasks.

Chapter 14

Printing with Cocoa
In This Chapter
▶ Understanding the process of printing in Cocoa

▶ Adjusting the page settings

▶ Running a print job

▶ Printing to PDF files

Although Cocoa’s on-screen display of graphics and text is world class,

that doesn’t mean Apple forgot about printing. Known for decades as one

of the innovative adopting forces behind technologies, such as PostScript and

laser printing, Apple continues in this tradition by adding easy-to-implement

printing features to Cocoa. This chapter shows you how to add printing features

to your Cocoa applications. Although printing has been a messy topic for

programmers in the past, Cocoa makes it simple to implement some sophis-

ticated printing features to your projects. You’ll love the consistency that

Apple provides you as a developer, and your users will love the professional

printing results that your application implements.

 To begin working with printing, copy the Start source code for this chapter

to your hard drive. (To download the code, go to www.dummies.com/go/
cocoafd.) The printing project for this chapter is based on the completed

project from the end of Chapter 12. Because you can print using any view,

you can use the graphics view from Chapter 12 as your printable canvas.

How Printing Works in Cocoa
To help you achieve great results that address all your printing needs, Cocoa

offers a collection of important classes for printing in Mac OS X. You use

these classes together to add printing to your applications:

 ✓ NSView: Printing to a page is as simple as drawing text and graphics in

an NSView. The examples in this chapter build on the graphics example

in Chapter 12.

268 Par t III: Put ting It All Together: Cocoa Programming in Depth

 ✓ NSPageLayout: This class is responsible for displaying the Page Setup

panel. Typically applications display this panel when a user chooses

File➪Page Setup. Your users will invoke the Page Setup panel to choose

the orientation of the printed page. They can also set the paper size in

the Page Setup panel. When the user has finished adjusting the printing

properties of the NSPageLayout object, the NSPageLayoutObject

saves the results in an NSPrintInfo object.

 ✓ NSPrintInfo: NSPrintInfo is a storage class that holds the settings

and options for printing. NSPrintInfo stores the settings from the

Page Setup panel as well as the page count, margins, and other items

that appear in the NSPrintPanel.

 ✓ NSPrintPanel: When you choose File➪Print from most applications,

you see an example of the NSPrintPanel. The NSPrintPanel is

responsible for managing the settings of a print job. NSPrintPanel

stores its settings in an NSPrintInfo object.

 ✓ NSPrintOperation: This class takes care of creating the printed page.

It displays the Print panel and carries out the print job.

To help you envision how the printing process works in Cocoa, here’s a brief

rundown of the steps involved:

 1. Draw text and graphics to a view.

 This drawing can occur in any view, whether it’s a view in a graphics

application, a word processor, or even the background of a window.

Cocoa can print from them all.

 2. The user chooses File➪Page Setup.

 Your application displays the Page panel.

 3. The user selects the format and scale of the print job.

 Figure 14-1 shows what the Page panel looks like.

 4. The user dismisses the panel.

 Your application stores the settings in a PrintInfo object.

 5. The user chooses File➪Print.

 Your application displays the Print panel, where the user tweaks the set-

tings for the print job. Figure 14-2 shows a typical Print panel. When the

user finishes preparing the print job, he may dismiss the panel by

clicking Cancel or start the print job by clicking OK.

 6. The user prints the view.

269 Chapter 14: Printing with Cocoa

 Your application sets up the print operation with the Page and Print panel

settings that you stored in the PrintInfo object. The view’s drawRect

takes care of drawing the graphics or text, just as it does on-screen.

Figure 14-1:
Use the

Page panel
to adjust

settings for
the pages in

your
print job.

Figure 14-2:
Use the

Print panel
to adjust

settings for
the print job.

270 Par t III: Put ting It All Together: Cocoa Programming in Depth

Tweaking the Page Settings
The first step of your printing journey begins with the Page panel, where your

users can select the scale and format of a project job.

 If you have access to multiple printers, you can also choose a Format For

option to get the dimensions of a printable area. The dimensions help you

avoid cropping around the edges.

Open the Xcode project for this chapter. Double-click the MainMenu.xib file

to open the interface XIB file for this project in Interface Builder. After the XIB

file opens, follow these steps to add a print controller to the project:

 1. Create a new controller class:

 a. Open the Library window and search for NSObject.

 b. Drag a new object to the project window.

 c. Press Ô+6 and name the new NSObject MyPrintController.

 Figure 14-3 shows the newly named object.

Figure 14-3:
The MyPrint

Controller
object takes
the printing

tasks.

271 Chapter 14: Printing with Cocoa

 2. Add an outlet and two actions to MyPrintController.

 a. Press Ô+6 to open the Identity Inspector window and add a canvas
View outlet to the MyPrintController class.

 b. Add two actions to the controller by clicking the + button beneath the
Class Actions section of the Identity Inspector.

 c. Name the actions printOnePage: and showPagePanel:.

 The showPagePanel action takes care of displaying the Page

panel and storing its settings. The printOnePage action displays

a Print panel and then executes a print job.

 Figure 14-4 shows the outlets and actions for MyPrintController.

 3. Connect the MyPrintController instance to the user interface.

 a. Control+drag from the MyPrintController instance to the view in
the main window of your interface. Select the canvasView outlet in
the small black connections list overlay that appears.

Figure 14-4:
The MyPrint

Controller has
one outlet and

two actions.

272 Par t III: Put ting It All Together: Cocoa Programming in Depth

 b. Connect the two actions to the menu items for this project: Control+drag
from the Page Setup menu item in the MainMenu menu bar to the
MyPrintController instance. Select the showPagePanel action
in the small black connections list overlay that appears, listing the
actions in MyPrintController. Repeat for the Print menu item
and the printOnePage action.

 Figure 14-5 shows the MyPrintController outlet and action connections

in the Identity Inspector window.

 4. Create the files for MyPrintController.

 Select MyPrintController in the XIB project window. Choose

File➪Write Class Files to add the header and implementation files to

your project in Xcode.

 5. Save your interface project by choosing File➪Save and quit Interface

Builder by choosing Interface Builder➪Quit.

 6. Return to Xcode and select the MyPrintController.h file to view its

contents. Change your MyPrintController.h file to read as follows:

/* MyPrintController */

#import <Cocoa/Cocoa.h>

@interface MyPrintController : NSObject
{
 IBOutlet id canvasView;
 NSPrintInfo *thePrintInfo;
}

Figure 14-5:
Connect the

one outlet
and two

actions of
the MyPrint

Controller
instance.

273 Chapter 14: Printing with Cocoa

- (IBAction)printOnePage:(id)sender;
- (IBAction)showPagePanel:(id)sender;
@end

 Besides defining MyPrintController as an NSObject, the only other

addition is this line:

NSPrintInfo *thePrintInfo;

 This line declares a pointer to an NSPrintInfo object as an instance

variable to help you store settings that the user makes in the Page and

Print panels.

 7. Select the MyPrintController.m file and change its code to read

#import “MyPrintController.h”

@implementation MyPrintController

- (IBAction)showPagePanel:(id)sender {

 int i;
 thePrintInfo = [NSPrintInfo sharedPrintInfo];
 NSPageLayout *pageLayout = [NSPageLayout

pageLayout];
 i = [pageLayout runModalWithPrintInfo:(NSPrintInfo

*)thePrintInfo];

}

@end

Here’s how the code works:

 1. The showPagePanel method first populates the thePrintInfo variable

with the NSPrintInfo value, which is shared by all applications.

 2. The code creates an NSPageLayout instance and displays it using the

runModalWithPrintInfo method.

 By passing thePrintInfo to the runModalWithPrintInfo method,

the Page panel retains its settings in thePrintInfo when the user dis-

misses it.

So far, this code is functional but not terribly interesting. You can run it and

choose File➪Page Setup to view and play with the settings in the Page panel.

274 Par t III: Put ting It All Together: Cocoa Programming in Depth

Setting Up the Print Job
and Printing the View

To add printing, all you have to do is implement the printOnePage action

that you defined as part of MyPrintController in the preceding section.

Click the MyPrintController.m file in Xcode and change its code to read

#import “MyPrintController.h”

@implementation MyPrintController

- (IBAction)showPagePanel:(id)sender {

 int i;
 thePrintInfo = [NSPrintInfo sharedPrintInfo];
 NSPageLayout *pageLayout = [NSPageLayout pageLayout];
 i = [pageLayout

runModalWithPrintInfo:(NSPrintInfo *)
thePrintInfo];

}

- (IBAction)printOnePage:(id)sender
{

 thePrintInfo = [NSPrintInfo sharedPrintInfo];
 NSPrintOperation *thePrintOperation;

 thePrintOperation =
 [NSPrintOperation printOperationWithView:

myCanvasView printInfo:thePrintInfo];

 [thePrintOperation setShowPanels:YES];
 [thePrintOperation runOperation];

}

@end

The printOnePage method takes care of running the Print panel and execut-

ing the print job in this way:

 1. It creates an NSPrintOperation instance using the class method

printOperationWithView.

 2. You pass the printOperationWithView method a view to print and

an NSPrintInfo instance.

275 Chapter 14: Printing with Cocoa

 3. The printOperationWithView method returns an instance of

NSPrintOperation.

 4. (Optional but typical in most applications) If you want to display the

Print panel, call the setShowPanels, passing it a Boolean value of YES.

 5. The runOperation method of the NSPrintOperation object runs the

print job.

 Cocoa takes care of everything else for you, including dismissing the

Print panel and printing the view.

Printing to Places Other Than a Printer
So far, you’ve implemented some pretty boring stuff. Printing is nice, but it’s

become a standard requirement on all applications and operating systems

and it’s not altogether exciting. When it comes to printing, Cocoa really

shines in its capability to print directly to PDF (Portable Document Format)

files. Instead of printing your view to a standard printer, you can ask Cocoa

to save it to a PDF-formatted file instead. PDF is a standard format for pub-

lishing and printing documents. In the past, you had to rely on third-party

solutions when creating PDF content on the fly. With Cocoa, it’s as easy as

adding a few lines of code to your project.

 Before you begin adding PDF features to your project, you should know that

you already have one form of PDF printing: The user can click the PDF button

that’s at the bottom of the Print panel.

Here’s a more elegant solution if you don’t like that users have to open the

Print panel to print to PDF:

 1. Open the MainMenu.xib file in the project for this chapter.

 2. Add a new push button to the existing interface by dragging one from

the Library window.

 Figure 14-6 shows what the interface looks like.

276 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 14-6:
Add a new
button that
users click
to print to a

PDF file.

 3. Add a new action to the MyPrintController class.

 Click MyPrintController in the XIB project window, press Ô+6 to

open the Identity Inspector window, and add a new printToPDF action,

as shown in Figure 14-7.

Figure 14-7:
Add a new
printToPDF

action to the
MyPrint

Controller
class.

277 Chapter 14: Printing with Cocoa

 4. Connect the new action to the interface.

 Control+drag from the new button in your interface to the

MyPrintController instance in the XIB project window. Select

printToPDF from the small black connections list overlay that appears.

 5. Return to Xcode and add the new printToPDF action to the

MyPrintController.h file:

/* MyPrintController */

#import <Cocoa/Cocoa.h>

@interface MyPrintController : NSObject
{
 IBOutlet id myCanvasView;
 NSPrintInfo *thePrintInfo;
}

- (IBAction)printOnePage:(id)sender;
- (IBAction)showPagePanel:(id)sender;
- (IBAction)printToPDF:(id)sender;
@end

 6. Add the following code to implement the printToPDF method in the

MyPrintController.m file:

- (IBAction)printToPDF:(id)sender
{
 NSRect theRect;
 NSData *theData;

 theRect = [myCanvasView bounds];
 theData = [myCanvasView dataWithPDFInsideRect:

theRect];
 [theData
 writeToFile: [@”~/Desktop/MyView.pdf”
stringByExpandingTildeInPath]
 atomically: YES];
}

Just to keep matters simple, this method creates a PDF file on the desktop.

 1. The code starts by getting the bounds of the NSRect that surrounds

the view.

 2. With those bounds, dataWithPDFInsideRect provides you with raw

PDF data for use in a file.

278 Par t III: Put ting It All Together: Cocoa Programming in Depth

 3. The writeToFile method saves the data to a file.

 You can view the resulting PDF with popular PDF viewers, such as

the Apple Preview application, the Adobe Acrobat Reader, or a Web

browser like Safari.

 Although this method doesn’t exactly use printing classes, you can always

print from your project with the Print panel. For this reason, PDF is part of

the printing chapter.

Chapter 15

Cocoa on the Internet
In This Chapter
▶ Loading a Web site with Cocoa

▶ Downloading files from the Internet

▶ Sending e-mails with only a few lines of code

The last two decades of personal computing have witnessed explosive

growth in networking technologies. Consequently, the vast majority of

personal computer owners use the Internet, many on a daily basis. Among the

various means of communication available to a user on the Internet, the World

Wide Web and e-mail stand out as the two main tools that everyone uses.

In this chapter, you explore the wild and wooly world of the Internet and

see how it applies to Cocoa applications. The chapter starts by showing you

how to load Web pages, download files, and render HTML (HyperText Markup

Language) in your own projects. Later, you add e-mail features to your applica-

tion as well. By the end of this chapter, you’ll have a fully functional project

that performs some important Internet functions. Although it’s not necessarily

the kind of application you’ll want to use for your next best-selling killer app, it

can serve as a handy reference for future projects.

Interacting with the Web
Just over a decade ago, few were familiar with the Internet or the World Wide

Web. Now, even your dog has a domain name, an e-mail address, and a

MySpace account. Computer users have eaten up all that the Internet has to

offer and in the process have become discerning consumers. They expect

instant connectivity to any Web site in the world. Luckily, Cocoa has you

covered. Perhaps the two most popular tasks on the Web are viewing Web

pages and downloading files. With only a few lines of code, Cocoa gives you

the ability to offer these important Internet functions in your own applications.

280 Par t III: Put ting It All Together: Cocoa Programming in Depth

Loading a Web page in a browser
Loading a URL (Uniform Resource Locator) into a Web browser is one of the

most common Internet-related tasks that you’ll want to perform. It comes

in handy for directing users to online documentation, to a download page

where they can get the latest version of your application, or even to your

Web-based store to purchase software.

Because viewing Web pages is a task that you perform so frequently, Cocoa

provides a class to handle the dirty work for you: NSWorkspace. The NS
Workspace class gives you easy access to miscellaneous utilities. Every

application has one, and only one, NSWorkspace object. By calling the

openURL method of the NSWorkspace instance, you can load and view a

URL with the default Web browser.

To use your application’s NSWorkspace instance, and, more important, its

openURL method, use code like this:

[[NSWorkspace sharedWorkspace] openURL:theURL]

This code snippet works by calling the sharedWorkspace class method

of NSWorkspace. From there, it’s a simple matter of calling the openURL

method and passing it a valid URL in the form of an NSURL. The NSURL class

lets you wrap a traditional URL in a Cocoa object. You can define an NSURL

with a hard-coded URL:

NSURL *theURL = [NSURL URLWithString:@”http://www.wiley.
com”];

If you want users to supply the URL in an NSTextField (with a theURL
Field outlet) in your app’s interface, you might do something like this

instead:

NSURL *theURL = [NSURL URLWithString:[theURLField
stringValue]];

Because openURL returns a Boolean value, you can determine whether the

command executed successfully. For example, if you create a loadWebPage

action, the code might look like this:

- (IBAction)loadWebPage:(id)sender
{
 NSURL *theURL = [NSURL URLWithString:[theURLField

stringValue]];

 if ([[NSWorkspace sharedWorkspace] openURL:theURL])
 NSLog(@”URL Loaded”);
}

281 Chapter 15: Cocoa on the Internet

If the openURL method performs as it should, the code displays a URL
Loaded message on the screen.

Downloading files
Another important feature that you may want to add to your Cocoa applica-

tions is the capability to download files from the Internet without using a

browser. You can use download functionality for a variety of situations:

 ✓ Offer instant one-click access to the latest version of your application on

the Web.

 ✓ Download and display HTML help files from your Web site.

 ✓ Retrieve a file from the Web that lists the current version of your

application.

Cocoa makes it easy to offer all these features and more. With only two lines of

code, you can download a file from the Web to your hard drive. This example

loads the For Dummies home page:

NSURL *theURL = [NSURL URLWithString:@”http://www.dummies.
com”];

NSData *pageData = [theURL resourceDataUsingCache:YES];

Like the browser code from earlier in this chapter, you first define an NSURL.

In this example, the URL is hard-coded to www.dummies.com. Although hard-

coding may suffice for some purposes, other times you’ll want to be more

flexible in your approach to creating a URL. Because the URLWithString

parameter is an NSString, you can use any of the usual NSString functions

with it, including retrieving the URL from the interface.

 Don’t forget that an NSURL doesn’t necessarily have to point to a file some-

where on the Web. It can also point to a file on your local hard drive. For

example, you can use the initFileURLWithPath method of NSURL to build

a URL to a local file, based on its path. Check the built-in Cocoa documenta-

tion in Xcode to see the complete list of NSURL methods.

After you create and define an NSURL, call its resourceDataUsingCache

method to begin downloading the file into memory. In the preceding code

snippet, pageData points to data in memory. From there, transferring that

data from memory to a file on your hard drive is a simple matter. For example,

if you want to save a simple HTML document to your desktop, call the

writeTofile method of the NSData class.

282 Par t III: Put ting It All Together: Cocoa Programming in Depth

 If you pass a relative path (for example, ~/Downloads/download.html)

to the writeTofile method, you must expand it into a full URL with the

stringByExpandingTildeInPath method:

if ([pageData writeToFile:[@”~/Downloads/download.html”
 stringByExpandingTildeInPath]
 atomically:YES])
{

NSLog(@”download successful”);
}

One shortcoming of this download-and-save-to-disk approach is that it

functions in a synchronous manner. Your application won’t do anything

else until the file has finished downloading. This may suffice for small down-

loads, but larger downloads become troublesome. The solution is to use the

loadResourceDataNotifyingClient method instead of resourceData
UsingCache:

[theURL loadResourceDataNotifyingClient:self
usingCache:YES];

This method enables you to perform other functions while downloading the

file. If you implement the URLResourceDidFinishLoading method, Cocoa

notifies you when the download finishes, giving you the chance to access the

data. For example, to save the download to an HTML file on the desktop,

implement the URLResourceDidFinishLoading method like this:

- (void)URLResourceDidFinishLoading:(NSURL *)sender
{

NSData *pageData = [sender resourceDataUsingCache:YES];
if ([pageData writeToFile:[@”~/Downloads/download.html”

stringByExpandingTildeInPath] atomically:YES])
 {

 NSLog(@”download successful”);
 }
 else
 {
 NSLog(@”download failed”);

 }
}

Just because you’re downloading and saving an HTML file in this example

doesn’t mean that you’re limited to HTML downloads. You can download

any kind of file that you want. To download a JPG image, for instance, simply

change the URL and name of the destination file to indicate that it’s a JPG file:

NSURL *theURL = [NSURL
URLWithString:@” http://purplee.net/images/cocoa_cover.

jpg”];
...

283 Chapter 15: Cocoa on the Internet

if ([pageData writeToFile:[@”~/Downloads/download.jpg”
stringByExpandingTildeInPath]

 atomically:YES])
...

Building a Web browser
You could use the code from earlier in this chapter to download an HTML file

from the Web and display it with a Cocoa control. Doing so is possible, but it

requires a lot of work. Fortunately, the WebKit Framework gives you the ability

to load and display Web content very easily. So easily in fact, you can do so

without writing a single line of code.

At the heart of the WebKit is the WebView control, which has built-in methods

for a variety of Web-related functions that you’d find in a typical Web browser:

 ✓ Load a Web page

 ✓ Go back one page in the history

 ✓ Go forward one page in the history

 ✓ Reload a Web page

 ✓ Stop a Web page from loading

 ✓ Print a Web page

Are some of these functions sounding familiar? They should because not only

are they the staple of most Web browsers, but they’re used in Apple’s own

Safari Web browser. Safari uses the same exact rendering features that are

available to you with WebKit. And because these functions are so common,

WebKit has them ready to go without nary a line of code.

To see how the WebKit Framework works, create a new Cocoa application

project in Xcode (see Chapter 2). Then, add the WebKit Framework to the

project by following these steps:

 1. Control-click the Frameworks Group in the project window, as shown in

Figure 15-1, and then choose Add➪Existing Frameworks from the menu.

 2. Navigate to /System/Library/Frameworks/WebKit.framework

and click the Add button, as shown in Figure 15-2.

 The WebKit Framework enables the powerful WebView control. Because

the framework isn’t used in most projects, it isn’t part of a standard

Cocoa project. Believe it or not, this is all you need to do in Xcode!

 3. Double-click the MainMenu.xib file in the Xcode project to open it in

Interface Builder.

284 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 15-1:
Add a

framework
to the Xcode

project.

Figure 15-2:
Select the

WebKit
Framework

to use the
WebView

control.

285 Chapter 15: Cocoa on the Internet

 4. Add a WebView control to the interface.

 You can locate the WebView in the Library window by searching for

WebView.

 5. Add a text field control to the interface.

 Locate the text field by searching for text field or NSTextField in

the Library window. This field is where users type Web addresses, just

like on a Web browser.

 If you want to display a default Web site, double-click the control and

enter a Web address.

 6. Add two buttons to the interface; double-click each button to change

the text displayed on the buttons to Back and Forward, respectively.

 You can use whichever button style you like. In Figure 15-3, I used the

Textured Button control. The completed interface is shown in Figure 15-3.

 7. Connect the text field control to WebView.

 Control+drag from the text field to the WebView control. Select the take
URLStringFrom message from the black connections list overlay that

appears, as shown in Figure 15-4. The takeURLStringFrom message

means that the WebView control loads a URL based on the text in the

text field.

Figure 15-3:
The

simple Web
browser

interface
resembles

common
professional

Web
browsers.

286 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 15-4:
The take

URLString
message

loads a
URL in a

WebView.

 8. Connect the buttons to WebView.

 Control+drag from each of the two buttons to the WebView control.

Select goBack and goForward, respectively, from the black connec-

tions list overlay that appear.

 These two methods advance the Web browser one page forward or one

page backward in the WebView history, just like Back and Forward

buttons do in any other Web browser.

 9. Press Ô+R to test the application in Interface Builder.

 As you already know, Interface Builder lets you test your interfaces,

but this one is special. Normally Interface Builder demonstrates what

completed interfaces look like, but they don’t really do anything. This

time, however, it’s different. Interface Builder demonstrates a fully func-

tional application because all the functionality is provided by the built-in

WebKit framework.

 10. Return to Xcode and choose Build➪Build and Go to test your work.

 The result looks like Figure 15-5, and you did it without writing a single

line of code. Wow!

287 Chapter 15: Cocoa on the Internet

Figure 15-5:
The finished

product
downloads

and renders
a URL just
like other

Web
browsers.

Sending E-Mail from a Cocoa Application
Downloading and displaying Web pages is just one of Cocoa’s many network-

ing skills. Cocoa is equally adept at e-mail. With a few simple lines of code,

you can create an e-mail message in your favorite e-mail client. With a few

more lines of code, you can take care of sending the e-mail too. E-mail fea-

tures in an application are handy for several uses:

 ✓ Provide a contact e-mail in an About box

 ✓ Give users the opportunity to automatically send you bug reports

 ✓ Format an e-mail message in an existing client

 ✓ Send spam, but you wouldn’t dare do that, would you? Would you?! I

hope not!

In this section, you add e-mail features to the demo project that you created

earlier in this chapter.

288 Par t III: Put ting It All Together: Cocoa Programming in Depth

Sending e-mail from your favorite client
When you click an e-mail link on the Internet, your Web browser instructs

your e-mail client to open a new message, often with the To and Subject fields

completed for you. Adding this kind of functionality to a Cocoa application is

simple. In fact, if you followed along earlier when loading a URL in a browser,

you’re well on your way to creating an e-mail message.

The main difference between creating an e-mail message and loading a URL in

a browser is the format of the URL. Whereas a typical URL in a browser looks

like this:

http://www.wiley.com

an e-mail URL looks like this:

mailto:yourFriend@email.com

Otherwise, you handle the two URLs identically. To create an e-mail

addressed to your friend, simply pass the e-mail URL for that friend to the

openURL method of the NSWorkspace class. For example, to send your

friend an e-mail, use code like this:

NSURL *theURL =
[NSURL URLWithString:@”mailto:yourFriend@email.com”];

if ([[NSWorkspace sharedWorkspace] openURL:theURL])
 NSLog(@”Email Loaded”);

If you know HTML, you’ve probably already guessed that it’s possible to add

other attributes to the e-mail address. If you want to attach a subject to an

e-mail, simply tack it to the end of the e-mail URL preceded by ?subject=,

as follows:

mailto:yourFriend@email.com?subject=Important Message

If you want to e-mail more than one friend at a time, list additional addresses,

with each separated by a comma:

mailto:yourFriend@email.com, anotherFriend@email.
com?subject=Important Message

You can also CC and BCC your other friends with a simple e-mail URL. The

following e-mail URL sends an e-mail to yourFriend@email.com with an

289 Chapter 15: Cocoa on the Internet

Important Message Subject heading. The same message also goes to your

other friend (otherFriend@email.com):

mailto:yourFriend@email.com?subject=Important Message
?cc=otherFriend@email.com

Keep on tacking the new parameters to the end of the e-mail URL address

to suit your needs. Just remember to always precede each parameter with a

question mark. Pass this URL to the openURL method of the NSWorkspace

to launch your e-mail client and create a new e-mail according to your speci-

fications. Or, you can enter a mailTo address in a WebKit Web browser, as

shown in Figure 15-6.

 E-mail clients use the question mark character as a separator, so you can’t use

it as-is in a URL. Instead, you must use a hex character encoding if you want

to include a ? in your subject. For example, to send an e-mail with the subject

Ready?, convert the question mark to its hex equivalent by modifying the

mailto URL as follows:

mailto:yourFriend@email.com?subject=Ready%3F

Figure 15-6:
Creating

an e-mail is
as easy as

loading a
Web page

in your
browser.

290 Par t III: Put ting It All Together: Cocoa Programming in Depth

Sending e-mail from your own apps
Giving your users a way to contact you by e-mail is a useful feature, but

sometimes it may not fit your needs. This may be true for a variety of rea-

sons, including the following:

 ✓ You’re creating an e-mail application.

 ✓ You can’t guarantee that your user has an e-mail client installed.

 ✓ You don’t want to reply by using an additional e-mail client.

Cocoa offers you the opportunity to send e-mail from your own applications.

Before you start sending e-mails en masse, though, you need to perform a

preparatory step. E-mail functions aren’t part of the frameworks that typi-

cally accompany the average Cocoa project. Instead, Apple stores the e-mail

functions in the Message Framework. To use e-mail in your project, you must

first add the Message framework to your project:

 1. Choose Project➪Add Frameworks to add the Message Framework.

 2. In the dialog that appears, select Message.framework, which you can

find in the System directory:

/System/Library/Frameworks

 After you add the framework, it appears in the project window, as shown

in Figure 15-7.

Figure 15-7:
Add the

Message
Framework

to your
project
to send
e-mails

from your
application.

291 Chapter 15: Cocoa on the Internet

With the Message.framework in place, you can now send e-mail. You’ll be

amazed at just how easy it is to send an e-mail with Cocoa:

 1. Create a handful of NSStrings that represent different parts of an

e-mail message:

NSString *theEmailDest = @”youFriend@email.com”;
NSString *theSubject = @”Important Message”;
NSString *theBody = @”Hello there!”;

 2. Call the deliverMessage method of the NSMailDelivery class.

 Because deliverMessage is a class method, you don’t have to create

an NSMailDelivery object before using it. The deliverMessage

method has parameters for the message, the subject of the e-mail,

and the recipient. Furthermore, it returns a Boolean value, telling you

whether the delivery occurred.

 if ([NSMailDelivery
deliverMessage:theBody subject:theSubject

to:theEmailDest])
 NSLog(@”Email Sent”);
 else
 NSLog(@”Email Not Sent”);

That’s all there is to it!

Adding e-mail functions to the project
To see all these great e-mail functions in action, return to the project that

you created earlier in this chapter. Open the MainMenu.xib file in Interface

Builder and perform the following steps:

 1. Add two new buttons to the interface and label them.

 For example, label them Send Email with Client and Send Email

Manually, respectively.

 2. Add an NSTextField to the interface. Add a text label next to the

NSTextField to let users know that this field is where they enter a

destination e-mail address.

 Figure 15-8 shows the interface.

292 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 15-8:
Add two

NSButtons
and an

NSTextField
to the

interface.

 3. Add a controller to the project.

 Drag an NSObject from the Library window to the XIB project window.

Press Ô+6 and change the class name to InternetController in the

Identity Inspector window.

 4. Add an outlet and two actions to the class.

 In the Inspector window, add an emailField outlet, so you can retrieve

the e-mail addresses that a user enters. Then add two new actions to the

class names sendEmailManually and sendEmailWithClient. Figure

15-9 shows the Identity Inspector window, displaying the actions of the

InternetController class.

 5. Connect the interface to the InternetController class:

 a. Control-drag from the Send Email with Client button to the
InternetController class in the XIB project window. In the small
black connections list overlay that opens, connect the button to the
sendEmailWithClient action.

 b. Control-drag from the Send Email Manually button to the Internet
Controller class. Connect the button to the sendEmailManually
action.

293 Chapter 15: Cocoa on the Internet

 c. Connect the emailField outlet to the interface by Control-dragging
from InternetController to the NSTextField in the main
window of your interface.

 d. Click Connect in the Identity Inspector window to make the
connection.

 6. Click the InternetController class and then choose File➪Write

Class Files to create and add the class files in Xcode.

 7. Return to Xcode and change this line in InternetContoller.h:

@interface InternetController : /* Specify a
superclass (eg: NSObject or NSView) */ {

 to this

@interface InternetController : NSObject {

Figure 15-9:
Add two

actions and
one outlet to
the Internet

Controller
class for the

e-mail
functions.

294 Par t III: Put ting It All Together: Cocoa Programming in Depth

 8. Add the following code to InternetController.m:

 Note the addition of #import <Message/NSMailDelivery.h> state-

ment at the beginning of the code; this statement permits use of the

Message Framework:

#import “InternetController.h”
#import <Message/NSMailDelivery.h>

@implementation InternetController
- (IBAction)sendEmailWithClient:(id)sender
{

NSString *theURLString = @”mailto:”;
theURLString =
 [theURLString stringByAppendingString:[emailField

stringValue]];

NSURL *theURL = [NSURL URLWithString:theURLString];

if ([[NSWorkspace sharedWorkspace] openURL:theURL])
 NSLog(@”Email Loaded”);

}

- (IBAction)sendEmailManually:(id)sender
{
 NSString *theEmailDest = [emailField stringValue];
 NSString *theSubject = @”Important Message”;
 NSString *theBody = @”Hello there!”;

 if ([NSMailDelivery deliverMessage:theBody

subject:theSubject to:theEmailDest])
 NSLog(@”Email Sent”);
 else
 NSLog(@”Email Not Sent”);
}
@end

 9. To see the results of your hard work, choose Build➪Build and Go.

 If your project sends the e-mail successfully, you see the Email Sent
message in the Console window. You can view the Console in Xcode by

choosing Run➪Console.

Chapter 16

Multimedia
In This Chapter
▶ Playing system sounds and audio files

▶ Building an audio player project

▶ Playing movies with Cocoa

▶ Loading and using dozens of other media formats

Working with text and creating files are useful functions for your

applications, but they aren’t always the most exciting functions.

Multimedia, on the other hand, is exciting. Cocoa continues the long Macintosh

tradition of providing high-quality multimedia features for you to use in your

projects.

In this chapter, you discover how easy it is to add sophisticated multimedia

features to your applications. First, you explore audio by creating a simple

application that plays audio files from a number of sources. Then you delve

into the real fun — movies! By building a movie player application, you see

how easy it is to add dynamic QuickTime content to your Cocoa projects.

By changing only one line of code, you also see how to (dis)play many other

kinds of media beyond QuickTime movies.

Listening to Audio
The Macintosh has long been a popular machine with audio aficionados. Cocoa

continues in this tradition, offering a complete set of tools for producing audio

with your own applications. Some of the possibilities that Cocoa offers are

 ✓ Playing sounds that reside in your application’s bundle

 ✓ Playing sounds that reside in the Mac OS X System folder

 ✓ Playing sounds from anywhere on your hard drive

296 Par t III: Put ting It All Together: Cocoa Programming in Depth

Besides playing audio files that reside in a variety of locations, Cocoa can

play many different audio file formats. In the past, you had to know about the

various file formats to use them. Cocoa takes away this necessity and lets

you play common audio file formats, such as AIFF, MP3, and WAVE, without

knowing anything about them.

Playing system sounds
Cocoa has a convenient method for playing sound in the NSSound class.

To play audio with the NSSound class, you typically follow a simple three-

step process:

 1. Create an object based on the NSSound class.

 2. Load an audio file into the NSSound object.

 3. Play the audio.

You usually combine the first two steps or even all three into one line of

code. The easiest way to load an audio file is by using its filename. For exam-

ple, drag and drop an AIFF file (for this example, banjo.aiff) into your

Cocoa project. Then load it as an NSSound object by using the soundNamed

class method:

NSSound *theSound = [NSSound soundNamed:@”banjo”];

 You can omit the file extension.

Besides loading an audio file that you drag into your project, you can load

sounds located in one of the three Mac OS X Sounds directories, located here:

/System/Library/Sounds
/Library/Sounds
~/Library/Sounds

For example, suppose you want to play the famous Sosumi alert that ships

with Mac OS X. The code is identical to the previous example, except for a

name change:

NSSound *theSound = [NSSound soundNamed:@”Sosumi”];

After you load a sound, it’s a trivial matter to play it:

[theSound play];

297 Chapter 16: Multimedia

To simplify matters further, you can combine everything into one line of

sound-playing code:

[[NSSound soundNamed:@”Sosumi”] play];

Loading and playing sound files
For some applications, playing sounds that reside in your project or in one of

the library Sounds folder isn’t sufficient. Suppose that you want your appli-

cation to play any sound that a user selects. To accomplish this task, follow

these steps:

 1. Create an array and fill it with all the sound file types that Cocoa rec-

ognizes by using the soundUnfilteredFileTypes class method:

NSArray *audioFileTypes = [NSSound
soundUnfilteredFileTypes];

 If you’re curious about which types of sounds Cocoa recognizes (and can

play), you can display them in the console by looping through the ele-

ments in the audioFileTypes array and displaying each one in the con-

sole via NSLog. The following code snippet lists the file extensions of files

that NSSound supports. Note that the list is case-sensitive, so you may

see multiple instances of the same file type (for instance, mp3, MP3, Mp3):

int i;
for (i=0;i<[theFileTypes count];i++)
 NSLog([theFileTypes objectAtIndex:i]);

 Figure 16-1 shows the available list of sound file types that a user can open.

Figure 16-1:
Cocoa can

load and
play many

types of
sound files.

298 Par t III: Put ting It All Together: Cocoa Programming in Depth

 2. Display an NSOpenPanel, restricting the user’s choices in that panel

to the file types in your array.

 In this instance, you aren’t restricting the sound file types because you

used soundUnfilteredFileTypes in Step 1, which populates the

array with all possible sound file types. Limit the number of files a user

can open in the NSOpenPanel to only one file:

NSOpenPanel *theOpenPanel = [NSOpenPanel openPanel];
[theOpenPanel setAllowsMultipleSelection:NO];
result = [theOpenPanel runModalForTypes:theFileTypes];

 3. Use the initWithContentsOfFile method of NSSound to load

the sound (represented by theFileName) that the user selected in

NSOpenPanel.

 Because you restricted the user to opening only one audio file, its path

resides in the first element of the array that NSOpenPanel returns.

theFiles = [theOpenPanel filenames];
theFileName = [theFiles objectAtIndex:0];
NSSound *theSound = [[NSSound alloc] initWithContentsO

fFile:theFileName byReference:YES];

 4. Play the sound as usual:

[theSound play];

 The preceding example limited the user to only one audio file selection in

the NSOpenPanel. Depending on your application’s needs, you may want to

permit a user to select multiple audio files in the NSOpenPanel. To do so, you

need to first permit multiple selections in theOpenPanel:

[theOpenPanel setAllowsMultipleSelection:YES];

After the user clicks the OK button in the NSOpenPanel, loop through all the

selected audio files in the resulting theFiles array:

theFiles = [theOpenPanel filenames];
int i;
for (i=0;i<[theFiles count];i++) {
 theFileName = [theFiles objectAtIndex:0];
//do something with the file located at this path:

theFileName
}

299 Chapter 16: Multimedia

Building a simple audio player
To see how audio playback works in a project, follow these steps:

 1. Create a new Cocoa project in Xcode by choosing File➪New Project.

After the project opens, double-click the MainMenu.xib file to edit the

interface in Interface Builder.

 2. In Interface Builder, add three NSButton controls to the main window

of your interface. Resize the window and change the Title attributes of

the three buttons to Play Application Sound, Play System Sound, and

Play Sound File so that they look like Figure 16-2.

 The first button plays a sound that’s part of your application bundle.

The second button plays a sound that resides in the System folder. The

third button plays a sound file that the user selects.

Figure 16-2:
Add three
buttons to
the audio

player
interface.

 3. In the Attributes section of the Inspector window, deselect the Close

and Resize check boxes for the window.

 Figure 16-3 shows the position of the two attributes. By deselecting the

Close check box, the window no longer has a Close button in the upper-

left corner of the window. Because this is a one-window demo application,

users might get confused when they close the window, and they can’t

reopen the window.

 By deselecting the Resize check box, users can’t resize the window at run-

time. If a user was permitted to resize the window, you’d have to account

for this behavior by changing properties for the buttons and the window.

Instead, it’s simply easier to disallow window resizing.

300 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 16-3:
Deselect the

Close and
Resize attri-
butes of the
audio player

window.

 4. Create a MyAudioController class.

 a. Open the Library, search for Object, and drag an NSObject sub-
class instance to the project window.

 b. Press Ô+6 and change the class name to MyAudioController, as
shown in Figure 16-4.

Figure 16-4:
Create a

new object
based on

NSObject.

301 Chapter 16: Multimedia

 5. Select the MyAudioController class and open the Identity Inspector

by choosing Tools➪Identity Inspector. Add three actions to the

MyAudioController class by clicking the + button at the bottom of

the Class Actions section.

 Name the actions playAppSound:, playSoundFile:, and play
SystemSound:.

 6. Create the header and implementation files in Xcode.

 Select the MyAudioController class and choose File➪Write Class

Files. Don’t worry about connecting the actions in Interface Builder yet;

you’ll do that later.

 7. Return to Xcode and drag an AIFF file from Finder to your project.

 Make sure that the AIFF file is banjo.aiff or modify the code to match

whatever filename you choose.

 8. Navigate to the MyAudioController.m file and add the following code:

#import “MyAudioController.h”

@implementation MyAudioController

- (IBAction)playAppSound:(id)sender
{
 //play a sound file that is part of the project
 NSSound *theSound = [NSSound soundNamed:@”banjo”];
 [theSound play];
}

- (IBAction)playSoundFile:(id)sender
{
 int result;
 NSArray *theFiles;
 NSString *theFileName;

 //fill an array with all
 //of the file types that Cocoa can use
 NSArray *theFileTypes = [NSSound

soundUnfilteredFileTypes];

 //display the sound file types in the console
 int i;
 for (i=0;i<[theFileTypes count];i++)
 NSLog([theFileTypes objectAtIndex:i]);

 //create and display an open panel
 NSOpenPanel *theOpenPanel = [NSOpenPanel

openPanel];

302 Par t III: Put ting It All Together: Cocoa Programming in Depth

 //permit users to open only one file at a time
 [theOpenPanel setAllowsMultipleSelection:NO];
 result = [theOpenPanel

runModalForTypes:theFileTypes];

 if (result == NSOKButton) {
 //which files did the user select - only one

in this case
 theFiles = [theOpenPanel filenames];
 //get the path to the chosen file
 theFileName = [theFiles objectAtIndex:0];
 //create, load, and play the audio file
 NSSound *theSoundFile = [[NSSound alloc]

initWithContentsOfFile:theFileName
byReference:YES];

 [theSoundFile play];
 }
}

- (IBAction)playSystemSound:(id)sender
{
 //play a sound file that accompanies the operating

system
 NSSound *theSound = [NSSound

soundNamed:@”Sosumi”];
 [theSound play];
}
@end

 Note: The code for playing the banjo.aiff sound file omits the .aiff file

extension. This omission of the file extension is both a convenience and

a requirement!

You might recognize most of the code in this listing. The playAppSound and

playSystemSound methods have identical code. They load a sound from

the project’s bundle or from one of the system folders that contains sounds.

The playSoundFile method, on the other hand, permits users to open any

sound file for playback.

Adding stop functionality
If you want to stop the playback of an audio file, call the stop method of the

theSound object, based on the NSSound class:

[theSound stop];

You have to make a few minor changes to your code if you want to add this

functionality to a new button, however. Because a stop function would pre-

sumably reside in a new method or action of the MyAudioController class

and need access to the NSSound object created in other actions, the first

303 Chapter 16: Multimedia

change you should make is to declare the NSSound instance as a member

of the class. The NSSound declaration shouldn’t be in the playSoundFile

method, as in the previous code listing. Thus, to implement a stop feature,

follow these steps:

 1. Alter the MyAudioController.h file like this:

/* MyAudioController */

#import <Cocoa/Cocoa.h>

@interface MyAudioController : NSObject
{
 NSSound *theSoundFile;
}
- (IBAction)playAppSound:(id)sender;
- (IBAction)playSoundFile:(id)sender;
- (IBAction)playSystemSound:(id)sender;
- (IBAction)stopSoundFile:(id)sender;

@end

 Note two things about the interface file:

 • A new stopSoundFile action is defined in the header.

 • MyAudioController is defined as an NSObject subclass.

 2. Return to the MyAudioController.m implementation file and change

the second-to-last line of code in the playSoundFile method.

 This line creates an NSSound object and loads it with the contents of a

theFileName file.

theSoundFile = [[NSSound alloc] initWithContentsOfFile
:theFileName byReference:YES];

 3. After you issue the play command, remember to release theSound
File because you created it with the alloc method.

[theSoundFile play];
[theSoundFile release];

 4. Implement the stopSoundFile action in MyAudioController.m.

 This method stops any audio playback that playSoundFile started.

Of course, you don’t want to stop playback unless audio is playing already.

To find out whether the sound file is currently playing, use the is
Playing method of the NSSound class. The completed stopSoundFile

method looks like this.

- (IBAction)stopSoundFile:(id)sender
{
 if ([theSoundFile isPlaying])
 [theSoundFile stop];
}

304 Par t III: Put ting It All Together: Cocoa Programming in Depth

Connecting the actions to the interface
Incidentally, you don’t have to create actions in Interface Builder. Actions are

just as valid if you declare them in Xcode. You still have to connect actions to

their desired interface elements in Interface Builder, though, so do that now:

 1. Double-click the MainMenu.xib file in the Resources group of your

project in Xcode to return to Interface Builder.

 2. In the XIB project window of Interface Builder, select

MyAudioController.

 3. Choose File➪Read Class Files and select MyAudioController.h at

the prompt.

 Interface Builder checks the header files for any changes. Because you

added a new stopSoundFile action in Xcode, Interface Builder updates

the MainMenu.xib NIB file, adding the new action as shown in Figure 16-5.

 4. Add a new button to the main window of your interface by dragging

one from the Library window and labeling it Stop Sound File.

 Figure 16-6 shows the result.

Figure 16-5:
If you add

actions
or outlets
in Xcode,
Interface

Builder can
find them in
the header

files and
update the

NIB file
accordingly.

305 Chapter 16: Multimedia

Figure 16-6:
Add a new

button to the
interface for
halting play-

back of a
sound file.

 5. Connect the new button to the stopSoundFile action.

 Control+drag from the new button to the MyAudioController instance

in the XIB project window. Select stopSoundFile from the black con-

nections list overlay that opens.

 6. Control+drag from the three other buttons to the MyAudioController

class and connect each one to its corresponding action.

 7. Choose File➪Save to save the MainMenu.xib file.

 8. Return to Xcode and choose Build➪Build and Go to test your work.

 When testing, initiate playback of an audio file that has a long duration

with the Play Sound File button. While the file plays, click the Stop

Sound File button to cease playback.

Watching Movies with Cocoa
Unless you’ve been living under a rock, you know that Mac OS X is a whiz

at playing other kinds of multimedia content as well. QuickTime is a cross-

platform multimedia engine that enables users to view, edit, and create all

sorts of multimedia content. Chief among the various multimedia formats is

the QuickTime movie. By using the QTKit framework in Cocoa, it’s easy to

add movie playback functions to your applications.

To work with QuickTime content in your projects, Cocoa provides you with

five important classes:

 ✓ QTMovie: A movie that you want to view, edit, or create.

 ✓ QTTrack: Movies are composed of one or more tracks. QTTrack helps

you to work with the individual tracks in a movie.

306 Par t III: Put ting It All Together: Cocoa Programming in Depth

 ✓ QTMedia: Each track in a movie is composed of media. QTMedia lets

you get and set information media in a track.

 ✓ QTDataReference: QuickTime is multifaceted and permits you to

load movies from files, the Internet, or even straight from memory.

QTDataReference is the QuickTime class that you use when you need

this level of access.

 ✓ QTMovieView: A movie player you use to play a QTMovie.

Because the QTKit framework is so vast, and in certain cases, somewhat

advanced, I show you two classes: QTMovie and QTMovieView. With these

two classes, you can load a movie and display it in a fullyfunctional player.

QTMovie
QTMovie is a class that represents a QuickTime movie. QTMovie can load

movies into from files, Uniform Resource Locators (URLs), data references,

or even the Pasteboard (Clipboard). For this section, I show you how to use

the movieWithFile class method of the QTMovie class to load a movie

from a file.

Earlier in this chapter, you loaded a sound file with an NSOpenPanel. Then

you used the result from that NSOpenPanel to open the file using a tradi-

tional file path. You can follow a similar methodology for movies, but you

have to expand the functionality a bit by filtering which files a user can select

in the NSOpenPanel. To do this, you must pass an array to the runModal
ForType method of NSOpenPanel:

 1. Create an array that defines which file types a user can open.

 The last item in the array is always nil. For example, to define an array

for .mov and .mp4 files, your code might look like this:

NSArray *fileTypes = [NSArray arrayWithObjects:@”mov”,
@”mp4”,nil];

 2. Pass the array to runModalForType:

if ([openPanel runModalForTypes:fileTypes] ==
NSOKButton){

 // code to load a movie goes here
}

 3. Pass the file path to the movieWithFile class method to create a

QTMovie.

QTMovie *movie = [QTMovie movieWithFile:theFilePath
error:nil];

307 Chapter 16: Multimedia

QTMovieView
After you load a movie, use the QTMovieView class to play it. You can find

the QTMovieView control in the Library window of Interface Builder (see

Figure 16-7) by searching for Movie View via the search field at the bottom of

the Library window.

Figure 16-7:
Find the

QTMovie
View by

searching
for Movie

View.

QTMovieView has several attributes that you can set manually in Interface

Builder — see Figure 16-8 — or programmatically with code.

Figure 16-8:
The

QTMovie
View attri-

butes in
Interface

Builder.

308 Par t III: Put ting It All Together: Cocoa Programming in Depth

Here are the attributes you can set in Interface Builder:

 ✓ Display color: Control the color of the QTMovieView when no movie

is loaded. The default color is black, but you can change it to whatever

color you desire.

 ✓ Show controller: Toggle the display of the built-in QuickTime controller,

which appears at the bottom of the QTMovieView control when you load

a movie into it. You’ll be familiar with the QuickTime controller if you’ve

ever viewed a QuickTime movie in a Web browser or in the QuickTime

Player application. The controller lets users control the playback of

QuickTime content using a set of familiar buttons. Besides starting and

stopping playback, you can rewind and fast forward through portions of

the movie as well as adjust the volume during playback. Figure 16-9 shows

a typical QuickTime movie controller.

 ✓ Editable: By default, Editable has a value of NO (that is, it’s deselected

in the Inspector window). The QuickTime controller appears, as shown

in Figure 16-9. When you set Editable to YES by selecting the Editable

check box in the Inspector window of Interface Builder and then loading

a movie in code, you see a controller that looks like Figure 16-10.

 The Editable attribute causes a QTMovieView to display a slightly

different QuickTime controller. You can use this type of controller

for different purposes, such as to select some portion of the movie.

As you can see in Figure 16-11, Shift-clicking permits you to select

some or all the movie in the QTMovieView.

 ✓ Volume: Toggle the display of the volume button control that appears at

the left edge of the QTMovieView. When you set this attribute to YES by

clicking the Volume check box in the Inspector window, the volume button

displays. When NO (deselected), the volume button doesn’t display.

Figure 16-9:
The

standard
QuickTime
controller

offers sim-
ple playback

interface
elements.

309 Chapter 16: Multimedia

Figure 16-10:
The Editable

attribute
toggles

between
playback

and editing
interface

elements.

Figure 16-11:
Shift-click

the control-
ler to select

some sec-
tion of a

movie in a
QTMovie

View.

After you set the desired QTMovieView attributes in Interface Builder,

add some code to Xcode to play a movie. Assuming you’ve already loaded

a movie into memory using the QTMovie class, display that movie in the

QTMovieView, by adding the following code:

[moviePlayer setMovie:theMovie];

310 Par t III: Put ting It All Together: Cocoa Programming in Depth

You can set many other aspects of playback using code. Besides the attributes

that you found in Interface Builder, you can set the volume of the movie during

playback. A volume of 1.0 is full volume, as defined by the maximum system

volume level. Thus, a volume of 0.5 is half the maximum system volume level.

[moviePlayer setVolume:1.0];

Alternatively, if you prefer, you can mute the sound:

[moviePlayer setMuted:YES];

Building a simple movie player
The easiest way to see how movie playback in Cocoa works is to build a

player. Follow these steps:

 1. Launch Xcode and create a new Cocoa application project by choos-

ing File➪New Project. Double-click the MainMenu.xib file in Xcode to

open it with Interface Builder.

 2. From the MainMenu.xib file window, open the main window for your

interface and then open the Inspector for the window by choosing

Tools➪Inspector.

 3. In the Inspector window, change the Title field for the window to

something appropriate. Add a QTMovieView control and an NSButton

from the controls from the Library window (as shown in Figure 16-12).

Figure 16-12:
Add a

QTMovie
View and a

button to the
interface.

311 Chapter 16: Multimedia

 4. Create a controller class for this interface.

 Drag an NSObject from the Library window to the XIB project window.

Press Ô+6 and name the new object MyMovieController. Figure 16-13

shows the new class.

Figure 16-13:
Create a

controller
class for the

project.

 5. Add an outlet and an action to the new controller class in the

Inspector window.

 Name the outlet moviePlayer and name the action loadMovie.

 6. Connect the MyMovieController instance to the interface:

 a. Control+drag from the new MyMovieController instance to the
QTMovieView that you added to the window earlier.

 b. Select the moviePlayer outlet in the black connections list overlay
that appears.

 c. Control+drag from the push button to MyMovieController and con-
nect it to the loadMovie action.

 7. After you design the interface, select the MyMovieController

instance in the XIB project window and choose File➪Write Class Files.

 Write the class files and add them to the Xcode project.

 8. In Xcode, change the code in the MyMovieController.h interface file to

look like this:

#import <Cocoa/Cocoa.h>

@interface MyMovieController : NSObject {
 IBOutlet id moviePlayer;
}
- (IBAction)loadMovie:(id)sender;
@end

312 Par t III: Put ting It All Together: Cocoa Programming in Depth

 9. Add the following code to the MyMovieController.m implementation

file:

#import “myMovieController.h”
#import <QTKit/QTKit.h>

@implementation MyMovieController

- (IBAction)loadMovie:(id)sender {
 NSOpenPanel *openPanel = [NSOpenPanel openPanel];
 [openPanel setTitle:@”Choose a Movie”];
 [openPanel setCanChooseDirectories:NO];

 NSArray *fileTypes = [NSArray arrayWithObjects:@”m

ov”,@”mp4”,nil];

 if ([openPanel runModalForTypes:fileTypes] ==

NSOKButton)
 {
 NSString *theFilePath = [openPanel filename];
 [moviePlayer setMovie:[QTMovie

movieWithFile:theFilePath error:nil]];
 }
@end

 The code starts out by defining an array of file types that a user can

open. In this case, you’re restricting users to only .mov and .mp4

movies:

NSArray *theFileTypes = [NSArray
arrayWithObjects:@”mov”, @”mp4”, nil];

 Then, the code presents a standard NSOpenPanel where users can

select a movie file. After they choose a file, the code loads the movie

into a QTMovie:

NSString *theFilePath = [openPanel filename];
[moviePlayer setMovie:[QTMovie

movieWithFile:theFilePath error:nil]];

 10. Choose Build➪Build and Go to test the project.

When a movie isn’t a movie
Playing movies is useful, but QuickTime can do much more. Everyone knows

that a traditional movie is a sequence of movie pictures coupled with sounds,

313 Chapter 16: Multimedia

but fewer people know that in QuickTime, this is only one kind of movie.

QuickTime treats all media types as movies.

For example, if you open your favorite audio files as QuickTime movies,

QuickTime dutifully plays the audio file. Because audio files don’t have a

visual component, there’s no need to display any part of the QTMovieView

other than the controller. Figure 16-14 shows an audio file loaded into a

QTMovieView.

Figure 16-14:
QuickTime

can play
audio files.

Some of the possible media file types that you can load into a QTMovie follow:

 ✓ Audio: AIFF, MP3, M4A, WAVE

 ✓ Video: MOV, AVI, MPEG-1

 ✓ Graphics: JPEG, TIFF, PNG, BMP

 ✓ 3D: QTVR

 ✓ Animation: Flash

To give a user the option of loading other types of media, simply add them

to theFileTypes array in the “Building a simple audio player” section from

earlier in this chapter. For example, if you want to offer the option of loading

a QuickTime movie or a TIFF file, change the code as follows:

NSArray *theFileTypes = [NSArray arrayWithObjects:@”mov”,@
”tiff”, nil];

Cocoa (and subsequently QuickTime) treats both file types equally: as a

QTMovie. This means you can load and play (or load and display if it’s an

image) many kinds of media without special code. This is one of the most

powerful features of QuickTime, so use it often! Figure 16-15 shows the

QTMovieView with an image loaded into the QTMovie.

314 Par t III: Put ting It All Together: Cocoa Programming in Depth

Figure 16-15:
QuickTime

can also
display

images.

Part IV
Advanced

Cocoa Topics

In this part . . .

Cocoa affords you the ability to easily program simple

projects, but can it handle other tasks? You betcha!

Part IV takes you beyond simple Cocoa programming and

into the realm of super geeks. You discover how to write

applications that use multiple windows as well as how to

harness the power of the Mac OS X command line. Part IV

concludes with a discussion of how to take advantage of

the super-powered Core Data framework in your Cocoa

applications.

Chapter 17

Document-Based Applications
In This Chapter
▶ Building a document-based project

▶ Building your interface

▶ Adding code

Throughout this book, you create simple one-window applications to see

how various aspects of Cocoa work. One-window applications are okay

for testing your skills as you become familiar with Cocoa. But after you’re

comfortable working with Cocoa, you’ll want to venture out on your own

and create an honest-to-goodness application. Creating demo projects is one

thing, but creating full-fledged applications is quite another.

When you create an application, you have to worry about much more

than managing a single window. Many applications use a document-based

approach whereby a user creates a document and adds some kind of con-

tent to it. If you’ve ever used a word processor or a drawing program, you’re

probably familiar with this kind of application. In document-based applica-

tions, a user might also save a document, open it later, or print it. All these

features require a lot of work when you implement them on your own.

Fortunately, Xcode helps by providing a full-featured, document-based proj-

ect for you to use as a starting point for your own doc-based application.

This chapter guides you through the steps required to build a document-

based application. Along the way, you’ll implement many different features

without doing much work.

Creating a Document-Based Project
To begin working with document-based applications, create a new project in

Xcode as follows:

 1. Choose File➪New Project and select Application on the left and Cocoa

Document-Based Application on the right, as shown in Figure 17-1.

318 Part IV: Advanced Cocoa Topics

Figure 17-1:
Choose
Cocoa

Document-
Based

Application
in the New

Project
window.

 2. Click the Choose button and save the new project in a location where

you can find it later.

 When the new project opens, you notice a big difference from other

projects throughout the rest of this book. This project contains a

MyDocument class, as shown in Figure 17-2.

Figure 17-2:
A

document-
based

project
comes

equipped
with a My
Document

class.

319 Chapter 17: Document-Based Applications

 3. Click the MyDocument.h file to view its contents:

#import <Cocoa/Cocoa.h>

@interface MyDocument : NSDocument
{
}
@end

 The interface file defines MyDocument as a subclass of the NSDocument

class. This is where you add outlets and actions.

 4. Click the MyDocument.m file to view its contents:

#import “MyDocument.h”

@implementation MyDocument

- (id)init
{
 self = [super init];
 if (self) {

 // Add your subclass-specific initialization

here.
 // If an error occurs here, send a [self

release] message and return nil.

 }
 return self;
}

- (NSString *)windowNibName
{
 // Override returning the nib file name of the

document
 // If you need to use a subclass of

NSWindowController or if your document
supports multiple NSWindowControllers, you
should remove this method and override
-makeWindowControllers instead.

 return @”MyDocument”;
}

- (void)windowControllerDidLoadNib:(NSWindowController
*) aController

{
 [super windowControllerDidLoadNib:aController];
 // Add any code here that needs to be executed

once the windowController has loaded the
document’s window.

}

320 Part IV: Advanced Cocoa Topics

- (NSData *)dataOfType:(NSString *)typeName
error:(NSError **)outError

{
 // Insert code here to write your document to data

of the specified type. If the given outError
!= NULL, ensure that you set *outError when
returning nil.

 // You can also choose to override
-fileWrapperOfType:error:,
-writeToURL:ofType:error:, or -writeToURL:ofTy
pe:forSaveOperation:originalContentsURL:error:
instead.

 // For applications targeted for Panther
or earlier systems, you should use the
deprecated API -dataRepresentationOfType:.
In this case you can also choose to override
-fileWrapperRepresentationOfType: or
-writeToFile:ofType: instead.

 if (outError != NULL) {
 *outError = [NSError errorWithDomain:NSOSStatusErro

rDomain code:unimpErr userInfo:NULL];
 }
 return nil;
}

- (BOOL)readFromData:(NSData *)data ofType:(NSString
*)typeName error:(NSError **)outError

{
 // Insert code here to read your document from

the given data of the specified type. If the
given outError != NULL, ensure that you set
*outError when returning NO.

 // You can also choose to override -re
adFromFileWrapper:ofType:error: or
-readFromURL:ofType:error: instead.

 // For applications targeted for Panther or

earlier systems, you should use the deprecated
API -loadDataRepresentation:ofType. In
this case you can also choose to override
-readFromFile:ofType: or -loadFileWrapperRepre
sentation:ofType: instead.

321 Chapter 17: Document-Based Applications

 if (outError != NULL) {
 *outError = [NSError

errorWithDomain:NSOSStatusErrorDomain
code:unimpErr userInfo:NULL];

 }
 return YES;
}

@end

 The MyDocument.m file has five methods where you add code to make

your application functional. Cocoa is even nice enough to give you full

comments on how to use each method.

 5. Press Ô+R to build and run the project.

 When the project launches, you see a single document window, as

shown in Figure 17-3.

Figure 17-3:
The new

document-
based

project
already

does
something:

It makes
documents.

 6. Choose File➪New to create a new document.

 The application creates a new document and adds it to the Window

menu. You can continue creating new windows as long as you want.

Note that the application has many other features, such as a full suite of

menus and an About Panel, which you had to add manually to your project

in Chapter 5. At this point, however, you can’t save or open a document

because you haven’t implemented that functionality yet.

322 Part IV: Advanced Cocoa Topics

Building the Interface for a
Document-Based Project

You need to make a decision about what kind of document-based application

you want to create. It could be a word processor, a graphics application, or a

checkbook program. In this chapter, you create a simple text editor.

Follow these steps:

 1. Return to Xcode and double-click the MyDocument.nib file to open it

in Interface Builder.

 A generic document opens (refer to Figure 17-3).

 2. Design the interface for this project:

 a. Delete the text label that stands at the center of your document
window.

 b. Add an NSTextView control from the Library window to the docu-
ment window in MyDocument.nib.

 c. Resize the NSTextView to your liking.

 Figure 17-4 shows the new interface.

Figure 17-4:
The text

editor
interface.

323 Chapter 17: Document-Based Applications

 3. Add an outlet to the MyDocument class.

 a. Select File’s Owner in the project window and press Ô+6 to open the
Identity Inspector, labeled My Document Identity.

 b. Add a new outlet to the Identity Inspector and name it myTextView,
as shown in Figure 17-5.

 You use this outlet to get and set text in the NSTextView of the

document.

Figure 17-5:
Select the

File’s Owner
and add an
outlet to it.

 4. Connect the myTextView outlet to the NSTextView in the interface

by Control+dragging from the File’s Owner icon to the NSTextView in

your document window.

 Make sure that you connect to the NSTextView and not its Scroll

View parent. The NSTextView control is embedded within an

NSScrollView control (which handles the scrolling, as you might

have guessed). You may have to drag toward the top of the text view

for it to become highlighted.

324 Part IV: Advanced Cocoa Topics

 Figure 17-6 shows the outlet connection.

Figure 17-6:
Control+

drag from
the File’s

Owner
icon to the

NSText-
View in the

interface.

 5. Choose File➪Save to save the NIB file and then return to Xcode.

 The outlet is added to the MyDocument.h file.

 6. Expand the Target group in the Groups & Files list and select the

default application.

 7. Click the Info button in the window’s toolbar to open the Target Info

window.

 8. Click the Properties tab to display the list of document types in this

application and click the + button at the bottom of the Info window.

 9. Add rich text as a new document type that the application can use, as

shown in Figure 17-7:

 a. In the Extensions box, type rtf (without quotation marks).

 b. Enter text/rtf in the MIME Types field.

 c. In the OS Types box, type “RTF “ (this time use a double-tick mark,
followed by RTF, a space, and another closing double-tick mark) in
the OS Types field.

 d. Enter MyDocument in the Class field and choose Binary as the
Store Type.

 If you add an icon file (with the .icns extension) to your project

and define it in the icon column, your application uses the custom

icon when saving this file type. Chapter 5 details how to assign an

icon to your application.

325 Chapter 17: Document-Based Applications

 Feel free to remove the default DocumentType entry by selecting it and

pressing the Delete key.

Figure 17-7:
Add RTF

to your
project as a

document
type.

Adding the Code
Now that you’ve set up the interface and classes in Interface Builder and

added the RTF document type in Xcode, you can add some code to your proj-

ect. The MyDocument.h and MyDocument.m files were added to the docu-

ment by default when you created the project. You need to add code to these

two files to make the application work.

 1. In Xcode, add an outlet and an NSData pointer to your MyDocument.h

interface file by entering this code:

#import <Cocoa/Cocoa.h>

@interface MyDocument : NSDocument
{
 IBOutlet id myTextView;
 NSData *fileContents;
}
@end

326 Part IV: Advanced Cocoa Topics

 The NSData object holds the contents of your rich text file. The

IBOutlet is the outlet that you already added to File’s Owner in

Interface Builder.

 2. Navigate to your MyDocument.m implementation file and change its

code to read as follows:

#import “MyDocument.h”

@implementation MyDocument

- (id)init
{
 self = [super init];
 if (self) {
 // Add your subclass-specific initialization

here.
 // If an error occurs here, send a [self

release] message and return nil.
 }
 return self;
}

- (NSString *)windowNibName
{
 return @”MyDocument”;
}

- (void)windowControllerDidLoadNib:(NSWindowController
*) aController

{
 [super windowControllerDidLoadNib:aController];
 [myTextView replaceCharactersInRange:NSMake

Range(0,[[myTextView string] length])
withRTF:fileContents];

}

- (NSData *)dataOfType:(NSString *)typeName
error:(NSError **)outError

{
 [fileContents release];
 fileContents = [[myTextView RTFFromRange:NSMakeRange

(0,[[myTextView string] length])] retain];
 return fileContents;
}

- (BOOL)readFromData:(NSData *)data ofType:(NSString
*)typeName error:(NSError **)outError

{
 fileContents = [data retain];
 return YES;
}

327 Chapter 17: Document-Based Applications

-(void)dealloc {
 [fileContents release];
 [super dealloc];
}

@end

 The big changes in this file are in dataOfType, readFromData, and

windowControllerDidLoadNib:

 • The dataOfType method takes care of saving the file.

 The dataOfType method doesn’t really have anything to do with

files. Instead, it returns the data that the application should save to

the file. The application actually takes care of the rest!

 • The readFromData and windowControllerDidLoadNib meth-

ods handle the task of opening a rich text file. The readFromData

method receives the incoming data from the file and lets the applica-

tion know whether it’s successful. Then the windowController
DidLoadNib method takes care of displaying the text in the NSData

instance named fileContents.

 3. Press Ô+R to test your work.

 You can open and save rich text files just like those created with

TextEdit or Microsoft Word. When you open a file, your application dis-

plays its contents in a new window. Notice that the application’s other

menus work, too. You can close a window by pressing Ô+W or even use

the spell-check on a document.

The beauty of using a Cocoa document project is that Cocoa takes care of a

lot of the work for you. You don’t have to do much work to implement a large

assortment of features. Besides making it easy on you, Cocoa makes it easier

on your users. By using the default behaviors that Cocoa document-based

apps provide you, your users will be familiar with their operation.

328 Part IV: Advanced Cocoa Topics

Chapter 18

Cocoa Bindings
In This Chapter
▶ Understanding bindings

▶ Working on a project with bindings

▶ Using KVC and KVO to make your bindings work

▶ Adding bindings to an existing project

Whenever you create a Cocoa application the traditional way, you

implement a Model class that manages data, an interface that users

interact with, and a Controller class that ties the two together. This is all well

and good, but Objective-C saves you from a substantial bit of coding and

hassle by permitting you to bypass the Controller class altogether.

Bindings let you bridge items in your interface directly to data in your Model

classes. This is handy because Objective-C handles the tasks of keeping your

interface updated and, more importantly, you don’t have to. That means less

coding work for you and less chance of creating bugs.

This chapter explains what bindings are and why you use them. Then, it

describes some of the technology behind bindings (namely KVC and KVO).

KVC and KVO are two complementary technologies that you can use to

generically get and set the values of instance variables. Finally, you create

a project that uses bindings instead of code to control an interface in your

application.

 Bindings is an advanced topic that is also voluminous, and as such, you have

to do some exploration on your own to master the wild and wooly world of

bindings. This chapter only scratches the surface of what you can do with

bindings. You can bind all sorts of elements in your interface to many different

keys in your classes to affect how the application behaves when it runs.

330 Part IV: Advanced Cocoa Topics

What Are Bindings?
The Model-View-Controller (MVC) design pattern is the preferred method for

writing Cocoa applications (see Chapter 7). Part of what makes the design

so great is that it separates data (the Model) from the interface (the View). In

between the data and the interface sits an intermediary object, the Controller.
When the Controller changes the view (for example, when a user makes a

move), you have to write code. For example, this line of code changes the dis-

play (an outlet connected to an NSTestField) any time a user deposits or

withdraws money from the account:

[display setFloatValue:[account balance]];

This code also appears in the awakeFromNib method so the field displays an

initial value on launch. With a MVC design, you set the text field in three dif-

ferent places.

Imagine what a chore all this coding becomes when your application starts

expanding. Soon, things can become quite unruly. You might have to toggle

the enabled state of particular controls depending on the state of the applica-

tion. Or, maybe you need to display values in other fields too. Each time you

have to change the interface via code, you increase your workload (and the

resulting spaghetti code) by leaps and bounds. Surely, there must be a better

way. And indeed there is — bindings!

Bindings is a technology in Cocoa that consists of some classes that help you

keep data and an interface in sync. Instead of updating the interface each

time a user changes the balance value in the bank account application, you

can instead tell the interface to bind the balance value to the NSTextField.

Then, whenever your application changes the balance value, the interface

updates automatically. You can eliminate the three instances when you have

to update the interface in the MVC design. And, because you used an outlet

to update the interface, you can remove that too!

 Bindings help you prune down your code significantly. Less code usually

means fewer bugs.

331 Chapter 18: Cocoa Bindings

Starting a Project with Bindings
To see how bindings work, launch Xcode and create a new project:

 1. Choose File➪New Project and select Application on the left and the

Cocoa Application on the right, as shown in Figure 18-1. Click the

Choose button and name the new project whatever you wish.

 I named it the same as the Chapter 7 project: Bank Account.

Figure 18-1:
Create a

new Cocoa
application.

 2. Choose File➪New File, select Cocoa and then Objective-C Class, as

shown in Figure 18-2. Click the Next button, name the new class

AccountController, and create the AccountController.m and

AccountController.h files.

 To simplify matters, you don’t have a separate Account class. The

AccountController class keeps track of the balance.

332 Part IV: Advanced Cocoa Topics

Figure 18-2:
Add a new

class to the
project.

 3. In the AccountController.h file that you created in Step 2, enter

this code:

#import <Cocoa/Cocoa.h>

@interface AccountController : NSObject {
 float balance;
}

- (IBAction)deposit:(id)sender;
- (IBAction)withdraw:(id)sender;

-(float)balance;
-(void)setBalance:(float)aBalance;
@end

 The interface file has one instance variable, balance. That’s followed

by two actions for depositing and withdrawing money from the account.

There are also two methods for setting and getting the balance value.

 This application behaves identically to the bank account application with an

MVC design (see Chapter 7), but the amount of code that you write is signifi-

cantly smaller.

Why are you going to the trouble of creating accessor methods (balance

and setBalance) if you could just query the value of the instance variable

balance? That’s a good question! And one that I answer in the next section.

333 Chapter 18: Cocoa Bindings

Making Your Bindings Work:
KVC and KVO

KVC (Key-Value Coding) and KVO (Key-Value Observing) are conventions

whereby you can get, set, and observe properties of a class by name.

In a typical class, you might retrieve an instance variable with an accessor

method like this:

theBalance = [account balance];

With KVC, you can retrieve that value like this instead:

theBalance = [account valueForKey:@”balance”];

You retrieve the value generically by using the valueForKey method

and passing the name of the key instead of accessing its accessor method

directly. This might not seem like it makes sense, but it’s what makes bind-

ings work. When you call valueForKey, Cocoa tries to find a method with

the same name as the key. So, it searches until it finds the accessor method

that you defined and retrieves the value from it:

-(float)balance;

With KVC, you can also set values generically by key. For example, to set the

balance, you’d do this:

[account setValue:115 forKey:@”balance”];

This time Cocoa searches for a setBalance method. It then uses that acces-

sor method to set the value of balance to 115.

-(void)setBalance:(float)theBalance;

 Use setX as the name of the setter method, where X is the capitalized name of

the instance variable. It might not make sense why you have to follow this con-

vention, but bindings rely on it, so name your accessors this way!

So, Cocoa has a way to get and set values of instance variables by key name.

If you adhere to the conventions of KVC, you can also observe the values of

variables by key name. KVO lets your application register observe a value

based on key name. Then, whenever the value of the key changes, your appli-

cation is notified of the value change. For example, if you want the register

334 Part IV: Advanced Cocoa Topics

to observe the balance variable, you’d do something like this (perhaps in

awakeFromNib):

[account addObserver:self forKeyPath:@”balance” options:0
context:NULL];

The account class is now an observer of the balance variable. Don’t worry

about the options and context parameters. They’re for advanced users,

and you’ll know what they mean when you reach that level. For now, set

options to zero and context to NULL. Whenever the value of the variable

changes, the class, as an observer, gets a message letting it know that the

value has changed. There, your code does something to respond. But where

would this message arrive? It arrives in an observeValueForKeyPath

method, which you must implement, like so:

-(void)observeValueForKeyPath:(NSString *)keyPath
ofObject:(id)object change:(NSDictionary *)
change

 context:(void *)context {

}

Because observeValueForKeyPath is generic and fires for all observed

values, you have to check the keyPath to see if the incoming value is one

you care about:

if ([keyPath isEqualToString:@”balance”]) {
 //do something here with regards to the value of balance
}

The reason KVC and KVO are so important is that the bindings technology

uses them to perform its magic. That’s not to say that you can’t use KVC and

KVO in your own applications separate from bindings. You can! And when

you do, you also get bindings support for free.

Implementing Bindings
To see how all this KVC and KVO stuff works, return to the project that you

started in the “Starting a Project with Bindings” section. Your interface for

AccountController has two actions for when the user clicks one of the

buttons in the interface, and it has two accessor methods: balance and

SetBalance (which follow the KVC naming conventions). If you’re not sure

how to name the KVC, see the previous section.

335 Chapter 18: Cocoa Bindings

Click the AccountController.m file in your Xcode project and add the follow-

ing code:

#import “AccountController.h”

@implementation AccountController

-(void)awakeFromNib {
 [self setBalance: 100];
}

- (IBAction)deposit:(id)sender {
 [self setBalance: [self balance]+20];
}

- (IBAction)withdraw:(id)sender {
 [self setBalance: [self balance]-5];
}

-(float)balance {
 return balance;
}

-(void)setBalance:(float)aBalance {
 balance = aBalance;
}

@end

Here’s how the code works:

 ✓ The class starts off with awakeFromNib, where you set the value of

balance to 100 for an initial balance.

 ✓ The code defines the two actions that execute when a user clicks one of

the two buttons in the interface (deposit and withdraw).

 ✓ The accessor methods are defined.

Pretty standard stuff. But where’s all that code you need for the MVC design

that updated the interface? It’s gone! That’s because Cocoa bindings handle

that dirty work for you.

Now, it’s time to set up the bindings in Interface Builder:

 1. Double-click MainMenu.xib to open it in Interface Builder.

 2. Create an interface with two NSTextField controls (called Label in

the Library window) and two push buttons.

336 Part IV: Advanced Cocoa Topics

 If you need help creating the interface, see Chapter 7. Figure 18-3 shows

the interface with the two controls and push buttons.

Figure 18-3:
Create the
interface.

 3. Choose File➪Read Class Files and select the AccountController.h file,

as shown in Figure 18-4.

 When you read the interface file, seemingly nothing happens, but behind

the scenes, Interface Builder is reading the interface file and is now cog-

nizant of the class.

 4. Open the Library window in Interface Builder by choosing Tools➪
Library and search for Object. Drag a new object to the project

window, as shown in Figure 18-5.

 5. Press Ô+6 to open the Inspector window and change the Class to

AccountController. Add deposit: and withdraw: actions.

 See Figure 18-6.

Figure 18-4:
Read the
Account-

Controller.h
file.

337 Chapter 18: Cocoa Bindings

Figure 18-5:
Drag an

Object from
the Library

to the
project

window.

Figure 18-6:
Change the

Object class
to Account

Controller
and add two

actions.

338 Part IV: Advanced Cocoa Topics

 6. Connect the two actions to the corresponding buttons in the interface

by Control+dragging from the buttons to the AccountController

class in the project window.

 Figure 18-7 shows the connection being made to the deposit action.

Figure 18-7:
Connect the
two actions

to the
Account

Controller
class.

 7. Select the empty NSTextField control in the interface and press

Ô+4 to open the Bindings Inspector for that control. The Bindings

Inspector has the title Text Field Bindings.

 Figure 18-8 shows the Bindings Inspector.

 8. Expand the Value section of the Bindings Inspector. Select Account

Controller from the pop-up menu and type balance in the Model Key

Path field and press Return.

 Instantly the Bindings Inspector selects the Bind To: check box and

sets a couple check boxes (Allows Editing Multiple Values Selection

and Raises for Not Applicable Keys) for you, as shown in Figure 18-9.

Congratulations! You’ve just set your first binding.

339 Chapter 18: Cocoa Bindings

Figure 18-8:
Select the
empty text

field and
open the
Bindings

Inspector.

Figure 18-9:
Select

Account
Controller

from the
pop-up

menu and
enter

balance in
the Model
Key Path.

340 Part IV: Advanced Cocoa Topics

 9. Save MainMenu.xib and return to Xcode where you can test your work

by choosing Build➪Build and Go.

 The result looks something like Figure 18-10.

Figure 18-10:
Test your

work to see
the bindings

in action.

 10. Click the Deposit button to deposit $20.

 The balance increases, as shown in Figure 18-11.

Figure 18-11:
Click the
Deposit

button to
increase the

balance.

By jumping through these hoops, your application now displays the correct

balance value in the interface, and you didn’t write any code that actually set

the value in the interface. Instead, by binding the balance value to the text

field, Cocoa is observing that value (via KVO) behind the scenes. When the

value changes, the binding updates the display. The reason that it knows the

value is all thanks to you implementing the accessor methods following the

KVC naming conventions.

 This might not be super impressive, but as your applications increase in

scope, the time savings is substantial. And you can avoid all kinds of buggy

code in the process.

Chapter 19

Core Data
In This Chapter
▶ Discovering the greatness of Core Data

▶ Creating your Core Data project

▶ Defining your model

▶ Building your interface

After you have some experience programming applications for the

Macintosh, you soon realize that you spend an inordinate amount of time

doing some of the same tasks over and over. One aspect in particular that you

find yourself repeating is handling data. Many applications help users with

data management. For example, a recipe application might help users organize

information like ingredients, steps in a recipe, and special cooking instructions.

Other applications — for example, iTunes — might assist users in organizing,

sorting, and managing media files like music and video.

So many applications helping users with data aren’t a surprise. Computers

are exceedingly good at managing data, and lots of it. What might be surpris-

ing though is that programmers usually have to do all the hard work of writ-

ing code to handle all this data — until now. In this chapter, I show you how

Cocoa makes adding data management to your projects easy with Core Data.

What’s So Great about
Core Data Anyway?

Core Data is a relative newcomer to the Cocoa programming scene, but don’t

let its youth and inexperience dissuade you from unleashing its talents. Core
Data is a framework of around a dozen pre-made classes that allows you to

easily add data management to your applications. And oftentimes, Core Data

can do so without you even writing a single line of code!

342 Part IV: Advanced Cocoa Topics

Core Data is handy for a number of reasons:

 ✓ Core Data helps you define data in a structured fashion.

 ✓ Core Data handles a lot of the messy (and boring) programming work for

you, so you don’t have to do it.

 ✓ Core Data can save and open data files for you automatically.

 ✓ Core Data can even build a functional interface for you.

 ✓ You might not even have to write a lick of code to take advantage of it!

When you’re writing Cocoa applications for personal use, sometimes all you

want is a quick-and-dirty hack to fulfill your needs. In these cases, you prob-

ably don’t mind how the interface works or what additional applications

the Cocoa project requires. All you care about is the functionality of your

application.

Core Data gives your Cocoa project instant access to all these powerful fea-

tures that are inherent to a variety of applications. Data management is an

important aspect for a wide range of applications, and Core Data can help

you achieve your goals more smoothly and accomplish things faster.

Core Data isn’t just good at juggling data for you. It also helps you write

cleaner, more structured software. Furthermore, it often can do so without

you writing any code. Less code means less bugs. And less support. And less

headaches. That’s right, Core Data even has the healing power of aspirin! Just

kidding on that last part, but you’ll be so amazed at how much Core Data can

assist your programming efforts that you might be able to forego a trip or

two to the pharmacy.

Creating a Core Data Project
To begin working with Core Data in a Cocoa application, follow these steps:

 1. Create a new Cocoa application project.

 Launch Xcode and choose File➪New Project.

 2. From the list of project templates, choose Application on the left side,

then Core Data Application on the right, as shown in Figure 19-1, and

then click the Choose button.

343 Chapter 19: Core Data

 Be careful here. You see three kinds of Core Data templates listed. For

now, you don’t have to worry about the Core Data Document-Based

Application templates. This application uses only one window, so a

document-based application won’t help you here.

Figure 19-1:
Create a

Core Data
Application.

 3. Name the project Core Data and click the Save button to finish creating

the new project.

A Core Data project looks much like other Cocoa projects with Classes,

Resources, and Frameworks folders as you’ve seen in other projects.

However, Core Data projects also have one additional folder: Models. The

Models folder contains a single data model by default. You’ll use this model

to design data storage for your application. You can add other models later

if you need them, but for now, you need only this one. Figure 19-2 shows the

Data Model file in a new project. Its name varies depending on the name you

chose for the project.

344 Part IV: Advanced Cocoa Topics

Figure 19-2:
The Models

folder
holds —

 you
guessed
it — the

Core Data
model for

the project.

Defining the Model
Although it’s not technically true, it can be helpful to think of your core data

model as a database. More specifically, the data model contains a definition

for the data that your application will be managing. Much like creating a new

database, you define the various data elements that make up the data model

with Xcode’s data modeler. For this chapter, imagine an application that

helps you keep track of your book collection. A book application might help

you track information, such as

 ✓ Title

 ✓ Author

 ✓ Page count

 ✓ Category: fiction or non-fiction

 ✓ Synopsis

 ✓ ISBN

In Core Data parlance, a book in this application is an entity and information

about a book (title, author, and so on . . .) is a property, or more specifically

an attribute. The Xcode data modeler helps you define entities, properties,

and their relationships.

345 Chapter 19: Core Data

To create the data model for the book application, follow these steps:

 1. Open the Models folder and select the default data model to display

the data modeler.

 If you want more elbow room, you can double-click the model to open

the data modeler in a separate window.

 The data modeler consists of four panes (not pains!): a list of entities,

a list of properties, a pane that displays information about entities and

attributes (currently displaying No Selection), and a big pane at the

bottom that looks like graph paper. Refer to Figure 19-2.

 The graph paper–looking section at the bottom of the data modeler

gives you a visual representation of the data model when you have enti-

ties and attributes in the model.

 2. Click the + button at the bottom of the Entity pane to create a new

entity.

 A new entity appears in the Entity pane, as shown in Figure 19-3.

 3. Change the entity name to Book by double-clicking its name in the

Entity pane or by changing its name in the far-right pane of the data

modeler.

 The Book entity, as you might have already guessed, keeps track of your

books.

Figure 19-3:
Create a

new Book
entity.

346 Part IV: Advanced Cocoa Topics

 4. Create Author and Category entities, respectively.

 The author and category of a book might both be considered properties

of a book, and in fact, you could define them that way. However, in this

application, define both the Category and Author as entities instead

(see Figure 19-4). That way, you can alter the author names and catego-

ries later without changing the author and category for each book in the

collection.

 If the three entities appear on top of one another on the graph paper–

looking pane, move them by clicking and dragging each entity so you

can see them better.

Figure 19-4:
Create the

Author and
Category

entities.

 5. Select the Book entity and then click the + button at the bottom of the

Property pane to add an attribute to the Book entity.

 There are three kinds of properties: attributes, fetched properties, and

relationships, which all appear in the pop-up menu that opens when you

click the + button in the Property pane. For now, you need only concern

yourself with the attributes property type.

 6. Name the new attribute title and make it a non-optional String

type.

347 Chapter 19: Core Data

 Deselect the Optional check box for the title attribute and select

String from the Type drop-down list, as shown in Figure 19-5. The title

attribute will store the name of the book as a string of characters, which

is why you selected the string type. Contrary to an entity name, an attri-

bute name isn’t capitalized (for example, use title, not Title).

Figure 19-5:
Add a new

title attribute
to the Book

entity.

 7. Add a pages attribute to the Book entity and choose Integer 16 from

the Type drop-down list.

 The pages attribute tracks the page count of a book. The Integer 16

data type represents a 16-bit integer, large enough to store values as

high as 65,536. That number should suffice for most books — even War
and Peace! Figure 19-6 shows the Book entity with two attributes: title

and pages.

 8. Add a third attribute, synopsis, and give it a String type.

 This new attribute tracks the synopsis of the book. The attribute uses

the String type because you want to store a string of text.

 9. Add a fourth attribute, isbn, and designate it as a String type.

 Figure 19-7 shows the Book entity and its four attributes. The isbn

attribute is a string instead of an integer because some users might

enter the ISBN with hyphens separating the numbers, thus making it a

string of characters. Also, some books don’t have an ISBN and might

use a different numbering system that requires text data.

348 Part IV: Advanced Cocoa Topics

Figure 19-6:
Add a pages

attribute to
track page

count for
each book.

Figure 19-7:
Add

synopsis
and isbn

attributes
to the Book

entity.

 10. Select the Author entity from the Entity pane on the left and add an

attribute, name, to it and assign a String type. Deselect its Optional

check box.

349 Chapter 19: Core Data

 11. Select the Category entity from the Entity pane on the left and

add an attribute, name, to it and assign a String type. Deselect its

Optional check box.

 Figure 19-8 shows the completed Category entity.

Figure 19-8:
Add a name

attribute
to the

Category
entity.

 12. Select the Book entity, add a relationship, author, to it in the

Property pane, select Author from its Destination pop-up menu, and

select the To-Many Relationship check box.

 Like attributes, relationship names are lowercase.

 A relationship is a different kind of property than an attribute. Instead of

storing data like an attribute does, a relationship defines a link between

two entities. To find the name of an author, the Book entity links to the

Author entity. The To-Many Relationship check box is selected because

some books have multiple authors. The arrow also has two heads at the

author end.

 The Book entity is now linked to the Author entity, showing their rela-

tionship. See Figure 19-9.

 13. Add a second relationship to the Book entity and name it category.

Select Category from its Destination pop-up menu and select the

To-Many Relationship.

 The category relationship gleans category information from the

Category entity.

350 Part IV: Advanced Cocoa Topics

Figure 19-9:
Define an

author
relationship

as part of
the Book

entity.

 The Book entity is now linked to the Category entity, as shown in

Figure 19-10. Because a book might belong to multiple categories, the

To-Many Relationship check box is selected. Because of the To-Many

relationship, the arrow has two heads.

Figure 19-10:
Add a

category
relationship
to the Book

entity.

351 Chapter 19: Core Data

You could end your data modeling here, but you have one small additional

detail to address. The Book entity knows about the Author and Category

entities thanks to the relationships, but the Author and Category entities

don’t know about the Book entity. So, return to the data modeler and follow

these steps to assign relationships in reverse:

 1. Add a relationship, books, to the Author entity. Select Book from

its Destination pop-up menu and select the To-Many Relationship

check box.

 A two-headed arrow connects the Author entity to the Book entity, as

shown in Figure 19-11, because one author might have written multiple

books.

 A one-headed arrow indicates the two entities have a one-to-one rela-

tionship. A two-headed arrow indicates a one-to-many relationship.

Figure 19-11:
Add a books
Relationship

to the
Author
Entity.

 2. In the books relationship, select Author in the Inverse pop-up menu.

 Because the Book and Author entities point at each other, the data

modeler helps you clean up things by merging the two arrows, as shown

in Figure 9-12. One end of the arrow has two heads. The opposite end

has one head. The Book entity has a one-to-one relationship with the

Author entity (one book is written by one author), but the Author

entity has a one-to-many relationship with the Book entity (one author

can write many books).

352 Part IV: Advanced Cocoa Topics

Figure 19-12:
Inverse the

relationship.

 3. Add a relationship, books, to the Category entity, select Book from

its Destination pop-up menu, select the To-Many Relationship check

box, and select Category from the Inverse pop-up menu.

 The Category and Book entities now have a two-way relationship,

 as shown in Figure 19-13. A book can belong to multiple categories,

and a category can have multiple books, so the arrow has two heads

on each end.

 4. Add an attribute to the Author entity and the Category entity, assign

the String type to both attributes, name both attributes name, and

deselect the Optional check box for both.

 See Figure 19-14.

You’ve now completed building the data model for this book application, so

save the project. Now, it’s time to build an interface.

353 Chapter 19: Core Data

Figure 19-13:
Link the

Category
entity and
the Book

entity with
an inverse

relationship.

Figure 19-14:
Add a name

attribute
to both the
Author and

Category
entities.

354 Part IV: Advanced Cocoa Topics

Building the Interface
This is where all your hard work pays off! Sure, you could go about creating

an interface, adding buttons and tables ’til the cows come home, but why

bother? Xcode can do all the hard work for you! Yes, you read that right.

Xcode can actually create a full interface for you based on the data model

alone! And what’s more, it can even add complete functionality to the inter-

face as well. Follow these steps:

 1. In Xcode, move the project window to the right side of your screen.

 You’ll need the extra room because you need to work with Xcode and

Interface Builder at the same time.

 2. Double-click MainMenu.xib in the Resources folder to open Interface

Builder, and in Interface Builder, open your project’s main interface

window so that it’s visible.

 Interface Builder opens and displays the typical items in a default inter-

face file.

 Drag the window to one side of the screen, so you can see it and the

Xcode project window at the same time.

 3. Return to Xcode and Option-drag the Book entity from the graph

paper–looking pane to the interface window in Interface Builder.

 This step can be a little tricky to master, so don’t fret if you can’t get it

to work on your first try. You can drag the graphical representation of

the Book entity, not the one in the Entity pane.

 4. Return to Interface Builder and choose Master/Detail View in the New

Core Data Entity Interface window, as shown in Figure 19-15.

 5. Select the Search Field, Details Fields, and Add/Remove check boxes

and then click the Next button.

 6. Accept the defaults (see Figure 19-16) and click the Finish button.

 7. Return to Xcode again and Option-drag the Category entity from

the graph paper–looking pane to the interface window in Interface

Builder.

355 Chapter 19: Core Data

Figure 19-15:
Choose
Master/

Detail
View and
select all

the check
boxes.

Figure 19-16:
Click the

Finish
button to
complete
the inter-

face for the
Book entity.

356 Part IV: Advanced Cocoa Topics

 8. Back in Interface Builder, choose Master/Detail View in the New

Core Data Entity Interface window. Select the Detail Fields and Add/

Remove check boxes, as shown in Figure 19-17; click Next.

 This time, leave the Search Field check box deselected. To give you a

little more room in the interface, this omits the search field.

Figure 19-17:
Click the

Next button
to complete

the inter-
face for the

Category
entity.

 9. Deselect the Books check box and leave the Name check box selected.

Click the Finish button to add the Category entity to the interface.

 10. Return to Xcode and Option-drag the Author entity to the interface

window in Interface Builder.

 11. Return to Interface Builder and choose Master/Detail View in the New

Core Data Entity Interface window and click Next.

 Again, select all the check boxes, except the Search Field check box.

 12. Deselect the Books check box and leave the Name check box selected.

Click the Finish button to add the Author entity to the interface.

 13. Rearrange the interface to suit your preferences.

 Figure 19-18 shows a sample interface. You may need to resize the

window and move things to make everything fit.

357 Chapter 19: Core Data

Figure 19-18:
Rearrange

the inter-
face to

make every-
thing fit.

 14. Save the interface and quit Interface Builder.

 15. In Xcode, choose Build➪Build and Go to test your hard work.

 You see a working application like that shown in Figure 19-19.

Figure 19-19:
The

complete
application.

358 Part IV: Advanced Cocoa Topics

The completed application has an astounding array of features:

 ✓ It displays a complete working interface.

 ✓ You can remove authors and categories.

 ✓ You can add and remove a book and assign an author and a category to

the book.

 ✓ The application saves all the data upon closing.

 ✓ It reloads all the data the next time you run the application.

 ✓ It fully supports Undo, which is no small feat to add on your own.

 ✓ The list of books is fully searchable based on title, ISBN, page count, and

synopsis.

 ✓ It even has spell-checking!

This is an amazing feat and not only that, you didn’t have to write a single

solitary line of code to make it happen. Outstanding!

Granted, this may not be the interface you want, but it does give you a tre-

mendous head start on creating your own interface for the application. This

interface also gives you a significant number of clues about how Core Data

works with interface and, in particular, bindings. In this project, bindings take

care of updating your interface to match the data model. You can read more

about bindings in Chapter 18.

Note that the interface project window now has new controller objects in it

that represent the three entities. Note also that if you select one of those con-

trollers and press Ô+5, you can view all the various bindings that cause the

interface to react with the data model. You can find out a lot about how Core

Data works just by investigating these bindings on your own.

Part V
The Part of Tens

In this part . . .

To help make your experience more fulfilling, Part V

gives you important tips that speed up your Cocoa

development as well as Web locations for Cocoa code,

demos, and assistance.

Chapter 20

Ten Tips to Make Cocoa
Programming Easier

In This Chapter
▶ Use keyboard shortcuts

▶ Read the documentation

▶ Use Class Browser

▶ Adjust the window count

▶ Use drag and drop

▶ Use init and awakeFromNib

▶ Don’t forget the methods of the superclass

▶ Position items with Cocoa coordinates

▶ Use guidelines in Interface Builder

▶ Reuse code

As you familiarize yourself with Objective-C and the Cocoa frameworks,

you’re bound to run across various tips and tricks that you’ll want to

remember. This chapter attempts to reduce the amount of time you have to

wait until you discover some of those tips and tricks.

Use Keyboard Shortcuts
One of the easiest ways to speed up your Cocoa programming is to take

advantage of the multitude of keyboard shortcuts available to you in Xcode

and Interface Builder. Table 20-1 lists some of the common keyboard short-

cuts that Xcode and Interface Builder share.

362 Part V: The Part of Tens

Table 20-1 Keyboard Shortcuts Shared by
 Xcode and Interface Builder
Shortcut What It Does

Ô+S Saves a file

Ô+O Opens a file

Ô+M Minimizes a window to the Dock

Ô+? Displays help for Xcode or Interface Builder

Ô+N Creates a new file in Xcode or a new NIB file in Interface Builder

Ô+Q Quits the application

Ô+R Runs a project or an interface

Besides the run-of-the-mill keyboard shortcuts, you can help your Cocoa pro-

gramming along by using the keyboard shortcuts of the pros. Table 20-2 lists

some keyboard shortcuts that give a decided advantage.

Table 20-2 Keyboard Shortcuts Used by the Pros
Shortcut What It Does

Option-double-click
keyword

In Xcode, looks up the keyword’s definition in the Xcode
documentation

Ô+Z Goes back in time whenever you make a mistake. Xcode
and Interface Builder offer multiple Undos

Ô+Shift+F Finds all instances of your search term in the Cocoa
documentation

Control-click Control-click (or right-click if you have a multi-button
mouse) anywhere in Xcode or Interface Builder to reveal
a large menu of context-sensitive functions

Read the Documentation
It seems too much of a cliché to say it, but your best bet for accelerating your

Cocoa programming is to read the manual. Some documentation explains how

the Developer Tools work; other documentation details the various classes

363 Chapter 20: Ten Tips to Make Cocoa Programming Easier

and methods of Cocoa. You can view the built-in documentation by choosing

Help➪Documentation. You can also read the documentation by visiting the

Apple Developer Connection Web site:

developer.apple.com/techpubs/macosx/macosx.html

Use Class Browser
In addition to using the standard documentation that’s part of Xcode, you

can browse the various classes in Cocoa with Class Browser, although the

Class Browser isn’t Cocoa-specific. Choose Project➪Class Browser in Xcode

to display the Class Browser window. The Class Browser displays all the

classes in Cocoa in a structured fashion. You have one-click access to the

definitions of Cocoa classes in the interface files.

Adjust the Window Count
Setting up your work environment to best suit your needs is another quick

way to improve your Cocoa programming experience. Xcode can operate

with a different number of windows, and it’s up to you to set the number of

windows with which you feel most comfortable.

Throughout this book, I use the default setting in the General Layout section

of the Preferences window. Some people don’t appreciate having all the vari-

ous components of Xcode in one window and like to stretch out a bit. For

them, Xcode offers a few other settings that force various Xcode functions to

appear in different windows.

Choose Xcode➪Preferences and click the General button on the toolbar to

adjust the window count setting.

Use Drag and Drop
Drag and drop has long been an attractive feature of the Macintosh operating

system. Xcode and Interface Builder continue in this tradition, offering many

different drag-and-drop features.

364 Part V: The Part of Tens

You can add files to Xcode from Finder by dragging them into your project

window. These files include source code files, frameworks, image files, HTML

(HyperText Markup Language) documents, rich text documents, and .icns

icon files.

When you create classes in Xcode, you can let your XIB file know about them

by dragging the header files for those classes from Xcode to the Interface

Builder NIB file window.

In Interface Builder, drag and drop is, perhaps, the most important interface

operation. You use drag and drop to create the entire interface.

Initialize and Awaken!
When your application loads its NIB file, Cocoa creates the objects in that file

and calls the init methods. Next, your application sets the outlets for your

interface and calls the awakeFromNib method. Because the application sets

the outlets after the init method, you can’t use any methods that rely on

outlets in the init method. Because awakeFromNib loads after the outlets

are set, you can use code that replies on outlets.

As a basic rule, try to add initialization code to the init method of your

object. If it doesn’t work properly or yields a compiler error, move that ini-

tialization code to the awakeFromNib method for that object. After you get

the hang of Cocoa programming, you know which method to use and when.

Remember the Superclass
One of the great features of object-oriented programming is the fact that

it has a hierarchical structure. This has a wonderful benefit — inheritance.
Because every class in Cocoa (with the exception of NSObject) is a subclass

of some other class (or classes) above it in the class hierarchy, every class

has more methods than those listed for its particular type. This can be con-

fusing at first for some beginners.

Consider this example. The NSTextField and NSTextView controls in

Cocoa seem like they should work in a similar fashion because they both

display text. By taking a quick look at the documentation, however, you find

365 Chapter 20: Ten Tips to Make Cocoa Programming Easier

that they’re very different controls. The NSTextView control doesn’t have a

method for setting its text. The documentation for NSTextView shows that

it’s a subclass of NSText. NSText, on the other hand, does have a method

for setting the text of the view: setString. You may be tempted to use the

setString method with an NSTextField control. It’s a good guess but an

incorrect one.

Like the NSTextView, the NSTextField control has no direct method for

setting its text. Because it’s a subclass of the NSControl class, you can use

the setStringValue method from that class. The lesson here is that if you

expect a control to have some kind of method and it doesn’t, check one of

the superclasses of that class to see whether one of them has the function

you need.

Position Items with Cocoa Coordinates
Programmers who are migrating to Cocoa from other frameworks may be

surprised to discover that Cocoa bases all its coordinate measurements on

a different coordinate system. Whereas many frameworks define the upper-

left corner of a view as the origin, Cocoa drawing designates the bottom-left

corner as the origin. You may remember this arrangement as Quadrant I from

your high school trigonometry class.

If you’re familiar with PDF (Portable Document Format) and PostScript, you

can skip this tip. You’re already living in an upside-down world. PDF and

PostScript use the same coordinate system that Mac OS X uses — and this

is no accident. NeXT based its image model on Display Postscript. Mac OS X

also uses this model.

Use Guidelines in Interface Builder
When it comes to building interfaces, Apple insists that you follow many

human interface rules to ensure the best experience. There are so many

human interface rules that it can be difficult to keep them all straight some-

times. To help you with this, Interface Builder offers a great feature in the

form of guidelines. When you drag controls around your interface, Interface

Builder displays lines in the interface to help you align controls and place

them according to the Human Interface Guidelines.

366 Part V: The Part of Tens

Pay attention to these interface suggestions! They make it a snap to follow

the stringent interface guidelines in Mac OS X and help you create software

that follows the Apple standards. Doing so results in software that’s easier to

use by more people. If you follow your own rules, you’re bound to hear com-

plaints. Macintosh users expect a certain user experience. If you stray from

it, your users won’t be happy.

Consider reading the Apple Style Guide, located on the Apple developer Web

site. This guide describes the interface rules and helps you know what terms

to use in your application’s Help and other documentations.

Reuse Your Code
The guiding principle of object-oriented programming is code-reuse, and

Cocoa is no different. In fact, many programmers claim that Cocoa code is

some of the most reusable code around because Cocoa programmers sepa-

rate form from function through the Model-View-Controller paradigm.

To reuse a NIB file, simply drag it into your project in Xcode. To reuse a

class, drag its implementation (.m) and header (.h) files into your project in

Xcode. It’s as simple as that!

Chapter 21

Ten Great Web Sites for
Cocoa Developers

In This Chapter
▶ Apple Developer Connection

▶ Borkware Quickies

▶ Cocoa is My Girlfriend

▶ Theocacao

▶ Call Me Fishmeal

▶ Domain of the Bored

▶ Dan Wood and his Weblog

▶ Apple Forums

▶ Cocoa Dev Central

▶ CocoaDev

The Internet is a virtual treasure chest for Cocoa developers. On the Web,

you find scores of sites offering Cocoa source code, demo projects, tuto-

rials, instructions, and even personal assistance. This chapter touches on

ten important Web sites that will improve your Cocoa experience by offering

help and insight into how to program most effectively in Cocoa. You’ll find

links to professional Cocoa development companies as well as individual

Web sites.

 Many of these sites also support RSS feeds, so you can set up a subscription

and avoid manually checking the sites for new information.

368 Part V: The Part of Tens

Apple Developer Connection
developer.apple.com

It makes obvious sense that Apple’s Developer Connection would be your

first stop in search of Cocoa information. Apple’s site offers online docu-

mentation (in addition to the built-in documentation in Xcode), tutorials,

reference materials, and tons of sample source codes. Further, Apple hosts

several user forums where you can ask questions from the professionals or

simply read answers to thousands of questions that other developers have

posted to the forums. If you visit only one Web site for Cocoa help, this is it.

Borkware Quickies
www.borkware.com/quickies

The Borkware Quickies site offers dozens of useful code snippets that pertain

mostly to Cocoa. These snippets rarely offer much additional discussion;

that’s okay! Here you find brief descriptions of how the snippets work, and

the site does a good job of anticipating the common questions and requests

of most developers working with Cocoa. If you find yourself lost in Apple’s

documentation, give Borkware Quickies a try, and you might be surprised to

find that it’s already documented the same exact solution you need.

Cocoa Is My Girlfriend
www.cimgf.com

Cocoa is My Girlfriend is a Cocoa-related blog written by Marcus Zarra and

Matt Long. This blog has a couple good things going for it. For starters, the

posts are always interesting and well written. Combine that with the fact that

most entries are very practical in nature. The authors usually explain how

they figure out how something Cocoa-related works. You get to go along for

the ride.

369 Chapter 21: Ten Great Web Sites for Cocoa Developers

Theocacao
theocacao.com

Another Cocoa blog, this one is run by Scott Stevenson. Scott is very involved

in the Cocoa community, so don’t be surprised if you hear him speak one day

at a convention or a get-together for coders. He also covers these events on

his blog, so you won’t miss anything if you don’t attend these events. The

blog also covers popular Cocoa topics with a fair amount of depth, provides

interviews with Cocoa luminaries, and offers the occasional rant.

Call Me Fishmeal
wilshipley.com/blog

Wil Shipley is well-known among the Cocoa community, largely because of

his outstanding business success writing Cocoa software and because he was

the founder of The Omni Group, one of the seminal NeXT developers, and a

major developer since the beginning of OS X. His site offers Wil’s musings on

a variety of subjects, including Cocoa, Macintosh, iPhone development, fast

cars, Microsoft, software design, and product design in general. He’s an opin-

ionated bloke, but you can tell that his remarks are always well thought out

and that he believes his stance strongly. One of the more popular Cocoa items

on the blog is the Pimp My Code series, where Wil accepts a reader-submitted

code submission and then explains how to fix and/or improve the code. It’s

immensely interesting watching how a professional approaches real-life code.

Domain of the Bored
boredzo.org/blog

With a subtitle of “The personal Weblog of Peter Hosey,” this blog has a sig-

nificant amount of Cocoa materials. Between in-depth explanations of Cocoa

concepts and anecdotes about his development experiences with his Growl

framework, Peter’s site is one not to miss. You have to do some digging on

his site, but you come out with some useful gems. He also likes to tout the

Macintosh platform as well as other kinds of programming, so you’re never

bored here.

370 Part V: The Part of Tens

Dan Wood: The Eponymous Weblog
http://gigliwood.com/weblog

Dan Wood offers a lot of useful Cocoa discussions based on his real-world

experience developing software. Sometimes he talks about his experiences

releasing products, other times he riffs on software localization. Whatever

the topic, you leave his site a better programmer.

Apple Forums
www.cocoabuilder.com

This site provides archives of Apple’s forums for Cocoa and Xcode develop-

ment. With a quick search, you have instant access to thousands of posts by

Cocoa developers from around the world. Mainly these come in the form of

questions and requests for help, and the replies tend to come from Cocoa

professionals. The answers are sometimes terse, but the information is

always spot on. If a Cocoa developer has thought of it, it’s appeared on this

site at one time or another (or more likely — multiple times).

Cocoa Dev Central
cocoadevcentral.com

Cocoa Dev Central hosts a couple dozen Cocoa tutorials. The tutorials are in-

depth and very well done. Besides having a beautifully polished appearance,

the tutorials are easy to follow and cover topics that aren’t always available

elsewhere. The tutorials are usually geared toward beginners, but pros will

find something beneficial here too.

CocoaDev
cocoadev.com

CocoaDev is a fantastically useful site that covers many different aspects of

Cocoa development. Here you find all sorts of advice about Cocoa program-

ming in a nice condensed format (just the facts, ma’am!). The site has a large

user base, so you can be sure that the advice comes from a variety of devel-

opers. You also find on this site an enormous list of Cocoa blogs.

Index
• A •
About Bundle, 95

About Menu, 90

About My Application, 90

About Panel

copyright date in, 95–96

credits in, 96–97

icon, 92

information in, 90

setting name or title in, 92

version number in, 94–95

accessor method, 128

AccountController class

adding actions to, 141–142

adding outlets to, 141–142

adding to project, 331–332

changing Object class to, 336–337

connecting interface, 143

creating fi les for, 145

naming, 141–142

running application, 147

specifying superclass for, 146

actions

adding, 31, 122

connecting to interface, 35, 81–83,

304–305

defi ning, 31

ADC (Apple Developer Connection), 8, 368

addObject method, 195

Address Book, 71

Adobe Photoshop, 98, 225

AIFF fi le, 296, 301, 313

All-in-One layout (Xcode), 44

alloc method, 117–118, 129

animation, 183

AppKit, 224

AppKit Framework, 9

Apple Developer Connection (ADC), 8, 368

Apple Forums, 370

Apple Partition Map, 103

application bundle, 248

Application item, 68

Application menu, 75–77

Application template, 20–21

applications. See also applications,

document-based

adding code to, 36–37

building, 37–39, 60

building interface, 23–25

code reuse, 366

copyright date, 95–96

creating disk image, 102–105

creating in six steps, 17–19

creating interface, 23–25

credits, 96–97

debugging, 37–39

idea for, 19–20

information, 90

overview, 247–248

preparing menu for, 74–77

sending e-mail from, 288–289

setting icon, 92

setting name or title, 93–94

starting with project, 20–22

version number, 94–95

applications, document-based

adding code, 325–327

building and running, 321

creating interface, 322–325

creating new document, 321

creating new project, 317–318

interface, 322–325

location, 318

MyDocument class, 318–321

overview, 317

running, 321

applyCheckbox outlet, 204

372 Cocoa Programming for Mac OS X For Dummies

arguments, 115

arrays. See also data types

adding items to, 195

inserting objects, 195

mutable, 194–195

NSArray, 193–194

NSMutableArray, 193–194

overview, 192–195

removing items from, 195

replacing elements of, 195

arrayWithObjects method, 193

aString parameter, 113

attributes, 344–347

Attributes Inspector, 140

Attributes window, 65–66

audio. See also audio player

loading sound fi les, 297–298

overview, 295–296

playing system sounds, 296–297

audio player (Cocoa project)

adding stop functionality, 302–303

attributes, 299

buttons, 299

connecting actions to interface, 304–305

interface, 299

MyAudioController class, 300–302

audioFileTypes array, 297

Automator, 71

autorelease method, 119

AVI fi les, 313

awakeFromNib method, 151–152, 188,

330, 335

• B •
backgroundColorWell outlet, 204

balance method, 334–340

Bank Account application (Cocoa project)

adding codes, 138–139

adding controller, 141–147

adding labels, 140

adding view, 139–140

creating new class, 136–137

implementation fi le, 139

naming, 136–137

naming new class, 138

selecting application, 136

setting up bindings, 335–340

title of application, 140

bevel buttons, 174–175

Beziér paths, 230–231

bezierPathWithOvalInRect

method, 231

bezierPathWithRect method, 230

bindings

defi ned, 330

implementing, 334–340

key-value coding, 333–334

key-value observing, 333–334

overview, 329

setting up in Interface Builder, 335–340

starting project with, 331–332

blackColor, 224

Blank Disk Image, 102

blogs

Call Me Fishmeal, 369

Cocoa Is My Girlfriend, 368

Dan Wood: Eponymous Weblog, 370

Domain of the Bored, 369

Theocacao, 369

blueColor, 224

BMP fi les, 313

book application (Cocoa project)

assigning relationships, 351–353

Author entity, 346–353

Book entity, 345–353

building interface, 354–358

Category entity, 346–353

creating data model, 344–350

creating new project, 342

isbn attribute, 347–348

Models folder, 343

naming, 342–343

pages attribute, 347

synopsis attribute, 347–348

templates, 342–343

title attribute, 346–347

Bookware Quickie, 368

BOOL data type, 112

Boolean data type, 195–196

breakpoints. See also debugging

adding, 52–53

deactivating, 54

removing, 57–58

brownColor, 224

browser

building, 283–287

buttons, 286

373373 Index

functions, 283

interface, 285

loading Web page, 280–281

text fi eld control, 285

Build and Debug function, 53, 60

Build function, 60

Build and Go toolbar, 60–61

Build and Run function, 60

built-in documentation, 58–59

bundle, 248

Bundle Version key, 95

Button control, 28

buttons

bevel, 174–175

changing, 27

check box, 171–173

label, 26

library, 168–169

overview, 167–168

push, 169–171

radio control, 175–177

round, 171–173

• C •
calculateAnswer action

defi ning, 31

modifying, 84–85

calculator (Cocoa project)

adding actions, 31

adding breakpoints, 52–53

adding class to interface, 31–33

adding code to application, 36–37

adding controls to interface, 26–28

adding menu, 80–81

adding outlets to class, 30

adding pop-up menu, 78–79

application template, 21

building, 37–39

building interface, 23–25

changing codes in, 45–48

connecting class to interface, 33–35

connecting interface, 81–83

creating classes, 29–30

creating Controller class, 81

creating project, 20–21

debugging, 37–39, 51–58

fi le comments, 49

fi xing codes, 55–57

idea for, 19–20

naming project, 21–22

removing breakpoints, 57–58

selecting location for, 22

text fi elds, 27

title of application, 23–24

wiring interface, 29–33

calibrated color, 225

Call Me Fishmeal (blog), 369

center method, 151–152

changeOperation action, 82, 85

Class Browser, 363

class method, 119

Class models, 48

classes. See also specifi c classes by name
adding actions to, 31, 122

adding outlets to, 30, 122

adding to interface, 31–32

connecting to interface, 33–35

creating, 29–30, 119–125

creating fi les, 124

creating interface, 121–122

defi ning, 125–127

graphical model, 48

implementing, 127–128

names, 130

printing, 267–268

using, 128–129

Clean command, 60

clearColor, 224

close method, 150

closing window, 150

CMYK color space, 225

Cocoa. See also Cocoa application; Cocoa

programming tips

frameworks, 9

Interface Builder, 13–15

object-oriented programming, 9

overview, 8–9

reusable codes, 9

viewing in Library window, 70

Xcode, 10–13

Cocoa application

adding code to, 36–37

building, 37–39, 60

building interface, 23–25

code reuse, 366

copyright date, 95–96

creating disk image, 102–105

374 Cocoa Programming for Mac OS X For Dummies

Cocoa application (continued)

creating in six steps, 17–19

credits, 96–97

debugging, 37–39

idea for, 19–20

information, 90

preparing menu for, 74–77

sending e-mail from, 288–289

setting icon, 92

setting name or title, 93–94

starting with project, 20–22

version number, 94–95

Cocoa Dev Central, 370

Cocoa Is My Girlfriend (blog), 368

Cocoa programming tips

Class Browser, 363

coordinate system, 365

documentation, built-in, 362–363

drag and drop, 363–364

init method, 364

Interface Builder guidelines, 365–366

keyboard shortcuts, 361–362

superclass, 364–365

window count, 363

Cocoa Simulator, 75

CocoaBuilder.com, 370

CocoaDev, 370

Code editor, 76

codes

adding, 36–37, 206–208

changing, 45–47

fi xing, 55–57

reuse, 366

Color panels, 207

color space, 225

colorRadios, 177

colors

calibrated, 225

convenience, 223–224

device, 224

device independent, 225

preset, 224

colorWithDeviceRed function, 225

Column view (Project window), 67–68

comments, 49

Condensed layout (Xcode), 44

connections, 33–35

Console window, 44–45

Control + drag operation, 33–34

controller

adding, 141–147

overview, 134

Controller class, creating, 81, 120, 251–254

controls

adding, 26–28

bevel buttons, 174–175

buttons, 167–173

check box, 173–174

overview, 167

progress bar, 182–183

push buttons, 169–171

radio control, 175–177

round buttons, 171–173

slider control, 178–179

tab view, 179–182

table, 184–189

viewing in Library window, 70–71

convenience colors, 223–224

coordinate system, 365

Copyright (Human-Readable) key, 95–96

copyright date, 90, 95–96

copyTheFile action, 261, 263

Core Data

advantages of, 342

building interface, 354–358

creating project, 342–343

defi ning model, 344–353

Models folder, 343

naming project, 342–343

overview, 336–338

createDirectoryAtPath method,

265–266

credits, 90, 96–97

Custom Objects, 71

cyanColor, 224

• D •
Dan Wood: Eponymous Weblog, 370

darkGrayColor, 224

data types

arrays, 192–195

Boolean, 195–196

dates, 196–197

number, 191–192

dataOfType method, 327

dataWithContentsOfFile method, 219

dataWithPDFInsidedeRect method, 278

375375 Index

date conversion specifi ers, 197

dates, 196–197

Deactive Breakpoints command, 54

dealloc method, 119

Debug tab, 53

debugging

adding breakpoints, 52–53

building applications and, 37–39

fi xing codes, 55–57

removing breakpoints, 57–58

runtime errors, 51

steps in, 51, 53–55

syntax error, 51

Default layout (Xcode), 44–45

delegates, 165–166

deliverMessage method, 291

description method, 196

descriptionWithCalendarFormat

method, 196–197

Design window

functions, 66

launching, 66

overview, 65–66

viewing, 68–69

determinate progress indicator, 182–183

device colors, 224

DeviceCMYK color space, 225

DeviceRGB color space, 225

DeviceWhite color space, 225

directories, 248

DiscRecording, 71

disk image

creating, 102–105

encryption, 103

image format, 103

partitions, 103

volume format, 102

volume name, 102

volume size, 103

Disk Utility, 102–105

Display color attribute, 308

displayAsString method, 211–212

dissolveToPoint function, 243–244

document, 247

documentation, built-in, 58–59, 362–363

document-based application

adding code, 325–327

building and running, 321

creating, 317–321

creating interface, 322–325

creating new document, 321

creating new project, 317–318

interface, 322–325

location, 318

MyDocument class, 318–321

overview, 317

running, 321

DocumentType entry, 325

Domain of the Bored (blog), 369

doubleValue method, 192

downloading, 281–283

drawAString method, 113

drawAtPoint method, 239

drawing text, 239–242

drawRect function, 230, 235, 245, 269

Driver class

creating, 120

defi ning, 125–127

implementing, 127–128

testing, 130

using, 128–129

• E •
Editable attribute, 308

e-mail

adding functions to projects, 291–294

sending from client, 288–289

sending from Cocoa application, 286–294

sending from own apps, 290–291

URL, 288

emailField outlet, 293

encoding, 216

encryption, 103

entity, 344–346

errors

routine, 216

runtime, 51

syntax, 51, 57

Extensible Markup Language (XML), 91

• F •
favorites, 50

Favorites Bar (Xcode), 50

fi le directory, 249

File Info window, 49

fi le path, 249

376 Cocoa Programming for Mac OS X For Dummies

fileAttributesAtPath method,

257–258

fileContents instance, 327

FileInfoController class, 252–254,

262–263, 266

FileMerge application, 78

fi lename, 249

fi les. See also folders

comments, 49

Controller class, 251–254

copying, 262–263

creation date, 249

deleting, 264–265

destination path, 262

downloading, 281–283

icons, 258–260

interface, 249–251

modifi cation date, 249

moving, 263–264

opening and using, 249–261

overview, 247–248

path, 256–258

reading from, 261

size in bytes, 249

source path, 262

writing to, 261

File’s Owner item, 68

fill function, 235

First Responder item, 68

firstName method, 128

Flash animation, 313

float variable, 46, 55

floatValue method, 46, 192

folders

copying, 262–263

creating, 265–266

deleting, 264–265

destination path, 262

moving, 263–264

overview, 247–248

source path, 262

Font Manager item, 68

fonts, 208–209

Foundation Framework, 9

Foundation Kit, 191

fraction parameter, 243

frameworks, 9

Fusebox class

adding action to, 36–37

adding outlets to, 30

adding to interface, 31–33

changing codes in, 45–48, 84–87

connecting to interface, 33–35, 81–83

creating, 29

fi le comments, 49

model, 48

• G •
garbage collection, 117–119

getter method, 118

GIMP, 98

goBack function, 286

goForward function, 286

Graphic Converter, 98

graphics

Beziér paths, 230–231

colors, 223–227

displaying, 242–245

drawing path, 234–236

drawing text, 239–242

fi lling paths, 231–234

interface, 227–230

paths, 230–239

points, 221–222

rectangles, 222–223

text, 239–242

grayColor, 224

greenColor, 224

group, 45

Groups & Files folder, 22

• H •
header fi les, 36, 77–78, 111

Help feature, 58–59

Hide NewApplication menu, 74

hideWindow action, 150

hiding window, 150–151

HTML (HyperText Markup

Language), 96–97

Human Interface Guideline, 63, 155

377377 Index

• I •
IBOutlet, 326

ICNS (icon) fi le

adding to project window, 92

assigning to projects, 97

building, 98–101

creating, 98

managing, 101–102

icns Browser, 101–102

Icon Composer, 98–101

Icon File fi eld, 92

Icon view (Project window), 66–67

icons

assigning to projects, 97

building, 98–101

creating, 98

managing, 101–102

setting in About Panel, 92

viewing, 258–260

IDE (integrated development

environment), 41

Identity Inspector, 32

image editors, 98

Image Kit, 71

image well, 250–251

iMovie, 157

implementation fi les, 36, 78

import statement, 114

indeterminate progress indicator, 182–183

indexofTabViewItem, 181

Info.plist fi le, 76–77, 91

Information Property list, 95–96

inheritance, 364

init method, 129, 364

initFileURLWithPath method, 281

initWithContentsOfFile method, 298

insertObject method, 195

Inspector window

functions, 66

launching, 66, 71–73

opening, 23

resizing window with, 24–25

instance. See objects

instance variables

declaring, 111–112

overview, 110

int parameter, 113

integer value, 37

integrated development environment

(IDE), 41

interface. See also interface controls

adding class to, 31–33

adding controls to, 26–28

adding menu, 80–81

adding outlets, 30

adding pop-up menu, 78–79

building, 23–25

changing window’s title, 23

clients, 29–30

connecting actions to, 35, 304–305

connecting class to, 33–35

connecting to actions, 35, 81–83

connecting to outlets, 81–83

connections, 33–35

creating, 121–122

creating Controller class, 81

creating header fi les, 77–78

creating implementation fi les, 78

document-based applications, 322–325

fi les, 249–251

graphics, 227–230

resizing window, 24

saving, 35

using in Xcode, 83–87

wiring, 205–206

Interface Builder. See also interface

adding controller in, 141–147

Attributes window, 65–66

building Web browser, 283–287

Design window, 68–70

Inspector window, 71–73

launching, 64

Library window, 70–71

Menu editor, 74–77

overview, 13–15, 63

Project window, 66–68

setting up bindings in, 335–340

testing browser in, 286

windows, 65

Interface Builder Kit, 70

interface controls

adding, 26–28

bevel buttons, 174–175

378 Cocoa Programming for Mac OS X For Dummies

interface controls (continued)

buttons, 167–173

check box, 173–174

overview, 167

progress indicator, 182–183

push buttons, 169–171

radio control, 175–177

round buttons, 171–173

slider control, 178–179

tab view, 179–182

table, 184–189

interface fi les, 36, 111, 114

Internet

downloading fi les, 281–283

loading Web page in browser, 280–281

overview, 279

InternetController class

adding code, 294

connecting to interface, 292–293

creating, 292

creating fi les for, 293

intValue method, 192

iPhoto, 157

isVisible method, 151

• J •
JPEG fi les, 313

• K •
Key Equiv. fi eld, 72–73, 80, 170

keyboard shortcuts, 361–362

KVC (Key-Value Coding), 333–334

KVO (Key-Value Observing), 333–334

• L •
Label control, 27, 335

launchedApplications, 185

Layout settings (Xcode), 44

Library window

buttons, 168–169

controls, 70–71

function, 66

launching, 25

Media tab, 25

Objects tab, 25

overview, 65–66

lightGrayColor, 224

List view (Project window)

loadResourceDataNotifyingClient

method, 282

loadWebPage action, 280

longValue method, 192

• M •
Mac OS Extended format, 102

Mac OS X, 7–8

magentaColor, 224

MainMenu item, 68

MainMenu.xib

building interface with, 23–25

creating window in, 153

opening, 64

overview, 22–23

makeKeyAndOrderFront method, 151

matrix, 175–177

Media tab, 25

memory management, 117–119

Menu editor

functions, 66

launching, 66

overview, 65–66

preparing menu for application, 74–77

menu item, creating, 80–81

Message Framework, 290

messages, sending, 37, 115

methods, 110, 112–113. See also specifi c
methods by name

minimizing windows, 165–166

minutes, 197

modal window, 215

model, 134

Model-View-Controller (MVC) design

pattern

adding controller, 141–147

adding view, 139–140

bindings, 330

building project with, 135–139

controller, 134

model, 134

379379 Index

overview, 133

real-world analogy, 134–135

view, 134

month name, 197

.mov fi le, 306

moveTheFile action, 263

movie player (Cocoa project)

adding actions to, 311

adding code, 311–312

adding outlets to, 311

adding QTMovieView control, 310

connecting MyMovieController to

interface, 311

creating, 310–312

creating controller class, 310

creating interface, 310

movies

classes, 305–306

overview, 304–305

player, 310–312

QTMovieView class, 307–310

QuickTime, 313–314

MP3 fi les, 313

.mp4 fi le, 306

MPEG-1 fi les, 313

multimedia

building audio player, 299–305

building movie player, 310–312

loading sound fi les, 297–298

playing sound fi les, 297–298

playing system sounds, 296–297

QTMovie, 306

QTMovieView, 307–310

mutable arrays, 194–195

mutable object, 240

MVC design pattern. See Model-View-

Controller design pattern

My Application, 90

MyAudioController class

adding code, 301–302

adding stop functionality, 302–303

connecting actions to interface, 304–305

creating, 300

MyClass class, 111

MyController class

adding actions to, 122

adding outlets to, 122

creating, 120

creating fi les for, 124–125

naming, 121

wiring interface to, 124

wiring interface to instance, 124

MyDataController class

adding outlets to, 185–186

connecting data source, 187

connecting to interface, 187

creating, 185

creating fi les for, 187

implementation fi les, 187–188

MyDocument class, 319–321

MyMovieController class

adding actions to, 311

adding code, 311–312

adding outlets to, 311

connecting to interface, 311

creating, 311

MyPrintController class

adding actions to, 271

adding outlets to, 271

adding printToPDF action to, 275–278

changing header fi le, 272–273

changing implementation fi le, 273

connecting to interface, 271–272

creating, 270

creating fi les for, 272

MySheetController class

adding actions to, 162

adding outlets to, 162

changing implementation fi le, 164–165

connecting outlets and actions, 162–163

creating, 162

creating fi les for, 163

MyTextController class

adding actions to, 205

adding code, 206–208

adding outlets to, 204

creating, 204

fi le formats, 213–214

naming, 204

wiring interface to, 205–206

myTextView outlet, 322

MyWindowController class

adding actions to, 153–154

adding code to application, 154–155

adding outlets to, 153–154

naming, 153

380 Cocoa Programming for Mac OS X For Dummies

• N •
name of application, 90, 93–94

name variable, 118

named color space, 225

New Application menu, 74

New File window, 136

New File Wizard, 29

New Project window, 20–21, 136

NeXT operating system, 65

NIB (NeXT Interface Builder), 65. See also

NIB project window

NIB project window

Column view, 67–68

functions, 66

Icon view, 66–67

items, 68

launching, 66

List view, 67

overview, 65–66

NSAlertDefaultReturn, 265

NSApplicationName, 185

NSArray class, 191, 193–194

NSButton control, 168–169, 203, 212,

249–250

NSCalendarDate class, 196

NSCancelButton, 256

NSColor object, 223, 225

NSColorwell control, 203

NSControl, 179

NSData control, 219

NSDictionary, 240–242

NSFileManager method, 256–258

NSFileWrapper, 258

NSHomeDirectory function, 262

NSImage object, 243

NSIndicator, 182–183

NSLayout class, 268

NSLog, 181

NSMailDelivery class, 291

NSMakePoint function, 222

NSMatrix, 175–177

NSMutableArray class, 194–195

NSMutableDictionary, 240–241

NSNumber class, 191–192

NSNumberFormatter class, 55–56

NSObject class, 48, 111, 292

NSOKButton, 216, 256

NSOpenPanel class, 218, 298

NSPageLayout class, 268, 273

NSPoint structure, 221–222, 237, 243

NSRange parameter, 219

NSRect structure, 222–223

NSRunAlertPanel function, 265

NSScaleToFit, 259

NSScrollView, 187

NSSlider control, 178–179

NSSound class, 296–297

NSString class, 118, 129, 196

NSTableView control, 184

NSTabView control, 181

NSTabViewItem control, 181

NSTextField control, 201, 249–250, 280,

335, 364–365

NSTextView control, 201, 202–204,

322–323, 364–365

NSURL class, 280

NSView class, 267

NSWindow class, 255

NSWorkspace, 185, 280

numberOfRowsInTableView method, 188

numbers, 191–192

numberWithDouble method, 192

numberWithFloat method, 192

numberWithInt method, 192

numberWithLong method, 192

numberWithUnsignedShort method, 192

• O •
Objective-C language

coding in, 115–119

creating classes, 29, 119–125

declaring instance variables, 111–112

declaring methods, 112–113

defi ning methods, 114

instantiating objects, 117

managing memory, 117–119

methods, 110

naming in, 130

objects, 110

overview, 9, 109

passing parameters, 115–116

returning values, 116

sending messages to objects, 115

381381 Index

object-oriented programming (OOP),

9, 109–110

objects

autoreleased, 119

column view, 66

dragging to interface, 34–35

icon view, 66

immutable, 240

instance variables, 110

instantiating, 117

list view, 66

methods, 110

mutable, 240

sending messages to, 37, 115

viewing in Library window, 70–71

Objects tab, 25

objectValueForTableColumn

method, 188

Omni Group, 369

one-key access, 72–73

online resources

Apple Developer Connection, 368

Apple Forums, 370

Bookware Quickie, 368

Call Me Fishmeal, 369

Cocoa Dev Central, 370

Cocoa Is My Girlfriend, 368

CocoaDev, 370

Dan Wood: Eponymous Weblog, 370

Domain of the Bored, 369

overview, 367

Theocacao, 369

OOP (object-oriented programming),

9, 109–110

Open Scripting Kit, 71

opening window, 150

OpenPanel class, 254–256

openSheet method, 165

openURL method, 280–281

operationPopup outlet, 81–82

orangeColor, 224

orderOut method, 151

Other Sources group folder, 47

outlets

adding, 30, 122, 252–253

connecting to interface, 81–83

connections, 33–35

• P •
Page panel, 268–269

pageData, 281

panel, adding to project, 160–165

parameters, passing, 115–116

parent, 159

partitions, 103

pasteboard, 210–211

paths

Beziér, 230–231

defi ned, 248

displaying, 256–258

drawing, 234–236

fi lling, 231–234

relative points, 238–239

stop-sign-shaped, 237–239

stroking, 234–235

PDF (Portable Document File),

printing to, 275–278

PDFKit, 71

Photoshop, 98, 225

Pimp My Code series (blog), 369

Pixelmator, 98

plain text, 213

playAppSound action, 301

playSoundFile action, 301

playSystemSound action, 301

PNG fi les, 98, 313

points, 221–222

pop-up menu, 78–79

Portable Document File (PDF),

printing to, 275–278

positioning windows, 151–152

PostScript, 222

preferences, customizing, 43–45

prefsCheckbox, 173

PrintInfo object, 268–269

printing

classes, 267–268

overview, 267–268

page settings, 268–269

to PDF, 275–278

steps in, 268–269

printOnepage method, 271, 274–275

printOperationWithView method, 275

Product Name key value, 94

382 Cocoa Programming for Mac OS X For Dummies

programming tips

Class Browser, 363

coordinate system, 365

documentation, built-in, 362–363

drag and drop, 363–364

init method, 364

Interface Builder guidelines, 365–366

keyboard shortcuts, 361–362

superclass, 364–365

window count, 363

progress indicators, 182–183

project, audio player

adding stop functionality, 302–303

attributes, 299

buttons, 299

connecting actions to interface, 304–305

interface, 299

MyAudioController class, 300–302

project, Bank Account

adding codes, 138–139

adding controller, 141–147

adding labels, 140

adding view, 139–140

creating new class, 136–137

implementation fi le, 139

naming, 136–137

naming new class, 138

selecting application, 136

setting up bindings, 335–340

title of application, 140

project, book application

assigning relationships, 351–353

Author entity, 346–353

Book entity, 345–353

building interface, 354–358

Category entity, 346–353

creating data model, 344–350

creating new project, 342

isbn attribute, 347–348

Models folder, 343

naming, 342–343

pages attribute, 347

synopsis attribute, 347–348

templates, 342–343

title attribute, 346–347

project, calculator

adding actions, 31

adding breakpoints, 52–53

adding class to interface, 31–33

adding code to application, 36–37

adding controls to interface, 26–28

adding menu, 80–81

adding outlets to class, 30

adding pop-up menu, 78–79

application template, 21

building, 37–39

building interface, 23–25

changing codes in, 45–48

connecting class to interface, 33–35

connecting interface, 81–83

creating classes, 29–30

creating Controller class, 81

creating project, 20–21

debugging, 37–39, 51–58

fi le comments, 49

fi xing codes, 55–57

idea for, 19–20

naming project, 21–22

removing breakpoints, 57–58

selecting location for, 22

text fi elds, 27

title of application, 23–24

wiring interface, 29–33

project, Core Data

assigning relationships, 351–353

building interface, 354–358

creating data model, 344–350

creating new project, 342

Models folder, 343

naming, 342–343

templates, 342–343

project, movie player

adding actions to, 311

adding code, 311–312

adding outlets to, 311

adding QTMovieView control, 310

connecting MyMovieController to

interface, 311

creating, 310–312

creating controller class, 310

creating interface, 310

383383 Index

project, MVC design

adding codes, 138–139

adding controller, 141–147

adding labels, 140

adding view, 139–140

creating new class, 136–137

implementation fi le, 139

naming, 136–137

naming new class, 138

selecting application, 136

title of application, 140

Project window

Column view, 67–68

functions, 66

Icon view, 66–67

items, 68

launching, 66

List view, 67

overview, 65–66

projects. See also projects with bindings;

specifi c project entries
adding comments to, 49

adding e-mail functions to, 291–294

adding panel to, 160–165

assigning icons to, 97

bindings, 331–332

changing codes in, 46–47

creating, 20–21

debugging, 51–58

naming, 21–22

selecting location for, 22

projects with bindings

implementing, 334–340

key-value coding, 333–334

key-value observing, 333–334

overview, 329

setting up in Interface Builder, 335–340

starting project with, 331–332

property, 344–346

Property List editor, 91

purpleColor, 224

Push Button control, 26

push buttons, 169–171

• Q •
QTMedia class, 306

QTMovie class, 305, 306, 314

QTMovieView class

color attribute, 308

controller, 308

editable attribute, 308

overview, 307

volume attribute, 308–310

QTTrack class, 305

QTVR fi les, 313

Quartz Composer, 71

Quartz graphics engine, 221–222

Quick Model, 48

QuickTime, 313–314

QuickTime Kit, 71

Quit NewApplication menu, 74

• R •
radio control, 175–177

readFromData method, 327

rectangles, 222–223

redColor, 224

reference counting, 117

relative points, 237

release message, 117

removeFileAtPath method, 264–265

removeObjectAtIndex method, 195

replaceCharactersInRange

method, 219

replaceObjectAtIndex method, 195

resizing window, 24–25

resourceDataUsingCache method,

281–282

resources, online

Apple Developer Connection, 368

Apple Forums, 370

Bookware Quickie, 368

Call Me Fishmeal, 369

Cocoa Dev Central, 370

Cocoa Is My Girlfriend, 368

CocoaDev, 370

384 Cocoa Programming for Mac OS X For Dummies

resources, online (continued)

Dan Wood: Eponymous Weblog, 370

Domain of the Bored, 369

overview, 367

Theocacao, 369

retain method, 119

retrieving text, 216–219

Return key, 72–73

reusable codes, 9, 366

RGB color space, 225

rich text, 96, 213

round buttons, 171–173

rounded level button, 174–175

RTFFromRange method, 216

runModal method, 215, 256

runModalWithPrintInfo method, 273

runOperation method, 275

runtime errors, 51

• S •
Save As dialog, 21

SavePanel, 215

seconds, 197

selectedRow method, 177

selectedTag message, 84

selectTheFile action, 259, 262

sendEMailManually action, 292

sendEMailWithClient action, 292

setAlpha method, 158

setBackgroundColor action, 205, 207

SetBalance method, 334–340

setCanChooseDirectories method, 255

setDoubleValue method, 183

setExcludeFromWindowsMenu

method, 152

setFirstName method, 128

setFloatValue method, 59, 179

setFormat message, 55

setFormatter method, 59

SetFrame method, 157

setFrameOrigin method, 151–152

setIntValue method, 179

setLineWidth function, 235

setName method, 118–119

setReleasedWhenClosed method, 150

setStringValue method, 256–258

setter method, 118

setTextColor action, 205, 207

setTitle method, 157, 255

SetTitleWithRepresentedFileName

method, 158

sharedWorkspace class, 280

sheet, 159–165

Show controller attribute, 308

showing window, 150–151

showPagePanel method, 271, 273

slider control, 178–179

Sound fi eld, 171

sound fi les, 170–171

soundUnfilteredFileTypes class, 298

source code fi les, 36

square bevel button, 174–175

startAnimation method, 183

status 0 message, 44–45

stopAnimation method, 183

stop-sign-shaped path, creating, 237–239

stopSoundFile action, 302–305

stringByExpandingTildeInPath

method, 282

Strings window, 65

stringWithString method, 119

stroke function, 235

superclass, 48, 364–365

syntax error, 51, 57

system sounds, playing, 296–297

• T •
tab view, 179–182

table control, 184–189

TabViewItem, 181

Tag property, 79

takeURLStringFrom message, 285

Targets folder, 93

Terminal, 248

text

adding code, 206–208

adding style, 208–210

building interface, 202–204

controller class, 204–205

controls, 201

drawing, 239–242

manipulating, 210–213

manual editing, 211–213

pasteboard manipulations, 210–211

385385 Index

plain, 213

retrieving, 216–219

rich, 213

saving, 213–216

style functions, 208–209

wiring interface, 205–206

text fi elds, 27, 285

textColorwell outlet, 204

Textured check box, 155–156

textView outlet, 204

Theocacao (blog), 369

theURLField outlet, 280

TIFF fi les, 313

title of application, 90, 93–94

Title property, 23

toggleRuler action, 205

tracking windows, 152

• U •
unsignedShort method, 192

URL (Universal Resource Locator), 280

URLResourceDidFinishLoading

method, 282

URLWithString parameter, 281–283

UTF8, 216

• V •
Value of the Copyright (Human-Readable)

key, 95

valueForKey method, 333

valueForKeyPath method, 188

values, returning, 116

version number, 90, 94–95

view, 134, 139

Volume attribute, 308–310

• W •
Web browser

building, 283–287

buttons, 286

functions, 283

interface, 285

loading Web page, 280–281

text fi eld control, 285

Web Kit, 70

Web page, loading, 280–281

Web sites for developers

Apple Developer Connection, 368

Apple Forums, 370

Bookware Quickie, 368

Call Me Fishmeal, 369

Cocoa Dev Central, 370

Cocoa Is My Girlfriend, 368

CocoaDev, 370

Dan Wood: Eponymous Weblog, 370

Domain of the Bored, 369

overview, 367

Theocacao, 369

WebKit Framework, 283–284

WebView control

connecting buttons to, 286

connecting text fi eld control to, 285

weekday name, 197

whiteColor, 224

Window Attributes, 23

window count, 363

Window item, 68

windowControllerDidLoadNib

method, 327

windowDidMiniaturize method, 166

windows

adding buttons, 153

changing appearance of, 155–157

closing, 150

creating, 153–155

events, 165–166

hiding, 150–151

keep track of, 152

minimizing, 165–166

modal, 216

opening, 150

overview, 149

positioning, 151–152

resizing, 24–25, 157

setting title, 157

setting transparency, 158

sheet, 159–165

showing, 150–151

textured property, 155–157

withAttributes parameter

386 Cocoa Programming for Mac OS X For Dummies

Workspace Guide (Xcode), 58

writeToFile method, 215, 278, 281

WYSIWYG interface, 14

• X •
Xcode

adding outlets to class, 31

building applications, 60–61

changing codes in projects, 45–47

Class models, 48

creating classes, 31

customizing preferences, 43–45

fi le comments, 49

Help feature, 58–59

launching, 20

layout settings, 43–44

overview, 10–12, 42

QuickModel, 48

using interface in, 83–87

working with favorites, 50

working with project fi les, 45–47

Workspace Guide, 58

Xcode Developer Tools

advantages of, 8

downloading, 7–8

XIB fi les, 65

XML (Extensible Markup Language), 91

• Y •
year, 197

yellowColor, 224

• Z •
Zarra, Marcus, 368

zoom method, 157

BUSINESS, CAREERS & PERSONAL FINANCE
Accounting For Dummies, 4th Edition*
978-0-470-24600-9

Bookkeeping Workbook For Dummies†
978-0-470-16983-4

Commodities For Dummies
978-0-470-04928-0

Doing Business in China For Dummies
978-0-470-04929-7

E-Mail Marketing For Dummies
978-0-470-19087-6

Job Interviews For Dummies, 3rd Edition* †
978-0-470-17748-8

Personal Finance Workbook For Dummies* †
978-0-470-09933-9

Real Estate License Exams For Dummies
978-0-7645-7623-2

Six Sigma For Dummies
978-0-7645-6798-8

Small Business Kit For Dummies,
2nd Edition* †
978-0-7645-5984-6

Telephone Sales For Dummies
978-0-470-16836-3

FOOD, GARDEN, HOBBIES & HOME

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

BUSINESS PRODUCTIVITY & MICROSOFT OFFICE
 Access 2007 For Dummies
978-0-470-03649-5

Excel 2007 For Dummies
978-0-470-03737-9

Office 2007 For Dummies
978-0-470-00923-9

Outlook 2007 For Dummies
978-0-470-03830-7

PowerPoint 2007 For Dummies
978-0-470-04059-1

Project 2007 For Dummies
978-0-470-03651-8

QuickBooks 2008 For Dummies
978-0-470-18470-7

Quicken 2008 For Dummies
978-0-470-17473-9

Salesforce.com For Dummies,
2nd Edition
978-0-470-04893-1

Word 2007 For Dummies
978-0-470-03658-7

HEALTH, SELF HELP, PARENTING & PETS

* Separate Canadian edition also available
† Separate U.K. edition also available

Bridge For Dummies, 2nd Edition
978-0-471-92426-5

Coin Collecting For Dummies, 2nd Edition
978-0-470-22275-1

Cooking Basics For Dummies, 3rd Edition
978-0-7645-7206-7

Drawing For Dummies
978-0-7645-5476-6

Etiquette For Dummies, 2nd Edition
978-0-470-10672-3

Gardening Basics For Dummies*†
978-0-470-03749-2

Knitting Patterns For Dummies
978-0-470-04556-5

Living Gluten-Free For Dummies†
978-0-471-77383-2

Painting Do-It-Yourself For Dummies
978-0-470-17533-0

Anger Management For Dummies
978-0-470-03715-7

Anxiety & Depression Workbook
For Dummies
978-0-7645-9793-0

Dieting For Dummies, 2nd Edition
978-0-7645-4149-0

Dog Training For Dummies, 2nd Edition
978-0-7645-8418-3

Horseback Riding For Dummies
978-0-470-09719-9

Infertility For Dummies†
978-0-470-11518-3

Meditation For Dummies with CD-ROM,
2nd Edition
978-0-471-77774-8

Post-Traumatic Stress Disorder For Dummies
978-0-470-04922-8

Puppies For Dummies, 2nd Edition
978-0-470-03717-1

Thyroid For Dummies, 2nd Edition†
978-0-471-78755-6

Type 1 Diabetes For Dummies*†
978-0-470-17811-9

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION
African American History For Dummies
978-0-7645-5469-8

Algebra For Dummies
978-0-7645-5325-7

Algebra Workbook For Dummies
978-0-7645-8467-1

Art History For Dummies
978-0-470-09910-0

ASVAB For Dummies, 2nd Edition
978-0-470-10671-6

British Military History For Dummies
978-0-470-03213-8

Calculus For Dummies
978-0-7645-2498-1

Canadian History For Dummies, 2nd Edition
978-0-470-83656-9

Geometry Workbook For Dummies
978-0-471-79940-5

The SAT I For Dummies, 6th Edition
978-0-7645-7193-0

Series 7 Exam For Dummies
978-0-470-09932-2

World History For Dummies
978-0-7645-5242-7

GRAPHICS, DESIGN & WEB DEVELOPMENT

NETWORKING AND PROGRAMMING

INTERNET & DIGITAL MEDIA

AdWords For Dummies
978-0-470-15252-2

Blogging For Dummies, 2nd Edition
978-0-470-23017-6

Digital Photography All-in-One
Desk Reference For Dummies, 3rd Edition
978-0-470-03743-0

Digital Photography For Dummies, 5th Edition
978-0-7645-9802-9

Digital SLR Cameras & Photography
For Dummies, 2nd Edition
978-0-470-14927-0

eBay Business All-in-One Desk Reference
For Dummies
978-0-7645-8438-1

eBay For Dummies, 5th Edition*
978-0-470-04529-9

eBay Listings That Sell For Dummies
978-0-471-78912-3

Facebook For Dummies
978-0-470-26273-3

The Internet For Dummies, 11th Edition
978-0-470-12174-0

Investing Online For Dummies, 5th Edition
978-0-7645-8456-5

iPod & iTunes For Dummies, 5th Edition
978-0-470-17474-6

MySpace For Dummies
978-0-470-09529-4

Podcasting For Dummies
978-0-471-74898-4

Search Engine Optimization
For Dummies, 2nd Edition
978-0-471-97998-2

Second Life For Dummies
978-0-470-18025-9

Starting an eBay Business For Dummies,
3rd Edition†
978-0-470-14924-9

Adobe Creative Suite 3 Design Premium
All-in-One Desk Reference For Dummies
978-0-470-11724-8

Adobe Web Suite CS3 All-in-One Desk
Reference For Dummies
978-0-470-12099-6

AutoCAD 2008 For Dummies
978-0-470-11650-0

Building a Web Site For Dummies,
3rd Edition
978-0-470-14928-7

Creating Web Pages All-in-One Desk
Reference For Dummies, 3rd Edition
978-0-470-09629-1

Creating Web Pages For Dummies,
8th Edition
978-0-470-08030-6

Dreamweaver CS3 For Dummies
978-0-470-11490-2

Flash CS3 For Dummies
978-0-470-12100-9

Google SketchUp For Dummies
978-0-470-13744-4

InDesign CS3 For Dummies
978-0-470-11865-8

Photoshop CS3 All-in-One
Desk Reference For Dummies
978-0-470-11195-6

Photoshop CS3 For Dummies
978-0-470-11193-2

Photoshop Elements 5 For Dummies
978-0-470-09810-3

SolidWorks For Dummies
978-0-7645-9555-4

Visio 2007 For Dummies
978-0-470-08983-5

Web Design For Dummies, 2nd Edition
978-0-471-78117-2

Web Sites Do-It-Yourself For Dummies
978-0-470-16903-2

Web Stores Do-It-Yourself For Dummies
978-0-470-17443-2

LANGUAGES, RELIGION & SPIRITUALITY

Arabic For Dummies
978-0-471-77270-5

Chinese For Dummies, Audio Set
978-0-470-12766-7

French For Dummies
978-0-7645-5193-2

German For Dummies
978-0-7645-5195-6

Hebrew For Dummies
978-0-7645-5489-6

Ingles Para Dummies
978-0-7645-5427-8

Italian For Dummies, Audio Set
978-0-470-09586-7

Italian Verbs For Dummies
978-0-471-77389-4

Japanese For Dummies
978-0-7645-5429-2

Latin For Dummies
978-0-7645-5431-5

Portuguese For Dummies
978-0-471-78738-9

Russian For Dummies
978-0-471-78001-4

Spanish Phrases For Dummies
978-0-7645-7204-3

Spanish For Dummies
978-0-7645-5194-9

Spanish For Dummies, Audio Set
978-0-470-09585-0

The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies
978-0-7645-5391-2

The Historical Jesus For Dummies
978-0-470-16785-4

Islam For Dummies
978-0-7645-5503-9

Spirituality For Dummies,
2nd Edition
978-0-470-19142-2

ASP.NET 3.5 For Dummies
978-0-470-19592-5

C# 2008 For Dummies
978-0-470-19109-5

Hacking For Dummies, 2nd Edition
978-0-470-05235-8

Home Networking For Dummies, 4th Edition
978-0-470-11806-1

Java For Dummies, 4th Edition
978-0-470-08716-9

Microsoft® SQL Server™ 2008 All-in-One
Desk Reference For Dummies
978-0-470-17954-3

Networking All-in-One Desk Reference
For Dummies, 2nd Edition
978-0-7645-9939-2

Networking For Dummies,
8th Edition
978-0-470-05620-2

SharePoint 2007 For Dummies
978-0-470-09941-4

Wireless Home Networking
For Dummies, 2nd Edition
978-0-471-74940-0

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®

• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

OPERATING SYSTEMS & COMPUTER BASICS

* Separate Canadian edition also available
† Separate U.K. edition also available

,

n

s

iMac For Dummies, 5th Edition
978-0-7645-8458-9

Laptops For Dummies, 2nd Edition
978-0-470-05432-1

Linux For Dummies, 8th Edition
978-0-470-11649-4

MacBook For Dummies
978-0-470-04859-7

Mac OS X Leopard All-in-One
Desk Reference For Dummies
978-0-470-05434-5

Mac OS X Leopard For Dummies
978-0-470-05433-8

Macs For Dummies, 9th Edition
978-0-470-04849-8

PCs For Dummies, 11th Edition
978-0-470-13728-4

Windows® Home Server For Dummies
978-0-470-18592-6

Windows Server 2008 For Dummies
978-0-470-18043-3

Windows Vista All-in-One
Desk Reference For Dummies
978-0-471-74941-7

Windows Vista For Dummies
978-0-471-75421-3

Windows Vista Security For Dummies
978-0-470-11805-4

SPORTS, FITNESS & MUSIC

Coaching Hockey For Dummies
978-0-470-83685-9

Coaching Soccer For Dummies
978-0-471-77381-8

Fitness For Dummies, 3rd Edition
978-0-7645-7851-9

Football For Dummies, 3rd Edition
978-0-470-12536-6

GarageBand For Dummies
978-0-7645-7323-1

Golf For Dummies, 3rd Edition
978-0-471-76871-5

Guitar For Dummies, 2nd Edition
978-0-7645-9904-0

Home Recording For Musicians
For Dummies, 2nd Edition
978-0-7645-8884-6

iPod & iTunes For Dummies,
5th Edition
978-0-470-17474-6

Music Theory For Dummies
978-0-7645-7838-0

Stretching For Dummies
978-0-470-06741-3

Check out the Dummies Product Shop at www.dummies.com for more information!

Do More with Dummies

Products for the Rest of Us!

 DVDs • Music • Games • DIY
 Consumer Electronics • Software • Crafts
 Hobbies • Cookware • and more!

Erick Tejkowski
Author of REALbasic For Dummies

Learn to:
• Create your own Mac OS X application

• Use all the exciting Cocoa development
features

• Work with Xcode® and Interface
Builder tools

• Program with Cocoa in Objective-C

Cocoa® Programming

for Mac OS
® X

Making Everything Easier!™

Go to www.dummies.com/go/cocoafd to find project files

for the examples in the book

 Open the book and find:

• Tips for building a good interface

• How to work with Cocoa numbers,
arrays, Booleans, and dates

• Advice on managing files

• Ten tips for easier Cocoa
programming

• How to simplify with key-value
coding

• What to do with Cocoa on the
Internet

• How to add bindings to your
application

• Steps for building document-
based applications

Erick Tejkowski was still in elementary school when he began helping to

instruct teachers on Apple computers. As a professional developer, he has

designed software for clients as varied as Chicken of the Sea, Energizer,

Nextel, Edys-Dreyers, Rigid Medical, and Leap Pad.

$34.99 US / $41.99 CN / £22.99 UK

ISBN 978-0-470-43289-1

Programming/Software Development

Go to dummies.com®

for more!

Cocoa is hot! Stir up apps
for Mac OS X, iPhone™,
and iPod® Touch
It’s a great time to go for Cocoa, because it’s not only Apple’s
preferred framework for developing software, it’s also
the best way for you to create software for Mac OS X and
iPhone. This book gives you a solid foundation in Cocoa and
the unusual syntax of Objective-C. You’ll learn what’s new in
Cocoa frameworks and create applications step by step.

• X marks the start — see how Xcode underlies your applications as
the main component of Apple’s Developer Tools

• Be objective — examine the basics of the Objective-C language
and the elements of a Cocoa interface

• Add bells and whistles — spruce up your apps with audio, video,
Internet features, stylized text, and more

• Graphically speaking — create applications with the stunning
graphics for which Macs are famous

• High-end Cocoa — see how to build apps with multiple
documents or even have Xcode build an interface for you

Cocoa
® Program

m
ing

for M

ac O
S

® X

Tejkowski

spine=.816”

	Cocoa Programming for Mac OS X for Dummies
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go From Here

	Part I: Developer Tools
	Chapter 1: A Brief Tour of Cocoa Development
	Mac OS X Is a Programmer’s Dream
	Why Program with Cocoa?
	The Tools You Need

	Chapter 2: Creating Your First Cocoa Application
	Creating a Cocoa Application in Six Simple Steps
	Beginning a Project
	Building an Interface
	Adding Code to Make Your App Work
	Debugging and Building the Application

	Chapter 3: Xcode
	Xcode: The Core of Apple’s Development Tools
	Customizing Xcode Preferences
	Working with Project Files
	Debugging Your Project
	Where to Go for Help
	Building an Application

	Chapter 4: Interface Builder
	A Tour of Interface Builder
	The Interface Building Process
	Using an Interface in Xcode

	Chapter 5: Putting Polishing Touches on Your Application
	Adding an About Panel
	Assigning an Icon to Your Project
	Creating a Disk Image for Distribution

	Part II: Instant Cocoa and the Objective-C Language
	Chapter 6: The Basics of Objective-C
	Why Use Object-Oriented Programming?
	Class Is No Object!
	Coding in Objective-C
	Working with Your Own Classes

	Chapter 7: MVC Design
	Taking a Look at MVC Design
	Building a Project with an MVC Design

	Chapter 8: A Window with a View
	Working with Windows
	Changing the Appearance of Windows
	Beneath the Sheets
	Responding to Window Events by Delegating Authority

	Chapter 9: Working with Interface Controls
	Button Controls
	Radio Control
	Slider Control
	Tab Views
	Making Progress at the Bar
	Table Control

	Chapter 10: Cocoa Data Types
	Working with Numbers
	Working with Arrays
	Working with Boolean Data Types
	Working with Dates

	Part III: Putting It All Together: Cocoa Programming in Depth
	Chapter 11: Text
	Working with Text
	Doing Style the Easy Way!
	Manipulating Text
	Saving Text for a Rainy Day
	Retrieving Text

	Chapter 12: Graphics
	Cocoa and the Art of Graphics
	Building a Graphics Interface
	Painting with Lines and Shapes
	Drawing Text
	Displaying an Image

	Chapter 13: Managing Your Files
	About Files and Folders in Mac OS X
	Opening and Using Files
	Working with Files and Folders

	Chapter 14: Printing with Cocoa
	How Printing Works in Cocoa
	Tweaking the Page Settings
	Setting Up the Print Job and Printing the View
	Printing to Places Other Than a Printer

	Chapter 15: Cocoa on the Internet
	Interacting with the Web
	Sending E-Mail from a Cocoa Application

	Chapter 16: Multimedia
	Listening to Audio
	Watching Movies with Cocoa

	Part IV: Advanced Cocoa Topics
	Chapter 17: Document-Based Applications
	Creating a Document-Based Project
	Building the Interface for a Document-Based Project
	Adding the Code

	Chapter 18: Cocoa Bindings
	What Are Bindings?
	Starting a Project with Bindings
	Making Your Bindings Work: KVC and KVO
	Implementing Bindings

	Chapter 19: Core Data
	What’s So Great about Core Data Anyway?
	Creating a Core Data Project
	Defining the Model
	Building the Interface

	Part V: The Part of Tens
	Chapter 20: Ten Tips to Make Cocoa Programming Easier
	Use Keyboard Shortcuts
	Read the Documentation
	Use Class Browser
	Adjust the Window Count
	Use Drag and Drop
	Initialize and Awaken!
	Remember the Superclass
	Position Items with Cocoa Coordinates
	Use Guidelines in Interface Builder
	Reuse Your Code

	Chapter 21: Ten Great Web Sites for Cocoa Developers
	Apple Developer Connection
	Borkware Quickies
	Cocoa Is My Girlfriend
	Theocacao
	Call Me Fishmeal
	Domain of the Bored
	Dan Wood: The Eponymous Weblog
	Apple Forums
	Cocoa Dev Central
	CocoaDev

	Index

Cocoa Programming
‘for Mac 05 X

