Making Everything Easier!™

Learn to:

* Create your own Mac OS X application

* Use all the exciting Cocoa development
features

» Work with Xcode® and Interface
Builder tools

* Program with Cocoa in Objective-C

Erick Tejkowski

Author of REALbasic For Dummies

v

T

Y e A T R L O RS S A e e e e =
B T e et e e et =
" : - =

A

Cocoa’ Programming

for Mac OS X
FOR

DUMMIES

Cocoa’ Programming
for Mac OS X

DUMMIES

by Erick Tejkowski

WILEY

Wiley Publishing, Inc.

Cocoa® Programming for Mac OS® X For Dummies®
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates in the United States and other countries, and may not be used without written permission. Cocoa
and Mac OS are registered trademarks of Apple, Inc. All other trademarks are the property of their respec-
tive owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN
IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2009920903
ISBN: 978-0-470-43289-1

Manufactured in the United States of America
10987654321

WILEY

About the Author

Erick Tejkowski is a freelance author and software developer. He is the
author of Cocoa For Dummies, Mac OS X Tiger Simplified, and Mac OS X
Panther: Top 100 Simplified Tips and Tricks, among others. He has also served
in editorial and writing roles for popular Macintosh publications, such as
MacTech, MacWorld, and RB Developer. When he’s not computing, he enjoys
spending his free time with his wife, Lisa, and their children, Mercedes,
Leopold, and Emil.

Dedication

This book is dedicated to Maria Paredes, PhD. Good job!

Author’s Acknowledgments

Thank you to Greg Croy, Dennis Cohen, and especially Rebecca Senninger for
editing this book. The quality of the final transcript can be attributed to their
suggestions, recommendations, and editing expertise.

Thank you to Mixi, Mister, and Emil for inspiration.

Publisher’s Acknowledgments

We're proud of this book; please send us your comments through our online registration form
located at http://dummies.custhelp.com. For other comments, please contact our Customer
Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media Composition Services

Development Project Coordinator: Erin Smith

Project Editor: Rebecca Senninger Layout and Graphics: Samantha Allen,

Executive Editor: Gregory S. Croy Reuben W. Davis, Melissa K. Jester,

Acquisition Editor: Katie Mohr Sarah Phillipart, Christine Williams

Copy Editor: Jen Riggs Proofreaders: David Faust, Toni Settle

Technical Editor: Dennis R. Cohen Indexer: Broccoli Information Management
Editorial Manager: Leah Cameron

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www . the5thwave . com)

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director

Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher

Composition Services
Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance

JOEFOAUCEION «eeeeaaeaaaeeeeeeeeeennnaaaaeeeeeeennnnnnsaseeeeeeennnnnaes |

Part I: Developer Toolscccueceeeecceeeiceeeiieeesseecsncees 3

Chapter 1: A Brief Tour of Cocoa Development.............ccceeeeuiieviienieenieecieeeieeevee e, 7
Chapter 2: Creating Your First Cocoa Applicationcccocceecieeviervieniienienieeneenieenens 17
Chapter 3: XCOAE.....ouiiiiieieieeee ettt ettt ettt sttt sae b bttt naens 41
Chapter 4: Interface BUIlAErccoeviiiieieiieieeeceeeee ettt 63
Chapter 5: Putting Polishing Touches on Your Applicationcccccevereevrveeennnns 89

Part 1I: Instant Cocoa and the
Objective-C Language.................cccccceeeeeeeeeeeeeeeeeeeeees 107

Chapter 6: The Basics of ObJectiVe-C.........ccocouevieiiiiieieeecieeeeteeeeeee e 109
Chapter 7: MVC DESIGIcovuiiiiiiirieniesiestestest ettt esie ettt ste st e st e satesiaessaesaeenaeenee 133
Chapter 8: A Window With @ VIEWcceciiriiiiiniiniieeecececcetesesee e 149
Chapter 9: Working with Interface Controls...........ccooceviriiriiiinininineeeeeeee 167
Chapter 10: COCOa Data TYPES ...cceccvieiieieeieceeseesieeseeseesreeteereereeaesaesaessaesseesseenns 191

Part 111: Putting It All Together:
Cocoa Programming in Depth................cccuueeeeeeeeeeeeeee 199

Chapter 11: TeXE . oottt sttt et et sbesae s 201
Chapter 12: GraPRiCS....c.cccieiiieieeieciece ettt et et e b e e b e e e e s e e sraessaesseeseenns 221
Chapter 13: Managing Your Filesccoccoviiriiniiniiniiicecicseeretesee st 247
Chapter 14: Printing with COCOQ.......cccceviiriiriiriiieeecceceeeeeee e 267
Chapter 15: Cocoa on the INternet..........coceeeeieiiineneninieeeeseeee e 279
Chapter 16: MUItIMeEdia........cccceeviieciiiiieiecieceeseee ettt re e aeseaesaeesaeenns 295
Part JU: Advanced Cocoa Topics...........ccccceeeeececneee. 315
Chapter 17: Document-Based Applications...........ccoeevieeeiieciieeciieecee e, 317
Chapter 18: Cocoa BiNdINGScccecueriiriirienienienieeeseesie et etestesee st seesaeesaeenee 329
Chapter 19: Core Dataccooeriririeieieeree ettt sttt 341
Part U: The Part of Tenscccccceccceeeeeeeecaaaacneeeeeeeeess 359
Chapter 20: Ten Tips to Make Cocoa Programming Easier............ccccccoevverveneennene 361
Chapter 21: Ten Great Web Sites for Cocoa Developersccccecvveeviecveecreennen. 367

JOACK «..enneeeeeeeeeaeeeeeeeeeeeeeaaeaeaacnneeeessaaaaaasnssseeessaaeasee 371

Table of Contents

JOEPOAUCEION a.aeeeeeeeeeeenaaaaaeeeeeeennnnnnseaeeeeeessnnnnsaseeees]

AbOUt This BOOKccuiviiiiiiieiteieeiececcceeetert ettt 1
Conventions Used in This BOOK.........cccccecieviiniininiiniiiniieieceteeeeeee, 2
Foolish ASSUMPIONS........cccviiiiieiieeeceeee e 2
How this Book Is Organizedcccceeveeiiiieeieeiesieeeeee e 3
Part I: Developer TOOIS.........cccuecieciieiieiecieceeceeceeeeeie et 3
Part II: Instant Cocoa and the Objective-C Language......................... 3
Part III: Putting It All Together: Cocoa Programming in Depth........ 3
Part IV: Advanced Cocoa TOPICSccceceveierienienieneeeeieeieeeeeieeaenn 3
Part V: The Part of Tens.......ccccooevveriiiniiinieniinietcecceieeieeeeieene 4
Icons Used in This BOOKcocceviiiiiiiienienienieteeeeeieeeeeeeee et 4
Where to GO From Here..........ccvovuieiieiieiicieceeeeete et 4

Part I: Developer Tools..........cccceeecceeeaceeecareneaseeeaseencssenes D

Chapter 1: A Brief Tour of Cocoa Development 7
Mac OS X Is a Programmer’s Dreamccccooceeverviennieniieniienieeneeneeneeneeenees 7

Why Program with COCOQ?ccveiieviieciieiecieceeceeeees et 8

The ToOoIS YOU NEE......cc.cccieiiiiieieeieeiectecte ettt a e eeees 10
XCOAC....ccuieeieeieeieeteete ettt e et et e e teesbeebesbessbesstesssenseessaenseessaensennsanns 10

Interface BUIlAErcocveviiiniieiiieiiiieciectceeeeeee e 13

Chapter 2: Creating Your First Cocoa Application................. 17
Creating a Cocoa Application in Six Simple Steps.......c.cccecvevvvervierveneenen. 17
Beginning @ Project ..ottt 19
Thinking of an ideacooeeveriiiiiniirie e 19

Getting started with your Cocoa project.......ccecvecveeciiecieceeceennenne. 20

Building an INterfaceccoeeviieciieciecieeececeeeee e 23
Adding controls to the interface.........cccceceeveeieecienienierieceeceeen, 26

Wiring the interface.......coccooveeeeiiiiiiesiieicececeeceeee e 29

Making CONNECHIONS.cceocviriiriirieeeeceeeeece et 33

Adding Code to Make Your App WOrK........ccceviiniiniinenninienienieeieeeee 36
Debugging and Building the Application........c.ccccceeevieiiieecieeieeceeeeee 37
Chapter3: Xcode.oooiiiiiiii i iiieaas iy
Xcode: The Core of Apple’s Development ToOIS...........cccceevvecieereereneenee. 42

Customizing Xcode Preferences..........coceeeeienieiienineneeieieneseseeeeeeens 43

XIV Cocoa Programming for Mac 0S X For Dummies

Working with Project Filescoooiioiiiiiiiiceeeeeeeeee e 45
Class MOAELS......cceccuieiieieeiecieceeceee ettt ae e e e e e aneeeas 48

File COMMENLSoocviiiiiieiieeee ettt e 49
Using favorites to speed up development..........ccccceeverviirrienrennnenne. 50
Debugging YOour Project........cccovieeieienineseeecteeeeeeeeeiete e 51
Adding Breakpointsccecveevevirerieeeiereneseeeseereeesee e eseenees 52
Stepping through the debuggerccccevveiiinieciecieeeeeee 53
FixXing the COde ...t 55
Removing breakpointscccceeeeeeeecierieiineceeeeeeeese s 57
Where to GO fOr HElPocvieiieiieieieeeceeeeeee et 58
Building an AppliCationccocevvieriieniiinienicceeceeeee e 60
Chapter 4: Interface Builder.....................ccoihaL. 63
A Tour of Interface Builder...........coceeciirviiniiniiiniinieieecieeeeeeeseesee e 64
The interface builder project window..........ccccceeeevervieriervieneeneenne. 66
DeSign WINAOWoccuviiiiieeiiieiieeiie et erie e st eteeere e e eree e eaeesnseennas 68
Library WinAOWcc.cooiiiiiiiiieenieeeeteteeeee et 70
INSPECLOr WINAOWoouviiiieiieiiciecie ettt 72
Menu editor WINAOW........cccueviiiiinieniericieeceeee et 74

The Interface Building Process........cccoceviiviiniininniinnieecieciesieeeeneeeeen 77
Adding @ POP-UP MENU.....ccociiriiriiiriiiiirienieete st stesee e eseeesseeeeseenns 78
Adding @ MENUc.cociiiiiiiiiieiccceeecceeee e 80
Creating a Controller Classcccceeeeeieriieiieneeieeie e 81
Connecting the interface...........ccoecveeeeeeeiienieseccecece e 81
Using an Interface in XCode.........ccceevueriiniinieneeiieeieeieeieete e seesieeeees 83
Chapter 5: Putting Polishing Touches on Your Application. 89
Adding an About Panelcccoooveviieiiiniiniiiectceecee e 90
Setting an ICOM.....civiiriiieeeeeeee et 92
Setting the name or title..........coccovviiriiiniiiniiniiiceee e 93
Displaying a version number, a copyright date, and credits.......... 94
Assigning an Icon to Your Project..........cococeieniiinininnenieeeeceeeeenes 97
ICON COMPOSETooeiiiiiiieiieteeie ettt eesteebesaeeaeesaesaaeens 98
Managing yOUY ICOMSccceviirierienienieerieerieesieesieesieeteeresaesaesenens 101
Creating a Disk Image for Distribution..........ccccecervieniieniiiniiniinnienieens 102

Part I1: Instant Cocoa and
the Objective-C Languageccceceeeeaaaaaaaaaanne 107

Chapter 6: The Basics of Objective-C........................... 109
Why Use Object-Oriented Programming?..........cccccoeveevervennienvinnnienneenens 109
Class IS NO ODJECH!....cuuiiiieieeeeeeeeeeeeete ettt e e ere s 110

Declaring instance variablescc.cccoeeiriiiieniiiiiiieeieeeeeeee e 111
Declaring methods..........coveeiieiieciiiiecieceeeee e 112

Defining methods in an interface file...........ccoceeveevieiiniiniieniennnn. 114

Table of Contents

Coding iN ODJECHIVE-Ci.......ocvieiieiieieeiteeteeeee ettt e e e ere s 115
Sending messages t0 ObJECtS......coevieviiriririiiieeeeeeee e 115
Passing parameterscoccevvieiiiieniiiiiieeeeee e 115
Returning Valuesccveriieriieiieniiiiiecieeeeseese e 116
Instantiating an ObJeCt.........cooeeviiviiiiiiiriiinienee e 117
Managing MemMOTYccceeierierienieneerieeeeneesieerte et sresreseesieens 117

Working with Your Own CIasSesccceecveeieeienieneeneeeeeieere e 120
Defining the ClasS.......ccocieiieriieeeie et 125
Implementing the Classcccoceeeiiiiiiecieeciecieeeeeeeeee e 127
USING the Classoocveeieiiiieeeccece et 128
TESTING . c.veeieeieeie ettt ettt 130

Chapter 2MVCDesignc.coviiiiiiii i nnnenns 133

Taking a Look at MVC DeSign........cccecueviiniiniineiieiieeieeienieseeseeseesieene 134

Building a Project with an MVC Designcccceeeeievieninenieieeeseeeene 135
Adding @ VIEW....cooviiieeeeeeee ettt 139
Adding a Controllercoocieieiieriirinieeeee e 141

Chapter 8: AWindow withaView0 149

Working with WindOWS..........ccuivieiiiiiiiiecieeeteeeeeee e 149
Opening and closing a WindOWwcccccecvereeneenieecieecieeieeeeeeeeenn 150
Hiding and showing a wWindowccceeceeveeievienineceeeeieneseeeene 150
Positioning WindOWScccooeeieieienieneceeeeeee e 151
Keeping track of WindOWS.........cccocevviiriienieniiniieceeeneeieeeeenn 152
Putting windows to Work for you.........ccccceveevieneeceecieececiecie, 153

Changing the Appearance of Windows..........cccceceeevenenenienienieneneene 155
Using different windows for different taskscccccocoveevvrcieenennn. 155
Sizing up yOUr WiNAOWSceeueeeieierieriiereeeeeeeere e ae e saeseens 157
Setting @ Window’s titlecceeieieciineniciceeeee e 157
Windows that you can see through...........ccoccooviiniiniinnnnnnnnnn. 158

Beneath the Sheets........cccoiveiiiiinccceceeeeeeeeene 159

Responding to Window Events by Delegating Authorityc......... 165

Chapter 9: Working with Interface Controls..................... 167

BUtton CONtYOIScc.ooeeuiiieieieieeeeeteeeee ettt 167
PUush BULtON ..o 169
RouUnd BUTON ..ottt 171
ChECK DOX ...ttt 173
Square and rounded bevel buttons...........ccccocveeeviieiciienciecee e, 174

RadIO CONEYOL.....uiiiiiiiciiiiciecce ettt et 175

SlAer CONTIOL......ccooiuiiiiieieieeee ettt s 178

TAD VIBWS ..ottt sttt s 179

Making Progress at the Barcccocveviivieciieniiiiicecccececeeseeeeeee 182

Table CONEIOL.....couveiiiiiiiieeeeee ettt ee e enes 184

xv

XUVI Cocoa Programming for Mac 0S X For Dummies

Chapter 10: CocoaDataTypes.............ccvvveiineiinnnnnnnns 191
Working with NUMDEIScccooviviieiiiiiciececeeteeeeeeee e 191
WOrking With Arrayscccceceecieiienieeieciecieceeseeseese et sresae e 192

INSATTAY .eeoveeiiieieeieetestet ettt ettt e st s e sbeesaeesaeestesbessbesanessnens 193
NSMULADIEATITAYcvveiiiiiiieiieeieeie ettt ettt 194
Working with Boolean Data TYPESccceeveevieeienienieceeeeteeieeveeae e 195
Working with Datesccccoviiiiiiiiiiieee e 196

Part I11: Putting It All Together:
Cocoa Programming in Depthccceeecccccaacnneeees 199

Chapter 11: Text ..o e aaens 201
WOrKing With TeXtccveeieiieiiieieeiecie ettt 201
Building an interface.........cocooeeviirciiiiiincieeieseeeeeeeeeee e 202

Adding a controller Class........cccevvirviirrieniiiniienieriereeeeeee e 204

Wiring the interface..........cocveveeeveninieeeeee e 205

Adding the code......coumiiiiiiee e 206

Doing Style the Easy Way!cccooiriiiiiiieeeeeee e 208
Manipulating TeXt......cceiviieierieeieceeceereee et e e s e esae e 210
Pasteboard manipulations..........c.ccceceevieeieniienieneeneeeeeeeeeeenn 210

Manual €diting........cccocerierienieiienieeeece e 211

Saving Text for a Rainy Day.......cccocceeviiriiniiniiniiiieiececieseeseeeeeseeeee 213
RetrieVINgG TeXt....c.coviiiiiiieieeieeeeee ettt 216
Chapter12: Graphicscoiiiiiiii e eaas 221
Cocoa and the Art of GraphiCs........ccecieviecieiiiecieeceeeee e 221
POINES ..t 221

Rects and SIZeS......cccooeeiiiiiiiiiieeeeeee e 222

COLOTS ettt st sttt 223

Building a Graphics Interface..........ccccoeceviiniiniininniiiciecececeeeeeeee 227
Painting with Lines and Shapesccccccocivviiniininniinnenienenieeeeneeeee 230
Starting with Beziér pathsc.cccooeeveevieeieniiieeeeeeeeeee e 230

Filling @ path ..co.cooiiiiiieteee e 231

Drawing @ Pathi......cccoooiiiieiieicee e 234

Creating fancy-pants paths........ccccoevevieiienienicneccececeeeeeee 236

Drawing TeXE ..cc.ueviiriiiiiieierieeeereeteste ettt ettt sae e s e e saeesaeenes 239
Displaying an ImMagecccocerviiriieniieniienienicecieeeeee et 242
Chapter 13: Managing YourFilesc.oun 247
About Files and Folders in Mac OS X......ccccoovieviiniininnennenienieeiesienens 247
Opening and USing Filescccevieiiieiiieieeiceceeeeeeee e 249
Building the interface..........cocooiviiiiiinineeeeee e 249

Creating a Controller Classcccceeeeeeenieeieenieeieecie e eee e 251

Open sesame . . . €r, PANEl......c.ccccceereeririieiieeceece e 254

Table of Contents X(/ii

Finding a file’s path, name, and moreccccoeeveeveciiecieecreeeennnn. 256
Viewing a file’s ICOMuiviieiecieiieieeieeeee et 258
Reading from and writing to documentsccccceevecieecieeeennnnn. 261
Working with Files and Folderscccovivviiniiniinienicieieeeeeeieene 261
Copying files and foldersccooceerieririiiniiniriecieseseereeeeeenn 262
Moving files and folders.........ccocevieviininniiniinenieeeeeeeeeeenn 263
Deleting files and foldersc..ccccoceveninininninininineneeeereeene 264
Creating folders.......cocieoiivieririeieeeeee e 265
Chapter 14: PrintingwithCocoas 267
How Printing Works in CoCOacoceeieiiniiieninieieeieeeeeeee e 267
Tweaking the Page Settings.......c.cccveevieeiiiienienieececeee e 270
Setting Up the Print Job and Printing the Viewccccccoeviviinviinnnnns 274
Printing to Places Other Than a Printerccocceevevieeinincieciereeseene 275
Chapter 15: Cocoaon the Internet.............................. 2719
Interacting with the Webcocoviiiiiniiiiiieeeeeeee 279
Loading a Web page in a bProwser.........ccoccoeveevieneenenveniieniieneeneens 280
Downloading files..........ccceeevieeiiiiiieciieeee e 281
Building a Web DrOWSETcceccuieiiiiieiecieceeieeeee e 283
Sending E-Mail from a Cocoa Applicationcccceeveevieevieeciencienceenennne 287
Sending e-mail from your favorite client...........ccccceceevvrvirvienceennnnn. 288
Sending e-mail from your OWn appscccceeceereeneeneesiensiennieniennens 290
Adding e-mail functions to the projectccoccevcieviiniinennennennen. 291
Chapter 16: Multimedia................ ...t 295
Listening t0 AUAIOcceeveeeieieriececeeceteeeee et ene e 295
Playing system SOUNAS..........ccceevieeeiieeiieeieeie e 296
Loading and playing sound filescccecevierenenenennienienereeene 297
Building a simple audio player...........cccceecvereereeneeneecieeieeieeeeenens 299
Watching Movies with COCOQ.........ccceeeeieviiiicececeeeee e 305
QT IMOVI....uveiiieteeie ettt ceere e et e eestae e e eetaaeeeesreeesesreeeeenes 306
QTIMOVIEVIEWvvvieeeireeeeeieeee ettt ettt eeree e et eeetae e e eeareeeeenreeeeenns 307
Building a simple movie player..........cccccceeceeeriieeciienieeeieeeee e 310
When a movie iSn’t @ MOVIE........cccoveviririeieieere e 312

Part IU: Advanced Cocoa Topicscccccueeeceneeacenese 315

Chapter 17: Document-Based Applications 317
Creating a Document-Based Projectcccevevviiriiiniiiniiiniiniinienccene 317
Building the Interface for a Document-Based Project.........ccccocceeeenennne 322

Adding the Code ..ot 325

XVIII CocoaProgramming for Mac 0S X For Dummies

Chapter 18: CocoaBindingscccovviiiiiiinnn, 329
What Are Bindings?ooieeiieiiieieeiecieeieeeetet ettt vesae e 330
Starting a Project with Bindingscccceevevienieniniiinniceciecieeeeeeeeee 331
Making Your Bindings Work: KVC and KVO.........ccccecvvciinviiniiniieniinens 333
Implementing Bindingsc.cccocevvieriiiniiiniiniiiciecieeeeeesee et 334

Chapter19:CoreDataccoiiiiiiiiiiiiiiiinenns N
What'’s So Great about Core Data Anyway?cccceeeeveeversierriennienseeneens 341
Creating a Core Data Project........cccocveeiievieeciieciiciecreceeeecee e 342
Defining the MOdelcooouieiieiieieciececeeee ettt 344
Building the INterface.........ccoooeeiieiiieeiceececeeeeeeeeee e 354

Part U: The Part of Tens.........ccececceeeecceeeecaceeecaaeeeees 359

Chapter 20: Ten Tips to Make Cocoa Programming Easier 361
Use Keyboard ShOrtCULS........coecvieciieieeieceeceee ettt 361
Read the Documentationccccceeieeienieeieceeieeceeeeie e 362
USE Class BrOWSETc..covuieiieiieiiciectectecite sttt steeaeeae e e e e saeesaeanes 363
Adjust the WINdow Countcccceceeviiriiiniienienieneeseereceete e sve e 363
Use Drag and DIOpPcooeeeieiiinienienienientesteeeie ettt st sae e 363
Initialize and AWaKen!ccccovviiriieniinienieteeeeeeeeee et 364
Remember the SUPErClass.........cceceeieeiiiieiieeeeeeeee et 364
Position Items with Cocoa Coordinatescccceeeevieecieeieniecieeeeneens 365
Use Guidelines in Interface Builder..........c.ccccoevieiiieiieiiecienieciecieeeeeene 365
REUSE YOUY COAE ...uuiiiiiiiiiieiieiectecteete ettt e e sae e 366

Chapter 21: Ten Great Web Sites for Cocoa Developers 367
Apple Developer CONNECHioNccccecvievierieeiienieniereeneeieeie e eve e 368
Borkware QUICKIESc..ooiieiiiiiiieiiieeeeeccteec ettt e 368
Cocoa Is My GIirlfriendcocceeeevieeniieniinienieeieniesiee ettt 368
TREOCACAO ...ttt ettt st sae e 369
Call Me FiShIMeEal.......cccccviiiiiiiieiieiecieeieeie ettt e v 369
Domain of the Boredccoooiieiiiiiieiecieceeeeeeeeeeee e 369
Dan Wood: The Eponymous Weblog..........c.ccoecvvrernieenieenienienieceeseeneenne 370
APPLE FOTUMS ..ottt st 370
Cocoa Dev Central.......ccocovierieniiriiiieeeeieeeete sttt 370
COCOADEY ...ttt sttt ettt sae s e et et e s essesseeseeneensensansensennes 370

JOACK ceaaaeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaannnnnnnnnneeseeeeeeeeeeeeeaeeees 31

Introduction

Welcome to Cocoa Programming for Mac OS X For Dummies. This book
shows you how to create applications for Mac OS X, complete with

beautiful Aqua interfaces and advanced functionality. The best part is that

Cocoa provides you with programming skills that you could only dream of a
few short years ago.

About This Book

Cocoa Programming for Mac OS X For Dummies is a newcomer’s guide to
Cocoa programming for Mac OS X. This book guides you through the basics
of Cocoa application development, so you can finally realize the full potential
of your Macintosh. Although Cocoa isn’t the easiest thing on earth to figure
out, it’s easy enough that beginners can create applications. Furthermore,
even beginner projects can have features that rival professional applications.
You'll be surprised at how easy it is to add complex features — features that
would have taken an army of engineers to build in the past.

This book won’t make you a certified Cocoa expert, but it will give you a good
start on your way to becoming proficient with Cocoa. From the beginning

of the book to the very end, you’ll explore Cocoa programming by using it.
Each chapter guides you through the process of creating at least one simple
application that illustrates the features presented in that chapter.

Cocoa Programming for Mac OS X For Dummies covers the fundamentals of
Cocoa programming as well as advanced features. The weird thing about
Cocoa is that you sometimes can’t tell which is which. In Cocoa, the simple
is complex, and the complex simple. You’'ll gasp in awe as you add sophisti-
cated graphics, multimedia, and professional typography to your application
in minutes. Then you’ll turn around and bang your head against the wall
trying to remember how to create a simple list of items in Cocoa. The great
part about Cocoa is that after you get the hang of the basics, you can build
applications with high-quality features that would’ve been near impossible
for a beginner to achieve in the past.

2 Cocoa Programming for Mac 0S X For Dummies

Conventions Used in This Book

This book guides you through the process of building Cocoa applications.
Throughout, you create interfaces and make them functional with the use of
Objective-C code. The code examples in this book appear in a monospaced
font. For instance:

#import <Cocoa/Cocoa.h>

Objective-C is intimately connected to the C language, which is a case-
sensitive language. Therefore, it’s a good idea to enter the code that appears
in this book exactly as it appears in the text. Some capitalization may not be
mandatory, but until you’re familiar with the rules, it’s best not to stray from
the text. If you're ever uncertain about case sensitivity, you can always use
the source code on the For Dummies Web site, at www . dummies.com/go/
cocoafd. All URLs in this book appear in a monospaced font as well:

wWww . apple.com

Foolish Assumptions

To begin programming Cocoa applications, you need a Macintosh computer,
a copy of Mac OS X (preferably 10.4 or higher), and the Developer Tools,
which Apple offers for free as a download. If you're not sure how to install
the Developer Tools, the appendix can lead you through the steps necessary
to prepare your Mac for Cocoa development.

In addition to the computer and software, you’ll also need some computing
skills. For starters, you should be familiar with using the Macintosh operating
system. You should know how to launch applications, save files, work with
Finder, and use the Internet.

You should also have at least a passing knowledge of some computer
language. Ideally, you should have working skills in the C programming
language. Even a passing experience with an object-oriented language,
such as C++ or Java, would also be beneficial, but it’s not an absolute must.
This isn’t to say that you’ll be completely lost without these skills. Different
computer languages tend to share many features in common. Whether you
have a Pascal, a JavaScript, or an AppleScript background, you’ll find that
Objective-C, although strange looking at first, is easy to learn, and many
aspects will feel familiar.

The examples in this book stay focused on the Cocoa aspects of program-
ming. Although some accessory C code is necessary to make this happen,
the examples are not obfuscated code that an average beginning programmer
can’t grasp. If you're still not sure that you're ready for Cocoa, jump on in

Introduction 3

anyway. There’s a good chance that you’ll understand what’s going on. When
you get lost, you can always refer to one of the many C language references
on the Internet for extra help.

How This Book Is Organized

Cocoa Programming for Mac OS X For Dummies has five main parts.

Part I: Developer Tools

Part I introduces you to the world of Cocoa programming. You explore the
tools that you need to write Cocoa software and in the process build your
first Cocoa application.

Part I1: Instant Cocoa and
the Objective-C Language

In Part II, you continue your quest for Cocoa enlightenment by examining
the basics of the Objective-C language, the elements of a Cocoa interface,
and object-oriented programming. These chapters give you the fundamental
background knowledge that you need to use the features presented
throughout the rest of the book.

Part I1I: Putting It All Together:
Cocoa Programming in Depth

Now that you have the basics behind you, it’s time to dive in to the fun
features of Cocoa. In Part IIl, you add some glitz and glamour to your
applications using graphics, audio, video, Internet features, and stylized
text. It’s the stuff that applications are made of!

Part IU: Advanced Cocoa Topics

Part IV takes you into the realm of advanced Cocoa programming topics.
Until now, applications remained simple one-window affairs. With Cocoa,
you can easily create applications with multiple documents or even other
executables that aren’t traditional Mac applications at all. In this part, you
discover some of the more advanced features of Cocoa and find out how to
use them in your own projects.

4 Cocoa Programming for Mac 0S X For Dummies

Part U: The Part of Tens

Part V consists of useful Cocoa tips, tricks, and pointers. Whether it’s advice
about how to make the most of Cocoa or help for what to do when things

go wrong, Part V covers some common issues you’ll encounter when using
Cocoa.

Icons Used in This Book

«”
=S\
-/

—

When you see this icon, you can be sure that the code on the For Dummies
Web site applies to the current example. The Web site contains the code for
all projects in this book for those who don’t feel like typing the code. Just go
to www.dummies.com/go/cocoafd.

This icon indicates a useful pointer that you shouldn’t skip.

This icon represents a friendly reminder. It describes a vital point that
you should keep in mind while proceeding through a particular section of
the chapter.

This icon signifies that the accompanying explanation might be informative
(dare I say, interesting?), but it isn’t essential to understanding Cocoa. Feel
free to skip past these tidbits if you're a technophobe.

This icon alerts you to potential problems that you may encounter along the
way. Read and obey these blurbs to avoid trouble.

Where to Go From Here

It’s time to explore Cocoa! If you're apprehensive about embarking upon this
journey, relax in the knowledge that anyone can program in Cocoa. This book
will show you how to get started.

Part|
Developer Tools

T_he 5th Wave By Rich Tennant

GRICHTENNANT

“We’re here to clean the code.”

In this part . . .

our first sip of Cocoa begins with an introduction to

the Cocoa development process. Next, it’s on to
Apple’s Developer Tools, where you’ll put that process
into practice.

Part I guides you through the basics of Cocoa development
using Xcode and Interface Builder. These two applications
form the foundation of your Cocoa experience, and you’ll
use the knowledge you gain from them throughout the
book. To help you understand how they work, you'll build
your own working Cocoa application. As you progress
through Part [, you'll continue to improve that application,
adding features and improving functionality as you go.
After you're happy with the results, the end of Part I shows
you how to prepare the final application for public
consumption.

Chapter 1
A Brief Tour of Cocoa Development

In This Chapter
Programming for Mac OS X

Discovering the Cocoa development process
Exploring the tools for programming Cocoa applications

Fese are exciting times for Macintosh users. When Apple unleashed Mac
OS X upon the world, it ushered in a new era of computing for the Mac
faithful. Besides the rock-solid stability of UNIX, Mac OS X offered functional-
ity and features that Mac users could have only dreamt of a few years earlier.
Along with this great operating system, Apple saw fit to remember Macintosh
developers and have done so ever since. Principal among Apple’s achieve-
ments is Cocoa, the subject of this book. This chapter introduces you to the
world of Mac OS X programming and, in particular, Cocoa programming.

Mac 0S X Is a Programmer’s Dream

Macintosh programming has never been as easy or as accessible as it is with
Mac OS X. For starters, Apple, the friendly folks that they are, thought it’d

be a great idea to give away the development tools. For free. Apple provides
the Xcode Developer Tools as a free download on the Apple Developer
Connection Web site. By installing the Xcode Developer Tools download,

you instantly gain access to a complete collection of tools, utilities, documen-
tations, and example source codes to get you started programming for the
Mac OS. In the past, a developer bundle this comprehensive would have cost
hundreds of dollars. Today, Apple provides it for no additional charge.

3 Some older versions of Mac OS X ship with a Developer Tools disc; newer
versions don’t. If you're searching for the disc and can’t find it, you may have
an installation of Mac OS X that doesn’t include the Developer Tools disc.

You needn’t worry, however, because you can download the Xcode Developer
Tools by signing up for a free ADC membership at Apple’s developer site
(https://connect.apple.com). In fact, even if you already have a
Developer Tools disc, check Apple’s developer site for updates because each

8

Part I: Developer Tools

Why

version of Xcode Developer Tools is specific to a particular OS X release.
Note: Xcode Developer Tools installations can total in the hundreds of mega-
bytes, so you'll probably want a fast Internet connection to download them.

Apple Developer Connection (ADC) is Apple’s support program for develop-
ers. You can register at different tiers (and pay different prices) for member-
ship, which gives you varying amounts of support and other perks, such

as Worldwide Developers Conference (WWDC) tickets. The lowest tier is
completely free, so it doesn’t cost you anything to download the Xcode
Developer Tools.

Just because the Xcode Developer Tools is a free download doesn’t mean
that the software is second-rate. On the contrary, Xcode Developer Tools are
world class. When developing software for the Macintosh with these tools,
you can take advantage of the following benefits:

v Write code in a variety of programming and scripting languages: C,
Objective-C, Python, Ruby, Java, or even AppleScript.

v Create beautiful interfaces that follow Apple’s Human Interface
Guidelines.

v Develop applications with rich features, some of which you can add to
your project without writing a single line of code.

Further, because Mac OS X has a UNIX flavor at its core, you can take
advantage of the decades of work by UNIX users. For example, most open-
source software run on different varieties of UNIX, so you can leverage
thousands of compatible source-code examples for use in your own Mac OS X
applications as well.

Program with Cocoa?

Cocoa is one kind of programming that you can perform with the Apple
Xcode Developer Tools. Cocoa is a collection of tools and libraries (or
frameworks) that allows you to get the most out of Mac OS X programming.
Many features make Cocoa great; some include

»* Modular object-oriented design

v Use of frameworks

v Visual interface design

Chapter 1: A Brief Tour of Cocoa Development

Object-oriented programming is in common use these days, and for good
reason. By programming with an object-oriented design, your code can more
closely model items in the real world. This book isn’t an object-oriented text;
in fact, you should come to Cocoa with at least an idea of how to program

in an object-oriented fashion. This book does, however, discuss the object-
oriented nature of Cocoa and examines its primary language: Objective-C.
Objective-C, as you might induce from its name, is an object-oriented super-
set of the C language. It permits you to program in an object-oriented fashion
without some of the messy baggage that C++ has. Because Objective-C is a
superset of C, you can also take advantage of the C that you know. Everything
that you can do in C is valid code to the Objective-C compiler.

The use of frameworks is another great aspect of Cocoa development.
Experienced programmers may be tempted to call frameworks by another
name — libraries. Frameworks are collections of classes that provide you,
the Cocoa developer, with a specific type of functionality. Mac OS X ships
with several frameworks for you to choose from, but two big ones stand

out: AppKit and Foundation. The AppKit Framework provides you with scores
of classes and functions for working with interfaces, and the Foundation
Framework gives you utilitarian functions relating to data manipulation and
program execution. You use them a lot when writing Cocoa software.

The object-oriented nature of Cocoa and its rich set of frameworks form an
unbeatable code-reuse duo. Computer programmers can be a lazy bunch, not
wanting to repeat a single task. To aid developers in their pursuit of reusable
code, Cocoa offers a wide array of reusable classes. After you complete some
programming tasks, you can even store the results in your own framework
for use in other projects. Apple gives you reusable code out of the box, and
you can reuse your own code as well. The object-oriented design of Cocoa
makes this reuse possible.

Reusable code is good for a variety of reasons: It lets you create software
quickly, it reduces the number of bugs in your code, and it prevents you from
reinventing the wheel each time you sit down to program. By reusing the
frameworks that Apple provides with the Xcode Developer Tools, you gain
all sorts of great functionality without having to know how it works under
the hood.

Besides the geekier benefits, you’ll love many other aspects of Cocoa pro-
gramming. For starters, the frameworks that accompany Mac OS X provide
arich set of interface elements that you can use to build sophisticated
interfaces demanded by professional software. Moreover, Cocoa program-
ming gives you instant access to a wide range of free classes. Whether you
need an About box, a spell-checker, or QuickTime movies in your application,
Cocoa has a solution for you.

9

10

Part I: Developer Tools

The Tools Vou Need

A\

To facilitate your Cocoa development, Apple was nice enough to provide
you with a large selection of tools and utilities. With these tools, you can
begin creating Cocoa software from the ground up. When you’re finished
programming, the tools will even build the application, prepare it for
distribution, and put together an installer.

To begin programming with Cocoa, find the development tools. If you
installed them in the default location, they reside in the following directory
on your hard drive:

/Developer/Applications

If you discover that you don’t have the development tools on your system,
visit developer.apple.comto download the latest version.

You won'’t need all the applications that Apple provides in the /Developer/
Applications directory. In fact, for many tasks you can probably get away
with using only two: Xcode and Interface Builder.

Xcode

Xcode is the main application that you’ll use for all your Cocoa projects.
Xcode serves a number of roles in the Cocoa development process:

1 Xcode acts as the central repository for all the files in your Cocoa
projects. Using a familiar document approach, Xcode lets you organize
the components of a Cocoa project in one easy-to-use document.
Figure 1-1 shows a Cocoa project opened in Xcode.

+* You also use Xcode to write and edit Cocoa source code. When you
write code for a project, Xcode guides you by coloring the syntax,
indenting code automatically, and providing auto-completion features to
reduce the amount of typing (and remembering) that you have to do. It
also offers convenient one-click access to all the functions in your code,
as shown in Figure 1-2.

+* Your Cocoa project may have other types of files beyond code, and
Xcode is prepared to help you work with them. For example, if you
want to include images in your project, Xcode lets you view them in the
main project window without skipping a beat. You don’t need to use
another application to view those images. Xcode displays them right in
the code editor, as shown in Figure 1-3.

|
Figure 1-1:
Xcode acts
as your
primary tool
for writing
Cocoa
software.

|
Figure 1-2:
Edit your
code in
Xcode.
|

Chapter 1: A Brief Tour of Cocoa Development

Groups & Files
w [FileDemo
¥[|Classes
[1i] MyFileController.h
[l MyFileControlier.m
| | Other Sources
[i] FileDema_Prefix.pch
[m] main.m
[| Resources
=] Info.plist
| InfoPlist.strings
B [i1] MainMenu xib
[Frameworks
w|] Linked Frameworks
b % Cocoa.framework
'w[| Other Frameworks
> % Appkit.framework
» § CoreData.framewo
¥ B Foundation.framen
[| Products
{4 FileDemo.app
¥ @) Targets
» o4 FileDema
¥ < Executables
& FileDemo
» 4B Errors and Warnings
» (4, Find Results
b1 Bookmarks
=FeY
@ Project Symbols
» (i@l Implementation Files
B[] NIB Files

W MyFileControlier.m

-

» B MyFileController.m4 3 [@@i MyFileController 2

o™ |Cyl#y -

#inport "HyFi leController .h"
@inplenentation MyFileController

— (IBActionjoopyTheFi le: (id)sender
i

o thelp: - [SOp openPanel];
[theDpenPane| setTitle:a'Choose o File or Folder to copy'];
[theOpenPane | setCanChocseDirectories:vEs];

if {[thebpenPanel runttodal] == NSOKButton)

{

WSString *theFilePath = [theOpenPanel filename];

NSFi leMonager ¥theMonager = [NSFi leManager defoulthonager];
NSString *theFileane = [theManager disployNomeAtPath:theFilePath];

NSString *theDestination = [[NSHomeDirector
stringByAppendingPathConponent :4" Deskbop” |
stringByAppend ingPatConponent stheF i LeName 1;
[thettanager copyPath:theFilePath toPath:theDestination handler:nil];

b

=

Groups & Files
w [FileDemo
w[|Classes
5] MyFileController.h
1l MyFileControlier.m
|| Other Sources
FileDemo_Prefix.pch
[l main.m
[| Resources
[£1 Info.plist
b [£] InfoPlist.strings
B [11] MainMenu.xib
[Frameworks
W[Linked Frameworks
b i Cocoa.framework
‘[) Other Frameweorks
= Appkit.framework
» § CoreData.framewo
» % Foundation.framen
[7] Products
{4 FileDemo.app
¥ @) Targets
» 54 FileDema
¥/ Executables
& FileDemo
» 4B Errors and Warnings
P 4, Find Results
» L2 Bookmarks
=FeY
@ Project Symbols
¥ [l Implementation Files
b [NIB Files

W MyFileContraller.m

» @ MyFileController.m:4 3 ¢

-

Finpart "HyFileControl ler A"
@ -moveTheFile:

[-createAFolder:
M -seleccThefile:

Qi Lensrtation HyF\leEor\troLl]
~ (IBAction Yooy TheF i le: (id)ser

e o E openPanel];
[theOpenPanel setTitle:a'Chocse o File or Folder to copy'];
[theOperPane | setCanChocseDirectories:vEs];

if {[theDpenPanel runtodal] == NSOKButton)

i

— (IBActionynoveTheFi le: (id)ysender
1

o o = [N3Dp openPanel];
[theDpenPonel setTitle:a'Choose o File or Folder to nove'];
[theDpenPane | setCanChooseDirectories:vES];

if {[thebpenPanel runtodal] == NSOKBUtton)

NSString *theFilePath = [theOpenParel filename];
NSFi leManaeer *thetianoner = TNSFi [sMananer defoul thonaeer] :

—— e
MyFileController He = Cy #y

faw i

11

1 2 Part I: Developer Tools

Figure 1-3:
You can
view other
types of files
in Xcode.
|

ano I Mixi ipg - FileDemo =
[10.5 [Release | poc -] [@-] '& e O Q- sering Matering

Groupt & Files

+ When you get stuck, Xcode gives you access to the complete collection
of Cocoa, Xcode, and other developer documentation. You can view
and navigate the documentation with Xcode in much the same way as
you would a Web browser. Figure 1-4 shows what the screen looks like
when documentation is loaded into Xcode.

After you complete your Cocoa project, you use Xcode to compile, link,
and build a final application. You can then distribute the application to
friends, co-workers, and even the world (as long as they use Mac OS X).

Xcode wears many hats. If you're accustomed to other development environ-
ments, you may be surprised to discover that Xcode performs tasks

that require multiple tools in other environments. For example, Xcode
functions as a

v Project organizer, managing files and resources in your Cocoa projects

v Code editor, allowing you to write and edit Cocoa code

v Browser, displaying built-in documentation or other kinds of resources
in your Cocoa projects

v+ Compiler and linker, spitting out a complete Cocoa application at the
end of the development process

Chapter 1: A Brief Tour of Cocoa Development ’3

™
g ity e
boc s emotame aDa Language oe Documentaiion Set
= Apole Mac 05X 10.5 Otpects-€ Cian e Liteary
- Apple Mende 1.1 Dtypctiee-C Caoegory Cone Libeary m
c are Library
BOOKMARES : Cont Uibeary
Xeode 3,1 Resgase Noteh < Corg Litrary
Asokd Beference c Core it
Taundation Referesce < Care Library
Kcode Buikd Sertings Moses = Jotere Ky
Xcnde Eapers Pratavences W = Db e ey
Werh wr Raderence L t L C.
g e NSString Class Reference 0
Reference
™ Inherits from WSObect
v Owerview Conforms 1o WSCoding
NiCapying
NiMutableCopyng
NSObject (NEObject)
Framawark Syntem Liswary/Framewari | Faundaton. framewaric
|
Welopiad Proxsnts Avallabiliry Availabie in Mac 05 X ¥10.0 and laser
1 -4 EaTkE Declared in NSPathUEETes
Figure 1-4: ? G e e
& bstance Methods PR,
You can e
Companion guides Stting Progeamming Culde for Cocoa
- * Appendia A Deprecated Froperty List Programming Guide for Cocoa
view NsSirimg Methods
Revision History
the Cocoa e
documen_ Companion Culdes
String Programming Guide "
L o Cocca Overview
tation In Progerty List Programming
Guide for Cotoa Tha 351+ 1np clash declires the programetic interface for an object that mansges smtable WSnngt. (A0 immutasle iting i &
XC Od e bext string that (s defined when it i credted and subsequently cannot be changed. w35t © 13 implemented O Mepresent an array
: e O Unicost chasacters (in other words. & tet stringl .
. | Core Lteary - Coaa + Data Managamard » Nilaring Ciatd Aeberance - WSfiring Cls Relurence Frvendt 18 destments

Interface Builder

Interface Builder is a constant companion to Xcode. As you can probably
guess, Interface Builder’s main purpose is to create interfaces. With it, you
can build interfaces that adhere to Apple’s interface guidelines.

Interface Builder provides a complete set of controls that you can add to
your application. From windows and drawers to buttons and sliders,
Interface Builder gives you drag-and-drop access to a full suite of interface
elements to make your software the best it can be. Don’t forget that Interface
Builder is an Apple product. No one knows the Macintosh user interface
better than Apple, because they created it, so you can be certain that the
controls in Interface Builder follow the strictest Apple guidelines.

Figure 1-5 shows an example interface with many different types of controls
available to you in Interface Builder. The interface won’t win any design
awards, but it does show you the range of elements that you can use in your
own Cocoa software.

14

Part I: Developer Tools

[ala) Window
Username: | ajphabet
|
Password: | eessss
Figure 1-5: _
Velocity: e e—
Interface e
Builder has Mass: =O=-
a complete Setings [Praterences)
set of ‘ ‘
interface | Bananas & l M Check s, |
. = I
controls for 2/12/1982 [3)
you to use in : (& Leopard i Applications]
your C_ocoa a) o
projects.)
|

Interface Builder’s features aren’t limited to WYSIWYG (what you see is what
you get) interface editing. You can also create classes that have no visual
representation. Although you don’t actually write the code in Interface
Builder for your classes, you do define the basic structures and methods for
them there. You can also connect the interface to your classes with simple
drag-and-drop techniques, as shown in Figure 1-6.

Do you speak the language?

Cocoa programming (like most kinds of com-
puter programming) requires the use of a pro-
gramming language. To create Cocoa
applications, you need to know Objective-C,
Python, Ruby, Java, or AppleScript. This book
uses Objective-C because it's the “native lan-
guage” of Cocoa. Objective-C is a superset of
the traditional C programming language. If you
have experience with C, you're well on your
way to understanding Objective-C. All the C
functions you know and love are available to

you in Cocoa. Objective-C, however, goes one
step further and enhances C by adding object-
oriented features to the language.

Objective-C has a syntax that may look a little
foreign to you atfirst, unless you're also familiar
with SmallTalk. But after you get the hang of it,
you'll find that it isn't hard to understand at all.
Chapter 6 goes into the details of Objective-C,
but you start using it in Chapter 2 to build your
first Cocoa project.

Chapter 1: A Brief Tour of Cocoa Development ,5

|
Figure 1-6:
Connecting
an interface
elementto a
classis

a simple
drag-and-
drop
operation.
|

Aee % MainMenu.xib (English) =
S—aleoo) E—
= [m) [@)
View Mode Infa Search Field

[4.7

L/ e |

pd '3 ~F |-

File's Ownyr First Responder Application MainMenu Window (Wind...
\

®

Font Manager

b
\

|
|) FileDemo.xcodeproj b} 4 |

ennN .+ Window

Username:

Text Cell Text Cell
Password: .eeeee

Velocity: e ——
Mass: %é%
(Gananss 18] @check [

T —— -
2/12/1982 2]

(Q \ @

£

After you complete an interface, Interface Builder goes the extra mile and
creates the header and implementation files for you and then inserts them
into the desired Xcode project. Although Interface Builder’s strongest
features pertain to designing and creating great-looking interfaces, many
other features make it much more than an interface-building tool. It plays a
big part in the Cocoa programming experience.

1 6 Part I: Developer Tools

Chapter 2

Creating Your First
Cocoa Application

In This Chapter

Attaining fame and fortune with Cocoa in six easy steps
Creating a project

Building your interface

Adding code to the project

Testing and building a completed application

programming computers can be grueling. Apple tries to simplify that task
by offering a complete set of tools, an easy-to-understand programming
language, and a sophisticated object-oriented framework to help you produce
great software. The complete package is so well honed that you can create an
application in one sitting with only a small amount of code.

This chapter shows you how to create your first Cocoa application from
scratch with Apple’s Xcode Developer Tools. Whether you're building an
interface, adding code to make the interface functional, or building the
finished product, the Apple Xcode Developer Tools offer a professional
development environment that lets you work quickly to produce amazing
applications.

Creating a Cocoa Application
in Six Simple Steps
Writing your own software is a process. Much like following a recipe, you

proceed through a sequence of steps until you end up with a working
application. Here’s the six-step process to creating a Cocoa application:

18

Part I: Developer Tools

WBER
@"&
&

1. Think of an application.

For some people, this can be the toughest step in the programming
process. For others, it’s the simplest. Consider a task that you want
your computer to perform. Then think of a computer program that
would do it. What would the program look like? How would it operate?
What behaviors must it possess?

2. Create a Cocoa project in Xcode.

You usually begin your Cocoa development in the Xcode application.
Xcode is the tool at the center of Cocoa programming; it’s where you
create and work with the various parts of your Cocoa projects. Chapter 3
covers Xcode in depth.

3. Build an interface in Interface Builder.

After you create a project in Xcode, launch Interface Builder to work

on your application’s interface. In traditional Mac fashion, creating an
interface is as easy as dragging and dropping. Using only the tools in
Interface Builder, you can quickly build attractive interfaces in minutes.
Chapter 4 covers Interface Builder.

4. Return to Xcode and add code.

After you create the interface, return to Xcode and add code to make
the interface functional. This part of the programming process gives
functionality to the interface you just created. Fortunately, Interface
Builder can help the process along by laying out a basic shell in Xcode
where you can enter your code.

5. Test your work.

No one gets everything right the first time, especially not with some-
thing as potentially complex as programming a computer. To assist,
Xcode gives you a complete set of tools for testing your application
before you unleash it on the world.

6. Build an application.

You've created an interface, added the code, and tested your project.
Now it’s time to build an application. With one click, you can build an
application that you can run on almost any Mac OS X computer.

If you're using a version of Mac OS X prior to Leopard (version 10.5), you may
not be able to run your application on later versions of Mac OS X. Because
Apple is always improving the operating system, a time may come when
frameworks from a newer version of the operating system are incompatible
with an older version of the operating system. To ensure that you have the
necessary frameworks to target the latest version of Mac OS X, always
upgrade to the most recent version of Mac OS X and its corresponding Xcode
Developer Tools.

Chapter 2: Creating Your First Cocoa Application

Now that you have a basic understanding of the steps that you must perform
to create a Cocoa application, it’s time to create your own project! The
remainder of this chapter guides you through the process of building, coding,
and creating your first Cocoa application.

Beginning a Project

|
Figure 2-1:
When
thinking of
an idea for
an applica-
tion, try to
imagine
what it will
look like.
|

To begin creating your first piece of Cocoa software, come up with an idea of
what you want to create. After you establish the type of software that you
want to build, you'll create a new project with Xcode to begin programming it.

Thinking of an idea

Instead of putting you through the sometimes-arduous task of dreaming up
your own idea, here’s one to get started. Everyone needs a calculator.
Whether you want to add your earnings from selling great Cocoa software or
figure out how soon you can retire from said earnings, a calculator is a handy
tool for the task. Sure, Mac OS X has a few different calculators, but no one
ever said that you weren’t allowed to build a better one.

One troublesome aspect of traditional calculator applications rears its head
when you press an operator key (+, -, *, /) and enter another number. You
can’t see the first number that you entered. Your application solves this
problem by always displaying the two numbers you’re working with.

Unlike a traditional calculator interface, your calculator will look more like
a form. You enter numbers in the various fields of the interface and press
a button to calculate the result. Figure 2-1 shows what the completed
application looks like.

80N _* Simple Calculator

Calculate

A

19

20

Partl: Developer Tools

As you can see, you now have an idea (build a better calculator), you've
thought about how to do it (with a form-like interface), and you’ve con-
structed a mental image of what it will look like. Of course, in this example,
the mental image is an image of the finished product (refer to Figure 2-1). But
because you can’t read my mind, I provided an image of the finished product.

Getting started with your Cocoa project

Now that you have an idea in mind, you can begin the Cocoa development

process:

1. Launch Xcode by double-clicking its icon.

Figure 2-2:
Welcome to

Xcode!
|

The icon is on your hard drive at the following location:
/Developer/Applications/Xcode

When you first launch Xcode, a handy window may open welcoming you
to Xcode, as shown in Figure 2-2. This window also offers convenient
one-click access to documentation and tutorials for using Xcode. If it
opens, close the Welcome to Xcode window to reduce window clutter.

It opens again the next time you launch Xcode, unless you deselect the
Show at Launch check box.

. Chose Filez>New Project.

The New Project window appears, asking you what kind of project you
want to create, as shown in Figure 2-3.

.00 Welcome to Xcode

Getting Started iPhone Dev Center Mac Dev Center Xcode News [RSS] Mailing Lists Tips

Welcome to Acode 5.1

Create your first Cocoa application
Learn how easy it is to quickly create, build, and run your first
Mac application.

Build your user interface
- Learn how Interface Builder works with Xcode to design your Ul
and wire your code to the visual controls.

Store your application data

'—' | Learn how Xcode makes it easy to leverage Core Data 1o store
your application's data.

Optimize your application
Learn how to integrate Instruments inta your Xcode workFlow to
analyze the performance of your application

Show at launch

\\3

|
Figure 2-3:
Choose

the Cocoa
Application
option.
|

Chapter 2: Creating Your First Cocoa Application 2 ’

3. Select the Application template on the left side of the New Project
window.

On the left side of the New Project window is a list of project templates
that Apple has created for you. You use the Application template

for building standard Mac OS X applications. Figure 2-3 shows the
Application template selected on the left.

4. Select Cocoa Application from the list of choices on the right side of
the New Project window.

On the right side of the New Project window is a list of application
templates from which you can choose. For most applications in this
book, choose Cocoa Application, as shown in Figure 2-3.

5. Click the Choose button.
A Save As dialog opens.
6. Type a name for your project in the Save As dialog.

For example, you can name the project My First Project, as shown in
Figure 2-4.

When you first open a Save As dialog, it may not appear like the one in
Figure 2-4. Instead it may appear smaller and it may not display the
expanded list of files. To expand the dialog, click the triangle button
that’s adjacent to the Save As field.

OiOuO, New Project
Choose a template for your new project:

‘ Mac 05 X 7 ! iﬁ i‘

y | g %
Action ¥ ¥
friiiiime Cocoa Application Cocoa Core Data Core Data
Audio Units Document-based Application Document-based
Automator Action Application Application
Bundle
Dynamic Library X
Frameivork Core Data AppleScript AppleScript AppleScript

Java Document-based Application Document-based Droplet
Kernel Extension Application with Application

standard Apple Plug-ins

Static Library Description This project builds a Cocoa-based application written in Objective-C.
Other

Cancel (Choose:..

22

Part I: Developer Tools

|
Figure 2-4:
Give your
projecta
descriptive
name and
selecta
location for
saving the
project.
|

OUO), New Project
Choose a templ Save As: | My First Project [«
ﬂ MacOSX & - =L \
| («]»] [22]=]m) (3 Chapter 2 B (Qsearch =
Action — ;
= Name Date b

L DEVICES 1 — ore Data
Audio Units L—«.\ TowerMac ment-based
Automator Actiof [Tiger HD friicaton
Bondie B Leopard ..
Command Line U g1y e IF2
Dynamic Library B)

tra
Framework bolescript
Java ¥ SHARED Droplet
Kernel Extension [H] iMac
Standard Apple P B iMac.local
Static Library B etive-C.
antier ¥ PLACES

Y Desktop &
O Downloads v | e
New Folder Cancel { Save)

Cancel) (Choose...

2

7. Select a location for the project and click the Save button.

Your hard drive buzzes and whirs for a few seconds, and then Xcode
displays a project window. In the Finder, the project files are contained
within a folder that has the same name as the one you designated in
Step 6. In Xcode, the project window displays a list of elements in

the project, grouped into folders (which, unsurprisingly, Xcode calls
Groups & Files), as shown in Figure 2-5. Your project is comprised of the
components on the left side of the project window. These components
include class files, source code files, interface files, and images, among
other items.

8. Open the Resources group folder and double-click the MainMenu.xib
file.

MainMenu.xib is the default interface file for your project. Your project
opens in Interface Builder.

Files in your project reside in one of a handful of group folders in Xcode. You
can read all about these group folders in Chapter 3, which covers the opera-

tion of Xcode. For now, the only group folder that you need to be concerned

with is the Resources folder.

Chapter 2: Creating Your First Cocoa Application 23

8eno [My First Project
[10.5 | Debug | ppc -] §L - @
Overview Action Build and Go Tasks Info
Groups & Files If File Name
w [My First Project B [MainMenu.xib (English)
» [] Classes
b (] Other Sourees
v Resources
[5] Info.plist
b || InfoPlist.strings
B e |

» (] Frameworks
[Products

» @ Targets

b (4 Executables

b [® Errors and Warnings

I ¥ (4 Find Results
» 11 Bookmarks
Figure 2-5: " @ ey
MainMenu. -~
xib contains
the inter-
face for
your project.
| 2|

Building an Interface

When you double-click the MainMenu.xib file in Xcode, the Interface Builder
application launches. Figure 2-6 shows the MainMenu.xib file open in
Interface Builder.

By default, the project’s main window should be open, ready for adding new
controls. If you don’t see an open window in Interface Builder, double-click
the Window object in the XIB project window.

This window is the starting point for your application’s interface. Because
other people may use this application, it’s a good idea to make it look as nice
as possible. Begin by changing the window’s title:

1. Open the Inspector window by choosing Tools=>Inspector.

The Inspector window appears, showing you properties that pertain to
the window, as shown on the right side of Figure 2-7. The Inspector
window can display different types of information, but when it’s showing
properties relating to a window, it’s titled Window Attributes.

2. In the Inspector window, change the Title property to the name of
your window.

For example, you can change the title to Simple Calculator. The name
shows up in the title bar of your window, as shown on the left side of
Figure 2-7.

24 Part I: Developer Tools

[= ERE TR ’ a
e _—
A B & @
File's Owner First Responder AG@InG LU Windiow (Wind Fam Marager
11 moded soodepeny
B o 0
AN Window 5_ e n'!'u —
) Menu Bem - Geflnes etjoct that e uiad =
o m———
S b o N N R
L cOmMand e s ML
ias e Apolication Mems lbem - Dicfises ohiscts that are
e e e s
Figure 2-6: VR
Interface B e e el
Builder is &) =
where you ann sl
design and e:.lli:“| Edit Format View Window Melp |
create your Preferences *.
. .y Services >
application’s T ——
H de ers X
interface. L S
I Quit NewAoplication x0

Window Attributes

000 |
AR

¥ Window
Title Simple Calculator
Autosave
Controls ¥ Close ™ Resize

™ Minimize

Appearance [] Textured W Shadow
] Always Display Teoltips
[Unified Title And Toolbar
™ Shows Toolbar Button

Figure 2-7:

The Behavior [| Release When Closed
] Hide On Deactivate
Inspector @ Visible At Launch
.] Auto Recalculates View Loop
WmeW |Ets Memory [Deferred @ One Shot
you change (oaffeed 1)
many —
aspects of
a window,
including
its title.
|)

3. (Optional) Change the size of the window.

To change the size of the window, simply click and drag the resize
widget at the bottom-right corner of your window, as you would resize a
window in Finder.

Chapter 2: Creating Your First Cocoa Application 2 5

4. To prevent users from resizing the window while they use your
application, deselect the Resize option in the Controls section of the
Inspector window (refer to Figure 2-7).

5. Open the Library window by choosing Tools- Library if it is not
showing by default.

To continue constructing the interface, you must drag controls from the
Library window, which displays a variety of controls for you to use in
your Cocoa interfaces.

The Library window has two tabs: Objects and Media. Click Objects to
see the available controls, as shown in Figure 2-8.

8,00 Library
Objects | Media |
» [7] Cocoa
7] Interface Builder Kit
7] web Kit
7] Address Book
D Automator
f:l DiscRecording
[:] Image Kit
7] Open Scripting Kit
7] PDFKit
7] QuickTime Kit
7] Quartz Composer
7] Custom Objects

Library - Cocoa - Application - Menus
= 0
o Menu - Defines an object that manages an application’s
=, | menus.
= Menu Item - Defines objects that are used as command items
. in menus.
I T —— Submenu Menu ltem - Defines objects that are used as
. command items in menus.
Figure 2-8:
The Libra I'y Separator Menu Item - Defines objects that are used as
- command items in menus.
window .
has all the PO 0 T SN S, PR) |
-
controls o
youneed | |S. | fsMew
fO[' Creating This class defines an object that manages an application's menus.
attractive
Cocoa
interfaces. | & Gno

| 2|

26

Part I: Developer Tools

3

|
Figure 2-9:
Double-click
a button to
edit its text.
|

Adding controls to the interface

Controls are the interactive elements that make up an application’s interface.
You're probably already familiar with many different types of controls
because you use them every time you use your computer. Some common
interface controls include buttons, check boxes, radio buttons, scroll bars,
and text fields.

For your first project, you'll use a handful of controls in your interface.
Perform the following steps to add the controls you’ll need for this project:

1. Drag a Push Button control from the Library window to your
application’s interface window.

To locate the Push Button control quickly, enter Push Button in the
search field at the bottom of the Library window.

2. Change the button’s label.

To change the button’s label, double-click it and begin typing the text.
For example, you can type Calculate, as shown in Figure 2-9.

.00 _ Simple Calculator o006 Library

[objects | Media |

w [Ji] uibrary
» [7] Cocoa
7] Interface Builder Kit
7] Web Kit
7] Address Book

p— 7] Automator
Calculate |

7] DiscRecording

P (7] Image Kit

(7] Open Scripting Kit
7] PDFKit

[*7] QuickTime Kit
"] Quartz Composer
(] Custom Objects

Library - Cacoa - Views & Cells - Buttans

() Push Button - Intercepts mouse-down events and sends an
"~ action message to a target object when it's clicked or pressed.

¢ Push Button

— NsButton

The NSButton class is a subclass of NSControl that intercepts mouse-
down events and sends an actien message 1o a target object when it's
clicked or pressed

[T Q, push Button

Chapter 2: Creating Your First Cocoa Application 2 7

3. Drag three large text field controls to the window.

The user will enter numbers (the operands) in the first two text fields
that you add to the window. The result of the mathematical operation is
displayed in the third text field. You need not change the properties for
the first two text fields, but the third one needs a minor adjustment. The
answer to the calculation will appear in the third text field, so you need
to make its contents unalterable by the user.

4. Select the third text field and then choose Tools=>Inspector to display
the Inspector window. From the list of properties, deselect the
Editable option (see Figure 2-10).

The text field is now uneditable, as you might have guessed.
5. Add two Label controls to serve as visual cues in the interface.

The Label controls have a cosmetic function. They make the interface
look nice and help the user know how the interface works. Type Label in
the Library’s search field to locate the Label control easily. Because
you’re laying out this interface to look like a traditional math problem,
change the title of one text field to + and the other to =. Figure 2-11
shows the completed interface with the new text field controls. In this
chapter and Chapter 3, you worry only about addition. In Chapter 4, you
add subtraction, multiplication, and division to the project.

— = e . et

- Address ook
Barder 1 -] Astamabr

(Cabeulate)
. Layew Seroity] Daheronding
Image kir

Astian Sem On Ene Esieng =)
= — ey Bpen Seristing Kit
Benavier o seiectatie esable
Wiows ity Roman Characsers
1 Rich Test
Display B Driws Backgrourd

— "
[—— Tear
| v Texa Foeld Cell - A to the Text display capabilives of the
Tt RSCAR clats by s you 10 LEE the colar f

Bath th bt

Figure 2-10: e = =

Deselect Pt Lt e s Hodeeibioad il deb gt
Sy B Bites T Bresses she Renrn key whise editing.

the Editable v Co—]| — roiololich
property of p——— e
a text field S
S0 your
users can't
change its
contents.

28

Partl: Developer Tools

_ Simple Calculator

8.0.0 Library

Calculate

Objects. | Media |

|
Figure 2-11:
The
completed
interface.
|

v | Library
» [Cocoa

[Interface Builder Kit
(7] Web Kit
7] Address Book
7] Automator
] DiscRecording
(7] Image Kit
"] Open Scripting Kit
7] PDFKit
[QuickTime Kit
("1 Quartz Composer
7] Custom Objects

Library - Cocoa - Views & Cells - Inputs & Values

Label Label - Displays text that the user can select

Multi-
line Wrapping Label - Displays text that the user can select
Label
Label
Label

NSTextField

An NsTextField object is a kind of NSControl that displays text that the
user can select or edit and that sends its action message o its target
when the user presses the Return key while editing

) Q Label

£

Table 2-1 lists the controls that make up your interface. Before you go on,
now is a good time to double-check that everything is arranged like you

want it.

Table 2-1

Controls in a Calculator Interface

Control Type Quantity Identifying It in the Library Window Other Info

Button 1 Search for Button Title is
Simple
Calculator

Text Field 2 Search for Text Field

Text Field 1 Search for Text Field Deselect
the
Editable
option

Label 1 Search for Label Title is +

Label 1 Search for Label Title is =

Chapter 2: Creating Your First Cocoa Application 2 9

Wiring the interface

Now that you've constructed your interface, it’s time to wire it. After all, a
light switch in your house can’t turn on a lamp without a wire that connects
the two; your interface is no different. At the center of a typical home’s
electrical system is a fuse box, or a circuit breaker box. All wires in the home
lead back to the centrally located fuse box. Cocoa interfaces follow a similar
pattern. Instead of a fuse box, however, you use a class. A class is an abstract
representation of something that you want to model from the real world in
your program — for now, you can think of it as a virtual fusebox. Chapter 6
has more information about classes in Objective-C programs. You then add
outlets to connect the main Fusebox class to the elements of your interface.

Creating classes
To create a class in Xcode:

1. Return to your project in Xcode and choose File->New File.
A New File Wizard opens, displaying possible file templates.
2. Select Cocoa in the left column.
The wizard displays Cocoa file templates.

3. Select Objective-C Class from the section on the right side of the
screen.

The Objective-C class is the appropriate type of class for this Cocoa
project because you're using the Objective-C language to write this
program.

4. Click Next.

5. Name the new file Fusebox.m and make sure that the Also Create
“Fusebox.h” check box is selected, as shown in Figure 2-12.

An Objective-C class has two parts — an implementation file with a .m
file extension and an interface file with a .h file extension.

6. Click Finish.

Xcode creates and adds Fusebox.m and Fusebox.h files to the project.
You may discover that the Fusebox.m and Fusebox.h files aren’t in the
correct folder of your project. It’s perfectly fine for you to drag the
new files to the desired folder. In fact, they can reside anywhere in the
project — in any folder or even outside the folders. Xcode is smart
enough to find them for you come build-time.

30

Part I: Developer Tools

Figure 2-12:
The Fusebox
class
connects
the interface
elements

to your
application.
|

OuOU0; New File.

New Objective-C class

File Name: |Fusebox.m
™ Also create “Fusebox.h”

Location: |}-/Desktop/PROJECTS/WILEY/Cocoa for Dummies = (choose...)

Add to Project: | My First Project)

Targets: |® g My First Project

Adding outlets

Next, add outlets to this new class. Outlets are references that connect your
source code to elements in the interface.

In the Simple Calculator project, users will enter numbers for a calculation in
two text fields. The third text field displays the result of the calculation.
Therefore, you need to make three outlets — one for each text field.

To add outlets to a class in Xcode, add them to the Fusebox.h file.

IBOutlet id answerField;
IBOutlet id numberFieldl;
IBOutlet id numberField2;

These three outlets must appear between the Fusebox interface brackets,
like this:

#import <Cocoa/Cocoa.h>

@interface Fusebox : NSObject {
IBOutlet id answerField;
IBOutlet id numberFieldl;
IBOutlet id numberField2;

}

@end

Chapter 2: Creating Your First Cocoa Application

Figure 2-13:
Read the
Fusebox.h
class.
|

Adding an action

In addition to three outlets, add an action to the class. An action is a function
that executes when based on some event that you assign in Interface Builder.
The new action in this class calculates the answer to the math problem
posed by the interface. You can name the new action calculateAnswer and
define it this way:

- (IBAction)calculateAnswer: (id) sender;

This definition also appears in Fusebox.h after the closing bracket, but before
the @end statement. The completed Fusebox.h file looks like this:

#import <Cocoa/Cocoa.h>

@interface Fusebox : NSObject
{
IBOutlet id answerField;
IBOutlet id numberFieldl;
IBOutlet id numberField2;
}
- (IBAction)calculateAnswer: (id)sender;
@end

Adding the class to the interface
With the class definition complete, switch to Interface Builder.

1. In Interface Builder, choose File->Read Class Files.
An Open dialog appears, as shown in Figure 2-13.
2. Select Fusebox.h and click the Open button.

You won’t see much happen yet, but you have just informed your
interface about the new Fusebox class.

OO MainMenu.xib (English)
B L
[T e
« = | (33[B /00 | My First Project W @
T hame © Dute Mosted —w
+ X Today, 7:55 AM
] Towermac
Bres o I Fuseboxh Today, 2:55 AM
obo T AM
B i oday, 2:52
* L English.lprej Today, 2:47 AM
B music o
v [build Today, 2:25 AM
[SETTT My First Today, 3:25 AM
v SHARED Taday, 2:25 AM
= e fo.plist Toduy, 2:25 AM
B e doeal
¥ pLacts
Bl Deskop
©) Downioads
g i
oy Applicai_ v
{ Cancel) (“Open)

31

32

Partl: Developer Tools

|
Figure 2-14:
Add a new
Object
instance to
the project.
|

3. Add a new object to the project in Interface Builder.

In the Library window, search for object and drag an instance of Object

into the project window, as shown in Figure 2-14.

4. Open the Identity Inspector by choosing Tools=>Identity Inspector.

5. In the Identity Inspector, choose Fusebox from the Class drop-

down list.

You can either select Fusebox from the drop-down list or simply type

Fusebox in the drop-down’s field, as shown in Figure 2-15. After you've

changed the class to Fusebox, the outlets and action appear in the

Identity Inspector.

 MainMenu.xib (English) =

5l

T

2 E

File's Owner First Responder Application

W 8 8
Object]

Window (Simp.

MainMenu

Font Manager

000 Library

Objects | Media

¥ [l uibrary

¥ [7] Cocoa
7] Interface Builder Kit
7] web Kit
7] Address Book
7] Automator
[DiscRecording
[Image Kit
[7] Ogen Scripting Kit
[PDFKit
") QuickTime Kit
(7] Quartz Composer
[7] Custom Objects

Library - Cocoa - Objects & Controllers - Contralfers

Object - Provides you with an instance of an NSObject
subclass that is not available in Interface Builder.

class. Properties of the content object of an instance of this
class can be bound to user interface elements to access and.

@ Object Controller - A Cocoa bindings-compatible controller

Library - Cocoa - Objects & Controllers - Core Data
Managed Object Context - An instance of
| || NSManagedObjectContext represents a single "object space”
4 or scratch pad in an application.

Library - Interface Builder Kit

'” Library Template - A template used to integrate custom 4
objects into Interface Builder's Library v

Object
NSObject

Provides you with an instance of an NSObject subclass that is not
available in Interface Builder. You can use the Object to create instances
of your own objects.

e
#-) Q, Object)

[

Figure 2-15:
Change the
class of the
object to
Fusebox.
|

®0ON

File's Owner

e

Window (Simp

MainMenu.xib (English)

First Responder

Font Manager

as

Application

|

MainMenu

Making connections

Now that you've created a Fusebox class and added three outlets and an
action, it’s time to make connections between Fusebox and your interface.

Chapter 2: Creating Your First Cocoa Application

33

06 i
2|l (2009

¥ Class identity

¥ Class Actions

Action
[Fuseboxh
calculateAnswer,

[+]-

¥ Class Outlets

Outlet
[Fuseboxh
answerField

numberFieldl
numberField2

GI-

id
id
id

¥ Interface Builder Identity

Name

Object ID 463

Lock | Nothing (Inherited) B‘

Notes) Show With Selection

You've just created a new Fusebox object based on the Fusebox class.
You’ll make connections between this new instance and your interface with
the outlets and action you added earlier. For starters, connect the three
outlets to the three corresponding text fields in the interface. To get you
started, here’s how to connect the numberFieldl outlet to the interface:

1. Select the Fusebox instance in MainMenu.xib.

2. Control+drag from the Fusebox instance to the leftmost text field in

the interface.

Figure 2-16 shows what the Control+drag operation looks like.

34

Partl: Developer Tools

File's Owner

First Responder

Application MainMenu

Figure 2_16: Window (Simp. Font Manager Fuseb
To make a
connection
to an outlet,
Control+
drag from [aXiNe] / Simple Calculator
an instance
toan L m
interface
element.
|)
When you Control+drag to the text field and let go of the mouse, a black
connections list overlay appears with the list of outlets available in your
instance.
3. Select the instance you want.
To follow along with the example, select numberFieldl, as shown in
Figure 2-17.
= @ ®
Window (Simp. Font Manager Fusebox
006 # Simple Calculator
|
Figure 2-17:
Selectan
outlet.
| Y

Chapter 2: Creating Your First Cocoa Application 3 5

4. Repeat Steps 2-3 for the other two outlets, numberField2 and
A\\3 answerField.

Make sure to Control+drag from the instance to the appropriate control
in the interface before selecting the outlet to connect.

The process for wiring your action works in a similar fashion, except for one
important point: It proceeds in reverse! Instead of Control+dragging from
the instance to the interface, you drag from the interface to the instance. To
connect your action to the interface, follow these steps:

1. Control+drag from the button in your interface to the Fusebox
instance in MainMenu.xib.
2. Select an action from the list.

To follow along with the example, select the calculateAnswer action
from the black overlay, as shown in Figure 2-18. It will be the only action
available in the Fusebox class.

You've now finished creating and wiring your interface! To wrap up this part
of the project, save your MainMenu.xib file:
1. Save the interface by pressing 36+S.
2. Quit Interface Builder.
You have completed the interface. It’s safe to quit Interface Builder now

and return to the project in Xcode.

In the next section, you add code to your application.

MainMenu.xib (English)

slm [Q
View Mode Info Search Field

® ¥ A E

File's Owner First Responder Application MainMenu

Received Actions
‘ celcdait A
‘ N

Window (Simp... Font Manager Fusebox

LS

©) My First Project.xcodeproj

Figure 2-18:
Selectthe
action from
the black i -
overlay that
appears.)
I

8,00 _ Simple Calculator

36

Part I: Developer Tools

Adding Code to Make VYour App Work

WBER
“&
&

Back in Xcode, click the Fusebox.m file to reveal its contents. This is your
main source code file and the place where you add functions to make this
application do something. The file isn’t empty. Interface Builder was kind
enough to add some code to get you started:

#import "Fusebox.h"
@implementation Fusebox

@end

Cocoa programmers are a special breed. Instead of using the term header
files, they speak of interface files. Likewise, source code files are called
implementation files.

Don’t worry if you don’t understand everything just yet. This code is a shell
for you to use when you begin coding the project. This code uses the header
file with this line:

#import "Fusebox.h"

If you're a seasoned C programmer, remember that #import in Cocoa is
like # include in standard C. The directive lets your code know where the
definition of your class is.

After the header, the source code lists the implementation of the Fusebox
class:

@implementation Fusebox

One part of that Fusebox class is a calculateAnswer action. By adding the
calculateAnswer action, you can make your application functional. All
code that appears between the two empty braces of the calculateAnswer
method executes whenever a user clicks the button in your interface. The
user clicks the button, which in turn fires the calculateAnswer action,
which then executes your code.

Add the following action to the Fusebox.m file:
#import "Fusebox.h"
@implementation Fusebox
- (IBAction)calculateAnswer: (id) sender

{

int numl, num2, answer;

Chapter 2: Creating Your First Cocoa Application

numl = [numberFieldl intValuel];
num2 = [numberField2 intValue];
answer = numl + num2;

[answerField setIntValue:answer] ;

}

@end
Here’s what the code does:

1. Add a line to create three integer variables for temporarily storing
three integer numbers in memory:

int numl, num2, answer;

The code then assigns values to the numl and num2 variables. The
values it uses are ones that it pulls from the corresponding interface
elements numberFieldl and numberField2. These two elements are
text fields. To get the integer value from a text field, send the intvalue
message to a corresponding outlet, which returns the integer value of
the text in that field.

2. To send a message to an object, such as an interface element, enclose
the object name and message name in square brackets:

[numberFieldl intValue];
[numberField2 intValue];

numl
numa2

The code adds the two numbers and puts the result in the answer
variable.

The answer is displayed by sending answerField a setIntvValue
message. This particular message requires a parameter: an integer
value.

3. Add the answer variable to display the answer:

answer = numl + num?2;
[answerField setIntValue:answer];

4. Save the Fusebox.m file with its new source code by choosing
Filec>Save.

Debugging and Building the Application

You’ve constructed an interface, wired it to your Fusebox instance, and
added the code. Now it’s time to see the results of your hard work. To test
the project, choose Build=>Build and Go (Run) or click the Build and Go
button in Xcode, as displayed in Figure 2-19.

37

38

Figure 2-19:
Click the
Build and
Go button

to see the
fruit of your
efforts.
|

Figure 2-20:
If a build
goes off
without a
hitch, the
debugger

displays

Succeeded

in the
bottom-right
corner.
|

Partl: Developer Tools

Build and Go

As Xcode builds your application, the debugger window appears with lots of
text flying by at a rapid rate. This process is normal. If anything goes wrong
during the build (such as an error in your code), the debugger is the first
place you’ll want to look for clues as to what exactly did go wrong. When the
build is finished, the debugger tells you so (see Figure 2-20).

After your build succeeds, Xcode launches the completed application, as
shown in Figure 2-21. Your next step in the programming process is to test
the functionality of the application. Enter numbers in the first two text fields
and then click the Calculate button. Does it display the answer you expect?

[NaXs] [m Fusebox.m - My First Project (=)
[10.5 | Debug | ppc -] “Ez, Q‘ @

_ (Overiew _ e Buildand Go Tasks Info :
Groups & Files Il File | < [Code A @

w [My First Project B [4] MainMenu.xib (English)

w[| Classes
[ii] Fusebox.n
[l Fusebox.m
» (] Other Sources
w (] Resources
[E] info.plist
b [5] InfoPlist.strings
» (] Frameworks
» [Products.
> (@) Targets
b Executables
b (B Errors and Warnings
w O Find Results
» 11 Bookmarks
> scm
W Project Symbols
» (] Implementation Files
(@ NIB Files

My First Project launched

<4+ [WFusebox.m:l0 § <No selected symbol>

#import “Fusebox.h"

@inplensntation Fusebox

| - (IBAction)caloulateAnsver: (id)sender
int nund, nunz, onswer;
nund = [rumberFieldl intvalue]s
nunz = [runberField2 intvalue];

ansver = mund + nunz;

[onsverField setIntValuesansuer];

JC. . ®m a
B

@Succeeded

Chapter 2: Creating Your First Cocoa Application 39

Figure 2-21:
The
completed
application
in action.

Figure 2-22:
Oops! The
calculator
only adds

integers
so far.
|

an0n Simple Calculator

([Calculate |

Keep in mind that because you're working with only integers; you won’t get
correct results if you enter numbers with fractional values (see Figure 2-22). If
you use a number with a decimal in it, you’ll get a result without the fractional
part. Clearly, the calculator isn’t as robust as you might need.

In Chapter 3, you expand on this project to account for decimal numbers.
For now, bask in the glory of having built your first Cocoa application. The
resulting executable file resides in your project’s folder in Finder. Open the
MyFirstProject folder and locate the Build folder within it. Open the Build
folder to reveal your MyFirstProject application. You built that application,
and it can run on any Mac OS X computer.

anon Simple Calculator

6.2 + (10.7 = |16

. Calculate |
P

40 Part I: Developer Tools

Chapter 3
Xcode

In This Chapter

Jumping headfirst into Xcode

Customizing the Xcode window

Adjusting the settings for your project

Editing source code with Xcode

Debugging your Cocoa projects to remove errors
Using the built-in Help features of Xcode
Building an application from your project

‘ ocoa programming requires the use of some sophisticated development
tools. Chief among these is Xcode. With Xcode, you can manage your

Cocoa projects: write code, assemble, organize, and test your project, and

finally build an application that you can run on any Mac OS X computer.

Xcode is the main component of Apple’s integrated development environment
(IDE). Xcode has everything you need for managing Cocoa projects, editing
and debugging source code, and building applications. As you discover the
different features of Xcode, you’ll continue to improve on the calculator
project you created in Chapter 2. By the end of this chapter, you’ll have a
calculator application that has improved functionality and is free of bugs.
These two goals are what all professional programmers want from their
software, and Xcode can help you achieve them.

If you didn’t build the simple calculator in Chapter 2, you can find the project
files for this chapter on the For Dummies Web site at www . dummies.com/go/
cocoafd. The chapter starts with the My First Project file.

4 2 Part I: Developer Tools

Xcode: The Core of Apple’s
Development Tools

Because Xcode is a first-class development tool, its collection of windows,
menus, and settings can look daunting to a budding Cocoa programmer.
Xcode is professional software, so don’t be surprised if you have a bit of a
learning curve. Apple created Mac OS X for use by the average Joe (and
Jane), but it made Xcode for developers. Xcode has a classic Macintosh
interface with windows and menus like other software, but the subject matter
is technical, so don’t feel too intimidated if you don’t understand everything
at once.

With Xcode, you can do many types of programming. Because of this fact,
Xcode offers tools, documentation, and settings for doing all these different
kinds of programming.

As a Cocoa programmer, you're focusing on only one aspect of Xcode’s total
capabilities. Thus, you’ll need to use only the tools, documentation, and
settings that pertain to Cocoa programming. Some features in Xcode you may
use only occasionally, rarely, or never at all.

Think of Xcode as a hardware store. You might customarily go to the hard-
ware store to buy nails, screws, or wood glue. Once in a while, you pick up a
hammer, a screwdriver, or even a tape measure. Every so many years, you
even buy paint for the exterior of your house. You dare not go into the
roofing aisle, though. You're afraid of heights and always leave that work to
the professionals.

You use Xcode in the same way you use the local hardware store. You
perform some kinds of tasks all the time (writing code for your application),
some tasks less frequently (assigning an icon to your application), and
some rarely (adjusting the preferences for an Xcode setting). Others you
may never approach at all (creating drivers for a CD burner). This isn’t to
say that adjusting preferences in Xcode is a task you’ll seldom perform and
that CD drivers are only for professionals. It’s that Xcode is a tool for many
kinds of development. Like a hardware store, everyone uses Xcode for
specific needs. Maybe your neighbor likes to do plumbing and CD driver
development. You, on the other hand, stick to furniture repair and Cocoa
application development. The hardware store and Xcode can assist both
you and your neighbor in your endeavors even if neither of you understands
what the other does.

Chapter 3: Xcode

Customizing Xcode Preferences

Open the project file by double-clicking its icon in Finder. Xcode launches,
displaying the project and its components. The default Xcode settings appear
in Figure 3-1. If you've read Chapter 2, this window should look familiar
because you used it to create your first project.

Xcode displays the code and other components of your project in its main
window. It displays a single project window by default, but you aren’t limited
to this setup. Follow these steps to change your layout:

1. Close any open projects.

Xcode demands that all project windows be closed before it lets you
change the Layout setting.

2. Open the Xcode Preferences window by choosing Xcode=>Preferences.
Across the top of this window is a row of buttons.
3. Click the General button.

The Xcode settings appear, as shown in Figure 3-2.

8eno [m| Fusebox.m - My First Project (=)
[10.5 | Debug | ppc -] S @ 0 Q- string Mat
Overview. Action Build and Go Tasks Info h
Groups & Files Il “File Name | = [Code o A =)
w [My First Project B[4 MainMenu.xib (English)
¥ [| Classes
[i] Fusebox.h
[m] Fusebox.m
» (] Other Sources
W[| Resources
] Info.plist
b [£] InfoPlist.strings
| MainMenu.xib
» Wl Fraevtdy < 1 Fusebox.mil0 3 <No selected symbol> + a
Figure 3_1_ » [Products a7 =
. b (©) Targets /¢ Fusebox.m
Xcode » < Executables - /¢ My First Project
b 4% Errors and Warnings 2 |
. v 4 Find Results /¢ Cremted by Erick Tejkouski on 9/6/08. \
dlsplays /7 Copyright 2086 __MyCompanyName__. ALl rights reserved. |
b L2 Bookmarks i ‘
H > scm
the main @ Pt symbol |
H ¥ [@ Implementation Files .
window i At lentat e Fusibes |
when you — {IBActian)calculateAnsver: (1d)sender
i

int nunl, nun2, onsver ;

first opena
. nund = [runberFieldt intvalue];
pr0]ect. run2 = [rumberfield2 intbalue]s
| /i

43

44 Partl: Developer Tools

800 Xcode Preferences.
| -
0N e N =~ 0 e / 4| L
. . L /) [===) - = # iy
Figure 3-2:
General Code Sense Building Distributed Builds ~ Debugging Key Bindings Text Editing Fonts & Colors Ind
You can E&—= All-In-One P =) T
Condensed
choose how Layou AT S | cditing:
—— — . ;
man - " Open counterparts in same editor
. v I";’f,’i;;‘:‘a“['g,“;“;‘ui‘:; i:?,:‘;;;.d :;:T "] Automatically open/close attached editor
windows separate tool windows (ke the debugger),)
and attached editors. Environment:
Xcode ¥ Save window state
displays
during
develoment. (hwply) (Cancel) (0K)
| 4

Xcode has three choices for the Layout setting that affect the main
project window:

e All-in-One: All tasks appear within one window: code, build results,
build log, and debugging. If you have very limited space (like on a
small laptop), perhaps All-in-One is best for you.

Condensed: Tasks appear in separate windows: code, build results,
build log, and debugging. If you have a large monitor or a multiple-
monitor configuration, you may prefer the Condensed approach to
spread out your work.

e Default: The Default layout uses some elements from All-in-One
and some from Condensed. The main project window contains
most views, but displays additional windows in some cases, most
notably for the debugger and console. Neat freaks love this setting,
and it’s the one I use in this book.

4. Choose the setting you want from the Layout pop-up menu.
5. Click OK to apply the setting and dismiss the Preferences window.
6. Reopen your project and choose Build=>Build and Go.
Your application runs as usual.
7. Quit the application to return to Xcode.
8. Choose Run~>Console to see the status of the last run.

If your project executed without a hitch, the Console window displays a
message like this:

My First Project has exited with status 0.

Chapter 3: Xcode

SMBER
S

|
Figure 3-3:
The Console
window
provides
additional
information
about the
progress of
a build.

The status 0 message indicates that Xcode encountered no errors
during execution of the application. This is a good thing and means that
your project is free from certain kinds of errors.

If you're using the Default layout, the Console window appears as a
separate window, as shown in Figure 3-3.

000 [™ My First Project - Debugger Console =)
O ETIr S R G O N/ |
Overview Build and Go Tasks Restart Pause Activate Clear Log

[Session started at 2008-09-06 05:59:04 -0500.]

The Debugger has exited with status 0.

Debugging of "My First Project” ended normally. v

Working with Project Files

In Chapter 2, you discovered how to make a simple calculator that could add
integers but not numbers with decimals. To change the way the application
operates, you'll need to alter the code in the project:

1. In your main project window of Xcode, click to expand the Classes

group.

The Classes group opens and displays the class files in your project.
What you probably recognize as a folder, Xcode calls a group. The small
folder icons that appear to the left side of the project window are
groups. Clicking the disclosure triangle located on the left side of each
group displays the files in that group.

. Click the Fusebox.m file.

The code for the Fusebox.m file displays, as shown in Figure 3-4.

b5

46 Part I: Developer Tools

8eno [m| Fusebox.m - My First Project =)
[10.5 | Debug | ppc -] “‘:l - @ Q. String Marching
_ Ownew Action BuldandGo Tasts nfo Search
s el g i Fusebox.mizz [0 -calculateAnswer: § L= [Cc.|#./m (2
w [My First Project B V3 B
¥ Classes /¢ Fussbox.n
1] Fusebox.h i; My First Project
/¢ Cremted by Erick Tejkouski on 9/6/68.
(] Other Sources /¢ Copyright 2088 __MyCoupanyName__. ALl rights reserved.
» | Resources o
» [Frameworks
» (5 Products #inport “Fusebox.h”
¥ @ Targets @inplenentation Fusehox
P oy My First Project
E—— b 4 Executables - (IBAction)ealeulateansuer: (id)sender
b [® Errors and Warnings 4
i 3.4 v Q Find Results Float nund Nz, ansket ;
Igure T » Ll Bookmarks nunt = [runberFieldt floatvalue];
> sem nunz = [rumberField2 floatValue];
The Classes 9 Project symbols maver < mund + s
rou ¥ [Implementation Files ; R ——— y
ansuerField setfloatvaluesansuer] ;
» (G M8 il g
group IENAC }
organizes i
the source
code files in
your project.
I Vi

3. Change the code in the Fusebox.m file to read like this:

#import "Fusebox.h"
@implementation Fusebox

- (IBAction)calculateAnswer: (id) sender

{

float numl,num2, answer;

numl = [numberFieldl floatValue]
num2 = [numberField2 floatValue]
answer = numl + num2;

[answerField setFloatValue:answer];

@end
This code has three important changes:

® You're changing the three variables from an int typeto a float
type. The float data type supports numbers with decimals.

float numl,num2, answer;

* Because you’re working with float data types now, use the
floatVvalue function to retrieve decimal data from the two
number fields.

Chapter 3: Xcode

|
Figure 3-5:
The
calculator
supports
decimals!
|

numl = [numberFieldl floatValue];
num2 = [numberField2 floatValue];

¢ Use the setFloatvalue function instead of the setIntvalue
function to display the float result in answerField.

[answerField setFloatValue:answer] ;

4. Now that you’ve edited the source code in Fusebox.m, select the

Fusebox.h file to view its contents.

Fusebox.h holds the definitions for your interface.

. In the Groups & Files list, open the Other Sources group folder and

select the main.m file.
In this file, you see code that looks like this:

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])

{

return NSApplicationMain (argc, argv) ;

}

This code appears in every Cocoa application project that you create.
It’s responsible for making your application go, much like a set of keys
makes an automobile run. The nice part is that Xcode automatically
adds it to the project for you, and you usually don’t need to make any
changes to this file.

. Choose Build~>Build and Go or press 3+R to see your code changes

in action.

. After Xcode compiles and launches the project, test the Simple

Calculator application, with decimal numbers.

The calculator now adds decimals properly (see Figure 3-5).

800 Simple Calculator

700.25 + (11475 = BI5

. Calculate |
P

b7

48 Part I: Developer Tools

Class models

Class models are your next stop on the Xcode tour (see Chapter 2 for more
about classes). Xcode can provide you with a visual representation of

the classes in your project. This can be helpful for design and debugging
purposes. To view a class model, select the desired class and choose
Designr>Class Model=>Quick Model. Xcode displays a graphical model of
your class.

The calculator has only one class: the Fusebox class. Select the Fusebox
class and choose Design=>Class Model=>Quick Model to view the Fusebox
model. In this class, you implemented one function (calculateAnswer)
and three outlets for the three text fields, as shown in Figure 3-6. NSObject
also appears in the Quick Model because it’s the superclass of the Fusebox
class. All classes, except NSObject, are based on some other class in a class
hierarchy. The Fusebox class is based on the NSObject class, so NSObject
is said to be its superclass.

As your project grows, the class models help you with the big picture. The
graphs show you how items in the project interconnect.

ann Fusebox.m_4 xeelassmede] - My First Prsject
[10.5 1 Debug | ppc pire i i S
! Mt indCa i Wl Sesren

Cioups & Fe
w [way Firn Praject

Troe

—
Class Protemed

L Pubdic

Troe: [Clans

sy
Willethedtign Publie
oo Pustic
“ Putin

VOV 00D

:--W
Figure 3-6: N
The Quick s o
Model
displays the
classesin

your project. ’ _

I Oabuggind of My Fist Praect” anses sarmally rcsednd

Chapter 3: Xcode

|
Figure 3-7:
The File Info
window can
help you
document
project
elements.
|

File comments

You can assign comments to any project items in Xcode. These kinds of
comments differ from source comments in that you can assign them to any
element in your project, not just source code files. This is a handy feature
when you’re working with very large projects or with other people because

you

can use the comments to document changes or keep other notes. Follow

these steps to add comments to your project:

1.

Select Fusebox.m in the Classes group.

Fusebox.m holds the declarations for your implementation.

. Click the Info button in the project toolbar or press $8+1.

The File Info window opens, as shown in Figure 3-7.

. Click the Comments button at the top of the File Info window.

The Comments field appears where you can enter information about
the file for later retrieval while keeping the information out of your
source code.

800 File “Fusebox.m” Info

| General Targets Build Comments 1

Comments:

* Initial version: Sep 2008
* Fix decimal point issues
* Add other mathematical functions

* Redesign the interface

A

49

50 Part I: Developer Tools

Using favorites to speed up development

As your projects grow, you'll find that locating code can sometimes become
problematic. For large projects, jumping among dozens of source code files
isn’t uncommon. To help you, Xcode has a Favorites Bar, similar to a Web
browser. Instead of pointing to URLs on the Web, though, the Xcode Favorites
Bar points to specific places in your source code. It’s useful when you want
to quickly jump to certain spots in your code without the hassle of surfing
through the numerous files that might make up your project.

To begin working with favorites in Xcode, follow these steps:

1. Choose Viewr>Layout~>Show Favorites Bar.

The list of favorites for your project appears at the top of the project
window, as shown in Figure 3-8.

2. Drag any file from your project to the Favorites Bar.

Choose a file that you want to return to quickly. Favorites appear in the
Favorites Bar at the top of the window, as shown in Figure 3-8.

3. To delete a favorite from your project, drag it off the Favorites Bar.

The favorite instantly vanishes in a puff of smoke.

Favorites bar

800 |m} Fusebox.m - My First Project =
[10.5 | Debug | ppc - & @ O)
_ Ovenview Action BuidandGo Teses nfo Search
[m] Fusebox.m [] MainMenu.xib @[EJLsel500
Groups & Files 1l File Na | & |Code o)
v [My First Project B[] Fuseb(The Favorites Bar 8K o
¥[| Classes
[1i] Fusebox.h
|
¥ [] Other Sources
¥[] Resources
[5] info.plist
» 5] InfoPlist strings
b [MainMenu.xib
» || Frameworks < | » [iFusebox.m:13 3 -calculateAnswer: 3 C, #, a
b [|Products gy T mm— Cl
v (@) Targets
b sy My First Project #inport "Fuseboc.h”
b Executables
b 2B Errors and Warnings I @inplementation Fusebox
¥ A, Find Results - (IBAction)oaleulateAnswer: (id)sender |
» 1% Bookmarks |
»Eiscm float, numdnunz answer ; |
Project Symbols
| N :ﬁ‘ J‘ 7 i rumi = [runberFieldl floatvalue]; |
8 implementation Files nunz = [nunberField2 floatbalue]; |
Fi 3-8 b (5 NiB Files ansuer = rund + nun2; |
gure s-o: |
9 NStunberFornatter ¥answerFornatter = |
FaVO rites [[[NShumberFormatter alloc] init] autorelease]; |
[ansverFornatter setFornat:0"#, k0030 .88 ; (F, #40.98)"] :
appear at [[onswerField cell] setFormatter:ansverFornatter];
the top of [ansuerField setFlogtvalussansver];
P
the window. 2 1
[Debugging of "My First Project” ended normally. @Succeeded |

Chapter 3: Xcode 5 ’

Debugging Vour Project

Because computer programming can be a complex process, it’s easy to make
mistakes. You can introduce errors to your code in a number of ways. Here
are two:

1 Syntax errors are errors in the grammar of your code that make Xcode
unable to interpret the code. Typographical mistakes in your code may
lead to syntax errors in your project.

+ Runtime errors have nothing to do with the syntax of your code. Rather,
the logic of your code contains errors that produce an application that
doesn’t function properly. These mistakes might be syntactically correct
and still allow Xcode to compile and link your code into an application,
yet produce unexpected or incorrect results. The application may run
and even work as expected sometimes, but at some point, your applica-
tion will do something wrong. A purple apple might be displayed instead
of a red one in your graphics application, an enemy invader won'’t die
when shot in your video game, or a miscalculation yields an incorrect
numerical result in your spreadsheet application.

The only way to know if you have any bugs in your code is to thoroughly
test your projects. When you debug a project, you build, run, and test your
application until you're convinced that it’s bug free.

To begin debugging, follow these steps:
1. Build and run the project you’ve been working with throughout this

chapter.

2. Type values in the two number fields and then click the Calculate
button.

3. Change the numbers and click the Calculate button again.

4. Repeat Step 3 until you’re convinced that the project operates as it

should.
For example, three consecutive tests of the project yield the following
results:

1+2=3

3.25+4.75=8

3.2+ 4.75 = 7.949999809265137

Uh oh! That last test didn’t produce results that you might expect. What’s
going on here? There seem to be three problems:

52

Part I: Developer Tools

|
Figure 3-9:
Click in the
leftmost
column of
the code
editor to
seta
breakpoint.
|

v The code is calculating the sum of the two numbers incorrectly in some
situations.

v The problem seems to occur only when using decimal numbers.

v The error happens only when some decimal numbers are used, but not
others. For example, 0.25 + 0.75 works as expected, but 4.2 + 4.2 does
not. The reason that this happens is because the computer can’t display
fractional values (the numbers after the decimal point) if the values can’t
be represented as a non-repeating sequence in binary. If you want to
know more about this topic (a word of warning; it can get very mathy),
search for IEEE 794 on Google.com.

To help you figure out where things are going wrong, Xcode includes a
powerful debugger. With the debugger, you can follow along as your project’s
code executes and watch for any indication of a problem.

Adding breakpoints

To begin debugging this code, first set some breakpoints. Breakpoints are
small markers that appear in the column to the left of the code. To insert a
breakpoint, simply click in that leftmost column next to the line of code that
you want to check with the debugger, as shown in Figure 3-9.

800 [m| Fusebox.m — My First Project =
[10.5 | Debug | ppc | o ;l) @ Q.- String M
Overview Actien Buldand Go Tasks Info
srnap kil I - [Fuseboxm:22 3 [-calculateAnswer: & - ™ [Cy #y o
w [My First Project] o - m
v [Classes /¢ Fussbox.n
[1] Fusebox.h ///: My First Froject
B fuseboxm]
! /¢ Cremted by Erick Telkouski on 8/6/88,
¥ Other Sources /¢ Copwright 2m86 __MyConpargMone__. ALL rights reserved.
¥ [Resources "
[5] Info.plist .
¥ [] InfoPlist.strings slEL A Rl
> [ainbienu.xib @inp lenentation Fussbox
b [Frameworks
» [Products ~ {IBAct ion)calculateansver : {id Jsender
v (@ Targets 1

oA My First Project FLEGE AU, AUNZ, ENSHET ;

B Executables

rund = [nunberFieldl floatvalue];
» % Errors and Warnings

nun2 = [runberField2 floatbalue];
w | Find Results answer = nund + nun2;
b 12 Bookmarics
»Eiscm

W Project Symbols
» (& Implementation Files dend
» [NIB Files

[answerField setfLoatyalussanswer];

Chapter 3: Xcode 53

WMBER
@?«
&

3

For this example, it’s a good idea to set three breakpoints: one for each time
you assign a value to a variable (that is, numl, num2, and answer).

Notice that the breakpoints in Figure 3-9 appear after the line of code in
question. The line of code that sets a variable has to execute before you can
check the variable’s value to see its result.

Stepping through the debugger

Now that you've set some breakpoints, it’s time to debug the project:

1. Choose Build=>Build and Debug.

Xcode begins building your project just as it always has, but then
something happens. Xcode opens the Debug tab.

For now, you won'’t see any information in the debugger. Rather, your
project’s main window comes to the foreground and looks like it
always has.

2. Enter numbers in your application’s interface (for example, 3.2 and
4.2) and click the Calculate button.

The debugger comes to the foreground and displays all sorts of data in
the Debug tab. In the left side of the debugger, you see the name of the
class and the method that the code is currently executing. In this case,
it’s the Fusebox class and the calculateAnswer method. The bottom
section of the debugger displays the code for the calculateAnswer
method.

Because you set breakpoints, the debugger stops at the first one it
encounters. This indicates the next line of code that the debugger will
execute.

3. In the upper-right section of the debugger, view the current state of all
variables in your code.

So far, only this code has executed:

float numl,num2, answer;
numl = [numberFieldl floatValue];

Therefore, you might expect that the debugger displays only a value for
the num1 variable. Figure 3-10 shows the debugging process thus far.

If you don’t see the debugger window when your application stops at
the first breakpoint, choose Run=>Debugger.

54

Part I: Developer Tools

Figure 3-10:
As the
debugger
executes
code, it
displays the
values of
variables.
|

8eno ™ My First Project - Debugger (e}
D Be WY ® = m
Overview Build and Go Tasks Restart Continue Step Over Step Into Step Out Deactivate Console

| Thread-1= Variable Value Summary

1 -[NSApplication sendAction:to:from:] » self 0x135580

2 -[NsControl sendAction:to:] _cmd 0x1fb0

3 -[NSCell rackMouse:inRectofView: untilMouse Up:] P sender 0x127860

4 -[NSButtonCell trackMouse:inRect-ofView:untilMouseUp:] ¥ Locals

5 -[NSControl mouseDown:] numl 11.3000002

6 -[NSWindow sendEvent:] Aum2 0

7 -INSApplication sendEvent:] answer 0

8 -[NSApplicatien run] » Clobals

9 NSApplicationMain » Registers

10 main P Float Registers

b Vector Registers

€ 3
GDB: Stopped at breakpoint 1 {hit count : 1) - '~calculateAnswer: - Line 18' @Succeeded

The debugger already found a problem (refer to Figure 3-10). The value
of num1 isn’t 3.2 as you might expect. Instead, it has a value of
3.20000005.

. Click the Continue button in the project toolbar to continue executing
the code.

The debugger then displays the value of num2, 4.19999981, not the
expected value of 4.2.

5. Click the Continue button again to make the debugger jump to the

third breakpoint.

The debugger now displays the answer value, 7.39999962, not 7.4 as you
might expect.

6. Click Continue again.

The debugger disappears, and the application reappears and waits for
you to press the Calculate button again.

7. Bring the project window to the foreground and click the Stop button

in the project window toolbar to halt the debugging process.

8. Choose Run~>Deactivate Breakpoints to prevent the debugger from

stopping on the next run.

Chapter 3: Xcode 55

Although the numbers that your code displays are very close to the actual
values entered in the interface at runtime, they aren’t the exact values.
Clearly, you need a solution that formats numbers according to some guide-
lines. For example, you may only care about two decimal points of precision.

Fixing the code

Without getting into a bunch of technicalities, a f1oat variable can have
many digits in the decimal portion of its value. When num1, num2, or their
sum has decimal digits that can’t be represented by a non-repeating
sequence in binary, rounding and truncation problems exist. These problems
are an inherent fact of life based on how your computer works with floating
point numbers.

To get around this problem, one solution is to format the answer variable
before displaying it. A few lines of code and Cocoa’s NSNumberFormatter
class take care of the problem:

NSNumberFormatter *answerFormatter =
[[[NSNumberFormatter alloc] init] autorelease];

[answerFormatter
setFormat:@"#, ###.00;0.00; (#,##0.00)"];
[[answerField cell] setFormatter:answerFormatter];

Don’t be frightened if you don’t understand this intimidating blurb of code.
This chapter is about Xcode, not Objective-C code like Chapter 6.

The first two lines of code (which incidentally are just one function that
appears on two lines) create an NSNumberFormatter object. The purpose
behind an NSNumberFormatter object is to regulate the format of numbers.

Next, the code sends the setFormat message to the answerFormatter
object, passing it a string of text. This string designates what formats are
allowed for this NSNumberFormatter object. The string is a series of three
formats, each separated by a semicolon. You don’t have to worry about the
precise format of these three strings, but, to give you a hint, the first one
defines the format of positive numbers, the second one accounts for cases
when the number is 0, and the last bit formats negative numbers.

Finally, the code applies the NSNumberFormatter object to answerField
in the interface. To help you understand where this bit of code fits into the
big picture, here’s the listing of the completed source code for Fusebox.m
(the NSNumberFormatter object is in bold). Note that when you add the
code, the last breakpoint moves accordingly.

56

Part I: Developer Tools

#import "Fusebox.h"
@implementation Fusebox

- (IBAction)calculateAnswer: (id) sender
{

float numl,num2, answer;

numl = [numberFieldl floatValue];
num?2 = [numberField2 floatValue];
answer = numl + num2;

NSNumberFormatter *answerFormatter =
[[[NSNumberFormatter alloc] init] autorelease];

[answerFormatter
setFormat:@"#, ###.00;0.00; (#, ##0.00)"];
[[answerField cell] setFormatter:answerFormatter];

[answerField setFloatValue:answer] ;

}

@end

Now that you've formatted answerField properly, choose Build=>Build and
Go to see your changes in action. You see results, as shown in Figure 3-11.

|
Figure 3-11:
With the an00n Simple Calculator
NSNumber
Formatter
object, you 113 + 629 = |[17.59
can dictate
how your
application (Calculate)
displays
floating-point
numbers.
|

Before you leave the debugging section of this chapter, you may come across
one more kind of error when using Xcode to program Cocoa applications.
Change the last line of your code in Fusebox.m to this:

[answerField setFloatValue:answer]

Chapter 3: Xcode

Figure 3-12:
Xcode
displays
errors in
the code
editor when
you click
Errors and
Warnings
on the left.
|

This time you’re intentionally leaving off the trailing semicolon (a common
mistake that even pros make). Choose Build=>Build and Go to see what hap-
pens. The result is that the application doesn’t run as expected, and an error
overlay appears beneath the code in question, as shown in Figure 3-12. A
circle with a white X also appears in the gutter to the left of the code showing
where the error occurred.

The error shows you exactly where the problem is. In this case, the error is
syntax error before } token.Just beforethe } token is where the
semi-colon should be. Fix the code and save it.

The point behind this demonstration is to show you that you may encounter
different kinds of errors when programming with Xcode. Some errors, like
this last one, occur during the build and debug process, and Xcode shows
you where they occur. Other bugs are trickier to track down, such as the
earlier example, because the application is otherwise functional. For those, it
never hurts to use the built-in debugger to solve the problem.

e00 |m| Fusebox.m - My First Project =
| 10.5] Debug | ppc -] '&. @ O Q. string Matching

Groups & Files Il-|| & [Message Locati O
v B9 My First Project =

¥[| Classes
[i] Fusebox.n
[ui] Fusebox.m
P[] Other Sources
¥|_|Resources
[Info.plist
b [£] InfoPlist strings
P [15] MainMenu.xib
b || Frameworks Pl
b [Products
¥ (@ Targers
byl My First Project
b < Executables
» (% Errors and Warnings
¥ 4 Find Results
» Y] Bookmarks
=k
Project Symbols
¥ [Implementation Files
(@ NIB Files

| i Fusebox.m:29 %
P I

[-calculateAnswer: % o™ Cyl#, B @
=

| @inp lenentat ion Fusebox

- (IBAction)caloulatehnsver :{ idsender
| - flogt nund nunz nswer ;

fund = [ruiberFieldl flogtvalue];
nunz = [nunberField? floatvalue];

ansuer = nund + nuNZ;

NatunberFornatter *onsverFornatter =
[[[MSMumberFornatter alloc] init] autorelsose];

[answerFormatter setFornat:@"#, #.0930.00; (#,#40.99)"];
[[answerField cell] setFormatter :nsverFornatter];

[answerField setF loatvalue answer]
() ¥
&1 esror: syntax error before ' taken |

|| aend

+E

Build failed (1 error) QFailed @1

Removing breakpoints

Now that you’re finished debugging your project, you may want to remove
the breakpoints that you added. In Xcode, click the Fusebox.m file and
look for the breakpoints on the left side of the code editor. Control+click a

57

58

Part I: Developer Tools

A\

Figure 3-13:
Control+
click a
breakpoint
to remove it.
|

breakpoint and choose Remove Breakpoint from the contextual menu that
appears. Do the same for the remaining breakpoints. Figure 3-13 shows the
contextual menu prior to deletion of a breakpoint.

Nothing prevents you from keeping the breakpoints set in the project. You can
safely leave them in place without causing any problems for yourself, so long
as you deactivate them when you don’t need them.

800
[10.5 | Debug | ppc
e
Groups & Files 1l
w [My First Project Gl
v Classes
[+] Fusebox.n

[l Fusebox.m
[7] Other Sources

0

|m| Fusebox.m - My First Project

SN @ O Q- swing Matching
Buldand Go Tascs Info Search
‘Location .

v]

A Message

¥|] Resources
[info.plist
b [InfoPlist strings
b || MainMenu. xib
b [Frameworks | >
b (] Products ?
v (@ Targes
b 58y My First Project
P (# Executables
¥ B Errors and Warnings
W 4 Find Results
11 Bookmarks
=Ee
Project Symbols.
» (@] Implementation Files
» (i3] NIB Files

i Fusebox.m:15 3 [-calculateAnswer: 3 - "™ Cy #y &
=

#iuport, "Fusebox.h"
@inp lenentation Fusebox
- (IBActionjcalculateAnswer i id)sender 4

float Auml,hunZ onswer ;

nunl = [numberFieldl float¥alue];

- g 2lue;

=
Remove Breakpoint matter =

Edit Breakpoint init] autorelease];
Built-in Breakpoints

14 34 P00 A0 (#,30.08)"];
Disable Breakpoint

stter ansverFornatter];

Reveal in Breakpoints answer];

Show Message Bubble

— :

@Succeeded

Debugging of “My First Project” ended normally.

Where to Go for Help

At some point, you’ll want more information about how Xcode operates.
Fortunately, Apple has you covered with its built-in documentation.
Choose Help=>Xcode Workspace Guide to view the built-in documentation
about Xcode.

The built-in Help offers documentation on each aspect of Mac OS X develop-
ment. It also includes a few helpful tutorials for getting started with
programming Cocoa in Xcode.

Besides the standard Help, Xcode offers one-click access to information
about Cocoa classes and frameworks in the code editor. To test this feature,
do the following:

Figure 3-14:
Option-
double-

click any
valid
keyword in
the code
editor to
view

its docu-
mentation.
|

Chapter 3: Xcode 59

1. Select the Fusebox.m source code file.
Xcode displays the file in the code editor.
2. Locate a keyword in the source code that you want to investigate.

For example, you may want to find out more about the setFloatvalue
method.

3. While holding down the Option key, double-click setFormatter in
the Fusebox.m file.

A reference window opens, listing the various setFloatvalue methods
in Cocoa (see Figure 3-14).

4. Choose a keyword from the menu.

Select the appropriate setFloatValue method to view the correspond-
ing documentation.

|8ana. . NSCantrol Class Reference — Develaper Documentatio =

4“:‘ e w'_ﬂm anguage Tree Documentation
v Apple Mac O5 X 10.5 [serficatvalue: NSControl Obptctive-C. Mgzhod Core Library
ol [sefloatvaiue NSCell Objective-C Mathod Corn Library
[serfioavalue incbPropomion; NiSroler Objptctive-C Method Core Libary
At} tofarmalTime: 5/ it Method Core Library
e
i
" L ar
= Apple Xeode 3.1
| = g NSControl Class Reference 5 = WiFlcatvalue: 3 c.
BOORMARKS Witanteal.n B
Ycode 3.1 Releave Notes
3 NsControl Class
AR Eateraney Reference
Foundanion Referesce setFloatValue:
Xeode Bulld Semings Notes T ror Sets the value of the receiver's cell using a single-precision floating-point
Neode Expert Preferences Notes v Ovarview mumber.
:::‘:‘"W © Absout Dalegais Mithds - (woidserFloatvalue:(float)afioar
. Tasks Parameters
aFloat
SRk Wil The value of the cell as & single-precision flaating-paint num ber.
» Instance Methods &
scussion
¥ Oslaguss Mesbods 1f the cel is being ecited, this method aBorts Al editing befare Selting the value.
» Naotifications 11 the cell does nat inherit from séac he method marks the cell's
Revision Histary Interiar as needing to be redisplayed: » atell performs its own updating u
Index af catls,
Availability
Companion Guide Available in Mac 08 X v10.0 and Later,
Contrel and Cell
Programming Topics for See Also
Cocoa = floatValue
- setDoubleValue
- wetIntys
SetObjectvalue
setstringValue
Declared In
WiCantral.h -
s +) jans

Core Library » Cocoa » User Experience » NSControd Class Reference © NSControd Class Reference Found 4 documents #

60 Part I: Developer Tools

Building an Application

3

Now that you've set up your project, altered its source code, and browsed
the classes in it, you're ready to build the final application. Choose Build=>
Build and Go. Xcode then compiles, links, and executes the resulting
application.

You don’t always have to build and run, although it’s probably the most
common method of working in Xcode. You can build your project without
running it by choosing Build=>Build. This compiles, links, and creates the
target application but doesn’t execute it. If you’d prefer to use the debugger,
choose Build=>Build and Debug. Table 3-1 lists the keyboard shortcuts for the
various Build commands.

Table 3-1 Keyboard Shortcuts for the Build Menu
Function(s) Keyboard What It Does
Shortcut

Build 8+B Builds an application from the current project
Build and Run 8+R Builds an application and then executes it
Build and Debug 8+Y Builds and launches an application from the

current project and then starts the debugger
Clean 38+Shift+K Cleans the current project by removing all

object code from it

In addition to the standard menu items and corresponding keyboard short-
cuts, Xcode gives you easy access to the Build and Run function by means of
a button in the toolbar project window. Figure 3-15 shows the location and
function of this button.

Whenever you click the Build and Go toolbar button, it turns into a stop sign.
While the build or debugging proceeds, you can halt the process. Sometimes
it takes a while to complete a build. If you forget to do something before
building, it’s handy to be able to stop the build operation. That way, you can
avoid the wait of completing the build and get back to work.

After you complete a successful build, your new application appears in the
Build folder of your project’s main folder in Finder. You can then distribute
and run this application on any other computer that uses Mac OS X, which is
the main goal of programming in Cocoa.

Chapter 3: Xcode

Figure 3-15:
Click the
Build and

Go button

in project
window
toolbar to
run your
project.
|

o) Fusebaxm |1 Man
Groups & Files
w I My First Project
¥[] Classes
[i] Fusebox.n
Fusebox.m
[Other Sources
¥ |] Resources
5| Info.plist
» [£] Infoplist strings
MainMenu xib
B[] Frameworks
b [Products
¥ @ Targers
P 5y My First Project
b (4 Executables
» (B Errors and Warnings
w O Find Results
17 Bookmarks

» [Implementation Files
B (3] NIB Files

Q- String Matching

-

<] ;;L&.ruszhamm:u &

77 Copyright 2886 __HyConparylams__. ALL Tights reserved.
7

#inport “Fuseboc.h®
ainp lenentation Fusebax
- (IBAction)caloulatehnsver :{ idysender
t flogt nud nunz onswer ;
runl = [runberFieldl flogtvalue];

fun2 = [nunberField? flontvalue];
answer = numd + run2;

NatunberFornatter ¥onsverFornatter =
[[[MSMumberFormatter alloc] init] autorelesse];

[answerFormatter setFornat:@"#, #k.09;0.00; (#,#40.99)"];
[[answerField cell] setFormatter snsverFornatter];

[answerField setFlootvaluesanswer];

62 Part I: Developer Tools

Chapter 4
Interface Builder

In This Chapter

Finding your way around Interface Builder
Adding controls to an interface

Editing attributes of a control

Editing and creating new menus

Wiring an interface

Implementing code to use an interface

Tle second most important component of Cocoa development (Xcode is
the first; see Chapter 3) is the eponymous Interface Builder application,
which you use to build interfaces for your Cocoa projects. Interface Builder
gives you the ability to construct beautiful interfaces for your software with
drag-and-drop ease — without a lick of code. More importantly, the inter-
faces you create in Interface Builder follow Apple’s stringent Human Interface
Guidelines, so you have a good chance of producing applications that Mac
users (they can be a finicky bunch) like to look at and ultimately use.

In this chapter, you take a tour of Interface Builder, examining its functionality
as you go. To help you acclimate to Interface Builder, you improve the calcula-
tor application that you created in Chapter 3. By the end of this chapter, your
calculator will have a new menu, additional interface elements, and added

e WES functionality.
=S
Sis

|\
=

—

You can find the project files for this chapter on the For Dummies Web site at
www . dummies.com/go/cocoafd.

—

64 Part |: Developer Tools

A Tour of Interface Builder

|
Figure 4-1:
MainMenu.
xib contains
the inter-
face for
your project.
|

To begin working with Interface Builder, make a copy of the finished Chapter 3
project folder. Always make sure that your Cocoa projects and associated
files reside on write-enabled media, which is most likely your hard drive.

After you have the code copied to your hard drive, do the following to begin
working on the project in Interface Builder:
1. Open the My First Project.xcodeproj file.
Xcode launches, and the project opens.

2. Expand the project’s Resources folder in Xcode to reveal the
MainMenu.xib file.

MainMenu.xib is the interface file for your calculator project. Figure 4-1
shows the location of the MainMenu.xib file in Xcode.

3. In Xcode, double-click the MainMenu.xib file to open it in Interface
Builder.

Although Xcode and Interface Builder are two different applications,
they work together to provide you with an integrated Cocoa experience.

800 Im| Fusebox.m - My First Project (=)
| [10.5 | Debug | ppc 'J ;) [] Q.- String M g
| Overview Action Buildand Go Tasks Info. Search
| [w] Fusebox.m _[+] MainMenu.xib [£] Info.plist
Groups & Files I File N &| A Code) A O
w [My First Project B | [4 MainMenu xib (English)
» Classes

b (] Other Sources
v Resources
[£] Info.plist
» [£] InfoPiist.strings

» (] Frameworks
b [Products ~
v @ Targets | < [Fusebox.m:17 3 [-calculateAnswer: 3 o™ Colite | B |@
P A My First Project =

#nport "Fusebox.h®
b Executables

¥ (B Errors and Warnings @inplenentation Fussbox
w), Find Results
» 138 Bookmarks — (IBhction)ealeulabednsuer :(id)sender
i {
»H S FLoat UKL, AUKZ ,ansuer
@ Project Symbols
» (il implementation Files munt = [runberfieldl floak¥alue];
» (& NIB Files nun2 = [runberfield? float¥alue];

answer = numd + nunZ;

|
|
|
|
NSNunberFormatter ¥orswerForuatter = |
[[[NSwmberFornatter allac] init] autorelease]; }
|
|
|
|

[ansverFornatter setFormat:@"i, . 00;0.00; (#,440,00)" 1;
[[ansverFisld cell] setFormotter:onsuerFornatter];

[onsuerField setF loatbolueonsuer]

@end

Chapter 4: Interface Builder

|
Figure 4-2:
Interface
Builder has
five main
windows.
|

Incidentally, the XIB file extension in MainMenu.xib indicates that it’s a newer
Interface Builder project file format, introduced in Xcode 3. Previously, the file
format had a NIB extension, which is short for NeXT Interface Builder. Why
NeXT? NeXT is the name of the company that Steve Jobs headed before his
return to Apple. Apple purchased the NeXT operating system, which became
the core of Mac OS X. The XIB file is a carryover from those days. Cocoa geeks
still call these NIB files — old habits die hard. Besides that, have you ever tried
to pronounce “XIB?” Furthermore, the NS that appears at the beginning of
class names in Cocoa stands for NextStep, another historical tidbit in Cocoa
left over from NeXT.

When you first launch Interface Builder, you may see as many as five different
windows. Figure 4-2 shows the various windows as they appear in Interface
Builder. Although it isn’t one of the five main windows, the Strings window
might make an appearance, too. The Strings window is less likely to be pres-
ent than the others but if you see it, feel free to close it. You don’t use it in
this chapter.

Project window Attributes window Library

ann MainMeny xib (English) =]
E= (o) (1] a T e
Vewode s S ekt
Tie Simsie Cakcalasar
® @ A : s
r = conwrols # Case # hsize
TiwsOuner Mt Resoonder Appiicasion Mainblenu & Mnimine
. ﬁ 3 Appearance () Te
CITETEETS rombansger Fusesax E
o = v D
& vt At Lssnch
My it Prec xcadieprcy P s Restdeniaoet View Lo »

memsry Wovered o sbor

Sutiered =]

[Tl
: IF

4
i
]
E

]

o]

Caleulats

DT Fle Edit Farmat View Window Help
Abaut NewAgplication

Preferances.. o,
Services »
Hide NewAppfication HH
Hide Others. LAH
Show All

Quit NewApplication HOQ

Design window Menu editor

65

66 Part I: Developer Tools

Table 4-1 describes why you need each window and how to display one if it
isn’t currently visible.

Table 4-1 Main Windows of Interface Builder
Window How to Display It What You Do With It
Project Double-click the XIB file in Store the components of
window Xcode your interface file.
Design Double-click the Window icon in Use the window as part of
window the XIB project window your application’s interface.
Inspector Choose Tools=>Inspector View and edit attributes of
window your interface and other
classes in the project.
Library Choose ToolscoLibrary Drag controls from the

Library window to a design
window to create an

interface.
Menu Double-click the MainMenu icon Create, delete, or edit menus
editor in the XIB project window for your application.

Together these five windows form the main tools of Interface Builder. Using
these tools in concert, you can build a complete interface for use in a Cocoa
application. That’s not all Interface Builder can do, though. You can

v Create and add classes to your project.

v Connect classes to the elements of your interface by clicking and drag-
ging. These connections serve as a bridge between an interface and your

Xcode project.
v Allow Interface Builder to do the dirty work of writing some of the code

for your interface. With one click, it produces the necessary interface
and implementation files in Xcode, where you add code later.

The interface builder project window

The NIB project window is the heart of your project’s interface. This is where
you store the components of your project’s interface. The NIB project
window has three different views much like the Finder:

v Icon: List the objects in your XIB file as a grid of large icons. Figure 4-3
shows the Icon view format of the Interface Builder project window.

Chapter 4: Interface Builder 6 7

|
Figure 4-3:
Use the

Icon view to
get a quick
glimpse of
the items
inan XIB
document.
|

|
Figure 4-4:
Use the List
view to see
the class
hierarchy

of your XIB
project.
|

File's Owner First Responder Application MainMenu
wia
.]
L
Window (Simp... Font Manager Fusebox

v~ List: Lists the objects in your XIB file as a vertical hierarchy. The List

view is useful for quickly locating controls within a window. It comes in
handy when you want to select a control that’s embedded within other
controls (see Figure 4-4). It’s also useful when you want to move or copy
an embedded control to another object or control or when you want to
view embedded controls in context.

v+ Column: Lists the objects in your XIB file as a horizontal hierarchy (see

Figure 4-5). The Column view is similar to List view, except that it dis-
plays the hierarchical arrangement of project items horizontally.

an0o 4 MainMenu.xib (English) =)
Name [Type
. File's Owner NSApplication
‘ First Responder FirstResponder
oA Application NSApplication

MainMenu NSMenu
Window (Simple Calculator) NSWindow
Content View N5Wiew

w ¥ Push Button (Calculate) NSButton
T uton cell Calculate)—— Nsmuroncell |

P 9 Text Field NSTextField
» "9 Text Field NS5TextField
» "9 Text Field NSTextField
b =9 Static Text (+) NSTextField
b "% Static Text (=) NSTextField

. Font Manager NSFontManager

¥ Fusebox Fusebox

68

Part I: Developer Tools

|
Figure 4-5:
The Column
view
displays
hierarchical
information
horizontally.
|

800 + MainMenu.xib (English} (=
(e[=0 [i] Q
File's Owner BZ Content View B W Push Button (... » B sutton Cell (Calc... [l
@ First Responder | ¥ TextField
oM Application ® TextField
| MainMenu) Text Field
5= Window (Simp... » = Static Text {+)
¥8 Font Manager & Static Text (=)
8 Fusebox

Each new NIB file that Xcode creates for you as part of a new project has six
items by default:

v File’s Owner

v First Responder

v Font Manager

v Application

v MainMenu

V¥ Window
MainMenu and Window are what you need to concern yourself with for now.
As you can probably guess, the MainMenu is where you edit the menus for

your interface. The Window is a window object that you can use in your
interface.

Design window

The Design window represents a window in your interface and is where you
add controls. Your user then uses these controls to operate your application.
To view a Design window:
1. In the NIB project window, double-click Window.
The contents of the Window object are displayed, as shown in Figure 4-6.
2. With the window opened, select a control.

For example, select the Calculate button.

Chapter 4: Interface Builder 69

|
Figure 4-6:
The Design
window is
where you
lay out the
controls for
your inter-
face.
|

|
Figure 4-7:
Selecta
control and
hold the
Option key
to display
guidelines.
|

\\J

LEcNe 7 Simple Calculator

. Calculate

3. Press and hold the Option key and move your cursor around the
window.

As you pass over each control, Interface Builder displays guidelines and
numbers informing you of the distance between the selected control
and the one with the cursor over it. Figure 4-7 illustrates the distance
between the button and the answer field.

0N 7 Simple Calculator

[Calculate
v

4. With the button still selected, press and hold the Option key and
move your cursor into a section of the window where no control
resides.

You see guidelines that define the location of the selected button. Figure
4-8 shows the position of the button in the Calculator interface.

You can move the controls in a Design window by dragging them with the
mouse. You can also select a control and move it with the arrow keys. As you
move a control around a window, Interface Builder displays guides to help
you accurately position the control.

70

Part I: Developer Tools

|
Figure 4-8:
Hold the ele - Simple Calculator
Option key
and move
the cursor
outside the
selected 5
element to L3 [Calculate [13:
see its &) '
coordinates.
|

Library window

To create an interface, you need an assortment of buttons, sliders, and other

controls. The Library window provides these controls for you to use in your

interface. To view the controls that are available to you, follow these steps:
1. Choose Tools=Library.

The Library window appears, with a row tabs across the top, as shown
in Figure 4-9.

2. Click the Objects tab to see the controls and other objects that are
available to you.

3. Select Cocoa from the frameworks listed at the top of the Library.

The Library window is organized by framework. Selecting Cocoa dis-
plays the controls that are available to you via the Cocoa framework.

4. Search for a control.
You can search for specific class names, such as NSBut ton. Or, you can
search for controls using descriptive terms like but ton.

Table 4-2 describes the sets of controls available in the Library window.

Table 4-2 Objects in the Library Window

Frameworks Reveals These Types of Controls and Objects

Cocoa Windows, menus, toolbars, controllers, buttons, views,
radio groups, image well, sliders, progress indicators,
and others

Interface Builder Kit Library template (for advanced users)

Web Kit Web view

Chapter 4: Interface Builder

|
Figure 4-9:
The Library
window
contains a
variety of
objects and
controls
that you can
use in your
interface.
|

Frameworks Reveals These Types of Controls and Objects
Address Book Address Book People Picker view
Automator Objects for integrating applications with Automator

DiscRecording

MSFormatter, an object for use with disc burning

Image Kit

Image Kit browser and image views

Open Scripting Kit

Objects used in making applications scriptable

PDFKit PDFView and PDFThumbnailView for displaying PDF
documents
QuickTime Kit QuickTime Movie view for playing movies and

QuickTime Capture view for displaying video previews
while capturing video

Quartz Composer

Objects for displaying and manipulating Quartz
Composer compositions

Custom Objects

Third-party controls or your own custom controls and
objects

B0, Library
Dbjects | Media
v |J_ﬁ Library
» 07 Cocoa
7] Interface Builder Kit
7] web Kit

D Address Book

7] Automator

D DiscRecording
7 Image Kit

f:] Open Scripting Kit
7] PDFKit

(7] QuickTime Kit

7] Quartz Composer
D Custom Objects

Library - Cocoa - Application - Windows

ICEL)
Window - Manages an onscreen window, coordinating the
display and event handling for its NSView objects.

Panel - A special kind of window, typically serving an auxiliary
function in an application.

Textured Window - Manages an onscreen window, coordinating
the display and event handling for its NSView objects.

woe
. HUD Window - Manages an onscreen window, coordinating the

display and event handling for its NSView objects.

A
800 1 Window and Drawer - Contains and displays view objects v
o Menu Item
NSMenultem

The NSMenultern class defines objects that are used as command items in
menus. Additionally, the NSMenultem class also includes some private
functionality needed to maintain binary compatibility with other

- — Yo S e i e

%) (@ Filte

/1

/2

Part I: Developer Tools

WMBER
“&
&

Chapter 9 goes into greater detail about the controls in the Library window.
Most chapters throughout this book also deal with some aspect of the
Library window because it’s an important window! In particular, you’ll use
controls and objects in the Cocoa section of the Library window most often
because that collection has all the most common interface controls.

The Library window is the starting point and main toolbox for creating
attractive interfaces. You'll use it frequently.

Inspector window

The Inspector window is another important window that you’ll use frequently
when building an interface. The Inspector window displays important con-
textual information about whatever element you're working with in Interface
Builder. To see how the Inspector window works, perform these steps:

1. Choose Tools=>Inspector.

The Inspector window appears. The purpose of the Inspector window
is to give you the opportunity to view and edit the attributes of the con-
trols and objects in your NIB file.

2. Open a window from your XIB file.

The Inspector window displays the attributes for that window (see
Figure 4-10).

The Inspector window is a bit of a chameleon, altering to match its sur-
roundings. Figure 4-10 shows the properties of a window. If you have a
window open and its properties don’t appear in the Inspector window,
click the window’s title bar.

3. Click the Calculate button in the Design window to select it.

The Inspector window immediately changes to display the attributes of
that button.

4. Alter the window properties as you need.

For example, to add a key assignment in the Inspector window, click the
Key Equiv. field to select it and then press Return. An icon appears in
the Key Equiv. field, representing the Return key (see Figure 4-11).

Chapter 4: Interface Builder

I = i
OO0, - Simple Calculator D00 windowAttributes
. ' 2 |o|g|R|0][0]%
Figure 4-10: ¥ Window
For win- . _ Title simple Calculator
Autosave
dows, the
! Controls ¥ Close Resize
Inspector o Minimize
H (" Calculate) Appearance [| Textured W Shadow
window i) Always Display Tooltes
g iVeS yOU [Unified Title And Toolbar
™ Shows Toolbar Button
accessto Behavior [Release When Closed
o [] Hide On Deactivate
ava rIEty [Visible At Launch
Of Wmd ow [] Auto Recaleulates View Loop
. Memory ™ Deferred W One Shot
attributes. e R—
4
I
OO0 ~ Simple Calculator 800 Lol
AR IRIE
¥ Button
Title Calculate
+ =
Alt. Title
Image -
Alt. Image -
e
‘%’ Scaling | Proportionally Down ~:]
]
Style [Push -3]
Mode | Momentary Push in -;]
Position —|o o o
Alignment [= [=]
Visual ™ Bordered [Selected
[] Transparent [Mixed
Sound =
I Key Equiv. © 7| [clear
- ¥ Control
Figure 4-11:
TextDir. | Narural =)
Choose Line Breaks | Word Wrap #
(=)
Return to [Truncates Last Visible Line
. State ™ Enabled [Continuous
give users Tag .
one-key ¥view
access tO Focus Ring | Default e
. Drawing] Hidden
calculations. I Aitoimdizes Savises
Z
I

This assignment has two effects:

e It changes the Calculate button to a blue pulsating color in
Interface Builder, indicating that it’s the default button in that
window. The purpose is to draw a user’s attention to the button
because the button triggers the functionality that the user most
likely wants to perform in that window.

¢ The Key Equiv. assignment causes that button to respond to the
Return or Enter key on the keyboard. Now, instead of forcing users
to click the button with a mouse, they can simply press Return or
Enter to make a calculation. And, you gained all that functionality
with only one click. Fantastic!

74

Part I: Developer Tools

Menu editor window

The last window to discuss is the Menu editor. The Menu editor window
displays a miniature version of your application’s menu bar. You can click a
menu to display its menu items. It’s also easy to change the text or keyboard
shortcut for a menu item or to add a new menu item altogether.

To prepare the menu for your application, follow these steps:

1. In the XIB project window, double-click the MainMenu icon.
The Menu editor appears.
2. Open the New Application menu.
3. Double-click the About MyFirstProject menu item and rename it.
<P For example, rename it to About SimpleCalculator.

You can also rename the About menu (or any other menu, for that
matter) by single-clicking it and making the change in the Info window.

4. Change the Hide NewApplication and Quit NewApplication menus.

For example, change them to Hide SimpleCalculator and Quit
SimpleCalculator, respectively. Figure 4-12 shows all three menus;
About, Hide, and Quit changed in the Menu editor.

006 Menu Item Atributes

MainMenu

{ & F
" EETIETCI File Edit Format View Window Help G | | & | i | o | 9 | i
n ¥ Menu Item
About SimpleCalculator|

Title About SimpleCalculator

Preferences... ®,

Attrib. Title
Services >
Hide SimpleCalculator 2H Tag o
Hide Others X8BH ‘ W
Show All N

On image | NSMenuCheckmark -
Quit SimpleCalculator 8Q _—

Off Image

Mix Image | NSMenuMixedstate]

& @ (

Indentation o] &

State [of #) [Alternate

Enabled) Hidden

KeyEquiv. | 1] Clear
|
Figure 4-12:
Change the
text of menu
items with
the Menu
editor.
|

Chapter 4: Interface Builder

SMBER
é‘,\“

Figure 4-13:
Change the
name of the
Application
menu.
|

5. Edit the text of the top Application menu item.

Figure 4-13 shows I've changed the menu to Simple Calculator.

6. Choose Filew>Save to save the interface changes.

7. Press 38+R to test the interface.

Interface Builder hides your XIB project window and displays your inter-
face as it would appear in a running application.

8. Select menu items, move the calculator window, and type numbers in

the fields of the window.

When you click the Calculate button, though, nothing happens. That’s
because you aren’t using the actual application. This is just an
interface test.

Although the About SimpleCalculator menu item looks just fine, the
Application menu isn’t displaying its name properly. Rather, it displays
Cocoa Simulator to let you know that you're viewing an Interface Builder
preview of your application and not your actual application.

. Choose Cocoa Simulator=>Quit Cocoa Simulator to return to Interface

Builder.

If you check your application by running it in Xcode, you’ll see the
changes that you made to the interface in Interface Builder.

J File Edit Format View Window Help |

Onimage | NoMesuCheckmark

13] 5] 5]

Mix Image | NMesuMiedSiare

state oft) [aiternare
A Enabied Hidden

75

76

Part I: Developer Tools

Figure 4-14:
Despite
changesto
the menu
in Interface
Builder, the
project

is still
displaying
the wrong
name in the
Application
menu.
|

10. Bring Xcode to the foreground and press $8+R to run your application.

Something isn’t quite right, as shown in Figure 4-14. The Application
menu is still stuck with MyFirstProject.

What’s going on here? Your application supplies the text for your
Application menu item by using a string in its Info.plist file, not from the
text you entered in Interface Builder. Go figure!

The Info.plist file is a text file that contains information about your appli-
cation. You can find the version number for your application, assign an
icon to the application, and set the default language for the application,
among other tasks.

mme Edit Format View Window Help

About SimpleCalculator

Services > 800 Simple Calculator

Show All

Quit SimpleCalculator ~ 3#Q

Calculate

11. Change the Info.plist file as follows:
a. In Xcode, expand the Resources group.
b. Select the InfoPlist.strings.

The Code editor displays the contents of this file, which you
can edit.

c. Change the first line of code to read
CFBundleName = "SimpleCalculator";
12. In Xcode, press $8+R.

The Application menu appears with the corrected name. Figure 4-15
shows the results of the InfoPlist change.

13. Click the Interface Builder icon on the Dock to return to it.

Chapter 4: Interface Builder

Figure 4-15:
Make
adjustments
to the
InfoPlist.
strings file
in Xcode

to cause
the name

of your
application
to appear

in the
Application
menu.
|

& ELNES NN File Edit Format View Window Help

About SimpleCalculator

Services » 800 Simple Calculator

Show All = =
Quit SimpleCalculator ¥Q

_ Calculate]

7|

The Interface Building Process

Now that you've surveyed the basics of Interface Builder, it’s time to put it to
use. If you built the interface in Chapter 2, you have a Simple Calculator that
adds two numbers together. That limited functionality doesn’t make for a
very useful calculator.

If you haven’t built the Simple Calculator in Chapter 2, you can use the My
First Project.xcodeproij file.

To give users a choice of mathematical operations, you can add a pop-up
menu. Instead of being limited to addition, a user can also, subtract, multiply,
or divide. This additional functionality clearly makes for a more useful
calculator.

If you simply drag a new pop-up button into your application’s interface and
connect it to a new outlet in the Controller class (Fusebox), your source
and header files in Xcode have no way of knowing about the change. Either
you have to alter the source code files by hand or merge new files with the
ones you already created. When doing so, you run the risk of deleting all
your existing work. Interface Builder offers a solution to this dilemma. When
you attempt to create header and implementation files that already exist,
Interface Builder asks (see Figure 4-16) whether you’d prefer to overwrite
existing files (thus deleting your previous work) or merge the new files with
the existing ones (thus retaining your previous work).

/7

/8

Part I: Developer Tools

Figure 4-16:
To retain
previous

work, merge
your new
header and
implemen-
tation

files with
existing
files.
|

WMBER
&Q‘
&

oy "Fusebox.h", and "Fusebox.m" already exist.
". I \ Do you want to replace these files?
'L; e’ Files or folders with the same names already exist in "My

First Project”. Choosing replace will overwrite the existing
files with the new files.

"T Cancel \ "' Replace \ (Merge...)

Because of this special consideration, you need to create the files and add
them to Xcode. If files already exist in your Xcode project, you can edit them
by hand or merge them with the new files:

v If your project doesn’t have header (.h) or implementation (.m) files,
create them by choosing File>Write Class Files.

v~ If the files already exist in your project in Xcode, choose Filew>Write
Class Files and click Merge when queried in the dialog that appears.
When you choose to merge files, Interface Builder launches the
FileMerge application, which handles the sometimes complex task of
merging source code and header files.

If you’re making small changes to your interface, sometimes it’s just as
easy to edit the header and source code files in Xcode by hand rather
than to go through the merge process.

Improving your existing project to include addition, subtraction, multiplica-
tion, and division is simple. I show you how in the next sections.

Adding a pop-up menu
One way to give readers a choice of functions is through a pop-up menu.
Follow these steps:

1. Open an XIB file in Interface Builder.

If you don’t have your calculator’s MainMenu.xib open in Interface
Builder, double-click it from your project in Xcode.

2. Open the window for your interface by double-clicking Window in the
XIB file window.

Your interface currently displays a plus sign text field between numFieldl
and numField? to indicate that the calculator performs addition only.

Chapter 4: Interface Builder

Figure 4-17:
Change

the items

in the pop-
up button

to math-
ematical
symbols that
represent
addition,
subtraction,
multiplica-
tion, and
division.
|

. Click the plus sign text field to select it and then press Delete to

remove it.

. Open the Library window and search for popup, drag a pop-up button

from the Library window to the calculator interface, and click the
pop-up button again to reveal its contents.

By default, a popup has three menu items — Item 1, Iltem 2, and Item 3.

. Select the last menu item in the pop-up button and choose

Edit~>Duplicate to add a new item to the pop-up button.

. Edit the title of each menu item by double-clicking the item and

changing the text to mathematical symbols for addition, subtraction,
multiplication, and division.

See Figure 4-17.

. Change the Tag property of each menu item. Starting with 0 (zero),

assign 0, 1, 2, and 3 to addition, subtraction, multiplication, and divi-
sion, respectively.

When a user uses the calculator, you can identify which pop-up item is
selected based on its Tag value.

. Resize the pop-up button to its smallest width and place it between the

two number fields. Because the pop-up button won’t quite fit between
the two fields as is, resize the window and move the controls around
until the button fits properly.

Simple Calculator 8060 Menu Item Attributes

2|0 @ |0[0]%

¥ Menu ltem

| e]
D - Attrib. Title
|
L Tag .
(Caleulate) T S
€ | onmage [rovenchecmc B
ofimwe [0 W
Miximage [NMemiMcedsaze)
indentation | 0 [2]
state [on &) O Arernate

™ Enabled 7] Hidden

Key Equiv. = Clear

79

80

Part I: Developer Tools

Figure 4-18:
Users can
choose
their favorite
math-
ematical
operation
viaa

menu item.
|

Adding a menu

In addition to the pop-up button, giving a user menu access to the different
mathematical computations would be handy. It’s a cinch to add keyboard
shortcuts to menus, which in turn can give your users keyboard access to
the mathematical choices in the pop-up button. To create a new menu item,
follow these steps:

1.
2.

Open the Menu editor for MainMenu from the project window.

Drag a menu item from the Library window and drop it onto the
menu bar.

. Rename the new menu Calculate and press Return to accept the

new name.

. Drag a menu from the Library window to the new Calculate menu item.

A new menu appears with three items by default.

. Select the last of the three menu items, Item 3, and press $8+D to

duplicate the item and add it to the menu.

. Select the first menu item, Item 1, and press $8+1 to open the Inspector

window.

. Alter the attributes of the menu item to match Figure 4-18. Change the

Title attribute to 2dd, click the Key Equiv. field, and press + on your
keyboard to assign + as the keyboard shortcut for that menu item.

MainMenu 8,0.0. Menu item Attributes.

" simpleCalculator File Edit Format View (&l Window Help | - | Lo | & | el | (] |] | &
Add + ¥ Menu tem

Title Add

Attrib. Title

Tag

|

Image

OnImage | NSMenuCheckmark)

off Image
Mix Image | NSMenuMixedstate)

Indentation o] (£

State | off :}] Alternate

™ Enabled) Hidden

l.

|4

Key Equiv. | | Clear

Chapter 4: Interface Builder 8 ’

8. Alter the new menu items to look like Figure 4-19 by following a
similar procedure as in Steps 6 and 7.

9. Change the Key Equiv. attribute for each item to the appropriate
symbol: +, -, *, and /. Assign a unique Tag value to each menu item,
starting with 0 (zero).

800 MainMenu 800 Menu Irem Attributes
SimpleCalculator File Edit Format View J[EA[NECH Window Help s |l 2004
| Add + | ¥ Menu htem
Subtract - Title Divide
Multiply * y _—
Autrib. Title
Tag 3
|
Image =
Figure 4-19: On Image | NSMenuCheckmark -
Off Image =
Users can _
Mix Image | NSMenuMixedState =
now choose I denTaioe ol [
from all State [of &) O Atternate
™ Enabled] Hidden
four math- | i
: Key Equiv. | | Clear
ematical
operations.
|

Creating a Controller class

Because you’re updating an existing project, this one already has a Controller
class (Fusebox). Therefore, you can skip this step. Normally this step would
be required but not this time. If you weren’t updating an existing project,
create a Controller class by dragging an NSObject from the Library window
to the project window and change its type in the Inspector window.

Connecting the interface

When you have your interface done, you must connect it to the actions and
outlets. Follow these steps:
1. In the XIB project window, select the Fusebox object and press $+6.

The Inspector window appears, displaying the outlets and actions for
Fusebox.

2. Add an operationPopup outlet, which corresponds to the pop-up
button in your project’s window.

82

3.

-

@

&

N

Part I: Developer Tools

In the Inspector window, create one new action: changeOperation:,
making sure to include the trailing colon.

Figure 4-20 shows the new outlet and two actions for the Fusebox class.

To connect your interface, Control+drag from the Fusebox object in
the XIB file window to the new popupButton in the interface. In the
black connections list overlay that appears, select the operation
Popup outlet.

Open the Menu editor by double-clicking the MainMenu item in the
project window.

Select the Add menu item from the Calculate menu and Control+drag
from it to the Fusebox class. From the black connections list overlay,
select the changeOperation action.

For each menu item in the Calculate menu, Control+drag from the
menu item to Fusebox and connect it to the same changeOperation
action.

When you’re finished, the Inspector window looks like Figure 4-21.

Fusebox Identity

alels)
800 _ MainMenu.xib (English) (=)
e —_— s»[clo]w[ofO]¢
[4] G ¥ Class Identity
— Class Fusebox -
—
’ m = ¥ s Ao
=] Action Type 4
File's Owner First Responder Mainwenu MainMenu.xib
. changeOperation: id
e |5 Fuseboxh -]
(] calculateAnswer: id
Window (Simp... Fant Manager
—
¥ Class Outlets
Outlet Type A
MainMenu.xib
operationPopup id
[#) Fusebox.h (+]
—— answerField i
numberField id
- numberField2 id
Figure 4-20:
Add an
actionto F=
Fusebox ¥ e e ety
to cover Az
the opera- ObjectD |463
. . Lock [Nothing (inherited) =]
tions in the Notes [Show With Selection
Calculate
menu.

Chapter 4: Interface Builder 83

000 Fusebox Connections

eno = MainMenu.xib (English) = R W e e Y
E) L eelels
b L S aweteld (Tt @

)<
Er 1]

|
File's Owner First Responder Application MainMenu

}—{(% Push Button (Caleul... @)
¥ Multiole ®
Me &

"“

['¥ Referencing Outlets
New Referencing Outlet. o

Window (Simp... Font Manager

Figure 4-21:
Connect the
individual
menu

items in the
Calculate
menu to the
new action.
|

8. Create files and add them to Xcode. If the files already exist, edit them
by hand or merge them with the new files.

Because your project files already exist in Xcode, you have to tread
carefully here. You've added only one new action and one new outlet to
your Fusebox controller, so it won’t be difficult to add them by hand to
the existing files, which you will do in the next section.

9. Choose File>Save to save the XIB file.

You're finished with Interface Builder.

Using an Interface in Xcode

Now that you have the interface improvements completed, you need to
return to Xcode and add some code. For starters, you need to define a few
items in the Fusebox.h file. Because you added an outlet and an action to the
controller, you do the same in Fusebox.h:

84 Part l: Developer Tools

1. Change Fusebox.h to read as follows:

/* Fusebox */
#import <Cocoa/Cocoa.h>

@interface Fusebox : NSObject

{
IBOutlet id answerField;
IBOutlet id numberFieldl;
IBOutlet id numberField2;
IBOutlet id operationPopup;

- (IBAction)calculateAnswer: (id) sender;
- (IBAction)changeOperation: (id) sender;
@end

2. Choose File=>Save to save the header file.

3. Select Fusebox.m to edit its code.

4. Modify the calculateaAnswer function by adding an integer that
keeps track of the currently selected item in the pop-up button:

int operation;

5. Find out which item the user has selected from the pop-up button by
sending it the selectedTag message.

When you do, the pop-up button returns the tag of its currently selected
menu item, which you then store in the operation variable. The first
menu item in a pop-up button has a tag of 0 (zero), so all items in the
operationPopup control are covered by the indices 0 through 3:

operation = [operationPopup selectedTag];

6. After you know which item the user selected from operationPopup,
do the math based on that index:

switch (operation) {
case 0://addition

answer = numl + num2;
break;
case 1l://subtraction
answer = numl - num2;
break;

case 2://multiplication

answer = numl * num2;
break;
case 3://division
answer = numl / num2;
break;

Chapter 4: Interface Builder 85

The completed calculateAnswer action looks like this.

- (IBAction)calculateAnswer: (id) sender
{
float numl,num2, answer;
int operation;

numl = [numberFieldl floatValue];
num2 = [numberField2 floatValue];
operation = [operationPopup selectedTag] ;

switch (operation) {
case 0://addition
answer = numl + num2;

break;
case 1://subtraction
answer = numl - num2;
break;

case 2://multiplication
answer = numl * num2;
break;
case 3://division
answer = numl / num2;
break;
}

NSNumberFormatter *answerFormatter =
[[[NSNumberFormatter alloc] init]
autorelease] ;

[answerFormatter
setFormat:@"#, ###.00;0.00; (#,##0.00)"1];
[[answerField cell] setFormatter:answerFormatter];
[answerField setFloatValue:answer] ;

3

7. To account for the Calculate menu that appears in your menu bar, add
a new action to Fusebox.m: changeOperation.

When a user selects a particular menu item, the code changes the
operationPopup control to match the operation in that menu item. For
example, if a user selects the Add menu item, the code sets the index of
the operationPopup control to 0 (zero). The Subtract menu item sets
the index of the operationPopup control to 1, and so on. The code
looks like this:

- (IBAction)changeOperation: (id)sender

[operationPopup selectItemAtIndex: [sender tagll];

86 Part I: Developer Tools

The completed Fusebox.m source code file combines the calculate
Answer action and the new menu item action into one file. To keep your
bearings straight, here’s the completed Fusebox.m file:

#import "Fusebox.h"
@implementation Fusebox

- (IBAction)calculateAnswer: (id) sender
{
float numl,num2, answer;
int operation;

numl = [numberFieldl floatValue];
num2 = [numberField2 floatValue];
operation = [operationPopup selectedTag];

switch (operation) {
case 0://addition
answer = numl + num?2;

break;
case 1l://subtraction
answer = numl - num2;
break;
case 2://multiplication
answer = numl * num?2;
break;

case 3://division
answer = numl / num2;
break;

}

NSNumberFormatter *answerFormatter =
[[[NSNumberFormatter alloc] init]
autorelease] ;

[answerFormatter
setFormat:@"#, ###.00;0.00; (#,##0.00)"1]1;
[[answerField cell] setFormatter:answerFormatter];
[answerField setFloatValue:answer];

- (IBAction)changeOperation: (id) sender
[operationPopup selectItemAtIndex: [sender tagll];

}
@end

Chapter 4: Interface Builder 8 7

8. Choose File=>Save to save the Fusebox.m file.
9. Choose Build=>Build and Go to see your work in action.

The result is an application that performs addition, subtraction, mul-
tiplication, and division. You can choose a mathematical operation by
selecting it from the popupButton in the interface, choosing it from

the Calculate menu in the menu bar, or using the keyboard shortcuts
listed in the Calculate menu. Figure 4-22 shows the completed calculator
application.

Figure 4-22:
The
completed = (- ¥ |3 - 209.67

calculator
can add,

gubtract, Eeammte)
multiply, and
divide.
|

800 Simple Calculator

|

WE,
’\‘\E = If you get lost somewhere during the interface-building process or the code

Y —

\‘\\/(""‘,,\\\ additions, you can get the completed project from www . dummies.com/go/
,/ cocoafd. The finished project is in the following directory:

’

Chapter 4/End Code/Calculator

88 Part l: Developer Tools

Chapter 5

Putting Polishing Touches
on Your Application

In This Chapter

Implementing an About Panel

Renaming an application

Setting an application’s version

Creating and setting an application’s icon
Distributing applications

A fter you finish building an interface, writing code, and debugging your
application, you’ll want to prepare it and build it for use as a stand-
alone executable file to distribute. You may think that after you design and
write an application, it’s ready for the world to see, but you still have a few
more steps to complete before it passes muster with Mac users (they can be
a demanding bunch!) and before it’s truly ready for public consumption.

Mac users expect particular things to be present in a “good” Mac application.
In this chapter, I show you some of the most common features that you can
add to an application and settings that you need to tweak before releasing it
to friends, family, co-workers, or the public.

The bulk of your development tasks take place in Xcode and Interface
Builder. Some of the items in this chapter can be completed using features
found in Xcode and Interface Builder. However, these aren’t the only tools
Apple gives you for creating Cocoa applications. Nestled in the Applications
folder of your Developer folder, you'll find more than a dozen additional tools
and utilities that can help you create great Cocoa software. I show you how
to use a couple of them in this chapter: Icon Composer to create icons and
icns Browser to manage the icons in your project. Disk Utility, which comes
stock with all Macs, also makes an appearance in this chapter.

90 Part |: Developer Tools

Adding an About Panel

|
Figure 5-1:
The default
About Panel
of a Cocoa
application
is pretty
bland.

Within every application menu is a menu item titled About My Application,
where My Application is the name of your application. This is commonly
known as the About Menu, and clicking it opens an About Panel. The About
Panel typically conveys important information about the application (imagine
that!). For many years, developers created their own About Panel (sometimes
also called an About Box or About Window), but Apple has standardized this
use. Following Apple’s guidelines, an About Panel can display the following
information about an application:

+ Name or title: The name of the application
v Icon: The application’s icon
+* Version number: A number, such as 1.0, indicating which version this is

v~ Copyright date: A copyright note stating the year that the application
copyrighted

v Credits: Other pertinent information about the application, which
usually includes names of the team that built the application and other
acknowledgements

An application doesn’t have all these elements in the About Panel by default.
You must either add them to the project or alter the project settings for
them to appear in the About Panel. Figure 5-1 shows the default About Panel,
with the name of the application and the version number, when you create a
Cocoa Application (in this case, the application is named Utility).

2,

Utility

Version 1.0

After you alter the appropriate settings and add a couple items to your proj-
ect, the resulting About Panel is far more interesting to look at and is much
more useful to users. Figure 5-2 shows an About Panel that includes the basic
elements of an About Panel.

|
Figure 5-2:
The
enhanced
About Panel
looks a lot
better and

is helpful

to users.
|

|
Figure 5-3:
The Info.
plist file
contains
important
settings

for your
applcation.
|

Chapter 5: Putting Polishing Touches on Your Application 9 ’

Surely an improvement as big as that requires some code, right? Nope! By
setting a few parameters and adding the necessary files, Cocoa takes care of
the rest!

e Myl

IT

Utility

Version 1.0

WITEY COUTSInTyg
www.dummies.com

10475 Crosspoint Blvd
Indianapolis, IN 46256

Engineering

Mercedes Healy
Leo Hawk +

2008 Wiley Publishing

Most of the settings you need to address to customize an About Panel are
in the Info.plist file of your project. The Info.plist file resides within the
Resource folder of your project. Figure 5-3 shows its location in the project
window.

The Info.plist file is somewhat unique. At its heart, it’s nothing more than a
text file. But, that text file consists of XML (eXtensible Markup Language),
which is parsable by special applications, such as the Property List Editor,
one of the tools that resides in the Applications folder within your Developer
folder. (Property List Editor resides within the Utilities folder there.)

[NaXs] [Info.plist - Utility =

T mr—

_ _ Overview . Action BuildandGo Tasis Info

i il " Info.plist % A= IC e a

w [utility]
b [|Classes Key Value
» [Other Sources v Information Property List (11 items) =
(] Resources Localization native development regio | English

Executable file S${EXECUTABLE_NAME}
» [2] InfoPlist.strings lcon file |
» [MainMenu.xib Bundle identifier com.yourcompany.S{PRODUCT_NAME:identifier}

P[] Frameworks InfoDictionary version |s.0
¥ [Products Bundle name 5{PRODUCT_NAME}

> @ Targets i Bundle OS Type code APPL

¥/ Executables Bundle creator OS Type code |77

» /B Errors and Warnings Bundlaversion 1o

¥4 Find Restlts, Main nib file base name MainMenu

» L1t Bookmarks - S

Principal dlass |NSapplication

3=k
I Project Symbols

¥ (i@ Implementation Files

b (@ NIB Files

Debugging of “Utility” ended narmally. @ Succeeded

Part I: Developer Tools

92

There’s no need to pull out the big guns though because Xcode can also
parse the data in Info.plist. Instead of displaying the file as plain old text,
Xcode parses the data and displays it as a hierarchical tree (the way XML is
formed structurally). Each element in the hierarchy consists of a key/value
combo. You can double-click any value and alter it from within Xcode.

Setting an icon

Toward the top of the About Panel stands the application’s icon, which iden-
tifies your application at a glance but is present mostly for cosmetic reasons.
Set the icon for an application, and as a result, you set the icon in the About
Panel. You need to do two things to set the icon:

1. Add an icon file (with an . icns file extension) to the project window
by dragging and dropping it from Finder.

It’s customary for the icon file to reside in the Resources folder of a
project. Later in this chapter, | show you how to build an icon with Icon

Composer.

3 2. In Info.plist, enter the name of the icon in the Icon File field.
Type the name of the icon file exactly as you see it in Finder. The file
extension (. icns), however, is optional.

Figure 5-4 shows that an icon file Utilitylcon.icns has been added to the
project.

800 || Info.plist - Utility [an)

[10.5 | Debug | ppc) & - @ Q- string Matching

. Overview Action Build and Go Tas«s Info Search

G'mi‘usui“:ﬂ "5 <> Cinfoplist % = lC ¢l W@

EE— » [Classes Key Vaiue

w[] Other Sources v Information Property List |(11 items)
] A [] tility_Prefix.pcl Localization native development regio |English
Flgure 5 4' |Z: :l‘aI\:mP e Executable file i i _H;(ECUTABLE_NAMEF
Set the |C0n (L] Resources Icon file 4 | Utilitylcon.icns +]
[5G wnititylcon.icns Bundle identifier com.yourcompany.S{PRODUCT_NAME identifier}
Flle fleld in |1 Info.plist InfoDictionary version 6.0
. P [£] InfoPlist.strings Bundle name 5{PRODUCT_NAME}
|nf0_p|lst to P 4] MainMenu.xib Bundle OS Type code APPL
. ¥ (il Framewarks Bundle creator OS Type code |7
establish ;:)'r Froducts Bundle version 10
. e Main nib file base name MainMenu
the icon fOI’ :;z‘;‘:’i::;mmgs Principal class |NsApslication
your apph. :ﬁ;mdkilcs\;\ls
cation and L=
roject symbols
the About » (3] Implementation Files
P | b (53] NIB Files
anel.
— Debugging of “Utility” ended normally. @Succeeded

Chapter 5: Putting Polishing Touches on Your Application

WING/

|
Figure 5-5:
Select the
appropriate
target.
|

Setting the name or title

Next, you need to change the Bundle Name to affect the application name that
appears in the About Panel. This is probably the single-most important ele-
ment in the About Panel because it’s the panel that appears when you click the
About This Application menu. The title simply identifies that application.

You might be tempted to change the data next to the Bundle Name key in Info.
plist, but don’t. Instead, you set the application’s name in the Info window for
your project’s target. By default, projects assign the value $ { PRODUCT_NAME }
to the Bundle Name key in Info.plist. Thismeans that the product name comes
from elsewhere in your project because ${ PRODUCT_NAME} is a variable.
When you change the value in the Info window for your project’s target, the
Info.plist automatically reflects those changes at runtime.

The default name of the product usually matches the name of your project,
but it doesn’t have to. To change the product name, and in turn, the applica-
tion name that appears in the About Panel, follow these steps:
1. Locate and expand the Targets folder in the project.
The Targets folder has a red bull’s-eye icon, so it should be easy to spot.
2. Select the application target within the Targets folder.

The target will have a name that you recognize; probably the same name
as the project itself. Figure 5-5 shows the Utility target selected.

0

eo00o

[10.5 | Debug | ppc z)
Groups & Files 0 e
w [Unility]
[] Classes
v Other Sources

[| Info.plist - Utility

S @ 0

Buldand Go Tas<s Info Search

" Infoplist % o™lCo 8 B @

Key Value

¥ Information Property List

[w] nility_Prefix.pch
] main.m
v Resources
[G wtilitylcon.icns
[5] Info.plist
b [InfoPlist.strings
» [MainMenu.xib
b (] Frameworks
» (] Products
¥ @ Targets
b <4 Executables
» (% Errors and Warnings
w O Find Results
» L[Bookmarks
=5
@ Project Symbols.
» (@ Implementation Files
b (@ NIB Files

Localization native development regio
Executable file

Icon file

Bundle identifier
InfoDictianary version
Bundle name

Bundle OS Type code

Bundle creator OS Type code
Bundle version

Main nib file base name
Principal class

English

| S{EXECUTABLE_NAME}
|utilitylcon.icns

com.yourcompany.${PRODUCT_NAME:identifier}

l6.0
4 | S{PRODUCT_NAME}
|appL
s

1.0

|MainMenu

NSApplication

Debugging of “Utility” ended narmally.

@Succeeded

93

94 Part I: Developer Tools

3. Click the Info button in the project’s toolbar to open the Info window.
4. In the Info window, click the Build tab.
5. Locate and change the Product Name key value.

The Product Name resides within the Packaging section of the Info
Window, as shown in Figure 5-6. Changing the Product Name here
causes your built application to have a new name, and that new name is
reflected in the About Panel.

aNo Target "Utility" Info

{ General | Build | Rules Properties Comments |

c [Active (Debug) B (Q- search in Build Settings
Show: [All Settings]
setting value

¥ Packaging
Executable Extension
Executable Prefix

Expand Build Settings in Info.plist File ™
Force Package Info Generation ™
I Framework Version A
Info.plist File Infa.plist
Figure 5_6 Info.plist Other Preprocessor Flags
" Info.plist Preprocessor Definitions
Info.plist Preprocessor Prefix File
Change the Preprocess Info.plist File 2]
Preserve HFS Data (=]
Product Private Headers Folder Path Utility.app/Contents /PrivateHeaders
H Utility
Name in the Public Headers Folder Path Utility.app/Contents/Headers.
H ‘Wrapper Extension app
Build tab of v Search Paths
' Always Search User Paths. [m]
the target's Framework Search Paths
. Header Search Paths
Info window Lbrary Search faths
Rez Search Paths
tO Change Sub-Directories to Exclude in Recursive 5... | *.nib “.Iproj *.framework *.gch (*) CVS .svn *.xcodeproj *.xcode..
. Sub-Directories to Include in Recursive Se...
the apphca- User Header Search Paths
3 ¥ Unit Testing
t|0n name Other Test Flags
Test Host
Test Rig
that appears R
1 Current Project Version
in the About Generated Versioning Source Filename utility_vers.c P
Panel Generated Versionina Yariables Z
‘# - ||E‘ Based On: | Nothing O]
=1 |

Displaying a version number, a
copyright date, and credits

Besides using a title to identify your application, it’s also a good idea to
provide a version number, a copyright, and credits in the About Panel:

v The version number helps users know at a quick glance what version of
the application they’re using, in case they want to know when it comes
time to download a newer version of the application.

95

Chapter 5: Putting Polishing Touches on Your Application

|
Figure 5-7:
Change

the Bundle
Version key
to affect

the version
number that
appearsin
the About
Panel.
|

v The copyright date is useful for reminding users that your work is copy-
righted, and it also provides a convenient time stamp.

v The credits in the About Panel permit you to credit the various team
members that helped create the application. This element isn’t strictly
necessary, but sometimes it feels good to brag about your application.

To include the version number of your application in the About Bundle,
change the Bundle Version key value in the Info.plist. Figure 5-7 shows
version 1.5.

N0 | | Info.plist - Utility =)
[10.5 | Debug | ppc '] ;2 - @ Q.- String Matching

Overview Action Build and Go Tasks Info Search
Groups & Files I~ B Info.plist 3 <™ Cyl #, B @
w [utility =

[] Classes Key,
¥ (] Other Sources
[i] nility_Prefix.pch
[l main.m
¥ [| Resources
5 wrilitylcon.icns
Info.plist
» [£] InfoPlist.strings
b [MainMenu.xib
b (] Framewarks
b (] Products
¥ (@) Targets
by Utility
b <4 Executables
b {B Errors and Warnings
¥ O Find Results
11 Bookmarks
=E
@ Project Symbols
b (] Implementation Files
b (G NIB Files

[Value
v Information Property List (11 items)
Localization native development regia |English
Executable file | SIEXECUTABLE_NAME}
Icon file Utilitylcon.icns
Bundle identifier com.yourcompany.S{PRODUCT_NAME:identifier}
InfoDictionary version |60
Bundle name | ${PRODUCT_NAME}
|apPL
ke

Bundle OS Type code
Bundle creator OS Type code
Bundle version s +]

Main nib file base name MainMenu

Principal class |NSApplication

Debugging of “Utility” ended narmally. @ Succeeded

You can display a copyright date at the bottom of the About Panel with the
Copyright key in Info.plist. By default, the Copyright key doesn’t exist, so you
must add it. Follow these steps:

1. In Info.plist, select the top item in the hierarchy, Information Property
List, as shown in Figure 5-8.

2. Click the button to the right of the Value column to add a new key to
the Info.plist. Select Copyright (Human-Readable) from the list of pos-
sible key names.

3. Change the Value of the Copyright (Human-Readable) key to whatever
you desire at the bottom of your About Panel.

Figure 5-9 shows a completed Copyright (Human-Readable) key.

90

Part I: Developer Tools

|
Figure 5-8:
Select
Information
Property List
in Info.plist.
|

|
Figure 5-9:
Add the
Copyright
(Human-
Readable)
key to Info.
plist to
display the
copyright at
the bottom
of the About
Panel.
|

Groups & Files

<.

Info.plist %

[Info.plist - Utility

2 Q- String Matching

w [utility
» [Classes
w [Other Sources
[i] wility_prefix.och
[w] main.m
[| Resources
5 riliyleon.icns
| Info.plist
| InfoPlist.strings
P[] MainMenu.xib
b [Frameworks
[Products
¥ ©) Targets
b oy Utility
b <4 Executables
» (B Errors and Warnings
w (4 Find Results
» LIl Bookmarks
(3= Rlel]
W Project Ssymbals
¥ [@ Implementation Files
b (3] NIB Files

Value
v Information Property List (11 items)
Localization native development regio |English

Executable file

Icon file

Bundle identifier
InfaDictionary version
Bundle name

Bundle OS Type code

Bundle creator OS Type code
Bundle version

Main nib file base name

Principal dlass

S${EXECUTABLE_NAME}
Utilitylcon.icns

S{PRODUCT_NAM

6.0
S{PRODUCT_NAME}
APPL

kel

15

MainMenu
NSApplication

Debugging of “Utility” ended normally.

|| Info.plist - Utility

Groups & Files |
v [utiliey]

@Succeeded)

» [Classes

|| Other Sources

[i] Utility_Prefix.pch

Value
‘v Information Property List (12 items)
Copyright (human-readable) + | 2008 Wiley Publishing +)
Localization native development regic |English

[w] main.m
w [Resources
[5 wrilityicon.icns
B Info.plist
b [£] InfoPlist.strings
B [i4] MainMenu xib
» [Frameworks
» (] Products
¥ @) Targets
B ol Utility
> Executables

» (% Errors and Warnings

Executable file

Icon file

Bundle identifier
InfaDictionary version
Bundle name

Bundle OS Type code

Bundle creator OS Type code
Bundle version

Main nib file base name
Principal class

S{EXECUTABLE_NAME}
Utilitylcon.icns

com.your
6.0
${PRODUCT_NAME}
ApPPL

kel

ny.${PRODUCT_NAMI

15
MainMenu

NSApplication

w (4 Find Results
b L1 Bookmarks
> scm
@ Project Symbols

b [Implementation Files
b (53] NIB Files

Debugging of “Utility” ended normally.

@Succeeded

You can display all sorts of interesting and useful credits in a scrolling text
field in the middle of the About Panel. All you have to do is add a Credits file
to your project’s Resource folder. The Credits file can be either a rich text file
(.rtfor .rtfd) or an HTML (HyperText Markup Language) file. Both for-
mats can display stylized text and images. HTML has the added benefit that

it can display clickable links, which can be useful for adding your company’s
URL or an e-mail address for support. Be forewarned, though, HTML files
don’t contain images; instead they reference separate image files. So, if you
plan on using HTML, more files are involved than just the HTML if you want
to display graphics. Figure 5-10 shows a rich text Credits file in the project.

Chapter 5: Putting Polishing Touches on Your Application

Figure 5-10:
Add a
Credits

file to the
project to
display
stylized
text and
graphicsin
the About
Panel.
|

800 « Credits.rtf - Utility

[10.5 | Debug | ppc = .& (=] @ Q- string Matching

Overview Action Build and Go Tasts Info Search

]

G"'_:J"US A Il < s Creditstfl &
w (23 Utility L] Wiley Publishing
[Classes n www.dummies.com
w [Other Sources
[Lnilicy_Prafix.pch 10475 Crosspoint Blvd.
) Indianapolis, IN 46256

|

[wi] main.m
¥ [] Resources Eiainaai
| Ceiun Mercodes Hasty

] Urilitylcon.icns Leo Hawk
[5] Info.plist
b [5] InfoPlist.strings
b [MainMenu.xib
b (] Frameworks
» (| Products
v @ Targets
b oy Utility
b 4 Executables
» /B Errors and Warnings
¥ 3 Find Results
» (11 Bookmarks
> scm
@ Project Symbols.
» (i Implementation Files

L

=T

19 Filac
Debugging of “Utility” ended normally. @Succeeded)

Assigning an Icon to Your Project

Figure 5-11:
Xcode
assigns a
generic
icon to all
applications
that

it builds.
|

One of the first things that users notice about your application is its
icon. When you first build an application with Xcode, it assigns a Generic
Application icon, as shown in Figure 5-11.

You can assign a different icon to your application by adding an icon (ICNS)
file to your project and setting the Icon key in Info.plist. Before you do that,
though, you need an icon file in the first place. Apple gives you two utilities
to help you work with icon files: Icon Composer and icns Browser.

97

98

Part I: Developer Tools

3

Icon Composer

Icon Composer is a tool for constructing ICNS icon files. You can use it to
gather, in one ICNS file, all the possible sizes for a particular icon. You can
find Icon Composer here:

/Developer/Applications/Icon Composer

To create your own ICNS file, you need an image-editing application, such
as Adobe Photoshop, Photoshop Elements, Pixelmator, GIMP, or Graphic
Converter. Then follow these steps:

1. In your image-editing application, create a new RGB (red, green, blue)
document with dimensions of 512 x 512 pixels.
This is the document you’ll use to create an icon image.

2. With the various graphics tools in the application, create the image
that you want to use as your icon.

3. If the image doesn’t consume the entire 512 x 512 pixels, delete the
unused portions.

Leave unused portions of the image blank because icons can be trans-
parent. Also, deactivate any background layer to maintain transparency.

4. Save the result as a PNG document.

The PNG format supports transparency. Figure 5-12 shows a sample
Photoshop image for use in an icon. Note the checkerboard pattern
that appears in the background. It represents the transparent portion
of the image. It will also be transparent when added to an icon in Icon
Composer.

After you complete the design and creation of your icon artwork, you can use
Icon Composer to build an icon file:
1. Launch Icon Composer by double-clicking its icon in Finder.
An empty icon template opens, as shown in Figure 5-13.

2. Drag the PNG image from Finder to the 512 x 512 square in Icon
Composer.

Icon Composer displays a sheet asking if you want to use this PNG image
for all the other image components in the icon, as shown in Figure 5-14.

Chapter 5: Putting Polishing Touches on Your Application

Figure 5-12:
Don't forget
to remove
the unused
portions
from the
background.
|

Figure 5-13:
Icon
Composer
presents
you with a
blankicon
template.
|

o S| saa] S =au] S san S Al l EH
TP TP RTOT I T BTN I U o IR Tt i IR TR i INUU I B0 S DU T vt DY Y PR R I B SN RU IR

100% [+] Doc: 768.0K/0 bytes »

&

512

lmages | Masks | Preview |

99

’ 00 Part I: Developer Tools

fistited

| Copyimageto other sizes? [

:&U Would you like to copy this image to the smaller icon

sizes as well?

() Use for this size only |

| @ Copy to all smaller sizes

() Copy to smaller sizes which are empty

Figure 5-14: .
When you (“import)
add an
image to
anicon | s
document,
Icon -
Composer
asks if you 16
want to use 128 '
the image
for other
icon sizes 2

as well.
NP Masks | Preview |

3. Select Copy to All Smaller Sizes and click the Import button.

Icon Composer imports the image and adds it to all image sizes, as
shown in Figure 5-15.

A0 Untied

Figure 5-15:
Icon
Composer
can auto-
matically
scale

icon sizes
for you.
|

Chapter 5: Putting Polishing Touches on Your Application 1 0 ’

<MBER
é"\&

3

WMBER
é&
&

4. Choose Filer>Save to save the icon template and then give it a name.
5. Choose File>Export to export the icon as an ICNS file.
Be sure to use the ICNS file format for Xcode.

6. To use the ICNS file, drag it into the Resources folder of your Xcode
project folder.

7. Change the Bundle Icon entry in the Info.plist file.

I describe how in the “Setting an icon” section earlier in this chapter.

The next time you build this project, the resulting application uses the newly
added ICNS file as its icon. Double-click the application to launch it, and
you'll see the new icon in the Dock as well.

Managing your icons

Unlike the Icon Composer application, which lets you create icon files, the
icns Browser application is strictly an icon viewer. With icns Browser, you
can view the contents of any ICNS file, but you can’t change those contents.

The icons Browser utility is handy for finding out why a particular application
isn’t displaying an icon properly. For example, your application might display
a nice-looking icon when viewed at 128 x 128, but display nothing at the 32 x 32
size. The icns Browser can help you discover which icon elements are missing
so you can correct the situation.

icns Browser resides here:
/Developer/Applications/icns Browser

To see how icns Browser works, launch it and choose File=>Open to open the
ICNS file you created with Icon Composer. You see something that looks like
Figure 5-16. Notice that several elements of the icon file are missing.

This ICNS file doesn’t contain all the elements possible in an ICNS file because
you made it for Mac OS X only. The blank elements in this ICNS file are for
maintaining compatibility with earlier versions of the Mac OS. As a Cocoa
programmer, you can’t target earlier versions of the Mac OS anyway, so forget
about that old technology! The Mac OS is smart enough that it can scale down
larger icons for use at smaller sizes. You'll notice the icns Browser application
is getting a little dated because it doesn’t yet support 512 x 512 or 256 x 256
icons. It’s still a useful tool for sanity checks, though.

7 02 Part I: Developer Tools

.00 [¥ Utilitylcon.icns.
1 bit 4 bit B bit 32 bit 1 bit mask 8 bit mask

Mini
(12x16)

Small

116x16) O O
Large

(32x32)

Huge
(48x48)

32 bit 8 bit mask 32 bit

|
Figure 5-16: fiezines
Viewing the
contents of
an ICNS file. —
|

Tile
(128x128)

Creating a Disk Image for Distribution

After you build a finished application with Cocoa, you’ll no doubt want to
distribute it to friends, co-workers, or maybe even the world via the Internet.
The easiest way to provide your users with an application is to put it on a
disk image. Disk Utility is a tool that accompanies the Mac OS, and if you
aren’t familiar with it already, it’s located here:

/Applications/Utilities/Disk Utility
To create a new disk image for your application, perform these steps:

1. Launch Disk Utility.
2. Choose File->New=Blank Disk Image.

A window opens asking you to name the new disk image, as shown in
Figure 5-17.

3. Name the file and volume name and assign a volume size, volume
format, and image format:

e Save As: The name of your disk image.

¢ Volume Name: The name that appears on the mounted volume
when a user double-clicks the disk image.

e Volume Format: You can create disk images in a variety of formats,
but generally speaking, you want to use Mac OS Extended format
for distributing your application to others.

|
Figure 5-17:
Name the
disk image
and set its
properties.
|

Chapter 5: Putting Polishing Touches on Your Application 1 03

e Volume Size: Make sure that the volume size is large enough to
hold your application and any auxiliary files you wish to include.
Don’t worry if the volume size is too large; you can compress it
later. In fact, make sure that the volume size is larger than the
size of the application and auxiliary files in case you want to add
something else to the image later. You can find the combined size
of your application and its auxiliary files by selecting the parent
folder of the application in Finder and choosing Files=>Get Info.

e Encryption: You can encrypt disk images, but for most purposes,
you don’t need this feature and you can safely set it to None. If you
need your disk image secure from other eyes, encrypting the disk
image lets you password-protect the image. Only those who know
the password can open the disk image.

e Partitions: The Partitions setting lets you split a disk image into
multiple sections. In general, this isn’t a setting you need to adjust
if you want to make your software available on a disk image. Unless
you’re creating a disk-image master for burning CDs, usually select
Single Partition — Apple Partition Map in the Partitions popup.

¢ Image Format: Set as read/write. This permits you to read from and
write to the disk image and is handy when you want to add more
files to the disk image later.

OROu® New Blank Image

Save As: My Cool Application E]

[«]w][22][=]|m) [GFRelease Fd (Q search
m Name ~ Date Modified ¥ |

Ll TowerMac
ﬂ Tiger HD
n Leopard HD

B Music HD
L RVTIN

Volume Name: | My Cool Disk Image

Volume Size: | 100 MB |
=
3+

Volume Format: | Mac OS Extended

Encryption: | none =]

Partitions: | Single partition - Apple Partition Map L éi
Image Format: | read/write disk image %
New Folder [Cancel) Create

oA

’ 04 Part . Developer Tools

4. Click Create.

Disk Utility churns for a second and produces the desired disk image at
the location you specified.

5. Locate the disk image in the location that you specified in Step 4 and
double-click it.

The disk image mounts a new volume if it hasn’t done so automatically
already.

6. Copy your application and any extra files to the new volume.

7. With the disk image in the foreground and eject the volume by
pressing 8+E.

8. Return to Disk Utility and open the disk image via File=>Open Disk
Image.

Disk Utility opens and mounts the image, as shown in Figure 5-18.

9. Choose Images~>Convert to convert the disk image to a compressed
format. Name the new disk image and select Compressed from the
Image Format drop-down list, as shown in Figure 5-19.

10. Click Save to create the new compressed disk image.

When Disk Utility is finished, you can upload the resulting disk image to
a Web server or send it to others via e-mail.

800 My Cool Application.dmg

T s I S e RN

Verify Info Burn Mount Eject Enable lournaling New lmage Comvert Resize Image

E'l 0

[FirstAid | Erase Partition Restore |

(=1 76.7 GB IBM-IC35L090AVV

B Music HD If you're having trouble with the selected disk:
1 19.2 GB IBM-DTLA-30702C » Click Repair Disk. If the repair fails, back up and erase the disk.
+ If Repair Disk is unavailable, click Verify Disk. If the disk needs repairs, start up from

B xtra HD your Mac OS X installation disc, and then choose Utilities > Disk Utility.
574.5 GB ST380013A
If you have a permissions problem with a file installed by the Mac OS X installer, click
[Leopard HD Repair Permissions.
Z4298.1 GB WDC WD3200J8-
E Tiger HD ™ Show details Clear History

2/ PIONEER DVD-RW DVR-115

| = disk6
. i disk6
Fi gure 5-18: B My Cool Application.dmg
H il My Cool Disk |
Disk Utility il My Eoal Diskctmags
opens the
disk Image Verify Disk Permissions ("Verify Disk)
and mounts hapsic o)
its volume
When = Disk Description : Apple read jwrite Total Capacity : 100.0 MB (104,890,368 Bytes)
a Connection Bus : Disk Image Disk Write Status : Read,Write
ope ned Partition Map Scheme : Apple Partition Map
p . Disk Image Path : (Tiger HD/Users/e/Desktop/Release /My Cool Application.dmg

®

Chapter 5: Putting Polishing Touches on Your Application

Figure 5-19:
Create
anew

compressed

disk image
to eliminate
the extra
space from
the original
disk image.
|

21 76.7 GB IBM- Save As: | My Cool 18
B Music HD
‘Z1o2cemm- [« [»] (za]=]m) ({]Release B (Qsearch B

Bt g DEVICES | Name e
= 74.5 cB5T38 5| My Cool Application.dmg Today, 3:02 AM

B - Ll TowerMac = . L taller, click

Fopan Tiger HD
7 298.1 GB WD) Leopard HD.

[Tiger HD B Music HD Elear History)
() PIONEER DVD B xvarin |
— [Imycoo. &

' Zdiské
a i ¥ SHARED

= diské o iac a
(2 My Cool APl g1 oy

LMy Cool Bl @ iMac.iocal

imase Format
Crone i Ne)
Repair Disk
G (oo
|
Disk Description : Apple read fwrite Total Capacity : 100.0 MB (104,890,368 Bytes)
a3 Connection Bus : Disk Image Disk Write Status : Read,Write
— Partition Map Scheme : Apple Partition Map
® Disk Image Path : (Tiger HD/Users, K 1 ool
/)

105

7 06 Part I: Developer Tools

Part Il

Instant Cocoa and
the Objective-C
Language

The Sth Wave By Rich Tennant

“You know Kids — you can’t buy them just any
Web auvthoring software.”)

In this part . . .

‘ ocoa programmers use their own language, a big
brother to the popular C language, called Objective-C.

Part Il starts by giving you the information you need to
make sense of this funny-looking language. You see how the
Objective-C language works, how it handles object-oriented
programming, and what it shares with its kid sister, C.

Throughout the remainder of Part II, you continue to
expand your Cocoa interface knowledge by working with
classes, windows, and the huge collection of controls that
the Cocoa frameworks have to offer.

Chapter 6
The Basics of Objective-C

In This Chapter
Using object-oriented programming
Knowing the differences among classes, variables, and methods
Understanding and coding in Objective-C

Using your own classes

0 bjective-C is the language that most developers use to program Cocoa
applications. Although it’s not the only language that you can use for
Cocoa development, it’s by far the most popular. Objective-C is a superset
of the popular C programming language that bears an uncanny resemblance
to SmallTalk (which is no accident). If you're an experienced C programmer
already, you'll find that Objective-C makes you feel like you're in familiar
surroundings, with a few language oddities thrown in. If you aren’t well
versed in C but know another programming language, you can probably
figure out what’s going on anyway.

This chapter examines the basics of object-oriented programming and the
Objective-C language. After you get the hang of how Objective-C works, the
chapter helps solidify your skills by building a project and using Objective-C.
In the process, you find out how to create objects in code. Next, the chapter
runs you through another important topic in Objective-C: class methods.
The chapter concludes with a look at the way you should name things in
Objective-C. Naming schemes plays an important role in Objective-C. As

you can see, this chapter is a collection of several small facts. These bits of
knowledge form a larger body of information that you’ll use every time you
program with Cocoa using the Objective-C language.

Why Use Object-Oriented Programming?

Objective-C, as you may have already guessed, extends C by adding object-
oriented features to it. Object-oriented programming is a paradigm whereby
you group related data and functionality into a construct called an object.

7 ’ 0 Part ll: Instant Cocoa and the Objective-C Language

Because an object bundles together data and functionality into one
“package,” your programming efforts gain several benefits:

v It’s easier to design and write software that’s object-oriented. Objects in
object-oriented computer programming (OOP, not to be confused with an
OOPS)) are analogous to objects in the real world. Consider an everyday
object like a kitchen window, which has properties like height, width,
glass color, thickness, and so on. Likewise, an OOP object like a computer
window has properties like height, width, color, and transparency.

You can do several things to an object like a kitchen window. You can
open it, close it, wash it, and even break it. Again, the analogy follows
with an OOP window. You can open it, close it, and can change its size.
But, [hope you don’t try to break one.

v You classify various elements of your application as objects in a sort
of modular relationship to one another, making the process of pro-
gramming applications proceed much quicker. The structure that OOP
enforces helps you to build very sophisticated software, but still be able
to keep track of things.

1 Because OOP makes your software modular, your software is much
easier to maintain, to repair if it’s broken, or to modify later when you
want to upgrade it.

Class Is No Object!

Objects in OOP, like objects in the real world, have properties and functions.
Objective-C calls these instance variables and methods, respectively. The
methods determine what functionality an object has, and they operate on the
instance variables, or the properties of the object.

For instance, every GUI (Graphical User Interface) application uses windows.
A window object might have instance variables that describe its height,
width, and color. Its methods would then do something with those instance
variables. One method might change the width of the window. Another
method might change its height. Yet another method might change the color.

Methods of an object are like gatekeepers for the instance variables. In
Objective-C, other objects and their methods can’t access instance variables
directly. Instead, they must access instance variables via methods.

Chapter 6: The Basics of Objective-C

Declaring instance variables

Instance variables, as the name implies, are variables that belong to an
instance of a class. Instance is another name for object. Objective-C variables,
like variables in many other programming languages, are references to data
about a particular state of the object. For example, to declare an instance
variable that references a button control, called aButton, your class inter-
face would look like this:

@interface MyClass : NSObject

{
NSButton *aButton;

}

@end
Here’s how this code works:

v The einterface line begins the class declaration and @end denotes the
end of the class declaration.

v MyClass is the name of the class, and NSObject is the superclass from
which MyClass inherits. NSObject is a generic class type, and it is ulti-
mately the superclass of all classes.

v Within the class declaration are two curly brackets. You must declare
instance variables within those brackets of the interface file.

The interface file is the file in your project with an .h file extension, and in C
you’d call it a header file. Interface files usually begin with an import state-
ment to load appropriate frameworks. C programmers would load libraries
(and in fact, libraries are allowed in Objective-C too!):

#import <Cocoa/Cocoa.h>

Pointers to objects aren’t the only type that can be declared as instance vari-
ables. All the usual C variable types are fair game too in a class interface:

@interface MyClass : NSObject
{

NSButton *aButton;

int age;

float percent;

}

@end

111

7 ’ 2 Part ll: Instant Cocoa and the Objective-C Language

Objective-C also has new and improved versions of data types that you might
recognize from C. For example, bool in C is BOOL in Objective-C, and it too
can be used to declare an instance variable:

@interface MyClass : NSObject
{
NSButton *aButton;

int age;
float percent;
BOOL collapsed;
}
@end

Declaring methods

Besides instance variables, you find method declarations in the interface. Unlike
the instance variables, however, method declarations appear after the curly
braces (but before the @end). Here’s a declaration for a doSomething method:

@interface MyClass : NSObject
{
NSButton *aButton;

int age;
float percent;
BOOL collapsed;

}
- (void) doSomething;
@end

If you're coming to Objective-C from C, you notice something different

right away. All method declarations in Objective-C begin with a dash ().
Thereafter, you assign a return type (in this case void) with parentheses. A
return type works just like those found in C. A method can return a value, or
not, in which case you assign void, just like in C. Following the return type
is the method name. It’s customary to name methods beginning with a lower-
case letter in Objective-C. Notice too, that the doSomething method has no
parameters. In the following example, doSomethingElse is declared with a
single parameter, an NSString:

@interface MyClass : NSObject
{

NSButton *aButton;

int age;

float percent;

BOOL collapsed;

Chapter 6: The Basics of Objective-C 1 ’3

- (void)doSomething;
- (void)doSomethingElse: (NSString *)aString;
@end

The method name is followed by a colon and then the parameter’s data type
in parentheses. The parameter’s name appears in the declaration, as it’s used
in the method itself. This is slightly different than what you might be accus-
tomed to in C function declarations, but so far it’s not too strange.

When you begin adding additional parameters to a method, however, things
start looking really weird to a C programmer. Besides having a name,

every parameter after the first one also has a label. In the following example,
drawAString has two parameters: aString and an int. The second
parameter has the label atThisXPosition.

@interface MyClass : NSObject

{
NSButton *aButton;
int age;
float percent;
BOOL collapsed;

}

- (void)doSomething;

- (void)doSomethingElse: (NSString *)aString;
- (void)drawAString: (NSString *)aString

atThisXPosition: (int)xPos;
@end

This can look very peculiar to seasoned C developers, but you’ll quickly
adjust to it. In fact, you may find that you prefer it because each parameter

is documented in the declaration itself. As you add additional parameters,
simply append a label, a colon, a data type in parentheses, and the parameter

name. For example, here’s the drawAString method with three parameters
instead of two:

@interface MyClass : NSObject
{
NSButton *aButton;

int age;
float percent;
BOOL collapsed;

}

- (void)doSomething;

- (void)doSomethingElse: (NSString *)aString;

- (void)drawAString: (NSString *)aString
atThisXPosition: (int)xPos atThisYPosition (int)
vPos;

@end

7 ’4 Part ll: Instant Cocoa and the Objective-C Language

Defining methods in an interface file

After you define a class in the interface file, you can move on to the imple-
mentation file. The implementation file has a filename extension of .m as in
MyClass.m. It’s where you define the various methods for your class. The
implementation file usually begins with an import statement to load the
interface file:

#import "MyClass.h"

The implementation and end lines come after the import statement,
within which you define the methods for the class:

#import "MyClass.h"

@implementation MyClass
@end

So far, this is all done for you by Xcode when you create a new class. You
then define the various methods that appear in the interface file. Following
the previous example interface file, the implementation file looks like this:

#import "MyClass.h"

@implementation MyClass
- (void)doSomething {

}

- (void) doSomethingElse: (NSString *)aString {

}

- (void)drawAString: (NSString *)aString
atThisXPosition: (int)xPos atThisYPosition (int)
yvPos {

}
@end

Each of the class methods are defined here. They look just like their decla-
ration counterparts in the interface file, but instead of each ending with a
semi-colon, curly braces begin and end the method. You put the code for
each method between those braces. Again, C programmers should feel more
or less at home here because C does the same thing (as does C++, Java, and
even JavaScript).

Chapter 6: The Basics of Objective-C

Coding in Objective-C

SMBER
S

After you declare a class, add instance variables and methods to its declara-
tion, and set up the shell of the implementation file, it’s time to write some code!

Sending messages to objects

One of the most basic ideas in Objective-C is the capability to send messages
from one object to another. To do this in Objective-C, you typically send

a message to an object telling it to perform that method. Objective-C uses
square brackets to denote that you're sending a message to an object.

Sending messages is similar to calling functions in other programming
languages.

For a generic object (named object), you'd send a message (named
message) like this:

[object message];
Note two things:
v The syntax of this statement makes it behave much like a command in
English. For example, you might say this to a taxicab driver:
Driver, go!
In Objective-C, the same command looks like this:
[driver gol;

v Each line of code ends with a semicolon. Except for the usual places where
you might leave one out in C (for example, an if statement), Objective-C
also requires a semicolon at the end of each line of code. Objective-C
is C, after all!

Passing parameters

Like traditional C functions, Objective-C lets you pass parameters (also
known as arguments) to methods. Going back to the taxi analogy, you might
want to tell the driver where to go:

Driver, go left!

115

7 ’ 6 Part ll: Instant Cocoa and the Objective-C Language

\\3

In Objective-C, the command might look like this:
[driver go:left];

For C programmers, the go method should seem roughly analogous to a
standard C function. If you add another parameter, though, the analogy
breaks down. Suppose, for example, that you want to pass two parameters
(direction and distance) to the go method:

[driver go:left distance:10];

In Objective-C, the first parameter follows the colon after the name of the
method (in this case go:1eft). Each subsequent parameter has a name,
followed by a parameter (in this instance, distance:10). In contrast, a
parallel C function might be

go(left,10);

In Objective-C, the meaning of the first parameter is usually obvious based on
the name of the method. Additional parameters have names to help you
identify their purpose.

Returning values

Like C functions, an Objective-C method can also return a value. If you tell a
taxicab driver to go a particular direction and distance, the next you're likely
to hear is the price of the fare. You tell the driver to do something. The driver
replies with a price. In Objective-C, this works much like it does in C.

price = [driver go:left distance:10];

Because some methods can return values, Cocoa programmers are fond of
nesting them within other methods. Suppose that you based your directions
to the cabbie on a map. You know that the driver should go left, but not nec-
essarily how far. In this situation, you might use a map object to find the dis-
tance to the desired location, embedding it in the go method.

[driver go:left
distance: [map startAt:locationl
destination:location2]];

Returning to the class that you defined earlier in this chapter, you’ll want to
write code in each of those methods that sends messages to other methods in
the same class. To call other methods within the same class, use self like this:

- (void)doSomething {
[self drawAString:@"hello" atThisXPosition:10
atThisYPosition:6];

Chapter 6: The Basics of Objective-C

Instantiating an object

After you create a class, you'll want to use it as an object. When you want to
create an Objective-C object, you send the alloc message to the class, like so:

MyClass* anInstance = [MyClass alloc];

The alloc message allocates memory and creates the class. An instantiated
object must also be initialized. You do so by sending the init method to the
instance, like this:

[anInstance init];

Because alloc and init are both required for a generic instantiation, it’s
customary to embed them in one statement:

MyClass * anInstance = [[MyClass alloc] init];

Then, you're free to work with the object (anInstance) as you need. You
could send the drawAString message to the instance:

[anInstance drawAString:@"hello" atThisXPosition:10
atThisYPosition:6];

Because you used alloc to create the instance, you must free up that
memory using release.

[anInstance release];

Managing memory

Recent versions of Cocoa provide support for garbage collection, but histori-
cally Cocoa hasn’t had garbage collection. Garbage collection is the process
whereby Cocoa dynamically frees memory that you've allocated for various
objects. Because this is a newer feature and because so many sources of
sample code do things the old way, it’s best that you understand memory
management in Cocoa without garbage collection.

Cocoa keeps track of memory by way of reference counting. This is a simple
counter that runs behind the scenes, keeping track of how many objects have
allocated memory and how many objects have released that memory. When
you create an object with alloc, you increase the reference count by one.
When you send a release message to the object, you decrease the count by
one. The name of the game here is that your reference count should end up
being zero after you're finished using an object. If the count is greater than
zero, you're leaking memory. And if the reference count is less than zero,

117

7 ’ 8 Part ll: Instant Cocoa and the Objective-C Language

you've freed an object in memory that you still need. Your code will crash
when you try to access this freed object.

As you saw in the previous section, an object is allocated with the alloc
method. The alloc method increases the reference count by one, so it
needs a corresponding release.

SomeClass *someObject = [[SomeClass alloc] init];
. do stuff with someObject here..
[someObject release];

So far, this is pretty simple because the allocation and release of the object
are all within the same block of code. Where things get a little mind-bending
is in the case of instance variables. Although it’s legal to access instance vari-
ables by name in your methods, it’s far wiser to access them only via acces-
sor methods.

SMBER Because of memory management issues, things can get ugly quickly if you
don’t use accessor methods to access instance variables. If you don’t use
accessor methods, there’s a very real possibility that your application will leak
memory or that it will crash when you try to release an object that’s already
been released.

For example, suppose that you have a class that has an NSString instance
variable called name. Declare two methods for accessing the instance vari-
able. A getter (name) and a setter (setName):

@interface MyClass : NSObject {
NSString *name;

}

- (NSString *)name;

- (void) setName: (NSString *)aName;

@end

Then, in your implementation file, define the methods like this:

@implementation MyClass
- (NSString *)name {
return name;
}
- (void) setName: (NSString *)aName
[aName retain];
[name release];
name = aName;
}
@end

NMBER
\‘&
&

Chapter 6: The Basics of Objective-C 1 ’ 9

The setName method sends the retain message to aName. The retain
method, just like alloc, increases the reference count by one. (It might help
to think of retain as the opposite of release.) So, the code keeps aName
around in memory for use elsewhere in the class. And because you're done
with whatever object name is pointing to, you then release name. The method
assigns aName to name. Following this simple plan prevents you from leaking
memory because each time name is used, whatever it was pointing to previ-
ously is released and the new thing it’s pointing to is retained.

If you're following along so far, you might be wondering what happens when
the object is finally destroyed. Won't you still have a reference count of one
for the name instance variable? The answer is yes! You must release the last
lingering name object in the dealloc method of the class.

- (void)dealloc {
[name release];

}

Here are some special cases where you don’t have to worry about retaining
and releasing objects:

+ When you create an object with one of the built-in convenience
methods of a class: That object is said to be autoreleased, which means
you don’t have to release it. Cocoa does the releasing for you. For example,
the NSString class has a stringWithString convenience method.
You can use it instead of alloc to create an NSString object:

+ (id)stringWithString: (NSString *)aString

Note that the definition of stringWithString begins with a + charac-
ter. This means that it’s a class method, and instead of sending the mes-
sage to an object, you send it to the class itself. For example, to create
an NSString with this method, you'd do something like this:

*aString = [NSString stringWithString:@"Hello,
World!"];

You don’t have to use alloc to create the object. And, because you use
a convenience method, stringWithString, it's autoreleased, so no
need to release it yourself.

1 When objects are autoreleased in code: For example, if you see an
object that has autorelease, there’s no need to release that object either:

SomeClass *someObject = [[[SomeClass alloc] init]
autorelease] ;

The autorelease method decreases the reference count by one, which
negates the increase by one of the reference count by alloc.

7 20 Part ll: Instant Cocoa and the Objective-C Language

Working with Your Own Classes

Because classes form the basis of your Cocoa projects, you use them fre-
quently. Most often, you create a class to store and manipulate the data for
your application. Cocoa geeks call this type of class a Model. The class that
takes care of displaying your data is the View. A third class — a Controller —
mediates between the Model and the View.

Here’s how you create and use your own class in broad terms:

1. Create a class.

2. Build an interface.

3. Add a Controller class and connect it to the interface.
4. Define the methods for the class.

5. Define an action for the class.
To try your hand at working with classes in Objective-C, follow these steps:

1. Create a Cocoa project.

Launch Xcode and choose File>’New Project. In the dialog that appears,
choose Cocoa Application from the list of choices, name the project, and
create it.

2. Create a class.

You can create classes in Xcode or Interface Builder. For this class, use
Xcode:

a. Choose Files>New File.
b. In the window that appears, choose Objective-C Class and click Next.

c. In the next pane that appears, name the implementation file of the
new class. Name it Driver.m, as shown in Figure 6-1.

This is the class you’ll use to create a taxi driver object. When you
create the Driver class, the header and implementation files —
Driver.h and Driver.m, respectively — appear in your project.

3. Create a new Controller class:

a. Double-click the MainMenu.xib file in Xcode to switch to Interface
Builder.

b. In the Library window, search for object and drag an NSObject item
to the project window.

¢. Press 8+D and name the new class MyController in the Identity
Inspector, as shown in Figure 6-2.

This class will communicate with your interface.

Chapter 6: The Basics of Objective-C ’ 2 ’

|
Figure 6-1:
Create a
classto
represent a
taxi driver.
|

|
Figure 6-2:
Name the
class My
Controller in
the ldentity
Inspector
window.
|

4. Create an interface:
a. In Interface Builder, open the default window in your NIB file.

b. From the Library window, drag a push button (an NSButton), a
check box, and four Label controls to your window.

You use two of the Label controls to display the name of your cab
driver and the fare for your trip. The other two Label controls are
simply labels for the interface (Fare: and Driver:).

Sooo o NewRle

New Objective-C class

File Name: |Driver.m |
& Also create Driverh”

Location: |~ [Desktop/PROJECTS /WILEY[Coena for Dummies v2 [Cocna Brogramming #| (Choose...)

Add to Project: | Taxilriver (]

Targets: # oy TaniDriver

(Cancel) (Pmﬁm]@'

[sNsX:) My Controlies gentity

*|x|e[@[0][0]4]

¥ Class Identity
= Class MyCantrolier -
.= ¥ Class Actions
—_— Action m
File's Qwmer First Responder Application MainMenu Window Wind..
Font Manager
=
=

Fg

T Interfae Buiider ientity
Name
Obect D 450

Lok | Narhing fInnerizea) =

Notes) Sheaw With Selection

122

Part ll: Instant Cocoa and the Objective-C Language

|
Figure 6-3:
Add four
Label
controls, a
push button,
and a check
box to the
interface.
|

Figure 6-3 shows the interface with the two empty Label controls
selected.

.00 o Window

Fare:

Driver:

E‘ Distance > 10 miles Calculate Fare

5. Add outlets to the MyController class.

For this project, you need to define three outlets as part of the
MyController class:

a. In the XIB project window, select the MyController class (see
Figure 6-2).

b. Press 8+6 to open the Identity Inspector window and add three out-
lets (distanceCheckbox, driverDisplay, and fareDisplay)
to the class.

The driverDisplay and fareDisplay outlets give you
access to the two Label controls in the interface, so you can
display the fare and the name of the driver there. The third
outlet (distanceCheckbox) permits you to find out whether
the Distance > 10 miles check box is selected.

Figure 6-4 shows the new outlets.

6. Add an action to the MyController class.

Add one action to MyController and name it calculateFare: (note
the required trailing colon), as shown in Figure 6-5. This is the action
that the Calculate Fare button triggers. When a user clicks this button,
the application displays the name of the cabbie and calculates the fare
based on one parameter: distance. If the trip is longer than ten miles,
the program returns a fare. If the trip is less than ten miles, the program
returns a different fare.

Figure 6-4:
Add three
outlets to
the My
Controller
class.
|

Figure 6-5:
Add a
calculate
Fare: action
to the My
Controller
class.
|

File's Owner

Fant Manager

First Responder

My Controller]

Application

MainMenu

Window (Wind...

File's Owner

Font Manager

First Responder

My Controller]

A

Application

MainMenu

=

Window (Wind...

Chapter 6: The Basics of Objective-C ’ 23

Class MyController =

¥ Class Actions

|
[+]=]

¥ Class Outlets
Outlet Type 4
E i ib
distanceCheckbox id
driverDisplay id

]

¥ Interface Builder Identity
Name

Object ID 450

Lock Nothing (Inherited)

Notes) Show With Selection

2| &2 | 2|00 %

¥ Class Identity

Class MyController E

¥ Class Actions

% MainMenu.xib

2=

¥ Class Outlels

Qutlet Type 4
| A Mai xib.

 distanceCheckbox id

driverDisplay id

| fareDisplay id

I
BE

¥ Interface Builder Identity

 —

Object ID 450

Lock Nothing (Inherited) +

Notes [Show With Selection

’ 24 Part ll: Instant Cocoa and the Objective-C Language

7. Wire the interface to the MyController instance.

You can’t do anything with the three outlets and one action in your code
until you connect them to the interface.

a. Control+drag from the MyController instance in the NIB file
window to the Label control that’s adjacent to the Fare label.

b. In the small black connections list overlay that appears when you let
<P go of the mouse, choose fareDisplay.

With MyController selected in the project window, press 38+5 to
see the connections while you make them.

c. Repeat the same process for the other Label controls and the
NSButton that looks like a check box by connecting them to their
respective outlets (driverDisplay and fareCheckbox).

Figure 6-6 shows the completed connections.
8. Create the files for MyController.

Select the MyController class in the project window and then choose
Filec>Write Class Files. The MyController.h and MyController.m files are
added to your project in Xcode.

- ; = © O O My Controller Connections
800 * MainMenu.xib (English) =] -
B=lu(i g — ST EFS - EEE
= — ¥ Outlets

e 9 A

File's Owner First Responder Application MainMenu Window (Wind...

Font Manager [FASEGaId

Fi

o

|
Figure 6-6:
The My
Controller
outlets and
actions.
|

Chapter 6: The Basics of Objective-C 1 25

9. After you complete your work in Interface Builder, choose File=>Save
to save the NIB file.

10. Return to Xcode to add code that makes your project work.

You find the following four files: Driver.h, Driver.m, MyController.h, and
MyController.m. See Figure 6-7. If the Driver and MyController header
and implementation files aren’t in the Classes folder already, move them
there. When you create them, they appear in whatever folder was last
selected in the project. It helps you keep things organized.

Continue with the following sections to finish your project.

800 Im| MyController.m - TaxiDriver o
(0.5 Debug Lppc -] Jé @ O Q- string Matching
_ Overview Action Buildand Go Tasks Info Search
Groups & Files II “File Name | < |Code -] a |@
w [TaxiDriver B [u MyController.m BK r!f
v [Classes
[ii] MyController.h
I LB MyControllerm |
i Driver.n
- . [u] Driver.m
Flgure 6-7: » (] Other Sources
[] Resources
Move the [5) nfo.plst
: » [£] InfoPlist.strings =
Ll < I MyController.m:1 & <No selected symbol> & <™= lc. |]
Driver and > [5] MainMenu.xin #ingart "MyController.h” L}
M » [Framewaorks
Y b (] Products a ainplensntation HyControl ler
» @ Targets ~ (IBAction)caloulateFare: (id)sender {
Controller 78 ik 5
» (% Errors and Warnings aend
header and v pas
H - » 11 Bookmarks
implementa B o
1 : @ Project Symbols
thn flleS tO b [l Implementation Files
the Classes IR
folder in
Xcode.
Debugging of “TaxiDriver" ended normally. @Succeeded
I

Defining the class

Click the Driver.h file to view its contents. The Driver class serves as the
model. To this file, add the following code to define the class interface:

#import <Cocoa/Cocoa.h>
@interface Driver : NSObject {

NSString *firstName;
}

7 26 Part ll: Instant Cocoa and the Objective-C Language

- (int)go: (int)direction theDistance: (BOOL)distance;
- (NSString *)firstName;
- (void)setFirstName: (NSString *)name;

@end
The code begins by including the appropriate header files:
#import <Cocoa/Cocoa.h>

The Cocoa framework provides basic functionality for your Cocoa
applications.

The code then defines a Driver class, which inherits functionality from
NSObject:

@interface Driver : NSObject {
NSString *firstName;
}

Almost all classes that you use in Cocoa inherit from NSObject. In fact, all
classes in this book inherit from the NSObject superclass. NSObject is the
primary base class for programming in Cocoa. You can think of NSObject
as a kind of generic class that contains methods and variables for creating
objects. When you aren’t creating a class based on a window, a button,

or some other existing class, use an NSObject. In this example, you're
defining a class (Driver), which is an NSObject. The Driver class has
one firstName instance variable that stores the taxi driver name.

The rest of the code defines the three methods for the Driver class:
- (int)go: (BOOL)distance;

The first method, go, is what your code executes when a user wants the
driver to take him somewhere. go has one parameter: a Boolean that repre-
sents the distance. For this example, imagine that the cab driver charges one
rate for short trips (less than ten miles) and another rate for longer trips.
Because this rate scheme includes only two prices, you can use a Boolean
variable to determine which rate to charge. A Boolean can have one of two
possible values: YES or NO.

The remaining two methods set and get the name of the cab driver. Later,
you assign the name of the cab driver with setFirstName when you create
an instance from this class:

- (void)setFirstName: (NSString *)name;

Chapter 6: The Basics of Objective-C 1 2 7

Then when you want to display the name, you ask the Driver instance for it
with the firstName method:

- (NSString *)firstName;

The @end marks the end of the Driver class declaration.

Implementing the class
Click the Driver.m file to reveal its code. To this file, add the following code:

@implementation Driver

- (int)go: (BOOL)distance {
if (distance)
return 10;
else
return 5;

(NSString *) firstName ({
return firstName;

- (void)setFirstName: (NSString *)name {
[name retain];
[firstName release];
firstName = name;

(void)dealloc {
[firstName release];
[super dealloc];

}
@end
Here’s how the code works:
v+ This code begins by importing the Driver.h interface, where the declara-

tion of your Driver class resides.

v The code then defines the methods for that class. All methods appear
within the @implementation and @end lines.

As you know from the header file, this class has three methods. The go
method returns a value of 5 or 10 based on the distance parameter.

7 28 Part ll: Instant Cocoa and the Objective-C Language

The firstName method returns the value of the firstName variable
égN\BEB that belongs to the instance.
<
<

It’s perfectly valid to give the same name to a variable and a method of
the same class.

v The Driver.m file defines the setFirstName method.

This is where things can get a bit strange. A newcomer to Cocoa might
assume that you could assign a value to firstName like this:

firstName = name;

Unfortunately, it’s not as simple as that. Because the name param-

eter (which is part of the setFirstName method) is a pointer to an
NSString object, you must be careful to clean house. (“Out with the old
and in with the new.”) If the name value is different than the firstName
value, you must release the firstName pointer and retain the name
pointer. This has to do with memory management in Objective-C, as |
describe earlier in this chapter.

<P Because the firstName and setFirstName methods give you access
to the firstName variable of the Driver class, programmers call these
accessor methods. It’s best to provide accessor methods when you want
to access variables that are internal to a class, rather than have a user
poke around in the guts of your class.

v The final method in the Driver.m file is the dealloc method, which
takes care of releasing the firstName pointer and de-allocating the
superclass.

[firstName release];
[super dealloc];

Using the class

Now that you've defined a Driver class, you may be wondering how you go
about using it.

Click the MyController.m file in Xcode and change the
code to look like the following listing:#import
"MyController.h"

#import "Driver.h"

@implementation MyController

- (IBAction)calculateFare: (id) sender

NSString *name
Driver *driver

@"Frederick";
[[Driver alloc] init];

NG/
$

Chapter 6: The Basics of Objective-C 1 29

int fare;

[driver setFirstName:name];
[driverDisplay setStringValue: [driver firstName]];

fare = [driver go:[distanceCheckbox state]];
[fareDisplay setIntValue:fare];

[driver release];

}

@end
Here’s how the code works:

v It declares and assigns a value to an NSString. Your taxicab company
is a small one; it has only one driver, Frederick:

NSString *name = @"Frederick";

Working with strings in C can be a nuisance. To get around this problem,
Objective-C gives you a convenient method for assigning string literals.
Simply place the @ character before the string. The @ character signifies
the beginning of a string literal in Objective-C.

v The code uses the alloc and init methods to create a driver object:

Driver *driver = |[[Driver alloc] init];
// code here

[driver release];

When you create objects using the alloc and init method, it’s crucial
that you also release them after you've finished using them. If you don't,
you'll leak memory.

Notice that the object name (driver) has a lowercase spelling, but its
class (Driver) has an uppercase spelling. See the “Naming things in
Objective-C” sidebar to see why.

v After you create a driver object, you can begin using its various meth-
ods. The code assigns a name to the driver object:

[driver setFirstName:name];
» You calculate the cab fare with the go method:

fare = [driver go:[distanceCheckbox state]];
[fareDisplay setIntValue:fare];

v The code passes a second parameter based on the current state of
distanceCheckbox. The go method returns a value for the parameters
you pass to it, which you can then display in the interface with the
fareDisplay outlet.

’30 Part ll: Instant Cocoa and the Objective-C Language

Testing

Press 8+R to test your handiwork. You see something that looks like

Figure 6-8.
|
Flgure 68: 800 Window
The
completed Fare: 10
prOject Driver: Frederick
assigns ™ Distance > 10 miles (Galculate Fare)
Frederick —————
afare.
|

When the user clicks the button in the interface, the calculateFare method
of the MyController class creates the driver object, uses its methods, and
releases it. Therefore, each time the user clicks the button, the code creates a
new object, works with it, and releases it.

Naming things in Objective-C

Most programming languages have naming
conventions, and Objective-C is no exception.
Although these so-called rules aren’t manda-
tory, they have the following benefits:

v Improve the legibility of your code.
v~ Give you hints about code functionality.

v Make your code work with Key-Value
Coding (KVC) and bindings (Chapter 18).

v Make it easier for others to interpret your
code.

Class names: Class names in Objective-C
begin with an uppercase letter. Using the
class presented earlier in this chapter, Driver
is the (capitalized) name of the class. This

convention doesn't pertain to only the classes that
you create. It applies also to the classes that Apple
provides in the Cocoa framework. For example,
look at the following built-in class names:

¥ NSString
¥ NSNumber
V¥ NSArray
V¥ NSImage

Each of these classes begins with a capital
letter. Further, they begin with the same two
capital letters, N and S. The classes have this
naming system because they're refugees of
the NeXT STEP operating system, upon which
Apple based Mac 0S X. With this little naming

convention, you can instantly tell which classes
in your code are your own and which ones
come from the Cocoa framework.

Xcode and Interface Builder try to help you
remember to capitalize class names. Each time
you create a new class with either application,
it provides you with a default class name that's
capitalized.

Instance names: In contrast to class names,
instances begin with a lowercase letter. For
example, earlier in this chapter, you created an
instance of the Driver class like this:

Driver *driver = [[Driver

alloc] init];

The name of the instance is driver. You cre-
ated an instance of NSString similarly:

NSString *name =
@"Frederick";

When you use the lowercase names for
your instances, it's easy to discern between
instances and classes. This is especially handy
when the class and instance names are the
same.

Filenames: Cocoa source code files must follow
the prescribed naming scheme. You've already
witnessed that Objective-C classes consist of
a header file and an implementation file. For
example, the Driver class has the following two
files.

v Driver.m: The implementation file
v* Driver.h: The interface (or header) file

Chapter 6: The Basics of Objective-C 13 ’

’32 Part ll: Instant Cocoa and the Objective-C Language

Chapter 7

MVC Design

In This Chapter
Getting familiar with the Model-View-Controller (MVC) design pattern
Building a project with MVC

Adding a View and a Controller

f you read Chapter 6, you looked at some of the basics of object-oriented

programming with Cocoa. You examined how to define a class and how
to create an object with that class. Along the way, [promised that this would
make programming simpler and, more importantly, reusable.

Sure, you can make classes and objects all day long, but how do they actu-
ally fit together to make an application? This chapter takes object-oriented
programming to the next level and shows you at a more abstract level how to
design an application with all these classes. A thoughtful Cocoa programmer
doesn’t just throw a bunch of classes together and come out on the other
side with a masterpiece. Instead, a Cocoa programmer thinks about how the
various parts of an application work together and then designs the applica-
tion using the famous Model-View-Controller (MVC) design pattern.

By following this design pattern, you can build applications that are modular,
easier to read, and consist of components that you can reuse in other applica-
tions. One of the great benefits of object-oriented programming is the ability
to reuse code. By reusing code, you can reduce the amount of time you need
to spend programming, reduce the number of bugs you have in your code, and
ultimately create better software. All is not necessarily smiles and sunshine
when it comes to code reuse, however. You must rigorously debug your code
and maintain a single version. If you don’t, you might inject a bug that
propagates across all applications where you use the code.

734 Part ll: Instant Cocoa and the Objective-C Language

Taking a Look at MUC Design

MVC stands for the Model-View-Controller design pattern. Don’t let the words
scare you, though. What it really means is that you can design your software
according to a specific pattern that gives you the most bang for your buck. In
case you haven’t guessed already, an application that follows the MVC design
pattern has three different objects (at a minimum):

+* Model: An object that provides data to your application.
v View: An object that displays data in your application.

v Controller: An intermediary object that obtains data from the Model and
passes it to the View for display. Alternatively, the Controller might take
data that’s changed in a View and inform the Model that it has changed,
so the Model too can change.

For a real-world example analogy, suppose you’re a student sitting in a class-
room with a chalkboard and a dictionary:

v The dictionary is a storage of information, or in MVC terms, the Model.
v The chalkboard is the View, a place to display information.

v You, the student, are the Controller.

Someone asks for a definition of a word. You (the Controller) consult the dic-
tionary (the Model), and report the definition to the chalkboard (the View).

What makes the MVC pattern so great is that at any time, you could
replace any of the objects:

» You could replace the Model (the dictionary), with a different Model (a
dictionary from a different publisher). The Controller and the View stay
the same, but the Model changes. You (the Controller) and the chalk-
board (the View) keep doing the same tasks that you always do. The
Controller looks up a new word, and the View displays it.

» You could replace the chalkboard with a dry-erase board. This time, the
View changes, but the Controller (you) and the Model (the dictionary)
remain the same. You look up a word in the dictionary (the Model) and
display it on the dry-erase board (the View) instead.

v Someone else could take your place as the Controller. A new student could
step in as your replacement. The Model (the dictionary) and the View (the
chalkboard) don’t change, but a new Controller (another student) takes
your place. He can look up the word in the same dictionary (the Model) and
display the definition on the same old chalkboard (the View).

Chapter 7: MVC Design

<MBER
é"\&

With MVC, the Dictionary-Chalkboard-Person pattern can also work in
reverse. For example, suppose that a new definition appears on the chalk-
board (the View). The Controller would see the new definition and, knowing
that the definition isn’t already in the dictionary (the Model), could tell the
Model that it needs to be updated with the new definition. The analogy starts
to break down a little here, but hopefully you get the gist.

By separating the tasks that your Cocoa objects perform, you can make your
software much more modular. This permits you to reuse classes quite easily.
You can always move the chalkboard into a different classroom completely
and use it there. Similarly, you can move dictionary, or even the student, into
a different classroom, and they’ll function in much the same way as they did
in the original classroom.

By following the MVC design pattern, your Cocoa objects can gain the same
benefits. If you have an interesting or useful Model in one application, you can
easily move it for use in another application. Similarly, if you have a really nice-
looking View in one application, you can use it in other applications as well.

Another great benefit of using MVC design patterns in your applications is
that several Cocoa technologies rely on MVC. By using MVC in your applica-
tions, you can take advantage of these other Cocoa technologies. For example,
Cocoa’s bindings technology requires the use of MVC design. By incorporating
MVC into your own application, you can then take advantage of all the goodies
that bindings provide. Check out Chapter 18 for more on bindings.

Building a Project with an MUC Design

To design an application that follows the MVC design pattern, you differenti-
ate the classes in your application based on the functions they perform. For
example, suppose that you want to create a banking application to track the
money in your bank account. Your design works like this:

1 A Model class stores the balance in the account. The View class, the inter-
face of the application, displays information to the user and accepts data
input from that user. The Controller sits between the Model and the View.

» When the application wants to display the current balance, the
Controller gathers the information from the Model and passes it to the
View for display.

»* When a user changes something in the View (for example, via a deposit
or a withdrawal), the Controller gathers the information from the inter-
face and passes it to the Model, so the Model can update the information.
And in a round-trip fashion, the Controller can then ask the Model what
the new account balance is and pass it to the View for display.

135

136

Part ll: Instant Cocoa and the Objective-C Language

|
Figure 7-1:
Select
Cocoa
Application
from the
templates
listed.
|

To see how the MVC design works in a Cocoa application, follow these steps
to build a project:

1. Launch Xcode and choose File>New Project.

The New Project window opens (see Figure 7-1).

2. Select Application from the left column and then Cocoa Application

from the list of project templates and click the Choose button.

OO,

New Project

Choose a template for your new project:

& Mac OS X ?f
Action ¥
Application =
Audio Units Aoplication

Automator Action

Bundle
Command Line Utility m

Dynamic Library
Framework

Java

Kernel Extension
Standard Apple Plug-ins
Static Library

Other

Description This project builds a Cocoa-based application written in Objective-C.

g [-

Cocoa Core Data Core Data
Document-based Application Document-based
Application Application

B B B

(" Cancel) (Choose...)

. Name the project and click the Save button.

For example, you can name your project Bank Account, as shown in

Figure 7-2.

project window.

. Select the Classes folder in the Groups and Files list of the Xcode

When you create a new class, it appears in this folder because you
selected it before creating the new class.

. Choose File=>New File.

The New File window opens, as shown in Figure 7-3.

button.

. Select Objective-C Class from the Cocoa option and then click the Next

Chapter 7: MVC Design ’3 7

Chcoses et Save As: |Bank Account =
| Mac 05 X
“l *| («]») (s2[=]m) (& Chapter 7 Code B @search)
| I Name
" ¥ PLACES re Data
Audio Units ent-based
Automator Actic 3 Deskion lication
Bundle & Downloads
Command Line e < |
Dynamic Library 7% Applications, L’ ;
Framework 13 PROJECTS . il
hon
Java (L] iPhone projects [

Kernel Extensios [Erick source
Standard Apple| = cocoa for Du...

Static Library
(2] BAND STUFF
| Other ™ pacents |
e i]
Figure 7-2: I3 s e
Name the | (Csave)

new project.

| 2

Choose a template for your new file:

m Mac 05 X |

AppleScript

El

BSD vy
Cand C++ Java Java NSView Java Main Menu XIB
Carbon NSDocument subclass NSWindowContro
Cocoa subclass ler subclass
Interface Builder SDK x
=, -
Pure Java =
Pure Python -m
Ruby Mapping Model Objective-C Objective-C Objective-C
Sync Services class. NSDocument NSView subclass |4
sheds subclass v
Other

Description An Objective-C class file, with an optional header which includes the
<Cocoa/Cocoa.h> header.

|
Figure 7-3:
Create
anew

Objective-C |
class. e) ()

’38 Part ll: Instant Cocoa and the Objective-C Language

7. Name the new class and then click the Finish button.

For example, you can name your class filename Account.m, as shown in
Figure 7-4.

8. Open the BankAccount.h file and add this code:
#import <Cocoa/Cocoa.h>
@interface Account : NSObject {

float balance;

}

- (float)balance;
- (void)setBalance: (float)aBalance;

- (void)deposit: (float)anAmount;
- (void)withdraw: (float)withdrawAmount ;

@end

This code defines a balance as an instance variable, adds accessor meth-
ods for the balance so the Controller object can retrieve and set the
balance, and includes a couple methods for depositing and withdrawing
money from the account.

OROU®; New File

New Objective-C class

File Name: | Accountm

M Also create "Account.h”

Location: |~/Desktop/PROJECTS/WILEY/Cocoa for Dummies v2/Cocoa Programming F[ﬂ (Choose... \

Add to Project: | Bank Account =]

Targets: |@ gy Bank Account

|
Figure 7-4:
Name the
new class
filename
Account.m. (Cancel) (Previous) (rmneD)
I 2

Chapter 7: MVC Design 139

9. Open the Account.m implementation file and add the following code:

#import "Account.h"

@implementation Account

- (float)balance {
return balance;

}

- (void) setBalance: (float)aBalance {
balance = aBalance;

3

- (void)deposit: (float)depositAmount {
balance += depositAmount;

}

- (void)withdraw: (float)withdrawAmount {
balance -= balance withdrawAmount ;

}
- (id) init

//initialize the superclass and assign it to self
if (self = [super init]) {
//now that you know self has been inited,
//you can work with its instance variables
balance = 100.0f;
}

return self;

}

@end

This code implements the two accessor methods and the deposit
and withdraw methods, as well as initializes the balance by giving the
account $100 to start.

Adding a Uiew

You could build and run the project as it stands now, but it won’t do anything
particularly interesting because it consists of only a Model and no interface.
You still need the interface, which serves as the View in the Model-View-
Controller paradigm.

’ 4 0 Part ll: Instant Cocoa and the Objective-C Language

1. Double-click MainMain.xib to open Interface Builder.

2. In Interface Builder, open the Library window and drag two Label
controls and two push buttons to the window of your interface.

Change the text in one of the Label controls to Balance: and leave the
other Label blank. Figure 7-5 shows the blank Label selected. Change the
text of the two buttons to Withdraw and Deposit, respectively.

|
Figure 7-5: _ :
Add two B8O Modow
labels and Balance:
two buttons
(Withdraw Deposit
to the —— I
interface.
|
3. Select the window’s title bar and press 3+1 (or choose Tools>Window
Attributes) and change the window’s title.
Figure 7-6 shows the Attributes Inspector with the window’s title
changed to Bank Account.
4. Choose Filer>Save to save the interface and press 38+R to test the
interface.
B8.0.0 Window Attributes
LRSI I
¥ Window
Title Bank Account
Autosave
Controls E! Close E‘ Resize
E‘ Minimize
Appearance || Textured ¥ shadow
[Always Display Tooltips
["] Unified Title And Toolbar
E Shows Toolbar Button
Behavior "] Release When Closed
"] Hide On Deactivate
— # visible At Launch
H _R* [7] Auto Recalculates View Loop
CI;:gure 7h6- Memory E Deferred E One Shot
a_nget 'e | Buffered a
window's
title in the
Attributes
Inspector.

Chapter 7: MVC Design

|
Figure 7-7:
Add a new
object to the
project.
|

Adding a Controller

You have now created a Model (Account) and a View (the interface). To get
these two objects to talk to each other, you need a Controller class that sits
in between them. You could return to Xcode and implement a Controller, but
for now it’s easier to just do it in Interface Builder.

1.

In Interface Builder, open the Library window and search for object.
Drag a new NSObject to the project window.

Figure 7-7 shows the newly added object.

. With the new object selected in the project window, press 8+6 and

change the class name to AccountController.

This is the Controller class that stands between the Model and the View
in this project. Figure 7-8 shows the new Controller class.

. Add an outlet and two actions to the AccountController in the

same Attributes Inspector window.

The display outlet points to the Label field where you want to display
the current balance. The withdraw: and deposit: actions correspond
to the same functionality in the Model. Figure 7-9 shows the newly
defined outlet and actions.

Oub)
@00 MainMenu.xib (English) (=) 800 Ebrary.
2z = =
(i) Co—]
maite LY e v |l vbrary

» [] Cocoa

-)
/}\ = T ("] Interface Builder Kit
} = 7] web Kit

7] QuickTime Kit
7] Custom Objects

File's Owner First Responder Application MainMenu Window (Bank..

Object]

| Library - Cocoa - Objects & Controllers - Cantrollers

Font Manager - >
Object - Provides you with an instance of an
NSObject subclass that is not available in
Interface Builder.
Object Controller - A Cocoa bindings-
compatible controller class. Properties of the
content object of an instance of this class..

Library - Cocoa - Objects & Controllers - Care Data

|
Managed Object Context - An instance of
i | ‘ NSManagedObjectContext represents a single

“object space” or scratch pad in an application.

| Library - Interface Builder Kit

integrate custom objects into Interface

m Library Template - A template used to
Builder's Library

#-) (0, object

141

’ 42 Part ll: Instant Cocoa and the Objective-C Language

|
Figure 7-8:
Name the
new class
Account
Controller.

|
Figure 7-9:
Add an out-
let and two
actions to
Account
Controller.
|

‘Window (Bank...

i

First Responder

Font Manager [ETY= T

A

Application

Gl

MainMenu

i

File's Owner

‘Window (Bank...

A

Application

B

MainMenu

i

File's Owner First Responder

[JuS TUET TG Account Cont...

2 |¢|¢ |2 |0]0]|9

¥ Class identity
Class |AccountController I+

¥ Class Actions

=
¥ Class Outlets

| Outlet E

=il

¥ Interface Builder Identity
T —
Object ID 458

Lock Nothing {Inherited) ¢

Notes [Show With Selection

Class AccountController]

¥ Class Actions

|4 MainMenu.xib

¥ Class Outlets

Outlet Type 4
& xib

 display id

I
¥ Interface Builder Identity
Name
ObjectID | 458

Lock Nothing (Inherited) B

Notes] Show With Selection

Figure 7-10:
Connectthe
Withdraw
button to the
withdraw:
actionin the
Account
Controller.
|

Chapter 7: MVC Design 1 43

. Connect the interface by Control+dragging from the Withdraw button

to the AccountController in the project window. Select withdraw:
in the small black connections list overlay that appears.

Figure 7-10 shows the connection being made.

. Connect the interface by Control+dragging from the Deposit button to

the AccountController in the project window. Select deposit: in
the small black connections list overlay that appears.

Figure 7-11 shows the connection.

. Control+drag from the AccountController to the empty Label field

in your interface. Select display in the small black connections list
overlay that appears.

Figure 7-12 shows the process.

MainMenu.xib (English)

=[m) ¢)
View Mode Infa Search Field

® ® A £ [

File's Owner First Responder Application MainMenu Window (Bank..

Received Actions
deposit:
| withdraw:

Font Manager Account Cont

M) Bank Account.xcodeproj &

A MO 7« Bank Account

Balance:

. Withdraw Deposit

’ 44 Part ll: Instant Cocoa and the Objective-C Language

Figure 7-11:
Connect

the Deposit
button to
the deposit:
actionin the
Account
Controller.
|

Figure 7-12:
Connect the
Account
Controller to
the empty
Label field
and select
display from
the list of
choices.
|

®00 MainMenu.xib (English) =
[m) (i) Com—
Wiew Mode Infa. Search Field
= L
E;Agj = | |
y i |
File's Owner First Responder Application MainMenu Window (Bank...
Received Actions
deposit:
withdraw:
Font Manager Account e
) Bank Account.xcodeproj &4

- Y rormmrr—" §
oepeni)

®00 MainMenu.xib (English) (=]
Q
Search Field
[
=
AJ =
File's Owner First Responder Application MainMenu Window (Bank..
Font Manager Account Cont. .
) Bank Account.xcodeproj v

Balance: Outlets
display

(Windraw) { ;

2

Chapter 7: MVC Design 1 45

7. To create files for the Controller, select the AccountController in
the project window and choose File=>Write Class Files, save the file as
AccountController, and click the Save button, as shown in Figure 7-13.

4_") O o
Save As: AccountController E]
[«|w]|[28|=|m) [& Bank Account Wl @ search
¥ DEVICES m il A —
j_;__LTowerMac [English.lproj Today, 11:22 PM
B Tiger HD h| Account.h Today, 10:40 PM
n e m| Account.m Today, 10:40 PM
B wusic o 3 build Today, 10:17 PM
c o Bank Account.xcodepraoj Today, 10:10 PM
I
tra . m| main.m Today, 10:01 PM .
i
Figure 7-13: M S [infoplist Today, 10:01PM |
Write the _
files, saving Language: | Objective-C |‘3.1
as Account ™ Create "' file
Controller. ¥ Hide extension New Folder (Cancel) (~ Save)

8. Click the Add button to add the files to the Xcode project (see
Figure 7-14).

9. Quit Interface Builder by pressing 8+Q and return to Xcode.

10. In Xcode, click the AccountController.h file to view its contents and
find the line that says:

@interface AccountController : /* Specify a superclass
(eg: NSObject or NSView) */ {

800 Window

Would you like to add "AccountController.m", and
"AccountController.h" to "Bank Account.xcodeproj"?

— If you choose to add this file to "Bank Account.xcedeproj”, you will be
Fi ure 7 14' able to deploy it as part of a built product.
g Add B Bank Account
A ™ oM Bank Account
ccount |
Controller
to the Bank
Account —
project. (" Don'tAdd) (Add

| A

7 46 Part ll: Instant Cocoa and the Objective-C Language

11. Specify a superclass for the AccountController class by changing it
to this:

@interface AccountController : NSObject {

12. Add an Account instance variable (account) to the interface file:

@interface AccountController : NSObject {
IBOutlet id display;
Account *account;

- (IBAction)deposit: (id)sender;
- (IBAction)withdraw: (id)sender;
@end
13. Open the AccountController.m file, where two actions are in place:

#import "AccountController.h"

@implementation AccountController
- (IBAction)deposit: (id)sender {

}

- (IBAction)withdraw: (id)sender {
}

@end

14. Implement the two actions by adding the code for deposit and with-
draw. Also add an awakeFromNib and a dealloc method to the file.

In awakeFromNib, you can create an account object and assign it to
the Account instance variable (account). Then, update the display in
the interface by setting its value to the account balance.

For this example, the deposit will always be $20 (or whatever denomina-
tion you wish), and the withdraw will always be $5.

#import "AccountController.h"
@implementation AccountController

- (void)awakeFromNib {
account = [[Account alloc] init];
[display setFloatValue: [account balance]];

}

- (IBAction)deposit: (id)sender ({
[account deposit:20.00f];
[display setFloatValue: [account balance]];

3

Chapter 7: MVC Design 14 7

- (IBAction)withdraw: (id)sender {
[account withdraw:5.00f];
[display setFloatValue: [account balance]];

}

- (void)dealloc {
[account release];
[super dealloc];

3

@end

15. In Xcode, choose Run~Go to test your work.

Figure 7-15 shows the completed application.

|
Figure 7-15:
The com- ® O O Bank Account
pleted Bank
Account
applica- (“withdraw) (* Deposit)
tion after 7
acouple
deposits.
|

Balance: 140

When you run the application, the AccountController creates a new
object based on the Account class and displays the current balance in the
View, which the Account has initialized to 100. When you click the Deposit
button, you send a deposit message to the account object and update the
interface. Likewise, when you click the Withdraw button, the code sends a
withdraw message to the account object and updates the interface.

Hopefully you're beginning to appreciate the merits of this sort of application
design pattern. With the Model, View, and Controller all separated, you can
reuse these classes in other projects. Suppose that you need to create a new
application for tracking another kind of account. You wouldn’t need to re-
create an Account class. You could just use the existing Account class.

If at some point in the future, you must change your accounting model radi-
cally, you can pull out the Account class and replace it with a new one. The
rest of the code and interface could remain the same. All these benefits stem
from using the Model-View-Controller design pattern.

7 48 Part ll: Instant Cocoa and the Objective-C Language

Chapter 8
A Window with a View

In This Chapter
Opening, closing, and hiding windows
Positioning windows anywhere on the screen
Tracking open windows
Changing the appearance of windows
Resizing windows
Seeing through a window
Using sheets and delegates

p erhaps the most important element of any GUI-based application is

the window. In fact, the window is so important that those guys from
Redmond used it to name their operating system. The windows in an applica-
tion are like pieces of paper that you use to collect ideas, display information,
and record input.

Windows in Cocoa are equally important. Mac OS X continues using the fine
window traditions that made the Mac OS famous, but Cocoa builds on and
improves those ideas from the past with exciting new features. In this chapter,
you examine some of the most common window features of Cocoa applications.
In the process, you create two projects that demonstrate these features.

Working with Window's

Because windows form the basis for nearly all interfaces, you’ll use them
often as part of your projects. Some of the most common functions that you’ll
perform include

v+ Opening and closing windows

v Moving windows

v Adding windows to the Windows menu

’50 Part ll: Instant Cocoa and the Objective-C Language

In the following sections, you discover how to accomplish all these tasks
and more.

Opening and closing a window

When you work with windows in your Cocoa projects, you'll often use Interface
Builder to design them. Further, if you leave a window open in Interface Builder
when you’re designing an interface for an application, that window opens
automatically when the application runs. Thus, if you're building a one-window
application, you may not even have to issue a command to open a window.

Assume that theWindow is an outlet in your project. Closing the window in
code is as simple as

[theWindow closel];

The close method hides the window from view. If you want the window to
also be released from memory when you close it, also use the set
ReleasedWhenClosed method:

[theWindow setReleasedWhenClosed:YES];
[theWindow close];

When you close a window in this fashion, the window is gone. Its contents
are gone from memory. It is no more. That means to see the window again,
you have to create a new window object altogether. If the window has been
released from memory, you have to create a new window like so:

theWindow = [[NSWindow alloc] init];

Then, to show the window, send it the makeKeyAndOrderFront message
like this:

[theWindow makeKeyAndOrderFront:self];

Hiding and showing a window

If you'd prefer to keep a window around instead of deleting it from memory,
you can hide it instead of closing it. Hiding a window is also an easy task to
perform. Suppose you have an outlet (named theWindow) as part of your
object class. The outlet represents a window in your interface. To hide that
window, a hideWindow action might look like this:

- (IBAction)hideWindow: (id) sender
{

Chapter 8: A Window with a View

3

[theWindow orderOut:sender];

}

The orderOut method of the NSWindow class hides a window from view.
The window still exists in memory; it just isn’t visible anymore. To find
out whether a window is visible, you can check the return value of the
isVisible method:

- (IBAction)hideWindow: (id) sender
{
if ([theWindow isVisible])
[theWindow orderOut:sender];

}

To make the window reappear, use the orderFront method, but first check
to see if the window is already visible:

- (IBAction)showWindow: (id) sender

if (![theWindow isVisible])
[theWindow orderFront:sender];

}

If you want a specific window to appear on the screen and act as the main
window, thus intercepting keystrokes, use the makeKeyAndOrderFront
method. You might use this method in the awakeFromNib method to force a
main window to the foreground:

- (void)awakeFromNib {
[theWindow makeKeyAndOrderFront:nil];

Positioning window's

Positioning windows is another important task that you’ll need to perform.
Before you go bossing around a window, you first need to find out its current
position on the screen. Use the frame method of the NSWindow class to dis-
cover the origin and size of a window. The frame method returns an NSRect
structure, which contains NSPoint and NSSize elements that describe the
window’s origin and size, respectively:

typedef struct _NSRect {
NSPoint origin;
NSSize size;

} NSRect;

When you know the origin of a window, it’s a trivial matter to reposition
it. First, define an origin to your liking and then call the setFrameOrigin

151

’52 Part ll: Instant Cocoa and the Objective-C Language

method to apply the new origin. This code moves a window 20 pixels to the
right of its current position:

- (IBAction)moveRight: (id)sender

NSRect theFrame = [theWindow frame];
NSPoint theOrigin = theFrame.origin;
theOrigin.x = theOrigin.x + 20;
[theWindow setFrameOrigin:theOrigin];

}

To position a window in the middle of the screen, use the handy center
method. This code centers a window on the screen:

- (IBAction)centerWindow: (id) sender

[theWindow center];

Keeping track of window's

Most Cocoa applications have a Window menu to help users keep track of
open windows. Normally, this menu lists the open document windows. (You
probably wouldn’t display, say, a toolbar window in the Window menu.) The
great thing about the Window menu is that Cocoa takes care of it for you auto-
matically. If your window has the following properties, Cocoa automatically
adds it to the Window menu:

v Has a title bar
v Is resizable
v Can become the main window

You can exclude a window from the Window menu by altering any one of
these properties.

<P If you have a window that obeys each of these rules but you still want it left out
of the Window menu, use the setExcludedFromiWindowsMenu method. The
awakeFromNib method is a good place to use this call because the method
takes effect when your application launches and the window resources is
loaded from the NIB file.

- (void)awakeFromNib {
[theWindow setExcludedFromWindowsMenu:nil];

Chapter 8: A Window withaView] 53

Putting windows to work for you

To see how these window features work, do the following:

1. Launch Xcode and create a new Cocoa application project:

a. Double-click the Xcode icon in the Finder to launch it.

b. Choose Filew>New Project.

c. In the window that appears, select Cocoa Application and click OK.
2. Create a new window in the MainMenu.xib file.

a. Double-click the MainMenu.xib file in the Resources Group of your
project to open the file in Interface Builder.

b. In the XIB project window, double-click to open the default window if
it’s not open already.

c. Press 38+1 to open the Attributes window and name the window
MenuWindow.

3. Add three buttons to Menuwindow, as shown in Figure 8-1, and label
them Hide Window, Move Left, and Center Window, respectively.

For more information on adding buttons, see Chapter 2.

|
. ® O 7 s Window

Figure 8-1:
The Menu (" HideWindow)
Window has C Moveler)
three (Center Window)

buttons. T y
|

4. Add an object to the project:
a. Drag an Object item from the Library window to the project window.
b. Name the object M\yWindowController.

5. Double-click the new MyWindowController instance and add outlets
and actions to the instance in the Inspector window.

a. Add these outlets: theMenuWindow, theShowButton, and
theWindow.

b. Add these actions: centerWindow, moveRight, and showlindow.

For details on adding outlets and actions, see Chapter 2.

754 Part ll: Instant Cocoa and the Objective-C Language

c. Connect the three new actions to the buttons in MenuWindow by
Control-dragging from each button to the MyWindowController
instance and then click Connect in the Inspector window to connect
each action.

d. Connect the two window-related outlets to their corresponding win-
dows: Control-drag from the MyWindowController instance to each
window in the MainMenu.xib file window and then click Connect in
the Inspector window to connect to the appropriate outlet.

e. Connect the theShowButton outlet to the top button in the
MenuWindow.

6. Double-click the MyWindowController instance, choose
Classes=>Create Files for MyWindowController, and add the header
and implementation files for the instance.

7. Return to Xcode and add this code to the MyWindowController.m file
to implement the functionality of the three buttons:

#import "MyWindowController.h"
@implementation MyWindowController

- (IBAction)centerWindow: (id) sender

{

[theWindow center];

3
- (IBAction)moveRight: (id)sender

NSRect theFrame = [theWindow frame];
NSPoint theOrigin = theFrame.origin;
theOrigin.x = theOrigin.x + 20;

[theWindow setFrameOrigin:theOrigin];

- (IBAction)showWindow: (id) sender

if ([theWindow isVisible])
{
[theWindow orderOut:sender] ;
[theShowButton setTitle:@"Show Window"] ;

[theWindow orderFront:sender];
[theShowButton setTitle:@"Hide Window"];

Chapter 8: A Window withaView] 55

- (void)awakeFromNib ({
[theWindow makeKeyAndOrderFront:nil];
[theMenuWindow makeKeyAndOrderFront:nil];
}

@end

8. Choose Build=>Build and Go to test the project.

Changing the Appearance of Windows

Beauty may be only skin deep, but when it comes to using your application,
an attractive interface is mandatory. In this section, you explore some of

the possible window settings for nice-looking interfaces. These features also
enhance the functionality of your applications, so you have some brawn to go
with that beauty.

Using different windows
for different tasks

The standard Mac window style has a gray background, as shown in Figure
8-2. However, this isn’t the only appearance a window can have. Apple

has strict guidelines about how windows should look, which are outlined

in the famous Human Interface Guidelines document available online at
developer.apple.com. The basic gist of the Apple guidelines is that
windows should look the same for the same tasks. A document window looks
one way. A toolbar window looks a different way. A window in a one-window
application should look yet another way. Always follow Apple’s guidelines
when designing interface windows because your users expect windows to
look and behave identically across applications.

Open the default XIB file from a Cocoa application in Interface Builder. You
can change the appearance of a window by following these steps:
1. Open the default window in Interface Builder.
Double-click it in the XIB project window.
2. Press 38+1 to open the Inspector window.

In the Attributes section of the Inspector window, you find the Textured
check box for the window.

’ 5 6 Part ll: Instant Cocoa and the Objective-C Language

|
Figure 8-2:
A standard
Mac
window is
light gray.

| —//:

3. Toggle the Textured check box to change the appearance of the
<P window.

If the Inspector doesn’t display the textured attribute, click the window’s
toolbar to display the Inspector appropriate to the window.

The window now has a textured appearance (see Figure 8-3).

|
Figure 8-3:
The textured
appear-
ance gives
windows a
metallic look
by drawing

a gradient
inthe
background.
|

Chapter 8: A Window with a View

WMBER
@Q
&

<MBER
SO

In addition to the new look, the textured property also changes the behavior of
windows that have the property set. Whereas a non-textured window permits
dragging from its title bar, you can drag textured windows by clicking and drag-
ging anywhere in the window that isn’t within the bounds of a control.

The first time you see the cool metallic look of the textured window, you’ll be
tempted to make the windows in every application with this style. After all,
Apple does with many of its applications (such as iTunes and iPhoto).

Before you start giving every window in sight a textured look, keep in mind
that the Apple guidelines recommend that you use a textured window only
when hardware is involved. This explains why you see it in many Apple appli-
cations, such as iMovie and iPhoto, which use hardware in one way or another.
Although textured windows look tempting, try to use them only when neces-
sary. Your users will thank you.

Sizing up your windows

When you want to know the size of a window in code, use the frame method
in the same way that you did earlier in this chapter. It gives you access to
the window’s position and size. To alter the size of a window in code, use the
setFrame method. You can use the following code to resize a window to half
its current width:

- (IBAction)halfAsWide: (id) sender
NSRect theFrame = [theWindow frame];
theFrame.size.width = theFrame.size.width/2;
[theWindow setFrame:theFrame display:YES];

}

If you want to zoom a window without forcing the user to click the zoom
button on that window, all you have to do is call the window’s zoom method.

[theWindow zoom] ;

Setting a window'’s title

Sometimes you’ll want to change the title that appears in the title bar of a
window. This is an easy task to perform with the setTitle method:

[theWindow setTitle:@"My New Window Title"];

Of course, you can also set the title of the window in the Inspector window of
Interface Builder.

157

’58 Part ll: Instant Cocoa and the Objective-C Language

|
Figure 8-4:
Use the
setAlpha
method

to make
windows
transparent.
|

If the window title is the name of a document, use the setTitleWith
RepresentedFilename method instead of setTitle. This method
converts from a file path to a window title suitable for viewing:

[theWindow setTitleWithRepresentedFilename:theFileName] ;

Windows that you can see through

Cocoa windows have an alpha setting that enables you to set the translu-
cency of a window. To see this magic in action, use the setAlpha method of
NSwindow, passing it a value between 0.0 and 1.0. A value of 1.0 means that
a window is fully visible; a value of 0.0 displays a window that’s completely
transparent. This line of code makes a window 50-percent transparent:

[theWindow setAlphaValue:0.5];

Figure 8-4 shows the difference between a window with setAlpha values
of 0.5 and 1.0.

Hide Window
Move Left
Center Window

T

(s HeN&) Opaque Window

[

Chapter 8: A Window withaView] 59

Beneath the Sheets

Besides the run-of-the-mill windows that you’ve used so far, Cocoa offers a
special animated window — a sheet. A sheet is sort of a parasitic window,

in that it needs a host, or a parent, from which to spring. Because its func-
tionality is directly connected to another window, it appears from out of the
blue at the top of its parent window, as shown in Figure 8-5. You're probably
already familiar with sheets because many common applications use them —
often when working with files.

Besides looking neat when they open, sheets also serve a useful purpose.
Because they'’re attached to a parent window, they indicate a specific scope for a
task: that of the parent window. In other words, if a sheet appears, you can be
certain that any actions you perform in that sheet are pertinent to the parent
window when the sheet closes. This is a subtle, but important, distinction.

OO0 Window

Figure 8-5: i
When the e
functional-
ity of your
window is
directly tied
to another
window,
display it as
a sheet. (" Open Sheet)

A sheet behaves in a particular manner — modally; it takes over a window
and doesn’t let the user perform any other action in the parent window until
you dismiss it. Usually the user has to make some kind of decision before the
sheet can be dismissed.

Implementing sheets takes some special preparation. To see how they work,
launch Xcode and create a new Cocoa application. In the project window,
double-click MainMenu.xib to open the interface in Interface Builder and then
perform the following steps to add a sheet to your project:

’ 60 Part ll: Instant Cocoa and the Objective-C Language

|
Figure 8-6:
Add a Panel
to your
project.
|

1. Drag a panel from the Library (as shown in Figure 8-6) to your
MainMenu.xib file window.

2. Change the panel settings.

Open the Inspector window by choosing Tools=>Inspector and deselect
all the Style and Controls settings for the new panel, as shown in Figure
8-7. Also change the new Panel’s title to Sheet.

3. Open the default window in the project (named Window) and add a
push button to the window; then, open the new panel from Step 1 and
add a push button to it too.

At runtime, the button in the default window causes the panel to open
as a sheet. The button in the sheet causes the sheet to close. Figure 8-8
shows the buttons as they appear in their respective windows.

atala

File's Owner

Window (Wind.

* MainMenu.xib (English)

First Responder

Font Manager

A

Application

==

MainMenu

BIO6, Library.

Objects | Media |

v [] Library

» 7] Cocoa
"7 Interface Builder Kit
["7] Web Kit
7] Address Book
7] Automator
7] DiscRecording
7] Image Kit
(7] Open Seripting Kit
7] PDFKit
"1 QuickTime Kit
"1 Quartz Composer
7] Custom Objects

| Library - Cocoa - Application - Windows

Panel - A special kind of window, typically serving
an auxiliary function in an application.

HUD Window - Manages an onscreen window,
coordinating the display and event handling for its

NSView objects.

a8
Panel
NSPanel
The NSPanel class implements a special kind of window,
typically serving an auxiliary function in an application

) (Qpanel

£

Chapter 8: AWindow withaView] @]

s |¢ | R 0|0 ¢

¥ Panel

Style] urility [HuD
["] Non Activating
[_] Document Modal

¥ Window

Title |Sheet

Autosave

Controls [] Close [Resize

] Minimize
Appearance [] Textured W Shadow
[Always Display Tooltips
] Unified Title And Toolbar
™ Shows Toolbar Button
Behavior M Release When Closed

Hide On Deactivate

I # visible At Launch

F. 8 7 [Auto Recalculates View Loop

igure o-/: Memory M Deferred [One Shot
Adjust the
attributes of
the panel.
P

I

066 o~ Window

|
Figure 8-8:
Add one
button to

the project’s
default
window and
one to the
sheet. =4
| Ve

’ 62 Part ll: Instant Cocoa and the Objective-C Language

|
Figure 8-9:
Drag an
object from
the Library
to the
project
window.
|

4. Add a new object to the project.

Drag an object class from the Library to the XIB window (as shown in
Figure 8-9) and name it MySheetController. If you have problems
locating the object class in the Library, search for it via the search field
at the bottom of the Library window.

5. Add outlets and actions to the object.

Press 88+6 to open the Identity Inspector and add two outlets MySheet
Controller class to the Class Outlets section of the Identity Inspector.
To follow along with the example, name the two outlets theWwindow
and thesSheet, respectively. Likewise, add two actions to the MySheet
Controller class and rename the actions as openSheet and close
Sheet. Figure 8-10 demonstrates what the Inspector window looks like.

6. Connect the outlets and actions:

a. Control-drag from the MySheetController instance to the main
window and connect it to the thewindow outlet.

b. Control-drag from the MySheetController instance to the panel in
MainMenu.xib and connect it to the theSheet outlet.

c. Control-drag from the button in the main window to the MySheet
Controller instance and connect it to the openSheet action.

d. Control-drag from the button in the Sheet panel to the MySheet
Controller instance and connect it to the closeSheet action.

~ MainMenu xib (English)

: ETCINER

File's Owner First Responder

Panel (Sheet)

Application

Window (Wind... ~ Font Manager

MainMenu

Object

eoo Library

Objects | Media

v [l ubrary
» 7] Cocoa

"7 Interface Builder Kit
(7] web kit
7] Address Book
(7] Automater
[DiscRecording
(7 Image Kit
7] Open Scripting Kit
7] PDFKit
7] QuickTime Kit
7] Quartz Composer
("] Custom Objects

Library - Cocoa

Objects & Controllers - Contrallers

Object - Provides you with an instance of an
NSObject subclass that is not available in Interface
Builder.

Object Controller - A Cocoa bindings-compatible
controller class. Properties of the content object of

an instance of this class can be bound to user.

Library - Cocoa - Objects & Controllers - Core Data

% Managed Object Context - An instance of
NSManagedObjectCantext represents a single
“abject space” or scratch pad in an application.

R

Object
NSObject

Provides you with an instance of an NSObject subclass that is
not available in Interface Builder. You can use the Object to
create instances of your own objects.

(%) @ Object

i

|
Figure 8-10:
Add outlets
and actions
to the
controller.
|

|
Figure 8-11:
Writing
class files.
|

Chapter 8: A Window with aView] § 3

lelale) 4 MainMenu.xib (English) = 8OO ! :
5 - C— SEEF R ATE K
— b B . ¥ Class identity
- Class MySheetController
. 0 EA\ E ¥ Class Actions
- = Action u’ |
File's Owner First Responder Application MainMenu [#) MySheetController.h =)
[o closeSheet: id
‘ ™ " - openSheet: id
LE LH
Window (Wind. Font Manager Panel (Sheety [[IETTSI= TR [l
o
¥ Class Outlets
Outiet pe—— |
| 1) MySheetController.h]
theSheet id
theWindow id
[+]=

7. Create the class files.

¥ Interface Builder identity

Object ID 467

Nothing (Inherited) =)

(] Show With Selection

Lock

Notes

I

a. Click MySheetController in the project window, choose Classesw
Write Files, and save as MySheetController.

b. Make sure that the Create “h’ file check box is selected, as shown in

Figure 8-11.
c. Click the Save button.

“

Save As: I_M\.'SheetControIIer J B
Where: |] Windows 08-11 3]
Language: [Objective-C H‘
™ Create ".h' file
o)

8. Add the new files to the Xcode project.

When you write the files for MySheetController, Interface Builder
asks whether you want to add the files to the current Xcode project (see

7 64 Part ll: Instant Cocoa and the Objective-C Language

Figure 8-12). Toggle the check box for the desired project and click the
Add button.

9. Exit Interface Builder and return to Xcode where you find the new files.

an00o Window
Would you like to add "MySheetController.h", and
"MySheetController.m" to "Windows.xcodeproj"?
If you choose to add this file to "Windows.xcodeproj”, you will be able to
deploy it as part of a built product.
B windows
|
™ o windows
Figure 8-12:
Add the new
class files to
the Xcode
project. (Don'tAdd) (— Add
|

10. Tweak the header.

Change the interface definition by adding NSObject in the MySheet
Controller.h file like this (the changed line is shown in boldface):

#import <Cocoa/Cocoa.h>

@interface MySheetController : NSObject {
IBOutlet id theSheet;
IBOutlet id theWindow;

- (IBAction)closeSheet: (id) sender;
- (IBAction)openSheet: (id)sender;
@end
11. Change the MySheetController.m file.
The file looks like this (changed lines are shown in boldface):
#import "MySheetController.h"
@implementation MySheetController
- (IBAction)closeSheet: (id) sender
{

[theSheet orderOut:nil];
[NSApp endSheet:theSheet];

- (IBAction)openSheet: (id)sender

Chapter 8: A Window withaView] @5

[NSApp beginSheet:theSheet
modalForWindow: theWindow
modalDelegate:self
didEndSelector :NULL
contextInfo:nil];

3

@end

The opensheet method displays the sheet with the beginSheet class
method of NSApp. The closeSheet method hides the sheet with the
orderOut method and disposes of the sheet with endSheet.

12. Choose Build=>Build and Go to see the project in action.
This sheet demonstration is purposely simple, so you can see how to display
a sheet in your own projects. You can enhance the sheet by adding controls

to the sheet and wiring them to outlets and actions depending on the desired
effect.

Responding to Window Events
by Delegating Authority

Cocoa has an interesting construct — delegates — which lets a class take
over the task of handling certain events for you. Much like you might del-
egate authority to another person in the workplace, you can delegate the
authority of a class to handle things when a particular event(s) occurs.

For example, you can tell a class to be a delegate for window events like min-
iaturizing (also known as minimizing). Therefore, every time a window minia-
turizes, your delegate class would do something in response.

Open MainMenu.xib in Interface Builder and perform these steps to see how
delegates work:
1. Assign delegate status to MySheetController:

a. Control-drag from Window to MySheetController in the project
window.

When you let go of the mouse, a black connections list overlay
appears listing options (see Figure 8-13).

b. Select Delegate from the list.

Delegate status is assigned to the MySheetController class.

’ 66 Part ll: Instant Cocoa and the Objective-C Language

2. Close Interface Builder and return to Xcode.
3. Add the following delegate method to the MySheetController.m file:

- (void)windowDidMiniaturize: (NSNotification *)
notification {
NSBeep () ;
}

4. Choose Build=>Build and Go to test the code changes.

The windowDidMiniaturize method is a special delegate method that
Apple has predefined for you. You can see what delegates are available by
searching for a specific class in the built-in Help. For example, search for
NSwindow to see the delegates that respond to window events.

In the previous example, the application plays a system beep whenever the
user miniaturizes the window. If you prefer to do something just before the
window miniaturizes instead, here’s a delegate method for that:

- (void)windowWillMiniaturize: (NSNotification *)
notification {
NSBeep () ;
}

Many of the built-in classes have delegate methods like this that you can use.
NSwWindow has more than 24.

Figure 8-13:
Make
MySheet
Controller a
delegate.
|

Chapter 9
Working with Interface Controls

In This Chapter
Working with button controls
Using radio and slider controls in your project
Working in tab views
Animating a progress indicator
Displaying data in a table

Fe Mac OS has long been renowned for its graphical user interface, which
probably stems from the fact that people like interacting with comput-
ers by using metaphors that relate to the real world. Interface Builder is your
tool for creating these metaphors. With it, you build your interface by adding
different elements that your users will use to control the application. Because
they’re controlling the application, Cocoa calls these elements controls.

Cocoa has a rich set of interface controls for you to use in your own applica-
tions. With drag-and-drop and a few lines of code, you can add a variety of
useful controls to your projects. This chapter guides you through the basics
of interface controls in Interface Builder. You’ll see how to use each of these
controls by adding them to small projects.

By the end of the chapter, you’ll have enough experience with controls to strike
out on your own. The Cocoa framework is a vast one, and nothing prepares
you better for programming than practice and experimentation.

Button Controls

Perhaps the most ubiquitous interface control is the button. From the bank’s
automatic teller machine to the doorbell at your front door, buttons are a
nearly universal piece of hardware. Even your mouse and keyboard have
button interfaces. Because so many people recognize buttons and know how
to use them in the real world, it makes sense that they’re popular in the virtual
world as well.

’ 68 Part ll: Instant Cocoa and the Objective-C Language

Cocoa provides many kinds of useful and attractive buttons for your inter-
faces. All buttons in Cocoa are the NSButton type. Most NSButton controls
look and act the way you’d expect, but some may alter your notion of what
constitutes a button.

This section looks at the different types of buttons available to you in Cocoa.
To begin working with buttons, follow these steps:

1. Launch Project Builder and create a new Cocoa application.

2. Double-click the MainMenu.xib file to open it in Interface Builder.
3. Open the window found in the NIB file window.
4.

Choose Tools=Library and enter Button in the Library’s search field
to find all the NSButton controls in Interface Builder.

Figure 9-1 shows the Library with the various buttons listed.

800 Library
Objects | Media |
v [l Gorary =
» 7] Cocoa
7] Interface Builder Kit
7] web Kit

7] Address Book
7] Automator
7] piscRecording

Library - Cocoa

(: Push Button - Intercepts mouse-down events and sends an action message to a target object when it's clicked or pressed.
Gradient Button - Intercepts mouse-down events and sends an action message to a target object when it's clicked or pressed.
Rounded Rect Button - Intercepts mouse-down events and sends an action message to a target object when it's clicked or pressed
Recessed Button - Intercepts mouse-down events and sends an action message to a target object when it's clicked or pressed

(| Textured Button - Intercepts mouse-down events and sends an action message to a target object when it's clicked or pressed.
Rounded Textured Button - Intercepts mouse-down events and sends an action message to a target object when it's clicked or pressed.

Square Button - Intercepts mouse-down events and sends an action message to a target object when it's clicked or pressed.

[

Bevel Button - Intercepts mouse-down events and sends an action message to a target abject when it's clicked or pressed.

Figure 9-1: — :
The Library | - - T

() Push Button

provides a = iEhE
1 The NSButton class is a subclass of NSControl that intercepts mouse-down events and sends an action message to a target object when it's clicked or
multitude | e
of buttons
for your
interfaces.

'@ Burton

I 4

|
Figure 9-2:
Push
buttons
typically
display only
a text label.
|

Chapter 9: Working with Interface Controls 1 69

Although each button in Figure 9-1 looks and behaves differently, they're all
examples of the NSButton class. This means you could drag a push button
to your interface, for example, and later convert it to a square button. You’ll
see how the buttons differ through the remainder of this section.

Push button

Perhaps the most recognizable form of NSBut ton, the push button is a staple
of nearly all applications. The push button works simply: A user clicks the
button, and your program does something in response. Probably the most
common buttons are the OK and Cancel buttons, but you can also use but-
tons to perform almost any task. To add a push button to your interface,
simply drag it from the Library to a window in your project. A default push
button has a centered text label, as shown in Figure 9-2. You can change

the text in a button by double-clicking it or by altering the Title entry in the
Inspector window (also shown in Figure 9-2). (The Inspector window changes
its title based on context, so its title is now Button Attributes.)

AL -+ Window. 8.0.0 Button Attributes
. AT ICIIE

¥ Button

Title Search
Alt. Title
Image =
R, Alt. Image -
D Scaling (Proportionally Down 3]
Style (Push &
Mode (Momentary Pushin 3]
posion [=|oo-/-0 & 0 ol
)

Alignment | =

Z)

Visual ™ Bordered [selected
[] Transparent [Mixed

sod [W
Key Equiv. |:| Clear
¥ Control
TextDir. [Nawral]
Line Breaks [WordWrap 3]
[Truncates Last Visible Line
State ™ Enabled] Continuous

Tag 0

¥ View

Focus Ring | Default s

Drawing [Hidden

™ Autoresizes Subviews

’ 70 Part ll: Instant Cocoa and the Objective-C Language

|
Figure 9-3:
Setthe

Key Equiv
property to
Return to
make the
button
pulsate.
|

Besides the Tit1le property, NSButton controls have many properties that you
can customize. One that you'll use frequently is Key Equiv (see Figure 9-3). Click
in this box and enter a keystroke that acts as if the user clicked the button with
the mouse. The symbol representing that key then appears in the Key Equiv.
field. One common keyboard equivalent is Return, which means a user can
trigger the push button by pressing Return (or Enter) on the keyboard. When
you set it to respond to the Return key, O appears in the Key Equiv. box,

and the button automatically takes on a pulsating colorized appearance at
runtime (but not when you’re designing in Interface Builder). The color of the
button will be aqua or graphite, depending on which appearance setting the
user selected in System Preferences. This colorized appearance suggests to
users that this button performs the default action for the window in which

it appears. For example, when a window has OK and Cancel buttons, OK is
often the default button. This offers a hint to users that OK is probably the
button that they want to click.

In addition to appearance, an NSButton can play a sound when clicked.
Follow these steps to make your button play a sound when it’s clicked:

1. Find a sound to play.

Click the Media tab at the top of the Library window. You find all the famil-
iar system sounds that you can use. You can also drag your favorite audio
files into the Xcode project window (yes, Xcode, not Interface Builder),

and then those sounds appear in the Media section of the Library window.

800 Wind 000 Button Attributes
~ Window

e Al AL AN BE

¥ Button

Title Search

Alt. Title

Image |
Altimage | =
Scaling [Proportionally Down 1]
style (Psn
Mode [Momentary Pushin %]

[=Tolo--oflaloa

(_ Search

Position
Alignmemt | = | =

Visual ™ Bordered B
() Transparent [Mixed

Sound "'!
Key Equiv. Clear

¥ Control

Text Dir. | Natural 2]
Line Breaks | Word Wrap =]

[Truncates Last Visible Line

State ™ Enabled "] Continuous

Tag o

¥ View
Focus Ring | Default v

Drawing [Hidden

M Autoresizes Subviews

Chapter 9: Working with Interface Controls

A\

|
Figure 9-4:
Type the
name of

a sound

file in the
Sound field.
(Ribbit.)

2. In your application’s interface window in Interface Builder, click the
NSButton that you want to alter and open the Inspector window. In
the Sound field, type the name of the sound file that you want to play
or select it from the drop-down list.

Alternatively, you can drag sound files from the Media tab of the Library
window directly on top of the push button that you want to play the
sound. The sound filename appears automatically in the Sound field of
the Inspector window as if you typed it by hand.

Figure 9-4 shows a button that plays the frog system sound.
3. Press 8+R in Interface Builder to test your work.

A frog sound plays when you press 38+R.

[aNaNe] Button Attributes
AR R

¥ Button

800 - Window:

Title Search

Alt. Title

Image | |
o senrciing Altmage | ¥

Mode | Momentary Push in .

Posion [—|o[o-/-ofa]oa]

Alignment (= [[=]=[=]
Visual ™ Bordered M Selected
[Transparent [Mixed

Sound Frog —
Key Equiv. | ©]| Cdear

¥ Control
TextDir. | Natural +
Line Breaks | Word Wrap =)

) Truncates Last Visible Line

State # Enabled 7] Continuous

Tag 0

¥ View

Focus Ring | Default =

Drawing [Hidden

™ Auteresizes Subviews

Round button

A close relative to the push button is the round button. As its name implies,
the round button has a circular shape, and that’s the main difference between a
round button and a push button. In addition to text, a round button can display
icons. For example, one common use for a round button is as an arrow button.

171

’ 72 Part ll: Instant Cocoa and the Objective-C Language

To set the icon displayed on a button, perform the following steps:

1. Drag a round button from the Library to the main window of your
interface.

2. Select an image to use as the button’s icon from the Image drop-down
list in the Button Attributes window.

Interface Builder provides you with many different default system icons
that you can use. For example, Figure 9-5 shows the NSRefreshTemplate
image name. Note: The vertical alignment of the button doesn’t look so
great. Step 3 fixes this.

\3 . - . . .
) Conversely, you could add an image file to your project window in
Xcode (again, Xcode, not Interface Builder). The new image automati-
cally appears in the list of choices in Interface Builder.
PoPe— = 800 Button Attributes
) - Wind :
S SESrACICINEE
¥ Button
Title
Alt. Title
Image | NSRefreshTemplate =)
_@) E~Search=3 Al Image =
o :) Scaling ("Proportionally Down 2]
position [— | o |o-|-o B |o]o)
Alignmemt (= [=]= =[--]
Visual ™ Bordered] Selected
] Transparent [] Mixed
| o [|
Figure 9_5: Key Equiv. Clear
. ¥ Control
To assign B T E—
an image Line Breaks | Word Wrap]
[Truncates Last Visible Line
toa bUtFO_n' State ™ Enabled [] Continuous
selectitin Tag O
the Image —
‘ocus Ring | Defaul B
drop-down fosting (vr 1)
i Drawing [| Hidden
list. ™ Autoresizes Subviews
|

3. Set the alignment of the button image.

In the Inspector window, click the second button in the Position button.

The image on the button now centers vertically, as shown in Figure 9-6. The
other elements of the segmented Position button vary the manner in which

the button image is aligned in relation to text on the button. The segments
display an icon to give you a visual indicator of how that segment aligns

the button image.

|
Figure 9-6:
The button’s
image is
centered
vertically
now.
|

Chapter 9: Working with Interface Controls

~ < Window 8.0.0, Button Attribute
2locle|e|o]0]¢
¥ Button
Title
Alt. Title
Image | NSRefreshTemplate -}
(© r—— Alt. Image =
- E— i f B
y Scaling Proportionally Down)
Style ["Round]

Mode | Momentary Push In ‘:«}
Position [—Jolo--oelo/g!

Alignment | = | =

visual ™ Bordered [Selected
[Transparent (] Mixed

Sound —L]
Key Equiv. |:| Clear
¥ Control
[Truncates Last Visible Line

state ™ Enabled [Continuous

Tag 0

¥ View

Focus Ring [Default +)

Drawing] Hidden

M Autoresizes Subviews

Check box

So far, you've looked at buttons that users click to perform an action. Not all
buttons have to trigger an action, though. The check box button, for example,
can behave more passively. Rather than firing some action, a check box
button might simply indicate a binary state, such as toggling a feature on and
off or for answering a Yes/No question. A check box can act like a button,
however, in that it’s also capable of triggering an action just like a push
button. Figure 9-7 shows a check box control.

You can add a check box to your interface by dragging one from the Library
window in Interface Builder. In the Inspector window, you can set the default
state of the check box as well as its title and other cosmetic features.

When using check box controls, your code typically checks the state of the
control and performs an appropriate operation. To demonstrate, this snippet
of code checks the state of a check box control outlet, prefsCheckbox, and
acts accordingly:

if ([prefsCheckbox statel])
// Save Preferences

else
// Don't Save Preferences

173

’ 74 Part ll: Instant Cocoa and the Objective-C Language

|
Figure 9-7:
A check

box button
shows the
state of a
setting.
|

[sMaXe) Butson Atributes B0 Library
Windew rErEPAr IR =
(omjects | mMeca
¥ dunoa ——
v Ll Uiorary
Title Save Preferences e
 Save Prefeences Al Title Interlace Buder Kit
Web Kit
Image
'} Address Book
" Al Image - wutomator
[Search — Avloutt s
- = Sealing Propartianally Dows] DiscRecording v
seyle Cheek = [s | Check Box Gl - Used 10 imolemnt the]
s e =) | user intertaces of check boxes
Pasition - olo=-o& @ 0 | Pop Up Button Cell - Defines the visual
- Pete | appearance of pop-wup buttons that displa
't ey | P l
Aignment (o5 = = = | tnr-aps o]~ oo
Visual | Bordered W Selected
Transparest () Mized
Check Box - Intercepts mouse-down events
Sound = @ and sends an action message to a target
object when it's dicked or pressed.
Key Equbv. Clear
— Pop Up Button - Controfs 3 pop-up menu
¥ Cantrsd | [W) o a puit-down menw from which a wser can
Teat Dir. | Matural @l | fpmsith
ety . |
Line Nreaks | Word Wrap] |
| . Automator Path Pop Up Button - Controls
7] Truncates Last Visibie Line | (R, & -t ot o o trcen which a
Suae enabled Continuous W user can choose a path il
Tag 0
= . S
Focus Ring | Default %]
The MEBUMON class 14 2 SubCILSS of NSContnal that
Drawing [Hidden terepas meuse. dows cventy and sendy an actian
T e ey Message 1o A Larget abject when it's hicked ar

pressed

B @b

Square and rounded bevel buttons

Bevel buttons are another style of button available to you. They come in two
varieties: square and rounded. Besides the beveled appearance, they differ
from standard push buttons and round buttons in that they often are used to
display both text and icons. Further, they can perform other functions that a
push button can’t.

To add a bevel button to your application, search for Bevel Button inthe
Library window of Interface Builder and then drag one to your interface.

You can use a bevel button like a standard button to trigger an action
when a user clicks it. Beyond this simple button behavior, bevel buttons
can also mimic other controls. Like the check box, a bevel button can indi-
cate state by displaying a depressed look. Bevel buttons can also act like a
menu by displaying a selection from a list of choices. Figure 9-8 shows the
square and rounded bevel buttons with the pre-supplied NSEveryone and
NSFolderBurnable images assigned to each button respectively.

|
Figure 9-8:
Bevel
buttons can
display text
and icons.
|

Chapter 9: Working with Interface Controls

P d 800 Button Attributes.
W0 Window
= sclo|efo]0]¢
¥ Button
(] Save Preferences e ——
Title Burn
AvTle |
gl @ | Image | NSFolderBurnable -
m Alt. Image -
(a ‘ ‘ | Burn ‘ Search = s
- S — Scaling [Proportionally Down ‘:]
4

Mode [Momentary Push In =]
Posiion (- | oo-/-ojsjojE]
Alignment (= [= =/=| — |

Visual ™ Bordered [Selected
[Transparent [Mixed

Sound :.
Key Equiv. Clear

¥ Control

TextDir. [Natural)
Line Breaks | Word Wrap =]
) Truncates Last Visible Line
State ™ Enabled 7] Continuous
Tag o]

¥ View

Focus Ring [Default]

Drawing [Hidden

™ Autoresizes Subviews

Radio Control

A\

The radio control is a specialized form of the button that gives a user multiple
options. When the user chooses one of these options, the other radio buttons
become deselected. Because you typically use more than one radio button at
a time, it is customary to use an NSMatrix of radio buttons instead of sev-
eral individual buttons set to the radio style. An NSMatrix is a collection of
cells. A radio button resides in each cell in the NSMatrix.

Follow these steps to add radio buttons to your interface:

1. Drag the Radio Group control from the Library window.

Interface Builder adds a matrix (or group) of radio buttons to your
window.

Figure 9-9 shows the NSMatrix that appears in your window when you
drag a radio button control from the Library window.

2. Double-click the cell and edit the Title text.

The Title text becomes editable until you click elsewhere in the interface
or press Return.

You can also change the Title of an NSMatrix element by using the
Inspector window.

175

’ 76 Part ll: Instant Cocoa and the Objective-C Language

8000 . Window
® Radio
O Radio
I M Save Preferences
Figure 9-9:
Radio but- —
tons usually (@ m =)
appear as & il (Search)
part of an
NSMatrix.
I Z
3. Click the NSMatrix in your interface and add more radio controls to
the NSMatrix. Open the Matrix Attributes Inspector window by choos-
ing Tools=>Inspector and change the Rows field of the Cells section, as
shown in Figure 9-10.
Figure 9-10 shows an NSMatrix with three rows that have edited titles.
evara < Window 800 Matrix Attribute:
= slcloleo]0]¢
@ADD!E ¥ Matrix
) Banana Mode [Radio =)
© Grape Cells 3 B 8]
Rows Columns
S avePrerurences Sflaclmn] Empty ™ Rectangular
Display] Draws Background
—]
L@ | ¥ Control
- Line Breaks | Word Wrap +]
| [Truncates Last Visible Line
) State ™ Enabled [] Continuous
Figure 9-10: AL | o/
Add rows to ¥ View
an NSMatrix Focus Ring. [Defaul
. Drawing [Hidden
In the ™ Autoresizes Subviews
Matrix '
Attributes
Inspector
window for
that control.

Chapter 9: Working with Interface Controls 1 77

4. Connect the NSMatrix to an outlet of a Controller class by
Control+dragging from the controller to the NSMatrix control.

QNING/ When connecting an outlet to an NSMatrix, make sure that you

R Control+drag from the Controller class to the entire matrix, not to
an element of the matrix. If one element becomes highlighted when you
Control+drag from the controller to the NSMatrix, move the cursor
around until a dark outline appears around the entire NSMatrix (see
Figure 9-11).

|
Figure 9-11: DO O MainMenu.xib (English) o O Window
When you slm ot A

View Mode Info Search Field (=} Apple

connectan Qe
G
outlet to an . @ /\ » B

NSMatnX, File's Owner First Responder Application

¥ Save Preferences

make ; r "'
Certain to ainMenu Window #¥ind. Font Manager L&a]
attach it to e ' O] ‘E i
the entire ;
control, not
justone of Qe & ¢
its elements.
|

After you have an outlet to the NSMatrix, you can find out which element
the user selected in code by using the selectedRow method of NSMatrix.
The selectedRow method returns an integer indicating the index of the
currently selected row. Row numbers start from the top, with the first row
having an index of 0. To illustrate, here’s a sample action that checks the
selectedRow of colorRadios. Based on the index, it displays a message in
the console telling you which color was chosen:

- (IBAction)doSomething: (id) sender
{

switch ([colorRadios selectedRow])
{
case 0:
NSLog (@"User chose red.");
break;
case 1l:
NSLog (@"User chose green.");
break;
case 2:
NSLog (@"User chose blue.");
break;

’ 78 Part ll: Instant Cocoa and the Objective-C Language

Slider Control

Figure 9-12:
The

sliders are
located in
the Library
window.
|

Sliders are the controls you use to represent a range of values. The control
gives users an opportunity to select a value in that range by moving (or sliding)
the knob of the slider control. NSS1ider is the class behind the slider func-
tions in Cocoa. Again, the NSS1ider control appears in the Library window, as
shown in Figure 9-12.

Sliders come in a variety of styles. They can span horizontally or vertically or
even in a circular fashion. They can also display tick marks. Figure 9-13 illus-
trates the different combinations of styles that sliders can have.

Sliders have two modes of operation: continuous and not continuous. When
you check the Continuous property of an NSS1lider in the Inspector window,
that slider fires its action any time the user moves it. Conversely, when you
deselect the Continuous property, the slider triggers its action when, and
only when, the user lets up on the mouse.

8,00 Library
Obijects | Media |

_-Y|_m L}hrary
» [7] Cocoa
7] Interface Builder Kit
7] web Kit
7] Address Book
7] Automator
[:l DiscRecording
i:] Image Kit
7] Open Scripting Kit
7] PDFKit
7] QuickTime Kit
7] Quartz Composer
7] Custom Objects

Library - Cocoa - Views & Cells - Inputs & Values

Vertical Slider - Displays a range of values
for something in the application.

e Horizontal Slider - Displays a range of
values for something in the application.

3 Circular Slider - Displays a range of values
- for something in the application. *

Vertical Slider
NSSlider

An NSSlider object displays a range of values for
something in the application. Sliders can be vertical or
harizental bars or circular dials. An indicator, or knob,
notes the current setting. The user can move the knob
in the slider’s bar—or rotate the knob in a circular
slider—to change the setting.

-) (Qslider

Chapter 9: Working with Interface Controls 1 79

800 = Sliders
Py
|
Figure 9-13: i
Sliders are O
highly con- L
figurable. €% €3 &)
| /
<P Because sliders represent a range of values, they have minimum and maximum

values. They also have a current value, which represents the position of the
slider button in the range of minimum and maximum values. You can set these
values in the Inspector window.

If you want to find out what the current value of the slider is in code, do
something like this:

float x = [theSlider floatValue];

You can also set the current position of the slider by using the setFloat
Value method:

[theSlider setFloatValue:3.14];

You aren’t restricted to the setFloatvalue method, however. Because
NSSlider inherits from NSControl, among other classes, you can use

the methods of NSControl to work with the slider. The setFloatvValue
method is just one method of NSControl. There are others, which you can
view in the built-in documentation. For example, if you don’t care about
slider values that contain decimal points, you can use the setIntvalue
method of the NSControl:

[theSlider setIntValue:5];

Tab Views

If you need to reduce clutter or if space is at a premium, tab views are for
you. The NSTabView is the class in the Application Kit that provides you
with tab views for your interface. A tab view, as its name implies, is a view
consisting of multiple tabs that when clicked display a particular pane of
the view. Figure 9-14 shows a tab view with four tabs. Each pane can hold

’ 80 Part ll: Instant Cocoa and the Objective-C Language

any number of other controls. When a user clicks a tab, the controls from all
other tabs disappear and the controls for the selected tab come into view.

|
Figure 9-14: 8.00 - Tab View
The tab [Fruits = Vegetables Meat Grains |
view
con'i:’olls) Apple Quantity: =6='
FIE O 140
. P OOrange .
organize Ripeness: ’:(— ?:‘ A
many OCrape
controls 0= o Y
into a OLime SIS p—
reduced Cancel | Save
space. 4
|

To use a tab view, follow these steps:

1. Drag a tab view control from the Library window to your interface.

2. Click once on the tab view and change the number in the Tabs field in
the Tab View Attributes Inspector window to add tabs to the tab view,
as shown in Figure 9-15.

8,00 Tab View Attributes
Q00 ey s |lclo|w|o]0]¢
{ Fruits Vegetables Meat Grains lem4 | | T Ianview
Style [Top tabs -:3
Default Tab | Current =
e tity: s — ———
T it N Tabs 5] ()
(O Orange . s Display # Truncates Labels
| @cCrape et Draws Background
- — [¥ view
Flgl.ll'e 9-15: ® Banana S e, =
Addt b 4 Focus Ring | Default]
abs to O Lime Drawing [Hidden
atab view S
with the -
Tabs field.

Figure 9-16:
Change the
Label field
to alter the
text that
appears at
the top of
each tab.
|

Chapter 9: Working with Interface Controls 1 8 ’

3. Change the label at the top of each tab by clicking the tab’s text once
and change the Label field in the Tab View Item Attributes Inspector
window, as shown in Figure 9-16.

4. Add the controls to each tab.

Select a tab and then drag the desired controls to that tab. Repeat for
the other tabs until you’'ve populated the tab view.

O OO Tab View item Attributes
ennr - Tab View s |lclglp[o]o]4

¥ Tab View item

- Fruits Vegetables Meat Grains | Dairy]7

Label ftem 4

Identifier Item 4

Y

When the application is running, you may want to know which tab a user
selected. An NSTabView control can have any number of tabs, which are
instances of the NSTabviewItem class. Each TabviewItemin a Tabview
has a corresponding index, beginning with 0 (zero). To find out which tab
index a user selected, you must first figure out which NSTabviewItem is
selected. Then you pass that TabviewItem to the indexOfTabViewItem to
get the index of the tab.

NSInteger selectedTabViewItem;

selectedTabViewItem = [theTabView
indexOfTabViewItem: [theTabView
selectedTabViewItem]];

NSLog (@"selectedTabViewItem = %$d", selectedTabViewItem) ;

In this snippet, NSLog sends text output to the console. To view the Xcode’s
Debugger Console, choose Run=>Console. Figure 9-17 shows the open
Console window.

’ 82 Part ll: Instant Cocoa and the Objective-C Language

Figure 9-17:
Use the
console

to display
text when
debugging.
|

m| Controller.m - Buttons

10.5 | Debug | ppc e 'é\ (7] Q- String Matching
Overview Action Build and Go Tasks Info Search
Groups & Files { F] | Controller.m:1 % <No selected symbol> % DEIEEEE a
v [Buttons B B
¥ [|Classes f #inport "Control ler.h*

1] Controller.n

[u] Controlier.m ainplenentation Control ler

P[] Other Sources | —fvoidauakeFromtiib {
¥ | Resources | /RETablH euTten
5] My Automobile Horn.y Nslnteger selectedTobviculten = [theTabview ndex0fTabviswlten: [theTabViey selectedTabviewlten]]:
5] info.plist NsLog(@" se lectedTaskisulten = %i*, solectedTabVisylten);
b [5] InfoPlist.strings
¥ [5] MainMenu.xib dend

b [Frameworks
» Products

> @) Targets

Debugging terminated. @Succeeded

(L Helo] ™ Buttons - Debugger Console =/
Lo ouvalore " D @ gw®
Overview Buildand Go_ Tasks Restar: Pause Activate Clear Log

[Session started at 2008-08-05 02:46:12 -0500.]
2008-08-05 02:46:14.433 Buttons[30250:10b] selectedTabViewItem = 4

Debugging terminated.

2

Making Progress at the Bar

Anyone who has ever used a computer knows that some functions —

such as creating a large movie in iMovie or ripping a bunch of MP3 files in
iTunes — require a long time to process. As lengthy operations proceed,
the thoughtful programmer displays some sort of feedback to let the user
know that the computer is working on something. To do this in Cocoa, use
the NSIndicator control. To add an NSIndicator control to your project,
search for Indicator in the Library window of Interface Builder and then
drag one to your interface.

NSIndicator can display two kinds of progress bars:

+* Indeterminate: Display an indeterminate progress indicator when you
don’t know how long the process will take, such as when you're searching
for files on a hard drive. The indeterminate progress indicator has two dif-
ferent looks — one variety looks like a barber pole and the other spins.

v Determinate: Use determinate progress indicators when you know how
long a process takes to complete, such as when you repeat a task ten times.

Chapter 9: Working with Interface Controls 1 83

Figure 9-18:
The inde-
terminate

NSIndicator

looks like a

barber pole

orspinina
circle. The
determinate

NSIndicator
shows the

progress of
an opera-
tion, step

by step.
|

The window in Figure 9-18 displays each type of NSIndicator.

Indeterminate progress Indeterminate progress
.00 _ NSlIndicator
fl R R E EE T
. Start . Stop
i
Determinate progress

To use the indeterminate NSIndicator control, call the startAnimation
method. This causes the barber pole to move. The following example calls
the startAnimation method using an indeterminateProgress outlet
from within an action:

- (IBAction)startIndeterminateProgress: (id)sender {
[theIndeterminateProgress startAnimation:sender];

}

When you’ve finished processing whatever you need to process, you can
stop the animation by using the stopAnimation method:

- (IBAction)stopIndeterminateProgress: (id)sender {
[theIndeterminateProgress stopAnimation:sender];

}

With a determinate NSIndicator, you set the value of the control with

the setDoubleValue method. This code snippet sets the indicator to the
middle position, assuming that the control has a minimum and maximum of 0
to 100, respectively:

[theDeterminateProgress setMinValue: 0.0];
[theDeterminateProgress setMaxValue: 100.0];
[theDeterminateProgress setDoubleValue: 50.0];

’ 84 Part ll: Instant Cocoa and the Objective-C Language

Table Control

One of the most versatile controls that you can add to your applications is
the table control. Unfortunately, it’s also one of the trickiest to use. With an
NSTableView, you can display a table or list of data with all sorts of display
options. You'll find the NSTableView control in the Library window, as
shown in Figure 9-19.

8.0.0 Library
[Objects | Media |

i Y|m i_ibrarv
» [Cocoa
71 Interface Builder Kit
7] web Kit
7] Address Book
Ij Automator
"] DiscRecording
D Image Kit
] Open Scripting Kit
[""] PDFKit
7] QuickTime Kit
7] Quartz Composer
"] Custom Objects

Library - Cocoa - Views & Cells - Data View:

Table View - Displays record-oriented data

| ~. inatable and allows the user to edit values
* and resize and rearrange columns.
Figure 9-19:
The NS
TableView 2 i O Table View
e me (s NSTableView in an NS5croliView
control | &
H An NSTableView cbject displays record-oriented data in
can d|3p|ay a table and allows the user to edit values and resize and
H . rearrange columns.
information
in tabular
form.
-) [Q able view
| Z)

To begin using an NSTableView in a Cocoa project, follow these steps:

1. Launch Xcode, choose File=>New Project to create a new project, and
name the project SimpleTable.

2. Double-click the MainMenu.xib file to open it in Interface Builder and
drag an NSTableView control from the Library window to the default
window of your interface.

Chapter 9: Working with Interface Controls 1 85

3. Assign the first column identifier.

Double-click the white space below the text at the top of the first column
to select the first column. Set its identifier to launchedaApplications.
NSApplicationName, as shown in Figure 9-20.

~ Oy WG © © 0 Table Column Attributes
o |0 |o|w |00
.i_.\ ¥ Table Column

Text Cell Text Cell I Title

Identifier | launchedApplications.NSApplicat

Alignment
Sort Key
Selector
M Resizes with Table
™ User Resizable

™ Editable
[] Hidden

Figure 9-20:
Assign an
identifier

to the first
column.
|

The reason you're doing this is because NSWorkSpace has defined keys
for elements in the 1aunchedApplications dictionary. This key rep-
resents the name of an application. Using keys like this one can greatly
simplify your code.

4. Assign the second column identifier.

Double-click the NSTableView twice until you've selected its
second column. Set its identifier to launchedaApplications.
NSApplicationPath, as shown in Figure 9-21.

5. Add a controller:

a. Drag a new Object control from the Library window to the XIB project
window.

b. Name the new object MyDataController.

c. To this new object, add an outlet named tableView, as shown in
Figure 9-22.

’ 8 6 Part ll: Instant Cocoa and the Objective-C Language

Figure 9-21:
Assign an
identifier to
the second
column.
|

|
Figure 9-22:
Add an
outlet to the
Controller
class.
|

Table Column Attributes.

0600 §
2lele[e[o]0]¢

¥ Table Column

Text Cell Text Cell

Title
entifier | Tanchedapplcations NsAppical
Alignment [= =
Sort Key
Selector

Order

Resizes With Table
M User Resizable

™ Editable

) Hidden

Q
Name | Type
B File's Owner NsApplication
@ First Responder FirstResponder
oy Application NSApplication
» £ MainMenu NSMenu
b 5= window (Window) Nswindow
8 Font Manager NSFontManager

© © My Data Controller identity

(]
oo |@lo]o]¥

¥ Class Identity

Class MyDataController B

¥ Class Actions-

[+[-]

¥ Class Outlets.
| Outlet Type &
) ih
tableView id

[+[-]

¥ Interface Builder Identity

Mme]

ObjectID 460

Lock Nothing (Inherited) >

Notes (] Show With Selection

Chapter 9: Working with Interface Controls 1 8 7

NG/
$

6.

10.
11.

12.

Connect the controller.

Control+drag from the MyDataController class to the center of the
NSTableView in your interface, and then select tableview from the
list of choices in the black connections list overlay that appears.

Be sure to drag to the center of the control. The NSTableView lies
within another control called the NSScrollView. As you slowly
Control+drag to the center of the control, you see the focus ring high-
light the outer NSScrol1View first and then the NSTableView, which
is what you want.

. Connect the data source.

Control+drag from the NSTableView to the MyController class.
Select the dataSource outlet from the black connections list overlay
that appears. A TableView control must have a data source class that
feeds it data.

. Select MyDataController in the Interface Builder project window

and choose File~>Write Class Files to create the class files for
MyDataController.

. Click Save in the Save dialog that appears and add the class to the

current Xcode project in the dialog that appears after that.
Return to Xcode and select the MyDataController.h file.
Replace the code in MyDataController.h with the following:

#import <Cocoa/Cocoa.h>

@interface MyDataController : NSObject
{
IBOutlet id tableView;
NSArray *_launchedApps;
NSWorkspace *_workSpace;

}
@end

The code begins by declaring the tableview outlet and a pointer to an
*_launchedapps array. The array holds the names of all currently run-
ning applications. The *_workSpace variable assists you in retrieving
the application names and paths later.

Select the MyDataController.m file and add the following code to it:
#import "MyDataController.h"

@implementation MyDataController

7 88 Part ll: Instant Cocoa and the Objective-C Language

- (void)awakeFromNib ({
_workSpace = [NSWorkspace sharedWorkspace];
_launchedApps = [_workSpace launchedApplications];
[tableView reloadDatal;

- (int)numberOfRowsInTableView: (NSTableView *)
tableview {
return [_launchedApps count];

(id) tableView: (NSTableView *)tableView

objectValueForTableColumn: (NSTableColumn *)tableColumn
row: (int)row {

return [[_workSpace valueForKeyPath: [tableColumn
identifier]] objectAtIndex:row] ;

- (void)dealloc {
[super dealloc];

}

@end
Here’s what the code does:

v The awakeFromNib method starts the source code off by populating
the _launchedapps array. It does this using an NSworkspace object to
find the names of the currently running applications.

1 Next comes the numberOfRowsInTableView method. Because the
number of rows in the table matches the number of elements in
the _launchedApps array, you return the size of the array.

v The objectValueForTableColumn method takes care of returning
the data to the NSTableview. To distinguish between the two columns,
this method passes the valueForKeyPath method the identifier of the
requested column. Because _launchedApps is really an array of diction-
ary objects, you need to extract the information from the dictionary if you
want something suitable for display. The first column displays the name
of the running application, and the second column displays its path.

Without adding any other code, this table would display the running applica-
tions on your computer. The background of the table is white with black text.
N To spruce up the interface a little bit, you can colorize the background of the
rows in the table. Return to Interface Builder and select the NSTablevView in
the interface. Select the Alternating Rows check box, as shown in Figure 9-23.

Chapter 9: Working with Interface Controls 1 8 9

T 03] il
Qa0 < Window W’W
¥ Table View
Text Cell Text Cell Highlight | Regular :
M Alternating Rows.
Col. Sizing | Last Column Only =
Autosave ||
1 Column Information
Columns | 2] 2] @ Headers
™ Reordering ™ Resizing
selection [Multiple # empty
™ Column ™ Type Select
Grid Lines [] Horizontal [Vertical
Colors | —
| Grid Background
) ¥ Control
Flgure 9-23: ¥ TextDir. [Left To Right %
Addin g Line Breaks | Word Wrap %
[] Truncates Last Visible Line
alternate State ™ Enabled [Continuous
row colors Tag O
is as i
simple as Drawing (] Hidden
selecting a ™ Autoresizes Subviews
check box.
— “

Figure 9-24 shows what the table view looks like at runtime. The names of the
running applications vary depending on which computer you’re using and
which applications are running at the time you launch this app.

800 Window
Finder .vastemfLibrarw'CoreServicesfFinder.app
|
Safari /Applications/Safari.app
Figure 9_24: Mail JApplications/Mail.app
Th iTunes /Applications /iTunes.app
e Word /Applications/Microsoft Office 2004 /Microsoft Word
completed TextEdit /Applications/TextEdit.app
A Preview JApplications/Preview.app
table “Sts Xcode /Developer/Applications/Xcode.app
the SimpleTable JUsers e /Desktop/PROJECTS/WILEY /Cocoa for ...
currently
running
applications
ona
computer.
I Z

7 90 Part ll: Instant Cocoa and the Objective-C Language

Chapter 10
Cocoa Data Types

In This Chapter

Using the NSNumber class

Working with an array
Understanding Cocoa’s Boolean type
Finding out what day it is

One of the main tasks that computers do well is manipulate data.
Whether you need to calculate the national debt or keep track of the
telephone numbers of the players in your poker club, computer programs
can ease the task of handling information. Cocoa improves upon the various
ways that you work with data in C.

This chapter takes you on a tour of some data types unique to Cocoa. The
Foundation Framework defines these data types. You can continue to use the
data types that you know from C, but after you see what Cocoa has to offer,
you just might stop thinking about those old C types altogether.

Working with Numbers

When you program in Objective-C, you can use all the usual standard C numeri-
cal data types for making calculations. If you want to use these values with
Cocoa’s array objects, however, you're left out in the cold. For this reason,
Cocoa offers you the NSNumber class. One of its great uses is to wrap numbers
in a Cocoa object, for use with other objects, such as NSArray. The NSArray
class is an array class that comes with the Foundation Kit. You hear more
about it later in this chapter.

To create an NSNumber object based on an integer value of 42, use code
like this:

NSNumber *n = [NSNumber numberWithInt:42];

7 92 Part ll: Instant Cocoa and the Objective-C Language

Here are methods for creating NSNumbers based on a variety of numerical
types:

¥ numberWithDouble

¥ numberWithFloat

V¥ numberWithInt

V¥ numberWithLong

¥ numberWithUnsignedShort
To retrieve values from an NSNumber, use one of the many NSNumber accessor
methods. Some of these include

¥ doubleValue

v floatValue

V¥ intValue

¥ longValue

V¥ unsignedShort
If you want to compare the values of two NSNumber instances, use the
isEqualToNumber method. Because an NSNumber is an object, you can’t

opt for the brevity in C of "if (numl==num?2) ". This example shows how to
compare two NSNumbers named numl and num2:

if ([numl isEqualToNumber :num?2])
NSLog (@"Numbers are equal") ;

else

NSLog (@"Numbers are not equal");

Working with Arrays

One of the most common programming tasks that you’ll encounter is working
with a list of data. To pull off this task, Cocoa programmers use NSArray and
NSMutableArray, which are storage units for a list of data. You use arrays
when you need to keep track of a list of information, such as the titles of books
in your bookcase, the people in your family, or the number of windows that
are open currently. What makes Cocoa arrays unique is the fact that, unlike
traditional C arrays, they can store references to objects.

Chapter 10: Cocoa Data Types 1 93

NSArray

The NSArray class is handy for storing a group of objects in one place.

To demonstrate, here’s one way you might create and populate an array with
NSString objects:

NSArray *theArray;
NSString *namel;
NSString *name2;
NSString *name3;
NSString *name4;

//assign values to the four names
namel = @"Maria";

name?2 = @"Mercedes";

name3 = @"Leopold";

name4 @"Frederick";

//create and populate the array
theArray = [NSArray arrayWithObjects:namel, name2,
name3, named4, nil];

Note the arraywithObjects method lets you create an NSArray by listing
the objects in that array. The last object must always be nil to indicate the
end of the array.

If you want to find out how many items were in that array, use the count
method:

int i = [theArray count];
You can then use the size of the array to retrieve the objects within that

array, based on the index. This code snippet displays each item in the array
that you just created:

NSLog (@"objectl = %@", [theArray objectAtIndex:0]) ;

NSLog (@"object2 = %@", [theArray objectAtIndex:1]) ;

NSLog (@"object3 = %@", [theArray objectAtIndex:21]) ;
‘$Q“Nm NSLog (@"objectd = %@", [theArray objectAtIndex:3]);
&

Don’t forget that the index is always zero-based.

7 94 Part ll: Instant Cocoa and the Objective-C Language

3

Put it all together, and the code looks like this:

int 1i;

NSArray *theArray;
NSString *namel;
NSString *name?2;
NSString *name3;
NSString *name4;

//assign values to the four names
namel = @"Maria";

name?2 = @"Mercedes";

name3 = @"Leopold";

name4 = @"Frederick";

//create and populate the array
theArray = [NSArray arrayWithObjects:namel, name2,
name3, named4, nil];

NSLog (@"objectl = %@", [theArray objectAtIndex:01]) ;
NSLog (@"object2 = %@", [theArray objectAtIndex:1]);
NSLog (@"object3 = %@", [theArray objectAtIndex:21]) ;
NSLog (@"object4d = %@", [theArray objectAtIndex:31) ;
i = [theArray count];

NSLog (@"theArray count = %d4d",i);
The resulting output looks like this:

2008-07-28 04:45:54.518 CocoaData2[944] objectl=Maria
2008-07-28 04:45:54.520 CocoaData2[944] object2=Mercedes
2008-07-28 04:45:54.520 CocoaData2[944] object3=Leopold
2008-07-28 04:45:54.520 CocoaData2[944] objectd4=Frederick
2008-07-28 04:45:54.520 CocoaData2[944] theArray count = 4

NSMutableArray

The NSArray class’s one shortcoming is that you can’t alter it after you've
created it. When you can’t change something (such as an array), it’s immu-
table. Conversely, those that you can change are mutable arrays. Thus, Cocoa
also offers the NSMutableArray. To create an NSMutableArray, you can
use its arrayWithCapacity method:

NSMutableArray *theArray = [NSMutableArray
arrayWithCapacity:0];

Because you can grow or shrink NSMutableArrays at will, it’s safe to create the
array with space for zero items.

Chapter 10: Cocoa Data Types 1 9 5

With an NSMutableArray, you can change elements in the array after you
create it. This makes it more suitable for maintaining dynamic lists of
information:

1 Add items to an NSMutableArray: Use the addObject method:

[theArray addObject:namel];
[theArray addObject:name2];
[theArray addObject:name3];

+ Remove an item from the array: Use the removeObjectAtIndex
method. This method removes an object from the array and resizes the
array in the process. For example, to remove the second name (which is
at index 1), use code like this:

[theArray removeObjectAtIndex:1];

v~ Insert an object: Use the insertObject method. The method inserts
an object into the array, resizing it as a result. This example reinserts
the second name (name?2) into the array:

[theArray insertObject:name2 atIndex:1];

1 Replace an element of the array with another object: Use the replace
ObjectAtIndex method. This snippet replaces the second name in the
array with name3:

[theArray replaceObjectAtIndex:1 withObject:name3];

Because NSMutableArray inherits from NSArray, you can use the methods
from earlier in this section to find out the size of the array and to query it for
specific elements.

Working with Boolean Data Types

A Boolean data type represents information that can occur in two, and only
two, states. For example, an On/Off switch acts in a Boolean fashion because
you have only two options. A Yes/No question works similarly. Objective-C
has its own Boolean data type: BOOL. Instead of the usual TRUE and FALSE
values, Objective-C uses YES and NO. This code snippet shows some of the
ways in which you’d typically use BOOL variables:

BOOL answerWasFound;
answerWasFound = FindTheAnswer () ;
if (answerWasFound)

// OR
if (answerWasFound == YES)

7 96 Part ll: Instant Cocoa and the Objective-C Language

Besides using YES or NO for the Objective-C BOOL type value, it’s important
for another reason: It works with other objects in Cocoa. Again, arrays and
other types of collection objects expect their elements to be objects them-
selves. If you wanted to create an NSArray of Boolean values in Cocoa, you'd
pass the BOOL type to the numberwithBool class method of NSNumber:

//create an NSNumber with a BOOL
n = [NSNumber numberWithBool:YES];

//add the NSNumber to an array
[theArray addObject:n];

Working with Dates

The NSCalendarDate class gives you many options when it comes to work-
ing with dates and times. One of the most common tasks you perform is
finding the current date or time. You can do this in one line of code with an
NSCalendarDate class method:

NSDate *theDate = [NSCalendarDate date];

After you retrieve this date, you can easily convert it into an NSString, suit-
able for display. Simply use the description method to display the date in
standard international format. In this example, NSLog displays the date in the
console:

NSLog (@"theDate = %@", [theDate description]) ;
This yields results like this:
theDate = 2008-08-05 05:08:13 -0500

The description method is okay for quick-and-dirty date displays, but
sometimes you want to display the date in a more human-friendly format.
The descriptionWithCalendarFormat method can help you build an
NSString that holds the date or time. The descriptionWithCalendar
Format method has three parameters. The first parameter is the only one
that you have to worry about for simple date work. That parameter is an
NSString that represents the date in the format you desire.

Chapter 10: Cocoa Data Types 1 9 7

Cocoa gives you lots of flexibility when it comes to formatting your date for
display. For example, the following code snippet formats a date as you might
expect to see it in the United States:

NSLog (@"theDate = %@",
[theDate descriptionWithCalendarFormat:@"%A, $%$B %d,
(%$I:%M)" timeZone:nil locale:nill]);

o

Y

This results in a date formatted like so:
theDate = Monday, August 04, 2008 (10:15)

That odd-looking string that you pass to the descriptionWithCalendar
Format method dictates which elements of the date you want to display.
Apple calls those strange characters date conversion specifiers. Each specifier
is a one-letter code that corresponds to some aspect of the date. In the pre-
ceding example, %A represents the name of the day of the week, which in this
case is Monday. Next comes $B, which stands for the name of the month (in
this case, August). You can continue to string together these specifiers until
you've built a date in the format you prefer. Table 10-1 details some of the
more common specifiers.

Table 10-1 Date Format Specifiers
Code What It Represents
%B Month name

Month as an integer

oP
3

oe
(0]

Day of the month as an integer

oe
[oh

Day of the month as a two-digit integer

Weekday name

oe
hd

Hours

oe
—

Minutes

oe
=

Seconds

oe
[6p]

Year

oe
<

7 98 Part ll: Instant Cocoa and the Objective-C Language

Part llI

Putting It All
Together: Cocoa

Programming
In Depth

The 5th Wave By Rich Tennant

R A R O e X L AR AR P AT L X B K ot LA L (LB e LIRS

In this part . . .

ou know how the Developer Tools work, you have

a handle on the Objective-C language, and you’'ve
even built your own applications. Now it’s time to step it
up a notch.

Part IIl elevates your Cocoa skills to new heights. You
discover how to add the features found in every cool
Cocoa application by creating a variety of programs with
a range of functions from text and graphics to audio and
video. Every Mac user expects an application to work with
files, so Part IIl covers that, too.

Chapter 11
Text

In This Chapter
Displaying text
Changing the style of text
Editing text
Saving text to a file

Opening and displaying text files

Ever since the first Macintosh computer, Apple has led the consumer
computer world in design, layout, and typography. Mac OS X continues
this tradition by providing some of the best-looking text that you’ll ever see
on a computer monitor. Cocoa gives programmers instant access to these
wonderful features of OS X.

This chapter shows you how to work with text for a variety of purposes.
First, you display some text in a window. Then, you manipulate that text, con-
torting its sizes and altering its hue. Next, you discover how easy it is to add
professional text-editing features to your applications with little or no code.
Finally, you save the text from your interface to a file for later recall. Stylized
text is a great feature for many types of applications, and Cocoa gives you a
wide range of tools for manipulating that text.

Working with Text

Cocoa has many different controls for working with text in applications.
Some text controls display text as a label; other controls permit full editing
like a word processor. Interface Builder offers several controls for working
with text, but they generally inherit from one of two controls:

1 NSTextField: Displays static or dynamic text. Use this control to
display one line of text.

1 NSTextView: The star of the text fields in Cocoa. This baby can work
with multiple lines of text. When you think of a word processor, think of
NSTextView.

202 Part lll: Putting It All Together: Cocoa Programming in Depth

Figure 11-1:
The
NSTextView
control is
located in
the Library
window.
|

This chapter focuses on the NSTextView control because it’s the most full-
featured. If you can work with it, you can easily handle the other controls for
displaying text.

Building an interface

To get started working with text, you need a project and an interface.
Perform the following steps to prepare a project for the examples in this
chapter:

—

. Create a project in Xcode.

N

. Double-click the MainMenu.xib file in Xcode in the Resources folder.

w

. In Interface Builder, open the Window window from the XIB project
window if it isn’t already open. Add an NSTextView to the window.

You can find the NSTextView in the Library window by scrolling or
searching for NSTextView or simply TextView, as shown in Figure 11-1.

aonn Library
Objects. | Media |

~ Tl ey
» [7] Cocoa

7] Interface Builder Kit

7] web Kit

7] Address Book

7] Automator

7] DiscRecording

D Image Kit

["] Dpen Scripting Kit

7] PoFKit

(7] QuickTime Kit

7] Quartz Composer

7] Custom Objects
Libra y - Cocoa - Views & Cells nputs & Values
7‘ ¥ 3 Text View - Displays and manipulates text laid out in an area

-, defined by an NSTextContainer and adds many features to those

w5~ .v" defined by its superclass, NSText.

|
" Text View
* NSTextView in an N5ScrollView

[e
N5TextView is the front-end component of the Application Kit's text
system. It displays and manipulates text laid out in an area defined by an
NSTextContainer and adds many features to those defined by its
superclass, NSText. Many of the methods that you'll use most frequently
are declared by the superclass; see the NSText class specification for
details.

Rere) O Textview

4

Figure 11-2:
Add two
NSButton
check boxes
to the
window.
|

Chapter 11: Text 2 03

4. Add two NSButton check box controls to the interface.

One check box toggles the display of a ruler in the NSTextVview. The
other check box causes text color changes to affect only that text which
is selected. You can find the check box control in the Library window
by searching for Check Box. Change the title of the check boxes by
double-clicking each control and typing the new label. Figure 11-2 shows
the check boxes with new titles. Select the Selected property for

the top check box, so Apply to Selection is activated only when the
application launches. Also, deselect the Selected property in the
Button Attributes Inspector for the bottom Rulers check box because
the NSTextView rulers aren’t visible when the application launches.

. Drag two NSColorWell controls and two NSTextField labels from

the Library to the interface.

You can find the NSColorWell control in the Library window by
searching for Color well. To label the NSColorWell controls, drag
two NSTextField controls to the window. The Library has more than
one NSTextField control available. Search for Label to find the one
that you want here. A Label control is an NSTextField with properties
set to make the NSTextField display text that a user can’t edit. One
NSColorWell dictates the color of the text in the NSTextView. The
other represents the background color of the view. Figure 11-3 shows
the completed interface.

AFICILIE

-

¥ dumon

Title [

A Thle

Image -

AL bmage E]

Scallng [Fromormamaiy o ———)

Sryie [Cheek]

Made | Mamsazary Light]

Pasition ‘olo=l-oloiGlno

Mgemert [= m =

isual | Bardered] Selertea
 Apgly ta selection only Transparent O] Miked

Sound _| heck Box - nteserpts rowe-dum £

and
Reilars s :
oy K. reperr # sends an actkin message v a rger shjest when s

diicked or prevnd.

W Checktox

The K5 class is a susciass of NSConrol that imercepts
Vs Bt down Evenes and 12nds 28 Arten MESSAQE 3 targer
chject when '3 clicked or creised
Focus Ming | Defaun #

Orawisg Midden
¥ Aunareiises Sutrvieans o (O crmcksan

204 Part lll: Putting It All Together: Cocoa Programming in Depth

- Window

8.0.0 Library

Lorem ipsum dolor sit er elit lamet, consectetaur cillum adipisicing pecy, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullameo laboris nisi ut aliquip ex ea commode conseguat. Duis aute irure dolor
in reprenenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaccat cupidatat nan proident, sunt in culpa qui officia deserunt mollit anim id est laborum
Et harumd und lookum like Greek to me, dereud facilis est er expedit distinct. Nam liber te
conscient to factor tum poen legum odiogue civiuda

Text: [1
Background: ||

TApplv to selection only

Objects | Media |

v [l ubrary
» [Cocoa
[Interface Builder Kit
(7] web Kit
7] Address Book
] Automator
[DiscRecording
[Image Kit
(7] Open Scripting Kit
(7] PDFKit
] QuickTime Kit
(] Quartz Composer
7] Custom Objects

Libra co & Cells - Inputs & Values

Text View - Displays and manipulates text laid out in

| ["1Rulers ~=*. anarea defined by an NSTextContainer and adds
G ii+ many features to those defined by its superclass,
Figure 11-3:
Add two
Color Well Text View
* NSTextView in an NSScrollView
controls and S
NSTextView is the front-end component of the Application Kit's
two |a beIS text system. It displays and manipulates text laid out in an area
defined by an NSTextContainer and adds many features to
to the those defined by its superclass, NSText. Many of the methods
that you'll use most frequently are declared by the superclass;
. see the NSText class specification for details.
d
window. Rt (O text view

Adding a controller class

As you might be expecting, the next step is to create a class that controls
your interface:

o

. In the Library window of Interface Builder, search for the NSObject
class and add it to the XIB project window.

2. With the new object selected, press 38+6 to open the Identity Inspector.
By default, the Class is NSObject.
3. Change the class name.

To follow along with the example, name the class MyTextController.
Figure 11-4 shows the result.

4. Add outlets to the class.
Define the following outlets for the new class in the same Identity Inspector:
® applyCheckbox
® backgroundColorWell
® textColorWell
® textView

You may notice that one of the NSButton check boxes is missing from
the list. That’s because you won’t need to reference it by name in code.
Instead, it performs its function through an action.

Chapter 11: Text 2 05

Figure 11-4:
Create a

5. Add the following actions to the MyTextController class:

® setBackgroundColor:
® setTextColor:

® toggleRuler:

non Litirary B0
olala MainMenu_xib (English) -
o - il
" e Co—] e raa eSO L8
| ewMos o Searcnfed w Ll vy [
3 class TexCamroiie] -
. m /\ = ¥ Class Actiens
3 = actian e
File's Dwner Tirst Responder Apglication MasMeny . o
: B B
Window (Wind... Font Manager Em ot
POFKIL bl
e
¥ Class Guthess
Outier R —

Objert - Provides you with an instance of am NSOBject
‘suseliss thar i moe available in Imertace Bulldes.
o
¥ isnertace Builser aleanty

Pame

Object 1B ab7

tance f an NObjest subclass that is nat
Ider, You e et 1z ereate

ek Muthing tismeritedy i8]

Pases L1 Shaw With Seiession

new class
to act as the @ Gy
controller.
|

Wiring the interface

To wire the components of your interface to the new Controller class, per-
form the following steps:

1. Connect the outlets of MyTextController to the controls in the
interface.

Control+drag from the XIB window MyTextController object to each
of the four controls in turn, selecting the corresponding outlet from

the black connections list overlay that appears. Figure 11-5 shows the
appleCheckbox outlet connecting to the Apply to Selection check box.

2. Connect the actions of the MyTextController object to the two
ColorWells and the ruler check box.

To connect them, Control+drag from each control to the MyText
Controller object. Figure 11-6 shows the toggleRuler action
connected to its switch.

3. Select the MyTextController class in the project window and choose
File=>Write Class Files to create the class files and add them to your
project in Xcode.

206

Part lll: Putting It All Together: Cocoa Programming in Depth

Figure 11-5:
Connect the
outlets

for the
interface.
|

Figure 11-6:
Connect the
actions

for the
interface.
|

+ MainMenu.xib (English)

()

=)
O

File's Owner First Responder Application MainMenu
Window (Wind... Font Manager My Text Cont...

MainMenu.xib (English}

Window

Lorem ipsum dalar sit er elit [amet, consectetaur cillium adipisicing pecu, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullameo laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non praident, sunt in culpa qui officia deserunt mallit anim id est laborum
£t harumd und lookum like Greek to me, dereud facilis est er expedit distinct. Nam liber te
conscient to factor tum poen legum odiogue civiuda

L
Background: ||

Text:

Qutlets
V' Apply to s .
backgroundColorwes
/j Rulers textColorWell
textView 1
Z
8.0.0 - Window.

El=|m Li

| View Mode Info Search Field
/A E
1 =

File's Owner First Responder MainMenu

Window (Wind...

Application

Received Actions
setBackgroundColor:

setTextColor
toggleRuler:

Font Manager My

) Chapter 11 - Text.xcodeproj 4

Adding the code

Lorem ipsum dolor sit er elit lamet, consectetaur cillium adipisicing pecu, sed do eiusmod
tempar incididunt ut labore et dolore magna aliqua. Ut &nim ad minim veniam, quis nostrud
exercitation ullameo laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprenenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non praident, sunt in culpa qui officia deserunt mallit anim id est laborum
Et harumd und lookum like Greek to me, dereud facilis est er expedit distinct. Nam liber te
conscient to factor tum poen legum odiogue civiuda

Background: |

Text:

E‘ Apply to selection only

T Rulers

Now that you've assembled the interface for this chapter, it’s time to quit
Interface Builder and add some code in Xcode. For starters, you need to spec-
ify which superclass MyTextController will use. Follow these steps:

1. In MyTextController.h, change this line:

@interface MyTextController :
(eg: NSObject or NSView)

to this:

@interface MyTextController :

*/ A

NSObject {

/* Specify a superclass

The NSColorWell controls in this project display the standard Color
panel when a user clicks them. Depending on which NSColorWell a

user clicks, it alters either the text color or the background color of the
NSTextView in the window respectively.

Chapter 11: Text 20 7

2. Add the code to alter both Color panels in the setBackgroundColor
and setTextColor actions in MyTextController.m:

@implementation MyTextController
- (IBAction)setBackgroundColor: (id)sender {
[textView setBackgroundColor: [backgroundColorWell
color]];

- (IBAction)setTextColor: (id)sender {
if ([applyCheckbox state]) {
[textView setTextColor: [textColorWell color]
range: [textView selectedRange]];
}
else {
[textView setTextColor: [textColorWell color]];
}
}

Setting the background and text colors is as easy as using the set
BackgroundColor and setTextColor methods of the NSTextView
class. If the state of applyCheckbox is YES, the setTextColor method
sets the color of the text of the currently selected text, passing the range
as one of its parameters. This allows you to choose which portion of the
text you want to colorize.

3. To have the two ColorWells display particular colors by default, set
them in Interface Builder or do so programmatically in the awake
FromNib function.

For example, the following code sets the default colors for a white back-
ground and black text:

- (void)awakeFromNib
{
//set the NSColorWells to preset colors
[textColorWell setColor: [NSColor blackColor]];
[backgroundColorWell setColor: [NSColor
whiteColor]];
}

The NSTextView control can perform all sorts of other fantastic text
manipulation operations besides color. One of these great features is the
ruler.

4. In Xcode, add the following code to the toggleTheRuler action to
add a full-fledged ruler:

- (IBAction)toggleTheRuler: (id) sender

[textView toggleRuler: [sender state]l];

208 Part lll: Putting It All Together: Cocoa Programming in Depth

5. Choose Build=>Build and Go to see your handiwork.

Figure 11-7 illustrates the use of a ruler in an NSTextView.

anon Window

[swyles Jw) [=]=[=]=]spacing =] (ists =] P e do
» > » » » b > b

lg 5% Iz I3 | I Ig

Lorem ipsum dolor sit er elit lamet, consectetaur cillium adipisicing pecu, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dalore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum
Et harumd und lookum like Greek to me, dereud facilis est er expedit distinct. Nam liber te
conscient to factor tum poen legum odiogue civiuda

—
Figure 11-7: Text: -I
With one Background: |
line of code,
you can add # Apply to selection only
a ruler! il Rulers
—

Doing Style the Easy Way!

You can continue to add style functions to this project by manipulating the
NSTextView programmatically. This may work great for some projects,
but for others, there’s a much easier way to stylize text in an NSTextVview.
If you're looking for traditional word-processor styles in your application,
Cocoa can deliver!

Follow these steps to stylize your text:
1. In Xcode, click the Build and Go button in the toolbar to launch the
application.

2. Choose Format=>Font=>Show Fonts.

Yes, that’s right . . . Cocoa has already implemented a Font menu for
you. You don’t need to add a single line of code nor make any changes in
Interface Builder. That’s all there is to it!

3. Select a font and use it while typing in the text view.

Figure 11-8 shows the Fonts panel after being opened by the Font menu.

Figure 11-8:
Cocoa pro-
vides fonts
for free.
|

Figure 11-9:
Wow! The
ruler comes
equipped
with font
formatting
too.
|

Chapter 11: Text 209

800 Window B Fonts
Lorem fpsum dolor sit er elit lamet, conmsectetaur cillium TH[=H[T) ¥ | A O o Q) 315°
adipisicing pecu, sed do efusmod tempor incididunt ut labore o —
et dolore magna aliqua. Ut enim ad minfm veniam, quis Cotiections Pl Sypshes ek
; Al Fonts Georgia ~ Regular 14
nostrud exercitation ULLAMCO LA 15 English —
CoOMMODO CONSEQUAT. DUIS AUTE |R, IN REPREHENDERIT g Ciddyup Std 9
IN VOLUPTATE VELIT E§S€ CILLUM DOLORE EU FUGIAT NULLA Favorites Gill Sans 10
PARINTUR. EXCEPTEUR SINT OCCAECAT CUPIDATAT NON PROIdent, Recently Used GroupSex 1
sunt in culpa qui officia deserunt mollit anim id est laborum Et Chinese Handwriting - Dake o
harumd und lookum like Greek to me, dereud facilis est er expedit Classic Helvetica 3
distinct. Nam liber te conscient to factor tum poen legum odioque Comic Life Helvetica Neue -
civiuda Fixed Width 4 | Herculanum a ey
FL v v v
Text: ‘:-‘ il Hobo Std -
[+]=1]2e~ Search
Background: ‘ -
™ Apply to selection anly
[Rulers

You'll quickly discover that all the items in the Font menu work. No code is
necessary. No connections are necessary. It doesn’t get any simpler than
that. Because many types of applications use a Font menu, Apple decided to
include this feature for you. That way, you can add a standardized Font menu
to your project without worrying about how to implement it. And don’t forget
about the ruler. When you show the ruler, many of the Font menu items are
also displayed just above the section that the ruler occupies. Figure 11-9
shows the Styles menu above the ruler.

By now, you should begin to see the power of Cocoa. The high-level classes
that Apple includes with Cocoa ensure that your projects maintain a consis-
tent look and feel while providing the full features your users expect from an
application.

800 Window
[svles o [=1=] = spacing =] [Lists =] Pedo
% Default 3 3 3 3 3 3

Bold Iy I3 Ie Ig Ig

1 dolor sit er elit lamet, consectetaur cillium o
{ Outlined pcn, sed do einsmod tempor incididunt ut labore

| Shadowed Goma aligua. Ut enim ad minim veniam, guis

| Other.. citation. ULLAMCO LABORIS NISI UT ALIQUIP EX EA

NSEQUAT. DUIS AUTE IR URE DOLOR IN REPREHENDERIT

IN VOLUPTATE VELIT ESSE CILLUM DOLORE EU FUGIAT MULLA
PARINTUR. EXCEPTEUR. SINT OCCAECAT CUPIDATAT NoN PRoident, *
sunt in culba aui officia deserunt mollit anim id est laborum Et "

Text: | |
Background: |

E‘ Apply to selection only

E Rulers

2 ’ 0 Part lll: Putting It All Together: Cocoa Programming in Depth

Manipulating Text

So far in this chapter, I've shown you how to create style over substance.
Other important aspects of working with text in NSTextVview are the capabil-

Figure 11-10:
You don't
havetodoa
bit of work
to give your
application
Edit menu
functions,
such as
spell check.
|

ity to edit, copy, paste, and alter its text.

Pasteboard manipulations

One common feature that every Mac OS X application has is access to the
Pasteboard (or Clipboard). Like the Font menu, Cocoa takes care of the Edit
menu too; you don’t have to do anything to implement it. The Edit menu just
works! The Edit menu in OS X offers the typical cut, copy, and paste features
that you might expect and also implements full-blown spell check and find
functions. Figure 11-10 shows the spell-checker.

Window. 8.0.0 Spelling and Grammar.
Larem ipsum dolor sit er elit lamet, consectetaur cillium adipisicing pecu, sed do eiusmod
tempor incididunt ut |abare et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud [] (" lgnore)
exercitation ullamco laboris nisi ut aliquip ex ea commode conseguat. Duis aute irure dolor L —
in reprenenderit in voluptate velit esse cillum dolare eu fugiat nulla pariatur. Excepteur sint This ward was not found in the spelling dictionary. —————
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum Learn
Bt harumd und lookum like Greek to me, dereud facilis est er expedit distinct. Nam liber te -
conscient to factor tum poen legum odiogque civiuda - E———
L: a) Find Next
Lore
Loren
Orem
Lo-rem
Lo rem
(" Change)
Text: | - =
— | | English 18] O check grammar

Background: | ‘

¥ Apply to selection only

I Rulers

Z

The Edit menu hasn’t enabled its Undo and Redo menu items. The fix for this

is simple enough:

1. In Xcode, double-click the MainMenu.xib file to open it in Interface

Builder.

2. Open the window for your interface and double-click the NSTextView.

Make sure to double-click; a single click only selects its Scroll View

container.

3. Press 3+1 to open the Text View Attributes Inspector window.

4. In the Attributes section of the Info window, select the Undo check

box, as shown in Figure 11-11.

Now, your users can undo any actions that they perform in the text view.
You managed to add this useful functionality by clicking one check box.

Figure 11-11:
Selectthe
Undo check
box to turn
on the Undo
functions for
an NSText
View.
|

~ Z 800 Text View Attributes
CR) ¢ Window pe -
Lorem ipsum dolor sit er elit lamet, consectetaur cillium adipisicing pecu, sed do eiusmod - | | & ‘ & ‘ o ‘ @ ‘ &
tempar incididunt ut |abore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud ¥ TextView
exercitation ullamco laboris nisi ut aliquip ex ea commode consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint Selecti o —
occaccat cupidatat non proident, sunt in culpa qui officia deserunt mallit anim id est laborum sfection [Character Sy
&t harumd und lookum like Greek to me, dereud facilis est er expedit distinct. Nam liber te Behavior M Editable [Selectable
conscient to factor tum poen legum odioque civiuda -
[Field Editor
Allows ™ Rich Text ™ undo
] Graphics.) Image Editing
7] Non-centiguous Layout
[] Background Color Change
Display ¥ Draws Background
Texe (] |
Background: El Background Text
¥ Apply to selection only Tnsersion
Uses ™ Continuous Spell Checking
I Rulers
y () Grammar Checking
2 [] Automatic Quote Substitution
[Automatic Link Detection
Smart Insert and Delete
™ Find Panel ¥ Font Panel
™ Ruler
¥ View
Focus Ring | Default v
Drawing [} Hidden

M Autoresizes Subviews

Manual editing

Sometimes you may want to alter the text in an NSTextView without using
the Pasteboard. Perhaps the most common editing task that you’ll want

to perform is to change the text that appears in an NSTextView. You can
accomplish this task by using the setString method of the NSString class.
Create an NSString and assign a string to it:

NSString* someString = @"Cocoa says Hello!";
Note the @ character preceding the string. The @ character is an Objective-C
operator that tells the compiler to allocate a constant NSString object with

the stated value.

After you have an NSString, it’s a simple matter to display it in an
NSTextView:

[textViewsetString:someString] ;
To see how it works, follow these steps:

1. In Xcode, declare the displayAsString method by adding the
following line to the MyTextController.h file.

- (IBAction)displayAString: (id) sender;

Chapter 11: Text 2’ ’

2 ’2 Part lll: Putting It All Together: Cocoa Programming in Depth

2. Define the displayAsString method in MyTextController.m.

The code creates a string, someString, and then tells the textView to
set its string to someString:

- (IBAction)displayAString: (id) sender

NSString* someString = @"Cocoa says hello!";
[textView setString:someString];

3

3. Double-click the MainMenu.xib file to open the project’s interface in
Interface Builder.

4. Add an NSButton to the window in your interface.

5. Change the button’s Title Attribute in the Inspector window to display
NSString.

6. Control+drag from the button to the MyTextController instance and
connect it to the displayAString: action in the black connections
list overlay that opens.

Notice that Interface Builder has read the MyTextController.h file on
opening the interface and now an action named displayAString: is
available in MyTextController.

Replacing specific text is another task that you might want to perform. To
replace some portion of the text in an NSTextView, you must first define an
NSRange variable. This range describes which part of the string you want

to replace. In the preceding example, you used the string "Cocoa says
hello! ".If you want to change hello to goodbye, you’d first find the location
of that word in the string. Because the numbering begins at 0, the first letter
of hello is the 11" character in the string. Further, the length of hello is 5.
Thus, to make an NSRange for hello, you’d use code like this:

NSRange theRange;
theRange = NSMakeRange (11, 5);

To replace hello with goodbye, call the replaceCharactersInRange
method of the NSTextView:

[textView replaceCharactersInRange:theRange
withString:@"Goodbye" 1;

Besides editing the text, you'll sometimes want to programmatically select
portions of the text in an NSTextView. For example, suppose you want to
perform a Select All operation. Create an NSRange representing the
entire length of the text and then call the setSelectedRange method of the
NSTextView to select the text:

Chapter 11: Text 2 ’3

NSRange theRange;
theRange = NSMakeRange (0, [[textView string] length]) ;
[textView setSelectedRange:theRange] ;

Saving Text for a Rainy Day

Eventually, your users will want to save the text on which they’ve been work-
ing so hard. Cocoa lets you save text in two ways:

v Plain: Plain text is text without any formatting. You see this type of text
in HTML and XML documents, and plain text files (such as when you
press 38+Shift+T in the TextEdit application). When all you care about is
the text data in a file and not its formatting, use the plain text format.

v Rich: Rich text conveys information about the formatting. You may rec-
ognize the rich text format from popular Microsoft applications, such
as Word. The rich text file format saves formatting data, such as fonts,
colors, and styles in the file along with the actual text data. If you're
building a word processor or a similar type of application in which for-
matting matters, use the rich text format.

To see how these two file formats work with Cocoa, follow these steps:

1. In Xcode, add the following lines of code to the MyTextController.h
file to define two new actions:

- (IBAction)saveRichTextFile: (id) sender;
- (IBAction)saveTextFile: (id) sender;

2. Navigate to the MyTextController.m file and implement the two
actions:

- (IBAction)saveTextFile: (id) sender

NSSavePanel *savePanel = [NSSavePanel savePanell];
[savePanel setRequiredFileType:@"txt"];
[savePanel setTitle:@"Save as Plain Text"];
if ([savePanel runModal] == NSOKButton)
{
[[textView string] writeToFile: [savePanel
filename] atomically:YES
encoding:NSUTF8StringEncoding error :NULL] ;
}

- (IBAction)saveRichTextFile: (id) sender

{

2 ’4 Part lll: Putting It All Together: Cocoa Programming in Depth

NSSavePanel *savePanel = [NSSavePanel savePanell];
[savePanel setRequiredFileType:@"rtf"];
[savePanel setTitle:@"Save as Rich Text"];

if ([savePanel runModal] == NSOKButton)

{

[[textView RTFFromRange:

NSMakeRange (0, [[textView string]
lengthl])]

writeToFile: [savePanel filename] atomically:YES];

}

3. Open the MainMenu.xib file in Interface Builder.

4. To the existing Window object in your interface, add two NSButton
controls and change their Title Attributes in the Inspector window to

¢ Save Plain Text
¢ Save Rich Text
Figure 11-12 shows these new buttons.

5. Control+drag from each NSButton in the interface to the
MyTextController instance in MainMenu.xib and then when you let
go of the mouse, assign the appropriate action to that button with the
black connections list overlay that appears.

8,00 = Window

Lorem ipsum dolor sit er elit lamet, consectetaur cillium adipisicing pecu, sed do eiusmod tempor

incididunt ut labare et dolore magna aliqua. Ut enim ad minim veniam, guis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo conseguat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolere eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est laborum Et harumd und lookum like
Greek to me, dereud facilis est er expedit distinct. Nam liber te conscient to factor tum poen legum
ediogue civiuda
|
Figure 11-12:
Add two .
NSButtons L L]
that will Background: || _ Display NSString
save rich
and plain E!Apply to selection only
text files.) Rulers (Save Rich Text \ (" Save Plain Text \
| A

Chapter 11: Text 2 ’5

The code for both actions works similarly, with a few exceptions:

1 Both actions display a SavePanel so that users can select the name
and destination of the file they want to save.

v The two methods differ on the file type and title that they display in the
SavePanel and the fact that plain text files need an encoding.

To display the panel, each method uses this line of code:
if ([theSavePanel runModal] == NSOKButton)

The runModal method of the SavePanel takes care of displaying the modal
window. A modal window is one in which users are forced into a mode of
operation — they must make a decision (saving a file or halting the opera-
tion) before proceeding any further.

When a user clicks a file and clicks the Save button in the SavePanel, the
runModal function of the SavePanel returns a value. Instead of worrying
about what numerical value it returns, Cocoa provides you with the constant
NSOKBut ton indicating that the user clicked the Save button. The following
code example checks for the Save button. Conversely, you could check for
the Cancel button by using the appropriate constant for that button:

if ([theSavePanel runModal] == NSCancelButton)

If the users click Save in the SavePanel, the code writes the text from the
TextView to a plain or rich text file.

For plain text files, this means using the writeToFile method of the
NSString class:

[[textView string] writeToFile: [savePanel filename]
atomically:YES encoding:NSUTF8StringEncoding
error :NULL] ;

You retrieve the text from the text view as an NSString using the [text
Viewstring] method. The text file is saved with the writeToFile method,
passing it four parameters:

+* The name of the file that the user entered in the SavePanel.

+* A Boolean value titled atomically: If you pass YES as the atomically
parameter, the writeToFile method first writes the data to a temporary
file and renames that file after the write operation is finished. If it has a
value of NO, writeToFile writes the data directly to the file returned by
the filename method. Set the atomically parameter to YES.

2 ’6 Part lll: Putting It All Together: Cocoa Programming in Depth

» An encoding: The encoding is best set to UTFS§, as it accounts for
languages beyond English.

v An error routine should something go wrong: The error parameter can
be set to NULL, as | won’t trap errors in this demo.

The second method in the code listing saves the file to a rich text file. Much
of the code in it is identical to the plain text version, with one big excep-
tion. Instead of retrieving text from text view with the string method of the
NSString class, you use the RTFFromRange method for rich text. This has
the effect of retrieving the text with its style information (bold, size, color,
and so on) intact:

[[textViewRTFFromRange :
NSMakeRange (0, [[textViewstring] lengthl])]
writeToFile: [theSavePanel filename]
atomically:YES];

The only parameter of the RTFFromRange method is an NSRange value indi-
cating the portion of text that you want to retrieve from text view. To retrieve
all the text, you supply the method with the starting point of the text and the
length of text to grab. In this instance, you grab all the text found in the text
view, starting from position 0 (zero) and extending the length of the text in
the text view:

NSMakeRange (0, [[textView string] length])

After you have NSString from TextView, writeToFile works the same as
it does for plain text files, with a minor caveat. When you use the writeTo
File method, the resulting plain text files have the . txt file extension and
rich text files have the . rtf extension.

Retrieving Text

Another important task that you’ll likely need to perform regularly is opening
text files. To open and read a text file, your code should do the following:
v Display an OpenPanel so users can choose which file they want to open.
1 Read the text data from the file.

v Display that data in an NSTextView.

Chapter 11: Text 2 ’ 7

To add the capability to open and view plain and rich text files, add a few
items to the interface:

1. In Xcode, add the following lines of code to the MyTextController.h
file to define these two actions:

- (IBAction)openRichTextFile: (id)sender;
- (IBAction)openTextFile: (id) sender;

2. Navigate to the MyTextController.m file and implement those two
actions:
- (IBAction)openTextFile: (id) sender

NSOpenPanel *theOpenPanel = [NSOpenPanel
openPanel] ;
if ([theOpenPanel runModal] == NSOKButton)
{
NSString *theFileName = [theOpenPanel
filename] ;
NSString *theFileContents = [NSString

stringWithContentsOfFile:theFileName] ;
[textView setString:theFileContents];

}

- (IBAction)openRichTextFile: (id) sender
{

NSOpenPanel *theOpenPanel = [NSOpenPanel
openPanel] ;
if ([theOpenPanel runModal] == NSOKButton)

{
NSString *theFileName [theOpenPanel filename];

NSData *theRTFData = [NSData dataWithContentsO
fFile:theFileName] ;
[textView replaceCharactersInRange:
NSMakeRange (0, [[textView string] length])

withRTF:theRTFData] ;

}
}

3. Open the MainMenu.xib file in Interface Builder.

4. To the existing window object in the XIB project window, add two
additional NSButton controls and then change their Title Attributes
in the Inspector window to Open Plain Text and Open Rich Text.

Figure 11-13 shows the new buttons.

218

Part lll: Putting It All Together: Cocoa Programming in Depth

Figure 11-13:
Add two
NSButtons
to the
interface

for opening
plain and
rich text
files.
|

8.0.0 _ _+ Window

Lorem ipsum delor sit er elit lamet, consectetaur cillium adipisicing pecu, sed do eiusmod tempor
incididunt ut labare et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commedo conseguat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officdia deserunt mollit anim id est laborum Et harumd und lookum like
Greek to me, dereud facilis est er expedit distinct. Nam liber te conscient to facter tum poen legum
odiogue civiuda

Text: -|

Background: | | Display NSString |

Apply to selection only r Open Rich Text) Ir Open Plain Text)

1 Rulers (Save Rich Text \ (" Save Plain Text \

Z

5. Control+drag from each NSButton in the interface to the MyText
Controller instance in MainMenu.xib and then when you let go of
the mouse, assign the appropriate action to that button with the black
connections list overlay that appears.

In contrast to the examples from earlier in this chapter in which you saved
text files, opening text files requires the use of the NSOpenPanel class.
Opening files works in much the same manner as the NSSavePanel. In the
two methods for opening text files, you aren’t setting the title displayed in
the NSOpenPanel (with setTitle) like you did for the NSSavePanel ear-
lier. You certainly could, though.

Like the NSSavePanel, you display the NSOpenPanel with the runModal
method:

NSOpenPanel *theOpenPanel = [NSOpenPanel openPanel] ;

If the user selects a text file and clicks OK to open it, runModal returns
NSOKButton:

if ([theOpenPanel runModal] == NSOKButton)

From there, you open the text file, read its contents, and display them in an
NSTextView. For plain text files, it’s a straightforward process to read in a
text file with the stringWithContentsOfFile method of NSString:

NSString *theFileName = [theOpenPanel filename];
NSString *theFileContents = [NSString
stringWithContentsOfFile:theFileName] ;

Chapter 11: Text 2 ’9

To display the text in an NSTextView, you need only one line of code:
[textView setString:theFileContents];

After you're finished working with the NSString objects, don’t forget to dis-
pose of them:

[theFileName release];
[theRTFData release];

Reading rich text files requires a bit of extra work, but not too much. Instead
of using an NSString to read text from a rich text file, you must use an
NSData object. Call the datawithContentsOfFile method of the NSData
class to load stylized text from the file into the NSData object:

NSData *theRTFData = [NSData dataWithContentsOfFile:theFil
eName] ;

To display it in the text view, use the replaceCharactersInRange
method:

[textView replaceCharactersInRange:
NSMakeRange (0, [[textView string] length])
withRTF:theRTFDatal ;

The replaceCharactersInRange method takes two parameters:

»” NSRange: The location in the NSTextView where you want to display
the text

v NSData: The rich text data that you read from the file

To test your code, choose Build=>Build and Go in Xcode.

220 Part lll: Putting It All Together: Cocoa Programming in Depth

Chapter 12

Graphics

In This Chapter

Defining colors

Creating a custom view
Drawing rectangles and ovals
Painting irregular shapes
Creating text

Displaying images

Fom the beautiful fonts in a word processor to the shiny Finder interface,
the Mac OS has always prided itself on fantastic looking graphics. Mac
OS X is no different. With its sophisticated Quartz graphics engine, Mac OS X
can produce stunning graphics. Cocoa gives you direct access to these
powerful features of Mac OS X.

This chapter covers the basics of working with graphics in Cocoa. You create
a custom view for displaying your graphics and draw on it with a variety of
colors, shapes, and images. You even write code to change the opacity of
your graphics, giving them the coveted see-through look.

Cocoa and the Art of Graphics

Before jumping head first into graphics, you need to familiarize yourself with
a few important Cocoa data types: NSPoint, NSRect, NSSize, and NSColor.
You need them to do any type of graphics programming in Cocoa, so they
make a good starting point.

Points

Just like in geometry, Cocoa uses points to designate positions on a square
grid. To work with points in Cocoa, you use an NSPoint structure. NSPoint

222 Part Ill: Putting It All Together: Cocoa Programming in Depth

is a structure comprised of two floats (x and v, respectively). Quartz, the
graphics engine on the Mac OS, defines the bottom-left corner of a view as
the origin (0,0). The x value increases as you move to the right. The y value
increases as you advance up.

The bottom-left origin is different than what you might be accustomed to in
other programming environments, where the origin is in the top-left corner.
This bottom-left arrangement comes from PostScript, upon which OS X’s
underlying PDF (Portable Document Format) graphics model is based.

The following structure shows how the Quartz framework defines a point:

NSPoint {

typedef struct
float x;
float y;

} NSPoint;

The x and y portion of the structure are the coordinates of the point that you
want to represent. To use an NSPoint variable, you must first declare it like
you would any other variable or structure:

NSPoint thePoint;

Then to assign values to the x and y members of an NSPoint structure, use
the NSMakePoint function. This example creates an NSPoint at the location
(100,100):

thePoint = NSMakePoint (100,100) ;

Rects and sizes

Closely related to the NSPoint structure is the NSRect structure. An NSRect
(Rect is short for rectangle) is a structure comprised of an NSPoint, the origin
of the rectangle, and an NSSize, the size of the rectangle:

typedef struct _NSRect {
NSPoint origin;
NSSize size;

} NSRect;

To understand how this works, you also need to know about the NSSize
structure:

typedef struct _NSSize {
float width;
float height;

} NSSize;

Chapter 12: Graphics 223

Thus, an NSRect is really a structure of four float values: two for the NSPoint
and two for the NSSize. The NSPoint portion describes where the NSRect
begins, and the NSSize variable describes the dimensions of the NSRect.
To create an NSRect, first declare the NSRect variable:
NSRect theRect;
Then initialize that variable with the NSMakeRect function. NSMakeRect
takes four parameters: x, y, width, and height. For example, this line of
code creates an NSRect with an origin at (100,100) and dimensions of 50 x 50:
theRect = NSMakeRect (100,100, 50, 50);

Later, if you want to find the origin or size of theRect, use code like this:

float theOriginX, theOriginY;
float theSizeW, theSizeH;

theOriginX theRect.origin.x;
theOriginY = theRect.origin.y;

theSizew theRect.size.width;
theSizeH = theRect.size.height;

Colors

Cocoa’s AppKit includes the NSColor data type to help you work with color
in your graphics projects. You have two ways of working with color.

Using convenience colors

The easiest way to create and define an NSColor object is to use one of the
color convenience methods. You'll recognize immediately the colors that
each NSColor convenience method represents because it has a plain-English
name. For example, to create an NSColor object that stores the color black,
use code like this:

//Declare a pointer to an NSColor object
NSColor *aColor;

// assign the color black to it
aColor = [NSColor blackColor];

224 Part Ill: Putting It All Together: Cocoa Programming in Depth

As you may have guessed, this technique works for many other colors too
(blueColor, redColor, and so on). Table 12-1 lists common colors that you

can use.
Table 12-1 Preset Color Components
Preset Component Color It Produces
blackColor Black
blueColor Bright blue
brownColor Brown
clearColor Clear/transparent
cyanColor Light blue
darkGrayColor Dark gray (for the Canadians, dark grey)
grayColor Medium gray
greenColor Bright green
lightGrayColor Light gray (you were expecting something else?)
magentaColor Pinkish purple color. .. oris it a purple-ish pink
color
orangeColor Orange
purpleColor Purple
redColor Bright red
whiteColor White
yellowColor Bright and sunny yellow

Using device-dependent color spaces

Eventually, you’ll want some colors that the convenience methods don’t cover.
In that case, you have to resort to some of the more sophisticated color meth-
ods in the AppKit. The AppKit has three kinds of color spaces that you can use

to create colors:

1 Device dependent (or device): When you use device colors, you can’t be
sure that you'll always see the same color across devices. You're prob-
ably most familiar with this kind of color because most home computer
monitors and printers display it. Stand any two computer monitors next
to each other, and you’ll soon discover that they don’t produce colors
equally. Sure, it’s good enough to view Web pages, play games, and even
create graphics. It also works for many kinds of home-printing chores.
It’s not so good, however, for professional printing, color correction,

and similar color tasks.

Chapter 12: Graphics

\\3

v Device independent (or calibrated): Computer and printer manufacturers
began creating hardware and software solutions to calibrate their equip-
ment. The idea was that you could see the same kind of output no matter
what device you used. The calibration is supposed to account for the
peculiarities of your particular device and adjust it to produce
accurate colors.

v Named: This color space is for even more sophisticated work with color.
You can disregard it for this book.

The device-dependent color space has three color spaces. A color space is just
a fancy way of saying “ways of creating color.” Normally, you create colors by
mixing different amounts of specific base colors. The three mixing schemes
that you can use in device-dependent color are

” DeviceRGB: Red, green, blue, and alpha components
»” DeviceCMYK: Cyan, magenta, yellow, black, and alpha components

v DeviceWhite: White and alpha components

For the rest of this chapter, you have to worry only about DeviceRGB because
it’s the best choice for displaying graphics on a monitor. The colors that
emanate from a monitor are produced by mixing varying amounts of red,
green, and blue light, hence RGB. As you combine colors in RGB, the color
approaches white. CMYK, on the other hand, is used for printing color. As
you combine colors in CMYK, the color approaches black. After you get the
hang of the DeviceRGB color space, it’s easy to use the DeviceCMYK and
DeviceWhite color spaces. You're not missing anything by forgetting about
them for the time being because this chapter deals solely with color on a
monitor, not a printer.

Now, it’s time to get to the code. You define your own RGB (red, green, blue)
colors with the colorWithDeviceRed function. The function takes four floats
as parameters. These four numbers correspond to the three color channels
(red, green, and blue) and the alpha channel. Each parameter can have a
value between 0.0 and 1.0; 1.0 is fully on for that particular color channel.
The alpha parameter dictates how opaque the color is. A value of 1.0 is com-
pletely opaque, and a value of 0.0 is fully transparent.

This numbering scheme contrasts with the colors used in familiar applications,
such as Web pages and Photoshop documents, where the numbering usually

has a range between 0 and 255. To correlate with the Cocoa way of doing things,

add 1 to the value of each color component and divide by 256. For example, if
you want to convert a Photoshop color with RGB values of (127,63,255) to the
RGB values for an NSColor, perform this simple calculation:

225

226 Part Ill: Putting It All Together: Cocoa Programming in Depth

127 + 1 = 128/256 = 0.5
63 + 1 = 64/256 = 0.25
255 + 1 = 256/256 = 1.0

To create an NSColor object in the DeviceRGB color space, use code
like this:

//Declare a pointer to an NSColor object
NSColor* theColor;

//create the object

//and assign the color black to it

theColor = [NSColor colorWithDeviceRed: (float)0.0
green: (float)0.0 blue: (float)0.0
alpha: (float)1.0];

Notice that the red, green, and blue parameters are all set to 0.0, which yields
the color black. If you wanted to create a red color object, you'd use code
like this:

//create the object

//and assign the color red to it

theColor = [NSColor colorWithDeviceRed: (float)1.0
green: (float)0.0 blue: (float)0.0
alpha: (float)1.0];

The red parameter has a value of 1.0, and the green and blue components
have a value of 0.0. By adjusting the alpha value, you can create different
shades of the same color. I discuss color in more detail later in this chapter,
in the “Painting with Lines and Shapes” section.

After you create a color object, the only other thing you need to do before
working with it is to use the set function. This sets the graphics pen to your
desired color:

[theColor set];

Yes, it’s as easy as that. Again, you'll see more clearly how Cocoa colors work
in the code examples in the remainder of this chapter.

Building a Graphics Interface

Figure 12-1:
Create a
new Cocoa
project.
|

o

2.

3.

4.

Chapter 12: Graphics 22 7

To begin coding your graphics masterpiece, you need an interface in which
to display graphics:

Launch Xcode and choose Filer>New Project to create a new Cocoa

project, as shown in Figure 12-1.

Expand the Resources folder and double-click the MainMenu.xib file

to open it in Interface Builder.

In Interface Builder, open the Library window by choosing Tools=>
Library and searching for Custom vView, as shown in Figure 12-2.

Drag a Custom View control from the Library to the main window of

the project’s interface.

OuOU®), New Project

Choose a template for your new project:

‘L Mac 05 X 9, 7 Iﬂ lﬁ

5 g b - 2
Action s

[IERCTE— Cocoa Core Data Core Data
Audio Units pplication Document-based Application Document-based
Automnator Adtion Application Application
Bundle
™ "~ ™ ™
Dynamic Library e
Framewark Core Data AppleScript AppleSeript AppleScript
Java Document-based Application Document-based Droplet
ainal Biahsion Application with Application
Standard Apple Plug-ins
Static Library Description This project builds a Cocoa-based application written in Objective-C.

Other

Cancel (Choose:..)

4

228 Part Ill: Putting It All Together: Cocoa Programming in Depth

|
Figure 12-2:
Locate the
Custom
View
control.
|

|
Figure 12-3:
Rename

the control
MyCanvas.
|

800 _Library
Objects | Media |
v uﬂ Library
v D Cocoa

» E‘I Application

» El Objects & Controllers
> @ Views & Cells
7] Interface Builder Kit
7] web Kit

II] Address Book

7] Automater

Ij DiscRecording

7] Image Kit

D Open Scripting Kit
7] PoFKit

Custom View
NSView

Provides you with an instance of a view subclass that is not available in
Interface Builder. You can use the Custom View fo create your own
views.

- (9, Custom View| 3)

|

5. With the new control selected in the interface, press 38+6 to open the
Identity Inspector and rename the class.

For example, you can name it MyCanvas, as shown in Figure 12-3.

" Window
et O

E

8.0.0, My Canvas Identity_
(=locle|w|o]@

¥ Class Identity
ciss
¥ Class Actions
Mation IeAP—
(G (=
¥ Class Outlets U
Dutios Foy—
Py
[+~ 1
= 2|

Chapter 12: Graphics 229

. Press 3+3 to change the Autosizing of the view.

The Autosizing properties affect how the view behaves when a user
resizes the parent window.

. Click twice inside the Autosizing square to activate the horizontal and

vertical arrows, as shown in Figure 12-4.

With the horizontal and vertical arrows activated within the Autosizing
square, the view stretches with the parent window when a user resizes it.

8. Select the MyCanvas view in the interface.

10.

. Choose File~>Write Class Files to create and add the header and imple-

mentation files to your Xcode project.
Back in Xcode, change this line in MyCanvas.h:

@interface MyCanvas : /* Specify a superclass (eg:
NSObject or NSView) */ {

to this:
@interface FileInfoController : NSView {

In MyCanvas.m, you focus mainly on the drawRect method. This is
where you put drawing commands to draw to the MyCanvas view. The
MyCanvas.m file doesn’t have the drawRect method defined, so you
have to add it.

9
i 8.0.0 My Canvas Size
— | < |

- gl le|o|o]d

|
Figure 12-4:

¥ View Size

Size & Position

W: | 480 H: | 360

ANEDsEIng

=3

Alignment

Setthe
horizontal
and vertical
Autosizing.
|

230 Part Ill: Putting It All Together: Cocoa Programming in Depth

11. Add the drawRect method to the MyCanvas.m file:

- (void)drawRect: (NSRect)rect {
// Drawing code here.

}

The drawing code appears in this method. The drawRect function takes
care of redrawing your Custom View by automatically refreshing the
view from your application’s event loop.

Painting with Lines and Shapes

With your interface and custom view ready for displaying graphics, you can
now add some code to make it actually display something. Before you draw
something, you have to define what that something is. When it comes to defin-
ing shapes in Cocoa, paths are the name of the game.

Starting with Beziér paths

If you've ever played connect the dots, you're already well on your way to
understanding how paths work. A path is a collection of points that together
form the outline of a shape. For example, a square-shaped path has four points,
an octagon-shaped path has eight points, and so on. Cocoa represents paths
with the NSBezierPath type. Typically you begin working with paths by
declaring a pointer to a NSBezierPath:

NSBezierPath *thePath;

Then you create a path. Your path might form a square, a circle, or some
other shape. Because you’ll want to create different shapes, Cocoa gives you
several methods for creating paths.

One of the most common paths you'll create is the shape of a rectangle. For
that, you can use the bezierPathWithRect method of the NSBezierPath
class. The bezierpPathwithRect method takes a Rect (which defines its
origin and size) as its sole parameter. Because the drawRect function passes
in a Rect that describes the dimensions of the MyCanvas object, you can
easily create a rectangular path around MyCanvas:

- (void)drawRect: (NSRect)rect {

NSBezierPath *thePath;
thePath = [NSBezierPath bezierPathWithRect:rect];

Chapter 12: Graphics 23 ’

Similarly, you can create an oval path within a bounding box by using the
bezierPathWithOvalInRect method and passing it the rect you want to
use as the bounding box:

- (void)drawRect: (NSRect)rect {
// Drawing code here.

NSBezierPath *thePath;
thePath = [NSBezierPath bezierPathWithOvalInRect:rect];

}

Other times, you may not want to limit your Rect to the size of MyCanvas.
In these instances, simply create a Rect structure and pass that to the
NSBezierPath functions. The following example creates a 50 x 50 circular
path in the bottom-right corner of the view:

NSRect theRect;
theRect = NSMakeRect (0, 0, 50, 50);

NSBezierPath *thePath;
thePath = [NSBezierPath bezierPathWithOvalInRect:theRect];

Just because you have a Beziér path doesn’t mean you've drawn anything yet.
Beziér paths strictly define the path that you'll fill or stroke later.

Filling a path

After you create a path, filling it in with your color of choice is a simple
matter. Send the path the £111 message, and you're finished!

[thePath fill];

Of course, you’ll want to create and set a color first. For example, to fill the
entire background of the view with black, your code might look like this:

- (void)drawRect: (NSRect)rect {
//create a path
NSBezierPath *thePath = [NSBezierPath
bezierPathWithRect:rect];

//create a black color object
NSColor *theColor = [NSColor blackColor];

//set the color
[theColor set];

232 Part lll: Putting It All Together: Cocoa Programming in Depth

//fill the path with the current color (black)
[thePath fill];

}

Figure 12-5 shows the results of this code.

(M@ Ne) Window

Figure 12-5:
Fill the

entire view
with a solid
color.
|

You can use the same plan of attack to fill an NSRect that doesn’t cover the
entire background of the Custom View. For example, to draw a white
rectangle at the top of the view, use this code:

- (void)drawRect: (NSRect)rect {
//create and define an NSRect
NSRect theRect = NSMakeRect (70, rect.size.height-235,
120, 230);

//define a rectangular path
thePath = [NSBezierPath bezierPathWithRect:theRect];

//define a white color object
NSColor *theColor = [NSColor whiteColor];

//set the color
[theColor set];

//£fi111l the path with white
[thePath fill];

Chapter 12: Graphics 233

Put the black and white together, and you’ll see a result like the one shown in
Figure 12-6.

anon Window

Figure 12-6:
Fill the
background
in black and
fill a white
rectangle
toward

the top of
the view.
|

You aren’t limited to filling rectangular paths. Remember that oval-shaped
path you created earlier in this chapter? Now is a good time to put it to use.
By creating three oval paths and filling them with red, yellow, and green,
respectively, you can create a simple traffic-light image. Add this code to the
end of the drawRect function:

//**************************************

// DRAW THE LIGHTS
//**************************************
//create oval path
theRect = NSMakeRect (100, rect.size.height-220, 60, 60);
thePath = [NSBezierPath bezierPathWithOvalInRect:theRec
tl;

//fill oval in green
theColor = [NSColor colorWithDeviceRed: (float)0.0
green: (float)1.0 blue: (float)0.0
alpha: (float)1.0];
[theColor set];
[thePath fill];

//create oval path

theRect = NSMakeRect (100, rect.size.height-150, 60, 60);

thePath = [NSBezierPath bezierPathWithOvalInRect:theRec
€] 5

234

Part lll: Putting It All Together: Cocoa Programming in Depth

//£fi1ll oval in yellow
theColor = [NSColor colorWithDeviceRed: (float)l1.0
green: (float)1.0 blue: (float)0.0
alpha: (float)1.01];
[theColor set];
[thePath fill];

//create oval path

theRect = NSMakeRect (100, rect.size.height-80, 60, 60);

thePath = [NSBezierPath bezierPathwWithOvalInRect:theRec
tl;

//fill oval in red
theColor = [NSColor colorWithDeviceRed: (float)1.0
green: (float)0.0 blue: (float)0.0
alpha: (float)1.01];
[theColor set];
[thePath fill];

Figure 12-7 shows the results.

o Window

Figure 12-7:
Add a few
round ovals
to create an
image of

a simple
traffic light.
|

Drawing a path

You don’t have to fill all paths that you run across. You can also stroke a
path, which has the effect of drawing an outline around a path. Stroking a
path is just as simple as it is to fill one:

Chapter 12: Graphics 235

[thePath stroke];

You can also use a combination of £111 and stroke for different effects.
When you do, make sure to perform the stroke functions after the £fi11
function so that the outline draws on top of the filled path. For example, sup-
pose you wanted to draw a black ring around one of the traffic lights. Your
code might look like this:

//stroke oval in black

theColor = [NSColor blackColor];
[theColor set];

[thePath stroke];

This code draws a thin outline around the light. If you’d prefer a thicker out-
line, use the path’s setLineWidth function. The default line width is 1, so
anything larger produces thicker lines:

[thePath setLineWidth: 5];

To draw an outline around each of the lights, adjust your drawRect function
by adding the boldface code:

(void)drawRect: (NSRect) rect

code omitted ...

//'k****************‘k*****‘k*‘k*‘k*‘k********

// DRAW THE LIGHTS
//**************************************
//create oval path
theRect NSMakeRect (100, rect.size.height-220, 60, 60);
thePath [NSBezierPath bezierPathWithOvalInRect:theRec
tl;

//£fi1ll oval in green
theColor = [NSColor colorWithDeviceRed: (float)0.0
green: (float)1.0 blue: (float)0.0
alpha: (float)1.0];
[theColor set];
[thePath fill];

//stroke oval in black

theColor = [NSColor blackColor];
[theColor set];

[thePath setLineWidth: 5];
[thePath stroke];

236 Part Ill: Putting It All Together: Cocoa Programming in Depth

}

//create oval path

theRect = NSMakeRect (100, rect.size.height-150, 60, 60);

thePath = [NSBezierPath bezierPathWithOvalInRect:theRec
€] 5

//£fi1ll oval in yellow
theColor = [NSColor colorWithDeviceRed: (float)1.0
green: (float)1.0 blue: (float)0.0
alpha: (float)1.0];
[theColor set];
[thePath fill];

//stroke oval in black

theColor = [NSColor blackColor];
[theColor set];

[thePath setLineWidth: 5];
[thePath stroke];

//create oval path

theRect NSMakeRect (100, rect.size.height-80, 60, 60);

thePath [NSBezierPath bezierPathWithOvalInRect:theRec
tl;

//fill oval in red
theColor = [NSColor colorWithDeviceRed: (float)l1.0
green: (float)0.0 blue: (float)0.0
alpha: (float)1.0];
[theColor set];
[thePath fill];

//stroke oval in black

theColor = [NSColor blackColor];
[theColor set];

[thePath setLinewidth: 5];
[thePath stroke];

@end

Figure 12-8 shows the result of the code change.

Creating fancy-pants paths

So

far, you’'ve worked with rectangular and oval paths. Paths need not con-

form to these two simple shapes, though. A path can be as simple or as com-
plex as you want.

Figure 12-8:
Draw an
outline
around each
of the lights
for an added
effect.
|

WBER
@&
&

Chapter 12: Graphics 23 7

an0n Window

Suppose that you want to display a stop sign next to your traffic-light
graphic. A stop sign is an octagon. To create a stop-sign-shaped path, simply
create eight NSPoint variables and populate them with points that repre-
sent the shape of a stop sign. Because tracking the various points in complex
paths can get tedious, Cocoa gives you the ability to define paths relative to
the last point in the path. That way, you can define the starting point with the
actual coordinates and define the rest of the path relative to that point.

If you want to move that path to another location later, you have to change only
one point — the first one. The rest of the path follows the first point without
any other code changes.

The following code creates the points for a path in the shape of a stop sign.
This code uses points that are relative to the first point:

//**************************************

// DRAW A STOP SIGN

//*********‘k*****‘k*‘k*****‘k*‘k*‘k**********

// Create the eight points of an octagon (stop sign)
NSPoint ptl,pt2,pt3,ptd,pt5,pt6,pt7,pt8;

//Define the points
ptl = NSMakePoint (300, rect.size.height-220);

pt2 = NSMakePoint (100, O0);
pt3 = NSMakePoint (50, 50);
pt4d = NSMakePoint (0, 100);
pt5 = NSMakePoint (-50, 50);
pt6 = NSMakePoint (-100, 0);
pt7 = NSMakePoint (-50, -50);
pt8 = NSMakePoint (0, -100);

238 Part Ill: Putting It All Together: Cocoa Programming in Depth

The first point is relative to the origin of the view. Each of the last seven
points has a value that’s relative to the point that precedes it in the list.

Here’s how to create a path with relative points:

1. Define relative point positions for a path.
Use the following guidelines:
¢ Positive x value: Path moves to the right.
e Negative x value: Path moves to the left.
e Positive y value: Path moves up.
® Negative y value: Path moves down.

2. After you define the various points on the path, create the
NSBezierPath with the bezierPath class method of the
NSBezierPath class.

// Create a stop sign path
NSBezierPath *stopSign = [NSBezierPath bezierPath];

3. Add the points to the path.

For the first point, use the moveToPoint function. For subsequent
points, use the relativeLineToPoint function because you should
position these points relative to the first point:

stopSign
stopSign
stopSign

stopSign
stopSign
stopSign

moveToPoint:ptl];

relativeLineToPoint:
relativeLineToPoint:
relativeLineToPoint:
relativeLineToPoint:
relativeLineToPoint:
relativeLineToPoint:

[
[
[
[stopSign
[
[
[
[stopSign relativeLineToPoint:
4. Close the path with the closePath function:
[stopSign closePath];

5. With a path defined, you can apply the usual color, fill, and
stroke commands to it.

For example, to fill in the stop sign with red and outline it in white, use
code like this:

// Draw the path
[[NSColor redColor]
[stopSign fill];

set];

// Draw the path

[[NSColor whiteColor]

[stopSign setLineWidth:

[stopSign stroke];

set];
5];

Chapter 12: Graphics 239

Combined, the code in this section produces result like those shown in
Figure 12-9.

ann Window

Figure 12-9:
Fill and
stroke the
path to see
the stop
sign appear
before your
eyes.
|

Drawing Text

Besides shapes and paths, Cocoa is quite adept at displaying text in graphics.
Before you start drawing text, you need to load that text into an NSString
variable. For example, to add STOP to a stop sign, follow these steps:

1. Create the NSString variable:

NSString *theString;
theString = @"STOP";

2. Determine the location in the view where you want to display the text
and store that position in an NSPoint:

NSPoint theTextPos;
theTextPos = NSMakePoint (275, rect.size.height-150);

3. Draw the string with the drawAtPoint method, passing it the
NSPoint:

[theString drawAtPoint:theTextPos withAttributes:nil];

This line of code draws the text at the position determined by the NSPoint.
When you run the example, you may be disappointed with the results, as
shown in Figure 12-10. The STOP string appears in a tiny font, and the letters
are black, the default text settings.

240 Part Ill: Putting It All Together: Cocoa Programming in Depth

Figure 12-10:
So far, this
doesn’t look
much like a
stop sign.
|

ann Window

Clearly, you want to define how the font looks. To accomplish this, pass some-
thing other than nil in the withAttributes parameter of the drawAtPoint
function. The withAttributes parameter takes an NSDictionary, SO you
need to declare and create one of those.

An NSMutableDictionary is a container for a collection of items; in this
case, a collection of text attributes. NSMutableDictionary is a subclass of
NSDictionary, so it works in place of an NSDictionary. A mutable object
is one that you can change sometime after you create it. An immutable object
is one that you can’t change after you create it. Mutable objects (such as
NSMutableDictionary) have mutable in their names. Inmutable objects
(such as NSDictionary) don’t.

Follow these steps to define your font:

1. Create an NSMutableDictionary:

In this situation, you use a predefined set of attributes, so you can use
an immutable dictionary.

NSMutableDictionary *theAttributes;

//create the NSDictionary object
theAttributes = [[NSMutableDictionary alloc] init];

2. Add objects to the NSMutableDictionary that represent some text
attribute.

Chapter 12: Graphics 24 ’

For example, to set the font to Helvetica with a size of 62, use code
like this:

[theAttributes setObject:
[NSFont fontWithName: @"Helvetica" size: 62]
forKey: NSFontAttributeName] ;

3. Set the color of the text.
This code adds a white text color attribute to the NSDictionary:

[theAttributes setObject:
[NSColor whiteColor] forKey:
NSForegroundColorAttributeName] ;

4. When you finish adding text attributes to the NSDictionary object,
pass the dictionary object in the withAttributes parameter of the
drawAtPoint function:

[theString drawAtPoint:theTextPos withAttributes:
theAttributes] ;

5. Dispose of the NSDictionary:

[theAttributes release];

The combined code to draw the string on the stop sign looks like this. Note
that theTextPos has a value of 267 for its first parameter instead of 275, to
account for the larger Helvetica font.

//**************************************

// DRAW STOP SIGN TEXT
//*‘k’k‘k*‘k*‘k*‘k*‘k*‘k*‘k************k**k**k*'k*'k**
//Define a string
NSString *theString;
theString = @"STOP";

//Position the text
NSPoint theTextPos;
theTextPos = NSMakePoint (267, rect.size.height-150);

//Create the NSDictionary object
NSMutableDictionary *theAttributes;
theAttributes = [[NSMutableDictionary alloc] init];

//Add attributes to the NSDictionary
[theAttributes setObject:
[NSFont fontWithName: @"Helvetica" size: 62]
forKey: NSFontAttributeName] ;

242 Part Ill: Putting It All Together: Cocoa Programming in Depth

[theAttributes setObject:
[NSColor whiteColor] forKey:
NSForegroundColorAttributeName] ;

//Draw the text
[theString drawAtPoint:theTextPos withAttributes:
theAttributes];

//Dispose of the NSDictionary
[theAttributes release];

You can view the results in Figure 12-11.

anon Window

|
Figure 12-11:
That's more
like it!
|

Displaying an Image

Eventually, you’ll grow tired of creating your own graphics and want to dis-
play an image file instead. The easiest way to display an image file in your
Cocoa application is to add the file directly to the project. For example, if you
were to drag a face. jpg image from Finder to Xcode, your project might
look like Figure 12-12.

Chapter 12: Graphics 243

800 I face.jpg - Graphics (=]
[10.5 | Debug | ppc 'J -':) ' ﬂ Q- String Matching
. Overview . Action Buldand Go Tascs Info_ Search .
Groups & Files Il [A (Code | @ a o
v I Graphics B | [facejog]
¥[| Classes
[ii) MyCanvas.h
[MyCanvas.m
b (] Other Sources
|| Resources
| Dreceps |
[£] Info.plist
¥ [InfaPlist.strings
| » [MainMenu.xib — — z - - .
N - 4 facedpg % - C. #,)
T . b (] Products
Figure 12-12: Ml
b <4 Executables
Drag an » /B Errors and Warnings
H ¥ 4, Find Results
Image from 11 Bookmarks
1 »Esam
Fmder to I Project Symbals.
H ¥ [Implementation Files
your prO]eCt I (&3] NIB Files
for easy
access.
I Debugging of "Graphics” ended normally. @ Succeeded

To draw this image in a view, you need to add only a few lines of code:

1. Create an NSPoint to hold the coordinates for where you want to
display the image.

This code creates an NSPoint for the lower-left corner of the view:

NSPoint theImagePos;
theImagePos = NSMakePoint (0, 0);

2. Create an NSImage object and load the image into it.

NSImage* thelImage;
theImage = [NSImage imageNamed:@"face.jpg"];

3. Display the image in the view by calling the dissolveToPoint function.

[theImage dissolveToPoint: theImagePos
fraction: (1.0)1;

Figure 12-13 demonstrates the dissolveToPoint function in action.

The fraction parameter of the dissolveToPoint function represents
the opacity of the image. The smaller the value you use for the fraction, the
more transparent it is. A value of 1.0 indicates no transparency; a value of
0.0 denotes complete transparency. Figure 12-14 shows the effect of different
opacity settings.

244 Part Ill: Putting It All Together: Cocoa Programming in Depth

800 Window

Figure 12-13:
Draw an
image in

aview by
using the
dissolve
ToPoint
function.
|

Figure 12-14:
Change the
opacity of
animage
for different
effects.
|

Chapter 12: Graphics 245

WMBER
@&
&

To see how opacity works, add this code to the end of your drawRect function:

NSPoint theImagePos;
theImagePos = NSMakePoint (0, 0);

NSImage* thelImage;
theImage = [NSImage imageNamed:@"face.jpg"];

int 1i;
for (i=3; i<7; i++)
{
[theImage dissolveToPoint: theImagePos
fraction: (i*0.1)];
theImagePos.x = theImagePos.x + 130;
}

theImagePos = NSMakePoint (0, 130);
for (i = 7;i<=10;i++)
{
[theImage dissolveToPoint: theImagePos
fraction: (i*0.1)1;
theImagePos.x = thelImagePos.x + 130;
}

In this example, you used a literal value of 130 to position elements on the
screen. This is simply for demonstration purposes to make the code easier to
read, but don’t do such things in the real world. Instead, base your values on
the height and width of the view.

246 Part Ill: Putting It All Together: Cocoa Programming in Depth

Chapter 13
Managing Your Files

In This Chapter

Using file paths in Cocoa

Opening files

Finding out about files

Displaying a Files icon in your interface

Copying, moving, creating, and deleting files and folders
Creating a folder

A Imost every device that Apple ships sports some kind of storage device.
Whether it’s the hard drive in your old iPod, a SuperDrive in your desk-
top Macintosh, or a flash drive in your MacBook Air, all storage devices share
one common trait — they store data. To facilitate this storage, the Mac OS X
operating system uses a hierarchical system of files.

Cocoa has a large array of functions that you can use to make your file manip-
ulation tasks easier. With only a few lines of code, it’s a cinch to open, copy,
move, and delete any file or folder on your hard drive, assuming that you
have adequate privileges for the file or folder. This chapter shows you how.

About Files and Folders in Mac 0S X

Mac OS X has several types of files. You are undoubtedly familiar with the most
basic file type — a document. You use document files every time you save work
in your favorite word processor. When you want to view the document, you
simply reopen it with your word processor.

Documents aren’t the only type of file on your Mac, however. Another impor-
tant file type is the application. You're probably also very familiar with this
file type because you use applications to surf the Web, send e-mail, draw pic-
tures, or program with Xcode. In fact, the whole point of Cocoa programming is
to create applications. Cocoa applications come in a special directory (or bundle)

248 Part lll: Putting It All Together: Cocoa Programming in Depth

WMBER
“&
&

that the Finder treats as a single file. An application bundle contains directo-
ries and individual files that contain the executable and supporting files for
your application. The idea here is that an application can store its resources
(such as pictures, audio, and data) in the same bundle as the application. The
accessory files are kept with the application, while also hiding them from the
user. That way, users are less likely to delete files that are important to the
operation of an application. Many documents also come as bundles, such as
iMovie and iDVD projects, RTFD files from TextEdit, and iPhoto Library files.

To help you keep your documents and applications in order, Mac OS X orga-
nizes files in a hierarchical structure of folders. Folders are containers of files.
A folder can hold documents, applications, or even other folders. Some folders
contain your operating system; others are ones that you create and modify
yourself.

Computer geeks also refer to folders as directories. This chapter uses the
terms folder and directory interchangeably. Not content to keep things simple,
geeks also refer to applications as executables. The two terms are synonyms,
so whenever you hear someone say, “place the executable in the directory,”
you can be sure that he could also mean “place the application in the folder.”
To confuse naming matters even further, you’ll also hear the terms package
and bundle used to mean the same thing. Control-click a bundle in Finder, and
you’ll find a Show Package Contents menu item. Choosing it opens the bundle
as a folder to reveal its contents.

For years, Macintosh users have happily navigated the files on their hard
drives by double-clicking a folder icon to open it. With Mac OS X, most Mac
users got their first taste of the command line by using the Terminal, which
uses the strange and frightening world of paths. Paths are a textual method of
describing where a file or folder resides on a drive. For example, the Mac OS
X Fonts folder resides in the following location:

/Library/Fonts

Whenever you see the / character, think folder or directory. The preceding
example reveals that the Fonts folder resides in the Library folder. If your
username is Fred, your home folder is located at this path:

/Users/Fred

These two examples of paths assume that you're describing a file folder or
file on your boot drive (assuming that the /Users file system mount point
resides on the boot volume). The boot drive contains the operating system
that you're using at any one time. If you have other drives connected to
your machine, the path of a file or folder located on that machine is pre-
ceded by Volumes and the name of the drive. For example, if you have a

Chapter 13: Managing Your Files 24 9

VacationPhoto.jpg image file that resides on a Drive2 drive, its path looks
like this:

/Volumes/Drive?2/VacationPhoto. jpg

Opening and Using Files

WMBER
@Q
&

The project for this chapter, File Demo, displays important information about
any file or folder that a user selects. You'll be familiar with the information
because it all appears in the Get Info window of Finder.

Building the interface

The interface consists of a button and several NSTextField controls. Users
click the button to select a file or folder, after which the application displays
information about that file or folder in the various NSTextField controls. To
create the interface for this project, perform these steps:

1. Create a new Cocoa project in Xcode, name it File Info, and then after
it opens, expand its Resources folder and double-click the MainMenu.
xib file to open it in Interface Builder.

2. In Interface Builder, open the default window in the XIB project
window and add six NSTextField Label controls from the Library
window and one Wrapping Label control.

You can locate the controls by searching for Label from the Library
window’s search field.

The wrapping label type is similar to the other labels, except that it’s preset
to be a multiple line label. The multiple lines help display long file paths.

Starting with the wrapping label, these seven labels display the following
information about a selected file or folder:

e File path

¢ Filename

¢ File exists: Displays YES if it exists; NO, if it doesn’t

¢ File directory: Displays YES if the selection is a folder; NO, if it isn’t
¢ File creation date

¢ File modification date

¢ File size in bytes

250 Part lll: Putting It All Together: Cocoa Programming in Depth

Figure 13-1:
Add 14
NSTextField
controls to
the window.
|

3. Change the Title attribute of each NSTextField to blank (that is,

delete all the text in each field).

You'll use these controls to display information about a file or folder.

4. Add seven more NSTextField Label controls to the window and

change the Title attribute in the Identity Inspector window for each of
these new Labels to match the descriptions in the previous step.

Figure 13-1 shows what the interface looks like at this point with all

14 NSTextField controls. Note that the wrapping label is taller than
the other labels to give it some space to display long file paths. A large
number of handles are around the border of each NSTextField to
show you the position of each NSTextField, even though half of them
are currently displaying nothing.

8.0 = File Info
File Path:
File Name:
Exists.
Directory.
Date Created:
Date Modified.
File Size (Bytes).

5. Add an NSButton control to the window and with the Identity

Inspector window, change the Title attribute of the button to Select
File or Folder.

Figure 13-2 shows what the button now looks like.

6. Add an NSImageView Image Well to the window and resize it to 128

x 128 with the Inspector window.

The image well is where you'll display a file’s icon later in this chap-

ter. You may have to move the File Path label and associated text field
around to make room for the image well. Figure 13-3 shows the interface
with the addition of the image well.

Chapter 13: Managing Your Files 25 ’

8,00 _ File Info
File Path:
|
Figure 13-2. File Name:
Add an Exists:
NSButton Directory:
that users Date Created:
click to Date Modified:
. File Size (Bytes):
select a file Le e Oy
or folder. (" Select File or Folder)
|
B.00 - File Info
File Path:
File Name:
I Exists:
Figure 13-3: Ditectany
Add an Date Created:
image well Date Modified:
to the File Size (Bytes):
interface. (" Select File or Folder)
|

Creating a Controller class

When you have the interface in place, you need to create a Controller class.
Perform the following steps:

1. Drag an NSObject from the Library window to the XIB project
window to add a new controller.

2. Press 3+6 to open the Identity Inspector and change the class name to
FileInfoController, as shown in Figure 13-4.

252

Figure 13-4:
Name the
object
FileInfo
Controller.
|

Part lll: Putting It All Together: Cocoa Programming in Depth

® O 0 File info Controller Identity. |
® |l |20 |
¥ Class Identity

Class. FileinfoController 3

¥ Class Actions

Action Type A

OO MainMenu.xib (English)

BX= o) ()

File's Owner First Responder Application MainMenu

Windew (File l.. Font Manager (I 1

[+ -

¥ Class Outlets

L+_1_

¥ Interface Builder Identity

Name
Object ID 492

Lock [Nathing (inherited) 23]

Notes] Show With Selection

3. Add eight outlets to the FileInfoController class.

These eight outlets should have descriptive names that tell you the pur-
pose of each. You'll connect seven of them to the NSTextFields. The
eighth outlet connects to the NSTmageVview. Name them fileCreated
Display, fileDirDisplay, fileExistsDisplay, fileIconDisplay,
fileModifiedDisplay, fileNameDisplay, filePathDisplay, and
fileSizeDisplay, as shown in Figure 13-5.

4. Add an action to the class in the Identity Inspector window and name

it selectTheFile:.

5. Wire the interface to the FileInfoController outlets:

a. Control+drag from the FileInfoController instance to each
of the NSTextFields in your interface’s main window. Select
the appropriate outlet from the black connections list overlay that
appears after the Control+drag operation.

b. Control+drag from the FileInfoController to the NSImageView
control. Connect NSImageView fo the fileIconDisplay outlet.

6. Connect the interface to the FileInfoController action.

Control+drag from the NSButton in the interface to the FileInfo
Controller instance in the MainMenu.xib file window. Connect the
NSButton to the selectTheFile action (see Figure 13-6).

Figure 13-5:
Add eight
outlets to
the class.

|

Figure 13-6:
Connect the
button in
your inter-
face to the
selectThe
File action.
|

File's Owner First Responder Application MainMenu

Windew (File l.. Font Manager [T

000 # MainMenu.xib (English) [=]
) Com—

View Mode Info

L7 &
s En

File's Owner First Responder

Font Manager

Application

@

Window (File I... File Info Conty,

3 File Info.xcodeproj

File Name:
Exists:
Directory:
Date Created:
Date Modified:
File Size (Bytes):

® | ¢|Q 2 0|0 %
¥ Class Identity
Class. FileinfoController

¥ Class Actions.

Fypesa |

[«]-

¥ Class Outlets

Outlet

& MainMenuxib
fileCreatedDisplay

fileDirDisplay id
fileExistsDisplay id
filelconDisplay id
fileMedifiedDisplay id
fileNameDisplay id
filePathDisplay id
fileSizeDisplay id

¥ Interface Builder Identity

Name | |
ObjectID 432

Lock Nothing (Inherited) 3

Notes [Show With Selection

2

Chapter 13: Managing Your Files 253

254 Part lll: Putting It All Together: Cocoa Programming in Depth

7. Create the files for the FileInfoController class:
a. In the XIB project window, click the FileInfoController class.

b. Choose Filec>Write Class Files to create the files for
FileInfoController and to add them to the Xcode project.

8. In Xcode, assign an NSObject superclass to the FileInfoController.h file.

Change this line:

@interface FileInfoController : /* Specify a
superclass (eg: NSObject or NSView) */ {

to this:
@interface FileInfoController : NSObject {

Open sesame . . . er, panel

When you have the interface built, you can add some code in Xcode to make
the interface functional. Don’t forget about the goal of this project — to select
a file and report information about it. To display information about a specific
file or folder, you use Cocoa’s OpenPanel class. With the OpenPanel class,
you can display an Open dialog that allows a user to select a file or folder.
When you use an OpenPanel, you typically follow four basic steps:

1. Create an instance of OpenPanel.
2. Set the attributes of the OpenPanel instance.

3. Display the OpenPane]l for the user and wait for the user to do something
with it: Select a file and click OK or cancel the operation.

4. Perform a function with the file that the user selected.
To see how OpenPanel works in Cocoa, perform these four steps.

1. Create an OpenPanel instance.
You do so in the same way that you create other objects in Cocoa:
NSOpenPanel *openPanel = [NSOpenPanel openPanel];

2. Alter the attributes of OpenPanel by calling one or more of its
methods.

For example, to change the title of OpenPanel, use the setTitle
method.

[openPanel setTitle:@"Choose a File or Folder"];

Chapter 13: Managing Your Files 255

A\\S

Figure 13-7:
Display an
OpenPanel

with the
runModal
method.
|

The setTitle method of OpenPanel is a method provided by the
Nswindow superclass. Because OpenPanel is a subclass of NSwWindow,
it can take advantage of the NSWwindow methods.

The openPanel class also has methods of its own too, of course. For
example, you'll want to tell Open Panel which files a user may open or
select. By default, Open Panel lets users choose any document or appli-
cation that they want, but they can’t choose folders. You can remedy the
situation by adding a call to the setCanChooseDirectories method
of OpenPanel. This method takes one parameter: a Boolean. If you pass
YES, users can select folders in OpenPanel. If you pass NO (or if you
don’t use this setCanChooseDirectories method at all), users can’t
choose folders in OpenPanel.

[openPanel setCanChooseDirectories:YES];

3. Display OpenPanel.

You have several options when it comes to displaying OpenPanel.
The most basic way to display it is to use its runModal method, which

returns an integer upon completion.
NSInteger i = [openPanel runModal];

The result of this line of code is the dialog, as shown in Figure 13-7.

OuOue Choose a File or Folder
faomd foEd = III]} | (2 Fonts 4 @ search
e 1 BernNaram.. T-oia.om |- "
= || BernhardM...-BoldIt.otf
bz TowerMac =
ED Tiger D (#) BernhardM...d-Italic.otf
1 BernhardM...Roman.otf
ﬂ Leapard HD ; Bickhams5c...ro-Bold.otf
ﬂ SIS _‘ Bickhams5c...Regular.otf
B xvavo) Bickhamsc...emibold.otf
v SHARED 7 Birchstd.otf
B3] iMac ;‘ Blackoakstd.otf
\él Mac.local Name BrushScriprstd.otf
¥ PLACES ; Bt ies. t :wan: ;i:nﬁwpafom
I Desktop) Caflischser...ro-Bold.odf Created 3/29/07 6:13 PM
= | CaflischScr...Regular.otf Modified 3/29/07 6:13 PM
U Despipass 7‘ Center City.tt Last opened 3/29/07 6:13 PM
=S 71 CenterCityCondensed.tt |, ?_L'
7 Applications 7 CemterCityExtended.t * 4
*, PROJECTS) Century ; More info... ;
[[] iPhone projects € ~ ERE
(Cancel) Open)

256 Part lll: Putting It All Together: Cocoa Programming in Depth

\\3

4. Find out what the user did with the OpenPanel.

To find out whether the user clicked OK or Cancel in the OpenPanel,
you must examine the value that runModal returns. If the user clicked
OK, the return value is NSOKButton, a constant that Cocoa provides for
you. If the user cancels the open operation instead, the return value is

NSCancelButton.
NSInteger i = [openPanel runModal];
if (i1 == NSOKButton)

{
NSLog (@"The user clicked OK!") ;

}

Rather than create a new variable just to check the return value, wrap-
ping the runModal command into the if statement is easier:

if ([openPanel runModal] == NSOKButton)

{
NSLog (@"The user clicked OK!") ;

3

Finding a file’s path, name, and more

After you discover that a user has clicked OK in OpenPanel, you need to find
out which file or folder the user selected. By using the £i1ename method of
the OpenPanel class, you can get the path to that file or folder in the form of
an NSString:

NSString *theFilePath = [openPanel filename];

To display the path in the interface, call the setStringvalue method of the
filePathDisplay outlet:

[filePathDisplay setStringValue:theFilePath];

Besides the path of the file, you can discover all sorts of interesting informa-
tion about a file with the NSFileManager class. Follow these steps:

1. Create a new NSFileManager object using the defaultManager class
method:

NSFileManager *theManager = [NSFileManager
defaultManager] ;

2. Call the various NSFileManager methods to find out information
about a file:

e To retrieve the filename from the selected file, use the display
NameAtPath method. Because the method returns an NString,

Chapter 13: Managing Your Files 25 7

you can nest the call to display it in the interface. In this case, dis-
play it with the fileNameDisplay outlet:

[fileNameDisplay setStringValue:
[theManager displayNameAtPath:theFilePath]];

e To know whether the file exists, use the fileExistsAtPath
method of the NSFileManager:

if ([theManager fileExistsAtPath:theFilePath]) {
[fileExistsDisplay setStringValue:@"YES"];
}
else {
[fileExistsDisplay setStringValue:@"NO"];
}

¢ To find out whether the selected file is a directory, use the alternate ver-
sion of the fileExistsAtPath method. The alternate version has
two parameters: the file’s path and a pointer to a Boolean. After this
call completes its execution, the Boolean value holds a value of YES if
the file in the first parameter is a directory:

if ([theManager fileExistsAtPath:theFilePath
isDirectory:&isFolder]) {
[fileExistsDisplay setStringValue:@"YES"];
}
else {
[fileExistsDisplay setStringValue:@"NO"];
}

You can also find out a fair amount about a file with the fileAttributes
AtPath method:

NSDictionary *theFileAttributes = [theManager fileAttribut
esAtPath:theFilePath traverseLink:YES];

Note that the fileAttributesAtPath method returns an NSDictionary.
An NSDictionary is a data structure that holds a collection of different
values. This NSDictionary returns a collection of data about a file or folder,
including the following:

v~ File size: The size of a file or folder, measured in bytes
1 Creation date: The date the file or folder was created
v+ Modification date: The date the file or folder was last modified
Use an NSDictionary instead of an NSMutableDictionary because you

don’t need to change the data in that dictionary. You’re simply filling in the
NSDictionary so you can read its contents.

258 Part lll: Putting It All Together: Cocoa Programming in Depth

To extract this data from the NSDictionary object, use the objectForKey
method of the NSManager instance:

NSNumber *theFileSize;
NSDate *theModificationDate;
NSDate *theCreationDate;

if (theFileSize = [theFileAttributes
objectForKey:NSFileSizel]) [fileSizeDisplay
setIntValue: (int)theFileSize];

if (theModificationDate = [theFileAttributes objectForKey:
NSFileModificationDate]) {
[fileModifiedDisplay setStringValue: (NSString*)
theModificationDate] ;
}
if (theCreationDat = [theFileAttributes objectForKey:NSFil
eCreationDate]) {
[fileCreatedDisplay setStringValue: (NSString*)
theCreationDate] ;

Viewing a file’s icon

The icon is another great feature of Finder. Without icons, you’d be stuck in
the dark days of text-only interfaces like DOS. Yikes! Fortunately, it’s easy to
work with icons in Cocoa. But before you grab an icon from a file, you must
create an NSFileWrapper. An NSFileWrapper is an object that stores a
file’s data in memory. For this example, though, you use it to load the file’s
icon into memory.

1. Initialize the NSFileWrapper instance with this path to create it:

NSFileWrapper *theFileWrapper = [[[NSFileWrapper
alloc]
initWithPath:theFilePath] autorelease];

2. Extract the icon from the file with the icon method of the
NSFileWrapper.

This call returns an NSImage, which you can then display in the
NSImageView of the interface.

NSImage *thelIcon = [theFileWrapper icon];

3. To view the icon at dimensions of 128 x 128, for example, stretch the
icon to the size of the NSImageView with setImageScaling before
displaying it:

[fileIconDisplay setImageScaling:NSScaleToFit];
[fileIconDisplay setImage:thelcon];

Chapter 13: Managing Your Files 259

\\3

NSScaleToFit is just one of a few scaling values that you can place in
this parameter. To see the others, Option-double-click NSScaleToFit
to view the online documentation for this call.

With your icon code in place, the complete code listing for the select
TheFile action is as follows:

- (IBAction)selectTheFile: (id) sender

{
NSOpenPanel *openPanel = [NSOpenPanel openPanell] ;
[openPanel setTitle:@"Choose a File or Folder"];
[openPanel setCanChooseDirectories:YES];

if ([openPanel runModal] == NSOKButton)

{
NSString *theFilePath = [openPanel filename];

//display the file path
[filePathDisplay setStringValue:theFilePath];

NSFileManager *theManager = [NSFileManager
defaultManager] ;

[fileNameDisplay setStringValue: [theManager di
splayNameAtPath:theFilePath]];

//does the file really exist at this path?
if ([theManager fileExistsAtPath:theFilePath

1) o
[fileExistsDisplay setStringValue:@"YES"];

}
else {
[fileExistsDisplay setStringValue:@"NO"];
}

//is it a directory?
BOOL isFolder;
if ([theManager fileExistsAtPath:theFilePath
isDirectory:&isFolder] && isFolder) {
[fileDirDisplay setStringValue:@"YES"];
}
else {
[fileDirDisplay setStringValue:@"NO"];
}

//GET FILE ATTRIBUTES
NSNumber *theFileSize;
NSDate *theModificationDate;
NSDate *theCreationDate;

NSDictionary *theFileAttributes =
[theManager fileAttributesAtPath:theFilePath
traverseLink:YES] ;

260

Part lll: Putting It All Together: Cocoa Programming in Depth

Figure 13-8:
With the
NSFile
Manager
and NSFile
Wrapper,
you can
easily
display a
variety of
information
about a file.
|

3

if (theFileSize = [theFileAttributes
objectForKey:NSFileSize]) {
[fileSizeDisplay setIntValue: (int)
theFileSize];
}

if (theModificationDate = [theFileAttributes o
bjectForKey:NSFileModificationDate]) ({
[fileModifiedDisplay
setStringValue: (NSString*)
theModificationDate] ;
}

if (theCreationDate = [theFileAttributes objec
tForKey:NSFileCreationDate]) {
[fileCreatedDisplay
setStringValue: (NSString*)theCreationDate];
}

//display an icon

NSFileWrapper *theFileWrapper

= [[[NSFileWrapper alloc]
initWithPath:theFilePath] autoreleasel];
NSImage *thelIcon = [theFileWrapper icon];
[fileIconDisplay setImageScaling:NSScaleToFit];
[fileIconDisplay setImage:thelcon];

4. Choose Build=>Build and Go to test your work.

Figure 13-8 shows the result.

800

File Info

>

OTF

File Name:
Exists:
Directory:

Date Created:
Date Modified:
File Size {Bytes):

File Path: /Users/e/Library/Fonts/BrushScriptStd.otf

BrushScriptStd.otf

YES

NO

Thursday, March 29, 2007 6:13:26 PM CT
Thursday, March 29, 2007 6:13:26 PM CT
92565744

_ Select File or Folder

Chapter 13: Managing Your Files 26 ’

Reading from and writing to documents

Many types of files are on your hard drive. Each file type has its own format,

whether it’s text, graphics, fonts, or audio. Cocoa has built-in functions to deal
with common file formats. For example, Cocoa is adept at working with text doc-
uments of all sorts. See Chapter 11 to get the scoop on working with text files.

Graphics is another place where Cocoa shines. Whether you need to view a
PICT file, save a JPEG file, or convert a view to PDF, Cocoa and the underlying
QuickTime engine of Mac OS X have you covered. You can find information
about working with graphics files in Chapter 12.

Multimedia is yet another highlight of the Mac OS. Chapter 16 discusses the
use of audio and video files in your applications. There, you'll find the code
you need to view QuickTime movie files as well as play a variety of audio files.

Working with Files and Folders

Copying and moving files are important functions that you may want to
perform in your applications. To add these features to your project, follow
these steps:

1. Open your MainMenu.xib file in Interface Builder.

2. To your main window, add two new NSButtons and change their titles.

To follow along with the example, change the Title attribute of one button
to Copy File to Desktop. As you may have guessed, when users click
this button, they can select a file. The application then duplicates that file,
placing it on the desktop.

Change the Title attribute of the other NSButton to Move File to
Desktop.

3. Add a new action to the FileInfoController class in the Identity
Inspector window.

To follow along with the example, name the action copyTheFile.
4. Connect the action to the button.

To do so, Control+drag from the button to the FileInfoController
instance in the NIB file.

5. Save your interface and return to Xcode.

262 Part lll: Putting It All Together: Cocoa Programming in Depth

6. In Xcode, add the new actions to the FileInfoController.h file, placing
them after the selectTheFile action.

The resulting header file looks like this with the new actions in boldface:

/* FileInfoController */

#import <Cocoa/Cocoa.h>

@interface FileInfoController : NSObject {

IBOutlet
IBOutlet
IBOutlet
IBOutlet
IBOutlet
IBOutlet
IBOutlet
IBOutlet

id
id
id
id
id
id
id
id

fileCreatedDisplay;
fileDirDisplay;
fileExistsDisplay;
fileIconDisplay;
fileModifiedDisplay;
fileNameDisplay;
filePathDisplay;
fileSizeDisplay;

(IBAction) selectTheFile: (id) sender;
(IBAction)copyTheFile: (id) sender;
(IBAction)moveTheFile: (id) sender;

- (IBAction)createAFolder: (id)sender;

@end

Copying files and folders

To copy a file or folder, you need two things:

v Source path: The path to the file that you want to copy

+ Destination path: Where you want the file copy to reside

You can get the source file from the OpenPanel class covered earlier in

this chapter. You could do something similar for the destination with the
SavePanel, but this time you know where you want the resulting file to
appear: on the desktop. Therefore, you can create your own path that points
to a new file on the desktop.

To do so, follow these steps:

1. Gain access to the Desktop folder with the NSHomeDirectory func-
tion in the Foundation class.

NSString *theDestination = [[NSHomeDirectory ()

2. Tack on additional parts of the path with the stringByAppending
PathComponent method (say that five times fast!).

Chapter 13: Managing Your Files 263

stringByAppendingPathComponent:@"Desktop"]
stringByAppendingPathComponent:theFileName] ;

3. Copy the file by using the copyPath method of the NSFileManager
class, pass it the source path, the destination path, and nil for the
handler:

[theManager copyPath:theFilePath
toPath:theDestination handler:nil];

The resulting copyTheFile action looks like this:

- (IBAction)copyTheFile: (id)sender

NSOpenPanel *theOpenPanel = [NSOpenPanel openPanel];
[theOpenPanel setTitle:@"Choose a File or Folder to
copy"];

[theOpenPanel setCanChooseDirectories:YES];

if ([theOpenPanel runModal] == NSOKButton)
{
NSString *theFilePath = [theOpenPanel filename];
NSFileManager *theManager = [NSFileManager
defaultManager] ;
NSString *theFileName = [theManager

displayNameAtPath:theFilePath] ;

NSString *theDestination = [[NSHomeDirectory ()
stringByAppendingPathComponent :@"Desktop"]
stringByAppendingPathComponent :theFileName];
[theManager copyPath:theFilePath
toPath:theDestination handler:nil];

Moving files and folders

Moving a file is just as simple as duplicating one. In fact, the code is identical
to the copyTheFile action, except for one line. Instead of the copyPath
method, you use the movePath method. The code for the moveTheFile
action looks like this:

- (IBAction)moveTheFile: (id)sender

NSOpenPanel *theOpenPanel = [NSOpenPanel openPanel];
[theOpenPanel setTitle:@"Choose a File or Folder to
move"] ;

[theOpenPanel setCanChooseDirectories:YES];

264 Part lll: Putting It All Together: Cocoa Programming in Depth

if ([theOpenPanel runModal] == NSOKButton)
{
NSString *theFilePath = [theOpenPanel filename];
NSFileManager *theManager = [NSFileManager
defaultManager] ;
NSString *theFileName = [theManager

displayNameAtPath:theFilePath] ;

NSString *theDestination = [[NSHomeDirectory ()
stringByAppendingPathComponent :@"Desktop"]
stringByAppendingPathComponent :theFileName];
[theManager movePath:theFilePath
toPath:theDestination handler:nil];

Deleting files and folders

Sometimes you’ll want to delete files from a drive. Rather than bore you with
another identical code example, I'll simply tell you that the code to delete a
file resembles the copyTheFile and moveTheFile except for the last com-
mand. Look up the removeFileAtPath method in the NSFileManager
documentation. Doing so gives you experience in looking up calls in the docu-
mentation and provides you with an ample amount of time to consider why
you’d want to use this call.

QNG i .
Oy Delete a file, and it’s gone! Permanently. Make sure that your users know that
a deletion will occur and always give them a way out. One way to do this is to
display an alert:

NSOpenPanel *theOpenPanel = [NSOpenPanel openPanell];
[theOpenPanel setTitle:@"Choose a File or Folder to
Delete"];

[theOpenPanel setCanChooseDirectories:YES];

if ([theOpenPanel runModal] == NSOKButton)
{
NSString *theFilePath = [theOpenPanel filename];
NSFileManager *theManager = [NSFileManager
defaultManager] ;

NSInteger n;
n = NSRunAlertPanel (NSLocalizedString (@"Are you
sure you want to delete the file?",nil),

NSLocalizedString (@"You cannot undo this
deletion.", nil),

NSLocalizedString (@"Yes",nil),
NSLocalizedString (@"No",nil),
nil);

if (n == NSAlertDefaultReturn) {
[theManager removeFileAtPath:theFilePath
handler:nil];
}
}

The code asks the user which file to delete using the NSOpenPanel. After
creating theFilePath and theManager objects, the code displays an Alert
panel by calling the NSRunAlertPanel function. NSRunAlertPanel takes
five parameters that correspond to the title of the alert, the message on the
alert, the text on the default button, the text on the alternate button, and
finally text for a third button, which you ignore this time by passing ni1. If
NSRunAlertPanel returns a value of NSAlertDefaul tReturn, which cor-
responds to the default button in the alert, the code deletes the file with the
removeFileAtPath method

Creating folders

To create a folder on your drive, use the createDirectoryAtPath method
of the NSFileManager. You need to pass it two parameters:

v The first parameter is the path where you want to create the folder.

v The second parameter lets you set various attributes of the folder. You
won't use this second parameter very often, so you can simply set it tonil.

To show the createDirectoryAtPath method in action, follow these steps:

1. Add the following code to FileInfoController.m to create a
MyNewFolder folder on the desktop:

- (IBAction)createAFolder: (id) sender
{

NSString *theDestination = [[NSHomeDirectory ()
stringByAppendingPathComponent:@"Desktop"]
stringByAppendingPathComponent : @"MyNewFolder"
1

[theManager createDirectoryAtPath:theDestination
attributes:nil];

Chapter 13: Managing Your Files 265

266 Part lll: Putting It All Together: Cocoa Programming in Depth

<MBER
ég“

Figure 13-9:
The
completed
Files project
can display
information
about a file
or folder

as well as
perform a
variety of
file tasks.
|

If you use the createAFolder action, don’t forget to define it in the

header file:

- (IBAction)createAFolder: (id) sender;

2. Add an action to FileInfoController and connect it to a new

NSButton in Interface Builder.

Figure 13-9 shows the completed interface.

Sometimes it’s easiest to simply add actions and outlets to your project
in Xcode and your NIB file in Interface Builder, rather than relying on

those applications to talk to each other.

3. To test your work, return to Xcode and press +R.

800

File Info

< -—
*
TTF
File Name:
Exists:
Directory:
Date Created:

Date Modified:
File Size (Bytes):

File Path: /Users/e/Library/Fonts/Architect

Architect
YES
NO
Friday, March 29, 1991 4:44:40 PM CT
Friday, February 11, 1994 10:15:38 PM CT
1117360
(_ Copy File to Desktop \ Ir Create Folder on Desktop \

(" Move File to Desktop \ I'r Select File or Folder \

Chapter 14
Printing with Cocoa

In This Chapter

Understanding the process of printing in Cocoa
Adjusting the page settings

Running a print job

Printing to PDF files

A Ithough Cocoa’s on-screen display of graphics and text is world class,
that doesn’t mean Apple forgot about printing. Known for decades as one
of the innovative adopting forces behind technologies, such as PostScript and
laser printing, Apple continues in this tradition by adding easy-to-implement
printing features to Cocoa. This chapter shows you how to add printing features
to your Cocoa applications. Although printing has been a messy topic for
programmers in the past, Cocoa makes it simple to implement some sophis-
ticated printing features to your projects. You’ll love the consistency that
Apple provides you as a developer, and your users will love the professional
printing results that your application implements.

To begin working with printing, copy the Start source code for this chapter
to your hard drive. (To download the code, go to www.dummies.com/go/
cocoafd.) The printing project for this chapter is based on the completed
project from the end of Chapter 12. Because you can print using any view,
you can use the graphics view from Chapter 12 as your printable canvas.

How Printing Works in Cocoa

To help you achieve great results that address all your printing needs, Cocoa
offers a collection of important classes for printing in Mac OS X. You use
these classes together to add printing to your applications:

»” NSvView: Printing to a page is as simple as drawing text and graphics in
an NSview. The examples in this chapter build on the graphics example
in Chapter 12.

268 Part lll: Putting It All Together: Cocoa Programming in Depth

1 NSPageLayout: This class is responsible for displaying the Page Setup
panel. Typically applications display this panel when a user chooses
Filec>Page Setup. Your users will invoke the Page Setup panel to choose
the orientation of the printed page. They can also set the paper size in
the Page Setup panel. When the user has finished adjusting the printing
properties of the NSPageLayout object, the NSPageLayoutObject
saves the results in an NSPrintInfo object.

»” NSPrintInfo: NSPrintInfo is a storage class that holds the settings
and options for printing. NSPrintInfo stores the settings from the
Page Setup panel as well as the page count, margins, and other items
that appear in the NSPrintPanel.

»” NSPrintPanel: When you choose Filew>Print from most applications,
you see an example of the NSPrintPanel. The NSPrintPanel is
responsible for managing the settings of a print job. NSPrintPanel
stores its settings in an NSPrintInfo object.

1 NSPrintOperation: This class takes care of creating the printed page.
It displays the Print panel and carries out the print job.

To help you envision how the printing process works in Cocoa, here’s a brief
rundown of the steps involved:
1. Draw text and graphics to a view.

This drawing can occur in any view, whether it’s a view in a graphics
application, a word processor, or even the background of a window.
Cocoa can print from them all.

2. The user chooses Fileo>Page Setup.
Your application displays the Page panel.
3. The user selects the format and scale of the print job.
Figure 14-1 shows what the Page panel looks like.
4. The user dismisses the panel.
Your application stores the settings in a PrintInfo object.
5. The user chooses Filec>Print.

Your application displays the Print panel, where the user tweaks the set-
tings for the print job. Figure 14-2 shows a typical Print panel. When the
user finishes preparing the print job, he may dismiss the panel by
clicking Cancel or start the print job by clicking OK.

6. The user prints the view.

Chapter 14: Printing with Cocoa 2 69

Your application sets up the print operation with the Page and Print panel
settings that you stored in the PrintInfo object. The view’s drawRect
takes care of drawing the graphics or text, just as it does on-screen.

Settings: f Page Attributes H-q
Format for: | Any Printer H
Paper Size: f US Letter H"‘

8.50 by 11.00 inches

Orientation: @

Scale: | 100 %

Figure 14-1:
Use the ® ok)
Page panel
to adjust
settings for
the pages in
your

print job.

I I RRRRBRBRBBSBEEBBBE>SDEBEDDPDDRDRDRPDRDRLR

Printer: [Brother HL-1440 series @ iMac |+ [&)

Presets: | Standard M
Copies: |1 ™ Collated
Pages: @ All
OFrom: |1 to: |1
Paper Size: | US Letter B 8.50 by 11.00 inches
Orientation:
| (TextEdit N
Figure 14'2: [Print header and footer
Use the -
Print panel - —
toadjust | (Ceanaal)
settings for |

the print job.

2 70 Part lll: Putting It All Together: Cocoa Programming in Depth

Tweaking the Page Settings

The first step of your printing journey begins with the Page panel, where your
users can select the scale and format of a project job.

\3
< If you have access to multiple printers, you can also choose a Format For
option to get the dimensions of a printable area. The dimensions help you
avoid cropping around the edges.

Open the Xcode project for this chapter. Double-click the MainMenu.xib file
to open the interface XIB file for this project in Interface Builder. After the XIB
file opens, follow these steps to add a print controller to the project:
1. Create a new controller class:
a. Open the Library window and search for NSObject.
b. Drag a new object to the project window.
c. Press 38+6 and name the new NSObject MyPrintController.

Figure 14-3 shows the newly named object.

©&00 MainMenu.xib (English) = © 0O My pnt Controller identity _ 1
o CE2CICICIE
¥ Class Identity

(i B EaRRNer

[g
'./I\ = [T ¥ Class Actions
= |

Action Type Al

File's Owner First Responder Application MainMenu Window (Wind...

Fant Manager

+| -

¥ Class Outlets

Outlet Type A

Figure 14-3:
The MyPrint Name
Controller Osjecttn [a53
object takes L) %!
the printing =
tasks.
|

ki

¥ Interface Builder Identity

Figure 14-4:
The MyPrint
Controller has
one outlet and
two actions.
|

Chapter 14: Printing with Cocoa 2 7 ’

2. Add an outlet and two actions to MyPrintController.

a. Press 38+6 to open the Identity Inspector window and add a canvas
View outlet to the MyPrintController class.

b. Add two actions to the controller by clicking the + button beneath the
Class Actions section of the Identity Inspector.

c. Name the actions printOnePage: and showPagePanel:.

The showPagePanel action takes care of displaying the Page
panel and storing its settings. The printOnePage action displays
a Print panel and then executes a print job.

Figure 14-4 shows the outlets and actions for MyPrintController.

3. Connect the MyPrintController instance to the user interface.

a. Control+drag from the MyPrintController instance to the view in
the main window of your interface. Select the canvasView outlet in
the small black connections list overlay that appears.

- MainMenu.xib (English)
-
. /\ = | H
File's Cramer First Respander Appiiration MainMernu Windew (Wind
Fort Manager ([ZTAT

I Nl o Identity
+ Gl |® Q|03
T = |

Class MyPripCantraller -l

| Clasa Actions_

| Action Wypeie |
| = MainMenuaib

| printOnePage. il

|

+]-
| ¥ Class Dutists

Outlet B —

= MainMenixib

camvasView L]

=

| ¥ inaerface Ruider idemtiny

Name
Dbject D 451

Lock | Mething Gaheritea) =
Hoees || Show With Selectian

272

Part lll: Putting It All Together: Cocoa Programming in Depth

Figure 14-5:
Connect the
one outlet
and two
actions of
the MyPrint
Controller
instance.
|

b. Connect the two actions to the menu items for this project: Control+drag
from the Page Setup menu item in the MainMenu menu bar to the
MyPrintController instance. Select the showPagePanel action
in the small black connections list overlay that appears, listing the
actions in MyPrintController. Repeat for the Print menu item
and the printOnePage action.

Figure 14-5 shows the MyPrintController outlet and action connections
in the Identity Inspector window.

4. Create the files for MyPrintController.

Select MyPrintController in the XIB project window. Choose
File=>Write Class Files to add the header and implementation files to
your project in Xcode.

5. Save your interface project by choosing Filec>Save and quit Interface

Builder by choosing Interface Builder=>Quit.

6. Return to Xcode and select the MyPrintController.h file to view its

contents. Change your MyPrintController.h file to read as follows:
/* MyPrintController */

#import <Cocoa/Cocoa.h>

@interface MyPrintController : NSObject

{
IBOutlet id canvasView;
NSPrintInfo *thePrintInfo;
}
0.0 MainMenu.xib (English) = 8.,0,0..My print Coonoller. &
E1=(z) (] e JYESEECECTTIE
Mode info =

in Seardifield (anawien (@ WGme ®

o ¥ A

il

0| @@ |

¥ Referencing Outlets
New Referencing Outlet

File's Owner First Responder Application MainMenu Window (Wind

Font Manager

Chapter 14: Printing with Cocoa 2 73

- (IBAction)printOnePage: (id) sender;
- (IBAction)showPagePanel: (id) sender;
@end

Besides defining MyPrintController as an NSObject, the only other
addition is this line:

NSPrintInfo *thePrintInfo;

This line declares a pointer to an NSPrintInfo object as an instance
variable to help you store settings that the user makes in the Page and
Print panels.

7. Select the MyPrintController.m file and change its code to read
#import "MyPrintController.h"

@implementation MyPrintController
- (IBAction)showPagePanel: (id)sender {

int 1i;

thePrintInfo = [NSPrintInfo sharedPrintInfol;

NSPagel.ayout *pagelayout = [NSPageLayout
pagelLayout] ;

i = [pagelayout runModalWithPrintInfo: (NSPrintInfo
*)thePrintInfo] ;

}
@end
Here’s how the code works:
1. The showPagePanel method first populates the thePrintInfo variable

with the NSPrintInfo value, which is shared by all applications.

2. The code creates an NSPageLayout instance and displays it using the
runModalWithPrintInfo method

By passing thePrintInfo to the runModalWithPrintInfo method,
the Page panel retains its settings in thePrintInfo when the user dis-
misses it.

So far, this code is functional but not terribly interesting. You can run it and
choose Filer>Page Setup to view and play with the settings in the Page panel.

2 74 Part lll: Putting It All Together: Cocoa Programming in Depth

Setting Up the Print Job
and Printing the Uiew

To add printing, all you have to do is implement the printOnePage action
that you defined as part of MyPrintController in the preceding section.
Click the MyPrintController.m file in Xcode and change its code to read

#import "MyPrintController.h"

@implementation MyPrintController

(IBAction) showPagePanel: (id) sender {

int 1i;
thePrintInfo = [NSPrintInfo sharedPrintInfo];
NSPageLayout *pagelLayout = [NSPageLayout pagelLayout];
i = [pageLayout

runModalWithPrintInfo: (NSPrintInfo *)

thePrintInfo];

(IBAction)printOnePage: (id) sender

thePrintInfo = [NSPrintInfo sharedPrintInfol;
NSPrintOperation *thePrintOperation;

thePrintOperation =
[NSPrintOperation printOperationWithView:
myCanvasView printInfo:thePrintInfo];

[thePrintOperation setShowPanels:YES];
[thePrintOperation runOperation];

}

@end

The printOnePage method takes care of running the Print panel and execut-
ing the print job in this way:

1. It creates an NSPrintOperation instance using the class method
printOperationWithview.

2. You pass the printOperationWithView method a view to print and
an NSPrintInfo instance.

Chapter 14: Printing with Cocoa 2 75

3. The printOperationWithvView method returns an instance of
NSPrintOperation.

4. (Optional but typical in most applications) If you want to display the
Print panel, call the setShowPanels, passing it a Boolean value of YES.

5. The runOperation method of the NSPrintOperation object runs the
print job.

Cocoa takes care of everything else for you, including dismissing the
Print panel and printing the view.

Printing to Places Other Than a Printer

So far, you've implemented some pretty boring stuff. Printing is nice, but it’s
become a standard requirement on all applications and operating systems
and it’s not altogether exciting. When it comes to printing, Cocoa really
shines in its capability to print directly to PDF (Portable Document Format)
files. Instead of printing your view to a standard printer, you can ask Cocoa
to save it to a PDF-formatted file instead. PDF is a standard format for pub-
lishing and printing documents. In the past, you had to rely on third-party
solutions when creating PDF content on the fly. With Cocoa, it’s as easy as
adding a few lines of code to your project.

Before you begin adding PDF features to your project, you should know that
you already have one form of PDF printing: The user can click the PDF button
that’s at the bottom of the Print panel.

Here’s a more elegant solution if you don’t like that users have to open the
Print panel to print to PDF:
1. Open the MainMenu.xib file in the project for this chapter.

2. Add a new push button to the existing interface by dragging one from
the Library window.

Figure 14-6 shows what the interface looks like.

2 76 Part lll: Putting It All Together: Cocoa Programming in Depth

|
Figure 14-6:
Add a new
button that
users click
to printto a
PDF file.
I 2
3. Add a new action to the MyPrintController class.
Click MyPrintController in the XIB project window, press 38+6 to
open the Identity Inspector window, and add a new printToPDF action,
as shown in Figure 14-7.
File's Owner Flrslli.mnndu Application MainMenu Window (Wind.. :" ‘: 3
— Wil _;';‘:‘,,'.’:;Z:E:;; i |
Figure 14-7: o ;
Add a new e |
printToPDF v —
action to the —
MyPrint
Controller
class.
|

Chapter 14: Printing with Cocoa 2 77

4. Connect the new action to the interface.

Control+drag from the new button in your interface to the
MyPrintController instance in the XIB project window. Select
printToPDF from the small black connections list overlay that appears.

5. Return to Xcode and add the new printToPDF action to the
MyPrintController.h file:

/* MyPrintController */
#import <Cocoa/Cocoa.h>

@interface MyPrintController : NSObject
{
IBOutlet id myCanvasView;
NSPrintInfo *thePrintInfo;

(IBAction)printOnePage: (id) sender;
- (IBAction)showPagePanel: (id) sender;
- (IBAction)printToPDF: (id) sender;
@end

6. Add the following code to implement the printToPDF method in the
MyPrintController.m file:

- (IBAction)printToPDF: (id) sender

NSRect theRect;
NSData *theData;

theRect = [myCanvasView bounds];

theData = [myCanvasView dataWithPDFInsideRect:
theRect] ;

[theData

writeToFile: [@"~/Desktop/MyView.pdf"
stringByExpandingTildeInPath]

atomically: YES];
}

Just to keep matters simple, this method creates a PDF file on the desktop.

1. The code starts by getting the bounds of the NSRect that surrounds
the view.

2. With those bounds, dataWithPDFInsideRect provides you with raw
PDF data for use in a file.

2 78 Part lll: Putting It All Together: Cocoa Programming in Depth

3. The writeToFile method saves the data to a file.

You can view the resulting PDF with popular PDF viewers, such as
the Apple Preview application, the Adobe Acrobat Reader, or a Web
browser like Safari.
SOMBER . , -
& Although this method doesn’t exactly use printing classes, you can always
print from your project with the Print panel. For this reason, PDF is part of
the printing chapter.

Chapter 15
Cocoa on the Internet

In This Chapter

Loading a Web site with Cocoa
Downloading files from the Internet

Sending e-mails with only a few lines of code

Fe last two decades of personal computing have witnessed explosive
growth in networking technologies. Consequently, the vast majority of
personal computer owners use the Internet, many on a daily basis. Among the
various means of communication available to a user on the Internet, the World
Wide Web and e-mail stand out as the two main tools that everyone uses.

In this chapter, you explore the wild and wooly world of the Internet and

see how it applies to Cocoa applications. The chapter starts by showing you
how to load Web pages, download files, and render HTML (HyperText Markup
Language) in your own projects. Later, you add e-mail features to your applica-
tion as well. By the end of this chapter, you’ll have a fully functional project
that performs some important Internet functions. Although it’s not necessarily
the kind of application you’ll want to use for your next best-selling killer app, it
can serve as a handy reference for future projects.

Interacting with the Web

Just over a decade ago, few were familiar with the Internet or the World Wide
Web. Now, even your dog has a domain name, an e-mail address, and a
MySpace account. Computer users have eaten up all that the Internet has to
offer and in the process have become discerning consumers. They expect
instant connectivity to any Web site in the world. Luckily, Cocoa has you
covered. Perhaps the two most popular tasks on the Web are viewing Web
pages and downloading files. With only a few lines of code, Cocoa gives you
the ability to offer these important Internet functions in your own applications.

280 Part lll: Putting It All Together: Cocoa Programming in Depth

Loading a Web page in a browser

Loading a URL (Uniform Resource Locator) into a Web browser is one of the
most common Internet-related tasks that you’ll want to perform. It comes

in handy for directing users to online documentation, to a download page
where they can get the latest version of your application, or even to your
Web-based store to purchase software.

Because viewing Web pages is a task that you perform so frequently, Cocoa
provides a class to handle the dirty work for you: NSworkspace. The NS
Workspace class gives you easy access to miscellaneous utilities. Every
application has one, and only one, NSWorkspace object. By calling the
openURL method of the NSWorkspace instance, you can load and view a
URL with the default Web browser.

To use your application’s NSWorkspace instance, and, more important, its
openURL method, use code like this:

[[NSWorkspace sharedWorkspace] openURL:theURL]

This code snippet works by calling the sharedWorkspace class method

of NSWorkspace. From there, it’s a simple matter of calling the openURL
method and passing it a valid URL in the form of an NSURL. The NSURL class
lets you wrap a traditional URL in a Cocoa object. You can define an NSURL
with a hard-coded URL:

NSURL *theURL = [NSURL URLWithString:@"http://www.wiley.
com"] ;

If you want users to supply the URL in an NSTextField (with a theURL
Field outlet) in your app’s interface, you might do something like this
instead:

NSURL *theURL = [NSURL URLWithString: [theURLField
stringValuel]] ;

Because openURL returns a Boolean value, you can determine whether the
command executed successfully. For example, if you create a LoadwebPage
action, the code might look like this:

- (IBAction)loadWebPage: (id)sender

NSURL *theURL = [NSURL URLWithString: [theURLField
stringValue]];
if ([[NSWorkspace sharedWorkspace] openURL:theURL])

NSLog (@"URL Loaded") ;

Chapter 15: Cocoa on the Internet 28’

A\\S

If the openURL method performs as it should, the code displays a URL
Loaded message on the screen.

Downloading files

Another important feature that you may want to add to your Cocoa applica-
tions is the capability to download files from the Internet without using a
browser. You can use download functionality for a variety of situations:

v Offer instant one-click access to the latest version of your application on
the Web.

v Download and display HTML help files from your Web site.

v Retrieve a file from the Web that lists the current version of your

application.

Cocoa makes it easy to offer all these features and more. With only two lines of
code, you can download a file from the Web to your hard drive. This example
loads the For Dummies home page:

NSURL *theURL = [NSURL URLWithString:@"http://www.dummies.
com"] ;
NSData *pageData = [theURL resourceDataUsingCache:YES];

Like the browser code from earlier in this chapter, you first define an NSURL.
In this example, the URL is hard-coded to www . dummies . com. Although hard-
coding may suffice for some purposes, other times you’ll want to be more
flexible in your approach to creating a URL. Because the URLWithString
parameter is an NSString, you can use any of the usual NSString functions
with it, including retrieving the URL from the interface.

Don’t forget that an NSURL doesn’t necessarily have to point to a file some-
where on the Web. It can also point to a file on your local hard drive. For
example, you can use the initFileURLWithPath method of NSURL to build
a URL to a local file, based on its path. Check the built-in Cocoa documenta-
tion in Xcode to see the complete list of NSURL methods.

After you create and define an NSURL, call its resourceDataUsingCache
method to begin downloading the file into memory. In the preceding code
snippet, pageData points to data in memory. From there, transferring that
data from memory to a file on your hard drive is a simple matter. For example,
if you want to save a simple HTML document to your desktop, call the
writeTofile method of the NSData class.

282 Part lll: Putting It All Together: Cocoa Programming in Depth

SMBER
é‘,\“

If you pass a relative path (for example, ~/Downloads/download.html)
to the writeTofile method, you must expand it into a full URL with the
stringByExpandingTildeInPath method:

if ([pageData writeToFile:[@"~/Downloads/download.html"
stringByExpandingTildeInPath]
atomically:YES])
{
NSLog (@"download successful") ;
}

One shortcoming of this download-and-save-to-disk approach is that it
functions in a synchronous manner. Your application won’t do anything
else until the file has finished downloading. This may suffice for small down-
loads, but larger downloads become troublesome. The solution is to use the
loadResourceDataNotifyingClient method instead of resourceData
UsingCache:

[theURL loadResourceDataNotifyingClient:self
usingCache:YES] ;

This method enables you to perform other functions while downloading the
file. If you implement the URLResourceDidFinishl.oading method, Cocoa
notifies you when the download finishes, giving you the chance to access the
data. For example, to save the download to an HTML file on the desktop,
implement the URLResourceDidFinishLoading method like this:

- (void)URLResourceDidFinishLoading: (NSURL *)sender

NSData *pageData = [sender resourceDataUsingCache:YES];
if ([pageData writeToFile:[@"~/Downloads/download.html"
stringByExpandingTildeInPath] atomically:YES])

{
NSLog (@"download successful") ;

}
else

{
NSLog (@"download failed") ;

}

Just because you’re downloading and saving an HTML file in this example
doesn’t mean that you're limited to HTML downloads. You can download
any kind of file that you want. To download a JPG image, for instance, simply
change the URL and name of the destination file to indicate that it’s a JPG file:

NSURL *theURL = [NSURL
URLWithString:@" http://purplee.net/images/cocoa_cover.
jpg"l;

Chapter 15: Cocoa on the Internet 283

if ([pageData writeToFile: [@"~/Downloads/download.jpg"
stringByExpandingTildeInPath]
atomically:YES])

Building a Web browser

You could use the code from earlier in this chapter to download an HTML file
from the Web and display it with a Cocoa control. Doing so is possible, but it
requires a lot of work. Fortunately, the WebKit Framework gives you the ability
to load and display Web content very easily. So easily in fact, you can do so
without writing a single line of code.

At the heart of the WebKit is the WebView control, which has built-in methods
for a variety of Web-related functions that you’d find in a typical Web browser:

v Load a Web page

v Go back one page in the history

v Go forward one page in the history

v Reload a Web page

v Stop a Web page from loading

v Print a Web page
Are some of these functions sounding familiar? They should because not only
are they the staple of most Web browsers, but they’re used in Apple’s own
Safari Web browser. Safari uses the same exact rendering features that are

available to you with WebKit. And because these functions are so common,
WebKit has them ready to go without nary a line of code.

To see how the WebKit Framework works, create a new Cocoa application
project in Xcode (see Chapter 2). Then, add the WebKit Framework to the
project by following these steps:

1. Control-click the Frameworks Group in the project window, as shown in
Figure 15-1, and then choose Add~ Existing Frameworks from the menu.

2. Navigate to /System/Library/Frameworks/WebKit . framework
and click the Add button, as shown in Figure 15-2.

The WebKit Framework enables the powerful WebView control. Because
the framework isn’t used in most projects, it isn’t part of a standard
Cocoa project. Believe it or not, this is all you need to do in Xcode!

3. Double-click the MainMenu.xib file in the Xcode project to open it in
Interface Builder.

2 8 4 Part lll: Putting It All Together: Cocoa Programming in Depth

Figure 15-1:
Add a
framework
to the Xcode
project.
|

Figure 15-2:
Select the
WebKit
Framework
to use the
WebView
control.
|

,6‘1‘;*“. i | OpenWith Finder | Mew Group
» i Exeeuables New Target...
» [Erroes and Warnings | Reveal in Finder New Custom Exacutabla_..
v&twm Cet Info New Build Phase
- Bookmarks
riism ‘ #:';::' Existing Files...
8 Project Symbals i

(@] implementation Files | ntouch
» [B Files Delete

| Ungroup

Group
| Preferences
p—

>

» (@] implemernation
[l WiB Files.

i

Q> String Matching

T lae) (e fE{m) | Frameworks]
Ll TowerMac [l Quartz. framework
£l miger 1o @l QuantzCore framework
B teapard 8 ouikLook. framewark
B musicHo il QuickTime framewark
B xera v B Ruby framework
& RubyCocoa. framework
sl [screensaver framework
g"‘f i [seripting framework
W iacocal [l Scriptingbridge framewark
w pLaces B Securiry. framewark
13 Desiaon (& securityFoundation framework:
o .
e [0 syneservices framewark
oy Anpiicari, 8 system.framewark
 PROIECTS [systemCanfguration framewark
B thone . [To1 tramework

(@ search

August 1, 2008 12.03 AM
August 1, 2008 12.03 AM
August 1. 2008 12:03 AM
August 1, 2008 12:03 AM
August 1, 2008 12:03 AM
Auguit 1, 2008 12:03 AM
August 1, 2008 12:03 AM
Auguse 1, 2008 12:03 AM
August 1, 2008 12:03 AM
August 1, 2008 12:03 AM
August 1, 2008 12:03 AM
August 1, 2008 12:03 AM
August 1, 2008 12:03 AM
July 31, 2008 3:29 AM

August 1, 2008 12:03 AM
August 1, 2008 12:03 AM
Auguit 1, 2008 12.03 AM
August 1, 2008 12:03 AM

i

0o & e

|
S]

Chapter 15: Cocoa on the Internet 285

A\

Figure 15-3:
The

simple Web
browser
interface
resembles
common
professional
Web
browsers.
|

. Add a WebView control to the interface.

You can locate the WebView in the Library window by searching for
WebView.

. Add a text field control to the interface.

Locate the text field by searching for text field or NSTextField in
the Library window. This field is where users type Web addresses, just
like on a Web browser.

If you want to display a default Web site, double-click the control and
enter a Web address.

. Add two buttons to the interface; double-click each button to change
the text displayed on the buttons to Back and Forward, respectively.

You can use whichever button style you like. In Figure 15-3, I used the
Textured Button control. The completed interface is shown in Figure 15-3.

. Connect the text field control to Webview.

Control+drag from the text field to the WebView control. Select the take
URLStringFrom message from the black connections list overlay that
appears, as shown in Figure 15-4. The takeURLStringFrom message
means that the Webview control loads a URL based on the text in the
text field.

800 _ Simple Web Browser

Back Forward http://www.wiley.com

286

Part lll: Putting It All Together: Cocoa Programming in Depth

800 ~ Simple Web Browser

Figure 15-4:
The take
URLString
message
loads a
URLina
WebView.
|

Back Forward (http:/ fwww.wiley.com

nextKeyView
Received Actions
fax:
goBack:
goForward:
makeTextLarger:
makeTextSmaller:
makeTextStandardSize:
print:
reload
stopLoading:
takeStringURLFrom: .
togaleContinuousSpeliChediing

toggleSmartinsertDelete:
v

8.

10.

Connect the buttons to WebView.

Control+drag from each of the two buttons to the Webview control.
Select goBack and goForward, respectively, from the black connec-
tions list overlay that appear.

These two methods advance the Web browser one page forward or one
page backward in the WebVview history, just like Back and Forward
buttons do in any other Web browser.

. Press 38+R to test the application in Interface Builder.

As you already know, Interface Builder lets you test your interfaces,

but this one is special. Normally Interface Builder demonstrates what
completed interfaces look like, but they don’t really do anything. This
time, however, it’s different. Interface Builder demonstrates a fully func-
tional application because all the functionality is provided by the built-in
WebKit framework.

Return to Xcode and choose Build=>Build and Go to test your work.

The result looks like Figure 15-5, and you did it without writing a single
line of code. Wow!

Chapter 15: Cocoa on the Internet 28 7

Figure 15-5:
The finished
product
downloads
and renders
a URL just
like other
Web
browsers.
|

BO6 Simple Web Srawser
_ Back | [Forward | [hitp:/ www wiley.com]

WWILEY
KNOWLEDCE FOR CENERATIONS
RESOURCES FOR ABOUT WILEY yiew All
Go Green! e et bt
« Besarten * Camea
- batitsa + Quandac ol Costprmacey
Lesales + Muthad Denshs
+ Mamben st ioe P g T—
N T T Leom mare »
BROWSE SUBJECTS PRODUCTS & SOLUTIONS viewan
Asgaurang i :
ST i@ gl R
Lo .‘-_}-_,“ 4 PLUS B whomn
Campuing -
Euinary & Hampslality A {
e e e = L= [
[-

Lnginesring
Bangrapiy & Farts Biance

umansas

Law

Lite Besmnces
WikeyIFEE Prass . — Wikey Pateays
Liaiis 2 The mod's ges Mchnal Bating the sande fa Calabiratog shisants,
Mathamatics & Sastintcs E petcnaisocsty | WIN] scence. medeal, lgstnca: agatng i nead, ans
| 2o schaay oobian etrag I o o e
[P Ry — ¥ W iy 4

Fhryaies & Askumemy
Fayehoigy

=
g
i

Batsrsncs

Sending E-Mail from a Cocoa Application

Downloading and displaying Web pages is just one of Cocoa’s many network-
ing skills. Cocoa is equally adept at e-mail. With a few simple lines of code,
you can create an e-mail message in your favorite e-mail client. With a few
more lines of code, you can take care of sending the e-mail too. E-mail fea-
tures in an application are handy for several uses:

v Provide a contact e-mail in an About box

v Give users the opportunity to automatically send you bug reports

v Format an e-mail message in an existing client

v Send spam, but you wouldn’t dare do that, would you? Would you?! I

hope not!

In this section, you add e-mail features to the demo project that you created
earlier in this chapter.

288 Part lll: Putting It All Together: Cocoa Programming in Depth

Sending e-mail from your favorite client

When you click an e-mail link on the Internet, your Web browser instructs
your e-mail client to open a new message, often with the To and Subject fields
completed for you. Adding this kind of functionality to a Cocoa application is
simple. In fact, if you followed along earlier when loading a URL in a browser,
you're well on your way to creating an e-mail message.

The main difference between creating an e-mail message and loading a URL in
a browser is the format of the URL. Whereas a typical URL in a browser looks
like this:

http://www.wiley.com
an e-mail URL looks like this:
mailto:yourFriend@email .com

Otherwise, you handle the two URLs identically. To create an e-mail
addressed to your friend, simply pass the e-mail URL for that friend to the
openURL method of the NSWorkspace class. For example, to send your
friend an e-mail, use code like this:

NSURL *theURL =
[NSURL URLWithString:@"mailto:yourFriend@email.com"];
if ([[NSWorkspace sharedWorkspace] openURL:theURL])
NSLog (@"Email Loaded") ;

If you know HTML, you’ve probably already guessed that it’s possible to add
other attributes to the e-mail address. If you want to attach a subject to an
e-mail, simply tack it to the end of the e-mail URL preceded by ?subject=,
as follows:

mailto:yourFriend@email .com?subject=Important Message

If you want to e-mail more than one friend at a time, list additional addresses,
with each separated by a comma:

mailto:yourFriend@email.com, anotherFriend@email.
com?subject=Important Message

You can also CC and BCC your other friends with a simple e-mail URL. The
following e-mail URL sends an e-mail to yourFriend@email .com with an

Chapter 15: Cocoa on the Internet 289

A\

Figure 15-6:
Creating

an e-mail is
as easy as
loading a
Web page
in your
browser.
|

Important Message Subject heading. The same message also goes to your
other friend (otherFriend@email.com):

mailto:yourFriend@email .com?subject=Important Message
?cc=otherFriend@email .com

Keep on tacking the new parameters to the end of the e-mail URL address

to suit your needs. Just remember to always precede each parameter with a
question mark. Pass this URL to the openURL method of the NSWorkspace
to launch your e-mail client and create a new e-mail according to your speci-
fications. Or, you can enter amailTo address in a WebKit Web browser, as
shown in Figure 15-6.

E-mail clients use the question mark character as a separator, so you can’t use
it as-is in a URL. Instead, you must use a hex character encoding if you want
to include a ? in your subject. For example, to send an e-mail with the subject
Ready?, convert the question mark to its hex equivalent by modifying the
mailto URL as follows:

mailto:yourFriend@email .com?subject=Ready%3F

a.n0 Simple Web Browser
Back Forward mailto:yourFriend il.com?subject=Important Message|

290 Part lll: Putting It All Together: Cocoa Programming in Depth

Figure 15-7:
Add the
Message
Framework
to your
project

to send
e-mails
from your
application.
|

Sending e-mail from your own apps

Giving your users a way to contact you by e-mail is a useful feature, but
sometimes it may not fit your needs. This may be true for a variety of rea-
sons, including the following:

»* You're creating an e-mail application.

»* You can’t guarantee that your user has an e-mail client installed.

» You don’t want to reply by using an additional e-mail client.
Cocoa offers you the opportunity to send e-mail from your own applications.
Before you start sending e-mails en masse, though, you need to perform a
preparatory step. E-mail functions aren’t part of the frameworks that typi-
cally accompany the average Cocoa project. Instead, Apple stores the e-mail
functions in the Message Framework. To use e-mail in your project, you must
first add the Message framework to your project:

1. Choose Project->Add Frameworks to add the Message Framework.

2. In the dialog that appears, select Message.framework, which you can
find in the System directory:

/System/Library/Frameworks

After you add the framework, it appears in the project window, as shown
in Figure 15-7.

ano ™ Internet =)
| 10.5] Debug | ppc -] &= {'b - 6 Q- String Matching
| Ouerview Aaian BuildandCo Teve infa Search
| Groups & files “File Name. » |Code ° a i@
| * B ntermer B [MessageExparch
v Classes | NSMailDelivery.h
» Other Sources
» Respurees
v Frameworks.
= B Webkit Framework
» Linked Frameworks
¥ [Other Frameworks
* Products
() Targees
b2 Enecutables
* {® Ervors and Warnings
|, Find Resubs
» [0 Ronkemarks
v scM
B Project Symbols
® [l Implementanian Files
¥ (5 NIB Files

Debugging of “Internet” ended normally, Ducceeded

Chapter 15: Cocoa on the Internet 29 ’

With the Message.framework in place, you can now send e-mail. You’ll be
amazed at just how easy it is to send an e-mail with Cocoa:

1. Create a handful of NSStrings that represent different parts of an
e-mail message:

NSString *theEmailDest = @"youFriend@email.com";
NSString *theSubject = @"Important Message";
NSString *theBody = @"Hello there!";

2. Call the deliverMessage method of the NSMailDelivery class.

Because deliverMessage is a class method, you don’t have to create
an NSMailDelivery object before using it. The deliverMessage
method has parameters for the message, the subject of the e-mail,

and the recipient. Furthermore, it returns a Boolean value, telling you
whether the delivery occurred.

if ([NSMailDelivery
deliverMessage: theBody subject:theSubject
to:theEmailDest])
NSLog (@"Email Sent") ;
else
NSLog (@"Email Not Sent");

That’s all there is to it!

Adding e-mail functions to the project

To see all these great e-mail functions in action, return to the project that
you created earlier in this chapter. Open the MainMenu.xib file in Interface
Builder and perform the following steps:

1. Add two new buttons to the interface and label them.

For example, label them Send Email with Client and Send Email
Manually, respectively.

2. Add an NSTextField to the interface. Add a text label next to the
NSTextField to let users know that this field is where they enter a
destination e-mail address.

Figure 15-8 shows the interface.

292

Part lll: Putting It All Together: Cocoa Programming in Depth

80N - Simple Web Browser

Back | [Forward | http: / fwww.wiley.com

Figure 15-8:
Add two
NSButtons
and an
NSTextField

to the Send Email Manually Email: | yourfriend@email.com
interface. Send Email with Client

3. Add a controller to the project.

Drag an NSObject from the Library window to the XIB project window.
Press 8+6 and change the class name to InternetController in the
Identity Inspector window.

4. Add an outlet and two actions to the class.

In the Inspector window, add an emailField outlet, so you can retrieve
the e-mail addresses that a user enters. Then add two new actions to the
class names sendEmailManually and sendEmailWithClient. Figure
15-9 shows the Identity Inspector window, displaying the actions of the
InternetController class.

5. Connect the interface to the InternetController class:

a. Control-drag from the Send Email with Client button to the
InternetController class in the XIB project window. In the small
black connections list overlay that opens, connect the button to the
sendEmailWithClient action.

b. Control-drag from the Send Email Manually button to the Internet
Controller class. Connect the button to the sendEmailManually
action.

Figure 15-9:
Add two
actions and
one outlet to
the Internet
Controller
class for the
e-mail
functions.
|

Chapter 15: Cocoa on the Internet 293

c. Connect the emailField outlet to the interface by Control-dragging
from InternetController to the NSTextField in the main
window of your interface.

d. Click Connect in the Identity Inspector window to make the
connection.

6. Click the InternetController class and then choose Filec>oWrite
Class Files to create and add the class files in Xcode.

7. Return to Xcode and change this line in InternetContoller.h:

@interface InternetController : /* Specify a
superclass (eg: NSObject or NSView) */ {

to this
@interface InternetController : NSObject ({

+ MainMenu.xib (English) = O O O internet Contraller identity

+/clo[p|0]0

¥ Class identity
File's Owner First Responder Application MainMenu

Class |InternetController =
¥ Class Actions
Action Type

% MainMenu.xib

[0 sendEmailManually: id
1] sendEmailwithClient: id
=

Window (Simp. Font Manager

00

EE
¥ Class Outlets

Outlet Type &

emailField id

B2E

|7 Interface Builder Identity

Name

Object ID 496

Lock Nothing (Inherited) =
Notes.] Show With Selection

294 Part lll: Putting It All Together: Cocoa Programming in Depth

8. Add the following code to InternetController.m:

Note the addition of #import <Message/NSMailDelivery.h> state-
ment at the beginning of the code; this statement permits use of the
Message Framework:

#import "InternetController.h"
#import <Message/NSMailDelivery.h>

@implementation InternetController
- (IBAction)sendEmailWithClient: (id)sender
{

NSString *theURLString = @"mailto:";
theURLString =
[theURLString stringByAppendingString: [emailField
stringValue]] ;

NSURL *theURL = [NSURL URLWithString:theURLString] ;

if ([[NSWorkspace sharedWorkspace] openURL:theURL])
NSLog (@"Email Loaded") ;

- (IBAction)sendEmailManually: (id) sender

{
NSString *theEmailDest = [emailField stringValue];
NSString *theSubject = @"Important Message';
NSString *theBody = @"Hello there!";

if ([NSMailDelivery deliverMessage:theBody
subject:theSubject to:theEmailDest])
NSLog (@"Email Sent") ;
else
NSLog (@"Email Not Sent");
}
@end

9. To see the results of your hard work, choose Build=>Build and Go.

If your project sends the e-mail successfully, you see the Email Sent
message in the Console window. You can view the Console in Xcode by
choosing Run=>Console.

Chapter 16
Multimedia

In This Chapter

Playing system sounds and audio files

Building an audio player project

Playing movies with Cocoa

Loading and using dozens of other media formats

W)rking with text and creating files are useful functions for your
applications, but they aren’t always the most exciting functions.
Multimedia, on the other hand, is exciting. Cocoa continues the long Macintosh

tradition of providing high-quality multimedia features for you to use in your
projects.

In this chapter, you discover how easy it is to add sophisticated multimedia
features to your applications. First, you explore audio by creating a simple
application that plays audio files from a number of sources. Then you delve
into the real fun — movies! By building a movie player application, you see
how easy it is to add dynamic QuickTime content to your Cocoa projects.
By changing only one line of code, you also see how to (dis)play many other
kinds of media beyond QuickTime movies.

Listening to Audio

The Macintosh has long been a popular machine with audio aficionados. Cocoa
continues in this tradition, offering a complete set of tools for producing audio
with your own applications. Some of the possibilities that Cocoa offers are

v Playing sounds that reside in your application’s bundle

v Playing sounds that reside in the Mac OS X System folder

v Playing sounds from anywhere on your hard drive

296 Part lll: Putting It All Together: Cocoa Programming in Depth

Besides playing audio files that reside in a variety of locations, Cocoa can
play many different audio file formats. In the past, you had to know about the
various file formats to use them. Cocoa takes away this necessity and lets
you play common audio file formats, such as AIFF, MP3, and WAVE, without
knowing anything about them.

Playing system sounds

Cocoa has a convenient method for playing sound in the NSSound class.

To play audio with the NSSound class, you typically follow a simple three-
step process:

1. Create an object based on the NSSound class.

2. Load an audio file into the NSSound object.

3. Play the audio.
You usually combine the first two steps or even all three into one line of
code. The easiest way to load an audio file is by using its filename. For exam-
ple, drag and drop an AIFF file (for this example, banjo.aiff) into your

Cocoa project. Then load it as an NSSound object by using the soundNamed
class method:

NSSound *theSound = [NSSound soundNamed:@"banjo"];
You can omit the file extension.

Besides loading an audio file that you drag into your project, you can load
sounds located in one of the three Mac OS X Sounds directories, located here:

/System/Library/Sounds

/Library/Sounds

~/Library/Sounds
For example, suppose you want to play the famous Sosumi alert that ships
with Mac OS X. The code is identical to the previous example, except for a
name change:

NSSound *theSound = [NSSound soundNamed:@"Sosumi"];

After you load a sound, it’s a trivial matter to play it:

[theSound play];

Chapter 16: Multimedia 29 7

3

Figure 16-1:
Cocoa can
load and
play many
types of
sound files.
|

To simplify matters further, you can combine everything into one line of

sound-playing code:

[[NSSound soundNamed:@"Sosumi"]

playl;

Loading and playing sound files

For some applications, playing sounds that reside in your project or in one of
the library Sounds folder isn’t sufficient. Suppose that you want your appli-
cation to play any sound that a user selects. To accomplish this task, follow

these steps:

1. Create an array and fill it with all the sound file types that Cocoa rec-

ognizes by using the soundUnfilteredFileTypes class method:

NSArray *audioFileTypes = [NSSound
soundUnfilteredFileTypes];

If you’re curious about which types of sounds Cocoa recognizes (and can
play), you can display them in the console by looping through the ele-
ments in the audioFileTypes array and displaying each one in the con-
sole via NSLog. The following code snippet lists the file extensions of files
that NSSound supports. Note that the list is case-sensitive, so you may
see multiple instances of the same file type (for instance, mp3, MP3, Mp3):

int 1;

for (i=0;i<[theFileTypes count];i++)

NSLog ([theFileTypes objectAtIndex:i]) ;

Figure 16-1 shows the available list of sound file types that a user can open.

800 [™ Audio - Debugger Console ()

[10.5 | Debuag | ppc ']

S @ w @ T

Overview Build and Go Tasks Restart Pause Activate Clear Log

[Session started at 2008-08-30 06:02:05 -0500.]
2008-09-30 06:02:14.951 Audio[59491:10b] aiff
2008-09-30 06: 957 Audio[59491:10b] AIFF
2008-09-30 06: 968 Audio[59491:10b] 'AIFF’
2008-09-30 06: 970 Audio[59491:10b] aif
2008-09-30 06: 971 Audio[59491:10b] AIF
2008-09-30 06: 972 Audio[59491:10b] aifc
2008-09-30 06: 973 Audio[59491:10b] AIFC
974 Audio[59491:10b] wav
975 Audio[59491:10b] WAV
976 Audio[59491:10b] 'WAVE'
976 Audio[59491:10b] snd
977 Audio[59491:10b] SND
978 Audio[59491:10b] au
979 Audio[59491:10b] AU
980 Audio[59491:10b] 'ULAW'
981 Audio[59491:10b] ‘ALAW'
982 Audie[59491:10b] mp3
983 Audio[59491:10b] MP3
984 Audio[59491:10b] 'Mp3 '
985 Audio[59491:10b] ulw
986 Audio[59491:10b] ULW
14.986 Audio[59491:10b] mép
:14.987 Audio[59491:10b] méa

2008-09-30 06:
2008-09-30 06:
2008-09-30 06:
2008-09-30 06:02:
2008-09-30 06:
2008-09-30 06:
2008-09-30 06:
2008-09-30 06:
2008-09-30 06:
2008-09-30 06:
2008-09-30 06:02:
2008-09-30 06:
2008-09-30 06:
2008-09-30 06:02:
2008-09-30 06:
2008-09-30 06:

Audio launched

@ Succeeded

298 Part lll: Putting It All Together: Cocoa Programming in Depth

\\3

2. Display an NSOpenPanel, restricting the user’s choices in that panel
to the file types in your array.

In this instance, you aren’t restricting the sound file types because you
used soundUnfilteredFileTypes in Step 1, which populates the
array with all possible sound file types. Limit the number of files a user
can open in the NSOpenPanel to only one file:

NSOpenPanel *theOpenPanel = [NSOpenPanel openPanel];
[theOpenPanel setAllowsMultipleSelection:NO]J;
result = [theOpenPanel runModalForTypes:theFileTypes];

3. Use the initWithContentsOfFile method of NSSound to load
the sound (represented by theFileName) that the user selected in
NSOpenPanel.

Because you restricted the user to opening only one audio file, its path
resides in the first element of the array that NSOpenPanel returns.

theFiles = [theOpenPanel filenames];
theFileName = [theFiles objectAtIndex:0];
NSSound *theSound = [[NSSound alloc] initWithContentsO

fFile:theFileName byReference:YES];
4. Play the sound as usual:
[theSound play];

The preceding example limited the user to only one audio file selection in

the NSOpenPanel. Depending on your application’s needs, you may want to
permit a user to select multiple audio files in the NSOpenPanel. To do so, you
need to first permit multiple selections in theOpenPanel:

[theOpenPanel setAllowsMultipleSelection:YES];

After the user clicks the OK button in the NSOpenPanel, loop through all the
selected audio files in the resulting theFiles array:

theFiles = [theOpenPanel filenames];
int 1i;
for (i=0;i<[theFiles count];i++) {
theFileName = [theFiles objectAtIndex:0];
//do something with the file located at this path:
theFileName
}

Chapter 16: Multimedia 299
Building a simple audio player

To see how audio playback works in a project, follow these steps:

1. Create a new Cocoa project in Xcode by choosing File>New Project.
After the project opens, double-click the MainMenu.xib file to edit the
interface in Interface Builder.

2. In Interface Builder, add three NSButton controls to the main window
of your interface. Resize the window and change the Title attributes of
the three buttons to Play Application Sound, Play System Sound, and
Play Sound File so that they look like Figure 16-2.

The first button plays a sound that’s part of your application bundle.
The second button plays a sound that resides in the System folder. The
third button plays a sound file that the user selects.

|
Figure 16-2: 800 Audio Demo
Add three
buttons to (Play Application Sound \
the audio (Play System Sound)
player (Play Sound File 3
interface. Vi
|

3. In the Attributes section of the Inspector window, deselect the Close
and Resize check boxes for the window.

Figure 16-3 shows the position of the two attributes. By deselecting the
Close check box, the window no longer has a Close button in the upper-
left corner of the window. Because this is a one-window demo application,
users might get confused when they close the window, and they can’t
reopen the window.

By deselecting the Resize check box, users can’t resize the window at run-
time. If a user was permitted to resize the window, you’d have to account
for this behavior by changing properties for the buttons and the window.
Instead, it’s simply easier to disallow window resizing.

300

Part lll: Putting It All Together: Cocoa Programming in Depth

e (clo (2[00]9
—
Title Audio Demo
e —
Autosave
Conrols [close [Jresize
Hsguis
| //: Appearance [Textured ¥ Shadow
. [] Always Display Tooltips
Flg“re 16'3: o un;ﬁ:n m: ivnd To:::m
D esel e Ct th e W Shows Toolbar Button
Behavior [Release When Closed
Close and [Hide On Deactivate
. - ™ Visible At Launch
ReSIZe attrl- 7] Auto Recalculates View Loop
butes Of the Memory ™ Deferred W One Shot
E
audio player
window.
— -
4. Create a MyAudioController class.
a. Open the Library, search for Object, and drag an NSObject sub-
class instance to the project window.
b. Press 38+6 and change the class name to MyAudioController, as
shown in Figure 164.
3 O 0 0wy sutie Comralles Mdentey non
S EIEAPACICIE
pe Class MyAudioContrater - " ,.m::u
‘ % = ¥ Cinas Actioas (] tntertaca Blder ot
3 == action) ek kit
File's Owner First Bespander Appltatian Mainkemd [Cumtom Objeers
Wil Fest isnsger [T N oy a1 mon e b
Interface Builder,
Ty gy
Outler M Library - Cocoa - Dbjeo Comrallers - Care Dana
m Mangged Object Comtest - An inslance of
MEManagedObjextContext repreasnts &
#ingle "object space” or soraich pad in an..
U S
|

Figure 16-4: 152

Create a - — .
new object e e e~
based on L SR L 2o e

NSObject.

the Gpect b creste instances of your owes ooects.

- 1@, object

Chapter 16: Multimedia 30 ’

. Select the MyAudioController class and open the Identity Inspector
by choosing Tools=>Identity Inspector. Add three actions to the
MyAudioController class by clicking the + button at the bottom of
the Class Actions section.

Name the actions play2AppSound:, playSoundFile:, and play
SystemSound:.

. Create the header and implementation files in Xcode.

Select the MyAudioController class and choose FileoWrite Class
Files. Don’t worry about connecting the actions in Interface Builder yet;
you’ll do that later.

. Return to Xcode and drag an AIFF file from Finder to your project.

Make sure that the AIFF file is banjo.aiff or modify the code to match
whatever filename you choose.

. Navigate to the MyAudioController.m file and add the following code:
#import "MyAudioController.h"

@implementation MyAudioController

- (IBAction)playAppSound: (id) sender

{
//play a sound file that is part of the project
NSSound *theSound = [NSSound soundNamed:@"banjo"];
[theSound play];

- (IBAction)playSoundFile: (id)sender

int result;
NSArray *theFiles;
NSString *theFileName;

//£fill an array with all

//of the file types that Cocoa can use

NSArray *theFileTypes = [NSSound
soundUnfilteredFileTypes];

//display the sound file types in the console
int 1i;
for (i=0;i<[theFileTypes count];i++)

NSLog ([theFileTypes objectAtIndex:1i]) ;

//create and display an open panel
NSOpenPanel *theOpenPanel = [NSOpenPanel
openPanel] ;

302 Part lll: Putting It All Together: Cocoa Programming in Depth

//permit users to open only one file at a time

[theOpenPanel setAllowsMultipleSelection:NO]J;

result = [theOpenPanel
runModalForTypes:theFileTypes] ;

if (result == NSOKButton) {
//which files did the user select - only one
in this case
theFiles = [theOpenPanel filenames];
//get the path to the chosen file
theFileName = [theFiles objectAtIndex:0];
//create, load, and play the audio file
NSSound *theSoundFile = [[NSSound alloc]
initWithContentsOfFile:theFileName
byReference:YES] ;
[theSoundFile play];

- (IBAction)playSystemSound: (id) sender
{
//play a sound file that accompanies the operating
system
NSSound *theSound = [NSSound
soundNamed: @"Sosumi"] ;
[theSound playl];
}
@end

Note: The code for playing the banjo.aiff sound file omits the .aiff file
extension. This omission of the file extension is both a convenience and
a requirement!

You might recognize most of the code in this listing. The playAppSound and
playSystemSound methods have identical code. They load a sound from
the project’s bundle or from one of the system folders that contains sounds.
The playSoundFile method, on the other hand, permits users to open any
sound file for playback.

Adding stop functionality

If you want to stop the playback of an audio file, call the stop method of the
theSound object, based on the NSSound class:

[theSound stop];

You have to make a few minor changes to your code if you want to add this
functionality to a new button, however. Because a stop function would pre-
sumably reside in a new method or action of the MyAudioController class
and need access to the NSSound object created in other actions, the first

Chapter 16: Multimedia 303

change you should make is to declare the NSSound instance as a member
of the class. The NSSound declaration shouldn’t be in the playSoundFile
method, as in the previous code listing. Thus, to implement a stop feature,
follow these steps:

1. Alter the MyAudioController.h file like this:

/* MyAudioController */

#import <Cocoa/Cocoa.h>

@interface MyAudioController : NSObject
NSSound *theSoundFile;

IBAction
IBAction

IBAction
IBAction

playAppSound: (id) sender;
playSoundFile: (id) sender;
playSystemSound: (id) sender;
stopSoundFile: (id) sender;

(
(
(
(

—_ — — —

@end

Note two things about the interface file:
* A new stopSoundFile action is defined in the header.
e MyAudioController is defined as an NSObject subclass.

2. Return to the MyAudioController.m implementation file and change
the second-to-last line of code in the playSoundFile method.

This line creates an NSSound object and loads it with the contents of a
theFileName file.

theSoundFile = [[NSSound alloc] initWithContentsOfFile
:theFileName byReference:YES];

3. After you issue the play command, remember to release theSound
File because you created it with the a11loc method.

[theSoundFile play];
[theSoundFile release];

4. Implement the stopSoundFile action in MyAudioController.m.

This method stops any audio playback that playSoundFile started.
Of course, you don’t want to stop playback unless audio is playing already.
To find out whether the sound file is currently playing, use the is
Playing method of the NSSound class. The completed stopSoundFile
method looks like this.

- (IBAction)stopSoundFile: (id) sender
{
if ([theSoundFile isPlaying])
[theSoundFile stopl;

304 Part lll: Putting It All Together: Cocoa Programming in Depth

Connecting the actions to the interface

Incidentally, you don’t have to create actions in Interface Builder. Actions are
just as valid if you declare them in Xcode. You still have to connect actions to
their desired interface elements in Interface Builder, though, so do that now:

1. Double-click the MainMenu.xib file in the Resources group of your
project in Xcode to return to Interface Builder.

MyAudioController.

the prompt.

. In the XIB project window of Interface Builder, select

. Choose File=>Read Class Files and select MyAudioController.h at

Interface Builder checks the header files for any changes. Because you
added a new stopSoundFile action in Xcode, Interface Builder updates
the MainMenu.xib NIB file, adding the new action as shown in Figure 16-5.

. Add a new button to the main window of your interface by dragging

one from the Library window and labeling it Stop Sound File.

Figure 16-6 shows the result.

© O O My Audio Controller Identity

eno MainMenu.xib (English) — = | = | & | © | o | o | 2
% I ¥ Ciass ity =
e = - Class MyAudioController -
@ ’/\ E ¥ Class Actions
& L Action Tyee 4
File's Owner First Responder Application MainMenu |%] MyAudioController.h (-]
) playAppSound: id
B playSoundFile: id
] ’ playSystemSound. id
Window (Audi... Font Manager SSop>emlls “
|
Figure 16-5: BAdSsssE -
¥ Class Outlets
If you add ks e—
actions
or outlets
in Xcode,
Interface
Builder can
find them in + i
the header ¥ Intertace Builder ldentity
files and o
Object ID 456
update the i [Nothing tnheres) 18]
N | B .ﬁl e Notes "] Show With Selection
accordingly.

Chapter 16: Multimedia 305

|
Figure 16-6: ® 0 7 - Audic Demo
Add a new __
(Play Application Sound)]
button to the p .
interface for Play System Sound
halting play- (Play Sound File)
back of a (Stop Sound File \
sound file. /|
|

5. Connect the new button to the stopSoundFile action.

Control+drag from the new button to the MyAudioController instance
in the XIB project window. Select stopSoundFile from the black con-
nections list overlay that opens.

6. Control+drag from the three other buttons to the MyAudioController
class and connect each one to its corresponding action.

7. Choose File=>Save to save the MainMenu.xib file.
8. Return to Xcode and choose Build=>Build and Go to test your work.

When testing, initiate playback of an audio file that has a long duration
with the Play Sound File button. While the file plays, click the Stop
Sound File button to cease playback.

Watching Movies with Cocoa

Unless you've been living under a rock, you know that Mac OS X is a whiz
at playing other kinds of multimedia content as well. QuickTime is a cross-
platform multimedia engine that enables users to view, edit, and create all
sorts of multimedia content. Chief among the various multimedia formats is
the QuickTime movie. By using the QTKit framework in Cocoa, it’s easy to
add movie playback functions to your applications.

To work with QuickTime content in your projects, Cocoa provides you with
five important classes:
»” QTMovie: A movie that you want to view, edit, or create.

V¥ QTTrack: Movies are composed of one or more tracks. QTTrack helps
you to work with the individual tracks in a movie.

306 Part lll: Putting It All Together: Cocoa Programming in Depth

» QTMedia: Fach track in a movie is composed of media. QTMedia lets
you get and set information media in a track.

” QTDataReference: QuickTime is multifaceted and permits you to
load movies from files, the Internet, or even straight from memory.
QTDataReference is the QuickTime class that you use when you need
this level of access.

»” QTMovieView: A movie player you use to play a QTMovie.

Because the QTKit framework is so vast, and in certain cases, somewhat
advanced, [show you two classes: QTMovie and QTMovieView. With these
two classes, you can load a movie and display it in a fullyfunctional player.

OTMovie

QTMovie is a class that represents a QuickTime movie. QTMovie can load
movies into from files, Uniform Resource Locators (URLs), data references,
or even the Pasteboard (Clipboard). For this section, I show you how to use
the moviewithFile class method of the QTMovie class to load a movie
from a file.

Earlier in this chapter, you loaded a sound file with an NSOpenPanel. Then
you used the result from that NSOpenPanel to open the file using a tradi-
tional file path. You can follow a similar methodology for movies, but you
have to expand the functionality a bit by filtering which files a user can select
in the NSOpenPanel. To do this, you must pass an array to the runModal
ForType method of NSOpenPanel:

1. Create an array that defines which file types a user can open.

The last item in the array is always nil. For example, to define an array
for .mov and .mp4 files, your code might look like this:

NSArray *fileTypes = [NSArray arrayWithObjects:@"mov",
@"mp4",nil];

2. Pass the array to runModalForType:

if ([openPanel runModalForTypes:fileTypes] ==
NSOKButton) {
// code to load a movie goes here
3

3. Pass the file path to the moviewithFile class method to create a
QTMovie.

QTMovie *movie = [QTMovie movieWithFile:theFilePath
error:nil];

Chapter 16: Multimedia 30 7

Figure 16-7:
Find the
QTMovie
View by
searching
for Movie
View.
|

Figure 16-8:
The
QTMovie
View attri-
butes in
Interface
Builder.
|

OTMovieliew

After you load a movie, use the QTMovieView class to play it. You can find
the QTMovieview control in the Library window of Interface Builder (see
Figure 16-7) by searching for Movie View via the search field at the bottom of
the Library window.

8.0.0 Library
Objects | Media |
v |Jﬂ Library
> III Cocoa
7] Interface Builder Kit
(7] web Kit

[QuiekTime Kit
D Custom Objects

Library - QuickTime Kit

@ QuickTime Movie View - Plays and edits QuickTime movies.

B) Q Movie View

N

QTMovieView has several attributes that you can set manually in Interface
Builder — see Figure 16-8 — or programmatically with code.

800 Movie View Attributes
2 | sl | 2|00
¥ Movie View Attributes

Movie Choose... |

Display | S

["] Preserve Aspect Ratio
Behavior [] Editable
Controls E{ Show Controller

4

[volume [step
[Bark "] Hot Spat
[l Translate [Zoom
[Custom
¥ View
Focus Ring [Default %]

Drawing [Hidden
E! Autoresizes Subviews

308 Part lll: Putting It All Together: Cocoa Programming in Depth

\\3

Figure 16-9:
The
standard
QuickTime
controller
offers sim-
ple playback
interface
elements.
|

Here are the attributes you can set in Interface Builder:

v~ Display color: Control the color of the QTMovieView when no movie

is loaded. The default color is black, but you can change it to whatever
color you desire.

+* Show controller: Toggle the display of the built-in QuickTime controller,

which appears at the bottom of the QTMovieview control when you load
a movie into it. You’ll be familiar with the QuickTime controller if you've
ever viewed a QuickTime movie in a Web browser or in the QuickTime
Player application. The controller lets users control the playback of
QuickTime content using a set of familiar buttons. Besides starting and
stopping playback, you can rewind and fast forward through portions of
the movie as well as adjust the volume during playback. Figure 16-9 shows
a typical QuickTime movie controller.

v~ Editable: By default, Editable has a value of NO (that is, it’s deselected

in the Inspector window). The QuickTime controller appears, as shown

in Figure 16-9. When you set Editable to YES by selecting the Editable

check box in the Inspector window of Interface Builder and then loading
a movie in code, you see a controller that looks like Figure 16-10.

The Editable attribute causes a QTMovieView to display a slightly
different QuickTime controller. You can use this type of controller
for different purposes, such as to select some portion of the movie.
As you can see in Figure 16-11, Shift-clicking permits you to select
some or all the movie in the QTMovieView.

v Volume: Toggle the display of the volume button control that appears at

the left edge of the QTMovieVview. When you set this attribute to YES by
clicking the Volume check box in the Inspector window, the volume button
displays. When NO (deselected), the volume button doesn’t display.

Chapter 16: Multimedia 309

Figure 16-10:
The Editable
attribute
toggles
between
playback
and editing
interface
elements.
|

Figure 16-11:
Shift-click
the control-
ler to select
some sec-
tionofa
movie in a
QTMovie
View.
|

After you set the desired QTMovieView attributes in Interface Builder,
add some code to Xcode to play a movie. Assuming you've already loaded
a movie into memory using the QTMovie class, display that movie in the
QTMovieView, by adding the following code:

[moviePlayer setMovie:theMovie];

3 ’ 0 Part lll: Putting It All Together: Cocoa Programming in Depth

You can set many other aspects of playback using code. Besides the attributes
that you found in Interface Builder, you can set the volume of the movie during
playback. A volume of 1.0 is full volume, as defined by the maximum system
volume level. Thus, a volume of 0.5 is half the maximum system volume level.

[moviePlayer setVolume:1.0];
Alternatively, if you prefer, you can mute the sound:

[moviePlayer setMuted:YES];

Building a simple movie player

The easiest way to see how movie playback in Cocoa works is to build a
player. Follow these steps:

1. Launch Xcode and create a new Cocoa application project by choos-
ing File>New Project. Double-click the MainMenu.xib file in Xcode to
open it with Interface Builder.

2. From the MainMenu.xib file window, open the main window for your
interface and then open the Inspector for the window by choosing
Tools=>Inspector.

3. In the Inspector window, change the Title field for the window to
something appropriate. Add a QTMovieView control and an NSButton
from the controls from the Library window (as shown in Figure 16-12).

_+ Movie Player

Figure 16-12:
Add a
QTMovie
View and a
button to the

interface. e perra—s
|

Chapter 16: Multimedia 3’ ’

4. Create a controller class for this interface.

Drag an NSObject from the Library window to the XIB project window.
Press 8+6 and name the new object MyMovieController. Figure 16-13
shows the new class.

8.0.0, Librany
Objects. | Media |
w [l uibrary
a00 + MainMenu.xib (English) o » £ Cosia
i (qQ 3 7] Interface Builder Kit
View Mode. Search Field (7] Web Kit

7] QuickTime Kit

- e
'/A = [Custom Objects
Y =T

File's Owner First Responder Application MainMenu [Library - Cocoa - Objects & Controllers - Contrallers

| o= Object - Provides you with an instance of an
= NSObject subclass that is not available in
Figure 16 13 Interface Builder.
Window (Movi... Font Manager ‘ @ Object Controller - A Cocoa bindings-

L
agl

compatible controller class. Properties of the
content object of an instance of this class..

Create a
controller
class for the :
project. =
|

'Q NsOject
Z

5. Add an outlet and an action to the new controller class in the
Inspector window.

Name the outlet moviePlayer and name the action loadMovie.
6. Connect the MyMovieController instance to the interface:

a. Control+drag from the new MyMovieController instance to the
QTMovieView that you added to the window earlier.

b. Select the moviePlayer outlet in the black connections list overlay
that appears.

c. Control+drag from the push button to MyMovieController and con-
nect it fo the loadMovie action.

7. After you design the interface, select the MyMovieController
instance in the XIB project window and choose Filec>Write Class Files.

Write the class files and add them to the Xcode project.

8. In Xcode, change the code in the MyMovieController.h interface file to
look like this:

#import <Cocoa/Cocoa.h>

@interface MyMovieController : NSObject {
IBOutlet id moviePlayer;

}

- (IBAction)loadMovie: (id)sender;

@end

3 ’2 Part lll: Putting It All Together: Cocoa Programming in Depth

9. Add the following code to the MyMovieController.m implementation
file:
#import "myMovieController.h"
#import <QTKit/QTKit.h>

@implementation MyMovieController

- (IBAction)loadMovie: (id)sender {
NSOpenPanel *openPanel = [NSOpenPanel openPanel];
[openPanel setTitle:@"Choose a Movie"];
[openPanel setCanChooseDirectories:NO]J;

NSArray *fileTypes = [NSArray arrayWithObjects:@"m
ov",@"mp4" ,nil];

if ([openPanel runModalForTypes:fileTypes] ==
NSOKButton)

{
NSString *theFilePath = [openPanel filename];

[moviePlayer setMovie: [QTMovie
movieWithFile:theFilePath error:nil]];

}

@end

The code starts out by defining an array of file types that a user can
open. In this case, you're restricting users to only .mov and .mp4
movies:

NSArray *theFileTypes = [NSArray
arrayWithObjects:@"mov", @"mp4", nil];

Then, the code presents a standard NSOpenPanel where users can
select a movie file. After they choose a file, the code loads the movie
into a QTMovie:

NSString *theFilePath = [openPanel filename];
[moviePlayer setMovie: [QTMovie
movieWithFile:theFilePath error:nill];

10. Choose Build-~>Build and Go to test the project.

When a movie isn’t a movie

Playing movies is useful, but QuickTime can do much more. Everyone knows
that a traditional movie is a sequence of movie pictures coupled with sounds,

Chapter 16: Multimedia

Figure 16-14:
QuickTime
can play
audio files.
|

but fewer people know that in QuickTime, this is only one kind of movie.
QuickTime treats all media types as movies.

For example, if you open your favorite audio files as QuickTime movies,
QuickTime dutifully plays the audio file. Because audio files don’t have a
visual component, there’s no need to display any part of the QTMovieview
other than the controller. Figure 16-14 shows an audio file loaded into a
QTMovieView.

ano Mavie Player

4 an

Load Movie

Some of the possible media file types that you can load into a QTMovie follow:

v Audio: AIFF, MP3, M4A, WAVE
v Video: MOV, AVI, MPEG-1

v Graphics: JPEG, TIFF, PNG, BMP
v 3D: QTVR

»* Animation: Flash

To give a user the option of loading other types of media, simply add them
to theFileTypes array in the “Building a simple audio player” section from
earlier in this chapter. For example, if you want to offer the option of loading
a QuickTime movie or a TIFF file, change the code as follows:

NSArray *theFileTypes = [NSArray arrayWithObjects:@"mov", @
"tiff", nill;

Cocoa (and subsequently QuickTime) treats both file types equally: as a
QTMovie. This means you can load and play (or load and display if it’s an
image) many kinds of media without special code. This is one of the most
powerful features of QuickTime, so use it often! Figure 16-15 shows the
QTMovieView with an image loaded into the QTMovie.

313

3 ’4 Part lll: Putting It All Together: Cocoa Programming in Depth

8.0.0 : Movie Player

¥

|
Figure 16-15:
QuickTime
can also o OO
display e S— o

Images. Load Movie
|

Part IV

Advanced
Cocoa Topics

The Sth Wave By Rich Tennant
@RM‘H—\ENNV\NT R o
7

N

“We’re much better prepared for this bpérade than
before. We're giving users additional training,
better manvals, and a morphine drip.”

In this part . . .

‘ ocoa affords you the ability to easily program simple
projects, but can it handle other tasks? You betcha!

Part IV takes you beyond simple Cocoa programming and
into the realm of super geeks. You discover how to write
applications that use multiple windows as well as how to
harness the power of the Mac OS X command line. Part [V
concludes with a discussion of how to take advantage of
the super-powered Core Data framework in your Cocoa
applications.

Chapter 17
Document-Based Applications

In This Chapter
Building a document-based project
Building your interface
Adding code

Tn’oughout this book, you create simple one-window applications to see
how various aspects of Cocoa work. One-window applications are okay
for testing your skills as you become familiar with Cocoa. But after you're
comfortable working with Cocoa, you’ll want to venture out on your own
and create an honest-to-goodness application. Creating demo projects is one
thing, but creating full-fledged applications is quite another.

When you create an application, you have to worry about much more

than managing a single window. Many applications use a document-based
approach whereby a user creates a document and adds some kind of con-
tent to it. If you've ever used a word processor or a drawing program, you're
probably familiar with this kind of application. In document-based applica-
tions, a user might also save a document, open it later, or print it. All these
features require a lot of work when you implement them on your own.
Fortunately, Xcode helps by providing a full-featured, document-based proj-
ect for you to use as a starting point for your own doc-based application.

This chapter guides you through the steps required to build a document-

based application. Along the way, you’ll implement many different features
without doing much work.

Creating a Document-Based Project

To begin working with document-based applications, create a new project in
Xcode as follows:

1. Choose File=>New Project and select Application on the left and Cocoa
Document-Based Application on the right, as shown in Figure 17-1.

3 ’8 Part IV: Advanced Cocoa Topics

Figure 17-1:
Choose
Cocoa
Document-
Based
Application
in the New
Project
window.
|

Figure 17-2:
A
document-
based
project
comes
equipped
with a My
Document
class.
|

Choose a template for your new project:

mua(mx

Action
Audio Units
Automator Action
Bundle
Command Line Utility
Dynamic Library
Framework
Java
Kernel Extension
Standard Apple Plug-ins
Static Library
Other

‘*‘r@' 4@

Cocoa Application Cocoa

Core Data

[

Core Data

Document-based Application Document-based
Application Application
5 7 Ea) 3
Core Data Applescript AppleScript AppleSeript
Document-based Application Document-based Droplet
Application with Application

e

Description This project builds a Cocoa-based application written in Objective-C that
uses the NSDocument architecture.

v

2. Click the Choose button and save the new project in a location where

you can find it later.

When the new project opens, you notice a big difference from other
projects throughout the rest of this book. This project contains a

MyDocument class, as shown in Figure 17-2.

Groups & Files

Im| MyDocument.m - Doc App (=)

w [Doc App
v [| Classes
MyDocument.h
B MyDocument.m
| Other Sources
b [| Resources
» | Frameworks
» [Products
» @) Targets
b Executables
» A® Errors and Warnings
w (), Find Results
b [1¥] Bookmarks
piiscm
W Project Symbols

¥ (] Implementation Files
b (2] NIB Files

tyDocunent .
Do App

Created by Erick Tejkouski on 18/27/85.
¢/ Copyright __MyConparyNome__ 2088 . ALl rights reserved.

#import “MyDocunent.h”

inplenentation MyDocument.

- (idintt

self = [super init];
if (self) {

47 Add your subcloss-specific initiolizotion here.

47 If an error occurs here, send o [self release] messoge and return nil.

Teturn self;

¥
— (Nsstring ¥windouHibhone
i
#¢ Dwerride returning the nib file none of the docunert

£¢ TF you nesd to Use 0 Subclass of NSWindowController or 1f vour document support
Teturn @ MyDocument.” ;

<t

Chapter 17: Document-Based Applications 3 ’9

3. Click the MyDocument.h file to view its contents:

#import <Cocoa/Cocoa.h>

@interface MyDocument : NSDocument
{
}
GMBER @end
%&

The interface file defines MyDocument as a subclass of the NSDocument
class. This is where you add outlets and actions.

4. Click the MyDocument.m file to view its contents:

#import "MyDocument.h"

@implementation MyDocument

- (id)init

{
self = [super init];
if (self) {

// Add your subclass-specific initialization
here.

// If an error occurs here, send a [self
release] message and return nil.

}

return self;

- (NSString *)windowNibName

// Override returning the nib file name of the
document

// If you need to use a subclass of
NSWindowController or if your document
supports multiple NSWindowControllers, you
should remove this method and override
-makeWindowControllers instead.

return @"MyDocument";

- (void)windowControllerDidLoadNib: (NSWindowController
*) aController

[super windowControllerDidLoadNib:aController];

// Add any code here that needs to be executed
once the windowController has loaded the
document 's window.

32 0 Part IV: Advanced Cocoa Topics

- (NSData *)dataOfType: (NSString *)typeName
error: (NSExrror **)outError

// Insert code here to write your document to data
of the specified type. If the given outError
= NULL, ensure that you set *outError when
returning nil.

// You can also choose to override
-fileWrapperOfType:error:,
-writeToURL:ofType:error:, or -writeToURL:ofTy

pe: forSaveOperation:originalContentsURL:error:
instead.

// For applications targeted for Panther
or earlier systems, you should use the
deprecated API -dataRepresentationOfType: .
In this case you can also choose to override
-fileWrapperRepresentationOfType: or
-writeToFile:ofType: instead.

if (outError != NULL) {

*outError = [NSError errorWithDomain:NSOSStatusErro
rDomain code:unimpErr userInfo:NULL] ;
}

return nil;

- (BOOL)readFromData: (NSData *)data ofType: (NSString
*) typeName error: (NSError **)outError

// Insert code here to read your document from
the given data of the specified type. If the
given outError != NULL, ensure that you set
*outError when returning NO.

// You can also choose to override -re
adFromFileWrapper:ofType:error: or
-readFromURL:ofType:error: instead.

// For applications targeted for Panther or
earlier systems, you should use the deprecated
API -loadDataRepresentation:ofType. In
this case you can also choose to override

-readFromFile:ofType: or -loadFileWrapperRepre
sentation:ofType: instead.

Chapter 17: Document-Based Applications 32 ’

if (outError != NULL) {
*outError = [NSError
errorWithDomain:NSOSStatusErrorDomain
code:unimpErr userInfo:NULL] ;

}

return YES;

}

@end

The MyDocument.m file has five methods where you add code to make
your application functional. Cocoa is even nice enough to give you full
comments on how to use each method.

5. Press 8+R to build and run the project.

When the project launches, you see a single document window, as
shown in Figure 17-3.

800 Untitled

Figure 17-3:
The new
document-
based
project
already
does
something:
It makes
documents.
| A

Your document contents here

6. Choose File->New to create a new document.

The application creates a new document and adds it to the Window
menu. You can continue creating new windows as long as you want.

Note that the application has many other features, such as a full suite of
menus and an About Panel, which you had to add manually to your project
in Chapter 5. At this point, however, you can’t save or open a document
because you haven’t implemented that functionality yet.

32 2 Part IV: Advanced Cocoa Topics

Building the Interface for a
Document-Based Project

You need to make a decision about what kind of document-based application
you want to create. It could be a word processor, a graphics application, or a
checkbook program. In this chapter, you create a simple text editor.

Follow these steps:
1. Return to Xcode and double-click the MyDocument.nib file to open it
in Interface Builder.
A generic document opens (refer to Figure 17-3).
2. Design the interface for this project:

a. Delete the text label that stands at the center of your document
window.

b. Add an NSTextView control from the Library window to the docu-
ment window in MyDocument.nib.

c. Resize the NSTextView fo your liRing.

Figure 17-4 shows the new interface.

' Window 8.0.0, Library.
Lorem ipsum dolor sit er elit lamet, consectetaur cillium adipisicing pecu, sed do eiusmod e
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud (- Objects | Media
exercitation ullameo laboris nisi ut aliquip ex ea commode consequat. Duis aute irure dolor in -
reprenenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur, Excepteur sint occaecat v [l] Library
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum Et harumd o
und lookum fike Greek to me, dereud facilis est er expedit distinct. Nam liber te conscient to factor b [Cocoa
‘um poen legum odioque civiuda "1 Interface Builder Kit
7] Web Kit
"7 QuickTime Kit

["7] Custom Objects

Library - Cocoa - Views & Cells

D Text View - Displays and manipulates text
laid out in an area defined by an

G -i- NSTextContainer and adds many features to...
|
Figure 17-4:
The text
editor
interface. .
i) Q nstextview

Chapter 17: Document-Based Applications 323

3. Add an outlet to the MyDocument class.

a. Select File’s Owner in the project window and press 8+6 to open the
Identity Inspector, labeled My Document Identity.

b. Add a new outlet to the Identity Inspector and name it myTextView,
as shown in Figure 17-5.

You use this outlet to get and set text in the NSTextView of the
document.

800 My Docurnent Identity
|2l 2|00

¥ Class Identity

4

Class MyDocument :‘]

¥ Class Actions

Action _v‘ﬁm—-&{_

il

¥ Class Outlets
Z_C-!l:lll-ét — — |
*? MyDocument.xib |

| myTextView id

il -

I |V interface Builder identity

Figure 17_5: Name File's Owner

Selectthe | Obiectid -2
File's Owner Lock | Nothing {Inherited) -%]

and add an Notes] Show With Selection
outlet to it.

4. Connect the myTextView outlet to the NSTextView in the interface
by Control+dragging from the File’s Owner icon to the NSTextView in
your document window.

o\ Make sure that you connect to the NSTextView and not its Scroll

View parent. The NSTextView control is embedded within an
NSScrollview control (which handles the scrolling, as you might
have guessed). You may have to drag toward the top of the text view
for it to become highlighted.

32 4 Part IV: Advanced Cocoa Topics

Figure 17-6 shows the outlet connection.

|
Figure 17-6:
Control+
drag from

the File'S (2] ﬁ:(l o MyDocument.xib (English) x

Owner = sosr e
icon to the . w mz oAy
NSText- [EEMEETS st Responder Window Apolication

View in the
interface.

5. Choose Filer>Save to save the NIB file and then return to Xcode.
The outlet is added to the MyDocument.h file.

6. Expand the Target group in the Groups & Files list and select the
default application.

7. Click the Info button in the window’s toolbar to open the Target Info
window.

8. Click the Properties tab to display the list of document types in this
application and click the + button at the bottom of the Info window.

9. Add rich text as a new document type that the application can use, as
shown in Figure 17-7:

a. In the Extensions box, type rtf (without quotation marks).
b. Enter text/rtf in the MIME Types field.

c. In the OS Types box, type “RTF “ (this time use a double-tick mark,
followed by RTF, a space, and another closing double-tick mark) in
the OS Types field.

d. Enter MyDocument in the Class field and choose Binary as the
Store Type.

If you add an icon file (with the . icns extension) to your project
and define it in the icon column, your application uses the custom
icon when saving this file type. Chapter 5 details how to assign an
icon to your application.

Chapter 17: Document-Based Applications 325

A\
Feel free to remove the default DocumentType entry by selecting it and
pressing the Delete key.
LReNC) Target "Doc App" Info
[General Build Rules | Properties | Comments '
Executable: ${EXECUTABLE_NAME}
Identifier: com.yourcompany.${PRODUCT_NAME:identifier}
Type: |APPL | Creator: 7772
Icon File;
Version: | 1.0
Principal Class: NSApplication
Main Nib File: MainMenu
Document Types:
Name uTl Extensions MIME Types 05 Types Class lcon File Store Type | Role Packag
RTF ref text/rtf “RTF " MyDocument Binary + Editor =]
|
Figure 17-7:
Add RTF
to your
projectasa
document
e.
typ +| - (‘Ogen Info.plist as File @
| =

Adding the Code

Now that you’ve set up the interface and classes in Interface Builder and
added the RTF document type in Xcode, you can add some code to your proj-
ect. The MyDocument.h and MyDocument.m files were added to the docu-
ment by default when you created the project. You need to add code to these

two files to make the application work.

1. In Xcode, add an outlet and an NSData pointer to your MyDocument.h

interface file by entering this code:

#import <Cocoa/Cocoa.h>

@interface MyDocument

{
IBOutlet id myTextView;
NSData *fileContents;

}

@end

NSDocument

32 6 Part IV: Advanced Cocoa Topics

The NSData object holds the contents of your rich text file. The
IBOutlet is the outlet that you already added to File’s Owner in
Interface Builder.

2. Navigate to your MyDocument.m implementation file and change its
code to read as follows:

#import "MyDocument.h"
@implementation MyDocument
- (id)init

self = [super init];
if (self) {
// Add your subclass-specific initialization
here.
// If an error occurs here, send a [self
release] message and return nil.
}

return self;

- (NSString *)windowNibName

return @"MyDocument";

- (void)windowControllerDidLoadNib: (NSWindowController
*) aController

[super windowControllerDidLoadNib:aController];

[myTextView replaceCharactersInRange:NSMake
Range (0, [[myTextView string] lengthl])
withRTF:fileContents];

- (NSData *)dataOfType: (NSString *)typeName
error: (NSError **)outError

[fileContents release];

fileContents = [[myTextView RTFFromRange:NSMakeRange
(0, [[myTextView string] length])] retain];

return fileContents;

- (BOOL)readFromData: (NSData *)data ofType: (NSString
*) typeName error: (NSError **)outError

fileContents = [data retain];
return YES;

Chapter 17: Document-Based Applications 32 7

- (void)dealloc {
[fileContents release];
[super dealloc];

}

@end

The big changes in this file are in dataOfType, readFromData, and
windowControllerDidLoadNib:

e The dataOfType method takes care of saving the file.
BE,
i The dataOfType method doesn’t really have anything to do with

files. Instead, it returns the data that the application should save to
the file. The application actually takes care of the rest!

¢ The readFromData and windowControllerDidLoadNib meth-
ods handle the task of opening a rich text file. The readFromData
method receives the incoming data from the file and lets the applica-
tion know whether it’s successful. Then the windowController
DidLoadNib method takes care of displaying the text in the NSData
instance named fileContents.

3. Press $8+R to test your work.

You can open and save rich text files just like those created with
TextEdit or Microsoft Word. When you open a file, your application dis-
plays its contents in a new window. Notice that the application’s other
menus work, too. You can close a window by pressing 8+W or even use
the spell-check on a document.

The beauty of using a Cocoa document project is that Cocoa takes care of a
lot of the work for you. You don’t have to do much work to implement a large
assortment of features. Besides making it easy on you, Cocoa makes it easier
on your users. By using the default behaviors that Cocoa document-based
apps provide you, your users will be familiar with their operation.

32 8 Part IV: Advanced Cocoa Topics

Chapter 18
Cocoa Bindings

In This Chapter
Understanding bindings
Working on a project with bindings
Using KVC and KVO to make your bindings work
Adding bindings to an existing project

Whenever you create a Cocoa application the traditional way, you
implement a Model class that manages data, an interface that users

interact with, and a Controller class that ties the two together. This is all well
and good, but Objective-C saves you from a substantial bit of coding and
hassle by permitting you to bypass the Controller class altogether.

Bindings let you bridge items in your interface directly to data in your Model
classes. This is handy because Objective-C handles the tasks of keeping your
interface updated and, more importantly, you don’t have to. That means less
coding work for you and less chance of creating bugs.

This chapter explains what bindings are and why you use them. Then, it
describes some of the technology behind bindings (namely KVC and KVO).
KVC and KVO are two complementary technologies that you can use to
generically get and set the values of instance variables. Finally, you create
a project that uses bindings instead of code to control an interface in your
application.

<WMBER Bindings is an advanced topic that is also voluminous, and as such, you have
to do some exploration on your own to master the wild and wooly world of
bindings. This chapter only scratches the surface of what you can do with
bindings. You can bind all sorts of elements in your interface to many different
keys in your classes to affect how the application behaves when it runs.

330 Part IV: Advanced Cocoa Topics

What Are Bindings?

WMBER
‘x&
&

The Model-View-Controller (MVC) design pattern is the preferred method for
writing Cocoa applications (see Chapter 7). Part of what makes the design

so great is that it separates data (the Model) from the interface (the View). In
between the data and the interface sits an intermediary object, the Controller.
When the Controller changes the view (for example, when a user makes a
move), you have to write code. For example, this line of code changes the dis-
play (an outlet connected to an NSTestField) any time a user deposits or
withdraws money from the account:

[display setFloatValue: [account balancel];

This code also appears in the awakeFromNib method so the field displays an
initial value on launch. With a MVC design, you set the text field in three dif-
ferent places.

Imagine what a chore all this coding becomes when your application starts
expanding. Soon, things can become quite unruly. You might have to toggle
the enabled state of particular controls depending on the state of the applica-
tion. Or, maybe you need to display values in other fields too. Each time you
have to change the interface via code, you increase your workload (and the
resulting spaghetti code) by leaps and bounds. Surely, there must be a better
way. And indeed there is — bindings!

Bindings is a technology in Cocoa that consists of some classes that help you
keep data and an interface in sync. Instead of updating the interface each
time a user changes the balance value in the bank account application, you
can instead tell the interface to bind the balance value to the NSTextField.
Then, whenever your application changes the balance value, the interface
updates automatically. You can eliminate the three instances when you have
to update the interface in the MVC design. And, because you used an outlet
to update the interface, you can remove that too!

Bindings help you prune down your code significantly. Less code usually
means fewer bugs.

Chapter 18: Cocoa Bindings

Starting a Project with Bindings

To see how bindings work, launch Xcode and create a new project:

1. Choose File=>New Project and select Application on the left and the
Cocoa Application on the right, as shown in Figure 18-1. Click the
Choose button and name the new project whatever you wish.

[named it the same as the Chapter 7 project: Bank Account.

OuOU®), New Project

Choose a template for your new project:

‘L Mac OS X '] =9 iﬁ iﬁ
= 1 A Fad &y
Action ¥ ¥
L, Coco2 Application Cocoa Core Data Core Data
Audio Units Document-based Application Document-based
Automator Action Application Application
Bundle
Command Line Utility W m iﬁ m
P | P
Dynamic Library
Framework Core Data Applescript Appleseript AppleSeript
Java Document-based Application Decument-based Droplet

Kernel Extension Application with Application
Standard Apple Plug-ins
Static Library

Other

Description This project builds a Cocoa-based application written in Objective-C.

Figure 18-1:
Create a
new Cocoa
application.
|

Cancel Choose...)

7|

2. Choose File=>New File, select Cocoa and then Objective-C Class, as
shown in Figure 18-2. Click the Next button, name the new class
AccountController, and create the AccountController.m and
AccountController.h files.

To simplify matters, you don’t have a separate Account class. The
AccountController class keeps track of the balance.

331

332 Part IV: Advanced Cocoa Topics

U, New File
Choose a template for your new file:
| ‘ Mac 0S X
AppleScript - - " ?
BSD Java java Java -
Cand Cacr Java NsDocument Java NSView Java Main Menu XIB H
Carbon subclass subclass NSWindowControl
Coco ler subclass
Interface Builder SDK
Pure Java ™ - N b,
Pure Python .m .m .m
Ruby Mapping Model Objective-C class Objective-C Objective-C
Sync Services NSDocument NSView subclass
Xcode subclass
Other
Description An Objective-C class file, with an optional header which includes the
<Cocoa/Cocoa.h> header.
|
Figure 18-2:
Add a new
class to the
project. (Cancel) Previous) (Next=)
| 2
3. In the AccountController.h file that you created in Step 2, enter
this code:
#import <Cocoa/Cocoa.h>
@interface AccountController : NSObject {
float balance;
}
- (IBAction)deposit: (id)sender;
- (IBAction)withdraw: (id) sender;
-(float)balance;
- (void) setBalance: (float)aBalance;
@end
The interface file has one instance variable, balance. That’s followed
by two actions for depositing and withdrawing money from the account.
There are also two methods for setting and getting the balance value.
CMBER . - - I .
D This application behaves identically to the bank account application with an

MVC design (see Chapter 7), but the amount of code that you write is signifi-
cantly smaller.

Why are you going to the trouble of creating accessor methods (balance
and setBalance) if you could just query the value of the instance variable
balance? That’s a good question! And one that I answer in the next section.

Chapter 18: Cocoa Bindings

Making Your Bindings Work:
KUC and KVO

A\

KVC (Key-Value Coding) and KVO (Key-Value Observing) are conventions
whereby you can get, set, and observe properties of a class by name.

In a typical class, you might retrieve an instance variable with an accessor
method like this:

theBalance = [account balance] ;
With KVC, you can retrieve that value like this instead:

theBalance = [account valueForKey:@"balance"];

You retrieve the value generically by using the valueForKey method

and passing the name of the key instead of accessing its accessor method
directly. This might not seem like it makes sense, but it’s what makes bind-
ings work. When you call valueForKey, Cocoa tries to find a method with
the same name as the key. So, it searches until it finds the accessor method
that you defined and retrieves the value from it:

- (float)balance;

With KVC, you can also set values generically by key. For example, to set the
balance, you’d do this:

[account setValue:115 forKey:@"balance"];

This time Cocoa searches for a setBalance method. It then uses that acces-
sor method to set the value of balance to 115.

- (void) setBalance: (float) theBalance;

Use setX as the name of the setter method, where X is the capitalized name of
the instance variable. It might not make sense why you have to follow this con-
vention, but bindings rely on it, so name your accessors this way!

So, Cocoa has a way to get and set values of instance variables by key name.
If you adhere to the conventions of KVC, you can also observe the values of
variables by key name. KVO lets your application register observe a value
based on key name. Then, whenever the value of the key changes, your appli-
cation is notified of the value change. For example, if you want the register

333

334 Part IV: Advanced Cocoa Topics

to observe the balance variable, you’d do something like this (perhaps in
awakeFromNib):

[account addObserver:self forKeyPath:@"balance" options:0
context :NULL] ;

The account class is now an observer of the balance variable. Don’t worry
about the options and context parameters. They’re for advanced users,
and you’ll know what they mean when you reach that level. For now, set
options to zero and context to NULL. Whenever the value of the variable
changes, the class, as an observer, gets a message letting it know that the
value has changed. There, your code does something to respond. But where
would this message arrive? It arrives in an observevalueForKeyPath
method, which you must implement, like so:

- (void) observeValueForKeyPath: (NSString *)keyPath
ofObject: (id) object change: (NSDictionary *)
change

context: (void *)context ({

}

Because observeValueForKeyPath is generic and fires for all observed
values, you have to check the keyPath to see if the incoming value is one
you care about:

if ([keyPath isEqualToString:@"balance"]) {
//do something here with regards to the value of balance
}

The reason KVC and KVO are so important is that the bindings technology
uses them to perform its magic. That’s not to say that you can’t use KVC and
KVO in your own applications separate from bindings. You can! And when
you do, you also get bindings support for free.

Implementing Bindings

To see how all this KVC and KVO stuff works, return to the project that you
started in the “Starting a Project with Bindings” section. Your interface for
AccountController has two actions for when the user clicks one of the
buttons in the interface, and it has two accessor methods: balance and
SetBalance (which follow the KVC naming conventions). If you're not sure
how to name the KVC, see the previous section.

Chapter 18: Cocoa Bindings 335

Click the AccountController.m file in your Xcode project and add the follow-
ing code:

#import "AccountController.h"
@implementation AccountController

- (void) awakeFromNib ({
[self setBalance: 100];
}

- (IBAction)deposit: (id)sender {
[self setBalance: [self balance]+20];

- (IBAction)withdraw: (id)sender {
[self setBalance: [self balance]-5];

}

- (float)balance {
return balance;

}

- (void) setBalance: (float)aBalance {
balance = aBalance;

}
@end
Here’s how the code works:
v The class starts off with awakeFromNib, where you set the value of

balance to 100 for an initial balance.

1+ The code defines the two actions that execute when a user clicks one of
the two buttons in the interface (deposit and withdraw).

v The accessor methods are defined.
Pretty standard stuff. But where’s all that code you need for the MVC design

that updated the interface? It’s gone! That’s because Cocoa bindings handle
that dirty work for you.

Now, it’s time to set up the bindings in Interface Builder:

1. Double-click MainMenu.xib to open it in Interface Builder.

2. Create an interface with two NSTextField controls (called Label in
the Library window) and two push buttons.

336 Part IV: Advanced Cocoa Topics

Figure 18-3:
Create the
interface.
|

Figure 18-4:
Read the
Account-

Controller.h

file.
|

If you need help creating the interface, see Chapter 7. Figure 18-3 shows
the interface with the two controls and push buttons.

® M 7 Bank Account

Balance: -

Withdraw (Deposit |

)

3. Choose Filer>Read Class Files and select the AccountController.h file,

as shown in Figure 18-4.

When you read the interface file, seemingly nothing happens, but behind
the scenes, Interface Builder is reading the interface file and is now cog-
nizant of the class.

4. Open the Library window in Interface Builder by choosing Tools=>

Library and search for Object. Drag a new object to the project
window, as shown in Figure 18-5.

5. Press 3+6 to open the Inspector window and change the Class to

AccountController. Add deposit: and withdraw: actions.

See Figure 18-6.

NOO ¢ MainMenu.xib (English) =
|« w»|gg|=|m]| [C3Bank Account Fd (Qsearch
¥ DEVICES e NS e —]
i mae » [English.Iproj Today, 7:07 AM
ﬂ Tiger HD Bank Account.xcodeproj Today, 6:56 AM
n s m| AccountController.m Today, 6:56 AM
i
» [build Today, 5:51 AM
8 xwario m main.m Today, 5:50 AM
LiMy... = Info.plist Today, 5:50 AM
L} Mallde h| Bank Account_Prefix.pch Today, 5:50 AM
¥ SHARED
E_[iMac =
[H iMac.local
¥ PLACES

4 Deskrop i
5 Downloads v

Cancel) Open

BN

Chapter 18: Cocoa Bindings 33 7

= v [Ji Library
(I3 » [Cocoa
@ 7] Interface Builder Kit
- 7] web Kit

File's Owner First Responder Application MainMenu Window (Bank...

7] QuickTime Kit
7] Custom Objects

—— Dbject Library - Cocoa - Obje...ntrollers - Controllers
Object - Provides you with an
instance of an NSObject subclass that
is not available in Interface Builder.
Object Controller - A Cocoa
bindings-compatible controller class.
Properties of the content object of...

Library - Cocoa - Obje...antrollers - Core Data

— Managed Object Context - An
Figure 18 5 Ir;‘;:;‘::;i;ommc:mmxl 2
Drag an W s e
0 bject from Interface Builder's Library
the Library
to the
project

Library - Interface Builder Kit

window.
(%) (Q object Q)
|)
@}
p— Class AccountController
y = .
. o 3 IBInspector
File's Owner First Responder Application MainMenu Window (Bank... | & .nl:znun |BLibraryObjectTemplate
‘df:;“ | 1BPlugin
WIEREIANE NsactionCell
NsApplication
Font Manager NsArrayController
L | NSBox
NSBrowser
NSButton \:
¥ Class Outlets NsButtonCel|
| Outlet
|
Figure 18-6:
Change the ¥ Interface Builder identity
H Name
Object class ' '
Object D |458
to Account ok
Controller Notes [Show With Selection
and add two
actions.
4

338 Part IV: Advanced Cocoa Topics

Figure 18-7:
Connect the
two actions
to the
Account
Controller
class.
|

6. Connect the two actions to the corresponding buttons in the interface
by Control+dragging from the buttons to the AccountController
class in the project window.

Figure 18-7 shows the connection being made to the deposit action.

MainMenu.xib (English)

Salmilei G
View Mode Infa Search Field
e .o
=
s
Y —
File's Owner First Responder Application MainMenu Window (Bank...

Received Actions
| deposit:
withdraw:
Font Manager Account Cont..

) Bank Account.xcodeproj A

® O 7 . Bank Account

Balance:

Cwithdraw:) SR
Withdraw) Deposit

| i ot

)

7. Select the empty NSTextField control in the interface and press
3+4 to open the Bindings Inspector for that control. The Bindings
Inspector has the title Text Field Bindings.

Figure 18-8 shows the Bindings Inspector.

8. Expand the Value section of the Bindings Inspector. Select Account

Controller from the pop-up menu and type balance in the Model Key
Path field and press Return.

Instantly the Bindings Inspector selects the Bind To: check box and
sets a couple check boxes (Allows Editing Multiple Values Selection
and Raises for Not Applicable Keys) for you, as shown in Figure 18-9.
Congratulations! You've just set your first binding.

Chapter 18: Cocoa Bindings 339

Value
Balance: - g S
Value With Pattern
Display Pattern Valuel
» Editable
» Enabled
» Hidden
Font
» Font
| » Font Bold
- » Font Family Name
Figure 18-8: » Font Italic
Select the > Font Name
» Font Size
empty text Text Color
fleld and » Text Color
open the » Alignment
Bindings R
Inspector.
| P

Value w

¥ Value (Account Controller.balance)

Bind to: [Account Controll
Bind to: | Account Controlier]

Controller Key

Model Key Path
I balance H

Value Transformer

E Allows Editing Multiple Values Selection
] Always Presents Application Modal Alerts
["] Conditionally Sets Editable

[7] Conditionally Sets Enabled

["] Conditionally Sets Hidden

[7] Continuously Updates Value
| ™ Raises For Not Applicable Keys

. [validates Immediately
Figure 18-9:

Multiple Values Placeholder

Select [
Account No Selection Placeholder
COntrO”er .Not Applicable Placeholder
from the
pop_up Null Placehelder b/
menu and
Value With Pattern
enter » Display Pattern Valuel
balance in e
the Model » Enabled

» Hidden

Key Path. Font

— E= oot

NI

34 0 Part IV: Advanced Cocoa Topics

9. Save MainMenu.xib and return to Xcode where you can test your work
by choosing Build~>Build and Go.

The result looks something like Figure 18-10.

|
Figure 18-10: ® O O Bank Account
Test your
Work to see Balance: 100
the bindings [Withdraw " Deposit
in action. Z
|
10. Click the Deposit button to deposit $20.
The balance increases, as shown in Figure 18-11.
|
Figure 18-11:
Click the ® 0 O Bank Account
DepOSit Balance: 120
button to . .
increase the Rt R SDERos e)
balance. -

|
By jumping through these hoops, your application now displays the correct
balance value in the interface, and you didn’t write any code that actually set
the value in the interface. Instead, by binding the balance value to the text
field, Cocoa is observing that value (via KVO) behind the scenes. When the
value changes, the binding updates the display. The reason that it knows the
value is all thanks to you implementing the accessor methods following the
KVC naming conventions.

CMBER o .) e)
é'é This might not be super impressive, but as your applications increase in

scope, the time savings is substantial. And you can avoid all kinds of buggy
code in the process.

Chapter 19
Core Data

In This Chapter
Discovering the greatness of Core Data
Creating your Core Data project
Defining your model

Building your interface

A fter you have some experience programming applications for the
Macintosh, you soon realize that you spend an inordinate amount of time
doing some of the same tasks over and over. One aspect in particular that you
find yourself repeating is handling data. Many applications help users with
data management. For example, a recipe application might help users organize
information like ingredients, steps in a recipe, and special cooking instructions.
Other applications — for example, iTunes — might assist users in organizing,
sorting, and managing media files like music and video.

So many applications helping users with data aren’t a surprise. Computers

are exceedingly good at managing data, and lots of it. What might be surpris-
ing though is that programmers usually have to do all the hard work of writ-
ing code to handle all this data — until now. In this chapter, I show you how
Cocoa makes adding data management to your projects easy with Core Data.

What's So Great about
Core Data Anyway?

Core Data is a relative newcomer to the Cocoa programming scene, but don’t
let its youth and inexperience dissuade you from unleashing its talents. Core
Data is a framework of around a dozen pre-made classes that allows you to
easily add data management to your applications. And oftentimes, Core Data
can do so without you even writing a single line of code!

342 Part IV: Advanced Cocoa Topics

Core Data is handy for a number of reasons:

v Core Data helps you define data in a structured fashion.

v Core Data handles a lot of the messy (and boring) programming work for
you, so you don’t have to do it.

v Core Data can save and open data files for you automatically.
v Core Data can even build a functional interface for you.

»* You might not even have to write a lick of code to take advantage of it!

When you’re writing Cocoa applications for personal use, sometimes all you
want is a quick-and-dirty hack to fulfill your needs. In these cases, you prob-
ably don’t mind how the interface works or what additional applications
the Cocoa project requires. All you care about is the functionality of your
application.

Core Data gives your Cocoa project instant access to all these powerful fea-
tures that are inherent to a variety of applications. Data management is an
important aspect for a wide range of applications, and Core Data can help
you achieve your goals more smoothly and accomplish things faster.

Core Data isn’t just good at juggling data for you. It also helps you write
cleaner, more structured software. Furthermore, it often can do so without
you writing any code. Less code means less bugs. And less support. And less
headaches. That’s right, Core Data even has the healing power of aspirin! Just
kidding on that last part, but you’ll be so amazed at how much Core Data can
assist your programming efforts that you might be able to forego a trip or
two to the pharmacy.

Creating a Core Data Project

To begin working with Core Data in a Cocoa application, follow these steps:

1. Create a new Cocoa application project.
Launch Xcode and choose Filec>New Project.

2. From the list of project templates, choose Application on the left side,
then Core Data Application on the right, as shown in Figure 19-1, and
then click the Choose button.

Chapter 19: Core Data

Figure 19-1:
Create a
Core Data
Application.
|

Be careful here. You see three kinds of Core Data templates listed. For
now, you don’t have to worry about the Core Data Document-Based
Application templates. This application uses only one window, so a
document-based application won’t help you here.

RO, New Project

Choose a template for your new project:

e sy 5 B B |

i Cocoa Application Cocoa Core Data Core Data
Audie Units Document-based Application Document-based

Automator Action Application

Bundle
Command Line Utility w m |
P e |
Core Data AppleScript AppleScript AppleScript
Java Document-based Application Decument-based Droplet

Kernel Extension Application with Application

I3

Application

Dynamic Library
Framework

Standard Apple Plug-ins

Static Lisrary Description This project builds a Core Data application.
Other

Cancel 66115055:.: 3
)

3. Name the project Core Data and click the Save button to finish creating
the new project.

A Core Data project looks much like other Cocoa projects with Classes,
Resources, and Frameworks folders as you've seen in other projects.
However, Core Data projects also have one additional folder: Models. The
Models folder contains a single data model by default. You’ll use this model
to design data storage for your application. You can add other models later
if you need them, but for now, you need only this one. Figure 19-2 shows the
Data Model file in a new project. Its name varies depending on the name you
chose for the project.

343

344 Part IV: Advanced Cocoa Topics

Figure 19-2:
The Models
folder
holds —
you
guessed
it—the
Core Data
model for
the project.
|

Core_Data_DataModel xcdatamodel - Core Data

-|[e-] W I) Q-
Action Budd ard Ga Toes min rarch
e S
Lorn ST o rezerry - s Trot o Devtnanion

Mo Selection

Defining the Model

Although it’s not technically true, it can be helpful to think of your core data
model as a database. More specifically, the data model contains a definition
for the data that your application will be managing. Much like creating a new
database, you define the various data elements that make up the data model
with Xcode’s data modeler. For this chapter, imagine an application that
helps you keep track of your book collection. A book application might help
you track information, such as

v Title

v Author

1 Page count

v Category: fiction or non-fiction

v Synopsis

v~ ISBN
In Core Data parlance, a book in this application is an entity and information
about a book (title, author, and so on) is a property, or more specifically

an attribute. The Xcode data modeler helps you define entities, properties,
and their relationships.

Chapter 19: Core Data 345

To create the data model for the book application, follow these steps:

1. Open the Models folder and select the default data model to display
3 the data modeler.

If you want more elbow room, you can double-click the model to open
the data modeler in a separate window.

The data modeler consists of four panes (not pains!): a list of entities,
a list of properties, a pane that displays information about entities and
attributes (currently displaying No Selection), and a big pane at the
bottom that looks like graph paper. Refer to Figure 19-2.

The graph paper-looking section at the bottom of the data modeler
gives you a visual representation of the data model when you have enti-
ties and attributes in the model.

2. Click the + button at the bottom of the Entity pane to create a new
entity.

A new entity appears in the Entity pane, as shown in Figure 19-3.

3. Change the entity name to Book by double-clicking its name in the
Entity pane or by changing its name in the far-right pane of the data
modeler.

The Book entity, as you might have already guessed, keeps track of your

books.
[Ralal Cove_Data_DataModel xedatameded - Cone Data
[10.5] Debuag | poe._ ZiL8) ‘g). o @ a-
. MddardGa Tees win Searsh.

|
Figure 19-3:
Create a
new Book
entity.
|

346 Part IV: Advanced Cocoa Topics

4. Create Author and Category entities, respectively.

The author and category of a book might both be considered properties
of a book, and in fact, you could define them that way. However, in this
application, define both the Category and Author as entities instead
(see Figure 19-4). That way, you can alter the author names and catego-
ries later without changing the author and category for each book in the

collection.
\3 .

p If the three entities appear on top of one another on the graph paper-
looking pane, move them by clicking and dragging each entity so you
can see them better.

[Talal Core_Dats_DataModel xcdatamoded - Core Data
[10.51 Debuug | oo &
E __ 2 Tyoa a¢ Destenation traty (raty BEWY) i
i ECL.M_.,,W:,MW
- o 1
T T—
Figure 19-4: W—
Create the
Author and
Category
entities.
| e i

5. Select the Book entity and then click the + button at the bottom of the
Property pane to add an attribute to the Book entity.

There are three kinds of properties: attributes, fetched properties, and
relationships, which all appear in the pop-up menu that opens when you
click the + button in the Property pane. For now, you need only concern
yourself with the attributes property type.

6. Name the new attribute title and make it a non-optional String
type.

Chapter 19: Core Data 34 7

Deselect the Optional check box for the title attribute and select
String from the Type drop-down list, as shown in Figure 19-5. The title
attribute will store the name of the book as a string of characters, which
is why you selected the string type. Contrary to an entity name, an attri-
bute name isn’t capitalized (for example, use title, not Title).

ann Core_Data_DataModel xcdatamodel - Core Data

|a05) D!hi]”’-. =}{a-] ‘\EX - 0 <=

Overviem Acaen BefdardGo Tois e Seann

- MCo Dits Dutsssdelucdstimedsl 3 [Bosh £ Ll
sy il asatrsct Clawe Pty -l e Type or Destination Ry HEEL XD
hather [

=
Add Ferched Praperty
Add Relationship

Add Fatch Reguest

Figure 19-5:
Add a new
title attribute "Icrl‘w: :::-‘-_u;;"-_‘:
to the Book :
entity.
|

7. Add a pages attribute to the Book entity and choose Integer 16 from
the Type drop-down list.

The pages attribute tracks the page count of a book. The Integer 16
data type represents a 16-bit integer, large enough to store values as
high as 65,536. That number should suffice for most books — even War
and Peace! Figure 19-6 shows the Book entity with two attributes: title
and pages.

8. Add a third attribute, synopsis, and give it a String type.

This new attribute tracks the synopsis of the book. The attribute uses
the String type because you want to store a string of text.

9. Add a fourth attribute, isbn, and designate it as a String type.

Figure 19-7 shows the Book entity and its four attributes. The isbn
attribute is a string instead of an integer because some users might
enter the ISBN with hyphens separating the numbers, thus making it a
string of characters. Also, some books don’t have an ISBN and might
use a different numbering system that requires text data.

348 Part IV: Advanced Cocoa Topics

8 - ing Type or Destinmtion | At
WiManageo0bc pe A Eute Srng H] p—
Nvigecten [T Y T
SRRl] Optional U?m 1 indened
Trpe: 1L
wer ®
|
Figure 19-6:
Add a pages
attribute to
track page e e —
count for
each book. |
Liialo L
|
Figure 19-7: g
Add " |
synopsis i
and isbn
attributes
to the Book
entity. |
|

10. Select the Author entity from the Entity pane on the left and add an
attribute, name, to it and assign a String type. Deselect its Optional
check box.

|
Figure 19-8:
Add a name
attribute

to the
Category
entity.
|

WMBER
@"&
&

Chapter 19: Core Data 34 9

11. Select the Category entity from the Entity pane on the left and

add an attribute, name, to it and assign a String type. Deselect its
Optional check box.

Figure 19-8 shows the completed Category entity.

ano Care_Data_Databodel wedatamode] - Core Data
|105 | Debug hope. lle-] 'f-}\ - @ -
Acven BeldandCo Taia infa Saarch.
> Core_Ota_ Dutasicdel sedstamedes [Category 1 = -m 3
. ~ -l ki Tyoe o Destination At LT,

12. Select the Book entity, add a relationship, author, to it in the

Property pane, select Author from its Destination pop-up menu, and
select the To-Many Relationship check box.

Like attributes, relationship names are lowercase.

A relationship is a different kind of property than an attribute. Instead of
storing data like an attribute does, a relationship defines a link between
two entities. To find the name of an author, the Book entity links to the
Author entity. The To-Many Relationship check box is selected because
some books have multiple authors. The arrow also has two heads at the
author end.

The Book entity is now linked to the Author entity, showing their rela-
tionship. See Figure 19-9.

13. Add a second relationship to the Book entity and name it category.

Select Category from its Destination pop-up menu and select the
To-Many Relationship.

The category relationship gleans category information from the
Category entity.

3 5 0 Part IV: Advanced Cocoa Topics

Figure 19-9:
Define an
author
relationship
as part of
the Book
entity.
|

Figure 19-10:
Add a
category
relationship
to the Book
entity.
|

RlAO =

The Book entity is now linked to the Category entity, as shown in
Figure 19-10. Because a book might belong to multiple categories, the
To-Many Relationship check box is selected. Because of the To-Many
relationship, the arrow has two heads.

WBER
Q‘"
&

Figure 19-11:
Add a books
Relationship
to the
Author
Entity.

Chapter 19: Core Data 35 ’

You could end your data modeling here, but you have one small additional
detail to address. The Book entity knows about the Author and Category
entities thanks to the relationships, but the Author and Category entities
don’t know about the Book entity. So, return to the data modeler and follow
these steps to assign relationships in reverse:

1. Add a relationship, books, to the Author entity. Select Book from
its Destination pop-up menu and select the To-Many Relationship
check box.

A two-headed arrow connects the Author entity to the Book entity, as
shown in Figure 19-11, because one author might have written multiple
books.

A one-headed arrow indicates the two entities have a one-to-one rela-
tionship. A two-headed arrow indicates a one-to-many relationship.

ann Cove_Data_DataModel xedatamodel - Core Data

[.10.5 | Debug | ppc zjla-] ‘-:.\ - 0 =
i [o— - Ml e Tasie e Suarch

* (b Cors_Dusa Durstdodelaccmamecel § [Awtor 2 I
e T | s Troe o Dvsnnatien heistomitn ERL AT
Authar I booiy Relstaninip Book s
L=

NiManaprdOtect 2 Hams: (oo
Casapory ASanagrititiect & Oponad (] Toamniens
Destination. | Bosk il
btria | Mo lrne Relstninis 1)
4 Tobany Aclationais
M Cocen s Cone

Delens Rt | Muiity il

@

2. In the books relationship, select Author in the Inverse pop-up menu.

Because the Book and Author entities point at each other, the data
modeler helps you clean up things by merging the two arrows, as shown
in Figure 9-12. One end of the arrow has two heads. The opposite end
has one head. The Book entity has a one-to-one relationship with the
Author entity (one book is written by one author), but the Author
entity has a one-to-many relationship with the Book entity (one author
can write many books).

3 5 2 Part IV: Advanced Cocoa Topics

ann Core_Data_DataModel xedatamodel - Corn Data

T T S — T o O Qe seing uitchig
Owermem umon RslgadCa Toki imle femch
* B Cote_Duma DunaMocel wodesamocel & [Jherwe o

Sadds Gy o asarac Caas e Type o Dewtnancn e = L% 0
I Cove_Duta Dutsoselncamamodel o :w‘_m' dokgicx - T —— " name: [books__ -
" Category NiManageadtyed 4 Ootionas Tranvest
Desteanor | Book L
eene | aahor -
W o Marry Arlationahig
Y ax o
Detete Rube | Wusety #
@
.
oroop
| - Les
I
. c—|
Flglll'e 19-12; .
Inverse the
relationship.
|

3. Add a relationship, books, to the Category entity, select Book from
its Destination pop-up menu, select the To-Many Relationship check
box, and select Category from the Inverse pop-up menu.

The Category and Book entities now have a two-way relationship,
as shown in Figure 19-13. A book can belong to multiple categories,
and a category can have multiple books, so the arrow has two heads

on each end.

4. Add an attribute to the Author entity and the Category entity, assign
the String type to both attributes, name both attributes name, and
deselect the Optional check box for both.

See Figure 19-14.

You’ve now completed building the data model for this book application, so
save the project. Now, it’s time to build an interface.

Chapter 19: Core Data 353

 To-teamy Ratanosang.
Mo Coort: none | MaxCownt: [moe |

L T — |

Figure 19-13:
Link the
Category
entity and
the Book
entity with
an inverse
relationship.
|

Figure 19-14:
Add a name
attribute

to both the
Author and
Category
entities.
|

3 5 4 Part IV: Advanced Cocoa Topics

Building the Interface

This is where all your hard work pays off! Sure, you could go about creating
an interface, adding buttons and tables ’til the cows come home, but why
bother? Xcode can do all the hard work for you! Yes, you read that right.
Xcode can actually create a full interface for you based on the data model
alone! And what’s more, it can even add complete functionality to the inter-
face as well. Follow these steps:

\\3

1.

In Xcode, move the project window to the right side of your screen.

You'll need the extra room because you need to work with Xcode and
Interface Builder at the same time.

. Double-click MainMenu.xib in the Resources folder to open Interface

Builder, and in Interface Builder, open your project’s main interface
window so that it’s visible.

Interface Builder opens and displays the typical items in a default inter-
face file.

Drag the window to one side of the screen, so you can see it and the
Xcode project window at the same time.

. Return to Xcode and Option-drag the Book entity from the graph

paper-looking pane to the interface window in Interface Builder.

This step can be a little tricky to master, so don’t fret if you can’t get it
to work on your first try. You can drag the graphical representation of
the Book entity, not the one in the Entity pane.

. Return to Interface Builder and choose Master/Detail View in the New

Core Data Entity Interface window, as shown in Figure 19-15.

. Select the Search Field, Details Fields, and Add/Remove check boxes

and then click the Next button.

6. Accept the defaults (see Figure 19-16) and click the Finish button.

7. Return to Xcode again and Option-drag the Category entity from

the graph paper-looking pane to the interface window in Interface
Builder.

Figure 19-15:
Choose
Master/

Detail

View and
select all
the check
boxes.
|

Figure 19-16:
Click the
Finish

button to
complete
the inter-
face for the
Book entity.

I New Core Data Interface
Select the interface style and options.

! Master/Detail View E

™ Search Field a
M Detail Fields
Add /Remove

Fratnir (Faten) (" Remowe) add Y

Preview

Cancel (Previous)

| New Core Data Interface
| Select the properties to include in the interface.

[o =
M title

#™ pages

™ isbn

™ synopsis

™ author

™ category

/
T —

Chapter 19: Core Data 355

3 5 6 Part IV: Advanced Cocoa Topics

Figure 19-17:
Click the
Next button
to complete
the inter-
face for the
Category
entity.
|

8.

10.

11.

12.

13.

Back in Interface Builder, choose Master/Detail View in the New
Core Data Entity Interface window. Select the Detail Fields and Add/
Remove check boxes, as shown in Figure 19-17; click Next.

This time, leave the Search Field check box deselected. To give you a
little more room in the interface, this omits the search field.

OO0

New Core Data Entity Interface

New Core Data Interface

Select the interface style and options.

| Master/Detail View |]

["1Search Field i
Detail Fields
E‘ Add/Remove

Preview

Cancel |

Previous Next

. Deselect the Books check box and leave the Name check box selected.

Click the Finish button to add the Category entity to the interface.

Return to Xcode and Option-drag the Author entity to the interface
window in Interface Builder.

Return to Interface Builder and choose Master/Detail View in the New
Core Data Entity Interface window and click Next.

Again, select all the check boxes, except the Search Field check box.

Deselect the Books check box and leave the Name check box selected.
Click the Finish button to add the Author entity to the interface.

Rearrange the interface to suit your preferences.

Figure 19-18 shows a sample interface. You may need to resize the
window and move things to make everything fit.

Chapter 19: Core Data 35 7

800 a L
St - Chtegary _
@Al) Name =
= B Text Cell
Tite |Pages [Isbn |Synopsis |Author |Category | |
Text ... 123 Text... Text Cell v
#outof £ (Fetch) ((Remove) (Add)
#outal £ (" Feteh) (Remove) (Add) s
e Author E
Figure 19-18: P e Tl
Rearrange o
. Synopsis:
th? mtetr' Author: [B
acetlo i
make every- Seteso: | e (Fetch—) CRemover) (—Ade-)
thing fit. Name:
|)
e —
14. Save the interface and quit Interface Builder.
15. In Xcode, choose Build=>Build and Go to test your hard work.
You see a working application like that shown in Figure 19-19.
B8.00 oy
Stk - Category =
@Al) Name I
Non-fiction
Title |Pages |Isbn |Synopsis | Author
Cocoa for Dummies 300 123 An exci_ Tejkows]
Tiger Simplified 492 456.. MacOS.. Tejkows
= =5 54> loutefl (Fetch) ((Remove) (Add)
Loutof 2 (Fetch) (Remove) (Add) o
Title: | Cocoa for Dummies Aty 7
Pages: |300 Name J=|
Tejkowski
I Isbn: | 123456789
Figure 19_19: Synopsis: [An lexcilin.g book about Cocoal
The Author: | Tejkowski Nii
Category: | No Value
complete et = = Fetcheylf-Remaveji—rhic=)
application. Name: Tejkowski
| i

3 5 8 Part IV: Advanced Cocoa Topics

The completed application has an astounding array of features:

v It displays a complete working interface.
» You can remove authors and categories.

» You can add and remove a book and assign an author and a category to
the book.

v The application saves all the data upon closing.
v It reloads all the data the next time you run the application.
v~ 1t fully supports Undo, which is no small feat to add on your own.

v The list of books is fully searchable based on title, ISBN, page count, and
Synopsis.

v It even has spell-checking!

This is an amazing feat and not only that, you didn’t have to write a single
solitary line of code to make it happen. Outstanding!

Granted, this may not be the interface you want, but it does give you a tre-
mendous head start on creating your own interface for the application. This
interface also gives you a significant number of clues about how Core Data
works with interface and, in particular, bindings. In this project, bindings take
care of updating your interface to match the data model. You can read more
about bindings in Chapter 18.

Note that the interface project window now has new controller objects in it
that represent the three entities. Note also that if you select one of those con-
trollers and press 38+5, you can view all the various bindings that cause the
interface to react with the data model. You can find out a lot about how Core
Data works just by investigating these bindings on your own.

PartV
The Part of Tens

By Rich Tennant

The 5th Wave

|SNOW GLOBE DATA STORAGE|

ORICHTEN AT
i‘‘ OKkay, let’s shake ‘_5
| this thing and £
see what we
come vp with, S

In this part . . .

T) help make your experience more fulfilling, Part V
gives you important tips that speed up your Cocoa
development as well as Web locations for Cocoa code,
demos, and assistance.

Chapter 20

Ten Tips to Make Cocoa
Programming Easier

In This Chapter

Use keyboard shortcuts

Read the documentation

Use Class Browser

Adjust the window count

Use drag and drop

Use init and awakeFromNib

Don’t forget the methods of the superclass
Position items with Cocoa coordinates
Use guidelines in Interface Builder

Reuse code

A s you familiarize yourself with Objective-C and the Cocoa frameworks,
you’re bound to run across various tips and tricks that you’ll want to
remember. This chapter attempts to reduce the amount of time you have to
wait until you discover some of those tips and tricks.

Use Keyboard Shortcuts

One of the easiest ways to speed up your Cocoa programming is to take
advantage of the multitude of keyboard shortcuts available to you in Xcode
and Interface Builder. Table 20-1 lists some of the common keyboard short-
cuts that Xcode and Interface Builder share.

362 Part V: The Part of Tens

Table 20-1 Keyboard Shortcuts Shared by
Xcode and Interface Builder
Shortcut What It Does
88+S Saves a file
8+0 Opens a file
8+M Minimizes a window to the Dock
38+7 Displays help for Xcode or Interface Builder
88+N Creates a new file in Xcode or a new NIB file in Interface Builder
#+0 Quits the application
38+R Runs a project or an interface

Besides the run-of-the-mill keyboard shortcuts, you can help your Cocoa pro-
gramming along by using the keyboard shortcuts of the pros. Table 20-2 lists
some keyboard shortcuts that give a decided advantage.

Table 20-2 Keyboard Shortcuts Used by the Pros

Shortcut What It Does

Option-double-click In Xcode, looks up the keyword’s definition in the Xcode

keyword documentation

¥8+Z Goes back in time whenever you make a mistake. Xcode
and Interface Builder offer multiple Undos

88+Shift+F Finds all instances of your search term in the Cocoa
documentation

Control-click Control-click (or right-click if you have a multi-button

mouse) anywhere in Xcode or Interface Builder to reveal
a large menu of context-sensitive functions

Read the Documentation

It seems too much of a cliché to say it, but your best bet for accelerating your
Cocoa programming is to read the manual. Some documentation explains how
the Developer Tools work; other documentation details the various classes

Chapter 20: Ten Tips to Make Cocoa Programming Easier 363

and methods of Cocoa. You can view the built-in documentation by choosing
Help=>Documentation. You can also read the documentation by visiting the
Apple Developer Connection Web site:

developer.apple.com/techpubs/macosx/macosx.html

Use Class Browser

In addition to using the standard documentation that’s part of Xcode, you
can browse the various classes in Cocoa with Class Browser, although the
Class Browser isn’t Cocoa-specific. Choose Projectr>Class Browser in Xcode
to display the Class Browser window. The Class Browser displays all the
classes in Cocoa in a structured fashion. You have one-click access to the
definitions of Cocoa classes in the interface files.

Adjust the Window Count

Setting up your work environment to best suit your needs is another quick
way to improve your Cocoa programming experience. Xcode can operate
with a different number of windows, and it’s up to you to set the number of
windows with which you feel most comfortable.

Throughout this book, I use the default setting in the General Layout section
of the Preferences window. Some people don’t appreciate having all the vari-
ous components of Xcode in one window and like to stretch out a bit. For
them, Xcode offers a few other settings that force various Xcode functions to
appear in different windows.

Choose XcodewPreferences and click the General button on the toolbar to
adjust the window count setting.

Use Drag and Drop

Drag and drop has long been an attractive feature of the Macintosh operating
system. Xcode and Interface Builder continue in this tradition, offering many
different drag-and-drop features.

364 Part V: The Part of Tens

You can add files to Xcode from Finder by dragging them into your project
window. These files include source code files, frameworks, image files, HTML
(HyperText Markup Language) documents, rich text documents, and . icns
icon files.

When you create classes in Xcode, you can let your XIB file know about them
by dragging the header files for those classes from Xcode to the Interface
Builder NIB file window.

In Interface Builder, drag and drop is, perhaps, the most important interface
operation. You use drag and drop to create the entire interface.

Initialize and Awaken!

When your application loads its NIB file, Cocoa creates the objects in that file
and calls the init methods. Next, your application sets the outlets for your
interface and calls the awakeFromNib method. Because the application sets
the outlets after the init method, you can’t use any methods that rely on
outlets in the init method. Because awakeFromNib loads after the outlets
are set, you can use code that replies on outlets.

As a basic rule, try to add initialization code to the init method of your

object. If it doesn’t work properly or yields a compiler error, move that ini-
tialization code to the awakeFromNib method for that object. After you get
the hang of Cocoa programming, you know which method to use and when.

Remember the Superclass

One of the great features of object-oriented programming is the fact that

it has a hierarchical structure. This has a wonderful benefit — inheritance.
Because every class in Cocoa (with the exception of NSObject) is a subclass
of some other class (or classes) above it in the class hierarchy, every class
has more methods than those listed for its particular type. This can be con-
fusing at first for some beginners.

Consider this example. The NSTextField and NSTextView controls in
Cocoa seem like they should work in a similar fashion because they both
display text. By taking a quick look at the documentation, however, you find

Chapter 20: Ten Tips to Make Cocoa Programming Easier 365

that they’re very different controls. The NSTextView control doesn’t have a
method for setting its text. The documentation for NSTextVview shows that
it’s a subclass of NSText. NSText, on the other hand, does have a method
for setting the text of the view: setString. You may be tempted to use the
setString method with an NSTextField control. It’s a good guess but an
incorrect one.

Like the NSTextView, the NSTextField control has no direct method for
setting its text. Because it’s a subclass of the NSControl class, you can use
the setStringValue method from that class. The lesson here is that if you
expect a control to have some kind of method and it doesn’t, check one of
the superclasses of that class to see whether one of them has the function
you need.

Position Items with Cocoa Coordinates

Programmers who are migrating to Cocoa from other frameworks may be
surprised to discover that Cocoa bases all its coordinate measurements on

a different coordinate system. Whereas many frameworks define the upper-
left corner of a view as the origin, Cocoa drawing designates the bottom-left
corner as the origin. You may remember this arrangement as Quadrant [from
your high school trigonometry class.

If you're familiar with PDF (Portable Document Format) and PostScript, you
can skip this tip. You're already living in an upside-down world. PDF and
PostScript use the same coordinate system that Mac OS X uses — and this
is no accident. NeXT based its image model on Display Postscript. Mac OS X
also uses this model.

Use Guidelines in Interface Builder

When it comes to building interfaces, Apple insists that you follow many
human interface rules to ensure the best experience. There are so many
human interface rules that it can be difficult to keep them all straight some-
times. To help you with this, Interface Builder offers a great feature in the
form of guidelines. When you drag controls around your interface, Interface
Builder displays lines in the interface to help you align controls and place
them according to the Human Interface Guidelines.

366 Part V: The Part of Tens

Pay attention to these interface suggestions! They make it a snap to follow
the stringent interface guidelines in Mac OS X and help you create software
that follows the Apple standards. Doing so results in software that’s easier to
use by more people. If you follow your own rules, you're bound to hear com-
plaints. Macintosh users expect a certain user experience. If you stray from
it, your users won’t be happy.

Consider reading the Apple Style Guide, located on the Apple developer Web
site. This guide describes the interface rules and helps you know what terms
to use in your application’s Help and other documentations.

Reuse Vour Code

The guiding principle of object-oriented programming is code-reuse, and
Cocoa is no different. In fact, many programmers claim that Cocoa code is
some of the most reusable code around because Cocoa programmers sepa-
rate form from function through the Model-View-Controller paradigm.

To reuse a NIB file, simply drag it into your project in Xcode. To reuse a
class, drag its implementation (.m) and header (.h) files into your project in
Xcode. It’s as simple as that!

Chapter 21

Ten Great Web Sites for
Cocoa Developers

In This Chapter

Apple Developer Connection

Borkware Quickies

Cocoa is My Girlfriend

Theocacao

Call Me Fishmeal

Domain of the Bored

Dan Wood and his Weblog
Apple Forums

Cocoa Dev Central

CocoaDev

A\\S

Tle Internet is a virtual treasure chest for Cocoa developers. On the Web,
you find scores of sites offering Cocoa source code, demo projects, tuto-
rials, instructions, and even personal assistance. This chapter touches on
ten important Web sites that will improve your Cocoa experience by offering
help and insight into how to program most effectively in Cocoa. You'll find
links to professional Cocoa development companies as well as individual
Web sites.

Many of these sites also support RSS feeds, so you can set up a subscription
and avoid manually checking the sites for new information.

368 Part V: The Part of Tens

Apple Developer Connection

developer.apple.com

It makes obvious sense that Apple’s Developer Connection would be your
first stop in search of Cocoa information. Apple’s site offers online docu-
mentation (in addition to the built-in documentation in Xcode), tutorials,
reference materials, and tons of sample source codes. Further, Apple hosts
several user forums where you can ask questions from the professionals or
simply read answers to thousands of questions that other developers have
posted to the forums. If you visit only one Web site for Cocoa help, this is it.

Borkware Quickies

www . borkware.com/quickies

The Borkware Quickies site offers dozens of useful code snippets that pertain
mostly to Cocoa. These snippets rarely offer much additional discussion;
that’s okay! Here you find brief descriptions of how the snippets work, and
the site does a good job of anticipating the common questions and requests
of most developers working with Cocoa. If you find yourself lost in Apple’s
documentation, give Borkware Quickies a try, and you might be surprised to
find that it’s already documented the same exact solution you need.

Cocoa Is My Girlfriend

www.cimgf .com

Cocoa is My Girlfriend is a Cocoa-related blog written by Marcus Zarra and
Matt Long. This blog has a couple good things going for it. For starters, the
posts are always interesting and well written. Combine that with the fact that
most entries are very practical in nature. The authors usually explain how
they figure out how something Cocoa-related works. You get to go along for
the ride.

Chapter 21: Ten Great Web Sites for Cocoa Developers 369

Theocacao

theocacao.com

Another Cocoa blog, this one is run by Scott Stevenson. Scott is very involved
in the Cocoa community, so don’t be surprised if you hear him speak one day
at a convention or a get-together for coders. He also covers these events on
his blog, so you won’t miss anything if you don’t attend these events. The
blog also covers popular Cocoa topics with a fair amount of depth, provides
interviews with Cocoa luminaries, and offers the occasional rant.

Call Me Fishmeal

wilshipley.com/blog

Wil Shipley is well-known among the Cocoa community, largely because of

his outstanding business success writing Cocoa software and because he was
the founder of The Omni Group, one of the seminal NeXT developers, and a
major developer since the beginning of OS X. His site offers Wil’'s musings on
a variety of subjects, including Cocoa, Macintosh, iPhone development, fast
cars, Microsoft, software design, and product design in general. He’s an opin-
ionated bloke, but you can tell that his remarks are always well thought out
and that he believes his stance strongly. One of the more popular Cocoa items
on the blog is the Pimp My Code series, where Wil accepts a reader-submitted
code submission and then explains how to fix and/or improve the code. It’s
immensely interesting watching how a professional approaches real-life code.

Domain of the Bored

boredzo.org/blog

With a subtitle of “The personal Weblog of Peter Hosey,” this blog has a sig-
nificant amount of Cocoa materials. Between in-depth explanations of Cocoa
concepts and anecdotes about his development experiences with his Growl
framework, Peter’s site is one not to miss. You have to do some digging on
his site, but you come out with some useful gems. He also likes to tout the
Macintosh platform as well as other kinds of programming, so you're never
bored here.

370 Partv: The Part of Tens

Dan Wood: The Eponymous Weblog

http://gigliwood.com/weblog

Dan Wood offers a lot of useful Cocoa discussions based on his real-world

experience developing software. Sometimes he talks about his experiences
releasing products, other times he riffs on software localization. Whatever
the topic, you leave his site a better programmer.

Apple Forums

www.cocoabuilder.com

This site provides archives of Apple’s forums for Cocoa and Xcode develop-
ment. With a quick search, you have instant access to thousands of posts by
Cocoa developers from around the world. Mainly these come in the form of
questions and requests for help, and the replies tend to come from Cocoa
professionals. The answers are sometimes terse, but the information is
always spot on. If a Cocoa developer has thought of it, it’s appeared on this
site at one time or another (or more likely — multiple times).

Cocoa Dev Central

cocoadevcentral .com

Cocoa Dev Central hosts a couple dozen Cocoa tutorials. The tutorials are in-
depth and very well done. Besides having a beautifully polished appearance,
the tutorials are easy to follow and cover topics that aren’t always available
elsewhere. The tutorials are usually geared toward beginners, but pros will
find something beneficial here too.

Cocoalev

cocoadev.com

CocoaDev is a fantastically useful site that covers many different aspects of
Cocoa development. Here you find all sorts of advice about Cocoa program-
ming in a nice condensed format (just the facts, ma’am!). The site has a large
user base, so you can be sure that the advice comes from a variety of devel-
opers. You also find on this site an enormous list of Cocoa blogs.

o/] o

About Bundle, 95
About Menu, 90
About My Application, 90
About Panel
copyright date in, 95-96
credits in, 96-97
icon, 92
information in, 90
setting name or title in, 92
version number in, 94-95
accessor method, 128
AccountController class
adding actions to, 141-142
adding outlets to, 141-142
adding to project, 331-332
changing Object class to, 336-337
connecting interface, 143
creating files for, 145
naming, 141-142
running application, 147
specifying superclass for, 146
actions
adding, 31, 122
connecting to interface, 35, 81-83,
304-305
defining, 31

ADC (Apple Developer Connection), 8, 368

addObject method, 195
Address Book, 71

Adobe Photoshop, 98, 225
AIFF file, 296, 301, 313
All-in-One layout (Xcode), 44
alloc method, 117-118, 129
animation, 183

AppKit, 224

AppKit Framework, 9

Apple Developer Connection (ADC), 8, 368

Index

Apple Forums, 370
Apple Partition Map, 103
application bundle, 248
Application item, 68
Application menu, 75-77
Application template, 20-21
applications. See also applications,
document-based
adding code to, 36-37
building, 37-39, 60
building interface, 23-25
code reuse, 366
copyright date, 95-96
creating disk image, 102-105
creating in six steps, 17-19
creating interface, 23-25
credits, 96-97
debugging, 37-39
idea for, 19-20
information, 90
overview, 247-248
preparing menu for, 74-77
sending e-mail from, 288-289
setting icon, 92
setting name or title, 93-94
starting with project, 20-22
version number, 94-95
applications, document-based
adding code, 325-327
building and running, 321
creating interface, 322-325
creating new document, 321
creating new project, 317-318
interface, 322-325
location, 318
MyDocument class, 318-321
overview, 317
running, 321
applyCheckbox outlet, 204

372

Cocoa Programming for Mac 0S X For Dummies

arguments, 115
arrays. See also data types
adding items to, 195
inserting objects, 195
mutable, 194-195
NSArray, 193-194
NSMutableArray, 193-194
overview, 192-195
removing items from, 195
replacing elements of, 195
arrayWithObjects method, 193
aString parameter, 113
attributes, 344-347
Attributes Inspector, 140
Attributes window, 65-66
audio. See also audio player
loading sound files, 297-298
overview, 295-296
playing system sounds, 296-297
audio player (Cocoa project)
adding stop functionality, 302-303
attributes, 299
buttons, 299
connecting actions to interface, 304-305
interface, 299
MyAudioController class, 300-302
audioFileTypes array, 297
Automator, 71
autorelease method, 119
AVl files, 313
awakeFromNib method, 151-152, 188,
330, 335

ol e

backgroundColorWell outlet, 204
balance method, 334-340
Bank Account application (Cocoa project)
adding codes, 138-139
adding controller, 141-147
adding labels, 140
adding view, 139-140
creating new class, 136-137
implementation file, 139
naming, 136-137
naming new class, 138
selecting application, 136
setting up bindings, 335-340
title of application, 140

bevel buttons, 174-175
Beziér paths, 230-231
bezierPathWithOvalInRect
method, 231
bezierPathWithRect method, 230
bindings
defined, 330
implementing, 334-340
key-value coding, 333-334
key-value observing, 333-334
overview, 329
setting up in Interface Builder, 335-340
starting project with, 331-332
blackColor, 224
Blank Disk Image, 102
blogs
Call Me Fishmeal, 369
Cocoa Is My Girlfriend, 368
Dan Wood: Eponymous Weblog, 370
Domain of the Bored, 369
Theocacao, 369
blueColor, 224
BMP files, 313
book application (Cocoa project)
assigning relationships, 351-353
Author entity, 346-353
Book entity, 345-353
building interface, 354-358
Category entity, 346-353
creating data model, 344-350
creating new project, 342
isbn attribute, 347-348
Models folder, 343
naming, 342-343
pages attribute, 347
synopsis attribute, 347-348
templates, 342-343
title attribute, 346-347
Bookware Quickie, 368
BOOL data type, 112
Boolean data type, 195-196
breakpoints. See also debugging
adding, 52-53
deactivating, 54
removing, 57-58
brownColor, 224
browser
building, 283-287
buttons, 286

Index

functions, 283

interface, 285

loading Web page, 280-281

text field control, 285
Build and Debug function, 53, 60
Build function, 60
Build and Go toolbar, 60-61
Build and Run function, 60
built-in documentation, 58-59
bundle, 248
Bundle Version key, 95
Button control, 28
buttons

bevel, 174-175

changing, 27

check box, 171-173

label, 26

library, 168-169

overview, 167-168

push, 169-171

radio control, 175-177

round, 171-173

oo

calculateAnswer action
defining, 31
modifying, 84-85

calculator (Cocoa project)
adding actions, 31
adding breakpoints, 52-53
adding class to interface, 31-33
adding code to application, 36-37
adding controls to interface, 26-28
adding menu, 80-81
adding outlets to class, 30
adding pop-up menu, 78-79
application template, 21
building, 37-39
building interface, 23-25
changing codes in, 45-48
connecting class to interface, 33-35
connecting interface, 81-83
creating classes, 29-30
creating Controller class, 81
creating project, 20-21
debugging, 37-39, 51-58
file comments, 49
fixing codes, 55-57

idea for, 19-20
naming project, 21-22
removing breakpoints, 57-58
selecting location for, 22
text fields, 27
title of application, 23-24
wiring interface, 29-33
calibrated color, 225
Call Me Fishmeal (blog), 369
center method, 151-152
changeOperation action, 82, 85
Class Browser, 363
class method, 119
Class models, 48
classes. See also specific classes by name
adding actions to, 31, 122
adding outlets to, 30, 122
adding to interface, 31-32
connecting to interface, 33-35
creating, 29-30, 119-125
creating files, 124
creating interface, 121-122
defining, 125-127
graphical model, 48
implementing, 127-128
names, 130
printing, 267-268
using, 128-129
Clean command, 60
clearColor, 224
close method, 150
closing window, 150
CMYK color space, 225
Cocoa. See also Cocoa application; Cocoa
programming tips
frameworks, 9
Interface Builder, 13-15
object-oriented programming, 9
overview, 8-9
reusable codes, 9
viewing in Library window, 70
Xcode, 10-13
Cocoa application
adding code to, 36-37
building, 37-39, 60
building interface, 23-25
code reuse, 366
copyright date, 95-96
creating disk image, 102-105

373

3 74 Cocoa Programming for Mac 0S X For Dummies

Cocoa application (continued)
creating in six steps, 17-19
credits, 96-97
debugging, 37-39
idea for, 19-20
information, 90
preparing menu for, 74-77
sending e-mail from, 288-289
setting icon, 92
setting name or title, 93-94
starting with project, 20-22
version number, 94-95

Cocoa Dev Central, 370

Cocoa Is My Girlfriend (blog), 368

Cocoa programming tips
Class Browser, 363
coordinate system, 365
documentation, built-in, 362-363
drag and drop, 363-364
init method, 364
Interface Builder guidelines, 365-366
keyboard shortcuts, 361-362
superclass, 364-365
window count, 363

Cocoa Simulator, 75

CocoaBuilder.com, 370

CocoaDev, 370

Code editor, 76

codes
adding, 36-37, 206-208
changing, 45-47
fixing, 55-57
reuse, 366

Color panels, 207

color space, 225

colorRadios, 177

colors
calibrated, 225
convenience, 223-224
device, 224
device independent, 225
preset, 224

colorWithDeviceRed function, 225

Column view (Project window), 67-68

comments, 49

Condensed layout (Xcode), 44

connections, 33-35

Console window, 44-45

Control + drag operation, 33-34

controller
adding, 141-147
overview, 134

Controller class, creating, 81, 120, 251-254

controls
adding, 26-28
bevel buttons, 174-175
buttons, 167-173
check box, 173-174
overview, 167
progress bar, 182-183
push buttons, 169-171
radio control, 175-177
round buttons, 171-173
slider control, 178-179
tab view, 179-182
table, 184-189
viewing in Library window, 70-71
convenience colors, 223-224
coordinate system, 365

Copyright (Human-Readable) key, 95-96

copyright date, 90, 95-96
copyTheFile action, 261, 263
Core Data
advantages of, 342
building interface, 354-358
creating project, 342-343
defining model, 344-353
Models folder, 343
naming project, 342-343
overview, 336-338
createDirectoryAtPath method,
265-266
credits, 90, 96-97
Custom Objects, 71
cyanColor, 224

o e

Dan Wood: Eponymous Weblog, 370
darkGrayColor, 224
data types
arrays, 192-195
Boolean, 195-196
dates, 196-197
number, 191-192
dataOfType method, 327

dataWithContentsOfFile method, 219
dataWithPDFInsidedeRect method, 278

date conversion specifiers, 197
dates, 196-197
Deactive Breakpoints command, 54
dealloc method, 119
Debug tab, 53
debugging
adding breakpoints, 52-53
building applications and, 37-39
fixing codes, 55-57
removing breakpoints, 57-58
runtime errors, 51
steps in, 51, 53-55
syntax error, 51
Default layout (Xcode), 44-45
delegates, 165-166
deliverMessage method, 291
description method, 196
descriptionWithCalendarFormat
method, 196-197
Design window
functions, 66
launching, 66
overview, 65-66
viewing, 68-69

determinate progress indicator, 182-183

device colors, 224
DeviceCMYK color space, 225
DeviceRGB color space, 225
DeviceWhite color space, 225
directories, 248
DiscRecording, 71
disk image

creating, 102-105

encryption, 103

image format, 103

partitions, 103

volume format, 102

volume name, 102

volume size, 103
Disk Utility, 102-105
Display color attribute, 308
displayAsString method, 211-212
dissolveToPoint function, 243-244
document, 247
documentation, built-in, 58-59, 362-363
document-based application

adding code, 325-327

building and running, 321

creating, 317-321

creating interface, 322-325

creating new document, 321

creating new project, 317-318

interface, 322-325

location, 318

MyDocument class, 318-321

overview, 317

running, 321
DocumentType entry, 325
Domain of the Bored (blog), 369
doubleValue method, 192
downloading, 281-283
drawAString method, 113
drawAtPoint method, 239
drawing text, 239-242
drawRect function, 230, 235, 245, 269
Driver class

creating, 120

defining, 125-127

implementing, 127-128

testing, 130

using, 128-129

oF o

Editable attribute, 308

e-mail
adding functions to projects, 291-294
sending from client, 288-289

sending from Cocoa application, 286-294

sending from own apps, 290-291
URL, 288
emailField outlet, 293
encoding, 216
encryption, 103
entity, 344-346
errors
routine, 216
runtime, 51
syntax, 51, 57
Extensible Markup Language (XML), 91

ofF e

favorites, 50

Favorites Bar (Xcode), 50
file directory, 249

File Info window, 49

file path, 249

Index 3 75

376

Cocoa Programming for Mac 0S X For Dummies

fileAttributesAtPath method,
257-258
fileContents instance, 327

FileInfoController class, 252-254,

262-263, 266
FileMerge application, 78
filename, 249
files. See also folders

comments, 49
Controller class, 251-254
copying, 262-263
creation date, 249
deleting, 264-265
destination path, 262
downloading, 281-283
icons, 258-260
interface, 249-251
modification date, 249
moving, 263-264
opening and using, 249-261
overview, 247-248
path, 256-258
reading from, 261
size in bytes, 249
source path, 262
writing to, 261
File’s Owner item, 68
£i11 function, 235
First Responder item, 68
firstName method, 128
Flash animation, 313
float variable, 46, 55
floatValue method, 46, 192
folders
copying, 262-263
creating, 265-266
deleting, 264-265
destination path, 262
moving, 263-264
overview, 247-248
source path, 262
Font Manager item, 68
fonts, 208-209
Foundation Framework, 9
Foundation Kit, 191
fraction parameter, 243

frameworks, 9
Fusebox class
adding action to, 36-37
adding outlets to, 30
adding to interface, 31-33
changing codes in, 45-48, 84-87

connecting to interface, 33-35, 81-83

creating, 29
file comments, 49
model, 48

oG o

garbage collection, 117-119
getter method, 118
GIMP, 98
goBack function, 286
goForward function, 286
Graphic Converter, 98
graphics
Beziér paths, 230-231
colors, 223-227
displaying, 242-245
drawing path, 234-236
drawing text, 239-242
filling paths, 231-234
interface, 227-230
paths, 230-239
points, 221-222
rectangles, 222-223
text, 239-242
grayColor, 224
greenColor, 224
group, 45
Groups & Files folder, 22

o/ o

header files, 36, 77-78, 111

Help feature, 58-59

Hide NewApplication menu, 74

hideWindow action, 150

hiding window, 150-151

HTML (HyperText Markup
Language), 96-97

Human Interface Guideline, 63, 155

Index 3 77

o]e
IBOutlet, 326
ICNS (icon) file
adding to project window, 92
assigning to projects, 97
building, 98-101
creating, 98
managing, 101-102
icns Browser, 101-102
Icon Composer, 98-101
Icon File field, 92
Icon view (Project window), 66—67
icons
assigning to projects, 97
building, 98-101
creating, 98
managing, 101-102
setting in About Panel, 92
viewing, 258-260
IDE (integrated development
environment), 41
Identity Inspector, 32
image editors, 98
Image Kit, 71
image well, 250-251
iMovie, 157
implementation files, 36, 78
import statement, 114
indeterminate progress indicator, 182-183
indexofTabViewItem, 181
Info.plist file, 76-77, 91
Information Property list, 95-96
inheritance, 364
init method, 129, 364
initFileURLWithPath method, 281
initWithContentsOfFile method, 298
insertObject method, 195
Inspector window
functions, 66
launching, 66, 71-73
opening, 23
resizing window with, 24-25
instance. See objects
instance variables
declaring, 111-112
overview, 110

int parameter, 113

integer value, 37

integrated development environment

(IDE), 41

interface. See also interface controls
adding class to, 31-33
adding controls to, 26-28
adding menu, 80-81
adding outlets, 30
adding pop-up menu, 78-79
building, 23-25
changing window’s title, 23
clients, 29-30
connecting actions to, 35, 304-305
connecting class to, 33-35
connecting to actions, 35, 81-83
connecting to outlets, 81-83
connections, 33-35
creating, 121-122
creating Controller class, 81
creating header files, 77-78
creating implementation files, 78
document-based applications, 322-325
files, 249-251
graphics, 227-230
resizing window, 24
saving, 35
using in Xcode, 83-87
wiring, 205-206

Interface Builder. See also interface
adding controller in, 141-147
Attributes window, 65-66
building Web browser, 283-287
Design window, 68-70
Inspector window, 71-73
launching, 64
Library window, 70-71
Menu editor, 74-77
overview, 13-15, 63
Project window, 66—68
setting up bindings in, 335-340
testing browser in, 286
windows, 65

Interface Builder Kit, 70

interface controls
adding, 26-28
bevel buttons, 174-175

3 78 Cocoa Programming for Mac 0S X For Dummies

interface controls (continued)
buttons, 167-173
check box, 173-174
overview, 167
progress indicator, 182-183
push buttons, 169-171
radio control, 175-177
round buttons, 171-173
slider control, 178-179
tab view, 179-182
table, 184-189
interface files, 36, 111, 114
Internet
downloading files, 281-283
loading Web page in browser, 280-281
overview, 279
InternetController class
adding code, 294
connecting to interface, 292-293
creating, 292
creating files for, 293
intValue method, 192
iPhoto, 157
isVisible method, 151

o]o

JPEG files, 313

oo

Key Equiv. field, 72-73, 80, 170
keyboard shortcuts, 361-362

KVC (Key-Value Coding), 333-334
KVO (Key-Value Observing), 333-334

o/ o

Label control, 27, 335
launchedApplications, 185
Layout settings (Xcode), 44
Library window

buttons, 168-169

controls, 70-71

function, 66

launching, 25

Media tab, 25
Objects tab, 25
overview, 65-66
lightGrayColor, 224
List view (Project window)
loadResourceDataNotifyingClient
method, 282
loadWebPage action, 280
longValue method, 192

ol o

Mac OS Extended format, 102
Mac OS X, 7-8
magentaColor, 224
MainMenu item, 68
MainMenu.xib
building interface with, 23-25
creating window in, 153
opening, 64
overview, 22-23
makeKeyAndOrderFront method, 151
matrix, 175-177
Media tab, 25
memory management, 117-119
Menu editor
functions, 66
launching, 66
overview, 65-66
preparing menu for application, 74-77
menu item, creating, 80-81
Message Framework, 290
messages, sending, 37, 115
methods, 110, 112-113. See also specific
methods by name
minimizing windows, 165-166
minutes, 197
modal window, 215
model, 134
Model-View-Controller (MVC) design
pattern
adding controller, 141-147
adding view, 139-140
bindings, 330
building project with, 135-139
controller, 134
model, 134

Index 3 79

overview, 133
real-world analogy, 134-135
view, 134
month name, 197
.mov file, 306
moveTheFile action, 263
movie player (Cocoa project)
adding actions to, 311
adding code, 311-312
adding outlets to, 311
adding QTMovieView control, 310
connecting MyMovieController to
interface, 311
creating, 310-312
creating controller class, 310
creating interface, 310
movies
classes, 305-306
overview, 304-305
player, 310-312
QTMovieView class, 307-310
QuickTime, 313-314
MP3 files, 313
.mp4 file, 306
MPEG-1 files, 313
multimedia
building audio player, 299-305
building movie player, 310-312
loading sound files, 297-298
playing sound files, 297-298
playing system sounds, 296-297
QTMovie, 306
QTMovieView, 307-310
mutable arrays, 194-195
mutable object, 240
MVC design pattern. See Model-View-
Controller design pattern
My Application, 90
MyAudioController class
adding code, 301-302
adding stop functionality, 302-303
connecting actions to interface, 304-305
creating, 300
MyClass class, 111
MyController class
adding actions to, 122
adding outlets to, 122
creating, 120

creating files for, 124-125

naming, 121

wiring interface to, 124

wiring interface to instance, 124
MyDataController class

adding outlets to, 185-186

connecting data source, 187

connecting to interface, 187

creating, 185

creating files for, 187

implementation files, 187-188
MyDocument class, 319-321
MyMovieController class

adding actions to, 311

adding code, 311-312

adding outlets to, 311

connecting to interface, 311

creating, 311
MyPrintController class

adding actions to, 271

adding outlets to, 271

adding printToPDF action to, 275-278

changing header file, 272-273

changing implementation file, 273

connecting to interface, 271-272

creating, 270

creating files for, 272
MySheetController class

adding actions to, 162

adding outlets to, 162

changing implementation file, 164-165

connecting outlets and actions, 162-163

creating, 162

creating files for, 163
MyTextController class

adding actions to, 205

adding code, 206-208

adding outlets to, 204

creating, 204

file formats, 213-214

naming, 204

wiring interface to, 205-206
myTextView outlet, 322
MyWindowController class

adding actions to, 153-154

adding code to application, 154-155

adding outlets to, 153-154

naming, 153

380 Cocoa Programming for Mac 0S X For Dummies

NSOpenPanel class, 218, 298
i N o NSPageLayout class, 268, 273
NSPoint structure, 221-222, 237, 243
NSRange parameter, 219
NSRect structure, 222-223
New Application menu, 74 NSRunAlertPanel function, 265

New File window, 136 NSScaleToFit, 259

New File Wizard, 29 NSScrollview, 187

New Project window, 20-21, 136 NsSlider control, 178-179
NeXT operating system, 65 NSSound class, 296-297

NIB (NeXT Interface Builder), 65. See also NSString class, 118, 129, 196
NIB project window NSTableView control, 184

NIB project window NSTabView control, 181
Column view, 67-68 NSTabViewItem control, 181
functions, 66 NSTextField control, 201, 249-250, 280,

Icon view, 66-67 335, 364-365
NSTextView control, 201, 202-204,

name of application, 90, 93-94
name variable, 118
named color space, 225

items, 68

launching, 66 322-323, 364-365

List view, 67 NSURL class, 280

overview, 65-66 NSView class, 267
NSAlertDefaultReturn, 265 Nswindow class, 255
NSApplicationName, 185 NSWorkspace, 185, 280
NSArray class, 191, 193-194 numberOfRowsInTableView method, 188
NSButton control, 168-169, 203, 212, numbers, 191-192

249-250 numberWithDouble method, 192

NSCalendarDate class, 196 numberWithFloat method, 192
NSCancelButton, 256 numberWithInt method, 192
NSColor object, 223, 225 numberWithLong method, 192
NSColorwell control, 203 numberWithUnsignedShort method, 192
NSControl, 179
NSData control, 219 o 0 o
NSDictionary, 240-242
NSFileManager method, 256-258 Objective-C language
NSFileWrapper, 258 coding in, 115-119
NSHomeDirectory function, 262 creating classes, 29, 119-125
NSImage object, 243 declaring instance variables, 111-112
NSIndicator, 182-183 declaring methods, 112-113
NSLayout class, 268 defining methods, 114
NSLog, 181 instantiating objects, 117
NSMailDelivery class, 291 managing memory, 117-119
NSMakePoint function, 222 methods, 110
NSMatrix, 175-177 naming in, 130
NSMutableArray class, 194-195 objects, 110
NSMutableDictionary, 240-241 overview, 9, 109
NSNumber class, 191-192 passing parameters, 115-116
NSNumberFormatter class, 55-56 returning values, 116
NSObject class, 48, 111, 292 sending messages to objects, 115

NSOKButton, 216, 256

Index 38 ’

object-oriented programming (OOP),
9, 109-110
objects
autoreleased, 119
column view, 66
dragging to interface, 34-35
icon view, 66
immutable, 240
instance variables, 110
instantiating, 117
list view, 66
methods, 110
mutable, 240
sending messages to, 37, 115
viewing in Library window, 70-71
Objects tab, 25
objectValueForTableColumn
method, 188
Omni Group, 369
one-key access, 72-73
online resources
Apple Developer Connection, 368
Apple Forums, 370
Bookware Quickie, 368
Call Me Fishmeal, 369
Cocoa Dev Central, 370
Cocoa Is My Girlfriend, 368
CocoaDev, 370
Dan Wood: Eponymous Weblog, 370
Domain of the Bored, 369
overview, 367
Theocacao, 369
OOP (object-oriented programming),
9, 109-110
Open Scripting Kit, 71
opening window, 150
OpenPanel class, 254-256
openSheet method, 165
openURL method, 280-281
operationPopup outlet, 81-82
orangeColor, 224
orderOut method, 151
Other Sources group folder, 47
outlets
adding, 30, 122, 252-253
connecting to interface, 81-83
connections, 33-35

opPe

Page panel, 268-269
pageData, 281
panel, adding to project, 160-165
parameters, passing, 115-116
parent, 159
partitions, 103
pasteboard, 210-211
paths

Beziér, 230-231

defined, 248

displaying, 256-258

drawing, 234-236

filling, 231-234

relative points, 238-239

stop-sign-shaped, 237-239

stroking, 234-235
PDF (Portable Document File),

printing to, 275-278
PDFKit, 71
Photoshop, 98, 225
Pimp My Code series (blog), 369
Pixelmator, 98
plain text, 213
playAppSound action, 301
playSoundFile action, 301
playSystemSound action, 301
PNG files, 98, 313
points, 221-222
pop-up menu, 78-79
Portable Document File (PDF),
printing to, 275-278

positioning windows, 151-152
PostScript, 222
preferences, customizing, 43-45
prefsCheckbox, 173
PrintInfo object, 268-269
printing

classes, 267-268

overview, 267-268

page settings, 268-269

to PDF, 275-278

steps in, 268-269
printOnepage method, 271, 274-275
printOperationWithView method, 275
Product Name key value, 94

382

Cocoa Programming for Mac 0S X For Dummies

programming tips
Class Browser, 363
coordinate system, 365
documentation, built-in, 362-363
drag and drop, 363-364
init method, 364

Interface Builder guidelines, 365-366

keyboard shortcuts, 361-362
superclass, 364-365
window count, 363
progress indicators, 182-183
project, audio player
adding stop functionality, 302-303
attributes, 299
buttons, 299

connecting actions to interface, 304-305

interface, 299

MyAudioController class, 300-302

project, Bank Account
adding codes, 138-139
adding controller, 141-147
adding labels, 140
adding view, 139-140
creating new class, 136-137
implementation file, 139
naming, 136-137
naming new class, 138
selecting application, 136
setting up bindings, 335-340
title of application, 140
project, book application
assigning relationships, 351-353
Author entity, 346-353
Book entity, 345-353
building interface, 354-358
Category entity, 346-353
creating data model, 344-350
creating new project, 342
isbn attribute, 347-348
Models folder, 343
naming, 342-343
pages attribute, 347
synopsis attribute, 347-348
templates, 342-343
title attribute, 346-347

project, calculator

adding actions, 31

adding breakpoints, 52-53
adding class to interface, 31-33
adding code to application, 36-37
adding controls to interface, 26-28
adding menu, 80-81

adding outlets to class, 30

adding pop-up menu, 78-79
application template, 21

building, 37-39

building interface, 23-25
changing codes in, 45-48
connecting class to interface, 33-35
connecting interface, 81-83
creating classes, 29-30

creating Controller class, 81
creating project, 20-21
debugging, 37-39, 51-58

file comments, 49

fixing codes, 55-57

idea for, 19-20

naming project, 21-22

removing breakpoints, 57-58
selecting location for, 22

text fields, 27

title of application, 23-24

wiring interface, 29-33

project, Core Data

assigning relationships, 351-353
building interface, 354-358
creating data model, 344-350
creating new project, 342
Models folder, 343

naming, 342-343

templates, 342-343

project, movie player

adding actions to, 311

adding code, 311-312

adding outlets to, 311

adding QTMovieView control, 310

connecting MyMovieController to
interface, 311

creating, 310-312

creating controller class, 310

creating interface, 310

Index 383

project, MVC design
adding codes, 138-139
adding controller, 141-147
adding labels, 140
adding view, 139-140
creating new class, 136-137
implementation file, 139
naming, 136-137
naming new class, 138
selecting application, 136
title of application, 140
Project window
Column view, 67-68
functions, 66
Icon view, 66-67
items, 68
launching, 66
List view, 67
overview, 65-66
projects. See also projects with bindings;
specific project entries
adding comments to, 49
adding e-mail functions to, 291-294
adding panel to, 160-165
assigning icons to, 97
bindings, 331-332
changing codes in, 46-47
creating, 20-21
debugging, 51-58
naming, 21-22
selecting location for, 22
projects with bindings
implementing, 334-340
key-value coding, 333-334
key-value observing, 333-334
overview, 329
setting up in Interface Builder, 335-340
starting project with, 331-332
property, 344-346
Property List editor, 91
purpleColor, 224
Push Button control, 26
push buttons, 169-171

o () o

-

QTMedia class, 306
QTMovie class, 305, 306, 314
QTMovieView class
color attribute, 308
controller, 308
editable attribute, 308
overview, 307
volume attribute, 308-310
QTTrack class, 305
QTVR files, 313
Quartz Composer, 71
Quartz graphics engine, 221-222
Quick Model, 48
QuickTime, 313-314
QuickTime Kit, 71
Quit NewApplication menu, 74

o R e

radio control, 175-177
readFromData method, 327
rectangles, 222-223
redColor, 224
reference counting, 117
relative points, 237
release message, 117
removeFileAtPath method, 264-265
removeObjectAtIndex method, 195
replaceCharactersInRange
method, 219
replaceObjectAtIndex method, 195
resizing window, 24-25
resourceDataUsingCache method,
281-282
resources, online
Apple Developer Connection, 368
Apple Forums, 370
Bookware Quickie, 368
Call Me Fishmeal, 369
Cocoa Dev Central, 370
Cocoa Is My Girlfriend, 368
CocoaDev, 370

384

Cocoa Programming for Mac 0S X For Dummies

resources, online (continued)
Dan Wood: Eponymous Weblog, 370
Domain of the Bored, 369
overview, 367
Theocacao, 369
retain method, 119
retrieving text, 216-219
Return key, 72-73
reusable codes, 9, 366
RGB color space, 225
rich text, 96, 213
round buttons, 171-173
rounded level button, 174-175
RTFFromRange method, 216
runModal method, 215, 256
runModalWithPrintInfo method, 273
runOperation method, 275
runtime errors, 51

oS e

Save As dialog, 21

SavePanel, 215

seconds, 197

selectedRow method, 177
selectedTag message, 84
selectTheFile action, 259, 262
sendEMailManually action, 292
sendEMailWithClient action, 292
setAlpha method, 158
setBackgroundColor action, 205, 207
SetBalance method, 334-340

setCanChooseDirectories method, 255

setDoubleValue method, 183
setExcludeFromWindowsMenu
method, 152
setFirstName method, 128
setFloatValue method, 59, 179
setFormat message, 55
setFormatter method, 59
SetFrame method, 157
setFrameOrigin method, 151-152
setIntValue method, 179
setLinewidth function, 235
setName method, 118-119
setReleasedWhenClosed method, 150
setStringValue method, 256-258
setter method, 118

setTextColor action, 205, 207

setTitle method, 157, 255

SetTitleWithRepresentedFileName
method, 158

sharedWorkspace class, 280

sheet, 159-165

Show controller attribute, 308

showing window, 150-151

showPagePanel method, 271, 273

slider control, 178-179

Sound field, 171

sound files, 170-171

soundUnfilteredFileTypes class, 298

source code files, 36

square bevel button, 174-175

startAnimation method, 183

status 0 message, 44-45

stopAnimation method, 183

stop-sign-shaped path, creating, 237-239

stopSoundFile action, 302-305

stringByExpandingTildeInPath
method, 282

Strings window, 65

stringWithString method, 119

stroke function, 235

superclass, 48, 364-365

syntax error, 51, 57

system sounds, playing, 296-297

oJ e

tab view, 179-182
table control, 184-189
TabViewItem, 181
Tag property, 79
takeURLStringFrom message, 285
Targets folder, 93
Terminal, 248
text
adding code, 206-208
adding style, 208-210
building interface, 202-204
controller class, 204-205
controls, 201
drawing, 239-242
manipulating, 210-213
manual editing, 211-213
pasteboard manipulations, 210-211

Index 385

plain, 213

retrieving, 216-219

rich, 213

saving, 213-216

style functions, 208-209

wiring interface, 205-206
text fields, 27, 285
textColorwell outlet, 204
Textured check box, 155-156
textView outlet, 204
Theocacao (blog), 369
theURLField outlet, 280
TIFF files, 313
title of application, 90, 93-94
Title property, 23
toggleRuler action, 205
tracking windows, 152

olf o

unsignedShort method, 192

URL (Universal Resource Locator), 280

URLResourceDidFinishLoading
method, 282

URLWithString parameter, 281-283

UTFS, 216

oo

Value of the Copyright (Human-Readable)
key, 95

valueForKey method, 333

valueForKeyPath method, 188

values, returning, 116

version number, 90, 94-95

view, 134, 139

Volume attribute, 308-310

o[/ o

Web browser
building, 283-287
buttons, 286
functions, 283
interface, 285
loading Web page, 280-281
text field control, 285

Web Kit, 70
Web page, loading, 280-281
Web sites for developers
Apple Developer Connection, 368
Apple Forums, 370
Bookware Quickie, 368
Call Me Fishmeal, 369
Cocoa Dev Central, 370
Cocoa Is My Girlfriend, 368
CocoaDev, 370
Dan Wood: Eponymous Weblog, 370
Domain of the Bored, 369
overview, 367
Theocacao, 369
WebKit Framework, 283-284
WebView control
connecting buttons to, 286
connecting text field control to, 285
weekday name, 197
whiteColor, 224
Window Attributes, 23
window count, 363
Window item, 68
windowControllerDidLoadNib
method, 327
windowDidMiniaturize method, 166
windows
adding buttons, 153
changing appearance of, 155-157
closing, 150
creating, 153-155
events, 165-166
hiding, 150-151
keep track of, 152
minimizing, 165-166
modal, 216
opening, 150
overview, 149
positioning, 151-152
resizing, 24-25, 157
setting title, 157
setting transparency, 158
sheet, 159-165
showing, 150-151
textured property, 155-157
withAttributes parameter

386

Cocoa Programming for Mac 0S X For Dummies

Workspace Guide (Xcode), 58
writeToFile method, 215, 278, 281
WYSIWYG interface, 14

o X o

Xcode
adding outlets to class, 31
building applications, 60-61
changing codes in projects, 45-47
Class models, 48
creating classes, 31
customizing preferences, 43-45
file comments, 49
Help feature, 58-59
launching, 20
layout settings, 43-44
overview, 10-12, 42
QuickModel, 48
using interface in, 83-87

working with favorites, 50
working with project files, 45-47
Workspace Guide, 58
Xcode Developer Tools
advantages of, 8
downloading, 7-8
XIB files, 65
XML (Extensible Markup Language), 91

oyo

year, 197
yvellowColor, 224

o/ o

Zarra, Marcus, 368
zoom method, 157

BUSINESS, CAREERS & PERSONAL FINANCE

Accounting For Dummies, 4th Edition*
978-0-470-24600-9

Bookkeeping Workbook For Dummiest
978-0-470-16983-4

Commodities For Dummies
978-0-470-04928-0

Doing Business in China For Dummies
978-0-470-04929-7

E-Mail Marketing For Dummies
978-0-470-19087-6

Job Interviews For Dummies, 3rd Edition*t
978-0-470-17748-8

Personal Finance Workbook For Dummies*t
978-0-470-09933-9

Real Estate License Exams For Dummies
978-0-7645-7623-2

BUSINESS PRODUCTIVITY & MICROSOFT OFFICE

Six Sigma For Dummies
978-0-7645-6798-8

Small Business Kit For Dummies,
2nd Edition*+
978-0-7645-5984-6

Telephone Sales For Dummies
978-0-470-16836-3

Access 2007 For Dummies
978-0-470-03649-5

Excel 2007 For Dummies
978-0-470-03737-9

Office 2007 For Dummies
978-0-470-00923-9

Outlook 2007 For Dummies
978-0-470-03830-7

PowerPoint 2007 For Dummies
978-0-470-04059-1

Project 2007 For Dummies
978-0-470-03651-8

QuickBooks 2008 For Dummies
978-0-470-18470-7

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

Quicken 2008 For Dummies
978-0-470-17473-9

Salesforce.com For Dummies,
2nd Edition
978-0-470-04893-1

Word 2007 For Dummies
978-0-470-03658-7

African American History For Dummies
978-0-7645-5469-8

Algebra For Dummies
978-0-7645-5325-7

Algebra Workbook For Dummies
978-0-7645-8467-1

Art History For Dummies
978-0-470-09910-0

ASVAB For Dummies, 2nd Edition
978-0-470-10671-6

British Military History For Dummies
978-0-470-03213-8

Calculus For Dummies
978-0-7645-2498-1

Canadian History For Dummies, 2nd Edition
978-0-470-83656-9

FOOD, GARDEN, HOBBIES & HOME

Geometry Workbook For Dummies
978-0-471-79940-5

The SAT | For Dummies, 6th Edition
978-0-7645-7193-0

Series 7 Exam For Dummies
978-0-470-09932-2

World History For Dummies
978-0-7645-5242-7

Bridge For Dummies, 2nd Edition
978-0-471-92426-5

Coin Collecting For Dummies, 2nd Edition
978-0-470-22275-1

Cooking Basics For Dummies, 3rd Edition
978-0-7645-7206-7

Drawing For Dummies
978-0-7645-5476-6

Etiquette For Dummies, 2nd Edition
978-0-470-10672-3

Gardening Basics For Dummies*+
978-0-470-03749-2

HEALTH, SELF HELP, PARENTING & PETS

Knitting Patterns For Dummies
978-0-470-04556-5

Living Gluten-Free For Dummiest
978-0-471-77383-2

Painting Do-It-Yourself For Dummies
978-0-470-17533-0

Anger Management For Dummies
978-0-470-03715-7

Anxiety & Depression Workbook
For Dummies
978-0-7645-9793-0

Dieting For Dummies, 2nd Edition
978-0-7645-4149-0

Dog Training For Dummies, 2nd Edition
978-0-7645-8418-3

* Separate Canadian edition also available
t Separate U.K. edition also available

Horseback Riding For Dummies
978-0-470-09719-9

Infertility For Dummies+
978-0-470-11518-3

Meditation For Dummies with CD-ROM,
2nd Edition
978-0-471-77774-8

Post-Traumatic Stress Disorder For Dummies

978-0-470-04922-8

Puppies For Dummies, 2nd Edition
978-0-470-03717-1

Thyroid For Dummies, 2nd Edition+t
978-0-471-78755-6

Type 1 Diabetes For Dummies*+
978-0-470-17811-9

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974. Wl LEY
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

INTERNET & DIGITAL MEDIA

AdWords For Dummies
978-0-470-15252-2

Blogging For Dummies, 2nd Edition
978-0-470-23017-6

Digital Photography All-in-One

Desk Reference For Dummies, 3rd Edition

978-0-470-03743-0

Digital Photography For Dummies, 5th Edition

978-0-7645-9802-9

Digital SLR Cameras & Photography
For Dummies, 2nd Edition
978-0-470-14927-0

eBay Business All-in-One Desk Reference

For Dummies
978-0-7645-8438-1

eBay For Dummies, 5th Edition*
978-0-470-04529-9

eBay Listings That Sell For Dummies
978-0-471-78912-3

Facebook For Dummies
978-0-470-26273-3

The Internet For Dummies, 11th Edition
978-0-470-12174-0

Investing Online For Dummiies, 5th Edition

978-0-7645-8456-5

GRAPHICS, DESIGN & WEB DEVELOPMENT

iPod & iTunes For Dummies, 5th Edition
978-0-470-17474-6

MySpace For Dummies
978-0-470-09529-4

Podcasting For Dummies
978-0-471-74898-4

Search Engine Optimization
For Dummies, 2nd Edition
978-0-471-97998-2

Second Life For Dummies
978-0-470-18025-9

Starting an eBay Business For Dummies,
3rd Editiont
978-0-470-14924-9

Adobe Creative Suite 3 Design Premium
All-in-One Desk Reference For Dummies
978-0-470-11724-8

Adobe Web Suite CS3 All-in-One Desk
Reference For Dummies
978-0-470-12099-6

AutoCAD 2008 For Dummies
978-0-470-11650-0

Building a Web Site For Dummies,

3rd Edition

978-0-470-14928-7

Creating Web Pages All-in-One Desk
Reference For Dummies, 3rd Edition
978-0-470-09629-1

Creating Web Pages For Dummies,
8th Edition

978-0-470-08030-6

Dreamweaver CS3 For Dummies
978-0-470-11490-2

Flash CS3 For Dummies
978-0-470-12100-9

Google SketchUp For Dummies
978-0-470-13744-4

InDesign CS3 For Dummies
978-0-470-11865-8

Photoshop CS3 All-in-One
Desk Reference For Dummies
978-0-470-11195-6

LANGUAGES, RELIGION & SPIRITUALITY

Photoshop CS3 For Dummies
978-0-470-11193-2

Photoshop Elements 5 For Dummies
978-0-470-09810-3

SolidWorks For Dummies
978-0-7645-9555-4

Visio 2007 For Dummies
978-0-470-08983-5

Web Design For Dummies, 2nd Edition
978-0-471-78117-2

Web Sites Do-It-Yourself For Dummies
978-0-470-16903-2

Web Stores Do-It-Yourself For Dummies
978-0-470-17443-2

Arabic For Dummies
978-0-471-77270-5

Chinese For Dummies, Audio Set
978-0-470-12766-7

French For Dummies
978-0-7645-5193-2

German For Dummies
978-0-7645-5195-6

Hebrew For Dummies
978-0-7645-5489-6

Ingles Para Dummies
978-0-7645-5427-8

Italian For Dummies, Audio Set
978-0-470-09586-7

Italian Verbs For Dummies
978-0-471-77389-4

Japanese For Dummies
978-0-7645-5429-2

Latin For Dummies
978-0-7645-5431-5

Portuguese For Dummies
978-0-471-78738-9

Russian For Dummies
978-0-471-78001-4

Spanish Phrases For Dummies
978-0-7645-7204-3

Spanish For Dummies
978-0-7645-5194-9

NETWORKING AND PROGRAMMING

Spanish For Dummies, Audio Set
978-0-470-09585-0

The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies
978-0-7645-5391-2

The Historical Jesus For Dummies
978-0-470-16785-4

Islam For Dummies
978-0-7645-5503-9

Spirituality For Dummies,
2nd Edition
978-0-470-19142-2

ASP.NET 3.5 For Dummies
978-0-470-19592-5

C# 2008 For Dummies
978-0-470-19109-5

Hacking For Dummies, 2nd Edition
978-0-470-05235-8

Home Networking For Dummies, 4th Edition

978-0-470-11806-1

Java For Dummies, 4th Edition
978-0-470-08716-9

Microsoft® SQL Server™ 2008 All-in-One
Desk Reference For Dummies
978-0-470-17954-3

Networking All-in-One Desk Reference
For Dummies, 2nd Edition
978-0-7645-9939-2

Networking For Dummies,
8th Edition

978-0-470-05620-2

SharePoint 2007 For Dummies
978-0-470-09941-4

Wireless Home Networking
For Dummies, 2nd Edition
978-0-471-74940-0

OPERATING SYSTEMS & COM

PUTER BASICS

iMac For Dummies, 5th Edition
978-0-7645-8458-9

Laptops For Dummies, 2nd Edition
978-0-470-05432-1

Linux For Dummies, 8th Edition
978-0-470-11649-4

MacBook For Dummies
978-0-470-04859-7

Mac OS X Leopard All-in-One
Desk Reference For Dummies
978-0-470-05434-5

SPORTS, FITNESS & MUSIC

Mac OS X Leopard For Dummies
978-0-470-05433-8

Macs For Dummies, 9th Edition
978-0-470-04849-8

PCs For Dummies, 11th Edition
978-0-470-13728-4

Windows® Home Server For Dummies
978-0-470-18592-6

Windows Server 2008 For Dummies
978-0-470-18043-3

Windows Vista All-in-One
Desk Reference For Dummies
978-0-471-74941-7

Windows Vista For Dummies
978-0-471-75421-3

Windows Vista Security For Dummies
978-0-470-11805-4

Coaching Hockey For Dummies
978-0-470-83685-9

Coaching Soccer For Dummies
978-0-471-77381-8

Fitness For Dummies, 3rd Edition
978-0-7645-7851-9

Football For Dummies, 3rd Edition
978-0-470-12536-6

GarageBand For Dummies
978-0-7645-7323-1

Golf For Dummies, 3rd Edition
978-0-471-76871-5

Guitar For Dummies, 2nd Edition
978-0-7645-9904-0

Home Recording For Musicians
For Dummies, 2nd Edition
978-0-7645-8884-6

iPod & iTunes For Dummies,
5th Edition
978-0-470-17474-6

Music Theory For Dummies
978-0-7645-7838-0

Stretching For Dummies
978-0-470-06741-3

©C DU.MMIE«S.C{;M. '

Everyday

Advanced Heahth
Competing | Cemputing | Thelntemet | ArHome | yying g spirit

Win the Featured Books & Articles

~ Ultimate
/| Badk-to-Schaal
ap * Prize Package!

elips
Subscribe o our fres
newsletiers,

Catch the Fever! Free Sudoku and
Kakuro Puzzles each day!
Podcasts

WWhather reading a Dummies
ook or listening bo & Durmmies
podcast, when you gel Dummnes,
you get results.

Scaning in F

Resourc

R55M@

Ir's ol free 1o you 50 what are you
waiting tor?

Dammies Diaks

ALA SHOFE AeAr youL

Focus on Football

pree |

500 8 o
ot 4500
i United Kingdom What'sa_ | Wina$500 Dummies
‘o Gigabook? | Gift Card!
Canada
) Australia Featred Product
Translations "
| Ve For Dummies Champagne
¥ | Hutas and Book Sat
- More Info >
Abour Dummics | SenupforeTips | Sign Up for RSS Feeos '

Making & orts nd the
Minlglnwmunq &SI.PM Tl BCT'I":H\MM

B
= S
#ciobe Creste Suite 3

Wad Pre Ong
Desk

acthan

e Center

Basic Math & Pre-Algebri
For Dummses

SERRCH []

Spring
Cleaning

Biographies

Product Shop

* Consumer Elecironics
Crafts & Sewing Patiems
Culinacy

and more >

| Cusioen Publahing | Conac us

* Separate Canadian edition also available
t Separate U.K. edition also available

Get smart @ dummies.com®

* Find a full list of Dummies titles

* Look into loads of FREE on-site articles

* Sign up for FREE eTips e-mailed to you weekly

* See what other products carry the Dummies name
* Shop directly from the Dummies bookstore

* Enter to win new prizes every month!

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

T
spo8 Sgw!ng_PﬂRerrls

IES

2.foot cables f o
Booster Cables

DUMMIES

Electric Guitar
Starter Pack

HDTV Cable Kit

e

fcrl'_‘efescope'
DUMMIES o

DVDs * Music * Games * DIY
Consumer Electronics * Software * Crafts
Hobbies * Cookware * and more!

Check out the Dummies Product Shop at www.dummies.com for more information! W l LEY

Cocoa is hot! Stir up apps
for Mac OS X, iPhoner,
and iPod’® Touch

It's a great time to go for Cocoa, because it’s not only Apple’s
preferred framework for developing software, it’s also

the best way for you to create software for Mac OS X and
iPhone.This book gives you a solid foundation in Cocoa and
the unusual syntax of Objective-C.You'll learn what’s new in
Cocoa frameworks and create applications step by step.

* X marks the start — see how Xcode underlies your applications as
the main component of Apple’s Developer Tools

* Be objective — examine the basics of the Objective-C language
and the elements of a Cocoa interface

* Add bells and whistles — spruce up your apps with audio, video,
Internet features, stylized text, and more

* Graphically speaking — create applications with the stunning
graphics for which Macs are famous

* High-end Cocoa — see how to build apps with multiple
documents or even have Xcode build an interface for you

Go to www.dummies.com/go/cocoafd to find project files

for the examples in the book

Erick Tejkowski was still in elementary school when he began helping to
instruct teachers on Apple computers. As a professional developer, he has

designed software for clients as varied as Chicken of the Sea, Energizer,
Nextel, Edys-Dreyers, Rigid Medical, and Leap Pad.

Programming/Software Development

Open the book and find:

*Tips for building a good interface

* How to work with Cocoa numbers,
arrays, Booleans, and dates

* Advice on managing files

*Ten tips for easier Cocoa
programming

* How to simplify with key-value
coding

*What to do with Cocoa on the
Internet

* How to add bindings to your
application

* Steps for building document-
based applications

Go to dummies.com’
for more!

For Dummies®
A Branded Imprint of

$WILEY

$34.99 US /$41.99 CN / £22.99 UK

ISBN 978-0-470-43289-1
53499

9780470432891 ‘H“

	Cocoa Programming for Mac OS X for Dummies
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go From Here

	Part I: Developer Tools
	Chapter 1: A Brief Tour of Cocoa Development
	Mac OS X Is a Programmer’s Dream
	Why Program with Cocoa?
	The Tools You Need

	Chapter 2: Creating Your First Cocoa Application
	Creating a Cocoa Application in Six Simple Steps
	Beginning a Project
	Building an Interface
	Adding Code to Make Your App Work
	Debugging and Building the Application

	Chapter 3: Xcode
	Xcode: The Core of Apple’s Development Tools
	Customizing Xcode Preferences
	Working with Project Files
	Debugging Your Project
	Where to Go for Help
	Building an Application

	Chapter 4: Interface Builder
	A Tour of Interface Builder
	The Interface Building Process
	Using an Interface in Xcode

	Chapter 5: Putting Polishing Touches on Your Application
	Adding an About Panel
	Assigning an Icon to Your Project
	Creating a Disk Image for Distribution

	Part II: Instant Cocoa and the Objective-C Language
	Chapter 6: The Basics of Objective-C
	Why Use Object-Oriented Programming?
	Class Is No Object!
	Coding in Objective-C
	Working with Your Own Classes

	Chapter 7: MVC Design
	Taking a Look at MVC Design
	Building a Project with an MVC Design

	Chapter 8: A Window with a View
	Working with Windows
	Changing the Appearance of Windows
	Beneath the Sheets
	Responding to Window Events by Delegating Authority

	Chapter 9: Working with Interface Controls
	Button Controls
	Radio Control
	Slider Control
	Tab Views
	Making Progress at the Bar
	Table Control

	Chapter 10: Cocoa Data Types
	Working with Numbers
	Working with Arrays
	Working with Boolean Data Types
	Working with Dates

	Part III: Putting It All Together: Cocoa Programming in Depth
	Chapter 11: Text
	Working with Text
	Doing Style the Easy Way!
	Manipulating Text
	Saving Text for a Rainy Day
	Retrieving Text

	Chapter 12: Graphics
	Cocoa and the Art of Graphics
	Building a Graphics Interface
	Painting with Lines and Shapes
	Drawing Text
	Displaying an Image

	Chapter 13: Managing Your Files
	About Files and Folders in Mac OS X
	Opening and Using Files
	Working with Files and Folders

	Chapter 14: Printing with Cocoa
	How Printing Works in Cocoa
	Tweaking the Page Settings
	Setting Up the Print Job and Printing the View
	Printing to Places Other Than a Printer

	Chapter 15: Cocoa on the Internet
	Interacting with the Web
	Sending E-Mail from a Cocoa Application

	Chapter 16: Multimedia
	Listening to Audio
	Watching Movies with Cocoa

	Part IV: Advanced Cocoa Topics
	Chapter 17: Document-Based Applications
	Creating a Document-Based Project
	Building the Interface for a Document-Based Project
	Adding the Code

	Chapter 18: Cocoa Bindings
	What Are Bindings?
	Starting a Project with Bindings
	Making Your Bindings Work: KVC and KVO
	Implementing Bindings

	Chapter 19: Core Data
	What’s So Great about Core Data Anyway?
	Creating a Core Data Project
	Defining the Model
	Building the Interface

	Part V: The Part of Tens
	Chapter 20: Ten Tips to Make Cocoa Programming Easier
	Use Keyboard Shortcuts
	Read the Documentation
	Use Class Browser
	Adjust the Window Count
	Use Drag and Drop
	Initialize and Awaken!
	Remember the Superclass
	Position Items with Cocoa Coordinates
	Use Guidelines in Interface Builder
	Reuse Your Code

	Chapter 21: Ten Great Web Sites for Cocoa Developers
	Apple Developer Connection
	Borkware Quickies
	Cocoa Is My Girlfriend
	Theocacao
	Call Me Fishmeal
	Domain of the Bored
	Dan Wood: The Eponymous Weblog
	Apple Forums
	Cocoa Dev Central
	CocoaDev

	Index

Cocoa Programming
‘for Mac 05 X

