JavaScript
FOR

DUMMIEDS

HTH EDITION

by Emily Vander Veer

WILEY
Wiley Publishing, Inc.

JavaScript” For Dummies; 4th Edition
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Cl(o]sspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail: brandreview@
wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. JavaScript is a trademark of
Sun Microsystems, Inc. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit wow.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004107963
ISBN: 0-7645-7659-3

Manufactured in the United States of America
109 87654321

4B/QS/RR/QU/IN

WILEY

About the Author

Freelance author and Web guru Emily A. Vander Veer has penned several
books and countless articles on Internet-related technologies and trends.
You can e-mail her at eav@outtech.com.

Dedication

For the D.

Author’s Acknowledgments

Many thanks to Gareth Hancock for giving me the opportunity to write the
very first edition of this book; to Craig Lukasik, who reviewed this book for
technical accuracy; and to all of the other tireless professionals at Wiley,
without whom this book wouldn’t have been possible.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Composition
Media Development

Project Editor: Pat O’'Brien

Project Coordinator: Erin Smith

Layout and Graphics: Andrea Dahl,

Acquisitions Editor: Steven Hayes Joyce Haughey, Jacque Roth, Heather Ryan
Copy Editor: Virginia Sanders Special Art:
Technical Editor: Craig Lukasik Proofreaders: Carl Pierce, Joe Niesen,

TECHBOOKS Production Services
Indexer: TECHBOOKS Production Services

Editorial Manager: Kevin Kirschner

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Joyce Pepple, Acquisitions Director
Composition Services
Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance

JOEPOAUCTIONeeeeeeeeeeeeeeeaeeeeeennnaaeeeeennasseesnnnnsaeeennnnsaeee]

Part I: Building Killer Web Pages

for Fun and Profit...........cccc.caannieeeaacccaaanneeecacaccacannnnee £

Chapter 1: Hitting the Highlights: JavaScript Basicsc.ccccevivveniinieniinieniceeene 9
Chapter 2: Writing Your Very First SCript......ccccocieviiivieniinieiicececeeie e 23
Chapter 3: JavaScript Language BasiCsccocevevinirieienieieee e 35
Chapter 4: JavaScript-Accessible Data: Getting Acquainted

with the Document Object Model...........cccoooieierinirinieieeeee e 73

Part II: Creating Dynamic Web Pages......................... 103

Chapter 5: Detecting Your Users’ Browser Environmentscccccoevveecvrevnnennnne. 105
Chapter 6: That’s How the Cookie Crumbles...........cccceveeiiirriiniieniienienieneeneeieeiens 125
Chapter 7: Working with Browser Windows and Frames...........ccccccevvvenveneeniennenns 143

Part III: Making Your Site Easy For Uisitors
to Navigate and Use................uuuuuueeeeeeeeeeeecccccccceaaaaa 155

Chapter 8: Creating Interactive Imagesccccevverienienieiienninieeeceeseeeeseeie e 157
Chapter 9: Creating MENUS.........ceccieiieriieniieieeieeieete et ese et e steesteesaesaessaesssesseessesnsenns 181
Chapter 10: Creating Expandable Site Mapsccccoereririneeierienieneneeeeeeeeeeeene 191
Chapter 11: Creating Pop-Up Help (TOOItIiPS) ...ccceviiniiniiiiiiinierierieseeeeeeieeiens 201
Part 1U: Interacting with Usersccccccueceeeacneeen. 213
Chapter 12: Handling FOTIMSc.ccveviiiiiiiiriieecieieieesesee et 215
Chapter 13: Handling User-Initiated EVents..........ccccoeovevieiieiieiieeiecieceeceeseeieeiens 239
Chapter 14: Handling RUntime EXrors.........ccocoeieieiiiniininieieceeeee e 249
Part U: The Part of TeNsceeueeeeeeeennnnnnunniiiaaaaaaaaee 253
Chapter 15: Top Ten (Or So) Online JavaScript Resourcesccccoevvvevvrvrrnnnne. 255
Chapter 16: Ten (Or So) Most Common JavaScript Mistakes

(And How t0 AvOid ThHEIM)oviiiriiriiiiieieeiecieete ettt sttt ens 261

Chapter 17: Ten (Or So) Tips for Debugging Your Scriptsccccceevvevvenveneeniennnenns 273

Part Ul: Appendixesccccceeeccceeccceececcneceeeeeen 293

Appendix A: JavaScript Reserved Wordsccooevvierviiniiinienieniccceeeeseseesee e 295
Appendix B: JavaScript Color VAlUESccveviieriierieecienieniectcseeeeieee e 297
Appendix C: Document Object Model Reference............cccccveeieeeeiieiieneesiecieene, 303
Appendix D: Special CharacCtersc.ccocevierireeieieieeeeeseeceee e 329
Appendix E: About the CD.........cccocirieieieieeceeteeeeee ettt 335

JRACKeeeeaaeeeaeeaeeeeeaeaaceneeneeaccneeeseaanneeesascneeeeee 3B]

Table of Contents

JOEPOAUCTION «..aaeeeeaeeeeeeeaeeeeeennaaaeeeennasaeeesnnnseeessnnsseeeens]

System ReqUITEMENTSc.cccueciiiieiieieeieeieeieeee ettt ete e v e e aeeaeeeaeens 1
ADOUt This BOOK.......ccoiiiieiieiiceeeeteteeete ettt e 2
Conventions Used in This BOOKccccccoeeiiivieniinienieeeeeieeieeeeeeeeeens 2
What You're Not to Read.........cocuevieiieiiiiniiiiicieccceceeeeee e 3
Foolish ASSUMPLIONSooviiiiiniiiiiiceciececeste ettt 4
How This Book Is Organized.............cocceevuiriiiniienieniiniieneeieeieeiesteseesieeiens 4
Part [: Building Killer Web Pages for Fun and Profit 4
Part II: Creating Dynamic Web Pages.........ccccocevvvvieneninenienceceeeene, 4
Part IIl: Making Your Site Easy for Visitors to Navigate and Use......5
Part IV: Interacting with Users.........ccccccooiiiiiiiiiinniiiieecee, 5
Part V: The Part of TENS.........ccoeeeieiecieriesececeeecteiene e 5
Part VI: APPENdiXes......c.ccouveviieieeieiieeiieeeiecie ettt esve v esveene e 5
Icons Used in This BOOK..........cccceviriririieieeeeeeeee e 5
Where to GO from Here..........c.ooveeieeieiecicececeeeee e 6

Part I: Building Killer Web Pages
for Fun and Profit..............cccccaaaaaaaacccnnneeeeeeeeceeececcceccecee £

Chapter 1: Hitting the Highlights: JavaScript Basics 9
What Is JavaScript? (Hint: It’s Not the Same Thing as Javal).................... 10
[t’s €asy! (SOTt Of)...ueccuieiieiieieeieeeeeee et 11

[t'S SPEEAY!...ciiiiiieieieeeeeeteeet ettt ae e 13
Everybody’s doing it! (Okay, almost everybody!)cccceevvervennnns 13
JavaScript and HTML........ccoooiiiiieieeeeeeeeeeee et 14
JavaScript and Your Web BrowSerccocceveiienienineneneeeieeneeeeeeee 16
What Can I Do with JavaScript That I Can’t Do with Web Languages?....17
Make your Web site easy for folks to navigatec.ccceceevveevennnns 18
Customize the way your Web site looks on-the-flyc.ccccceenein. 18
Create cool, dynamic animated effectsccoccovvieverveniinnencennenns 19
What Do I Need to Get Started?..........ccceeveeeeiecienieneneeeeeeeeeee e 19
HAardwarecooiiiiiietetee ettt 19
SOFEWATE ...ttt ettt s 20

| DZe T b1 0 1S) o1 15 o) s HNURR TSR 21

xi i JavaScript For Dummies, 4th Edition

Chapter 2: Writing Your Very First Script 23
From Idea to Working JavaScript Applicationccceceeveeviervienveenccennennne. 24
Ideas?! [got a million of ’em!cccoevevviiriieniiinieniceceeeeeeeee 24
Part I: Creating an HTML file.........ccccecvevierieninieeeceeeeeseeeeeee 25
Part II: Creating yOUr SCYPt.......ccceivieiiieiieeiecie e 29
Part IIl: Putting it all together by attaching
a script to an HTML file..........ccoveouieiiieieniieieceeseee e 30
Testing YOUT SCHIPL......oocuieiieiiiiiieeeeee ettt ettt e 32
Chapter 3: JavaScript Language Basics 35
JaVASCIIPE SYNTAX ..cuviiiiieiiciieieeeeeeee et s ns 35
Don’t keep your comments to yourself.........ccccoeceeververiiinnienieeniennne 36
Fully functioning.........ccccovuervieniieniiniiiiiecieceetesteceeee et 42
Operators are standing bYccccccveviieeieeiiecciiceeceeeee e 50
Working with variables ... 56
Putting It All Together: Building JavaScript Expressions
ANd StATEMENTScouiiiiiieiieieeee ettt ettt 58
The browser-detection SCript........cccoovveveriieniieniienieneceeeceeeeseene 59
The date-formatting SCriptcccooievirverieniiinierceceeeeeceeseee 64
The data-gathering SCript........c.cocoecieeeiiiicieeceeeeee e, 68
Chapter 4: JavaScript-Accessible Data: Getting
Acquainted with the Document Object Model 13
Object Models Always Pose NUdEcocevieniiniiniiniinieniceieeeeeeee, 74
ODJECEAVITY evitiiiieeete ettt et et re e be e beebeeaeenae e 75
For sale by owner: Object properties..........cccceeeveerievienenenenenenen. 77
There’s a method to this madness!............ccoocvinniiinineninnenen. 79
How do you handle a hungry event? With event handlers!............ 81
Company funCioNScccceevieriierienieeceee e 82
Anatomy of an Object: Properties, Methods,
Event Handlers, and Functions in Action........ccccccvvveeiiiiiiiicieeeieeeeeens 84
Dynamic objects: The least you need
to know about CSS and DHTML.........ccccocoivinininiiniiereneeeeeee 84
Example DHTML script: Adding text dynamicallyc.cccceeeveeuennne 86
Example DHTML script: Positioning text dynamically 90
Example DHTML script: Changing page appearance on-the-fly93
Browser Object MOAEISc..oocvieiieeiieieeceeeeeeee et 96
Netscape Navigator.........coceeiiriiriinerrenieeteeteetestese ettt 96
JavaScript data tyPeS....ceeceecieeiieieeieeeeeete e 98

Microsoft Internet EXPIOTerccccovvvivieiiiiienieeeececeeeeveeeese e 100

Table of Contents

Part 1I: Creating Dynamic Web Pages......................... 103

Chapter 5: Detecting Your Users’ Browser Environments 105
Whacking Your Way through the Browser Maze............cccccoeviininnninnss 105
Detecting FEAtUTESccvovieiiriiiieeieeteeeectet et 106

Browser make and Version........c.cceccevvierienieniineineeeeeeeeee e 106
Embedded ObJECtS.......uieiiiiieeeeceeeee et 112
The referrer Page.......ccccooeveveeieieieeeeceee e 121
USEr PreferenCeS......cc.cecvieeiieiieieeieeieete et ste e sveesaeeaeeae e ens 122

Chapter 6: That's How the Cookie Crumbles 125

COOKIE BASICS....ccveciiiiieiieieeieeeete ettt ettt ettt e st e s e e saesaean 125
WRY US€ COOKIES?eiuiiriiieiieieciecitese ettt ettt ene 126
CoOKie SECUTILY ISSUES ...cccueiiirieiieeieeieceeteteee et 126
Looking at cookies from a user’s perspectiveccccevvvervvennnnne. 127

Saving and Retrieving User Informationcceceevevierienenenccnencieienens 131
Setting @ COOKIE.......uiviiiiiiieiieeceetee e 132
AcCCesSing @ COOKIEoovuiiiieieciicieceeccte et 133
Displaying content based on cookie contents:

The repeat-visitor SCript........coceeveeviiriiniiiniereceeeeeeeeee e 134

Chapter 7: Working with Browser Windows and Frames 143
Working with Browser Windowscccceveriiniinienieniensieniesieseeseeeen 144

Opening and closing new browser windowsc.cccoceevvervennenne. 144
Controlling the appearance of browser windows..............ccccee...... 147
Working with Framesc..ccocoviiriiiiiiiieeeeeeeeen 148
Creating HTML framesc.cccceevueevieeienieeieseenieese et eee e ees 149
Sharing data between framesccccoecverierveeneeneeneeneeieeeeeeenes 152

Part I1I: Making Your Site Easy For Visitors
to Navigate and Use.................ccccccccciiiiiieeeeeeeeeeeeenne 155

Chapter 8: Creating Interactive Images 157
Creating Simple ANimations.........ccoecevvierienienieneceeeee e 157

Now you see it, now you don’t: Turning images on and off.......... 161

Slideshow Bob: Displaying a series of imagesccoceeeveevrrenne 165

Creating Rollovers, Hotspots, and Navigation Barscccccueevenennnen. 168
Creating a Simple rOllOVETccceeieeieriieieceeeeeete e 169

Creating navigation bars by putting rollovers together................ 171

Carving up a single image into multiple hotspotsc............ 177

X

X[V JavaScript For Dummies, 4th Edition

Chapter 9: CreatingMenuscccoiiiiiniinn... 181
Getting Acquainted with Menus..........ccccceveiriiniinieneeieceeieceeeese e 182
Pull-dOWN MENUScc.ooiiiiiiiiiinieieteteereeeeeteteesee e 182
SHAING MENUSccveriiiieiieieieeereet ettt aens 186
Taking Advantage of Third-Party DHTML Menu Components............... 190
Chapter 10: Creating Expandable SiteMaps 191
Site Map BaSICS...uviiuiiiiieiiiiiieieeieete ettt et s 191
The pull-down menu revisited..........cccoeveriiniiniininiineeeneeneee 193
Adding frames to the pull-down menuccceceeveevievieenieneennnnne. 196
Putting it all together: Adding targeted hyperlinks 197
Taking Advantage of Third-Party Site-Mapping Toolscccceecveruennen. 199
Chapter 11: Creating Pop-Up Help (Tooltips) 201
Creating Plain HTML TOOItIPS......ccooctriiiriiniiieiececieciecieeeeeresee e 202
Building DHTML TOOIIPS ...ccvevviiriiiiinienieececiecieeeesee et 204
Creating an HTML map and designating active areas 204
Defining a style for the tooltip.......ccccooevenininiieee, 205
Creating custom JavaScript functions
to display and hide tOOItipscccceevveeviieiinierieeeeeeeeeeee 206
Calling custom functions in response to the
onMouseOver and onMouseOut eventscccccceverereeceeeennee 207
Putting it all together: Using DHTML code
to create simple tOOItiPS.....ccevvverrieriiniiieeeeeeee 209
Taking Advantage of Third-Party Tooltips Scripts.......ccccceevveriervenreennen. 211

Part 1V: Interacting with Users.............ccceeeeeeeaceeicaeanc 213

Chapter12: HandlingFormst 215
Capturing User Input by Using HTML Form Fields...........c.cccoecveevenennen. 215
Creating an input-validation SCriptcccceceevervieiereninireceeees 216

Calling a validation SCIiPt........cccceevieeiieriieieeeeeeeee e 221

Putting It All Together: The Order Form Validation Script 222
Testing for eXiStENCE.......ccevviirviiiiiirieeieceeeeee e 224

Testing for a numeric value...........coccovvieviinieniienenneeieneeieeeeeeee 225

Testing for PAtternS.......cccevecieeie et 227
Form-level validationccccoceivervinniniiniiniccceceeeeeecee e 228

Chapter 13: Handling User-Initiated Events 239
The Skinny on Events and Event Handlers............ccccocooininininennnnnnen, 239
Handling EVENLS........cccoiiiiiieiieiece ettt et st as 240
WINAOW EVENLScoviiiiiiieiieiecteetese et ete et sreeee e esaeesaesaeesneens 243

MOUSE EVENLSc..eovuieiiiiiiieeieeieerieeteetestestesaeeseeesteebesseessesnsesssesnns 244

FOIM @VENTS......oooiieiieeieeieieeee ettt 245

Keyboard eVents...........cccceveiiieeiiiiieeieee ettt 247

Table of Contents }(/

Chapter 14: Handling Runtime Errors 249
Exceptional BaSiCScccviviiriiriiiiiiiecteetecct ettt 249
Handling EXCEPLIONScccevveriiiiieiieieecieieese sttt ae e 250

Part U: The Part of Tens..........caaacccceueeeeeeeeeeececeaaaaaae 253

Chapter 15: Top Ten (Or So) Online JavaScript Resources 255
Ten Web Sites to Check OUt........ccuievieieeienieeeeceeece e 255
INEESCAPE ...ttt ettt ettt ae st sa e b et e sbesressaesnessansans 256
MICTOSOLL ..ottt s naens 256
BUIIEF.COM ...ttt 256
WEDIMONKEYoccvviiieiieiieieceeceeseese ettt be e aeeaeeeae e 256
Project Cool’s JavaScript QuickStartsccceeeeveveneneneniceieens 256
EarthWeb.COmccooeiiiiiiieiececeeecece e 257
ADOUL.COM ...ttt naas 257
IRT.OTG .ottt ettt sttt et e st e s e b e s esseseesseesnensensans 257
WeDbREfErenCe.COML........ocveiiieiieiieieieee et 258
SCriptSearch.COMcccoeovieiiieiicieeiececce e 258
Not-to-Be-Missed NeWSGrouPS.........cccovueeeerreeriienienrienieneeneesteseesaeesveesnees 258
Chapter 16: Ten (Or So) Most Common JavaScript Mistakes
(And How to Avoid Them) ...t 261
Typing-in-a-HUrry EXTOrSc.coociiiiiieiiieeeeeeeee e 262
Breaking Up a Happy Pair ..o 263
Lonely angle bracketsccccoceeveecieeieniecieseeseeceeeeie e 263
| I0) 0 11 A : Ve SO USRI 263
Lonely parenthesesccccovvrviiriieriiiniienienieneeeee e 264
LONELY QUOLES ..ottt s nens 265
Putting Scripting Statements in the Wrong Placesc.ccccoecveevenennen. 265
Nesting Quotes INCOTTeCtlycooviririiiieiiniieceeeeeee e 266
Treating Numbers as Stringscccccceeveeveereenieniceeeee et 267
Treating Strings as NUMDETSccccceeierienieniereeeeieee et 268
Missing the Point: LOgiC EXrorsccocoovvieviiniiniinieecieciecieceseeeeen 269
Neglecting Browser Incompatibilitycccccevvieniinenieniiniinieniencceeen, 270
Chapter 17: Ten (Or So) Tips for Debugging Your Scripts 273
JavaScript Reads Your Code, Not Your Mind!..........c..ccoeeeirieeviiicieeinnns 274
[SOlating the BUg.......cceeouiiiiieieeiecie ettt 275
Consulting the Documentation.............ccccecevierieninenennieieereseeeeeeeens 276
Displaying Variable ValUuesccccceevieeierienienieeeiecieeie e 276
Breaking Large Blocks of Statements into Smaller Functions................ 279
Honing the Process of Elimination...........cccccoecveniininiiniinninienienceeeen 280
Debugging browser problems...........coccoeverieneenennenniennienienieneenes 281
Tracking HTML DUZSccoiiiieeiieeeeee ettt 281

Checking the JavaScript code..........ccooevirininiinnienenereeeeeceeene 282

xvi

JavaScript For Dummies, 4th Edition

Taking Advantage of Others’ Experience........cc.cccocevvevverviniieniiencceneennen. 282
Exercising the Time-Honored Trial-and-Error Approach........................ 283
Just Try and Catch Me Exception Handling!...........ccccocoveiininininnnnnn. 283
Taking Advantage of Debugging ToOIScccceeceevervieniieeciinieeieeeeseeeen 287
Netscape’s JavaScript CONSOIle..........cccevverienienieneeieeieeeeeeeeeees 288
Microsoft Internet Explorer’s built-in error display............cc........ 290

Part Ul: Appendixes.............cccccceeeecceicciceeiecccnecneeeeen 293

Appendix A: JavaScript ReservedWords 295
Appendix B: JavaScript ColorValues 297
Appendix C: Document Object Model Reference 303
The Document Object Model...........ccooceeieiiiniininieieeeieereee e 303
PN 0l Lo) QR RRRRR PR 304
ADPPIEL ..t e 304

PN T NSRS 305
ATGUIMENESeveiiiieeieeeieeeetetesteeteeee et eseesessessessesseessensessessessessesseessensens 305

PN g TSSO 305
BOOIEAN ...t en 306
201 (o) s SRR 306

(64 5 TCTel 4 070) SRR 306
clientInformationccooovviiiieiiiiieiec e 307
CTYPLO ettt et sttt e b ettt saee 307

DALE .. et e e eara e e e neeas 308
AOCUIMENT ..ottt e e eeae e et e eeneeeneeen 308

(S0 1115 01 5] [TR 309
L3S 01 SRR 309
FIleUPloadccocviviiriiieieeieeieeeeteete ettt 310

| 20) 4 1 o (USSR 310
FYAIMIE ..o et e 311
FUNCHION ..ottt enee s 311

5 1 a o (<] s SRR 311

|5 1153 0] 51U U TR 312
INAGE ... viiieeieeiece ettt ettt et ettt a e b e e enes 312

JAV@ 1ttt ettt et ettt et s e s e s e bt e e st st e st e s aa e ba e beenbeenaeentesaee 312
JAVAATTAY ..ottt sttt ettt ettt e 313
JAVACIASS ...ttt ettt 313
JAVAODIECT ... 313
JAVAPACKAGEeovveieeieeeeece et e e 313

LINK ottt ettt e e sae e et e e enreeenaeean 314

(oY ax:1 4 (o) o WU USRS 314

A =Y o LSRR 314

Table of Contents X(/ii

NAVIGATOTiiiieieieeieieeete ettt et sae e te e e e eessesessessesseennensensens 315

10 (S £-T o8-) 01U 316
INUITIDEY ..ottt 316

(0] =71 SO 316

(0] 470 o LTSRS 317
PaCKAZES ...ttt s 317
PaSSWOId ..ottt 318
PIUGIN ..ttt st 318
RAAIO et 318
REGEXD ittt ettt ens 319
RSt 320
SCIEEI. . euueueeutentetenteniteseetetentensesreesteseeneessesbesbeeseestesensessessesseeneeneensens 320
SEIECE......eoiiiiieete ettt 320
SEEING .ottt ettt ettt et e s e e s e e s e e be e beebeebeensaeaneenaeenns 321

SEYLE ettt ettt 321
SUDIUE ..t 322

SUTL c.ententeeteeutentententesteetteseestetenbenbesbeesteatestensesbesbeeseestenbentensesbeebeenaentensens 323

TOXL ettt ettt s 323
TEXEATEA ...ttt s 323
WIIAOW ..ottt ettt st ettt sae e 324
GLODAl PYOPEITIES ...ttt 325
Built-In JavaScript FUNCHIONScoocviviiieieiiieeeeeeceeeeeeeeee e 325
€SCAPE()evrerrerreiintieeerietesteste e s e ere et e te st e s te s e re e e et et e sentesreereeseentenaans 325
EVALD) ettt ettt sreere e enaennans 325
ISFINIEE() cuveieeieeee et 326
ISINAINQ ettt ettt ettt 326
1001010755 () U TP 326
PAYSEFIOAL() vevvvieeieiieeieteeeteete et e ene 326
PAYSEINE() teviririiiiiiiertet ettt sttt e ae e eeeene 327
SEFNG() -eveeeneerenieiei ettt ettt ettt et 327
BAINL() coeeeieee ettt et 327
UNESCAPE() eenvenreterreerienietestententesseentetestessessessesseensensensessessesseensensensens 328
1800121 o1 i () [T 328
Appendix D: Special Charactersccovun 329
Appendix E: Aboutthe CD, 335
Getting the Most from This CD........cccceeieiieiieiieeeeceee e 335
System Requirementscooeiereriniiieiieneeseeteteee e 336
USING the CD ..ottt ettt et b e s ae e s 336
JavaScript For Dummies Chapter Files.........ccccoceviininniniiniinienieeee, 337
What YOU'l FIN ..ottt 337
If You Have Problems (Of the CD Kind).......ccccceververvieniieniinienienceeeen, 338

) . SOOI 73 |

XUVII[JavaScript For Dummies, 4th Edition

Introduction

Welcome to the wonderful world of Web programming with JavaScript.
If you've worked with HTML before but want to add more flexibility
and punch to your pages, or even if you've never written a stick of code in
your life but are eager to hop on the Infobahn-wagon, this book’s for you.

Although I don’t assume that you know HTML, much of what you want to

do with JavaScript is interact with objects created by using HTML — so you

understand the examples in this book that much quicker if you have a good

HTML reference handy. One to consider is HTML 4 For Dummies, 4th Edition,
by Ed Tittel (Wiley Publishing, Inc.).

I do my best to describe how JavaScript works by using real-world examples —
and not a foo (bar) in sight. When explaining things in formal notation makes
sense, [do that, but not without a recap in plain English. Most importantly, I
include tons of sample programs that illustrate the kinds of things you may
want to do in your own pages.

Along with this book comes a companion CD-ROM. This CD-ROM contains all
the sample code listings covered in the text along with many other interesting
scripts, examples, and development tools. From experience, [can tell you that
the best way to get familiar with JavaScript is to load the scripts and interact
with them as you read through each chapter. If it’s feasible for you, I suggest
installing the contents of the CD right away, before you dig into the chapters.
Then, when you come across a listing in the book, all you have to do is double-
click on the corresponding HTML file you’ve already installed. Doing so helps
reinforce your understanding of each JavaScript concept described in this
book. For more information and instructions on installing the CD-ROM, see
the About the CD appendix in the back of this book.

System Requirements

Here’s what you need to get the most out of this book and the enclosed
CD-ROM:

v A computer with a CD-ROM drive and a modem

v A sound card (okay, this one’s strictly optional, but it’s a lot of fun!)

2

JavaScript For Dummies, 4th Edition

v Windows XT[s1] or Macintosh already installed with the following:

¢ A Pentium or faster processor, at least 16MB of RAM, and at least
25MB of free hard drive space if you're running Windows XT

e A PowerPC or faster processor, at least 16MB of RAM, and at least
10MB of free hard drive space for Macintosh users

¢ A copy of either Netscape Navigator 7.0 or Microsoft Internet
Explorer 6.0 (Chapter 1 tells you how to get a copy, if you haven’t
already)

About This Book

Think of this book as a good friend who started at the beginning, learned the
ropes the hard way, and now wants to help you get up to speed. In this book,
you can find everything from JavaScript basics and common pitfalls to answers
to embarrassingly silly questions (and some really cool tricks, too), all of which
[explain from a first-time JavaScript programmer’s point of view. Although you
don’t find explanations of HTML in this book, you do find working examples on
the companion CD complete with all the HTML you need to understand how
JavaScript works.

Some sample topics you can find in this book are:

v Creating interactive Web pages

v Validating user input with JavaScript

v Testing and debugging your JavaScript scripts

v Adapting your scripts for cross-browser issues

v Integrating JavaScript with other technologies, such as Java applets,

Netscape plug-ins, and ActiveX components

Building intelligent Web pages with JavaScript can be overwhelming — if you
let it. You can do so much with JavaScript! To keep the deluge to a minimum,
this book concentrates on the practical considerations you need to get your
interactive pages up and running in the least amount of time possible.

Conventions Used in This Book

The rules are pretty simple. All code appears in monospaced font, like this
HTML line:

Introduction

TITLEJavaScript For DummiesTITLE

Make sure you follow the examples’ syntax exactly. Sometimes your scripts
work if you add or delete spaces or type your keywords in a different case,
but sometimes they don’t — and you want to spend your time on more inter-
esting bugs than those caused by spacing errors. (If you're like me, you copy
and paste working code examples directly from the CD to cut down syntax
errors even more!)

Type anything you see in code font letter for letter. These items are gener-
ally JavaScript keywords, and they need to be exact. Directives in italics
are placeholders, and you can substitute other values for them. For example,
in the following line of code, you can replace state and confusion and leave
the equal sign out entirely, but you need to type var the way that it’s shown.

var state = "confusion"

Due to the margins of this book, sometimes code examples are wrapped

from one line to another. You can copy the code exactly the way it appears;
JavaScript doesn’t have a line continuation character. JavaScript has only one
place where you can’t break a line and still have the code work — between
two quotes. For example, the following line is invalid:

var fullName = "George
Washington"

And, when you see ellipses in the code (like this: . . .) you know I've omitted
a part of the script to help you focus on just the part I'm talking about. Or, I've
placed more code (like the HTML around the JavaScript) on the CD to save

papetr.

All the URLSs listed in this book are accurate at the time of this writing. Because
the Internet is such a dynamic medium, however, a few might be inaccessible
by the time you get around to trying them. If so, try using a search engine, such
as Yahoo! or Google, to help you find the slippery Web site you're looking for.

What Vou're Not to Read

Okay, you can read the text next to the Technical Stuff icons, but you don’t
have to understand what’s going on! Technical Stuff icons point out in-depth
information that explains why things work as they do (interesting if you're in
the mood, but not necessary to get the most out of the JavaScript examples I
present).

4 JavaScript For Dummies, 4th Edition

Foolish Assumptions

Everybody’s got to start somewhere, right? I'm starting out with the following
assumptions about you, the reader:

v You know how to navigate through an application with a mouse and a
keyboard.

»* You want to build interactive Web pages for fun, for profit, or because
building them is part of your job.

v You have, or can get, a working connection to the Internet.

v You have, or can get, a copy of Netscape Navigator 7.0 or Microsoft
Internet Explorer 6.0.

How This Book Is Organized

This book contains five major parts. Each part contains several chapters, and
each chapter contains several sections. You can read the book from start to
finish if you like, or you can dive in whenever you need help on a particular
topic. (If you're brand-new to JavaScript, however, skimming through Part I
first sure couldn’t hurt.) Here’s a breakdown of what you can find in each of
the five parts.

Part I: Building Killer Web
Pages for Fun and Profit

This part explains how to turn JavaScript from an abstract concept to some-
thing happening on the screen in front of you. It takes you step by step through
obtaining your choice of Netscape Navigator or Microsoft Internet Explorer,
discovering how to access and modify the document object model, and writing
and testing your first script. Part I also includes an overview of the JavaScript
language itself.

Part II: Creating Dynamic Web Pages

In this part, I demonstrate practical ways to create Web pages that appear
differently to different users. By the time you finish Part II, you’ll have seen
sample code for such common applications as detecting your users’ browsers
on-the-fly, formatting and displaying times and dates, and storing information
for repeat visitors by using cookies.

Introduction

Part I1I: Making Your Site Easy for
Uisitors to Navigate and Use

The chapters in Part Il are devoted to helping you create Web pages that visi-
tors can interact with easily and efficiently. You find out how to use JavaScript’s
event model and function declaration support to create hot buttons, clickable
images, mouse rollovers, and intelligent (automatically validated) HTML forms.

Part 1U: Interacting with Users

JavaScript is evolving by leaps and bounds, and Part IV keeps you up-to-date
with the latest and greatest feats you can accomplish with JavaScript, including
brand-new support for dynamic HTML and cascading style sheets. In this part
you also find a double handful of the most popular JavaScript and DHTML
effects, including pull-down menus, expandable site maps, and custom tooltips.

Part U: The Part of Tens

The concluding part pulls together tidbits from the rest of the book, organized
in lists of ten. The categories include great JavaScript-related online resources,
common mistakes, and debugging tips.

Part UI: Appendixes

At the back of the book you find a handful of indispensable references, includ-
ing JavaScript reserved words, color values, document objects, and special
characters. There’s also a nifty how-to section that describes all the cool tools
you find on the companion CD.

Icons Used in This Book

Ever get in one of those moods when you're reading along and get really
excited, and you just wish there was a way to cut to the chase and absorb
an entire chapter all at once? Well, if so, you're in luck! Not only is this book
organized in nice, easily digestible chunks, with real-life figures and code
examples, but there’s an extra added value, too: eye-catching icons to give
you a heads-up on the most useful tidbits, categorized so that you can tell
at a glance what’s coming up.

6 JavaScript For Dummies, 4th Edition

Take just a second to become familiar with the kind of information you can
expect from each icon:

This icon flags some of the cool stuff you can find on the CD-ROM included
in the back of this book. Because all the JavaScript source code listings are
on the CD (plus lots more), you can load up the scripts for each section and
follow along while you read if you want.

This icon lets you know that some really nerdy technical information is coming
your way. You can skip it if you want; reading through isn’t absolutely neces-
sary if you're after the bare-bones basics, but it does give you a little show-off
material!

Next to the tip icon you can find handy little tricks and techniques for getting
the most bang out of your JavaScript buck.

These little gems can help you figure things out, so pay attention.

Before you jump in and start applying the information in any given section,
check out the text next to these babies — chances are they’ll save you a lot
of time and hassle!

The browser icon alerts you to an important difference between the way
Netscape Navigator implements JavaScript and the way Internet Explorer
implements JavaScript.

Where to Go from Here

So what are you waiting for? Pick a topic, any topic, and dive in. Or, if you're
like me, begin at the beginning and read until you get so excited you have to
put the book down and try stuff out for yourself. And remember: From now on,
your life will be divided into two major time periods — before you mastered
JavaScript and after you mastered JavaScript. Enjoy!

Part |
Building Killer
Web Pages for
Fun and Profit

he 5t€ By Rich Tennant

T THE REAL PROGRAMMERS

DATING BAR
i
X Pocket protectors \\ '\'&\1 EE;%

I N L
| Whoa! Tock 2 the 2\ \§ \\W\ |
oh this one! A \\l\\ii‘i }\ i
N . (it

In this part . . .

avaScript is one of the coolest Web tools around —

and its use is spreading like wildfire. An extension to
Hypertext Markup Language (HTML), JavaScript enables
you to access and manipulate all the components that
make up a Web page. With JavaScript, you can create cool
graphic effects and build what are known as intelligent Web
pages: pages that verify input, calculate it, and make pre-
sentation decisions based on it. You can create all this, all
on the client, without having to learn an industrial-strength
language, such as C or C++!

Part I introduces you to JavaScript and then walks you step
by step through the process of creating your first script.
Finally, this part acquaints you with basic JavaScript pro-
gramming concepts, including everything you need to
know to create sophisticated custom scripts, from syntax
to the document object model.

Chapter 1

All You Ever Wanted
to Know about JavaScript
(But Were Afraid to Ask!)

In This Chapter

Understanding a working definition of JavaScript

Dispelling common JavaScript misconceptions
Getting started with JavaScript tools

Finding information online

M aybe you’ve surfed to a Web site that incorporates really cool features,
such as

v Images that change when you move your mouse over them
v Slideshow animations
v Input forms with pop-up messages that help you fill in fields correctly

v Customized messages that welcome repeat visitors

By using JavaScript and the book you’re reading right now you can create
all these effects and many more! The Web page in Figure 1-1 shows you an
example of the kinds of things that you can look forward to creating for your
own site.

Alot has changed since the previous edition of JavaScript For Dummies came
out. Perhaps the biggest change is the evolution of DHTML, or dynamic HTML.
DHTML refers to JavaScript combined with HTML and cascading style sheets,
and it’s a powerful combination you can use to create even more breathtak-
ingly cool Web sites than ever before.

10

Part |: Building Killer Web Pages for Fun and Profit

|
Figure 1-1:
JavaScript
lets you add
interactive
features to
your Web
site quickly
and easily.
|

€] Jazz Guitarist Clay Moore - Microsoft Intemet Explorar BEE]
File Edit View Favorites Tools Help i
@Bﬂck . x'| 2 , |) sexch 5 Favorites e"Medla £ bt E . @ ;,i am
“ddress |] hitkp: fuee, claymoore com/findes: hbml v| B

CLAY MOORE

B
JAZZ LINES
0 CD

H
SCHEDULED

- -M APPEARANCES :

[N]
— E-MAIL
i : E

v\

home | bio | cd | scheduled appearances | jazzlines | e-mail

© Intemnst

@®mo zzsem

| hietpef femsa, clayrmoore.com/schedule, bt

) 506331 CHOY_f dac -, =3 C:\Documents and Se..,

Along with this increased power comes increased complexity, unfortunately —
but that’s where this new, improved, better-tasting edition of JavaScript For
Dummies comes in! Even if you're not a crackerjack programmer, you can use
the techniques and sample scripts in this book to create interactive Web pages
bursting with animated effects.

Before you hit the JavaScript code slopes, though, you might want to take a
minute to familiarize yourself with the basics that [cover in this chapter. Here
[give you all the background that you need to get started using JavaScript as
quickly as possible!

What Is JavaScript? (Hint: It’s
Not the Same Thing as Java!)

JavaScript is a scripting language you can use — in conjunction with HTML — to
create interactive Web pages. A scripting language is a programming language

Chapter 1: All You Ever Wanted to Know about JavaScript

\\3

that’s designed to give folks easy access to prebuilt components. In the case of
JavaScript, those prebuilt components are the building blocks that make up a
Web page (links, images, plug-ins, HTML form elements, browser configuration
details, and so on).

You don’t need to know anything about HTML to put this book to good use;

I explain all the HTML you need to know to create and use the JavaScript
examples that you see in this book. If you're interested in discovering more
about HTML, I suggest checking out a good book devoted to the subject. A
good one to try is HTML 4 For Dummies, 4th Edition, by Ed Tittel and Natanya
Pitts (Wiley Publishing, Inc.).

J
It'’s easy! (Sort of)
JavaScript has a reputation of being easy to use because

v The bulk of the document object model (the portion of the language
that defines what kind of components, or objects, you can manipulate
in JavaScript) is pretty straightforward.

v For example, if you want to trigger some kind of event when a person
clicks a button, you access the onC11ick event handler associated with
the button object; if you want to trigger an event when an HTML form is
submitted, you access the onSubmit event handler associated with the
form object. (You become familiar with the JavaScript object model in
this book by examining and experimenting with working scripts. You can
also check out Appendix C, which lists all the objects that make up the
document object model.)

v When you load a cool Web page into your browser and wonder how
the author created the effect in JavaScript, 99 times out of a 100 all you
have to do to satisfy your curiosity is click to view the source code
(choose View=>Page Source in Navigator or choose View=>Source in
Internet Explorer). (Chapter 3 describes the . js files that are responsi-
ble for that 100th time.) This source code free-for-all, which is simply
impossible with compiled programming languages such as Java, helps
you decipher JavaScript programming by example.

However, becoming proficient in JavaScript isn’t exactly a no-brainer. One of
the biggest factors contributing to the language’s growing complexity is the fact
that the two major JavaScript-supporting browsers on the market (Netscape
Navigator and Microsoft Internet Explorer) implement JavaScript differently.
Netscape supports JavaScript directly — hardly a surprise because Netscape

11

Part |: Building Killer Web Pages for Fun and Profit

was the one that came up with JavaScript in the first place! Internet Explorer,
on the other hand, supports JavaScript indirectly by providing support for
JScript, its very own JavaScript-compatible language. And despite claims by
both Netscape and Microsoft that JavaScript and JScript, respectively, are
“open, standardized scripting languages,” neither company offers explicit,
comprehensive, all-in-one-place details describing all of the following:

v Precisely which version of JavaScript (or JScript) is implemented in each

of their browser releases.

v Precisely which programming features are included and which objects
are accessible in each version of JavaScript and JScript.

v How each version of JavaScript compares to each version of JScript.
(As you see in Chapter 4, JavaScript and JScript differ substantially.)

The upshot is that creating cross-browser, JavaScript-enabled Web pages now

falls somewhere around 6 on a difficulty scale of 1 to 10 (1 being the easiest
technology in the world to master and 10 being the hardest).

Fear not, however. Armed with an understanding of HTML and the tips and

sample scripts that you find in this book, you can become a JavaScript jockey

in no time flat!

What's in a name?

A long time ago, JavaScript was called
LiveScript. In a classic “if you can’t dazzle them
with brilliance, baffle them with marketing” move,
Netscape changed the name to take advantage
of the burgeoning interest in Java (another pro-
gramming language that Netscape partner Sun
Microsystems was developing at the time). By
all accounts, the strategy worked. Unfortunately,
many newbies still mistake JavaScript for Java,
and vice versa.

Here's the scoop: Java is similar to JavaScriptin
that they're both object-based languages devel-
oped for the Web. Without going into the nitty-
gritty details of syntax, interpreters, variable
typing, and just-in-time compilers, all you have to
remember about the difference in usage between

JavaScript and Java is this: On the gigantic client/
server application that is the Web, JavaScript
lets you access Web clients (otherwise known
as browsers), and Java lets you access Web
servers. (Note: In some cases, you can also use
Java for Web client development.)

This difference might seem esoteric, but it can
help you determine which language to use to
create the Web site of your dreams. If what you
want to accomplish can be achieved inside the
confines of a Web client (in other words, by
interacting with HTML, browser plug-ins, and
Java applets), JavaScript is your best bet. But if
you want to do something fancier — say, interact
with a server-side database — you need to look
into Java or some other server-side alternative.

Chapter 1: All You Ever Wanted to Know about JavaScript

\NG/
&*%“

It’s speedy!

Besides being relatively easy, JavaScript is also pretty speedy. Like most
scripting languages, it’s interpreted (as opposed to being compiled). When you
program using a compiled language, such as C++, you must always reformat,
or compile, your code file before you can run it. This interim step can take
anywhere from a few seconds to several minutes or more.

The beauty of an interpreted language like JavaScript, on the other hand, is
that when you make changes to your code — in this case, to your JavaScript
script — you can test those changes immediately; you don’t have to compile
the script file first. Skipping the compile step saves a great deal of time during
the debugging stage of Web page development.

Another great thing about using an interpreted language like JavaScript is
that testing an interpreted script isn’t an all-or-nothing proposition, the way
it is with a compiled language. For example, if line 10 of a 20-line script con-
tains a syntax error, the first half of your script may still run, and you may
still get feedback immediately. The same error in a compiled program may
prevent the program from running at all.

The downside of an interpreted language is that testing is on the honor
system. Because there’s no compiler to nag you, you might be tempted to
leave your testing to the last minute or — worse yet — skip it altogether.
However, remember that whether the Web site you create is for business or
pleasure, it’s a reflection on you, and testing is essential if you want to look
your very best to potential customers, associates, and friends. (A few years
ago, visitors to your site might have overlooked a buggy script or two, but
frankly, Web site standards are much higher these days.) Fortunately,
Chapter 17 is chock-full of helpful debugging tips to help make testing your
JavaScript code as painless as possible.

Everybody’s doing it!
(Okay, almost everybody!)

Two generally available Web browsers currently support JavaScript: Microsoft’s
Internet Explorer and Netscape/AOL’s Navigator. (Beginning with version 4.0,
Navigator became synonymous with Communicator, even though technically
Netscape Communicator includes more components than just the Navigator
Web browser.) Between them, these two browsers have virtually sewn up the
browser market; almost everyone who surfs the Web is using one or the other —
and thus has the ability to view and create JavaScript-enabled Web pages.

13

74 Part I: Building Killer Web Pages for Fun and Profit

JavaScript and HTML

You can think of JavaScript as an extension to HTML; an add-on, if you will.

Here’s how it works. HTML tags create objects; JavaScript lets you manipulate
those objects. For example, you use the HTML <BODY> and </BODY> tags to
create a Web page, or document. As shown in Table 1-1, after that document
is created, you can interact with it by using JavaScript. For example, you can
use a special JavaScript construct called the onlLoad event handler to trigger
an action — play a little welcoming tune, perhaps — when the document is
loaded onto a Web browser. (I cover event handlers in Chapter 13.) Examples
of other HTML objects that you interact with using JavaScript include win-
dows, text fields, images, and embedded Java applets.

Table 1-1 Creating and Working with Objects

Object HTML Tag JavaScript

Web page <BODY> . . . </BODY> document

Image document.myImage

HTML form <FORM name="myForm"> document.myForm
. </FORM>

Button <INPUT TYPE="button" document.myForm.

NAME="myButton"> myButton

To add JavaScript to a Web page, all you have to do is embed JavaScript code
in an HTML file. Below the line in which you embed the JavaScript code, you
can reference, or call, that JavaScript code in response to an event handler or
an HTML link.

You have two choices when it comes to embedding JavaScript code in an
HTML file:

+* You can use the <SCRIPT> and </SCRIPT> tags to include JavaScript
code directly into an HTML file.

In the example below, a JavaScript function called processOrder() is
defined at the top of the HTML file. Further down in the HTML file, the
JavaScript function is associated with an event handler — specifically,
the processOrder button’s onC1ick event handler. (In other words, the
JavaScript code contained in the processOrder () function runs when a
user clicks the processOrder button.)

Chapter 1: All You Ever Wanted to Know about JavaScript

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
// JavaScript statements go here
function processOrder() {
// More JavaScript statements go here
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="myForm">
<INPUT TYPE="button" NAME="processOrder" VALUE="Click to process your
order" onClick="processOrder();">

CIHTMLY
v You can use the <SCRIPT> and </SCRIPT> tags to include a separate,

external JavaScript file (a file containing only JavaScript statements
and bearing a . js extension) into an HTML file.

In the example below, the JavaScript processOrder () function is
defined in the myJSfile. js file. The function is triggered, or called,
when the user clicks the Click Here to Process Your Order link.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript"™ SRC="myJdSfile.js">
</SCRIPT>
</HEAD>
<BODY>
Click here to process your order.
</BODY>
</HTMLD
‘x\gN\BER Keep in mind that most of the examples in these printed pages focus on
& the JavaScript portion of the code (naturally!). But I include the HTML that

you need to create the examples on the CD-ROM, so you don’t have sweat
re-creating the Web pages from scratch!

Because Web pages aren’t made of HTML alone, however, JavaScript provides
access to more than just HTML objects. JavaScript also provides access to
browser- and platform-specific objects. Browser plug-ins (such as RealPlayer
and Adobe Acrobat), the name and version of a particular viewer’s browser,
and the current date are all examples of non-HTML objects that you can work
with by using JavaScript.

Together, all the objects that make up a Web site — HTML objects, browser-
and platform-related objects, and special objects built right into the JavaScript
language — are known as the document object model (DOM).

10

Part |: Building Killer Web Pages for Fun and Profit

JavaScript and Your Web Browser

You need to use Netscape Navigator 7.1 (or higher) or Microsoft Internet
Explorer 6.0 (or higher) to use the latest JavaScript enhancements that I
demonstrate in this book.

Not all browsers are created equal: Internet Explorer’s support for JavaScript
differs significantly from Navigator’s, and support for JavaScript varies from
browser version to browser version. For details, check out Chapter 5.

Although you can create and view JavaScript scripts with an old version of
one of these browsers, [recommend that you install the most current version
of Navigator or Internet Explorer. (What the heck — they’re both free!) The
latest versions of each product boast the very latest JavaScript features and
bug fixes; they’re also the versions that you see in the figures and examples
in this book.

You can use another browser, such as Opera or America Online (or even
another Internet protocol, such as FTP) to download the latest version of
Navigator or Internet Explorer and try it out. The section “What Do I Need to
Get Started?” later in this chapter is devoted to the ins and outs of obtaining
and installing a JavaScript-enabled browser. For now, suffice it to say that

v You need Navigator or Internet Explorer to work with JavaScript, which
means that you have to be running one of the client platforms that sup-
ports these browsers. (The Macintosh operating system and Windows
both support Navigator and Internet Explorer.)

v You need to be aware that people might use other, non-JavaScript-enabled
browsers to view your Web pages — or they might use JavaScript-enabled
browsers with JavaScript support turned off. Either way, you have no way
to guarantee that everyone who visits your page can view your JavaScript
handiwork. (Check out Chapter 5 for more information on this topic.)

JavaScript and browser security

In an era when computer viruses proliferate
faster than crab grass, browser security is an
important issue. You might be relieved to know
that JavaScript poses no special security
threats. Because JavaScript can't access any
objects other than browser-contained objects
(with the exception of cookies, which | discuss

in Chapter 6), no one can use JavaScript to
open up secret dial-up connections, wipe users’
hard drives, or perform other malicious acts,
even by accident. In other words, JavaScript is
subject to the security controls built into
JavaScript-supporting browsers.

Chapter 1: All You Ever Wanted to Know about JavaScript

What Can I Do with JavaScript That
I Can’t Do with Web Languages?

HTML. DHTML. XML. JavaScript. Java. Flash. When it comes to Web develop-
ment, the sheer array of languages and development tools can be confusing —
and you might be left wondering which language is best for which task.

The fact is that each language was designed with a particular kind of task in
mind, and JavaScript is no exception. Table 1-2 shows you the types of tasks
that JavaScript is best (and least) suited to perform. JavaScript is best suited
for client-side (browser-based) tasks.

Table 1-2 Using JavaScript for the Right Task
Task Is JavaScript Are JavaScript and
Useful? CSS (DHTML) Useful?

Provide users with helpful feedback Yes No

Customize page appearance Yes Yes (more sophisticated
than JavaScript alone)

Examine or change HTML form data Yes No

Create simple animations Yes Yes (more sophisticated
than JavaScript alone)

Create complex animations No No

Perform server-side processing No No

JavaScript performs its magic by working together with HTML and cascading

style sheets (CSS). Here’s how it works: HTML and CSS let you create static Web
pages by using tag building blocks, or objects. JavaScript lets you inspect and

manipulate the objects to punch up static pages with interactivity and simple
animations. (In other words, to use JavaScript, you need to use HTML,; to take
advantage of dynamic HTML, or DHTML, features, you need to use both HTML

and CSS.)

By using JavaScript, you can make a Web site easy to navigate and even cus-
tomize your page depending on who’s viewing it, what browser the visitor is
using to view it, and what time of day it is. You can even create simple (but
effective) animated effects.

18 Parti: Building Killer Web Pages for Fun and Profit

Make your Web site easy
for folks to navigate

The most common way to perk up your pages with JavaScript is to make them
easier to navigate. For example, you can use JavaScript to

v Create expandable site maps.

v Add tooltips — helpful bits of text that appear when a user moves a mouse
over a particular section of your Web site.

v Swap images when a user drags a mouse over a certain area of the screen.
(This effect is called a mouse rollover, and it helps users determine at a
glance which parts of your Web page are interactive, or clickable.)

v Inspect the data that your users enter and pop up helpful suggestions if
they make an invalid entry.

v Display a thank-you message after a user submits a form.

v Load content into multiple frames when a user clicks a button so that the
user can view multiple chunks of related information at the same time.

In addition to user-initiated events, such as clicking and dragging a mouse,
JavaScript also recognizes automatic events — for example, loading a Web
page onto a browser. (Check out Chapter 5 for details, including sample
scripts that run in response to automatic events.)

Customize the way your Web
site looks on-the-fly

Everyone likes to feel special, and the folks who visit your Web site are no
exception. By using JavaScript, you can tailor the way your pages look to
different users based on criteria such as

v The specific kinds and versions of browser that visitors use to view
your page

v The current date or time

v Your users’ behaviors the last time they visited your pages

v Your users’ stated preferences

v Any other criteria you can imagine

Chapter 1: All You Ever Wanted to Know about JavaScript ’ 9

Create cool, dynamic animated effects

Many folks assume that you need Java to create animations for the Web, but
that’s just not so. Although JavaScript certainly won’t be mistaken for the
most efficient way to create high-density animations, you can use JavaScript
with cascading style sheets (the combination is sometimes known as DHTML)
to create a variety of really neat animated effects. As a matter of fact, using
JavaScript is the easiest way to implement common effects, such as rollovers,
as you can see in Chapter 8.

What Do 1 Need to Get Started?

[hope you’re chomping at the bit to get started on your first JavaScript-enabled
Web page! First things first, though . . . You have an idea of what JavaScript can
do for you, and you might already have something specific in mind for your
first attempt. Now’s the time to dive into the preliminaries: what you need to
get started and how to get what you need if you don’t already have it. After
you complete the setup, you can go on to the really fun stuff!

Hardware

For the purposes of this book, [assume that you're beginning your JavaScript
adventure with a personal computer or a Mac. Your machine (or box, to use
the vernacular) should be a Pentium PC or better (unless it’s a Power Mac)
and should have at least 32MB of RAM and at least 25MB free hard drive space.
If none of this makes sense, try asking your local hardware guru; every orga-
nization seems to have at least one guru. (I've found, through extensive trial
and error, that most hardware gurus are fairly responsive to sugar-based snack
foods.)

You also need hardware installed that lets you connect to the Internet. This
hardware usually consists of a modem and a phone line, although some folks
opt for even faster options such as cable or DSL (digital subscriber line).
Depending on your computer, you might have an internal modem installed —
many come complete with a built-in modem. If not, you can buy a modem at
your local computer discount store. The differentiating factor among modems
is line speed: the faster the better. (Most computers these days come with a
56.6 Kbps model preinstalled, but 28.8 works just fine.) If you don’t already
have a modem, consider buying the fastest modem in your price range; you’ll
be very glad you did when you try to look at spiffy Web pages with multiple
graphics, each of which takes a loooong time to load (because graphics files
are typically very large).

2() Parti:Building Killer Web Pages for Fun and Profit

Software

For the purposes of this book, [assume that you have a Mac OS 0 or later or
a personal computer loaded with Windows 95, Windows NT, Windows 98,
Windows 2000, Windows XP, or Linux. (Currently, only Netscape Navigator
is available for use with Linux.)

[also assume that you have some way to create text files. (Most operating
systems come packaged with a variety of text editors and word processors,
any of which work just fine for creating JavaScript scripts.)

On the CD included with this book you can find some great text-editing utilities
that are designed specifically for creating JavaScript files.

JavaScript-specific software

You need a Web browser. Navigator (Netscape Communication’s commercial
Web browser) and Microsoft’s Internet Explorer are the only generally avail-
able browsers that support JavaScript at the time of this writing. So, the first
thing to do is to get a copy of Navigator or Internet Explorer.(The examples
that you see in this book are demonstrated by using both Netscape Navigator
and Internet Explorer running on Windows XP.)

Most personal computers come with Internet Explorer already installed. To
find out if this is the case for your particular computer, choose Startc>All
Programs and look for Internet Explorer.

Netscape Navigator

Netscape Navigator version 7.x bundles the Navigator browser with messaging,
Web construction, and other Internet-related goodies.

You can download a copy by visiting the following site (which offers step-by-
step installation instructions):

http://channels.netscape.com/ns/browsers/default.jsp

Of course, I'm assuming that you already have a Web browser installed or
that you have access to FTP. (FTP is short for file transfer protocol, which is
an Internet application that enables you to download files from other people’s
machines.)

Internet Explorer

If you're a Microsoft buff, you might want to download a copy of Internet
Explorer. Download it for free (or order your copy on CD-ROM for a nominal
fee) from the following site, which offers easy-to-follow installation instructions:

www.microsoft.com/windows/ie/default.htm

Chapter 1: All You Ever Wanted to Know about JavaScript

Documentation

For the latest Netscape Navigator and Microsoft Internet Explorer documen-
tation and technical support, respectively, check out the following URLs:

http://channels.netscape.com/ns/browsers/default.jsp
www.microsoft.com/windows/ie/default.htm
To view or download a copy of the Core JavaScript Reference, the documenta-
tion from Netscape that explains JavaScript basics and language concepts,
visit the following Web page:

http://devedge.netscape.com/central/javascript/

Microsoft’s documentation for its JavaScript-compatible scripting language,
called JScript, can be found at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/scriptb6/html/js56jsoridScript.asp

or you can visit http://msdn.microsoft.comand search for documents on
scripting.

21

22 Partl:Building Killer Web Pages for Fun and Profit

Chapter 2
Whriting Your Very First Script

In This Chapter

Designing your first JavaScript application
Creating an HTML file
Creating and attaching a script

Running the JavaScript application

0ne of the best ways to figure out the particulars of a new scripting lan-
guage is to dive right in and create a script — and that’s just what this
chapter shows you how to do! Actually, this chapter shows you how to do more
than just create a script; it shows you how to create a JavaScript application.
JavaScript isn’t much use all by itself. It really needs to work in conjunction
with HTML. So, a JavaScript application includes at least one script and at
least one HTML file.

This chapter covers every single, solitary aspect of JavaScript development
from coming up with a useful idea to implementing, testing, and executing that
idea. I don’t assume that you have any previous knowledge at all, so even if
you’re new to JavaScript or the Web, you can follow along with the examples
in this chapter. And because the example that | use demonstrates most of the
common JavaScript constructs — including statements, variables, operators,
functions, and event handlers — you can apply the strategies and code shown
here to your very own script creations.

So turn on your computetr, roll up those sleeves, and get ready to have
some fun!

24 Part I: Building Killer Web Pages for Fun and Profit

From Idea to Working JavaScript
Application

\\J

Like great art, great software doesn’t just happen. Creating either one requires
you to do a bit of planning first, and then you have to use a tool — along with
some kind of logical process — to translate your plan into something concrete.

In this section, you become familiar with the basic tools that you need to create
a JavaScript application: a simple text editor and a JavaScript-supporting Web
browser. You also get a good look at the logical process (called the development
cycle in programming circles) that you need to follow to create a JavaScript
application.

Ideas?! 1 got a million of 'em!

The first step to creating a knock-out JavaScript application is deciding
exactly what you want your application to do. Provide some feedback to
your visitors? Perform some calculations? Display requested information
in a pop-up window?

This book describes many of the things that you want to do with JavaScript —
from validating user input to creating mouse rollovers. For more ideas, check
out ScriptSearch.com’s JavaScript section at www.scriptsearch.com/
JavaScript.

When you have a clear idea in mind, take a few minutes to jot your thoughts
down on a piece of paper. This phase — clarifying in writing exactly what you
want your application to accomplish — has a long history of usefulness in
professional software development. Formally dubbed the requirements phase,
completing this step gives you the means to test your application at the end
of the process. (Hey, you can’t test something if you don’t know exactly how
it’s supposed to work!)

Here are the requirements for the first JavaScript proverb application that I
describe in this section:

[want to create a Web page that displays the current date and time.
Notice that the requirements can be in your own words. You don’t need to

fill out a formal requirements document, or (gasp!) labor over a flowchart.
A simple, concise description fills the bill nicely.

Chapter 2: Writing Your Very First Script 2 5

\\3

\\J

Part I: Creating an HTML file

When you have your script requirements in hand, you're ready to hit the
coding slopes!

First off, you need to create a Web page. You do that by typing HTML code
into a text editor and saving that code as a separate file on your computer’s
hard drive, which I show you how to do in this section.

Because this book is all about JavaScript — not HTML — I don’t go into
great detail about the HTML language. Instead, I demonstrate only as
much HTML as I need to describe all the wonderful things that you can
do with JavaScript. If you need a good introduction to HTML, I suggest
HTML 4 For Dummies, 4th Edition, by Ed Tittel and Natanya Pitts (Wiley
Publishing, Inc.).

Throughout this book, I use the Notepad text editor. Why? Because it
comes free with the Windows operating system. (It’s also easy to use.) But
if you have another text-editing program installed on your machine that
you’d rather use to create your scripts, by all means, use that program.

The companion CD contains trial versions of a handful of cool text editors
that are optimized for JavaScript, including HELIOS Software Solutions’
TextPad, Bare Bones Software’s BBEdit, Macromedia Dreamweaver, and
Adobe GolLive.

Just make sure that you use a text editor to create your scripts and HTML
files rather than using a word processor. The difference is this: When

you save a file by using a word processor application, such as Microsoft
Word, the application adds special nontext characters to the saved file.
Unfortunately, HTML and JavaScript interpreters — the bits of software
inside Web browsers that process HTML and JavaScript code, respectively —
can interpret only text; they can’t interpret word-processing files containing
special characters.

One exception exists to the rule about not using word processors to create
HTML or JavaScript files. Some word processors allow you to save files in
HTML or plain text format. To save a file in plain text format by using Microsoft
Windows, for example, you simply choose Filez>Save As and select Text Only
from the Save As Type drop-down list. If your word processor offers the ability
to save files in HTML or plain text format, you can use that word processor to
create HTML and script files. Otherwise, you need to use a text editor, such
as Notepad.

26

Part |: Building Killer Web Pages for Fun and Profit

|
Figure 2-1:
The date-
and-time-
stamp

script as it
appearsin
the Notepad
editing
window.

\\J

<ME CD

%

Here are the steps you need to follow to create a file by using Notepad:

1. Choose Start->All Programs->Accessoriesc>Notepad to pull up the
Notepad editing window.

2. When the Notepad editing window appears, type in your HTML and
JavaScript code. (See Figure 2-1.)

3. When you’re finished typing, save the file by choosing File~>Save.

If you're creating an HTML file containing embedded JavaScript
statements — such as the one that [describe in this chapter —
make sure that the name you give your file contains the .htm or
.html extension.

]
@l
£

o list0201.htm - Notepad

| File Edit Format View Help

[eHTML >

<HEAD> 2 g g

<TITLE>Displaying the current date and time (hasic example)</TITLE:
<SCRIPT LANGUAGE="lavascript" TyPE="text/javascript"s>

<!—— Hide from browsers that do not support Javascript

S/ capture the current date and time from the system clock
var todays_date = new Date();

A/ Display the current date and time on the web page
document.writelnitodays_date);

A4 —=» Finish hiding

</SCRIPT>

</HEAD>

<BODY>

<P>This is the HTML text for my first Javascript application. </ P>
</BODY >

< /HEAD>

</HTML>

The script that [demonstrate in this chapter is embedded in an HTML file,
which is the most common way to implement JavaScript scripts. However,
you can also implement a script as a separate file by using the . js extension,
and then reference that JavaScript file explicitly from an HTML file. I cover
this technique in Chapter 1.

Listing 2-1 shows you what the HTML code for the date-and-time-stamp appli-
cation looks like in the Notepad editing window.

To see how the code in Listing 2-1 behaves in a Web browser, load the file
1ist0201.htm — which you find on the companion CD — into Netscape
Navigator or Internet Explorer.

Chapter 2: Writing Your Very First Script

|
Figure 2-2:
The HTML
portion of
the date-
and-time-
stamp
application
as it appears
in Navigator.
|

Listing 2-1: The HTML Code for the Date-and-Time-Stamp Application

<HTML>

<HEAD>

<TITLE>Displaying the current date and time (basic example)</TITLE>
</HEAD>

<BODY>

<{P>This is the HTML text for my first JavaScript application.</P>
</BODY>

</HTML>

The code in Listing 2-1 displays the following:

v A title: The title text, Displaying the current date and time
(basic example), appears in the title bar of the document window.

v A bit of text: The This is the HTML text for my first
JavaScript application text appears in the body of the Web page.

Figure 2-2 shows how the HTML code in Listing 2-1 appears in Netscape 7.1.

[Displaying the current date and time (basic example) - Netscape BEX]
. File Edit View Go Bookmarks Tools Window Help

@ o 0 O [5 fle:C: remiwnitesjsfdde/code/Chapter%202ist0201 bt | [Cy Search | '5550 @

. B, EMail B AM 4 Home § Radio [] Netscape © Search £5Bookmarks

This 15 the HTML text for my first JavaScnpt application.

=] i [| pone == e
ﬁ) so6331 choz f.d.. | 3 CDocuments ani., | laying the cury, ([MENRETEEER = Qjo 2:43 PM

27

Part |: Building Killer Web Pages for Fun and Profit

fhg?

Number crunching

Some JavaScript programmers set the LAN-
GUAGE attribute of the <SCRIPT> tag equaltoa
value of JavaScriptl.1,JavaScriptl.2,
orJavaScriptl.3 (as opposed to plain old
JavaScript)iftheir script takes advantage of
version-specific JavaScript code. For example,
you can use any of the following three options:

{SCRIPT LANGUAGE="JavaScript">
(JavaScript code version 1.0 and
up)
</SCRIPT>

<(SCRIPT LANGUAGE="JavaScriptl.2">
(JavaScript code version 1.2 or
up)
</SCRIPT>

<SCRIPT LANGUAGE="JavaScriptl.3">
(JavaScript code version 1.3 or
up)
</SCRIPT

The trouble with that approach is that keeping
track of JavaScript support in the many different
versions of Navigator and Internet Explorer is
enough to keep a full-time accountant busy! Take
a look at the following and you see what | mean:

v Navigator 2.0 and Internet Explorer 3.0 sup-
port JavaScript 1.0.

v Navigator 3.0xand Internet Explorer 3.0xand
4.0x support JavaScript 1.1.

v Navigator 4.0 through 4.05 supports Java-
Script 1.2.

v Navigator 4.06 through 4.5 supports Java-
Script 1.3.

v Internet Explorer 5.x supports JScript 5.x
(which is compatible with JavaScript 1.3,
more or less).

v Navigator 6.0xand 7.1 and Internet Explorer 6
support JavaScript 1.5.

Whew! Even if you do manage to identify which
version of JavaScript or JScript first introduced
support for which JavaScript constructs you're
using, specifying avalue of JavaScript 1.3
(rather than JavaScript)for the LANGUAGE
attribute doesn't provide any additional Java-
Script support. It simply prevents browsers that
don't support JavaScript version 1.3 from trying
to interpret those JavaScript statements sand-
wiched between the <SCRIPT LANGUAGE=
"JavaScriptl.3">and </SCRIPT> tags.

My advice? Stick with LANGUAGE="Java
Script", use cutting-edge JavaScript con-
structs sparingly, and test your scripts in as
many different browsers (and versions of
browsers) as you possibly can.

Even though the Web page in Figure 2-2 looks nice, it’s only half done. No date
or time stamp appears on the page.

That’s where JavaScript comes in! You need a script to capture the current date
and time and display it on the page. You find out all you need to know to create
a script to do just that — as well as attach that script to an HTML file — in the
next two sections.

Chapter 2: Writing Your Very First Script 2 9

Part II: Creating your script

When you have a working HTML file, such as the one shown previously in
Figure 2-2, you can begin creating your script.

For the date-and-time-stamp application that [describe in “Ideas?! I got a mil-
lion of ’em!” earlier in this chapter, you need to create a script that

v Captures the current date and time.

v Displays the current date and time on the Web page.
The JavaScript code required to do all this, as shown in Listing 2-2, is simpler
than you might think. In Chapter 3, you get familiar with each and every line

of JavaScript code in detail, including comments, variables, and methods. For
now, just take a gander at Listing 2-2.

Listing 2-2: JavaScript Code for the Date-and-Time-Stamp Application

// Capture the current date and time from the system clock
var todays_date = new Date();

// Display the current date and time on the Web page
document.writeln(todays_date);

As you glance over Listing 2-2, notice that

v~ Lines that begin with // are JavaScript comments. The JavaScript
interpreter doesn’t attempt to execute comments. Instead, comments
serve to describe in human terms what you, the JavaScript programmer,
want the JavaScript code to accomplish. In Listing 2-2, you see two com-
ment lines. (For more about JavaScript comments, flip to Chapter 3.)

v The first JavaScript statement captures the current date and time by
creating a new instance of the built-in Date object and assigning the
value of that instance to a variable called todays_date.

var todays_date = new Date();

Note: You can find out more about how variables work by turning to Chap-
ter 3. For the nitty-gritty on the built-in Date object, check out Chapter 4.

+ The second JavaScript statement uses the writeln() method of the
document object to write the contents of the todays_date variable to
the body of the Web page.

document.writeln(todays_date);

In case you're interested, Chapter 4 describes the document object and
the writeln() method in detail.

30 Part I: Building Killer Web Pages for Fun and Profit

Part I1I: Putting it all together by
attaching a script to an HTML file

Together, the HTML code that you see in Listing 2-1 and the JavaScript code
you see in Listing 2-2 comprise the date-and-time-stamp application. Only one
step remains: combining the two into a single HTML file. (This step is often
referred to as attaching a script to an HTML file.)

Listing 2-3 shows you how to do just that.
To experiment with the code in Listing 2-3 on your own computer, just

load the 11st0203. htm file (located on the companion CD) into your Web
browser.

Listing 2-3: The Whole Enchilada: The HTML and JavaScript Code
for the Date-and-Time-Stamp Application

<HTML>

<HEAD>

<TITLE>Displaying the current date and time (basic example)</TITLE>
<SCRIPT LANGUAGE="JavaScript" TYPE="text/javascript">

<l-- Hide from browsers that do not support JavaScript

// Capture the current date and time from the system clock
var todays_date = new Date();

// Display the current date and time on the Web page
document.writeln(todays_date);

// --> Finish hiding

</SCRIPT>

</HEAD>

<BODY>

<{P>This is the HTML text for my first JavaScript application.</P>
</BODY>

</HTML>

The code that you see in Listing 2-3 combines the HTML code shown in
Listing 2-1 with the JavaScript code shown in Listing 2-2 — along with
four lines of additional code. It’s this additional code, shown in bold, that
attaches the JavaScript script to the HTML file.

As you scan through Listing 2-3, notice the following:

Chapter 2: Writing Your Very First Script

\NG/
gg\“

v The JavaScript code is shoehorned into the HTML file by using the
HTML <SCRIPT> and </SCRIPT> tags.

All JavaScript code must appear between beginning <SCRIPT> and ending
</SCRIPT> tags. You can include more than one script per HTML file as
long as you surround each script with the <SCRIPT> and </SCRIPT> tags.
Because more than one scripting language exists, the LANGUAGE and TYPE
variables specify JavaScript as the scripting language for this particular
script.

+ The JavaScript code is placed in the header section of the HTML file
(between the HTML <HEAD> and </HEAD> tags).

You can include multiple <SCRIPT> and </SCRIPT> tags in different
places in the HTML file. For example, you can include the <SCRIPT>
and </SCRIPT> tags in the body section of an HTML file between the
beginning and ending <BODY> and </B0DY> tags. However, because the
browser executes JavaScript code as it encounters that code, from top
to bottom, the fact that you include your script at the very top of an
HTML file (in the header section, as shown in Listing 2-3) ensures that
the JavaScript code is available for execution as soon as the Web page
is loaded.

v HTML comments hide the script from browsers that don’t support
JavaScript.

Browsers that don’t support JavaScript ignore everything between these
two lines:

{!-- Hide from browsers that do not support JavaScript
/] --> Finish hiding

Surrounding your JavaScript statements with these two hiding symbols
prevents non-JavaScript-enabled browsers from displaying your JavaScript
statements as text.

Make sure that you put the beginning and ending hiding symbols (<! - - and
// -->,respectively) on their own separate lines. Placing either symbol on
the same line as a JavaScript statement could cause a non-JavaScript-enabled
browser to display your JavaScript code, just as though the hiding symbols
didn’t exist.

Following each pair of <SCRIPT> and </SCRIPT> tags with the HTML
<NOSCRIPT> and </NOSCRIPT> tags allows you to control more precisely
what folks using non-JavaScript-enabled browsers see when they visit your
Web page. For example, the following code displays a message telling users

31

32 Part I: Building Killer Web Pages for Fun and Profit

that they need to use a JavaScript-enabled Web browser to get the most from
your Web page:

</SCRIPT>

<NOSCRIPT>

You must be running a JavaScript-enabled Web browser, such as the latest version
of Microsoft Internet Explorer or Netscape Navigator, to get the
most from this Web page.

</NOSCRIPT>

Testing Your Script

When you have an HTML file that contains embedded JavaScript code, as
shown previously in Listing 2-3, you're ready to test your JavaScript applica-
tion! (This is the really fun part.)

To test a JavaScript application, all you need to do is load the JavaScript-
containing HTML file into a JavaScript-supporting Web browser. Figure 2-3
shows you how the code in Listing 2-3 looks when it’s loaded into the
Netscape 7.1 browser.

I Displaying the current date and time (basic example) - Netscape BEE]
. File Edit View Go Bookmarks Tools Window Help

@G O @ Q [filesiiCoremiwnitejsidd e/cade/Chaptert202/1ist0203 htm - | [Search | 4‘:’50 @
-

I E,. EMail &AM 48 Home 2 Radio [] Netscape © Search £5Bookmarks
Thu Jun 10 2004 14:44:30 GMT-0500 (Central Standard Time)

This is the HTML text for my first TavaScnpt application.

|
Figure 2-3:
The date-
and-time-
stamp appl-
ication as it
appearsin
Netscape

7.1. [E =2 & 07 0 [oone E =
: A 506331 choz Fidi, | 3 Coocuments an., [| B TextPad - [Ciemi . C WD 244
— =

Chapter 2: Writing Your Very First Script

Note: You can find a fancier version of the date-and-time-stamp application in
Chapter 3.

If you load the code in Listing 2-3 in your browser and see a Web page similar
to the one shown in Figure 2-3, congratulations! You've just successfully tested
your very first JavaScript script.

If you don’t see a Web page similar to the one in Figure 2-3, however, don’t
despair. Chances are good that the problem is due to one of the following
situations:

v The correct HTML file isn’t loaded. If you created your HTML file from
scratch, you might have inadvertently mistyped a statement or otherwise
introduced a bug. No problem; you can fix the bug later. (Chapter 17 is
packed with tips for debugging your scripts.) For now, try loading the
bug-free 11st0203.htm file from the companion CD.

+ You’re not using a JavaScript-enabled browser. Make sure that you're
using Microsoft Internet Explorer 6.0 (or higher) or Netscape Navigator 7.1
(or higher).

v JavaScript support is turned off in your browser. Netscape Navigator
and Microsoft Internet Explorer both provide ways to turn off JavaScript
support. When you turn off JavaScript support in your browser and
then load a JavaScript-containing Web page, your browser ignores all
the JavaScript code. It’s as if it didn’t exist!

To make sure that JavaScript support is turned on, do the following:

v If you're using Netscape Navigator 7.x, choose Edit=>Preferences and
double-click the Advanced menu option to display the Scripts & Plugins
menu selection. Click the Scripts & Plugins men selection and make sure
that the Enable JavaScript for Navigator check box is selected.

v If you’re using Internet Explorer 6.x, choose Tools=Internet Options=>
Security. Then select the Internet Web Content Zone, click the Custom
Level button, and scroll down until you find the Active Scripting category.
Finally, ensure that the Enable option (right under the Active Scripting
option) is selected.

33

34 Part I: Building Killer Web Pages for Fun and Profit

Chapter 3
JavaScript Language Basics

In This Chapter

Taking a look at JavaScript syntax

Putting together JavaScript expressions and statements
Practicing JavaScript language basics with the browser-detection script
Understanding conditionals

Exploring functions

A Ithough JavaScript is an awfully powerful language, the way you use it
can be boiled down to just two major concepts: syntax and the JavaScript
object model (also called the document object model).

Syntax refers to the rules that you must follow to write JavaScript code. Not
many syntax rules exist, but you do need to understand them — just as you
need to understand and follow the rules of English syntax to write a sentence
that English-speaking folks can understand.

The document object model (DOM) refers to the Web page components, or
objects, that you can access and manipulate by using JavaScript. In the same
way that you need to have a vocabulary of English words before you can write
a story in English, you need to be somewhat familiar with the DOM before you
can write your own JavaScript scripts. (I devote Chapter 4 to the DOM.) This
chapter arms you with the syntax knowledge that you need to write your own
scripts!

JavaScript Syntax

The rules and regulations that govern how humans can communicate with

the JavaScript interpreter — that piece of the Web browser that understands
and executes JavaScript code — is called the JavaScript syntax. Although you
might feel a little overwhelmed (especially at first!) with all the technicalities

36 Part |: Building Killer Web Pages for Fun and Profit

of JavaScript syntax, you can focus on just these few things, which are the
building blocks of your code:

1 Comments: Comments are human-readable (as opposed to JavaScript-
interpreter-readable) descriptions you can add to your script to make
your script easier to understand and maintain.

v Conditionals: Conditionals are logical constructs that you can add to
your script to decide whether a particular condition is true or false at
runtime. The most basic conditional is if-else.

v Functions: Functions are named groups of statements that you define
once, and then reuse to your heart’s content.

v Loops: Loops are specialized forms of conditionals. You can add a loop
to your script that checks a particular condition multiple times, executing
whatever JavaScript code you like, until that condition becomes true or
false. Common examples of loops include the for, while, and do-while
loops.

v Operators: Operators are the JavaScript answer to conjunctions. Opera-
tors include the commas, periods, and other symbols that you use to
compare and assign values to variables.

v Variables: Variables are named placeholders that represent the bits of
data that you work with in your scripts.

[discuss each of these syntactical building blocks in the following sections.

Don’t keep your comments to yourself

The JavaScript interpreter ignores comments. Comments do have value,
though; they’re very useful for explaining things to human readers of your
script. (Include yourself in this category, by the way — after you finish a script
and put it aside for a few months, you might appreciate those comments!)

You can write JavaScript comments in two different ways. Either type of com-
ment can appear anywhere in your script and as many times as you like.

The first type of comment is a single-line comment. It begins with two forward
slashes, and it’s good for only one line. Here’s an example of a single-line
comment.

// Single-Tine comments don't require an ending slash.

Chapter 3: JavaScript Language Basics

The second type of comment is a multiple-line comment. Because it spans
multiple lines, you have to tell it where to start (by using a forward slash
followed by an asterisk) and where to end (by using an asterisk and then a
forward slash). For example:

/* This comment can span multiple Tines. Always remember
to close it, though; if you forget, you'll get weird errors
when you try to display your script. */

Don’t overlap or nest multiline comments in your JavaScript code. If you do,
the JavaScript interpreter generates an error.

Remember that JavaScript scripts are the lines of code that come between
the <SCRIPT> and </SCRIPT> tags in an HTML file. You can’t use HTML
comment characters (<! -- to begin a comment line and - -> to end it) to
create JavaScript comments, and you can’t use JavaScript comment charac-
ters (// and /* */) to create HTML comments.

Mint conditionals

JavaScript offers several conditional expressions that you can use to test the
value of a condition at runtime. The two most popular conditionals are the
if-else and switch statements.

if-else
The if-else conditional expression is one of the most powerful constructs
in JavaScript.

You use if-else to test a condition:

v~ If the condition is true, the JavaScript interpreter executes all the state-
ments that follow the if clause.

v~ If the condition is false, the JavaScript interpreter executes all the state-
ments that follow the else clause (if the el se clause exists).

Here’s the generic description of how to use if-else:

if (condition) {
Statements

}

[else {
Statements

1]

37

38 Part I: Building Killer Web Pages for Fun and Profit

The curly braces ({ and }) combine statements into one big block. For exam-
ple, if you follow an if condition with three JavaScript statements, all of which
are surrounded by curly braces, the JavaScript interpreter executes all three
of those statements when the if condition is true.

The square brackets ([and]) mean that the entire e1se clause is optional.
You don’t actually put the square brackets in your JavaScript code; you just
add the else clause if you want it or leave it off if you don’t.

Suppose that you want to figure out which browser a user is running so that
you can tailor your Web page accordingly. (As you see in Chapter 5, differ-
ences exist between the JavaScript support provided by Internet Explorer
and Netscape Navigator.) Listing 3-1 shows how you can use if-else (and
the built-in navigator object) to accomplish this goal.

Listing 3-1: JavaScript if-else Example

if (navigator.appName == "Microsoft Internet Explorer") {
document.write("You're running Microsoft IE")
}
else {
if (navigator.appName == "Netscape") {
document.write("You're running Netscape")
}

else {
document.write("You're not running Microsoft IE or Netscape")
}
}

First, the JavaScript code in Listing 3-1 compares the value of the appName prop-
erty of the built-in navigator object to the text string Microsoft Internet
Explorer. (A text string is a group of characters that you manipulate as a
single block.)

v~ If this condition is true (the value of appName is indeed Microsoft
Internet Explorer), the JavaScript code performs the next statement,
which displays You're running Microsoft IE onthe Web page.

v~ If the condition is false (the value of appName isn’t Microsoft Internet
Explorer), the JavaScript code tests to see whether the value of appName
is equal to Netscape:

e [f this second condition is true, the JavaScript interpreter displays
You're running Netscape on the Web page.

e [f the second condition is false, the JavaScript interpreter displays
You're not running Microsoft IE or Netscape onthe
Web page.

Chapter 3: JavaScript Language Basics

\\3

You might notice that Listing 3-1 contains two if-else statements, one
nested inside the other. Technically speaking, you can nest as many if-else
statements as you want. If you run across a situation in which you need more
than one or two nested if-else statements to do the job, however, you might
want to consider the switch statement (which I describe in the next section)
instead. The switch statement is much more efficient at testing a condition
multiple times.

Some JavaScript programmers end each statement with a semicolon, like this:
if (a ==

b
c=d
e =f

) { // if a is equal to b

: // assign the value of d to the c variable,

; // assign the value of f to the e variable,
// and assign the string "American Beauty"
// to the variable called favoriteMovie

favoriteMovie = "American Beauty";

}

Semicolons are optional in JavaScript, with one exception. If you place more
than one JavaScript statement on the same line, you must separate those
statements with semicolons. For example:

// Wrong!
c=d e=f favoriteMovie = "American Beauty"

// Correct (if a bit hard to read)
c=d; e =f; favoriteMovie = "American Beauty";

switch

The switch statement provides an easy way to check an expression for a
bunch of different values without resorting to a string of i f-else statements.

Here’s the syntax:

switch (expression) {
case Tabel :
Statement
break
case Tabel :
Statement
break

default : statement

}

Suppose you want to examine a value and find out whether it matches one of
a number of predefined values. Listing 3-2 shows how you can go about it by
using the switch statement.

39

40 Part I: Building Killer Web Pages for Fun and Profit

Listing 3-2: Using the switch Statement to Match Values

switch (month) {

case 0 :
displayMonth = "January"
break

case 1 :
displayMonth = "February"
break

case 2 :
displayMonth = "March"
break case 3 :
displayMonth = "April"
break

case 4 :
displayMonth = "May"
break

case 5 :
displayMonth = "June"
break

case 6 :
displayMonth = "July"
break

case 7 :
displayMonth = "August"
break

case 8 :
displayMonth = "September"
break

case 9 :
displayMonth = "October"
break

case 10 :
displayMonth = "November"
break

case 11 :
displayMonth = "December"
break

default: displayMonth = "INVALID"
}

The code shown in Listing 3-2 tests the value of the month variable. If month
contains the number 0, the variable displayMonth is set to January.If month
contains the number 1, displayMonth is set to February — and so on, all
the way through the 12 months of the year.

Chapter 3: JavaScript Language Basics

<MECD

The companion CD contains a date_and_time_formatted.htm file, a work-
ing copy of the script in Listing 3-2.

Note that if you forget to finish each case with a break statement (and it’s easy
to do), the interpreter falls through, meaning that it performs all the statements
that it finds until it either

v Finds a break

v Detects the end of the switch statement

For instance, in Listing 3-2, if you removed all the break statements, amonth
value of 0 would cause displayMonth to be set not to January, as it should
be, but to INVALID instead.

In some cases, you may want to leave out the break statement on purpose to
force the JavaScript interpreter to fall through two or more cases. Doing so
allows you to group values easily. For example, the following code treats month
values of 0, 1, or 2 (which correspond to January, February, and March, respec-
tively) the same, by assigning the value Q1 to the displayQuarter variable.
Months 3, 4, and 5 (April, May, and June, respectively) are treated the same,
by assigning the value Q2 to the displayQuarter variable; and so on.

switch (monthId) {

case 0:

case 1:

case 2:
displayQuarter = "Q1";
break;

case 3:

case 4:

case b5:
displayQuarter = "Q2";
break;

case 6:

case 7:

case 8:
displayQuarter
break;

case 9:

case 10:

case 11:
displayQuarter = "Q4";
break;

"03";

41

42 Part I: Building Killer Web Pages for Fun and Profit

Fully functioning

A function is a named group of JavaScript statements that you can declare
once, near the top of your script, and call over and over again. Adding a
reusable function to your script — instead of adding several slightly dif-
ferent versions of the same code — cuts down on the amount of typing that
you need to do (yay!), as well as the number of potential bugs in your script
(double yay?).

Organizing your script into functions, like organizing your closet, might seem
like loads of up-front work for nothing — after all, you don’t have to do it. Your
script and your closet can be functional even if they’re messy. The payoff comes
when you have to quickly find a problem (or the perfect brown leather belt)
hiding somewhere in all that confusion!

Declaring a function
Here’s the syntax for a function declaration:

function name([parameter] [, parameter] [..., parameter]) {
statements
return value

}
And here’s an example:

function calculateTotal(numberOrdered, itemPrice) f{
var totalPrice = (numberOrdered * itemPrice) + salesTax
return totalPrice

}

This code snippet declares a calculateTotal function that accepts two
arguments: numberOrdered and itemPrice. The function uses these two
arguments (plus an additional variable called salesTax) to calculate the
totalPrice variable, which it then returns to the JavaScript code that
originally called it.

Your function can take as many arguments as you want it to (including none
at all), separated by commas. You generally refer to these argument values in
the body of the function (otherwise, why bother to use them at all?), so be sure
to name them something meaningful. In other words, I could have substituted
x and y for numberOrdered and itemPrice, and the code would work just as
well. It just wouldn’t be very easy to read or maintain!

Because the optional return statement is so important, I devote a whole sec-
tion to its use. (See the section “Returning a value from a function.”)

Chapter 3: JavaScript Language Basics 43

Calling a function

After you declare a function, which I describe in the preceding section, you
can call that function. You call a function by specifying the name of the func-
tion, followed by an open parenthesis, comma-delimited parameters, and a
closing parenthesis. For example:

alert("Total purchases come to " +
calculateTotal(10, 19.95))

Notice that you can embed a function call within another expression. In this
example, calculateTotal (10, 19.95) is actually part of the expression being
sent to the alert () method. (You find out all about methods in Chapter 4, but
for now, you can think of them as special kinds of functions.)

Returning a value from a function

You use the return statement to return a value from a function. To under-
stand why you might want to return a value from a function, imagine yourself
asking a friend to look up some information for you. If your friend went ahead
and did the research but neglected to pass it along to you, you’d be pretty
disappointed. Well, in this case, you're just like a bit of JavaScript code call-
ing a function, and your friend is the function that you're calling. Basically,

no matter how many useful things a function does, if it doesn’t return some
sort of result to the piece of code that needs it, it hasn’t finished its job.

The syntax for the return keyword is simple:
return expression

Here’s how it looks in action:
function calculateTotal (numberOrdered, itemPrice) {

var totalPrice = (numberOrdered * itemPrice) + salesTax
return totalPrice
} // Now the function is defined, so it can be called

document.write("The total amount to remit to us is " + calculateTotal(3, 4.99))

In this example code, the document.write() method calls the calculate
Total() function. The calculateTotal () function returns the value of the
totalPrice variable, which the document.write() method then displays
on the Web page.

44 Part I: Building Killer Web Pages for Fun and Profit

Loop-the-loop

Loops are powerful constructs that you can use to reiterate a series of
JavaScript statements over and over again. JavaScript supports a number
of loops you can choose from, including the for loop and for-in loops,
the while loop, and the do-while loop. As you see in the following section,
each loop is tailored for specific kinds of situations.

The for loop

The for loop lets you step through, or traverse, a number of items quickly
and easily. As an example, suppose that you want to find out whether users
have a particular plug-in installed in their Web browsers. You can use the
for loop to step through each of the plug-ins one by one.

First, take a peek at the generic form of the for loop.

for ([7initial expressionl; [condition]; [update expression]) {
Statements

}

The for loop introduces three terms that might be new to you: the initial
expression, the condition, and the update expression. Here’s how it all works:

1. The JavaScript interpreter looks at the initial expression.

The initial expression is almost always a number (usually 0 because
that’s the number JavaScript arrays begin with) assigned to a variable,
such as var i=0.

2. The JavaScript interpreter looks at the condition to see whether it’s true.

The condition compares the variable in Step 1 to some programmer-
defined constant; for example, i<10. If the value of i is indeed less
than 10, for instance, the i <10 statement is true.

3. If the value of the condition is true, the JavaScript interpreter performs
all the statements in the body of the for loop, and then it evaluates the
update expression.

The update expression typically increments the initial expression by 1;
for example, i++ or eachOne++. (Although ++ looks kind of funny, it’s not
a typo. It’s an operator that adds 1 to the variable that it’s next to. Think
of eachOne++ as a shorthand way of typing eachOne = eachOne + 1.)

4. Now that the variable has been bumped up, the JavaScript interpreter
goes back to Step 2 to see whether value of the condition is true, and if
it is, the whole thing starts over again. (That’s why it’s called a loop!)

Of course, at some point the condition’s value is no longer true. When
that happens, the JavaScript interpreter hops out of the for loop and
picks up again at the first statement after the loop.

Chapter 3: JavaScript Language Basics

WING/

It’s possible to create a for loop condition that always has a true value. The
easiest way to make this mistake is to specify an update condition that doesn’t
actually update the initial expression (for example, leaving off the ++ in the
example code preceding steps.) Creating a loop condition that is always true
and can never be changed or set to false is known as creating an endless or
infinite loop because the JavaScript interpreter evaluates and performs the
same statements in the body of the loop endlessly! (Okay, never is a long time.
In practice, the interpreter keeps evaluating it until you kill the Web browser
session. I've found that turning off the machine works nicely.)

Here’s an example of the for loop in action.

for (var i = 1; i <= 10; i++) {
document.writeln(i)

}

The file detecting_embedded_objects.htm, which you find on the companion
CD, contains an example of the for loop in action.

Here’s what’s going on in the preceding code snippet:

1. var i = 1 creates a variable called i and sets it to equal 1.
2. i <= 10 tests to see whether the i variable is less than or equal to 10.

3. The first time through, i is 1, and 1 is less than or equal to 10, so the
statement in the body of the for loop (document.writeln(i)) is per-
formed. (The value of i appears on the Web page.)

4. i++adds one to i.
5. 1 <= 10 tests to see whether 1 is still less than or equal to 10.

6. The second time through, i is 2, and 2 is less than 10, so the statement
in the body of the for loop (document.writeln(i)) is performed.
(The value of i appears.)

7. Now the whole thing repeats from Step 3. The JavaScript interpreter
adds one to 1, tests the variable to see whether it’s still less than or
equal to 10, and so on, for as many times as i satisfies the condition.

Nothing is magical about the i variable name. You could just as easily have
named your variable numberOfTimesToPrint, number0fPigsOrdered, or
Fred. The i variable name in for loops just happens to be a convention,
nothing more.

As you might expect, the following appears on-screen when the for loop is
executed:

12345678910

b5

46 Part |: Building Killer Web Pages for Fun and Profit

The for-in loop
If you like for, you’'ll love the for-in loop. You use the for-1in loop for loop-
ing, or iterating, through all properties of an object, like so:

for (var in object) {
statements
}

As an example, here’s a function that you can use to loop through all pro-
perties of a given object and display each property’s name and associated
value:

function displayProperties(inputObject, inputObjectName){

var result =
for (var eachProperty in inputObject) {

result += inputObjectName + "." + eachProperty +
" ="+ inputObject[eachProperty] + "
"
}

return result

}

This code might appear confusing at first, but it’s pretty straightforward
when you understand what the for-in loop does:

1. The code declares a function called displayProperties() that accepts
two arguments: inputObject and inputObjectName. Here’s one way to
call this function:

document.writeln(displayProperties(document, "document"))

2. The JavaScript interpreter hops up to the displayProperties() defini-
tion, only this time it substitutes the document object for the argument
inputObject and substitutes the "document" string for the argument
inputObjectName.

3. Inside the for-1in loop, the JavaScript interpreter loops through all prop-
erties of the document object. Each time it comes to a new property, the
interpreter assigns the new property to the eachProperty variable. Then
the interpreter constructs a string and adds the string to the end of the
result variable.

After the for-1in loop has looped through all properties of the document
object, the result variable holds a nice long string containing the names
and values of all properties in the document object. (For the skinny on
objects, flip to Chapter 4.)

Chapter 3: JavaScript Language Basics

\\J

<ME CD

w

Displaying (or dumping, as it’s called in programmerese) the property values
of an object can be useful when you're trying to track down an error in your
script. A method like document.writeln() enables you to know exactly what
the interpreter thinks objects look like (which is sometimes quite different
from the way you think they look).

Take a look at the ch3_forin.htm file to see an example of the for-in loop.

The while loop

The while loop’s job is to do something — that is, to execute one or more
JavaScript statements — while some programmer-defined condition is true.

Obviously, then, you want to make sure that one of the statements in the body
of your while loop changes the while condition in some way so that at some
point it becomes false.

Here’s the generic version of the while loop.

while (condition) {
Statements

}

In the following code, you see an actual JavaScript example of the while loop
in action.

var totallnventory=700
var numberPurchased=200
var numberSales=0

while (totalInventory > numberPurchased) {
totallnventory = totallnventory - numberPurchased
numberSales++

}
document.writeln("Our stock supply will support " +
numberSales + " of these bulk sales")

Step into the JavaScript interpreter’s virtual shoes for a minute and take a
look at how this all works! (Remember, you're the JavaScript interpreter now,
so be serious.)

While the total inventory is more than the number purchased. . . . Well,
700 is greater than 200. Okay. Subtract the number purchased from the
total inventory and bump up the number of sales by 1. Number of sales is
now 1. That’s one loop down.

While the total inventory is more than the number purchased. . . . Hmm.
Total inventory is 500 now, and that’s still greater than 200, so [need to
subtract the number purchased from the total inventory and add another
1 to the number of sales. Number of sales is now 2. Two loops down.

b7

48 Part I: Building Killer Web Pages for Fun and Profit

While the total inventory is more than the number purchased. . . . Okay,
total inventory is 300 now, which is still greater than 200. Subtract number
purchased from total inventory, add 1 to the number of sales. Number of
sales is now 3. Three loops down.

While the total inventory is more than the number purchased. . . . Hey!
It’s not! Total inventory is 100, and the number purchased is 200. I'm
outta here.

Here’s what I'll write to the screen: Our stock supply will support 3
of these bulk sales.

Nice to know how the other half thinks, isn’t it?

The do-while loop

The do-while loop is mighty close to the while loop that I describe in the
preceding section. The main difference between the two loops is that unlike
while, which might never be executed depending on whether the value of
the while condition is true when the loop begins to execute, the do-while
loop always executes at least once.

Take a look at the syntax for the do-whi1e loop:

do {
Statements
}

while (condition)

Here’s a real-life example:

var article = "a

do {
var answer = prompt("Would you like to purchase
+ article

+ " t-shirt? If so, enter the size.", "L")
article = "ANOTHER"
}

while (answer != null)

The first time this JavaScript code executes, the user sees a dialog box contain-
ing this message: Would you like to order a t-shirt? If so, enter
the size. The second time through the do-while loop (and for each time
thereafter that the user clicks the OK button on the dialog box) this message
appears: Would you like to order ANOTHER t-shirt? If so, enter
the size.

Load up the data_gathering.htm file to see a working example of the
do-while code shown here.

Chapter 3: JavaScript Language Basics 4 9

Never mind! Changing your mind with continue and break

The continue and break statements are both used inside loops to change
how the loops behave. (The break statement can be used also inside a switch
statement, as the example earlier in this chapter demonstrates.) The continue
and break statements do slightly different things and can be used in the same
loop (although they don’t have to be).

When the JavaScript interpreter encounters a break statement, the interpreter
breaks out of the loop that it’s currently processing and starts interpreting
again at the first line following the loop.

In contrast, the continue statement also tells the JavaScript interpreter to
stop what it’s doing, but on a somewhat smaller scale. The continue state-
ment tells the interpreter to stop the loop it’s currently processing and hop
back up to the beginning of the loop again, to continue as normal.

The continue and break statements are useful for exceptions to the rule.
For example, you might want to process all items the same way except for
two special cases. Just remember that break breaks out of a loop altogether,
and continue stops iteration execution, but then continues the loop.

Here is an example of the break statement used inside a whi1e loop:

var totallnventory=700, numberPurchased=200, numberSales=0
while (totallnventory > numberPurchased) {
totallnventory=totallInventory - numberPurchased
numberSales++
if (numberSales > 2) {
break
}
}

When the number of sales is greater than 2 (in other words, when the number
of sales reaches 3), the break statement causes the JavaScript interpreter to
hop out of the while loop altogether.

And here’s an example of continue used inside a for loop:

for (var i =1; i <= 20; i++) {
if (i ==13) { // superstitious; don't print number 13
continue
}
document.writeln(i)

}

In this code snippet, when the i variable contains the value 13, the JavaScript
interpreter stops what it’s doing. It does not execute the writeln() method
but continues on with the next iteration of the for loop (that is, the interpreter
sets the i variable equal to 14 and keeps going).

50 Part1: Building Killer Web Pages for Fun and Profit

You can test this scrap of code for yourself. It should produce the following
result:

1234567891011 12 14 15 16 17 18 19 20

Operators are standing by

Operators are like conjunctions. Remember fifth-grade English? (Or if you
were a cartoon connoisseur, maybe you remember “Conjunction Junction.”
“And, but, and or, get you pretty far....”) Ahem.

Operators, like conjunctions, enable you to join multiple phrases together
to form expressions. If you're familiar with addition and subtraction, you're
familiar with operators. Two categories of operators exist:

v~ Binary: Two items (or operands) must be sandwiched on either side of
the operator.

v Unary: Only one operand is required.

Table 3-1 gives you a rundown of the basic operators. The JavaScript inter-
preter always evaluates the expression to the right of the equal sign first, and
only then does it assign the evaluated value to the variable. (Note: The two
exceptions to this rule include the unary decrement operator (--), and the
unary increment operator (++). In these cases, if you place the operand after
the operator — as in the expression - -1 — the JavaScript interpreter evaluates
the expression before evaluating anything else in the statement, including any
assignment. Check out Table 3-1 for more information about the decrement
and increment operators.)

Table 3-1 JavaScript Operators

In all these examples, x is initially set to 11.

Operator Meaning Example Result How Come?

% modulus X=X%5 x=1 11/5 =2 with 1 remainder, so

modulus returns 1in this case

++ increment X = x++ X 11 ++is applied after assignment

when you put it after x

X = ++X x = 12 ++is applied before assign-
ment when you put it before x

-- decrement x = x-- x = 11 --isapplied after assignment
when you put it after the var

X = --X x = 10 --isapplied before assignment
when you put it before the var

Chapter 3: JavaScript Language Basics

In all these examples, x is initially set to 11.

Operator Meaning Example Result How Come?

- negation X = -X x = -11 Turns positive numbers nega-
tive and vice versa

=22 M+MNis22

+ addition X =

I
pes
+
>
pes

Some of the operators are pretty normal (addition and negation, for example).
The increment and decrement operators are a little weird, though, because not
only are they a new thing (you never see ++ or - - outside a computer program
listing), but depending on whether you put them before or after the variable,
they behave differently, as [describe in Table 3-1.

Operator precedence

Just as in math, an order of evaluation is applied to a statement that contains
multiple operators. Unless you set phrases off with parentheses, the JavaScript
interpreter observes the precedence order shown in Table 3-2 (from the semi-
colon, which has the lowest order of precedence, to the parentheses, which
has the highest).

Table 3-2 JavaScript Operator Precedence
(From Lowest to Highest)

Operator Syntax

semicolon ; (separates JavaScript statements that appear on the same line)

comma

assignment =, +=,-=*= /= }=

conditional ?:

logical “or” ||

logical “and” &&

equality ===

relational , <=,>,<=

mathematical %5 1%

unary !, -, ++ - - (negation, increment, and decrement operators)

call)

51

52 Partl: Building Killer Web Pages for Fun and Profit

So, how exactly does operator precedence work? Well, suppose the JavaScript
interpreter runs into the following statement in your script:

alert("Grand total: " + getTotal() + (3 * 4 / 10) + taxtt)

The interpreter knows that its job is to evaluate the statement, so the first
thing that it does is scan everything between the alert () parentheses. When
it finds the next set of parentheses, it knows that’s where it needs to start. It
thinks to itself, “Okay, first I'll get the return value from getTotal (). ThenI'll
evaluate (3 * 4 / 10).Within (3 * 4 / 10),I'll do the division first, and
then the multiplication. Now I'll add one to the tax variable. Okay, the last
thing I have to do is add the whole thing to come up with a string to display.”

Frankly, it’s okay if you can’t remember the precedence order. Just group
expressions in parentheses like you did back in high school algebra class.
Because parentheses outrank all the other operators, you can force JavaScript
to override its default precedence order and evaluate expressions the way
that makes the most sense to you!

Assignment operators

Assignment operators enable you to assign values to variables. Besides being
able to make a straight one-to-one assignment, though, you can also use some
assignment operators as a kind of shorthand to bump up a value based on
another value. Table 3-3 describes how this process works.

Table 3-3 JavaScript Assignment Operators
(From Lowest to Highest Precedence)

Assignment Alternate Approach Description

X =y (none) (assignment)

X +=y X=X+Yy (addition)

X -=y X=X—-Yy (subtraction)

X *=y x=x*y (multiplication)

X /=y X=x/y (division)

X %=y Xx=x%y (modulus)

The order of precedence in Table 3-3 is from lowest to highest, so the JavaScript
interpreter first evaluates any modulus operations first, then division, then
multiplication, and so on.

Chapter 3: JavaScript Language Basics

Compatrison operators

When comparing two values or expressions, you can compare for equality, as
shown in Table 3-4.

Table 3-4 JavaScript Comparison Operators

Operator Example Meaning

== X == xisequaltoy

1= X I=y xisnotequaltoy

< x <y xislessthany

> X >y xis greater thany

<= X <=y xis less than or equal to y

>= X >=y x is greater than or equal toy

? x=(y <0)7? -y vy if y is less than zero, assign -y to
x; otherwise, assign y to x

Logical operators

Logical operators take logical (also called Boolean) operands, and they also
return Boolean values. A Boolean value can be just one of two possibilities:
true or false. When you see two expressions separated by a logical opera-
tor, the JavaScript interpreter first resolves the expressions to see whether
eachis true or false, and then resolves the entire statement:

v~ If an expression equates to a nonzero value, that expression is consid-
ered to be true.

v~ If an expression equates to zero, that expression is considered to be false.

Table 3-5 describes the logical operators available in JavaScript.

Table 3-5 JavaScript Logical Operators
Operator Meaning Example

&& and if (x ==y & a !=0b)
|| or if (x <y || a<b)

! not if (Ix)

53

5 4 Part I: Building Killer Web Pages for Fun and Profit

The new and this operators
Two operators are designed especially to work with objects: new and this.

The new operator allows you to create your very own objects in JavaScript.
(For alist of built-in objects, check out Chapter 4.)

When you use the new operator with a function that defines a type of object,
you can create an instance (or a dozen instances) of that type of object.

The best way to explain this is by an example. Suppose that you want to
write a script that lets users input information about multiple people —
family members, say, or employees. You can create a generic function called
person and then use the new and this operators to allow users to create
multiple instances of the person function and customize each instance.
Here’s an example of a simple, generic person function:

function person(inputName, inputAge, inputSex, inputOccupation) {
this.name = inputName
this.age = inputAge
this.sex = inputSex
this.occupation = inputOccupation
}

The person() function that you see here takes four parameters, one each for
inputName, inputAge, inputSex, and inputOccupation. Then the person()
function immediately assigns these input values to its own instance attributes.
(The this.name variable is set to the inputName variable, the this.age vari-
able to the inputAge variable, and so on.)

Watch out!

A common mistake, even (especially?) among seasoned programmers, is to use a single equal sign
(=, an assignment operator) in place of a double equal sign (==, a comparison operator) or vice
versa. The statement x = 6 assignsthe value of 6 to x. The x == 6 statement, on the other hand,
compares 6 to x but doesn't assign any value at all! Mistakenly typing == when you mean = (or vice
versa) is a very common programming bug.

if (x =6) { // At first glance, this Tooks Tike it compares 6 to x, but it doesn't. It
assigns 6 to x!
document.writeln("x is 6, all right.")

Chapter 3: JavaScript Language Basics 5 5

In this example, the this keyword is shorthand for the person function. The
JavaScript interpreter knows that you're inside a function called person(),
so it automatically substitutes the function name for the this keyword so
that you don’t have to spell out the whole function name.

Now, whenever you want to create a specific, concrete instance of the person
function, here’s what you do:

var jennifer = new person("Jennifer MclLaughlan", 33, "F", "lion tamer")

This code snippet uses the new operator in conjunction with the predefined,
generic person () function to create a specific instance of person whose name
is Jennifer McLaughlan, age is 33, sex is F, and occupation is lion tamer.

After the preceding statement is performed, you can use the jennifer object
as you would any built-in object in JavaScript.

If you think that objects with properties but no methods are kind of boring,
you’re right. Here’s how you add your own methods to the objects that you
create:

function ftalk(kindOfPet){
if (kindOfPet == "dog") {
document.writeln("bow-wow!")

else {
if (kind0fPet == "cat") {
document.writeln("meow-meow-meow")
}
}
}
function pet(inputName, inputKind, inputColor) {
this.name = inputName
this.kind = inputKind
this.color = inputColor
this.talk = ftalk(inputKind)
}

Bear with me here; it all makes sense when you see it in action!

The following code first creates an instance of pet and names that instance
Boots, and then it calls the talk () method associated with Boots.

Boots = new pet("Boots", "cat", "orange striped");

Boots.talk;

56

Part |: Building Killer Web Pages for Fun and Profit

Here’s how the JavaScript interpreter executes these two JavaScript
statements:

1. The first statement passes three variables to the pet () constructor
function and assigns the resulting object to the Boots variable.

When this first statement finishes processing, the Boots variable con-
tains an object associated with the following three properties:

® Boots.name = "Boots"
e Boots.kind = "cat"
e Boots.color = "orange striped”

2. The second statement (Boots.talk) passes the value of Boots.kind,
which is "cat", to the ftalk() function.

3. The ftalk() function contains an if statement that says, “If the input
variable is cat, print meow-meow-meow to the screen.”

So, because the string "cat" was passed to the ftalk() function, you
see meow-meow-meow on the screen.
<MECD

file, located on the companion CD.

N If creating your own objects and methods isn’t clear to you right now, it will
O be after you've had a chance to load and play with the ch?_new_this.htm

Working with variables

A variable is a named placeholder for a value. You use the var keyword to
construct an expression that first declares a variable and then (optionally)
initializes its value. To declare a variable, you type something like this:

var myCat;

This tells the JavaScript interpreter “Yo, here comes a variable, and name it
myCat, will you?”

Initializing a variable means setting a variable equal to some value, which you
typically do at the same time you declare the variable. Here’s how you might
initialize the variable myCat:

var myCat = "Fluffy"

Technically, you can declare a variable in JavaScript without using the var
keyword, like so: myCat = "Fluffy". However, using the var keyword to
declare all your variables is a good idea because it helps the JavaScript inter-
preter properly scope variables with the same name.

Chapter 3: JavaScript Language Basics

As of this writing, the next version of JavaScript, version 2.0 — due to be
finalized later this year and (with luck) supported by upcoming browser
versions — provides for the strongly typed variables with which C and C++
programmers are familiar. What this means to you is that when browsers sup-
port JavaScript 2.0, you may use variable descriptors such as integer and
number to declare upfront precisely what kind of value you want each vari-
able to contain. Until then, however, no variable descriptors are necessary.

After you declare a variable — whether you use the var keyword or not — you
can reset its value later in the script by using the assignment operator (=). The
name of the variable can be any legal identifier (you want to use letters and
numbers, not special characters), and the value can be any legal expression.
(A legal expression is any properly punctuated expression that you see repre-
sented in this chapter: an if-else expression, an assignment expression, and
so on.)

A variable is valid only when it’s in scope. When a variable is in scope, it’s been
declared between the same curly brace boundaries as the statement that’s
trying to access it. For example, if you define a variable named firstName
inside a function called displayReport(), you can refer to the variable only
inside the displayReport () function’s curly braces. If you try to access
firstName inside another function, you get an error. If you want to reuse a
variable among functions (shudder — that way lies madness), you can declare
that variable near the top of your script before any functions are declared.
That way, the variable’s scope is the entire script, and all the functions get

to see it. Take a look at the following code example:

function displayReport() {
var firstName = document.myForm.givenName.value

alert("Click OK to see the report for " + firstName)
// Using firstName here is fine; it was declared
// inside the same set of curly braces.

}

function displayGraph() {
alert("Here's the graph for " + firstName) // Error!
// firstName wasn't defined inside this
// function's curly braces!

}

As you can see from the comments in the this code fragment, it’s perfectly
okay to use the firstName variable inside the displayReport() func-

tion because the firstName variable is in scope anywhere inside the
displayReport() function. It’s not okay, however, to use firstName inside
displayGraph().Asfaras displayGraph() is concerned, no such animal
as firstName has been declared inside its scope!

57

58 Part1: Building Killer Web Pages for Fun and Profit

Literally speaking

Sometimes you want to use a number, a string, or some other value that you know for a fact will
never change. For example, suppose that you want to write a script that uses pi in some calculation.
Instead of creating a pi variable and assigning it the value of 1.31415, you can use the number
1.31415 directly in your calculations. Values that aren't stored in variables are called /iterals.

Here are a few examples of using literals in JavaScript:

alert("Sorry, you entered your e-mail address incorrectly.")//string Titeral
x = 1.31415 * someVariable // floating-point literal

if (theAnswer == true) // boolean literal

document.write("The total number of users is " + 1234)//integer literal

Putting It All Together: Building
JavaScript Expressions and Statements

In “JavaScript Syntax,” earlier in this chapter, you get familiar with the nuts
and bolts of the JavaScript language. In this section, I demonstrate how to
string these components together to create JavaScript expressions and
statements.

JavaScript scripts are made up of JavaScript statements, which in turn are made
up of JavaScript expressions. A JavaScript expression is any combination of
variables, operators, literals (nonvarying values), and keywords that can be
evaluated by the JavaScript interpreter.

For example, the following are all valid JavaScript expressions:

new Date()

numberSold * salesPrice

"Thanks for visiting my site, " + document.myForm.yourName.value

These three examples are each slightly different, but they all have one thing in
common: They can all be evaluated to something. The first example evaluates
to the current date; the second, to a number; the third, to a string. (A string is
a group of characters that you manipulate as a single block.)

Chapter 3: JavaScript Language Basics

To create a JavaScript statement, all you need to do is put together one or more
JavaScript expressions (shown in bold in the following code). For example:

var todays_date = new Date();
calculateTotal (numberSold * salesPrice);

alert("Thanks for visiting my site, " + document.myForm.yourName.value);

In the first statement shown here, the current date is assigned to a variable
called todays_date. In the second statement, the number produced by
multiplying the numberSold and salesPrice variables is passed to the
calculateTotal () function. And in the third example statement, the
"Thanks for visiting my site " string appears in a dialog box.

The difference between a JavaScript expression and a JavaScript statement
might seem esoteric at first, but understanding this difference pays big divi-
dends in the long run. It might help if you think of a JavaScript expression
as a sentence fragment and a JavaScript statement as a complete sentence.
Although an interoffice memo composed entirely of sentence fragments
might not cause you any problems (unless your vocation happens to be
teaching English), a JavaScript script composed of expressions does cause
problems — in the form of runtime errors.

To prevent these errors (and to save the time you’'d spend debugging them),
you need to construct complete JavaScript statements. In the following sec-
tions, I use three useful scripts to demonstrate how to do just that.

The browser-detection script

Back in the old days, before the Web came along, developers knew exactly
what hardware and software their audience would use to run their applications
before they wrote a lick of code. (In other words, these developers knew their
applications’ target platforms in advance.) Using this information, developers
could implement their applications with confidence, secure in the knowledge
that their application code would behave in the field just as it did in their
testing labs.

Not so on the Web. Users can choose to view Web pages with whatever target
platform they choose. They might, for instance, use a Mac, a PC, a UNIX box,
or a hand-held device running some version of Netscape Navigator, Internet
Explorer, or any of the other dozens of Web browsers that are available on
the market. Unfortunately, your users’ choices affect their ability to run your
JavaScript-enabled Web pages, as you see in this chapter.

59

60

Part |: Building Killer Web Pages for Fun and Profit

Can't we all just get along? The ECMA standard

Netscape (with some help from Sun Micro-
systems) invented JavaScript clear back in the
early 1990s, so it's no surprise that JavaScript
support first appeared in Netscape's browser
(Netscape Navigator 2.0, if you're a history buff).

Soon after, Microsoft released version 3.0 of
Internet Explorer, which featured support for their
own JavaScript-compatible scripting language —
called JScript. Minor differences existed between
these two browsers’ scripting implementations,
however, and as each successive version
appeared, those differences continued to grow.

In 1998, Netscape decided to hand over the task
of creating a formal JavaScript standard to the
ECMA, an international standards body com-
prising companies from all over the world. (Both
Netscape and Microsoft are ECMA members.)
Intheory, this was a great thing. It allowed a rel-
atively impartial group of folks to decide the best,
most efficient way to implement a cross-browser
Web scripting language. Unfortunately — in
software as in life — the reality of real-world
implementation hasn't quite yet achieved the
perfection promised by the standard.

The ECMAScript language specification, called
ECMA-262, describes how a scripting language
should be implemented in an ECMA-compliant
browser, not how it /s implemented. So even
though ECMAScript has the potential to unify
JavaScriptimplementations and guarantee devel-
opers a consistent, cross-browser JavaScript
execution platform, the differences in JavaScript
support still exist between the latest Navigator
and Internet Explorer browsers. One reason for
these differences is the inevitable lag time
between creating a standard and then scurry-
ing to implement and release it. Another reason
is the inherent tendency of software companies
to embellish standards with additional, propri-
etary features. (The same tendency that led to
the need for a standard in the first place!)

The bottom line is this: Although ECMAScript
offers the potential for increased consistency
across browsers, the final word on JavaScript
implementation comes from the browsers them-
selves — notthe specification.

The two latest versions of the most popular Web browsers — Internet Explorer
and Netscape Navigator — do support JavaScript. But despite their creators’
claims of support for something called the ECMA standard (created by the
European Computer Manufacturers Association) both browsers support
slightly different versions of the following elements:

v The JavaScript language

v The document object model that the JavaScript language was designed

to access

Chapter 3: JavaScript Language Basics 6 ’

\\3

Unfortunately, no single up-to-date source exists that describes which
JavaScript features are supported in which version of which browser. Your
best bet is to visit Netscape’s and Microsoft’s JavaScript documentation
pages for the latest in feature support:

v http://channels.netscape.com/ns/browsers/default.jsp

¥ www.microsoft.com/windows/ie/default.htm

What this means is that if you want to use a JavaScript feature that Internet
Explorer supports (but that Netscape Navigator doesn’t), you face three
choices:

v Assume that everyone who visits your Web site is running Internet
Explorer. This assumption might be correct if you're creating an
intranet application (an application targeted for use on a company’s
private network); in this case, you might know that all the company’s
employees have Internet Explorer installed. However, if you want to
make your pages available on the World Wide Web, this assumption
isn’t a good one. When you make it, you risk alienating the visitors
who surf to your page with Netscape or some other non-Microsoft
browser.

+” Don’t use the feature. You can choose to use only those JavaScript fea-
tures that are truly cross-platform; that is, JavaScript features that work
the same way in both Internet Explorer and Netscape Navigator. (In most
cases, this is the easiest approach, assuming that you can keep up with
the rapidly changing JavaScript support provided in each new browser
version.) In some cases, however, avoiding a feature might not be an
option (for example, if you're creating a page for your boss or a client).

1 Create a script that detects which browser your visitors are running
and tailor your pages on-the-fly accordingly. This option gives you the
best of both worlds: You get to use the specialized browser features that
you want, and yet you don’t alienate users running different browsers.
(You do, however, have to create multiple pages to support multiple
browsers, which increases your workload.)

In Listing 3-3, [demonstrate the final option in the preceding list: a script that
recognizes whether a user is running Internet Explorer, Netscape Navigator,
or some other browser. The script then displays an appropriate Web page.
Figure 3-1 shows you how the script appears when loaded into Netscape 7.1,
and Figure 3-2 shows you how it appears when it’s loaded into Internet
Explorer 6.0.

62

|
Figure 3-1:
The
browser-
detection
script as it
appears in
Netscape
Navigator
7.1,
|

|
Figure 3-2:
The
browser-
detection
script as it
appearsin
Internet
Explorer 6.0.
|

Part |: Building Killer Web Pages for Fun and Profit

[5 Simple browser detection script (Netscape) - Netscape EJ@
. File Edit View Go Bookmarks Tools Window Help
L B, E=2Msil £ AIM 4 Home G Radio Metscape 4 Search i E)Bookmarks
This is the Metscape version of my Web page.

H B e = | ==

) 506331 G0 fidow, | (2 Ciponumenis and.. | BT Textpad- (et S @ 2:szem

[ET Simple browser detection script (Intarnet Explorer) - Microsoft Internet Explorer EJ@
. File Edit View Favorites Tools Help E'

@Back bl > |ﬂ ﬁ r_:j - Gearch ‘:i\‘\(antes eMedla @ ",v ; % 1) ﬁ @

This is the Internet Explorer version of my Web page.

G:l Dane

sJoaull| 8506331 Cho3 Fido,] 3 C\Documents and... l B TexiPad - [Citem). s

Chapter 3: JavaScript Language Basics 63

<MECD

N You can experiment with the code shown in Listing 3-3: Just load the file
O 11st0302. htm, which you find on the companion CD.

Listing 3-3: The Browser-Detection Script

<HTML>

CHEADXKTITLE>Simple browser detection script</TITLE>
{(SCRIPT LANGUAGE="JavaScript" "TYPE="text/javascript">
<{!-- Hide from browsers that do not support JavaScript

// If the user is running IE, automatically load the

// HTML file ie_version.htm

// Beginning of an if/else statement:

// "Microsoft Internet Explorer" is a string literal

// == 1is a comparison operator

if (navigator.appName == "Microsoft Internet Explorer") {
// "ie_version.htm" is a string literal
window.location = "ie_version.htm"
// = is a comparison operator

}

// Otherwise, if the user is running Netscape, load the
// HTML file netscape_version.htm

else {
Nested if/else statement:
if (navigator.appName == "Netscape") {

// == is a comparison operator
window.location = "netscape_version.htm"
// = is a comparison operator

}

// If the user is running some other browser,
// display a message and continue loading this generic
// Web page.
else {
document.write("You're not running Microsoft IE or Netscape.")
}
}

// --> Finish hiding

</SCRIPT>

<{/HEAD>

<BODY>

This is the generic version of my Web page.
</BODY>

<HTMLD

The code that you see in Listing 3-3 combines comments, conditionals, and
operators to create two complete JavaScript statements.

64 Part |: Building Killer Web Pages for Fun and Profit

As you read through the code, notice the following:

v The appName property of the built-in navigator object is preloaded
with one of two text strings: “Microsoft Internet Explorer” (if the loading
browser is Internet Explorer) or “Netscape” (if the loading browser is
Netscape Navigator).

v Setting the window property of the Tocation object equal to a new Web
page causes that new Web page to load automatically.

Determining which brand of browser a user runs is relatively easy, as you can
see by the code in Listing 3-3. However, determining the browser version is
much trickier — and beyond the scope of this book. (Although the built-in
navigator object does indeed contain useful properties such as appCodeName,
appName, appVersion, userAgent, Tanguage, and platform — all of which
you can display on-screen by using the alert () method — the contents of
these properties are neither intuitive nor consistent between browsers.) For
more information on browser-version detection, visit http://developer.
netscape.com/docs/examples/javascript/browser_type_oo.html.

The date-formatting script

In Chapter 2, I introduce a simple date-and-time-stamp script that captures
the current date and time and displays it on a Web page, like so:

Sat May 22 19:46:47 CDT 2004
In this section, I demonstrate how to combine comments, conditionals, opera-
tors, and variables into JavaScript statements that not only capture the current
date and time but format the date and time so that they appear in a more
human-friendly format, like the following:

Good evening! It's May 22, 2004 - 8:24 p.m.

To see how, take a look at the code in Listing 3-4.

You can find the code shown in Listing 3-4 on the companion CD by loading
up the 19st0303. htm file.

Listing 3-4: The Date-Formatting Script

<HTMLY>
<HEAD>
(TITLE>Displaying the current date and time (formatted example)</TITLE>

Chapter 3: JavaScript Language Basics 6 5

<SCRIPT LANGUAGE="JavaScript" TYPE="text/javascript">
<{!-- Hide from browsers that do not support JavaScript

// Comments begin with //

// Get the current date

/] The following statements declare variables
var today = new Date();

// Get the current month
var month = today.getMonth();

// Declare a variable called displayMonth
var displayMonth="";

// The following is a switch statement
// Attach a display name to each of 12 possible month numbers
switch (month) {
case 0 :
displayMonth = "January"
break
case 1 :
displayMonth = "February"
break
case 2 :
displayMonth = "March"
break
case 3 :
displayMonth = "April"
break
case 4 :
displayMonth = "May"
break
case 5 :
displayMonth = "June"
break
case 6 :
displayMonth = "July"
break
case 7 :
displayMonth = "August"
break
case 8 :
displayMonth = "September"
break
case 9 :
displayMonth = "October"
break

(continued)

OO Part1: Building Killer Web Pages for Fun and Profit

Listing 3-4 (continued)

case 10 :
displayMonth = "November"
break

case 11 :
displayMonth = "December"
break

default: displayMonth = "INVALID"
}

// Set some more variables to make the JavaScript code
// easier to read

var hours = today.getHours();

var minutes = today.getMinutes();
var greeting;

var ampm;

// We consider anything up until 11 a.m. "morning"

if (hours <= 11) {
greeting = "Good morning!";
ampm="a.m.";

// JavaScript reports midnight as 0, which is just
// plain crazy; so we want to change 0 to 12.

if (hours == 0) {
hours = 12;
}
}

// We consider anything after 11:00 a.m. and before
// 6 p.m. (in military time, 18) to be "afternoon"

else if (hours > 11 && hours < 18) {
greeting = "Good afternoon!";
ampm = "p.m.";

// We don't want to see military time, so subtract 12
if (hours > 12) {

hours -= 12;
}

Chapter 3: JavaScript Language Basics 6 7

// We consider anything after five p.m. (17 military) but
// before nine p.m. (21 in military time) "evening"
else if (hours > 17 && hours < 21) {
greeting = "Good evening!";
ampm = "p.m.";
hours -= 12;
}

// We consider nine o'clock until midnight "night"
else if (hours > 20) {

greeting = "Good night!";

ampm = "p.m.";

hours -= 12;

}

// We want the minutes to display with "0" in front
// of them if they're single-digit. For example,
// rather than 1:4 p.m., we want to see 1:04 p.m.

if (minutes < 10) {
minutes = "0" + minutes;

}

// + is a concatenation operator

var displayGreeting = displayMonth +
+ today.getDate() + ", "
+ today.getYear()
+ " - "+ hours + ":" + minutes + " " + ampm

document.writeln(displayGreeting)

// --> Finish hiding
</SCRIPT>

</HEAD>

</HTMLY>

The code that you see in Listing 3-4 is a bit long, but understandable when
you break it down bit by bit.

First off, the code captures the current date and time in the today variable.
Then the code calls the getMonth () method associated with the Date object
to capture the current month (a number between 0 and 11).

The switch statement examines the contents of the month variable and
assigns an appropriate text string ("January", "February", and so on, up
through "December™) to the displayMonth variable.

68 Part |: Building Killer Web Pages for Fun and Profit

|
Figure 3-3:
The data-
gathering
script allows
users to
specify
t-shirt size.

|
|
Figure 3-4:
The script
allows users
to specify as
many differ-
ent t-shirt
sizes as

they want.
|

Several i f-then statements examine the hours variable to determine the
appropriate time of day ("a.m." or "p.m. ") and the appropriate greeting
("Good morning!", "Good afternoon!", "Good evening!", or "Good
night!™).

The second-to-last statement composes a message called displayGreeting
and finally, the very last statement writes displayGreeting to the Web

page.

The data-gathering script

Gathering information from the folks who visit your Web site is one of the
more useful things that you can do with JavaScript. In Listing 3-5, [show you
how to combine comments, conditionals, functions, loops, operators, and
variables into JavaScript statements that capture user input. The statements
then make calculations based on that input.

Figure 3-3, Figure 3-4, and Figure 3-5 show you the data-gathering script in
action.

Explorer User Prompt %]
Soit oot
“wfoudd pou ke to purchase a shit? If so, enter the size (5.M.L] and click OK.

‘when you firish, click Cancel Cancel
[

Explorer User Prompt %]
Seaipt Prompt: oK
fould pou ike to purchase ANOTHER tshit? IF so, enter the size (5.M L) and
click DK When you finish, chick Cancel Cancel
[u

|
Figure 3-5:
When

users finish
ordering,
JavaScript
calculates
the total
number
ordered.
|

<MECD
Q

Chapter 3: JavaScript Language Basics 6 9

3

] Data gathering example using a custom f

- Microsoft Internet Explorer

S

File [Edit View Favorites Tools Help

Qe - © - ¥ 12 D) seanch

':;';':‘_" Favorites .y‘Medla &)

4

T A E'_ﬁf&ﬂ

Tou ordered 2 shirts: 0 small 1 medum 1 large

él Dane

m 506331 Cho3.Fidon, | 153 CilDocuments and.e | [T TextPad - [Citermies

4§ My Computer
j@gg 2:50BM

You can find the code shown in Listing 3-5 on the companion CD. Just load up

the 11st0304.htm file.

Listing 3-5: The Data-Gathering Script

<HTMLY>
<HEAD>

<(TITLE>Data gathering example using a custom function</TITLE>

<(SCRIPT LANGUAGE="JavaScript">

<{!-- Hide from browsers that do not support JavaScript

// The following statements dec
// = 1is an assignment operator.
var article = "a";

var numShirts = 0;

var smallShirts = 0;

var medShirts = 0;

var largeShirts = 0;

Tare variables.

(continued)

70 Part |: Building Killer Web Pages for Fun and Profit

Listing 3-5 (continued)

// The following is a function declaration.
function calc_shirts(sizeShirt) {

// Add 1 to the number of sized shirts ordered, as well
// as to the number of total shirts ordered

if (sizeShirt == "S" || sizeShirt == "s") {
// ++ is a unary increment operator.
smallShirts++;
numShirts++;

}

// == 1is a comparison operator.

else if (sizeShirt == "M"
medShirts++;
numShirts++;

| sizeShirt == "m") {

}

else if (sizeShirt == "L"
TargeShirts++;
numShirts++;

| sizeShirt == "1") {

}

// The following is a do-while Toop.

do {
// The following line of code pops up a JavaScript
// prompt.

// The 'answer' variable is set to null if the user
// clicks 'Cancel’

var answer = prompt("Would you like to purchase "
+ article
+ " t-shirt? If so, enter the size (S,M,L) and click OK. When you
finish, click Cancel”, "M")

// Change 'a' to "ANOTHER' to make the display message
// grammatically correct the second (and subsequent)
// time around.

article = "ANOTHER"

if (answer != null) {
calc_shirts(answer);

}
}

while (answer != null)

Chapter 3: JavaScript Language Basics

document.writeln("You ordered " + numShirts + " shirts:
+ smallShirts + " small "
+ medShirts + " medium "

+ largeShirts + " Tlarge");

// --> Finish hiding
</SCRIPT>

</HEAD>

</HTML>

The heart of the script you see in Listing 3-5 is the do-whi1e loop — the code
you see in bold. The first line inside the do-whi1e loop calls the prompt ()
method, which displays the user prompt shown in Figure 3-3. If the user clicks
Cancel, the answer variable receives a value of nu11, and the JavaScript inter-
preter exits the do-while loop.

If the user enters a t-shirt size and clicks OK, however, the answer variable
receives a non-nul1 value and the do-while loop calls the calc_shirts()
function.

The calc_shirts() function uses conditional i f-then statements to calcu-
late the number of sized shirts (as well as the number of total shirts) ordered.
Then calc_shirts() returns control to the do-while loop, and the process
begins all over again, with a call to the prompt () method. Each time the user
clicks OK, the do-whiTe loop calls the calc_shirts() function.

When at last the user clicks Cancel, the answer variable receives a value of
null, and code execution drops out of the do-whi1e loop and passes to the
final JavaScript statement, which constructs a message and writes to the Web
page by using the writeln() method associated with the document object.

/1

72 Part I: Building Killer Web Pages for Fun and Profit

Chapter 4

JavaScript-Accessible Data:
Getting Acquainted with the
Document Object Model

In This Chapter

Understanding how object models work

Exploring properties and methods

Adding text to a Web page dynamically

Positioning text on a Web page

Changing Web page appearance on-the-fly

Getting familiar with Netscape Navigator’s object model

Getting familiar with Internet Explorer’s object model

' o create powerful scripts, you need to be familiar with two things:
JavaScript syntax (which I discuss in Chapter 3) and the document
object model.

The document object model, or DOM, refers to the Web page components, or
objects, that you can access and manipulate by using JavaScript. Examples of
objects that you can work with in JavaScript include the window that a Web
page appears in, the Web page itself, embedded images and text, and much,
much more.

In this chapter, | demonstrate how to find out which objects you can access
in JavaScript, including those objects’ properties and methods. First, [discuss
the nuts and bolts of the DOM,; then, [present three scripts that use document
objects to change the appearance of a Web page on-the-fly.

74

Part |: Building Killer Web Pages for Fun and Profit

Object Models Always Pose Nude

Because JavaScript is object-based, when you program in JavaScript you get
to take advantage of a predefined object model. Object-based programming
languages package, or encapsulate, data and functionality into useful units
called objects. (Collectively, the objects that you work with in an object-based
programming language are called the object model.) Encapsulation is a good
thing because it hides nitty-gritty programming details — allowing you, the
programmer, to write code with the least amount of hassle possible.

Human beings tend to think in terms of object models naturally, so object-
based languages like JavaScript are typically much easier to handle than their
procedural counterparts. (Examples of procedural languages include BASIC, C,
and COBOL.)

Here’s a real-world example of an object model. If I tell you my friend Ralph
works in an office, you might reasonably assume that Ralph has a boss, a few
co-workers, sits at a desk, and does some kind of work. How do you know all
this without me telling you? Because you’ve seen or heard of other offices;
perhaps you’ve even worked in one yourself. In other words, you're familiar
with the office model — so even though you don’t know anything about
Ralph’s particular office just yet, you can correctly guess a great deal. In fact,
all I have to do is fill in a few specific details (the names of Ralph’s co-workers,
what kind of work he does, and so on) for you to have a complete picture of
how Ralph spends his day.

The beauty of an object model is that it helps people communicate clearly
and efficiently.

JavaScript’s object model (called the document object model, or DOM) is no
exception. Specifically, it helps you clearly and efficiently communicate what
you want your script to do to the JavaScript interpreter. (The JavaScript
interpreter is the part of a Web browser that executes a script. You can see
the JavaScript interpreter in action in Chapter 2.)

The DOM performs this oh-so-useful task by describing

v~ All the objects that go into making up a Web page, such as forms, links,
images, buttons, and text.

v The descriptive properties associated with each of the DOM objects.
For example, an image object can be associated with specific properties
describing its height and width.

v The behaviors, or methods, associated with each of the DOM objects.
For example, the window object supports a method called alert () that
allows you to display an alert message on a Web page.

Chapter 4: Getting Acquainted with the Document Object Model

\NG/
Vg‘\\

v The special built-in methods, called event handlers, associated with
automatic and user-initiated events. For instance, loading a Web page
into a browser is considered an event; so is clicking a button. The event
handlers that you use to trigger some JavaScript code when these
events occur are called onlLoad and onC11ck, respectively.

In the following sections, I give you an in-depth look at each of these four cat-
egories and how you can use them to create your own powerful JavaScript
scripts!

Conceptually, the DOM is the same whether you're viewing a Web page in
Internet Explorer, Netscape Navigator, or another browser entirely. In prac-
tice, however, the versions of the DOM implemented for Internet Explorer
and Netscape Navigator differ — and you must pay attention to these differ-
ences or risk creating scripts that some users can’t view. See “Browser Object
Models” later in this chapter for details.

Object-ivity

In nerd-talk, an object is a software representation of a real-world thing.
Theoretically, any person, place, thing, or can be represented as an object.

In practice, however, most of the objects that you work with in JavaScript fall
into the first three of the following four categories:

1 Objects defined by using HTML tags. This category includes docu-
ments, links, applets, text fields, windows, and so on. For the purposes
of this book, JavaScript scripts are always attached to HTML documents.
By using JavaScript, you can access any object defined in the HTML
document to which a script is attached. (To see an example of a script
accessing HTML objects, check out Listing 4-3 later in this chapter.)

v Objects defined automatically by Web browsers. One example is the
navigator object, which, despite its name, holds configuration and ver-
sion information about whichever browser is currently in use, even if
that browser happens to be Internet Explorer. (To see an example of a
script accessing a browser object, check out Chapter 3.)

1 Objects that are built into JavaScript, such as Date and Number.
(To see an example of a script accessing built-in JavaScript objects,
take a look at Chapter 3.)

1 Objects you yourself have created by using the JavaScript new operator.
(To see an example of how you can create and access your own objects
using JavaScript, check out Chapter 3.)

Just like their real-world counterparts, software objects are typically associ-
ated with specific characteristics and behaviors. Because this is a computer

75

76

Part |: Building Killer Web Pages for Fun and Profit

WMBER
@&
&

topic, though, programmers can’t call these bits of information characteristics
and behaviors. No, that would take all the fun out of it. Programmers call
characteristics properties (or attributes), and they call behaviors methods —
except for certain event-related behaviors whose names begin with on, such
as onlLoad, onResize, and onSubmit. Programmers call these special on
methods event handlers.

Properties and attributes are really the same thing, but some JavaScript pro-
grammers tend to differentiate between the following:

v Properties (which belong to JavaScript objects)

v Attributes (which are associated with HTML objects)
Because most of the JavaScript code that you write involves objects, proper-

ties, methods, and event handlers, understanding what these object-oriented
terms mean is essential for folks planning to write their own scripts.

You can think of it this way:

v Objects are always nouns.

v Properties are adjectives.

v Methods are verbs.

v Event handlers are verbs with on tacked to their fronts.

Got it? Take a look at Table 4-1 to see examples of some common object
definitions.

Table 4-1 Sample Object Definitions

Kind of Object Property Method Event Handler

Object (Noun) (Adjective) (Verb) (“on” + Verb)

HTML button Such as click() onClick
name, type,
and value

HTML link Such as (none) Such as
href, port, onClick,
protocol, onMouseQver,
and soon onKeyPress,

and soon

HTML form Such as Such as reset () Such as
action, and submit () onReset and
elements, onSubmit
length,

and so on

Chapter 4: Getting Acquainted with the Document Object Model 7 7

Kind of Object Property Method Event Handler
Object (Noun) (Adjective) (Verb) (“on” + Verb)
Browser Navigator Such as javaEnabled() (none)
appVersion,
appName,
lTanguage,
andplatform
JavaScript Number Such as toString() (none)
MAX_VALUE
and MIN_VALUE
Programmer- customer Suchasname, Suchaschange- (none)
defined address, Address(),
and credit- changeName(),
History and placeOrder()

For sale by owner: Object properties

Properties are attributes that describe an object. Most of the objects available
in JavaScript have their own set of properties. (Appendix C contains a listing
of JavaScript properties arranged alphabetically.)

An image object, for example, is usually associated with the properties
shown in Table 4-2.

Table 4-2 Properties Associated with the Image Object

Image Property Description

border The thickness of the border to display around the image, in pixels

complete Whether or not the image loaded successfully (true or false)

height The height of the image, in pixels

hspace The number of pixels to pad the sides of the image with

lowsrc The filename of a small image to load first

name The internal name of the image (the one you reference by using
JavaScript code)

src The filename of the image to embed in an HTML document

vspace The number of pixels to pad the top and bottom of the image with

width The width of the image, in pixels

78 Part |: Building Killer Web Pages for Fun and Profit

<MECD

At runtime, all object properties have a corresponding value, whether it’s
explicitly defined or filled in by the Web browser. For example, consider an
image object created with the HTML code in Listing 4-1.

Listing 4-1: Creating an Image Object with the HTML Tag

<BODY>

</BODY>

Assuming that you have a file on your computer named myPicture. jpg, at

runtime, when you load the HTML snippet into your Web browser and query
the Image properties, the corresponding values appear as shown in Table 4-3.

You can query the properties by calling the alert () method; for example,
alert(document.companylLogo.src).

Table 4-3 Accessing Image Properties

Property Name Value
document.companylLogo.src file:///C:/myPicture.jpg
document.companylLogo.name companylLogo
document.companylLogo.height 200
document.companylLogo.width 500
document.companylLogo.border 1

document.companylLogo.complete true

To see an example of this HTML and JavaScript code in action, take a look at
the ch4_properties.htmfile located on the companion CD.

In the code snippets shown in Table 4-3, the name of each object property is
fully qualified. If you’ve ever given a friend from another state driving direc-
tions to your house, you're familiar with fully qualifying names — even if
you’ve haven’t heard it called that before now. It’s the old narrow-it-down
approach:

“Okay, as soon as you hit Texas, start looking for the signs for Austin. On the
south side of Austin, you’ll find our suburb, called Travis Heights. When you

hit Travis Heights, start looking for Sledgehammer Street. As soon as you turn
onto Sledgehammer, you can start looking for 111 Sledgehammer. That’s our

house.”

Chapter 4: Getting Acquainted with the Document Object Model

\\J

The JavaScript interpreter is like that out-of-state friend. It can locate and
provide you with access to any property — but only if you describe that
property by beginning with the most basic description (in most cases, the
document object) and narrowing it down from there.

In Listing 4-1, the document object (which you create by using the HTML
<BODY> and </BODY> tags) contains the image called companylLogo. The
companylLogo image, in turn, contains the properties src, name, height,
width, border, and complete. That’s why you type document.company
Logo.src to identify the src property of the image named companyLogo; or
type document.companyLogo.width to identify the width property; and so on.

Note, too, that in the HTML code in Listing 4-1, the values for src, name,
height,width, and border are taken directly from the HTML definition for
this object. The value of true that appears for the complete property, how-
ever, appears courtesy of your Web browser. If your browser couldn’t find and
successfully load the myPicture. jpg file, the value of the complete property
associated with this object would have been automatically set to false.

In JavaScript as in other programming languages, success is represented by
true or 1; failure is represented by false or 0.

There’s a method to this madness!

A method by any other name (some programmers call them behaviors or
member functions) is a function that defines a particular behavior that an
object can exhibit.

Take, for example, your soon-to-be-old friend the HTML button. Because you
can click an HTML button, the button object has an associated method called
the c1ick() method. When you invoke a button’s c11ick() method by using
JavaScript, the result is the same as though a user clicked that button.

Unlike objects, properties, and event handlers, methods in JavaScript are
always followed by parentheses, like this: c1ick(). This convention helps
remind programmers that methods often (but not always) require parameters.
A parameter is any tidbit of information that a method needs in order to do
its job. For example, the alert () method associated with the window object
allows you to create a special kind of pop-up window (an alert window) to
display some information on the screen. Because creating a blank pop-up
window is pretty useless, the alert () method requires you to pass it a param-
eter containing the text that you want to display:

function checkTheEmailAddress () {

window.alert("Sorry, the e-mail address you entered is not complete. Please
try again.")

79

80

Part |: Building Killer Web Pages for Fun and Profit

Some objects, like the built-in window object, are associated with scads of
methods. You can open a window by using the open () method; display some
text on a window by using the write() and writeln() methods; scroll a

window up or down by using the scrol1(), scrol1By(),and scrol1To()

methods; and so on.

Just as you do when referring to an object, a property, or an event handler,
when you refer to a method in JavaScript you must preface that method with
the specific name of the object to which it belongs. Table 4-4 shows you
examples of how to call an object’s methods.

Table 4-4

Calling Object Methods

JavaScript Code Snippet

What It Does

annoyingText.blink()

Calls the b1ink () method associated with
the string object. Specifically, it causes
the string object called annoyingText to
blink on and off.

self.framel.focus()

Calls the focus () method associated with
the frame object. Specifically, it sets the
input focus to a frame called framel
(which itself is associated with the primary
document window).

document.infoForm.request
ForFreeInfoButton.click()

Calls the c11ick () method associated with
the button object. Specifically, this code
clicks the button named requestForFree
InfoButton, which is contained in the
form called infoForm. (The infoForm
form is contained in the primary HTML
document.)

Why use methods?

Many of the methods defined in JavaScript's
DOM are things that users can do simply by
clicking a mouse: for example, stopping a
window from loading (the stop () method);
focusing on a particular input field (the focus ()
method); printing the contents of a window (the
print() method); and so on. Why go to the
trouble of including method calls in your script?

In a word, automation. Say you want to create a
Web page that does several things in response
to a single event. For example, when a user
loads your Web page, you might want to set
focus to a particular input field, open a small
What's New window, and display today’s date
automatically. By using methods, you can do all
this — and the user doesn't have to do a thing!

Chapter 4: Getting Acquainted with the Document Object Model 8 ’

To see an example of a method call in JavaScript, take a look at the
ch3_methods.htm file located on the companion CD.

You see another example of methods in action in Chapter 2, and Appendix C
lists the methods that are available to you in JavaScript’s DOM.

How do you handle a hungry event?
With event handlers!

An event handler is a special kind of method that a JavaScript-enabled Web
browser triggers automatically when a specific event occurs. Event handlers
give you, the JavaScript programmer, the ability to perform whatever instruc-
tions you like — from performing calculations to displaying messages —
based on events such as

v A user loading a Web page into a browser

v A user stopping a Web page from loading

v A user entering or changing some information in an input field

v A user clicking an image, button, or link

v A user submitting or resetting a form
For example, when a user loads a Web page into a browser, the onLoad event
handler associated with that page (or document) executes; when a user clicks

an HTML button, that HTML button’s onC11ck event handler executes; and
SO on.

Here’s an example of how you call a built-in event handler:

<BODY
onLoad="window.alert("'Hello!");"
onUnload="window.alert('Goodbye!");"
>

</BODY>
To see an example of calling event handlers in JavaScript, check out the

ch3_events.htm file located on the companion CD.

Take a look at the code snippet in this section. Two event handlers are asso-
ciated with the document object. (The document object is defined in HTML
using the <BODY> and </B0ODY> tags.) One of the event handlers is named
onlLoad; the other, onUnload.

As you might guess, loading this code into a Web page causes a Hel10!
message to appear. Loading another page, or closing the browser altogether,

&2 Partl: Building Killer Web Pages for Fun and Profit

causes a Goodbye! message to appear. Event handling is a wonderful thing.
With it you can figure out when and precisely how a user interacts with any
part of your Web page, and you can respond to that action as you see fit.

Appendix C contains a list of all the event handlers that JavaScript supports.
To see additional examples of JavaScript event handlers in action, check out
Chapter 2.

Company functions

Like methods, functions are behaviors — but that’s where the similarity ends.

v Functions are standalone bits of JavaScript code that can be reused over
and over again.

v Unlike methods, functions aren’t associated with a particular object.

The JavaScript language provides a handful of built-in functions, but you can
create your own, as well — as many as you need.

Here’s an example. Say you want to create an HTML form that asks the user to
enter her age and the number of pets she owns. You could create a JavaScript
function that examines a number and makes sure that it’s between certain rea-
sonable parameters — say, 0 and 100. After you create such a function, you can
call it twice: once to validate the age that the user types in and once to validate
the number of pets the user owns. This ability to create reusable functions can
save you quite a bit of time if you plan to create a lot of JavaScript-enhanced
Web sites.

Listing 4-2 shows you how you define and use a function in JavaScript.

Listing 4-2: Defining and Calling a Custom Function in JavaScript

<(SCRIPT LANGUAGE="JavaScript">
function checkNumber(aNumber) {
if (aNumber > 0 && aNumber < 100) {

LILLLLLTTLEEELLEE i i i i i il y
// If the number is greater than 0 and Tess than

// 100, pop up a "congratulations" message and return
// a value indicating success.

LILLLLTTLLELEL LTI r iy

alert("The number you specified is valid (it is between 0 and 100).")
return true

Chapter 4: Getting Acquainted with the Document Object Model 83

<MECD

N

Yy,
// Otherwise, the number is negative or over 100,

// so return a value indicating failure.
[ILLTLLLLLLEEEEELL i i i il

else {
alert("The number you specified is invalid (not between 0 and 100).
\nPlease try again.")
return false

<FORM NAME="myForm">

Please type in a number: <INPUT TYPE="text" SIZE="5" NAME="inputNumber">

<INPUT TYPE="button" VALUE="Push to validate number"
onClick="checkNumber(document.myForm.inputNumber.value);">

</FORM>

Don’t worry if you see some unfamiliar symbols inside the checkNumber ()
function definition, like > and &&; you find out what these symbols mean in
Chapter 3.

To see the checkNumber () function example in action, check out the file
ch3_functions.htmlocated on the companion CD.

For now, take a look at the penultimate line in the code snippet, the one
where the checkNumber () function is being called:

<INPUT TYPE="button" VALUE="Push to validate number"
onClick="checkNumber(document.myForm.inputNumber.value);">

Notice that checkNumber () is being called with a single argument (document.
myForm.inputNumber.value)? That single argument represents the number
that a user typed into the HTML form. (“For sale by owner: Object properties,”
earlier in this chapter, explains why you must fully qualify a property this way.)
When a user clicks the Push to Validate Number button, the checkNumber ()
function then

1. Springs into action
2. Takes a look at the input number passed to it
3. Pops up a message telling the user whether the number is valid (that is,

whether the number falls inside the range of 0 to 100)

Because functions are so useful in JavaScript, you see lots of examples of
them in this book. For now, just remember that

84

Part |: Building Killer Web Pages for Fun and Profit

v You define a function inside the <SCRIPT> and </SCRIPT> tags, which I
explain in detail in Chapter 2.

v You let the JavaScript interpreter know a function declaration is coming
by starting it with the special JavaScript keyword function, followed by
a pair of curly braces {}.

v Between the curly braces you put any JavaScript statements you like.

Appendix C lists a handful of built-in JavaScript functions. For additional
examples of creating and calling your own functions, see Chapter 2.

Anatomy of an Object: Properties,
Methods, Event Handlers,
and Functions in Action

In this section, | demonstrate how to work with the most commonly used
objects in JavaScript to perform three cool interactive effects:

v Adding text to a Web page dynamically
v Positioning text on a Web page dynamically
v Changing other aspects of Web page’s appearance (background, text

color, and so on) on-the-fly

Because these particular examples use cascading style sheets, or CSS, to per-
form their magic — a common (and highly useful) approach referred to as
dynamic HTML, or DHTML — I first describe cascading style sheets and how
you use them in JavaScript.

Dynamic objects: The least you need
to know about CSS and DHTML

If you've ever tried to make the text on your Web page look spiffy by using
plain old HTML, you might have been sorely disappointed. Why? Because
HTML was designed to allow you to add content to your Web page — not to
control precisely how that content is represented.

Recognizing the need for a way to control Web page layout, the good folks at
the World Wide Web Consortium came up with a standard called cascading

Chapter 4: Getting Acquainted with the Document Object Model 8 5

\\J

style sheets, or CSS. And fortunately, browser makers took heed: Both
Navigator and Internet Explorer support CSS.

CSS allows you to describe how you want the text elements on your Web
page to appear. For example, you might decide you want all level-one head-
ings to appear in blue, all level-two headings to appear in red, and every
other paragraph to be italicized. To accomplish this goal, you simply

v Add special CSS descriptors to your HTML code.

v Reference your special CSS descriptors by using JavaScript.
The combination of CSS and a scripting language is often referred to as DHTML.

CSS is a fairly broad topic. This book is devoted to JavaScript, so I don’t go
into the nitty-gritty details of CSS here. Instead, in the following sections I
give you the nuts-and-bolts information that you need to create CSS objects
and access those objects by using JavaScript. For an in-depth look at CSS, I
suggest a book such as Cascading Style Sheets by Example, by Steve Callihan
(Que). Or check out the World Wide Web Consortium’s cascading style sheets
specification by pointing your browser to www.w3.0rg/Style/CSS.

Defining CSS objects

When it comes to defining CSS objects, you have two choices:

v Associate a style with an HTML tag by using the HTML <STYLE> tags.
Here’s an example:

CHTMLD

<HEAD>

<STYLE TYPE="text/css">

H1 {color: red;}

</STYLE>

{/HEAD>

<BODY>

<{HI>This heading is red!</H1>
<{H2>This heading is plain old black</H2>
</BODY>

</HTML

This code associates the color red with every occurrence of the <H1>
tag that appears in the body of the document.

v Define a custom-named CSS object by using the ID property of another
HTML tag. For example:

CHTML>
<HEAD>
(STYLE TYPE="text/css">

86 Part |: Building Killer Web Pages for Fun and Profit

#blueHeading {color: blue;}

</STYLE>

</HEAD>

<BODY>

<H1 ID="blueHeading">My blue heading<H1>

In this case, the name of the CSS object is bTueHeading — and you can
easily use this name to access the CSS object using JavaScript. This is
the approach [demonstrate in the example scripts that you find in this
chapter.

No matter how you define CSS objects, you can access those objects by using
JavaScript and the DOM. To minimize the amount of CSS expertise you need —
this is a book on JavaScript, after all — I demonstrate the second approach.

Accessing CSS objects by using JavaScript

After you define a CSS object, you can access that object by using JavaScript.
The following code shows you how:

document.getElementById("blueheading").style.fontStyle="italic";

The JavaScript code you see here uses the getETementById() method to set
the fontStyle property of the bTueheading element to italic — effectively
displaying the heading in italics.

In addition to the fontStyle property, you can access a variety of CSS prop-
erties (such as background-color, background-image, font-weight, font-size,
text-align, text-indent, and much more) using a variety of methods.

In the example scripts that you find in the next three sections, I introduce
you to several different CSS properties and methods. For an ultracomplete
list, however, consult your favorite browser’s DOM reference. (One good
online reference is http://msdn.microsoft.com/1ibrary/default.
asp?url=/workshop/author/dhtml/reference/objects.asp.)

Example DHTML script: Adding
text dynamically

Using plain HTML, what you see is what you get: When the text for a page is
loaded, that’s the text the user sees. Not so when you add JavaScript and CSS to
the mix! Using this powerful combination, you can create a script that adds or
changes the appearance of text on a Web page after that page has been loaded.

To see what I mean, take a look at Figures 4-1, 4-2, and 4-3.

Chapter 4: Getting Acquainted with the Document Object Model

|
Figure 4-1:
This Web
page lets
users
display (or
hide) the
first two
paragraphs.
|

|
Figure 4-2:
Deselecting
the second
check box
causes the
second
paragraph to
disappear.
|

7 Adding text dynamically - Microsoft Infernet Explorer e
13

File Edit View Favorites Tools Help

O O [E G P e @ @ 3+ 5 - E @

1. Thus is the first paragraph. By taking advantage of cascading style sheets, you can assign unique ID's to all sorts of document
elements: not just paragraphs, but headings, lists, styles - wirtnally any document elernent. And once you have a unigque ID
assigned to a document element, you can display or nde that document element using a coding technique smilar to the one
shown here.

2. Thus 1s the second paragraph.

3. Thue 13 the third paragraph. You can dynamically change the content this paragraph contams by entering your own text in the
form field below.

You can choose to display or hide the paragraphs on this page
dynamically using the checkboxes below. You can also choose to change
paragraph #3.

[¥] Display first paragraph
[¥] Display second paragraph

Change third paragraph

Click to change text

é] Dane "4 My Computer

m 506331 Cho.., [) lefrovers £ | BT TextPad-Lo [0 PRt Rl B2 005 Prompt ':@50 gu44 PM

7 Adding text dynamically - Microsoft Infernet Explorer BEE]
File Edit View Favorites Tools Help w

Q- O [N G e e @ @ 3+ B L HE @

1. Thus is the first paragraph. By taking advantage of cascading style sheets, you can assign unique ID's to all sorts of document
elements: not just paragraphs, but headings, lists, styles - wirtnally any document elernent. And once you have a unigque ID
assigned to a document elemert, you can display or lude that document element using a coding techmique sntlar to the one
shown here.

3. Thue 13 the third paragraph. You can dynamically change the content this paragraph contams by entering your own text in the
form field below.

You can choose to display or hide the paragraphs on this page
dynamically using the checkboxes below. You can also choose to change
paragraph #3.

[¥] Display first paragraph

[Display second paragraph
Change third paragraph
Click to change text
é] Dane C) i".'I;r.Corrths'

m 506331 Cho.., [) lefrovers £ | BT TextPad-Lo [0 PRt Rl B2 005 Prompt ':@50 gu44 PM

87

88

Part |: Building Killer Web Pages for Fun and Profit

|
Figure 4-3:
Replacing
the third
paragraph
with the
user-
supplied
text.
|

WE CD
&

€] Adding text dynamically - Microsoft Internet Explorer [S[E=]
I
L}

File Edit View Favorites Tools Help
Qe - © - X A G - sesch <o Favortes @ meda §2) - = - L) i ‘J}’:]

1. Thus is the first paragraph. By taking advantage of cascading style sheets, you can assign unique ID's to all sorts of document
elements: not just paragraphs, but headings, lists, styles - wirtnally any document elernent. And once you have a unigque ID
assigned to a document element, you can display or nde that document element using a coding technique smilar to the one
shown here.

IMow i3 the time for all good citizens to come to the aid of their country,

You can choose to display or hide the paragraphs on this page
dynamically using the checkboxes below. You can also choose to change
paragraph #3.

[¥] Display first paragraph
[Display second paragraph

Change third paragraph

Mow is the time for all good citizens to ¢ Click to change text

&] pore J My Computer

m 506331 e, | B lefeovers Froo | B TenPad- [[TEEIELS N | B 005 Prompt @j@ 8:45 PN

To see the code responsible for Figures 4-1, 4-2, and 4-3, take a look at
Listing 4-3.

You can experiment with the example script you find in Listing 4-3 by loading
the file 11st0403.htm which you find on the companion CD.

Listing 4-3: Allowing a User to Add or Change Text Dynamically
on a Web Page

<HTML>

<HEAD>

(TITLE>Adding text dynamically</TITLE>

<SCRIPT LANGUAGE="JavaScript" TYPE="text/javascript">
<{!-- Hide from browsers that do not support JavaScript

function displayText() {

// Store the heading elements in local variables
// so we can work with them easily

var firstGraf = document.getElementById("grafl");
var secondGraf = document.getElementById("graf2");

Chapter 4: Getting Acquainted with the Document Object Model 8 9

// If grafl is selected, change visibility to visible;
// if grafl is NOT selected, change visibility to hidden
firstGraf.style.visibility=(document.myForm.graflbox.checked) ? "visible" :
"hidden";

/] if graf2 is selected, change visibility to visible;

// if graf2 is NOT selected, change visibility to hidden

secondGraf.style.visibility=(document.myForm.graf2box.checked) ? "visible" :
"hidden";

}
function changeText() {

// Store the new text in a variable called newText
var newText = document.myForm.changeableText.value;

// Get the existing element text and store it in
// "oldText"
var oldText = document.getElementById("graf3");

// Swap old text with new text.
// Replace oldText with newText
oldText.firstChild.nodeValue = newText;

}

// --> Finish hiding
</SCRIPT>

</HEAD>

<BODY>

// Defining three named paragraphs

<P ID="grafl">1. This is the first paragraph. By taking advantage of cascading
style sheets, you can assign unique IDs to all sorts of document elements: not
just paragraphs, but headings, lists, styles - virtually any document element.
And once you have a unique ID assigned to a document element, you can display or
hide that document element using a coding technique similar to the one shown
here.</P>

<P ID="graf2">2. This is the second paragraph.</P>

<P ID="graf3">3. This is the third paragraph. You can dynamically change the
content this paragraph contains by entering your own text in the form field
beTow.</P>

<H2>You can choose to display or hide the paragraphs on this page dynamically
using the checkboxes below. You can also choose to change paragraph #3.</H2>

(continued)

90 Part |: Building Killer Web Pages for Fun and Profit

Listing 4-3 (continued)

<FORM name="myForm">
// The displayText() function is called when the user checks or unchecks the
// checkbox.

<INPUT TYPE="checkbox" NAME="graflbox" CHECKED onClick="displayText();">
Display first paragraph

<INPUT TYPE="checkbox" NAME="graf2box" CHECKED onClick="displayText();">
Display second paragraph

Change third paragraph

<INPUT TYPE="text" NAME="changeableText" defaultValue="Type here" SIZE="35">

// The changeText() function is called when the user clicks the "Click to change
// text" button.
<INPUT TYPE="button" VALUE="Click to change text" onClick="changeText();">

</FORM>

</BODY>
</HTML>

The code in Listing 4-3 defines three CSS paragraphs named grafl, graf2,
and graf3, respectively. When a user selects one of the HTML check boxes,
the displayText() function is called. The displayText() function changes
the visibility property associated with graf1 and graf?2 to display (or
hide) each paragraph according to the user’s selection.

When the user enters text in the text field and clicks the Click to Change Text
button, the JavaScript interpreter calls the changeText () function. The
changeText () function uses DOM methods to access paragraph text and
replace that text with the user-supplied text.

Example DHTML script: Positioning
text dynamically

You can change the way Web page elements are positioned at runtime by
using a combination of JavaScript and CSS.

To accomplish this task, you first create named elements by using CSS; then,
you access and move those elements by using JavaScript. Figures 4-4 and 4-5
show you an example of a text element that can be moved in response to a
user’s clicking a button.

Chapter 4: Getting Acquainted with the Document Object Model

|
Figure 4-4:
At the click
of a button,
this text
element can
be moved
left, right,
up, or down.
|

|
Figure 4-5:
Clicking the
Move Left
button
moves the
text element
to the left.

Positioning content dynamically - Microsoft Internet Explorer E]
: File Edit View Favorites Tools Help !

Q- O [N G e e @ @ 3+ B L HE @

[horee left][towve right][Move up][hone down]

This 15 a posttionable layer.

&) Done |ty Computer

@— #5633t o, | Biefovers foo | BT Tepad-L RN T G4 oS Fromt '@50 8:53 PM

Positioning content dynamically - Microsoft Internet Explorer E]
: File Edit View Favorites Tools Help !

Q- O [N G e e @ @ 3+ B L HE @

[horve left ” Move right][Move up][More down]

Thus 15 a positionable layer.

&1 pore Ly Computer

o) #0533 0., | @) ieftovers fi | BT Tepad- L B8 005 Prompt M@ zsien

91

92

Q

Part |: Building Killer Web Pages for Fun and Profit

WE CD
&

O

You can experiment with the example script you find in Listing 4-4 by loading
the file 1ist0404.htm you find on the companion CD.

As you skim through the code in Listing 4-4, pay particular attention to the
HTML <D1V> tag and the JavaScript move () function.

Listing 4-4: Allowing a User to Change the Position of a Web Page
Element

<HTML>

<HEAD>

KTITLE>Positioning content dynamically</TITLE>

<SCRIPT LANGUAGE="JavaScript" TYPE="text/javascript">
{!-- Hide from browsers that do not support JavaScript

function move(direction) {
var layerText = document.getElementById("mylLayer");

switch(direction) {
// 1f move() is called with an argument of "Teft," reposition text
// layer so that it is now 50 pixels from the left-hand side of the
/] window.

case "left":
layerText.style.left
break;

50;

case "right":
layerText.style.left = 150;
break;

case "up":
layerText.style.top = 50;
break;

case "down":
TayerText.style.top = 150;
break;

}
// --> Finish hiding

</SCRIPT>
</HEAD>

Chapter 4: Getting Acquainted with the Document Object Model

<BODY>
// Creating a CSS Tayer object named mylayer and positioning it 100 pixels from
// the top of the window and 100 pixels from the Teft-hand side of the window.

<DIV ID="mylayer" STYLE="position:absolute; left:100; top:100;">
{P>This is a positionable Tayer.</P>
</DIV>

<FORM>

// Clicking any of the four buttons calls the move() function with a different

// argument.

<INPUT TYPE="button" NAME="movelayer" VALUE="Move Teft" onClick="move('left');">

<INPUT TYPE="button" NAME="movelayer" VALUE="Move right"
onClick="move('right');">

CINPUT TYPE="button" NAME="movelayer" VALUE="Move up" onClick="move('up');">

<INPUT TYPE="button" NAME="movelayer" VALUE="Move down" onClick="move('down');">

</FORM>

</BODY>
</HTML>

In the example code you see in Listing 4-4, a positionable layer is created and
displayed on-screen by using the HTML <DIV> tag. When a user clicks one of
the buttons — say, the Move Left button — the JavaScript interpreter calls
the move () function, passing in the value Teft.

Inside the move () function, the JavaScript interpreter first identifies the posi-
tionable layer by name, and then it uses the switch conditional statement to
determine which direction to move the layer.

Example DHTML script: Changing page
appearance on-the-fly

Here you find out how to change overall Web page characteristics such as
background and text color. First, take a look at Figures 4-6 and 4-7; then, take
a peek at the code in Listing 4-5.

93

94 Part |: Building Killer Web Pages for Fun and Profit

|
Figure 4-6:
This Web
page offers
usersa
choice of
themes.

|
Figure 4-7:
Choosing
atheme
background,
paragraph,
and heading
text color.

[E] Changing page appearance onhely with DHTML - Microsoft Internet Explorer e
File Edit View Favorites Tools Help 14
Qe O W @G P v @ @ (-5 3L EHE @
Al
Choose a theme:
Taing DHTML (a combimation of JavaScript and cascading style sheets) you can let your users change the way your Web
pages appear
Theme 1]v]
{Themel
Theme 2
Theme 3
€|Done 'j i".'I;r.Corrths'
HE " @ sosaat cho.., | B leftovers fou, | B Textma- G =TT =y oo o I@g 11PN
[E] Changing page appearance onhely with DHTML - Microsoft Internet Explorer e
File Edit View Favorites Tools Help 14
Qe O W @G P v @ @ (-5 3L EHE @
Al
Choose a theme:
Using DHTML (a combmation of JavaSenpt and cascading style sheets) yon can let yowr users change the way
vour Web pages appear.
Q]Done C) i".'I;r.Corrths'
m @533 o, | B eitoversfor, | Teead-10. PETE] BN 0O Prompt ,@g 9:11 BN

Chapter 4: Getting Acquainted with the Document Object Model

<MECD

N You can experiment with the example script that you find in Listing 4-5 by
O loading up the file 11st0405. htm you find on the companion CD.

Listing 4-5: Using DHTML to Change Page Appearance on-the-Fly

<HTML>

<HEAD>

<TITLE>Changing page appearance on-the-fly with DHTML</TITLE>
<(SCRIPT LANGUAGE="JavaScript" TYPE="text/javascript">

{!-- Hide from browsers that do not support JavaScript

function changeTheme() {
switch(document.myForm.themes.selectedIndex) {

case 0:
// Changing the background and foreground (text) color.
document.bgColor = "blue";
document.fgColor = "yellow";

// Changing the heading color.
document.getElementById("headingl").style.color="pink";
break;

case 1:
document.bgColor = "pink";
document.fgColor = "green";
document.getElementById("headingl").style.color="red";
break;

case 2:
document.bgColor = "green";
document.fgColor = "red";

document.getETementById("headingl").style.color="pink";
document.getElementById("grafl").style.fontWeight="bold";
break;

}

// --> Finish hiding

</SCRIPT>

{/HEAD>

<BODY>

// Creating a named heading element.

<{H1 ID="headingl">Choose a theme:</H1>

// Creating a named paragraph element.

<P ID="grafl1">Using DHTML (a combination of JavaScript and cascading style
sheets) you can

let your users change the way your Web pages appear.</P>

(continued)

90

Part |: Building Killer Web Pages for Fun and Profit

Listing 4-5 (continued)

<FORM NAME="myForm" >
// When a user selects a new theme, the changeTheme() function is called.
{select name="themes" onChange="changeTheme();">
<option value="themel">Theme 1</option>
<option value="theme2">Theme 2</option>
<option value="theme3">Theme 3</option>
{/select>
</FORM>

</BODY>
</HTML>

As you glance over the code in Listing 4-5, notice that two CSS objects are cre-
ated in the body of the document: headingl and grafl. When a user selects a
theme, the JavaScript interpreter calls the changeTheme () function, which uses
the switch conditional statement to determine which theme the user selected.

The appearance of the page — the background color, foreground color, heading
color, and font weight of the paragraph text — is set based on which theme
the user selected.

Browser Object Models

Conceptually, Web pages are all the same: They’re displayed in browser win-
dows, contain text and images, and so on. And, in fact, the World Wide Web
Consortium (the W3C), an industry group responsible for many Web-related
standards, has hammered out a standard document object model — a blue-
print, if you will, that browser manufacturers can follow. (You can find a copy
of the W3C’s DOM specification at www.w3.0rg/D0OM.)

In reality, however, each browser manufacturer performs slightly different
behind-the-scenes magic when it comes to implementing the DOM (and pro-
viding JavaScript support). What this means is that the browser models you
work with in JavaScript — Microsoft’s Internet Explorer DOM and Netscape’s
DOM — are similar but not identical.

Netscape Navigator

Netscape Navigator’s DOM describes all the objects you can access in
JavaScript to create cool scripts that execute flawlessly in Netscape
Navigator.

Chapter 4: Getting Acquainted with the Document Object Model

\\3

When you want to reference any of the following objects in your script, you
use that object’s fully qualified name, as shown in the Syntax column of the
following list. The window object is the only exception to this rule. By default,
every Web page contains one all-encompassing, granddaddy window, no
matter how many additional windows you choose to include. Because this
overall window is a given, you don’t have to mention it specifically when you
refer to one of the objects that it contains.

For example, the following two JavaScript code snippets both set the src
property of an Image object named my Image equal to "happycat.jpg":

window.document.myForm.myImage.src="happycat.jpg"
document.myForm.myImage.src="happycat.jpg"

The following is a short list of the basic objects that you work with in
Netscape Navigator. You can find a list of all the objects in the DOM imple-
mentation for Navigator 7.1, including associated properties, methods, and
event handlers, in Appendix C. Or check out Netscape’s exhaustive DOM ref-
erence at wiw.mozilla.org/docs/dom/domref/dom_shortTOC.html.

Object Syntax
window window (optional)
document document
applet document.applets[0]
anchor document.someAnchor
area document.someArea
classes document.classes
form document.somefForm
button document.someForm.someButton
checkbox document.someForm.someCheckbox
fileUpload document.someForm.someFileElement
hidden document.someForm.someHidden
image document.someForm.somelmage
password document.someForm.somePassword
radio document.someForm.someRadio
reset document.somefForm.someReset
select document.someForm.someSelect
submit document.someForm.someSubmit
text document.someForm.someText
textarea document.someForm.someTextarea
ids document.ids
layers document.layers
link document.someLink

(continued)

97

98

Part |: Building Killer Web Pages for Fun and Profit

Object Syntax
object document.someO0bject
plugin docment.embeds|[0]
tags document.tags
frame, parent, self, top (all of these are also synonyms for window)
history history
location location
locationbar locationbar
menubar menubar
navigator navigator
personalbar personalbar
scrollbar scrollbar
statusbar statushar
toolbar toolbar

JavaScript data types

Much of what you want to do with a JavaScript script involves programmer-
defined objects, such as the values that a user types into your HTML form,
some calculations that you make based on those values, and so on.

Most programming languages require you to declare special placeholders,
called variables, to hold each piece of data you want to work with. Not only
that, but most programming languages require you to specify — up front —
what type of data you expect those variables to contain. (This requirement
makes it easy for those languages’ compilers but tough on us programmers!)

JavaScript expects you to declare variables to represent bits of data, too. But
because JavaScript is a loosely typed language, you don’t necessarily have to
declare the type of a variable up front, nor do you have to perform cumber-
some type conversions the way you do in languages like C and C++. Here’s an
example:

var visitor // Defines a variable called "visitor" of
// no particular type
var visitor = "george" // Resets "visitor" to a text string

var visitor = 3 // Resets "visitor" to a numeric value

var visitor = null // Resets "visitor" to null

You can get away without specifying string or numeric data types explicitly,
as shown in this code snippet, because the JavaScript interpreter takes care
of figuring out what type of value is associated with any given variable at
runtime.

Chapter 4: Getting Acquainted with the Document Object Model 99

There are two data types that JavaScript requires you to explicitly specify:
the Array and Date data types. You must declare variables of type Array
and Date explicitly because the JavaScript interpreter needs to know certain
extra details about these types of values in order to store them properly.

JavaScript supports the following data types:

v Array An ordered collection. For example:

var animals = new Array("cat", "dog", "mouse") //
lToad array

var firstAnimal = animals[0] // access first array
element

var secondAnimal = animals[1] // access second element
var thirdAnimal = animals[2] // access third element
v Boolean True/false data type (values of true or false only). For example:
var cookieDetected = false
var repeatVisitor = true
v Date Time and date data type. For example:

var today = new Date() // current time/date via
system clock

var newYearsDay = new Date(2001, 01, 01) // specific
date

v null A special data type denoting nonexistence. For example:
if (emailAddress == null) { // check for null
alert("Please enter an e-mail address")
WMBER }
Null is not the same as 0 (zero).

v Number Numerical data type. For example:

var numberHits 1234 // implied numeric data type

new Number(1234) // explicit

var numberHits
v String String (text) data type. For example:

alert("This is a string") // implied string with
double quotes

alert('So is this') // implied string with single
quotes

var myString = new String("Yet another string") //
explicit

1O Part1: Buitding Killer Web Pages for Fun and Profit

\\3

JavaScript supports additional data types, including the Function and RegExp
data types. Because these data types aren’t often used, I don’t describe them
here. For details on how to use these data types, check out http://devedge.
netscape.com/library/manuals/2000/javascript/1.5/qguide.

Leftovers: The Math object

JavaScript provides a utility object for you to use in your script endeavors.
This object — the Math object — isn’t part of the DOM proper (that is, it
doesn’t represent a conceptual component of a Web page). It isn’t a data
type, either. It’s simply a standalone object provided for you to use whenever
you need mathematical constants or functions. Here are a few examples:

var x = Math.PI // assigns "x" the value of pi

var y = Math.round(158.32) // assigns "y" the result of rounding 158.32

var z = Math.sqrt(49) // assigns "z" the square root of 49

Check out Appendix C for a full list of all the properties and methods associ-
ated with the Math object.

Microsoft Internet Explover

Microsoft’s document object model is often referred to as the DHTML DOM,
which is alphabet-soup-ese for dynamic Hypertext Markup Language document
object model. Although Microsoft’s DHTML DOM is based on the same standard
that Netscape Navigator’s is based on — the World Wide Web Consortium’s
DOM specification — it varies a bit from Netscape’s implementation. This
variation is important to keep in mind because if your script references objects
that exist in one DOM and not another, your script will run in just that one
object-supporting browser. (Flip to Chapter 5 to find tips for creating cross-
platform scripts that work in both browsers.)

Microsoft’s DHTML DOM describes all the objects you can access with
JavaScript to create cool scripts that execute flawlessly in Internet Explorer.
The following is a short list of the basic objects that you work with in Internet
Explorer.

Object Syntax
window window (optional)
document document
applet document.applets[0]
anchor document.someAnchor

area document.someArea

s

Chapter 4: Getting Acquainted with the Document Object Model ’ 0 1

Object Syntax

form document.somefForm
button document.someForm.someButton
checkbox document.someForm.someCheckbox
file document.someForm.someFileElement
hidden document.someForm.someHidden
image document.someForm.somelmage
password document.someForm.somePassword
radio document.someForm.someRadio
reset document.someForm.someReset
select document.someForm.someSelect
submit document.someForm.someSubmit
text document.someForm.someText
textarea document.someForm.someTextarea
link document.somelLink
object document.some0bject
plugin document.embeds[0] (no, this isn't a typo!)
embed document.embeds[0]

frame someFrame

frameset someFrameset

history history

location location

navigator navigator

clientinformation

clientInformation

You can find a list of the objects in the DOM implementation for Internet
Explorer 6.0, including associated properties, methods, and event handlers,
in Appendix C. Or check out Microsoft’s own exhaustive DHTML DOM refer-

ence at

http://msdn.microsoft.com/workshop/author/dhtml/reference/objects.asp

] 02 Pparti: Building Killer Web Pages for Fun and Profit

Part i

Creating Dynamic
Web Pages

The 5th Wave By RichTennant

"OM, T'LL GET US IN— T USED TO RUN TECH SUPRORT AT AN
INTERNET ACCESS COMPANN.”

In this part . . .

n this part, you find practical ways to create Web pages

that appear differently to different users. Chapter 5
shows you how to modify the way your pages appear auto-
matically based on which browser your users are running.
Chapter 6 describes how you can create Web pages that
remember visitors, and Chapter 7 demonstrates how to
manipulate browser frames and windows to create sophis-
ticated navigational schemes.

Best of all, you see real working examples of all the tech-
niques presented in Part II. (The examples are also included
on the CD-ROM at the back of this book, so you don’t even
have to type the code.)

Chapter 5

Detecting Your Users’ Browser
Environments

In This Chapter

Understanding how (and why) JavaScript support differs among browsers
Applying strategies for cross-platform script creation

Taking advantage of advanced JavaScript features with a browser-detection script

Fe biggest challenge facing Web developers today isn’t hardware- or
software-based: It’s wetware-based. (Wetware — a term that refers to the
supposed squishiness of the human brain — is geek-speak for human beings.)
And that challenge is trying to get the companies that create Web browsers
to agree on a single, standard implementation of browser-supported tech-
nologies like JavaScript!

With the current situation, the brand of browser that someone has installed,
the browser’s version, and the underlying operating system all affect that
person’s ability to view your JavaScript-enabled Web pages. As a JavaScript
developer, you need to be aware of the differences in JavaScript implementa-
tions among browsers and write your scripts accordingly. If you don’t, you
might end up creating a whiz-bang script that runs only on your computer.

Whacking Your Way through
the Browser Maze

From the latest reports, both Microsoft and Netscape have promised to sup-
port the ECMAScript standard (which I discuss in detail in Chapter 3) in
future versions of their respective browsers.

1 06 Part II: Creating Dynamic Web Pages

Even if Internet Explorer and Netscape Navigator were fully ECMAScript-
compliant (and offered no additional features), the same JavaScript script
still might not execute identically in both browsers. Why? For JavaScript to
be a true cross-browser language, both the syntax and the document object
model (DOM) would have to be consistent.

ECMA-262 takes JavaScript halfway to cross-browser nirvana by defining a
standard language specification, but it doesn’t define the DOM. As you see in
Chapter 4, the DOMs for the two browsers are far from identical, despite the
efforts of the World Wide Web Consortium to define a unified standard.

Fortunately, as you see in the next section, you don’t have to depend on dif-
ferences between JavaScript implementation and object models to write
great cross-browser scripts. All you need to do is identify the differences at
runtime and display customized Web pages accordingly.

Detecting Features

By using JavaScript, you can detect what make and version of Web browser a
user is using to view your pages — useful information that lets you customize
Web pages on-the-fly to provide your users with the best possible viewing
experience. But make and version aren’t the only bits of browser-related
information that you can detect by using JavaScript. You can also determine
which Java applets and browser plug-ins a user has installed, which Web
page your user visited directly before surfing to yours (called the referring
page), and even user preferences. Read on to find out how!

Browser make and version

The most reliable way to figure out which browsers are loading your script is
to ask. You ask programmatically, using JavaScript, by adding a bit of code to
the beginning of your script, querying the DOM for browser-specific details.
When you determine which make, model, and version of browser is attempt-
ing to load your JavaScript-enabled Web page, you can display your page
accordingly.

The easiest way to implement this functionality is to use the <MARQUEE> tag,
which is an HTML tag (and corresponding scripting object) supported by
Internet Explorer (beginning with version 3.x). The trouble is that some ver-
sions of Navigator don’t support the <MARQUEE> tag. When a non-marquee-
supporting browser loads a Web page containing the <MARQUEE> tag, it might
do one of three things:

Chapter 5: Detecting Your Users’ Browser Environments

v Display the scrolling text statically or not at all

v Ignore your marquee-related JavaScript code

v Generate a JavaScript error

One way to ensure that your viewers see what you want them to see is to use

JavaScript to see whether the browser loading your script is Internet

Explorer.

v If it is, you can use the <MARQUEE> tag with confidence.

v~ If the browser isn’t Internet Explorer, you can display the scrolled infor-
mation in an alternate eye-catching fashion — for example, as a bolded,

centered heading.

Listing 5-1 shows the code for a “sniffer” script that examines (sniffs out)

browser settings and displays a string of text as either a scrolling marquee or

as a bolded, centered heading, depending on whether the browser loading

the script is Internet Explorer.

A custom fit, every time

Creating different versions of each of your Web
pages for each and every different browser
version in existence ensures an optimum expe-
rience for all of your users. It also represents a
maintenance nightmare!

A good design approach to follow is this:

1. Provide absolutely essential information
(such as contact information) in the form of
plain old, every-browser-supports-it text —
rather than, say, a scrolling JavaScript
marquee.

2. Provide additional information and effects by
using cross-browser techniques wherever
possible. For example, layers aren't imple-
mented in all browsers, but depending on the
effect that you want to achieve, you might
be able to make do by using an image-
swapping technique (like the one you see in

Chapter 8) or an animated GIF file instead.
(GIF stands for graphics interchange format.)
You can find more information on animated
GlIFs, including links to free animation soft-
ware, at http://animation.about.
com/arts/animation/msubgif.htm.

. If you want to take advantage of the latest

and greatest Web effects (and who doesn't,
from time to time?), implement them in con-
junction with a browser sniffer script—a
script that “sniffs” out which browser a
user is running — like the one shown in this
chapter. For example, you can create a
JavaScript-enabled Web page that draws a
viewer's attention by scrolling a line of text,
and you can allow the user to stop (and
restart) the scrolling action.

107

1 08 Part II: Creating Dynamic Web Pages

WE CD
o

Take a quick peek at Listing 5-1, and then check out Figures 5-1 and 5-2, which
show how this script appears in Netscape Navigator 7.0. Also see Figures 5-3
and 5-4, which show how the same script appears in Microsoft Internet
Explorer 6.0. I spend the remainder of this section describing exactly how the
script in Listing 5-1 works, step by step, so you can apply the principles you
see here to your own browser-sniffing scripts.

You can find the code shown in Listing 5-1 in the file Tist0501.htm, which is
located on the companion CD. Check it out in your own browser!

Listing 5-1: Sniffing Out Browser Versions

<(SCRIPT LANGUAGE="JavaScript" TYPE="javascript/text">
{!-- Hide from browsers that do not support JavaScript

if (navigator.appName == "Microsoft Internet Explorer") {

// Create a MSIE-specific Web page

document.write("You're running Microsoft IE, which supports MARQUEE
scrolling.")

var builtInScroll = '<FORM NAME="myForm"><MARQUEE ID=abc DIRECTION=LEFT
BEHAVIOR=SCROLL SCROLLAMOUNT=4>JavaScript For
Dummies...</MARQUEE>INPUT TYPE="button" VALUE="Start scrolling"
NAME="startscroll" onClick="document.all.abc.start()"><INPUT
TYPE="button" VALUE="Stop scrolling" NAME="stopScroll"
onClick="document.all.abc.stop()"></FORM>";

else {

// Create a Web page that doesn't use MSIE-specific features
var builtInScroll = '<CENTER><H1>JavaScript For Dummies...</H1></CENTER>'

if (navigator.appName == "Netscape") {
document.write("You're running Netscape, which doesn't provide
consistent support for MARQUEE scrolling.")
}

else {
document.write("You're not running Microsoft IE or Netscape")
}
}

// Display the contents of two important navigator properties
alert("navigator.appName is: " + navigator.appName
+ "\navigator.appVersion is: " + navigator.appVersion)

// Display the appropriate Web page
document.write(builtInScroll)

// --> Finish hiding
</SCRIPT>

|
Figure 5-1:
The
browser
sniffer
script asit
appears in
Navigator
7.0. Notice
the values
of appName
and
appVersion.
|

|
Figure 5-2:
Because
this scriptis
running in
Navigator,
the text is
displayed
centered
and bolded.

Chapter 5: Detecting Your Users’ Browser Environments ’ 0 9

I@ Browser detection script - Netscape
. File Edit View Go Bookmarks Tools Window Help

@ Q @ @ I%—I'Ie.-"f.-"C.-"emu"wnte.-']sfdéle.fsc:npis)’llstDEEH htrm

. B, EMail S AM 4 Home £ Radio [] Netscape © Search £5Bookmarks

| Gy Search | _ "E’_go @

You're runmng Metscape, which dossn't provide consistent support for MARQUEE scrolling,

! a navigator. appname is: Netscape
. navigator.version is: 5.0 (Windows, en-US)

[WavaScript Application] =]

5‘}’

B Textpad-[c... | M) 506331 cho., [) leftovers_ch...] &) Browser det,.. @Q 6:37 PM

'=m=n‘ﬂ//

[5 Browser detection script - Netscape

SEx]

. File Edit View Go Bookmarks Tools Window Help

@ O @ Q %—I'Ie'.-"f.-"C'.-"emu"W{ite.-"jsfdéle.fsc:!ipis)’listDEEH htrn

| Gy Search | _ "Sgo @

. B, EMail S AM 4 Home £ Radio [] Netscape © Search £5Bookmarks

You're runmng Metscape, which dossn't provide consistent support for MARQUEE scrolling,

JavaScript For Dummies...

(4 A OF 1 [pone

" B Textpad-[c... | B] 506331 cho.,]@Ieﬂm«ars_m,.. | &) romser det... @Q 6:38 M

'=m=n‘ﬂ//

’ ’ 0 Part II: Creating Dynamic Web Pages

@ Browser detection script - Microsoft Internet Explorer [B[E[=]
i File Edit View Favorites Tools Help "
Qe - QX B G Psewen Yoreons @ @ (3~ 2 B0 L EHE @
¢ adiress |£] Cemiwritelfsftelseriptsistoso1 bim [v| B e
Tou're nunning Microsoft IE, which supports MARQUEE scrolling.
|
i -J. Microsoft Intemet Explorer &
Figure 5-3 i Expl %}
The _ﬁ navigator appname is; Microsoft Internet Explorer
browser navigator version is: 4.0 (compatible; MSIE 6.0; Windows NT 5.1)
sniffer
. _OK
script as
it appears
in Internet
Explorer 6.0.
Notice the
value of
appName
and
appVersion. 4 My Computer

5 Browser det... f@@ 632 PN
—

| Browser detection script - Microsoft Internet Explorer =X
File [Edit View Favorites Tools Help .-ﬂ"

Qi O WA P ereo @ @ (310 3L EHE @

¢ adiress |£] Cemiwritelfsftelseriptsistoso1 bim [v| B e

Tou're nunning Microsoft IE, which supports MARQUEE scrolling.

JavaScnpt For Dummies. .
[Statscraling || Stop scroliing |

|
Figure 5-4:
This scriptis
running in
the browser,
so the text
is scrolled

and user- |
controlled. [Eloee 4 My Computer

MTaxtpaa-[c... 1@50&331@... rleftwars_rh‘.. e T P 6T Browser det.,. f@@ 6139 PM
— !

Chapter 5: Detecting Your Users’ Browser Environments

The code that you see in Listing 5-1 uses the i f-else statement to examine
the contents of the built-in navigator.appName property and determine
whether the user is running Internet Explorer. (A navigator.appName value
of "Microsoft Internet Explorer" means that the user is running
Internet Explorer.)

v~ If the user is running Internet Explorer, the JavaScript code

e Writes a message to the screen, which you see in Figure 5-1.
(You're running Microsoft IE, which supports MARQUEE
scrolling.)

¢ Creates a variable named builtInScrol1 that contains all the
HTML code necessary to display scrolling text — along with but-
tons that a user can use to turn scrolling on and off.

v~ If the user is not running Internet Explorer, the JavaScript code

e Creates a variable called builtInScrol] that contains all the
HTML necessary to display centered, bolded text.

e Examines the navigator.appName property again to determine
whether the user is running Netscape Navigator or another browser.

¢ Displays an appropriate message based on the value of the
navigator.appName property.

Regardless of the make of browser the user is running, the JavaScript code

v Displays a pop-up message describing the contents of the
navigator.appName and navigator.appVersion properties.

v Writes the contents of the builtInScrol1 variable to the screen.

The built-in navigator object stores many different browser details. You can
examine the contents of the navigator.appVersion property to determine
which version of a particular make of browser a user is running (for example,
6.0 or 7.0). Unfortunately, however, no standard approach to version naming
exists. For example, notice in Figure 5-1, the value of appVersion is 5.0 —
even though the actual version of Navigator running is 7.0. Notice also that
in Figure 5-3, the value of appVersion is listed as 4.0, not 6.0 as you might
expect (although the string MSTE 6.0, the actual version of Internet Explorer
running, also appears as part of the appVersion value.) The upshot is that to
determine the correct version of browser running, you need to perform the
following two steps:

1. Check with each browser manufacturer to find out what appVersion
value to expect for each browser version. For example,

¢ You can find out all about the navigator object that Internet
Explorer supports (including the appVersion property) by visiting
http://msdn.microsoft.com/library/default.asp?url=/
workshop/author/dhtml/reference/objects.asp.

111

1 ’2 Part II: Creating Dynamic Web Pages

¢ To see how Netscape describes the built-in navigator object,
check http://devedge.netscape.com/1ibrary/manuals/
2000/ javascript/1l.5/reference/ix.html.

2. If necessary, use a String method, such as index0f (), to extract the
value of the appVersion property. The index0f () method returns one
of two values: -1 if a given string isn’t found, or the position of a string if
that string is found. (Note: JavaScript begins counting string positions at
0, not 1.) For example, the following JavaScript code searches the con-
tents of the appVersion property to determine whether it contains the
string "6.0":

if (navigator.appVersion.index0f("6.0") == -1) {
alert("The string '6.0' was not found in the value for appVersion)

else {
alert("The string '6.0"' was found in the value for appVersion")

}

Embedded objects

Netscape Navigator and Internet Explorer both support embedded objects —
specialized applications that run inside Web pages.

Embedded objects allow users to view non-HTML content. For example, a
Flash embedded object allows Navigator users to load Web pages containing
animations created with Macromedia Flash, a RealPlayer embedded object
allows Navigator users to load Web pages containing RealAudio clips, and
SO on.

By using JavaScript, you can determine at runtime whether a user has a spe-
cific embedded object installed and display your Web page accordingly. For
example, you might want to begin playing a QuickTime movie as soon as a
user loads your page — but only if that user has QuickTime capability
already installed.

Internet Explorer supports embedded objects through Microsoft’s ActiveX
components. Netscape Navigator supports embedded objects through a tech-
nology called plug-ins. Both browsers support specialized embedded objects
called Java applets.

How do you determine whether a user has specific plugged-in content?
JavaScript offers two different ways:

Chapter 5: Detecting Your Users’ Browser Environments

\NG/
évg‘“

SMBER
S

+~ Both Navigator and Internet Explorer: The document.embeds[] array
contains a list of all the objects embedded in a document via the <OBJECT>
tag (Internet Explorer) and the <EMBED> tag (Netscape Navigator). The
document.applets[] array contains a list of all the applets embedded
in a document via the <APPLET> tag.

v Navigator: The navigator.plugins[] array contains a list of all the
plug-ins that Navigator supports. (Popular plug-ins include Adobe
Acrobat and Apple QuickTime.) The navigator.mimeTypes[] array
contains a list of all of the MIME types supported by Navigator. (MIME,
or Multipurpose Internet Mail Extension, refers to the file types that
Navigator can understand and display. Examples of popular MIME types
include Adobe’s portable document framework (. pdf) and RealNetworks’
RealAudio (. ram).

The <APPLET> tag was deprecated in HTML 4.0, which means that program-
mers are encouraged to use the <OBJECT> or <EMBED> tag (instead of the
<APPLET> tag) to embed Java applets in Web pages. Future browsers might
not support the <APPLET> tag. [demonstrate detecting Java applets via the
document.applets[] array, however, because many <APPLET>-tag-containing
Web pages still exist.

InIE, the navigator.plugins[]and navigator.mimeTypes[] arrays are
always null because IE implements embedded ActiveX objects in place of
plug-ins. To detect embedded content in documents viewed in Internet
Explorer, access the document.embeds[] array.

Detecting plugged-in content can be a little tricky. Fortunately, the code that
you see in Listing 5-2 helps you understand the differences between embed-
ded objects and plug-ins.

Before scanning the code listing, though, take a look at Figures 5-5 through
5-8, which show the code in Listing 5-2 loaded in Netscape Navigator. Then
see Figures 5-9 through 5-12, which show the same code loaded in IE.

You can experiment with the code in Listing 5-2 by loading the file 11st0502.
htm from the companion CD into your own Web browser. To duplicate the
example shown in this chapter, you can download a copy of Apple QuickTime
at www.apple.com/quicktime/download.

Figure 5-6 shows how clicking the Detect Embedded Objects button displays
the total number of <EMBED> and <OBJECT> tags in this document. Clicking
the Detect Plug-Ins button, as shown in Figure 5-7, displays the number of
downloaded and installed browser plug-ins; clicking the Detect Applets button,
as shown in Figure 5-8, displays the number of Java applets embedded in the
document using the <APPLET> tag.

113

1 ’4 Part ll: Creating Dynamic Web Pages

|
Figure 5-5:
Checking for
embedded
objects in
Netscape
Navigator.

Figure 5-6:
Detecting
objects: 1

embedded

object.

Figure 5-7:
Detecting
plug-ins: 25
browser
plug-ins.

Figure 5-8:
Detecting
applets: 1

Java applet.
|

[Detecting embedded objects (applets, plug-ins, etc.) - Netscape =JEE
. File Edit View Go Bookmarks Tools Window Help

r @q ®°® O [5 fle:C: remiwnitesjsfdde/cade/Chapter%h202idetecting_emi | [Cy Search | ‘fgo @

‘ | E,ﬂ EMail &AM 48 Home 2 Radio [] Netscape © Search £5Bookmarks

Tweo embedded objects appear below: =
1. A sample movie provided free by QuickTime (Sample mov). Mote: IE identifies applets as objects. IE does not
recognize browser plug-ins, (IE supports ActveX objects mstead of plug-ins.)
2. A sample Java applet provided free by Sun Microsystems (JavaClock.class) Note: Mavigator identfies applets as
applets

4

QuickTime

4 - ST

detect embedded ohjects | | detactplug-ins | [[detect applats: -
piug

|

3 0 [pone [RS
star N B textead-[c... | B 508331 cho.., [B leftovers ch.,, [ROSITE S rs @) Petecting 2., Q’ 1:01.eM

PavaScript Application] 1%

| ; 1 embedded object(s) detected.

[JavaScript Application] %]

25 browser plug-ins detected: Mozilla ActivexX control and plugin support Mozilla Default Plug-in
MecAfee Clinic Shockwave Flash Java Plug-in Java Plug-in Java Plug-in Java Plug-in Java Plug-in Java
Plug-in MetaStream 3 Plugin Reaklukebox NS Plugin RealPlayer(tm) G2 LiveConnect-Enabled Plug-In
(32-bit) RealOne Player Version Plugin Adobe Acrobat QuickTime Plug-in 6.5 QuickTime Plug-in 6.5
QuickTime Plug-in 6.5 QuickTime Plug-in 6.5 CuickTime Plug-in 5.5 QuickTime Plug-in 6.5 QuickTime
Plug-in 6.5 Microsoft (R} DRM Vindows Media Player Plug-in Dynamic Link Library Microsoft®

Windows Media Services

[JavaScript Application] %]

| ; 1 Java applets detected. (Rememember, |E counts applets as embedded objects.)

Chapter 5: Detecting Your Users’ Browser Environments

|
Figure 5-9:
Checking for
embedded
objectsin IE.

|
|
Figure 5-10:
Detecting

an
embedded
QuickTime

object. ..
|

|
Figure 5-11:
...anda
Java applet.
|

The same code — Listing 5-2 — executed in Internet Explorer behaves a bit
differently, as you can see in Figures 5-9, 5-10, 5-11, 5-12, and 5-13. When you
click the Detect Plug-Ins button, the number of plug-ins detected is always
none because Internet Explorer doesn’t recognize or implement plug-ins.

€1 Detecting embedded objects (applets, plug-ins, etc.) - Microsoft Internet Explorer BEE]
File [Edit View Favorites Tools Help n'."
O O X B G Pt oo @ @] 2~ 5 B - L HE @
||
Two embedded objects appear below:
1. A sample movie provided free by QuickTime (Sample.mov). Mote: IE identifies applets as objects. IE does not
recognize browser plug-ins. (IE supports ActiveXl objects instead of plug-ins.)
2. A sample Java applet provided free by Sun Microsystems (JavaClock.class) Mote: Mawigator identifies applets
as applets.
g
S T
| detect embedded objects | [detect plug-ins] | detect applets |
|ae
€| Done 'j i‘ﬂv Computer

QRO 730m

m ETaxtPad-[C:'uem...] @506‘331 ChoS_f.d., | mlehmrs_chapter... JI 2§ Detecting embedd,.,

Microsoft Internet Explorer

!E Detected the QTsample embedded object

Microsoft Internet Explorer

!} Detected the clock embedded object

115

1160

Part II: Creating Dynamic Web Pages

|
Figure 5-12:
IE doesn't
support
plug-ins.

|
|
Figure 5-13:
In IE,

applets
aren't
differenti-
ated from
any other
embedded

objects.
|

Microsoft Internet Explorer %]

!E Mo broweser plug-ins detected. (Remember, |E doesnt support plug-ins.)

o]

Microsoft Internet Explorer %]

j 2 Java applets detected. (Rememember, |E counts applets as embedded
L3

ohjects.)
QK

Take a look at Listing 5-2. As you skim through the code, notice the similari-
ties in detecting different kinds of embedded content. In each case, you exam-
ine the Tength property associated with a built-in array (the navigator.
plugins.length, document.embeds.length, and document.applets.
length properties detect plug-ins, embedded objects, and embedded applets,
respectively).

Listing 5-2: Detecting Embedded Objects

<HTML>
CHEAD><TITLE>Detecting embedded objects (applets, plug-ins, etc.)</TITLE>

<(SCRIPT LANGUAGE="JavaScript" TYPE="text/javascript">
{!-- Hide from browsers that do not support JavaScript

[ILLTLLLLLEEEELI i i rrrrrrrry
// The detectPlugins() function detects
// Navigator browser plug-ins (software "cartridges"
// that have previously been downloaded and
// installed in the Netscape Navigator browser).
LILTTLTLLLEEEEL T i r i i iy
function detectPlugins() {

if (navigator.plugins.length > 0) {

var pluginDescription = "";

Chapter 5: Detecting Your Users’ Browser Environments

}

for (var numPlugins = 0; numPlugins < navigator.plugins.length;
numPlugins++)
pluginDescription = pluginDescription + " " +
navigator.plugins[numPlugins].name
}
alert(navigator.plugins.length + " browser plug-ins detected: "
+ pluginDescription);

else {
alert("No browser plug-ins detected. (Remember, IE doesn't support
plug-ins.)")

LHTEEILLEEL LTI T T

/l

The detectApplets() function detects Java
applets embedded in a Web page via the

APPLET tag - but for Netscape Navigator only.
To detect applets in a page running in
Microsoft Internet Explorer, you need to have
knowledge of the applet: for example,
document.applets['nameOfApplet'].someMethod();

The length of the document.applets array
represents the number of objects embedded
in a Web page.

The existence of additional applets[]
properties and methods depends on the
implementation of each individual applet.

LILLTLLLLLEEELLI i i i il
function detectApplets() {

if (document.applets.length > 0) {
alert(document.applets.length + " Java applets detected. (Rememember, IE
counts applets as embedded objects.)")

else {
alert("No Java applets detected.")
}

(continued)

117

1 ’8 Part II: Creating Dynamic Web Pages

Listing 5-2 (continued)

[IHTTTEETEEE LT L rr i rrir il
/] The detectEmbeds() function detects content

// embedded in a Web page via the EMBED

// or OBJECT tag.

// The Tength of the document.embeds array
// represents the number of objects embedded
// in a Web page.

// The existence of additional embeds[]

// properties depends on the implementation

// of each embedded object.
LILLTTLLLLEEEEL T i r i iy
function detectEmbeds() {

if (navigator.appName == "Microsoft Internet Explorer") {

// The user is running IE, so check for objects

// embedded using the OBJECT tag.

/]

// The readyState property of an object embedded
// using the OBJECT property can contain one of 3
// values:
// 0 = uninitialized
// 1 = Toading
// 4 = finished Toading and ready to go

if (document.QTsample.readyState == 4) {
alert("Detected the QTsample embedded object");

if (document.clock.readyState == 4) {
alert("Detected the clock embedded object");

else {
if (navigator.appName == "Netscape") {
// The user is running Navigator, so check
// for objects
// embedded using the EMBED tag.

if (document.embeds.length > 0) {
alert(document.embeds.length
+ " embedded object(s) detected.")

else {
alert("No embedded objects detected.");
}

}

// --> Finish hiding
</SCRIPT>

</HEAD>

<BODY>

Two embedded objects appear below:

<0L>

A sample movie provided free by QuickTime (Sample.mov).

Note: IE identifies applets as objects. IE does not recognize browser plug-ins.
(IE supports

ActiveX objects instead of plug-ins.)

C{LI>A sample Java applet provided free by Sun Microsystems
(JavaClock.class)

Note: Navigator identifies applets as applets.

</0L>

Kl==

You use the OBJECT tag to embed an ActiveX component into a

page meant for MSIE; you use the EMBED tag to embed a plug-in into a page meant
for Navigator.

Notice the difference between the way the value of the SRC

variable must be specified.

1) ==»

<OBJECT CLASSID="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDCHR"
WIDTH="320"HEIGHT="250"

[D="QTsample"

CODEBASE="http://www.apple.com/qtactivex/qtplugin.cab">

<{PARAM name="SRC" VALUE="c:\Program Files\QuickTime\Sample.mov">

<PARAM name="AUTOPLAY" VALUE="true">

{PARAM name="CONTROLLER" VALUE="true">

<{EMBED SRC="file://c:\Program Files\QuickTime\Sample.mov" WIDTH="320"
HEIGHT="250" AUTOPLAY="true" CONTROLLER="true"
PLUGINSPAGE="http://www.apple.com/quicktime/download/">
</EMBED>

</0BJECT>

Chapter 5: Detecting Your Users’ Browser Environments ’ ’ 9

(continued)

1 20 Part II: Creating Dynamic Web Pages

Listing 5-2 (continued)

h==

This Java applet is freely available from Sun Microsystems.
For more info,
visit http://java.sun.com/openstudio/applets/clock.htm]

Note: The APPLET tag was deprecated in HTML 4.0, which

means that programmers are encouraged to use the OBJECT tag
(instead of the APPLET tag) to embed Java applets

in Web pages. Future browsers might not support the APPLET tag.
1 ==>

CAPPLET ID="clock" CODEBASE="classes" CODE="JavaClock.class" WIDTH="150"
HEIGHT="150">

<{PARAM NAME="bgcolor" VALUE="FFFFFF">

<PARAM NAME= “border" VALUE="5">

<PARAM NAME="ccolo VALUE="dddddd">

<{PARAM NAME—"cfont" VALUE="TimesRoman|BOLD|18">
<PARAM NAME="delay" VALUE="100">

<PARAM NAME="hhcolor" VALUE="0000FF">

<PARAM NAME="Tink" VALUE="http://java.sun.com/">
<PARAM NAME= "mhco]or" VALUE="00FF00">

<{PARAM NAME="ncolo VALUE="000000">

<{PARAM NAME—"nrad1us" VALUE="80">

<PARAM NAME="shcolor" VALUE="FF0000">

</APPLETY

<P>

<FORM>

<INPUT TYPE="button" VALUE="detect embedded objects" onClick="detectEmbeds()">
<INPUT TYPE="button" VALUE="detect plug-ins" onClick="detectPlugins()">

CINPUT TYPE="button" VALUE="detect applets" onClick="detectApplets()">
</FORM>
</BODY>
</HTML>

Keep in mind that you can use two ways to detect Netscape Navigator plug-
ins: by examining the navigator.plugins[] array and by examining the
navigator.mimeTypes[] array, as shown in Listing 5-2. Because Internet
Explorer doesn’t support plug-ins, however, these two arrays are always
empty in Internet Explorer.

Objects embedded by using either the <EMBED> or <OBJECT> tag are added to
the document.embeds[] array.

9

Chapter 5: Detecting Your Users’ Browser Environments ’ 2 1

V?‘“\NG! The document.plugins[] array is a synonym for the document .embeds[]
8 array, but because the document.plugins[] array appears so similar to the
navigator.plugins[] array — an array that holds an entirely different kind
of object — I suggest sticking with the document.embeds[] array when you
want to determine the number of embedded <OBJECT> and <EMBED> tags in a
document.

The referrer page

A referrer page is the Web page that a user loaded directly before loading
your Web page. You can use JavaScript to determine the referring page at
runtime — which is useful if you're keeping track of statistics. (Some pro-
grammers enjoy knowing precisely what links users follow to get to their
Web pages.)

To identify the referring page, you examine the referrer property of the
document object, as shown in the following JavaScript code:

if (document.referrer == "") {
document.writeln("You pulled this page up fresh in a browser.");
}

else {
document.writeln("You were referred to this page by " + document.referrer);

}

The above code snippet determines the following:
v If the value of document.referrer is blank (blank is denoted by "" in
the code snippet), the user typed the name of the Web page directly into
the browser address field.

v~ If the value of document.referrer isn’t blank, document.referrer
contains the name of the referring page.

<MECD The files detecting_referrer_base.htmand detecting_referrer.htm,
which you find on the companion CD, allow you to test the code that I
O describe in this section. To use these files, upload them to a Web server, load
the file detecting_referrer_base.htmin your Web browser, and click the
link that appears.

7%

\3
) You must upload your HTML files to a Web server in order to test the code

that you see in this section; the value of document.referrer is always blank
when tested locally.

1 22 Part II: Creating Dynamic Web Pages

Figure 5-14:
Asking
users

for their
preferences.

Figure 5-15:
Your users
can enter
the text
color.
|

<MECD

User preferences

Wouldn't it be great if your users could choose they way they’d prefer to see
your Web pages? Well, if you use JavaScript, they can! You can use JavaScript
to present your users with a series of options right away, before your Web
page loads — and then use that feedback to display your page the way your
users want to see it.

In Figures 5-14 and 5-15, for example, you see prompts asking users which
color they prefer for background and text color, respectively. Figure 5-16
shows the result: a Web page containing the user’s preferred color scheme.

Explorer User Prompt %]
St
“w'hat BACKGROUND color would you like? [red, green, white, yellow, etc.|

Cancel
|Din|<l

Explorer User Prompt %]
S
“w'hat TERT color would vou like? [red, green, white, vellow, etc.]

Cancel
(e

The code in Listing 5-3 is available on the companion CD: just load the file
11st0503.htm.

Listing 5-3: Detecting User Preferences

<HTML>

<HEAD>

<TITLE>Detecting user preferences (and customizing display)</TITLE>
<SCRIPT LANGUAGE="JavaScript" TYPE="text/javascript">

<{I-- Hide from browsers that do not support JavaScript

// Ask the user for color preferences
var displayColor = prompt("What BACKGROUND color would you Tike? (red, green,

white, yellow, etc.)", "pink");

Chapter 5: Detecting Your Users’ Browser Environments 7 23

var textColor = prompt("What TEXT color would you like? (red, green, white,
yellow, etc.)", "blue");

// Display page content

document.writeln("<BODY BGCOLOR=" + displayColor + " TEXT=" + textColor + ">You
chose " + textColor + " text on a " + displayColor + "
background.</BODY>")

// --> Finish hiding
</SCRIPT>

</HEAD>

</HTML>

As you skim through the JavaScript code in Figure 5-3, notice that it defines
two variables:

v displayColor, containing the user’s choice of background color

v textColor, containing the user’s choice of text color
After these two variables are defined, the JavaScript code uses them — along

with the writeln() method — to define and display the <BODY> section of
the Web page.

€1 Detecting user preferences (and customizing display) - Microsoft Internet Explorer BE[X]
File [Edit View Favorites Tools Help v

: @Back ke J x] i-| ;: - search ¢ Favarites Qy'Medla {“ R E = ; ﬁ ‘Eﬂ
Address | & Criemr ket sfotelscriptsistS03. hom BEE

Tou chose blue text on a pink background

|
Figure 5-16:
A cus-
tomized
display
based

on user

preferences. |£lbore J My Computer
' TextPad - [C:lem.., | Bs06331 Chis_fudi., | B8 lefrovers_chapter,., 2@ 7440m
5y)) 0=

1 24 Part II: Creating Dynamic Web Pages

Chapter 6
That's How the Cookie Crumbles

In This Chapter

Taking a close look at cookies

Understanding the benefits and limitations of cookies
Setting and retrieving cookie values

Creating a script to recognize previous visitors to your site

u nlike a traditional client/server configuration, in which the client and
the server have to agree to begin and end every conversation, the Web
is stateless. Stateless means that, by default, neither Web browsers nor Web
servers keep track of their conversations for later use. Like two ships that
pass in the night, browsers and servers interact only when a user downloads
a Web page, and then they immediately forget the other ever existed!

Cookies — tiny text files that a Web server can store on a client’s computer
via a Web browser — were designed to change all that. By using cookies to
keep track of browser-to-server interactions, Web developers can create intel-
ligent Web sites that remember details about each and every user who visits
them. You can even create cookies with built-in expiration dates so that infor-
mation stored as cookies is maintained for only a limited period of time —
say, a week or a month.

Cookie Basics

You can use JavaScript, Perl, VBScript, or any other Web-savvy language to
store small text files called cookies on your site visitor’s computer. Because
the whole point of using cookies is for server-side applications to keep track
of client information, however, cookies are typically created and set by CGI
programs rather than by JavaScript scripts. (CGI stands for Common Gateway
Interface. CGI programs, which are usually written in Perl or C/C++, live on

1 26 Part II: Creating Dynamic Web Pages

Web servers; their job in life is to transmit data back and forth between a Web
server and a Web client.) But because this book is devoted to JavaScript, later
in this chapter I show you how to create and interact with cookies by using
JavaScript instead of C/C++, Perl, or some other, more traditional cookie-
manipulation language.

Before I dive into the code, however, I explain exactly what cookies are and
how they work.

Why use cookies?

Cookies allow you to store information about a user’s visit on that user’s
computer and retrieve it when the user revisits your site. Two of the most
common reasons Web developers use cookies are

v To identify visitors: You can detect when a user has previously visited
your site and customize what that user sees on subsequent visits. For
example, you can greet visitors by name, tell them what’s changed on
your site since their last visits, display customized pages based on their
previous purchasing, their site navigation habits, and so on.

v To save transaction state: You can store the status of any lengthy trans-
actions between your site and your visitors’ browsers to safeguard against
interruptions. For example, imagine that I'm filling out a lengthy form
on your Web site when all of a sudden my dog chases my cat under my
desk. They scuffle, and before [know what’s happening, my computer
plug comes sailing out of the wall socket! If your site uses cookies, I can
throw my beasts out in the backyard, plug my machine back in, reload
your Web page, and pick up right where I left off. If your site doesn’t use
cookies, | have to start filling out the form from the beginning.

Cookie security issues

Cookies have been used safely for a few years now, and because their use is
strictly governed by Web browsers, they rank mighty low on the list of poten-
tial security threats. Still, they are highly controversial in some programmer
circles for two reasons:

v Cookies jump the traditional bounds of a Web browser by storing
information directly on users’ hard drives. Some folks fear that cookies
can damage their computers by infecting their computers with viruses
or by storing such huge amounts of data on their hard drives that their
computers no longer work properly.

Chapter 6: That's How the Cookie Crumbles ’ 2 7

Fortunately, cookies come with built-in safeguards against both these
threats. No matter whether you use JavaScript or some other language,
you can’t get past the following common-sense limits that Web browsers
impose:

e Where cookies are placed: Internet Explorer 6.x running on
Windows XP, for example, stores cookies as individual text files
and places them in the following directory:

C:\Documents and Settings\Owner\Cookies

Netscape Navigator 7.0 running on Windows XP bunches cookies
together in a single file, called cookies.txt, and places that file in
a random-generated directory name similar to the following:

C:\Documents and Settings\Owner\Application Data\Mozilla\profiles\default\
klambsdn.sTt

¢ How large cookie files can be: Both Internet Explorer and
Netscape Navigator limit cookie files to 4K.

¢ How many cookies any given Web site can place on a user’s hard
drive: Both Internet Explorer and Netscape Navigator set the limit
at 20 cookies per site and set an overall total of 300 cookies per
browser.

e Which sites have access to cookies: Cookie visibility is configurable.
(You see how to configure cookie access in the “Configuring cookie
support” section in this chapter.)

v Cookies enable Web developers to gather detailed marketing informa-
tion about users without those users’ knowledge or consent. Using
cookies in conjunction with client-side applications like CGI programs
and Java applets, Web developers can save, examine, and interpret virtu-
ally every interaction between a user and a Web site. Every click, every
keystroke, every credit card purchase can be used to customize what a
user sees the next time he visits a cookie-enabled Web site.

Fortunately, users who feel uncomfortable with the Big Brother-like aspect of
cookies have a choice: They can configure their browsers to limit cookie sup-
port or turn it off altogether. (You see an example of configuring cookies in
the very next section.)

Looking at cookies from
a user'’s perspective

One of the best ways to understand how cookies work is to take a look at
them from a user’s perspective. In this section, I show you how to configure
cookie support in your browser, visit a cookie-enabled site, and examine an

1 28 Part II: Creating Dynamic Web Pages

actual cookie file. When you finish, you have all the background you need to
be able to jump right into making cookies with JavaScript code.

Configuring cookie support

Netscape Navigator and Internet Explorer both allow users to specify a level
of cookie support.

In Netscape Navigator 7.x, you configure cookie support by following these
steps:
1. Choose Edit~>Preferences~>Privacy & Security~>Cookies.

2. Select one of the following options in the Cookies dialog box that
appears, as shown in Figure 6-1:

¢ Disable Cookies.

¢ Enable Cookies for the Originating Web Site Only (as opposed to
any server in the originating domain).

¢ Enable Cookies Based on Customizable Privacy Settings. (Click the
View button to set privacy settings based on the published privacy
policies of cookie-setting sites.)

¢ Enable All Cookies.

Preferences &)
sl Cookies | =
b Appearance (_\:5 N
= Navigator Cookies are small pieces of information that some web sites ask to store on (and o
Histary later retrieve from) your computer i |
Languages (O Disabla cookies
~Helper Applications s A
~Smart Brawsing (O Enable cookies for the mlglnahng.wah site only
Internet Search (® Enable cookies based on privacy settings
Tabbed Browsing " .
- Diviniaads () Enable all cookies
I» Composer
b Mail & Newsgroups [Disable cookies in Mail & Mewsgroups
P Instant W
P lgsaan e [Ask me before storing a cookie
“ Privacy & Security [Lirnit maxirurn lifetime of cookies to:
Cookies ®
Images AT q
Popup Windows o | | Al
~Forms
| - Pazswords =
i Mitar Bossiiinds Manage Stored Cookies
Figure 6-1: o
Configuring Cerificates
H “Walidation
COOk!e b Advanced
supportin Offline & Disk Space
Netscape
Navigator ok) [Cancel | [Help

7.X. A == e
m B8 00 Promp: | B chapter 6_goadi, | @3nekscape f
|

Chapter 6: That's How the Cookie Crumbles ’ 2 9

Click the Manage Stored Cookies button in the Cookies dialog box to view the
cookies stored on your computer.

As you might guess, users who disable cookie support can’t benefit from the
cookie-accessing scripts that you create with JavaScript. One way to alert
users that they need to turn on cookie support to get the most out of your
site is to tell them! Just include the following sentence at the top of your
cookie-enabled Web pages: This Web site requires you to turn on
cookie support.

A\

To configure cookie support in Internet Explorer, follow these steps:

1. Choose Tools=Internet Options.
2. In the Internet Options dialog box that appears, click the Privacy tab.

3. Move the slider on the left side of the Privacy tab from all the way up
(the Block All Cookies option, as shown in Figure 6-2) to all the way
down (the Accept All Cookies option).

The interim options are High, Medium High, Medium, and Low. You can
customize any option by clicking the Advanced button.

&L abant-hlank Micrasoft lntemat Exnlarer -
Internet Options =] Ir
4
General | Security | Privacy | Cantent | Connections | Progiams | Advanced T -
I ry) | '
= Pt @ 225 EE @
Seltings]
I Mave the slider to zelect a privacy setting for the Internet |) ﬁ G0
B =& zone.
e Block All Cookies
- Cookies from all 'Web sites wil be blocked
- Existing cookies on your computer cannok be r=ad by
‘web sites
Inport,..] [Advanced,.,] [Defaul
Wweb Sites

To averide cookie handing for individual Web sites,
click the Edit button

Figqreq-z: - C =]l
Configuring
cookie
supportin
Internet |
Explorer. [El0ore
| :

Cancel]| Apply |

® Intermst

C\‘j WD 11:008m

B 005 Promps @ Chapter 6 good.doc ...

’30 Part ll: Creating Dynamic Web Pages

|
Figure 6-3:
The results
of a cookie:
acus-
tomized
greeting
from the
folks

at Amazon.
com.
|

Uisiting a cookie-enabled site

When your browser is configured to accept cookies, you can surf to cookie-
enabled sites with impunity. Figure 6-3 shows how a cookie can be used to
recognize visitors and present them with custom greetings and options.
(You find out how to create a similar custom greeting later in this chapter, in
“Displaying content based on cookie contents: The repeat-visitor script.”)

Exploring a cookie file
This section shows you what goes on underneath the covers when you visit a
cookie-enabled site.

In Netscape Navigator 7.1, you can examine the cookie file by choosing
Edit=>Preferences=>Privacy & Security=>Cookies and clicking the Manage
Stored Cookies button. The resulting Cookie Manager dialog box appears,
as shown in Figure 6-4.

You can get your hands on the raw cookie file that Netscape Navigator gener-
ates by loading the file C: \Documents and Settings\Owner\Application
Data\MozilTla\profiles\defalt\klambsdn.sTt\cookies.txt (which is
the text file in which Netscape Navigator 7.1 stores cookies) into your favorite
editor.

€1 Amazon.com: Welcome - Microsoft Inte Explorer =JEE
File Edit View Favorites Tools Help 11"
: A T/ . i | G [y
@Back i - | ﬂ E‘ p) | - seach ¢ Favarites @Mtadla &) L 5 = _’J g ﬁ m
diress |] hittps: ffwww.amazon.comfexecjobidos/substihomefhame. itml{002-1816325-3733647 ¥ Be

al

N vIEW CART | WiSHUST | | YOURACCOUNT) | HELP =

|

r
-
-4
T ‘
=

TOOLS & SEE MORE J o
Music | gioots s) (@ SEEMORE EMILY's Gold Bo:

(" APPAREL &
ACCESSORIES

Hello, EMILY A YANDERYEER. \We have recommendations for you. (If you're not EMILY & VANDERVEER, click here,”

Shop Nordstrom at Amazon [¥]
Get the Amazon.com Visa®™ Card Instantly!
All Praducts H Get your card instantly — everything you want
@. s and $30 'N‘"“-f““.... rearan everything you need
ave find it all in one spot
FREE Super Saver Shipping today!
on orders ovar §25/ . ' shop Target Store
Rastrictions apply Find out how) at Amazon >
AT WEB SEARCH
(G0 Take a Walk on The Far Side [newrorvau |
Enjoy every wacky frame of Gary EMILY, see what's
Larson's genius in The Complete Far New for You
Sige, or treat yourself to the signed (If you're not EMILY, dick
_ limited-edition, leather-bound set, here.)
T T () Limited to 2,000 copies, it comes with | 5 |
£ I >

T

&
m B 005 Promp: || B chapter s.goodidac .. [T @ #1198

Chapter 6: That's How the Cookie Crumbles

Colpiny Cookies | |
I Appearanca — - - >
= Navigator Cookies are smg_Cookie Manager g @
Histary sleeitie s i Stored Cookies] Cookie Silnsl
Languages (O Disable cook .
~Helper Applications Wiew and remove cookies that are stored on your computer.
: O Enable cook
5 ;Sma” Bioiwsing | Site Cookie Name £
el .:.ea;c,h © Enzble cook AMAZON.com uhid-main
Tabbed Browsing P—
-Downloads O Enable all ¢q | | amazon.com SeS5I0N-1
| amazaon.com session-id-time
I» Composer |
B Wil &, Niaianing : Inetscape.cnm sampler
aroup] Disable cook | weiwne wardig.com machine-id
P Instant Messenger @) Ask bef
pica sime
“ Privacy & Security O Limit maxim
Cookies @ carentall (N1 Information about the selected Cookie
| Images < . .
= Marne; ubid-main
- QO
Figure 6-4: ng:]p indows Content: 430.9735083-6727135
3 5 i
Taking a D DorFr::Il: }amazon.com
look inside gdéim Fassiins Server Secure! no
one of the Cenlificates Expires: Tuesday, January 01, 2036 2:00:02 AM
H ~“alidation
bcz;:kles set b akanced I Cookie] ! R All Cookies]
e WWWw. Offline & Disk §
v e BLEPAsE [Dont allow sites that set removed cookies to set future cookies
amazon.
com
domain. : _ =)
m B 005 Promps | @1’! Chapter 6_,., | @ Netscape.c,.. @ Preferences N Q g @ 11:230m

Preferences

Internet Explorer stores individually generated cookie files in the following
directory: C:\Documents and Settings\userName\Cookies. Cookie file-
names take the form of userName@domainl[timesAccessed].txt. For exam-
ple, on my machine, the following file exists after a visit to Amazon.com:

C:\Documents and Settings\Owner\Cookies\owner@amazon[1].txt

You can also type JavaScript:alert(document.cookie); in the Address bar of
Internet Explorer or Netscape Navigator after you load a Web page. When you
click Go, you see a pop-up window containing all the cookies associated with
that page.

Saving and Retrieving User Information

Working with cookies involves two distinct operations: creating, or setting, a
cookie; and accessing the created cookie. Typically, you create a cookie only
once, the first time a user visits your site. After that, you can access the cookie
every time the user revisits your site or as often as you like. The following
sections show you how.

132 Part II: Creating Dynamic Web Pages

Setting a cookie

The cookie property of the document object holds all the cookies associated
with a document.

To create and set a cookie, you must define a variable/value pair that repre-
sents the name of the cookie and the cookie’s content (name=value).
Because cookie values can’t contain semicolons, commas, or white space, |
recommend using the built-in JavaScript escape () function when storing a
cookie’s value and using the built-in JavaScript unescape () function when
retrieving a cookie’s value. (The escape () function encodes any semicolons,
commas, and white space that exist in a string, and the unescape() function
reconstitutes them.) Other than this restriction, a cookie value can contain
just about anything you like! (Some programmers come up with fancy encryp-
tion schemes, but others stick with simple text-based strings.)

In addition to the mandatory name and value, you might define optional,
semicolon-delimited attributes for a cookie (see Table 6-1).

Table 6-1 JavaScript Cookie Attributes
Attribute Description
expires=expirationDate; The date, in milliseconds, after which the

cookie expires (and is deleted by the Web
browser). Expiration dates are normally
stored in the standard Greenwich Mean
Time format. (You format a date in GMT by
using the toGMTString() method of the
Date object.)

path=path; The path of the CGI program to which the
cookie contents can be transmitted. The
default is the root path of the originating
server.

domain=domain; The domain (for example, www . acme . com)
to which a cookie can be transmitted.
Restricted by default. (See the “Cookie
security issues” section for details.)

secure Specifies that this cookie can be transmitted
only by a secure protocol such as https.

Chapter 6: That's How the Cookie Crumbles ,33

To create a cookie and store it on the user’s hard drive, all you need to do is
set the document . cookie property equal to a string containing the required
name/value pair and any optional, semicolon-delimited cookie attributes, as
shown in the following code snippet (taken from Listing 6-1, which appears
later in this chapter):

document.cookie = name + "=" + escape(value) +
((expires == null) 2 "" : ("; expires=" + expires.toGMTString())) +
((path == null) ? "" : ("; path=" + path)) +
((domain == null) 2 "" : ("; domain=" + domain)) +
((

secure == true) ? "; secure" : "");

The cryptic, odd-looking syntax — (condition) ? something :
somethingElse — is JavaScript shorthand for “if this condition is true,
then add something. Otherwise, add somethingElse.”

For example, here’s how the JavaScript interpreter sees the JavaScript
phrase:

((expires == null) ? "" : ("; expires=" + expires.toGMTString()))

It thinks to itself “If the value for expiresisnull,add "" to
the document.cookie property. Otherwise, add the string
expires=someGMTFormattedDate to the document.cookie property.”

You can find out more about the conditional ? : operator in Chapter 3.

Accessing a cookie

You can set attributes for a cookie by using JavaScript (specifically, the
expires, path, domain, and secure attributes, as I describe in the section
“Setting a cookie™), but you can’t access those attributes by using JavaScript.
In contrast, you can access a cookie’s value.

This seemingly odd state of affairs — being able to set attributes that you
can’t retrieve — actually makes sense when you think about it. All these
attributes are security-related, and preventing them from being altered helps
maintain cookies’ integrity and safety. After you give out your cookies, only
the Web browser is privy to cookie attributes.

To access a cookie’s value, you query the cookie property associated with
the document object. (You see how to set the cookie property in “Setting a
cookie,” earlier in this chapter.)

134 Part II: Creating Dynamic Web Pages

\\J

A\\J

Check out the following JavaScript code snippet:

var endstr = document.cookie.indexOf(";", offset);

return unescape(document.cookie.substring(offset, endstr));
This code contains two statements:

v~ The first statement uses the index0f () method to identify the portion
of the myCookie=userName; string between the = and the ; (in other
words, to identify the stored value of the userName string).

v The second statement unescapes the stored value of the userName
string. (Unescaping is computerese for decoding any special characters
encoded when the cookie was set.)

You can find a working copy of this code snippet in Listing 6-1, later in this
chapter.

Displaying content based on cookie
contents: The repeat-visitor script

You can create a script that registers a user by saving the user’s name to the
user’s hard drive by using a cookie. On subsequent visits to the site, the
script accesses the cookie from the user’s hard drive, recognizes the user’s
name, and uses the information to display a custom greeting. Figure 6-5
shows stage one of the repeat-visitor script where users must first register
their names.

In many real-life applications, you want to create and access cookies by using
a server-side technology, such as a CGI script. Because CGI scripting is
beyond the scope of this book, in this chapter I show you how to create and
access cookies with JavaScript instead. (The syntax between CGI scripting
languages and JavaScript differs, but the basic ways that you interact with
cookies are the same.)

After users register their names, as shown in Figure 6-5, they never see the
registration form again. Users can close their browsers, turn off their machines,
and go away on vacation for a week. When they return and attempt to access
the registration page again, the script recognizes that they've already regis-
tered and loads the For Registered Users Only page with a customized greeting
(see Figure 6-6).

Chapter 6: That's How the Cookie Crumbles ’3 5

@ Cookie Example I: The Registration Page (from JavaScript For Dummies, Ith edition) - Microsoft Intermet Explorer =

ix

i File Edit View Favorites Tools Help f
O O B @ GO e @ B35 B L @
¢ adiress |£] Cemiwritelisftelseriptsisto601 bim [v| B e

Cookie Example I

You must register before you can visit the rest of my site. To register, enter your fll name, then click the button marked
FRegister'

Wialfg ang A Mozart

| Microsoft | Explorer =]

': Thank you for registering, Waolfgang A Mozart! Click OK to enter the
registered portion of my site,

I

Figure 6-5:
Registering
user input
with
cookies. [ElPere || B comenter
m"ﬂ B 00 Prompt '[mcnaptere_gmd.... 7 Cockie Example L., ETexlfad-[C:\am\.mgg 11240 &8

€] Cookie example Il from JavaSeript For Dummies, 4th edition) - Microsoft Internet Explorer H@
. File Edit View Favorites Tools Help .-ﬂ"
O © [N B P v @rete @ 3711 B L HE @

¢ adiress |£] Cemiwritelisftelsoriptsistosoz.bem [v| B e

Cookie Example II

Welcome to the registered portion of my site, Welfzang A Mozart!

|
Figure 6-6:
Escorting
your
registered
guesttoa

reserved |
page. [Elbee I 4 My Computer

m’- [DO Prompt 1 B Chapter 6_good..., 7 Cockie example I, [T TextPad- [c:\am\.mg D 11:40 am
— !

136

Part II: Creating Dynamic Web Pages

WE CD
&

I implemented the repeat-visitor script in two parts based on the two actions
in Figure 6-5 and Figure 6-6:

1 Cookie Example I (For Unregistered Users page): This script registers
a user’s name, stores a cookie on that user’s machine, and loads the For
Registered Users Only page.

v Cookie Example II (For Registered Users Only page): This script
accesses the cookie and displays a custom greeting.

When you create a cookie, you specify an expiration date. After the specified
expiration date, the cookie can no longer be accessed. An expiration of the
null value marks a cookie as transient. (Transient cookies stay around in
memory only as long as the user’s browser session lasts; they aren’t saved to
the user’s hard drive.) In the example in Listing 6-1, you see an expiration
date of one year from the time the cookie is created.

The Cookie Example | and Cookie Example II scripts are shown in Listings 6-1

and 6-2, respectively. You can find them in the 1ist0601.htm and
1ist0602.htm files on the companion CD-ROM.

Listing 6-1: Cookie Example I: The Registration Form

<HTML>
CHEAD><TITLE>Cookie Example I: The Registration Page (From JavaScript For
Dummies, 4th Edition)</TITLE>

<(SCRIPT LANGUAGE="JavaScript" TYPE="text/javascript">
<{!-- Begin hiding
function getCookieVal (offset) {
// This function returns the portion of the
// "myCookie=userName" string
// between the = and the ;
var endstr = document.cookie.index0f (";", offset);
if (endstr == -1) {

endstr = document.cookie.length;

}

return unescape(document.cookie.substring(offset, endstr));

}
function getCookie (cookieName) {
// You have to pick apart the cookie text. To do this,

// You start by figuring out how many characters are
// in the string "myCookie="

Chapter 6: That's How the Cookie Crumbles ’3 7

var arg = cookieName + "=";
var arglength = arg.length;

// Now find out how long the entire cookie string is
var cookielength = document.cookie.length;

// 1f cookies were stored as objects,

// Tife would be much easier!

// As it is, you must step through the contents
// of a cookie character

// by character to retrieve what is stored there.

var i = 0;

// While the "i" counter is less than the number
// of characters in the cookie . . .
while (i < cookielength) {

/] 0ffset the "j" counter by the number of characters
// in "myCookie=".
var j = i + arglength;

// If you find "myCookie=" in the cookie contents
if (document.cookie.substring(i, j) == arg) {
// return the value associated with "myCookie="
return getCookieVal(j)
}
if (i ==10) {
break
}
}
return null;
}
function setCookie(name, value) {

// Capture all the arguments passed to the
// setCookie() function.

var argv = setCookie.arguments;

// Determine the number of arguments passed into
// this function
var argc = setCookie.arguments.length;

// You expect the third argument passed in to

// be the expiration date.

// 1f there isn't a third argument, set the expires
// variable to null.

// (An expiration date of null marks a cookie as

// transient. Transient cookies are not saved to the
// user's hard drive.)

var expires = (argc > 2) ? argv[2] : null;

(continued)

138 Part II: Creating Dynamic Web Pages

Listing 6-1 (continued)

}

/1
!/l
!/l
/1

You expect the fourth argument passed in to be
the path.

If there isn't a fourth argument, set the

path variable to null.

var path = (argc > 3) ? argv[3] : null;

/1
!/l
!/l
/1

You expect the fifth argument passed in to be
the domain.

If there isn't a fifth argument, set the
domain variable to null.

var domain = (argc > 4) ? argv[4] : null;

/1

You expect the sixth argument passed in to be
true or false,

depending on whether this cookie is secure
(can be transmitted

only to a secure server via https) or not.

If there isn't a sixth argument, set the
secure variable to false.

var secure = (argc > 5) ? argv[5] : false;

// Set the cookie.
document.cookie = name + "=" + escape(value) +
((expires == null) ? "" : ("; expires=" + expires.toGMTString())) +
((path == null) ? "" : ("; path=" + path)) +
((domain == null) ? "" : ("; domain=" + domain)) +
((secure == true) ? "; secure" : "");

function register(userName, value) {

if

}

/1

(userName == | userName == null) {
// The name is missing, so register this user as "Unknown User."
userName = "Unknown User"

If no cookie called 'MyCookie' exists . . .

if(getCookie('myCookie') == null) {

// Set the expiration date to today.
var expdate = new Date()

// Set the expiration date (which JavaScript

// stores as milliseconds)

// to a date exactly one year in the future.
expdate.setTime(expdate.getTime() + (1000 * 60 * 60 * 24 * 365));

setCookie("'myCookie", userName, expdate);
alert ("Thank you for registering, " + userName + "! Click 0K to enter
the registered portion of my site.");

// Whisk the user to the page reserved
// for registered users.
location.href = "1ist0602.htm"

}

NNy,

// This code checks to see whether a cookie named 'myCookie’
// exists on the user's machine.

/]

// 1f it does, the user has already registered, so whisk

// the user to registered-users-only portion of the site.

/!

// 1f no cookie called 'myCookie' exists on the user's

// machine, ask the user to register.
NNy,

// 1f the "myCookie" cookie exists . . .
if(getCookie('myCookie') != null) {

// Then redirect the user's browser to the
// password-protected page called "1ist0602.htm"

location.href="1ist0602.htm"
}

// End hiding -->
</SCRIPT>
</HEAD>

<BODY>
//#2 (from here to the closing </BODY> tag)
<H1>Cookie Example I</H1>

<FORM NAME="ToginForm">

Chapter 6: That's How the Cookie Crumbles ’39

You must register before you can visit the rest of my site. To register, enter

your full name; then click the Register button.
<P>
CINPUT TYPE="text" NAME="fullName" SIZE=35>

<INPUT TYPE="button" VALUE="Register"
onClick="register(loginForm.fullName.value)">
</FORM>
</BODY>
<IHTMLD

1 40 Part II: Creating Dynamic Web Pages

Here’s a quick run-down on how the JavaScript interpreter handles the code
in Listing 6-1:

1. The interpreter first checks to see whether a cookie named myCookie
exists. If such a cookie does exist, the interpreter — understanding that
this user has previously registered — loads 11st0602.htm.

2. If no such cookie exists, the interpreter loads the registration page, com-
plete with an input text box and a Register button.

3. When a user clicks the Register button, the interpreter begins executing
the register() function, which in turn invokes the setCookie () method
to store a cookie on the user’s machine. The cookie contains the user’s
name and an expiration date.

4. After the register() function stores the cookie, the register() func-
tion loads the For Registered Users Only page.

Check out Listing 6-2 to see an example of how to access a cookie to create
and display a custom greeting.

Listing 6-2: Cookie Example II: Displaying the Custom Greeting

<HTML>
<HEAD><TITLE>Cookie Example II: The Custom Greeting (From JavaScript For
Dummies, 4th Edition)</TITLE>

{SCRIPT LANGUAGE="JavaScript">
<!I-- Begin hiding
function getCookieVal (offset) {
var endstr = document.cookie.index0f (";", offset);
if (endstr == -1) {
endstr = document.cookie.length;

}

return unescape(document.cookie.substring(offset, endstr));

}
function getCookie (name) {
var arg = name + "=";

var arglength = arg.length;
var cookielength = document.cookie.length;

Chapter 6: That's How the Cookie Crumbles ’4 1

var i = 0;
while (i < cookielength) {
var j = i + arglength;

a
if (document.cookie.substring(i, j) == arg) {
return getCookieVal(j)
}
if (i ==0) {
break
}
}
return null;
}

LILLELLLLLTLLEELL LTIl y
// This code checks to see whether a cookie named

// 'myCookie' exists on the user's machine.

/!

// 1f it does, the user has already logged in with a valid
// userID and password, so display the site; otherwise,

// display an error.
LILLLLLLLLLEEEEEEL LI i i rrrrrrrl

// 1f the "myCookie" cookie exists . . .
// #1 (down to document.write(documentText)
var name0fVisitor = getCookie('myCookie')

insert // #2 (down to closing brace associated with if statement)
if(nameOfVisitor != null) {

var documentText = "<BODY><H1>Cookie Example II</H1>Welcome to the
registered portion of my site, "
documentText += nameOfVisitor
documentText += "1</BODY>"
}

insert // #3 (down to closing brace associated with else statement)
else {
var documentText = "<BODY><H1>Cookie Example II</H1>Sorry! Only registered
users can access this page.</B0DY>"
}

document.write(documentText)

// End hiding -->
</SCRIPT>

</HEAD>

</HTML>

1 42 Part II: Creating Dynamic Web Pages

You can't expire me.... | quit!

You can't delete a cookie directly by using JavaScript for the simple reason that only browsers can
actually write to the visitor's hard drive. (It's this security measure that prevents cookies from being
able to wreak havoc on users” hard drives.)

What you can do in JavaScript is to alter a cookie’s expiration date to a date far in the past. Doing
so causes the Web browser to delete the newly expired cookie automatically.

function deleteCookie () {
var expired = new Date();
// You can't delete a cookie file directly from the user's
// machine using JavaScript, so mark it as expired by
// setting the expiration date to a date in the past.

// First, set the exp variable to a date in the past . . .
expired.setTime (expired.getTime() - 1000000000);

// Then, get the cookie
var cookieValue = getCookie ('myCookie');

// Finally, set the cookie's expiration date to the long-past date.
document.cookie = 'myCookie' + "=" + cookieValue + ";
expires=" + expired.toGMTString();

In Listing 6-2, here’s what’s going on:
1. The JavaScript interpreter looks for a cookie named myCookie on the
user’s machine.

2. If a cookie named myCookie exists, the JavaScript interpreter constructs
and displays a custom greeting with the registered user’s name.

3. If no such cookie exists, the JavaScript interpreter constructs an error
message.

Chapter 7

Working with Browser Windows

and Frames

In This Chapter

Using JavaScript to open and close pop-up windows

Positioning content inside windows

Sharing information between frames with JavaScript

A\

Browser windows and frames are the lenses through which your users
view your Web page content.

As a Web page designer, you can choose to create Web pages that open in a
single browser window, which is the standard approach. But with JavaScript,
you can do much more. You can display content in separate windows and
close those windows automatically. You can even display multiple HTML
documents inside a single browser window by using frames, and then share
information between those frames by using JavaScript.

By using JavaScript, you can create all kinds of sophisticated window and
frame effects. This chapter shows you how.

Whether to include HTML frames in your Web site is a personal design decision.
Some folks love frames because they not only allow you to create effective
navigation structures, they also allow you to provide hyperlinks to other
sites while discouraging users from surfing away to those hyperlinked sites
and abandoning your site. The downside? Frames can be complicated to
implement, and some people dislike the fact that they hide URL information.
(Basically, the URL for a link that’s open in a frame doesn’t appear in the
Address bar of the browser.) To see the URL for a link opened in a frame,

for example, you can’t just click the link; you must right-click and select
Properties (Internet Explorer) or This Frame=>View Page Info (Navigator).

If you do decide to implement frames, however, JavaScript can help you
make the most effective use of them.

144 Part II: Creating Dynamic Web Pages

Working with Browser Window's

\NG/
&*%“

One browser window per Web page is the basic, bare-bones approach to Web
development — and for many applications, this approach works just fine. But
sometimes you want to display more than one window. For example, imagine
you're a teacher creating a language-arts Web site. You might want to include
hyperlinks to vocabulary words so that when your visitors click one of the
hyperlinks, the dictionary definition of the hyperlinked word appears in a
separate pop-up window.

If you do decide to create a Web page that displays more than one browser
window, you need to know how to manipulate the extra windows. For exam-
ple, you need to know how to position content within the extra windows and
close the extra windows. In this section, I show you how to open and manipu-
late multiple windows from a single Web page.

Displaying new windows — called pop-up windows or just plain pop-ups — can
be annoying to your users, so use this skill very sparingly. Also, keep in mind
that many users purchase or download free third-party pop-up-blocker soft-
ware (such as the Google utility that you can find for free at http://toolbar.
google.com) or turn off JavaScript support in their browsers to avoid pop-
ups. When they surf to your site, these users don’t see your handiwork.

Opening and closing new browser window's

One popular school of thought when it comes to Web design is to do every-
thing you can (within reason, of course) to keep visitors at your site after
they find it. For example, adding hypertext links that lead to other sites —
although useful — might backfire by scooting your visitors off to other people’s
Web sites before they’ve really looked at yours. After all, who knows when
(or whether) your visitors will return?

One remedy for this situation is to make your page’s HTML links open the
next site in a new browser window. Visitors get to surf freely from your site
to others, as appropriate, but without ever leaving your site. It’s a win-win
situation! Take a look at Figures 7-1 and 7-2 to see what [mean.

In Figure 7-2, you see how creating a new window leaves the original browser
window intact. (Clicking the Close the Window button causes the newly
opened window to disappear.)

|
Figure 7-1:
Clicking the
Open a
Window
button
opens a
window you
can prefill
with a link.
|

|
Figure 7-2:
Loading a
URLinto a
separate
window
keeps your
visitor close
to home.
|

&1 Opening and closing a new winde

Secript For Dummies, 4th edition) - Microsoft Internet Explorer

oI

S
>

. File Edit View Favorites Tools Help

O XA G P frrnn @ @ 2+ 3B L EE @

._,/’ ach
¢ address | €] Colemirielsfdelsorptsyist70L. em B
Opening (and closing) a new browser window
I Open & window] [Close the window]
&1 pore My Computer :

W" B Textea. I@snml o | @ emibrc.r, -IMQC:\DD‘:u.-.]_mnospr... ”wge 10:29PH

ej Opening and closing a new window {from JavaScript For Dummies, 4th edition) - Microsoft Internet Explorer =E%]
i File Edit View Favorites Tools Help ar
Q- © ¥ B G| P Yoo @ree @ (22 B L EE @
¢ adiress |£] Cemiwritelisftelseriptslisto701 bim B
3 : T - T - 2 r
Opening (and closing) a new browser window
[Open a window][Clase the window]
&1 Opening multiple windows(from JavaScript For D dth edit... CJEE |
. . . . |
Opening multiple browser windows is easy
when you use a function that takes a ‘
parameter. i ‘
| Open window #1][Cpen windaow #2 ” Opanwindow #3] E!
@lowe____ i _ MR T T—
2Jo il B TextPad- L. J 88 506331 ... | S cipocume,. | B3 005 Prompt M@ 10:49eM

Chapter 7: Working with Browser Windows and Frames , 4 5

146 Part II: Creating Dynamic Web Pages

Creating such a new window is mighty easy in JavaScript. Listing 7-1 shows
you how.

To experiment with the code in Listing 7-1 in your own browser, open the
11st0701.htm file that you find on the companion CD.

Listing 7-1: Creating (And Destroying) a New Browser Window

{SCRIPT LANGUAGE="JavaScript">
var newhWindow = null;

function popItUp() {
newhWindow = open("1ist0702.htm", "secondWindow",
"scrollbars,resizable,width=500,height=400");
}

function shutItDown() {
if (newWindow && !newWindow.closed) {
newhindow.close();
}
}

</SCRIPT>

To create a new browser window and load it with a new document automati-
cally, you need to use the open () method associated with the window object,
as shown in Listing 7-1. As you can see, the open () method accepts three
parameters:

v The URL that you want to load into the new window (in this case,
11st0702.htm)

v The name for this new window (in this example, secondWindow)

v A string of configuration options

In this example, the window that you create has scroll bars, has a user-
resizing option, and appears with initial dimensions of 500 x 400 pixels. (A
quick peek at Figure 7-1 shows you the visible scroll bars. You can verify the
other characteristics by loading the file 1ist0701.htm from the companion
CD in your own browser.)

To close an open window, all you need to do is invoke the window.close()
method by using the name of the open window, like so: newWindow.close() ;.

Chapter 7: Working with Browser Windows and Frames

\\J

To see a full description of the open () method, check out the following
Web site:

http://msdn.microsoft.com/1ibrary/default.asp?urli=/workshop/author/dhtml/
reference/methods/open_0.asp

Controlling the appearance
of browser window's

In this section, [show you how to customize the windows that you create —
specifically, how to create multiple windows and how to position new windows
with respect to existing windows.

Creating multiple windows

Creating multiple windows by using JavaScript is almost as easy as creating a
single window. The only difference? To create multiple windows, you want to
create a custom function that allows you to “rubber-stamp” as many windows
as you want. The code in Listing 7-2 shows you how.

Listing 7-2: Using a Custom Function to Create Multiple Browser
Windows

{SCRIPT LANGUAGE="JavaScript">
var newhWindow = null;

function popItUp(win) {
var windowFile = win + ".htm"
newWindow = open(windowFile, win,
"scrollbars,resizable,width=500,height=400");
}

</SCRIPT>

</HEAD>
<BODY>

<{H2>Opening multiple browser windows is easy when you use a function that takes
a parameter.</H2>

<FORM>

<INPUT TYPE="button" VALUE="Open window #1" onClick="popItUp('one')">

<INPUT TYPE="button" VALUE="Open window #2" onClick="popItUp('two"')">

<INPUT TYPE="button" VALUE="Open window #3" onClick="popItUp('three')">

</FORM>

147

148 Part II: Creating Dynamic Web Pages

The code in Listing 7-2 defines a function called popItUp() that takes a
single parameter. When a user clicks the Open Window #1 button, the 'one’
string is sent to the popItUp () function. The popItUp() function uses this
incoming parameter to identify the name of the window (one) as well as the
HTML file to open in the window (one.htm).

You can experiment with the code in Listing 7-2 in your own browser by
opening the 11st0702. htm file, which you find on the companion CD.

Positioning new windows

When you open a new browser window, the browser decides where to place
that window, as shown previously in Figure 7-2. However, you can tell the
browser exactly where to put it — by using JavaScript, of course!

The following code shows you one way to do just that:

var leftPosition = screen.width/2

var newlWindow = window.open("one.htm", "secondWindow",
"width=225,height=200,1eft=" + leftPosition + ",top=0")

The window placement positions that you can control are 1eft and top. The
JavaScript code that you see here calculates the value for the Teft position —
in this case, the calculation is equal to half the screen width. The calculated
value is stored in the variable TeftPosition and used as the value of the
left attribute expected by the window.open() function. The upshot? The
left side of the newly displayed window appears exactly halfway across the
screen.

Working with Frames

Scripted frames are a valuable addition to any Web developer’s tool belt. By
using a combination of HTML frames and JavaScript, you can present a static,
clickable table of contents on one side of a page; then, on the other side of
the page, you can present the text that corresponds with each table of con-
tents entry.

Check out Figure 7-5 to see an example of a simple framed table of contents
on the left side of the page and content on the right.

One of the benefits of frames is that they allow you to display different HTML
files independently from one another. So, for example, as Figure 7-3 shows,
the left frame stays visible — even if the user scrolls the right frame. Plus,
clicking a link in the frame on the left automatically loads the appropriate
content in the frame you see on the right.

Chapter 7: Working with Browser Windows and Frames , 4 9

€] emilyv.com - Writing for the Web - What every writer MUST know about e-publishing - Microsoft Internet Explorer =J[2/E3)
File [Edit View Favorites Tools Help -
Q Back - ﬂ E| , 7 Search (Favorites e\ Media {F‘ T E - @ ;;i qm
Address éjC:Iem'u:\rl:el_}sfd-}e‘tscr!nt‘s\,lls_ttl'm'i.htm | ﬂ Go
®emilyV.com e-promeotion e-publishing e-markets e-courses resources who's emilyv?
~
Writin Sawy new way to markel and sell your witing — of & writer's worst nightmare?
tor fheWeb = =
e-publishing
Electronic publishing, or e-publishing, gives authors the means 1o promote, sell, and
distribute their own work —to readers all over the world
“What an intoxicating democracy, For every manuscript, a publisher! instantis What Every Writer MUST
Mo nail-biting, No waiting years for your dog-eared manuscript to make the rounds of Know ibout E-Publishing
the top Mew York publishing houses. Mo fluries of rejection slips in your mailbox.
— That's quite a contrast to the traditional publishing industry, where stnct Bttt
Figure 7-3: acquisition gatekeepers wield the unilateral power to decide which titles have
9 - potential and which don't (often based on such literary considerations as whether or
Using not you're a celebrity).
frames to Unfortunately, the low bariers to entry that began and continue 1o fuel this new
ShOW a site industry make it possible for any Tom, Dick, or Harry with fifty bucks and a
. phone connection to set up shop as an e-publisher. And despite wild claims
index and that e-publishing has "arrived." the technologies on which e-publishing depends —
the related hadearB”thE!t Iells_)llou r{nn? and bind a sinlglz? baok an derpand. far |nstar?_cl,le, and =
content. [l
W B TentPad - [C... | B 506331 cha..) CrlPacummen. . &8 0os Prampt
| .
This approach, which I explain in the following sections, helps users navigate
through the site quickly and is very useful for organizing small sites — or
even larger sites that contain mostly text.
Creating HTML frames
Because this book doesn’t focus on HTML, I don’t go into great detail on cre-
ating HTML frames. Instead, [show you the basic syntax you need to know to
understand how JavaScript and the document object model fit into the picture.
(If you want to know more about creating HTML frames, you might want to
pick up a copy of HTML 4 For Dummies, 4th Edition, by Ed Tittel and Natanya
Pitts and published by Wiley Publishing, Inc.) Listing 7-3 shows you an
excerpt of the code you need to create frames, using the HTM files to hold
the frames together. The 1ist0703.htm file pulls together the pub_1.htm file
(left frame’s table of contents) and the pub_c.htmfile (right frame’s content).
<MECD
N You can view the complete working example of the code presented in this
O section by opening these files, which you can find on the companion CD:

1ist0703.htm, pub_1.htm, and pub_c.htm.

150 Part II: Creating Dynamic Web Pages

Listing 7-3: HTML Syntax for Creating Index and Content Frames

<FRAMESET COLS="125, *"
BORDER="0"
FRAMESPACING="0"
FRAMEBORDER="NO">
// Defining the source file, name, and display details
// for the left frame
<FRAME SRC="pub_1.htm"
NAME="Teftnav"
SCROLLING="AUTO"
NORESTIZE MARGINHEIGHT="0"
MARGINWIDTH="0"
LEFTMARGIN="0"
TOPMARGIN="0"
TARGET="body">
// Defining the source file, name, and display details
// for the right frame
<FRAME SRC="pub_c.htm"
NAME="content"
SCROLLING="AUTO"
NORESIZE
MARGINHEIGHT="0"
MARGINWIDTH="0"
LEFTMARGIN="0"
TOPMARGIN="0"
TARGET="body">
</FRAMESET>

Take a good look at the HTML code in Listing 7-3 to find the two frame
definitions:

v leftnav (which corresponds to the HTML file pub_1.htm)

v content (which corresponds to the HTML file pub_c.htm)
The file pub_T1.htm contains a list of content links (in other words, a table of
contents), and the file pub_c.htm contains corresponding text. Figures 7-4

and 7-5 show you what these two files look like when loaded separately into
Internet Explorer. (Refer to Figure 7-3 to see what they look like connected.)

Looking at pages separately, before you put them into frames, helps you
understand how to combine them for the best effect.

Chapter 7: Working with Browser Windows and Frames ’5 1

|
Figure 7-4:
The table of
contents as
it appears
by itself.
|

|
Figure 7-5:
The text that
correspond
s to the
table of
contents
shown in
Figure 7-4.
|

2] emily_f._tnm - Wiriting for the Web ._What every writer MUST know about electronic promotion and s - Microsoft I... I;;@:Eﬂ

File [Edit View Favorites Tools Help -
@Bﬂck - x'| :] , |) Search Favarites e"Medla £ bt E ‘ @ ;,i am
5 EjC:1em'w|:el_}sfd4e‘tscrlnts'|mh_l.ﬁtrr- M E} Go

&] Done L Coneuter

B TewtPad-[C... | BA)s08331chi,. |) CriDocumen.., | B8 DOS Prompt " 11:39em

€] emilyv.com - Writing for the Web - What every writer MUST know about e-publishing - Microsoft Internet Explorer =J[2/E3)
File Edit View Favorites Tools Help i

@Bﬂck . x| :] , - Search 5 Favorites e"Medla £ bt E . E .ﬁi am

5 Ej(;:1em'|u\n:e1_}sfd4elscrlnts'|mh_c.htm M E}G—S

~

Savwy new way to markiet and sell your weiting — or & wiiter's worst nightmare?
- -
e-publishing

Electronic publishing, or e-publishing, gives authors the means to promote, sell, and distribute
their own work — to readers all over the world.

What an intoxicating democracy. For every manuscript, a publisher! fnstantiy. No nail-biting Wihat Every Whiter MUST
Mo waiting years for your dog-eared manuscript to make the rounds of the top Mew York publishing Know about E-Publishing
houses, Mo flurries of rejection slips in your mailbox

That's quite a contrast to the traditional publishing industry, where strict acquisition Bt
gatekeepers wield the unilateral power to decide which titles have potential and which don't (often
based on such literary considerations as whether or not you've a celebrity)

Unfortunately, the low bariers to entry that began and continue to fuel this new industry make it
possible for any Tom, Dick, or Harry with fifty bucks and a phene connection to set up shop
as an e-publisher. And despite wild claims that e-publishing has "arrved " the technologies on
which e-publishing depends — hardware that lets you print and bind & single book on demand, for
instance, and software that restncts electronic downloads to paying customers — are still very
much in the development stage.

&1 bone = ML
e B TentPad - [C... | B 506331 cha..) CrlPacummen. . &8 00S Prampt f W 11:39PM

152 Part II: Creating Dynamic Web Pages

Sharing data between frames

In the example in this section, the content in the frame on the right reloads
based on what a user clicks in the left frame. So, naturally, the code that’s
responsible for the text reload can be found in the source code for the left
frame, pub_T1.htm. Take a look at the pertinent syntax shown in Listing 7-4.
This code snippet, from pub_1.htm, connects the table of contents links to
the appropriate content.

Listing 7-4: Connecting the Index Links to the Content Headings

// When a user clicks the Introduction link,
// the anchor located at pro_c.htmftop Toads into the
// frame named content

<A HREF="pro_c.htmfftop" TARGET="content"
>Introduction

// When a user clicks the Why Can't I Get Published? link,
// the anchor located at pro_c.htmffcantget loads into the
// frame named content

<A HREF="pub_c.htmffcantget" TARGET="content"
>Why can't I get published?

<A HREF="pub_c.htmffrescue" TARGET="content"
>E-publishing to the rescue!

<A HREF="pub_c.htmftypes" TARGET="content"
>The 3 types of e-publishers

<A HREF="pub_c.htmffchoose" TARGET="content"
>Choosing an e-publisher

<A HREF="pub_c.htmfepubGuide" TARGET="content"
>What Every Writer MUST Know About E-Publishing

// When a user clicks the "emilyv.com home" link, a
// new page (home.htm) replaces the current page

<A HREF="home.htm" TARGET="_top"
>emilyv.com home

Each of the links that I define in Listing 7-4 contains a value for the TARGET
attribute. Except for the last link, the TARGET attribute is set to content — the
name of the frame on the right, which is defined in Listing 7-3, shown earlier
in this chapter. Assigning the name of a frame to the TARGET attribute of a
link causes that link to load in the named frame, just as you see in Figure 7-3,
shown previously.

Chapter 7: Working with Browser Windows and Frames ’53

Right on target

When you create a link (or an anchor, area, Value What Does It Mean?
base, or form) in HTML, you have the option of
specifying a value for the TARGET attribute
associated with these HTML elements. Valid
values for the TARGET attribute include any _parent Open the link in this window or
previously named frame or window or one of frame’s parent window/frame

the following built-in values. (See Chapter 11 for

_blank Open the link in a brand-new
window

an example of specifying the _top value for the —SEUT ?pen s (7 10 Gl ele@sy o
TARGET attribute associated with a link.) rame
_top Open the link in the root window or
frame

You might want to handle the final link in the listing a bit differently. At the
bottom of Listing 7-4, you see that the last defined link assigns a value of
_top tothe TARGET attribute. When a user clicks the emily.com Home link,
the page changes to the contents of home.htm.

_top is a built-in value that translates to “whatever the top-level window in
this window/frame hierarchy happens to be.” (The sidebar “Right on target”
in this chapter describes all the built-in values that you can specify for the
TARGET attribute.)

If you specify a value for TARGET that doesn’t match either a previously
defined frame name or one of the built-in values that you see in the sidebar
“Right on target,” the associated link loads into a brand-new window. So if
you expect a link to open in a frame and it pops up in a new window instead,
check your source code. Odds are you made a typo!

P The example in this section shows you how to load the contents of one frame
based on a user’s clicking a link in another. To load two frames based on a
user’s clicking a link, you can create a JavaScript function similar to the
following:

function ToadTwoFrames(TeftURL, contentURL) {
// Loads the first passed-in URL
// into the container frame previously defined
// as "leftNav" in an HTML file such as the one

// you see in Listing 7-3

parent.leftNav.location.href=1eftURL

154 Part II: Creating Dynamic Web Pages

// Loads the second passed-in URL
// into the container frame previously defined
// as "content"

parent.content.location.href=con