

Access 2003 Bible

Access 2003 Bible

Cary N. Prague, Michael R. Irwin, and Jennifer Reardon

Access 2003 Bible

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken NJ 07030
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

ISBN: 0-7645-3986-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RX/QZ/QT/IN

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8700. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
permcoordinator@wiley.com.

is a trademark of Wiley Publishing, Inc.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A
PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS
OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Control Number: 2003101923

Trademarks: Wiley and related trade dress are registered trademarks of John Wiley & Sons, Inc., and/or it affiliates, in the
United States and other countries, and may not be used without written permission. All other trademarks are the property
of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

About the Author
Cary N. Prague is an internationally best-selling author and lecturer in the database
industry. He owns Database Creations, Inc., the world’s largest Microsoft Access
add-on company. Their products include a line of financial software; Business! for
Microsoft Office, a mid-range accounting system, POSitively Business! Point of Sale
software, the Inventory Barcode manager for mobile data collection, and the Check
Writer and General Ledger. Database Creations also produces a line of developer
tools including the appBuilder, an application generator for Microsoft Access, the
EZ Access Developer Tools for building great user interfaces, appWatcher for main-
taining code bases among several developers, and Surgical Strike, the only Patch
Manager for Microsoft Access.

Cary also owns Database Creations Consulting, LLC., a successful consulting firm
specializing in Microsoft Access and SQL Server applications. Local and national
clients include many Fortune 100 companies including manufacturers, defense con-
tractors, insurance, health-care, and software industry companies. His client list
includes Microsoft, United Technologies, ABB, Smith & Wesson Firearms, Pratt and
Whitney Aircraft, ProHealth, OfficeMax, Continental Airlines, and other Fortune 500
companies.

Formerly, he has held numerous management positions in corporate information
systems, including Director of Managed Care Reporting for MetraHealth, Director of
Corporate Finance and Software Productivity at Travelers Insurance where he was
responsible for software support for 35,000 end users, and Manager of Information
Systems support for Northeast Utilities.

He is one of the top best-selling authors in the computer database management
market, having written over 40 books that have sold over one million copies on
software including Microsoft Access, Borland (Ashton-Tate) dBASE, Paradox,
R:Base, Framework, and graphics. Cary’s books include 11 books in the Access Bible
series (recently number one on the Ingram Bestselling Database Titles list and in
the Amazon.com top 100), Access 97 Secrets, dBASE for Windows Handbook, dBASE
IV Programming (winner of the Computer Press Association’s Book of the Year
award for Best Software Specific Book), and Everyman’s Database Primer Featuring
dBASE IV. He recently completed several books for Access 2003 including Weekend
Crash Course in Office Access 2003 Programming. Cary recently sold a product line
named eTools for Microsoft Access to MightyWords, a division of FatBrain.com and
Barnes and Noble.

Cary is certified in Access as a Microsoft Certified Professional and has passed the
MOUS test in Access and Word. He is a frequent speaker at seminars and confer-
ences around the country. He is on the exclusive Microsoft Access Insider Advisory
Board and makes frequent trips to Microsoft headquarters in Redmond, WA. He has
been voted the best speaker by the attendees of several national conferences.
Recently, he was a speaker for Microsoft sponsored conferences in New Orleans,

Hawaii, Phoenix, Chicago, Toronto, Palm Springs, Boston, and Orlando. He has also
spoken at Borland’s Database Conference, Digital Consulting’s Database World,
Microsoft’s Developer Days, Computerland’s Technomics Conference, COMDEX,
and COMPAQ Computer’s Innovate. He was a contributing editor to Access Advisor
magazine and has written for the Microsoft Office Developer’s journal.

He is active in local town politics serving on the South Windsor, Connecticut Board
of Education, Parks and Recreation Commission, and the Board of Assessment
Appeals.

Cary holds a master’s degree in computer science from Rensselaer Polytechnic
Institute, and an M.B.A and Bachelor of Accounting from the University of
Connecticut. He is also a Certified Data Processor.

Michael R. Irwin is considered one of the leading authorities on automated database
and Internet management systems today. He is a noted worldwide lecturer, a winner
of national and international awards, best-selling author, and developer of
client/server, Internet, Intranet, and PC-based database management systems.

Michael has extensive database knowledge, gained by working with the Metropolitan
Police Department in Washington, D.C. as a developer and analyst for the Information
Systems Division for over 20 years and assorted Federal Agencies of the United States
Government. Since retiring in June 1992, he runs his own consulting firm, named The
Irwin Group, and is principal partner in the company - IT in Asia, LLC, specializing in
Internet database integration and emphasizing Client/Server and net solutions. With
consulting offices in Cincinnati, Ohio, Bangkok, Thailand, and Manila, Philippines, his
companies offer training and development of Internet and database applications.
His company has the distinction of being one of the first Microsoft Solution’s
Providers (in 1992). His local, national, and international clients include many soft-
ware companies, manufacturers, government agencies, and international companies.

His range of expertise includes database processing and integration between main-
frame, minicomputer, and PC-based database systems, as well as B-2-B and B-2-C
integration between back-end databases; he is a leading authority on PC-based
databases.

He is one of the top best-selling authors in the computer database management mar-
ket, having authored numerous database books, with several of them consistently
on the best-sellers lists. His books, combined, have sold nearly a million copies
worldwide. His most recent works include The OOPs Primer (Borland Press, dBASE
5.5 for Windows Programming (Prentice Hall), Microsoft Access 2002 Bible, Microsoft
Access 2002 Bible Gold Edition (co-authored), and Working with the Internet. The
Access Bible series have constantly been number one on the Ingram Best-selling
Database Titles list and is consistently in the Amazon.com and Buy.com top 10. He
has also written several books on customs and cultures of the countries of Asia

(including China, Japan, Thailand, and India). Two of his books have won interna-
tional acclaim. His books are published in over 24 languages worldwide. He has been
a contributing editor and author to many well-known magazines and journals.

He is a frequent speaker at seminars and conferences around the world and has
been voted the best speaker by the attendees of several international conferences.

Michael has developed and markets several add-on software products for the
Internet and productivity related applications. Many of his productivity applications
can be obtained from several of his Internet sites or on many common download
sites. Many of his application and systems are distributed as freeware and careware.
He has also developed and distributes several development tools and add-ins for a
wide range of developer applications.

Jennifer Reardon is considered a leading developer of custom database applica-
tions. She has over ten years’ experience developing client/server and PC-based
applications. She has accumulated much of her application development experi-
ence working as lead developer for Database Creations. She has partnered with
Cary Prague developing applications for many Fortune 500 companies.

Her most significant projects include a spare parts inventory control system for
Pratt & Whitney’s F22 program, an engineering specifications system for ABB-
Combustion Engineering, and an emergency event tracking system for the State of
Connecticut. She was also the lead developer of many of the Database Creations
add-on software products including Business, Yes! I Can Run My Business, Check
Writer, and the User Interface Construction Kit.

She has co-authored Access 2003 Bible, Access 2002 Bible, and Access 2000 Weekend
Crash Course. She has also written chapters in other books on subjects including
Data Access Pages, the Microsoft Database Engine, the VBA programming environ-
ment, creating help systems, and using Microsoft Office 2000 Developer. She has
authored chapters in Microsoft Access 97 Bible and Access 97 Secrets.

Jennifer owns her own consulting firm, Advanced Software Concepts, providing cus-
tom applications to both the public and private sectors. She specializes in develop-
ing client information systems for state-managed and privately-held healthcare
organizations. She has also developed a job costing and project management sys-
tem for an international construction company. Her corporate experience includes
seven years with The Travelers where she was an Associate Software Engineer serv-
ing on numerous mission-critical client/server software development projects using
Easel, C, SQL Server, and DB2. She has contributed several chapters for books on
dBase and Microsoft Access.

Jennifer holds a Bachelor of Science degree from the University of Massachusetts.

Credits
Acquisitions Editor
Greg Croy

Project Editor
Andrea C. Boucher

Technical Editor
Greg Guntle

Editorial Manager
Carol Sheehan

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive
Publisher
Bob Ipsen

Executive Editorial Director
Mary Bednarek

Project Coordinator
Regina Snyder

Graphics and Production Specialists
Beth Brooks, Amanda Carter, Jennifer
Click, Joyce Haughey, Barry Offringa,
Lynsey Osborn, Heather Pope

Quality Control Technicians
Carl William Pierce
Brian H. Walls

Senior Permissions Editor
Carmen Krikorian

Media Development Specialist
Angela Denny

Proofreading and Indexing
TECHBOOKS Production Services

This book is dedicated to some special people from South Windsor, Connecticut (in no
particular order) who helped me in my quest of the last year to join the South Windsor

Board of Education. Lincoln Streeter, Matt Streeter, Tim Moriarty, Tom Berstene, Teri
Dickie-Gaignat, Carrie Momnie, Tom and Audrey Delnicki, Mayor Bill Aman, Town

Manager Matt Galligan, John Mitchell, Barbara Barbour, Walter Mealy, Herb Asplund,
Roy Normen, Jan Murtha, Bob Wilson, Hap Fitts, and many others in the South

Windsor Republican Town Committee. Craig Zimmerman of the South Windsor Parks
and Recreation Commission, Ray Favreau, Mike McCarty, and Elle Randazzo of the

South Windsor Recreation Department, Joel Nadel of the Board of Assessment Appeals
and Charlie Dana, Assessor, Anne Flint and Gabrielle Batz of the South Windsor

Chamber of Commerce, and Dr. Joseph Wood, Superintendent of Schools. By allowing
me to explore new opportunities and shamelessly promote myself, you have

enriched my life and provided me with new friends and new challenges
that I never knew existed.

— CNP

This book is dedicated to the people closest to me. First and foremost it is dedicated to
my family — my wife, Dra. Arni Irwin, my sons Richard Rocco, Joseph Patrick, and

David Joseph. While writing this book, they had to put up with my constantly telling
them “Sorry, I have to do this first” in order for me to finish on deadline. It is also

dedicated to my mother, Aurelia Irwin — 74 years young and as strong as ever — who
has continued to be my sounding board and example of strength. Finally, partner,

Richard Mahonski, who passed away this year — I will truly miss him.

— MRI

This book is dedicated to my parents-in-law Tom and Arden Reardon. Way back during
my college years, they provided me with the unique opportunity to be involved in the

world of publishing as a part-time typesetter for their respective printing businesses.
Together, we forged a method of setting type using my PC and modem and their

Mergenthalers — this was 1983 — much before the era of desktop publishing as we
know it today. Now here I am enjoying being on the other side of the fence as an

author. But, all the while that I am keyboarding my own work, I am always thinking
back to the old days of how we used to have to keyboard all those crazy codes for font
changes and em spaces and line spacing. Thanks for always being so supportive of me

in the past 30 years that I have been part of your family.

— JR

Preface

Welcome to the Access 2003 Bible — your personal guide to a powerful, easy-
to-use database management system. This book is in its ninth revision and

has been totally re-written for Microsoft Office Access 2003 with new text, new pic-
tures, and a completely new and improved set of example files..

This book examines Access 2003 with more examples than any other Access book
ever written. We think that Microsoft Access is an excellent database manager and
the best Windows database on the market today. Our goal with this book is to share
what we know about Access and, in the process, to help make your work and your
life easier.

This book contains everything you need in order to learn Microsoft Access to a
mid-advanced level. You’ll find that the book starts off with the basics and builds,
chapter by chapter, on topics previously covered. In places where it is essential
that you understand previously covered topics, we present the concepts again and
review how to perform specific tasks before moving on. Although each chapter is
an integral part of the book as a whole, each chapter can also stand on its own and
has its own example files. You can read the book in any order you want, skipping
from chapter to chapter and from topic to topic. (Note that this book’s index is par-
ticularly thorough; you can refer to the index to find the location of a particular
topic you’re interested in.)

The examples in this book have been well thought out to simulate the types of
tables, queries, forms, and reports most people need to create when performing
common business activities. There are many notes, tips, and techniques (and even
a few secrets) to help you better understand the product.

This book can easily substitute for the manuals included with Access. In fact, many
users do not get manuals today, often relying on just the online help. This book will
guide you through each task you might want to do in Access. We even created
appendixes to be used as reference manuals for common Access specifications.
This book follows a much more structured approach than the Microsoft Access
manuals, going into more depth on almost every topic and showing many different
types of examples.

xii Access 2003 Bible

Is This Book for You?
We wrote this book for beginning, intermediate, and even advanced users of
Microsoft Access 2003. With any product, most users start at the beginning. If, how-
ever, you’ve already read through the Microsoft Access manuals and worked with
the Northwinds sample files, you may want to start with the later parts of this book.
Note, however, that starting at the beginning of a book is usually a good idea so you
don’t miss out on the secrets and tips in the early chapters.

We think this book covers Microsoft Access in detail better than any other book
currently on the market. We hope you will find this book helpful while working with
Access, and that you enjoy the innovative style of a Wiley book (formerly IDG
Books, the people who make the For Dummies books).

Yes — If you have no database experience
If you’re new to the world of database management, this book has everything you
need to get started with Microsoft Access. It then offers advanced topics for refer-
ence and learning.

Yes — If you’ve used other database managers
like dBASE or Filemaker
If you’re abandoning another database (such as dBASE, Filemaker, Alpha, Paradox,
FoxPro, R:Base) or even upgrading from Access 2.0, Access 95 or 97, or even
Access 2000 or 2002 this book is for you. You’ll have a head start because you’re
already familiar with database managers and how to use them. With Microsoft
Access, you will be able to do all the tasks you’ve always performed with character-
based databases — without programming or getting lost. This book will take you
through each subject step by step.

Yes — If you want to learn the basics of Visual Basic
Applications Edition (VBA) programming
VBA has replaced the Access Basic language. We know that an entire book is needed
to properly cover VBA, but we took the time to put together many chapters that
build on what you learn in the forms chapters of this book. The VBA programming
chapters use the same examples you will be familiar with by the end of the book.

Conventions Used in This Book
✦ When you are instructed to press a key combination (press and hold down

one key while pressing another key), the key combination is separated by a

xiiiPreface

plus sign. Ctrl+Esc, for example, indicates that you must hold down the Ctrl
key and press the Esc key; then release both keys.

✦ Point the mouse refers to moving the mouse so that the mouse pointer is on a
specific item. Click refers to pressing the left mouse button once and releasing
it. Double-click refers to pressing the left mouse button twice in rapid succes-
sion and then releasing it. Right-click refers to pressing the right mouse but-
ton once and releasing it. Drag refers to pressing and holding down the left
mouse button while moving the mouse.

✦ When you are instructed to select a menu, you can use the keyboard or the
mouse. To use the keyboard, press and hold down the Alt key (to activate the
menu bar) and then press the underlined letter of the menu name; press Alt+E
to select the Edit menu, for example. Or you can use the mouse to click on the
word Edit on-screen. Then, from the menu that drops down, you can press the
underlined letter of the command you want (or click on the command name)
to select it.

✦ When you are instructed to select a command from a menu, you will often see
the menu and command separated by an arrow symbol. Edit_Paste, for exam-
ple, indicates that you need to select the Edit menu and then choose the Paste
command from the menu.

✦ Italic type is used for new terms and for emphasis.

✦ Bold type is used for material you need to type directly into the computer.

✦ A special typeface is used for information you see on-screen — error mes-
sages, expressions, and formulas, for example.

Icons and Alerts
You’ll notice special graphic symbols, or icons, used in the margins throughout this
book. These icons are intended to alert you to points that are particularly impor-
tant or noteworthy. The following icons are used in this book:

This icon highlights a special point of interest about the topic under discussion.

This icon points to a useful hint that may save you time or trouble.

This icon alerts you that the operation being described can cause problems if
you’re not careful.

Caution

Tip

Note

xiv Access 2003 Bible

This icon points to a more complete discussion in another chapter of the book.

This icon highlights information for readers who are following the examples and
using the sample files included on the disk accompanying this book.

This icon calls attention to new features of Access 2003.New
Feature

On the
CD-ROM

Cross-
Reference

Sidebars

In addition to noticing the icons used throughout this book, you will also notice material
placed in gray boxes. This material offers background information, an expanded discussion,
or a deeper insight about the topic under discussion. Some sidebars offer nuts-and-bolts
technical explanations, and others provide useful anecdotal material.

How This Book Is Organized
This book contains 39 chapters divided into four main parts and five sections. In
addition, the book contains a fifth part containing four appendixes.

The main parts of the book include:

✦ Creating Desktop Applications

✦ Creating Enterprise Applications

✦ Creating Web Applications

✦ Advanced Topics

Part I: Creating Desktop Applications
Part I consists of three sections and for most Access users is all that you will ever
need. The 26 chapters in this section (or about two-thirds of the book) cover every-
thing you will need to do for your individual or workgroup applications including
creating data tables, building forms and reports, and programming in VBA.

Working with Data Tables and Queries
The first section of the book contains seven chapters that will teach you all about
data and conceptual designs of information.

xvPreface

Chapter 1 contains great conceptual material on understanding the basic elements
of data, introduces you to the buzzwords of database management, teaches you how
to plan a table and will show you the different data types. Chapter 2 teaches you
how to create a table. You learn how to properly name fields and assign data types.
You will learn how to rename fields and add fields to an already created table.
Chapter 3 covers everything you need to know about entering data into forms and
datasheets. You will learn how to add validation to fields, format fields and use vari-
ous built in tools for making data entry easier. You will learn how to search for data
and how to change and delete data values. In Chapter 4 you will learn more about
creating tables and creating primary and foreign keys and relating them and using
the Relationship builder tools in Access. In Chapter 5, you examine the concept of
queries; then you create several queries to examine how data can be filtered,
rearranged and displayed. Chapter 6 continues the query work started in the previ-
ous chapter, You will learn how to create more complex criteria to ask questions
about your data. You will learn a little about SQL and WHERE clauses and how to use
operators and expressions. Chapter 7 examines how to import, export, and attach
external files, and how to copy Access objects to other Access databases.

Building Forms and Reports
The second section of the book contains ten of the most in-depth chapters ever
written on forms and reports.

You’ll begin in Chapter 8 with a visual tour of various types of forms and get a com-
plete understanding of form controls. Chapter 9 teaches the basics of creating data-
entry forms and using Wizards to simplify the creation process; using data-entry
forms is also discussed. Chapter 10 examines the concepts of bound forms to table
data sources and how to create unbound forms. Chapter 11 teaches how to add
data validation to forms to prevent errors. It also teaches the basics for combo box
controls. Chapter 12 teaches you how to professionalize the look for forms and
reports through various formatting techniques and the use of color and special
visual effects to create great-looking forms and reports that catch the eye and
increase productivity Chapter 13 covers the basics of report creation and printing
and introduces groups which allow reports to summarize data at many levels.
Chapter 14 covers embedding subforms in forms and reports and how to link a par-
ent form to a child form within a subform. Chapter 15 shows you how to create
summaries and totals in reports and how to work with various group headers and
footers. Chapter 16 discusses the various special reports types such as snaked col-
umn reports for directories, mail merge reports and labels. Chapter 17 explains the
use of pictures, graphs, sound, video, and other OLE objects.

Automating Your Applications
The third section of the book covers VBA programming and how to use Visual Basic
commands to control forms and reports and to build outstanding user interfaces.

Chapter 18 teaches the concepts of Visual Basic programming and how to edit a
Visual Basic procedure. Chapter 19 covers the concept of event-driven program-
ming and how Access uses commands to automate manual processes. Chapter 20

xvi Access 2003 Bible

examines the built-in functions in Microsoft Access used for everything from
manipulating strings to formatting dates. In Chapter 21 you learn about ADO and
recordsets used to move data between forms and tables. This chapter is the most
important chapter for programmers in understanding database management,
Chapter 22 teaches you how to craft programming commands to find data. You will
learn how to automate queries and link combo box selection to display data on a
form. Chapter 23 teaches how to use subroutines to create reusable code modules
for more efficient coding. Chapter 24 teaches you how to add error routines and
proper debugging routines for programs. In Chapter 25, you learn how to create
button menus known as switchboards, as well as traditional pull-down menus, and
custom command bars used to build menus and toolbars. Chapter 26 teaches how
to create a tab control and use continuous forms to display and switch between
data views.

Part II: Creating Enterprise Applications
This fourth section of the book teaches how to build applications an entire enter-
prise can use.

Chapter 27 teaches the process of upsizing Access tables to SQL Server. You learn
how to use the upsizing wizard and all the tasks you need to do to really make it
work. While chapter 27 teaches how to upsize your data, chapter 28 teaches how to
create an Access Data Project (ADP) to create a true client-server system. You learn
how to upsize your programs and create ADO recordsets to work against SQL
Server or the Microsoft Database Engine (MSDE). Chapter 29 delves further into the
client server world teaching how to create stored procedures, triggers and pass-
through queries to build true client server systems.

Part III: Creating Web Applications
The three chapters of section four cover building applications that work with data
on the internet and with intranets. Chapter 30 covers building basic Data Access
Pages (DAP) using many of the example you are already familiar with. Chapter 31
covers more advanced types of DAP’s. Chapter 32 provides an overview of XML and
schemas and also includes an overview of the new InfoPath product used to create
forms with XML data.

Part IV: Advanced Access Database Topics
This part contains six chapters that present advanced topics on each of the basic
tasks of Access. Chapter 33 examines how to exchange data with other Office prod-
ucts such as Word, Excel, Outlook and even PowerPoint. Chapter 34 covers security
and protecting a database while chapter 35 shows you how to build and run help
systems. Chapter 36 discuss advanced select query topics, including total, cross-
tabulation, top-value, and union queries. Chapter 37 covers action queries, which

xviiPreface

change data rather than simply displaying records. Chapter 37 is also a com-
pendium of advanced query topics that will leave you amazed at the power of
Access. Chapter 38 shows you a multitude of techniques for increasing the speed
of an application. Finally, Chapter 39 covers the new Access Developers Edition
(ADE) and runtime.

Part V: Appendixes and Reference Material
The last part contains four appendixes. Appendix A presents a series of tables list-
ing Access specifications, including maximum and minimum sizes of many of the
controls in Access. Appendix B displays a database diagram of the many database
tables used in this book so you can create your own system. Appendix C describes
the CD-ROM. Appendix D is a discussion of standard naming conventions.

Guide to the Examples
The examples in Access 2003 Bible are specially designed to maximize your learning
experience. Throughout this book you will see many examples of good business
table design and implementation, form and report creation, and module coding in
Visual Basic. You will see examples that use both Jet (the internal database of
Microsoft Access) as well as examples that connect to SQLServer datbases. You will
also see forms that work on the Web using Access’s own Data Access Pages.

As every developer knows, it is important to understand what you are creating and
programming from the application standpoint. This is sometimes called the business
of business, and in this book we have chosen a simple example that any business
or developer can hopefully relate to. More importantly, in this or any book you
must relate to it successfully in order to learn. When developing systems you often
find yourself analyzing applications that you don’t have a lot of experience with.
Obviously an aerospace engineer makes a better analyst when developing a system
to track airplane engines, but any good developer can develop any system as long
as they are willing to work with the business experts. In this book, the authors and
their words will serve as the business experts.

The examples in this book will use a fictitious company named Access Auto Auctions
or AA Auctions for short. AA Auctions buys and sells cars, trucks, and other vehicles.
They directly sell these vehicles and also offer them for sale through auctions both at
their equally fictitious showroom and on the Internet. The example database contains
the necessary tables, queries, forms, reports and module code to facilitate their busi-
ness needs.

Within this guide we are going to use some terms that have not been thoroughly
been explained yet. Feel free to skip over them and return to this guide often as
you start new chapters that use these forms and reports.

Note

xviii Access 2003 Bible

While professional developers will always split program and data objects into two
separate database files, it is acceptable during development to combine all of the
objects into one database and split them when development is complete. When
you are working in a program database and you are linked to your data file, you
must load the data database file before you can make changes to the table design.
You’ll learn more about this throughout the book.

The Main Menu Switchboard
When you load the completed example file (Access Auto Auctions.mdb), you will
see the main menu (known as a switchboard) shown in Figure FM-1. This switch-
board contains buttons that display the main areas of the system.

Tip

Using the Example Files on Your CD

On your CD is a standard Windows setup program that will install the examples onto your
hard drive. We have provided separate Microsoft Access database files for each chapter.
They are arranged into subdirectories that are placed on your hard drive when you install
the example files. The subdirectories are simply names Chapxx where xx is the chapter
number. The database files are each named Chapxxyyyyyyy.mdb where xx is the chapter
number and yyyyyyy is a description of the contents. For example, Chap07Start.mdb would
be the database file you might open at the start of Chapter 7 and Chap07End.mdb
would be how you would expect to find the database after you completed all of the exer-
cises in the chapter . Some chapters will have no files while others may have many.
Additionally, you may find other types of files with their own file extensions in each subdi-
rectory. You will be instructed how to use each file throughout each chapter of the book.

Additionally, we have provided many fully working programs, demos, and trial versions of
some of the best Microsoft Access tools for end-users and developers and provided links to
these companies’ websites so you can get the latest information from them.

In each chapter’s database file, you will only see the objects that are needed for the chap-
ter. We have also combined all the completed working forms and reports in two database
files; AccessAutoAuctions.mdb contains all of the program objects (queries, forms,
reports, and modules). The linked data file AccessAutoAuctionsData.mdb will contain
only the tables used by the application. However, in the individual chapter files, you will see
the program files (queries, forms, reports, and modules) in the same database file as the
tables.

xixPreface

Figure FM-1: The Access Auto Auctions main switchboard
that allows the user to open various forms and reports.

These main areas include:

✦ Contacts: Buyers and Sellers of vehicles and parts that AA Auctions deal with.
Rather than traditionally separate Customer and Supplier tables, the Contacts
table provides a single access point to all people that AA Auctions needs to
contact for any reason.

✦ Sales: This button displays an invoice form that lets AA Auctions enter infor-
mation about the buyer (which comes from the Contacts information). It
allows for an unlimited number of line items on the Invoice. Each item will be
selected from information stored in the Products system.

✦ Products: Lists of everything that AA Auctions sells or offers for auctions
These include vehicles, parts, and anything that needs to be tracked for sales
or inventory purposes including descriptions, costs, selling prices, and even
pictures of each vehicle or part.

✦ Reports: Any good application contains reports at many levels. This button
actually does nothing. Normally, it would be used to display a generic report
manager that displays reports while allowing specifications of the report
name and parameters which will only show data between certain dates or for
certain vehicle types. Though not specifically covered in this book, on the
example CD of third party products, there is a generic report manager named
the ez Report Manager you can use.

✦ Company Setup: This displays a form that contains information used by the
entire system. This is used when you need global values such as your com-
pany name (Access Auto Auctions in this example) or other information that
can be used by the entire application.

xx Access 2003 Bible

Understanding the Data Tables
Data is the most important part of any system and in Access (as well as every other
database management system), data is arranged into logical groupings known as
tables. Tables help define the structure of the data as well as hold the data itself.
Tables are related to each other in order to pass data back and forth and to help
assemble the chaos of data into well defined and formatted information.

The diagram in Figure FM-2 displays a representation of most of the data tables that
make up the Access Auto Auctions example. As you will learn in Part 1 of this book,
the lines, arrows, and symbols between the tables mean something important and
communicates to the developer how the data interacts. You will learn terms like
table, field, record, relationship, referential integrity, normalization, and primary
and foreign keys as you begin to understand how tables work within a database.

Figure FM-2: The Access Auto Auctions data relationship diagrams showing the
example tables and their data fields.

Why There Are Prefixes in Front of Table Names and
Data Fields in the Relationship Diagram

You might notice that each table name is prefixed with the letters tbl. You might also notice
that each data field listed in Figure FM-2 is also prefixed with a variety of characters. These
are standard naming conventions, prefixes assigned by developers to let other developers
know the type of data these fields may contain when later used in Visual Basic programs.
The characters tbl mean the object is a table. There are other prefixes for database objects
such as qry (query), frm (form), rpt (report), and mod (module). Some of the common data
field prefixes include chr (character), int (integer), dtm (date/time), and many others. You
will see that we use standard naming conventions throughout this book.

xxiPreface

Naming conventions are more thoroughly discussed in Appendix D.

In the example database are approximately 11 tables as shown in Figure FM-2 that
are used to create the Access Auto Auction applications. Many of the smaller tables
are lookup tables whose sole purpose is to provide a list of valid selections. The
larger tables hold the data used by the system itself. All of these tables include a
number of data fields that are used as the definitions of the data. The lines between
the tables show how tables how related by common data fields. If these terms are
strange to you, don’t worry. In the first few chapters, you will receive a full explana-
tion of each of them. The tables include:

✦ tblSales

• The tblSales table contains fields for the main part of the sale. This
includes information that occurs once in the sale such as the Invoice
Number, dates of the sale, the Buyer ID (which links to the tblcontacts
table to retrieve information about the buyer including taxing informa-
tion), the Salesperson ID (which links to the tblSalesperson table), the
taxing location (which links to the tblTaxRates table), and various other
financial information.

✦ tblSalesperson

• The tblSalesPerson table contains a list of sales people that sell prod-
ucts for Access Auto Auctions along with their commission rates. It is
linked to the Sales Invoice and is used when a Salesperson is selected in
the Invoice form.

✦ tblTaxRates

• The tblTaxRates table contains a list of taxing locations and tax rates
and is used by the Sales Invoice when the buyer is selected in the form.
The taxing location is retrieved from tblTaxRates and then the tax rate
used by the Invoice to calculate taxes owed.

✦ tblSalesLineItems

• The tblSalesLineItems table contains fields for the individual line items
that will make up the sale. The sale may contain a variety of items.
Several vehicles may be sold to a single buyer at one time. The buyer
may buy parts, accessories, or services. You will see a form created later
which allows for the data entry of an Invoice and an unlimited number of
lineitems that will be stored in this table.

• The data fields in the tblSalesLineItems table include the Invoice Number
which is used to link the main Invoice table to the Invoice Lineitems
table as well as the quantity purchased. The Product ID field (which links
to the tblProducts table) is used to retrieve information about the prod-
uct including the item description, price, and taxability status. A dis-
count field allows a discount to be entered.

Cross-
Reference

xxii Access 2003 Bible

• The way this table will be used will violate true relational database the-
ory. Rather than simply link from the tblSalesLineItems table to the
tblProducts table by the common chrProductID field data values from
the tblProducts table are copied to the tblSalesLineItems. This is often
done with time-dependent data. If a customer bought a part today with a
price of $10.00 and next week the price goes up to $15.00 as stored in the
tblProducts table, it would be wrong if the Invoice then showed the price
of $15.00.

You learn more about relational database theory and how to build tables in
Section I of this book.

✦ tblSalesPayments

• The tblSalesPayments table contains fields for the individual payment
lines. The invoice may be paid for by a variety of methods. The customer
may make a deposit for the sale with a check, and then split the remain-
ing amount owed with a variety of credit cards. By having unlimited
payment lines in the Invoice form you can do this.

• The data fields in the tblSalesPayments table include the Invoice
Number which is used to link the main Invoice table. There is a field for
the payment type (which links to the tblPaymentType table) to only
allow entry of valid payment types as well as the payment date, payment
amount, and any check or credit card number and the credit card expira-
tion date.

✦ tblPaymentType

• The table tblPaymentType is simply a lookup table with valid values for
types of payments. Only valid payment types can be chosen for a payment.

✦ tblContacts

✦ The table tblContacts contains information about all the people and compa-
nies that Access Auto Auctions will have relationships with. This data
includes customers, suppliers, buyers, and sellers. Names, physical
addresses, phone and fax numbers, email addresses and Web sites and all the
financial information about the contact is stored in this table. Unlike the
tblSalesLineitems table information, this data is only linked from an Invoice
form and with the exception of some changing financial data is never copied
to any other table. This way if a customer changes their address or phone
number, any Invoice which is related to the contact data, will instantly show
the updated information.

✦ tblContactLog

• The tblContactLog table contains potentially multiple entries for each
contact in the tblContacts table. This information includes the contact
date, notes or items discussed, and follow up information. The contacts
form will manage all of this information.

Cross-
Reference

xxiiiPreface

✦ tblCustomerTypes

• The tblCustomerTypes table simply contains a list of valid customer
types that can be selected through the Contacts form. It is important in
all applications that certain data be limited to valid values. In this exam-
ple, each valid value will trigger certain business rules. Therefore, data
entry must be limited to those values.

✦ tblProducts

• The tblProducts table contains information about each item that is sold
or auctioned by Access Auto Auctions. This table contains information
that is used by the Invoices line item section. The products table could
also be used as an inventory table. However, since Access Auto Auctions
will provide a wide variety of products and services, the term Products
seemed to suit it better.

• The tblProducts table includes field data types of nearly every type
available in Access. From a business viewpoint, there is a key field which
will be user defined. The table contains a field for description and sev-
eral types of costs, prices and quantity fields. There are also several
fields that determine if a value is true or false including whether or not
the item is being auctioned and whether it is taxable. A date field is used
to display the auction end date. There are also a field for long text values
(known as memo fields) for a list of features, and a field for a picture of
each vehicle.

• The tblProducts table will be one of the main tables used in this book.
The frmProducts form will be used to teach nearly all form development
lessons in the book so you should pay particular attention to it.

✦ tblCategories

The tblCategories table is used to lookup a list of valid categories.

Understanding the Products Form
The frmProducts form shown in Figure FM-3 is the first form that will be used to
teach you how to properly build forms. It is also one of the forms that you will use a
lot of through the book. The Products form was developed with most of the form
control types used in Microsoft Access to handle table data types such as text, cur-
rency, date, yes/no, memo, and OLE pictures. You will also learn how to use form
control types such as labels and text boxes, command buttons, option group con-
trols, check boxes, combo boxes, and toggle buttons. You will learn how to use
lines and rectangles and all the special effects that go with them. There is also a
tabbed dialog on the form which uses a subform control as well. There is even a
popup calendar on the form. You will see several different form types and tech-
niques to enter, search, filter, retrieve, and display data. The form includes tech-
niques to hide controls, display them based on certain business rules and even
update data in other tables. This form will be used to teach you how to work with
long memo fields and pictures as well.

xxiv Access 2003 Bible

It is important to have a good understanding of the use of the form as well as the
technical details of how to build it. The form will contain information about each
product and is bound (tied to) the tblProducts table. As you enter information into
the frmProducts form, it is stored in the tblProducts table. You learn more about
that in Section II.

You will learn how to resize controls, how to align and space controls. You will learn
how to copy and paste controls, secrets of moving controls as well as how to work
with color, shading, text fonts, and even special effects. The frmProducts form can
do all this and more. Later, after you master forms, you will learn how to add code
behind this form and several others to make a truly powerful application. You will
learn how to add code to the Invoice form to check to the quantity in stock before
you can sell an item and then change the quantity in stock after you have sold it.

The top of the frmProducts form contains a control that allows you to quickly find a
record. This Quick Find is programmed using VBA code behind a combo box selec-
tion. The bottom of the form contains a series of command buttons that will be
used to demonstrate how to create new records, delete existing records, and dis-
play a custom search and custom print dialog.

Figure FM-3: The Access Auto Auctions Products form which
allows data entry for all vehicles and parts sold or auctioned.

Understanding the Product form subform
A form normally displays one screen of data. The frmProducts form contains a tab
control. This lets you effectively use a form to display many screens of data. Each
can use a different table or a different type of form. The frmProducts form displays
a single record at a time. This is on the first tab named Product. The second tab
named Show All Products displays many records at once as shown in Figure FM-4.
This is actually a subform or a form (named fsubProductsDisplayAll) within the
frmProducts form.

xxvPreface

This form is another great example of how a form works. It displays many records
at once but only selected fields. Each record contains a button to switch between
the record in the second tab with the more detailed record in the first tab. There is
also a button alongside each record to delete any records that are no longer
needed. Each of the column headers are actually buttons with code behind them
that can be clicked on to sort the records displayed by the form. One click and the
data in that column is used to sort the records in ascending order. The next click
into descending order.

Figure FM-4: The Access Auto Auctions Products form’s Show All Products tab that
allows the user to display all of the products and go right to the details of any record.

Understanding the Contacts Form
The frmContacts form shown in Figure FM-5 is used to maintain information about the
various contacts that Access Auto Auctions has relationships with. This includes
the contacts name and address, whether they are a buyer, seller, or both. It includes
information if the buyer or seller is a car dealer or parts store that they regularly do
business with or someone who just once came to a auction, bid on a car, and won.

The Contact form like the Products form contains a tab control. This allows you to
show several screens within one form. The Contacts form will be used in later chap-
ters to teach how to display objects within a form based on certain conditions. It
will show how to use a calendar to store and display data as well. Using information
on the other tabs, you will also learn how to display other forms such as a Contact
Log and how to synchronize information between two forms.

xxvi Access 2003 Bible

Figure FM-5: The Access Auto Auctions frmcontacts form showing
a tabbed dialog and values used with the tblContacts table.

Using the Invoice form
The frmSales form shown in Figure FM-6 is used to teach some of the more
advanced form concepts you will learn in this book. Unlike all the other forms, the
Invoice form contains two subforms each of which use a relationship known as one-
to-many. This means that there may be one or more records in each subform that
relate (use the same key) as the main form. In this example, each invoice is used to
sell one or more products to a buyer. After all the products are selected for the
invoice and a total price is calculated, you can enter one or more payments to pay
for the vehicle and any parts or accessories. The buyer may make a deposit with a
check, and then pay the remaining balance with two different credit cards.

This form will also be used to teach simple and complex calculations. The calcula-
tion of the Amount column in the invoice line items is Qty x Price x (1-Discount%)
for example. All of the amount records have to be totaled to calculate the subtotal
field. Then a tax rate has to be retrieved and calculated to get the tax amount. This
plus the other amount must be summed to get the total. All this is happening using
fields in the Invoice Line items (fsubSalesLineitems) subform.

The second subform (fsubSalesPayments) will also be used to show how to calculate
a total in one subform (the total of all payments) and then use that total with controls
in other parts of the form. This is how the Amount Due control will be calculated. It
will require data from the main form and both subforms to calculate its total.

xxviiPreface

These calculations will first be taught using nothing but properties of the controls
themselves without any VBA code in the earlier chapters. You will learn many tech-
niques for control referencing and calculating between forms. Later in the book,
you will learn how to add more flexibility and power by using VBA code to replace
the original techniques and then learn to use subroutines to really professionalize
the application.

The Invoice form will also be used to teach several other important techniques
including displaying values in other forms as you are taught how to display a prod-
uct record by hiding a double click event in the product control of each lineitem.
Each line item and payment can also be deleted by using a button and the code will
be explained here as well. The bottom of the Invoice form will also contain buttons
to create a new record a fill in any defaults as well as to delete an unneeded invoice
and to display search and print dialogs.

Figure FM-6: The Access Auto Auctions Sales Invoice form used to
show multiple linked subforms and totals.

xxviii Access 2003 Bible

Understanding the Search Dialogs
Each of the main forms (Contacts, Products, Sales) can display a separate form
known as a dialog (a form that is displayed on top of another). This allows you to
choose from a variety of ways to search for a record. This is built using a standard
Microsoft Access form. It contains an option group to allow the user to select a
search type and then uses VBA code to assemble the desired records in a list box
as shown in Figure FM-7. Once the user selects the desired record and presses the
OK button, more VBA code is used to close the dialog box, and display the desired
record in the Invoice form. There are separate search dialog forms for each of the
major forms.

Figure FM-7: The Access Auto Auctions search
dialog displaying a variety of searches for the
Invoice form.

Understanding the Print Dialogs
Each of the main forms also use a separate form known as a dialog (a form that is
displayed on top of another) to allow you to choose important print settings before
printing the report that has been created to go with each form. In this example, you
can see the Invoice’s print dialog (frmDialogSalesPrint) as shown in Figure FM-8.
This form allows you to print invoices for just the current Inviice record, for a
selected date range, or even all invoices for a specific buyer. You will learn how to
build this form and properly write the VBA code behind it. This form will also teach
you how to filter data for reports, and to pass parameters to the Microsoft Access
print routines. You will learn how to send preview a report to the screen or how to
print any number of copies. You will also learn how to print multiple reports at
once from this simple print dialog.

There are separate print dialogs for each of the major forms.

xxixPreface

Figure FM-8: The Access Auto Auctions invoice
print dialog displaying a variety of reports for
the Invoice form.

As you go through each chapter, come back here to remember what you will learn
or where each form is. In each chapter’s database file, you will only see the objects
that are needed for the chapter. The main databases, AccessAutoAuctions.mdb and
its linked data file AccessAutoAuctionsData.mdb will contain the finished example.
However, in the majority of all the chapter files, you will see the program files
(queries, forms, reports, and modules) in the same database file as the tables.

Acknowledgments

When we first saw Access in July of 1992, we were instantly sold on this new-
generation database management and access tool. We have all spent the

last eleven years using Access daily. In fact, we eat, breathe, live, and sleep Access!
The fact that we can earn a living from our work on principally one product is a
tribute to the designers of Microsoft Access. This product has changed the produc-
tivity of corporations and private citizens of the world. More people use this prod-
uct to run their businesses, manage their affairs, track the most important things in
their lives, and manage data in their work and play than any other product ever
written. It is indeed a privilege to be part of this worldwide community. We have
found readers in every county on the map and a few countries we never heard of.
The global Internet age has allowed readers in emerging countries, in the Himalayan
mountains, in Siberia, and even in Antarctica to contact us this year.

Now we have completely rewritten this book for Access 2003, with new examples
and more in-depth coverage. We’ve covered every new feature we could think of
for the beginning and intermediate users and especially enhanced our program-
ming section. Over 500,000 copies of our Access Bibles have been sold for all
versions of Microsoft Access; for this we thank all of our loyal readers.

Our first acknowledgment is to all the users of Access who have profited and bene-
fited beyond everyone’s wildest dreams.

There are many people who assisted us in writing this book. We’d like to recognize
each of them.

To Greg Croy, whom we complain to each day. Thanks for listening, Pilgrim.

To all the people who really made this book possible. To Andy Cummings at Wiley
Publishing, Inc., who pushes us beyond our limits. The word NO is not in his vocab-
ulary! He challenges us daily with impossible tasks and deadlines (I don’t care if the
software doesn’t work yet — write the book anyway, use your imagination — we
must get this book out first). Cary thinks he wants us to get started on the Access
2006 Bible next month (July 2003), although the software won’t be in beta for
another two years.

Special acknowledgements go to our project and technical editors Andrea Boucher
and Greg Guntle. We thank them for all their hard work on this book.

xxxii Access 2003 Bible

To the best literary agents in the business, Matt Wagner and Bill Gladstone, and all
the folks at Waterside Productions for being our agents.

A special thank you to Bill Ramos, Tim Getsch, and the Microsoft Access Team

We would be remiss if we do not thank several people at Microsoft, especially Bill
Ramos, Microsoft Access and Excel Product Manager. He was incredibly helpful in
supplying us with beta builds and information not easily available. He kept us
informed about last minute changes and sent us new CDs when our examples didn’t
work. When a few more things didn’t work near the end of the beta, Tim Getsch
worked with us to understand the last-minute changes. A special thank you goes to
Sanjay Jacob, who supplied us with a copy of the Access Developers Edition and
spent time teaching us the new features before beta release so that we could finish
the last chapter of our book on time. To John Sigler, Group Product Manager, for
his support through his people and his recognition of our ideas at a recent confer-
ence. While this is much appreciated, beating Cary at golf is unforgivable. Next
time

Thanks to these wonderful people, we were able to deliver a quality book to our
readers.

— Cary Prague, Michael R. Irwin, and Jennifer Reardon

To my family — Karen, David, Jeff (Tall man), and Alex (Turtle) — whom I ignore way
too much. Finally, to the people of Database Creations who let me miss all of my
deadlines while I worked on this book. To Kim, Larry, Diana, Julie, Phuc, Steve, Bill,
Debbie, Radic, Karen, and especially Dick James for handling all my technical sup-
port calls.

— CNP

To all of our clients who let me get away and spend four months solely on re-writing
this book. Although my telephone bills seem to reflect the opposite — I am so grateful
to them for not insisting that I personally appear to solve their “critical” problems.

— MRI

To my clients who have been so understanding and patient with me while I have
been juggling co-authoring two books simultaneously while trying to meet my many
database project deadlines. Thanks for giving me “just a couple more days” when I
most needed them. Thanks in advance also for permitting me to take some much-
needed time off to catch my breath a little before the next big project gets underway.

— JR

Contents at a Glance
Preface . xi
Acknowledgments . xxxi

Part I: Creating Desktop Applications . 1
Section I: Working with Data Tables and Queries 1
Chapter 1: Understanding Data . 3
Chapter 2: Creating and Building Tables . 35
Chapter 3: Entering Data into Tables and Forms 85
Chapter 4: Creating and Understanding Relationships 123
Chapter 5: Displaying Selected Data with Queries 153
Chapter 6: Using Operators and Expressions in Multi-table Select Queries . . . 203
Chapter 7: Working with External Data . 247

Section II: Building Forms and Reports 299
Chapter 8: Understanding the Many Uses of Forms and Controls 301
Chapter 9: Building and Manipulating Forms and Controls 321
Chapter 10: Creating Bound Forms and Placing Controls 349
Chapter 11: Adding Data-Validation Features to Forms 391
Chapter 12: Creating Professional-Looking Forms and Reports 421
Chapter 13: Understanding and Creating Reports 443
Chapter 14: Working with Subforms . 503
Chapter 15: Creating Calculations and Summaries in Reports 539
Chapter 16: Presenting Data with Special Report Types 575
Chapter 17: Using OLE Objects, Graphs, Pivot Tables/Charts, and

ActiveX Controls . 603

Section III: Automating Your Applications 653
Chapter 18: Understanding Visual Basic and the VBA Editor 655
Chapter 19: Introduction to Programming and Events 679
Chapter 20: Working with Expressions and Functions 713
Chapter 21: Working with SQL, Recordsets, and ADO 737
Chapter 22: Automating, Searches, Filters, and Query Parameters 757
Chapter 23: Calling Subprocedures and Functions 771
Chapter 24: Effective Debugging and Error Handling in VBA 783

Chapter 25: Creating Switchboards, Command Bars, Menus, Toolbars,
and Dialog Boxes . 805

Chapter 26: Programming Continuous Forms, Tab Dialogs, and
Command Buttons . 865

Part II: Creating Enterprise Applications 883
Section IV: Upsizing to SQL Server and MSDE 2000 883
Chapter 27: Upsizing Data to a SQL Server Database 885
Chapter 28: Working with Access Projects . 903
Chapter 29: Working with Access Projects and SQL Server Tables

and Queries . 921

Part III: Creating Web Applications 945
Section V: Creating Data Access Pages and Using XML
and InfoPath . 945
Chapter 30: Using and Creating Access Objects for Intranets

and the Internet . 947
Chapter 31: Building and Working with Data Access Pages 981
Chapter 32: XML, Access, and InfoPath . 1037

Part IV: Advanced Access Database Topics 1081
Chapter 33: Exchanging Data with Office Applications 1083
Chapter 34: Adding Security to Applications . 1101
Chapter 35: Creating Help Systems . 1143
Chapter 36: Working with Advanced Select Queries and

Other Query Topics . 1179
Chapter 37: Working with Action and SQL Queries 1229
Chapter 38: Increasing the Speed of an Application 1265
Chapter 39: Preparing Your Application for Distribution 1309

Part V: Appendixes and Reference Material 1331
Appendix A: Access 2003 Specifications . 1333
Appendix B: Access Auto Auction Tables . 1339
Appendix C: Using the CD-ROM Included with the Book 1345
Appendix D: Using Standard Naming Conventions 1355

Index . 1363

Contents
Preface . xi

Acknowledgments . xxxi

Part I: Creating Desktop Applications 1

Section I: Working with Data Tables and Queries 1

Chapter 1: Understanding Data . 3
The Database Terminology of Access . 4

What is a database? . 4
Databases, tables, records, fields, and values 5

Using More Than One Table . 7
Working with multiple tables . 8
Why you should create multiple tables 8

Access Database Objects and Views . 9
Datasheets . 9
Queries and dynasets . 10
Data-entry and display forms . 10
Reports . 11
Designing the system’s objects . 11

The Seven-Step Design Method . 12
Step 1: The overall design — From concept to reality 13
Step 2: Report design — Placing your fields 15
Step 3: Data design — What fields do you have? 17
Step 4: Table design and relationships 24
Step 5: Field design data-entry rules and validation 27
Step 6: Form design — Input . 30
Step 7: Automation design — Menus 32

Chapter 2: Creating and Building Tables 35
Creating Database Tables . 35
Creating a Database . 35

Templates Section . 37
Blank database . 39

The Database Window . 41
Objects menu bar . 42
Groups menu bar . 43
The Database window toolbar buttons 44
The Access window toolbar . 44

xxxvi Access 2003 Bible

Creating a New Table . 46
The table design process . 46
The New Table dialog box . 47
Creating a new table with a Datasheet View 49

The Table Design Window . 51
Using the Table Design window toolbar 52
Working with fields . 52

Creating the tblContacts Table . 56
AutoNumber fields and Access . 56
Completing the tblContacts Table . 57

Changing a Table Design . 59
Inserting a new field . 59
Deleting a field . 59
Changing a field location . 60
Changing a field name . 60
Changing a field size . 60
Changing a field data type . 61

Understanding Field Properties . 62
Entering field-size properties . 64
Using formats . 65
Entering formats . 69
Entering input masks . 70
The Input Mask Wizard . 72
Entering decimal places . 73
Creating a caption . 73
Setting a default value . 73
Working with validation . 73
Understanding the Lookup Property window 76

Determining the Primary Key . 76
Creating a unique key . 77
Creating the primary key . 78
The Indexes window . 78
The Table Properties window . 79

Printing a Table Design . 80
Saving the Completed Table . 81
Manipulating Tables in a Database Window 81

Renaming tables . 81
Deleting tables . 82
Copying tables in a database . 82
Copying a table to another database 83

Adding Records to a Database Table . 83

Chapter 3: Entering Data into Tables and Forms 85
Understanding Datasheets . 85
The Datasheet Window . 86

Moving within a datasheet . 88
The Navigation buttons . 88
The Datasheet toolbar . 89

xxxviiContents

Opening a Datasheet . 92
Entering New Data . 92

Saving the record . 94
Understanding automatic data-type validation 95
Understanding how properties affect data entry 96

Navigating Records in a Datasheet . 98
Moving between records . 98
Finding a specific value . 99

Changing Values in a Datasheet . 102
Replacing an existing value manually 102
Changing an existing value . 103
Fields that you can’t edit . 104

Using the Undo Feature . 104
Copying and Pasting Values . 105
Replacing Values . 105
Adding New Records . 106
Deleting Records . 107
Adding, Changing, and Deleting Columns 107

Deleting a column from a datasheet 108
Adding a column to a datasheet . 108
Changing a field name (column header) 108

Displaying Records . 108
Changing the field order . 108
Changing the field display width . 110
Changing the record display height 111
Displaying cell gridlines . 112
Changing display fonts . 113
Hiding and unhiding columns . 114
Freezing columns . 115
Saving the changed layout . 115
Saving a record . 115

Sorting and Filtering Records in a Datasheet 115
Using the QuickSort feature . 116
Using Filter By Selection . 116
Using Filter By Form . 118

Printing Records . 118
Printing the datasheet . 119
Using the Print Preview window . 119

Chapter 4: Creating and Understanding Relationships 123
Tables Used in the Access Auto Auctions Database 123
Understanding Keys . 126

Deciding on a primary key . 128
Benefits of a primary key . 129
Creating a primary key . 130
Understanding foreign keys . 132

Understanding Relations between Tables 132
A review of relationships . 133
Understanding the four types of table relationships 133

xxxviii Access 2003 Bible

Understanding Referential Integrity . 136
Creating Relationships . 136

Using the Relationships window . 137
Creating relationships between tables 139
Specifying relationship options in the

Edit Relationships dialog box . 140
Finishing the relationships between the tables

of the Access Auto Auctions system 144
Saving the relationships between tables 146
Adding another relationship . 146
Deleting an existing relationship . 147
Join lines in the Relationships window 147
Printing a report of the relationships 147

Using Subdatasheets . 148
Setting up sub-datasheets . 149

Chapter 5: Displaying Selected Data with Queries 153
Understanding Queries . 153

What is a query? . 154
Types of queries . 156
Query capabilities . 157
How dynasets work . 158

Creating a Query . 158
Selecting a table . 159
Using the Query window . 161
Navigating the Query Design window 161
Using the Query Design toolbar . 162
Using the QBE pane of the Query Design window 163

Selecting Fields . 163
Adding a single field . 163
Adding multiple fields . 165
Adding all table fields . 166

Displaying the Dynaset . 167
Working with the datasheet . 168
Changing data in the query datasheet 168
Returning to the query design . 168

Working with Fields . 168
Selecting a field . 168
Changing field order . 170
Resizing columns in design mode . 170
Removing a field . 171
Inserting a field . 171
Changing the field display name . 171
Showing table names . 172
Showing a field . 173

Changing the Sort Order . 173
Specifying a sort . 174

xxxixContents

Displaying Only Selected Records . 175
Understanding record criteria . 175
Entering simple character criteria . 176
Entering other simple criteria . 177

Printing a Query Dynaset . 178
Saving a Query . 179
Adding More than One Table to a Query . 180
Working with the Table/Query Pane . 181

The join line . 181
Resizing the Table/Query pane . 182
Manipulating the Field List window 184
Moving a table . 184
Removing a table . 184
Adding more tables . 185
Resizing a Field List window . 185

Adding Fields from More than One Table 185
Adding a single field . 185
Viewing the table names . 186
Adding multiple fields at the same time 186
Adding all table fields . 187

Understanding the Limitations of Multiple-Table Queries 188
Updating limitations . 188
Overcoming query limitations . 190

Creating and Working with Query Joins . 191
Joining tables . 192
Specify the type of join . 193
Deleting joins . 194

Understanding Types of Table Joins . 195
Inner joins (Equi-joins) . 195
Changing join properties . 196
Inner and outer joins . 198
Creating a Cartesian product . 201

Chapter 6: Using Operators and Expressions
in Multi-table Select Queries 203

What Are Operators? . 203
Types of operators . 204
When are operators used? . 204
Mathematical operators . 204
Relational operators . 208
String operators . 210
Boolean (logical) operators . 213
Miscellaneous operators . 216
Operator precedence . 217

Moving beyond Simple Queries . 219
Using query comparison operators 220
Understanding complex criteria selection 222
Using functions in select queries . 225
Referencing fields in select queries 226

PART I
Creating
Desktop
Applications

SECTION I
Working with
Data Tables and
Queries

✦ ✦ ✦ ✦

In This Section

Chapter 1
Understanding Data

Chapter 2
Creating and
Building Tables

Chapter 3
Entering Data into
Tables and Forms

Chapter 4
Creating and
Understanding
Relationships

Chapter 5
Displaying Selected
Data with Queries

Chapter 6
Using Operators and
Expressions in Multi-
Table Select Queries

Chapter 7
Working with
External Data

✦ ✦ ✦ ✦

P A R T

II

Understanding
Data

In this chapter, you learn the concepts and terminology of
databases and how to design the tables that will be used

by your forms and reports. Finally, you build the actual tables
used by the example, Access Auto Auctions, in this book.

Before you begin to use a database software package, you
must understand several basic concepts. The most important
concept is that the data is stored in a “black box” known as
a table, and that by using the tools of the database system,
you can retrieve, display, and report the data in any format
you want.

After you understand the basic concepts and terminology,
the next important lesson to learn is good database design.
Without a good design, you constantly rework your tables,
and you may not be able to extract the information you want
from your database. Throughout this book, you learn how to
use queries, forms, and reports and how to design each of
these objects before you create one. The Access Auto Auctions
case study provides invented examples, but the concepts are
not fictitious.

This chapter is not easy to understand; some of its concepts
are complex. If your goal is to get right into Access, you may
want to skip to the section on building tables in this chapter.
If you are fairly familiar with Access but new to designing and
creating tables, you may want to read this chapter before
starting to create tables.

Chapter 1 does not use the example CD. This is a chapter
for you to read, view the screenshots, and learn many con-
cepts you will use later in this book.

To jump right into using Access, skip to the section titled
“Creating Database Tables” in Chapter 2.

Cross-
Reference

On the
CD-ROM

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
what a database is

Examining the
differences between
databases, tables,
records, fields,
and values

Learning why
multiple tables are
used in a database

Looking at
database objects

Learning the seven-
step design method

Using the Access
Auto Auctions
example

Creating the overall
design of a system

Creating reports

Extracting report
fields to perform
data design

Designing database
tables and
relationships

Designing data-entry
rules and validation

Designing input forms

Designing menus

✦ ✦ ✦ ✦

4 Part I, Section I ✦ Working with Data Tables and Queries

The Database Terminology of Access
Before examining the actual table examples in this book, it’s a good idea to have a
firm understanding of the terminology that is used when working with databases —
especially Access databases.

What is a database?
Generally, the word database is a computer term for a collection of information
concerning a certain topic or business application. Databases help you organize
this related information in a logical fashion for easy access and retrieval.

Databases aren’t only for computers. There are also manual databases; we simply
refer to these as manual filing systems or a manual database system. These filing
systems usually consist of people, papers, folders, and filing cabinets — paper is the
key to a manual database system. In a real manual database system, you probably
have in/out baskets and some type of formal filing method. You access information
manually by opening a file cabinet, taking out a file folder, and finding the correct
piece of paper. You use paper forms for input, perhaps by using a typewriter. You
find information by sorting the papers manually or by copying desired information
from many papers to another piece of paper (or even into a computer spreadsheet).
You may use a calculator or a computer spreadsheet to analyze the data further or
to report it.

A computer database is nothing more than an automated version of the filing and
retrieval functions of a manual paper filing system. Computer databases store
information in a structured format that you define. They can store data in a variety
of forms, from simple lines of text (such as name and address) to complex data
structures that include pictures, sounds, or video images. Storing data in a precise,
known format enables a database management system (DBMS) to turn the data into
useful information through many types of output, such as queries and reports.

In an automated database management system such as Access, you use a computer
to access the information or data stored in tables — entering data in the tables
through data-entry forms and retrieving it by using a query. You can create and use
queries to obtain a specific portion of data from the tables. Then a report outputs
the data to the screen or a printer. Macros and modules allow you to automate this
process and to create new menus and dialog boxes.

A relational database management system (RDBMS), such as Access, stores data in
many related tables. Using queries, you can ask complex questions from one or
more of these related tables, with the answers returning as forms and reports.

5Chapter 1 ✦ Understanding Data

Databases, tables, records, fields, and values
Microsoft Access follows traditional database terminology. The terms database,
table, record, field, and value indicate a hierarchy from largest to smallest.

Databases
In Access, a database is the overall container for the data and associated objects.
It is more than the collection of tables, however — a database includes all objects.
Database objects include tables, queries, forms, reports, data access pages, macros,
and modules. In some computer software products, the database is the object that
holds the actual data; in Access, this is called a table. Other products refer to the
database as the collection of all tables related to the system.

Access can work with only one database at a time. Within a single Access database,
however, you can have hundreds of tables, forms, queries, reports, pages, macros,
and modules, all stored in a single file with the file extension .MDB (multiple
database) or .ADP if you are using SQL Server Desktop Engine.

ADP file format is a special database format that is used by Access to act as a front
end to access the underlying data stored in SQL Server (in MDF format). Chapter
28 covers Access Data Projects in detail.

Chapter 7 covers moving your tables to another database in detail.

Chapters 27 and 28 cover SQL server and Access projects in detail.

Tables
A table is just a container for raw information (called data), similar to a manila folder
in a manual system that holds reports. When you enter data in Access, a table stores
it in logical groupings of similar data (the tblProducts table, for example, contains
data about items being sold) and the table’s design organizes the information into
rows and columns.

Cross-
Reference

Cross-
Reference

Using Multiple Databases

When using Access, you normally use only one database at a time. However, it can use
more than one database simultaneously. As you build the example files in this book, you
will ultimately separate the data (tables) from all the other objects (forms, reports, queries,
and on and on) by placing the data tables in their own database and accessing the data by
linking to them from another database containing all the other objects.

6 Part I, Section I ✦ Working with Data Tables and Queries

You create these tables after careful analysis of the type of information that you want
to store, as discussed in the “Designing field names, types, and sizes” section later
in this chapter. After you create a table, you can view the table in a spreadsheet-like
form, called a datasheet, comprising rows (records) and columns (fields). Figure 1-1
shows a simple datasheet of the tblContacts table.

Figure 1-1: A table displayed in a datasheet

Records and fields
As Figure 1-1 shows, the datasheet is divided into rows (horizontally from left to
right) called records and columns called fields, with the first row (the heading on
top of each column) containing the names of the fields in the database. Each row is
a single record containing fields that are related to that record. In a manual system,
the rows are individual forms (sheets of paper), and the fields are equivalent to the
blank areas on a printed form that you fill in.

The data shown in the table has columns (vertically from top to bottom) of similar
information, such as Contact ID, Contact Type, First Name, and Last Name; these
columns of data items are fields. Each field is identified by a field name (the first
row of the datasheet) that identifies its category of information. In addition, each
field has a certain type of data (Text, Number, Date, and so on) in it and has a speci-
fied length.

The rows of data within a table are its records. Each row of information is considered
a separate entity that can be accessed or sequenced as desired, and each record is
made up of fields. Each record has all the fields (one each) of the database structure.

7Chapter 1 ✦ Understanding Data

For example, looking at Figure 1-1, Row 1 has a Contact ID field with the value of “1,”
a Contact Type of “Buyer,” a First Name of “John,” and the remaining fields. Row 2
has a Contact ID field with the value of “2,” a Contact Type of “Seller,” a First Name of
“Hank,” and the other fields. Each row and record has all the fields of the database
with a value in each (some of the values may be blank or empty, known as null). All
the fields of information concerning a certain contact are contained within a spe-
cific record.

Values
At the intersection of a row (record) and a column (field) is a value — the actual
data element. For example, John, the First Name in the first record, represents one
data value. You may have a couple questions, such as:

✦ How do you identify the first record?

It’s sitting in the first row of the datasheet and is the record with the buyer
John Jones.

✦ But what if you have more than one John Jones in your database?

Whereas the fields of a record are known by the field name, records are usually
identified by some unique characteristic or value within one or more of the
fields of the record. This unique value makes each record different from all the
other records. In the tblContacts table, the field that makes each record unique
is the Contact ID; fields like the Contact Type, First Name, or Last Name are
not unique because you may have two people named John Jones or more than
one Buyer in the table.

Sometimes it takes more than one field to find a unique value. You can use Company
and Contact Type, but it’s possible for more than one customer to work for the same
Company and all of them may be buyers or sellers. You can use the fields Company,
Contact Type, and Last Name. Again, theoretically, you can have two different cus-
tomers come in and both say, “Hi, my name’s Jones — I work for Acme Company, and
I am a seller.” Creating a unique identifier (such as Contact ID) helps distinguish one
record from another without having to look through all the values.

Using More Than One Table
A database, by definition, is a collection of tables. Just like a file cabinet usually
contains many manila folders, a database contains one or more tables (that is, logi-
cal groupings of similar data). Most applications that are developed in Access have
several related tables to present the information efficiently. An application that
uses multiple tables can usually manipulate data more efficiently than it can with
one large table.

8 Part I, Section I ✦ Working with Data Tables and Queries

Working with multiple tables
Multiple tables simplify data entry and reporting by decreasing the input of redun-
dant data. By defining two tables for an application that uses customer information,
for example, you don’t need to store the customer’s name and address every time
the customer purchases an item.

After you’ve created the tables, they need to be related to each other. For example,
if you have a Contacts table and a Sales table, you must relate the Contacts table to
the Sales table in order to see all the sales records by the Contact. If you had only
one table, you would have to repeat the Contact name and address for each sale
record. Two tables let you look up information in the Contact table for each Sale by
using the related fields Contact ID in Contacts and Buyer ID. This way, when a cus-
tomer changes address (for example), it changes only in one record in the Contact
table; when the Sales information is onscreen, the correct contact address is always
visible.

Separating data into multiple tables within a database makes the system easier to
maintain because all records of a given type are within the same table. By taking the
time to segment data properly into multiple tables, you experience a significant
reduction in design and work time. This process is known as normalization.

It’s also a good idea to create a separate database for just your tables. By separating
your design objects (queries, forms, reports, pages, macros, and modules) and the
tables into two different databases, you can more easily maintain your application.

Later in this chapter, you have the opportunity to work through a case study for the
Access Auto Auctions that consist of five tables.

For more information about the Access Application Splitter, see Chapter 7.

Why you should create multiple tables
The prospect of creating multiple tables always scares beginning database users.
Normally, they want to create one simple table that contains information — in this
case, a Customer table with all the sales performed by the customer and all the
items sold or bought for each customer. So they create a single table containing all
the fields, including fields for the personal information for customer (contact),
Sales information (date of sale, sales person amount paid, any discount, and so on)
and the products information (the quantity sold, the product information, individ-
ual prices, and so on) for each sale. Before you know it, the table has 50 fields or
more. You add more fields as you think of more things that need to be captured.

As you can see, the table design begins to take on a life of its own. After you’ve
created the single table, it becomes even more difficult to maintain. You begin
to realize that you have to put in customer information for each sale a customer
makes (repeating the information over and over). The same is true for the items

Cross-
Reference

Tip

9Chapter 1 ✦ Understanding Data

purchased for each sale, which is usually more than one item sold for each sale
(thus duplicating information again). This makes the system more inefficient and
prone to data-entry mistakes. The information that is actually in the table becomes
inefficiently maintained — many fields may not be appropriate for each record, and
the table ends up with a lot of empty fields.

It’s important to create tables that hold the minimum of information while still mak-
ing the system easy to use and flexible enough to grow. To accomplish this, you need
to consider making more than one table, with each table containing records with
fields that are related only to the focus of that table. Then, after you create the tables,
you can link them together by some means that will let you glean useful information
from them. Although this sounds extremely complex, the actual implementation is
relatively easy. Again, this process of creating multiple tables from a single table is
known as normalization — or normalizing your tables.

Access Database Objects and Views
If you are new to databases (or even if you’re an experienced database user), you
need to understand some key Access concepts before starting to use the program.
The Access database contains seven objects, which consist of the data and tools
that you need to use Access:

✦ Table. Holds the actual data (uses a datasheet to display the raw data)

✦ Query. Lets you search, sort, and retrieve specific data

✦ Form. Lets you enter and display data in a customized format

✦ Report. Lets you display and print formatted data, including calculations
and totals

✦ Pages. Lets you publish live forms to a corporate intranet

✦ Macro. Gives you easy-to-use commands to automate tasks without
programming

✦ Module. Lets you create programs written in VBA (Visual Basic for
Applications)

Datasheets
Datasheets are one of the many ways by which you can view data. Although not a
database object, a datasheet displays a list of records from a table in a format com-
monly known as a browse screen or table view. A datasheet displays data as a series
of rows and columns (comparable to a spreadsheet). A datasheet simply displays
the information from a table in its raw form. This spreadsheet format is the default
mode for displaying all fields for all records.

10 Part I, Section I ✦ Working with Data Tables and Queries

You can scroll through the datasheet using the directional keys on your keyboard. You
can also display related records in other tables while in a datasheet. In addition,
you can make changes to the displayed data.

Use caution when making any changes or allowing a user to make any modifica-
tions in this format. When a datasheet record is changed, the data in the underly-
ing table is the data actually being changed.

Queries and dynasets
You use a query to extract information from a database. A query can select and
define a group of records that fulfill a certain condition. You can use queries before
printing a report so that only the desired data is printed. You can also use a query
with forms so that only certain records that meet the desired criteria appear
onscreen. You can also use queries within procedures to change, add, or delete
database records.

An example of a query is when a person at the Auto Sales office says, “Show me all
customers, in alphabetical order by name, who live in Massachusetts and bought
something over the past six months, and show them to me sorted by Customer
name” or “Show me all customers who bought cars for a value of $35,000 or more
for the past six months and show them to me sorted by customer name and then
by value of the car.” Instead of asking the question in actual English, the person
uses a method known as QBE, which stands for Query by Example. When you enter
instructions into the QBE Design window, the query translates the instructions into
SQL (Structured Query Language) and retrieves the desired data. In the first exam-
ple, the query first combines data from both the Sales and Contact tables, using the
related field Contact ID (the common link between the tables). Then it retrieves the
fields First Name, Last Name, and any others you want to see. Access then filters
the records, selecting only those in which the value of Sales Date is equal to or less
than six months from the current date. It then sorts the resulting records first by
contact’s Last and First names. Finally, the records appear onscreen in a datasheet.
A similar action takes place for the second example — using Sales, Contacts, Invoice
Items, and Products and the criteria being looked for is where the Description field
has a car bought whose value in Price is greater than or equal to $35,000.

These selected records are known as a dynaset — a dynamic set of data that can
change according to the raw data in the original tables.

After you run a query, the resulting dynaset can be used in a form that can be dis-
played onscreen in a specified format or printed on a report. In this way, user access
can be limited to the data that meets the criteria in the dynaset.

Data-entry and display forms
Data-entry forms help users get information into a database table quickly, easily,
and accurately. Data-entry and display forms provide a more structured view of the
data than what a datasheet provides. From this structured view, database records

Caution

11Chapter 1 ✦ Understanding Data

can be viewed, added, changed, or deleted. Entering data through the data-entry
forms is the most common way to get the data into the database table.

You can use data-entry forms to restrict access to certain fields within the table. You
can also use these forms to check the validity of your data before you accept it into
the database table.

Most users prefer to enter information into data-entry forms rather than datasheet
tables; data-entry forms can be made to resemble familiar paper documents. Forms
make data entry self-explanatory by guiding the user through the fields of the table
being updated.

Display-only screens and forms are solely for inquiry purposes. These forms allow
for the selective display of certain fields within a given table. Displaying some fields
and not others means that you can limit a user’s access to sensitive data while
allowing inquiry into other fields.

Reports
Reports present your data in printed format. You can create several different types
of reports within a database management system. For example, your report can list
all records in a given table, such as a customer table. You can also create a report
that lists only the customers who meet a given criterion, such as all those who live
in the state of Washington. You do this by incorporating a query into your report
design. The query creates a dynaset consisting of the records that contain the state
code WA.

Your reports can combine multiple tables to present complex relationships among
different sets of data. An example of this is printing an invoice. You access the cus-
tomer table to obtain the customer’s name and address (and other pertinent data)
and the sales table to print the individual line-item information for the products
ordered. You can then have Access calculate the totals and print them in a specific
format on the form. Additionally, you can have Access output records into an invoice
report, a table that summarizes the invoice.

When you design your database tables, keep in mind all the types of information
that you want to print. Doing so ensures that the information you require in your
various reports is available from within your database tables.

For descriptions of the remaining database objects (pages, macros, and modules),
see the appropriate chapters.

Designing the system’s objects
To create database objects, such as tables, forms, and reports, you first complete a
series of tasks known as design. The better your design is, the better your application
will be. The more you think through your design, the faster you can complete any

Cross-
Reference

Tip

12 Part I, Section I ✦ Working with Data Tables and Queries

system. Design is not some necessary evil, nor is its intent to produce voluminous
amounts of documentation. The sole intent of design is to produce a clear-cut path
to follow as you implement it.

The Seven-Step Design Method
Figure 1-2 is a version of the design method that is modified especially for use with
Access. This is a top-down approach, starting with the Overall System Design and
ending with the Menu Design, and consists of seven steps.

Figure 1-2: The seven-step design flowchart.
This design methodology is one that has been
modified specifically for use with Access
databases.

These seven design steps, along with the database system illustrated by the exam-
ples in this book, teach a great deal about Access and provide a great foundation for
creating database applications — including databases, tables, queries, forms, data
pages, reports, macros, and simple VBA (Visual Basic for Applications) modules.

As you read through each step of the design process, always look at the design in
terms of outputs and inputs. Although you see actual components of the system
(customers, pets, visits, and visit details), remember that the focus of this chapter
is how to design each step. As you watch the Access Auto Auctions system being
designed, pay attention to the design process, not the actual system.

This process of looking at output/input is often referred to as performing a needs
analysis.

Overall System Design

Report Design (Output)

Data Design (Fields)

Table Design (Relationships)

Field Design (Validation)

Form Design (Input)

Menu Design (Automation)

13Chapter 1 ✦ Understanding Data

Step 1: The overall design — From concept to reality
All software developers and end users face similar problems, the first of which is
determining what will meet the needs of the end user (typically your client, your
coworker, or yourself). It’s important to understand the overall needs that the
system must meet before you begin to zero in on the details.

The seven-step design method shown in Figure 1-2 helps you to create the system
that you need, at a price (measured in time or dollars) that you can afford. The
Access Auto Auctions database, for example, is a database system that allows the
client to sell items (vehicles and parts) to customers. It can be ran individually or
on the Internet, and needs to automate the following nine tasks:

✦ Entering and maintaining contact information (customers, sellers) — name,
address, and financial history

✦ Entering and maintaining sales information — sales date, payment method,
total amount (including tax), buyer ID, and other fields

✦ Entering and maintaining sales line items information — details of items actu-
ally purchased

✦ Viewing information from all the tables — Sales, Contacts, Sales Line Items
purchased, and Payment Information

✦ Asking all types of questions about the information in the database

✦ Producing a current Contacts directory

✦ Producing a monthly invoice report

✦ Producing a Customer Sales History

✦ Producing mailing labels and mail-merge reports

Conceptual design
These nine tasks that the Access Auto Auctions needs to automate are conceptual
at this point; they are the ones that you have been told about by the client. You may
need to consider other tasks as you start the design process.

The design process is a repetitious procedure; as you finish each step, you need to
look at all the previous steps again to make sure that nothing in the basic design
has changed. For example, if you are creating a data-entry rule and decide that you
need another field (that’s not already in the table) to validate a field you’ve already
defined, you have to go back and follow each previous step needed to add the field.
You have to be sure to add the new field to each report in which you want to see it.
You also have to make sure that the new field is on an input form that uses the table
the field is in. Only then can you use this new field in your system.

14 Part I, Section I ✦ Working with Data Tables and Queries

Interviewing the user
Most of the information that is necessary to build the system comes from the people
whom you are building the system for. This means that you need to sit down with
them and learn about how the existing manual process works. To accomplish this
you need to do a thorough needs analysis of the user or client’s current system and
how you anticipate automating it.

One way to accomplish this is to sit down and prepare a series of questions that can
give you insight to how the client currently performs their business. For example,
when considering automating an auto action system, you may consider asking these
questions:

✦ What reports and forms are currently used?

✦ How are records currently kept on the sales?

✦ How are the manual records/charts filed of the contacts, their sales, or
products they offer?

✦ What happens when a customer doesn’t come back for a year or more?

✦ What do they do with the records after a year? Five years?

✦ How are billings processed?

As you ask these questions and others, the client will probably remember other
things about their business that you should know.

A walk-through of the manual process is also necessary to get a “feel” for the busi-
ness. You will probably have to go back several times to watch the manual process
and how the employees work.

When you prepare to follow the remaining steps, keep the client involved — let them
know what you are doing and ask for their input as to what you want to accomplish,
making sure it is within the scope of their needs.

The process of prototyping
You may want to create a prototype system for the client to look at and play with to
give you further input about what needs to be added to make the system functional
for them.

In its simplest terms, a prototype is a working sample system. It comprises one
or more tables that are used to demonstrate the forms and reports of the system.
A prototype is made up of the visual parts of the system as opposed to the logical
underlying structure of the system.

A prototype is only the visual representation of how the system will look and function
after it’s complete. Often you can build a prototype in a few days and give it to the
client for their comments. This allows the user to see a working prototype demon-
strating the data display and data access techniques through forms and reports.

15Chapter 1 ✦ Understanding Data

Prototypes can be very stress-inducing. Essentially, they are an attempt to visualize
the future and plan for change and are often undertaken without a clear vision of
what the end result will be. Remember that a prototype is a working sample of the
final system — it will need to be changed.

So why build one? Prototypes can help you visualize a strategy or direction,
describe functionality or form, and demonstrate a proof of concept. You can use
them to gauge customer reaction, explore system functionality, and test the system’s
concepts and directions.

Because of these reasons, prototyping offers a highly valuable tool in the overall
building of your database system.

To build a prototype of the overall system, you have to quickly define the major
components of your database from your specifications that you gathered during
the initial meetings with the client. A prototype shouldn’t become the final working
system — it is only a sample system. Keeping this in mind, you shouldn’t spend
weeks and months on building one. Here’s a good analogy to keep in mind: Think of
a prototype system as the house fronts that are built for a street scene in a movie.
They look great, but the moment you open the front door to the building, you find
yourself in a vacant lot — it’s all make-believe!

Basically, a good prototype saves time and significantly reduces the cost of the
overall project.

Step 2: Report design — Placing your fields
After you’ve defined the Access Auto Auctions’ overall systems in terms of what
must be accomplished, you can begin report design.

Design work should be broken into the smallest level of detail, based on your
knowledge of the current system. Start each new step by reviewing the overall
design objectives. In the case of Access Auto Auctions, your objectives are to
track customers (buyers and sellers), track sales, keep a record of all sales and
items purchased, produce invoices, create a directory of contacts, and produce
mailing labels. Figures 1-3 and 1-4 show two possible reports that the system
may use.

Laying out fields in the report
When you see the reports that you will create in this section, you may wonder,
“Which comes first — the chicken or the egg?” Does the report layout come first,
or do you first determine the data items and text that make up the report? Actually,
these items are conceived together.

It isn’t important how you lay out the fields in this conception of a report. The
more time you take now, however, the easier it will be when you actually create the
report. Some people go so far as to place gridlines on the report so that they will

16 Part I, Section I ✦ Working with Data Tables and Queries

know the exact location they want each field to occupy. In this example, you can
just do it visually.

The reports in Figures 1-3 and 1-4 were created with two different purposes. The
report in Figure 1-3 is used to display information about an individual contact
(Buyer, Seller, or Both). In contrast, the report in Figure 1-4 is a typical invoice with
billing and customer information. Both of these reports, although different purposes,
were created based on the type of information that they will use. The actual layout
was conceived simultaneous with determining what they need to have in them.

Figure 1-3: A contact information report

This process of creating any new reports should be done with pen and paper first.
After you have reviewed any existing reports and the new ones you have created,
you are ready to figure out what type of information you will need to put into your
automated system.

If you want to learn more about the reports for the Access Auto Auctions system
see Chapters 12 and 13.

Cross-
Reference

Tip

17Chapter 1 ✦ Understanding Data

Figure 1-4: A sales invoice report sales information

Step 3: Data design — What fields do you have?
After you’ve decided what you want for output, it’s time to think about how to orga-
nize your data into a system to make it available for the reports that you’ve already
defined (as well as for any ad hoc queries). The next step in the design phase is to
take an inventory of all the information or data fields that you need to create the
desired output (reports and forms). One of the best methods is to list the data items
in each report. As you do so, take careful note of items that are in more than one
report. Make sure that you keep the same name for a data item that is in more than
one report because the data item is really the same item.

Another method is to see whether you can separate the data items into some logi-
cal arrangement. Later, these data items are grouped into logical table structures
and then mapped on data-entry screens (forms) that make sense. You should enter
customer data (buyers and sellers), for example, as part of a contact table process,
not as part of a visit entry.

This process of grouping common information is known as one of the steps in the
process of normalizing your database. As you conceptually work with the data items
(or fields) you should group them together into logical groups (the customer-related
fields, the sales-related fields, and on and on).

Tip

18 Part I, Section I ✦ Working with Data Tables and Queries

Determining contact information
First, look at each report you have reviewed or attempted to make for the Access
Auto Auctions system. For this system, start with the customer data and list the
data items, as shown in Table 1-1.

Table 1-1
Customer-Related Data Items Found in the Reports

Contacts Report Invoice Report

Customer Name Customer Name

Street Street

City City

State State

ZIP Code ZIP Code

Phone Numbers Phone Number

Type of Customer

E-Mail Address

Web Site Information

Contact Log Information (4 fields)

Discount Rate

Customer Since

Last Sales Date

Sales Tax Rate

Credit Information (4 fields)

As you can see by comparing the type of contact (customer) information needed for
each report, there are many common fields. Most of the data fields pertaining to the
customer are found in both reports. Table 1-1 shows only some of the fields that are
used in each report — those related to customer information. Fields appearing on
both reports appear on the same lines in the table, which allows you to see more
easily which items are in which reports. You can look across a row instead of looking
for the same names in both reports. Because the related row and the field names are
the same, it’s easy to make sure that you have all the data items. Although locating
items easily is not critical for this small database, it becomes very important when
you have to deal with large tables.

19Chapter 1 ✦ Understanding Data

Determining sales information
After extracting the customer data, you can move on to the sales data. In this case,
you need to analyze only the Invoice report for data items that are specific to the
Sales. Table 1-2 lists the fields in the report that contain information about the Sales.

Table 1-2
Sales Data Items Found in the Reports

Individual Invoice Report

Invoice Number

Sales Date

Invoice Date

Payment Method

Payment Salesperson

Discount (overall for sale)

Tax Location

Tax Rate

Product purchased (multiple lines)

Quantity purchased (multiple lines)

Description of Item purchased (multiple lines)

Price of Item (multiple lines)

Discount for each item (multiple lines)

Taxable? (multiple lines)

Payment Type (multiple lines)

Payment Date (multiple lines)

Payment Amount (multiple lines)

Credit card Number (multiple lines)

Expiration Date (multiple lines)

As you can see when you examine the type of sales information needed for the
report, a couple of items (fields) are repeating; for example, the Product purchased,
Number of items purchased, and Price of each item. Each invoice can have multiple
items, and each of these items needs the same type of information — number
ordered and price per item. Each Sales Invoice will probably have more than one

20 Part I, Section I ✦ Working with Data Tables and Queries

item that is sold and being invoiced. Also, each invoice can have partial payments
showing on it, and it is possible that this payment information will have multiple
lines of payment information, so these repeating items can be put into their own
grouping.

Determining line item information
You can take all the individual items that you found in the Sales information group
above and extract them to their own group for the Invoice Report. Table 1-3 shows
the information related to each line item.

Table 1-3
Extracting Line Item Information

Line Item Data Items

Product purchased

Quantity purchased

Description of item purchased

Price of item

Discount for each item

Taxable?

Looking back at the report in Figure 1-4, you can see that the above table doesn’t
list the calculated field amount, but you can recreate it easily in the report.

Unless a numeric field needs to be specifically stored in a table, simply recalculate
it when you run the report (or form). You should avoid creating fields in your
tables that can be created based on other fields — these calculation fields can be
easily created and displayed in a form or report. Don’t waste the storage space or
your valuable time!

Combining the data
Now for the difficult part: You must determine what fields you need to create for
the tables that make up the reports. When you examine the multitude of fields and
calculations that make up the many documents you have, you begin to see which
fields actually belong to the different tables. (You already did some preliminary
work by arranging the fields into logical groups.) For now, include every field you
extracted. You will need to add others later (for various reasons), although certain
fields won’t appear in any table.

Tip

21Chapter 1 ✦ Understanding Data

After you have used each report to display all the data, it’s time to consolidate the
data by function (for example, grouped into logical groups) and then compare the
data across those functions. To do this step, first you look at the contact information
and combine all of its different fields to create one set of data items. Then you do the
same thing for the Sales information and the Line Item information. Table 1-4 com-
pares data items from these three groups of information.

Table 1-4
Comparing the Data Items from the Three Groups

Contacts Data Invoice Data Line Items Data Items

Customer Name Invoice Number Product purchased

Street Sales Date Quantity purchased

City Invoice Date Description of item
purchased

State Payment Method Price of item

ZIP Code Payment Salesperson Discount for each item

Phone Numbers Discount (over all for this sale) Taxable?
(2 fields)

Type of Customer Tax Location

E-Mail Address Tax Rate

Web Site Information Payment Type (multiple lines)

Contact Log Information Payment Date (multiple lines)
(4 fields)

Discount Rate Payment Amount (multiple lines)

Customer Since Credit card Number (multiple lines)

Last Sales Date Expiration Date (multiple lines)

Sales Tax Rate

Credit Information
(containing 4 fields)

Consolidating and comparing data is a good way to start creating the individual
table definitions for Access Auto Auctions, but you have much more to do.

As you learn more about how to perform a data design, you also learn that the
information in the Contacts column must be split into two columns. Some of these

22 Part I, Section I ✦ Working with Data Tables and Queries

items are used only once for the contact; other items can have multiple entries; for
example, the Contact Log information. This is also true for the Sales column — the
payment information can have multiple lines of information.

It is necessary to further break these types of information into their own columns,
thus separating all related types of items into their own columns — an example of
the normalization part of the design process. For example, one customer can have
multiple contacts with the company. One customer can also have a sale in which he
pays several payments to pay that sale off. Of course, we have already broken the
data into three columns above: contacts, invoice of sales, and sales line items.

Keep in mind that one customer can have multiple invoices, and each invoice can
have multiple line items on it. The contact (customer) group represents customer
(buyer or seller) information, the invoice group contains information about individ-
ual sales, and the line items group contains information about each invoice. Notice
that these three columns are all related; for example, one customer can have multi-
ple invoices and each invoice may require multiple detail lines (line items). These
relationships between tables can be different. For example, each Sales Invoice can
only have one customer (thus a one-to-one relationship). In contrast, one customer
can have multiple sales, forming a one-to-many relationship. A one-to-many relation-
ship also exists between the sales invoice and the line items of the invoice.

Creating and understanding relationships is covered in Chapter 2.

At this point, you could continue to make additional columns for the things that
have the potential of multiple lines, meaning contact log information and payment
information. However, these three columns are the main groups of information (the
three main tables) that will be needed for the Access Auto Auctions database. Other
tables will be needed for the system and each of these groups, if made into a table,
will require additional fields. But the fields in each column of Table 1-4 are many of
the fields needed for each table used in the Access Auto Auctions database. You will
make many more changes as the design is examined and enhanced.

Linking the groups/tables
Assuming that the three groupings represent the main three tables of your system,
less additional fields, you will need to have some type of way to link these tables
together. This means that you have to add one more identification number to each
group. None of these groups/tables has a unique identifier (a way to make each
record in the group unique and easy to find), which means that you will need to add
at least one field to each group that can be used to link a specific record, or group
of records, in one table to a specific record in another table. For example, you could
create a contact ID number and put it in the Contacts table. Then add this same
number into the Invoice table so that the Invoice table can look up that Contacts
ID number in the Contacts table to get the information it needs about the customer.
The same could be done for linking the Invoice and the Line Items table — create an
invoice number that would be used in both of these tables. The linking of one group
of data to another is done through special fields, known as key fields.

Cross-
Reference

23Chapter 1 ✦ Understanding Data

With an understanding of the need for linking one group to another, you can add
some fields to each group. Table 1-5 shows two new groups and link fields created
for each group/table. These link fields, known as primary or foreign keys, can be
used to link these tables together.

Table 1-5
System Tables with Keys

Sales
Contact Payment

Contacts Data Invoice Data Line Items Data Log Data Data

Contact ID Invoice ID Invoice ID Contact ID Invoice ID

Customer Name Contact ID Line number Contact Date Payment
Type

Street Invoice Number Product purchased Contact Notes Payment
Date

City Sales Date Quantity purchased Follow up? Payment
Amount

State Invoice Date Description of Follow up date Credit card
item purchased Number

ZIP Code Payment Method Price of item Expiration
Date

Phone Numbers Payment Discount for
(2 fields) Salesperson each item

Type of Customer Discount (over Taxable?
all for this sale)

E-Mail Address Tax Location

Web Site Tax Rate
Information

Discount Rate

Customer Since

Last Sales Date

Sales Tax Rate

With the link fields added to each table, you can now find a field in one table that
can be used to link it to any table that needs to be related. For example, Table 1-5
shows a Contact ID field in both the Contacts table and the Invoice (Sales) table.

24 Part I, Section I ✦ Working with Data Tables and Queries

Creating specific types of links and understanding their importance is covered in
more detail in Chapter 2 when discussing relationships. See Chapter 2 for a com-
plete discussion of keys and relationships.

Step 4: Table design and relationships
You have identified the core of the three primary tables for your system, as reflected
by the first three columns in Table 1-5. This is the general, or first, cut toward the
final table designs. You have also created two additional tables (columns) from fields
shown in Table 1-4.

Taking time to properly design your database and the tables contained within it is
arguably the most important step in developing a database-oriented application. By
designing your database efficiently, you maintain control of the data — eliminating
costly data-entry mistakes and limiting your data entry to essential fields.

Although this book is not geared toward teaching database theory and all of its
nuances, this is a good point to briefly describe the art of database normalization.

Database normalization
Database normalization can essentially be defined as the process of optimizing how
you store and use the information in your tables. E. F. Codd, an employee of IBM,
first proposed the normalization process back in 1972 (Normalized Data Structure:
A Brief Tutorial, 1971, and Relational Completeness of Data Base Sublanguages, 1972).
Codd proposed that a person should take each table and put it through a series of
tests to “certify” whether or not it belonged to a certain normal form. He initially
proposed three normal forms, which he named first, second, and 3rd normal form.

Simply put, these “normal forms” are based on the functional dependencies of the
fields within a table and how they interrelate with the other tables of the database
system. Using normalization, you can ensure that the information in your tables is
being utilized and stored efficiently.

Normalizing to 3rd Normal form
When possible, you should take your tables and try to normalize them to 3rd normal
form. This simply means that you should separate your tables into the focused
groups (the columns in Tables 1-4 and 1-5) that you’ve already started. After you
separate the tables, you are ready to look at each table separately and determine if
you can optimize them better. This is accomplished via a process known as normal-
izing to Third Normal Form (3NF). Third Normal Form requires three steps, as out-
lined in the following sections.

Often you perform these steps after you create all the fields that you need in your
tables. You may want to jump back to this section after creating the actual tables
for your Access Auto Auctions system.

Note

Cross-
Reference

25Chapter 1 ✦ Understanding Data

The reasons you want to consider making your tables conform to 3NF is two-fold:

✦ Eliminating Data Redundancy. When typing data into tables, you may
encounter two problems: First, typing the same data over and over consumes
more space and resources than necessary. Second, entry of repetitive informa-
tion is prone to typographical errors.

✦ Unforeseen Scalability Issues. The database tends to continue growing and
takes on a life of its own after creation. If you fail to normalize your tables, you
run the risk of “hard coding” in fields that later need to be expanded. For exam-
ple, you may have two telephone fields in your system (one for home, one for
business). Later, you may realize that you need to also capture cellular phone
numbers and perhaps beeper numbers. Going back and changing the structure
to accommodate this new information is problematic. You would need to move
the telephone numbers to their own table and then have to change many forms
and reports that refer to these fields in the new table. The system needs to be
able to quickly adapt to these growth issues.

You can eliminate these types of problems by building your tables following the
three basic steps of normalizing to Third Normal Form.

First normal form (1NF)
Converting a table to the first normal form is relatively simple. The first rule calls
for the elimination of any repeating groups of data — moving repeating data into
their own tables.

3rd Normal Form and the Access Auto Auctions

The tables used in the Example database, Access Auto Auctions, does not conform to 3rd
Normal form. In many real business applications, you must sometimes sacrifice blind fol-
lowing of a rule for simple reality. For example, 1st normal form says that you will never
have the same data in more than one place. The tblProducts table contains values for an
item’s Price. An invoice line item stored in the tblSalesLineItems table also contains a field
for an item’s Price. However, prices change. When you add an item to a sales invoice, you
copy the current value of price. If you stored only the product’s Item Number and looked up
the price when printing the invoice at a point in time and the price has changed in the
tblProducts table since the moment of purchase, you wouldn’t agree to it (unless it went
down). This is known as time-dependent data and is a reason to not technically follow 1st
normal form at a database level. In fact, technically because one table records the price as
it changes for an item and one records the price at a moment in time, they are different.
Keep this in mind when reading this section. For clarity the two fields could be named dif-
ferently for the distinction. To stick with 3rd normalized form you could create another link-
ing table that contains the price of the item at time of sale and link this to the Line Items
database – complicating the example in this book. For simplicity the book simply puts the
field in both tables.

26 Part I, Section I ✦ Working with Data Tables and Queries

For example, looking at the Contacts table in Table 1-4, you see that you have a
repeating group in the table of contact information fields. These contact related
fields can be moved to their own table and then you can link the two tables by
using a common field between them. Table 1-5 shows the fields moved into their
own table and then linking the two tables together though the common field
Contact ID.

There are also the City and State name fields in the contacts table. In reality, you
should move these fields to another table and link it back to the Contacts table via
the ZIP code (only if, in America, you use the nine-digit ZIP code instead of the tra-
ditional five-digit one). For this exercise, we acknowledge that it should be done.
For simplicity, however, we will leave it in the database, allowing people to enter
the five-digit code or other country codes.

Second normal form (2NF)
Converting a table to second normal form takes a bit more thought. It relies on each
table having a defined primary key.

Simply explained, a primary key is a field or combination of fields in a table that
makes each record in the table unique. Using this uniqueness, you can quickly find
any record by searching for the unique (primary) key.

For more information on primary keys, see Chapter 2.

For example, in Table 1-5 you have both an Invoice ID field and a Line Number field
in the Line Items Data table. If you combine these two fields together, they make a
unique primary key. (Because each Invoice can contain more than one Line Item
record, you need to link the Invoice table to the Line Item Table through the Invoice
ID field; however, to make each record unique in the Line Items data table, you need
to have another field that has a value for each line item number for each invoice —
thus the Line Number field).

Looking at the Line Items Data table, you can see that there are two fields — Product
Purchased and Description of Item Purchased. Because these data elements (fields)
will probably be repeated over and over from one record to another, they should be
moved to their own tables. Many customers may buy the same Product, with the
same product on many different invoices. You should move these fields to another
table by adding a Product ID code field in the Line Items Data table and creating a
new Products table with the same field name (Product ID) to link the Product
names and descriptions in the new Products table to the Line Items Data table.

Third Normal Form (3NF)
The final step in the 3NF model is a bit more difficult. It relies on each table having
all the fields in the table directly related to the primary key field.

Cross-
Reference

27Chapter 1 ✦ Understanding Data

For example, using Table 1-5 as a guide, you see that the Invoice table has several
fields unrelated to the Invoice table directly — Discount, Tax Rate, Payment Method,
and Tax Location. These fields should also be moved to a more appropriate table or
to their own tables and linked back to the Invoice table.

For the purposes of this book, several of the fields in the final example will remain
in this table and the other tables, not normalizing the actual system, even to 2NF.

In summary, when creating your tables, you should consider building them to 3NF.
This greatly enhances both the accuracy and performance of your system.

Step 5: Field design data-entry rules and validation
The next step is to actually create your tables and define your fields for those
tables. You also need to determine data-validation rules for each field and to define
some new tables to help with data validation.

Designing field names, types, and sizes
First, you must name each field. The name should be easy to remember, as well as
descriptive, so that you recognize the function of the field by its name. It should
be just long enough to describe the field but not so short that it becomes cryptic.
Access allows up to 64 characters (including spaces) for a field name.

You must also decide what type of data each of your fields will hold. In Access, you
can choose any of several data types:

✦ Text. Alphanumeric characters; up to 255 characters

✦ Memo. Alphanumeric characters; long strings up to 65,538 (64K) characters

✦ Number. Numeric values of many types and formats

✦ Date/Time. Date and time data

✦ Currency. Monetary data

✦ AutoNumber. Automatically incremented numeric counter

✦ Yes/No. Logical values, Yes/No, True/False

✦ OLE object. Pictures, graphs, sound, video, word processing, and
spreadsheet files

✦ Hyperlink. A field that links to a picture, graph, sound, video, word
processing and spreadsheet files

One of these data types must be assigned to each of your fields. You must also
specify the length of the text fields.

Cross-
Reference

28 Part I, Section I ✦ Working with Data Tables and Queries

The section on “Creating the tblContacts table” in Chapter 2 covers this in more
detail.

Designing data-entry rules
The last major design decision concerns data validation, which becomes important
when you enter data. You want to make sure that only good data (data that passes
certain defined tests) gets into your system. You have to deal with several types of
data validation. You can test for known individual items, stipulating that the Gender
field can accept only the values Male, Female, or Unknown, for example. Or you can
test for ranges, specifying that the value of Weight must be between 0 and 1,500
pounds. Finally, you can test for compound conditions, such as whether the Type
of Customer field indicates a seller, buyer, or both.

Designing lookup tables
Sometimes you need to design entire tables to perform data validation or just to
make it easier to create your system; these are called lookup tables. For example,
because Access Auto Auctions needs a field to determine the customer’s tax rate,
you decide to use a lookup table that contains the Tax location, and tax rate. Another
example is when a customer pays an invoice using some specific method — cash,
credit card, money order, and on and on. Because the tax rate can change, Access
looks up the current tax rate whenever an invoice is created. The tax-rate value is
stored in the Invoice/Sales table to capture the tax rate for each invoice because it
is time-dependent data. Another purpose of a lookup table is to limit data entry in
a field to a specific value. For example, you can use a table that contains Payment
Methods. This payment methods table can be used as a lookup table to make sure
only those methods in the table can be entered in the invoice table.

When you create a field in a table, you can use the data type “Lookup Wizard.” It is
not an actual data type, but is instead a way of storing a field one way and dis-
playing it another way.

Although you can create a field on a data-entry form that limits the entry of valid
Customer Types to seller, buyer, or both, you create a table with only one field —
Type of Customer — and use the Type of Customer field in the Contacts table to link
to this field in the Type of Customer lookup table.

You create a lookup table in exactly the same way as you create any other table,
and it behaves in the same way. The only difference is in the way you use the table.

In Figure 1-5, the actual tables for the Access Auto Auctions, several lookup tables
have been added to the design.

Note

Tip

Cross-
Reference

29Chapter 1 ✦ Understanding Data

Figure 1-5: The tables of the Access Auto Auctions with several lookup tables

As Figure 1-5 shows, tblCustomerTypes, tblPaymentType, tblTaxRates, and
tblCategories are all look up tables in the system.

Creating test data
After you define your data-entry rules and how the database should look, it’s time
to create test data. You should prepare this data scientifically (in order to test many
possible conditions), and it should serve various purposes. For example, it should
let you test the process of data entry: Do all the conditions that you created gener-
ate the proper acceptance or error messages? In addition, it may lead you to some
conditions that you should test for that you hadn’t considered. What happens, for
example, when someone enters a blank into a field? How about numbers in a charac-
ter field? Access automatically traps items such as bad dates or characters in Date
and Numeric fields, but you must take care of the rest yourself.

The first type of test data you want to create is simply data that allows you to popu-
late, or fill, the databases with meaningful data. This is the initial good data that
should end up in the database and then be used to test output. Output consists
mainly of your reports. The second type of test data you want to create is for test-
ing data entry. This includes designing data with errors that display every one of
your error conditions, along with good data that can test some of your acceptable
conditions.

30 Part I, Section I ✦ Working with Data Tables and Queries

Test data should let you test routine items of the type you normally find in your
data. You should also test for limits. Enter data that is only one character long for
some fields, and use every field. Create several records that use every position in
the database (and thereby every position in the data-entry screen and in the
reports).

Create some “bad” test data. Enter data that tests every condition. Try to enter a
customer number that already exists. Try to change a customer number that’s not
in the file. These are a few examples of what to consider when testing your system.
Testing your system begins, of course, with the test data.

Step 6: Form design — Input
After you’ve created the data and established table relationships, it’s time to design
your forms. Forms are made up of the fields that can be entered or viewed in edit
mode. If at all possible, your screens should look much like the forms that you use
in a manual system. This setup makes for the user-friendliest system.

Designing data-entry screens
When you’re designing forms, you need to place three types of objects onscreen:

✦ Labels and text box data-entry fields

✦ Special controls (multiple-line text boxes, option buttons, list boxes, check
boxes, business graphs, and pictures)

✦ Graphical objects to visually enhance them (color, lines, rectangles, and three-
dimensional effects)

When designing a form, place your fields (text boxes, check boxes, list boxes, and
radio buttons) just where you want them on the form. Ideally, if the form is being
developed from an existing printed form, the Access data entry form should resem-
ble the printed form. The fields should be in the same relative place on the screen
as they are in the printed counterpart.

After you have placed your fields on the form, you can check the order of the fields.
In other words, when you fill in a field and tab to the next field, which field does the
cursor move to next? The tab order for data entry normally moves from top to bot-
tom and from left to right when you fill in the fields (text boxes and special controls).
However, you can tell Access to use a different order for moving from one field to
another. When placing the fields, be sure to leave as much space around them as is
needed. A calculated field, such as a total that is used only for data display, can also
be part of a data-entry form.

31Chapter 1 ✦ Understanding Data

You can use labels to display messages, titles, or captions. Text boxes provide an
area where you can type or display text or numbers that are contained in your
database. Check boxes indicate a condition and are either unchecked or checked
(selected). Other types of controls available with Access include list boxes, combo
boxes, option buttons, toggle buttons, and option groups.

Chapters 8 through 10 cover the various types of controls available in Access.
Access also provides a tool called Microsoft Graph that can be used to create a
wide variety of graphs. Pictures can also be displayed using an OLE (Object Linking
and Embedding) object stored in a database table, as you learn in Chapter 14.

In this book, you create several basic data-entry forms:

✦ Contact Log

✦ Contacts

✦ Sales

✦ Products

The Contact Log form
The Contact Log data-entry form shown in Figure 1-6 is the simplest of the data-
entry forms that you create in this book. It is straightforward, simply listing the
field descriptions on the left and the fields themselves on the right. The unique key
field (primary key) is Entry ID. At the top of the form is the main header, a title that
identifies this data-entry form by type: Contact Log.

You can create this simple form by using a Form Wizard. See Chapter 8 for details.

Figure 1-6: The Contact Log data-entry form.

Cross-
Reference

Cross-
Reference

32 Part I, Section I ✦ Working with Data Tables and Queries

The Contacts form
The Contacts data-entry form is a little more complex. It contains several types of
controls, including a tab control, command buttons, and a check box. Figure 1-7
shows the Contacts form.

Figure 1-7: The Contacts data-entry form.

The Sales form
The next data-entry form combines data from several tables to provide general
information about sales. This form contains information about customers, the sale,
line items sold, any payments made on this sale; its primary purpose is to allow a
user to enter this type of information into the database.

The Products form
The final form in this book is for adding the products that are sold in the system.

Step 7: Automation design — Menus
After you’ve created your data, designed your reports, and created your forms, it’s
time to tie them all together using switchboards and menus. Figure 1-8 is a switch-
board form that also contains a custom menu bar. Switchboards are graphical menus,
which are usually built with command buttons with text or pictures on them. Menus
refer to the lists of commands at the top of a window.

Menus are the key to a good system. A user must be able to follow the system to
understand how to move from place to place. Usually each form or report is also a
choice on a menu, which means that your design must include decisions on how to
group the commands. When you examine the overall design and look at all of your
systems, you begin to see a distinct set of combinations.

33Chapter 1 ✦ Understanding Data

Figure 1-8: A switchboard and menu for Access Auto Auctions.

You can use Access macros to create a menu on the top menu bar of the switch-
board. This menu gives the user the choice of using pull-down menus or switch-
board buttons.

You create this switchboard, along with the menus and a complicated dialog box,
in Chapter 24.

✦ ✦ ✦

Cross-
Reference

Creating and
Building Tables

In this chapter, you learn how to start the process of creat-
ing a database and its tables. You will create the database

container to hold your tables, forms, queries, reports, and
code that you create as you learn Access. Finally, you will
build the actual tables used by the example, Access Auto
Auctions, in this book.

Before you begin to create the tables, you must create a con-
tainer to store them in.

Chapter 2 does not use the example CD. In this chapter,
you will create a blank database and begin to create your
first tables.

Creating Database Tables
You create a database container to hold the tables, queries,
forms, reports, and macros that you create as you learn Access.
You also create the Sales and Contacts database tables, which
stores data about the sales and customers of the Access Auto
Auctions.

Before you can create the tables of the Access Auto Auctions,
you must first create the actual database container to hold
the tables.

Creating a Database
The Database window displays all the various object files
from your database that you may create while using Access.
Actually, a database is a single file. As you create new object
files, they are stored within the database file. They are not
separate files in themselves; rather, they are stored objects.

On the
CD-ROM

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a database

Creating a table

Navigating in the
Table window

Entering field names
and descriptions

Selecting a field
data type

Entering field
properties

Changing a
table design

Creating a
primary key

Saving and printing
your table design

Renaming, copying,
and deleting tables

✦ ✦ ✦ ✦

36 Part I, Section I ✦ Working with Data Tables and Queries

The database file starts at about 94,000 bytes (92K) and grows as you create new
objects — tables, queries, forms, reports, macros, and modules. Adding data to an
Access database also increases the size of the file.

There are many ways to create a new database file. When you start Microsoft Access,
you see the Getting Started dialog box open in the Database window, as shown in
Figure 2-1. You can also display this dialog box by selecting File ➪ New from the main
Access menu — this opens the New File dialog box — and then clicking the Home
icon at the top of the New File dialog box. (It looks like a sheet of paper with the
right-top corner bent down.) Finally, you can click the New button (the first button
in the toolbar) and select the Home icon.

Figure 2-1: The Getting Started dialog box opens along
the right-hand side of the Access window, showing three
general categories for creating a new database.

The Getting Started dialog box shows several groupings:

✦ Open. This lets you open an existing database file. The last four databases
opened are displayed. Clicking the More choice opens the Open dialog box,
which enables you to browse through your hard drive for the existing
database you want to open.

✦ Create a new file. Clicking on this choice opens the New dialog box, which
has two sections — New and Templates. The New section enables you to open
a Blank Database, a Blank Data Access Page, a Project Using Existing Data, a
Project Using New Data, or From Existing File. The Template section lets you
search for new templates on Microsoft.com, go to the Templates Home page,
and look for templates On My Computer.

37Chapter 2 ✦ Creating and Building Tables

Templates Section
In addition to using the New section to create a blank database, you can select the
second section in the New File dialog box — Templates. This section has three
choices: Search Office Online:, Templates Home page, and On My Computer.

Templates Home page
This choice activates your dialer program if you are not currently connected to the
Internet. When connected to the Internet, your browser will be activated and display
the Templates Home page of Microsoft Office Online. Here you can see a list of tem-
plates. The top figure in Figure 2-2 shows the Templates Home page after connecting
to Microsoft.com.

The Templates home page displays many templates for all the Microsoft Office
products. If you type Access in the search box located at the top-left corner and
click on the right arrow button or press Enter, the Web site will display a series of
online templates that can be used in Access.

Search Office Online:
Using the Search Office Online: choice of the Templates section, you can type a
search criteria for a specific template. For instance, typing in the keyword “inven-
tory,” Access will go out to the Template section of the Web site and search for any
templates for “inventory.” In this case it reports the “Inventory Management
Database” was found on the Microsoft.com site.

On My Computer
Clicking on this choice activates the Templates dialog box. When you open the
Templates dialog box for the first time, it may look different than the one in Figure 2-2.
Notice that the Templates dialog box has two tabs across the top — the General tab
and Database tab. The first time you open this dialog box, the General tab may be
active — clicking on the Database tab should show entries similar to Figure 2-2.

Notice that there are several database templates available in this window. Selecting
one of them will create a new database with objects that can be used for that specific
purpose. You can use any of these templates to build a specific database system.
Once built you can modify any of the objects created for your particular need.

When you select a particular template, Access will activate the Database Wizard and
ask you a series of questions about the fields to use for each table of the system and
the look of your forms and reports. Finally it will ask you for the name of the system
you are building and create the database and all its objects automatically.

38 Part I, Section I ✦ Working with Data Tables and Queries

If you have the Templates dialog box open, close it at this time to continue with
creating a new database.

Figure 2-2: The Templates Home page is activated by selecting
Templates home page (top figure). The Templates dialog box with
the Database tab active. This dialog box is activated by selecting the
On My Computer choice in the Templates section of the New
File menu (bottom figure).

Note

39Chapter 2 ✦ Creating and Building Tables

Blank database
Creating a database is a very simple matter. Just follow the steps below:

1. Click Blank Database under the New category of the New File menu. If you are
on the Getting Started menu, select Create a New File to go to the New File menu.

2. The File New Database dialog box opens. You can see any existing .MDB files
in the file list part of the window. The New File Database dialog box may ini-
tially open to the My Documents folder. Navigate to the folder you want to
place your new database file in — in the case of the author, it is a folder named
“Access db Files.”

3. A default name of db1.mdb will appear in the File Name text box at the bottom
of the window. Simply type over this default name with the name My Access
Auto Auctions or any other name you want to give the database. (Typing the
extension .mdb is optional because Access automatically supplies it if you
do not.)

4. Click the Create button.

When the new database is created, Access automatically opens it for you.

As the database in Figure 2-3 shows, Access automatically creates the database
file (container) using the Access 2000 format. This is for backward compatibility.
If you want to use the newer format — Access 2002 — you will need to convert
the database after it is created by selecting Tools ➪ Database Utilities ➪ Convert
Database ➪ To Access 2003.

Figure 2-3: The new database “My Access Auto
Auctions” is created.

Note

40 Part I, Section I ✦ Working with Data Tables and Queries

You can specify that Access 2003 uses the default database format of Access 2002
instead of version 2000. To change which format of the database Access uses
when creating a new database, select Format➪Options➪Advanced Tab➪Default
File Format pull-down menu and choose Access 2002 format.

You learn more about file attaching in Chapter 7.

An Access 2002 database cannot be used by versions of Access from 2000 and
earlier. However, Access can use previous formats of Access databases — 2.0, 95,
97, and 2000. Because the default version is 2000, you can use these files with
Access 2000, Access 2002, or the current version. Of course you can change the
default version to Access 2002 instead of 2000 (see tip above).

Caution

Cross-
Reference

Tip

Understanding How Access Works with Data

There are many ways that Microsoft Access works with data. For simplicity, you will see the
data stored in local tables in the examples of this book. A local table is a table stored within
the Access .MDB file This is how you have seen examples so far.

In many professionally developed Microsoft Access applications, the actual tables are in
their own database while the other interface objects (forms, reports, queries, pages,
macros, and modules) are stored in another database. The reason for this is usually main-
tainability. By separating the data and their tables into another database you can easily do
maintenance work on them (building new indexes, repairing the tables, and so on) without
affecting the remainder of the system. In contrast, you may be working with a multi-user
system and find a problem with a form or report object in the system. If you have all the
data and interface objects in the same database, you would have to shut down the system
while repairing the broken form or report — others could not be using the system while you
repair one object. Instead, by separating the data from the other objects, you can fix the
erring object while others are still working with the data. After you’ve fixed the problem,
you can deliver the new changes to the others, and they can import it into their local
database system. In addition, there is a more critical reason to separate your data from the
interface objects — security. By maintaining the data separately in its own database, either
locally or in a remote location, as in a multi-user environment, you can maintain better con-
trol over the information. Thus, the solution is to consider separating your tables, and their
stored data, from the rest of the application.

While you may want to first develop your application with the tables within the .MDB
database, later you can use the Database Splitter wizard to automatically move the tables in
your .MDB file to a separate Access .MDB file and then attach the tables. You can also attach
your tables to the Microsoft Database Engine or the larger SQL Server database. You can
also attach to non-Microsoft servers such as Oracle, Informix, or Sybase.

41Chapter 2 ✦ Creating and Building Tables

You can save or convert an Access 2002 Database in Access 2000 or Access 97 for-
mat by selecting Tools ➪ Database Utilities ➪ Convert Database ➪ To Access 97 or
Access 2000 File Format. The same is true for converting from Access 2000 to
2002 or 97.

If you enter a file extension other than MDB, Access saves the database file but
does not display it when you open the database later. By default, Access searches
for and displays only those files with an MDB file extension.

If you are following the examples in this book, note that we have chosen the name
My Access Auto Auctions for the name of the database you create as you complete
this chapter. This database is for our hypothetical business, Access Auto Auctions.
After you enter the filename, Access creates the empty database.

The CD-ROM that comes with your book contains multiple database files. The
completed file containing all the data is named Access Auto Auctions Data, and
the database with the completed objects is Access Auto Auctions (the completed
application, including forms, queries, reports, macros, and modules).

The CD-ROM has database files for each chapter named CHAPxxStart.mdb and
CHAPxxEnd.mdb, where xx is a chapter number; for example, 01, 02, and on and
on. If a chapter uses files where the data is split off from the other objects, the
names are CHAPxxPgmStart.mdb, CHAPxxDataStart.mdb, CHAPxxPgmEnd.mdb,
and CHAPxxDataEnd.mdb. For this chapter, you will build only a single database:
My Access Auto Auctions.

The Database Window
The Database window for the database CHAP01Start.mdb is shown in Figure 2-4.
It comprises three basic parts. First is the Objects menu bar on the left side of the
window and below it a Groups menu bar. Along the top of the window is the second
part, the toolbar with the buttons Open, Design, and New. Finally, the third part is
the open pane to the right and center that is used to show all the objects of the
type selected (Tables, Queries, and so on).

The Database window can be thought of as a container that holds all the different
objects that make up the database itself. When you click any of the object menu
items (Tables, Forms, and so on), the open pane on the right of the menu bar dis-
plays the appropriate objects. For example, Figure 2-4 shows all the Tables objects
because the Tables button is selected (it is also the default selection). If you click
the Forms button, you will see all the forms that you have built in the open pane.

The menu bar comprises two different groups of menus: Objects types and Groups.
The Objects type menu references all the object types that are used to make up the
entire database. The Groups menu is used to store and retrieve different object
types by use of a shortcut — it can contain any type of object.

On the
CD-ROM

Caution

Tip

42 Part I, Section I ✦ Working with Data Tables and Queries

Figure 2-4: The Database window. This window,
or container, has three basic parts: the menu bars
on the left side, the toolbar along the top, and the
open pane.

Objects menu bar
The Database window contains seven buttons on the vertical Objects menu bar;
using them, you can quickly select any of these objects that are available in Access:

✦ Tables

✦ Queries

✦ Forms

✦ Reports

✦ Pages

✦ Macros

✦ Modules

As you create new objects, the names of the files appear in the open pane of the
Database window. You see only the files for the particular type of object selected.
You can select an object type to view by clicking one of the object buttons.

In addition to the new objects that you create, the Database window shows several
new object shortcuts for each object type selected. For example, in Figure 2-4 you
see three new object shortcuts at the top of the object pane: Create Table In Design
View, Create Table By Using Wizard, and Create Table By Entering Data.

Only the Tables, Queries, Forms, Reports, and Pages objects have new objects
shortcuts. Queries, Forms, and Reports each have two, and the Tables and Pages
have three. To see the two for Forms, simply click the Forms button, and the first
two choices in the window pane are the new object shortcuts — Create Form In
Design View and Create Form By Using Wizard.

43Chapter 2 ✦ Creating and Building Tables

Inside the Object window pane are two or three create icons and their new object
shortcut labels. These can help you get started and are provided for each type of
object. You can turn off this new feature by choosing Tools ➪ Options and de-
selecting New Object Shortcuts.

There are four buttons on the right side of the toolbar that can change how you
look at the objects in the database object pane — one to see Large Icons of objects,
one for Small Icons, one for List Of Objects (default), and the last for Details Listing
Of Objects.

Figure 2-4 shows the default (List) Database window view. In it you only see the object
names; for example, table names such as tblContacts, tblSales, tblSalesLineItems,
tblProducts, and more. You can switch to the Details view of the object files in the
Database window by clicking the last button on the toolbar, a button that looks like
a series of lines in a box. This shows information such as a description, the date
modified, date created, and type of object. You can also view this detailed informa-
tion by clicking View from your Access menu bar and then clicking Details.

Groups menu bar
The Groups menu has one default button under it: Favorites. Groups are used to
store shortcuts to the different database objects so that they can be accessed
quickly from one place. For example, you may want to add a shortcut for the
Customer (tblContacts) table and the Customer (frmContacts) form or other differ-
ent types of objects.

When you place your database objects into a group, this creates a shortcut to that
object. For example, assume you are working with a fairly large database with sev-
eral hundred objects but that you are currently working with only three of those
objects. Instead of switching between the seven database objects and browsing
for the individual object names, you can store shortcuts to all the objects you use
in a group you create.

The objects must already have been created to add them to a group. This figure
uses objects that you create later and are not yet in this database.

You are not limited to the Favorites group. You can create your own groups menu
choices under the Groups menu bar. To create a new group, right-click on the
Favorites group and select New Group. This displays a dialog box where you can
type in a group name. When you have typed in the group name, click OK and the
group is created.

To display different database objects in your groups, click and drag the object into
the desired group. The same toolbar buttons appear for the different objects as
they normally do. The only command you can’t perform when you are in a group is
to create a new object (Table, Query, Form, Report, Pages, Macro, or Module). The
toolbar buttons are described in the next section.

Tip

Tip

44 Part I, Section I ✦ Working with Data Tables and Queries

The Database window toolbar buttons
The toolbar buttons in the Database window enable you to “Open” an existing object
that is highlighted (selected); display “Design” mode for the current highlighted
object; create a “New” object; or “Delete” (the X button) the currently highlighted
object. When a button is clicked, the appropriate action is taken. Before clicking
Open or Design, you should select an object name by highlighting it. When you
select New, the type of the new object that will be created depends on the object
type button you have selected in the Objects menu bar (Form, Table, Query, or
others). If you chose the Tables type, a new table is created. When you select some
of the other object types, the toolbar buttons may change. When you select the
Reports type, for example, the three available toolbar buttons are Preview, Design,
and New.

The Access window toolbar
The toolbar shown in Figure 2-5 enables you to perform tasks quickly without using
the menus. (Tools that are not available appear in light gray.)

If you place the cursor on a button without clicking and wait a short time (a second
or two), a Help prompt known as a Tool Tip appears just below the button. If you
want even more help, press Shift+F1, and then move the cursor to the object you
want more information about and click it. You will see What’s This? help: A small
rectangle with a paragraph explaining the use of the selected object. Figure 2-5
shows the What’s This? information box for the Tables button in the database
container. Another way of getting Help is to select the Office Assistant button at
the far right of the toolbar (it has a question mark inside a bubble), and then type a
question in the Office Assistant box. Finally, you can type in your question directly
in the new Help combo box along the right-most side of the menu bar of Access.

Figure 2-5: The Database window toolbar. Notice that
it also shows the Shift-F1 information box that is
displayed for the Tables Button in the database.

45Chapter 2 ✦ Creating and Building Tables

Starting from the left, you see the following toolbar buttons:

✦ New (blank piece of paper): Opens the New File menu

✦ Open (open file folder): Opens a database

✦ Save (floppy disk): Saves an object

✦ File Search (Windows logo over a piece of paper with a magnifying glass):
Searches the disk for a file

✦ Print (fax/printer name) (printer): Prints an object to the printer

✦ Print Preview (piece of paper with magnifying glass): Views an object as it
will look printed

✦ Spelling (check mark below the letters ABC): Checks the spelling

✦ Cut (pair of scissors): Removes the selection

✦ Copy (two pieces of paper): Copies the selection

✦ Paste (clipboard with piece of paper): Inserts from the clipboard

✦ Undo (an arrow rotating counterclockwise and menu selection arrow):
Undoes the last action

✦ OfficeLinks (icon of a large W with envelope and menu selection arrow):
Displays the links to Word and Excel

✦ Analyze (table picture with two table icons and a menu selection arrow):
Displays the Analyze commands

✦ Code (rectangle with red, blue, and yellow boxes on it): Displays the Code
window — optional and visible only if loaded

✦ Microsoft Script Editor (an eight inside another eight on its side): Displays
the Script Editor window — optional and visible only if loaded. The editor is
used to create VBScript or JScript for data access pages.

✦ Properties (hand holding a piece of paper): Displays the Properties window

✦ Relationships (three tables with lines between them): Displays the
Relationships window

✦ New Object: AutoForm (starburst over top-left corner of a table icon and a
menu selection arrow): Displays the New Object choices

✦ Microsoft Access Help (cartoon caption bubble with a question mark
inside): Displays the Microsoft Access Help window

✦ Toolbar Options (a menu selection arrow pointing down): Allows you to add
or remove toolbar buttons

46 Part I, Section I ✦ Working with Data Tables and Queries

Creating a New Table
After you design your table on paper, you need to create the table design in Access.
Although you can create the table interactively without any forethought, carefully
planning a database system is a good idea. You can make any changes later, but doing
so wastes time; generally, the result is a system that is harder to maintain than one
that is well planned from the beginning. Before you get started, you should under-
stand the table design process.

To refresh your knowledge on how to design your tables for this database, refer to
the section titled “Step 3: Data Design – What Fields Do You Have?” in Chapter 1.

The table design process
Creating a table design is a multi-step process. By following the steps in order, your
table design can be created readily and with minimal effort:

✦ Create a new table.

✦ Enter each field name, data type, and description.

✦ Enter properties for each defined field.

✦ Set a primary key.

✦ Create indexes for necessary fields.

✦ Save the design.

You can use any of these four methods to create a new table design:

✦ Click the New toolbar button in the Tables Object container of the Database
window.

✦ Select Insert ➪ Table from the Access menu.

✦ Select New Table from the New Object button in the Access toolbar.

✦ Select Create table in Design view (first object in Tables pane of Database
window) if the New object shortcuts option is turned on.

If you create a new table by clicking the New button in the Database window, make
sure that the Tables object button is selected first from the Objects menu bar.

With the “My Access Auto Auctions” database open, click the New button in the
Database window to begin creating a new table.

Tip

Cross-
Reference

47Chapter 2 ✦ Creating and Building Tables

The New Table dialog box
Figure 2-6 shows the New Table dialog box as Access displays it.

Figure 2-6: The New Table dialog box.

You use this dialog box to select one of these five ways to create a new table:

✦ Datasheet View. Enter data into a spreadsheet

✦ Design View. Create a table in Design view

✦ Table Wizard. Select a pre-built table that is complete with generic field
definitions

✦ Import Table. Import external data formats into a new Access table

✦ Link Table. Link to an existing external data source

Access provides several ways to create a new table. You can design the structure of
the table (such as field names, data types, and size) first, and then add data. Another
method is to use the Table Wizard to choose from a list of predefined table designs.
Access also gives you three new ways to easily create a new table. First, you can
enter the data into a spreadsheet-like form known as Datasheet View; Access will
create the table for you automatically. Second, you can use the Import Table Wizard
to select an external data source and create a new table containing a copy of the
data found in that source; the Wizard takes you through the import process. Third,
you can use the Link Table Wizard, which is similar to the Import Table Wizard
except that the data stays in the original location and Access links to it from the
new table.

To create your first table, the Datasheet View is a great method for getting started;
then you can use the table’s Design View to make any final changes and adjustments.

The Import Table and Link Table Wizards are covered in Chapter 6.Cross-
Reference

48 Part I, Section I ✦ Working with Data Tables and Queries

Select New from the Database window; then select Datasheet View and click the OK
button to display a blank datasheet with which you can create a new table.

Using the Table Wizard

When you create a new table, you can type in every field name, data type, size, and other
table property information, or you can use the Table Wizard (see Figure 2-7) to select from
a long list of predefined tables and fields. Unlike the Database Wizard (which creates a
complete application), the Table Wizard creates only a table and a simple form.

Wizards can save you a lot of work; they are meant to save you time and make complex
tasks easier. Wizards work by taking you through a series of screens that ask what you want.
You answer these questions by clicking buttons, selecting fields, entering text, and making
yes/no decisions.

In the Table Wizard, first you choose between the lists of Business or Personal tables. Some
of the Business tables are Mailing List, Contacts, Employees, Products, Orders, Suppliers,
Payments, Invoices, Assets, and Students. The Personal list includes Guests, Recipes,
Exercise Log, Plants, Wine List, Photographs, Video Collection, and more.

When you select a table, a list appears and shows you all the fields that you might want in
the table. Select only the fields you want. Although they are all predefined for data type and
size, you can rename a field after it’s selected. When you’ve chosen your fields, another
screen uses input from you to create a primary key automatically. Other screens help you to
automatically link the primary key to another table and establish relationships. Finally, the
Wizard can display the table, enable you to enter records into a datasheet, or even create an
automatic form for you. The entire process of creating a simple table and form can take less
than one minute! Whenever you need to create a table for an application on the Wizard’s
list, you can save a lot of time by using the Wizard.

Figure 2-7: This is the first screen of the Table
Wizard. It enables you to select an example type
table (Contacts in this figure) then select fields
to add to the table to be created.

49Chapter 2 ✦ Creating and Building Tables

Creating a new table with a Datasheet View
The empty datasheet appears, ready for you to enter data and create a new record.
You begin by entering a few records into the datasheet. Each column will become a
field, and each row will become a record in the table. (You learn more about these
terms later in this chapter.) For now, all you have to do is add data. The more
records you add, the more accurately Access can tell what type of data you want
for each field and the approximate size of each data item.

When you first see the datasheet, it’s empty. The column headers that will become
field names for the table are labeled Field1, Field2, Field3, and so on. You can change
the column header names if you want; they become the field names for the table
design. You can always change the field names after you have finished creating the
table. The table datasheet is initially named Table followed by a number. If there are
no other tables named Table with a number, Access uses the name Table1; the next
table is named Table2, and so forth. You can always change this name when you
save the table.

Add the five records shown in Figure 2-8, and then change the column headers to
the names shown by double-clicking on the field name (Field1, Field2, and so on).

You can change a column name by double-clicking the column name and editing
the value. When you’re done, press Enter to save the new column header. If you
enter a column header name that is wider than the default column width, adjust
the column width by placing the cursor on the line between the column names
and dragging the line to the right to make it wider or to the left to make it narrower.

Figure 2-8: A partially completed Datasheet view of the
data used to create a new table. Notice that the first six
fields have had their field names changed, and that each
column holds the same type of data.

Note

50 Part I, Section I ✦ Working with Data Tables and Queries

The Access and Microsoft Excel spreadsheet Datasheet windows work similarly.
Many techniques are the same for both products; even many menus and toolbar
buttons are the same.

When naming tables, fields, and other objects in this book, a naming convention is
used. You can read more on this naming convention in Appendix D — Standard
Naming Conventions.

When you have finished entering the data, save the table and give it the name
tblContacts. To close the table and save the data entered, choose either Close from
the File menu or click the Close button in the upper-right corner of the Table window
(the button with the X on it). You can also click the Save button on the toolbar, but
this only saves the table; you still have to close it.

Clicking the Close button in the window will activate a dialog box that asks whether
you want to save changes to Table1. You have three choices – “Yes” to save the table
and give it a name, “No” to forget everything, or “Cancel” to return to the table to
enter more data.

For this example, select “Yes” to continue the process to save the table. The Save
As dialog box appears, prompting you for a new name for the table. It shows you
the default table name of Table1.

Enter tblContacts and click OK to continue to save the table. Yet another dialog box
appears, asking whether you want to create a primary key — a unique identifier for
each record, which you learn about later in the chapter. For now, just select No.

The tables, fields, and other objects (forms, reports, queries, and others) follow a
convention that can be found in Appendix D — Standard Naming Conventions. The
purpose of this “standard” method of naming is for clarification; for example, the
prefix tbl stands for table and Contacts is the primary name of the table. When you
look at system some time in the future, you will automatically know that tbl stands
for table.

Access saves the table and returns you to the Database window. Notice that the
table name “tblContacts” now appears in the table object list. If you did everything
correctly, you have successfully created a table named tblContacts that has six
fields and five records. The next step is to edit the table design and create the final
table design you saw in Figure 1-5 of Chapter 1.

To open the tblContacts table in Design View, select it and then click the Design
button. Figure 2-9 shows the tblContacts Table Design window with the design that
was automatically created by the data you entered in the Datasheet View. Notice
the field names that you created by entering their names in the first row of each
column. Also notice the data types that Access automatically assigned to each field.

Tip

Cross-
Reference

Tip

51Chapter 2 ✦ Creating and Building Tables

It looked at the information that you typed into each column and attempted to
determine the type of data you entered. For example, it figured out that you wanted
a Date/Time type field for the dtmOrigCustDate (Original Customer Date) column,
and a Number type for the idsContactID field. In the next part of this chapter, you
learn about these field types.

The field idsContactID was automatically identified as a number by Access. In reality,
we will use this as an AutoNumber field. This will be discussed later in this chapter.

Figure 2-9: The Table Design window contains the Field Names
and Data types in the top pane and Field Properties for the
current field in the bottom pane — in this case, the properties
for the idsContactID field.

The Table Design Window
The Table Design window consists of two areas:

✦ The field entry area

✦ The field properties area

The field entry area is for entering each field’s name and data type; you can also
enter an optional description. The property area is for entering more options, called
properties, for each field. These properties include field size, format, input mask,
alternate caption for forms, default value, validation rules, validation text, required,
zero length for null checking, index specifications, and unicode compression. The
actual properties displayed depend upon the data type of the field. You learn more
about these properties later in the book.

Caution

52 Part I, Section I ✦ Working with Data Tables and Queries

You can switch between areas (also referred to as panes) by clicking the mouse
when the pointer is in the desired pane or by pressing F6.

Using the Table Design window toolbar
The Table Design window toolbar, shown in Figure 2-10, contains many buttons that
assist in creating a new table definition.

Figure 2-10: The Table Design window toolbar.

Working with fields
Fields are created by entering a field name and a field data type in each row of the
field entry area of the Table Design window. The field description is an option to
identify the field’s purpose; it appears in the status bar during data entry. After you
enter each field’s name and data type, you can further specify how each field is
used by entering properties in the property area. Before you enter any properties,
however, you should enter all your field names and data types for this example. You
have already created some of the fields you will need.

Naming a field
A field name should be clear enough to identify the field to you, the user of the
system, and to Access. Field names should be long enough to quickly identify the
purpose of the field, but not overly long. (Later, as you enter validation rules or use
the field name in a calculation, you’ll want to save yourself from typing long field
names.)

This book uses a naming standard for all objects. To learn more about the naming
conventions used in this book, please refer to Appendix D — Standard Naming
Conventions.

To enter a field name, position the pointer in the first row of the Table Design
window under the Field Name column. Then type a valid field name, observing
these rules:

✦ Field names can be from 1 to 64 characters.

✦ Field names can include letters, numbers, and many special characters.

✦ Field names cannot include a period (.), exclamation point (!), brackets ([]),
or accent grave (`).

Cross-
Reference

Tip

53Chapter 2 ✦ Creating and Building Tables

✦ You can’t use low-order ASCII characters, for example Ctrl-J or Ctrl-L (ASCII
values 0 to 31).

✦ You can’t start with a blank space.

✦ You can’t use a double quotation mark (“) in the name of a Microsoft Access
project file.

You can enter field names in upper-, lower-, or mixed case. If you make a mistake
while typing the field name, position the cursor where you want to make a correc-
tion and type the change. You can change a field name at any time — even if it’s in
a table and the field contains data — for any reason.

After your table is saved, however, if you change a field name that is also used in
queries, forms, or reports, you have to change it in those objects as well.

Specifying a data type
After you name a field, you must decide what type of data the field will hold. Before
you begin entering data, you should have a good grasp of the data types that your
system will use. Ten basic types of data are shown in Table 2-1; some data types
(such as numbers) have several options.

Table 2-1
Data Types Available in Microsoft Access

Data Type Type of Data Stored Storage Size

Text Alphanumeric characters 0–255 characters

Memo Alphanumeric characters 0–65,536 characters

Number Numeric values 1, 2, 4, or 8 bytes, 16 bytes
for Replication ID (GUID)

Date/Time Date and time data 8 bytes

Currency Monetary data 8 bytes

AutoNumber Automatic number increments 4 bytes, 16 bytes for
Replication ID (GUID)

Yes/No Logical values: Yes/No, True/False 1 bit (0 or –1)

OLE Object Pictures, graphs, sound, video Up to 1GB (disk space
limitation)

Hyperlink Link to an Internet resource 0–64,000 characters

Lookup Wizard Displays data from another table Generally 4 bytes

Caution

54 Part I, Section I ✦ Working with Data Tables and Queries

Figure 2-11 shows the Data Type drop-down list. It is used to select the choice for
the type of data you want to save in the field you just created. When you move the
pointer into the Data Type column, a down arrow (↓) appears in the text-entry box.
To open this drop-down list, move the cursor into the Data Type column and click
the down arrow (↓).

Figure 2-11: The Data Type drop-down list. You can quickly select
the type of data you want to store in a field by clicking the list and
selecting from it. You can also type in the name of the data type.

Text data is any type of data that is simply characters. These characters comprise
alphanumeric characters, meaning numbers (0 through 9) and characters (A to Z,
a to z). Names, addresses, and descriptions are all text data, as are numeric data that
are not used in a calculation (such as telephone numbers, Social Security numbers,
and ZIP codes). Although you specify the size of each text field in the property area,
you can enter no more than 255 characters of data in any text field. Access uses
variable length fields to store its data. If you designate a field to be 25 characters
wide and you use only 5 characters for each record, then that is all the space you
will actually use in your database container. You will find that the .MDB database
file can get large quickly but text fields are not the cause. However, rather than allow
Access to create every text field with the default 50 characters or the maximum 255
characters, it is good practice to limit text field widths to the maximum you believe
they will be used for. Names are tricky because some cultures have long names.
However, it is a safe bet that a postal code might be less than 12 characters wide
while a U.S. state abbreviation is always 2 characters wide. By limiting the size of
the text width, you also limit the number of characters the user can type when the
field is used in a form.

The Memo data type holds a variable amount of data from 0 to 65,536 characters for
each record. Therefore, if one record uses 100 characters, another requires only 10,
and yet another needs 3,000, you use only as much space as each record requires.

55Chapter 2 ✦ Creating and Building Tables

The Number data type enables you to enter numeric data; that is, numbers that will
be used in mathematical calculations. (If you have data that will be used in monetary
calculations, you should use the Currency data type, which enables you to specify
many different currency types.)

The Date/Time data type can store dates, times, or both types of data at once. Thus,
you can enter a date, a time, or a date/time combination. You can specify many
types of formats in the property entry area and then display date and time data as
you prefer.

The Currency data type enables you to enter numeric data; that is, numbers that will
be used with only two decimal places and can be used for mathematical calcula-
tions. You can specify many different currency formats with this data type. (If you
have data that will be used for non-Currency, numeric calculations, you should use
the Number data type.)

The AutoNumber data type stores an integer that Access increments (adds to)
automatically as you add new records. You can use the AutoNumber data type as a
unique record identification for tables having no other unique value. If, for example,
you have no unique identifier for a list of names, you can use an AutoNumber field
to identify one John Smith from another.

The Yes/No data type holds data that has one of two values and that can, therefore,
be expressed as a binary state. Data is actually stored as –1 for yes and 0 for no. You
can, however, adjust the format setting to display Yes/No, True/False, or On/Off.
When you use a Yes/No data type, you can use many of the form controls that are
especially designed for it.

The OLE Object data type provides access for data that can be linked to an OLE
server. This type of data includes bitmaps (such as Windows Paint files), audio files
(such as WAV files), business graphics (such as those found in Access and Excel),
and even full-motion video files. Of course, you can play the video files only if you
have the hardware and necessary OLE server software.

The Hyperlink data type field holds combinations of text and numbers stored as
text and used as a hyperlink address. It can have up to three parts: (1) the visual
text that appears in a field (usually underlined); (2) the Internet address — the path
to a file (UNC, or Universal Naming Convention, path) or page (URL or Uniform
Resource Locator); and (3) any sub-address within the file or page. An example of
a sub-address is the name of an Access 2000 form or report. Each part is separated
by the pound symbol (#).

The Lookup Wizard data type creates a field that enables you to use a combo box to
choose a value from another table or from a list of values. This is especially useful
when you are storing key fields from another table in order to link to data from that
table. Choosing this option in the Data Type list starts the Lookup Wizard, with
which you define the data type and perform the link to another table. You learn
more about this field type later.

56 Part I, Section I ✦ Working with Data Tables and Queries

Entering a field description
The field description is completely optional; you use it only to help you remember a
field’s uses or to let another user know its purpose. Often you don’t use the descrip-
tion column at all, or you use it only for fields whose purpose is not readily recog-
nizable. If you enter a field description, it appears in the status bar whenever you
use that field in Access — in the datasheet or in a form. The field description can
help clarify a field whose purpose is ambiguous or give the user a fuller explanation
of the values valid for the field during data entry.

Creating the tblContacts Table
Working with these nine different data types (plus the Lookup Wizard), you should
be ready to create the final working copy of the tblContacts Table. When creating
the table, you will have to create a field that can be used to link this table to two
other tables, specifically the tblSales and tblContactLog tables. This link field will
be defined as an AutoNumber field, which will prove problematic for the currently
created tblContacts table.

AutoNumber fields and Access
Access gives special considerations to AutoNumber fields and assigning values to
AutoNumber fields. You cannot change a previously defined field from another type
to AutoNumber. If you try to change a previously defined field to an AutoNumber
field type, Access reports an error, as shown in Figure 2-12. The dialog box points
out that after you create a table and have added any records, you can’t change the
field type to AutoNumber from any other type.

Figure 2-12: The warning dialog box states that you may not change
the field type of a table that already has records in it to AutoNumber.

When you created the table tblContacts by adding data in the datasheet view, Access
automatically assigned a datatype of Number to the idsContactID field. This needs
to be changed to AutoNumber. Because Access does not allow you to automatically
change it when there are records in it, you will have to either delete the records in
the table or delete the field.

57Chapter 2 ✦ Creating and Building Tables

To change the idsContactID field from number to AutoNumber, you need to return
to the Datasheet View by clicking View, the left-most button under the word File.
While in Datasheet View, click on the first column of the record. Notice that when
you move your cursor over any row of this column, it changes to a small, right-
pointing arrow. While you have a pointing arrow, click on the first field to highlight
the entire record; once highlighted you can simply press the Delete key to delete
the record. Figure 2-13 shows the record highlighted and the cursor turned to a
right-pointing arrow. Access will display a confirmation dialog box confirming you
want to delete this record. Answer yes. When this is done, you can go back and
highlight the remaining records and delete them.

Figure 2-13: Deleting a record in datasheet view.

With the records deleted you can now click the Design button (same button as the
view, simply changed to design now) and return to the Design window.

Completing the tblContacts Table
With the tblContacts Table in Design View you are now ready to create or modify
all the fields of the tblContacts Table. Table 2-2 shows the completed field entries
for the tblContacts table. If you are following the examples, you should modify the
table design now for these additional fields. Enter the field names and data types
exactly as shown. You also need to rearrange some of the fields and delete the
Value field you created. You may want to study the next few pages to understand
how to change existing fields (which includes rearranging the field order, changing
a field name, and deleting a field).

The steps for modifying the idsContactID field’s data type from Number to
AutoNumber is

1. Place the cursor in the Data Type column in the row of the idsContactID field.

2. Click the down arrow and select the data type of AutoNumber.

You can also type in the name of the data type or the first unique letters. The type
is validated automatically to make sure it’s on the drop-down list. A warning mes-
sage appears for an invalid type.

Tip

58 Part I, Section I ✦ Working with Data Tables and Queries

Table 2-2
Structure of the tblContacts Table

Field Name Data Type Description

idsContactID AutoNumber Used to link to tblSales and tlbContact Log

chrContactType Text Buyer, Seller, or Both

chrFirstName Text First name

chrLastName Text Last name

chrCompany Text Company name

chrAddress Text Address

chrCity Text City

chrState Text State

chrZipCode Text Zip code

chrCustomerType Text Holds info like Parts Store, Dealer, Auctioneer,
and so on

chrPhone Text Phone number

chrFax Text Fax number

chrEmail Text E-mail address

hlkWebSite Text Web site

dtmOrigCustDate Date/Time First date became customer

chrTaxLocation Text State for taxing information

curCreditLimit Currency Credit limit

curCurBal Currency Current balance

chrCreditStatus Text OK, HOLD, New

dtmLastSalesDate Date/Time Date of last sale

dblDiscountPercent Number Start discount percent authorized for contact

memNotes Memo Any miscellaneous notes

blnActive Yes/No Active contact

The steps for adding fields to a table structure are

1. Place the cursor in the Field Name column in the row where you want the field
to appear.

2. Enter the field name and press Enter or Tab.

59Chapter 2 ✦ Creating and Building Tables

3. In the Data Type column, click the down arrow and select the data type.

4. Place the pointer in the Description column and type a description (optional).

Repeat each of these steps to create each of the data entry fields for the
tblContacts table. You can press the down-arrow (↓) key to move between rows, or
simply use the mouse and click on any row.

Changing a Table Design
As you create your table, you should be following a well-planned design. Yet changes
are sometimes necessary, even with a plan — as in the case of changing the data
type from Number to AutoNumber for the idsContactID field previously. You may
find that you want to add another field, remove a field, change a field name or data
type, or simply rearrange the order of the field names. You can make these changes
to your table at any time. After you enter data into your table, however, things get a
little more complicated. You have to make sure that any changes made don’t affect
the data entered previously.

In older versions of Access (versions 95 and earlier), changes to the table design
could be made only in the Table Design window. Since Access 97, including Access
2002, you can make changes to the table design in a datasheet, including adding
fields, deleting fields, and changing field names.

In previous versions of Access, changing a field name usually meant that any
queries, forms, reports, macros, or modules that referenced that field name would
no longer work and had to be manually found and changed. Since Access 2002, it
automatically seeks out most occurrences of the name and changes it for you.

Inserting a new field
To insert a new field, in the Table Design window, place your cursor on an existing
field and select Insert ➪ Rows or click the Insert Rows button in the toolbar. A new
row is added to the table, and any existing fields are pushed down. You can then
enter a new field definition. Inserting a field does not disturb other fields or existing
data. If you have queries, forms, or reports that use the table, you may need to add
the field to those objects as well.

Deleting a field
There are three ways to delete a field:

✦ Select the field by clicking the row selector and pressing Delete.

✦ Select the field and choose Edit ➪ Delete Rows.

✦ Select the field and click the Delete Rows button on the toolbar.

New
Feature

60 Part I, Section I ✦ Working with Data Tables and Queries

When you delete a field containing data, a warning that you will lose any data in the
table for this field displays. If the table is empty, you won’t care. If your table contains
data, however, make sure that you want to eliminate the data for that field (column).
You will also have to delete the same field from queries, forms, and reports that use
the field name.

When you delete a field, you can immediately select the Undo button and return
the field to the table. But you must do this step before you save the changed
table’s definition.

If you attempt to delete a field that is part of a relationship (primary or secondary
key field), Access will inform you that you cannot delete it until you delete the ref-
erence in the Relationships window.

If you delete a field, you must also delete all references to that field throughout
Access. Because you can use a field name in forms, queries, reports, and even table-
data validation, you must examine your system carefully to find any instances where
you may have used the specific field name.

Changing a field location
One of the easiest changes to make is to move a field’s location. The order of your
fields, as entered, determines the initial display sequence in the datasheet that dis-
plays your data. If you decide that your fields should be rearranged, click on a field
selector twice and drag the field to a new location.

Changing a field name
You can change a field name by selecting an existing field name in the Table Design
screen and entering a new name; Access updates the table design automatically. As
long as you are creating a new table, this process is easy.

If you used the field name in any forms, queries, or reports, however, you must
also go to each object that references the field name and change it in them.
(Remember that you can also use a field name in validation rules and calculated
fields in queries, as well as in macros and module expressions — all of which must
be changed.) As you can see, it’s a good idea not to change a field name; it creates
more work.

Changing a field size
Making a field size larger is simple in a table design. However, only text and number
fields can be increased in size. You simply increase the Field Size property for text
fields or specify a different field size for number fields. You must pay attention to
the decimal-point property in number fields to make sure that you don’t select a
new size that supports fewer decimal places than you currently have.

Caution

Tip

Tip

61Chapter 2 ✦ Creating and Building Tables

When you want to make a field size smaller, make sure that none of the data in the
table is larger than the new field width. (If it is, the existing data will be truncated.)
Text data types should be made as small as possible to take up less storage space.

Remember that each text field uses only the number of characters actually entered
in the field. You should still try to make your fields only as large as the largest value
so that Access can stop someone from entering a value that may not fit on a form
or report.

Changing a field data type
You must be very careful when changing a field’s data type if you want to preserve
your existing data. Such a change is rare; most data types limit (by definition) what
kind of data you can input. Normally, for example, you cannot input a letter into a
Number field or a Date/Time field.

Some data types do, however, convert readily to others. For example, a Number
field can be converted to a Text data type, but you lose the understanding of mathe-
matics in the value because you can no longer perform mathematical calculations
with the values. Sometimes you might accidentally create a phone number or ZIP
code as a Number and want to redefine the data type correctly as Text. Of course,
you also have to remember the other places where you’ve used the field name (for
example, queries, forms, or reports).

The OLE data type cannot be converted to any other format. Any field cannot be
converted to an AutoNumber field if there is any data in the table already.

You need to understand four basic conversion types as you change from one data
type to another. The paragraphs that follow describe each of these types.

To Text from other data types
Converting to Text is easiest; you can convert practically any other data type to
Text with no problems. Number or Currency data can be converted with no special
formatting (dollar signs or commas) if you use the General Number format; the dec-
imal point remains intact. Yes/No data converts as is; Date/Time data also converts
as is if you use the General Date format (mm/dd/yy hh:mm:ss AM/PM). Hyperlink
data easily converts to Text. The displayed text loses its underline but the remain-
ing Internet resource link information is visible.

From Text to Number, Currency, Date/Time, Yes/No, or Hyperlink
Only data stored as numeric characters (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) or as periods, com-
mas, and dollar signs can be converted to Number or Currency data from the Text
data type. You must also make sure that the maximum length of the text string is
not larger than the field size for the type of number or currency field you use in the
conversion.

Caution

Tip

62 Part I, Section I ✦ Working with Data Tables and Queries

Text data being converted to Date data types must be in a correct date or time for-
mat. You can use any legal date or time format (such as 10/12/2001, 12-Oct-00, or
October 1999), or any of the other date/time formats.

You can convert text fields to either a Yes or No value, depending on the specifica-
tion in the field. Access recognizes Yes, True, or On as Yes values, and No, False, or
Off as No values.

Access can also convert Number data types to Yes/No values. Access interprets
Null values as Null, 0 as No, and any nonzero value as Yes.

A text field that contains correctly formatted hyperlink text converts directly to
hyperlink format — displaying text and address.

From Currency to Number
You can convert data from Currency to Number data types as long as the receiving
field can handle the size and number of decimal places. Remember that the Field
Size property in numeric fields determines the size (in bytes) of the storage space
and the maximum number of decimal places. Anything can be converted to Double,
which holds 8 bytes and 15 decimals, whereas Single holds only 4 bytes and 7 deci-
mal places. (For more information, refer to “Entering field-size properties” later in
this chapter and to Table 2-2.)

From Text to Memo
You can always convert from Text to Memo data types because the maximum length
of a text field is 255 characters, whereas a memo field can hold up to 65,536 charac-
ters. You can convert from Memo to Text, however, only if every value in the memo
fields is less than the text field size — that is, no more than 255 characters. Values
longer than the field size are truncated.

Understanding Field Properties
After you enter the field names, data types, and field descriptions, you may want
to go back and further define each field. Every field has properties, and these are
different for each data type. In the tblContacts table, you must enter properties
for several data types. Figure 2-14 shows the property area for the field named
curCreditLimit; 10 options are available in the General section of the property area.
Notice that there are two tabs on the property box — General and Lookup. Lookup
is discussed later in this chapter.

Figure 2-14 shows 10 property options available for the Currency field named
curCreditLimit. Other types, such as Number and Date/Time (11), Text (14), or
Yes/No (7) will show more or fewer options.

Tip

Tip

63Chapter 2 ✦ Creating and Building Tables

Figure 2-14: Property area for the Currency field named curCreditLimit.

Pressing F6 switches between the field entry pane and the property pane. You
can also move between panes by clicking the desired pane. Some properties
display a list of possible values, along with a downward-pointing arrow, when
you move the pointer into the field. When you click the arrow, the values appear
in a drop-down list.

Here is a list of all the general properties (note that they may not all be displayed,
depending on which data type you chose):

✦ Field Size. Text: limits size of the field to the specified number of characters
(1–255); default is 50.

✦ New Values. Allows specification of increment or random type.

✦ Format. Changes the way data appears after you enter it (uppercase, dates,
and so on).

✦ Input Mask. Used for data entry into a predefined and validated format
(Phone numbers, ZIP codes, Social Security numbers, Dates, Custom IDs).

✦ Decimal Places. Specifies number of decimal places (Numeric/Currency only).

✦ Caption. Optional label for form and report fields (replacing the field name).

✦ Default Value. The value filled in automatically for new data entry into the
field.

✦ Validation Rule. Validates data based on rules created through expressions
or macros.

✦ Validation Text. Displays a message when data fails validation.

✦ Required. Specifies whether you must enter a value into a field.

✦ Allow Zero Length. Determines whether you may enter the value “ ” into a
text field type to distinguish it from a null value.

✦ Indexed. Speeds up data access and (if desired) limits data to unique values.

✦ Unicode Compression. Used for multi-language applications. Requires about
twice the data storage but enables Office documents including Access reports
to be displayed correctly no matter what language or symbols are used.

64 Part I, Section I ✦ Working with Data Tables and Queries

✦ IME Mode. Also known as the Kanji Conversion Mode property, this mode is
used to show whether the Kanji mode is maintained when the control is lost.

✦ IME Sentence Mode. Used to determine the Sequence mode of fields of a table
or controls of a form that switch when the focus moves in or out of the field.

✦ Smart Tags. Used to assign a specific action to obtain data in this field. For
example, the Financial Symbol Smart tag will obtain recent stock quotes on
MSN Money Central.

IME Mode and IME Sequence Mode are available only if international support for
Simplified Chinese, Traditional Chinese, or Japanese is enabled through Microsoft
Office Language Settings. IME stands for Input Method Editor.

Entering field-size properties
Field size has two purposes. For text fields, it simply specifies the storage and dis-
play size. For example, the field size for the chrEmail field is 100 bytes. You should
enter the size for each field with a Text data type. If you don’t change the default
field size, Access uses a 50-byte size for each text field in every record. You should
limit the size to the value equal to the largest number of characters.

For numeric data types (Number, Currency and AutoNumber), the field size enables
you to further define the type of number, which in turn determines the storage size.
There are seven possible settings in the Numeric Field Size property, as described
in Table 2-3.

You should make the field size the smallest one possible; Access runs faster with
smaller field sizes. Note that the first three settings don’t use decimal points but
allow increasingly larger positive or negative numbers. Single and Double permit
even larger numbers: Single gives you 7 decimal places, and Double allows 15. Use
the Double setting when you need many decimal places or very large numbers.

Table 2-3
Numeric Field Settings

Field Size Setting Range Decimal Places Storage Size

Byte 0 to 255 None 1 byte

Integer -32,768 to 32,767 None 2 bytes

Long Integer -2,147,483,648 to 2,147,483,647 None 4 bytes

Double -1.797 x 10308 to 1.797 x 10308 15 8 bytes

Single -3.4 x 1038 to 3.4 x 1038 7 4 bytes

Replication ID N/A N/A 16 bytes

Decimal 1 – 28 precision 15 8 bytes

Note

65Chapter 2 ✦ Creating and Building Tables

Use the Currency data type to define data that stores monetary amounts.

The Replication ID (field size property) data type should be used for AutoNumber
fields that are used in databases that will be replicated, and more than 100
records are routinely added. This is also true for any numeric field where the field
is the primary key. When two copies of a table are synchronized, it is possible to
get duplicate fields in the numeric values unless the field type is set to Replication
ID. This will produce a 128-bit value that will require more disk space.

Using formats
Formats enable you to display your data in a form that differs from the actual key-
strokes used to enter the data originally. Formats vary, depending on the data type
you use. Some data types have predefined formats; others have only user-defined
formats, and some data types have both. Formats affect only the way your data
appears, not how it is actually stored in the table or how it should be entered.

Text and Memo data-type formats
Access uses four user-defined format symbols in Text and Memo data types:

@ Required text character (character or space)

& Text character not required

< Forces all characters to lowercase

> Forces all characters to uppercase

The symbols @ and & work with individual characters that you input, but the < and
> characters affect the whole entry. If you want to make sure that a name is always
displayed as uppercase, for example, you enter > in the Format property. If you
want to enter a phone number and allow entry of only the numbers, yet display the
data with parentheses and a dash, you enter the following into the Format property:
(@@@)@@@-@@@@. You can then enter 2035551234 and have the data displayed as
(203) 555-1234.

You can also specify your own Custom Format for Text and Memo fields. To specify
a custom format, you create a format specific for the field that you want to show.
The example above for telephone numbers is a type of Custom Format; however,
you have a bit more flexibility than suggested by the telephone example.

When creating a custom format, you can specify two sections for the format, sepa-
rated by a semicolon (;). The first section is the format for the fields with text; the
second is the format for fields with a zero-length value and a null value. To specify a
custom format, you can use the @ (required), & (optional), < (convert to lowercase
for display), or >(convert to all uppercase for display) symbols for the first part of

Tip

Tip

66 Part I, Section I ✦ Working with Data Tables and Queries

the format and any text you wish to specify for the second part (surrounded by
quotation marks). For example, the format: “@@@-@@;“Unknown”[Red] displays
the data with a dash without you having to type a dash, and it will display the word
Unknown (colored Red) if the field is left blank.

Number and Currency data type formats
You can choose from six predefined formats for Numeric or Currency formats and
many symbols for creating your own custom formats. The predefined formats are as
shown in Table 2-4, along with a column that shows how to define custom formats.

Table 2-4
Numeric Format Examples

Format Type Number As Entered Number As Displayed Format Defined

General 987654.321 987654.3 ######.#

Currency 987654.321 $987,654.32 $###,##0.00

Euro 987654.321 987,654.32 ###,##0.00

Fixed 987654.321 987654.32 ######.##

Standard 987654.321 987,654.32 ###,###.##

Percent .987 98.7% ###.##%

Scientific 987654.321 9.88E+05 ###E+00

Euro 987654.321 987,654.32 ###,###.##

All the formats above are the default formats based on setting the Decimal places
property to AUTO.

Table 2-4 also shows the default format that would be built internally when selecting
any of the built-in format definitions. However, you can also specify your own cus-
tom format in this field by typing your example data. Numeric custom formats have
four parts that can be specified: (1) for positive numbers, (2) for negative numbers,
(3) for zero values, and (4) for null values. You can even specify a specific color to
display for each section. For example, you could create a custom format for Currency
that may look like this: $#,##0.00[Green]; ($#,##0.00)[Red]; “zero”;“Null” this for-
mat uses all four sections. It will display all values that are positive in green, values
that are negative in red; any field that contains a 0 with the word zero, and any field
that has not had a value entered with the word Null.

67Chapter 2 ✦ Creating and Building Tables

The symbols you can use in a numeric field custom format are period (.), comma
(,), 0 (digit place holder that shows a digit or 0), # (digit place holder that shows
the digit or nothing), $ (show the literal $), % (show % sign), E- or e- (minus sign
next to scientific notation), and E+ or e+ (displays a minus sign next to negative
numbers and a plus sign next to positive numbers). A final Currency example could
be #,##0.00; (#,##0.00);;“Null”. This will show the numbers displaying negatives in
parentheses, a minimum of 0.00, and the word Null in fields with a null value. Note
that the 0 section was not used because the minimum valued displayed was
already 0.00.

Date/Time data-type formats
The Date/Time data formats are the most extensive of all, providing these seven
predefined options:

✦ General Date. (Default) Display depends on the value entered; entering only
a date will display only a date; entering only time will result in no date dis-
played; standard format for date and time is 2/10/03 10:32 PM

✦ Long Date. Taken from Windows Regional Settings Section Long Date setting;
example: Wednesday, February 10, 2003

✦ Medium Date. Example: 10-Feb-03

✦ Short Date. Taken from Windows Regional Settings Section Short Date setting;
example: 2/10/03

For the best Year 2000 compliancy, define all of your dates as Short Dates. When
the Windows Regional Settings are changed to display four digit years, so will all of
your date fields.

Office 2003 automatically treats all two-digit dates before 30 as 2000–2029. Other
dates are treated as 1930–1999.

✦ Long Time. Taken from Windows Regional Settings Section Time setting;
example: 10:32:15 PM

✦ Medium Time. Example: 10:32 PM

✦ Short Time. Example: 22:32

You can also use a multitude of user-defined date and time settings, including these:

: (colon) Time separator; taken from Windows Regional Settings
Section Separator setting

/ Date separator

c Same as General Date format

Note

Tip

68 Part I, Section I ✦ Working with Data Tables and Queries

d, dd Day of the month — one or two numerical digits (1–31)

ddd First three letters of the weekday (Sun–Sat)

dddd Full name of the weekday (Sunday–Saturday)

ddddd Same as Short Date format

dddddd Same as Long Date format

w Day of the week (1–7)

ww Week of the year (1–53)

m, mm Month of the year — one or two digits (1–12)

mmm First three letters of the month (Jan–Dec)

mmmm Full name of the month (January–December)

q Date displayed as quarter of the year (1–4)

y Number of the day of the year (1–366)

yy Last two digits of the year (01–99)

yyyy Full year (0100–9999)

h, hh Hour — one or two digits (0–23)

n, nn Minute — one or two digits (0–59)

s, ss Seconds — one or two digits (0–59)

ttttt Same as Long Time format

AM/PM or A/P Twelve-hour clock with AM/PM in uppercase as appropriate

am/pm or a/p Twelve-hour clock with am/pm in lowercase as appropriate

AMPM Twelve-hour clock with forenoon/afternoon designator, as
defined in the Windows Regional Settings Section forenoon/
afternoon setting

You can also specify custom formats for Data/Time types; however, they will be
displayed based on the settings specified in the Regional Settings Properties dialog
box in the Windows Control Panel. You can add a comma or other separator to your
custom format, but you must enclose the separator in quotation marks. For exam-
ple, the following format using the comma will display February 04, 2003 for the
date 02/04/03: mmm dd“, ” yyyy.

Yes/No data-type formats
Access stores Yes/No data in a manner different from what you might expect. The
Yes data is stored as a –1, whereas No data is stored as a 0. You’d expect it to be
stored as a 0 for No and 1 for Yes, but this isn’t the case. Without a format setting,
you must enter –1 or 0, and it will be stored and displayed that way. With formats,

69Chapter 2 ✦ Creating and Building Tables

you can store Yes/No data types in a more recognizable manner. The three prede-
fined format settings for Yes/No data types are

✦ Yes/No. (Default) Displays –1 as Yes, 0 as No

✦ True/False. Stores –1 as True, 0 as False

✦ On/Off. Stores –1 as On, 0 as Off

You can also enter user-defined custom formats. User-defined Yes/No formats can
contain up to three sections. The first section has no effect on the Yes/No data type
but must always be a semicolon (;). The second section is used to display a value
for the On or True values (literally stored as a –1). The third section is used to spec-
ify a value for the Off or False values (literally stored as a 0). If, for example, you
want to use the values Yep for Yes and Nope for No, you enter ;“Yep”; “Nope”. You
can also specify a color to display different values. To display the Yep value in
green and the Nope value in red, you enter ;“Yep” [Green]; “Nope” [Red].

There are two problems when changing the table level format property of a logi-
cal, Yes/No, field. First, if you enter a custom format like in the above example, you
need to also change the default Lookup Display Control property from check box
to Text box to see the new format. Second, after the format is assigned and the
text box is the display method, the user will only be able to enter a 0 for –1. The
format property affects only how the value is displayed, not how it is entered into
the table.

Hyperlink data-type format
Access also displays and stores Hyperlink data in a manner different from what you
would expect. The format of this type is composed of up to three parts:

✦ Display Text. The visual text that is displayed in the field or control

✦ Address. The path to a file (UNC) or page (URL) on the Internet

✦ Sub-Address. A specific location within a file or page

The parts are separated by pound signs. The Display Text is visible in the field or
control, while the address and subaddress are hidden. For example, Microsoft Net
Home Page#http://www.msn.com.

Entering formats
The tblContacts table uses several formats. The chrState text field has a > in the
Format property to display the data entry in uppercase. The dtmOrigCustDate field
has an mmm dd yyyy format to display the date of birth as the short month name, a
space, the day and a four-digit year (Feb 04 2003). The blnActive field has a format
of Yes/No with lookup Display Control property set to Text box.

Caution

70 Part I, Section I ✦ Working with Data Tables and Queries

Numeric custom formats can vary, based on the value. You can enter a four-part
format into the Format property. The first part is for positive numbers, the second
for negatives, the third if the value is 0, and the last if the value is null; for example,
#,##0; (#,##0);“- -”;“None”.

Table 2-5 shows several formats.

Table 2-5
Format Examples

Format Specified Data as Entered Formatted Data as Displayed

> Adam Smith ADAM SMITH

#,##0;(#,##0);”-0-”;”None” 15 -15 0 No Data 15 (15) -0- None

Currency 12345.67 $12,345.67

“Acct No.” 0000 3271 Acct No. 3271

mmm yy 9/11/03 Sep 03

Long Date 9/11/03 Friday, September 11, 2003

Entering input masks
Input masks enable you to have more control over data entry by defining data-
validation placeholders for each character that you enter into a field. Another
way of thinking about this is that the Input mask property lets you design a pattern
that will be used to input information into the field. This pattern, or input mask,
is what the users will see when they begin to enter the data. This pattern or mask
is not saved in the underlying data. This is different from how the field will be
displayed — controlled by the format property.

For example, if you set the input mask property to (999)000-0000, parentheses and
hyphens appear as shown when entering data and an underscore (_)appears in
place of each 9 or 0 of this phone number template. You would see (_) in your data
entry field. Access will automatically add a \ character before each placeholder; for
example, \(999\)000\-0000. You can also enter a multi-part input mask, such as
!(999)000-0000;0;“ ”. The input mask can contain up to three parts separated by
semicolons.

The first section of a multi-part mask defines the input mask itself (for example,
!(999)000-0000). The ! is used to fill the input mask from right to left when optional
characters are on the left side. The second section specifies whether Access stores
the literal display characters in the table when you enter data. If you enter a 0 for
this part, all literal display characters (for example, the parentheses and hyphen)

71Chapter 2 ✦ Creating and Building Tables

are stored with the value; if you enter 1 or leave this part blank, only characters
typed into the text box are stored. The third part specifies the character that
Microsoft Access displays for spaces in the input mask. You can use any character;
the default is an underscore. If you want to display a space, use a space enclosed in
quotation marks (“ ”).

When you have defined an input mask and set the Format property for the same
data, the Format property takes precedence when Access displays the data. This
means that even if you’ve saved an input mask with data, it is ignored when data
is formatted.

Some of the characters that can be used are shown in Table 2-6.

Table 2-6
Input Mask Characters

Character Description

0 Digits only (0–9; entry is required; can’t use plus [+] and minus [–] signs).

9 Only Digit or space (entry not required; can’t use [+] and [–]).

Digit or space and sign (entry not required; blanks converted to spaces; the
[+] and [-] signs are allowed).

L Alphabetic Letters only (A–Z, a-z; no spaces allowed; entry is required).

? Alphabetic Letters only (A–Z, a-z; no spaces allowed; entry is optional).

A Alphanumeric Letters or digits (A-Z, a-z, 0-9; no spaces allowed; entry is
required).

A Alphanumeric Letters or digits (A-Z, a-z, 0-9; no spaces allowed; entry is
optional).

& Any character or a space (A-z, 0-9; entry is required).

C Any character or a space (A-z, 0-9; entry is optional).

< Converts all characters that follow the symbol to lowercase.

> Converts all characters that follow the symbol to uppercase.

! Causes input mask to fill from right to left, rather than from left to right, when
characters on the left side of the input mask are optional. You can include the
exclamation point anywhere in the input mask.

\ Displays the character that follows as the literal character (for example,
appears as just A).

. , : ; - / Decimal placeholder, thousands, and date time separator determined by
Regional Settings section of the Control Panel.

Note

72 Part I, Section I ✦ Working with Data Tables and Queries

Setting the Input Mask property to the word Password creates a password entry
text box. Any character typed in the text box is stored as the character, but appears
as an asterisk (*).

The Input Mask Wizard
Although you can enter an Input Mask manually, you can easily create an input mask
for text or date type fields by using the Input Mask Wizard. When you click the Input
Mask property, the builder button (three periods) appears. You can click the Build
button to start the Wizard. Figure 2-15 shows the first screen of the Input Mask
Wizard.

Figure 2-15: The Input Mask Wizard for
creating input masks for text and date
field types.

The Input Mask Wizard shows not only the name of each predefined input mask, but
also an example for each name. You can choose from the list of predefined masks;
click the Try It text box to see how data entry will look. After you choose an input
mask, the next Wizard screen enables you to customize it and determine the place-
holder symbol. Another Wizard screen enables you to decide whether to store any
special characters with the data. When you complete the Wizard, Access places the
actual input mask characters in the property sheet.

You can create your own input masks for text and date/time fields by simply click-
ing the Edit List button and entering a Descriptive name, Input Mask, place holder
character, and a sample data content. Once created, the new mask will be avail-
able the next time you use the Input Mask Wizard.

You can enter as many custom masks as you need. You can also determine the
international settings so that you can work with multiple country masks.

Tip

Tip

73Chapter 2 ✦ Creating and Building Tables

Entering decimal places
Decimal places are valid only for Number or Currency data. The number of decimal
places can be from 0 to 15, depending on the field size of the numeric or currency
field. If the field size is Byte, Integer, or Long Integer, you can have 0 decimal places.
If the field size is Single, you can enter from 0 to 7 for the Decimal Places property. If
the field size is Double, you can enter from 0 to 15 for the Decimal Places property.
If you define a field as Currency (or use one of the predefined formats, such as
General, Fixed, or Standard), Access sets the number of decimal places to 2 auto-
matically. You can override this setting by entering a different value into the
Decimal Places property.

Creating a caption
You use captions when you want to display an alternative to the field name on forms
and reports. Normally, the label used to describe a field in a form or a report is the
field name. Sometimes, however, you want to call the field name one thing while dis-
playing a more (or less) descriptive label. You should keep field names as short as
possible to make them easier to use in calculations. You may then want a longer
name to be used for a label in forms or reports. For example, you may use the field
name Length but want the label Length (in) on all forms.

Many of the fields in the tables of the Access Auto Auctions system use captions
for the fields. It is a good idea to use a caption for your field names that will be dis-
played on the screen. For example, changing the name of the chrFirstName field to
First Name (with a space between the words) makes the name more understand-
able to the user.

Setting a default value
A default value is the value Access automatically displays for the field when you add
a new record to the table. This value can be any value that matches the data type of
the field. A default is no more than an initial value; you can change it during data
entry. To enter a default value, simply enter the desired value into the Default Value
property setting. A default value can be an expression, as well as a number or a text
string. Chapter 11 explains how to create expressions.

Number and Currency data types are set automatically to 0 when you add a new
record.

Working with validation
Data validation enables you to limit the values that are accepted in a field. Validation
may be automatic, such as the checking of a numeric field for text or a valid date.

Note

Tip

74 Part I, Section I ✦ Working with Data Tables and Queries

Validation can also be user-defined. User-defined validation can be as simple as a
range of values (such as those found in the Length or Weight fields), or it can be an
expression like the one found in the Gender field.

Figure 2-14 (shown earlier) displays the property area for the curCreditLimit field.
Notice the validation options for the curCreditLimit field. The Validation Rule
<250000 specifies that the number entered must be less than 250,000. The Validation
Text message “Credit can only be granted to $250,000” appears in a warning dialog
box (see Figure 2-16) if a user tries to enter a value greater than 250,000.

Figure 2-16: A data-validation warning box. This
appears when the user enters a value in the field
that does not match the rule specified in the design
of the table.

The dialog box shown in Figure 2-16 will not display if you have the Show Office
Assistant value turned on for Help. Rather, the message will be displayed in a mes-
sage box shown by the Assistant, as shown in Figure 2-17.

Figure 2-17: The warning displayed by the Assistant
that a value was entered outside of the range of the
accepted values.

You can also use Date values with Date/Time data types in range validation.
Dates are surrounded, or delimited, by pound signs when used in data-validation
expressions. If you want to limit the dtmLastSalesDate data entry to dates between
January 1, 2000, and December 31, 2005, you enter Between #1/1/00# and
#12/31/05#.

If you want to limit the upper end to the current date, you can enter a different set
of dates, such as Between #1/1/00# and Date().

Following the design in Table 2-7, you can now complete all the property settings
in the tblContacts table. Note that the design shows only the critical fields that

Tip

Caution

75Chapter 2 ✦ Creating and Building Tables

must have their properties defined. You can also find this table (and the others
in this book) in the Access Auto Auctions databases on the CD-ROM that accom-
panies this book.

Table 2-7
Properties for the tblContacts Table

Field Name Properties

idsContactID: Caption – a Contact ID, Indexed – Yes (No Duplicates) [Set
when you make this field the primary key field].

chrContactType: Caption – Contact Type.

chrFirstName: Caption – First Name.

chrLastName: Caption – Last Name.

chrCompany: Caption – Company

chrAddress: Caption – Address

chrCity: Caption – City

chrState: Format > , Caption – State

chrZipCode: Input Mask – 00000\-9999;0;_ , Caption – Zip Code, Indexed Yes
(Duplicates OK)

chrCustomerType: Caption – Customer Type, Indexed Yes (Duplicates OK)

chrPhone: Input Mask – !\(999”) “000\-0000;0;_, Caption – Phone

chrFax: Input Mask – !\(999”) “000\-0000;0;_, Caption – Fax

chrEmail: Field Size – 100 , Caption – Email

hlkWebSite: Field Size – 100 , Caption – Web Site

dtmOrigCustDate: Format – mmm dd yyyy, Caption – Orig Cust Date

chrTaxLocation: Field Size – 2, Format - >, Caption – Tax Location, Indexed Yes
(Duplicates OK)

curCreditLimit: Format – Currency, Decimal Places – 2, Caption – Credit Limit,
Validation Rule - < 250000

curCurBal: Caption – Current Balance

chrCreditStatus: Caption – Credit Status

dtmLastSalesDate: Caption – Last Sales Date

dblDiscountPercent: Caption – Discount Percent

memNotes: Caption – Notes

blnActive: Format – Yes/No, Caption – Active, Display Control (Lookup) –
Text Box

76 Part I, Section I ✦ Working with Data Tables and Queries

Understanding the Lookup Property window
The Field Properties pane of the Table Design window has a second tab: the Lookup
tab. After clicking this tab, you may see a single property, the Display Control prop-
erty. This property is used for Text, Number, and Logical fields.

Figure 2-18 shows the Lookup Property window for the blnActive Yes/No field
where Display Control is the only property. This property has three choices: Check
Box, Text Box, and Combo Box. Choosing one of these determines which control
type is used when a particular field is added to a form. Generally, all controls are
created as text boxes except Yes/No fields, which are created as a check box by
default. For Yes/No data types, however, you may want to use the Text Box setting
to display Yes/No, True/False, or another choice that you specifically put in the for-
mat property box.

If you are working with text fields instead of a Yes/No field and know a certain text
field can only be one of a few combinations, select the combo box choice for the
display control. When you select the Combo Box control type as a default, the prop-
erties change so that you can define a combo box.

You learn about combo boxes in Chapter 10.

Figure 2-18: The Lookup property Display
Control for a Yes/No field.

The properties for a Lookup field are different for each data type. The Yes/No data
type fields differ from text fields or numeric fields. Because a Lookup field is really
a combo box (you learn more about these later), the standard properties for a
combo box are displayed when you select a Lookup field data type.

Determining the Primary Key
Every table should have a primary key — one or more fields with a unique value
for each record. (This principle is called entity integrity in the world of database

Note

Cross-
Reference

77Chapter 2 ✦ Creating and Building Tables

management.) In the tblContacts table, the idsContactID field is the primary key.
Each contact has a different idsContactID value so that you can identify one from
the other. If you don’t specify a primary key (unique value field), Access can create
one for you.

Creating a unique key
Without the idsContactID field, you’d have to rely on another field for uniqueness.
You couldn’t use the chrLastName field because two customers could have the same
last name. In fact, you couldn’t even use the chrLastName and chrFirstName fields
together (multi-field key), for the same reason — two people could be named James
Williamson. You need to come up with a field that makes every record unique.
Looking at the table, you may think that you could use the chrLastName and
chrFirstName and chrCompany fields, but theoretically, it’s possible that two people
work at the same company with the same name. The easiest way to solve this prob-
lem is to create a single field with a unique value for each record — for example, the
idsContactID field.

Multiple-field primary keys are discussed in Chapter 3.

If you don’t designate a field as a primary key, Access can create an AutoNumber
field and add it to the beginning of the table. This field contains a unique number
for each record in the table, and Access maintains it automatically. For several
reasons, however, you may want to create and maintain your own primary key:

✦ A primary key is an index.

✦ Indexes maintain a presorted order of one or more fields that greatly speeds
up queries, searches, and sort requests.

✦ When you add new records to your table, Access checks for duplicate data
and doesn’t allow any duplicates for the primary key field.

✦ Access displays your data in the order of the primary key.

By designating a field such as idsContactID as the unique primary key, you can see
your data in an understandable order. In our example, the idsContactID field is
assigned automatically by Access in the order that a record is put into the system.

When creating a unique primary key, many developers believe that you should cre-
ate it based on some method. For example, if it is a customer name, you may want
to use the first four letters of their last name, the first initial, and then a three-digit
unique number. Bill Jones could be JONESB001, Adam Jones could be JONESA002,
and on and on.

Tip

Cross-
Reference

78 Part I, Section I ✦ Working with Data Tables and Queries

Creating the primary key
The primary key can be created in any of four ways:

✦ Select the field to be used as the primary key and choose Edit ➪ Primary Key.

✦ Select the field to be used as the primary key and select the Primary Key
button (the key icon) in the toolbar.

✦ Right-click the mouse to display the shortcut menu and select Primary Key.

✦ Save the table without creating a primary key, and Access automatically
creates an AutoNumber field.

Before you click the Primary Key button or select the menu choice, you must click
the gray area in the far-left side of the field that you want as the primary key. A right-
pointing triangle appears. After you select the primary key, a key appears in the gray
area to indicate that the primary key has been created.

Because a primary key must contain a unique value and that value cannot be a
blank, you need to make sure that the table tblContacts is still empty in the My
Access Auto Auctions database and then assign the primary key. Follow these steps
to empty the table and create a primary key:

1. Select and open the table named tblContacts in the Database window.

2. Select all the fields by clicking in the first (selector) field and while holding
the mouse button drag across all records. The records should be highlighted.

3. Press the Delete key and answer Yes to the dialog box that appears and says
“You are about to delete X record(s).”

4. Click the Design button to move to the design window.

5. Select the idsContactID field.

6. Click the Primary Key button to make the idsContactID field the primary key.

7. Save the file.

The Indexes window
A primary key is really an index. In the table Design View, the key icon beside the
idsContactID field indicates that this field is the primary key for the table. You can
also see the primary key by looking at the Indexes window. (Figure 2-19 shows a pri-
mary key in the Indexes window.) You can display or hide this window by toggling
the Indexes button on the toolbar or selecting View ➪ Indexes from the menu bar.

79Chapter 2 ✦ Creating and Building Tables

Using the Indexes window, you can determine whether an index is a primary key,
whether or not it is unique, and whether null values should be ignored. Notice that
the window in Figure 2-19 shows four indexes. All four indexes are built on a single
field (idsContactID, chrZipCode, chrCustomerType, and chrTaxLocation) and in
Ascending Order. Each index has an Index name — the idsContactID field is the
Primary Key index; notice the key symbol in the first column. Looking at the pri-
mary properties pane of the window in Figure 2-19, you can see that it says this key
is the Primary key and that the Unique property is set to Yes and Nulls are not
ignored.

Figure 2-19: The Indexes window that shows all
the indexes built for the tblContacts table. You can
add more indexes directly into this window.

If you create the tblContacts table as described in Table 2-7 you should have cre-
ated these four indexes.

The Table Properties window
Just as each field has a property area, the overall table has one, too. While in the
Table Design window, right-click while the cursor is inside the design area and
choose Properties or click the Properties button (hand with a piece of paper) on
the Table Design toolbar to display the Table Properties window.

Figure 2-20 shows the Table Properties window. Here you can enter the validation
rule and message that are to be applied to the overall record that will be enforced
when you save a record. You can assign a Description name for the table that will
be displayed in datasheet mode. You can set up a default sorting order (other than
by primary key) and even a default filter to show only a subset of the data. This is
also where you can set up your sub-datasheets.

Cross-
Reference

Note

80 Part I, Section I ✦ Working with Data Tables and Queries

Figure 2-20: Setting general Table properties.

Printing a Table Design
You can print a table design by using Tools ➪ Analyze ➪ Documenter. The Database
Documenter is an Access tool that makes it easy to document your database objects.
When you select this command, Access shows you a dialog box that lets you select
objects to print. In Figure 2-21, there is only one object, the tblContact table, under
the Tables tab. You can select it by clicking the check box next to the table name.

Figure 2-21: The Access Documenter dialog box.

You can also set various options for printing. When you click the Options button,
a dialog box appears that enables you to select which information from the Table
Design to print. You can print the various field names, all of their properties, the
indexes, and even network permissions.

After you select which data you want to view, Access generates a report; you can
view it in a Print Preview window or send the output to a printer.

The Database Documenter creates a table of all the objects and object properties
you specify. You can use this utility to document such database objects as forms,
queries, reports, macros, and modules.

Tip

81Chapter 2 ✦ Creating and Building Tables

Saving the Completed Table
You can save the completed table design by choosing File ➪ Save or by clicking the
Save button on the toolbar. If you are saving the table for the first time, Access asks
for the name of the table; enter it and click OK. Table names can be up to 64 charac-
ters long and follow standard Access field-naming conventions. If you have saved
this table before and want to save it with a different name, choose File ➪ Save As
and enter a different table name. This creates a new table design and leaves the
original table with its original name untouched. If you want to delete the old table,
select it in the Database window and press Delete. You can also save the table when
you close it.

Manipulating Tables in a Database Window
As you create many tables in your database, you may want to use them in other
databases or copy them for use as a history file. You may want to copy only the
table structure. You can perform many operations on tables in the Database win-
dow, including

✦ Renaming tables

✦ Deleting tables

✦ Copying tables in a database

✦ Copying a table from another database

You can perform these tasks by direct manipulation or by using menu items.

Renaming tables
You can rename a table with these steps:

1. Select the table name in the Database window.

2. Click once on the table name.

3. Type the name of the new table and press Enter.

You can also rename the table by selecting Edit ➪ Rename or by right-clicking a
table and selecting Rename from the shortcut menu. After you change the table
name, it appears in the Tables list, which re-sorts the tables in alphabetical order.

If you rename a table, you must change the table name in any objects where it
was previously referenced, including queries, forms, and reports.

Caution

82 Part I, Section I ✦ Working with Data Tables and Queries

Deleting tables
You can delete a table by selecting the table name and pressing the Delete key.
Another method is to select the table name and select Edit ➪ Delete or by right-
clicking a table and selecting Delete from the shortcut menu. Like most delete oper-
ations, you have to confirm the delete by selecting Yes in a Delete Table dialog box.

Copying tables in a database
By using the Copy and Paste options from the Edit menu or the toolbar buttons,
you can copy any table in the database. When you paste the table back into the
database, you can choose from three option buttons:

✦ Structure Only

✦ Structure and Data

✦ Append Data to Existing Table

Selecting the Structure Only button creates a new table design with no data. This
enables you to create an empty table with all the same field names and properties
as the original table. This option is typically used to create a temporary table or a
history structure to which you can copy old records.

When you select Structure and Data, a complete copy of the table design and all of
its data is created.

Selecting the button Append Data to Existing Table adds the data of one table to
the bottom of another. This option is useful for combining tables, such as when you
want to add data from a monthly transaction table to a yearly history table.

Follow these steps to copy a table:

1. Select the table name in the Database window.

2. Select Edit ➪ Copy.

3. Select Edit ➪ Paste.

4. Type the name of the new table.

5. Choose one of the Paste options.

6. Click OK to complete the operation.

Figure 2-22 shows the Paste Table As dialog box, where you make these decisions.
To paste the data, you have to select the type of paste operation and type the name
of the new table. When you are appending data to an existing table, you must type
the name of an existing table.

83Chapter 2 ✦ Creating and Building Tables

Figure 2-22: Pasting a table activates this
dialog box. You can paste only the structure,
the data and structure, or the data to an
existing table.

Copying a table to another database
Just as you can copy a table within a database, you can copy a table to another
database. There are many reasons why you may want to do this. Possibly you share
a common table among multiple systems, or you may need to create a backup copy
of your important tables within the system.

When you copy tables to another database, the relationships between tables are
not copied; Access copies only the table design and the data. The method for copy-
ing a table to another database is essentially the same as for copying a table within
a database. To copy a table to another database, follow these steps:

1. Select the table name in the Database window.

2. Select Edit ➪ Copy.

3. Open another database.

4. Select Edit ➪ Paste.

5. Type the name of the new table.

6. Choose one of the Paste options.

7. Click OK to complete the operation.

Adding Records to a Database Table
So far you have only created one table in the My Access Auto Auctions database:
tblContacts.

Adding records is as simple as selecting the table name in the database container
and clicking on its name to bring up the table in datasheet view. Once opened, you
can type in values for each field. Figure 2-23 shows adding records in datasheet
mode to the table.

You can enter information into all fields except the Contact ID field (idsContactID).
AutoNumber fields will enter a number automatically for you.

84 Part I, Section I ✦ Working with Data Tables and Queries

Figure 2-23: Adding records to a table using the table datasheet.

Although you can add records directly into the table through the datasheet view, it
is not the most efficient way. It is better to add records through use of forms.

Chapter 4 covers adding records to tables using forms.

✦ ✦ ✦

Cross-
Reference

Entering Data
into Tables
and Forms

In Chapter 2, you created a database container named My
Access Auto Auctions to hold the tables, queries, forms,

reports, and macros that you will create as you learn Access.
You also created a table named tblContacts in datasheet mode
and in the Design surface. In this chapter, you will use a data-
sheet to enter data into an Access table. Then you will work
with displaying the data in the datasheet in many different
ways. Using a datasheet to view and work with your data
enables you to see many records at once. Using the tblContacts
and tblProducts tables, you will learn to add, change, and
delete data, as well as learn about the features available in
Access for displaying data in a datasheet.

This chapter uses the database named CHAP03Start.mdb.
If you have not already copied it onto your machine from
the CD, you will need to do so now.

Understanding Datasheets
Using a datasheet is one of the many ways that you can view
data in Access. Datasheets display a list of records in a format
commonly known as a browse screen, in dBASE, a table view in
Paradox, and a spreadsheet in Excel or Lotus 1-2-3. The format
is also referred to as a browse table or table view.

A datasheet is like a table or spreadsheet because data is dis-
played as a series of rows and columns. Figure 3-1 is a typical
datasheet view of data. Like a table or spreadsheet, a datasheet
displays data as a series of rows and columns. Each row rep-
resents a single record, and each column represents a single

On the
CD-ROM

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Displaying
a datasheet

Moving within
a datasheet

Opening a
new datasheet

Using special data
entry techniques

Finding and
replacing values

Hiding, freezing,
and rearranging
datasheet columns

Sorting or filtering
records in a
datasheet

Saving and printing
datasheets

✦ ✦ ✦ ✦

86 Part I, Section I ✦ Working with Data Tables and Queries

field in the table. By scrolling up or down in the datasheet, you can see records that
don’t fit onscreen at that moment, and by scrolling left or right, you can see more
columns or fields.

Datasheets are completely customizable, so you can view your data in many ways.
By changing the font size, you can see more or less of your table onscreen. You can
rearrange the order of the records or the fields. You can hide columns, change the
displayed column width or row height, and lock several columns in position so that
they continue to be displayed as you scroll around other parts of your datasheet.

Figure 3-1: A typical datasheet view of data. Each column holds the common
information that is found in a single field (like the Description or Retail Price).
Each row represents a single record in the table.

You can sort the datasheet quickly into any order by using one toolbar button. You
can filter the datasheet for specific records — making other records invisible. You can
also import records directly to the datasheet or export formatted records from the
datasheet directly to Word, Excel, or other applications that support OLE (Object
Linking and Embedding) 2.x.

The Datasheet Window
The Datasheet window is similar to other object windows in Access. The actual
Datasheet window is open within the Access window. At the top of the Access
window, you see the title bar (displaying Microsoft Access), the menu bar, and
the toolbars.

87Chapter 3 ✦ Entering Data into Tables and Forms

At the bottom of the Access window, you see the status bar. The status bar displays
assorted information in the datasheet; for example, it may contain field description
information (like in Figure 3-1, “Up to 100 character description of the product”),
error messages, and warnings. If the field was given a description when it was cre-
ated, the Field Description that you enter for each field is displayed here. If a specific
field doesn’t have a Field Description, Access displays the words Datasheet View.
Generally, error messages and warnings appear in dialog boxes in the center of the
screen rather than in the status bar. If you need help understanding the meaning of
a button in the toolbar, move the mouse over the button, hovering over it, and a
tooltip appears with a one- or two-word explanation.

In the center of the Access window in Figure 3-1 is another window — the actual
Datasheet window. This Datasheet window displays the data in rows and columns.
Each record occupies one row, and each column — headed by a field name in the
first row or field title area of the browse window — contains that field’s values. The
display arranges the records initially by primary key and the fields by the order of
their creation in the table design.

The right side of the window contains a scrollbar for moving quickly between records
(up and down). As you scroll between records, a Scroll Tip (shown in Figure 3-1)
tells you precisely where the scrollbar takes you. In Access 2003, the size of the
scrollbar thumb gives you a proportional look at how many of the total number of
records are being displayed. In Figure 3-1, the scrollbar thumb takes up about 12
percent of the scroll area, and 28 of 60 records are shown onscreen. You also have a
proportional scrollbar at the bottom of the window for moving among fields (left to

Quick Review of Records and Fields

As you recall, a table is a container for entering related information — patient records, a card
list (Birthday/Xmas/Holiday), birthday reminders, payroll information, and on and on. Each
table has a formal structure comprised of fields. Each field, when displayed in a datasheet
(a two-dimensional sheet of information) can be found in each column, going from top to
bottom. Each field has a specific type of data — text, numeric, date type, and so on. Each field
has a unique name that is used to categorize the information stored in it. The table is com-
posed of records, where each record stores information about a single entity (like a single
customer or single product) in the fields of the table. One record is made up of information
stored in all the fields of the table structure. For example, if a table has three fields — name,
address, and phone number — then record one has one name, one address, and one phone
number in it. Record two also has only one name, one address, and one phone number in
it. All three fields can be found in each record — only the contents of those fields change.
That is why a datasheet is an ideal way of looking at the contents of a table all at once — you
can see the individual field contents by looking down any column (field). You can also
review a single record’s values by finding the row (record) that holds the information that
you want to review and simply looking across the row to see all values for that specific
record.

88 Part I, Section I ✦ Working with Data Tables and Queries

right and back). Also located at the bottom of the Datasheet window are the
Navigation buttons (along the left side of the bottom of the frame). You can also
use these buttons to move between records.

Moving within a datasheet
You can move easily in the Datasheet window by using the mouse pointer to indicate
where you want to change or add to your data — just click a field and record location.
In addition, the menus, toolbars, scrollbars, and navigation buttons make it easy to
move among fields and records. You can think of a datasheet as a spreadsheet with-
out the row numbers and column letters. Instead, your columns have field names,
and your rows are unique records that have identifiable values in each cell.

Table 3-1 lists the navigational keys that you can use for moving within a datasheet.

Table 3-1
Navigating in a Datasheet

Navigational Direction Keystrokes

Next field Tab

Previous field Shift+Tab

First field of current record Home

Last field of current record End

Next record Down arrow (↓)

Previous record Up arrow (↑)

First field of first record Ctrl+Home

Last field of last record Ctrl+End

Scroll up one page PgUp

Scroll down one page PgDn

Go to record number box F5

The Navigation buttons
The Navigation buttons (shown in Figure 3-2) are the six controls located at the
bottom of the Datasheet window, which you click to move between records. The
two leftmost controls move you to the first record or the previous record in the
datasheet (table). The three rightmost controls position you on the next record,

89Chapter 3 ✦ Entering Data into Tables and Forms

last record, or new record in the datasheet (table). If you know the record number
(the row number of a specific record), you can click the record number box, enter a
record number, and press Enter.

Figure 3-2: The Navigation buttons of
a datasheet.

If you enter a record number greater than the number of records in the table, an
error message appears stating that you can’t go to the specified record.

The Datasheet toolbar
The Datasheet toolbar (shown in Figure 3-3) provides a way to work with the
datasheet. The toolbar has many familiar objects on it, as well as some new ones.

Figure 3-3: The Datasheet toolbar.

The first icon is the View button, which allows you to switch between Table Design
View, Datasheet View, PivotTable View, and PivotChart View. You can see all four
choices by clicking the button’s down-arrow (triangle pointing down). Clicking
Design View permits you to make changes to the design of your table. You can then
click the Datasheet View to return to the datasheet.

If you originally displayed a data-entry form, this icon has three primary choices:
Table Design View, Datasheet View, and Form View, as well as the PivotTable and
PivotChart Views.

The next icon, Save, looks like a floppy disk. Click this icon to save any layout
changes to the datasheet.

Save does not allow you to roll back changes to the data. As you move from record
to record, the data is forever changed.

You can use the next icon, File Search, to activate the Basic Search dialog box
(default), as shown in Figure 3-4. You can use this Search Box to search for specific
files on your hard drive or network drive. You can switch to the Advance Search by
selecting it at the bottom of the Basic File Search box.

Caution

Note

Note

90 Part I, Section I ✦ Working with Data Tables and Queries

Figure 3-4: The dialog box of the new toolbar
button, File Search. This new tool lets you search
for a specific file on your hard drive.

The next set of three icons includes Print (which looks like a printer and sends the
datasheet information to your printer in a quick, two-dimensional table report) and
Print Preview (which looks like a printed page with a magnifying glass and shows
onscreen how your datasheet looks when printed). The third icon lets you spell-
check your data using the standard Microsoft Office spell-checking feature.

Following the printer and spelling grouping are the editing buttons — Cut, Copy, and
Paste — that are represented by these icons, respectively: scissors, two sheets of
paper, and a clipboard. These three buttons allow you to remove a value, copy a
value, and paste a value to the table. The objects that can be copied, removed, or
pasted include a single value, a datasheet row, a column, or a range of values. You
can copy and paste objects to and from other programs (such as Microsoft Word or
Excel), but the Format Painter is not available in a datasheet.

The next icon, which looks like an arrow pointing counterclockwise, lets you Undo
a change to a record, or, more globally, undo formatting.

The next icon is the Internet icon that enables you to insert a hyperlink.

The next two icons are the QuickSort icons. They are easy to identify — one is the
letter A on top of the letter Z with the arrow pointing down (to represent alphabeti-
cal sort order), and the other icon is the reverse, Z to A (representing reverse sort
order). You can select one or more columns and click one of these buttons to sort
the data instantly, in ascending or descending order, using the selected columns as
the sorting criteria.

91Chapter 3 ✦ Entering Data into Tables and Forms

The next three icons in this toolbar look like funnels. They let you determine and
display only selected records. The first icon, Filter By Selection, lets you filter
records to match a specific highlighted value in a given field. Each time you highlight
a value, you add the selection to the filter. This additive process continues until the
filter is cleared. (See the detailed discussion of this filter later in this chapter.)

The second icon, Filter By Form, turns each column of data into a combo box where
you can select a single value from the datasheet and filter for matching records.
Figure 3-5 illustrates how this works. A special window appears with the name of
the table, which is tblProducts, and the Filter By Form title. Once open, you can
click on a field, like in Figure 3-5, and select which choice you want to filter by. In
Figure 3-5 you could select from “Cars, Minivans, Motor Homes, SUV, Trucks.” Once
selected, Access display only records that match your choice.

Figure 3-5: The Filter By Form window for filtering records via a series of
field values. You simply select the value that you want from one or more
columns and click the Filter By Form button.

You use the last icon in the group to turn any filter on or off; it is a toggle button.
The first time you press it, you activate the search specified in the Filter By Form
or Filter By Selection.

The Find icon is a pair of binoculars; clicking it displays a dialog box that lets you
search for a specific value in a specific field.

The next two icons allow you to add a new record or delete an existing record. To
create a new record, click the icon with the arrow and asterisk, and a new record
row is added at the bottom of the datasheet. To delete an existing record, click

92 Part I, Section I ✦ Working with Data Tables and Queries

anywhere in the record row that you want to delete and then click the icon with the
arrow and X. A message displays, warning you that you are about to delete a record
and that you won’t be able to undo your change; select Yes to continue or No to
save the record.

The next icon is the Database Window icon, which displays the Database window.
Next is the New Object: AutoForm icon, which contains a pull-down menu that gives
you choices so that you can create new objects, such as tables, queries, forms,
reports, macros, and modules. Two interesting choices are the first two — AutoForm
and AutoReport. When you click either of these, you immediately create a single
record form or report that can be used without any further formatting.

The last icon is the Microsoft Access Help icon. When you click it, the Microsoft
Access Help Window appears; here you can access help locally or through Office
online at microsoft.com.

Opening a Datasheet
To open a datasheet from the Database window, follow these steps:

1. Using the CHAP03Start.mdb database from the CD, click the Tables button on
the Objects menu bar of the Database window (in this case, CHAP03Start).

2. Click the table name that you want to open. (In this example, tblProducts.)

3. Click Open.

An alternative method for opening the datasheet is to double-click on the
tblProducts table name.

If you are in any of the design windows, you can click on the Datasheet button and
view your data in a datasheet.

Entering New Data
When you open a datasheet, all the records in your table are visible; if you just cre-
ated your table design, however, the new datasheet doesn’t yet contain any data.
Figure 3-6 is an empty datasheet. When the datasheet is empty, the record pointer
on the first record is displayed as a right-pointing triangle.

Tip

93Chapter 3 ✦ Entering Data into Tables and Forms

Figure 3-6: An empty datasheet. Notice that the first record is blank
and the record pointer, a right-pointing triangle, is shown in the
left-most column.

If the datasheet already contains records, you enter information into a new record
by clicking either the New Record button on the toolbar or the New Record button
on the datasheet navigation bar. Access moves the pointer to the first field of the
new record row, just below the last entered record. With the cursor is in the first
field of the new record, you type in the value you want to enter, and then moving
to the next field, enter a value, and so on. As you begin entering the record, the
record pointer turns into a pencil, indicating that the record is being edited. A sec-
ond row also appears as you begin to enter the first record; this row contains an
asterisk in the record-pointer position, which indicates the next new record. The
new-record pointer always appears in the last row of the datasheet; after you enter
a record, it is inserted at the bottom of the table, immediately before the last row (a
new blank record). Figure 3-7 shows adding a new record into the tblProducts table
and the next new blank record below it.

The cursor generally starts in the first field of the table for data entry.

Figure 3-7: Entering a record into the datasheet of the tblProducts table of the
Chap03Start.mdb Database.

94 Part I, Section I ✦ Working with Data Tables and Queries

To add a new record to the open datasheet view of the tblProducts, follow these
steps:

1. Click the New Record button.

2. Type in a value for all fields of the table, moving between fields by pressing
the Enter key or the Tab key.

When adding or editing records, you may see four different record pointers:

✦ Current record

✦ Record being edited

✦ Record is locked (multi-user systems)

✦ New record

If the record contains an AutoNumber field, Access shows the name (AutoNumber)
in the field. You cannot enter a value in this type of field; rather, simply press the
Tab or Enter key to skip this field. Access automatically puts the number in for you
when entering data.

Saving the record
After you have entered all the values in the record, you normally move to the next
record. This action saves the record. Any time you move to a different record or
close the table, the last record you worked on is written to the database and the
record pointer changes from a pencil to a right-pointing triangle.

To save a record, you must enter a valid value (unique) into the primary key field.
The primary key is validated for data type, uniqueness, and any validation rules that
you have entered into the Validation Rule property. If you enter a duplicate value or
do not enter a value, Access reports an error when you attempt to save the record.
Figure 3-8 shows the error message Access shows when a duplicate field value is
entered in the primary key field.

Figure 3-8: The error message Access displays when attempting
to save a record with a duplicate primary key value entered into
the new record.

Caution

95Chapter 3 ✦ Entering Data into Tables and Forms

The Undo Current Field/Record icon in the toolbar can undo changes only to the
current record. After you move to the next record, you must use the regular Undo
icon. This works for a single record only. After you change a second record, you
cannot undo the first record.

You can save the record to disk without leaving the record by selecting Records ➪

Save Record or by pressing Shift+Enter.

After you’ve entered a record, you understand what happens as you enter the first
record. Next you learn how Access validates your data as you make entries into the
fields.

Understanding automatic data-type validation
Access validates certain types of data automatically. Therefore, you don’t have to
enter any data-validation rules for these data types when you specify table proper-
ties. The data types that Access validates automatically include

✦ Number/Currency

✦ Date/Time

✦ Yes/No

Number or Currency fields allow only valid numbers to be entered into the field.
Initially, Access lets you enter a letter into a Number field. When you move off the
field, however, a dialog box appears with this message: The value you entered
isn’t valid for this field. The same is true of any other inappropriate char-
acters. If you try to enter more than one decimal point, you get the same message.
If you enter a number too large for a certain Number data type, you also get this
message.

Date and Time fields are validated for valid date or time values. If you try to enter a
date such as 14/45/05, a time such as 37:39:12, or a single letter in a Date/Time field,
a dialog box appears with this error message: The value you entered isn’t
valid for this field.

Yes/No fields require that you enter one of these defined values: Yes, True, –1, or
a number other than 0 (it displays as a –1) for Yes; or No, False, Off, or 0 for No. Of
course, you can also define your own acceptable values in the Format property for
the field, but generally these are the only acceptable values. If you try to enter an
invalid value, the dialog box appears with the usual message to indicate an inappro-
priate value.

Tip

Tip

96 Part I, Section I ✦ Working with Data Tables and Queries

Understanding how properties affect data entry
Because field types vary, you use different data-entry techniques for each type.
Previously in this chapter, you learned that some data-type validation is automatic.
Designing the tblContacts table, however, means entering certain user-defined for-
mat and data-validation rules. The following sections examine the types of data
entry.

Standard text data entry
The first field in the tblContacts table is an AutoNumber field; the next 13 fields are
Text fields. After skipping the first field Contact ID, you simply enter a value in each
field and move on. The Zip Code field uses an input mask (00000\-9999;0;) for data
entry. The Phone and Fax fields also use an input mask (!\(999”) “000\-0000;0;).
These are the only fields that use any special formatting via the input mask. If you
enter a value in lowercase in the State or Tax Location fields, they display in upper-
case. This is done by specifying upper case (>) in the format property. You can vali-
date text for specific values, and you can display it with format properties.

Sometimes you want to enter a Text field on multiple lines. You can press
Ctrl+Enter to add a new line. This is useful, for example, in large text strings for for-
matting a multiple-line address field. It is also useful in Memo fields for formatting
multiple-line entries.

Date/Time data entry
The Orig Cust Date and Last Sales Date fields in the tblContacts table are Date/Time
data types, which both use a format value of Short date. However, they could have
been defined as having a format of medium date (16-Mar-03) or long date (Sunday,
March 16, 2003). Using either of these formats simply means that no matter how
you type in the birth date — using month and year, day month year, or month day
year, it always displays as the format specified — short date (03/16/03), medium
date (16-Mar-03), or long date (Sunday, March 16, 2003). So if you type 4/8/05 or
8 Apr 05, Access displays the value in the correct format when you leave the field.
The value 4/8/2005 is really stored in the table.

Formats affect only the display of the data. They do not change storage of data in
the table.

Number/Currency data entry with data validation
The Credit Limit field in the tblContacts table has a validation rule assigned to it. It
has a Validation Rule property to limit the amount of credit to $250,000. If the rule is
violated, a dialog box appears with the validation text entered for the field. If a con-
tact is allowed to have more than $250,000 credit, the validation rule can simply be
changed in the table design.

Tip

Tip

97Chapter 3 ✦ Entering Data into Tables and Forms

OLE object data entry
You can enter the OLE (Object Linking and Embedding) data-type Picture field into
a datasheet, even though you don’t see the picture. An OLE field can hold many dif-
ferent item types, including

✦ Bitmap pictures

✦ Sound files

✦ Business graphs

✦ Word or Excel files

✦ Web page or Hyperlink

Any object that an OLE server supports can be stored in an Access OLE field. OLE
objects are generally entered into a form so you can see, hear, or use the value.
When OLE objects appear in datasheets, you see text that tells what the object is
(for example, you may see Paintbrush Picture in the OLE field). You can enter OLE
objects into a field in two ways:

✦ Pasting from the Clipboard

✦ Inserting into the field from the Insert ➪ Object menu dialog box

For thorough coverage of using and displaying OLE objects, see Chapter 12.

Memo field data entry
The last field in the table is memNotes, which is a Memo data type. This type of field
allows up to 65,536 characters of text for each field. Recall that you entered a long
string (about 260 characters) into the Memo field. As you entered the string, how-
ever, you saw only a few characters at a time. The rest of the string scrolled out of
sight. By pressing Shift+F2, you can display a Zoom box with a scrollbar (see Figure
3-9) that lets you see about 1,000 characters at a time.

Figure 3-9: The Zoom box for a memo field. Notice
that you can now see a lot more of the note in the memo
field — not all 65,536 characters, but still quite a lot.

Cross-
Reference

98 Part I, Section I ✦ Working with Data Tables and Queries

When you first display text in a zoomed window, all the text is selected and high-
lighted in reverse video. You can de-select the text by pressing the Home key.

In the Zoom box, you see a Font button at the bottom. When you press this button,
a dialog box appears, allowing you to determine the type of font to be used to dis-
play the memo in the memo Zoom box.

When you change the font for the text in a memo field, all the text is affected. You
can’t change the format of a single word or sentence.

Navigating Records in a Datasheet
It’s not unusual to want to make changes to records after you’ve entered them. You
may want to change records for several reasons:

✦ You receive new information that changes existing values

✦ You discover errors that change existing values

✦ You need to add new records

When you decide to edit data in a table, the first step is to open the table — if it isn’t
already open. From the Database window, open the tblProducts datasheet by double-
clicking tblProducts in the list of tables.

If you are in any of the Design windows, you can click the Datasheet button to
make changes to the information within the table.

When you open a datasheet in Access that has related tables, a column with a plus
sign (+) is added to access the related records, or sub-datasheets, and is displayed
as the first column. Figure 3-10 shows the tblSales datasheet with the plus sign in
the first column; clicking this opens a sub-datasheet of the line items for that sale.
Sub-datasheets are thoroughly explained in Chapter 6.

Moving between records
You can move to any record by scrolling through the records and positioning your
cursor on the desired record. When your table is large, however, you want to get to
a specific record as quickly as possible.

Tip

Note

Note

New
Feature

Note

99Chapter 3 ✦ Entering Data into Tables and Forms

Figure 3-10: The Sales datasheet with the plus sign in the first
column for expanding each record to show related line items.

You can use the vertical scrollbar to move between records. The scrollbar arrows,
however, move the record pointer only one record at a time. To move through many
records at a time, you must use the scrollbar elevator (known as a scroll box in
Windows 95/98/NT) or click the area between the scrollbar elevator and the scroll-
bar arrows.

The Edit ➪ Go To menu, shown open in Figure 3-11, has several choices to help you
quickly move around the worksheet.

You can also use the five Navigation buttons, located along the bottom of the
Datasheet window (also shown in Figure 3-11), for moving between records. You
simply click these buttons to move to the desired record. If you know the record
number (row number of a specific record), you can click the record number box,
enter a record number, and press Enter. You can also press F5 to move to the record
number box.

Watch the Scroll Tips when you use scrollbars to move to another area of the
datasheet. Access does not update the record number box until you click a field.

Finding a specific value
Although you can move to a specific record (if you know the record number) or to a
specific field in the current record, usually what you really want to find is a certain
value in a record. You can use one of three methods for locating a value in a field:

✦ Select Edit ➪ Find

✦ Select the Find button in the toolbar (a pair of binoculars)

✦ Press Ctrl+F

Tip

100 Part I, Section I ✦ Working with Data Tables and Queries

Figure 3-11: Moving between records using the Go To menu. You can do the
same thing by using the Navigation buttons along the bottom of the window.

Choosing any of these methods displays the Find and Replace dialog box (shown in
Figure 3-12). To limit the search to a specific field, make sure your cursor is on the
field that you want to use in the search before you open the dialog box. You can
also choose to search the entire table for the specified record by clicking the Look
In combo box and selecting the table.

Figure 3-12: The Find and Replace dialog box. The
fastest way to activate it is to simply press the Ctrl+F
key combination.

If you highlight the entire record by clicking the record selector (the small gray box
next to the record), Access automatically searches through all fields.

Tip

101Chapter 3 ✦ Entering Data into Tables and Forms

The Find and Replace dialog box lets you control many aspects of the search. In the
Find What text box, you enter the value to be searched for. You can also display and
choose from a list of items that you have previously searched for in this database.
You can enter the value just as it appears in the field, or you can use three types of
wildcards:

* (any number of characters)

? (any one character)

(any one number)

To look at how these wildcards work, first suppose that you want to find any value in
the Description field of the tblProducts table beginning with 2001; for this, you type
2001*. Then suppose that you want to search for values ending with Sedan, so you
type *Sedan. If you want to search for any value that begins with 2001, ends with
Sedan, and contains any number of characters in between, you type 2001*Sedan.

The Match drop-down list contains three choices:

✦ Any Part of Field

✦ Whole Field

✦ Start of Field

The default is Whole Field. This option finds only the whole value you enter. For
example, the Whole Field option finds the value FORD only if the value in the field
being searched is exactly FORD. If you select Any Part of Field, Access searches to
see whether the value is contained anywhere in the field; this search finds the value
FORD in the field values FORDMAN and FORD. A search for FORM using the Start of
Field option searches from the beginning of the field, returning no values because
the field always begins with a year (1999, 2003, and so on). You can choose one of
three search direction choices (Up, Down, All) in the Search combo box.

In addition to these combo boxes, you can use two check boxes at the bottom of
the Find and Replace dialog box — Match Case and Search Fields As Formatted.
Match Case determines whether the search is case-sensitive. The default is not
case-sensitive (not checked). A search for SMITH finds smith, SMITH, or Smith. If
you check the Match Case check box, you must then enter the search string in the
exact case of the field value. (The data types Number, Currency, and Date/Time do
not have any case attributes.)

If you have checked Match Case, Access does not use the value Search Fields as
Formatted (the second check box), which limits the search to the actual values dis-
played in the table. (If you format a field for display in the datasheet, you should
check the box.)

102 Part I, Section I ✦ Working with Data Tables and Queries

The Search Fields as Formatted check box, the selected default, finds only text that
has the same pattern of uppercase and lowercase letters as the text you specified in
the Find What box. Clear this box to find text regardless of case.

Using Search Fields as Formatted may slow the search process.

When you click the Find Next button, the search begins. If Access finds the value,
the cursor highlights it in the datasheet. To find the next occurrence of the value,
you must click the Find Next button again. You can also select the Find Next button
to find the first occurrence. The dialog box remains open so that you can find multi-
ple occurrences. When you find the value that you want, select the Close command
button to close the dialog box.

Changing Values in a Datasheet
If the field that you are in has no value, you can type a new value into the field.
When you enter new values into a field, follow the same rules as for a new-record
entry.

Usually, you change values by moving to the value that you want to change or edit
and making the change.

Replacing an existing value manually
Generally, you enter a field with either no characters selected or the entire value
selected. If you use the keyboard to enter a field, normally you select the entire value.
(You know that the entire value is selected when it is displayed in reverse video.)
When you begin to type, the new content replaces the selected value automatically.

To select the entire value with the mouse, use any of these methods:

✦ Click just to the left of the value when the cursor is shown as a large plus sign.

✦ Select any part of the value and double-click the mouse button. (This usually
works unless the text contains a space.)

✦ Click to the left of the value, hold down the left mouse button, and drag the
mouse to select the whole value.

✦ Select any part of the value and press F2.

You may want to replace an existing value with the default from the Default Value
table property. To do so, select the value and press Ctrl+Alt+Spacebar. If you want
to replace an existing value with that of the same field from the preceding record,
you can press Ctrl+’ (single quote mark). You can press Ctrl+; (semicolon) to place
the current date in a field as well.

Tip

Note

Caution

103Chapter 3 ✦ Entering Data into Tables and Forms

Pressing Ctrl+– (hyphen) deletes the current record.

Changing an existing value
If you want to change an existing value instead of replacing the entire value, you can
use the mouse and click in front of any character in the field. When you position the
mouse pointer in front of an individual character, you activate Insert mode; the
existing value moves to the right as you type the new value. If you press the Insert
key, your entry changes to Overstrike mode; you replace one character at a time as
you type. You can use the arrow keys to move between characters without disturb-
ing them. Erase characters to the left by pressing Backspace, or to the right of the
cursor by pressing Delete.

Table 3-2 lists editing techniques.

Table 3-2
Editing Techniques

Editing Operation Keystrokes

Move the insertion point within a field Press the right- (→) and left-arrow (←) keys

Insert a value within a field Select the insertion point and type new data

Select the entire field Press F2 or double-click the mouse button

Replace an existing value with a new value Select the entire field and type a new value

Replace a value with the value of the Press Ctrl+’ (single quote mark)
previous field

Replace the current value with the Press Ctrl+Alt+Spacebar
default value

Insert a line break in a Text or Memo field Press Ctrl+Enter

Save the current record Press Shift+Enter or move to another record

Insert the current date Ctrl+; (semicolon)

Insert the current time Ctrl+: (colon)

Add a new record Ctrl++ (plus sign)

Delete the current record Ctrl+– (minus sign)

Toggle values in a check box or option button Spacebar

Undo a change to the current record Press Esc or click the Undo button

Caution

104 Part I, Section I ✦ Working with Data Tables and Queries

Fields that you can’t edit
Some fields can’t be edited, such as:

✦ AutoNumber fields. Access maintains AutoNumber fields automatically, cal-
culating the values as you create each new record. AutoNumber fields can be
used as the primary key.

✦ Calculated fields. Access creates calculated fields in forms or queries; these
values are not actually stored in your table.

✦ Locked or disabled fields. You can set certain properties in a form to disallow
entry for a specific field. You can lock or disable a field when you designate
Form properties.

✦ Fields in multi-user locked records. If another user locks the record, you
can’t edit any fields in that record.

Using the Undo Feature
The Undo button is often dimmed in Access so that it can’t be used. As soon as you
begin editing a record, however, you can use this button to undo the typing in the
current field. You can also undo a change with the Esc key; pressing Esc cancels
either a changed value or the previously changed field. Pressing Esc twice undoes
changes to the entire current record.

Several Undo menu commands and variations are available to undo your work. The
following list explains how you can undo your work at various stages of completion:

✦ Edit ➪ Can’t Undo. Undo is not available.

✦ Edit ➪ Undo Typing. Cancels the most recent change to your data.

✦ Edit ➪ Undo Current Field/Record. Cancels the most recent change to the
current field. Cancels all changes to the current record.

✦ Edit ➪ Undo Saved Record. Cancels all changes to last saved record.

As you type a value into a field, you can select Edit ➪ Undo or use the toolbar Undo
button to undo changes to that value. After you move to another field, you can
undo the change to the preceding field’s value by selecting Edit ➪ Undo Current
Field/Record or by using the Undo button. You can also undo all the changes to an
unsaved current record by selecting Edit ➪ Undo Current Field/Record. After you
save a record, you can still undo the changes by selecting Edit ➪ Undo Saved
Record. However, after the next record is edited, changes are permanent.

105Chapter 3 ✦ Entering Data into Tables and Forms

Copying and Pasting Values
Copying or cutting data to the Clipboard is a Microsoft Windows task; it is not
actually a specific function of Access. After you cut or copy a value, you can paste
into another field or record by using Edit ➪ Paste or the Paste button in the toolbar.
You can cut, copy, or paste data from any Windows application or from one task
to another in Access. Using this technique, you can copy entire records between
tables or databases, and you can copy datasheet values to and from Microsoft Word
and Excel.

Replacing Values
To replace an existing value in a field, you can manually find the record to update or
you can use the Find and Replace dialog box. You can display the Find and Replace
dialog in four ways:

✦ Select Edit ➪ Find

✦ Select the Find button in the toolbar (a pair of binoculars)

✦ Press Ctrl+F

✦ Select Edit ➪ Replace

This dialog box allows you to do a find and replace in the current field or in the
entire datasheet. You can find a certain value and replace it with a new value in
every place in the table that you are in.

After the Find and Replace dialog box is active, you should first click the Replace
tab and type in the value that you want to find in the Find What text box, as shown
in Figure 3-12. After you have selected all the remaining search options (turn off
Search Fields As Formatted for example), click the Find Next button. You are taken
to the first occurrence of what you want to find. After you get there, if you want to
change the value of the current found item (under the cursor), click the Replace
button, and it replaces the selected value. For example, Figure 3-13 shows that you
want to find the value Motor Homes in the Category field of the tblProducts table
and change it to the value Camper.

You can select your search options in the Find tab and then click the Replace tab to
continue the process. However, it is far easier to simply do the entire process using
the Replace tab. Enter what you want to find and the value that you want to use to
replace the existing value. After you have completed the dialog box with all the cor-
rect information, select one of the command buttons on the side.

106 Part I, Section I ✦ Working with Data Tables and Queries

Figure 3-13: Find and Replace dialog box with the
Replace tab showing. In this case you want to replace
the value Motor Homes with Camper.

✦ Find Next. Finds the next field that has the value in the Find What field.

✦ Cancel. Closes the form and performs no find and replace.

✦ Replace. Replaces the value in the current field only. (Note: You must use the
Find Next button first.).

✦ Replace All. Finds all the fields with the Find What value and automatically
replaces them with the Replace value.

Use the Find Next and Replace commands if you aren’t sure about changing all the
fields with the Find What value. When you use this command, you can pick the
fields that you want to replace and the fields that you want to leave with the same
value.

Adding New Records
You can add records to the datasheet by positioning the cursor on the datasheet’s
last line (where the record pointer is an asterisk) and entering the new record. You
can go to a new record in many ways: You can select Insert ➪ New Record, or you
can go directly to a new record by using the New Record button in the toolbar, the
navigation button area, or the menu selection Edit ➪ Go To ➪ New Record. Another
way to move quickly to the new record is to go to the last record and press the
down-arrow (↓) key.

Sometimes you want to add several new records and make all existing records
temporarily invisible. The menu item Records ➪ Data Entry clears the screen tem-
porarily of all records while you are editing new records. When you want to restore
all records, select Records ➪ Remove Filter/Sort.

Tip

107Chapter 3 ✦ Entering Data into Tables and Forms

Deleting Records
You can delete any number of records by selecting the record(s) and pressing the
Delete key. You can also select the records and choose Edit ➪ Delete or place your
cursor in a record and select Edit ➪ Delete Record. When you press Delete or choose
the menu selection, a dialog box asks you to confirm the deletion (see Figure 3-14).
If you select Yes, the records are deleted. If you select Cancel, no changes are made.

The Default value for this dialog box is Yes. Pressing the Enter key automatically
deletes the records. If you accidentally erase records using this method, the action
can’t be reversed.

Figure 3-14: The Delete Record dialog
box warns you that you are about to
delete x number of records — the default
response is YES (OK to delete) so be
careful when deleting records.

If you have relations set between tables and Enforce Referential Integrity is
checked — for example, the tblContacts (Customer) table is related to the tblSales
table — then you can’t delete a record unless the Cascade Delete check box is also
checked and you are attempting to delete from the lowest child in the relationship
builder (tblSales versus tblContacts). Otherwise, you receive an error message dia-
log box that reports that the record can’t be deleted or changed because the table
‘<tablename>’ includes related records.

You can select multiple contiguous records. To do so, click the record selector of
the first record that you want to select and drag the record-pointer icon (right-
pointing arrow) to the last record that you want to select.

Adding, Changing, and Deleting Columns
A very dangerous feature in Access 2003 is the capability to add, delete, and rename
columns in a datasheet. This feature actually changes the data design. When you go
to the Table Design screen and make changes, you know that you are changing the
underlying structure of the data because you can see yourself do it. Within a data-
sheet, however, you may not realize the consequences of the changes that you are
making. Any field name that is changed may cause any query, form, report, macro,
or module that uses that name to no longer function. If you are creating applications
for others, you should not allow users to use a datasheet to make the changes
described in this part of the book.

Caution

Caution

108 Part I, Section I ✦ Working with Data Tables and Queries

Deleting a column from a datasheet
You can delete columns from a datasheet by selecting one column at a time and
selecting Edit ➪ Delete Column. When you take this action, a dialog box warns that
you will be deleting all the data in this column, as well as the field itself, from the
table design. More importantly, if you have used this field in a data-entry form or a
report, you get an error message the next time you use any object that references
this field name. You can’t delete more than one column at a time.

Adding a column to a datasheet
You can add new columns to a datasheet by selecting Insert ➪ Column, which cre-
ates a new column to the left of the column that your insertion point was in. The
new column is labeled Field1. You can then add data to the records for the column.

Adding a new column also adds the field to the table design. When you save the
datasheet, Access writes the field into the table design, using the characteristics
of the data for the field properties.

Changing a field name (column header)
When you add a new field, you want to change the column name before you save
the datasheet. You can change a column header by double-clicking the column
header and editing the text in the column header. When you save the datasheet,
this column header text is used as a field name for the table design.

When you change a column header, you are changing the field name in the table.
If you have used this field name in forms, reports, queries, macros, or modules,
they no longer work until you change them in the other objects. This is a danger-
ous way to change a field name; only experienced users should use it.

Displaying Records
A number of mouse techniques and menu items can increase your productivity
when you add or change records. Either by selecting from the Format menu or by
using the mouse, you can change the field order, hide and freeze columns, change
row height or column width, change display fonts, and change the display or
remove gridlines.

Changing the field order
By default, Access displays the fields in a datasheet in the same order that they
appear in a table or query. Sometimes, however, you need to see certain fields next

Caution

109Chapter 3 ✦ Entering Data into Tables and Forms

to each other in order to better analyze your data. To rearrange your fields, select a
column (as shown in Figure 3-15) and drag the column to its new location.

Figure 3-15: Selecting a column to change the field order.

You can select and drag columns one at a time, or you can select multiple columns
to drag. Suppose you want the field Quantity in Stock to appear before the field
Description in the datasheet of the tblProducts. Use the following steps to make
this change:

1. Position the mouse pointer on the Quantity field (column) name. The cursor
changes to a down arrow.

2. Click to select the column and hold down the mouse button. The entire
Quantity column is now highlighted. Release the mouse button.

3. Click the mouse button again; the pointer changes to an arrow with a box
under it.

4. Drag the column to the left edge of the datasheet between the Product ID
and Description field. A thin black column will appear between them (as in
Figure 3-15).

5. Release the mouse button; the column is now moved to in front of the
Description field of the datasheet.

With this method, you can move any individual field or contiguous field selection.
You can move the fields left or right or past the right or left boundary of the
window.

110 Part I, Section I ✦ Working with Data Tables and Queries

Moving fields in a datasheet does not affect the field order in the table design.

Changing the field display width
You can change the field display width (column width) either by specifying the width
in a dialog box (in number of characters) or by dragging the column border. When
you drag a column border, the cursor changes to the double-arrow symbol.

To widen a column or to make it narrower, follow these two steps:

1. Place the mouse pointer between two column names on the field separator
line. The mouse pointer turns into a small line with arrows pointing to the left
and right — if you have it in the correct location.

2. Drag the column border to the left to make the column smaller or to the right
to make it larger.

You can resize a column instantly to the best fit (based on the longest data value)
by double-clicking the right column border after the cursor changes to the double
arrow.

Resizing the column doesn’t change the number of characters allowed in the
table’s field size. You are simply changing the amount of viewing space for the
data contained in the column.

Alternatively, you can resize a column by choosing Format ➪ Column Width or by
right-clicking the column header and selecting Column Width from the menu. When
you click Column Width, the dialog box in which you enter column width in number
of characters displays, as shown in Figure 3-16. You can also return the column to
its default size by checking the Standard Width check box.

You can create an icon on your toolbar for Column Width. To do this, click the down
arrow next to the Help button on the toolbar and select Add or Remove Buttons.
Then select the Table Datasheet choice, and finally select the Column Width button.
This button becomes the last button on that toolbar. To remove it, just repeat the
process.

Figure 3-16: The Column Width dialog box.

Note

Tip

Note

111Chapter 3 ✦ Entering Data into Tables and Forms

You can hide a column if you drag the column gridline to the gridline of the next
column to the left. This also happens if you set the column width to 0 in the
Column Width dialog box. If you do this, you must use Format ➪ Unhide Columns
to redisplay the columns.

Changing the record display height
You can change the record (that is, row) height of all rows by dragging a row’s bor-
der to make the row height larger or smaller, or you can select Format ➪ Row Height.
Sometimes you may need to increase the row height to accommodate larger fonts
or text data displays of multiple lines.

You can also create an icon on your toolbar for Row Height. To do this, click the
down arrow next to the Help button and select Add or Remove Buttons. Then select
the Table Datasheet choice, and finally select the Row Height button. This button
becomes the last button on that toolbar. To remove it, just repeat the process.

When you drag a record’s border, the cursor changes to the vertical two-headed
arrow that you see at the left edge of Figure 3-17.

Figure 3-17: Changing a row’s height. Simply put the mouse pointer
between two rows. When the mouse pointer changes to arrows
pointing up and down, drag the height to what you want.

To increase or decrease a row’s height, follow these steps:

1. Place the mouse pointer between two rows on the gray record selector. The
cursor changes to the double pointing arrow (up and down).

2. Drag the row border upward to shrink all row heights. Drag the border down-
ward to increase all row heights.

Caution

112 Part I, Section I ✦ Working with Data Tables and Queries

The procedure for changing row height changes the row size for all rows in the
datasheet.

You can also resize rows by choosing Format ➪ Row Height. A dialog box appears
so that you can enter the row height in point size. You can also return the rows to
their default point size by checking the Standard Height check box.

If you drag a record’s gridline up to meet the gridline immediately above it in the
previous record, all rows are hidden. This also occurs if you set the row height
close to 0 (for example, a height of 0.1) in the Row Height dialog box. In that case,
you must select Format ➪ Row Height and reset the row height to a larger number
to redisplay the rows.

Displaying cell gridlines
Normally gridlines appear between fields (columns) and between records (rows).
By selecting Format ➪ Datasheet, you can determine whether to display gridlines
and how they look. Figure 3-18 shows the Datasheet Formatting dialog box that
you use.

Figure 3-18: Changing cell gridlines

The Datasheet Formatting dialog box gives you complete control over gridlines.
Using the Gridlines Shown check boxes, you can eliminate both Horizontal and
Vertical gridlines. If you choose to keep the gridlines, you can change both the
Gridline Color and the Background Color. A sample shows you what the effect you
have chosen looks like. You can also determine whether the gridlines are Flat
(default white background with silver gridlines), Raised (default silver background
with gray gridlines), or Sunken (default silver background with white gridlines).

Caution

Note

113Chapter 3 ✦ Entering Data into Tables and Forms

You can also determine the Border and Line Styles for each of the different
datasheet borders. You can determine a different border for the Datasheet Border,
Horizontal Gridline, Vertical Gridline, and Column Header Underline. To select a
different border style for each border in the datasheet, first select the Border that
you want to update from the left combo box and then the Line Style from the
combo box on the right. Repeat the process for each border. Each border in Figure
3-19 has a different line style.

The different line styles that you can use for the different datasheet borders include

Transparent Border Short Dashes Dash-Dot

Solid Dots Dash-Dot-Dot

Dashes Sparse Dots Double Solid

Figure 3-19: Different line styles are used for the different borders in
the datasheet. In this case, the cell effect has been changed to change
the Gridline Color (dark black) and change the Horizontal lines to dashes.

Changing display fonts
You can resize the row height and column width automatically by changing the dis-
play font. By default, Access displays all data in the datasheet in the MS Sans Serif
8-point Regular font. You may find that this font does not print correctly because
MS Sans Serif is only a screen font. Arial 8-point Regular is a good match. Select
Format ➪ Font to change the font type style, size, and style.

Setting the font display affects the entire datasheet. If you want to see more data on
the screen, you can use a very small font. You can also switch to a higher-resolution
display size if you have the necessary hardware. If you want to see larger characters,
you can increase the font size.

Caution

114 Part I, Section I ✦ Working with Data Tables and Queries

To change the font to Courier 12-point bold, follow these steps:

1. Select Format ➪ Font. A dialog box appears.

2. Select Courier from the Font combo box, as shown in Figure 3-20.

3. Select Bold from the Font style combo box.

4. Enter 12 into the text box area of the Size combo box.

5. Click OK.

Figure 3-20: Changing to a different font
and font size in the datasheet.

As you change font attributes, a sample appears in the Sample area. This way, you
can see the changes that you are making before you make them. You can also change
the font color if you want.

Hiding and unhiding columns
You can hide columns by dragging the column gridline to the preceding field or by
setting the column size to 0. You can also use the Hide Columns dialog box to hide
one or more columns. To hide a single column, follow these steps:

1. Position the cursor anywhere within the column that you want to hide.

2. Select Format ➪ Hide Columns. The column disappears. Actually, the column
width is simply set to 0. You can hide multiple columns by first selecting them
and then selecting Format ➪ Hide Columns.

After you’ve hidden a column, you can redisplay it by selecting Format ➪ Unhide
Columns. This action displays a dialog box that lets you hide or unhide columns
selectively by checking off the desired status of each field. When you are finished,
click Close; the datasheet appears, showing the desired fields.

115Chapter 3 ✦ Entering Data into Tables and Forms

Freezing columns
When you want to scroll among many fields but want to keep certain fields from
scrolling out of view, you can use Format ➪ Freeze Columns. With this selection, for
example, you can keep the Product ID and Description fields visible while you scroll
through the datasheet to find the product’s features. The columns that you want to
keep visible remain frozen on the far-left side of the datasheet; other fields scroll
out of sight horizontally. The fields must be contiguous if you want to freeze more
than one at a time. (Of course, you can first move your fields to place them next to
each other.) When you’re ready to unfreeze the datasheet columns, simply select
Format ➪ Unfreeze All Columns.

When you unfreeze columns, the column doesn’t move back to its original position.
You must move it manually.

Saving the changed layout
When you close the datasheet, you save all your data changes but you lose all your
layout changes. As you make all of these display changes to your datasheet, you
probably won’t want to make them again the next time you open the same datasheet.
By default, however, Access does not save the datasheet’s layout changes. If you
want your datasheet to look the same way the next time you open it, you can select
File ➪ Save; this command saves your layout changes with the datasheet. You can
also click the Save icon on your toolbar (the icon with the floppy disk on it).

If you are following the example, don’t save the changes to the tblProducts table.

Saving a record
As you move off a record, Access saves it. You can press Shift+Enter to save a record
without moving off it. A third way to save a record is to close the table. Yet another
way to save a record is to select Records ➪ Save Record.

Sorting and Filtering Records in a Datasheet
Finding a value lets you display a specific record and work with that record. If you
have multiple records that meet a find criteria, however, you may want to display
just that specific set of records. Using the Filter and Sort toolbar icons (or the
Records menu option Sort), you can display just the set of records that you want
to work with. You can also sort selected records instantly into any order that you
want: Use the two QuickSort buttons to sort the entire table, or use the three filter
buttons to select only certain records.

Caution

Tip

116 Part I, Section I ✦ Working with Data Tables and Queries

Using the QuickSort feature
Sometimes you may simply want to sort your records into a desired order. The
QuickSort buttons on the toolbar let you sort selected columns into either ascend-
ing or descending order. The toolbar contains a different button for each order.
Before you can click either the Sort Ascending (A-Z) or Sort Descending (Z-A)
QuickSort buttons, you must select the fields that you want to use for the sort.

You select a field to use in the sort by placing your cursor in the field in any record.
After the cursor is in the column that you want to use in the sort, click the QuickSort
button. The data redisplays instantly in the sorted order.

If you want to sort your data on the basis of values in multiple fields, you can high-
light more than one column: Highlight a column (as previously discussed), hold
down the Shift key, and drag the cursor to the right. These steps select multiple
contiguous fields. When you select one of the QuickSort buttons, Access sorts the
records into major order (by the first highlighted field) and then into orders within
orders (based on subsequent fields). If you need to select multiple columns that
aren’t contiguous (next to each other), you can move them next to each other, as
discussed earlier in this chapter.

If you want to re-display your records in their original order, use Records ➪ Remove
Filter/Sort.

You learn more about sorting in Chapter 4.

Using Filter By Selection
Filter By Selection is a technology within Access that lets you select records
instantly on the basis of the current value that you selected. For example, using
the tblProducts table, move your cursor to the Category column and click the Sort
Ascending (A to Z) button. Access sorts the data by type of vehicle. Now highlight
any of the records with the value Minivans. When you press the Filter By Selection
button, Access selects only the records where the Category is Minivans. The
tblProducts table contains seven records. After you have selected Minivans and
pressed the Filter By Selection button, only seven records are shown and all have
the value Minivans in the Category field.

The navigation button area of the Datasheet window tells you whether the database
is currently filtered; in addition, the Apply Filter/Remove Filter icon (third filter icon
that looks like a large funnel) is depressed, indicating that a filter is in use. When
you toggle this button, it removes all filters or sorts. The filter specification does
not go away; it is simply turned off.

Filter By Selection is additive. You can continue to select values, each time pressing
the Filter By Selection button.

Cross-
Reference

Tip

117Chapter 3 ✦ Entering Data into Tables and Forms

You can also right-click the field content that you want to filter by and then select
Filter By Selection from the menu choices.

If you want to further specify a selection and then see everything that doesn’t
match that selection (for example, where Description not equal to 2003 Mini Van),
move the cursor to the field (Description field where the value is 2003 Mini Van)
that you want to say doesn’t match and right-click on the datasheet and select Filter
Excluding Selection. You are now left with six records. This selects all Minivans
except the 2003 Mini Vans records.

Imagine using this technique to review sales by salespeople for specific time periods
or products. Filter By Selection provides incredible opportunities to drill down into
successive layers of data. As you add to Filter By Selection and Filter Excluding
Selection, it continues to add to its own internal query manager (also known as
Query By Example). Even when you click the Remove Filter icon to redisplay all the
records, Access still stores the query specification in memory. Figure 3-21 shows
this Filter By Selection screen in a Datasheet.

Figure 3-21: Using Filter By Selection. In this case you see all records
for Minivans except 2003 Mini Van records.

Filter By Selection has some limitations. Most importantly, all the choices are added
together (that is, Minivans and not 2003 Mini Van). This means that the only opera-
tion you can perform is a search for records that meet all the specified conditions.
Another option, Filter By Form, lets you create more complex analyses.

If you want to use the Filter By Selection but can’t find the selection that you want
to use, but you know the value, right-click the field that you want to apply the filter
to and select Filter For. This option allows you to type in the selection to filter for.

Tip

118 Part I, Section I ✦ Working with Data Tables and Queries

Using Filter By Form
Filter By Selection is just one way to filter data in Access. Another way is Filter By
Form. Selecting the second filter icon changes the datasheet to a single record;
every field becomes a combo box that enables you to select from a list of all values
for that field. As Figure 3-22 shows, the bottom of the form lets you specify the OR
conditions for each group of values that you specify.

In Figure 3-22, you can see two conditions created in the Filter By Selection example
(described previously) in the single line of the Filter By Form screen. If you click
the Or tab, you can enter a second set of conditions. Suppose you want to see SUV
records also. You already have the specification for Minivans, except 2003 Mini Van.
You would click on the Or tab (located at the bottom of the screen) and then select
SUV from the now-empty Category combo box. When you click the Apply Filter but-
ton (the large funnel), 15 records display — SUVs and Minivans (except 2003 Mini Van).

Figure 3-22: Using Filter By Form lets you set multiple conditions for
filtering at one time. Notice the Or tab at the bottom of the window.

You can have as many conditions as you need. If you need even more advanced
manipulation of your selections, you can choose Records ➪ Filter ➪ Advanced
Filter/Sort and get an actual QBE (Query by Example) screen that you can use to
enter more complex queries.

Later chapters explain more advanced concepts of queries.

Printing Records
You can print all the records in your datasheet in a simple row-and-column layout.
Later you learn to produce formatted reports. For now, the simplest way to print is
to select File ➪ Print or use the Print icon in the toolbar. This selection displays the
standard Print dialog box, as shown in Figure 3-23.

Cross-
Reference

119Chapter 3 ✦ Entering Data into Tables and Forms

Figure 3-23: The Print dialog box.

Assuming that you set up a printer in Microsoft Windows, you can select OK to
print your datasheet in the font that you selected for display (or the nearest printer
equivalent). The printout reflects all layout options that are in effect when the
datasheet is printed. Hidden columns don’t print. Gridlines print only if the cell
gridline properties are on. The printout also reflects the specified row height and
column width.

Only so many columns and rows can fit on a page; the printout takes up as many
pages as required to print all the data. Access breaks up the printout as necessary
to fit on each page. For example, the tblProducts table printout is six pages. Three
pages across are needed to print all the fields in the tblProducts table; each record
requires three pages in length. Each record of the tblContacts table requires four
pages in length.

Printing the datasheet
You can also control printing from the Print dialog box, selecting from several
options:

✦ Print Range. Prints the entire datasheet or only selected pages or records.

✦ Copies. Determines the number of copies to be printed.

✦ Collate. Determines whether multiple copies are collated.

You can also click the Properties button and set options for the selected printer or
select the printer itself to change the type of printer. The Setup button allows you
to set margins and print headings.

Using the Print Preview window
Although you may have all the information in the datasheet ready to print, you may
be unsure of whether to change the width or height of the columns or rows, or

120 Part I, Section I ✦ Working with Data Tables and Queries

whether to adjust the fonts to improve your printed output. For that matter, you
may not want to print out the entire datasheet; you may need printed records from
only pages 3 and 4. Before making such adjustments to the datasheet properties,
you should view the report onscreen. To preview your print job, either click the
Print Preview button on the toolbar (a sheet of paper with a magnifying glass) or
select File ➪ Print Preview. The Print Preview window appears (see Figure 3-24). The
default view is the first page in single page preview. To view multiple pages, as in
figure 3-24, select the multiple page button on the Print Preview toolbar (a square
with four pages inside it), then select the type of view — in this case, 2 x 3.

Figure 3-24: Print preview of a datasheet. You can specify up to
12 pages to view at one time through the View ➪ Pages menu.

After you select the Print Preview button, the screen changes to Print Preview
mode. You see an image of your first printed page; a set of icons appears on the
toolbar. You can use the Navigation buttons (in the lower-left section of the Print
Preview window) to change pages, just as you use them to select records in a
datasheet.

The toolbar buttons provide quick access to printing tasks:

✦ Close Window. Returns to Datasheet view

✦ Print. Displays the Print dialog box, which is accessible when you select
File ➪ Print from the menu bar

✦ One Page. Toggles in and out to make the Print Preview show a single page

✦ Two Pages. Shows two pages in the Print Preview

✦ Zoom Control. Adjusts the Print Preview screen to show more or less detail

121Chapter 3 ✦ Entering Data into Tables and Forms

You can view more than two pages by selecting View ➪ Pages and selecting One
(1), Two (2), Four (4), Eight (8), or Twelve (12).

If you are satisfied with the datasheet after examining the preview, select the Print
button on the toolbar to print the datasheet. If you are not satisfied, select the
Close button to return to datasheet mode to make further changes to your data or
layout.

✦ ✦ ✦

Tip

Creating and
Understanding
Relationships

So far, you have learned to create a simple table, to enter
its data, and to display it in a datasheet. In the next chap-

ter, you learn to use simple queries. All these techniques can
be demonstrated using only a single table. However, as you
learned in Chapters 1 and 2, most database systems are com-
posed of many tables that are interrelated. The tblContacts
table has been an excellent sample of a single table; it contains
many different data types that lend themselves to productive
examples.

It’s time now to move into the real world of relational
database management.

This chapter will use the database named CHAP04Start.
mdb. If you have not already copied it onto your machine
from the CD, you will need to do so now. If you’re follow-
ing the examples, you can use the tables already in this
database or create these tables yourself in a database of
your own naming.

If you want to create each of these tables, you can use
Appendix B as a reference for each table’s description;
then use the steps you learned in Chapter 2 to create each
table.

Tables Used in the Access
Auto Auctions Database

Figure 4-1 diagrams the database of the Access Auto Auctions
system. There are 11 tables in the figure, each of which requires
its own table design, complete with field names, data types,
descriptions, and properties.

On the
CD-ROM

On the
CD-ROM

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Reviewing the Access
Auto Auctions
database tables

Understanding keys

Looking at the
benefits of using
primary keys

Creating a multiple-
field primary key

Understanding what
a foreign key is

Examining the types
of relationships

Learning
how referential
integrity works

Creating
relationships

Deleting relationships

✦ ✦ ✦ ✦

124 Part I, Section I ✦ Working with Data Tables and Queries

Figure 4-1: The database diagram for the Access Auto Auctions system. This
diagram shows all the tables that are used in the system and how they relate
to each other.

Figure 4-1 shows lines joining the tables. These are the relationship lines between
the tables. Each line indicates a separate relationship between two tables; these
are established either at the table level (using the Relationships window of
Access) or by using a query. In this chapter, you learn to use the Relationships win-
dow to establish a relationship at the table level.

If you closely look at the lines between the tables in Figure 4-1, you will observe
that some of the lines (relations) between the tables have writing above them.

For instance, the line between the tblSales and tblSalesLineItems tables shows
a darkened, thicker line near both tables and a light line connecting them. The
one near the tblSales table shows the number 1 above it, and the one near the
tblSalesLineItems table shows the infinity symbol (∞) next to it. This simply means
that there can be many line items (the infinity symbol) for every one sale. You can
specifically tell Access that this is the case when you create the relationship diagram
of all tables in your system. This will be discussed more, later in this chapter.

Of the 11 tables in the database diagram, 6 hold the main data about any sales in
Access Auto Auctions and 5 are used for lookups.

A lookup table is simply a table that is used to hold secondary information that is
related to the overall system. Lookup tables are good for holding common informa-
tion that will be used over and over in a system. For example, the tblSalesPerson

Cross-
Reference

125Chapter 4 ✦ Creating and Understanding Relationships

lookup table holds the actual name of the sales person, and the tblTaxRates table
holds the correct tax rates for a specific tax location. These tables are used by the
system to verify that the users enter an accurate Sales Person ID and Tax Location
in the tblSales table. Other lookup tables are used to verify data being entered
into other tables. For example, the Customer Type in Contacts is verified by the
tblCustomerTypes table, and the Category field in the tblProducts table is verified
by the tblCategories table. You can eliminate the lookup tables and still use the sys-
tem if you want, although some of the value of the system may be lost. The six main
tables are listed below:

✦ tblContacts: Contains information about each customer, such as purchaser
or seller (one purchaser can have many sales).

✦ tblSales: Contains information about each sale (each sale can have many
items purchased, but only one purchaser, contact).

✦ tblSalesLineItems: Contains information about each item purchased during
a sale (each line item will have one item detailed).

✦ tblProducts: Contains information about individual products that can be
found in the tblSalesLineItems table (each line item will have a detail line in
the Products table).

✦ tblSalesPayments: Contains information about each payment made by the
customer for a specific Sale (each sale can have more than one payment until
it is paid in full).

✦ tblContactLog: Contains information about any contacts made with the
Customer/Seller (each Customer/Seller may contact the Access Auto Auctions
system more than one time for questions or problems).

The five lookup tables are listed below:

✦ tblPaymentType: Used by the tblSalesPayments table to retrieve
Payment type.

✦ tblCustomerTypes: Used by the tblContacts table to retrieve a list of valid
Customer types.

✦ tblTaxRates: Used by the tblSales table to retrieve valid Tax Rates for
each sale.

✦ tblSalesPerson: Used by the tblSales table to retrieve valid SalesPerson
information for each sale.

✦ tblCategories: Used by the tblProducts table to retrieve valid category
information for each item.

Technically, the tblContact table is a lookup to the tblSales table. This will be dis-
cussed more, later in this chapter.

Note

126 Part I, Section I ✦ Working with Data Tables and Queries

To set relations between tables, you must first establish a link between fields, known
as key fields, that contain some common information. The fields themselves do not
need to have the same name (for example, the common link between the tblSales
table and the tblContacts table — lngzBuyer versus idsContactID).

However, the contents in the linked fields must be of the same data type and
length. Most importantly, the information contained within both fields (one value
in each table) for any specific record must be the same in both tables for the link
to work. Generally, a relationship is established by linking key fields between
tables — the primary key in one table (the senior table, such as tblSales is primary
to tblSalesLineItems and tblSalesLineItems is primary to tblProducts) to a foreign
key in another table (the junior or secondary table — tlbSales is secondary to
tblContacts). A table can have both a primary key and a foreign key in it — as is the
case with the tblSales table, idsInvoiceNumber is a primary key (used to link to the
tblSalesItems and tblSalesPayments tables) and lngzBuyer is a foreign key (used to
link back to the tblContacts table).

A table can even have more than one primary or foreign key. It is easy to identify
the primary key of any table when you look at its structure in the Relationships
window or in the Query Design window — it will be in bold. It is more difficult to
identify foreign keys, because they have no specific font formatting.

In Figure 4-1, each table has one or more fields in bold. These are the fields that
define each table’s primary key.

Understanding Keys
When you create your tables, as in those created in Chapter 2, you should assign
each table a primary key — one or more fields whose contents are unique to each
record. This key is a way to make sure that the table records contain only one
unique value; for example, you may have several Contacts named Michael Irwin,
and you may even have more than one living at the same address. So in a case like
this, you have to decide on how you can create a record in the Customer database
that will let you identify each Michael Irwin separately. That is what a primary key
field can do for you. For example, the idsContactID field (a unique number that
you assign to each Customer or Seller [Contact] that comes into your office) is
the primary key in the tblContacts table — each record in the table has a different
idsContactID number. (No two records have the same number.) This is important
for several reasons: (1) you do not want to have two records in your database for
the same customer, because this can make updating the customer’s record virtually
impossible; (2) you want to be assured that each record in the table is accurate,
thus the information extracted from the table is accurate; and (3) you do not want
to make the table (and its records) any bigger than necessary.

127Chapter 4 ✦ Creating and Understanding Relationships

The capability to assign a single, unique value to each record makes the table “clean”
and reliable. This is known as entity integrity in the world of database management.
By having a different primary key value in each record (such as the idsContactID in
the tblContacts table), you can tell two records (in this case, customers) apart. This
is important because you can easily have two individual customers named Fred
Smith in your table.

Theoretically, you could use the customer name and the customer’s address, but
two people named Fred D. Smith could live in the same town and state, or a father
and son (Fred David Smith and Fred Daniel Smith) could live at the same address.
The goal of setting primary keys is to create individual records in a table that will
guarantee uniqueness.

If you don’t specify a primary key when creating Access tables, Access asks
whether you want one. If you say yes, Access creates a primary key for you as an
AutoNumber data type. It places a new sequential number in the primary key field
for each record automatically. Table 4-1 lists tables and their primary keys.

In Access, you can specify that a field be created that is an AutoNumber data type—
a field that Access will automatically put a unique value in every time you add a new
record to the table. It is important to note that you cannot use an AutoNumber
data field in both tables to enforce referential integrity (more on this topic later)
between tables. Therefore, it is important to specify another data type — such as
Text or Numeric — for the primary key. (More about this topic later in this chapter.)

Table 4-1
Tables and Primary Keys

Table Primary Key

tblContacts idsContactID

tblSales idsInvoiceNumber

tblSalesLineItems lgzInvoiceNumber + idsLineNumber

tblProducts chrProductID

tblContactLog lngzContactID + idsEntryID

tblSalesPayments lngzInvoiceNumber + idsLineNumber

tblSalesperson idsSalespersonID

tblTaxRates chrTaxLocation

tblCustomerTypes chrCustomerType

tblPaymentType chrPaymentType

tblCategories chrCategory

Note

128 Part I, Section I ✦ Working with Data Tables and Queries

Deciding on a primary key
As you learned previously, a table normally has a unique field (or combination of
fields) — the primary key for that table — which makes each record unique. Often
it’s an ID field that uses the Text data type or Auto number. To determine the con-
tents of this ID field, you specify a method for creating the value in the field. Your
method can be as simple as letting Access automatically assign a value or using the
first letter of the real value you are tracking along with a sequence number (such as
A001, A002, A003, B001, B002, and so on). The method may rely on a random set of
letters and numbers for the field content (as long as each field has a unique value)
or a complicated calculation based on information from several fields in the table.

Table 4-2 lists the Access Auto Auctions tables and explains the plan for deriving
the primary key values in each table.

As Table 4-2 shows, it doesn’t take a great deal of work (or even much imagination)
to derive a plan for key values. Any rudimentary scheme with a good sequence num-
ber always works. Access automatically tells you when you try to enter a duplicate
key value. To avoid duplication, you can simply add the value of 1 to the sequence
number. You may think that all these sequence numbers make it hard to look up
information in your tables. Just remember that normally you never look up informa-
tion by an ID field. Generally, you look up information according to the purpose of
the table. In the tblContacts table, for example, you would look up information by
Customer Name — last and first names. In some cases, the Customer Name is the
same, so you can look at other fields in the table (ZIP code, phone number) to find
the correct customer. Unless you just happen to know the Contact ID Number,
you’ll probably never use it in a search for information.

Table 4-2
Deriving the Primary Key

Table Derivation of Primary Key Value

tblContacts Individuals: AutoNumber field assigned by Access; incremented
in sequence.

tblSales Invoice Number: AutoNumber field assigned by Access;
incremented in sequence.

tblSalesLineItems Invoice Number (from Sales) and an AutoNumber set by Access;
incremented in sequence.

tblProducts Product Number, entered by the person putting in a new product.

tblSalesPayments Invoice Number (from Sales) and an AutoNumber set by Access;
incremented in sequence.

129Chapter 4 ✦ Creating and Understanding Relationships

Table Derivation of Primary Key Value

tblContactLog Contact ID (from Contacts) and an AutoNumber set by Access;
incremented in sequence.

tblPaymentType Type of Payment - VISA, CASH, etc. used as lookup.

tblCustomerTypes Type of Customer — Dealer, Auctioneer, Parts, etc. used as lookup.

tblSlaesperson Sales Person ID: AutoNumber field assigned by Access.

tblTaxRates Tax Location: entered by the person putting in a new record.

tblCategories Category of Items: entered by the person putting in a new record.

Benefits of a primary key
Have you ever placed an order with a company for the first time and then decided
the next day to increase your order? You call the people at the order desk. Some-
times they ask you for your customer number. You tell them that you don’t know
your customer number. This happens all the time. So they ask you for some other
information — generally, your ZIP code or telephone area code. Then, as they nar-
row down the list of customers, they ask your name. Then they tell you your cus-
tomer number. Some businesses use phone numbers as a unique starting point.

Database systems usually have more than one table, and these tend to be related
in some manner. For example, the tblContacts table and tblSales table are related
to each other via a link field called lngzBuyer in tblSales and idsContactID in
tblContacts. The tblContacts table always has one record for each customer
(buyer/seller), and the tblSales table has a record for Sales Invoice that the customer
makes (every time he purchases something). Because each customer is one physical
person, you only need one record for the customer in the tblContacts table. Each
customer can make many purchases, however, which means you need to set up
another table to hold information about each sale — thus the tblSales table. Again,
each invoice is one physical sale (on a specific day at a specific time). Each sale has
one record in the tblSales table. Of course, you need to have some way to relate the
Buyer to the Sales they make in the tblSales table. This is accomplished by using a
common field that is in both tables. In this case, the field lngzBuyer in tblSales and
idsContactID in tblContacts (which has the identical type of information in both
tables).

When linking tables, you link the primary key field from one table (the idsContactID
in the tblContacts table) to a field in the second table that has the same structure
and type of data in it (the lngzBuyer field in the tblSales table). If the link field in the
second table is not the primary key field (and usually it isn’t), it’s known as a foreign
key field (discussed later in this chapter).

130 Part I, Section I ✦ Working with Data Tables and Queries

Besides being a common link field between tables, a primary key field in Access has
these advantages:

✦ A primary key field is one that is used to create an index for the table that
greatly speeds up queries, searches, and sort requests.

✦ When you add new records, you must enter a value in primary key field(s).
Access will not allow you to enter Null values, which guarantees that you’ll
have only valid records in your table.

✦ When you add new records to a table that has a primary key, Access checks
for duplicate data and doesn’t enable you to enter duplicates for the primary
key field — thus it maintains its integrity.

✦ By default, Access displays your data in the order of the primary key.

An index is a special internal file that is created to put the records in a table in
some specific order. For instance, the primary key field in the tblContacts table is
an index that puts the records in order by idsContactID field. Using an indexed
table, Access can display records in a specific manner and quickly find any record
within the table using the index.

If you define a primary key based on part of the data in the record, you can have
Access automatically place your data in an understandable order. In the example,
the tblSalesLineItems database, the primary key is composed of two fields —
lngzInvoiceNumber (which comes from the tblSales table) and a line number for
a sequence (idsLineNumber field). This way, the tblSalesLineItems table places all
related sales together in a sequential order displayed alphanumerically.

Primary key fields should be made as short as possible (built using as few charac-
ters and fields as possible), because they can affect the speed of operations in a
database.

Creating a primary key
As discussed in Chapters 1 and 2, a primary key is created by selecting the field
(or fields) that you want to use as a primary key and clicking on the Primary Key
button on the toolbar (the button with the key on it). If you are specifying more
than one field, you specify the fields that you want for the primary key and again
click the Primary Key button. Selecting each field while holding down the Ctrl key
specifies the fields.

When you’re specifying multi-field primary keys, the selection order is important.
Therefore, check your selection by clicking the Indexes button on the toolbar
and looking at the field order. Figure 4-2 shows the two-field index for the
tblSalesLineItems table. Notice that the lngzInvoiceNumber field is before the
idsLineNumber field in the Indexes: tblSalesLineItems dialog box.

Tip

Tip

131Chapter 4 ✦ Creating and Understanding Relationships

Figure 4-2: The Indexes: tblSalesLineItems dialog box showing
a two-field primary key.

The Indexes: tblSalesLineItems dialog box shown in the center right-hand side of
Figure 4-2 is opened when you open a table in Design View and select View ➪
Indexes from the Access menu or click on the Indexes button (center of the toolbar
with a series of parallel lines and a lighting bolt along side of them — to the right of
the Key button). When the dialog box is open, it shows you all of the Indexes in that
table — including primary keys, foreign keys, and other indexes for sorting. Notice
that it shows the word PrimaryKey only in the ldgzInvoiceNumber field, although it
still shows the graphical key (for primary key) to the left of both fields. This simply
means that both fields together make up the primary key.

The order of these fields is critical; if you reverse them and make the idsLineNumber
field the first part of the primary key, it will not work correctly — you may create a
situation where you do not have a viable way to create unique records in the table.

There are two additional index names in the Indexes: tblSalesLineItems dialog box.
These are not keys, but indexes used to speed sorts used in these tables. If you
regularly sort data in tables by the same field or fields, you should create an index
for that field. An index is an internal table of values that maintains the order of the
records. This way, when you need to sort data or find a piece of data instantly,
Access can search through the index keys in a known order, rather than searching
sequentially through the data.

Creating indexes slows data entry; each new record, deleted record, or change to
the indexed field requires a change to the index. Use the index fields only when
you actually need them — for example, when you need to speed sorting your appli-
cation for later use. You will have to balance the display and reporting speed with
the need of data-entry speed.

Caution

Note

132 Part I, Section I ✦ Working with Data Tables and Queries

Understanding foreign keys
Primary keys guarantee uniqueness in a table, and you use the primary key field in
one table to link to related records in another table (the Sales purchased by a spe-
cific Customer). The common link field in the other table (records that are associ-
ated with a record in the primary table) may not be (and usually isn’t) the primary
key in the other table.

The common link field is a field or fields that hold the same type of data (matching
the content of the field exactly) as in the primary key of the link table. This common
link field, or combination of fields, is known as a foreign key field. Like a primary key,
which must be created in a special way, a foreign key must be created using the same
structure; however, it can be any field(s) in any order of the structure of the table.
You are not limited to a specific field order when you create the table’s structure.
By matching the same values (from a primary key field in a record in the primary
key table to the values in a specific field of one or more records in a foreign key
table) in both tables, you can relate records between tables.

In the relationship diagram of Figure 4-1, you saw a relationship between the
tblContacts and tblSales tables. The primary key of tblContacts, idsContactID, is
related to the lngzBuyer field in tblSales. In tblSales, lngzBuyer is the foreign key
because it is the key of a related “foreign” table.

An example would be William Gleason in the tblContacts table with the idsContactID
of 18. The one record in the Customer table with the idsContactID 18 is linked to two
records in the tblSales table — one record of a sale on February 27, 2003 with an
invoice number of 5and another for a sale on January 10, 2004 and invoice number
of 32. Thus, there is one record in the tblContacts table with 18 in the idsContactID
Field and two records in the tblSales table with lngzBuyer field having an 18 in it.

A relation also exists between the tblSales and tblSalesLineItems tables. The primary
key of idsInvoiceNumber in tblSales is related to the lngzInvoiceNumber field (part
of the complex primary key of tblSalesLineItems — comprises two fields) in the
tblSalesLineItems table. In the tblSalesLineItems table, lngzInvoiceNumber is the
foreign key because it is the key of a related foreign table.

lngzInvoiceNumber is also the principal part of the complex primary key in the
tblSalesLineItems table.

Understanding Relations between Tables
At the beginning of this chapter, you saw 11 tables in the Access Auto Auctions
database and 10 relationships. Before you learn to create these relationships, it is
important to understand them.

Note

Robert
Highlight

Robert
Highlight

133Chapter 4 ✦ Creating and Understanding Relationships

A review of relationships
First, you can create relationships between tables at two places: in the Relationships
window that will relate them at a table level, and when you create queries to display
information from those tables (known as the query level).

Relationships established at the table level take precedence over those established
at the query level. If you specify a relationship between tables at the table level (in
the Relationships window), Access will recognize it automatically when you create
a multiple-table query that uses fields from more than one table.

When you create a query and no Relationships are set, Access will automatically
try to set relations between tables with similar field names.

With that said, it is now important to understand that there are four types of rela-
tionships that you can set between two tables:

✦ One-to-one

✦ One-to-many

✦ Many-to-one

✦ Many-to-many

Understanding the four types of table relationships
When you physically join two tables (by connecting fields with like information),
you create a relationship that Access recognizes. Figure 4-3 shows the relationships
between all the tables in the Access Auto Auctions system.

Notice that there are three one-to-many relationships between the primary tables
(tblSales-to-tblSalesPayments, tblSales-to-tblSalesLineItems, and tblContacts-to-
tblContactsLog), two one-to-many relationship between the primary tables
(tblSalesLineItems-to-tblProducts and tblSales-to-tblContacts), and five one-to-many
relations between the five lookup tables and the primary tables. The relationship
that you specify between tables is important. It tells Access how to find and display
information from fields in two or more tables. The program needs to know whether
to look for only one record in a table or look for several records on the basis of the
relationship. The tblSales table, for example, is related to the tblContacts table as
a many-to-one relationship. This is because the focus of the Access Auto Auctions
system is the Sales. This means that there will always be only one contact (buyer)
related to every Sales record; that is, many sales can be associated with a single
buyer (contact). In this case, the Access Auto Auctions system is actually using the
tblContacts table like a lookup type.

Tip

Robert
Highlight

Robert
Highlight

134 Part I, Section I ✦ Working with Data Tables and Queries

Figure 4-3: The Access Auto Auctions tables relationships.

Relationships can be very confusing; it all depends upon the focus of the system.
For instance, when working with the tblContacts and tblSales tables, you can
always create a query that has a one-to-many relationship to the tblSales table,
from the tblContacts. Although the system is concerned with sales (invoices), there
are times that you will want to produce reports or views that are buyer-related
instead of invoice-related. Because one buyer can have more than one sale, there
will always be one record in the tblContacts table for at least one record in the
tblSales table; there could be many related records in the tblSales table. So Access
knows to find only one record in the Customer table and to look for any in the
tblSales table (one or more) that have the same Customer Number.

The one-to-one relationship
The one-to-one relationship, though rarely used in database systems, can be a very
useful way to link two tables together.

A good example of a one-to-one relationship occurs in most billing systems; a billing
file is created to allow additional information necessary to invoice customers at a
location other than their listed addresses. This file usually contains the customer
number and another set of address fields.

Only a few customers would have a separate billing address, so you wouldn’t add
this information to the main customer table. A one-to-one relationship between a
customer table and billing table may be established to retrieve the billing address
for those customers who want to have a separate address for billing purposes and
one for catalogs or other uses. Although all the information on one table could be
added to the other, the tables are maintained separately for efficient use of space.

Note

135Chapter 4 ✦ Creating and Understanding Relationships

The one-to-many relationship
The one-to-many relationship is used to relate one record in a table with many
records in another. Examples are one sale to many line items or one customer to
many customer contacts. Both of these examples are one-to-many relationships.
The tblSales-tblSalesLineItems relationship links the Invoice Number (the primary
key of the tblSales table) to the Invoice Number in the tblSalesLineItems table
(which becomes the foreign key of the tblSales table). There are only three one-to-
many relations in the Access Auto Auctions system related to tblSales, there are
five one-to-many relations in the entire system.

The many-to-one relationship
The many-to-one relationship (often called the lookup table relationship) tells Access
that many records in the table are related to a single record in another table.
Normally, many-to-one relationships are not based on a primary key field in either
table. Access Auto Auctions has seven lookup tables (five primary lookup tables
and two are primary tables of the system that are used as a “lookup” table – for
example tblContacts can be a lookup table to tblSales), each having a many-to-one
relationship with the primary table. The tblContacts table has a many-to-one rela-
tionship with the tblCustomerTypes table; each Customer Type record can be used
for many buyers (contacts). Although (in theory) some consider this relationship a
one-to-one, it is known as a many-to-one relationship because it does not use a pri-
mary key field for the link, and many records from the primary table link to a single
record in the other table.

Some one-to-many relationships can be reversed and made into many-to-one rela-
tionships. If you set a relationship from tblSales to tblContacts, for example, the
relationship becomes many-to-one; many Sales can have the same buyer (contact).
So relationships depend on how the information in your tables is used and inter-
preted. Thus, one-to-many and many-to-one relationships can be considered the
same — just viewed from opposite perspectives.

The many-to-many relationship
The many-to-many relationship is the hardest to understand. Think of it generally
as a pair of one-to-many relationships between two tables, with a special table cre-
ated (called a junction table) that is used to link them together. The junction table
is composed of a minimum of two fields — the foreign keys from both tables it is
linking together. These two fields are subsequently used to create the primary key
in the junction table. This junction table could easily be created in the case of the
tables, tblSales and tblSalesLineItems, in the Access Auto Auctions database by
simply creating another table in between that contains both the invoice number
and product number, making the primary key a combination of these two fields,
and separating the Sales and LineItems with this new table.

For a true many-to-many relationship between these two tables, there has to be a
junction table that is composed of a complex primary key created by joining the
primary key from both tables in a single primary key in the junction table.

Robert
Highlight

Robert
Highlight

Robert
Highlight

136 Part I, Section I ✦ Working with Data Tables and Queries

Understanding Referential Integrity
In addition to specifying relationships between tables in an Access database, you
can also set up some rules that will help in maintaining a degree of accuracy, or
Referential Integrity, between the tables. For example, you would not want to delete
a contact (buyer or seller) record in your tblContacts table if there are related sales
records in the tblSales table. If you did delete a customer record without first delet-
ing the customer’s sales (or a seller without first deleting any items sold to you by
them), you would have a system that had sales without any buyers. This type of
problem could be catastrophic.

Imagine being in charge of a bank that tracks loans in a database system. Now imag-
ine that this system has no rules that say, “Before deleting a customer’s record, make
sure that there is no outstanding loan.” It would be disastrous! So a database system
needs to have rules that specify certain conditions between tables — rules to enforce
the integrity of information between the tables. These rules are known as referential
integrity; they keep the relationships between tables intact in a relational database
management system. Referential integrity prohibits you from changing your data in
ways that invalidate the links between tables.

Referential integrity operates strictly on the basis of the tables’ key fields; it checks
each time a key field, whether primary or foreign, is added, changed, or deleted. If
a change to a value in a key field creates an invalid relationship, it is said to violate
referential integrity. Tables can be set up so that referential integrity is enforced
automatically.

When tables are linked, one table is usually called the parent and the other (the table
it is linked to) is usually called the child. This is known as a parent-child relationship
between tables. Referential integrity guarantees that there will never be an orphan,
a child record without a parent record.

If you connect to an SQL Server back end database or use the Microsoft Database
Engine and create an Access Data Project, the Relationships window is different.
This is discussed in Chapter 28.

Creating Relationships
Unless you have a reason for not wanting your relationships always to be active,
create your table relationships at the table level using the Relationships window.
The table relationships can be overridden later, in a query, if necessary. For normal
data entry and reporting purposes, however, having your relationships defined at
the table level makes it much easier to use your database system.

Access has a very powerful Relationships window. With it, you can add tables, use
drag-and-drop methods to link tables, easily specify the type of link, and set any ref-
erential integrity between tables.

Cross-
Reference

Robert
Highlight

137Chapter 4 ✦ Creating and Understanding Relationships

Using the Relationships window
You begin creating relationships in the Database window. From this window, you
can select Tools➪Relationships or click the Relationships button on the toolbar
(usually the third button from the right side — three little squares, one on the left
and two on the right, with blue tops and lines from the left one to the other two).
The main Relationships window appears, which lets you add tables and create links
between them.

Figure 4-4 shows the Relationships window with the 11 tables that you will add
below and the Show Table window open to select those tables. Notice the toolbar
associated with it (the arrow is pointing to the three icons). It has three options
specific to the Relationships window — Show Direct Relationships, Show All
Relationships, and Clear Layout (center right of toolbar). When first opened, the
Relationships window is a blank surface. Tables are added to the window by using
one of these methods:

✦ Add the tables before entering the Relationships window from the Show Table
dialog box that’s first displayed.

✦ Click the Show Table button on the toolbar.

✦ Click Relationships ➪ Show Table from the menu bar.

✦ While in the Relationships window, click the right mouse button (which
displays the shortcut menu) and select Show Table from the menu.

To start the Relationships window and add the Access Auto Auctions tables to the
Relationships window, follow these steps:

1. Click the Relationships button on the toolbar. Access opens the Show Table
dialog box.

2. Select all the tables (tblCategories, tblContactLog, tblContacts,
tblCustomerTypes, tblPaymentType, tblProducts, tblSales, tblSalesLineItems,
tblSalesPayments, tblSalesperson, tlbTaxRates) by clicking tblCategories,
holding Shift, and clicking tblTaxRates. Then click Add.

3. Click the Close button on the Show Table dialog box. Your screen should look
similar to the one in Figure 4-4 (minus the Show Table window). Notice that
Access has placed each table in the Relationships window. Each table is in its
own box; the title of the box is the name of the table. Inside the table box are
the names of the fields for each table. Currently, there are no relationships, or
lines, between the tables. Now you are ready to set relationships between them.

If you select a table by mistake, it can be removed from the window by clicking in
it and pressing the Delete key.

You may want to move and resize each table window to see all the fields, as shown
in Figure 4-5.

Tip

Note

138 Part I, Section I ✦ Working with Data Tables and Queries

Figure 4-4: The Relationships window with 11 tables added.

Figure 4-5: The Relationships window with tables sized and repositioned, ready
to create the relationships between them.

139Chapter 4 ✦ Creating and Understanding Relationships

Creating relationships between tables
With the tables positioned similar to those in Figure 4-5 in the Relationships window,
you are ready to create relationships between the tables. To create a relationship
between two tables, select the common field in one table, drag it to the field in the
table you want to relate it to, and drop it on the common field.

Follow these steps to create a relationship between the tblSales and tblContacts
tables:

1. Click the inqzBuyer field of the tblSales table.

If you select and begin to move a field in error, simply move the field icon to the
window surface; it turns into the international No symbol. While it is displayed as
this symbol, release the mouse button and field linking stops.

2. While holding down the mouse button, move the cursor to the tblContacts
table. Notice that Access displays a field-select icon (a small rectangular box
with lines inside of it) as you hold and drag the inqzBuyer field from the
tblSales table.

3. Drag and drop the field-select icon to the idsContactID field of the tblContacts
table. Access displays the Edit Relationships dialog box, as shown in Figure 4-6.

4. Click the Create button to create the relationship. Access closes the dialog
box and places a join line between the tblSales and tblContacts tables.

Figure 4-6: The Edit Relationships dialog box
that is activated when you drag and drop the
inqzBuyer field from the tblSales table onto
the idsContactID field of the tblContacts table.

You can edit the relationship for any join by double-clicking the join line between
the two tables. For example, double-clicking the join line between the tblSales and
tblContacts tables reactivates the Edit Relationships dialog box for that link.

Note

Note

140 Part I, Section I ✦ Working with Data Tables and Queries

Access automatically tries to determine the type of link between the two tables by
looking at the data in the records of both tables and displays it at the bottom of
the Relationships dialog box. Figure 4-6 shows that the type of relationship
between the tblContacts and tblSales tables is a one-to-many type (or a many-to-
one from the Sales to Contacts). However, it does not physically display the type of
link between the tables in the Relationships window unless Enforce Referential
Integrity is checked on.

Specifying relationship options in the
Edit Relationships dialog box
The Edit Relationships dialog box has several options for the relationship between
the Contacts and Sales tables. Figure 4-6 shows the dialog box and all the options.
The Edit Relationships dialog box tells you which table is the primary table for the
relationship (the one on the left side of the dialog box — in this case, tblContacts)
and whether referential integrity is enforced (a check box below the names of the
related fields on the left side). The dialog box also tells you the type of relationship
(one-to-one or one-to-many — at the bottom of the dialog box) and lets you specify
(after selecting Enforce Referential Integrity) whether cascading updates and deletes
(automatically fix key changes or deletions in related records) between related
tables are allowed.

For the following sections, activate the Edit Relationships dialog box for the link
between the tblContacts and tblSales tables. To do so, double-click the join line
between the tables.

Checking the primary table
The top of the dialog box has two table names — tblContacts on the left and tblSales
on the right. The tblContacts table is considered the primary table for this relation-
ship (because its primary index is being used for it). The dialog box shows the
related fields for each table in a separate box immediately below the table names.
Make sure that the correct table name is in both boxes and that the correct field is
specified (idsContactID and indzBuyer).

If you relate two tables incorrectly, simply click the Cancel button in the Edit
Relationships dialog box. Access closes the dialog box and erases the join line, and
you can begin again.

If you relate two tables by the wrong field, simply select the correct field for each
table by using the combo box under each table name.

Checking the Join Type between tables
The right side of the Edit Relations window has four buttons — OK, Cancel, Join
Type, and Create New ... buttons. Pressing the OK button returns you to the

Tip

Caution

Note

Tip

Robert
Highlight

141Chapter 4 ✦ Creating and Understanding Relationships

Relationships window with any changes specified. The Cancel button will cancel
the current changes and also return you to the Relationships window. The Create
New ... button will let you specify a new relation between two tables and fields.

The one button that you should also click after you first activate the Edit Relations
dialog box is Join Type. This button will activate another window — the Join
Properties dialog box. This dialog box lets you decide if you want to see records
in both tables, see all records in one table or the other, or see only those that are
related. For instance, to make sure that you have the correct join type between the
tblSales and tblContacts tables, follow these steps:

1. Click the Join Type button to activate the Join Properties Dialog box.

2. Click the option that says “Include ALL records from ‘tblSales’ and only those
records from ‘tblContacts’ where the joined fields are equal.” (the third option
on the authors system). The relationship between these tables should now
look like the one in Figure 4-7.

3. Click the OK button to return to the Edit Relationships Dialog box.

4. Click the OK button of the Edit Relationships dialog box to return to the
Relationships window.

Figure 4-7: A dialog box to set up the
Join properties between the tblSales and
tblContacts tables. Notice that it specifies
ALL records from the tblSales table.

You have now specified that the relationship is from the tblSales table to the
tblContacts table — meaning that many sales can be related to a single contact.

The Relationships window should now show an arrow going from the tblSales table
to the tblContacts table. At this point, you are ready to set Referential Integrity
between the two tables.

Each relationship will be different, depending upon the focus of the tables. You
should click on the Join Type button for each relationship to make sure that
you have specified the correct data relationship between tables.

Enforcing referential integrity
After specifying the relationship, verifying the table and related fields, and specify-
ing the type of join between the tables, you can set referential integrity between the
tables by clicking the Enforce Referential Integrity check box below the table infor-
mation. If you choose not to enforce referential integrity, you can add new records,

Tip

Robert
Highlight

142 Part I, Section I ✦ Working with Data Tables and Queries

change key fields, or delete related records without worrying about referential
integrity — thus making it possible to change critical fields without being warned or
prevented from doing so. With no integrity active, you can create tables that have
orphans (Sales without a Contact) or parents without children (Contact without
Sales). With normal operations (such as data entry or changing information), refer-
ential integrity rules should be enforced. By setting this option, you can specify
several additional options.

Re-open the Edit Relationships dialog box for the relations between the tblSales and
tblContacts tables by double-clicking on the join line.

Clicking the check box in front of the option Enforce Referential Integrity activates
the two Cascading choices (Update and Delete) in the dialog box and enforces
Referential Integrity. Figure 4-8 shows the Edit Relationships dialog box with
Referential Integrity activated.

Figure 4-8: Referential Integrity set between
the tblSales and tblContacts tables.

You might find, when you specify Enforce Referential Integrity and click the Create
button (or the OK button if you’ve reopened the Edit Relationships window to edit
a relationship), that Access will not allow you to create a relationship and enforce
referential integrity. The reason probably is that you are asking Access to create a
relationship supporting referential integrity between two tables that have records
that violate referential integrity rules, such as a child table with orphans in it. In
such a case, Access warns you by displaying a dialog box similar to that shown in
Figure 4-9. The warning happens in this example because there are some records
in the tblSales database with no value in the lngzSalespersonID field of the record
to correspond to a record in the tblSalesperson table. This means that Access can-
not create referential integrity between this table and that you will have to go
through the table and add values that will allow a corresponding relation between
the two tables. Access returns you to the Relationships window after you click the
OK button; you will need to de-select the Enforce Referential Integrity check box if
it reports you cannot create it.

Note

143Chapter 4 ✦ Creating and Understanding Relationships

Figure 4-9: A dialog box warning that referential integrity cannot
be created between two tables due to violations in some of the
records between the two tables — one or more tblSales without
a Salesperson ID is probably the problem.

To solve any conflicts between existing tables, you can create a Find Unmatched
query by using the Query Wizard to find the records in the many-side table (in the
case of the example in Figure 4-9, the tblSales table) that violate referential
integrity. Then you can convert the Unmatched query to a Delete query to delete
the offending records or add the appropriate value to the lngzSalespersonID field.
You learn how to do this in Chapter 38.

When selecting Enforce Referential Integrity, Access does not check to see if you
have Contacts without Sales. This is not an issue with referential integrity. You can
have multiple Contacts that have no Sales, known as widow records. However,
these records do not violate integrity; thus they are not checked for by Access.
Even with enforcement on, you can still create a parent record without children (a
Contact without any Sales). However, you can create a Find Unmatched query to
delete these records. This will be covered in Chapter 38.

You could remove the offending records and return to the Relationships window
and set referential integrity between the two tables. However, you should not do
this, because Salesperson is not a critical field that requires Referential Integrity
to be set between these tables.

Choosing the Cascade Update Related Fields option
If you specify Enforce Referential Integrity in the Edit Relationships dialog box,
Access activates a check box option labeled Cascade Update Related Fields. This
option tells Access that a user can change the contents of a related field (the pri-
mary key field in the primary table — idsContactID, for example).

When the user changes the contents of the primary key field in the primary table,
Access verifies that the change is to a unique value (because there cannot be dupli-
cate records in the primary table) and then goes through the related records in the
many table and changes the foreign key value from the old value to the new value.
Suppose you code your customers by the first two letters of their last names, and
one of your customers gets married and changes the name that Access knows to

Caution

Tip

144 Part I, Section I ✦ Working with Data Tables and Queries

look for. If the Primary Key depended up a scheme dependent upon the last name
(like the first two letters of the last name), you could change the primary key, and
all changes would ripple through other related records in the system.

If this option is not selected, you cannot change the primary key value in the pri-
mary table that is used in a relationship with another table.

If the primary key field in the primary table is a related field between several
tables, this option must be selected for all related tables or it will not work.

Choosing the Cascade Delete Related Records option
Similarly, if you specify Enforce Referential Integrity in the Edit Relationships dialog
box, Access activates the Cascade Delete Related Records check box. By selecting
this option, you tell Access that if a user attempts to delete a record in a primary
table that has child records, first it must delete all the related child records and
then delete the primary record.

This can be very useful for deleting a series of related records. For example, if you
have chosen Cascade Delete Related Records and you try to delete a particular cus-
tomer (who moved away from the area), Access first deletes all the related records
from the related tables — tblSales and tblSalesLineItems — and then deletes the cus-
tomer record. In other words, Access deletes all the records in the sales line items
for each sale for each customer — the detail items of the sales, the associated sales
records, and the customer record — with one step.

If you do not specify this option, Access will not enable you to delete a record that
has related records in another table. In cases like this, you must delete all related
records in the tblSalesLineItems table first, then delete related records in the
tblSales table, and finally delete the customer record in the tblContact table.

To use this option, you must specify Cascade Delete Related Records for all of the
table’s relationships in the database. If you do not specify this option for all the
tables in the chain of related tables, Access will not allow cascade deleting.

Use this option with caution! Access does not warn that it is going to do a cascade
delete when you build a Delete query. The program just does it. Later you may
wonder where all your records went. However, if you delete a record in a form that
has a subform with related records in it, Access will display a message saying it will
delete “this record and all its related records.”

Finishing the relationships between the tables
of the Access Auto Auctions system
With the first relationship created for the system; between the tblSales and
tblContacts, you can quickly create the remaining relations. Table 4-3 shows the
table relationships (how each table relates or is linked to another), which fields are
used to build the link, and the type of join line used between the tables.

Caution

Tip

Note

Robert
Highlight

145Chapter 4 ✦ Creating and Understanding Relationships

Table 4-3
Table Relationships

From Table To Table Enforce Ref.
(field) (field) Integrity Type of Join Line

tblContacts tblSales YES Include ALL records from
idsContactID lngzBuyer tblSales and only those

records from tblContacts
where the join fields are
equal

tblSales tblSalesLineItems YES Include ALL records from
idsInvoiceNumber lngzInvoiceNumber tblSales and only

those records from
tblSaleslineItems where
the join fields are equal

tblSales tblSalesPayments YES Include ALL records from
idsInvoiceNumber lngzInvoiceNumber tblSales and only

those records from
tblSalesPayments where
the join fields are equal

tblSales tblSalesperson NO Include ALL records from
lngzSalespersonID idsSalespersonID tblSales and only those

records from
tblSalesperson where the
join fields are equal

tblSales tblTaxRate NO Include ALL records from
chrTaxLocation chrTaxLocation tblSales and only those

records from tblTaxRates
where the join fields are
equal

tblSalesLineItems tblProducts YES Include ALL records from
chrProductID chrProductID tblSalesLineItems and only

those records from
tblProducts where the
join fields are equal

tblProducts tblCategories NO Include ALL records from
chrCategory chrCategory tblProducts and only those

records from tblCategories
where the join fields are
equal

Continued

146 Part I, Section I ✦ Working with Data Tables and Queries

Table 4-3 (continued)

From Table To Table Enforce Ref.
(field) (field) Integrity Type of Join Line

tblContacts tblContactLog YES Include ALL records from
idsContactID lngzContactID tblContacts and only those

records from tblContactLog
where the join fields are
equal

TbContacts tblCustomerTypes NO Include ALL records from
chrCustomerType chrCustomerType tblContacts and only

those records from
tblCustomerTypes where
the join fields are equal

tblSalesPayments tblPaymentType NO Include ALL records from
chrPaymentType chrPaymentType tblSalesPayments and only

those records from
tblPaymentType where the
join fields are equal

After you have created all your relations, the final relationships window should look
like the one shown in Figure 4-10. Notice that Access only shows the type of rela-
tionships (one-to-many or many-to-one) where you set Enforce Referential Integrity
to YES. It also shows arrows between tables showing which table has precedence
(which table will include ALL records). The table without the arrow pointing to it
will include ALL records; the one with the arrow pointing to it will include only
those records that match the other table.

Saving the relationships between tables
The easiest way to save the relationships you created between the tables is to click
the Save button on the toolbar and then close the window. Another method is to
close the window and answer Yes to the Save Relationships dialog box that appears.

Adding another relationship
After you specify all the tables, the fields, and their referential integrity status, you
can add tables to the Relationships window by clicking the Relationships button on
the toolbar and adding new tables.

Again, if there is data in a new table that violates referential integrity between it and
a related table, you must fix the offending table by removing the records before you
can set referential integrity between the tables.

Robert
Highlight

147Chapter 4 ✦ Creating and Understanding Relationships

Figure 4-10: The final relationships created, showing the type of relations and
demonstrating which tables have precedence.

Deleting an existing relationship
To delete an existing relationship, open the Relationships window, right-click the
join line you want to delete, and select Delete from the Menu. Like in previous
versions of Access, you could simply press the Delete key and answer Yes to the
question Are you sure you want to delete the selected relationship?

Join lines in the Relationships window
When you create a relationship between two tables, Access automatically creates a
thin join line from one table to another. Figure 4-10 shows a simple join line between
several tables; for example, between tblSales and tblSalesperson or tblTaxRates,
tblContacts and tblCustomerTypes, and on and on.

If you specify that you want to enforce referential integrity, however, Access changes
the appearance of the join line. The join lines between tblSales and tblContacts or
tblSalesLineItems and tblSalesPayments are examples where the join line changes.
It becomes thicker at each end (alongside the table). It also has either a 1 or the
infinity symbol (∞) over the thick bar of the line (on each side of the join line).

Printing a report of the relationships
When you have defined the relationships for your tables, you can create a graphical
report of the relationships of the tables by selecting File ➪ Print Relationships from
the Access menu while the Relationships window is open.

148 Part I, Section I ✦ Working with Data Tables and Queries

Using Subdatasheets
With your relationships set, you can revisit the table design and set up a sub-
datasheet to view for the tables you have created one-to-may relationships between.
Because some of the tables may have more than one relationship, this is a good idea.

Sometimes when viewing information in datasheets, you want to see a table’s
related records that are in a different table.

Access 2003 has the capability to view hierarchical data in the Datasheet view. You
can set up the sub-datasheets manually in the design of the table or you can have
the database automatically determine them based on the relationships between
tables. The sub-datasheets can be viewed with a table, query, form, and subform
datasheets.

You will know that a relationship with another table has been set up when you view
records in a datasheet, because a new column will be added to the left-hand side of
the datasheet with a + next to each row, as shown in Figure 4-11.

Figure 4-11: Displaying a datasheet that has related tables. Notice the
plus sign field next to each Invoice Number (to the left). Clicking this
will expand a new datasheet (sub-datasheet) of related records in the
tlbSalesLineItems table.

When you click the + sign for a row, the related records in the sub-datasheet are
shown. The tables that are set up to be sub-datasheets may have sub-datasheets for
them, which allow the viewing of both related records for the main table that you
are in and related records for the sub-datasheet.

Note

Robert
Highlight

149Chapter 4 ✦ Creating and Understanding Relationships

Setting up sub-datasheets
You can set up sub-datasheets in the design view of a table by clicking View ➪
Properties from the Access menu bar, or by clicking the Properties button on your
toolbar. This displays the Table Properties dialog box as shown in Figure 4-12.

Figure 4-12: Table Properties.

Selecting a sub-datasheet name
If you are moving directly from Access 97 to Access 2003, you will notice that five new
properties have been added to the Table Properties dialog box. All of these proper-
ties are related to sub-datasheets. Also notice the value entered for Subdatasheet
Name — [Auto]. [Auto] automatically assigns the sub-datasheet name based on
relationships set up in the database. To display a list of Tables and Queries in the
database, click anywhere in the Subdatasheet Name field and a combo box displays,
as shown in Figure 4-13.

Figure 4-13: Displaying Table and
Query names that may be linked to
the tblSales table. In this case, it is
selecting Table.tblSalesLineItems.

Entering the Link Child Fields and the Link Master Fields
The Link Child Fields and Link Master Fields property settings (immediately below
the Subdatasheet Name property) must have the same number of fields and must
represent data of the same type. For example, in this case, the tblSales (Master)

150 Part I, Section I ✦ Working with Data Tables and Queries

table and the tblSalesLineItems (Child) table have different field names (one each)
that contain the same type of data, Access will automatically pull the correct field
name into these properties from the Relationship builder that you just created —
lngzInvoiceNumber for Link Child Fields and idsInvoiceNumber for Link Master
Fields. The subform will automatically display all the tblSalesLineItems found for
each record identified in the main table’s (tblSales) Invoice Number field.

Although the data must match, the names of the fields can differ, as in the example
above.

If you change the name of either or both fields in the tables (which we don’t recom-
mend), you will have to enter these field names into the correct property.

Without the link fields entered, no records will be displayed when you try to display
your sub-datasheet for the tblSales table because Access doesn’t know what fields
to automatically link (they would have to be the same name).

If you have not set the link between tables and you have created your relationship
diagram, Access 2003 may still display the plus sign. If you click on the plus sign
in datasheet mode, Access will display an Insert Subdatasheet dialog box like
the one in Figure 4-14. Simply select the table you want to link (such as
tblSalesLineItem), and Access will associate the correct property value in the sheet
for you.

Figure 4-14: The Insert Subdatasheet
dialog box.

Entering a Subdatasheet Height
The property for the Subdatasheet Height has a default value of 0 inches. This will
show you the related records in a sheet that is up to 2 inches high. If the records
don’t fit in this space, scroll bars permit a view of all the records.

Caution

151Chapter 4 ✦ Creating and Understanding Relationships

To change the height to a smaller or larger number, type in your preferred height in
inches.

Expanding the Subdatasheet
The Subdatasheet Expanded field is a Yes/No field. If you have Yes entered in this
field, the sub-datasheets are expanded, as shown in Figure 4-15.

Figure 4-15: Viewing data in a datasheet with the Subdatasheet Expanded
option set to Yes in the Table Properties from the Table Design window.

✦ ✦ ✦

Displaying
Selected Data
with Queries

In this chapter, you learn what a query is and you learn
about the process of creating queries. Using the Sales

(tblSales), Contacts (tblContacts), Sales Line Items
(tblSalesLineItems), and Products (tblProducts) tables, you
create several types of queries for the Access Auto Auctions
database.

This chapter will use the database named CHAP05Start.
mdb. If you have not already copied it onto your machine
from the CD, you will need to do so now. After you have
completed this chapter, your database should resemble
the one in CHAP05End.mdb.

Understanding Queries
A database’s primary purpose is to store and extract informa-
tion. Information can be obtained from a database immediately
after you enter the data or years later. Of course, obtaining
information requires knowledge of how the database is set up.

For example, reports may be filed manually in a cabinet,
arranged first by order of year and then by a sequence number
that indicates when the report was written. To obtain a spe-
cific report, you must know its year and sequence number. In
a good manual system, you may have a cross-reference book
to help you find a specific report. This book may have all
reports categorized alphabetically by type of report (rather
than topic). Such a book can be helpful, but if you know only
the report’s topic and approximate date, you still may have to
search through all sections of the book to find out where to
obtain the report.

On the
CD-ROM

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
the different types
of queries

Creating queries

Selecting tables and
fields for queries

Displaying
information in queries

Sorting information
in queries

Selecting specific
records in queries

Printing the results
of queries

Adding more than
one table to a query

Working around
query limitations

Understanding
types of joins

Changing the
type of join

Creating an inner
join and an outer join

✦ ✦ ✦ ✦

154 Part I, Section I ✦ Working with Data Tables and Queries

Unlike manual databases, computer-automated databases can easily obtain infor-
mation to meet virtually any criteria you specify.

This is the real power of a database — the capacity to examine the data any way
you want to look at it. Queries, by definition, ask questions about the data stored
in the database. After you create a query, you can use its data for reports, forms,
and graphs.

What is a query?
The word query is from the Latin word quærere, which means to ask or inquire. Over
the years, the word query has become synonymous with quiz, challenge, inquire, or
question. Therefore, you can think of a query as a question or inquiry posed to the
database about information found in its tables.

A Microsoft Access query is a question that you ask about the information stored
in your Access tables. The way you ask questions about this information is by using
the query tools. Your query can be a simple question about information stored in
a single table, or it can be a complex question about information stored in several
tables. After you ask the question, Microsoft Access returns only the information
you requested.

Using queries this way, you can ask the Access Auto Auctions database to show
you only the trucks that were sold in the year 2003. To see the types of trucks sold
for the year 2003, you need to retrieve information from three tables — tblSales,
tblSalesLineItems, and tblProducts tables. Figure 5-1 is a typical Query Design
window. Although it may look complex, it is actually very simple and easy to
understand.

After you create and run a query, Microsoft Access will retrieve and display the
set of records you asked for in a datasheet. This set of records is called a dynaset,
which is the set of records selected by a query. As you’ve seen, a datasheet looks
just like a spreadsheet, with its rows of records and columns of fields. The datasheet
(of the dynaset) can display many records simultaneously.

You can easily query information from a single table using the Search and Filter
capabilities of the datasheet view of a table (Filter by Selection and Filter by Form,
as you did in Chapter 3). Using a query, you can view information from one table,
or you can create a query and view common information from two or more tables
at the same time (as in Figure 5-1). Many database queries will require information
from several tables.

If you click the Datasheet View button on the toolbar, you will see that the query
shows six records that match the query that was designed in Figure 5-1. This is a
relatively easy query to design when you understand how the query design tool
works. This query design has many of the elements present that show the power of
the Access query engine — sorting a resulting dynaset, specifying multi-field crite-
ria, and even using a complex Or condition in one of those fields.

155Chapter 5 ✦ Displaying Selected Data with Queries

Figure 5-1: A typical three-table select query. This query will
display the sales date, number of trucks, and type of truck for
all trucks sold in the year 2003.

Access will let you build very complex queries using these same tools. Suppose, for
example, that you want to send a notice to all previous buyers of more than one car
in the past year that 11 new cars are up for auction. This type of query requires get-
ting information from four tables: Contacts, Sales, Sales Line Items, and Products —
although the main information you are looking for is in Contacts and Products.

In this case, you want Access to show you a datasheet of all Contact names and
addresses where they have met your specified criteria (two or more cars pur-
chased in 2003). Access can retrieve customer names and cities from the Contacts
table and then obtain the number of cars from the Products table and the year of
sale from the Sales table. Figure 5-2 shows this complex query. Access then takes
the information that’s common to your criteria, combines it, and displays all the
information in a single datasheet. This datasheet is the result of a query that draws
from the tblContacts, tblSales, tblSalesLIneItems, and tblProducts tables. The
database query performed the work of assembling all the information for you.
Figure 5-3 shows the resulting datasheet.

Figure 5-2: A complex query of customers that purchased more than one
car in the year 2003.

Note

156 Part I, Section I ✦ Working with Data Tables and Queries

Figure 5-3: The resulting datasheet of customers that purchased more than
one car in the year 2003.

As you learned in Chapter 3, you can use filters and filter by form to manipulate a
single table. So, in this chapter, you will work with several tables — the tblContacts,
tblSales, tblSalesLineItem, and tblProducts tables.

Types of queries
Access supports many different types of queries. They can be grouped into six
basic categories:

✦ Select. These are the most common types of query. As its name implies, the
select query selects information from one or more tables (based on specific
criteria), creating a dynaset and displaying this information in a datasheet
that you can use to view and analyze specific data; you can make changes
to your data in the underlying tables.

✦ Total. These are special versions of select queries. Total queries provide the
capability to sum or produce totals (such as count) in a select query. When
you select this type of query, Access adds a Total row in the QBE (Query by
Example) pane.

✦ Action. These queries enable you to create new tables (Make Tables) or
change data (delete, update, and append) in existing tables. When you make
changes to records in a select query, the changes must be made one record
at a time. In action queries, changes can be made to many records during a
single operation.

✦ Crosstab. These queries can display summary data in cross-tabular form like
a spreadsheet, with the row and column headings based on fields in the table.
By definition, the individual cells of the resultant dynaset are tabular — that
is, computed or calculated.

✦ SQL. There are three SQL (Structured Query Language) query types — Union,
Pass-Through, and Data Definition — which are used for advanced SQL database
manipulation (for example, working with client/server SQL databases). You can
create these queries only by writing specific SQL commands.

Cross-
Reference

157Chapter 5 ✦ Displaying Selected Data with Queries

✦ Top(n). You can use this query limiter only in conjunction with the other five
types of queries. It enables you to specify a number or percentage of the top
records you want to see in any type of query.

Query capabilities
Queries are flexible. They provide the capability of looking at your data in virtually
any way you can think of. Most database systems are continually evolving, develop-
ing more powerful and necessary tools. The original purpose they are designed for
changes over time. You may decide that you want to look at the information stored
in the database in a different way. Because information is stored in a database, you
should be able to look at it in this new way. Looking at data in a way that’s different
from its intended manner is known as performing ad hoc queries. Querying tools
are among the most powerful and flexible features of your Access database. Here
is a sampling of what you can do:

✦ Choose tables. You can obtain information from a single table or from many
tables that are related by some common data. Suppose you’re interested in
seeing the customer name along with the items purchased by each customer
(from the tblContacts where type is a buyer or both). When using several
tables, Access returns the data in a combined single datasheet.

✦ Choose fields. You can specify which fields from each table you want to see in
the resultant dynaset. For example, you can look at the customer name, cus-
tomer ZIP code, Sales date, and Invoice Number separated from all the other
fields in the tblContacts or tblSales table.

✦ Choose records. You can select the records to display in the dynaset by speci-
fying criteria. For example, you may want to see records for Sellers only in the
tblContacts.

✦ Sort records. You may want to see the dynaset information sorted in a specific
order. You may need, for example, to see customers in order by last name and
first name.

✦ Perform calculations. You can use queries to perform calculations on your
data. You may be interested in performing such calculations as averaging,
totaling, or simply counting the fields.

✦ Create tables. You may need another database table formed from the com-
bined data resulting from a query. The query can create this new table based
on the dynaset.

✦ Create forms and reports based on a query. The dynaset you create from
a query may have just the right fields and data that you need for a report or
form. When you base your form or report on a query, every time you print the
report or open the form, your query will retrieve the most current information
from your tables.

158 Part I, Section I ✦ Working with Data Tables and Queries

✦ Create graphs based on queries. You can create graphs from the data in a
query, which you can then use in a form or report.

✦ Use a query as a source of data for other queries (subquery). You can create
additional queries based on a set of records that you selected in a previous
query. This is very useful for performing ad hoc queries, where you may
repeatedly make small changes to the criteria. The secondary query can be
used to change the criteria while the primary query and its data remain intact.

✦ Make changes to tables. Access queries can obtain information from a wide
range of sources. You can ask questions about data stored in dBASE, Paradox,
Btrieve, and Microsoft SQL Server databases.

How dynasets work
Access takes the records that result from a query and displays them in a datasheet,
in which the actual records are called a dynaset. Physically, a dynaset looks like a
table; in fact, it is not a table. The dynaset is a dynamic (or virtual) set of records.
This dynamic set of records is not stored in the database.

When you close a query, the query dynaset is gone; it no longer exists. Even though
the dynaset itself no longer exists, the data that formed the dynaset remains stored
in the underlying tables.

When you run a query, Access places the resultant records in the dynaset. When
you save the query, the information is not saved; only the structure of the query is
saved — the tables, fields, sort order, record limitations, query type, and so forth.
Consider these benefits of not saving the dynaset to a physical table:

✦ A smaller amount of space on a storage device (usually a hard disk) is needed.

✦ The query uses updated versions of any records changed since the query was
last run.

Every time the query is executed, it reads the underlying tables and re-creates
the dynaset. Because dynasets themselves are not stored, a query automatically
reflects any changes to the underlying tables made since the last time the query
was executed — even in a real-time, multi-user environment.

Creating a Query
After you create your tables and place data in them, you are ready to work with
queries. To begin a query, follow these steps:

1. From the Database window, click the Queries Objects button.

2. Click the New button, which is the third button from the left.

Note

159Chapter 5 ✦ Displaying Selected Data with Queries

The New Query dialog box appears, as shown in Figure 5-4. You select from
the five choices. The first choice displays the Query Design window.

3. Select Design View and click the OK button.

Figure 5-4: The New Query dialog box
is activated by clicking the New button
in the query container.

Figure 5-5 shows two windows. The underlying window is the Query Design window
(titled Query1: Select Query). The accompanying Show Table dialog box is nonmodal,
which means that you must do something in the dialog box before continuing with
the query. Before you continue, you should add tables for the query to work with;
in this case, the tblProducts table is highlighted to be added.

Figure 5-5: The Show Table dialog box in the Query Design window.

Selecting a table
The Show Table dialog box shown in Figure 5-5 displays all tables and queries in
your database. You should see all the tables in the CHAP05Start database. You can
add the tblProducts table to the query design with these steps:

160 Part I, Section I ✦ Working with Data Tables and Queries

1. Select the tblProducts table from the Show Table dialog box.

2. Click the Add button to add the tblProducts table to the Query Design window.
Or you can double-click the table name instead of pressing the Add button.

3. Click the Close button.

Figure 5-6 shows the tblProducts table added to the query design surface, in the
upper pane of the window.

Figure 5-6: The Query Design window with the tblProducts
table in the upper pane and the bottom pane currently empty.
Notice that the bar between the two panes is dark: This is the
pane-resizing bar that has been clicked to activate it.

When starting a new query, you can alternatively click the New Object button on
the toolbar of the Database window (when the Query container is active) and
choose Query. If you have already selected and opened a table or query before you
start a new query, Access will assume you want to use the table or query already
opened and load the selected table or query automatically.

While in Query Design mode, you can activate the Show Table dialog box to add
more tables at any time; select Query ➪ Show Table or click the Show Table button
(picture of table with plus sign).

You can also add tables by moving the mouse to any empty place in the top-half
of the window (the Table/Query pane) and clicking the right mouse button to acti-
vate the shortcut menu. Then select Show Table.

When you want to delete a table from the Table/Query pane (top pane of the Query
Design window), click the table name in the query/table entry pane (the upper por-
tion of the window shown in Figure 5-6 — currently containing a single table, named
tblProducts) and either click Delete or select Query ➪ Remove Table.

Tip

Tip

161Chapter 5 ✦ Displaying Selected Data with Queries

You also can add a table to the Query/Table Pane by selecting the Database win-
dow and dragging and dropping a table name from the Tables window into the
Query window.

Using the Query window
The Query window has two main views, the Design View and the Datasheet View.
The difference between them is self-explanatory: The Design View is where you
create the query, and the Datasheet View is where you display the query’s dynaset.

The Query Design window should now look like Figure 5-6, with the tblProducts
table displayed in the top half of the Query Design window.

The Query Design window is currently in the Design View; it consists of two panes:

✦ The table/query entry pane

✦ The Query by Example (QBE) design pane (also called the QBE grid)

The table/query entry pane, the upper pane, is where tables and/or queries and
their design structures are displayed. The visual representation of the table is a
small window inside the table/query entry pane. It shows the table name in the
title bar of this small window and displays all the fields in the listbox of the window.
This window can be resized by clicking on the edges and dragging it right or down
to make it wider or longer.

The Query by Example (QBE) pane, the lower pane, is used for holding the field
names that will be displayed and any criteria that will be used by the query. Each
column in the QBE design pane contains information about a single field from a
table or query in the upper pane.

Navigating the Query Design window
The title bar at the top of the Query Design window bears information about a par-
ticular window, the type of query, and the query name. Any new query is named
Query1. Note that the title bar in Figure 5-6 displays the query type and name as
Query1: Select Query.

The two windowpanes are separated horizontally by a pane-resizing bar. This bar, the
dark line between the panes in Figure 5-6, is used to resize the panes. To enlarge the
upper pane, click the bar and drag it down or drag the bar up to enlarge the lower
pane. When you move the mouse pointer over the pane-resizing bar, the pointer
turns into a small line with an arrow pointing up and another pointing down.

You switch between the upper and lower panes either by clicking the desired pane
or by pressing F6 to move to the other pane. Each pane has scrollbars to help you
move around.

Tip

162 Part I, Section I ✦ Working with Data Tables and Queries

If you make the tblProducts design structure longer, you can see more fields at one
time. If you make it wider, you can see more of a field’s name. To see more fields,
first make the top pane larger; then size the tblProducts structure vertically.

You write the query by dragging fields from the upper pane to the lower pane of the
Query window.

After placing fields on the QBE pane (lower pane), you can set their display order
by dragging a field from its current position to a new position in the pane.

Using the Query Design toolbar
The toolbar in the Query Design window contains several buttons specific to build-
ing and working with queries, as shown in Figure 5-7.

Figure 5-7: The default Query Design toolbar, with
21 buttons visible.

This toolbar has many buttons that can be helpful when designing your queries.
Although they will be used and explained as they are used in the query chapters of
this book, the primary buttons that will be used are listed below:

✦ View (first button). This button is used to switch between the Datasheet View
and Design View of the query. It also enables you to display the underlying
SQL statement that was created in the Query (more on this later).

✦ Save (second button). This button is used to save the query as you are work-
ing on it. It is a good idea to save your work often, especially when creating
complex queries.

✦ Query Type (twelfth button). The button with two datasheets overlapping
each other with a pull-down menu arrow is the Query type menu. It can be
found underneath the Window menu item on the menu bar. It is used to spec-
ify the type of query you want to create.

✦ Run (thirteenth button, an exclamation point). This button is used to run a
query. When working with Select Queries, as in this chapter, it simply displays
the datasheet — serving the same function as the View button (first button).
However, when working with action queries that will be covered in later chap-
ters, it will actually run the series of actions specified by the user in the query.

✦ Show Table (fourteenth button). This button will activate the Show Table dia-
log box and enable you to add additional tables to the query.

Tip

Tip

163Chapter 5 ✦ Displaying Selected Data with Queries

The remaining buttons are used for more advanced queries, creating quick reports
and forms, showing the database window, printing the contents of the query, or
copy/paste actions.

Using the QBE pane of the Query Design window
As you saw earlier, Figure 5-6 displays an empty Query Design pane (QBE grid),
which has six named rows:

✦ Field. This row is where field names are entered or added.

✦ Table. This row shows the table the field is from (useful in queries with multi-
ple tables).

✦ Sort. This row enables you to enter sort directives for the query.

✦ Show. This check box determines whether to display the field in the resulting
dynaset.

✦ Criteria. This row is where you enter the first line of criteria to limit the
record selection.

✦ Or. This row is the first of a number of rows to which you can add multiple
values to be used in criteria selection.

You learn more about these rows as you create queries in this chapter.

Selecting Fields
There are several ways to add fields to a query. You can add fields one at a time,
select and add multiple fields, or select and add all fields. You can use your key-
board or mouse to add the fields.

Adding a single field
You can add a single field in several ways. One method is to double-click the field
name in the field list (also called a table window); the field name will immediately
appear in the first available column in the QEB pane. You can also add a field graph-
ically to the QEB pane by following these steps:

1. Highlight the field name in the table window located in the table/query entry
area — in this case, the chrDescription field.

2. Click the chrDescription field, and while holding the pointer down, drag the
Field icon, which appears as you move the mouse, toward the QBE Design pane.

3. Drop the Field icon in the desired column of the QBE Design pane.

164 Part I, Section I ✦ Working with Data Tables and Queries

The Field icon looks like a small rectangle when it is inside the tblProducts table.
As the mouse is dragged outside the tblProducts table, the icon changes to a circle-
with-slash (the international symbol for “no”), which means that you cannot drop
the Field icon in that location. When this icon enters any column in the QBE column,
the field name appears in the Field: row.

If you drop the Field icon between two other fields, it appears between those fields
and pushes all existing fields to the right.

If you select a field accidentally, you can de-select it by releasing the mouse button
while the icon is the No symbol.

Another way to add fields to the QBE Design pane is to click an empty Field: cell in
the QBE Design pane and then type the field name in the field cell. Another method
is to select the field you want from the drop-down list that appears when you click
the down arrow button in the Field: cell of the QBE pane. Figure 5-8 shows selecting
the chrDescription field from the drop-down list. Once selected, simply move to the
next field cell and select your next field you wish to see in the query.

Figure 5-8: Adding fields in the QBE Design pane (grid).
In the first column of the QBE pane, lower half, clicking the
down arrow reveals a drop-down list from which you can
select a field.

After you have selected your fields, you can run your query to see the results. To
run the query, click the Datasheet button on the toolbar (the first icon from the left).
When you are finished, click the Design button on the toolbar (the first one on the
left) to return to design mode. You can also run the query by clicking the Run icon
on your toolbar with the exclamation point on it, or by selecting Query ➪ Run. To
return to the design window, click the Design View button on your toolbar (the first
icon from the left).

Tip

Note

165Chapter 5 ✦ Displaying Selected Data with Queries

Adding multiple fields
You can add more than one field at a time by selecting the fields you want to place
in the query and then dragging and dropping the selection in the QBE pane. The
selected fields do not have to be contiguous (one after the other). Figure 5-9 illus-
trates the process of adding multiple fields. Notice that three of the fields are con-
tiguous and the fourth is further down in the table structure.

Figure 5-9: Selecting several fields graphically to move to the
QBE Design pane. Notice that the field icon comprises three
fields, which tells you that you are adding more than one field
to the QBE pane.

To add multiple contiguous fields, follow these steps:

1. Remove any existing fields in the QBE pane by selecting Edit ➪ Clear Grid from
the menu.

2. Highlight in the table/query entry area the first field name that you want to
add — in this case, chrDescription.

3. Hold the Shift key down and click the last field that you want to select — in
this case, intQtyInStock. (All the fields in between will be selected as well.)

4. Click the selected fields and drag the Multiple Field icon, which appears as
you move the mouse. The icon appears as a group of three field icons.

5. Drop the Multiple Field icon in the desired column of the QBE Design pane.

To add multiple noncontiguous fields to the query, follow these steps:

1. Remove any existing fields in the QBE pane by selecting Edit ➪ Clear Grid from
the menu.

2. Highlight in the table/query entry area the first field name that you want to
add; for this example, click the chrDescription field.

166 Part I, Section I ✦ Working with Data Tables and Queries

3. Hold the Ctrl key down and click each field that you want to select. (Only the
fields you select are highlighted.) For this example, click the chrCategory,
intQtyInStock, and curSalePrice fields.

4. Click the selected fields and drag the Multiple Field icon, which appears as
you move the mouse. The icon appears as a group of three field icons.

5. Drop the Multiple Field icon in the desired column of the QBE Design pane.

Notice that in the second example, you selected three fields that were contiguous —
using the non-contiguous method. You can select any field using the Ctrl key —
contiguous or non-contiguous — but you can select only one field at a time.

Adding all table fields
In addition to adding fields (either in groups or individually), you can move all the
fields to the QBE pane at once. Access gives you two methods for choosing all fields:
dragging all fields as a group or selecting the all-field reference tag — the asterisk (*).

Dragging all fields as a group
To select all the fields of a table, perform these steps:

1. Remove any existing fields in the QBE pane by selecting Edit ➪ Clear Grid from
the menu.

2. Double-click the title bar of the table to select all the fields.

3. Point to any of the selected fields with the mouse.

4. Drag the Multiple Field icon to the QBE pane.

This method fills in each column of the QBE pane automatically. All the fields are
added to the QBE pane from left to right, based on their field order in the tblProducts
table. By default, Access displays only the fields that can fit in the window. You can
change the column width of each field to display more or fewer columns.

Selecting the all-field reference tag
The first object (above the field names) in the tblProducts table is an asterisk, which
appears at the top of the field list. When you select all fields by using the asterisk,
you don’t see the fields in the QBE Design pane; tblProducts.* in the Field: row indi-
cates that all tblProducts table fields are selected. (This example assumes that the
QBE Design pane is empty when you drag the asterisk from the tblProducts table to
the QBE Design pane.)

The asterisk places the fields in a single Field: cell. Dragging multiple fields with the
first technique added actual table field names to the Query Design window; each
field is in a separate Field: cell across the QBE pane. If you change the table design

167Chapter 5 ✦ Displaying Selected Data with Queries

later, you must change the design of the query, too. By using the asterisk for select-
ing all fields, you won’t have to change the query later if you add, delete, or rename
fields in the underlying table or query. (Access automatically adds or removes
fields that change in the underlying table or query.)

To add the all-fields reference tag to the Query Design pane, follow these steps:

1. Remove any existing fields in the QBE pane by selecting Edit ➪ Clear Grid from
the menu.

2. Click the asterisk (*) in the tblProducts table to select this field.

3. Click the selected field and drag the Field icon to the first cell in the QBE
Design pane.

The all-fields reference tag is in the QBE pane. This query displays the tblProducts
fields.

Displaying the Dynaset
With the all fields reference tag (asterisks) selected, display the resultant dynaset
by selecting either View ➪ Datasheet View or the Datasheet button on the toolbar.
The datasheet should look like the one shown in Figure 5-10. You can also display
the dynaset by clicking the exclamation point icon or selecting Query ➪ Run from
your Access menu.

Figure 5-10: The datasheet of the tblProducts table with all
the fields selected for the query using the asterisks, or all-field
reference tag (*).

168 Part I, Section I ✦ Working with Data Tables and Queries

Working with the datasheet
Access displays the dynaset (resulting view of records of the query) in a datasheet.
The techniques for navigating a query datasheet, as well as for changing its field
order and working with its columns and rows, are exactly the same as for the other
datasheets you worked with in Chapter 3.

Access enables you to sort and filter the results of a datasheet created by a query.
All data in Access is editable all the time.

Changing data in the query datasheet
The query datasheet offers you an easy and convenient way to change data quickly.
You can add and change data in the dynaset, and it will be saved to the underlying
tables.

When you’re adding or changing data in the datasheet, all the table properties
defined at the table level are in effect.

Returning to the query design
To return to the query design mode, select the Design View button on the toolbar
(the first button on the left).

You can also toggle between the design and datasheet mode by selecting View ➪
Datasheet View or View➪ Design View from the Query menu.

Clear the query grid by selecting Edit ➪ Clear Grid. Next, add all the fields to the
query grid by double-clicking the tblProducts data structure title bar and dragging
all the selected fields to the query grid.

Working with Fields
There are times when you want to work with the fields you’ve already selected —
rearranging their order, inserting a new field, or deleting an existing field. You may
even want to add a field to the QBE pane without showing it in the datasheet.

Selecting a field
Before you can move a field’s position, you must first select it. To select it, you will
work with the field selector row.

Caution

Tip

169Chapter 5 ✦ Displaying Selected Data with Queries

The field selector row is the narrow gray row above the Field: row of each column.
This row is approximately half the size of the others; it’s important to identify this
row because this is where you select columns, either single or multiple columns.
Recall that each column represents a field. To select the chrCategory field, move
the mouse pointer until a small selection arrow (in this case, a dark downward
arrow) is visible in the selector row and then click the column. Figure 5-11 shows
the selection arrow above the chrCategory column just before it is selected.

Figure 5-11: Selecting a column in the QBE pane. The pointer
changes to a down-pointing arrow when you move over
the selection row. After the arrow changes, you can click the
selection row and the entire column will be highlighted.

You can select multiple contiguous fields by clicking the first field you wish to select
and then dragging across the field selector bars of the other fields.

Extend mode will also enable you to chose more than one contiguous field in the
QBE pane. If extend mode (F8) is on, you must first move the cursor into the col-
umn of the field that you wish to select (by clicking in any field) This moves the
insertion point (I cursor) into the row whose column you want to select. If the
insertion point is in an adjacent column and you select a column, you will select
the adjacent column (containing the insertion point) as well. To deactivate extend
mode (EXT), press the Esc key. You can see that EXT mode is active by looking at
the bottom frame of Access — the letters EXT will be active on the right side of the
frame (about a quarter of the way in).

Caution

Tip

170 Part I, Section I ✦ Working with Data Tables and Queries

Changing field order
After your fields are selected, you can move them. (Of course, you could delete all
the fields and conditions and start the query over — although this method can be
bothersome.) With the fields selected, you can move the fields on the QBE design
by simply dragging them, as you have learned to move columns in a datasheet.
Follow these steps to move a field:

1. Add several fields to the QBE pane.

2. Select the field you want to move (chrCategory) by clicking the field selector
above the field name. The column is highlighted — as the chrCategory field is
in Figure 5-12.

3. Click and hold the field selector again; the QBE Field icon, a small graphical
box, appears under the arrow.

4. While holding down the left mouse button, drag the column to its new posi-
tion (in this case, to the left of chrDescription).

5. Release the left mouse button to drop the field in its new position.

Figure 5-12 shows the chrCategory field highlighted (selected). As you move the
selector field to the left, the column separator between the fields chrProduct and
chrDescription changes (gets wider) to show you where chrCategory will go.

Figure 5-12: Moving the chrCategory field to between
chrProduct and chrDescription. Notice the QBE field icon
below the arrow near the chrDescription column.

Resizing columns in design mode
The QBE pane generally shows about five or six field columns in the viewable area
of your screen — the remaining fields can be viewed by moving the horizontal scroll
bar along the bottom of the window.

171Chapter 5 ✦ Displaying Selected Data with Queries

There are times that you may want to show more fields than those visible on the
screen. You can resize the width of the field columns to make them smaller (or larger
to show less) by moving the mouse pointer between the field selectors of the fields
you want to adjust. After you have moved it between the two field selectors, the
pointer turns into a thick vertical bar with arrows pointing to the left and right.
With the sizing pointer, you can drag left or right to adjust the width of the column.

Removing a field
You can remove a field from the QBE Design pane. Select the field or fields to be
deleted in the QBE Design pane, and then press Delete or select Edit ➪ Delete. To
remove the curCost field from the QBE Design pane, follow these steps:

1. Select the curCost field (or any other field) by clicking the field selector above
the field name.

2. Press Delete.

If the field is not selected but the insertion point is in it, you can select Edit ➪
Delete Columns. You can delete all the fields in the QBE Design pane in a single
operation: Select Edit ➪ Clear Grid from the Query Design window’s menu bar.

Inserting a field
You insert fields from the table/query entry pane in the QBE Design pane by select-
ing field(s) from the table/query entry pane and then dragging your selection to the
QBE Design pane. These steps insert the Customer Number field:

1. Select the curCost field from the field list in the table/query entry pane (top
pane).

2. Drag the field to the column where you want the field. If it is to go between
two columns, put it to the left side of the column you want it to go before.

3. Drop the field by releasing the left mouse button.

Dragging a field to the QBE Design pane inserts it where you drop the field. If you
drop it on another field, it is inserted before that field. Double-clicking the field in
the table/query entry pane appends the field to the Field: list in the QBE Design pane.

Changing the field display name
To make the query datasheet easier to read, you can rename the fields in your
query. The new names become the tag headings in the datasheet of the query. To
follow along with this example, create a query using the fields from the tblProducts
as shown in Figure 5-12. To rename the field chrProductID to Product ID and
chrDescription to Description, follow these steps:

Tip

172 Part I, Section I ✦ Working with Data Tables and Queries

1. Click to the left of the ‘c’ of chrProductID in the Field: row of the QBE Design pane.

2. Type Product ID and a colon (:) between the new name and the old field name.

3. Click to the left of the ‘c’ in chrDescription and type in Description:.

The heading now is Product ID:chrProductID and Description:chrDescription. When
the datasheet appears, you see Product ID and Description.

Changing the datasheet caption changes only the name of the heading for that
field in the datasheet. It does not change the field name in the underlying table.

Showing table names
Multiple tables can make it difficult to determine where a field has come. That’s
why the Table: row automatically shows where a field came from.

When you select a field for display in the QBE pane, the name of the source table is
shown in the row directly below the field name. If you want to hide this row, click
View ➪ Table Names as shown in Figure 5-13. The row with the table names disap-
pears. To view the tables, follow the same procedure to turn it on. As Figure 5-13
shows, the table names are in the row immediately below the field name. Looking
closely at the QBE pane, you can see the field name chrLastName and chrFirstName
in the first row (Field:), and immediately below them is the name of the table
tblContacts; moving to the rightmost field in view, dtmSalesDate, has the table
tblSales in the Table: row.

Figure 5-13: View/Hide Table: Row. You can hide the Table: row by selecting
View ➪ Table Names from the Access Menu.

Note

173Chapter 5 ✦ Displaying Selected Data with Queries

Showing a field
While performing queries, you may want to temporarily show only some of the
fields. Suppose, for example, you use the tblContacts table and select several fields
to display — chrContactType, chrLastName, chrFirstName, chrAddress, chrCity,
and chrState. Then you decide that you want to temporarily look at the same data,
less the chrContactType and chrAddress fields. You can start with a new query,
deleting all the fields in the QBE pane, or you can simply indicate which fields you
want to see in the datasheet by de-selecting the Show: box for the fields you do not
want to see.

When you select fields, Access automatically makes every field a displayed field.
Every Show: property is displayed with a check mark in the box.

To de-select a field’s Show: property, simply click the field’s Show: box, and the box
clears. As you see in Figure 5-14, two fields have their Show: box de-selected. To re-
select the field later, simply click the Show: box again.

Figure 5-14: The Show: row is checked only for the fields
chrLastName, chrFirstName, chrCity, and chrState. The other
fields shown, chrContactType and chrAddress, have the Show:
check box unchecked.

If you save a query that has an unused field (its Show: box is unchecked), Access
eliminates the field from the query pane.

Changing the Sort Order
When viewing a dynaset, you may want to display the data in a sorted order. You
may want to sort the dynaset to make it easier to analyze the data (for example,
to look at all the tblProducts in order by Category).

Sorting places the records in alphabetical or numeric order. The sort order can be
ascending (0 to 9 and A to Z) or descending (9 to 0 and Z to A). You can sort by a
single field or sort using several fields.

Just as Access has a Show: property row for fields, there is a Sort: property row for
fields in the QBE Design pane. In the following section, you learn to set this property.

Caution

174 Part I, Section I ✦ Working with Data Tables and Queries

Specifying a sort
To sort the records in the datasheet of Figure 5-14 by chrLastName and then by
chrFirstName in ascending order, perform these steps:

1. Using the same query in Figure 5-14, click the Sort: cell for the chrLastName
field. An arrow appears in the cell.

2. Click the down arrow at the right of the cell.

3. Select Ascending from the list.

4. Click in the Sort: cell for the chrFirstName field.

5. Select Ascending from the list.

Figure 5-15 shows the QBE pane with the two fields chrLastName and chrFirstName
set to Ascending order. Notice that the chrFirstName field is still showing the sort
options available. Also notice that the word Ascending is being selected in the field’s
Sort: cell.

You cannot sort on a Memo or an OLE object field.

Figure 5-15: The chrLastName and chrFirstName fields have been
selected to sort by Ascending order (0 to 9, A to Z).

If you sort on more than one field, the fields must be in order from left to right of
the sort order you want. That is, in the example of Figure 5-15, the Last Name field
must be to the left of the First Name field. Otherwise, Access will sort by first name
and then last name.

Access always sorts the leftmost sort field first — this is known as sort order prece-
dence. To make sure that Access understands how you want to sort your data, you
must arrange the fields in order from left to right according to sort-order precedence.
You can easily change the sort order by selecting a sort field and moving it relative
to another sort field. Access corrects the sort order automatically.

If you click on the datasheet button to display the results of the sort of two fields, you
will notice that the dynaset is arranged in order by two different fields. Figure 5-16
shows the multiple-field sort dynaset. The sort order is controlled by the order of
the fields in the QBE pane (from left to right); therefore, this dynaset is displayed in
order first by Last Name and then by First Name.

Caution

Note

175Chapter 5 ✦ Displaying Selected Data with Queries

Figure 5-16: Multiple-field sort criteria. The order of the fields
is critical. It will sort first by the left-most field and then sub-sort
by the next field to the right.

Displaying Only Selected Records
So far, you’ve been working with all the records of the Contacts and Products tables.
There are times when you may want to work only with selected records in these
tables. For example, you may want to look only at records where the value of
chrContactType is Buyer. Access makes it easy for you to specify a record’s criteria.

If you are following along with the examples, start a new query using the tblProducts
table and select all the fields before continuing.

Understanding record criteria
Record criteria are simply some rule or rules that you supply for Access to follow.
These criteria tell Access which records you want to look at in the dynaset. A typical
criterion could be “all Sellers,” or “only those vehicles that are not Trucks,” or “cars
whose retail price is greater than $45,000.”

In other words, with record criteria, you create limiting filters to tell Access which
records to find and which to leave out of the dynaset.

You specify criteria starting in the Criteria: property row of the QBE pane. Here you
designate criteria with an expression. The expression can be simple example data
or can take the form of complex expressions using predefined functions.

As an example of a simple data criterion using the tblProducts table, you could type
“TRUCKS” in the Criteria: cell of chrCategory and the datasheet displays only records
for Trucks.

Tip

176 Part I, Section I ✦ Working with Data Tables and Queries

Entering simple character criteria
Character-type criteria are entered into fields that accommodate the Text data type.
To use such criteria, type in an example of the data contained within the field. To
limit the record display in the tblProducts table to CARS, follow these steps:

1. Select the tblProducts and add these fields to the QBE Design pane —
chrDescription, chrCategory, and curCost.

2. Click the Criteria: cell in the chrCategory column in the QBE Design pane.

3. Type CARS in the cell.

4. Click the Datasheet button.

Only the cars are displayed — in this case, 26 records. Observe that you did not
enter an equal sign or place quotes around the sample text, yet Access added dou-
ble quotes around the value. Access, unlike many other applications, automatically
makes assumptions about what you want. This is an illustration of its flexibility. You
could enter the expression in any of these other ways:

✦ CARS

✦ = CARS

✦ “CARS”

✦ = “Cars”

Access is NOT case sensitive, so you can type any of the following for CARS and it
will only find cars — CaRs, CARS, cars, Cars, carS, or any other combination of upper-
case and lowercase.

In Figure 5-17, the expression “CARS” is entered under chrCategory; the double
quote marks were placed around the example “CARS” automatically by Access.

Figure 5-17 is an excellent example for demonstrating the options for various types
of simple character criteria. You could just as well type Not Cars in the criteria col-
umn, to say the opposite. In this instance, you would be asking to see all records for
vehicles that are not cars, adding only Not before the example text CARS.

Generally, when dealing with character data, you enter equalities, inequalities, or a
list of values that are acceptable.

With either of these examples, Cars or Not Cars, you entered a simple expression in
a Text-type field. Access took your example and interpreted it to show you all records
that equal the example data you placed in the Criteria: cell.

Tip

177Chapter 5 ✦ Displaying Selected Data with Queries

Figure 5-17: Specifying character criteria. You can type an example
of the type of records you want to view. In this case, all CARS —
so you type CARS in the criteria field of the chrCategory field.

This capability is a powerful tool. Consider that you have only to supply an example
and Access not only interprets it but also uses it to create the query dynaset. This
is exactly what Query by Example means: You enter an example and let the database
build a query based on this data.

To erase the criteria in the cell, select the contents and press Delete, or select the
contents and select Edit ➪ Delete from the Query Design window’s menu bar. You
can also select Edit ➪ Undo Cell Edit to revert to the previous content (in this case,
a blank cell).

Entering other simple criteria
You can also specify criteria for Numeric, Date, and Yes/No fields. Simply enter the
example data in the criteria field.

It is also possible to add more than one criteria to a query. For example, suppose
that you want to look only at records from the tblContacts for Contacts who are both
Sellers and Buyers (BOTH type in field chrContactType) and where these contacts
have been customers since January 1, 2003 (where the value of dtmOrigCustDate
is greater or equal to January 1, 2003). This would require placing example data in
two different fields — the chrContactType field and the dtmOrigCustdate field. To
do this, it is critical that you place both examples on the same line (Criteria: row).
To create this query, follow these steps:

1. Create a new query starting with the tblContacts table.

2. Add the fields chrContactType, chrLastName, chrFirstName, chrState, and
dtmOrigCustDate to the QBE grid.

3. Click the Criteria: cell in the chrContactType column in the QBE Design pane.

4. Type BOTH in the cell.

5. Click the Criteria: cell in the dtmOrigCustDate column in the QBE Design pane.

6. Type >= 01/01/03 in the cell.

7. Click the Datasheet button.

178 Part I, Section I ✦ Working with Data Tables and Queries

Figure 5-18 shows how the query should look.

Figure 5-18: Specifying character and date criteria in the same query.

Access displays records of contacts that are both sellers and buyers that were
customers from January 01, 2003 — in this example, it will display 17 records.

Multi-criteria queries are covered in depth in Chapter 6.

Access also compares Date fields to a value by using comparison operators, such
as less than (<), greater than (>), equal to (=), or a combination thereof. Notice that
Access automatically adds pound-sign (#) delimiters around the date value. Access
recognizes these delimiters as differentiating a Date field from Text fields. It’s the
same as entering text data examples; however, you don’t have to enter the pound
signs. Access understands what you want (based on the type of data entered in the
field), and it converts the entry format for you.

When adding comparison operators to a criteria and mixing greater than/less than
with equals, the greater than sign must precede the equals sign, or Access will
report an error.

Operators and Precedence are covered more in Chapters 6 and 20.

Printing a Query Dynaset
After you create your query, you can quickly print all the records in the dynaset.
Although you can’t specify a type of report, you can print a simple matrix-type
report (rows and columns) of the dynaset that your query created.

You do have some flexibility when printing a dynaset. If you know that the
datasheet is set up just as you want, you can specify some options as you follow
these steps:

1. Use the datasheet you just created for both sellers and buyers that have been
customers since 01/01/2003.

2. If you are not in the datasheet view, switch to the query datasheet mode by
clicking the Datasheet button on the toolbar.

3. Select File ➪ Print from the Query Datasheet window’s menu bar.

Cross-
Reference

Caution

Cross-
Reference

179Chapter 5 ✦ Displaying Selected Data with Queries

4. Specify the print options that you want in the Print dialog box.

5. Click the OK button in the Print dialog box.

In Step 3 above, you could have also pressed the Print button on the toolbar to
immediately create a report of the datasheet and send it to the default Windows
printer. If you print the datasheet this way, you will not have to do Steps 4 or 5.

Access now prints the dynaset for you if you have set up a default printer in
Microsoft Windows. Your dataset prints out in the font selected for display or in the
nearest equivalent your printer offers. The printout also reflects all layout options
in effect when you print the dataset. Hidden columns do not print; gridlines print
only if the Gridlines option is on. The printout does reflect the specified row height
and column width.

Saving a Query
To save a query while working in design mode, follow this procedure:

1. Select File ➪ Save from the Query Design window or click the Save button on
the toolbar.

2. If this is the first time you’re saving the query, enter a new query name in the
Save As dialog box.

To save a query while working in datasheet mode, follow this procedure:

1. Select File ➪ Save from the Datasheet File menu.

2. If this is the first time you’re saving the query, enter a new query name in the
Save As dialog box.

The F12 key is the Save As key in Access. You can press F12 to save your work and
continue working on your query.

Both of these methods save the query and return you to the mode you were working
in. Occasionally, you will want to save and exit the query in a single operation. To do
this, select File ➪ Close from the query or the datasheet and answer Yes to the ques-
tion Save changes to Query ‘query name’? If this is your first time saving the query,
Access prompts you to supply a query name and asks whether you want to save the
query to the current database or to an external file or database.

You can leave the Query window at any time by any one of these ways:

✦ Select File ➪ Close from the Query menu.

✦ Select Close from the Query window control box.

✦ Press Ctrl+F4 while inside the Query window.

Tip

Tip

180 Part I, Section I ✦ Working with Data Tables and Queries

All three of these methods activate an Access dialog box that asks, Save changes to
Query ‘Query1’?

Adding More than One Table to a Query
Using a query to obtain information from a single table is common; often, however,
you need information from several related tables. For example, you may want to
obtain a contact’s (buyer’s) name and the type of vehicles the contact has pur-
chased. This requires use of four tables in a query.

There are four primary tables in the Example database — tblContacts, tblSales,
tblSalesLineItems, and tblProducts. All four of these tables would be needed in the
query to determine the type of vehicles each buyer purchased.

In Chapter 4, you learned about primary and foreign table keys and their importance
for linking two tables together. You learned how to create relationships between
two tables at the table level by using the Tools ➪ Relationships command from the
Database window. Finally, you learned how referential integrity rules affect data in
tables.

After you create the tables for your database and decide how the tables are related
to one another, you are ready to begin creating multiple-table queries to obtain
information from several tables at the same time.

By adding more than one table to a query and then selecting fields from the tables
in the query, you can view information from your database just as though the infor-
mation from the several tables was in one table.

The first step in creating a multiple-table query is to open each table in the Query
window. The following steps show how to open the tblContacts, tblSales,
tblSalesLineitems, and tblProducts tables in a single query:

1. Click the Queries object in the Database window.

2. Click the New toolbar button to create a new query.

3. Select Design View and click the OK button in the New Query dialog box.

4. Select the tblContacts table (in the Show Table dialog box) by double-clicking
the table name.

5. Select the tblSales table by double-clicking the table name.

6. Select the tblSalesLineItems table by double-clicking the table name.

7. Select the tblProducts table by double-clicking the table name.

8. Click the Close button in the Show Table dialog box.

181Chapter 5 ✦ Displaying Selected Data with Queries

You can also add each table by highlighting the table in the list separately and
clicking Add.

Figure 5-19 shows the top pane of the Query Design window with the four tables
you just added. Because the relationships were set at table level, the join lines are
automatically added to the query.

Figure 5-19: The Query Design window with four tables added. Notice the join
lines are already present.

You can add more tables, at any time, by selecting Query ➪ Show Table from the
Query Design window or by clicking the Show Table button.

Working with the Table/Query Pane
As Figure 5-19 shows, a single line is present between tables, going from the primary
key field to the foreign key field, which signifies a connection between the tables.

These lines were pre-drawn because you already set the relationships between
the tables earlier in Chapter 4.

The join line
When Access displays each set of related tables, it places a line between the two
tables. This line is known as a join line. A join line is a graphical line that represents
the relationship between two tables. In this example, the join line goes from the
tblSales table to the tblContacts table to connect the two fields — idsContactID and
lngzBuyer. Join lines also run from tblSales to tblSalesLineitems and tlbSalesLineItems
to tblProducts, connecting these tables as well.

This line is created automatically because a relationship was set in the Relationship
builder. If Access already knows what the relationship is, it automatically creates
the line for you when the tables are added to a query. The relationship is displayed
as a join line between two tables.

Cross-
Reference

Note

Note

182 Part I, Section I ✦ Working with Data Tables and Queries

If Referential Integrity was set in the relationship between two tables, Access displays
a thick portion of the line right at the table window similar to the line in Figure 5-19.
The line starts heavy and becomes thin between tblSales and tblSalesLineItems
(heavy on both ends). This line variation tells you that Referential Integrity has
been set between the two tables in the Relationship Builder. If a one-to-many rela-
tionship exists, the many relationship is denoted by an infinity symbol (∞).

To resize the pane, simply click on the pane resizing bar and drag it down to
enlarge the upper pane. After the pane has been resized, you can move the tables
around to match those in Figure 5-2. Resizing the pane and moving tables are cov-
ered after this section.

If you have not specified a relationship between two tables and the following con-
ditions are true, Access 2003 automatically joins the tables:

1. Both tables have a field with the same name.

2. The field with the same name in both tables has the same data type (text,
numeric, and so on).

3. The field is a primary key field in one of the tables.

Access 2003 automatically attempts to join the tables if a relationship exists. It will
not attempt to set the referential integrity — only the join. However, you can turn
this property off by de-selecting the default Enable AutoJoin option from the
global Access options tabbed dialog box. To display this option, select Tools ➪
Options, click the Tables/Queries tab in the options box, and de-select the Enable
AutoJoin option (under the Query design section).

Resizing the Table/Query pane
When you place Field Lists on the Table/Query pane, they appear in a fixed size
with little spacing between tables. When you add a table to the top pane, it initially
shows five fields. If more fields are in the table, a scroll bar is added to the box
(right side). The table window may show only part of a long field name, the rest
being truncated by the window size. You can move the tables around the pane and
resize them to show more field names or more of the field name. The first step,
however, is to resize the pane itself. The Query Design window has two panes. The
top pane displays your Field Lists, whereas the bottom QBE (Query by Example)
pane below enables you to enter fields, sort orders, and define criteria. Often you
will want the top pane to be larger than the bottom pane so that you can see more
field names. The Query window’s title bar tells you that you are creating a Select
query (Query1: Select Query). If you change the query to another type of query
(which you do in later chapters), the title bar changes to let you know what type
of query you are creating.

Tip

Tip

Note

183Chapter 5 ✦ Displaying Selected Data with Queries

You can resize the Table/Query pane by placing your mouse pointer on the thick
line between the two panes. This is the window split bar, also known as the pane-
resizing bar. The pointer changes to a small, thick bar with double vertical arrows
(up and down), as shown in Figure 5-20, which enables you to drag the split bar up
or down. To resize the panes, follow these steps:

1. Place the pointer on the window split bar.

2. Hold down the mouse button and drag the split bar down.

3. Release the bar when it is two lines below the QBE row “or.”

The top pane is now much larger; the bottom pane is smaller but it still displays the
entire QBE Design area. If the QBE Design area shows insufficient area, simply resize
the entire window by selecting the bottom border of the window and then click and
drag the window down — making it larger. You now have space to move the Field
Lists around and properly view the Table/Query pane.

You can build a database diagram, as you did in Chapter 4, so that you view only
the Field Lists by moving the split bar to the bottom of the screen and then posi-
tioning the Field Lists as you want within the full-screen area.

Figure 5-20: The Query Design window with the screen split arrow in the
center on the window split bar and tables resized.

Looking at Figure 5-20, you see that the Query Design window has been resized and
the pointer (changed to a line with arrows up and down) is on the window split bar.
The table field lists have also been resized.

Note

184 Part I, Section I ✦ Working with Data Tables and Queries

Manipulating the Field List window
Each Field List window begins at a fixed size, which shows approximately four
fields and 12 characters for each field. Figure 5-19 shows how the initial field lists
are displayed; Figure 5-20 shows them after they have been expanded. Each Field
List window is a true window and behaves like one; it can be resized and moved. If
you have more fields than will show in the Field List window, a scroll bar displays
to enable you to scroll through the fields in the Field List window.

After a relationship is created between tables, the join line remains between the
two fields. As you move through a table selecting fields, the graphical line will move
relative to the linked fields. For example, if the scroll box moves down (toward the
bottom of the window) in the tblContacts table, the join line moves up with the
customer number, eventually stopping at the top of the table window.

When you’re working with many tables, these join lines can become visually con-
fusing as they cross or overlap. If you move through the table, the line eventually
becomes visible, and the field it is linked to becomes obvious.

Moving a table
You can move Field Lists in the Table/Query pane by placing the mouse pointer on
the title bar of a Field List (where the name of the table is) and dragging the table to
a new location. You may want to move the Field Lists for a better working view or to
clean up a confusing database diagram (like the one shown in Figure 5-20). To move
Field Lists, follow these steps:

1. Place the mouse pointer on the title bar of the table on the name of the Table.

2. Drag the table design (field list) to where you want to place it.

You can move the Field Lists anywhere in the top pane. You can spread them out by
moving the Field Lists farther apart. You can also rearrange the Field Lists.

Removing a table
There are times when you need to remove tables from a query. Any table can be
removed from the Query window. Follow these steps to delete the tblProducts
table; remember, you can bring it back later:

1. Select the table you want to remove in the top pane of the Query window by
clicking either the table or a field in the table.

2. Press the Delete key or select Edit ➪ Delete.

Only one table can be removed at a time from the Query window. The menu
choice Edit ➪ Clear Grid does not remove all tables; it removes all fields from the
QBE pane. You can also remove a table by right-clicking a table and selecting
Remove Table from the shortcut menu.

Note

Note

185Chapter 5 ✦ Displaying Selected Data with Queries

When you delete a table, any join lines to that table are deleted as well. When you
delete a table, there is no warning or confirmation dialog box. The table is simply
removed from the screen.

Adding more tables
You may decide to add more tables to a query or you may accidentally delete a table
and need to add it back. You can accomplish this task by either selecting Query ➪
Show Table or by clicking the right mouse button and selecting Show Table from the
shortcut menu that appears. When you use either of these methods, the Show
Table dialog box that appeared when you created the query is redisplayed.

Resizing a Field List window
You can also resize each of the Field Lists by placing the cursor on one of the Field
List borders. The Field List is nothing but a window; thus, you can enlarge or reduce
it vertically, horizontally, or diagonally by placing the cursor on the appropriate
border. When you enlarge the Field List vertically, you can see more fields than the
default number (five). By making the Field List larger horizontally, you can see the
complete list of field names. Then, when you resize the Table/Query pane to take up
the entire window, you can create a database diagram.

Adding Fields from More than One Table
You add fields from more than one table to the query in exactly the same way as
when you’re working with a single table. You can add fields one at a time, many
fields grouped together, or all the fields from one or all tables.

Adding fields from a single table was covered earlier in this chapter; this section
covers the topic in less detail, but focuses on the differences between single- and
multiple-table field selection.

Adding a single field
You can add a single field from any table to the QBE pane by several methods:

✦ Double-click a field name in the Table/Query pane.

✦ Click a field name in the Table/Query pane and drag it to the QBE pane.

✦ Click an empty Field cell in the QBE pane and type a field name.

✦ Click an empty Field cell and select the field from the drop-down list.

If you type a field name in an empty Field cell that has the same name in two or
more tables, Access enters the field name from the first table that it finds contain-
ing that field. Access searches the tables, starting from the left side in the top pane.

Caution

Cross-
Reference

186 Part I, Section I ✦ Working with Data Tables and Queries

If you select the field from the drop-down list in the Field cell, you see the name of
the table first, followed by a period and the field name. For example, the chrProductID
in the tblSalesLineItems table is displayed as tblSalesLineItems.chrProductID. This
helps you select the right field name. Using this method, you can select a common
field name from a specific table.

The easiest way to select fields is still to double-click the field names while in the
query/table design pane. To do so, you may have to resize the Field Lists to see the
fields that you want to select.

Viewing the table names
When you’re working with two or more tables, the field names in the QBE pane can
become confusing. You may find yourself asking, for example, just which table the
field chrDescription is from.

Access automatically maintains the table name that is associated with each field
displayed in the QBE pane. The default is to display the table name below the name
of the field. If you do not want to show the table name of each field in the QBE pane,
select View ➪ Table Names and the toggle will be turned off (unchecked).

This command controls the display of table names immediately below the corre-
sponding field name in the QBE pane. Figure 5-21 shows the QBE pane with the Table
row below the Field row. It contains the name of the table for each field.

Figure 5-21: The QBE pane with table names displayed. Notice that it shows
all four table names.

After you add fields to a query, you can view your resultant data at any time. You
can view all the data now by selecting the Datasheet icon. Figure 5-22 displays the
data as currently selected. The fields have been resized to show all the data values.

The display of the table name is only for your information. Access always maintains
the table name associated with the field names.

Adding multiple fields at the same time
The process of adding multiple fields at the same time is identical to adding multi-
ple fields in a single table query. When you’re adding multiple fields from several

187Chapter 5 ✦ Displaying Selected Data with Queries

tables, you must add them from one table at a time. The easiest way to do this is to
select multiple fields and drag them together down to the QBE pane.

Figure 5-22: Datasheet view of data from multiple tables. This resulting dynaset,
from the query, contains 84 records.

You can select multiple contiguous fields by clicking the first field of the list and
then clicking the last field while holding down the Shift key (as you click the last
field that you want to add). You can also select non-contiguous fields in the list by
holding down the Ctrl key while clicking individual fields with the mouse.

Adding all table fields
To add all table fields at the same time, select which table’s fields you want to add,
and then select the fields to be added. You can select all the fields by either double-
clicking the title bar of the table name or by selecting the Asterisk (*) field. These
two methods, however, produce very different results.

Selecting all fields using the title bar method
One method of selecting all the fields is to double-click the title bar of the table
whose fields you want to select.

This method automatically selects all the fields (except the Asterisk). Once selected,
all the fields can be dragged to the QBE pane. The fields are added in the order of
their position in the table, from left to right (based on their field order in the table).
By default, Access displays only the first five full fields in the QBE pane (lower pane).
You can change the column width of each field to display more or fewer columns.

188 Part I, Section I ✦ Working with Data Tables and Queries

Selecting all fields using the Asterisk (*) method
The first object in each table is an asterisk (at the top of the field list), which is
known as the all-field reference tag. When you select and drag the asterisk to the
QBE pane, all fields in the table are added to the QBE pane, but there is a distinct
difference between this method and the double-clicking method referred to previ-
ously: When you add the all-field reference tag (*), the QBE pane shows only one
cell with the name of the table and an asterisk. For example, if you select the * in
the tblProducts table, you see tblProducts.* displayed in one field row cell.

Unlike selecting all the fields, the asterisk places a reference to all the fields in a
single column. When you drag multiple columns, as in the preceding example, you
drag actual table field names to the query. If you later change the design of the table,
you also have to change the design of the query. The advantage of using the asterisk
for selecting all fields is that the query doesn’t need to be changed if you add, delete,
or rename fields in the underlying table or query. Changing fields in the underlying
table or query automatically adds fields to or removes fields from the query.

Selecting the * does have one drawback: You cannot perform criteria conditions
on the asterisk column itself. You have to add an individual field from the table
and enter the criterion. If you add a field for a criterion (when using the *), the
query displays the field twice — once for the * field and a second time for the crite-
rion field. Therefore, you may want to de-select the Show cell of the criterion field.

Understanding the Limitations
of Multiple-Table Queries

When you create a query with multiple files, there are limitations to what fields can
be edited. Generally, you can change data in a query dynaset, and your changes are
saved to the underlying tables. A primary key field normally cannot be edited if ref-
erential integrity is in effect and if the field is part of a relationship (unless Cascade
Updates is set to Yes).

To update a table from a query, a value in a specific record in the query must repre-
sent a single record in the underlying table. This means that you cannot update
fields in a Crosstab or Totals query because they both group records together to
display grouped information. Instead of displaying the actual underlying table data,
they display records of data that are calculated and stored in a virtual (nonreal)
table called a snapshot.

Updating limitations
In Access, the records in your tables may not always be updateable. Table 5-1
shows when a field in a table is updateable. As Table 5-1 shows, queries based

Caution

189Chapter 5 ✦ Displaying Selected Data with Queries

on one-to-many relationships are updateable in both tables (depending on how the
query was designed). Any query that creates a snapshot, however, is not updateable.

Table 5-1
Rules for Updating Queries

Type of Query or Field Updateable Comments

One Table Yes

One-to-One relationship Yes

Results contains Memo field Yes Memo field updateable

Results contain Hyperlink Yes Hyperlink updateable

Results contain an OLE object Yes OLE object updateable

One-to-Many relationship Mostly Restrictions based on design
methodology (see text)

Many-to-One-to-Many No Can update data in a form or data
access page if RecordType = Dynaset

Two or more tables with NO join line No Must have a join to determine
updateability

Crosstab No Creates a snapshot of the data

Totals Query (Sum, Avg, etc.) No Works with Grouped data creating a
snapshot

Unique Value property is Yes No Shows unique records only in a
snapshot

SQL-specific queries No Union & Pass-through work with
ODBC data

Calculated field No Will recalculate automatically

Read-only fields No If opened read-only or on read-only
drive (CD-ROM)

Permissions denied No Insert, Replace, or Delete are not
granted

ODBC Tables with no Primary Key No A primary key (unique index) must
exist

Paradox Table with no Primary Key No A primary key file must exist

Locked by another user No Cannot be updated while a field is
locked by another

190 Part I, Section I ✦ Working with Data Tables and Queries

Overcoming query limitations
Table 5-1 shows that there are times when queries and fields in tables are not update-
able. As a general rule, any query that does aggregate calculations or is an ODBC
(Open DataBase Connectivity)-based SQL (Structured Query Language) query (SQL-
specific query) is not updateable. All others can be updated. When your query has
more than one table and some of the tables have a one-to-many relationship, there
may be fields that are not updateable (depending on the design of the query).

Updating a unique index (primary key)
If a query uses two tables that have a one-to-many relationship, the one side of the
join must have a unique (primary key) index on the field that is used for the join. If
not, the fields from the one side of the query cannot be updated.

Replacing existing data in a query with a one-to-many relationship
Normally, all the fields in the many-side table are updateable in a one-to-many
query; the one-side table can update all the fields except the primary key (join)
field. Normally, this is sufficient for most database application purposes. Also, the
primary key field is rarely changed in the one-side table because it is the link to
the records in the joined tables.

At times, however, you may need to change the link-field contents in both tables
(make a new primary key in the one table and have the database program change
the link field in all the related records from the many table). Access enables you
to do this by defining a relationship between the two tables and using referential
integrity. If you define a relationship and enforce referential integrity in the
Relationship Builder, two selections are activated. If you want to enable changes
(updates) to the primary key field, check the Cascade Update Related Fields box.
By selecting this option, you can change the primary key field in a relationship;
Access automatically updates the link field to the new value in all the other related
tables.

Chapter 4 covers the Relationship Builder in detail.

Design tips for updating fields in queries
✦ If you want to add records to both tables of a one-to-many relationship,

include the join field from the many-side table and show the field in the
datasheet. After doing this, records can be added starting with either table.
The one side’s join field is copied automatically to the many side’s join field.

✦ If you do not want any fields to be updateable, set the Allow Edits property of
the form to No.

Cross-
Reference

191Chapter 5 ✦ Displaying Selected Data with Queries

✦ If you do not want to update some fields on a form, set the Tab Stop property
for the control (field) to No for these fields.

✦ If you want to add records to multiple tables in a form (covered in later
chapters), remember to include all (or most) of the fields from both tables.
Otherwise, you will not have a complete record of data in your form.

Temporary inability to update in a one-to-many relationship
When updating records on the one side of a one-to-many query, you will not be able
to change the many-side join field until you save changes to the one side. You can
quickly save changes to the one side by pressing Shift+Enter or selecting File ➪ Save
Record. After the one-side changes are saved, the join field in the many-side record
can be changed.

Creating and Working with Query Joins
You can create joins between tables in these three ways:

✦ By creating relationships between the tables when you design the database.
(Select Tools ➪ Relationships from the Database window or click the
Relationships button on the toolbar.)

✦ By selecting two tables for the query that have a field that has the same data
type and name in both tables and is a primary key field in one of the tables.

✦ By creating joins in the Query window at the time you create a query.

The first two methods are automatic in the Query design window. If you create rela-
tionships when designing the tables of your database, Access displays join lines
based on those relationships automatically when you add the related tables to a
query. It also creates an automatic join between two tables that have a common field,
provided that field is a primary key in one of the tables and the Enable AutoJoin
choice is selected (default) in the Options dialog box.

If relationships are set in the relationship builder, there may be times when you add
a table to a query and it will not automatically be related to another table, as in
these examples:

✦ The two tables have a common field, but it is not the same name.

✦ A table is not related and cannot be logically related to the other table (for
example, the tblContacts table cannot directly join the Treatments table).

192 Part I, Section I ✦ Working with Data Tables and Queries

If you have two tables that are not automatically joined and you need to relate
them, you join them in the Query Design window. Joining tables in the Query Design
window does not create a permanent join between the tables. Rather, the join (rela-
tionship) will apply only to the tables for the query you are working on.

All tables in a query should be joined to at least one other table. If, for example,
you place two tables in a query and do not join them, Access creates a query
based on a Cartesian product (also known as the cross product) of the two tables.
This subject is discussed later in this chapter. For now, note that a Cartesian prod-
uct means that if you have five records in table 1 and six records in table 2, the
resulting query will have 30 records (5 x 6) that will probably be useless.

Joining tables
Figures 5-19 and 5-20 show the joined tblSales and tblContacts tables. They’re
joined automatically. Notice that there are join lines between the other tables also.

Tables are not joined automatically in a query if they are not already joined at the
table level, if they do not have a common named field for a primary key, or if the
AutoJoin option is off.

At this point, add the tblContactLog table to the query. To accomplish this, right-
click and select Show Table ... from the menu, select tblContactLog, and close the
dialog box. Notice that there is no join line between the new table and any other
table in the query. It should be joined to the tblContacts table. To join the tblContacts
and tblContactLog tables, follow the steps below:

1. Select the idsContactID field in the tblContacts Table in the Table/Query pane.

2. Drag the highlighted field to the tblContactLog table (as you drag the field, the
Field icon appears).

3. Drop the Field icon on the lngzContactID field in the tblContactLog table (the
Field icon disappears and a join line appears connecting the two tables via the
fields specified).

Figure 5-23 shows the new join line between the two tables after it is created. When
you perform this action (joining one field to another), the Field icon disappears
immediately before the join line is displayed. As the Field icon moves between
tables, it changes to the symbol that indicates that the icon cannot be dropped in
the area between the tables. When it comes over the Field List of the tblContactLog,
it changes back to the Field icon, indicating that it can be dropped on any field in
that location. When you release the mouse button over the lngzContactID field of
the table, the join line appears.

Note

Caution

193Chapter 5 ✦ Displaying Selected Data with Queries

Figure 5-23: Joining tables in the Table/Query pane. Notice the join line is
created between the tblContacts and tblContactlog tables. The figure also
shows the Join Properties dialog box open to specify the type of join (which
is opened by double-clicking on the join line).

Specify the type of join
With the join specified between two tables, you may need to specify the type of join
you want — which records should show. The default action for creating a join in a
query is to show only those records where the join fields from both tables are equal.
Often this will not display all the records you need to see in the query datasheet. For
instance, in this chapter, there is no relationship defined between the tblContacts
and tblContactLog tables at the table level (relationship builder). As Figure 5-23
shows, the default join line between these tables has no arrow at either end of the
join line, nor does it show the type of relationship between the tables (one-to-many,
one-to-one, or many-to-one). The default join line between two tables is one where
it will only include records where the join fields from both tables are equal. You can
see this as choice one in Figure 5-23. Because tblContactLog will not have records
for all records in tblContacts, you will need to change the type of link between the
tables to include ALL records in tblContacts and only those from tblContactLog
where the field value is equal. To activate the Join Properties dialog box and change
the join type, follow the steps below:

1. Select the join line between the tblContacts and tblContactLog tables.

2. Double-click on the join line (or right-click and select Join Properties from the
menu; alternately select View ➪ Join Properties from the menu). The Join
Property dialog box appears (as shown in Figure 5-23).

194 Part I, Section I ✦ Working with Data Tables and Queries

3. Select “Include ALL records from ‘tblContacts’ and only those records from
‘tblContactLog’ where the joined fields are equal.”

4. Click the OK button to create the join.

Now the query should show a join line pointing from the tblContacts table to the
tblContactLog table.

If you fail to create this type of join, leaving it to include records where both tables
have equal values in their fields, and attempt to run the query, Access will report
an error, as shown in Figure 5-24. This warning says that you have an ambiguous
outer join between tables and suggests a fix. The error is reported because the
field idsContactID in tblContacts is used to join with two tables. Thus you need to
specify the specific type of join between the tables. The easiest way is to simply
include all records from tblContacts in the join.

Figure 5-24: Running a query with an improper join type.

Of course, you can also create joins that make no sense, but when you view the
data, you will get less-than-desirable results. If two joined fields have no values in
common, you will have a datasheet in which no records are selected.

If you fail to create a join line between tables, the resulting dynaset, viewed in the
datasheet, will be a Cartesian product in which each and every record is joined
with each and every record in the second table. If one table has 100 records and
the other has 200 records, the Cartesian join will create a table with 20,000 records
and the results will make no sense.

You can select either table first when you create a join.

You would never want to create a meaningless join. For example, you would not
want to join the chrCity field from the tblContact table to the tbmSalesDate of the
tblSales table. Although Access will enable you to create this join, the resulting
dynaset will have no records in it.

Deleting joins
To delete a join line between two tables, you select the join line and press the Delete
key. You can select the join line by placing the mouse pointer on any part of the line
and clicking once.

Note

Caution

Caution

195Chapter 5 ✦ Displaying Selected Data with Queries

If you delete a join between two tables and the tables remain in the Query win-
dow unjoined to any other tables, the solution will have unexpected results
because of the Cartesian product that Access creates from the two tables. The
Cartesian product is effective for only this query. The underlying relationship
remains intact.

Access enables you to create multiple-field joins between tables (more than one
line can be drawn). The join must be between two fields that have the same data
and data type; if not, the query will not find any records from the datasheet to
display.

Understanding Types of Table Joins
In Chapter 4, you learned about table relationships and relating two tables by a
common field. Access understands all types of table and query relations, including
these:

✦ One-to-one

✦ One-to-many

✦ Many-to-one

✦ Many-to-many

When you specify a relationship between two tables, you establish rules for the
type of relationship, not for viewing the data based on the relationship.

To view data in two tables, they must be joined through a link that is established via
a common field (or group of fields) between the two tables. The method of linking
the tables is known as joining. In a query, tables with established relationships are
shown already joined. Within a query, you can create new joins or change existing
joins; just as there are different types of relationships, there are different types of
joins. In the following sections, you learn about these types of joins:

✦ Equi-joins (inner joins)

✦ Outer joins

✦ Self-joins

✦ Cross-product joins (Cartesian joins)

Inner joins (Equi-joins)
The default join in Access is known as an inner join or equi-join. It tells Access to
select all records from both tables that have the same value in the fields that are
joined.

Note

Caution

196 Part I, Section I ✦ Working with Data Tables and Queries

The Access manuals refer to the default join as both an equi-join and inner join
(commonly referred to as an inner join in database relational theory). The Access
Help system refers to it as an inner join. The terms equi-join and inner join are
interchangeable; however, in the remainder of this chapter they shall be referred
to as inner joins.

If records are found in either table that do not have matching records in the other
table, they are excluded from the resultant dynaset and will not be shown in the
datasheet. Thus, an inner join between tables is simply a join where records are
selected when matching values exist in the joined field of both tables.

You can create an inner join between the tblContacts and tblSales tables by bringing
these two tables into a new query and clicking on the join line to activate the Join
Property dialog box and select the first choice — “Only include rows where the
joined fields from both tables are equal.” Remember that you are looking for all
records from these two tables with matching fields. The idsContactID field and
lngzBuyer contain the common field values, so the inner join will not show any
records for Contacts that have no Sales or any Sales that do not relate to a valid
ContactID number. The rules of referential integrity prevent Sales records that are
not tied to a Contact number from being saved. Of course, it’s possible to delete all
Sales from a Contact or to create a new Contact record with no Sales records (possi-
bly a Seller instead of a Buyer), but a Sale should always be related to a valid
Contact (Buyer). Referential integrity should keep a Contact number from being
deleted or changed if a Sale is related to it.

It’s possible to have a buyer in the tblContacts table who has no sales. It’s less
likely, theoretically impossible, to have a Sale with no Buyer. If you create a query
to show Contacts and their Sales, any record of a Contact without a Sale or a Sales
record without a matching Contact record will not be shown in the resulting dynaset.

It can be important to find these lost records. One of the features of a query is to
perform several types of joins.

Access can help find lost records between tables by using a Query Wizard to build
a Find Unmatched Query (these are covered in Chapter 38).

Changing join properties
If you create join properties at table level, in the relationship builder they will be
the default properties for your tables when working with queries. However, you can
change these properties for a specific query at the query level.

With the tblContacts and tblSales tables joined, certain join behaviors (or properties)
exist between the tables. The join property is a rule that says to display all records
(for the fields you specify) that correspond to the characters found in the
idsContactID field of the tblContacts table and in the corresponding lngzBuyer field
of the tblSales table.

Tip

Note

197Chapter 5 ✦ Displaying Selected Data with Queries

To translate this rule into a practical example, this is what happens in the
tblContacts and tblSales tables:

✦ If a Buyer’s record in the tblContacts table has an idsContactID (customer
number) that is not found in any of the records of the tblSales table, that
Buyer’s record is not shown.

✦ If a record in the tblSales table has a number for a customer number that is
not related to any number in the tblContacts table, that tblSales record is not
shown.

This makes sense, at least most of the time. You don’t want to see records for buyers
without sales — or do you?

A join property is a rule that is enforced by Access. This rule tells Access how to
interpret any exceptions (possible errors) between two tables. For example, as you
saw earlier, should the non-corresponding records be shown?

Access has several types of joins, each with its own characteristics or behaviors.
Access enables you to change the type of join quickly by changing its properties.
You can change join properties by selecting the join line between tables and dou-
ble-clicking the line or right-clicking and selecting Join Properties from the menu.
When you do so, a Join Properties dialog box appears. If you double-click the join
line between the tblContacts and tblSales tables, the dialog box in Figure 5-25
displays.

Figure 5-25: The Join Properties dialog
box for the tblContacts and tblSales tables.
Notice that the third option button is
selected (for an outer join), because the
join properties were set at table level.

As Figure 5-25 shows, the Join Properties dialog box has two parts: the four combo
boxes and three option buttons. For now, you focus on the three options buttons:

1. Only include rows where the joined fields from both tables are equal. (This is
the default.)

2. Include ALL records from “tblContacts” and only those records from
“tblSales” where the joined fields are equal.

3. Include ALL records from “tblSales” and only those records from
“tblContacts” where the joined fields are equal.

198 Part I, Section I ✦ Working with Data Tables and Queries

The first choice is commonly known as an inner join, and the other two are known
as outer joins. These joins control the behavior of Access as it builds the dynaset
from the query.

To create this query and change the value from the third option to the first, to create
an inner join between the two tables, follow these steps:

1. Start a new query and select the tblContacts and tblSales tables. Select the
chrContactType, chrLastName, and chrFirstName fields from the tblContacts
table and dtmSaleDate from the tblSales table. (These fields will be displayed
later.)

2. Double-click on the join line between the two tables.

3. Select the choice “1: Only include rows where the joined fields from both
tables are equal.” (This is normally the default.)

4. Click the OK button to return to the query design window.

Inner and outer joins
The Query Design window should now display two tables in the top pane of the
Query window — tblContacts and tblSales, with four fields selected to display. If
your query window does not have these two tables, create a new query and add
them. The following sections use these tables as examples to explain how inner
and outer joins operate.

Displaying an inner join
To display an inner join, follow this procedure: In the QBE pane, make sure you
have selected the fields chrContactType, chrLastName, and chrFirstName from the
tblContacts table and the field dtmSaleDate from the tblSales table. Then display
the dynaset by selecting the Datasheet button on the toolbar. The datasheet should
now look similar to the one shown in Figure 5-26, displaying each buyer’s name and
all buyers’ sales dates. Scroll through the records until you reach the bottom of the
datasheet. Notice that the value in the Contact Type column is either Both or Buyer
for each record.

Notice that each of the 53 records has entries in all four fields. This means that
every record displayed from the tblContacts table has a corresponding record or
records in the tblSales table.

Return to query design mode by clicking the Design icon on the toolbar. When you
double-click the join line between the tblContacts and tblSales tables, you see that
the join property for these two tables becomes the first selection shown in the Join
Properties dialog box. This is an inner join, or equi-join, the most common type.
These joins show only the records that have a correspondence between tables.

199Chapter 5 ✦ Displaying Selected Data with Queries

Figure 5-26: The datasheet for an inner join between the tblContacts and
tblSales tables.

Creating a right outer join
Unlike inner joins (equi-joins), outer joins are used for showing all records in one
table while showing common records in the other. The table or query that does not
have a matching record will simply display empty cells in the datasheet when the
dynaset is displayed.

When you have created an outer join, the join line will point graphically to one of
the tables; as is the default action of the tblSales and tblContacts tables (being set
at table level). If displaying the join property, it says to show all records from the
main table (the one missing the arrow) while showing only matching records in
the table being pointed to. For a further explanation, follow these instructions:

1. If you have left the Join Properties dialog box, double-click the join line
between tblContacts and tblSales.

2. Select the second choice from the Join Properties dialog box, which includes
all records from the tblContacts table and only those records from tblSales
where the joined fields are equal. (This may be the third choice if you have
the tblSales table to the left of the tblContacts table and no relationship built
between the two tables.) Then click the OK button. Notice that the join line
now has an arrow at one end, pointing rightward to the tblSales table, as in
Figure 5-27. This is known in database terminology as a right outer join. (If the
tblSales table is to the left of the tblContacts table, move it to the right and
the arrow will point right — remember, the relationship here is that one Buyer
can own many Sales.)

3. Click the Datasheet button to display this dynaset. Everything looks the same
as before, except now there are 81 records instead of 53. Now move down the
page and notice that everywhere there is a value of Seller in the Contact type

200 Part I, Section I ✦ Working with Data Tables and Queries

column, there is no corresponding Sale Date value (see Figure 5-28). These
records result from selecting the join property that specifies “include all
records from tblContacts table.”

Figure 5-27: The join line for an outer join between the tblContacts and
tblSales tables. The one and infinity signs are from the relationship set at table
level with referential integrity.

Figure 5-28: A datasheet with a right outer join. It shows all Contacts
(buyers and sellers), including those with no Sales.

There are now 81 records, with the extra records being displayed in a record in
the tblContacts table. There are many persons that do not have any corresponding
records in the tblSales table (all of them are sellers). You can see one in the figure
shown above . . . others are in the records not visible on the screen.

201Chapter 5 ✦ Displaying Selected Data with Queries

Unlike inner joins, outer joins show all corresponding records between two tables
and records that do not have a corresponding record in the other table. In the pre-
ceding example, there were numerous records of Sellers but no corresponding
record for any Sale where they are the buyer. Figure 5-28 shows four records in the
window that do not have sales information — all of them have a value of Seller in
the Contact Type column.

If you’ve changed the display order of the tables since adding them to the Query
window, Access does not follow the new table order you set up; rather, it uses the
original order in which you selected the tables. Because the information is normally
the same in either table, it doesn’t make a difference which field is selected first.

You may want to break the joins between tables that you have moved around and
re-create the joins once you have put them in the order that you want. Now Access
will accept your changes.

Creating a left outer join
Once in the query design, again double-click the join line between the tblContacts
and tblSales tables. Select the third choice from the Join Properties dialog box,
which asks to “include all records from tblSales.” Then click the OK button. The join
line now has an arrow pointing to the tblContacts table. This is known as a left outer
join. (If the arrow points to the right in the top pane, the join is known as a right
outer join; if the arrow points to the left, it’s a left outer join.)

If you create this left-outer join query between the tables and select the Datasheet
button to display the dynaset, you will see that you again have 53 records. This
simply means that there are no records in the tblSales table (Sales without Buyers).
If there were one or more sales without buyers, this query would show them. The
Sales records, without Buyers, would result from selecting the join property to
include all records from tblSales (a left outer join in database terminology).

Any Sales record without a Buyer is known as an orphan record. Referential integrity
can’t be set in the Relationships window if there is an orphan record. If you attempt
to set Referential Integrity between tables and you cannot, simply remove any
orphan records and then return to the Relationships window to set up referential
integrity between the tables.

Removing unwanted, unrelated records is detailed in Chapter 38.

Creating a Cartesian product
If you add both the tblContacts and tblSales tables to a query but don’t specify
a join between the tables, Access combines the first tblContact record with all
the tblSales records; then it takes the second record and combines it with all the

Cross-
Reference

Tip

Caution

202 Part I, Section I ✦ Working with Data Tables and Queries

tblSales records and continues until all the tblContacts records have been combined
with all of the tblSales records. Combining each record in one table with each record
in the other table results in a Cartesian product (cross-product) of both tables.
Because the tblContacts table has 58 records and the tblSales table has 53, the
resulting dynaset has 3074 records.

✦ ✦ ✦

Using Operators
and Expressions
in Multi-table
Select Queries

In previous chapters, you work with queries using criteria
on a single field. You also get experience adding multiple

tables to a query and joining the tables together. This chapter
focuses on extracting information from multiple tables using
multiple criteria in select queries.

Before working with queries, this chapter will focus on opera-
tors, functions, and expressions that are the fundamental
building blocks for Access operations. You will often use them
as criteria in queries to specify which records to display. They
are also used to calculate fields in forms to show calculated
information or to display data in a different format, and they
are used in summary controls in reports to show totals and
subtotals.

This chapter will use the database named CHAP06Start.
mdb. If you have not already copied it onto your machine
from the CD, you will need to do so now. When you have
completed this chapter, your database should resemble
the one in CHAP06End.mdb.

What Are Operators?
Operators let you add numbers, compare values, put text
strings together, and create complex relational expressions.
You use operators to inform Access that a specific operation
is to be performed against one or more items.

On the
CD-ROM

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter
Understanding what
operators, functions,
and expressions are
and how they are used

Reviewing types
of operators

Looking at types
of functions

Learning how to create
an expression

Examining special
identifier operators and
expressions

Creating and using Text
expressions as criteria

Using the Like and
Not operators
and wildcards

Creating and using
Memo, Date, and
Numeric expressions
as criteria

Using the And/Or
operators in single-field
criteria

Using the In and
Between...And
operators

Searching for Null data

Using the And/Or
operators across
several fields

Using functions as
expressions for criteria

Creating and using a
calculated field

✦ ✦ ✦ ✦

204 Part I, Section I ✦ Working with Data Tables and Queries

Types of operators
The types of operators discussed in this chapter are listed below:

✦ Mathematical (arithmetic) operators

✦ Relational operators

✦ String operators

✦ Boolean (logical) operators

✦ Miscellaneous operators

When are operators used?
You find yourself using operators all the time. In fact, you use them every time you
create an equation in Access. For example, operators specify data-validation rules
in table properties, create calculated fields in forms, and specify criteria in queries.

Operators indicate that an operation needs to be performed on one or more items.
Some common examples of operators are:

=

&

And

Like

+

Mathematical operators
There are seven basic mathematical operators. These are also known as arithmetic
operators, because they are used for performing arithmetic calculations:

* Multiply

+ Add

– Subtract

/ Divide

\ Integer Divide

^ Exponentiation

Mod Modulo

205Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

By definition, you use mathematical operators to work with numbers. When you
work with mathematical operators, numbers can be any numeric data type. The
number can be an actual number (constant value), or the value of a memory vari-
able, or a field’s contents. Furthermore, the numbers can be used individually or
combined to create complex expressions. Some of the examples in this section are
quite complex, but don’t worry if you don’t usually work with sophisticated mathe-
matics. This chapter shows you how to work with mathematical formulas in Access.

The * (multiplication) operator
A simple example of when to use the multiplication operator is to calculate the total
price of purchasing several items. You could design a query to display the number
of items purchased and the price for each item. Then you could have a column
containing the value of the number of items purchased times the price per item.
In this case, you could get that information from the table tblSalesLineItems, and
the formula would be [tblSalesLineItems.intQuantity] * [tblSalesLineItems.curPrice].
Another example could be a form for entering the number of items purchased and
the per-item price. Then you could use a calculated field to calculate and display
the total price for that number of items. In this case, the calculated field would con-
tain a formula like [curPrice] * [intQuantity].

The standard notation for dealing with field names in an expression is to enclose
them in square brackets.

Notice that the name of the table is used before the field name in the above
example. Because your tables only have one field named curPrice and intQuantity,
you could have skipped the table names; however, it is good practice to specify the
table name where the field comes from — separating the table name from the
field name by a single period.

The + (addition) operator
If you want to create a calculated field in a query for adding the value of tax
to the gross amount, you would use an expression similar to this: [Tax Amt]+
[tblSalesLineItems.curPrice]. To use this expression, you would have to create
another calculated field in the query named [Tax Amt] that is created using the
multiplication operator -- Tax Amt: [tblSales.dblTaxRate] * [tblSalesLineItems.
curPrice]. You could also create a form for adding the values in fields, such as Gross
Amount and Tax, in which case you would use the expression [Gross Amount] +
[Tax]. This simple formula uses the addition operator to add the contents of both
fields and display the result in the object that contains the formula.

Besides adding two numbers, the addition operator can be used for concatenating
two character strings — putting two text-based strings together forming a single
text string. For example, you may want to combine the fields chrFirstName and

Tip

Note

206 Part I, Section I ✦ Working with Data Tables and Queries

chrLastName from the tblContacts table to display them as a single field. This
expression is:

[tblContacts.chrFirstName] + [tblContacts.chrLastName]

Notice that the name of the table is used before the field name. In this example, it
isn’t necessary because your tables only have one field named chrFirstName and
chrLastName; however, it is good practice to specify the table name where the field
comes from — separating the table name from the field name by a single period.

More can be found on concatenating strings later in this chapter.

Although you can concatenate (put two strings together) text strings by using the
addition operator, you should use the ampersand (&). The reason for this appears
in the section “String operators,” later in this chapter.

The – (subtraction) operator
An example of using the subtraction operator on the same form is to calculate the
final invoice amount minus a discount. The formula to determine the Net Invoice
Amount of an item would be as follows:

[tblSalesLineItems.curPrice] -
([tblSalesLineItems.curPrice]*[tblSalesLineItems.dblDiscountPercent]).

Although parentheses are not mathematical operators, they play an integral part in
working with operators, as discussed later, in the section “Operator precedence.”

The / (division) operator
You can use the division operator to divide two numbers and (as with the previous
operators) display the result wherever you need it. Suppose, for example, that a
pool of 212 people win the $1,000,000 lottery this week. The formula to determine
each individual’s payoff is 1,000,000 / 212, resulting in $4,716.98 per person.

Using Access’s Immediate window that is built into the Visual Basic Window, you
can determine the values of mathematical formulas. To activate the immediate
window, press the Ctrl+G key combination. Once active, you can perform any cal-
culation and have it display the results by placing a question mark in front of the
calculation — for example, typing ? 1000000 / 212 and pressing Enter will result in
an answer of 4716.9811. To close this window, close the Microsoft Visual Basic
window.

Tip

Note

Caution

Cross-
Reference

Note

207Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

The \ (integer division) operator
Should you ever need to take two numbers, round them both to integers, divide the
two rounded integers, and receive a non-rounded integer, the integer division opera-
tor does it in one step. Here is an example:

Normal Division Integer Conversion Division

100 / 6 = 16.667 100 \ 6 = 16

100.9 / 6.6 = 15.288 100.9 \ 6.6 = 14

Access has the round function for rounding fractional numbers to whole numbers.
You can also use the integer division operator to round any number. Just integer-
divide (\) the number you want to round by 1, as in 125.6 \ 1 = 126.

Access rounds numbers based on the greater-than-.5 rule: Any number with a
decimal value of x.5 or less rounds down; greater than x.5 rounds up to the next
whole number. This means that 6.5 becomes 6, but 6.51 and 6.6 become 7.

Note

Tip

What Are Integer Values?

Integers are whole numbers (numbers that have no decimal places), which in Access are
the values between -32768 and +32767. They have no fractional part (meaning the part
after the dot). (For example, 7.2 is not an integer, because it has a fractional part which is .2;
7 is the integer number!) Examples are 1; 722; 33; -5460; 0; and 22. They include all whole
positive and negative numbers and 0. When you use the Int() function or the integer divide
operator (\) to determine the integer part of any number, simply drop any decimal values.
For example, the integer value of 45.123 is 45; for 2.987, the integer is 2; and so forth.

The integer divide operator can be a confusing operator until you understand just what it
does. If you enter the following print statements in the Immediate window of Microsoft
Visual Basic (accessed from Access), it should become clear:

? 101 / 6 results in 16.833.

? 101.9 / 6.6 results in 15.439.

? 102 / 7 results in 14.571.

? INT(102 / 7) results in 14.

? 101.9 \ 6.6 results in 14.

The last entry uses the integer divide sign (\) and is equivalent to rounding both numbers
in the division operation (101.9 = 102 and 6.6 = 7), dividing 102 by 7, and converting the
answer to an integer. In other words, it is equivalent to the following:

INT((101.9 \ 1) / (6.6 \ 1)) or INT(round(101.9)/ round(6.6))

208 Part I, Section I ✦ Working with Data Tables and Queries

The ^ (exponentiation) operator
The exponentiation operator (^) raises a number to the power of an exponent.
Raising a number simply means indicating the number of times that you want
to multiply a number by itself. For example, multiplying the value 4 x 4 x 4 (that
is, 4-cubed) is the same as entering the formula 4^3.

The Mod (Modulo) operator
The modulo operator (mod), or remainder operator, takes any two numbers
(number1 and number2) and divides the first by the second (number1 / number2),
returning only the remainder. For example, if you type in the following examples in
the Immediate window, it should become clear:

? 10 Mod 5 results in 0 (10 divided by 5 is 2 with a remainder of 0.)

? 10 Mod 4 results in 2. (10 divided by 4 is 2 with a remainder of 2.)

All numbers, if they are not integers, are first rounded to integers before the Mod
operator is performed. For example:

? 22.24 Mod 4 results in 2. (22 divided by 4 is 5 with a remainder of 2.)

? 22.51 Mod 4 results in 3. (23 divided by 4 is 5 with a remainder of 3.)

? 21 Mod 5.49 results in 1. (21 divided by 5 is 4 with a remainder of 1.)

Relational operators
There are six basic relational operators (also known as comparison operators).
They compare two values or expressions via an equation. The relational operators
include the following:

= Equal

<>, Not equal

< Less than

<=, Less than or equal to

> Greater than

>=, Greater than or equal to

The expressions built from relational operators always return either a logical value
or Null; the value they return says Yes (True), No (not True; that is, False), or Null
(unknown/no value).

209Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

Access actually returns a numeric value for relational operator equations. It returns
a –1 (negative 1) for True and a 0 (zero) for False.

If either side of an equation is a Null value, the result will always be a Null.

The = (equal) operator
The equal operator returns a logical True if the two expressions being compared are
the same. Here are two examples of the equal operator:

[tblProducts.chrCategory] = “Car” Returns a True if the category is a car;
False is returned for any other type.

[tblSales.dtmSaleDate] = Date() Returns a True if the date in the
dtmSaleDate field is today.

The <> (not-equal) operator
The not-equal operator is exactly the opposite of the equal operator. In this example,
the car example is changed to not-equal:

[tblProducts.chrCategory] <> “Car” Returns a True if Type of Category is
anything but a car.

[tblProducts.chrCategory] != “SUV” Returns a True if Type of Category is
anything but an SUV.

Notice that you have two different ways to express not equal to: the <> or != symbols
both mean exactly the same thing.

The < (less-than) operator
The less-than operator returns a logical True if the left side of the equation is less
than the right side, as in this example:

[tblSalesLineItems.curPrice] < 1000 Returns a True if the Price field
contains a value of less than 1000.

The <= (less-than-or-equal-to) operator
The less-than-or-equal-to operator returns a True if the left side of the equation is
either less than or equal to the right side, as in this example:

[tblSalesLineItems.curPrice] <= 2500 Returns a True if the value of Price
equals 2500 or is less than 2500.

[tblSalesLineItems.curPrice] !> 1500 Returns a True if the value of Price
equals 1500 or is less than 1500.

Note

210 Part I, Section I ✦ Working with Data Tables and Queries

Notice, in the second example, that you got the same results using the operator !>
(not greater than). In other words, equal to or less than can be expressed using
either operator, <= or !>.

Access 2003 is sensitive to the order of the operators. Access reports an error if you
enter =<; the order is important. It must be less than or equal to (<=).

The > (greater-than) operator
The greater-than operator is the exact opposite of the less-than operator. This opera-
tor returns a True when the left side of the equation is greater than the right side, as
in this example:

[tblSales.dblTaxRate] > 3.5 Returns True if the value of Tax rate is greater
than 3.5.

The >= (greater-than-or-equal-to) operator
The greater-than-or-equal-to operator returns a True if the left side of the equation is
either equal to or greater than the right side. For example:

[tblSales.dblTaxRate] >= 5 Returns a True if the field Tax rate contains a
value equal to or greater than 5.

[tblSales.dblTaxRate] !< 5 Returns a True if the field Tax rate contains a
value equal to or greater than 5.

Notice, in the second example, that you got the same results using the operator !<
(not less than). In other words, equal to or greater than can be expressed using
either operator, >= or !<.

Access 2003 is sensitive to the order of the operators. Access reports an error if
you enter =>; the order is important. It must be greater than or equal to (>=).

String operators
Access has three string operators, also know as text operators. Unlike the other
operators, these work specifically with the Text data type:

& Concatenation

Like Similar to...

NOT Like Not similar to...

The & (concatenation) operator
The concatenation operator connects or links (concatenates) two or more objects
into a resultant string. This operator works similarly to the addition operator.

Caution

Caution

211Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

Unlike the addition operator, however, the & operator always forces a string con-
catenation. For instance, this example produces a single string:

[chrFirstName] & [chrLastName]

However, in the resultant string, no spaces are automatically added. If [chrFirstName]
equals “Fred” and [chrLastName] equals “Smith,” concatenating the field contents
yields FredSmith. To add a space between the strings, you must concatenate a
space string between the two fields. To concatenate a space string between first
and last name fields, you enter a formula such as this:

[chrFirstName] & “ ” & [chrLastName]

This operator can easily concatenate a string object with a number- or date-type
object. Using the & eliminates the need for special functions to convert a number
or date to a string.

Suppose, for example, that you have a Number field, which is House Number, and
a Text field, which is Street Name, and that you want to build an expression for a
report of both fields. For this, you can enter the following:

[House Number] & “ ” & [Street Name]

If House Number has a value of 1600 and Street Name is “Pennsylvania Avenue
N.W.,” the resultant concatenation of the number and string is as follows:

“1600 Pennsylvania Avenue N.W.”

Perhaps you want to have a calculated field in a report that prints the operator’s
name and the date and time the report was run. This can be accomplished using
syntax similar to the following:

“This report was printed ” & Now() & “ by ” & [operator name]

If the date is March 21, 2003, and the time is 4:45 p.m., this concatenated line prints
something like this:

This report was printed 3/21/03 4:45:40 PM by Michael R. Irwin

Notice the spaces at the end or the beginning of the strings. Knowing how this oper-
ator works makes maintenance of your database expressions easier. If you always
use the concatenation operator for creating concatenated text strings, you won’t
have to be concerned with the data types of the concatenated objects. Any formula
that uses the & operator converts all the objects being concatenated to a string
data type for you.

212 Part I, Section I ✦ Working with Data Tables and Queries

Using the & with Nulls: If both objects are Null, the result is also a Null. If only one
of the two objects is Null, Access converts the object that is Null to a string type
with a length of 0 and builds the concatenation.

The Like (similar to) operator and NOT Like
The Like operator, and its opposite, the NOT Like operator, are used to compare
two string objects by using wildcards. This operator determines whether one
object matches, or doesn’t match, the pattern of another object. The resultant
value of the comparison is a True, False, or Null.

The Like operator uses the following basic syntax:

expression object Like pattern object

Like looks for the expression object in the pattern object; if it is present, the opera-
tion returns a True. (The Like operator is discussed in more detail in Chapter 13.)

If either object in the Like formula is a Null, the result is a Null.

This operator provides a powerful and flexible tool for string comparisons. The
pattern object can use wildcard characters to increase flexibility (see the sidebar
“Using Wildcards”).

If you want to match one of the wildcard characters in the Like operation, the wild-
card character must be enclosed in brackets in the pattern object. In the example

“AB*Co” Like “AB[*]C*”

the [*] in the third position of the pattern object will look for the asterisk as the
third character of the string.

Following are some examples that use the Like operator:

[tblContacts.chrLastName] Like “M[Cc]*” Returns a True for any last name
that begins with “Mc” or “MC.”
“McDonald,” “McJamison,”
“MCWilliams” are all True; “Irwin”
and “Prague” are False.

[chrAnswer] Like “[!e-zE-Z]” Returns a True if the Answer
is A, B, C, D, a, b, c, or d. Any
other letter is False.

“AB1989” Like “AB####” Results in True because the
string begins with the letters
AB and is followed by any four
numbers.

Tip

Note

Note

213Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

“#10 Circle Drive” Like “[#]*Drive” Results in True because the first
character is the pound sign (#)
and the last part is the word
Drive.

[Answer] NOT Like “[!e-zE-Z]” Returns a False if the Answer is
A, B, C, D, a, b, c, or d. Any other
letter is TRUE.

[chrLastName] NOT Like “M[Cc]*” Is True for any last name that
DOES NOT begin with “Mc”
or “MC.” “McDonald,”
“McJamison,” “MCWilliams” are
all FALSE; “Irwin” and “Prague”
are TRUE.

Boolean (logical) operators
Access uses six Boolean operators. Also referred to as logical operators, these are
used for setting conditions in expressions. Boolean operators are used to create
complex multiple-condition expressions. Like relational operators, these always
return either a logical True or False or a Null. Boolean operators include the
following:

And Logical and

Or Logical inclusive or

Eqv Logical equivalence

Imp Logical implication

Xor Logical exclusive or

Not Logical not

The And operator
You use the And operator to perform a logical conjunction of two objects; the opera-
tor returns the value True if both conditions are true. The general syntax of an And
operation is:

object expression 1 And object expression 2

Here is an example:

[tblContacts.chrState] = “MA” Is True only if both conditions
And [tblContacts.chrZipCode] = “02379-” are True.

214 Part I, Section I ✦ Working with Data Tables and Queries

If the conditions on both sides of the And operator are True, the result is a True
value. Table 6-1 demonstrates the results.

Table 6-1
And Operator Resultants

Expression 1 Expression 2 Return Resultant

True True True

True False False

True Null Null

False True False

False False False

False Null False

Null True Null

Null False False

Null Null Null

Using Wildcards

Access lets you use these five wildcards with the Like operator:

Character Matches

? A single character (A to Z, 0 to 9)

* Any number of characters (0 to n)

Any single digit (0 to 9)

[list] Any single character in the list

[!list] Any single character not in the list

Both [list] and [!list] can use the hyphen between two characters to signify a range.

215Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

The Or operator
The Or operator is used to perform a logical disjunction of two objects; the operator
returns the value True if either condition is true. The general syntax of an Or opera-
tion is

object expression 1 Or object expression 2

The following two examples show how the Or operator works:

[chrLastName] = “Casey” Is True if Last Name is either Casey
Or [chrLastName] = “Gleason” or Gleason.

[chrTaxLocation] = “TX” Is True if the Tax location is either TX
Or [chrTaxLocation] = “CT” or CT.

If the condition of either side of the Or operator is True, a True value is returned.
Table 6-2 demonstrates the results.

Table 6-2
Or Expression Resultants

Expression 1 Expression 2 Return Resultant

True True True

True False True

True Null True

False True True

False False False

False Null Null

Null True True

Null False Null

Null Null Null

The Not operator
The Not operator is used for negating a numeric object; the operator returns the
value True if the condition is not true. This operator reverses the logical result of
the expression.

216 Part I, Section I ✦ Working with Data Tables and Queries

The general syntax of a Not operation is:

Not numeric object expression

The following example shows how to use the Not operator:

Not [curPrice] <= 100000 Is true if Price is greater than 100000.

If the numeric object is Null, the resulting condition is Null. Table 6-3 demonstrates
the results.

Table 6-3
Not Operator Resultants

Expression Return Resultant

True False

False True

Null Null

Miscellaneous operators
Access has three very useful miscellaneous operators:

Between...And Range

In List comparison

Is Reserved word

The Between...And operator
You can use the Between...And operator to determine whether an object is within a
specific range of values. This is the general syntax:

object expression Between value 1 And value 2

If the value of the object expression is between value 1 and value 2, the result is
True; otherwise, it is False.

217Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

The following is an example of the Between...And operator that uses the IIF function
for a calculated field named Due 30 Days in a query to display current balance or
nothing:

Due 30 Days: IIf([tblContacts.curCurBal] Between 0 And 4500,Null,curCurBal)

This displays the amount due in 30 days for values of greater than $4500.

The In operator
The In operator is used to determine whether an object is equal to any value in a
specific list. This is the general syntax:

object expression In (value1, value2, value3, ...)

If the object expression is found in the list, the result is True; otherwise, the result
is False.

The following example also uses the In operator as a criteria for a query:

In (‘SUV’,‘Minivans’)

This displays only those vehicles that are SUVs or Minivans.

The Is (reserved word) operator
The Is operator is used only with the keyword Null to determine whether an object
has nothing in it. This is the general syntax:

object expression Is Null, value 1

This example is a validation-check message in a data-entry form to force entry of a
field:

IIF([chrLastName] Is Null, “a Last Name Must be Entered”,“ ”)

Operator precedence
When you work with complex expressions that have many operators, Access must
determine which operator to evaluate first, and then which is next, and so forth. To
do this, Access has a built-in predetermined order, known as operator precedence.
Access always follows this order unless you use parentheses to specify otherwise.

218 Part I, Section I ✦ Working with Data Tables and Queries

Parentheses are used to group parts of an expression and override the default order
of precedence. Operations within parentheses are performed before any operations
outside of them. Inside the parentheses, Access follows the predetermined operator
precedence.

Precedence is determined first according to category of the operator. The operator
rank by order of precedence is:

1. Mathematical

2. Comparison

3. Boolean

Each category contains its own order of precedence, which is explained next.

The mathematical precedence
Within the general category of mathematical operators, this order of precedence is
in effect:

1. Exponentiation

2. Negation

3. Multiplication and/or division (left to right)

4. Integer division

5. Modulo

6. Addition and/or subtraction (left to right)

7. String concatenation

The comparison precedence
Comparison operators observe this order of precedence:

1. Equal

2. Not equal

3. Less than

4. Greater than

5. Less than or equal to

6. Greater than or equal to

7. Like

219Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

The Boolean precedence
The Boolean category follows this order of precedence:

1. Not

2. And

3. Or

4. Xor

5. Eqv

6. Imp

Moving beyond Simple Queries
Select queries are the most common type of query used; they select information
(based on a specific criterion) from one or more related tables. With these queries,
you can ask questions and receive answers about information that’s stored in your

Precedence Order

Simple mathematics provides an example of order of precedence. Remember that Access
performs operations within parentheses before operations that are not in parentheses. Also
remember that multiplication and division operations are performed before addition or
subtraction operations.

For example, what is the answer to this simple equation?

X=10+3*4

If your answer is 52, you need a better understanding of precedence in Access. If your
answer is 22, you’re right. If your answer is anything else, you need a calculator!

Multiplication is performed before addition by the rules of mathematical precedence.
Therefore, the equation 10+3*4 is evaluated in this order:

3*4 is performed first, which yields an answer of 12. 12 is then added to 10, which yields
22.

Look at what happens when you add parentheses to the equation. What is the answer to
this simple equation?

X=(10+3)*4

Now the answer is 52. Within parentheses, the values 10 and 3 are added first; then the
result (13) is multiplied by 4, which yields 52.

220 Part I, Section I ✦ Working with Data Tables and Queries

database tables. In previous chapters, you work with queries that use simple criteria
on a single field in a table with operators, such as equal (=) and greater than (>).

Knowing how to specify criteria is critical to designing and writing effective queries.
Although queries can be used against a single table for a single criterion, most
queries extract information from several tables using more complex criteria.

Because of this complexity, your queries are able to retrieve only the data you need,
in the order that you need it. You may, for example, want to select and display data
from the Access Auto Auctions database to answer these questions:

✦ All buyers of Chevy cars or Ford trucks

✦ All buyers who have purchased something during the past 60 days

✦ All sales for items greater than $90,000.00 USD

✦ The number of customers from each state

✦ Any customers that have made comments or complaints

As your database system evolves, you will ask questions like these about the infor-
mation stored in the system. Although the system was not originally developed
specifically to answer these questions, you can find the information needed to
answer them stored in the tables. Because the information is there, you find your-
self performing ad hoc queries, which can be very simple or quite complex, against
the database. You perform ad hoc queries by using select queries.

Select queries are the easiest way to obtain information from several tables without
resorting to writing programs.

Using query comparison operators
When working with select queries, you may need to specify one or more criteria
to limit the scope of information shown. You specify criteria by using comparison
operators in equations and calculations. The categories of operators are mathemati-
cal, relational, logical, and string. In select queries, operators are used in either the
Field: or Criteria: cell of the QBE (Query by Example) pane.

Here’s a good rule of thumb to observe:

Use mathematical and string operators for creating calculated fields; use rela-
tional and logical operators for specifying scope criteria.

We discuss calculated fields later in this chapter. You can find an in-depth explana-
tion of operators earlier in this chapter.

Table 6-4 shows most of the common operators that are used with select queries.

Cross-
Reference

221Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

Table 6-4
Common Operators Used in Select Queries

Mathematical Relational Logical String Miscellaneous

* (multiply) = (equal) And & (concatenate) Between...And

/ (divide) <> (not equal) Or Like In

+ (add) > (greater than) Not Is Null / Not Null

– (subtract) < (less than)

Using these operators, you can ferret out groups of records like these:

✦ Product records that have a picture associated with them

✦ A range of records, such as all sales between November and January

✦ Records that meet both And and Or criteria, such as all records that are cars
and are not either a Minivan or SUV

✦ All records that do not match a value, such as any category that is not a car

When you add a criterion to a query, you use the appropriate operator with an
example of what you want. In Figure 6-1, the example is CARS. The operator is equal
(=). Notice that the equal sign is not shown in the figure. The equal sign is the default
operator for selection criteria.

Figure 6-1: The QBE pane shows a simple criterion asking for all
vehicles where the chrCategory is Cars.

222 Part I, Section I ✦ Working with Data Tables and Queries

Chapter 5 gives an in-depth explanation of working with queries.

Understanding complex criteria selection
As Table 6-4 shows, you can use several operators to build complex criteria. To most
people, complex criteria consist of a series of Ands and Ors, as in these examples:

✦ State must be Connecticut or Texas

✦ City must be Sunnyville and state must be Georgia

✦ State must be MA or MO and city must be Springfield

These examples demonstrate the use of both logical operators: And/Or. Many times,
you can create complex criteria by entering example data in different cells of the
QBE pane. Figure 6-2 demonstrates how to create complex And/Or criteria without
entering the operator keywords And/Or at all. This example displays all the buyers
and their sales that satisfy these criteria:

Live in either the state of Connecticut (CT) or the state of Massachusetts
(MA) and whose type of vehicle purchase is not a car.

You learn how to create this type of complex query later in this chapter.

Figure 6-2: Creating complex And/Or criteria by example without using
the And/Or operators. This Query uses both the Criteria row and the Or
row to combine the And/Or criteria through example.

Note

Cross-
Reference

223Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

Access takes your graphical query and creates a single SQL SELECT statement to
actually extract the information from your tables. You can see this SQL statement
by selecting View ➪ SQL View from the Database menu. This action opens a new
window named Query1: Select Query to display the actual SQL statement that was
built. Figure 6-3 shows the statement that Access based on what you built with the
example data in Figure 6-2. This is the same query in its written SQL format.

Figure 6-3: The SQL window for the same query built in Figure 6-2.
Notice that it contains a single OR statement and two AND statements
(in the WHERE clause).

The SQL statement in Figure 6-3 has been separated by the author into a clearer
way to read it. When you open your SQL window, you will see what appears to be
one long multi-line statement with no breaks between it.

SQL statements in queries are covered in detail in Chapter 38.

Sometimes you see a field name referred to first by the table name and then by
the field name, as shown in the SQL statement in Figure 6-3. When you see this
kind of reference, it will have a dot (.) between the two names, such as
Customer.[Customer Name]. This nomenclature tells you which table a field
belongs to. This is especially critical when you’re describing two fields that have
the same name but are contained in different tables. In a multiple-table query, you
see this format in the field list when you add a field to the QBE pane by clicking an
empty column. You also see this format when you create a multiple table form by
using the field list. The general format is Table Name.Field Name. If the field name
or table name has spaces in it, you must surround the name with brackets []; for
example, tblSales.[Date of Sale] and tblContact.[Customer Last Name]. These two
examples are for the purpose of demonstrating how you would enclose the field
names with brackets.

We do not use spaces in table and field names; although many people do for bet-
ter readability, it’s a really good idea to not use spaces at all. This way, you don’t
have to use brackets around your field or object names. For example, you can ref-
erence tblContact.[Customer Last Name] without a space between the names as
tblContact.CustomerLastName — thus eliminating the need for using brackets. To
do this, you need to create your table fields without using spaces.

Tip

Note

Cross-
Reference

224 Part I, Section I ✦ Working with Data Tables and Queries

If you build a mathematical formula for this query (not the SQL statement), it looks
similar to this example:

(tblContacts.chrState = “CT” AND Not tblProducts. chrCategory = “Cars”) OR
(tblContacts.chrState = “MA” AND Not tblProducts.chrCategory = “Cars”)

You must enter the type of category (Not cars) example for each state line in the
QBE pane, as shown in Figure 6-2. Later, you learn to use the And/Or operators in a
Criteria: cell of the query, which eliminates the need for redundant entry of these
fields.

In this example, you looked for all vehicles that were not cars in the category field.
To find records that match a value, drop the use of the Not operator with the value.
For example, enter the expression Cars to find all types that are cars.

The And/Or operators are the most commonly used operators when working with
complex criteria. The operators consider two different formulas (one on each side
of the And/Or operators) and then determine individually whether they are True
or False. Then the operators compare the results of the two formulas against each
other for a logical True/False answer. For example, take the first And statement in
the formula given in the preceding paragraph:

(tblContacts.chrState = “CT” AND Not tblProducts. chrCategory = “Cars”)

The first half of the formula, tblContacts.chrState = “CT”, converts to a True if the
state is CT (False if a different state; Null if no state was entered in the field).

Then the second half of the formula, Not tblProducts. chrCategory = “Cars”, is con-
verted to a True if the Products Category is anything except Cars (False if Cars; Null
if no Category was entered). Then the And compares the logical True/False from
each side against the other side to give a resultant True/False answer.

A field has a Null value when it has no value at all; it is the lack of entry of infor-
mation in a field. Null is neither True nor False; nor is it equivalent to all spaces or
zero — it simply has no value. If you never enter a city name in the City field and
just skip it, Access leaves the field empty. This state of emptiness is known as Null.

When the result of an And/Or is True, the overall condition is True, and the query
displays those records meeting the True condition. Table 6-5 reviews the True and
False conditions for each operator.

Notice that the And operator is True only when both sides of the formula are True,
whereas the Or operator is True when either side of the formula is True. In fact, one
side can be a Null value, and the Or operator will still be True if the other side is
True. This is the difference between And/Or operators.

Note

Tip

225Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

Table 6-5
Results of Logical Operators And/Or

Left Side Is Operator Is Right Side Is Resultant Answer Is

True AND True True

True AND False False

False AND True False

False AND False False

True AND Null False

Null AND True False

False AND Null False

Null AND False False

True OR True True

True OR False True

False OR True True

True OR Null True

Null OR True True

False OR False False

False OR Null False

Null OR False False

Using functions in select queries
When you work with queries, you may want to use built-in Access functions to
display information. For example, you may want to display items such as:

✦ The day of the week (Sunday, Monday, and so forth) for Sales dates

✦ All customer names in uppercase

✦ The difference between two date fields

You can display all this information by creating calculated fields for the query.
We discuss calculated fields in depth later in this chapter.

For more on Functions and their use in Forms, Reports, and Queries, refer to
Chapter 20.

Cross-
Reference

226 Part I, Section I ✦ Working with Data Tables and Queries

Referencing fields in select queries
When you work with a field name in queries, as you do with calculated fields or
criteria values, you should enclose the field name in square brackets ([]). Access
requires brackets around any field name that is in a criterion and around any field
name that contains a space or punctuation. An example of a field name in brackets
is the criterion [tblSales].[dtmSaleDate] + 30. You can find more examples like this
later in the chapter.

If you omit the brackets ([]) around a field name in the criterion, Access may
automatically places quotes around the field name and treat it as text instead of a
field name.

Entering Single-Value Field Criteria
You’ll encounter situations in which you want to limit the query records returned
on the basis of a single field criterion, such as in these queries:

✦ Customer (buyer) information for customers living in the state of New York

✦ Sales of any motor homes

✦ Customers who bought anything in the month of January

Each of these queries requires a single-value criterion. Simply put, a single-value cri-
terion is the entry of only one expression in a field. That expression can be example
data, such as “NY,” or a function, such as DatePart(“m”,[dtmSaleDate]) = 1. Criteria
expressions can be specified for any data type: Text, Numeric, Date/Time, and so
forth. Even OLE Object and Counter field types can have criteria specified.

For a full explanation of expressions, operators, identifiers, and literals, refer back
to the earlier section of this chapter. For detailed explanation of functions, see
Chapter 20.

All the examples in this chapter rely on several tables: tblContacts, tblSales,
tblSalesLineItems, and tblProducts. The CHAP06Start.mdb database contains the
tables used in this chapter. The majority of these examples use only the tblContacts
and tblSales tables.

Each series of steps in this chapter tells you which tables and fields make up the
query. For most examples, you should clear all previous criteria. Each example
focuses on the criteria line of the QBE pane. You can also view each figure to make
sure you understand the correct placement of the criteria in each example. Only a
few dynasets are shown, but you can follow along and view the data.

Note

Cross-
Reference

Caution

227Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

Entering character (Text or Memo) criteria
You use character criteria for Text or Memo data-type fields. These are either exam-
ples or data about the contents of the field. To create a text criterion to display cus-
tomers who live in New York State, for example, follow these steps:

1. Open the tblContacts table in the Query design surface and add the First
Name, Last Name, and State (chrFirstName, chrLastName, chrState) fields to
the QBE pane.

2. Click the Criteria: cell for chrState field.

3. Type NY in the cell.

Your query should look similar to the query shown in Figure 6-4. Notice that only
one table is open and only three fields are selected. You can click the Datasheet
button to see the results of this query.

Figure 6-4: The Datasheet window showing the tblContacts table
open. You see the example data NY in the Criteria row under the
chrState field.

When specifying example-type criteria, it isn’t necessary to match capitalization.
Access defaults to case-insensitive when working with queries. Entering NY, ny, or
nY provides the same results.

You don’t have to enter an equal sign before the literal word NY because Access
uses the equal operator as the default operator. To see all states except Ny, you
must enter either the <> (not equal) or the Not operator before the word NY.

Tip

228 Part I, Section I ✦ Working with Data Tables and Queries

You also don’t have to type quotes around the word NY. Access assumes that you
are using an example literal NY and adds the quotes for you automatically.

If you type in quotation marks, you should use the double quotation mark to sur-
round literals. Access normally uses the single quotation mark as a remark character
in its programming language. However, when you use the single quotation mark in
the Criteria: cell, Access interprets it as a double quotation mark.

The Like operator and wildcards
In previous sections, you worked with literal criteria. You specified the exact field
contents for Access to find, which was “NY” in the previous example. Access used
the literal to find the specific records. Sometimes, however, you know only a part of
the field contents, or you may want to see a wider range of records on the basis of a
pattern. For example, you may want to see all buyers information for those buyers
who bought vehicles made in the 1950s (where descriptions begin with the charac-
ters 195); so you need to check 1950, 1951, 1952, and so forth. Here’s a more practi-
cal example: Suppose you have a Buyer who has purchased a couple of red cars in
the last year. You remember making a note of it in the Comments field about the
color, but you don’t remember which customer it was. To do this, you are required
to use a wildcard search against the Memo field in the tblProducts table to find any
records that contain the word Red.

Access uses the string operator Like in the Criteria: cell of a field to perform wild-
card searches against the field’s contents. Access searches for a pattern in the field;
you use the question mark (?) to represent a single character or the asterisk (*) for
several characters. (This works just like filenames at the DOS level.) In addition to
the two characters (?) and (*), Access uses three other characters for wildcard
searches. Table 6-6 lists the wildcards that the Like operator can use.

The question mark (?) stands for any single character located in the same position
as the question mark in the example expression. An asterisk (*) stands for any num-
ber of characters in the same position in which the asterisk is placed. Unlike the
asterisk at DOS level, Access can use the asterisk any number of times in an example
expression. The pound sign (#) stands for any single digit found in the same position
as the pound sign. The brackets ([]) and the list they enclose stand for any single
character that matches any one character of the list located within the brackets.
Finally, the exclamation point (!) inside the brackets represents the Not word for
the list — that is, any single character that does not match any character in the list
within the brackets.

These wildcards can be used alone or in conjunction with each other. They can
even be used several times within the same expression. The examples in Table 6-6
demonstrate how you can use the wildcards.

Tip

229Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

Table 6-6
Wildcards Used by the Like Operator

Wildcard Purpose

? A single character (0-9, Aa-Zz)

* Any number of characters (0 to n)

Any single digit (0-9)

[list] Any single character in the list

[!list] Any single character not in the list

To create an example using the Like operator, let’s suppose that you want to find
the record of a sports car with an exterior color of red. You know that the word
Red is used in one of the records in the memFeatures field of the tblProducts table.
To create the query, follow these steps:

1. Add the four tables: tblContacts, tblSales, tblSalesLineItems, and tblProducts.

2. Select the Last Name and First Name fields from the tblContacts table, and
select the chrDescription and memFeatures fields from the tblProducts table
to add the four fields to the QBE pane. (Although not necessary, you may
want to set a sort order Ascending in the last name field and then first name
field.)

3. Click the Criteria: cell of the memFeatures field.

4. Type * red * in the cell (be sure to put a space between the first asterisk and
the ‘R’ and the last asterisk and the ‘d’, — in other words, asterisks before and
after like this: [space]Red[space]).

In the above steps, you put a space before and after the word Red. If you did not,
Access would find all words that have the word “red” in them, like aired, bored,
credo, fired, geared, restored, and on and on. By placing a space before and after
the word red, Access is being told to look for the word red only. Of course it would
not find black/red or red/black with spaces around the word. If you need to find
these, you could put them as additional criteria in the or cells.

When you click outside the Criteria: cell, Access automatically adds the operator
Like and the quotation marks around the expression. Your query QBE pane should
look similar to the one shown in Figure 6-5.

After creating this query, click on the datasheet button to look at the resultant
dynaset. It should look similar to the one shown in Figure 6-6.

Tip

230 Part I, Section I ✦ Working with Data Tables and Queries

Figure 6-5: Using the Like operator with a select query in a Memo field.
In this case, the query looks for the word Red in the memFeatures field.

Figure 6-6: The results of using the Like operator with a select query in a Memo
field; the query looks for the word Red in the memFeatures field.

To make your query look like the one shown in Figure 6-6, you need to widen the
Description and Features fields to see more of the contents and expand the num-
ber of lines to show for each record. To make each record more than one line,
select the line between any two records in the record selector bar, as shown in
Figure 6-6, between the first and second record. When the cursor becomes a small
line with arrows pointing up and down, click and drag the field down to make
each record show more lines.

Tip

231Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

The Like operator and its wildcards can be used only against three types of fields:
Text, Memo, and Date. Using these with any other type can result in an error.

Clicking on the Datasheet button on the toolbar, you see that eight records match
your query request — a red vehicle. Looking closer at the dynaset, you see that
although there are eight records that match your criteria of the word red in the
Features field, they do not all show red exterior color cars. In this case, you will
have to physically examine each record to see if the exterior color of the vehicle is
red (versus the interior). If you need to see records where the Features may show
black/red or red/black, you will need to refine your search. These records are only
those that have the standalone word red — [space]red[space]

Access automatically adds the Like operator and quotation marks if you meet these
conditions:

✦ Your expression contains no spaces

✦ You use only the wildcards ?, *, and #

✦ You use brackets ([]) inside quotation marks “ ”

If you use the brackets without quotation marks, you must supply the operator Like
and the quotation marks.

Using the Like operator with wildcards is the best way to perform pattern searches
through Memo fields. It is just as useful in text and date fields as the examples in
Table 6-7 demonstrate.

Table 6-7 shows several examples that can be used to search records in the tables
of the Access Auto Auctions database.

Table 6-7
Using Wildcards with the Like Operator

Expression Field Used In Results of Criteria

Like “Ca*” tblContacts.chrLastName Finds all records of Contacts whose
last name begin with ‘Ca’, examples:
Calson and Casey

Like “* red *” tblProducts.memFeatures Finds all records with the word “red “
anywhere within the Comments field

Like “C*” tblSales.chrTaxLocation Finds all records for Sales in states of
a type that begin with the letter C

Continued

Caution

232 Part I, Section I ✦ Working with Data Tables and Queries

Table 6-7 (continued)

Expression Field Used In Results of Criteria

Like “9/*/2003” tblSales.dtmSaleDate Finds all records for the month of
September 2003

Like “## South Main” tblContacts.chrAddress Finds all records for houses with
house numbers between 10 and 99
inclusively; examples: 10, 22, 33, 51
on South Main

Like “[CDF]*” tblContacts.chrCity Finds all records for customers who
live in any city with a name beginning
with C, D, or F

Like “[!EFG]*” tblContacts.chrCity Finds all records for customers who
do not live in any city that begins
with the letters E, F, or G; all other
city records are displayed

Specifying non-matching values
To specify a non-matching value, you simply use either the Not or the <> operator
in front of the expression that you don’t want to match. For example, you may want
to see all Contacts (Buyers or Both buyers and sellers) and their sales for all states,
but you want to exclude New York state. Follow these steps to see how to specify
this non-matching value:

1. Open the tblContacts and tblSales tables.

If you only open the Contacts table, you will see both sellers and buyers. When
you open both tables, only buyers are displayed because the tables are linked at a
relationship level showing all sales records — thus eliminating the sellers.

2. Select the contacts chrLastName, chrFirstName, and chrState fields from the
tblContacts table.

3. Click in the Criteria: cell of chrState.

4. Type Not NY in the cell. Access automatically places quotation marks around
NY if you don’t do so before you leave the field. You can also use <> instead of
the word Not as in the figure.

The query should look similar to the one shown in Figure 6-7. The query selects all
records except those for customers who live in the state of New York.

Tip

233Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

You can use the < > operator instead of Not in Step 4 of the previous instructions
to exclude New York (NY). The resultant dynaset is the same with either operator.
These two operators are interchangeable except with the use of the keyword Is.
You cannot say Is < > Null. Rather, you must say Not Is Null or more accurately Is
Not Null.

Figure 6-7: Using the Not operator in criteria. Entering Not NY in
the State field displays all records except those where the State is
NY (New York).

Entering numeric (Number, Currency,
or Counter) criteria
You use numeric criteria with Number, Currency, or Counter data-type fields. You
simply enter the numbers and the decimal symbol — if required — following the
mathematical or comparison operator. For example, you may want to see all sales
where the vehicle price was under USD $10,000 dollars. To create a query like this,
follow these steps:

1. Start with a new query using the tblSalesLineItems and tblProducts tables.

2. Select the curPrice field from the tblSalesLineItems table, and chrDescription
and chrCategory fields from the tblProducts table.

3. Click in the Sort: cell for curPrice.

4. Select Ascending from the pull-down menu.

5. Click in the Criteria: cell for curPrice.

6. Type <10000 in the cell.

Note

234 Part I, Section I ✦ Working with Data Tables and Queries

When you follow these steps, your query looks similar to the query shown in Figure
6-8. When working with numeric data, Access doesn’t enclose the expression with
quotes, as it does with string criteria.

Figure 6-8: Criteria set for price of vehicles. Here the criteria is less
than (<)10000.

If you run this query, the resulting dynaset should show 24 records under USD
$10,000 sorted by price from USD $700.00 to $7,800.

Numeric fields are generally compared to a value string that uses comparison oper-
ators, such as less than (<), greater than (>), or equal to (=). If you want to specify
a comparison other than equal, you must enter the operator as well as the value.
Remember that Access defaults to equal when an operator is not specified in crite-
ria. That is why you needed to specify less than (<) 10000 in the previous example
query for vehicles under USD $10,000.

Working with Currency and Counter data in a query is exactly the same as working
with Numeric data; you simply specify an operator and a numeric value.

Entering Yes/No (logic) criteria
Yes/No criteria are used with Yes/No type fields. The example data that you supply
in the criteria can be for only Yes or No states. You can also use the Not and the <>
operators to signify the opposite, but the Yes/No data also has a Null state that you
may want to check for. Access recognizes several forms of Yes and No. Table 6-8
lists all the positive and negative values that you can use.

Thus, instead of typing Yes, you can type any of these in the Criteria: cell: On, True,
Not No, <> No, <No, or -1.

235Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

A Yes/No field can have only three criteria states: Yes, No, and Null. Null only
occurs when no default value was set in a table and the value has not yet been
entered. Checking for “Is Null” displays only records with no value, and checking
for “Is Not Null” always displays all Yes or No records. After a Yes/No field check
box is checked (or checked and then de-selected), it can never be null. It must be
either Yes or No (–1 or 0).

Table 6-8
Positive and Negative Values Used in Yes/No Fields

Yes True On Not No < > No <No –1

No False Off Not Yes < >Yes >Yes 0

Entering a criterion for an OLE object
You can even specify a criterion for OLE objects: Is Not Null. For example, suppose
you don’t have pictures for all the vehicles and you want to view only those records
that have a picture of the vehicle — that is, those in which the picture Is Not Null.
You specify the Is Not Null criterion for the olePicture field of the tblProducts table.
After you do this, Access limits the records to those that have a picture in them.

Although Is Not Null is the correct syntax, you can also type Not Null and Access
supplies the Is operator for you.

Entering Multiple Criteria in One Field
In previous sections of this chapter, you worked with single-condition criteria on a
single field. As you learned in those sections, you can specify single-condition crite-
ria for any field type. In this section, you work with multiple criteria based on a sin-
gle field. For example, you may be interested in seeing all records in which the Buyer
comes from either New York, New Jersey, or Pennsylvania, or perhaps you want to
view the records of all the vehicles that were sold during the first quarter of the
year 2003.

The QBE pane has the flexibility to solve these types of problems. You can specify
several criteria for one field or for several fields in a select query. Using multiple
criteria, for example, you can determine which customers are from New York or
New Jersey (“NY” or “NJ”) or which vehicles were sold for the past 90 days
(Between Date() And Date() - 90).

You use the And and the Or operators to specify several criteria for one field.

Note

236 Part I, Section I ✦ Working with Data Tables and Queries

Understanding an Or operation
You use an Or operation in queries when you want a field to meet either of two con-
ditions. For example, you may want to see all the records where the Customer lives
in either NY or NJ. In other words, you want to see all records where a customer
lives in New York, in New Jersey, or both (not physically possible — but assume a
buyer could). The general formula for this operation is:

[chrState] = “NY” Or [chrState] = “NJ”

If either side of this formula is True, the resulting answer is also True. To clarify this
point, consider these conditions:

✦ Customer 1 lives in NY — the formula is True.

✦ Customer 2 lives in NJ — the formula is True.

✦ Customer 3 lives in NY and NJ — the formula is True.

✦ Customer 4 lives in CT — the formula is False.

Specifying multiple values for a field
using the Or operator
The Or operator is used to specify multiple values for a field. For example, you use
the Or operator if you want to see all records of buyers who live in CT or NJ or NY.
To do this, follow these steps:

1. Create a new query using the tblContacts and tblSales tables.

2. Select the Contact Name fields (First and Last Name) and State fields from the
tblContact table and then select Sales date from the tblSales table.

3. Click in the Sort: cell of chrState.

4. Select Ascending from the pull-down menu.

5. Click in the Criteria: cell of chrState.

6. Type CT Or NJ Or NY in the cell.

Your QBE pane should resemble the one shown in Figure 6-9. Access automatically
placed quotation marks around your example data — CT, NJ, and NY.

237Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

Figure 6-9: Using the Or operator. Notice the two Or operators under
the chrState field — CT OR NJ OR NY.

Using the Or: cell of the QBE pane
Besides using the literal Or operator in a single statement on the Criteria row under
the chrState field, you can supply individual criteria for the field on separate rows
of the QBE pane. To do this, enter the first criterion example in the Criteria: cell of
the field. Then enter the second criterion example in the Or: cell of the same field.
Enter the next criterion in the cell directly beneath the Or: example; and continue
entering examples vertically down the column. This is exactly equivalent to typing
the Or operator between examples. Using the example in which you queried for
state is NJ, NY, or CT, change your QBE pane to look like the one shown in Figure
6-10. Notice that each State abbreviation is on a separate row in the query.

Figure 6-10: Using the Or: cell of the QBE pane. You can place
each bit of example data on its own row in the Or: cells.

Access allows up to nine Or: cells for each field. If you need to specify more Or
conditions, use the Or operator between conditions (for example: CT Or NJ Or NY
Or PA).

Tip

238 Part I, Section I ✦ Working with Data Tables and Queries

Using a list of values with the In operator
You can use yet another method for specifying multiple values of a single field. This
method uses the In operator. The In operator finds a value that is one of a list of val-
ues. For example, type the expression IN(CT, NJ, NY) under the chrState field in the
query used in Figure 6-10. This action creates a list of values, where any item in the
list becomes an example criterion. Your query should resemble the query shown in
Figure 6-11.

In this example, quotation marks have been automatically added by Access around
CT, NJ, and NY.

When you work with the In operator, each value (example data) must be separated
from the others by a comma.

Figure 6-11: Using the In operator to find all records for Buyer state
being either CT, NJ, or NY.

Understanding an And query
You use And operators in queries when you want a field to meet both of two condi-
tions that you specify. For example, you may want to see records of buyers that
have purchased vehicles between October 1, 2003 and March 31, 2004. In other
words, the sale had to have occurred during the last quarter of the year 2003 and
first quarter of 2004. The general formula for this example is:

[dtmSaleDate] >= 10/1/2003 And [dtmSaleDate] <= 3/31/2004

Unlike the Or operator (which has several conditions under which it is True), the
And operator is True only when both sides of the formula are True. When both
sides are True, the resulting answer is also True. To clarify use of the And operator,
consider these conditions:

✦ Sales date (9/22/2003) is not greater than 10/01/2003, but it is less than
3/31/2004 — the formula is False.

✦ Sales date (4/11/2004) is greater than 10/01/2003, but it is not less than
3/31/2004 — the formula is False.

✦ Sales date (11/22/2003) is greater than 10/01/2003, and it is less than
3/31/2004 — the formula is True.

Note

239Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

Both sides of the operation must be True for the And operation to be True.

An And operation can be performed in several ways against a single field in Access.

Specifying a range using the And operator
The And operator is frequently used in fields that have Numeric or Date/Time data
types. It is seldom used with Text data types, although it can be. For example, you
may be interested in viewing all buyers whose names start with the letters d, e, or f.
The And operator can be used here (>“Cz” and <“G”), although the Like operator is
better (Like “[DEF]*”). Using an And operator with a single field sets a range of
acceptable values in the field. Therefore, the key purpose of an And operator in a
single field is to define a range of records to be viewed. For example, you can use
the And operator to create a range criterion to display all buyers who have pur-
chased vehicles between October 1, 2003 and March 31, 2004, inclusively. To create
this query, follow these steps:

1. Create a new query using the tblContacts and tblSales tables.

2. Select the Contact Name fields (chrLastName and chrFirstName) from the
tblContacts table, and select dtmSaleDate from the tblSales table.

3. Click in the Criteria: cell of dtmSaleDate.

4. Type >= 10/1/2003 And <= 3/31/2004 in the cell.

The query should resemble the one shown in Figure 6-12. You can change the formula
to >9/30/2003 And <4/1/2004 with identical results.

Figure 6-12: Using the And operator with numeric fields. Notice that
this query shows all records for sales during the last quarter of 2003
and the first quarter of 2004.

Using the Between...And operator
You can request a range of records from a single field by using another method —
the Between...And operator. With the Between...And operator, you can find records
that meet a range of values — for example, all Sales where the value of the vehicle
was between USD $10,000 and USD $20,000. Using the example of sales between
October 1, 2003 and March 31, 2004, create the query using the Between...And oper-
ator, as shown in Figure 6-13.

240 Part I, Section I ✦ Working with Data Tables and Queries

Figure 6-13: Using the Between...And operator. The resulting datasheet
will show the same 21 records as the query in Figure 6-12.

When you use the Between...And operator, the values entered in the Criteria field
(in this example, 10/1/2003 and 3/31/2004) are (if they match) included in the
resulting dynaset.

Searching for Null data
A field may have no contents for several reasons: For example, perhaps the value
wasn’t known at the time of data entry, or the person who did the data entry simply
forgot to enter the information, or the field’s information was removed. Access does
nothing with this field; it simply remains an empty field. (A field is said to be null
when it’s empty.)

Logically, a Null is neither True nor False. A Null field is not equivalent to all spaces
or to zero. A Null field simply has no value.

Access lets you work with Null value fields by means of two special operators:

Is Null

Is Not Null

You use these operators to limit criteria based on Null values of a field. Previously
in this chapter, you learned that a Null value can be used to query for vehicles hav-
ing a picture on file. In the next example, you look for Buyer records that don’t
specify Original Customer Date (dtmOrigCustDate). To create this query, follow
these steps:

1. Create a new query using the tblContacts and tblSales tables.

2. Select the Buyer dtmOrigCustDate and Name fields from the tblContacts table,
and select dtmSaleDate from the tblSales table.

3. Click in the Criteria: cell of dtmOrigCustDate.

4. Type Is Null in the cell.

Your query should look like the query shown in Figure 6-14. Select the Datasheet
button to see that you have one record without a Customer Original Date — Larry
Minkler. If you add a record in the database and don’t enter a value in this field, that
record shows in the resulting dynaset of this query as a null value.

Caution

241Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

Figure 6-14: Using the Is Null operator. If the database has any records
with the dtmOrigCustDate field missing a value (the user clicked past
the field), they will be shown as blanks in the dynaset when the
datasheet button is pressed. Their actual value is defined as Null — or no
value entered (versus a blank space).

When using the Is Null and Is Not Null operators, you can enter Null or Not Null
and Access automatically adds the Is to the Criteria field.

Entering Criteria in Multiple Fields
Previously in this chapter, you worked with single and multiple criteria specified
in single fields. In this section, you work with criteria across several fields. When
you want to limit the records based on several field conditions, you do so by setting
criteria in each of the fields that will be used for the scope. Suppose you want to
search for all Sales of Cars in Kansas (KS). Or, suppose you want to search for SUVs
in Massachusetts or Connecticut. Or, suppose you want to search for all SUVs in
Massachusetts or Minivans in Connecticut. Each of these queries requires placing
criteria in multiple fields and on multiple lines.

Using And and Or across fields in a query
To use the And operator and the Or operator across fields, place your example or
pattern data in the Criteria: cells (for the And operator) and the Or: cells of one
field relative to the placement in another field. When you want to use And between
two fields, you place the example or pattern data across the same row. When you
want to use Or between two fields, you place the example or pattern data on differ-
ent rows in the QBE pane. Figure 6-15 shows the QBE pane and a conceptual repre-
sentation of this placement.

Figure 6-15: The QBE pane with And/Or criteria between fields using
the Criteria: and or: rows

Tip

242 Part I, Section I ✦ Working with Data Tables and Queries

Figure 6-15 shows that if the only criteria fields present were Ex1, Ex2, and Ex3
(with Ex4 and Ex5 removed), all three would be And-ing between the fields. If only
the criteria fields Ex4 and Ex5 were present (with Ex1, Ex2, and Ex3 removed), the
two would be Or-ing between fields. As it is, the selection for this example is (EX1
AND EX2 AND EX3) OR EX4 OR EX5. Therefore, this query is True if a value matches
any of these criteria:

EX1 AND EX2 AND EX3 (all must be True) or

EX4 (this can be True and either/both of the other two lines can be False) or

EX5 (this can be True and either/both of the other two lines can be False)

As long as one of these three criteria are True, the record is selected.

Specifying And criteria across fields of a query
The most common type of condition operator between fields is the And operator.
You use the And operator to limit records on the basis of several field conditions.
For example, you may want to view only the records of buyers who live in the state
of Massachusetts and bought Chevys. To create this query, follow these steps:

1. Create a new query using the four tables, tblContacts, tblSales,
tblSalesLineItems, and tblProducts.

2. Select the Contacts Names and State fields from the tblContacts table and
then select the Description field from the tblProducts table.

3. Click the Criteria: cell of chrState.

4. Type MA in the cell.

5. Click the Criteria: cell for chrDescription.

6. Type Like *chevy* in the cell.

Your query should look like the query shown in Figure 6-16. Notice that both exam-
ple data are in the same row. If you look at the datasheet, you will see seven records
that match the criteria one truck and six cars.

Because you placed data for both criteria on the same row, Access interprets this
as an And operation — where both conditions must be True. If you click on the
Datasheet button, you see that you only have seven records in the resulting
dynaset.

243Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

Figure 6-16: An And operator performing a mathematical operation
based on two fields — MA in chrState and Like *chevy* in the
chrDescription field.

Specifying Or criteria across fields of a query
Although the Or operator isn’t used across fields as commonly as the And operator,
occasionally Or is very useful. For example, you may want to see records of any
vehicles bought by contacts in Connecticut or you may want to see records on
SUVs, regardless of the state they live in. To create this query, follow these steps:

1. Use the query from the previous example, emptying the two criteria cells first.

2. Add the field chrCategory from the tblProducts table.

3. Click the Criteria: cell of chrState.

4. Type CT in the cell.

5. Click in the Or: cell for chrCategory (one line below the CT example).

6. Type SUV in the cell.

Your query should resemble the query shown in Figure 6-17. Notice that the criteria
entered this time are not in the same row for both fields.

When you place the criterion for one field on a different line from the criterion for
another field, Access interprets this as an Or between the fields. If you click on the
Datasheet button, you see that you now have 28 records in the resulting dynaset.
This is because you gave a criteria that stated “Show me all records where the State
is CT,” or the Category of vehicle is “SUV.” Either condition is True — thus, more
than one record meets the condition.

244 Part I, Section I ✦ Working with Data Tables and Queries

Figure 6-17: Using the Or operator between fields. Either condition
must be True — either from the State of CT or the Type of vehicle is SUV.

Using And and Or together in different fields
After you’ve worked with And and Or separately, you’re ready to create a query
using And and Or in different fields. In the next example, you want to display infor-
mation for all Buyers of SUVs in Connecticut and all Buyers of Trucks in New York.
To create this query, follow these steps:

1. Use the query from the previous example, emptying the two criteria cells first.

2. Click the Criteria: cell of chrState.

3. Type CT in the cell.

4. Click the Or: cell of chrState.

5. Type NY in the cell.

6. Click the Criteria: cell for chrCategory.

7. Type SUV in the cell.

8. Click the Or: cell for chrCategory.

9. Type TRUCKS in the cell.

Figure 6-18 shows how the query should look. Notice that CT and SUV are in the
same row; NY and TRUCKS are in another row. This query represents two Ands
across fields, with an Or in each field.

245Chapter 6 ✦ Using Operators and Expressions in Multi-Table Select Queries

Figure 6-18: Using Ands and Ors across fields to select all SUVs for
Buyers that live in CT or all TRUCKs whose Buyers live in NY.

Clicking on the datasheet button should display eight records — four SUV records
for CT and four truck records for NY.

A complex query on different lines
Suppose you want to view all records of Chevys that were bought in the first six
months of 2003 where the buyer lives in MA, or any vehicle from buyers in California.
In this example, you use three fields for setting criteria: tblContact.chrState,
tblSales.dtmSaleDate, and tblProducts.chrDescription. Here’s the formula for
setting these criteria:

((tblSales.dtmSaledate Between #1/1/2003# And #6/30/2003#) AND
(tblProducts.chrDescription = Like “*Chevy*”) AND (tblContact.chrState =
“MA”)) OR (tblContact.chrState = “CA”)

You can display this data by creating the query shown in Figure 6-19.

Figure 6-19: Using multiple Ands and Ors across fields. This is a rather complex
Select query that can be built.

You can enter the date 1/1/03 instead of 1/1/2003, and Access processes the
query exactly the same. All Microsoft Office products process two-digit years from
00 to 30 as 2000 to 2030, while all two-digit dates between 31 and 99 are pro-
cessed as 1931 to 1999.

Note

246 Part I, Section I ✦ Working with Data Tables and Queries

Creating a New Calculated Field in a Query
Fields in a query are not limited to the fields from the tables in your database.
You can also create calculated fields to use in a query. For example, you can create
a calculated field named Discount Amount that displays the result of multiplying the
value of the Discount Percent (dblDiscountPercent) times the Price (curPrice) in
the tblSalesLineItem table.

To create this calculated field, follow these steps:

1. Create a new query using the tblContacts, tblSales, tblSalesLineItems, and
tblProducts tables.

2. Select the Buyer Name fields (chrLastName and chrFirstName) from the
tblContacts table; and the curPrice, dblDiscountPercent fields from the
tblSalesLineItems table.

3. Click the first empty Field: cell.

4. Type the following Discount Amt: tblSalesLineItems.curPrice *
tblSalesLineItems.dblDiscountPercent and click in another cell.

Your query should look like the one shown in Figure 6-20. The name of the calcu-
lated field is now “discount amount.” If you didn’t type the name in Step 4 above,
Expr1: precedes the calculation. Notice that the Discount Amt formula does not
completely show in Figure 6-20, however, it should match the formula entered in
Step 4 above.

For two reasons, a calculated field has a name (supplied either by the user or by
an Access default). The name is needed as a label for the datasheet column, and
the name is necessary for referencing the field in a form, a report, or another query.

To see the entire contents of the field cell, you can either drag the field until it is all
visible or you can press the Shift+F2 keys to open the Zoom Window.

Notice that the general format for creating a calculated field is as follows:

Calculated Field Name: Expression to build calculated field

Figure 6-20: A calculated field, Discount Amount, was created using two fields
from the tblSalesLineItems table.

✦ ✦ ✦

Tip

Note

Working with
External Data

So far, you have worked with data in Access tables found
in the database container that is open. In this chapter,

you explore the use of data from other types of files. You learn
to work with data from database, spreadsheet, HTML, and
text-based files. After describing the general relationship
between Access and external data, this chapter explains the
major methods of working with external data: linking and
importing/exporting.

This chapter will use the database named CHAP07Start.
mdb as well as several other files (Chap07Link.mdb,
CONTACTS.DBF, CONTACTS.DBT, Names.txt, SALES.DB,
SALESLINEITEMS.TXT, CUSTOMERTYPES.HTML, Contacts
Fixed.txt, and PRODUCTS.XLS) that you will use for linking.
If you have not already copied these files onto your
machine from the CD, you will need to do so now. After
you have completed this chapter, your database should
resemble the one in CHAP07End.mdb.

To use the final database, Chap07End.mdb, you will need
to run the Linked Table Manager to reestablish valid links
for all the tables. Using the Linked table manager is dis-
cussed later in this chapter in the “Viewing or changing
information for linked tables” section.

Access and External Data
Exchanging information between Access and another program
is an essential capability in today’s database world. Information
is usually stored in a wide variety of application programs and
data formats. Access (like many other products) has its own
native file format, designed to support referential integrity
and provide support for rich data types, such as OLE objects.

Note

On the
CD-ROM

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Linking to
external data

Splitting an Access
database into
programs and data

Working with
linked tables

Using the Linked
Table Manager

Importing
external data

Creating
import/export
specifications

Exporting to external
tables and files

✦ ✦ ✦ ✦

248 Part I, Section I ✦ Working with Data Tables and Queries

Most of the time, this format is sufficient; occasionally, however, you need to move
data from one Access database file to another, or even to or from a different soft-
ware program’s format.

Types of external data
Access has the capability to use and exchange data among a wide range of applica-
tions. For example, you may need to get data from other database files (such as
FoxPro, dBASE, or Paradox files) or obtain information from an SQL Server, Oracle,
or a text file. Access can move data among several categories of applications:

✦ Other Windows applications

✦ Macintosh applications (Foxbase, FoxPro, Excel)

✦ Spreadsheets

✦ PC database management systems

✦ Server-based database systems (SQL Server)

✦ Text and/or other mainframe files

Methods of working with external data
Often you will need to move data from another application or file into your Access
database, or vice-versa. You may need to obtain information you already have in an
external spreadsheet file. You can reenter all the information by hand — or have it
imported into your database. Perhaps you need to put information from your Access
tables into Paradox files. Again, you can reenter all the information into Paradox by
hand or have the information exported to the Paradox table. Access has tools that
enable you to move data from a database table to another table or file. It could be
a table in Access, dBASE, or Paradox; it could be an Excel spreadsheet file. In fact,
Access can exchange data with more than 15 different file types, including the
following:

✦ Access database objects (all types, all versions)

✦ dBASE III+, IV, and 5

✦ FoxPro (all types using the ODBC drivers)

✦ Paradox 3.x, 4.x, 5.0, 7, and 8

✦ Text files (ANSI and ASCII; DOS or OS/2; delimited and fixed-length)

✦ Lotus WK1, WK3, and WJ2 (DOS)

✦ Excel 3, 4, 5-7, 97-2002

✦ ODBC databases (Microsoft SQL Server, Sybase Server, Oracle Server, and
other ODBC 1.1-compliant databases)

✦ HTML tables, lists, documents

249Chapter 7 ✦ Working with External Data

✦ XML documents

✦ Outlook and Outlook Express

✦ Exchange documents

✦ Microsoft IIS 1 and 2

✦ Sharepoint Team Services

✦ Microsoft Active Server Pages

✦ Microsoft Word Merge documents

✦ Rich Text Format documents

Access can work with these external data sources in several ways: linking, import-
ing, and exporting. Table 7-1 lists and describes each method.

Table 7-1
Methods of Working with External Data

Method Description

Link Creates a link to a table in another Access database or links to the data
from a different database format

Import Copies data from a text file, another Access database, or another
application’s format into an Access table

Export Copies data from an Access table to a text file, another Access database,
or another application’s format

Open Database Connectivity, or ODBC, is a standard method of sharing data
between databases and programs. They use the Structured Query Language, or
SQL, to manipulate the external data.

Should you link to or import data?
As Table 7-1 shows, you can work with data from other sources in two ways: linking
or importing. Both methods enable you to work with the external data. There is a
distinct difference between the two methods:

✦ Linking uses the data in its current file format (such as a dBASE, Paradox, or
Excel file).

✦ Importing makes a copy of the external data and brings the copy into the
Access table.

Each method has clear advantages and disadvantages.

Note

250 Part I, Section I ✦ Working with Data Tables and Queries

When to link to external data
Linking in Access enables you to work with the data in another application’s
format — thus sharing the file with the existing application. If you leave data in
another database format, Access can actually make changes to the table while the
original application is still using it. This capability is useful when you want to work
with data in Access that other programs also need to work with. For example, you
might need to obtain updated personnel data from a dBASE file (maintained in an
existing networked dBASE application) so that you can print a monthly report in
Access. Another example is when you use Access as a front end for your SQL
database — you can link to an SQL table and update the data directly to the server,
without having to “batch upload” it later.

If you plan on using a table from another Microsoft Access database that is shared
on a network, it is a good idea to simply link to it rather than import it. If another
application will continue to be used to update and work with data in an external
table (like in another format — dBASE or Paradox), it is best to link to it.

You can link to the following types of data in Access: another Access table (mdb,
mda, mde), Excel spreadsheets, Exchange documents, Outlook documents, Paradox
files, Text files, HTML Documents, dBASE files (III, 4 or 5), SharePoint Team Services,
and ODBC databases.

Access 2003 has the capability to link to HTML tables and text tables for read-only
access. You can use and look at tables in HTML or text format; however, the tables
cannot be updated nor records added to them using Access. Also, if you are working
with Paradox files and they do not have a primary key field defined (a .PX file asso-
ciated with the .DB table), you will only be able to read the data—not change it.

The biggest disadvantage of working with linked tables is that you lose the internal
capability of Access to enforce referential integrity between tables (unless you are
linked to an Access database).

When to import external data
Access cannot link to certain file formats; these include Lotus 1-2-3 spreadsheet
files. If you need to work with data from formats that cannot be linked to, you must
import it.

Importing in Access enables you to physically bring an external table or data source
into a new Access table. By doing this, Access will automatically convert data from
the external format and copy it into Access. You can even import data objects into
another Access database (rather than the one currently open) or Access project. If
you know that you will use your data in Access only, you should import it. Generally,
Access works faster with its own tables.

Of course, importing data means that you have significantly increased the storage
space required for that particular data, because it now resides in two different files
on the storage device.

Caution

251Chapter 7 ✦ Working with External Data

Because importing makes another copy of the data, you may want to erase the old
file after you import the copy into Access. Sometimes, however, you won’t want to
erase it. For example, the data may be sales figures from a Lotus spreadsheet still
in use. In cases such as this, simply maintain the duplicate data and accept that
storing it will require more space.

One of the principal reasons to import data is to customize it to meet your needs.
After a table has been imported, you can modify the structure and data types, and
assign table-based rules for the table. You can specify a primary key, change field
names (up to 64 characters), and set other field properties.

With linked tables, on the other hand, you are restricted to setting very limited field
properties. For example, you cannot specify a primary key or assign a data entry
rule (like only accept a date of birth less than today), which means that you can’t
enforce integrity against the linked table.

When you link to a table in another Access database, you cannot do everything
you can do with tables in the primary database from the currently open database.
For instance, you cannot define a primary key or enforce referential integrity.
However, if all the tables you want to work with are in an external Access
database, you can open that database and specify all the table properties you wish
to set: defining a primary key, defining relationships between tables, setting refer-
ential integrity between tables, changing a data type, specifying default values or
validation rules, or even creating new indexes.

Data in unsupported programs
Although uncommon, there may be times that you need to work with data from
a program that is not stored in the supported external database or file format. In
cases such as this, the programs usually can export or convert their data in one of
the formats recognized by Access. To use the data in these programs, export it to
a format recognized by Access and then import it into Access. Most applications
can export to dBASE file format. If the dBASE format is not available, most programs,
even those on different operating systems, can export data to delimited or fixed-
width text files, which you can then import into Access. When exporting to text
files, you will lose any indexes associated with the tables.

Note

Note

Working with Other Access Databases

Access can open only one database at a time; therefore, you can’t work directly with a table
in a different database. Even so, if you need to work with tables or other Access objects
(such as forms and queries) from another Access database, you don’t have to close the cur-
rent one. Instead, simply import or link the object in the other database to your current
database. You’ll be able to view or edit data directly in more than one database table.

252 Part I, Section I ✦ Working with Data Tables and Queries

Automating import operations
If you will be importing data from the same source frequently, you can automate
the process by creating a macro or a Visual Basic for Applications procedure. This
can be very helpful for those times when you have to import data from an external
source on a regular schedule or you have complex requirements that must be met
for importing the data.

Linking External Data
As the database market continues to grow, the need to obtain information from
many different sources will escalate. If you have information captured in an ODBC
SQL Server table or a Paradox table, you don’t want to reenter the information from
these tables into Access. Ideally, you want to open the table and use the information
in its native format, without having to copy it or write a translation program to
access it. For many companies today, this capability of accessing information from
one database format while working in another is a primary goal.

Copying or translating data from one application format to another is both time-
consuming and costly. The time it takes can mean the difference between success
and failure. Therefore, you want a heterogeneous environment between your
DBMSs and the data. Access provides this environment through linking tables.

Access can directly link to several database management system (DBMS) tables
individually or simultaneously. After an external file is linked, Access builds and
stores a link to the table. As pointed out previously, Access can link to other Access
database tables; to non-Access database tables such as dBASE, FoxPro, and Paradox;
and to non-database tables such as spreadsheets, HTML tables, and text tables. You
can also split an Access database into separate databases, for easier use in a multi-
user or client-server environment.

Types of database management systems
Access enables you to connect, or link, to several different DBMSs, directly access-
ing information stored in them. Access supports the following database systems:

✦ Other Access database tables

✦ dBASE (versions III, IV, and 5)

✦ FoxPro (via the FoxPro ODBC driver)

✦ Paradox (versions 3.0, 4.x, 5.x, and 7)

✦ Microsoft SQL Server, Sybase Server, Oracle, or any ODBC-aware database

253Chapter 7 ✦ Working with External Data

You can link to any of these table types, individually or mixed together. If you link
to an external file, Access displays the filename in the Database Tables window (just
as it does for other Access tables), but the icon linked with the table will be different.
It starts with an arrow pointing from left to right and points to an icon. An arrow
pointing to a table icon tells you that it’s an Access table, an arrow to a dB icon tells
you that it’s a dBASE table, and so on. Figure 7-1 shows several linked in the list,
which are all external tables. These tables are linked to the current database. Notice
that all the linked tables have an icon with an arrow. (The icon clues you in to the
type of file that is linked.)

Figure 7-1: Linked tables in an Access database.
Notice that each linked table has a graphic right
arrow and another symbol for an icon.

In Figure 7-1, the arrows that appear to the left of some of the table names indicate
linked tables. In addition to the link arrow indicator, you can tell by their icon which
type of file they are linked to. For instance, Excel has the graphic X symbol in a box,
Paradox has the Px symbol, dBASE tables have the dB symbol, and a Text file has a
Notebook icon.

After you link a table to your Access database, you can use it as you would any
other table. You can query against it, link another table to it, and so on. For exam-
ple, Figure 7-2 shows a query designed using several linked tables: Contacts (from
a dBase 5 table), Sales (from a Paradox table), SalesLineItems (from a comma-
delimited text file), and Products (from an Excel file). Your application does not
have to use Access tables at all; you can just as easily link to the Paradox and
FoxPro tables.

254 Part I, Section I ✦ Working with Data Tables and Queries

Figure 7-2: A query designed using externally linked tables.

This query will be built later in this chapter after linking all the tables in the
CHAP07Start database. After it is created and run, it will display data from all the
tables, both internally and externally linked information, the same as any Select
query. Figure 7-3 shows the resulting dynaset as viewed in the datasheet.

Figure 7-3: The datasheet view of externally linked data.

255Chapter 7 ✦ Working with External Data

In Figure 7-3, the column heading names come from the field names in the underlying
external tables. For instance, the second column and third column names, FNAME
and LNAME, come from the underlying field name in the dBASE 5 table Contacts.
The Description field name comes from the Excel table, and the first field, InvNumb,
comes from the Paradox table named Sales. You can make the names more under-
standable by assigning a new name in the QBE pane of the query when you are
designing it.

After you link an external table to an Access database, you cannot move the table
to another drive or directory. Access does not actually bring the file into the MDB
file; it maintains the link via the filename and the drive: path. If you move the exter-
nal table, you have to update the link using the Linked Table Manager, explained in
the “Viewing or changing information for linked tables” section later in this chapter.

Linking to other Access database tables
When you work with an Access database, normally you create every table you want
to use in it. If the table exists in another Access database, however, you can link to
the table in the other Access database (rather than re-creating it and duplicating
its data). You may, for example, want to link to another Access table that is on a
network or on the same computer.

After you link to another Access table, you use it just as you use another table in the
open database. To link to the tblSalesPayments table in the Chap07Link database
from the Chap07Start.mdb database file, follow these steps:

1. Open the Chap07Start.mdb database.

2. Select File ➪ Get External Data ➪ Link Tables... (or right-click anywhere in the
Tables container and select Link Tables ... from the menu). Access opens the
Link dialog box, as shown in Figure 7-4.

Using the Link Tables dialog box, you can select the.MDB file you want to link
to. You can also change the type of files displayed in the Link dialog box; it
can link to any type of external data. Though the default is to show only
Access files (.MDB), you can link to any of the supported file types.

3. Find and select the Chap07Link.MDB file in the dialog box. You may have to
search for a different drive or directory.

4. Double-click the Chap07Link.MDB file (or select it and click the Link button).
Access will close the dialog box and display the Link Tables dialog box.

The Link Tables dialog box enables you to select one or more tables from the
database selected (in this case, Chap07Link).

5. Select tblSalesPayments and click OK. Double-clicking the table name will not
do anything — to select it, you must highlight it and then click OK.

Note

256 Part I, Section I ✦ Working with Data Tables and Queries

Figure 7-4: The Link dialog box opened for selecting
which external table or .MDB to link to. The default file
type is Microsoft Access.

After you link the tblSalesPayments table from the Chap07Link database, Access
returns to the Database window and shows you that the table is now linked to your
database. Figure 7-5 shows the tblSalesPayments table linked to the current database.
Notice the arrow on the tblSalesPayements table’s icon; it shows that the table has
been linked from another source.

Figure 7-5: The Database window with the
tblSalesPayments table added. Its table icon
has a right-pointing arrow to the table.

You can link more than one table at a time by selecting each table before you click
the OK button. You can also use the Select All button to select all the tables.

Tip

257Chapter 7 ✦ Working with External Data

Linking to dBASE databases (tables)
You can link to DBF files. As with other Access database tables, after a dBASE file is
linked, you can view and edit data in the DBF format.

dBASE (like FoxPro) saves tables in individual files with the extension DBF. In
xBASE, these DBF files are called databases. In Access, however, a table is equiva-
lent to an xBASE database. (Access considers a database a complete collection of
all tables and other related objects.) To maintain consistency in terminology, this
book considers xBASE databases to mean the same thing as dBASE or FoxPro tables.

Access and dBASE indexes
When you link a dBASE file, you can also tell Access to use one or more index files
(NDX and MDX). The use of these indexes will improve performance of the link
between dBASE and Access.

Microsoft has created dBASE ISAM drivers for Microsoft Jet 4.0 that do not require
the installation of the Borland Database Engine (BDE), as in previous versions of
Access, to provide full read/write access to dBASE files. The default ISAM drivers
that ship with Microsoft Data Access Component (MDAC) 2.1 and later only enable
read-only access to dBASE files unless the BDE is installed. To obtain these ISAM
drivers that will give you full read/write access to dBASE files, you must contact
Technical Support at Microsoft, and they will send them to you. You can also
download the updated version of Microsoft Jet 4.0 from Microsoft’s download
center at www.microsoft.com/download/. At the site, select Keyword search,
enter the words “Jet 4.0” in the keyword entry field, select your operating system,
and click the Find It button to find the correct drivers. If you would prefer to use the
BDE drivers, you can download them from http://info.borland.com/devsupport/.
Then choose BDE (Borland Database Engine) to jump to the correct link (current
version is 5.2) and click on the download link for version 5.2. If you are using BDE
for linking to dBASE 5 (Visual dBASE) files, you should not use BDE version 5.x
because it is not certified for use with dBASE 5 files. You will need to download
two older versions onto your machine. You will have to download these files: the
BDE 4.5x (which will only update an older version), and an older version (BDE 3.5),
which is found via a hyperlink on the current version page at the bottom.

If you inform Access of the associated index files, Access will update the indexes
every time it changes the DBF file. By linking a DBF file and its associated indexes,
Access can link to DBFs in real time in a network environment. Access recognizes
and enforces the automatic record-locking feature of dBASE as well as the file and
record locks placed with xBASE commands and functions.

You should always tell Access about any indexes associated with the database. If
you don’t, it will not update them; dBASE or FoxPro will have unexpected prob-
lems if their associated index files are not updated.

Caution

Caution

258 Part I, Section I ✦ Working with Data Tables and Queries

When you tell Access to use one or more associated indexes (NDX, MDX) of a
dBASE, Access maintains information about the fields used in the index tags in a
special information file. This file has the same name as the dBASE file with an INF
extension.

If you link a dBASE file and associated indexes, Access must have access to the
index files in order to link the table. If you delete or move the index files or the
Access INF file, you will not be able to open the linked DBF file.

Linking to an xBASE table
Linking to dBASE tables works the same. For example, to link the dBASE V table
Contacts.DBF and its associated memo file (DBT), follow these steps:

1. Open the Chap07Start database and select File ➪ Get External Data ➪ Link
Tables.

2. In the Link dialog box, select Files of type: dBASE 5. Access displays the
dBASE 5 DBF files only.

3. Double-click Contacts.DBF in the Link Dialog box. (The associated memo file
Contacts.DBT is linked automatically.)

4. Access activates the Select Index Files box and displays all NDX and MDX files
if there are any index files present.

There are no indexes for this table, so the Select Index Files dialog box will not
display.

If index files are present, you would select the appropriate .MDX or .NDX file
and click the Select button.

Access will display a dialog box that informs you that it has added the
index .MDX.

Then, if there is an index, you click the OK button to return to the Select Index
Files dialog box.

If there are any other indexes to associate with this table, you select them here. If
there were no indexes associated with this table, you would simply close this dia-
log box without selecting an index.

When all indexes are selected, you click the Close button.

If there is more than one index selected or a Multiple Index file (MDX) is
selected with more than one index associated with the table, Access displays
another, smaller, dialog box that is titled “Select Unique Record Identifier.”
This is talking about the primary key field. You would select this field and
click the OK button.

5. Access then displays a dialog box that informs you that it has successfully
linked ‘Contacts.’

Note

259Chapter 7 ✦ Working with External Data

6. Click the OK button to return to the Link dialog box.

You are returned to this dialog box so that you can continue to select addi-
tional tables to link to.

7. Click the Close button to finish linking the Contacts dBASE file. Access dis-
plays the Database window with the file Contacts.dbf linked as shown in
Figure 7-6.

Figure 7-6: The dBASE table Contacts.dbf linked
inside the Access database.

You can cancel linking at any time by clicking the Cancel button in the Select File
dialog box before you select a table.

When you add index files, Access automatically creates and updates an Access
information file. This file contains information about the index and associated
dBASE or FoxPro file, has the same name, and ends in the extension INF.

Linking to Paradox tables
You can link to Paradox .DB files in either Paradox 3.x, 4.x, 5.x, or 7 format. After a
Paradox file is linked, you can view and edit data just like an Access database table.

Microsoft has created Paradox ISAM drivers for Microsoft Jet 4.0 that do not
require the installation of the Borland Database Engine (BDE) as in previous ver-
sions of Access to provide full read/write access to Paradox files. The default ISAM
drivers that ship with Microsoft Data Access Component (MDAC) 2.1 and later,
only enable read-only access to dBASE files unless the BDE is installed. To obtain
these ISAM drivers that will give you full read/write access to Paradox files, you
must contact Technical Support at Microsoft and they will send them to you. You
can also download the updated version of Microsoft Jet 4.0 from Microsoft’s

Caution

Note

260 Part I, Section I ✦ Working with Data Tables and Queries

download center at www.microsoft.com/download. At the site, select Keyword
search, enter the words “Jet 4.0” in the keyword entry field, select your operating
system, and click the Find It button to find the correct drivers. If you would prefer
to use the BDE drivers, you can download them from info.borland.com/
devsupport. Then choose BDE (Borland Database Engine) to jump to the correct
link (current version is 5.2) and click on the download link for version 5.2. If you
are using BDE for linking to dBASE 5 (Visual dBASE) files, you should not use BDE
version 5.x because it is not certified for use with dBASE 5 files. You will need
to download two older versions onto your machine. You will have to download
these files: the BDE 4.5x (which will only update an older version), and an older
version (BDE 3.5), which is found via a hyperlink on the current version page at
the bottom.

Access and Paradox index files
If a Paradox table has a primary key defined, it maintains the index information in a
file that ends in the extension PX. When you link a Paradox table that has a primary
key defined, Access links the associated PX file automatically.

If you link a Paradox table that has a primary key, Access needs the PX file in order
to open the table. If you move or delete the PX file, you will not be able to open the
linked table.

If you link a Paradox table to Access that does not have a primary key defined, you
will not be able to use Access to update data in the table; you can only view it. This
is true even if you have the BDE or new ISAM drivers loaded. You must have a pri-
mary key field defined in the Paradox table or it is not updateable when linked.

Like dBASE files, Access can link to DBs in real time in a network environment.
Access recognizes and enforces the file- and record-locking features of Paradox.

To link to the Paradox 5 table Sales, follow these steps:

1. In the Chap07Start database, select File ➪ Get External Data ➪ Link Tables.

2. In the Link dialog box, select Files of type: Paradox. Access displays just the
Paradox .DB files.

3. Select the Sales Paradox file and click the Link button.

Access displays a dialog box that says “Successfully linked ‘Sales.’”

4. Click OK to return to the Link dialog box.

5. Click Close to return to the database container.

Figure 7-7 shows that the Paradox table Sales has been linked to. It shows a right-
pointing arrow and the letters ‘Px’ signifying a Paradox table. Notice that the dBASE
Contacts table has a right-pointing arrow and the letters ‘dB’ signifying a linked
dBASE table.

261Chapter 7 ✦ Working with External Data

Figure 7-7: The Paradox table is now linked into
the database.

Linking to non-database tables
You can also link to non-database tables, such as Excel, HTML, and text tables.
When you select one of these types of data sources, Access runs a Link Wizard that
prompts you through the process.

If you link to an Excel table, you can update its records from within Access or any
other application that can update Excel spreadsheets.

Follow these steps to link to the Excel Products spreadsheet:

1. In the Chap07Start database, select File ➪ Get External Data ➪ Link Tables.

2. In the Link dialog box, select Files of type: Microsoft Excel. Access displays
the Excel files only.

The Access Link Wizard

Unlike linking to dBASE or Paradox tables in the steps followed previously, when you link to
an Excel spreadsheet, HTML table, or text file, Access automatically runs a Link Wizard to
help you. In each case, you are asked whether the first line (record) contains the field
names for the fields. If it does, click the check box to turn it on. If the first record does not
hold the field names, you are given the option of specifying a name for each field or accept-
ing the default names (field1, field2, field3, and so on).

262 Part I, Section I ✦ Working with Data Tables and Queries

3. Select the Products file and click the Link button.

The Link Spreadsheet Wizard is activated, as shown in Figure 7-8. Here you
will tell Access how to use the Spreadsheet. The first screen shows the table
(Products) name in the top half and the sample data in the worksheet in the
bottom half.

4. Click Next to continue through the Wizard.

The next screen is displayed and shows a check box (First Row Contains
Column Headings). The bottom of the screen has changed, showing the field
headings above the contents and grayed out.

5. Make sure that the check box is checked and the field headings are correct.
Then click the Next button to continue through the Wizard.

Access displays the final screen of the Wizard and prompts for a table name to
give the file Products.xls.

6. Accept the table name Products and click the Finish button.

Access displays a dialog box that says “Finished linking table ‘Products’ to file
Products.xls.”

7. Click OK to return to the database container.

Unlike linking to other Access, Paradox, and dBASE tables, Access immedi-
ately returns you to the database container, instead of to the Link dialog box
to link to another table.

Figure 7-8: The first screen of the Link
Spreadsheet Wizard.

With the Excel Products table linked, the database container should display four
linked tables — Contacts (dBASE 5 type), Sales (Paradox 5 type), tblSalesPayments
(Access table in the Chap07Link database), and Products (Excel file).

263Chapter 7 ✦ Working with External Data

The other two types of non-database files that you can link to are HTML documents
and text files. To link to these, Access also uses a Wizard to help you view and work
with the contents. Linking to HTML and text tables will enable you to view and use
tables in queries, forms, and reports. However, you cannot change the current
record contents or add new records.

Follow these steps to link to the lookup table CustomerTypes.html, an HTML
document:

1. Open the Chap07Start database and select File ➪ Get External Data ➪ Link
Tables.

2. In the Link dialog box, select Files of type: HTML documents. Access displays
the HTML files only.

3. Select the CustomerTypes file and click the Link button.

Access starts the Link HTML Wizard and displays the first screen. It has a
check box on the top half (First Row Contains Column Headings) and the
bottom shows the contents of the HTML file.

4. Make sure that the check box First Row Contains Column Headings is not
checked. Then click the Next button.

Access displays the next screen where you can change the names of the fields
and their data type. Figure 7-9 shows this screen. Notice that the bottom half
shows the field contents and the single column heading — Field1. It also has
an Advanced button that enables you to specify more advanced options. The
top half has two entry fields — one for the Field Name, the other for the Data
Type. It also has a check box that will enable you to skip importing the current
field in the HTML table.

5. Change the field name for the first column from ‘Field1’ to CustomerType.
The data type should remain Text.

Access automatically changes the name of the field in the bottom screen as
you type in the top entry field.

If you have additional columns, you can change their field names by clicking
on the column heading on the lower part of the screen.

If you accidentally press the Enter key, when you need to change additional field
names, Access displays the next screen. If this happens, simply click the Back but-
ton to return to the current screen.

6. Click the Next button.

Access displays the final screen of the Wizard and prompts for a table name to
give the file CustomerTypes.html.

7. Accept the table name CustomerTypes and click the Finish button.

Access displays a dialog box that says “Finished linking table
‘CustomerTypes’ to file ... CustomerTypes.html.”

Note

264 Part I, Section I ✦ Working with Data Tables and Queries

8. Click the OK button to return to the database container.

Unlike linking to other Access, Paradox, and dBASE tables, Access immediately
returns you to the database container, instead of to the Link dialog box to link
to another table.

Figure 7-9: The HTML Wizard screen that is used
to name the column headings (field names) for
the linked table.

Finally, follow these steps to link to the table SalesLineItems, a text file:

1. Open the Chap07Start database and select File ➪ Get External Data ➪ Link
Tables.

2. In the Link dialog box, select Text Files of type: Text. Access displays just the
Text files.

3. Select the SalesLineItems file and click the Link button.

Access starts the Link Text Wizard and displays the first screen. It has two
radio buttons in the top half (Delimited and Fixed Width), and the bottom
shows the contents of the text file.

4. Select the first choice ‘Delimited — Characters such as a comma or tab sepa-
rate each field’ and click the Next button.

Access displays the next screen, which will differ based on the choice you
specified for the type of text file — fixed width or delimited. In this case, it dis-
plays a screen similar to the one shown in Figure 7-10. It asks which delimiter
(field separator) the file uses for separating the fields in each row. Accept the
default value of Comma. Looking at the example data, you should be able to
determine that the field names are in the first column and that the data is
being displayed correctly. The center of this screen has a check box that asks
if the first row contains the field names. It also has a pull-down menu for Text
Qualifier (what is used as the start and end of each field).

265Chapter 7 ✦ Working with External Data

Figure 7-10: The Link Text Wizard’s second screen
that is used to specify the type of delimiter that is
used to separate the fields, the Text Qualifier (used
around each value), and whether the first row
contains field names for the linked table.

5. Make sure the ‘First Row Contains Field Names’ check box is selected and the
Text Qualifier is double quotations (“) click the Next button.

Access displays the screen where you can specify the field names for each
column.

6. Here, you can change the field name for the columns from their default values
and the data type.

Check each of the field names and data types by clicking on the column head-
ing in the lower portion of the window.

7. Moving to the Taxable column, highlight it by clicking on the column heading
and then select Yes/No as the Data Type, as shown in Figure 7-11.

8. Click the Next button.

Access displays the final screen of the Wizard and prompts for a table name to
give the file SalesLineItems.txt.

8. Accept the table name SalesLineItems and click the Finish button.

Access displays a dialog box that says “Finished linking table ‘SalesLineItems’
to file ... SalesLineItems.txt.

9. Click the OK button to return to the database container.

Unlike linking to other Access, Paradox, and dBASE tables, Access immedi-
ately returns you to the database container, instead of to the Link dialog box
to link to another table.

266 Part I, Section I ✦ Working with Data Tables and Queries

Figure 7-11: The Text Wizard’s third screen that is
used to name the column headings (field names)
and data types for the linked table — in this case,
the field Taxable has been changed to a Yes/No
(logic) field.

At this point, all the tables have been linked into the database. The database con-
tainer should now look like the one shown in Figure 7-12.

Figure 7-12: All the tables linked into the
database system.

267Chapter 7 ✦ Working with External Data

Splitting an Access database into
two linked databases
Generally, you can split an Access application into two databases. One contains
only your tables; the other contains all your queries, forms, reports, macros, and
modules. This is extremely important when moving an application to a multi-user
environment. The database with the queries, forms, reports, macros, and modules
is installed on each client machine, while the database containing the source tables
is installed on the server. This arrangement has several major benefits:

✦ Everyone on the network shares one common set of data.

✦ Many people can update data at the same time.

✦ When you want to update the forms, reports, macros, or modules, you don’t
have to interrupt processing or worry about data corruption.

When creating an application for a multi-user environment, you should consider
designing the objects that will be in your database, anticipating putting them into
two Access databases; it’s easier to complete your application later. In General, it
may prove more efficient to put all your data (tables) in their own database and all
the visual objects and code in another. By separating these objects initially, you will
find it easier to build the visual objects and associated code as you create the
objects. There are some things you just can’t do with a linked table without doing a
little extra work; these tasks include finding records and importing data. By using
different techniques with linked tables, however, you can do anything you can do
with a single database.

If you’re starting from scratch, you first create a database with just the tables for
your application. You then create another new database and link the tables from
the first database to the second, as explained in the section “Linking to other Access
database tables” earlier in this chapter.

But if you have already built a system with all your objects (including the tables)
in one database file, it’s a little more difficult to split your tables. One method is
to create a duplicate copy of your database. In one version, you delete all objects,
leaving only the tables. In the other version, you delete only the tables. Then you
use the database file without the tables as a starting point and then link to all the
tables in the table database.

Access includes a Wizard called the Database Splitter that can do this for you auto-
matically. Using the Access Auto Auctions database, for example, you can make a
copy of the database and split all the tables (in the copy) into a separate database
file. After the tables are separated from the other objects in the database, you can
use the tables just as you did before; and you can always import all the tables back
into the original database if you want.

268 Part I, Section I ✦ Working with Data Tables and Queries

Follow these steps to make a copy of the Access Auto Auctions database and
split it:

1. Select File ➪ Open to display the Open database window.

2. Highlight the Access Auto Auctions database and press Ctrl-C to make a copy
of the file in memory.

3. Press Ctrl-V to paste the Copy of the file in the same directory as the original
file. Access will name it ‘Copy of Access Auto Auctions.’

4. Highlight the new table “Copy of Access Auto Auctions” and open it.

With the file copied and open, you are ready to start.

The Database Splitter may not be installed if you selected the standard installation
option when you installed Office 2003. If this is the case, have your Office 2003
CD handy when you choose the Database Splitter.

5. Start the Database Splitter Wizard by selecting Tools ➪ Database Utilities ➪
Database Splitter.

This starts the Wizard to help you split a single database into two files. The
first Wizard screen simply confirms that you want to split the database, as
shown in Figure 7-13.

Figure 7-13: The Database Splitter Wizard.
This is the first of two screens.

6. Click the Split Database button.

The Wizard opens a Create Back-End Database dialog box and prompts you
for the File name of the database to store all the tables in. The default name
is Copy of Access Auto Auctions_be.mdb (“be” for back-end).

7. Accept the default name of the table for the back-end (same name with “be”
added) and press the Split button.

Note

269Chapter 7 ✦ Working with External Data

The Wizard creates the new database and moves all the tables to it. Then it
automatically creates links to those tables so that all the existing objects con-
tinue to work — forms, reports, and others. Finally, it displays an information
dialog box that says “Database successfully split.”

8. Press the OK key in the information dialog box that says “Database success-
fully split.”

Access creates the new database, copies all the tables from the original database
to the new database, and then links to them. When the process is done, a message
tells you that the database was successfully split. Figure 7-14 shows the original
database file (Copy of Access Auto Auctions) with all the tables linked to an exter-
nal source (Copy of Access Auto Auctions_be).

Figure 7-14: The database named Copy of Access
Auto Auctions with all the tables moved (split off)
to another database (Copy of Access Auto
Auctions_be) and linked to.

If you were to examine the tables and their relationships in the back-end database
(Copy of Access Auto Auctions_be), you would see that all the relationships and
referential integrity rules were also copied into the new database automatically.

Working with Linked Tables
After you link to an external table from another database, you can use it just as you
would use another Access table. You can use it with forms, reports, and queries.
When working with external tables, you can modify many of their features; for

270 Part I, Section I ✦ Working with Data Tables and Queries

example, you can set view properties and relationships, set links between tables in
queries, or rename the table.

Setting view properties
Although an external table can be used like another Access table, you cannot
change the structure (delete, add, or rearrange fields) of an external table. You
can, however, set several table properties for the fields in a linked table:

✦ Format

✦ Decimal Places

✦ Caption

✦ Input Mask

✦ Unicode Compressions

✦ IME Sequence Mode

✦ Display Control

Setting relationships
Access enables you to set permanent relations at the table level between non-
Access external tables and Access tables through the Relationships builder,
although it does not enable you to specify Referential Integrity between these
external files and local tables. Access enables you to create forms and reports
based on relationships set up in the Relationships builder — building an SQL state-
ment that is stored in the Record Source property of the form or report. Of course,
you can still build an external query and use that query for your form or report.

If you link to tables from another Access database that already have relationships
set between them, they will automatically inherit the relationship properties (ref-
erential integrity) set in the other database. These links cannot be deleted or
changed.

Figure 7-15 shows the Relationships builder window active with all the tables in
the Chap07Start database linked to each other at table level. To create these links,
simply activate the Relationships window and build the relations between all the
tables of the system. When building them, you notice that you can link the tables
and Access will recognize the type of link (one-to-many or one-to-one), but you will
not be able to Enforce Referential Integrity between tables.

The tables that have been linked in this chapter do not have relationships set. You
will need to link your tables using the Relationships builder if you want to perma-
nently link them.

Note

Note

Tip

271Chapter 7 ✦ Working with External Data

Figure 7-15: The relationships window with all the tables related together.
All but two of these tables are external tables that are linked into the database.

Setting links between external tables
To set a link between an external table and another Access table, you can specify
the link at the table level by using the Relationships builder tool or by simply creat-
ing a query and using the drag-and-drop method of setting links. After a link is set,
you can change the join properties from inner join to external join by double-clicking
the link.

If you set the relationships between the tables at the table level, the query will
automatically bring the links in as you add the tables. The default link type is always
an inner join. However, you will still have to specify an outer join if you wish to
change to that type (left or right).

Using external tables in queries
When using a query, you can join the external table with another table, internal or
external, as long as it is linked in the database. This gives you powerful flexibility
when working with queries. Figure 7-16 shows a query using several different
database sources:

✦ An Excel spreadsheet (Products)

✦ Access tables (both internal and linked) (ContactLog and tblSalesPayments)

✦ A Paradox table (Sales)

Tip

272 Part I, Section I ✦ Working with Data Tables and Queries

✦ A Text file table (SalesLineItems)

✦ A dBASE IV table (Contacts)

Figure 7-16: A query using several externally linked database tables.

Notice that the query in Figure 7-16 has joins between all tables. This query will
obtain information from all the tables and display a datasheet similar to the one
shown in Figure 7-17.

Figure 7-17: A datasheet display of the dynaset created by the query shown in
Figure 7-16.

273Chapter 7 ✦ Working with External Data

Renaming tables
You can rename a linked external table. Because Access enables you to name a table
with as many as 64 characters (including spaces), you may want to rename a linked
table to be more descriptive. For example, you may want to rename the dBASE table
called Contacts to Contacts Table from dBASE.

To rename a file, you can select Edit ➪ Rename... from the Database menu. Another
(quicker) method is to click the filename; after a pause, click it again, and enter a
new name.

When you rename an external file, Access does not rename the actual DOS filename
or SQL Server table name. It uses the new name only in the Tables object list of the
Access database.

If you rename a table that is being used in Access 2003 by queries, forms, or reports,
Access will automatically adjust the table name in other objects (fix the file name
automatically).

Optimizing linked tables
When working with linked tables, Access has to retrieve records from another file.
This process takes time, especially when the table resides on a network or in an
SQL database. When working with external data, you can optimize performance by
observing these points:

✦ Avoid using functions in query criteria. This is especially true for aggregate
functions, such as DTotal or DCount, which retrieve all records from the linked
table automatically and then perform the query.

✦ Limit the number of external records to view. Create a query specifying a
criterion that limits the number of records from an external table. This query
can then be used by other queries, forms, or reports.

✦ Avoid excessive movement in datasheets. View only the data you need to in
a datasheet. Avoid paging up and down and jumping to the last or first record
in very large tables. (The exception is when you’re adding records to the
external table.)

✦ If you add records to external linked tables, create a form to add records
and set the DataEntry property to True. This makes the form an entry form
that starts with a blank record every time it’s executed.

✦ When working with tables in a multi-user environment, minimize locking
records. This will free up records for other users.

Tip

Note

274 Part I, Section I ✦ Working with Data Tables and Queries

Deleting a linked table reference
Deleting a linked table from the Database window is a simple matter of doing three
things:

1. In the Database window, select the linked table you want to delete.

2. Press the Delete key or select Edit ➪ Delete from the Database menu.

3. Click OK in the Access dialog box to delete the file.

Deleting an external table deletes only its name from the database object list. The
actual file is not deleted.

Viewing or changing information for linked tables
If you move, rename, or modify tables or indexes associated with a linked table,
you can use the Linked Table Manager Wizard to update the links. (Otherwise,
Access will not be able to find them.)

To use this tool, select Tools ➪ Database Utilities ➪ Linked Table Manager. Access
will display a dialog box similar to the one shown in Figure 7-18. Select the linked
table that needs the information changed, and click the OK button; Access will
verify that the file cannot be found and will display a Select New Location of [table
name] dialog box. Using this dialog box, you can find the missing file and reassign
the information for the external link to Access. If all the files are already linked
correctly, clicking the OK button will make Access go out and verify that all the
selected tables are linked correctly and display an information box that says “All
selected linked tables were successfully refreshed.”

If you check the Always prompt for new location check box, it will prompt you for
the tables that you select every time you run this Wizard — even if Access knows
where the tables are located. It is best to leave this check box off.

Figure 7-18: The Linked Table Manager enables you to relocate
external tables that have been moved.

Tip

Note

275Chapter 7 ✦ Working with External Data

If the Linked Table Manager Wizard is not present on your computer, Access will
automatically prompt for you to enter the “original” Office CD into the CD-ROM to
load it. If you did not instruct Office to install the Additional Wizards component
during the Setup process, it will be loaded at this time.

Importing External Data
When you import a file (unlike when you link tables), you copy the contents from
an external file into an Access table. You can import external file information from
several different sources:

✦ Microsoft Access (other unopened database objects: forms, tables, and so on)

✦ dBASE III, IV, and 5

✦ FoxPro (all versions using ODBC drivers)

✦ Microsoft Excel (all versions)

✦ Exchange documents

✦ HTML Documents

✦ Lotus 1-2-3 DOS and 1-2-3 for Windows (versions WKS, WK1, and WK3)

✦ Outlook documents

✦ Paradox 3.x, 4.x, 5.0, 7.0, and 8.0

✦ SharePoint Team Services

✦ Delimited text files (fields separated by a delimiter)

✦ Fixed-width text files (specific widths for each field)

✦ SQL databases (Microsoft SQL Server, Sybase Server, and Oracle Server)

✦ XML Documents

✦ Any other ODBC Databases

You can import information to either new tables or existing tables, depending on
the type of data being imported. All data types can be imported to new tables, but
only spreadsheet and text files can be imported to existing tables.

When Access imports data from an external file, it does not erase or destroy the
external file. Therefore, you will have two copies of the data: the original file (in the
original format) and the new Access table.

Note

276 Part I, Section I ✦ Working with Data Tables and Queries

If the filename of the importing file already exists in an Access table, Access adds
a chronological number (1, 2, 3, and so on) to the filename until it has a unique
table name. For example, if an importing spreadsheet name is Contacts.XLS and
there is an Access table named Contacts, the imported table name becomes
Contacts1. If Contacts and Contacts1 tables already exist, Access creates a table
named Contacts2.

Importing other Access objects
You can import other Access database tables or any other object in another
database. You can therefore import an existing table, query, form, report, macro,
or module from another Access database. You can also import custom toolbars
and menus.

As an example, use these steps to import the tblTaxRates table from the
Chap07Link Access database:

1. In the Chap07Start database, click the Tables button to see the list of tables
and then select File ➪ Get External Data ➪ Import. (An Import dialog box
appears.)

2. In the Import dialog box, select Files of type: Microsoft Access.

3. Double-click Chap07Link.MDB.

Access closes the Import select database dialog box and opens the Import
Objects dialog box, as shown in Figure 7-19. At the bottom of this selection
box, you can click the Options>> button; the dialog box expands to offer
several additional import options.

4. In the box, select the tblTaxRates table by clicking tblTaxRates and then click-
ing the OK button.

Figure 7-19: The Import Objects dialog box with
the Options>> button pressed. You can expand
Import window by clicking on the Options>>
button to see additional choices.

Note

277Chapter 7 ✦ Working with External Data

Access imports the tblTaxRates table into the Chap07Start database and closes the
Import Objects dialog box. You can select more than one item at a time, using the
Select All and Deselect All buttons to select or de-select all the objects in a specific
category or by control-clicking if you only desire a few.

The Options>> button enables you to further define how to import Access data. You
can choose to import relationships, custom toolbars, and import/export specifica-
tions from an Access database. You can determine whether the tables you import
come in with just the table design (definitions), or with the data as well. Finally, the
last set of options enables you to decide whether queries you import come in as
queries or run as make-table action queries to import a new table.

See Chapter 38 for details about make-table queries.

The tblTaxRates table appears in the Database window display without a link symbol
in the icon. It has kept the name tblTaxRates because no other table in the database
container has this name. Unlike linking the table, you have copied the tblTaxRate
table and added it to the current database. Therefore, because it’s not linked but
instead an actual part of the database, it occupies space like the original Access
table does.

Besides adding tables from other Access databases, you can also add other objects
(including queries, forms, reports, macros, or modules) by clicking each of the tabs
in the Import Objects dialog box. You can select objects from each and then import
them all at one time.

Importing non-Access PC-based database tables
When importing data from PC-based databases, you can import two basic categories
of database file types:

✦ dBASE

✦ Paradox

Each type of database can be imported directly into an Access table. The native data
types are converted to Access data types during the conversion.

You can import any Paradox (3.0 through 8), dBASE III, dBASE IV, or dBASE 5 data-
base table into Access. To import one of these, simply select the correct database
type in the Files of type: box during the import process.

After selecting the type of PC-based database, select which file you want to import;
Access imports the file for you automatically.

If you try to import a Paradox table that is encrypted, Access prompts you for the
password after you select the table in the Select File dialog box. Enter the password
and click the OK button to import an encrypted Paradox table.

Cross-
Reference

278 Part I, Section I ✦ Working with Data Tables and Queries

When Access imports dBASE fields, it converts them from their current data type
into an Access data type. Table 7-2 lists how the data types are converted.

Table 7-2
Conversion of Data Types from dBASE to Access

xBASE Data Type Access Data Type

Character Text

Numeric Number (property of Double)

Float Number (property of Double)

Logical Yes/No

Date Date/Time

Memo Memo

When importing any dBASE database file in a multi-user environment, you must
have exclusive use of the file. If other people are using it, you will not be able to
import it.

As with dBASE tables, when Access imports Paradox fields, the Paradox fields are
converted from their current data type into an Access data type. Table 7-3 lists how
the data types are converted.

Table 7-3
Conversion of Data Types from Paradox to Access

Paradox Data Type Access Data Type

Alphanumeric Text

Number Number (property of Double)

Short Number Number (property of Integer)

Currency Number (property of Double)

Date Date/Time

Memo Memo

Blob (Binary) OLE

279Chapter 7 ✦ Working with External Data

Importing spreadsheet data
You can import data from Excel or Lotus 1-2-3 spreadsheets to a new or existing
table. The key to importing spreadsheet data is that it must be arranged in tabular
(columnar) format. Each cell of data in a spreadsheet column must contain the
same type of data. Table 7-4 demonstrates correct and incorrect columnar-format
data.

You can import or link all the data from a spreadsheet, or just the data from a
named range of cells. Naming a range of cells in your spreadsheet can make
importing into Access easier. Often a spreadsheet is formatted into groups of cells.
One group of cells may contain a listing of sales by customer, for example. The
section below the sales listing may include total sales for all customers, totals by
product type, or totals by month purchased. By naming the range for each group
of cells, you can limit the import to just one section of the spreadsheet.

Table 7-4 represents cells in a spreadsheet, in the range A1 through F7. Notice that
the data in columns A, B, and C and rows 2 through 7 is the same type. Row 1 con-
tains field names. These columns can be imported into an Access table. Column D
is empty and cannot be used. Columns E and F do not have the same type of data in
each of their cells; they may cause problems when you try to import them into an
Access table.

Table 7-4
Spreadsheet Cells with Contents

A B C D E F

1 TYPE WEIGHT BDATE JUNK GARBAGE

2 DOG 122 12/02/92 123 YES

3 CAT 56 02/04/89 22 134.2

4 BIRD 55 05/30/90 01/01/91 DR SMITH

5 FROG 12 02/22/88 TEST $345.35

6 FISH 21 01/04/93 ==== ==

7 RAT 3 02/28/93 $555.00 <== TOTAL

Figure 7-20 shows an Excel spreadsheet named PRODUCTS.XLS.

Note

280 Part I, Section I ✦ Working with Data Tables and Queries

Figure 7-20: An Excel spreadsheet containing columns of
information that could be imported easily into an Access table.

To import the Excel spreadsheet named PRODUCTS.XLS, follow these steps:

1. Open the Chap07Start database and select File ➪ Get External Data ➪ Import.

2. In the Import dialog box, select Files of type: Microsoft Excel.

3. Double-click PRODUCTS.XLS in the select box.

Access closes the Import box and displays the first Import Spreadsheet
Wizard screen; the screen resembles the one shown in Figure 7-21.

Figure 7-21: The first Import Spreadsheet Wizard
screen.

281Chapter 7 ✦ Working with External Data

This screen displays a sample of the first few rows and columns of the spread-
sheet. You can scroll the display to see all the rows and columns if you want.

4. Click Next button to move to the second screen.

5. In this screen, click the check box to use the first row of the spreadsheet to
name fields in the table.

The display changes to show the first row and column headings.

6. Click Next to display the third screen.

This screen enables you to determine where the data will go. You can create a
new table (the default radio button) or add to an existing table.

7. Click Next to accept the default value of creating a new table and display the
third screen.

This screen (shown in Figure 7-22) enables you to click each column of the
spreadsheet to accept the field name, change it, and decide whether it will
be indexed; the Wizard determines the data type automatically. You can also
choose to skip each column if you want. You will specify the Primary Key field
after this screen.

Figure 7-22: Determining the field names and
data types.

8. Click Next to display the next Import Spreadsheet Wizard screen.

This screen enables you to choose a field for the primary key. You can let
Access create a new AutoNumber field (by choosing Let Access Add Primary
Key), enter your own (by selecting Choose My Own Primary Key and selecting
one of the columns), or have no primary key.

282 Part I, Section I ✦ Working with Data Tables and Queries

9. Select Choose my own Primary Key and select the ProductID field.

10. Click Next to display the last Import Spreadsheet Wizard screen.

The last screen enables you to enter the name for the imported table and
(optionally) run the Table Analyzer Wizard.

11. Change the default Table name of Products to Products1 and click Finish to
import the spreadsheet file. Access informs you that it imported the file suc-
cessfully in an information box. Simply click OK to have Access return to the
database.

The filename now appears in the Access database window. A standard Access table
has been created from the original spreadsheet file.

If you import the Excel file that has the same name as the linked Excel file and that
file is used in the Relationships builder, Access will overwrite the linked file with
the imported file if you wish. It will warn you that it will overwrite the file when you
attempt to save the file. If you do not wish to overwrite, press the NO button and
give your imported file another name. In this case you used the name Products1,
because you already have a linked table named Products.

Importing from word-processing files
Access does not offer a specific way to import data from word-processing files.
If you need to import data from a word-processing file into Access, convert the
word-processing file to a simple text file first and then import it as a text file. Most
word processors have the capability to convert their formatted text-to-text files or
ASCII files.

Importing text file data
Mainframe data is ordinarily output to a text file for use in desktop applications. You
can import from two different types of text files: delimited and fixed-width. Access
uses an import/export specification file as a guide in processing these types of files.

Access uses one Wizard for both types of text files. The Import Text Wizard assists
you in identifying the fields for the import/export specification.

Delimited text files
Delimited text files are sometimes known as comma-delimited or tab-delimited files;
each record is on a separate line in the text file. The fields on the line contain no
trailing spaces, normally use commas as field separators, and require certain fields
to be enclosed in a delimiter (such as single or double quotation marks). Usually
the text fields are also enclosed in quotation marks or some other delimiter, as in
these examples:

Caution

283Chapter 7 ✦ Working with External Data

“Adams”,”Bryan”,”Williams Sports”,02/04/2003
“Irwin”,”Michael”,,,05/12/1992
“Johnson”,”Shirley”,”Johnson’s Tailors”,01/01/1999
“Lim”,”Arni”,”Audle, Lim, and Yoe, Surgeons”,04/22/2000
“Prague”,”Cary”,”Cary Prague Books and Software”,02/22/1986
“Zimmerman-Schneider”,”Audrie”,”Zimmer’s Cafe”,01/01/2001

Notice that the file has six records (rows of text) and four fields. A comma separates
each field, and the text fields are delimited with double quotation marks. The start-
ing position of each field, after the first one, is different. Each record has a different
length because the field lengths are different.

You can import records from a delimited text file that has fields with no values. To
specify a field with no value, place delimiters where the field value would be, and
put no value between them (for example, “Irwin”,”Michael”,,05/12/92). Notice that
in the preceding example there are two commas after the field content “Michael”
and before the field content 05/12/92. The field between these two has no value;
it will be imported with no value into an Access file.

Fixed-width text files
Fixed-width text files also place each record on a separate line. However, the fields in
each record are of a fixed length. If the field contents are not long enough, trailing
spaces are added to the field, as shown in the following example:

Irwin Michael Michael Irwin Consulting 05/12/82
Prague Cary Cary Prague Books and Software 02/22/86
Zimmerman Audrie IBM 01/01/59

Notice that the fields are not separated by delimiters. Rather, they start at exactly
the same position in each record. Each record has exactly the same length. If a field
is not long enough, trailing spaces are added to fill the field.

You can import either a delimited or a fixed-width text file to a new table or existing
Access table. If you decide to append the imported file to an existing table, the file’s
structure must match that of the Access table you’re importing to.

If the Access table being imported has a key field, the text file cannot have any
duplicate key values or the import will report an error.

Importing delimited text files
To import a delimited text file named Names.TXT, follow these steps:

1. In the Chap07Start database, select File ➪ Get External Data ➪ Import.

2. In the Import dialog box, select Files of type: Text Files.

Note

Note

284 Part I, Section I ✦ Working with Data Tables and Queries

3. Double-click Names.TXT in the File Name list box.

Access displays the first screen of the Import Text Wizard dialog box for the
table Names.TXT. The dialog box resembles the one shown in Figure 7-23.

Figure 7-23: The first Import Text Wizard screen.

This screen displays the data in the text file and lets you choose between
delimited or fixed-width. The default for the Wizard is delimited.

Notice, at the bottom of the screen, the button marked Advanced. Click it to fur-
ther define the import specifications. You will learn more about this option in the
section “Importing fixed-width text files” following this section; generally, it’s not
needed for delimited files. Click the Cancel button to return to the Import Text
Wizard.

4. Click the Next button to display the next Import Text Wizard screen.

As you can see in Figure 7-24, this screen enables you to determine which type
of separator to use in the delimited text file. Generally, this separator is a
comma, but you could use a tab, semicolon, space, or other character (such
as an asterisk), which you enter in the box next to the Other option button.
You can also decide whether to use text from the first row as field names for
the imported table. It has correctly assigned the comma as the separator type
and the Text Qualifier as quotation marks (“).

A Separator is the specific character that was placed between the fields in a delim-
ited text file — often it is a comma or semicolon, although it can be any specific
character. There can be a problem with the separator used — for example, in this
case, the separator is a comma — if any of the fields have a comma in them. It could
cause a problem when trying to import the data. (With the last name of IRWIN,

Note

Note

285Chapter 7 ✦ Working with External Data

Michael versus the next name of PRAGUE, Sr., Cary, Cary’s record has what appears
to be an extra field in the last name — Sr.) This can cause all sorts of problems
when importing the data. The Text Qualifier, for delimited text files refers to the
marks that are often placed around text fields versus numeric and date fields.
Often they are single quotation or double quotation marks.

Figure 7-24: The second Import Text Wizard screen.

5. Leave the First Row Contains Field Names check box unchecked because your
data does not contain field names as the first field.

6. Click the Next button to display the next Import Text Wizard screen.

This screen enables you to determine whether you’re storing the imported
data in a new table or an existing table. If you decide to use an existing table,
you have to choose it from a list.

The next few screens are exactly the same as the Import Spreadsheet Wizard
screens shown in the “Importing spreadsheet data” section earlier in this
chapter.

7. Click on each column of data and enter the following field names and data
types: LastName - Text, FirstName - Text, CompanyName - Text, and
CompanySince - Date/Time. Your screen should now look similar to the one
shown in Figure 7-25.

This screen enables you to select each column of the text import grid, accept
or change the field name, decide whether it will be indexed, and set the data
type (which is also automatically determined by the Wizard), or even skip
adding the field to the final table. As with the Spreadsheet Import Wizard, you
move from field to field by selecting the next field column — once selected,
you can change its options also. You can choose to skip a column if you want.

286 Part I, Section I ✦ Working with Data Tables and Queries

Figure 7-25:: The screen used to enter field names
and data types for the Text Wizard. Notice that the
field type has been changed to Date/Time for the
field CompanySince.

8. Click Next to display the next Import Text Wizard screen.

This screen enables you to choose a field for the primary key. You can enable
Access to create a new AutoNumber field (by choosing Let Access Add
Primary Key), enter your own (by selecting Choose My Own Primary Key
and selecting one of the columns), or have no primary key.

9. Click the option button that says Let Access Add primary key.

10. Click Next to display the last Import Text Wizard screen.

The last screen enables you to enter the name for the imported table and
(optionally) run the Table Analyzer Wizard.

11. Accept the default name of Names and click Finish to import the delimited
text file.

Access creates a new table, using the same name as the text file’s name; then it
displays an information box informing you that it created the table successfully.
Clicking the OK button returns you to the database. The filename appears in the
Access Database window, where Access has added the table Names.

Importing fixed-width text files
In fixed-width text files, each field in the file has a specific width and position. Files
downloaded from mainframes are the most common fixed-width text files. As you
import or export this type of file, you must specify an import/export setup specifi-
cation. You create this setup file by using the Advanced options of the Import Table
Wizard.

287Chapter 7 ✦ Working with External Data

To import a fixed-width text file, follow these steps:

1. Open the Chap07Start database and select File ➪ Get External Data ➪ Import.

2. In the Import dialog box, select Files of type: Text Files.

3. Double-click CONTACTSFIXED.TXT in the File Name list box. Access opens the
first screen of the Import Text Wizard dialog box for the table CONTACTS-
FIXED.TXT.

This screen displays the data in the text file and guesses whether the type of
text file is delimited or fixed width. As you can see, the Wizard has correctly
determined that it’s a fixed-width file.

4. Click Next to display the next Import Text Wizard screen.

This screen makes a guess about where columns begin and end in the file, bas-
ing the guess on the spaces in the file. Notice that it has missed the first field
in the first column (combining the first and second fields together).

Figure 7-26 shows that Access has done a pretty good job in this file. It has
recognized several fields correctly, but missed the first field, combining it with
the second field. You’ll need to add a field break line in the structure.

Figure 7-26: The Import Text Wizard’s attempt to
split the fields. Notice that two fields are merged
together in the first column.

As you can see in Figure 7-26, you can drag a field break line, add one, or
delete one to tell Access where the fields really are.

5. Move to position 3 (between the 01 and J of the first record named Jones).

288 Part I, Section I ✦ Working with Data Tables and Queries

6. When the pointer is in position on the lined bar in the center, create a break
line by clicking at that position.

If you make a mistake and put the line in the wrong place, simply highlight the
line and either move it by dragging it or double-click it to delete it.

Figure 7-27 shows the first and second fields now correctly designated.

Figure 7-27: The field breaks now set correctly
for the fields of the fixed-width table.

As you use these tools to define the field widths, you’re completing an internal
data table known as Import/Export Specifications.

7. Click the Advanced button to activate the Import Specification window for the
ContactsFixed table.

Figure 7-28 shows the Import Specification screen active. This window is atop
the Import Text Wizard window. This Import Specifications window is activated
by clicking the Advanced button in the Import Text Wizard.

The section labeled Dates, Times, and Numbers describes how date, time, and
numeric information is formatted in the import file.

8. Make sure that the Four Digit Years check box is on.

9. Click the Leading Zeros in Dates check box on.

The month and day in the data being imported includes a leading zero for
numbers less than 10.

289Chapter 7 ✦ Working with External Data

Figure 7-28: The Import Specification screen
for fixed-width text files.

10. Click in the Date Order combo box and change the order from MDY (month
day year) to YMD (year month date).

In this example, the date field is formatted with the year first (four digit), then
the month, followed by the day. The dialog box should look like the one
shown in Figure 7-28.

The bottom half of the Import Specifications dialog box has a section named
the Field Information section. This section lists the name, data type, and posi-
tion of each field in the import table. Although you can manually type the
specifications for each field in this file, in this example you can accept the
field information that Access has created for you and return to the Import
Text Wizard.

11. Click the OK button to return to the Import Text Wizard.

12. After you return to the Wizard, press the Next button to move to the next
screen.

This screen enables you to determine whether the records should be added
to a new table or an existing one.

13. Click the Next button again to move to the next screen.

This screen enables you to specify the field names and any indexes for the
fields.

14. With the first column highlighted, enter a field name of ContactID and Data
Type of Long Integer.

290 Part I, Section I ✦ Working with Data Tables and Queries

15. Click the second field column named Field2.

16. With the Field2 highlighted, enter a field name of LastName and Data Type
of Text.

17. Click the next field column named Field3.

18. With the Field3 highlighted, enter a field name of FirstName and Data Type
of Text.

19. Click the next field column named Field4.

20. With the Field4 highlighted, enter a field name of Company and Data Type
of Text.

21. Click the next field column named Field5.

22. With the Field5 highlighted, enter a field name of City and Data Type of Text.

23. Click the next field column named Field6.

24. With the Field6 highlighted, enter a field name of State and Data Type of Text.

25. Click the next field column named Field7.

26. With the Field7 highlighted, enter a field name of DateOfBirth and Data Type
of Date/Time.

27. Click the Next button to move to the next screen.

This screen enables you to specify a primary key.

28. Click Choose My Own Primary Key and specify ContactID.

29. Click the Next button.

This step takes you to the last screen where you can name your file.

30. Accept the default name of ContactsFixed and click the Finished button.

Access again informs you that it has imported the file. Clicking the OK button
will close the Wizard and return you to the database.

If you made a mistake and Access could not import the records correctly, perhaps
you failed to specify the correct type of date conversion to get this type of error.
Access will report a message like this: Finished importing file “XXX” to table “XXX”.
Not all your data was successfully imported. Error descriptions with associated row
numbers of bad records can be found in Microsoft Access table “YYYErrors. NOTE
that XXX and YYY will be actual names.

Using the Import Specification window
In earlier versions of Access, you had to specify the import/export specifications
manually, specifying field lengths, delimited or fixed text, type of delimiter, how to
export date fields, and so on. Although you can still specify this information by
using the Import Specification window, as in Steps 7 through 11 above, it is easier to
use the graphical tools (built into the Import Wizard) of Access.

Caution

291Chapter 7 ✦ Working with External Data

Although the Import Text Wizard generally does a good job of importing your data
correctly, at times you may need to specify field lengths and data types manually. If
you use the Import Specification dialog box (shown in Figure 7-28), you can change
or set all the options on one screen, which can be helpful.

One advantage of using this screen is the capability to specify the type of file to be
imported from or exported to. The Language and Code Page fields determine the
type of format. The default language is English. The Code Page combo box displays
the code page types that are available for the language you select. Specifically, these
choices are available for the English language:

✦ OEM United States

✦ Unicode

✦ Unicode (Big-Endian)

✦ Unicode (UTF-7)

✦ Unicode (UTF-8)

✦ Western European (DOS)

✦ Western European (ISO)

✦ Western European (Windows)

The default value is the Western European (Windows). Notice that in Figure 7-28
it has been changed to OEM United States. You may need to set this value if you
are running a language that does not use the Roman character set used in English,
French, German, etc. You can also specify the Field Delimiter option for delimited
text files; the delimiter is used to separate the fields. You do this by using a special
character such as a comma or semicolon. Four field-separator choices are available
in this combo box:

; Semicolon

{tab} Tabulation mark

{space} Single space

, Comma

When working with delimited files, you can also specify your own field separator
directly in this combo box.

Also, when working with delimited files, you can specify the Text Qualifier. It specifies
the type of delimiter to be used when you’re working with Text-type fields. Normally,
the text fields in a delimited file are enclosed by specified delimiters (such as quota-
tion marks). This is useful for specifying Number-type data (such as Social Security
numbers) as Text type rather than Number type (it won’t be used in a calculation).
You have three list box choices:

292 Part I, Section I ✦ Working with Data Tables and Queries

{none} No delimiter

“ Double quotation mark

‘ Single quotation mark

The default value is a double quotation mark. This list box is actually a combo box;
you can enter your own delimiter. If the one you want is not among these three
choices, you can specify a different text delimiter by entering a new one directly in
the combo box — for example, the caret symbol (^).

If you use comma-delimited files, created by other PC-based databases, you should
set the text qualifier to the double quotation mark (“) and the field delimiter to a
comma (,) if that is what they are in the text file being imported or linked.

If you specify your own delimiter, it must be the same on both sides of the text. For
example, you can’t use both of the curly braces ({ }) as user-specified delimiters;
you can specify only one character. If you specify the left curly brace, Access looks
for only the left curly brace as a delimiter — on both sides of the text:

{This is Text data enclosed in braces}

Notice that only the left brace is used.

When Access 2003 imports or exports data, it converts dates to a specific format
(such as MMDDYY). In the example MMDDYY, Access converts all dates to two
digits for each portion of the date (month, day, and year), separating each by a
specified delimiter. Thus, January 19, 2004 would be converted to 1/19/04. You can
specify how date fields are to be converted, using one of six choices in the Date
Order combo box:

✦ DMY

✦ DYM

✦ MDY

✦ MYD

✦ YDM

✦ YMD

These choices specify the order for each portion of a date. The D is the day of the
month (1-31), M is the calendar month (1-12), and Y is the year. The default date
order is set to the American format of month, day, and year. When you work with
European dates, the order must be changed to day, month, and year.

You use the Date Delimiter option to specify the date delimiter. This option tells
Access which type of delimiter to use between the parts of date fields. The default
is a forward slash (/), but this can be changed to any user-specified delimiter. In
Europe, for example, date parts are separated by periods, as in 22.10.04.

Caution

Note

293Chapter 7 ✦ Working with External Data

When you import text files with Date-type data, you must have a separator
between the month, day, and year or else Access reports an error if the field is
specified as a Date/Time type. When you’re exporting date fields, the separator is
not needed.

With the Time Delimiter option, you can specify a separator between the segments
of time values in a text file. The default value is the colon (:). In the example 12:55,
the colon separates the hours from the minutes. To change the separator, simply
enter another in the Time Delimiter box.

You use the Four Digit Years check box when you want to specify that the year value
in date fields will be formatted with four digits. By checking this box, you can export
dates that include the century (such as in 1881 or 2001). The default is to include
the century.

The Leading Zeros in Dates option is a check box where you specify that date values
include leading zeros. You can specify, for example, that date formats include leading
zeros (as in 02/04/03). To specify leading zeros, check this box. The default is with-
out leading zeros (as in 2/4/03).

Importing HTML tables
Access enables you to import HTML tables as easily as any other database, Excel
spreadsheet, or text file. You simply select the HTML file you want to import and
use the HTML Import Wizard. It works exactly like the link HTML Wizard described
in detail earlier in this chapter.

Modifying imported table elements
After you import a file, you can refine the table in Design view. The following list
itemizes and discusses some of the primary changes you may want to make to
improve your table:

✦ Add field names or descriptions. You may want to change the names of the
fields you specified when you imported the file. For example, xBASE databases
enable no more than 10 characters in their names and no spaces.

✦ Change data types. Access may have guessed the wrong data type when it
imported several of the fields. You can change these fields to reflect a more
descriptive data type (such as Currency rather than Number, or Text rather
than Number).

✦ Set field properties. You can set field properties to enhance the way your
tables work. For example, you may want to specify a format or default value
for the table.

Note

294 Part I, Section I ✦ Working with Data Tables and Queries

✦ Set the field size to something more realistic than the 255 bytes (characters)
Access allocates for each imported text field. Make the names descriptive
enough without the need to make them too long — for example, “Last Name”
versus “Last Name of the owner of pets coming from the merge table from
Doctor Zervas’s old practice.” “Last Name” is sufficient to clarify what the
contents of the field are.

✦ Define a primary key. Access works best with tables that have a primary key.
You may want to set a primary key for the imported table.

Troubleshooting import errors
When you import an external file, Access may not be able to import one or more
records, in which case it reports an error when it tries to import them. When Access
encounters errors, it creates an Access table named Import Errors (with the user’s
name linked to the table name). The Import Errors table contains one record for
each record that causes an error.

After errors have occurred and Access has created the Import Errors table, you can
open the table to view the error descriptions.

Import errors for new tables
Access may not be able to import records into a new table for the following reasons:

✦ A row in a text file or spreadsheet may contain more fields than are present in
the first row.

✦ Data in the field cannot be stored in the data type Access chose for the field.
(This could be text in a numeric field — best case will import as 0s — or
numeric trying to store in a date field.)

✦ On the basis of the first row’s contents, Access automatically chose the incor-
rect data type for a field. The first row is OK, but the remaining rows are blank.

✦ The date order may be incorrect. The dates are in YMD order but the specifi-
cation calls for MDY order. (When Access tries to import 991201 [YYMMDD],
it will report an error because it should be in the format of 120199 [MMDDYY].)

Import errors for existing tables
Access may not be able to append records into an existing table for the following
reasons:

✦ The data is not consistent between the text file and the existing Access table.

✦ Numeric data being entered is too large for the field size of the Access table.

✦ A row in a text file or spreadsheet may contain more fields than the Access
table.

✦ The records being imported have duplicate primary key values.

295Chapter 7 ✦ Working with External Data

The Import Errors table
When errors occur, Access creates an Import Errors table you can use to determine
which data caused the errors.

Open the Import Errors table and try to determine why Access couldn’t import
all the records. If the problem is with the external data, edit it. If you’re appending
records to an existing table, the problem may be with the existing table; it may need
modifications (such as changing the data types and rearranging the field locations).
After you solve the problem, erase the Import Errors file and import the data again.

Access attempts to import all records that do not cause an error. If you re-import
the data, you may need to clean up the external table or the Access table before
re-importing. If you don’t, you may have duplicate data in your table.

If importing a text file seems to take an unexpectedly long time, it may be because
of too many errors. You can cancel importing by pressing Ctrl+Break.

Exporting to External Formats
You can copy data from an Access table or query into a new external file. This pro-
cess of copying Access tables to an external file is called exporting. You can export
tables to several different sources:

✦ Microsoft Access (other unopened databases)

✦ dBASE III, dBASE IV, and dBASE 5

✦ FoxPro 2.x and Visual FoxPro 3.0 (through ODBC)

✦ Microsoft Excel (all versions 3, 4, 5 – 7 through 97-2002)

✦ HTML documents (as tables)

✦ Lotus 1-2-3 and 1-2-3 for Windows (versions WK1, WK3, and WJ2)

✦ Paradox 3.x, 4.x, 5.0, and 7-8

✦ SharePoint Team Services

✦ Delimited text files (fields separated by a delimiter)

✦ Fixed-width text files (specific widths for each field)

✦ Microsoft Active Server Pages

✦ Microsoft IIS 1-2

✦ XML document

✦ Text files

✦ Rich text formats (RTF)

Note

296 Part I, Section I ✦ Working with Data Tables and Queries

✦ Microsoft Word Merge (.txt)

✦ ODBC Data Sources SQL databases (Microsoft SQL Server, Sybase Server, and
Oracle Server)

When Access exports data from an Access table to an external file, the Access table
isn’t erased or destroyed. This means that you will have two copies of the data: the
original Access file and the external data file.

Exporting objects to other Access databases
You can export objects from the current database to another, unopened Access
database. The objects you export can be tables, queries, forms, reports, macros,
or modules. To export an object to another Access database, follow these generic
steps:

1. Open the database that has the object you want to export and select File ➪
Export from the Database menu.

2. Access opens the standard Save As dialog box (Export Table) — the same one
that appears whenever you save an object to another name. The difference is
that you can specify a different format (Save as type). When you open the
combo box, a list of formats appears. Select the one you want; Access will
save the data to that format.

When this process is complete, Access copies to the other database the object you
specified and immediately returns you to the Database window in Access.

If you attempt to export an object to another Access database that has an object of
the same type and name, Access warns you before copying. You then have the
option to cancel or overwrite.

Exporting objects to other external databases
or to Excel, HTML, or text files
You can also export objects to databases (such as ODBC, dBASE, Paradox, and
FoxPro) and text files (delimited and fixed width). To export any of these objects,
simply follow these generic steps:

1. Select File ➪ Export from the Database menu.

2. Select the type of file you want the object to be saved to and specify a name.

3. Click the Save button.

Note

297Chapter 7 ✦ Working with External Data

If you save a table to an HTML table, Access will create the HTML document, and if
you check the Save formatted and the Autostart check boxes in the Export to dia-
log box, you can have Access start your browser to show you the form it created.
Figure 7-29 shows the Contacts table exported as a formatted HTML table and dis-
played automatically in the Browser.

Figure 7-29: Internet Explorer browser displaying the Customer’s
table exported to an HTML file.

✦ ✦ ✦

Note

PART I
Creating
Desktop
Applications

SECTION II
Building Forms
and Reports

✦ ✦ ✦ ✦

In This Section
Chapter 8
Understanding the
Many Uses of Forms
and Controls

Chapter 9
Building and
Manipulating Forms
and Controls

Chapter 10
Creating Bound Forms
and Placing Controls

Chapter 11
Adding Data-
Validation Features
to Forms

Chapter 12
Creating Professional-
Looking Forms and
Reports

Chapter 13
Understanding and
Creating Reports

Chapter 14
Working with
Subforms

Chapter 15
Creating Calculations
and Summaries in
Reports

Chapter 16
Presenting Data with
Special Report Types

Chapter 17
Using OLE Objects,
Graphs, Pivot
Tables/Charts, and
ActiveX Controls

✦ ✦ ✦ ✦

P A R T

II

Understanding
the Many Uses
of Forms and
Controls

In this chapter, you will use the database file Chap08Start.
mdb. The forms displayed in this chapter are found in the
database file in the forms tab.

Forms provide the most flexible way for viewing, adding,
editing, and deleting your data. They are also used for switch-
boards (forms with buttons that provide navigation), dialogs
that control the flow of the system, and displaying messages.
Controls are the objects on forms such as labels, text boxes,
buttons, and many others. In this chapter, you learn about
different types of forms and get an understanding about the
types of controls that are used on a form.

Understanding Forms
Although you can view your data in many ways, a form pro-
vides the most flexibility for viewing and entering data. A form
lets you view one or more records at a time while viewing all
of the fields. A datasheet also lets you view several records at
once, but each record is displayed as a row, so you can see
only a limited number of fields at a time.

When you use a form, you can see all your fields at once, or at
least as many as you can fit on a screen. By rearranging your
fields in a form, you can easily get 20, 50, or even 100 fields on
one screen. You can also use forms to create tabbed dialog

On the
CD-ROM

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the
types of forms that
you can create

Looking at the
difference between a
form and a datasheet

Creating a form with
the AutoForm Wizard

Understanding
controls

Learning standards
for using controls

✦ ✦ ✦ ✦

302 Part I, Section II ✦ Building Forms and Reports

boxes or main (graphical button) menus known as switchboards. Forms are useful
for viewing data in a formatted display, as well as for entering, changing, or deleting
data. You can also print forms with the visual effects that you create.

What are the basic types of forms?
These are the several basic types of forms:

✦ Columnar (also known as full-screen) forms, which are used for data entry,
switchboards (used for navigation), dialogs, and message boxes

✦ Datasheets, which display many records at a time, like a spreadsheet, in rows
and columns

✦ Tabular forms, which display more than one formatted record at a time

✦ Main/subforms, which display data that include parent/child relationships

✦ Pivot table forms (like those found in Microsoft Excel), which display cross-
tabulation views of data

✦ Graphs, including bar charts, pie charts, line graphs, and other chart types

Figure 8-1 shows a columnar form; the fields are arranged in a columnar fashion with
as many fields placed in the first column as will fit and then more placed in the sec-
ond column, etc. The form can occupy one or more screen pages. Generally, this
type of form simulates the hard-copy entry of data like a paper form. The fields can
be arranged any way that you want. The form shown in Figure 8-1 is the form
named frmProducts in the example database.

Figure 8-1: A full-screen (columnar) form showing a sample
data record.

303Chapter 8 ✦ Understanding the Many Uses of Forms and Controls

Most standard Windows controls are available when using Microsoft Access forms
to simplify data entry. Lines, boxes, colors, and special effects (such as shadows or
three-dimensional looks) enable you to make great looking, easy-to-use forms. Later
in this chapter, you will learn about the various control types used in Microsoft
Access forms.

In a columnar type form, you will generally see one record at a time.

Figure 8-2 shows a tabular form that displays many records at one time. The form
in Figure 8-2 is found on the second tab of the frmProducts form. It is actually a
subform (a form within a form). Notice that the form shows selected fields from the
form shown in Figure 8-1. Both of these forms show data from the tblProducts table.
While the columnar form provides a window to one record, the tabular or continu-
ous form provides a link to many records.

Figure 8-2: A tabular form.

Tabular forms do not have to have just basic data or single lines. The tabular form
shown in Figure 8-3 combines the best of each of the forms shown in this chapter.
You can format any part of a tabular form; your column headers can span lines and
be formatted separately from the records (datasheets don’t allow you to customize
the column headers). Tabular forms can have multiple rows per record, as in Figure
8-3. You can add special effects (such as shadows) to the fields. Field controls can
be option buttons, command buttons, and text boxes. There is no limit to the com-
plexity of the forms you can create with tabular type forms.

Note

304 Part I, Section II ✦ Building Forms and Reports

Figure 8-3: A tabular form shown on multiple lines with
various controls.

Figure 8-4 shows a form with an embedded subform, which is commonly used to
display data with one-to-many relationships. The main form displays the main table;
the subform is often a datasheet or tabular form that displays the many side tables
of the relationship. This example is the frmSales form in your example database.
The product lines and payment lines are the embedded subforms. While the main
invoice form displays data from the tblSales table, the subforms display data from
the tblSalesLineItems and the tblSalesPayments tables.

Figure 8-4: A main/subform form with multiple
subforms.

305Chapter 8 ✦ Understanding the Many Uses of Forms and Controls

In Figure 8-4, information for each invoice appears once, while the first subform
shows many line item detail records. The second subform shows many payment
line items. This type of form combines the benefits of forms and datasheets. A sub-
form can show one record or more, each on multiple lines.

How do forms differ from datasheets?
If you display a table, you get an automatic datasheet view of your data. This is not
a form object but simply a view of your data in a temporary datasheet. You can also
create a form with a datasheet view and save the form. With a datasheet type form
shown in Figure 8-5, you have very little control over the display of data. Although
you can change the type and size of the display font, and rearrange, resize, or hide
columns, you can’t significantly alter the appearance of the data. By using form
objects, you can place each field in an exact specified location, add color or shading
to each field, and add text controls to make data entry more efficient.

A form has more flexibility in data entry than a datasheet. You can input data to
multiple tables at the same time, and add calculated fields as well as enhanced
data-validation and editing controls (such as option buttons, check boxes, and pop-
up list boxes) to a form. Adding lines, boxes, colors, and static bitmaps enhances
the look of your data, makes your form easier to use, and improves productivity.

Figure 8-5: A datasheet view of a form.

In addition, OLE objects (such as pictures or graphs) are visible only in a form or
report. Although you can increase a datasheet’s row size to see more of a Memo
field displaying long text, using a form makes it easier to display large amounts of
text in a scrollable text box, pictures, or any other object.

306 Part I, Section II ✦ Building Forms and Reports

After you create a form with editing or enhanced data validation controls, you can
still switch into Datasheet View, which lets you use data-validation rules and con-
trols, such as combo boxes, in the datasheet.

If you are new to Microsoft Access and do not know how to start Microsoft Access or
use the database window to create new objects, you should review the Introduction
of this book.

Creating a form with AutoForm
From the Tables or Queries object in the Database window, a datasheet, or most
design screens in Access, you can create a columnar form instantly with just a few
mouse clicks by clicking the New Object drop-down button on the toolbar (an icon
with a lightning bolt through it), as shown in Figure 8-6. After you click on the drop-
down button next to the icon, you can then choose the AutoForm selection on the
drop-down menu. The form will be created using whatever table or query was last
selected.

Figure 8-6: The New Object toolbar menu.

When you use AutoForm, you automatically get a Columnar form. If you want
another form type, there are other ways to quickly create a form. Another method
is to use Insert ➪ Form from the Access main menu and select one of the AutoForm
choices from the dialog box that appears. You will see this in the next chapter.

With the AutoForm selection on the New Object toolbar button, the form can be
created with no additional work. To create a columnar AutoForm using the
tblProducts table, follow these steps:

1. From the Chap08Start database window, click the Tables object button

2. Select tblProducts.

3. Click the New Object button icon drop down arrow on the main Microsoft
Access toolbar (not the Database window toolbar).

Cross-
Reference

Tip

307Chapter 8 ✦ Understanding the Many Uses of Forms and Controls

4. Select AutoForm.

The form instantly appears, as shown in Figure 8-7. Your screen resolution and
the size of your monitor may show more or less of the form than in this figure.

5. Close the form and don’t save it after you read the rest of this section in this
chapter.

Figure 8-7: The AutoForm form.

The first record is displayed. Some values, however, are not properly displayed in
different areas of the form. For example, if you look at the picture of the car in the
first record, you can see a lot of white space around the value and it doesn’t fit the
area. Later in this chapter, you learn how to fix this, as well as how to customize
the form.

Using AutoForm is the quickest way to create a form. Generally, however, you want
more control over your form creation. Other Form Wizards can help you create a
more customized form from the outset. In the next chapter, you will learn how to
create other forms with wizards. Next, it is important to learn what goes on a form.

308 Part I, Section II ✦ Building Forms and Reports

If you haven’t closed the form you created in Figure 8-7, you can close it now with-
out saving it.

The next part of this chapter will explain and demonstrate the various control types
available in Access. Before you learn about controls, you should learn how to create
a blank form and to display the list of fields available and also how to display the
form’s toolbox that you use to select various types of controls.

To create a blank form you need for this chapter, follow these steps:

1. Open the Chap08Start.mdb database file if it’s not already open.

2. Select Insert ➪ Form.

3. Select Design View from the New Form dialog box.

4. Select the tblProducts table from the combo box in the New Form dialog box.

Your screen should look like the one shown in Figure 8-8.

Figure 8-8: Creating a new form
with the New Form dialog box.

5. Click OK to display the Form Design window.

6. Maximize the form by clicking the maximize button in the top-right corner of
the window.

7. Expand the light gray area of the form to the full-window size by dragging the
bottom-right corner of the light gray area to the bottom-right corner of the
window. Figure 8-9 shows this blank form design.

8. If the Field list is not displayed, click on the Field List icon in the toolbar. If the
form Toolbox is not displayed as shown in Figure 8-9, click on the Toolbox
icon next to the field list icon.

Before continuing with this form, it is important to understand the basic concepts
of controls.

309Chapter 8 ✦ Understanding the Many Uses of Forms and Controls

Understanding Form Controls
Controls and properties form the basis of forms and reports. It is critical to under-
stand the fundamental concepts of controls and properties before you begin to
apply them to custom forms and reports.

While this chapter is about forms, you will learn that forms and reports share many
common characteristics including controls and what you can do with them. As you
learn about controls in this chapter, you will be able to apply nearly everything you
learn when you create reports.

What Is a Control?
A control has many definitions in Access. Generally, a control is any object on a
form or report, such as a label or text box. These are the same controls that you
use in any Windows application, such as Access, Excel, or Web-based HTML forms,
or those that are used in any language, such as .Net, Visual Basic, C++, or even C#.
Although each language or product has different file formats and different proper-
ties, a text box in Access is the same as a text box in any other Windows product.

You enter data into controls and display data using controls. A control can be
bound to a field in a table (when the value is entered in the control it is also saved
in some underlying table field), or it can be unbound and displayed in the form but
not saved when the form is closed. A control can also be an object, such as a line
or rectangle. Calculated fields are also controls, as are pictures, graphs, option but-
tons, check boxes, and objects. Some controls that aren’t part of Access are devel-
oped separately — these are ActiveX controls. ActiveX controls extend the base
feature set of Access 2003 and are available from a variety of vendors. Many
ActiveX controls are shipped with Access 2003.

ActiveXcontrols are covered in Chapter 14.

Whether you’re working with forms or reports, essentially the same process is
followed to create and use controls. In this chapter, we explain controls from the
perspective of a form.

The View menu contains many options to display the options of the form design
window. In the figure above (and in the author’s computer, the Grid (a series of
horizontal and vertical lines) is turned off while the rulers at the top and left side
are turned on.

Note

Cross-
Reference

Note

310 Part I, Section II ✦ Building Forms and Reports

Figure 8-9: A new blank form showing the field list and form toolbox.

The different control types
Forms and reports contain many different control types. You can add some of these
controls to forms by using the Toolbox shown in Figure 8-9. In this book, you learn
to add and use the controls that are used most often (these are listed in Table 8-1).
In this part of this chapter, you learn when to use each control and you also learn
how these controls work.

Table 8-1
Controls You Can Create in Access Forms and Reports

Basic Controls

Label Literal text is displayed in a label control.

Text Box Data is typed into a text box.

Enhanced Data Entry and Data Validation Controls

Option Group This group holds multiple option buttons, check boxes, or
toggle buttons.

Toggle Button This is a two-state button, up or down, which usually uses
pictures or icons instead of text to display different states.

311Chapter 8 ✦ Understanding the Many Uses of Forms and Controls

Enhanced Data Entry and Data Validation Controls

Option Button Also called a radio button, this button is displayed as a circle
with a dot when the option is on.

Check Box This is another two-state control, shown as a square that
contains a check mark if it’s on and an empty square if it’s off.

Combo Box This box is a pop-up list of values that allows entries not on
the list.

List Box This is a list of values that is always displayed on the form or
report.

Command Button Also called a push button, this button is used to call a macro
or run a Basic program to initiate an action.

Subform/Subreport This control displays another form or report within the original
form or report.

Tab Control This control can display multiple pages in a file folder type
interface.

Graphic and Picture Controls

Image Displays a bitmap picture with very little overhead.

Unbound Object Frame This frame holds an OLE object or embedded picture that is
not tied to a table field and can include graphs, pictures,
sound files, and video.

Bound Object Frame This frame holds an OLE object or embedded picture that is
tied to a table field.

Line This is a single line of variable thickness and color, which is
used for separation.

Rectangle A rectangle can be any color or size or can be filled in or
blank; the rectangle is used for emphasis.

Page Break This is usually used for reports and denotes a physical page
break.

If the toolbox isn’t displayed, you can display it by selecting View ➪ Toolbox or by
clicking the toolbox icon.

Figure 8-10 shows the toolbox with a new blank form. This is the design grid where
you place the controls you will want on the form. You can also see the Field List
window on the form ready for you to select the fields from the tblProducts table to
use in your form.

Note

312 Part I, Section II ✦ Building Forms and Reports

Figure 8-10: The form toolbox with definitions of each control type.

You can move, resize, and anchor the toolbox on the window. You can anchor it to
any border, grab it, and resize it in the middle of the window. The toolbox can be
dragged anywhere on the form and you can additionally change the shape of the
toolbox. It can be more square or be oriented horizontally instead of vertically
across the screen.

The Control Wizard icon, located in the upper-right corner of the toolbox, does not
add a control to a form; rather, it determines whether a Wizard is automatically
activated when you add certain controls. The Option Group, Combo Box, List Box,
Subform/Subreport, Bound and Unbound Object Frame, and Command Button con-
trols all have Wizards that Access starts when you add a new control. You can use
the More Controls icon (found in the bottom-right corner of the toolbox) to display
a list of ActiveX controls, which you can add to Access 2003.

Standards for Using Controls
Most of you reading this book have used Microsoft Windows. You have probably
used other applications in Windows as well, such as Word, Excel, and other Office
applications. Using a Windows application and designing a Windows application,
however, are two different tasks.

The controls in Access 2003 have specific purposes. The uses of these controls,
however, are not decided by whim or intuition — a scientific method determines
which control should be used for each specific situation. Experience shows you
that correct screen and report designs lead to more usable applications.

Tip

313Chapter 8 ✦ Understanding the Many Uses of Forms and Controls

In fact, you may learn that Office developers use the fonts and colors that
Microsoft Office uses. Some of the simplest guidelines include using the Tahoma
font for all form controls that are 12 points or smaller and the Verdana font for all
font sizes above 12 point. Other Office standards include using only etched line
rectangles (never sunken or raised), gray form backgrounds, flat label controls,
and sunken text box controls with white backgrounds for data entry. The only item
that should be raised on a form is a button that you can click. Finally, no control
text is bolded except for an occasional label at the top of the form. Use of multiple
colors may be attractive to you but, for professional designers, is reserved for cir-
cus applications.

In the file Chap08Start.mdb are a series of forms that correspond to the examples
in the remainder of the chapter. You may want to open each of them in design
view or run them as you learn about the various control types. The form names are
zzfrmFigure8-11 through zzfrmFigure8-17.

Label controls
You use a label control to display descriptive text (such as a title, a caption, or
instructions) on a form or report. Labels can be separate controls, which is com-
mon when they are used for titles or data-entry instructions. When labels are used
for field captions, they are often attached to the control that they describe.

You can display labels on a single line or on multiple lines. Labels are unbound
controls that accept no input; you use them strictly for one-way communication
(they are read-only). You can use them on many types of controls. Figure 8-11 shows
many uses of labels, including titles, captions, button text, and captions for buttons
and boxes. You can use different font styles and sizes for your labels, and you can
boldface, italicize, and underline them.

You should capitalize the first letter of each word in a label, except for articles and
conjunctions, such as the, an, and, or, and so on. You should follow several guide-
lines when you use label controls with other controls. The following list explains
some of these placement guidelines, which are shown in Figure 8-11:

✦ Command buttons. Inside the button.

✦ Checkboxes. To the right of the check box.

✦ Option buttons. To the right of the option button.

✦ Text box. Above or to the left of the text box.

✦ List or combo box. Above or to the left of the box.

✦ Group box. On top of and replacing part of the top frame line.

On the
CD-ROM

Tip

314 Part I, Section II ✦ Building Forms and Reports

Figure 8-11: Sample label controls alone and with
other controls.

Text box controls
Text boxes are controls that display data or allow the user to enter or edit informa-
tion. In a text box, you can accept the current text, edit it, delete it, or replace it.
You can use text boxes with most data types, including Text, Number, Date/Time,
Yes/No, and Memo — and they can also be used as bound or unbound controls. You
can use text box fields from tables or queries, or the text box can contain calculated
expressions. A text box is the most-used control because editing and displaying
data are the main purposes of any database system.

Every text box needs an associated label to identify its purpose. Text boxes can
contain multiple lines of data and often do (you use one to display Memo field data,
for example). Data that is too long for the width of the text field wraps automati-
cally within the field boundaries. Figure 8-12 shows several different text boxes in
Form view. Notice how the different data types vary in their alignment within the
text boxes. The Features text box displays multiple lines in the resized text box,
which also has a scrollbar.

Toggle buttons, option buttons, and check boxes
Button or check box controls allow the user to select a choice. Three types of but-
tons act in the same way, but their visual displays are very different:

✦ Toggle buttons

✦ Option buttons (also known as radio buttons)

✦ Check boxes

315Chapter 8 ✦ Understanding the Many Uses of Forms and Controls

Figure 8-12: Sample text box controls.

These controls are used with Yes/No data types. You can use each control individu-
ally to represent one of two states: Yes or No, On or Off, or True or False. Table 8-2
describes the appearance of these controls in both states.

Toggle buttons, option buttons, and check boxes return a value of –1 to the bound
table field if the button value is Yes, On, or True; they return a value of 0 if the but-
ton is No, Off, or False. You can enter a default value to display a specific state. The
control is initially displayed in a Null state if no default is entered and no state is
selected. The Null state’s visual appearance is the same as that of the No state.

Although you can place Yes/No data types in a text box, it’s better to use one of
these controls. The values that are returned to a text box (–1 and 0) are very con-
fusing, especially because Yes is represented by –1 and No is represented by 0.

Table 8-2
Button Control Visual Displays

Button Type State Visual Description

Toggle button True Button is sunken

Toggle button False Button is raised

Option button True Circle with a large solid dot inside

Option button False Hollow circle

Check box True Square with a check in the middle

Check box False Empty square

316 Part I, Section II ✦ Building Forms and Reports

Figure 8-13 Sample toggle buttons, option buttons, and
check boxes.

As Figure 8-13 shows, using the special effects options from the Formatting tool-
bar can change the look of the option button or check box. See Chapter 13 for
more details.

You can format the display of the Yes/No values in Datasheet or Form view by set-
ting the Format property of the text box control to Yes/No, On/Off, or True/False. If
you don’t use the Format property, the datasheet displays –1 or 0. Using a default
value also speeds data entry, especially if the default is the value selected most
often.

Option groups
An option group can contain multiple toggle buttons, option buttons, or check boxes.
When these controls are inside an option group box, they work together rather than
individually. Instead of representing a two-state Yes/No data type, controls within
an option group return a number based on the position in the group. You can select
only one control within an option group at a time; the maximum number of buttons
in such a group should be four. If you need to exceed that number, switch to a drop-
down list box (unless you have plenty of room on your screen).

An option group is generally bound to a single field or expression. Each button inside
it passes a different value back to the option group, which in turn passes the single
choice to the bound field or expression. The buttons themselves are not bound to
any field; instead, they are bound to the option group box.

Figure 8-14 shows three types of buttons; two of these types are shown in option
group boxes. In the Toggle Buttons option group, the second choice is selected; the
same is true of the Option Buttons option group. Notice, however, that the first and

Tip

Note

317Chapter 8 ✦ Understanding the Many Uses of Forms and Controls

third choices are selected in the Check Boxes rectangle; the check boxes are inde-
pendent and are not part of an option group. When you make a new selection in
an option group, the current selection is de-selected. For example, if you click on
Option Button 3 in the option group box in the middle of Figure 8-14, the solid dot
appears to move to the third circle, and the second circle becomes hollow.

Figure 8-14: Three types of option groups.

You may want to create groups of buttons that look like option groups but have
multiple selections. Rather than use an option button, simply enclose the group of
buttons in a rectangle. Each button remains an individual entity instead of becom-
ing part of a group.

List boxes
A list box control displays a list of data on-screen just like a pull-down menu, but the
list box is always open. You can highlight an item in the list by moving the cursor to
your desired choice and then pressing Enter (or clicking the mouse) to complete the
selection. You can also type the first letter of the selection to highlight the desired
entry. After you select an item, the item’s value is passed back to the bound field.

List boxes can display any number of fields and any number of records. By sizing
the list box, you can make it display more or fewer records.

List boxes have a feature called Multi Select property that allows you to select
more than one item at a time. The results are stored in a type of array and must be
used with the VBA programming language.

List boxes are generally used when you have plenty of room on-screen and you
want the operator to see the choices without having to click on a drop-down arrow.

Note

Tip

318 Part I, Section II ✦ Building Forms and Reports

A vertical — and horizontal — scrollbar is used to display any records and fields not
visible when the list box is in its default size. The highlighted entry is the one that
is currently selected. If no entries are highlighted, either a selection has not been
made or the selected item is not currently in view. You can select only the items in
the list.

You also have a choice of whether to display the column headings in list boxes.
Figure 8-15 displays list boxes with three layout schemes.

Figure 8-15: Sample list boxes.

Combo boxes
In Access, combo boxes differ from list boxes in two ways:

✦ The combo box is initially displayed as a single row with an arrow that opens
the box to the normal size.

✦ As an option, the combo box lets you enter a value that is not on the list.

You see a list box and a combo box (shown both open and closed) in Figure 8-16.

Tab controls
The tab control is one of the most important controls because it allows you to create
completely new interfaces by using the tabbed dialog box look and feel.

319Chapter 8 ✦ Understanding the Many Uses of Forms and Controls

Most serious Windows applications now contain tabbed dialog boxes. Tabbed dia-
log boxes look very professional. They allow you to have many screens of data in a
small area by grouping similar types of data and using tabs to navigate between the
areas.

Figure 8-16: An example of the differences
between combo boxes and list boxes.

The tab control gets its name from the fact that it looks like the tab on a file folder
when you use it. Figure 8-17 shows the Access 2003 tab control icon and a tab con-
trol under construction on the design screen. As you can see, the tab control looks
like the tabs seen in Form View.

You create a new Tab Control in the same way that you create any Access control.
You select the tab control, as shown in Figure 8-17, and then you draw a rectangle
to indicate the size of the control. When the tab control is initially shown, it is dis-
played with two tab pages. The tab control contains pages. Each tab that you define
creates a separate page. As you choose each tab in Design View, you see a different
page. You can place other controls on each page of the tab control. The control can
have many pages; in fact, you can have multiple rows of tabs, each having its own
page. You can place new controls on a page or copy and paste them from other
forms or other pages. You can’t drag and drop between pages of a tab control. To
change the active page for the tab control, click the page that you want and it
becomes active (even in design mode).

320 Part I, Section II ✦ Building Forms and Reports

Figure 8-17: Designing a tab control

You can insert new pages by right-clicking a tab and then choosing the Insert Page
command. The new page is inserted after the last tab page. You can delete pages by
right-clicking a tab and choosing the Delete Page command. This deletes the active
page and all the controls on it.

You can size the tab control but not individual pages. Individual pages don’t have
visual appearance properties — they get these from the tab control itself. You select
the border of the tab control by clicking it — clicking directly on a page selects that
page. As with an Access detail section, you can’t size the tab control smaller than the
control in the rightmost part of the page. You must move controls before resizing.

✦ ✦ ✦

Building and
Manipulating
Forms and
Controls

In this chapter, you will use the tblProducts tables in the
chap09start.mdb database to provide the data necessary
to create the examples used in this chapter.

Creating a Form
with Form Wizards

Form Wizards simplify the layout process for your fields. A
Form Wizard visually walks you through a series of questions
about the form that you want to create and then creates it for
you automatically. This chapter creates single-column forms
with a Form Wizard, using the columnar form to create a full-
screen form.

Creating a new form
You have several methods to create a new form using the
Form Wizard:

✦ Select Insert ➪ Form from the Access window menu.

✦ Select the Forms object button and click the New button
from the Database window.

✦ Select the New Object button combo box from the
Access window, the datasheet, or the Query toolbar, and
choose Form.

On the
CD-ROM

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a form with
a Form Wizard

Using the
Form window

Displaying data
with a form

Entering pictures and
data into OLE fields
and Memo fields

Switching to
Datasheet view
from a form

Making simple form
design changes

Saving a form

Printing a form

Creating a new
blank form

Creating a new
control

Using the Field List
window

Using the Toolbox

Selecting controls

Manipulating controls

✦ ✦ ✦ ✦

322 Part I, Section II ✦ Building Forms and Reports

To start the Form Wizard, follow the next steps:

1. With the Forms object selected in the Database window, click New. From the
New Form dialog box, choose the Form Wizard option.

2. Select the tblProducts table in the Choose the Table or Query ... combo box at
the bottom of the New Form window.

Whichever method you used (hopefully you will follow the steps), the New Form
dialog box appears, as shown in Figure 9-1. If you begin to create the new form with
a table highlighted (or from a datasheet or query), the table or query that you are
using appears in the text box labeled Choose the table or query where the object’s
data comes from. You can enter the name of a valid table or query (if you are not
already using one) before continuing. You can choose from a list of tables and
queries by clicking the combo box’s selection arrow.

Figure 9-1: The New Form dialog box.

Selecting the New Form type and data source
The New Form dialog box provides nine choices for creating a form:

✦ Design View. Displays a completely blank form to start with in Form design.

✦ Form Wizard. Creates a form with one of four default layouts: columnar, tabu-
lar, datasheet, or justified using data fields that you specify in a step-by-step
process that lets you customize the form creation process.

✦ AutoForm: Columnar. Instantly creates a columnar form.

✦ AutoForm: Tabular. Instantly creates a tabular form.

✦ AutoForm: Datasheet. Instantly creates a datasheet form.

✦ AutoForm: PivotTable. Instantly creates a pivot table form.

✦ AutoForm: PivotChart. Instantly creates a pivot chart form.

✦ Chart Wizard. Creates a form with a business graph.

✦ PivotTable Wizard. Creates an Excel Pivot Table form.

323Chapter 9 ✦ Building and Manipulating Forms and Controls

Choosing the fields
After you have selected the data for the form, you can press the OK button to move
to the next New Form wizard dialog.

To continue with the Form Wizard, press OK.

After you press OK, the field-selection window appears. The field-selection dialog
box has three work areas. The first area lets you choose multiple tables or queries,
so you can create many types of forms, including those with subforms. As you select
each table or query, the list box beneath Available Fields displays the possible
fields, and below Selected Fields displays the selected fields. You can see in Figure
9-2 that three fields have just been selected.

Figure 9-2: Choosing the fields for the form.

The field-selection area consists of two list boxes and four buttons. The Available
Fields: list box on the left displays all fields from the selected table/query that was
used to create the form. The Selected Fields: list box on the right displays the fields
that you have selected for this form. You can select one field, all the fields, or any
combination of fields. The order in which you add the fields to the list box on the
right is the order in which the fields appear in the form. You can use the buttons
to place or remove fields in the Selected Fields: box. Here is a description of these
buttons:

> Add selected field.

>> Add all fields.

< Remove selected field.

<< Remove all fields.

324 Part I, Section II ✦ Building Forms and Reports

When you highlight a field in the Available Fields: list box and click >, the field name
appears in the Selected Fields: list box. You can add each field that you want to
the list box. If you add a field by mistake, you can select the field in the Selected
Fields: list box and click < to remove it from the selection. If you decide that you
want to change the order in which your fields appear in the form, you must remove
any fields that are out of order and reselect them in the proper order.

You can also double-click any field in the Available Fields: list box to add it to the
Selected Fields: list box.

At the bottom of the form, you can see a series of buttons to use when the field
selection is completed. The types of buttons available here are common to most
Wizard dialog boxes:

✦ Cancel. Cancel form creation and return to the starting point.

✦ Back. Return to the preceding dialog box.

✦ Next. Go to the next dialog box.

✦ Finish. Go to the last dialog box (usually the form title).

If you click Next> or Finish without selecting any fields, Access tells you that you
must select fields for the form before you can continue.

Here’s how to select the Fields for this example:

1. Select all of the fields by clicking the >> button.

2. Click the Next button to display the dialog box from which to choose a form
layout.

After you select all of the fields from the Available Fields list box, they all will
appear to jump from the left list box to the right one.

Choosing the form layout
After you have chosen the fields, you must choose the type of layout. As Figure 9-3
shows, you can choose from six types of layouts:

✦ Columnar

✦ Tabular

✦ Datasheet

✦ Justified

✦ PivotTable

✦ PivotChart

Note

Note

325Chapter 9 ✦ Building and Manipulating Forms and Controls

Figure 9-3: Choosing the type of layout for the form.

As you click through the button choices, the display on the left changes to show
how the form will look if you use that choice.

1. Select the Columnar layout.

2. After you choose the type of layout, you can click the Next button to display
the choices for style of the form, as shown in Figure 9-4.

Choosing the style of the form
You have many choices, which you can access by clicking the desired name in the
list box. When you select a style, the display on the left changes to illustrate the
special effect used to create the look.

The default look uses the Standard style, which creates a dark gray background and
sunken controls. Figure 9-4 shows the Expedition style selected.

1. Select Expedition for the first form that you create in this chapter.

2. Click Next.

After you select the form’s style, you are ready to create a title and view the form.
The style that you select is used as the default the next time you use the Wizard.

You can customize the style by changing a form and then using the AutoFormat
function in the Form design screen.

Tip

326 Part I, Section II ✦ Building Forms and Reports

Figure 9-4: Choosing the style of your form.

Creating a form title
The form title dialog box is usually the last dialog box in a Form Wizard. It always
has a checkered flag that lets you know you’ve reached the finish line. By default,
the text box for the form title contains the name of the table or query used for the
form’s data. You can accept the entry for the form title, enter your own, or erase it
and have no title. The title in Figure 9-5 is tblProducts, which is the name of the
table as long as you don’t already have another form named tblProducts. If you do,
a number is added to the end of the name.

Change the form name to frmProductsWizard as shown in Figure 9-5.

The frm prefix is a naming convention that is used by professional developers.
While tbl is the prefix for table objects, frm is the prefix for most forms. See
Appendix D for a complete guide to Microsoft Access naming conventions.

Figure 9-5: Choosing a form title.

Cross-
Reference

327Chapter 9 ✦ Building and Manipulating Forms and Controls

Completing the form
After you complete all the steps to design your form, you open the new form by
selecting one of these two options:

✦ Open the form to view or enter information.

✦ Modify the form’s design.

1. Select Open the form to view or enter information.

2. Click the Finish button.

After you click the Finish button, the form appears in the Form View window (as
shown in Figure 9-6).

Figure 9-6: A form design created with a Form Wizard.

Changing the Design
To demonstrate how easy it is to manipulate the field controls, in this section you
learn how to change the way the Picture field appears. Figure 9-6 shows a lovely
view of the front half of the car — it would be nicer to see the whole car. To fix this,
follow these steps:

1. Click the Design button (the button on the far left side of the toolbar with a
little picture of a pencil, triangle, and ruler) to open the form in the Form
Design window.

2. Click the Picture field (the large, empty rectangle next to the Picture label).

3. Click the Property icon in the toolbar (picture of a hand and a sheet of paper,
the fifth icon from the right).

4. Click the Size Mode property and change it from Clip to Stretch (as shown in
Figure 9-7).

328 Part I, Section II ✦ Building Forms and Reports

Figure 9-7: Changing a control property.

If you don’t like the Ruler being displayed (as shown in Figure 9-7), or you want to
turn on the grid for more precise control alignment, you can turn them on or off by
selecting View ➪ Ruler and/or View ➪ Grid.

After you complete the property change, click the Form button to redisplay the form.
The whole car is displayed, as shown in Figure 9-8. It may not be pretty as you have
stretched it, but you can always resize the Picture box size (more about that later in
this chapter) or use one of the other choices (like the Zoom Picture property) to
correct it.

Figure 9-8: The form redisplayed to show the full
picture of the car.

Tip

329Chapter 9 ✦ Building and Manipulating Forms and Controls

Chapters 10 through 13 teach you how to completely customize a form. In these
chapters, you learn how to use all the controls in the toolbox, add special effects
to forms, create forms with graphs and calculated fields, and add complex data
validation to your forms.

Using the Form Window
The window shown in Figure 9-8 is very similar to the Datasheet window. At the top
of the screen, you see the title bar, menu bar, and toolbars. The center of the screen
displays your data, one record at a time, in the Form window (unless you have the
Form window maximized). If the form contains more fields than can fit onscreen at
one time, Access 2003 automatically displays a horizontal and/or vertical scrollbar
that can be used to see the remainder of the record. You can also see the rest of the
record by pressing the PgDn key. The status bar, at the bottom of the window, dis-
plays the active field’s Field Description that you defined when you created the
table. If no Field Description exists for a specific field, Access displays the words
Form View. Generally, error messages and warnings appear in dialog boxes in the
center of the screen (rather than in the status bar). The navigation buttons are
found at the bottom of the screen. This feature lets you move quickly from record
to record.

The Form toolbar
The Form toolbar — the lower toolbar, as shown in Figure 9-8 and Figure 9-9 — is
almost identical to the datasheet toolbar you see when you display data from a
table. The only difference is that if you click on the first icon, you will see it con-
tains five selections: Design View, Form View, Datasheet View, PivotTable View, and
PivotChart View.

Figure 9-9: The Form toolbar.

The form toolbar contains common tools that you can click on to save the form,
spell check the contents of a field’s value, cut, copy, paste, and filter your data.

Navigating between fields
Navigating a form is nearly identical to navigating a datasheet. You can easily move
around the form window by clicking the field that you want and making changes or
additions to your data. Because the form window displays only as many fields as
can fit onscreen, you need to use various navigational aids to move within your
form or between records.

Cross-
Reference

330 Part I, Section II ✦ Building Forms and Reports

Table 9-1 displays the navigational keys used to move between fields within a form.

Table 9-1
Navigating in a Form

Navigational Direction Keystrokes

Next field Tab, right-arrow (→) or down-arrow (↓) key, or Enter

Previous field Shift+Tab, left-arrow (←), or up-arrow (↑)

First field of current record Home or Ctrl+Home

Last field of current record End or Ctrl+End

Next page PgDn or Next Record

Previous page PgUp or Previous Record

If you have a form with more than one page, a vertical scrollbar displays. You can
use the scrollbar to move to different pages on the form. You can also use the PgUp
and PgDn keys to move between form pages. You can move up or down one field at
a time by clicking the scrollbar arrows. With the scrollbar button, you can move
past many fields at once.

Moving between records in a form
Although you generally use a form to display one record at a time, you still need to
move between records. The easiest way to do this is to use the navigation buttons,
as shown in Figure 9-10. The navigation buttons let you move to the desired record.

You can also press Ctrl+PgDn to move to the current field in the next record, or
Ctrl+PgUp to move to the current field in the preceding record.

Figure 9-10: The form’s record navigation buttons.

The record number between the navigation buttons is a virtual record number. The
number is not attached to any specific record but just an indicator as to the record
number you are on given the current filter or sort. It will change with each time you
refilter or sort the records. The number to the right of the New Record icon displays
the number of records in the current view. The current view is the records based on
any filter applied to all the records in the table or query you are viewing.

Tip

331Chapter 9 ✦ Building and Manipulating Forms and Controls

Pressing F5 moves you instantly to the record number box. You can change the
record number and press Enter and that record will be displayed.

Displaying Your Data with a Form
Earlier in the book, you learned techniques to add, change, and delete data within a
table by using a datasheet. These techniques are the same ones you use within a
form. Table 9-2 summarizes these techniques.

Table 9-2
Editing Techniques

Editing Technique Keystrokes

Move insertion point within a field Press the right (→)- and left-arrow (←) keys

Insert a value within a field Move the insertion point and type the
new data

Select the entire field Press F2 or double-click the mouse button

Replace an existing value with a new value Select the entire field and type a new value

Replace value with value of preceding field Press Ctrl+’ (single quotation mark)

Replace current value with default value Press Ctrl+Alt+Spacebar

Insert current date into a field Press Ctrl+; (semicolon)

Insert current time into a field Press Ctrl+: (colon)

Insert a line break in a Text or Memo field Press Ctrl+Enter

Insert new record Press Ctrl++ (plus sign)

Delete current record Press Ctrl+– (minus sign)

Save current record Press Shift+Enter or move to another record

Undo a change to the current record Press Esc or click the Undo button

Working with pictures and OLE objects
OLE objects (Object Linking and Embedding) are objects not part of an Access
database. Commonly these include pictures. An OLE field can also contain links to
objects such as Word documents, Excel spreadsheets, and audio files such as .MP3,
.WAV, or .WMV files. You can also include video files such as .MPE or .AVI files.

Tip

332 Part I, Section II ✦ Building Forms and Reports

In a datasheet, you can’t view a picture or any OLE object without accessing the
OLE server (such as Word, Excel, or the Microsoft Media Player). In a form, however,
you can size the OLE control area to be large enough to display a picture, business
graph, or any visual OLE object. You can also size Memo text box controls on forms
so that you can see the data within the field — you don’t have to zoom in on the
value, as you do with a datasheet field. Figure 9-8 shows both the picture and the
Memo data displayed in the form. Each of these controls can be resized.

Any object supported by an OLE server can be stored in an Access OLE field. OLE
objects are entered into a form so that you can see, hear, or use the value. As with
a datasheet, you have two ways to enter OLE fields into a form:

✦ Paste them in from the Clipboard from the Edit menu.

✦ Insert them into the field from the Insert ➪ Object menu.

Chapter 14 covers using and displaying OLE objects in forms in more detail.

Memo field data entry
The Features field in the form shown in Figure 9-11 is a Memo data type. This type
of field allows up to 65,536 bytes of text for each field. You can see the first two
sentences of data in the Memo field. When you move the cursor (also known as the
insertion point) into the Memo field, a vertical scrollbar appears, as you can see in
Figure 9-11. Using this scrollbar, you can view the rest of the data in the field.

Better yet, you can resize the Memo control in the Form Design window if you want
to make it larger to see more data. You can also press Shift+F2 and display a zoom
dialog box, as shown in Figure 9-11, which lets you view about 17 lines at a time.

Switching to a datasheet
While in the form, you can display a Datasheet view of your data by using one of
two methods:

✦ Click the Datasheet View button in the toolbar.

✦ Select View ➪ Datasheet View.

The datasheet is displayed with the cursor on the same field and record that it
occupied in the form. If you move to another record and field and then redisplay
the form, the form appears with the cursor on the field and with the record it last
occupied in the datasheet.

To return to the form from a datasheet, you can use either of these two methods:

✦ Click the Form button in the toolbar.

✦ Select View ➪ Form View.

Cross-
Reference

333Chapter 9 ✦ Building and Manipulating Forms and Controls

Figure 9-11: A memo field zoom dialog.

Saving a Record and the Form
As you move off each record, Access automatically saves any changes to the record.
You can also press Shift+Enter to save a record without moving off of it. Another
way to save a record is to close the form. You can save any changes to the current
record by selecting Records ➪ Save Record. This action saves any changes and
keeps the form open. When you are ready to close a form and return to the Database
window (or to your query or datasheet), you can select File ➪ Close. If you made
any changes to the form design, you are asked whether you want to save the design.

Printing a Form
You can print one or more records in your form exactly as they appear onscreen.
(You learn how to produce formatted reports in Chapters 12, 13, and 15 to 17, later
in the book.) The simplest way to print is to use the File ➪ Print selection or the
Print toolbar button. Selecting File ➪ Print displays the Print dialog box.

Assuming that you have set up a printer in Microsoft Windows, you can select OK
to print your form. Access then prints your form, using the font that you selected
for display or using the nearest printer equivalent. The printout contains any for-
matting that you specified in the form (including lines, boxes, and shading), and
converts colors to grayscale if you are using a monochrome printer.

334 Part I, Section II ✦ Building Forms and Reports

Because you may have background shading when you print a form, it is generally
preferred to create a report from the form and then remove any background shad-
ing. You can do this by selecting the open form in design view or unopened in the
Database Window and then selecting Save As from the File menu. You can then
choose the Save As report option from the displayed dialog box.

The printout includes as many pages as necessary to print all the data. If your form
is wider than a single printer page, you need multiple pages to print your form.
Access breaks up the printout as necessary to fit on each page.

Using the Print Preview window
You may find that you have all the information in your form, but you aren’t sure
whether that information will print on multiple pages or fit on one printed page.
Maybe you want to see whether the fonts need adjustment, or you need only the
printed records from pages 3 and 4. In cases like this, view the report onscreen
before printing to make these adjustments to the form design.

To preview your printout, you either click the Print Preview button on the toolbar
(a sheet of paper with a magnifying glass on top) or select File ➪ Print Preview.
Figure 9-12 shows the Print Preview window.

Figure 9-12: The Print Preview window.

If you are satisfied with the form after examining the preview, select the Print but-
ton on the toolbar to print the form. If you are not satisfied, click the Close button
to return to the form in order to make changes to the data or design.

Tip

335Chapter 9 ✦ Building and Manipulating Forms and Controls

Close the form before continuing. You can save it if you want. You will not use this
example form again in this chapter. In the next part of this chapter, you will create a
new form without using a wizard.

Creating New Controls
Although the Form Wizard can quickly place your controls in the design window,
you still may need to add more controls to a form, or start with a form design that
is different from what the wizard can create.

You will now learn how to add controls to a form and how to manipulate them in
the form design window without using the wizard.

To create a new form for this example, follow these steps:

1. Select the Forms object type from the database window.

2. Click on the New icon in the database window.

3. Select Design View in the top portion of the New Form window and select
tblProducts from the bottom portion of the New Form window.

4. Press OK to create the blank form.

If the Field List window is not displayed, press the Field List icon on the toolbar.
You screen should like Figure 9-13.

Figure 9-13: A new form with tblProducts in the Field
List window.

336 Part I, Section II ✦ Building Forms and Reports

Resizing the form area
The dark gray area of the form is where you can work. This is the size of the form
when it is displayed. You can resize the dark gray area of the form by placing the
cursor on any of the area borders and dragging the border of the area to make it
larger or smaller.

The two ways to add a control
You add a control to a form in either of two ways:

✦ Drag a field from the Field List window to add a bound control.

✦ Click a button in the toolbox and then add new unbound control to the screen.

A bound control is one that is linked to a table field, while an unbound field is one
that is not bound to a table field. A control bound to a table places the data directly
into the table by using the form.

Using the Field List window
The Field List window shown in Figure 9-13 displays all the fields in the open table/
query that you used to create a form. This window is movable and resizable and
displays a vertical scrollbar if it contains more fields than can fit in the window.

When you first create a new form in Design View, the Field List window is open and
available to use. Later on, however, it may be closed. If it’s closed, you can display
it in the Field List window by using one of two methods:

✦ Click the Field List button on the toolbar (this button looks like an Access
table).

✦ Select View ➪ Field List from the Form menu bar.

After you resize or move the Field List window, it remains that size for all forms,
even if toggled off or if the form is closed. Only if you exit Access is the window set
to its default size.

Generally, dragging a field from the Field List window adds a bound text box to the
Form Design window. If you drag a Yes/No field from the Field List window, you add
a check box. If you drag a field that has a Lookup property, you add a list or combo
box control. If you drag an OLE field from the Field List window, you create a bound
object frame. Optionally, you can select the type of control by selecting a control
from the toolbox and dragging the field to the Form Design window.

When you drag fields from the Field List window, the first control is placed where
you release the mouse button. Make sure that you have enough space to the left
of the control for the labels. If you don’t have sufficient space, the labels slide
under the controls.

Caution

Note

337Chapter 9 ✦ Building and Manipulating Forms and Controls

You gain several distinct advantages by dragging a field from the Field List window:

✦ The control is bound automatically to the field that you dragged it to.

✦ Field properties inherit table-level formats, status-bar text, and data-validation
rules and messages.

✦ The label control and label text are created with the field name as the caption.

✦ The label control is attached to the field control, so they move together.

Using the toolbox
By using the toolbox buttons to add a control, you can decide which type of control
to use for each field. If you don’t create the control by dragging it from the Field List
window, the field is unbound (or, not attached to the data in a table field) and has a
default label name like Field3 or Option11. After you create the control, you can decide
what field to bind the control to, enter text for the label, and set any properties.

The deciding factor of whether to use the field list or the toolbox is this: Does the
field exist in the table/query or do you want to create an unbound or calculated
expression? By using the Field List window and the toolbox together, you can create
bound controls of nearly any type. You will find, however, that some data types
don’t allow all the control types found in the toolbox. For example, if you select the
Chart control type from the toolbox and drag a single field to the form, a text box
control is added instead of a chart control.

In Access, you can change the type of control after you create it; then you can set
all the properties for the control. For example, suppose that you add a field as a
text box control and you want to change it to a list box. You can use Format ➪

Change To and change the control type. However, you can change only from some
types of controls to others. You can change anything to a text box control; option
buttons, toggle buttons, and check boxes are interchangeable, as are list and
combo boxes.

Dragging a field name from the Field List window
The easiest way to create a text box control is to drag a field from the Field List
window. When the Field List window is open, you can click an individual field and
drag it to the Form Design window. This window works in exactly the same way as
a Table/Query window in QBE. You can also select multiple fields and then drag
them to the screen together by using these techniques:

✦ Select multiple contiguous fields by holding down the Shift key and clicking
the first and last fields that you want.

✦ Select multiple noncontiguous fields by holding down the Ctrl key and clicking
each field that you want.

✦ Double-click the table/query name in the window’s title bar to select all the
fields.

Tip

338 Part I, Section II ✦ Building Forms and Reports

After selecting one or more fields, drag the selection to the screen.

Drag the chrDescription, chrCategory, curRetailPrice, and dtmAuctionEndDate fields
from the Field List window to the form. If you haven’t created a new form, create
one first and resize the form as instructed at the beginning of this section. When
you complete these steps successfully, your screen should look like the one shown
in Figure 9-14.

Figure 9-14: Fields dragged from the Field List window.

You can see four controls in the Form Design window — each one consists of a label
control and a text box control (Access attaches the label control to the text box
automatically). You can work with these controls as a group or independently, and
you can select, move, resize, or delete them. Notice that each control has a label
with a caption matching the field name, and the text box control displays the bound
field name used in the text box. If you want to resize just the control and not the
label, you must work with the two controls separately.

You can close the Field List window by clicking the Field List button on the toolbar
or the close button on the Field List window.

Creating unbound controls with the toolbox
You can add one control at a time by using the toolbox. You can add any of the
controls listed in the toolbox. Each control becomes an unbound control that has
a default label and a name.

To create three different unbound controls, perform these steps:

1. Click the Text Box button (ab|) on the toolbox (the selected button appears
with a colored background when it is selected).

339Chapter 9 ✦ Building and Manipulating Forms and Controls

2. Place the mouse pointer in the Form Design window (the cursor changes to
the Text Box button).

3. Click and hold down the mouse button where you want the control to begin,
and drag the mouse to size the control.

4. Click the Option Button on the toolbox (this button appears sunken).

5. Place the mouse pointer in the Form Design window (the cursor changes to an
Option button).

6. Click and hold down the mouse button where you want the control to begin,
and drag the mouse to size the control.

7. Click the Check Box button on the toolbox (the button appears sunken).

8. Place the mouse pointer in the Form Design window (the cursor changes to a
check box).

9. Click and hold down the mouse button where you want the control to begin,
and drag the mouse to size the control.

When you are done, your screen should resemble the one shown in Figure 9-15.

Figure 9-15: Three additional new unbound controls added by using the toolbox.

If you just click the Form Design window, Access creates a default-sized control.

In Figure 9-15, notice the difference between the controls that were dragged from
the Field List window and the controls that were created from the toolbox. The
Field List window controls are bound to a field in the tblProducts table and are
appropriately labeled and named. The controls created from the toolbox are
unbound and have default names. The default names are automatically assigned
a number according to the type of control.

Tip

340 Part I, Section II ✦ Building Forms and Reports

Later, you learn how to change the control names, captions, and properties. Using
properties speeds the process of naming controls and binding them to specific
fields. If you want to see the differences between bound and unbound controls,
display the form in Form view by pressing the Form button in the toolbar or by
selecting View ➪ Form View. You can see that the chrDescription, chrCategory,
curRetailPrice, and dtmAuctionEndDate bound controls display data. The other
three controls don’t display data because they aren’t bound to any data source.
After you view the data, display the form in Design view again.

Selecting Controls
After a control is on the Form Design window, you can work with it; for example,
you can resize it, move it, or copy it. The first step is to select one or more controls.
Depending on its size, a selected control may show from four to eight handles (small
squares called moving and sizing handles) around the control — at the corners and
midway along the sides. The handle in the upper-left corner is larger than the other
handles and you use it to move the control. You use the other handles to size the
control. Figure 9-16 displays some selecting controls and their moving and sizing
handles.

Figure 9-16: A conceptual view of selecting controls
and their moving and sizing handles.

The Select Objects tool (top left-most icon) on the toolbox must be on for you to
select a control. The pointer always appears as an arrow pointing diagonally toward
the upper-left corner. If you use the toolbox to create a single control, Access auto-
matically reselects the pointer as the default.

341Chapter 9 ✦ Building and Manipulating Forms and Controls

Deselecting selected controls
It’s a good practice to de-select any selected controls before you select another
control. You can de-select a control by clicking an unselected area of the screen
that doesn’t contain a control. When you do so, the handles disappear from any
selected control.

Selecting a single control
You can select any single control by clicking anywhere on the control. When you
click a control, all the handles appear. If the control has an attached label, the han-
dle for moving the label also appears. If you select a label control that is part of an
attached control, all the handles for the label control are displayed, and only the
Move handle (the largest handle) is displayed in the attached control.

Selecting multiple controls
You can select multiple controls in these two ways:

✦ Click each desired control while holding down the Shift key.

✦ Drag the pointer through or around the controls that you want to select.

Figure 9-16 shows selecting the multiple bound controls graphically. When you
select multiple controls by dragging the mouse, a light gray rectangle appears as
the mouse is dragged. When you select multiple controls by dragging the pointer
through the controls, be careful to select only the controls that you want to select.
Any control that is touched by the line or enclosed within it is selected. If you want
to select labels only, you must make sure that the selection rectangle encloses only
the labels.

When you click on a ruler, an arrow appears and a line is displayed across the
screen. You can drag the mouse to widen the line. Each control that the line
touches is selected.

If you find that controls are not selected when the rectangle passes through the
control, you may have the Selection behavior global property set to fully enclosed.
This means that a control is selected only if the selection rectangle completely
encloses the entire control. The normal default for this option is partially enclosed.
You can change this option by first selecting Tools ➪ Options and then selecting
the Forms/Reports tab in the Options dialog box. The option Selection behavior
should be set to partially enclosed.

By holding down the Shift key, you can select several noncontiguous controls. This
lets you select controls on totally different parts of the screen, cut them, and then
paste them together somewhere else onscreen.

Tip

Tip

342 Part I, Section II ✦ Building Forms and Reports

Manipulating Controls
Creating a form is a multi-step process. The next step is to make sure that your con-
trols are properly sized and moved to their correct positions.

Resizing a control
You can resize controls by using any of the smaller handles on the control. The
handles in the control corners let you make the field larger or smaller in both width
and height — and at the same time. You use the handles in the middle of the control
sides to size the control larger or smaller in one direction only. The top and bottom
handles control the height of the control; the handles in the middle change the con-
trol’s width.

When the mouse pointer touches a corner handle of a selected control, the pointer
becomes a diagonal double arrow. You can then drag the sizing handle until the
control is the desired size. If the mouse pointer touches a side handle in a selected
control, the pointer changes to a horizontal or vertical double-headed arrow. Figure
9-17 shows the chrDescription control after being resized. Notice the double-
headed arrow in the corner of the chrDescriptioncontrol.

Figure 9-17: Resizing a control.

You can resize a control in very small increments by pressing the Shift key and
pressing the arrow keys. This also works with multiple controls selected. Using this
technique, a control changes by only 1 pixel at a time (or moves to the nearest
grid line if Snap to Grid is selected in the Format menu).

Tip

343Chapter 9 ✦ Building and Manipulating Forms and Controls

Moving a control
After you select a control, you can easily move it, using either one of these methods:

✦ Select the control and, with the hand icon displayed, drag it to a new location.

✦ Select the control and place your mouse on the move handle in the upper-left
corner of the control. With the index finger icon displayed, drag it to a new
location.

If the control has an attached label, you can move both label and control with
either method. It doesn’t matter whether you click the control or the label; they
move together.

You can move a control separately from an attached label by pointing to the move
handle of the control and then dragging it. You can also move the label control sep-
arately from the other control by pointing to the move handle of the label control
and dragging it separately.

Figure 9-18 shows a label control that has been separately moved to the top of the
text box control. The hand icon indicates that the controls are ready to be moved
together. To see the hand, the control(s) must already be selected.

Figure 9-18: Moving a control.

You can move a control in small increments with the keyboard by pressing the Ctrl
key and pressing the arrow keys after you select a control or group of controls.

You can restrict the direction in which a control is moved so that it maintains align-
ment within a specific row or column by holding down the Shift key as you press
and holding down the mouse button to select and move the control. The control
moves only in the direction that you first move it, either horizontally or vertically.

Tip

344 Part I, Section II ✦ Building Forms and Reports

You can cancel a move or a resizing operation by pressing Esc before you release
the mouse button. After a move or resizing operation is complete, you can click the
Undo button or select Edit ➪ Undo Move or Edit ➪ Undo Sizing to undo the changes.

Aligning controls
You may want to move several controls so that they are all aligned (lined up). The
Format ➪ Align menu has several options, as shown in Figure 9-19, which are
described in the following list:

✦ Left. Aligns the left edge of the selected controls with that of the left-most
selected control.

✦ Right. Aligns the right edge of the selected controls with that of the right-most
selected control.

✦ Top. Aligns the top edge of the selected controls with that of the top-most
selected control.

✦ Bottom. Aligns the bottom edge of the selected controls with that of the
bottom-most selected control.

✦ To Grid. Aligns the top-left corners of the selected controls to the nearest
grid point.

You can align any number of controls by selecting from this menu. When you choose
one of the options, Access uses the control that is the closest to the desired selec-
tion as the model for the alignment. For example, suppose that you have three con-
trols and you want to left-align them. They are aligned on the basis of the control
farthest to the left in the group of the three controls.

Figure 9-19 shows several sets of controls. The first set of controls is not aligned.
The label controls in the second set of controls have been left-aligned. The text box
controls in the second set have been right-aligned. Each label, along with its
attached text box, has been bottom-aligned.

Each type of alignment must be done separately. In this example, you can left-align
all the labels or right-align all the text boxes at once. However, you must align each
label and its text control separately (three separate alignments).

The series of dots in the background of Figure 9-19 is the grid. The grid can assist
you in aligning controls. You can display the grid by selecting View ➪ Grid.

You can use the Format ➪ Snap to Grid option to align new controls to the grid as
you draw or place them on a form. It also aligns existing controls when you move or
resize them.

345Chapter 9 ✦ Building and Manipulating Forms and Controls

Figure 9-19: An example of unaligned and aligned
controls on the grid.

When Snap to Grid is on from the Format menu, and you draw a new control by
clicking on the form and dragging to size the control, Access aligns the four corners
of the control to points on the grid. When you place a new control by clicking the
control in the field list and then dragging it to the form, only the upper-left corner
is aligned.

As you move or resize existing controls, Access 2003 lets you move only from grid
point to grid point. When Snap to Grid is off, Access 2003 ignores the grid and lets
you place a control anywhere on the form or report.

You can turn Snap to Grid off temporarily by pressing the Ctrl key before you create
a control (or while creating or moving it).

You can change the grid’s fineness (number of dots) from form to form by using
the Grid X and Grid Y Form properties. The grid is invisible if its fineness is greater
than 16 units per inch horizontally or vertically. (Higher numbers indicate greater
fineness.)

Another pair of alignment commands can make a big difference when you have to
align the space between multiple controls. The Format ➪ Horizontal Spacing and
Vertical Spacing commands change the space between controls on the basis of the
space between the first two selected controls. If the controls are across the screen,
use horizontal spacing. If they are down the screen, use vertical spacing.

Aligning controls aligns the control boxes only. If you want to align the text itself
within the controls (also known as justifying the text), you must use the form’s for-
matting toolbar and select the Left, Right, or Center icons.

Sizing controls
The Size command on the Format menu has several options that help size controls
based on the value of the data, the grid, or other controls. The Size menu options are:

Tip

Tip

346 Part I, Section II ✦ Building Forms and Reports

✦ To Fit. Adjusts control height and width for the font of the text they contain.

✦ To Grid. Moves all sides of selected controls in or out to meet the nearest
points on the grid.

✦ To Tallest. Makes selected controls the height of the tallest selected control.

✦ To Shortest. Makes selected controls the height of the shortest selected
control.

✦ To Widest. Makes selected controls the width of the widest selected control.

✦ To Narrowest. Makes selected controls the height of the narrowest selected
control.

You can access most of the Format commands by right-clicking after selecting mul-
tiple controls. When you right-click on multiple controls, a shortcut menu displays —
this is similar to the Format menu on the Access menu bar. This is a quick way to
resize or align your controls.

Grouping controls
Access 2003 can group controls. When controls are grouped, you can select and
format many controls at once. While you can select multiple controls and format
them, grouping is like a permanent selection. When you click on any of the grouped
controls, they all are instantly selected and can then be formatted.

To group multiple controls, select the controls by holding down the Shift key and
clicking them. After the desired controls are selected, select Format ➪ Group from
the Access menu bar, as shown in Figure 9-20.

Figure 9-20: Grouping multiple controls together.

Tip

Tip

347Chapter 9 ✦ Building and Manipulating Forms and Controls

After you have grouped the objects together, whenever you click any of the fields
inside the group, the entire group is selected. If you click again, just the field is
selected. To resize the entire group, put your mouse on the side you want to resize.
After the double arrow is displayed, click and drag until you reach the desired size.

To remove a group, select the group by clicking any field inside the group and then
select Format ➪ UnGroup from the Access menu bar. This ungroups the controls.

Deleting a control
No longer want a specific control on the Form Design window? Delete it by selecting
the control and pressing Delete. You can also select Edit ➪ Delete to delete a selected
control or Edit ➪ Cut to cut the control to the Clipboard.

You can delete more than one control at a time by selecting multiple controls and
pressing one of the Delete key sequences. You can delete an entire group of controls
by selecting the group and pressing Delete or by selecting Edit ➪ Delete. If you have
a control with an attached label, you can delete only the label by clicking the label
itself and then selecting one of the delete methods. If you select the control, both
the control and the label are deleted. To delete only the label of the chrDescription
control, follow the next set of steps (this example assumes that you have the
chrDescription text box control in your Form Design window):

1. Select the chrDescription label control only.

2. Press Delete.

The label control is removed from the window.

Attaching a label to a control
If you accidentally delete a label from a control, you can reattach it. To create and
then reattach a label to a control, follow these steps:

1. Click the Label button on the toolbox.

2. Place the mouse pointer in the Form Design window (the mouse pointer
becomes the Text Box button).

3. Click and hold down the mouse button where you want the control to begin;
drag the mouse to size the control.

4. Type Description: and click outside the control.

5. Select the Description label control.

348 Part I, Section II ✦ Building Forms and Reports

6. Select Edit ➪ Cut to cut the label control to the Clipboard.

7. Select the chrDescription text box control.

8. Select Edit ➪ Paste to attach the label control to the text box control.

Copying a control
You can create copies of any control by duplicating it or by copying it to the
Clipboard and then pasting the copies where you want them. If you have a control
for which you have entered many properties or specified a certain format, you can
copy it and revise only the properties (such as the control name and bound field
name) to make it a different control. This capability is useful with a multiple-page
form when you want to display the same values on different pages and in different
locations.

✦ ✦ ✦

Creating Bound
Forms and
Placing Controls

In Chapter 9, you learned about the tools necessary to cre-
ate and display a form — design view, bound and unbound

controls, the field list window, and the toolbox. In Chapters 8
and 9, you learned a lot about forms and what goes on them.
In this chapter, you’ll begin to practice more and begin to
create the frmProducts form and the form that will later be
used for its subform. In this chapter, you will also learn about
properties.

You will use the tblProducts tables in the chap10start.mdb
database to provide the data necessary to begin to create
several types of simple forms. Each table is explained in
more depth as you are adding the fields to the forms.

Creating a Data-Entry Form
without a Wizard

The first form you will create is a data-entry form that uses
a single table as shown in Figure 10-1. You will begin this in
Chapter 10 and complete it in Chapter 13 after a slight detour
in Chapter 12 to create reports using the same techniques you
will learn in Chapters 10 and 11. Later in this chapter, you will
create a continuous form that will later become a subform on
the second page of the tab dialog.

Generally, the more features you add to a form, the easier it is
to use for the end user. This form will demonstrate the use of
the majority of control types. These include label and text box
controls as well as data validation controls and formatting. It
also features a tab dialog and embedded pictures. You will

On the
CD-ROM

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a blank
form bound to a table

Resizing a form’s
workspace

Understanding form
design windows

Creating a
bound form

Working with
Form and Control
properties

Modifying controls
on a form

Setting the tab
order of a form

Creating controls for
Memo and OLE fields

Learning how to
use form and page
headers and footers

Changing
control types

Printing a form

Converting a form
to a report

✦ ✦ ✦ ✦

350 Part I, Section II ✦ Building Forms and Reports

continue to modify this form in the next several chapters, adding more complex
controls and features, making the form increasingly more powerful and functional.

Figure 10-1: A professional looking data-entry form.

Creating a new blank form
You will start by creating a new blank form without first specifying a table to use.
You will then bind it to the tblProducts table. Later you will add the controls. Follow
these steps to create a new blank form:

1. Click the Forms object in the database window.

2. Click the New button to start a new form.

3. Select Design View in the New Form dialog box.

4. Do not choose any table or query in the bottom portion of this dialog.

5. Click the OK button to create the new form.

6. Maximize the Form window.

Resizing the form’s workspace
Next, you must resize the form’s workspace. In Figure 10-2 (shown after resizing),
the light gray background is the workspace. If you place controls in the dark gray

351Chapter 10 ✦ Creating Bound Forms and Placing Controls

area surrounding it, the workspace expands automatically until it is large enough
to hold the controls you placed there. The workspace size you need depends on the
design of your form. If you want the form to fill the screen, make it the size of your
screen; however, that depends on your screen resolution. More data can fit onscreen
if you are using a higher resolution. Because many users may use a form you create,
you should stay with the smallest size of any anticipated user.

To properly design this form, you should set your screen resolution at 1024 x 768.
This is the most common screen resolution today. It provides the optimum size for
viewing the various windows. The form you are designing will fit into a resolution
set at 800 x 600 but it is easier to have multiple windows around the screen in
1024 x 768 video mode.

The height of your form includes all sections, including the detail section and
header form or page headers and footers.

There is software available that will resize a form to any size depending on your
screen resolution and additionally let you change the window size of a form and
automatically adjust all the controls on the form. One of the best is the EZ Form
Resizer which is part of the EZ Access Developer Tools ($99-$495) from Database
Creations, Inc. (www.databasecreations.com). You simply add the library to
your modules and add one line of code behind your form to call it on the On
Resize event of your form (you’ll learn about events later).

Tip

Note

Tip

Designing the Size of Your Form

Although the default form size is 5" wide x 2" down, you can easily adjust it by grabbing the
borders of the form and changing the form size. However, you must carefully consider the
minimum screen resolution your users will be using. Office 2003 requires Windows 2000 or
Windows XP. That generally means that the users have a fairly new machine and are prob-
ably running their screens in at least 1024 x 768 resolution or a minimum of 800 x 600 res-
olution. You should no longer design screens to fit into 640 x 480. If someone is going to
use an Access 2003 application, the memory requirements and speed alone dictate a
newer computer. If users have a flat panel monitor, they simply don’t work well below 1024
x 768. Most laptops today only run at 1024 x 768 or 800 x 600.

It is a good idea to assume that some people will be using 800 x 600, and you should
design your screens to a maximum size of 6" x 4". This fits nicely in 800 x 600. You can go
as large as 71⁄2" x 41⁄2" (as this example will be), but it begins to take over the whole screen
at the lower resolutions. Anything larger than that and scroll bars appear in your form. You
should be able to design a form to fit in the screen without the controls appearing crowded.
When you need more space, you should consider tabs or multiple forms.

352 Part I, Section II ✦ Building Forms and Reports

The easiest way to set the form size is to grab the border of the light gray area with
your mouse and drag it to the size that you want. If you grab either the top or bot-
tom borders, your mouse pointer becomes a double-arrow. If you grab the corner,
the mouse pointer becomes a four-headed arrow (as shown in Figure 10-2), and you
can size both sides at the same time. Next, you will set the form size to 71⁄2" x 41⁄2"
inches, using Figure 10-2 as a guide. At this size, form scrollbars should not appear.

Follow these steps to change the form size:

1. Make sure that the ruler is displayed; if needed, select it from the View menu.

2. Place the mouse pointer at the bottom-right corner of the light gray
workspace.

3. When the mouse pointer changes to a four-headed arrow, drag the workspace
until the size is exactly 71⁄2" x 4 1⁄2".

4. Release the mouse button to accept the new size.

If controls are added beyond the right border, you have to scroll the form using a
horizontal scroll bar to see these controls. This is generally not acceptable in a form.
If controls are added beyond the bottom border, you have to use a vertical scroll bar
to see these controls as well; this is acceptable because the form becomes a multiple-
page form. Later in this chapter, you learn to control multiple-page forms.

If you change to Form View and see a horizontal scroll bar along the bottom, either
resize the right margin or turn the Record Selector property off for the form. This
topic is covered later.

Figure 10-2: The blank form Design View window.

Note

353Chapter 10 ✦ Creating Bound Forms and Placing Controls

Understanding the design windows
The form uses a series of design windows to allow you to manipulate the form. You
can determine everything about the form including the look of the form and each of
the controls, how the form appears under certain conditions, and what data tables
and fields each form and control uses. Figure 10-3 shows the major windows open
on the form design screen. These include the following:

✦ Property Sheet

✦ Field List

✦ Toolbox

The Property Sheet window
In a form or report, each field (called a control in Access) has properties that further
define the characteristics of the control. The form or report and sections of the form
or report also have properties. In Figure 10-3, you see a Property window displaying
some of the properties for a form. Usually, a Property window displays only a por-
tion of the properties available for a specific control. The tabbed dialog box is used
to display specific types of properties and the vertical scrollbar in the window lets
you scroll through the complete list when you select All or size the window smaller
than the number of displayed properties. You can also resize a Property window
and move it around the screen.

Figure 10-3: The blank form Design showing various windows.

354 Part I, Section II ✦ Building Forms and Reports

Having many windows open at once and resizing and rearranging them onscreen
helps you use information productively as you create objects (such as forms and
reports) and use Access’s features. Each of the windows is described in detail in
their appropriate chapters in this book.

Each type of object has its own property window and properties. These include the
form itself, each of the form sections, and each of the form’s controls. You display
each of the property windows by clicking on the object first. The property window
will instantly change to show the properties for the selected object.

To display the Form property window, click on the area between the rulers so that
a small black square appears, as shown in Figure 10-3.

The Field List window
The Field List window (titled tblProducts and located next to the property window in
Figure 10-3) displays a list of fields from the currently open table or query dynaset.
You use Field List windows in Query Design, Form Design, and Report Design win-
dows. You select fields from this window by clicking on them and then dragging the
fields onto a query, form, or report. You can select fields individually, or you can
select ranges or groups of fields to drag onto the form by using the Ctrl key or
Shift key.

If you have not selected a valid Record Source, you will not see a Field List window.

If you first select a control type in the Toolbox and then drag a field from the Field
List, a control is created (using the selected control type) that is automatically
bound to the data field in the Field List. You will learn more about this later in the
chapter.

The Toolbox
Figure 10-3 displays the Toolbox in the top-right portion of the screen. You can use
the Toolbox to design a form or report. The Toolbox is similar to a toolbar, but the
Toolbox is initially arranged vertically and can be moved around. The Toolbox con-
tains toggle buttons that you can select to add objects to a form or report, such as
labels, text boxes, option group boxes, and so on — as shown in Figure 10-3. You
can move the Toolbox or close it when you don’t need it. You can also resize it by
clicking and dragging its border. You can also anchor it with other toolbars by drag-
ging it to an edge of the screen.

Displaying the Property window
The Property window is shown in Figure 10-3. If it is not displayed, choose View
Properties from the form design menu or press the Properties icon (a hand holding
a sheet of paper).

Tip

Note

Tip

355Chapter 10 ✦ Creating Bound Forms and Placing Controls

If Record Source is not displayed in the Property Window, it may be because you
have not selected the Form properties. To select the Forms property window, click
on the area in the upper-left corner of the form where the rulers meet.

Creating a bound form
A bound form is one that places data into a table when the record is saved. Forms
can be bound or unbound. To create a bound form you must specify a data source
in the form’s Record Source property. In Figure 10-3, you can see the form’s prop-
erty window. If the form itself is selected, the very first property is Record Source. If
you want your form bound to a data source, this is where the name of the data
source goes. Figure 10-3 shows the Record Source property selected and the table
tblProducts selected.

The data source can be on of three choices:

✦ Table. The name of a table from the current database file. The table can be a
local table (stored in the database itself) or it can be linked to another Access
database or an outside data source such as SQL Server.

✦ Query. The name of a query that references one or more tables from the cur-
rent database file.

✦ SQL Statement. A SQL SELECT Statement that contains the name of a table or
query.

In this example, you will select the tblProducts table as your Record Source. When
you have selected the form’s Record Source, it is time to start adding controls.

Understanding bound, unbound, and calculated controls
These are the three basic types of controls:

✦ Bound controls

✦ Unbound controls

✦ Calculated controls

Bound controls are controls that are bound to a table field. When you enter a value
into a bound control, Access automatically updates the table field in the current
record. Most of the controls that let you enter information can be bound; these
include OLE (Object Linking and Embedding) fields. Controls can be bound to most
data types, including text, dates, numbers, Yes/No, pictures, and memo fields.

Unbound controls retain the entered value, but they don’t update any table fields.
You can use these controls for text label display, for controls such as lines and rect-
angles, or for holding unbound OLE objects (such as bitmap pictures or your logo)

356 Part I, Section II ✦ Building Forms and Reports

that aren’t stored in a table but on the form itself. Unbound controls are also known
as variables or memory variables.

Calculated controls are based on expressions, such as functions or calculations.
Calculated controls are also unbound because they don’t update table fields. An
example of a calculated control is =[curSalePrice] – [curCost]. This control calculates
the total of two table fields for display on a form but is not bound to any table field.

Figure 10-1 shows examples of all these three control types. All of the labels, the
line, the rectangles, and several other controls are all unbound. Most of the sunken
data fields with white backgrounds are bound controls. The Expected Profit control
is calculated.

Understanding properties
Properties are named attributes of controls, fields, or database objects that are
used to modify the characteristics of a control, field, or object. Examples of these
attributes are the size, color, appearance, or name of an object. A property can also
modify the behavior of a control, determining, for example, whether the control is
read-only or editable and visible or not visible.

Properties are used extensively in forms and reports to change the characteristics
of controls. Each control on the form has properties. The form itself also has prop-
erties, as does each of its sections. The same is true for reports; the report itself
has properties, as does each report section and individual control. The label con-
trol also has its own properties, even if it is attached to another control.

Properties are displayed in a Property sheet (also called a Property window
because it is an actual window).

To display the Property sheet for the Description text box control, follow the steps
below. You will be creating a new blank form.

1. Drag the first five fields, chrProductID through curCost, from the Field List
window to the Form Design window.

2. Click the chrDescription text box control to select it.

3. Click the Properties button on the toolbar if the Property window is not
displayed.

The screen should look like the one shown in Figure 10-4.

Saving the form
You can save the form at any time by pressing the Save icon (second icon from the
left — looks like a floppy disk) or by choosing Save from the form’s File menu.

357Chapter 10 ✦ Creating Bound Forms and Placing Controls

When you are asked for a name for the form, accept the default name of Form1
for now.

If you don’t specify a name, each new form will have the name of Form followed by
the next available sequential number.

When you close a form, it will ask you to save it. If you don’t save a form, all
changes since you opened the form (or the last time you pressed Enter) are lost.
You should frequently save the form while you work if you are satisfied with the
results.

To save the form and give it a name, click the Save icon in the toolbar. This saves
the form with the name Form1. Later, you will enter a better name for the form.

If you are going to make extensive changes to a form, you might want to make
a copy of the form. If you want to work on the form frmProducts, you can
copy and then paste the form in the database window, giving it a name like
frmProductsOriginal. Later, when you have completed your changes and tested
them, you can delete the original copy.

Working with control properties
In Figure 10-4, the Property window has been sized to be larger than it normally dis-
plays. By widening the property sheet, you can see more of its values; by increasing
the length, you can see more controls at one time. The vertical scrollbar lets you
move between various properties.

Because the Property window is a true window, it can be moved anywhere onscreen
and resized. It does not, however, have Maximize or Minimize buttons.

There are several ways to display a control’s Property sheet:

✦ Select a control and click View ➪ Properties from the menu bar.

✦ Select a control and click the Properties button on the toolbar.

✦ Double-click any control.

✦ Right-click any control and select Properties from the menu.

Figure 10-4 shows the Property sheet for the Description text box. The first column
lists the property names; the second column is where you enter or select property
settings or options.

The Property window has an All tab that lets you see all the properties for a con-
trol. Or you can choose another tab to limit the view to a specific group of proper-
ties. The specific tabs and groups of properties are:

Tip

358 Part I, Section II ✦ Building Forms and Reports

✦ Format. These properties determine how a label or value looks: font, size,
color, special effects, borders, and scrollbars.

✦ Data. These properties affect how a value is displayed and the data source it
is bound to: control source, input masks, validation, default value, and other
data type properties.

✦ Event. Event properties are named events, such as clicking a mouse button,
adding a record, pressing a key for which you can define a response (in the
form of a call to a macro or a VBA procedure), and so on.

✦ Other. Other properties show additional characteristics of the control, such
as the name of the control or the description that displays in the status bar.

Figure 10-4: The Property window for the chrDescription text box.

The number of properties available in Access has increased greatly since early ver-
sions of Access. The most important new properties are described in various chap-
ters of this book. For a discussion of new Event properties and Event procedures,
see Section III: Automating Your Applications.

Naming control labels and their captions
You might notice that each of the data fields have a label control and a text box
control. The label controls have the caption indicating the reason for the control.
Normally, the label control has the same caption as the text box control name. The
text box control name usually has the same name as the table field name.

Cross-
Reference

359Chapter 10 ✦ Creating Bound Forms and Placing Controls

In this example, the label control captions are different. This is because a Caption
name was entered into the Caption property for each table field. It is a good idea
when you are using standard naming conventions to enter a more English (or non-
computer) type of name into the Caption property in each table field.

Table 10-1 shows the naming conventions for form and report controls. You can see
a complete list in Appendix D.

Table 10-1
Form/Report Control Naming Conventions

Prefix Object

frb Bound Object frame

cht Chart (Graph)

chk Check Box

cbo Combo Box

cmd Command Button

ocx ActiveX Custom Control

det Detail (section)

gft[n] Footer (group section)

fft Form footer section

fhd Form header section

ghd[n] Header (group section)

hlk Hyperlink

img Image

lbl Label

lin Line

lst List Box

opt Option Button

grp Option Group

pge Page (tab)

brk Page break

pft Page Footer (section)

phd Page Header (section)

Continued

360 Part I, Section II ✦ Building Forms and Reports

Table 10-1 (continued)

Prefix Object

shp Rectangle

rft Report Footer (section)

rhd Report Header (section)

sec Section

sub Subform/Subreport

tab Tab Control

txt Text Box

tgl Toggle Button

fru Unbound Object Frame

The properties displayed in Figure 10-4 are the specific properties for Description
text box. The first two properties, Name and Control Source, show the field name
chrDescription.

The Name is simply the name of the field itself. When a control is bound to a field,
Access automatically assigns it the bound field name. Unbound controls are given
names such as Field11 or Button13. However, you can give the control any name
you want.

With bound controls, the Control Source’s setting is the name of the table field to
which the control is bound. In this example, chrDescription refers to the field with
the same name in the tblProducts table. An unbound control has no control source,
whereas the control source of a calculated control is the actual expression for the
calculation, as in the example =[curSalePrice] – [curCost].

The following properties always inherit their settings from the field’s table defini-
tion. Figure 10-4 shows some of these properties and the settings that have been
inherited from the tblProducts table:

✦ Format

✦ Decimal Places

✦ Status Bar Text (from the field Description)

✦ Input Mask

✦ Default Value

✦ Validation Rule

✦ Validation Text

361Chapter 10 ✦ Creating Bound Forms and Placing Controls

Changes made to a control’s properties don’t affect the field properties in the
source table.

Each type of control has a different set of properties, as do objects such as forms,
reports, and sections within forms or reports. In the next few chapters, you learn
about many of these properties as you use each of the control types to create more
complex forms and reports.

Note

Changing Default Settings for Attached Labels

Attached label controls are called compound controls because the two controls are attached.
You can disable this feature by changing the Auto Label default setting. When Auto Label is
set to Yes, a label control is automatically created that bears the name of the field to which
the text control is bound. With Auto Label in effect, a label is created automatically every
time you drag a field onto a form. Follow these steps to change the Auto Label default:

1. Display the Toolbox if it is not already displayed.

2. Display the Property window if it is not already displayed.

3. Click the Text Box button on the Toolbar. The title of the Property window should be
Default Text Box.

4. Under the Format tab, scroll down until you see the Auto Label property.

5. Click the Auto Label text box.

6. Change the property setting to No.

The next property, Auto Colon, is related because if it is set to Yes, a colon automatically fol-
lows any text in a new label. Two other properties control where the attached label appears
relative to the control itself. These are the Label X and Label Y properties. Label X controls
the horizontal position of the label control relative to the text box control. The default set-
ting is –1 (to the left of the text box control). As you make the value a smaller negative
number, for example –0.5, you decrease the space from the attached label to the control. If
you want the label to the right of the control (as you may for an option button), set the
Label X property to a positive number, such as 1.5.

Label Y controls the vertical position of the label control relative to the text box control. The
default setting is 0, which places the label on the same line as the text box control. If you
want to place the label above the control, change the Label Y setting to –1 or a larger neg-
ative number.

The Label Align property lets you control the alignment of the text within the label.

If you changed the Auto Label property setting to No and you now drag fields from the Field
List window to the form, no labels will be attached. The Auto Label property setting is in
effect only for this form. Because you don’t need to add further labeled fields to this form,
you can leave Auto Label set to No.

362 Part I, Section II ✦ Building Forms and Reports

Changing a control’s property setting
There are many different methods for changing property settings, including the
following:

✦ Entering or selecting the desired value in a Property window.

✦ Changing a property directly by changing the control itself, such as changing
its size.

✦ Using inherited properties from the bound field or the control’s default
properties.

✦ Entering color selections for the control by using the toolbar options.

✦ Changing label text style, size, color, and alignment by using the toolbar
buttons.

You can change a control’s properties by clicking a property and typing the desired
value.

In Figure 10-4, you can see a down-arrow and a button with three dots to the right of
the Control Source property-entry area. Some properties display the arrow in the
property-entry area when you click in the area. This tells you that Access has a list
of values from which you can choose. If you click the down-arrow in the Control
Source property, you find that the choices are a list of all fields in the data source
(the tblProducts table).

Some properties have a list of standard values such as Yes or No; others display
varying lists of fields, forms, reports, or macros. The properties of each object are
determined by the object itself and what the object is used for.

A feature in Access 2003 is the capability of cycling through property choices by
repeatedly double-clicking on the choice. For example, double-clicking on the
Display When property alternately selects Always, Print Only, and Screen Only.

When you see three dots on a button, you are looking at the Builder button, which
opens one of the many Builders in Access. This includes the Macro Builder, the
Expression Builder, and the Module Builder. When you open a builder and make
some selections, the property will be filled in for you. You will learn about them
later in this book.

Working with form properties
You use form properties to change the way the entire form is displayed. This
includes properties such as the form’s background color or picture, the form’s
width, and so on. Table 10-2 (in “Eliminating the record selector bar” later in this
chapter) discusses some of the most important properties. Changing default prop-
erties is relatively easy: You select the property in the Property window and set a

363Chapter 10 ✦ Creating Bound Forms and Placing Controls

new value. Following are some of the more important form properties that you may
want to be aware of and may want to set.

Changing the title bar text with the Caption property
Normally, the title bar displays the name of the form after it is saved. By changing
the Caption property, you can display a different title on the title bar when the form
is run. To change the title bar text, follow these steps. First close the current form
and don’t save it. You will be creating a new blank form.

1. Make sure the Form itself is selected. (Click the area where the rulers meet.)

2. Display the Form’s Property window if it is not already displayed, and click
the Format tab to show the Format properties. (Make sure the Property
Window’s Title Bar is Form.)

3. Click the Caption property in the Format area of the Property window.

4. Type Products.

5. Click any other property or press Enter.

You can display the form by clicking the Form View button on the toolbar to check
the result. The caption you enter here overrides the name of the saved form.

Specifying how to view the form
Access 2003 uses several properties to determine how a form is viewed. The most
common one is the Default View. The Default View property determines how the
data is displayed when the form is first run. There are five choices:

✦ Single Form (displays one record at a time)

✦ Continuous Forms (showing more than one record at a time)

✦ Datasheet (row and column view like a spreadsheet or the standard query
datasheet view)

✦ PivotTable (a datasheet with movable columns that can be swapped with
rows)

✦ PivotChart (a graph made from a PivotTable)

Single Form is the default and displays one record per form page, regardless of the
form’s size. Continuous Forms tells Access to display as many detail records as will
fit onscreen. Normally, you would use this setting to define the height of a very
small form and to display many records at one time. Figure 10-5 shows such a con-
tinuous form with many records. The records have a small enough height that you
can see a number of them at once.

In Figure 10-5, you can see the form’s property window with the choices for the
Default View property.

364 Part I, Section II ✦ Building Forms and Reports

Figure 10-5: The Continuous Forms setting of the Default View
property showing the frmProducts form’s Show All Products tab
and a continuous form.

A PivotTable form can display a field’s values horizontally or vertically and then cal-
culate the total of the row or column. Similar to this is the PivotChart, which dis-
plays a graphical analysis of data stored in a table, query, or form.

The Default View for this example will remain as a Single Form.

There are four separate properties to allow the developer to determine if the user
can change the default view. These include Allow Form View, Allow Datasheet View,
Allow PivotTable View, and Allow PivotChart View. The default settings are Yes to all
of these properties, which lets you switch between Form and Datasheet view, as
well as PivotTable and PivotChart view. If you set the Allow Datasheet View prop-
erty to No, the Datasheet button and the View ➪ Datasheet menu selections cannot
be selected; the data can be viewed only as a form. If you set the Allow Form View
property to No, the Form button and the View ➪ Form menu selections cannot be
selected; the data can be viewed only as a datasheet.

Eliminating the record selector bar
The Record Selectors property determines whether the Record Selector bar (the
vertical bar on the left side of a form with a right pointing triangle indicating the
selected record) is displayed. The Record Selector bar is very important in multiple-
record forms or datasheets because a right-pointing triangle indicates the current
record and a Pencil indicates that the record is being edited. Though the Record
Selector bar is important for datasheets, you probably won’t want it for a single
record form. To eliminate it, simply change the form’s Record Selectors property
from Yes to No.

Set the Record Selectors property to No for your form.

365Chapter 10 ✦ Creating Bound Forms and Placing Controls

Table 10-2 lists the most commonly used form properties and offers brief descrip-
tions of each. You will learn more about many of these when they are used in exam-
ples throughout the chapters.

Table 10-2
Form Properties

Property Description and Options Option Definition

Format properties

Caption Displayed on the title bar of the
displayed form.

Default View Determines the type of view
when the form is run.

Single Form. One record per page.

Continuous Forms. As many records per page
as will fit (Default).

Datasheet. Standard row and column
datasheet view.

PivotTable. Displays a field’s values
horizontally or vertically;
then calculates the total of
the row or column.

PivotChart. Graphical analysis of data.

Allow Form View Form view allowed (Yes/No).

Allow Datasheet View Datasheet view allowed Yes/No).

Allow PivotTable View PivotTable view allowed (Yes/No).

Allow PivotChart View PivotChart allowed (Yes/No).

Scroll Bars Determines whether any scroll
bars are displayed.

Neither. No scrollbars are displayed.

Horizontal Only. Displays only horizontal
scrollbar.

Vertical Only. Displays only vertical
scrollbar.

Both. Displays both horizontal and
vertical scrollbars.

Continued

366 Part I, Section II ✦ Building Forms and Reports

Table 10-2 (continued)

Property Description and Options Option Definition

Record Selectors Determines whether vertical
record selector bar is displayed
(Yes/No).

Navigation Buttons Determines whether navigation
buttons are visible (Yes/No).

Dividing Lines Determines whether lines
between form sections are
visible (Yes/No).

Auto Resize Form is opened to display a
complete record (Yes/No).

Auto Center Centers form onscreen when
it’s opened (Yes/No).

Border Style Determines form’s border style.

None. No border or border
elements (scrollbars,
navigation buttons).

Thin. Thin border, not resizable.

Sizable. Normal form settings.

Dialog. Thick border, title bar only,
cannot be sized; use for
dialog boxes.

Control Box Determines whether control
menu (Restore, Move Size) is
available (Yes/No).

Min Max Buttons

None. No buttons displayed in
upper-right corner of form.

Min Enabled. Minimize button only is
displayed.

Max Enabled. Maximize button only is
displayed.

Both Enabled. Minimize and Maximize
buttons are displayed.

367Chapter 10 ✦ Creating Bound Forms and Placing Controls

Property Description and Options Option Definition

Close Button Determines whether to display
Close button in upper-right
corner and a close menu item
on the control menu (Yes/No).

What’s This Button Determines whether Screen
Tips appear when user presses
Shift+F1 for Help.

Width Displays the value of the width
of the form; can be entered or
Access fills it in as you adjust the
width of the work area.

Picture Enter the name of a bitmap file
for the background of the entire
form.

Picture Type Determines whether picture is
embedded or linked.

Embedded. Picture is embedded in the
form and becomes a part of
the database file.

Linked. Picture is linked to the form.
Access stores the location of
the picture and retrieves it
every time the form is
opened.

Picture Size Mode Determines how picture is
displayed.

Clip. Displays the picture at its
actual size.

Stretch. Fits picture to form size
(non-proportional).

Zoom. Fits picture to form size
(proportional); this may
result in the picture not
fitting in one dimension
(height or width).

Continued

368 Part I, Section II ✦ Building Forms and Reports

Table 10-2 (continued)

Property Description and Options Option Definition

Picture Alignment Determines picture alignment.

Top Left. The picture is displayed in
the top-left corner of the
form, report window, or
image control.

Top Right. The picture is displayed in
the top-right corner of the
form, report window, or
image control.

Center. (Default) The picture is
centered in the form,
report window, or image
control.

Bottom Left. The picture is displayed in
the bottom-left corner of
the form, report window,
or image control.

Bottom Right. The picture is displayed in
the bottom-right corner of
the form, report window,
or image control.

Form Center. The form’s picture is
centered horizontally in
relation to the width of
the form and vertically in
relation to the topmost
and bottommost controls
on the form.

Picture Tiling Used when you want to over-
lay multiple copies of a small
bitmap; for example, a single
brick can become a wall
(Yes/No).

Grid X Displays setting for number of
points per inch when X grid is
displayed.

Grid Y Displays setting for number of
points per inch when Y grid is
displayed.

369Chapter 10 ✦ Creating Bound Forms and Placing Controls

Property Description and Options Option Definition

Layout for Print Determines whether form uses
screen fonts or printer fonts.

Yes. Printer Fonts.

No. Screen Fonts.

Subdatasheet Height Determines the height of a sub-
datasheet when expanded.

Subdatasheet Expanded Determines the saved state of Yes – The saved state
all sub-datasheets in a table of sub-datasheets is
or query. expanded.

No – The saved state of
sub-datasheets is closed.

Palette Source The palette for a form or report. (Default) indicates the
default Access color
palette. You can also
specify other Windows
palette files (.pal), .ico,
.bmp, .db, and .wmf files.

Orientation Determines the View Orientation.

Right-to-Left. Appearance and
functionality move from
right to left.

Left-to-Right. Appearance and
functionality move from
left to right.

Moveable Determines whether the form
can be moved (Yes/No).

Data properties

Record Source Determines where the data
to be displayed in the form is
coming from, or where the
data is going when you create
a new record. Can be a table
or a query.

Filter Used to specify a subset of
records to be displayed when
a filter is applied to a form.
Can be set in the form properties,
a macro, or in Visual Basic.

Continued

370 Part I, Section II ✦ Building Forms and Reports

Table 10-2 (continued)

Property Description and Options Option Definition

Order By Specifies the field or fields used
to order the data in the view.

Allow Filters Determines whether a user will
be able to display a filtered form
(Yes/No).

Allow Edits Prevents or allows editing of data,
making the form read-only for
saved records.

Yes/No. You can/cannot edit
saved records.

Allow Deletions Used to prevent records from
being deleted.

Yes/No. You can/cannot delete
saved records.

Allow Additions Used to determine whether new
records can be added.

Yes/No. You can/cannot add new
records.

Data Entry Used to determine whether
form displays saved records.

Yes/No. Only new records are
displayed/ All records are
displayed.

Recordset Type Used to determine whether
multi-table forms can be updated;
replaces Access 2.0’s Allow
Updating property.

Dynaset. Only default table field
controls can be edited.

Dynaset (Inconsistent Updates). All tables and fields are
editable.

Snapshot. No fields are editable
(Read Only in effect).

371Chapter 10 ✦ Creating Bound Forms and Placing Controls

Property Description and Options Option Definition

Record Locks Used to determine multi-user
record locking.

No Locks. Record is locked only as it
is saved.

All Records. Locks entire form records
while using the form.

Edited Record. Locks only current record
being edited.

Other properties

Pop Up Form is a pop-up that floats
above all other objects (Yes/No).

Modal For use when you must close
the form before doing anything
else. Disables other windows;
when Pop Up set to Yes, Modal
disables menus and toolbar,
creating a dialog box (Yes/No).

Cycle Determines how Tab works in
the last field of a record.

All Records. Tabbing from the last field
of a record moves to the
next record.

Current Record. Tabbing from the last field
of a record moves to the
first field of that record.

Current Page. Tabbing from the last field
of a record moves to the
first field of the current
page.

Menu Bar Used to specify an alternate
menu bar.

Toolbar Use this property to specify the
toolbar to use for the form. You
can create a toolbar for your
form by selecting the Customize
option under the Toolbar com-
mand in the View menu.

Continued

372 Part I, Section II ✦ Building Forms and Reports

Table 10-2 (continued)

Property Description and Options Option Definition

Shortcut Menu Determines whether shortcut
menus are active.

Shortcut Menu Bar Used to specify an alternate
shortcut menu bar.

Fast Laser Printing Prints rules instead of lines
and rectangles (Yes/No).

Help File Name of compiled Help file to
assign custom help to the form.

Help Context Id ID of context-sensitive entry
point in the help file to display.

Tag Use this property to store extra
information about your form.

Has Module Use this property to show if your
form has a class module. Setting
this property to No can improve
the performance and decrease
the size of your database.

Allow Design Changes Determines when design edits
can be made.

Design View Only. Allows design edits in
design view of the form
only.

All Views. Allows design edits in all
views.

Placing Bound Fields on a Form
The next step is to place the necessary fields on the form. You should already have
the Product ID, Description, Category, Quantity in Stock, and Cost fields on the
form. When you place a field on a form, it is called a control and it is bound to
another field (its control source). Therefore, the terms control and field are used
interchangeably in this chapter.

As you’ve learned, if you don’t use a wizard to initially bind a table or query to a
form and place your fields, the process of creating controls on your form consists
of three basic tasks:

Robert
Highlight

373Chapter 10 ✦ Creating Bound Forms and Placing Controls

✦ Display the Field List window by clicking the Field List button on the toolbar.

✦ Click the desired Toolbox control to determine the type of control that is
created.

✦ Select each of the fields that you want on your form and drag them to the
form Design window.

Displaying the field list
Remember, to display the Field List window, click the Field List button on the tool-
bar (the icon that looks like a list sheet) or choose View ➪ Field List from the main
menu. The Field List window can be resized and moved around. The enlarged Field
List window (shown in Figure 10-6) displays all the fields in the tblProducts table.

You can move the Field List window by clicking its title bar and dragging it to a new
location.

Selecting the fields for your form
The method for selecting a field in the Field List window is the same as selecting a
field from a query field list. The easiest way to select a field is to click it, which
highlights it; then you can drag it to the Form window.

To highlight contiguous (adjacent) fields in the list, click the first field you want in
the field list and move the mouse pointer to the last field you want; hold down the
Shift key as you click the last field. The block of fields between the first and last
fields is displayed in reverse video as you select it. Drag the block to the Form
window.

You can highlight noncontiguous fields in the list by clicking each field while hold-
ing down the Ctrl key. Each field is then displayed in reverse video and can be
dragged (as part of the group) to the form design window. One way this method
differs from using the query field list is that you cannot double-click a field to add
it to the Form window.

You will begin by moving the already placed controls closer to the top of the form
and then selecting the remaining fields except the memFeatures and the olePicture
fields.

To move the already created controls and select the fields you need for the
Products form, follow these steps:

1. Draw an imaginary rectangle around the five already placed controls.

Make sure the first icon in the toolbox (the select arrow) is highlighted. Don’t
select the Rectangle option from the toolbox. This will select the five controls.

Tip

374 Part I, Section II ✦ Building Forms and Reports

2. Drag the controls toward the top of the form as shown in Figure 10-6.

You should now have moved the five controls into position, as shown in
Figure 10-6. Make sure the control block begins near the upper-left corner of
the form.

3. Click on the curRetailPrice field.

4. Hold the Shift key down and click on the blnComplete field. Release the Shift key.

All the fields between curRetailPrice and blnComplete should be highlighted.

5. Click on the selected fields and drag the cursor icon that appears to just
below the curCost control. Release your mouse button. Depending on where
you release the mouse, you may have to move the controls around to line
them up better.

The controls should appear as shown in Figure 10-6 after a little cleanup.
Notice that the Yes/No fields are automatically created as check boxes.

Figure 10-6: Bound fields from the tblProducts table after they
have been dragged to the form. (The field icon is also shown that
is displayed when dragging a group of fields.)

The next step is to move the last two fields into position. There should be enough
room for the last two fields to the right of the controls already on the form.

1. Click on the memFeatures field.

2. Hold the Shift key down and click on the olePicture field. Release the Shift key.

Only the memFeatures field and the olePicture field should be highlighted.

375Chapter 10 ✦ Creating Bound Forms and Placing Controls

3. Click on the selected fields and drag the cursor icon to the right of the
chrProductID control near the top of the screen. Release your mouse button.

The controls should appear as shown in Figure 10-7. Notice the memo and pic-
ture fields are automatically created as larger text boxes.

4. Close the Field List window by clicking the Field List button on the toolbar.

Notice that there are two controls for each field that you dragged onto the form.
When you use the drag-and-drop method for placing fields, Access automatically
creates a label control that displays the name of the field; it’s attached to the text
control that the field is bound to.

Figure 10-7: Completing the controls on the form.

Adding a Form Header or Footer
Although the form’s Detail section usually contains the majority of the controls that
display data, there are other optional sections in a form that you can add. These
include a Page Header and Page Footer and a Form Header and Form Footer.

✦ Form Header. Displayed at the top of each page when viewed and at the top
when the form is printed.

✦ Page Header. Displayed only when the form is printed; prints after the form
header.

✦ Page Footer. Appears only when the form is printed; prints before the form
footer.

✦ Form Footer. Displayed at the bottom of each page when viewed and at the
bottom of the form when the form is printed.

376 Part I, Section II ✦ Building Forms and Reports

A header goes before the detail section and a footer after it. A Form Header appears
at the top of the form, while a Form Footer appears at the bottom. The Form head-
ers and footers remain on the screen, while any controls in the Detail section can
scroll up and down.

Page Headers and Page Footers are displayed only if the form is printed. They do
not appear when the form is displayed.

You can create a Form Header or Form Footer by using the View menu. Near the
bottom of the View menu is the Form Header/Footer option. This option will place a
Form Header and Form Footer onto the form.

Select Form Header/Footer from the View menu. The Form Header and Form Footer
should appear in the form.

When you select the View menu, you may not see the Form Header/Footer or
Page Header/Footer options. Move to the bottom of the menu and click the dou-
ble downward pointing arrow in the little circle at the bottom of the menu to dis-
play all of the selections on the menu.

Working with Label Controls
and Text Box Controls

Attached label controls are automatically added to a form when you drag a field
from the Field List. Sometimes, however, you want to add text label controls by
themselves to create headings or titles for the form.

Creating unattached labels
To create a new, unattached label control, you must use the Toolbox unless you
copy an existing label. The next task in the example is to add the text header
Products to your form in the Form Header. This task is divided into segments to
demonstrate adding and editing text. To create an unattached label control, follow
these steps:

1. Display the Toolbox.

2. Click the Label button on the Toolbox.

3. Click in the Form Header and drag the pointer to make a small rectangle about
1 inch long and 1⁄4-inch high. When you place the cursor in the Form Header, it
becomes a + sign with a capital A below and to the right.

4. Type Products.

5. Press Enter.

Tip

Note

377Chapter 10 ✦ Creating Bound Forms and Placing Controls

Your screen should look like the one shown in Figure 10-8. The cursor is shown as a
label icon. This lets you know you can create another label if you want. Notice the
Form headers and footers on the form. As you place controls within a header or
footer, it will expand to the size of the control you are creating.

If you are not using one of the Form headers or footers and there are no controls
on it, you can make it invisible by dragging the bottom border to meet the top bor-
der. If there are controls in the header or footer, you can change the header’s or
footer’s Visible property to No to hide its contents.

To create a multiple-line label, press Ctrl+Enter to force a line break in the text.

Figure 10-8: Adding an unattached label to the Form Header.

Modifying the text in a label or text control
To modify the text in a control, click inside the label and the mouse pointer changes
to the standard Windows insertion point, an I-beam. You can now edit the text. Also
notice that the Formatting toolbar icons become grayed out and cannot be
selected. This is because you cannot apply specific formatting to individual charac-
ters. You can only apply formatting to the control (all of the text).

If you drag across the entire selection so that it is highlighted, anything new you
type replaces the selected text. Another way to modify the text is to edit it from the
control’s Property window. One of the properties in a label’s Property window is
Caption. In the Caption property, you can edit the contents of a label control by
clicking the value box and typing new text. If you want to edit or enter a caption
that is longer than the space in the Property window, the contents will scroll as you
type. Or you can press Shift+F2 to open a zoom box with more space to type.

Tip

Tip

378 Part I, Section II ✦ Building Forms and Reports

In the next exercise, you will edit the text in the label control itself, and not in the
control’s Caption Property window. To edit the label so that it contains different
text, follow these steps:

1. Click after the s in Products, the label control.

2. Type a space and then the text Example.

3. Press Enter.

The form title would also look better if it were larger.

Modifying the format of text in a control
To modify the formatting of text within a control, select the control by clicking its
border (not in it). Then select a formatting style to apply to the label. Just click the
appropriate button on the toolbar. To add visual emphasis to the title, follow these
steps:

1. Click anywhere on the newly created form header label border. Little squares
should appear around the control’s borders.

2. Click on the Bold button on the Formatting toolbar.

3. Click on the drop-down arrow of the Font-Size list box.

4. Select 14 from the Font Size drop-down list.

The Formatting Toolbar

Access features a second toolbar known as the Formatting toolbar, shown in Figure 10-9
(which is described more fully in Chapter 13). Toolbars are really windows. You can move
any toolbar by dragging it from its normal location to the middle of a form, and you can
change its size and shape. Most toolbars can be docked to any edge of the screen (such as
the left, right, or bottom).

The Formatting toolbar contains objects found in most Office toolbars. The first area of the
Formatting toolbar (on the left side) selects a control or Form section, such as the Form or
Page headers or footers, Detail, or the form itself. When you have many controls and you
want (for example) to select a control that’s behind another control, this selection combo
box makes it easy. The next few objects on the Formatting toolbar change text properties.
Two more combo boxes let you change the font style and size. (Remember, you may have
fonts others do not have. Do not use an exotic font if the user of your form does not have
the font.) After the font style and size combo boxes are icons for making a text control bold,
italic, and underlined. Beyond those are alignment icons for left, center, and right text align-
ment. The last five pull-down icons change color properties, line types and styles, and spe-
cial effects. See Chapter 13 for more complete descriptions.

379Chapter 10 ✦ Creating Bound Forms and Placing Controls

You probably can only see a portion of the label. The label control now needs to be
resized to display all the text.

Sizing a text box control or label control
When you select a control, from three to seven sizing handles appear depending on
the size. One appears on each corner except the upper left (which contains the
move handle and is slightly bigger), and one appears on each side. When the
pointer moves over one of the sizing handles, the mouse pointer changes into a
double-headed arrow. When this happens, click and drag the control to the size you
want. As you drag, a dotted outline appears, indicating how large the label will be
when the mouse button is released.

When you double-click on any of the sizing handles, Access usually resizes a con-
trol to a best fit for the text in the control. This is especially handy if you increase
the font size and then notice that the text is cut off either at the bottom or to the
right. For label controls, note that this best-fit sizing adjusts the size vertically and
horizontally, though text controls are resized only vertically. This is because when
Access is in form-design mode, it can’t predict how much of a field to display — the
field name and field contents can be radically different. Sometimes, however, label
controls are not resized correctly and must be manually adjusted.

In the example, the text no longer fits within the label control, but you can resize
the text control to fit the enhanced font size. To do this, follow these steps:

1. Click the Products Example label control.

2. Move the mouse pointer over the control. Notice that the mouse pointer
changes shape as it moves over the sizing handles.

3. Double-click one of the sizing handles.

The label should resize itself along with adding depth to the Form Header section.

The label control size may still need readjustment. If so, place the mouse pointer
in the bottom-right corner of the control so that the diagonal arrow appears and
drag the control until it is the correct size. You also need to move some of the controls
down to make room to center the label over the form. You can select all the controls
and move them down using the techniques you learned in the previous chapter.

You can also select Format ➪ Size ➪ To Fit to change the size of the label control
text automatically.

As you create your form, you should test it frequently by selecting the form’s View
button on the toolbar. Click on the View Form icon to see the completed form so far.
Figure 10-10 shows the form in its current state of completion.

Switch back to design view by again clicking on the form design view icon.

Tip

380 Part I, Section II ✦ Building Forms and Reports

Figure 10-9: Formatting the new label.

Figure 10-10: Viewing the form.

Now that you’ve dragged the fields to the form design and added a form title, you
can move the text box controls into their correct position. You then will need to
size each control to display the information properly within each field.

381Chapter 10 ✦ Creating Bound Forms and Placing Controls

Deleting a control
You can delete a control by simply clicking on it in form design view and then press-
ing the delete key on your keyboard. The control and any attached labels should
disappear.

You can bring them back by immediately selecting Undo from the form design Edit
menu.

Select the Auction Type control and press the Delete key on your keyboard. This
control displays a number 1. This field will be used later to demonstrate the use of
an option group. You will see it again in Chapter 11.

Moving label and text controls
Before you move the label and text controls, it is important that you are reminded
of a few differences between attached and unattached controls. When an attached
label is created automatically with a text control, it is called a compound control —
that is, whenever one control in the set is moved, the other control in the set is also
moved.

To move both controls in a compound control, select one of the controls (either the
label control or the data control) by clicking anywhere on it. Move the mouse
pointer over either of the objects. When the pointer turns into a hand, you can click
the controls and drag them to their new location.

You may notice that in a compound control, there are two move handles. One move
handle is actually on the label control and one is on the data control. To move the
label control separately from the data control, click on the label control’s move han-
dle (the cursor should change into a hand with the first finger raised). You can now
move the label control only. To move only the data control, click on the data con-
trol’s move handle (the cursor should change into a hand with the first finger
raised) and move the data control separately from the label control.

Now go ahead and place the controls in their proper position to complete the form
layout, using Figure 10-11 as a guide. You may notice that the check box control’s
label and date control positions have been reversed. The Reserve Price, Picture,
and Features labels have also been moved above the controls instead of to the left
of them. The Picture and Features controls have also been reversed and Picture is
now on top and Features on the bottom of the form. You may also notice that the
AuctionType field was removed.

You may also want to adjust the length of the various data fields as indicated by the
Figure 10-11. Remember, you change the size of a control by selecting it and choos-
ing one of the sizing handles as you learned in Chapter 9.

382 Part I, Section II ✦ Building Forms and Reports

Figure 10-11: Repositioned text box and label controls in the
Detail section.

Modifying the appearance of multiple controls
The text within the currency fields should all be right-aligned because the fields will
appear below one another and the numbers inside the text boxes should align on
the decimals. Make sure you have already aligned (both left- and right-aligned) the
text box controls themselves. The following steps guide you through the process of
changing the text alignment for the currency controls:

1. Select the curCost, curRetailPrice, and curSalePrice controls by clicking on
them individually while holding down the Shift key.

2. Click the Align Right button on the toolbar (the right-most alignment icon
between the underline and the background paint can icons).

You could have selected the label controls by using the drag-and-surround method.

Remember that you can select multiple controls and first use the Format ➪ Align ➪

Left or Format ➪ Align ➪ Right menu choices to line up one side of the controls.
You can also change the Width property for a group of controls to make sure that
when they are aligned together, they are the same width as well. See Chapter 9 for
more details.

If you change to Form View now, the curCost, curRetailPrice, and curSalePrice data
items are all right-aligned within the text controls. These are shown in design view
in Figure 10-12.

Cross-
Reference

383Chapter 10 ✦ Creating Bound Forms and Placing Controls

Changing the control type
In Figure 10-11, the Complete control is a check box. Although there are times you
may want to use a check box to display Boolean (Yes/No) type data, there are other
ways to display one or the other type choices. One of those ways is a toggle button.
A toggle button is raised if it’s true and depressed (or at least very unhappy) if
it’s false.

Use these steps to turn the check box into a toggle button:

1. Select the Complete label control (just the label control, not the check box).

2. Press the Delete key to delete the label control because it is not needed.

3. Select the Complete check box.

4. Select Format ➪ Change To ➪ Toggle Button to change the control type.

The toggle button should now be displayed on the form. However, it needs to be
placed into position and it needs some serious resizing. It will also need a caption
for the face of the button.

1. Drag the toggle button slightly higher on the form so that the upper-left
corner is just above the top of the lngzSellerID control.

2. Resize the toggle button control so that it is about 1⁄2-inch wide. Use
Figure 10-12 as a guide.

3. Display the property window and enter Completed? in the Caption property
of the toggle button.

Figure 10-12: Finishing the Completed toggle button.

384 Part I, Section II ✦ Building Forms and Reports

Setting the Tab Order
Now that you’ve completed moving all your controls into position, you should test
the form again. If you change to Form View and press Tab to move from field to
field, the cursor does not move from field to field in the order you expect. It starts
out in the first field, Product ID, and then continues vertically from field to field,
skipping some fields and moving fairly randomly around the screen. This route may
seem strange, but that is the original order in which the fields were added to the
form.

This is called the Tab Order of the form. The form’s default tab order is always the
order in which the fields were added to the form. If you don’t plan to move the
fields around, this is all right. If you do move the fields around or even delete one
field and re-add it for any reason, you probably will need to change the order. After
all, although you may make heavy use of the mouse when designing your forms, the
average data-entry person still uses the keyboard to move from field to field.

When you need to change the tab order of a form, you can do so in one of two ways.
In Design View, you may select the View ➪ Tab Order menu option or you may right-
click any control and select Tab Order to change the order to match your layout. To
change the tab order of the form, follow the next set of steps (make sure that you
are back in Design View before continuing):

1. Select View ➪ Tab Order or right-click any control and select Tab Order.

2. Press the Auto Order button to place the controls in a roughly left to right, top
to bottom order.

The Tab Order dialog box is displayed as shown in Figure 10-13. When you
press the Auto Order button, the controls are ordered beginning in the upper-
left corner of the form and then continuing in a left to right order and top to
bottom. Higher comes before lower and left comes before right.

Notice the control names in the Custom Order list box. The control names in the
Custom Order list box do not match the bound field names shown in the form
design. It is a good idea to change your control names to use Standard Naming
Conventions. The control names have been prefixed with standard naming con-
ventions instead of the field data type. (See Appendix D.) When the controls are
first dragged to the form’s workspace, they will have the name of the bound field.
You must manually change each control name from the table field prefix to the
control prefix. For example, the field chrProductID is named txtProductID because
it is a textbox. The control bound to the field blnTaxable has been named
chkTaxable. While you don’t have to do this (and many developers do not), it is
nevertheless important to understand why you will see these prefixes in other
developer’s systems. You can see both the control name and the bound field
name in the control’s Property window.

Note

385Chapter 10 ✦ Creating Bound Forms and Placing Controls

3. Click the frbPicture Selection bar in the Tab Order dialog box (gray bar to the
left of the field names).

4. Click again and drag the row to the bottom of the dialog box to a point below
the txtReservePrice row.

5. Click the txtFeatures Selection bar in the Tab Order dialog box (gray bar to
the left of the field names).

6. Click again and drag the row to the bottom of the dialog box to a point below
the frbPicture row.

7. Click the OK button to complete the task.

Figure 10-13: The Tab Order dialog box.

Navigating Your Application Through VBA

Professional developers frequently write hundreds or thousands of lines of VBA to control
where the cursor moves when data entry occurs. System specifications often dictate auto-
matically moving to other controls or even different forms based on the values entered in a
control. For example, if a male gender check box is checked, a pop-up form may be neces-
sary to capture some male-specific values. If an invoice amount exceeds the customers
credit limit, a warning message may need to be displayed. Some applications have a speci-
fication that use of a mouse is optional by the customer. This often requires VBA code to
handle alternative interface movement such as function keys or first letter selection instead
of allowing mouse placement. Later in the book, you will learn how to develop mouse-
optional interfaces.

386 Part I, Section II ✦ Building Forms and Reports

The Tab Order dialog box lets you select either one row or multiple rows at a time.
Multiple contiguous rows are selected by clicking the first Selection bar and drag-
ging down to select multiple rows. After the rows are highlighted, the selected rows
can be dragged to their new positions.

The Tab Order dialog box has several buttons at the bottom of the box. The Auto
Order button places the fields in order from left to right and from top to bottom,
according to their position in the form. This button is a good place to start when
you have significantly rearranged the fields.

Each control has two properties that interact with this screen, as shown in
Figure 10-14. The Tab Stop property determines whether pressing the Tab key lands
you on the field. The default is Yes; changing the Tab Stop property to No removes
the field from the tab order. When you set the tab order, you are setting the Tab
Index property values. In this example, the control (txtRetailPrice) is set to 5,
chrProductID is set to 1, and so on. Moving the fields around in the Tab Order dialog
box changes the Tab Index properties of those (and other) fields.

Figure 10-14: Tab related properties in the Property
window.

Using Multiple-Line Text Box
Controls for Memo Fields

Multiple-line text box controls are used for Memo data types such as the
memFeatures field. When adding a Memo field to a form, make sure that there is
plenty of room in the text box control to enter a large amount of text. There are
several ways to make certain that you’ve allowed enough space.

The first method is to resize the text box control until it’s large enough to accom-
modate any text you may enter into the Memo field, but this is rarely possible.
Usually the reason you create a Memo field is to hold a large amount of text; that
text can easily take up more space than the entire form.

The default property for a text box control is to display a vertical scrollbar when it
is not large enough for all the text. By allowing scrollbars on the Memo field’s text

387Chapter 10 ✦ Creating Bound Forms and Placing Controls

box control, you can accommodate any amount of data. The Features control text
box by default displays a vertical scrollbar if the text in the box is larger than the
display area. If you do not want to display a scrollbar, you can set the Scroll Bars
property in the Property window to None.

Working with Bound Object
Frames on a Form

When you drag a field that uses the OLE data type to a form, Access creates a
bound object frame automatically. This control can be resized and moved the same
as any control. Pictures can be added in form view by clicking on the control and
pasting a picture from the clipboard. You can also use the Insert Picture option
from the menu.

Creating a Calculated Field
To understand creation of a calculated field, you will now create one. In Figure 10-1,
you might have noticed a control with the label Expected Profit. This is actually a
calculated field, which calculates the current sales price minus the current cost
(curSalePrice-curCost).

The easiest way to do this is to create a new unbound control by clicking on the
toolbox and dragging a text box control to the form design’s workspace to the right
of the Retail Price and Sale Price controls (see Figure 10-14).

To create this new calculated control, follow these steps:

1. Select the Text Box control in the Toolbox.

2. Drag the control to the right of the Retail Price and Sale Price controls.

This will create a new unbound text box control along with a label control.

3. Select the new label control.

4. Display the Property window and change the label control’s Caption property
to Expected Profit.

5. Click on the new text box control and name it txtExpProfit by typing that in
the Name property of the text box control. The txt prefix means it is a text box.

6. Place your cursor in the Control Source property of the txtExpProfit text box
control.

7. In the Control Source property, type = curSalePrice-curCost.

8. Change the Format property to Currency.

388 Part I, Section II ✦ Building Forms and Reports

9. Change the Decimal Places property to 2.

Your screen should look like the one shown in Figure 10-15.

Figure 10-15: Creating a calculated field.

Fixing a Picture’s Display
Before you complete the OLE bound object picture field, there is one more task to
perform. The default value for the Size Mode property of a bound object frame is
Clip. This means that a picture displayed within the frame is shown in its original
size and truncated to fit within the frame. In this example, you need to display the
picture so that it fits completely within the frame. When you’re done, the design
should look like the one shown in Figure 10-16. Two property settings let you do this:

✦ Zoom. Keeps picture in its original proportion but may result in extra white
space.

✦ Stretch. Sizes picture to fit exactly between the frame borders.

Although the Zoom setting displays the picture more correctly, the Stretch setting
looks better, unless the picture’s proportions are important to viewing the data. To
set the Size Mode property of a bound object frame, follow these steps:

1. Select the Picture bound object frame.

2. Display the Property window.

389Chapter 10 ✦ Creating Bound Forms and Placing Controls

3. Select the Size Mode property.

4. Select Stretch.

Figure 10-16 shows the form in Form View. Notice the Property window for the
bound object frame control. The Size Mode property is being set to Stretch.

When you complete this part of the design, you should save the form and then dis-
play it. You can now name this form frmProductsExample if you want. You will see it
in its current completed state in Chapter 11. Figure 10-16 shows the form.

Figure 10-16: The completed form with a Memo and OLE field.

Printing a Form
You can print a form by selecting the File ➪ Print command and entering the desired
information in the Print dialog box. Printing a form is like printing anything else;
you are in a WYSIWYG (“What You See Is What You Get”) environment, so what you
see on the form is essentially what you get in the printed hard copy. If you added
Page Headers or Page Footers, they are printed at the top or bottom of the page.

You can also preview the printout by clicking the File ➪ Print Preview menu com-
mand. This displays a preview of the printed page, as shown in Figure 10-17.

390 Part I, Section II ✦ Building Forms and Reports

Figure 10-17: A preview of a form.

Converting a Form to a Report
By right-clicking a form name in the Database window and selecting Save As and
then selecting Report as the Save As type, you can save the form design as a report.
The entire form is placed in the report form. If the form has form headers or foot-
ers, these are placed in the report header and report footer sections. If the form has
page headers or page footers, these are placed in the page header and footer sec-
tions in the report. After the design is in the Report Design window, it can be
enhanced using the report design features. This allows you to add group sections
and additional totaling in a report without having to re-create a great layout. You
will learn more about this in later chapters.

✦ ✦ ✦

Adding Data-
Validation
Features to
Forms

In the preceding three chapters, you learned to create a
basic form. In this chapter, you learn techniques for creat-

ing several data-validation controls; these controls help
ensure that the data being entered (and edited) in your forms
is as correct as possible.

In this chapter, you modify your form created in Chapter 10
to add the data-validation features shown in Figure 11-1.
If you are following the examples, you should start with
the form frmProductsExample in the Chap11Start.mdb
database file on the CD-ROM that comes with this book.
A few changes have been made for you from the form you
created in Chapter 10.

You can see in Figure 11-1 that the Category and Seller con-
trols have been changed to combo boxes. You can see the
Auction Type field has been added and is an option group
containing two option buttons. What you can’t see is that
other data validation has been added to various controls,
including the Sale Price and Reserve Price controls.

On the
CD-ROM

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating data-
validation
expressions

Using the Option
Group Wizard

Working with option
buttons

Using Yes/No check
boxes

Making visual
selections with toggle
buttons

Using the Combo
Box Wizard

Working with combo
boxes

✦ ✦ ✦ ✦

392 Part I, Section II ✦ Building Forms and Reports

Figure 11-1: The frmProductsExample Data Entry form after adding validation
controls.

Creating Data-Validation Expressions
There is an old expression: garbage in, garbage out. If bad data goes into a
database, only bad data can come out when viewing the information from your
forms and reports. If bad data was always easily recognizable, that would be great.
But the reality is that people believe in what comes out of a computer system. A
more correct expression is: garbage in, gospel out. Because a good application can
make the worst data look good through complex analysis forms and wonderfully
presented reports, it is even more important today to make sure the data is right.

Expressions can be entered into table design properties or a form control’s
Property window to limit input to specific values or ranges of values. The limit is
effective when a specific control or form is used.

In addition, a status line message can be displayed that advises users how to enter
the data properly when they move the insertion point into a particular control. You
can also have a form show an error message if a user makes an invalid entry. These
expressions can be entered in a table design or in a form’s control. Expressions
entered in a table design are automatically inherited or used by any form that uses
the table. If the expression is entered only in a form, only that form will do the vali-
dation check.

393Chapter 11 ✦ Adding Data-Validation Features to Forms

Creating status line messages
Several types of validation text can be entered into a table design, as shown in
Table 11-1. When the user of a form or datasheet moves the cursor into a control,
messages can appear in the status line at the lower-left corner of the screen. In your
table design, you enter these messages into the Description column, as shown in
Figure 11-2. In this example, the status line message displays “Offering Price.
Usually the highest price it is sold at” when the insertion point (cursor) is in the
curRetailPrice field’s control.

Table 11-1
Types of Validation Entered into a Table Design

Type of Validation Stored in Displayed in Form

Status line message Description/Status Bar Text Status bar

Validation expression Validation Rule Not displayed

Error message Validation Text Dialog box

Input mask Input Mask Control text box

Figure 11-2: The field description and validation properties for the curRetailPrice
field in the table design.

394 Part I, Section II ✦ Building Forms and Reports

Entering table level validation expressions
Figure 11-2 shows a table design from the tblProducts table with the curRetailPrice
field selected. The only properties that are displayed are for the highlighted field,
although you can see all the descriptions in the upper part of the Table Design win-
dow. You enter validation expressions in the lower portion of the screen. Validation
expressions are the rules the data must follow.

Any type of expression can be entered into the Validation Rule property box (found
in the Field Properties pane of the Table Design window). In Figure 11-2, the expres-
sion >=0 limits the entry to 0 or a positive number.

You can also display your own error message in a dialog box when data entry does
not pass the validation rule. This text is entered into the Validation Text property
box also found in the Field Properties pane of the table design. In this example, the
dialog box will display “Retail Price must be greater than or equal to 0.”

You can enter the same types of validation text into a form’s property window if you
want. When you create a form, the table validation properties are automatically
known to each bound control on the form that uses any field with table level valida-
tion properties. They don’t actually appear in the form controls properties but they
do work. This way, if you enter validation expressions at the table level, you don’t
have to enter them again for each form. If you want to override them for a particu-
lar form, you can simply enter a new value for any of the properties in the form’s
control properties. Figure 11-3 shows the same properties in the form that were
entered into the tblProducts table.

Figure 11-3: The form’s Status Bar Text and Validation
properties for the txtRetailPrice control bound to the
curRetailPrice field in the form design Property window.

Entering validation expressions
You can enter a validation expression in a number of different ways for each field
in your table or control in your form. For a number field, you can use standard

395Chapter 11 ✦ Adding Data-Validation Features to Forms

mathematical expressions such as less than, greater than, equal to, or not equal to
using the appropriate symbols (<, >, =, <>).

For example, if you want to limit a numerical field to numbers greater than 100, you
enter the following validation expression in the appropriate property box:

> 100

To limit the numeric field to numbers not equal to 0, you enter:

<> 0

To limit a date field to dates before January 2005, you enter:

< #1/1/2005#

The # are known as delimiters and must surround any date expression where the
date is an actual month, day, and year.

If you want to limit a numeric or date value to a range, you can enter:

Between 0 And 1500

or

Between #1/1/70# And Date()

Date() is the current date (today).

If you are not familiar with operators and delimiters in Microsoft Access, Chapter 5
covers various mathematical comparison operators and delimiters in queries.
These expressions for entering query criteria are the same expressions you enter in
form and table validation. These operators and various other functions are also
described in Chapter 20.

Creating Choices with Option
Groups and Buttons

Sometimes you don’t want to enable a user to type anything at all. You want the
user to pick a valid entry from a list. One of the ways to do this when you want to
allow a single selection from a small group of choices is to use an option group. An
option group is a control that contains other controls. You can limit input on your
form in this way by using an option button control within the option group control.
Option buttons were once known as radio buttons.

Cross-
Reference

Note

396 Part I, Section II ✦ Building Forms and Reports

An option button by itself is a control that indicates whether a situation is True or
False. The control consists of a string of text and a button that can be turned on or
off by clicking the mouse. The Auction Type control shown in Figure 11-1 shows two
option buttons. When you click the button, a black dot appears in its center, indi-
cating that the situation is True; otherwise, the situation is False.

When you place more than one option button (or check box or toggle button)
within an option group, only one can be true at a time. They work together and stop
being independent. Only the option group is bound and therefore only one of the
values within the group can be true. When the user clicks on one option to make it
true, all other option buttons values are set to false. Each option button has a
numeric value such as 1, 2, 3, etc. Each time a specific option button is set to true,
its number is passed to the option group. As previously mentioned, only the option
group is the only control bound to a table field. The option buttons themselves are
unbound when part of an option group.

Generally, you use an option button when you want to limit data entry but more
than two choices are available. You should limit the number of choices to four or
five, however, when using option buttons. If you have more than four choices, use a
list or combo box (described later in this chapter). If there is only one choice, true
or false, you should use a check box.

Option buttons can increase flexibility in validating data input. For example, when
an option group control is used for the intAuctionType field (as shown in Figure
11-1), it will pass a number: 1 represents On-Site and 2 represents On-Line. In
Figure 11-1, you can see that label controls identify each option button’s represen-
tation. Although you will see that a 1 has been assigned to the first option button
labeled On-Site and a 2 has been assigned to the option button labeled On-Line,
in reality you can assign any number to the option buttons. As long as each option
button within the option group has a different value, the option group will work.

Only one of the option buttons can be made True for any given record. This
approach also ensures that no other possible choices can be entered on the form.
In an option group, the option group box itself is bound to a field or expression. In
Figure 11-1 both option buttons and the surrounding box make up the option group.
Each button passes a different value back to the option group box, which in turn
passes a single value to the field or expression. Each option button is bound to the
option group rectangle itself rather than to a field or expression. In this example,
the option group control is bound to the intAuctionType field in the tblProducts
table. If you look at the table itself, that field will contain a 0, 1, or 2 depending on if
the option group is null (neither button has been selected for the specific record),
1 if On-Site was selected, and 2 if On-Line was selected.

Only fields with a Numeric data type (Integer, Single, Double) can be used for an
option group in a form. In a report, you can transform nonnumeric data into
numeric data types for display-only option buttons (see Chapters 12 and 13). You
can also display an alternative value by using the Lookup Wizard in the Table
design window and displaying a combo box.

Caution

397Chapter 11 ✦ Adding Data-Validation Features to Forms

To create an option group with option buttons, you must do two things:

✦ Create the option group box and bind it to a field.

✦ Create each option button and bind each one to the option group box.

Creating option groups
In Microsoft Access, the easiest and most efficient way to create option groups is
with the Option Group Wizard. You can use it to create option groups with multiple
option buttons, toggle buttons, or check boxes. When you’re through, all your con-
trol’s property settings are correctly set. This Wizard greatly simplifies the process
and enables you to create an option group quickly, but you still need to understand
the process.

Creating an option group box
When you create a new option group, the Option Group Wizard is triggered auto-
matically. Clicking the Option Group tool on the Toolbox and drawing the control
box rectangle starts the process. Another method is to click the Option Group but-
ton and then drag the appropriate field from the Field List window.

To start any of the Wizards that create controls, you must first have the Control
Wizards button on the Toolbox selected.

Use the completed option group in Figure 11-1 as a guide. If the Toolbox and Field
List are not open, open them now.

Create the option group box by following these steps:

1. Click the Option Group button on the Toolbox. When you release the mouse
button, the Option Group button will remain depressed.

2. Select and drag the intAuctionType field from the Field List window to the
space under the Customer Information box.

The first screen of the Option Group Wizard should be displayed (as shown,
completed, in Figure 11-4). You enter the label name for each option button,
check box, or toggle button that will be in your option group on this screen.
You enter each entry as you would in a datasheet. You can press the down-
arrow (↓) or tab key to move to the next row.

3. Enter On-Site and On-Line, pressing the down-arrow (↓) key between choices.

In Figure 11-4, you can see the intAuctionType field selected in the field list
and the Option Group selected in the toolbox. You can also see the option
group label and rectangle created just to the right and below the Auction
checkbox on the form. Later, you will have to resize and move the controls
within the completed option group.

Caution

398 Part I, Section II ✦ Building Forms and Reports

Figure 11-4: Entering the option group labels into the first Wizard screen for the
Auction Type Control.

4. Click the Next button to move to the second Wizard screen.

You use the second screen to select which control will be the default selec-
tion. The Wizard starts with the first option as the default. If you want to make
a different option button the default, select the Yes, the Default Choice Is
option button and then select the default value from the combo box that lists
your choices. In this example, you want the first option, On-Site, to be the
default.

5. Click the Next button to move to the third Wizard screen used for assigning
values.

This screen (shown in Figure 11-5) displays a default set of numbers that will
be used to store the selected value in the bound option group field (in this
example, the intAuctionType field) along with the actual values you entered.
The screen looks like a datasheet with two columns. Your first choice, On-Site,
is automatically assigned a 1, and On-Line is assigned a 2. This means that
when On-Line is selected, a 2 is stored in the intAuctionType field.

In this example, the default values are acceptable. Sometimes, however, you
may want to assign values other than 1, 2, 3, etc. You may want to use 100,
200, and 500 for some reason. As long as you use unique numbers, you can
assign any values you want.

399Chapter 11 ✦ Adding Data-Validation Features to Forms

Figure 11-5: Assigning the value of each option
button.

6. Click the Next button to move to the next Wizard screen.

In this screen, you tell Access whether the option group itself is bound to a
form field or unbound. The first choice in the Wizard — Save the Value for
Later Use — creates an unbound field. You use this choice if you’re going to
put the option group in a dialog box and use the selected value to make a
decision. However, you want to store the value in a table field, thus in this
example you want the second value — Store the Value in This Field. The
Wizard automatically selected it because you started with the Auction Type
field. If you wanted to bind the option group value to a different table field,
you could select from a list of all form fields. Again, in this example, the
default is acceptable.

7. Click the Next button to move to the option group style Wizard screen.

The upper half of this Wizard screen enables you to choose which type of but-
tons you want; the lower half enables you to choose the style for the option
group box and the type of group control. The style affects the option group
rectangle. If you choose one of the special effects (such as Etched, Shadowed,
Raised, or Sunken), that value is applied to the Special Effect property of the
option group. For this example (as shown in Figure 11-6), again you want to
accept the default selections of Option buttons and Etched style. Notice that
your actual values are used as a sample.

As you change your selections, the Sample changes to show how it will look.

8. Click the Next button to move to the final Option Group Wizard screen.

This screen enables you to give the option group control itself a label that will
appear in the option group border. Then you can add the control to your
design and (optionally) display Help to additionally customize the control.

9. Change the caption to Auction Type from the default table field name as your
caption for the Option Group.

Click the Finish button to complete the Wizard.

Note

400 Part I, Section II ✦ Building Forms and Reports

Figure 11-6: Selecting the type and look of your
buttons.

You may want to switch to form view and test your option group by moving
from one record to the next. Watch how the option button changes from one
record to the next based on the data that is already in the table. If no value
has been entered for the bound table field, neither option button will be
selected as the bound field is null. When you are through, switch back to
design view.

Your Wizard work is now complete. Six new controls appear on the design screen:
the option group, its label, two option buttons, and their labels. However, you may
still have some work to do. You may want to move the option buttons closer
together, or change the shape of the option group box as shown in Figure 11-7, or
change the Special Effect property of some controls. As you learned, you can do
this using the property window for the controls.

Figure 11-7 shows the option group controls and the property window for the
option group itself. Notice that the Default value is 1. Also notice that the Name
property for the option group control is intAuctionType, the same name as the
table field. You should change the option group control name to match standard
naming conventions:

1. Rename the option group control optAuctionType by changing the Name
property.

2. Leave the Control Source property unchanged.

You might also notice that the option group is vertical (option buttons above one
another) and you want it to be horizontal. In order to do this, you first have to
resize the option group rectangle so that it is large enough horizontally to hold the
buttons across from each other. Then, move the buttons into position, and finally
resize the option group rectangle into its final position:

401Chapter 11 ✦ Adding Data-Validation Features to Forms

1. Resize the option group rectangle wider by grabbing the right sizing handle
and dragging it to the right.

2. Grab the On-Line control and its label and drag it to the right of the On-Site
Control.

You can use the Format ➪ Align ➪ Top menu option to align the two sets of
controls if you want. Make sure the controls are aligned and the option but-
tons are vertically centered to their labels.

3. Resize the option group rectangle to fit around the option buttons by grab-
bing the right bottom corner sizing handle and dragging it up and to the right.

Remember, you can use the up, down, left, and right arrow keys to move your con-
trols a little at a time. You can also press the Shift key first to resize the controls a
little at a time. Make sure you have Format ➪ Snap to Grid off if you want to move
controls one pixel at a time.

If you are using the keyboard to move or resize controls and Snap to Grid is off but
the sizing or moving appears to move or resize your controls more than a little at
a time, check that the form’s Grid X and Grid Y property are set to at least 24 and
more desirably 64. The higher the number is, the finer the grid divisions will be
and the lesser the movement whether or not if the grid is visible.

Figure 11-7: The option group controls and property window.

Note

402 Part I, Section II ✦ Building Forms and Reports

When you are through, the form should look like the one shown in Figure 11-8.

Figure 11-8: The option group controls are completed and one of the option button
Property windows shows the Option Value.

Figure 11-8 shows the first option button selected. Notice that the Option Value
property is set to 1, the value you accepted in the third Wizard screen. Only con-
trols that are part of an option group have an Option Value property.

If you want to create an option group manually, the best advice is don’t. If you must,
however, the steps are the same as for creating any control. First create the option
group box, and then create each button inside it manually. You’ll have to manually
set all data properties, palette properties, and specific option group or button
controls.

If you create the option buttons outside the option group box and then drag or
copy them into the option group box, they will not work. The reason is that the
automatic setting of the Option Value for buttons is left undone, and the option
button control has not been bound to the option group box control.

After you finish practicing this process, you can turn your attention to the next sub-
ject, Yes/No controls.

Caution

403Chapter 11 ✦ Adding Data-Validation Features to Forms

Creating Yes/No Options
There are many ways to show data properly from Yes/No data types:

✦ Display the values Yes or No in a text box control, using the Yes/No Format
property to show –1 (True) or 0 (False), a Yes (True) or No (False), or True or
False.

✦ Use a check box.

✦ Use an option button.

✦ Use a toggle button.

Although you can place values from Yes/No data types in a text box control and
then format the control by using the Yes/No property, it’s better to use one of the
other controls. Yes/No data types require the values –1 or 0 to be entered into
them. An unformatted text box control returns values (–1 and 0) that seem confus-
ing, especially because –1 represents Yes and 0 represents No. Setting the Format
property to Yes/No or True/False to display those values helps, but a user still
needs to read the text Yes/No or True/False. A visual display is much better.

Toggle buttons, option buttons, and check boxes work with these values behind the
scenes (returning –1 to the field if the button value is on and 0 if the button is off) but
they display these values as a box or button, which is faster to read. You can even
display a specific state by entering a default value in the Default property of the form
control. The control is displayed initially in a Null state if no default is entered and
no state is selected. The Null state appears visually the same as the No state.

The check box is the commonly accepted control for two-state selection. Toggle
buttons are nice (they can use pictures rather than a text caption to represent the
two states) but not always appropriate. It is hard to tell if a toggle button is shown
True (depressed) or False (shown raised). Although you could also use option but-
tons, they would never be proper as a single Yes/No control.

Creating check boxes
A check box is a Yes/No control that acts the same as an option button but is dis-
played differently. A check box consists of a string of text (to describe the option)
and a small square that indicates the answer. If the answer is True, a check mark is
displayed in the box. If the answer is False, the box is empty. The user can toggle
between the two allowable answers by clicking on the mouse with the pointer in
the box.

Generally, any Yes/No field you create will automatically appear as a check box
when you create a form. Sometimes, you want to create a check box to use with
numeric or text type data fields.

404 Part I, Section II ✦ Building Forms and Reports

The completed check boxes are shown in Figure 11-9 and the property window is
visible for the chkAuction control. Notice some of the specific checkbox properties.
The first is the Default Value. This value is No, indicating that initial value will be
unchecked.

Another option for check boxes is Triple State. This option determines whether
a check box can have three states: True, False, or Null. True appears as a checked
box and False appears as a blank white box, but the Null value appears as a gray
check box, indicating it has no value. If Triple State is No as it is in the example, there
is no Null state. The checkbox is initially False (unless Default Value is set to True).

Figure 11-9: The Auction check box control and its Property window.

Although you can set the Display Control option of the Lookup tab in the Table
Design to Check Box for any field with a Yes/No data type, you don’t really need
to. A check box is automatically created whenever you add a Yes/No field to a
form. You can always change it to another type of control if you want.

Before creating the check box controls, you could change the Default Check Box
Label X property to a negative value; this would automatically place the check
boxes to the right of the labels when they are created. The value to enter depends
on the length of the labels. To save several steps when creating a group of similar-
looking controls, change the Add Colon property to Yes to add a colon automati-
cally and change the Special Effect property to Sunken.

Note

Tip

405Chapter 11 ✦ Adding Data-Validation Features to Forms

Creating Visual Selections
with Toggle Buttons

A toggle button is another type of True/False control. Toggle buttons act like option
buttons and check boxes but are displayed differently. When a toggle button is set
to True (in pushed mode), the button appears onscreen as depressed. When it is set
to False, the button appears raised.

Toggle buttons provide a capability that the other button controls do not offer. That
is you can set the size and shape of a toggle button, and you can display text or pic-
tures on the face of the button to illustrate the choice a user can make. This addi-
tional capability provides great flexibility in making your form user-friendly.

In the last chapter, you learned how to create a toggle button. Later in the book,
you will learn to use code to change the text caption on the toggle button face when
it is depressed and again when it is false.

Adding a bitmapped image to the toggle button
As previously mentioned, you can display a picture on a toggle button rather than
text. For example, you can modify the tglComplete toggle button you created in the
last chapter, changing it to display a picture from the list that comes with Microsoft
Access. Use the following steps to modify the button for the tglCompleter field:

1. Select the tglComplete toggle button.

2. Open the properties window and select the Picture property.

3. Click the Builder button (the button with three dots next to the property
setting).

The Picture Builder dialog box appears, which provides more than 100 prede-
fined pictures. In this example, select the bitmap named Watch, as shown in
Figure 11-10. The picture of the figure was actually taken after the picture was
originally selected and saved to let you see both the process and the finished
result.

4. Click the OK button to add the picture to the toggle button. The watch
appears on the toggle button on the design screen. You may need to move
it on the screen to make it fit between other controls.

In the property window, you can see the word (bitmap) appears in the Picture
property.

You could also have selected a picture from a ..bmp file or an .ico (icon) file by
pressing the Browse button on the Picture Builder and by then selecting an exter-
nal picture file. However, the button cannot size the picture. The picture must fit
on the button, which means you generally need a very small picture of only 24 x 24
pixels for a large icon size picture or even smaller for a button on a toolbar.

Note

406 Part I, Section II ✦ Building Forms and Reports

Figure 11-10: The Picture Builder dialog box used to create a picture on a
toggle button.

Although you just changed the toggle button and added a picture, you will not be
keeping it. To remove the picture from the toggle button, click on the Picture prop-
erty, highlight the (bitmap) text, and erase it. After you confirm deleting the
graphic, the Picture property will change to (none) and the text in the Caption
property will again be displayed.

Although option buttons, check boxes, and toggle buttons are great for handling a
few choices, they are not a good idea when many choices are possible. Access has
other controls that make it easy to pick from a list of values.

Working with List Boxes and Combo Boxes
Access has two types of controls that enable you to show lists of data from which a
user can select. These controls are list boxes and combo boxes.

The differences between list boxes and combo boxes
The basic difference between a list box and a combo box is that the list box is
always open ready for selection, whereas the combo box has to be clicked to open

407Chapter 11 ✦ Adding Data-Validation Features to Forms

the list for selection. Another difference is that the combo box enables you to enter
a value that is not on the list. Finally, a combo box allows the user to enter success
letters to find a value on the list. A list box only allows the first letter to be selected.
If you enter the text SA into a list box, you will first go to the first value beginning
with the letter S in a list, followed by the first value that begins with the letter A in
the list. If you enter the text SA into a combo box, you will first go to the first value
beginning with the letter S in the list followed by the first value that begins with the
letters SA in the list. This is known as successive letter searching.

Chapter 8 contains details on these controls. Review Figures 8-15 and 8-16 if you
are not familiar with list boxes and combo boxes.

A closed combo box appears as a single text box field with a downward-pointing
arrow on its far right side. A list box, which is always open, can have one or more
columns, from one to as many rows as will fit onscreen, and more than one item to
be selected. An open combo box displays a single-column text box above the first
row, followed by one or more columns and as many rows as you specify on the
property window. Optionally, a list box or combo box can display column headers
in the first row.

Settling real-estate issues
You have to consider the amount of space that is available on the form before
deciding between a list box and combo box. If only a few choices are allowed for
a given field, a list box is sufficient. However, if there is not enough room on the
form for the choices, use a combo box (a list box is always open, but a combo box
is initially closed). When you use a list box, a user cannot type any new values, but
instead must choose from the selection list.

When designing a list box, you must decide exactly which choices will be allowed
for the given field and select an area of your form that has sufficient room for the
open list box to display all selections.

For the examples in this chapter, you will learn to create combo boxes. Later, in
Chapter 25, you will learn to create various types of list boxes.

Creating and Using Combo Boxes
As mentioned earlier, a combo box is a combination of a normal entry field and a list
box. The operator can enter a value directly into the text area of the combo box or
else click the directional arrow (in the right portion of the combo box) to display
the list. In addition, the list remains hidden from view unless the arrow is activated,
conserving valuable space on the form. A combo box is useful when there are many
rows to display. A vertical scrollbar gives users access to the records that are out
of sight.

Note

Cross-
Reference

408 Part I, Section II ✦ Building Forms and Reports

In this next exercise, you will change the Category control from a text box to a
combo box by using the Combo Box Wizard after first deleting the original text box.

Creating a single-column combo box
To create a single-column combo box using the Wizard, follow these steps:

1. Delete the existing Category text box field control and its label.

2. Click the Combo Box tool in the Toolbox. Make sure the Control Wizard toggle
button (the top right icon in the toolbox) is depressed so the wizard will run
in Step 3.

3. Display the field list and drag the chrCategory field to the area below
Description.

The Combo Box Wizard dialog is displayed. The first screen enables you to
tell Access whether the values will come from a table/query, you will type a
list of values, or Access will create a query-by-form list box to display all the
unique values in the current table. Depending on your answer, you either
select the number of columns (and type in the values) or select the fields to
use from the selected table/query. In this example, the values come from
a table.

4. Select the first option, I Want the Combo Box to Look Up the Values in a Table
or Query; then click the Next button.

As shown in Figure 11-11, the second Wizard screen enables you to choose the
table from which to select the values. By using the row of option buttons
under the list of tables, you can view all the Tables, Queries, or Both (tables
and queries).

5. Select the tblCategories table and click the Next button.

The third Wizard screen enables you to pick the fields you want to use to pop-
ulate the combo box. You can pick any field in the table or query and select
the fields in any order; Access creates the necessary SQL statement for you.
The tblCategories table has only one field (chrCategory), a list of valid cate-
gories, so it is the only field in the Available Fields list.

6. Select the chrCategory field; click the right-pointing arrow to add it to the
Selected Fields list and click the Next button to move to the next Wizard
screen.

This allows you to determine a sorting order for the records that will appear
in the list.

7. Select chrCategory (the only field in the list) and click the Next button to
move to the next Wizard screen.

409Chapter 11 ✦ Adding Data-Validation Features to Forms

Figure 11-11: Selecting the table for the row source of the combo box.

In this screen, a list of the actual values in your selected field appears (as
shown in Figure 11-12). Here you can adjust the width of any columns for their
actual display. You can automatically adjust the columns to the largest value
in the list by double-clicking on the line on the right on the column to be
adjusted.

Figure 11-12: Adjusting the column width of the
selection.

410 Part I, Section II ✦ Building Forms and Reports

8. Click Next to move to the next wizard screen. Here there are two choices, just
as they were when you created an option group earlier in this chapter.

In this screen, you tell Access whether the combo box is bound to a form field
or unbound. The first choice in the Wizard — Remember the Value for Later
Use — creates an unbound field. You use this choice if you’re going to put the
combo box in a dialog box and use the selected value to make a decision.
However, you want to store the value in a table field, thus in this example you
want the second value — Store That Value in this Field. The Wizard automati-
cally selected the chrCategory field because you started with it. If you wanted
to bind the option group value to a different table field, you could select from
a list of all form fields. Again, in this example, the default is acceptable.

9. Click Next to move to the final Wizard screen.

This is the final screen. You can enter Caption for the combo box label and
click Finish to complete the entries with the default choices.

When the wizard finishes, the form is shown in design view with combo box
created on the form.

10. Display the form in form view and pull down the combo box.

If the Property window is not still displayed, switch back to form view and dis-
play the combo box Property window.

Figure 11-13 shows the combo box control in form view with the combo box open
and the Property window displayed for the combo box. If you switch to form view
and select the combo box, you can click on the down arrow and display the data as
shown in Figure 11-13.

Figure 11-13: The Category combo box control and Property window.

411Chapter 11 ✦ Adding Data-Validation Features to Forms

Understanding combo box properties
As Figure 11-13 shows, several properties were set to define the combo box. The
Wizard takes care of these for you, except for the Column Heads property, which
adds the name of the column at the top of the combo box. You won’t need this
option for a single column list.

The Row Source Type and Row Source properties are used to specify what is dis-
played when the combo box is pulled down.

Row Source Type determines where the data comes from. The most common is
Table/Query. Valid Row Source Type property options are listed in Table 11-2.

Table 11-2
Row Source Type Settings

Row Source Type Source of the Data Type

Table/Query (Default setting) Data is from a table or is the result of a query
or a SQL statement. The name of the table, query, or SQL
statement is entered into the Row Source property.

Value List List of items specified by the Row Source setting. You actually
type in the values separated by commas.

Field List List of field names from the Table/Query named by the Row
Source setting.

The Row Source property settings depend on the source type specified by Row
Source Type.

The method used to specify the Row Source property settings, as listed in Table 11-3,
depends on the type of data source (which you specified by setting the Row Source
Type).

Table 11-3
Row Source Property Settings

Row Source Type Method of Setting the Row Source Property

Table/Query Enter the name of a table, a query, or an actual SQL
statement.

Value List Enter a list of items separated by semicolons.

Field List Enter the name of a table or query.

412 Part I, Section II ✦ Building Forms and Reports

In this exercise, you selected the tblCategories table and selected the only field
within that table. Therefore, the Row Source Type was set to Table/Query, and the
Row Source was set to a SQL statement: SELECT [tblCategories].[chrCategory]
FROM [tblCategories] ORDER BY [chrCategory].

When Table/Query or Field List is specified as the Row Source Type, you can pick
from a list of tables and queries for the Row Source. The table or query must
already exist. This list box would display fields from the table or query according to
the order they follow in their source. Other settings in the Property window deter-
mine the number of columns, their size, whether there are column headers, and
which column is bound to the field’s control source. You’ll learn more about these
in the next exercise.

The List Rows property was set to 8. It controls the number of rows that display
when the combo box is opened, but the Wizard does not enable you to select this.
You have to display the Property window to change this option.

The Limit To List property determines whether you can enter a value into the
tblCategories table that is not in the list; this property is another one the Wizard
does not enable you to set. You must set these directly in the Property window. The
default No value for Limit To List says that you can enter new values because you
are not limiting the entry to the list.

Setting the Auto Expand property to Yes enables the user to select the combo box
value by entering text into the combo box that matches a value in the list. This is
also known as successive letter selection and is a great feature of combo boxes. As
soon as the combo box finds a unique match, it displays the value without having
to display the entire list. The default value is Yes for the Auto Expand property. To
change it to No, you must do so in the Property window.

Creating a multiple-column combo box
Combo boxes can also display multiple columns of information. These columns are
displayed in an order of your choosing. You can display selected columns from
your data source and choose the sorting order of the records as well.

Figure 11-14 shows the combo box you will create next already completed. Notice
that this combo box displays the Company Name and Customer Name in the order
of the Company Name. You will use a query to help you accomplish this task. Also
notice (in Figure 11-14) that the Company and Name column heads are displayed.

To understand the selection criteria of a multiple-column combo box, you will first
change the current text box to a combo box by right-clicking on the control. Before
you do that, move the Completed toggle button to the right of the Auction Type
option group and make the Seller text box wider, as shown in Figure 11-15.

Tip

413Chapter 11 ✦ Adding Data-Validation Features to Forms

Figure 11-14: The Seller combo box control and Property window.

Figure 11-15: Changing the Seller text box to a combo box.

414 Part I, Section II ✦ Building Forms and Reports

The first step is to change the text box into a combo box by following these steps:

1. Select the Seller text box.

2. Right click on the text box and select Change To➪Combo Box, as shown in
Figure 11-15.

The text box changes to a combo box and the specific combo box properties
are blank or display default settings. The Row Source Type property defaults
to Table/Query. The first task is to create a Row Source for the combo box.
This will require the tasks you learned in Chapter 5, because you have to cre-
ate a Select query.

If you look back at the Seller combo box in Figure 11-13, you can see it simply
contained a number. This is the number of the Contact ID, which is the key
field in the tblContacts table. This is the field that links from the tblProducts
table to the tbContacts table. The combo box you are about to create will dis-
play meaningful contact information while still linking to this key field.

3. Click into the Seller combo box if it is not already selected.

4. Select the Row Source property and press the builder button (the little button
on the right with three periods) to open the query design window.

5. Select tblContacts from the Show Table dialog box and press the Add button.

6. Press the Close button on the dialog box.

A blank SQL Statement Query Builder is displayed.

You will now create a SQL Statement by selecting fields in the query builder.
Figure 11-16 shows this selection completed.

The first step is to drag the three fields you will need:

1. Drag the chrCompany, chrLastName, idsContactID, and chrContactType
fields in that order from the upper query design pane to the lower query
design pane.

Each of the first three columns dragged to the query design grid is checked
off, indicating that they will be displayed.

You are not going to display just the last name of the contact. You are actually
going to display the last name followed by a comma followed by the first
name. To do this, you have to create a concatenated string. In Figure 11-16,
you can see this string.

2. Enter ContactName: chrLastName & “, ” & chrFirstName into the Field
area of the original chrLastName field, replacing the contents as shown in
Figure 11-16.

415Chapter 11 ✦ Adding Data-Validation Features to Forms

Figure 11-16: The Seller query window for the combo box row source.

This is a concatenated string because you place several text strings and fields
together in a process known as concatenation. ContactName: means that the
field will be known as the text ContactName if it is later used in code, and that
is what the column header will be in the combo box for this column. The
string chrLastName & “, ” & chrFirstName takes the field chrLastName and
joins it with a comma and space to the chrFirstName field. The & is the con-
catenation symbol and is used to join strings (text) and fields. Remember that
any text must be in double quotes. There is a space after the comma and
before the last double quote to add a space after the comma.

The next step is to tell the query how to sort the data.

3. Click into the Sort: row of the query design in the chrCompany column

4. Choose Ascending from the combo box list in this entry area, as shown in
Figure 11-16.

Finally, the last step is to limit the selection of contacts to those who are
Sellers or Both buyers and sellers. You don’t want to allow contacts who are
only Buyers to be displayed in the Sellers combo box.

5. Click into the Criteria: row of the query design in the chrContactType column.

6. Enter “Seller” or “Both” in this entry area, as shown in Figure 11-16. Make
sure you uncheck the Show: row check box because you don’t want to display
this row. You only want to filter the data.

Before you close the query, you should verify that it works. Press the Run but-
ton (the exclamation point icon) on the toolbar. You should see a group of
records similar to the ones shown in Figure 11-17.

7. Close the query and save the changes.

416 Part I, Section II ✦ Building Forms and Reports

Figure 11-17: Checking the query results to verify
that the combo box will work.

After you have closed the query, a SQL statement should appear in the Row Source
of the combo box. You can more closely examine this SQL Statement by pressing
Shift-F2 when your cursor is on the combo box Row Source property. This SQL
Statement is shown in Figure 11-18.

Figure 11-18: The Seller combo box control and Property
window.

Figure 11-18 shows the SQL equivalent of what was entered into the Query Design
window. You will learn a lot more about SQL statements later in this book. The
SELECT statement starts all queries that display data. The field names are listed,
including the concatenated expression that uses the AS clause to display the new
field name. The FROM clause indicates what table the fields come from. The WHERE
clause lists any filters, and finally the ORDER BY specifies the sorting of the
records.

417Chapter 11 ✦ Adding Data-Validation Features to Forms

If the SQL Statement contains the keyword DISTINCTROW, the Wizard found more
than one value that was the same in the list of data. For example, you may want to
display a list of vehicle models from a list of active cars for sale. That set of records
could have many items with Truck as one of the key values. DISTINCTROW would
limit the displayed list to unique values.

Figure 11-19 shows the property window for the nearly completed combo box. The
Row Source Type and Row Source are all set. However, you still have to change a
few properties, including the following:

✦ Column Count. The number of columns to be displayed.

✦ Column Heads. Yes or No. Yes displays the field names as the first row. No
just displays the data.

✦ Column Widths. The width of each column. Each value is separated by a
semicolon.

✦ Bound Column. The column that passes the value back to the control
source field.

✦ List Rows. The number of displayed rows in the combo box. Default is 8.

✦ List Width. The total width of the combo box when open. This should be at
least the width of all the columns and optionally add plus .15 to allow for any
scroll bar.

Make the following changes to complete the combo box:

1. Enter 3 in the Column Count property.

You chose three columns that will be returned to the query. These include the
Company, the concatenated contact name field, and the Seller ID from the
tblContacts table.

2. Set the Column Heads property to Yes.

Whenever you have two or more columns, you should display the column
headers to identify each column.

3. Set the Column Widths property to 2”;2”;0”.

This allows 2 inches for the Company and Contact name fields and then hides
the Seller ID. There is no need to see it because it is a number and means
nothing except to link the values between the tblContacts table and the
tblProducts table.

4. Set the Bound Column property to 3.

The Bound Column indicates which column of the combo box is used to pass
data back to the control’s bound control source. In this example, the

Note

418 Part I, Section II ✦ Building Forms and Reports

lngSellerID field will receive the value from the third column from the query,
which was the idsContactID from the tblContacts table.

The List Rows property is set to 8 by default, and this is acceptable. Because
the Seller combo box is near the bottom of the form, 8 is a good number. If
there are more in the list that will fit below the combo box, the list may start
above the combo box itself when it is opened.

5. Set the List Width property to 4”.

This is one of the most misunderstood properties in combo boxes. This value
should always be set to at least the sum of the Column Widths property, and
probably a little bigger (.15 inches) to account for a scroll bar. If you don’t set
this property large enough, the combo box will contain a horizontal scroll bar
and look very unprofessional.

6. Set the Limit to List property to Yes.

In order to protect good data, you must limit the data entry to valid sellers in
the tblContacts table. The Limit to List property will prohibit entries not in
the tblContacts table.

If you have followed the preceding steps properly, your Form design should
resemble the one shown in Figure 11-19, and the Form view should look like
the one shown in Figure 11-20.

Figure 11-19: The Seller combo box control and Property window.

419Chapter 11 ✦ Adding Data-Validation Features to Forms

Figure 11-20: A multiple-column combo box in form view.

✦ ✦ ✦

Creating
Professional-
Looking Forms
and Reports

In Chapters 10 and 11, you built a form that began with a
blank Form Design. That form had no special formatting

other than some label and text box controls. The most excit-
ing objects on the form were the option group, check boxes,
and toggle button. By using the various formatting windows
and the Formatting toolbar, line and rectangle controls, back-
ground pictures, some limited color, and your own imagina-
tion, you can create professional-looking forms with a small
amount of work.

In this chapter, you learn to format the data-entry form that
you created in Chapter 11 to make it more readable and inter-
esting to look at.

Making a Good Form Look Great
Just as you can use a desktop publishing package to enhance
a word-processing document to make it more readable, you
can use the tools in Form Design view to enhance a database
form to make it more usable. One way that you can make your
database form more usable is to draw attention to areas of the
form that you want the reader to notice. Just as a headline in
a newspaper calls your attention to the news, an enhanced
section of a form makes the information that it contains
stand out.

The Access form designer has a number of tools to make the
form controls and sections more visually striking, such as the
following:

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Enhancing the font
size and style of text
control

Applying special
display effects to
forms

Adding lines and
rectangles to a form

Adding color or
shading to a form

Adding a
background picture
to a form

Copying formatting
properties between
controls

Using AutoFormat
and the Format
Painter

✦ ✦ ✦ ✦

422 Part I, Section II ✦ Building Forms and Reports

✦ Fonts, Size, and Colors

✦ Lines and rectangles

✦ Color and background shading

✦ Three-dimensional effects (raised, sunken, etched, chiseled, shadowed)

✦ Background pictures

✦ Form headers and footers

In this chapter, you learn to use special formatting to verify fonts and add shading,
shadows, lines, rectangles, and three-dimensional effects. Figure 12-1 shows the
form as it appears after some special effects have been added.

In this chapter, you modify your form created in Chapter 11 to add the formatting
features shown in Figure 12-1. If you are following the examples, open either the form
you created in Chapter 11 (frmProductExample) or the form frmProductExample
in the Chap12Start.mdb database file on the CD-ROM that comes with this book.

Figure 12-1: The enhanced form.

Understanding visual design
Access has a WYSIWYG (What You See Is What You Get) visual form designer.
As you add controls onscreen, you see instantly what they look like in your form.
If you want to see what the data looks like during the form design process, the
onscreen preview mode lets you see the actual data in your form design without
using a hard-copy device such as a printer.

On the
CD-ROM

423Chapter 12 ✦ Creating Professional-Looking Forms and Reports

The Access form designer lets you add color and shading to form text and controls.
You can also display them in reverse video, which shows white letters on a black
background. You can even color or shade the background of form sections. As you
specify these effects, you see each change instantly on the Design screen.

Using the formatting windows and toolbar
The most important tools for enhancing a form are the formatting windows and the
Formatting toolbar. You can choose from five formatting windows, including the
following:

✦ Fill/Background color for shading

✦ Font/Foreground color for text

✦ Line/Border Color for lines, rectangles, and control borders

✦ Line/Border Width for lines, rectangles, and control borders

✦ Special Effect, such as raised, sunken, etched, chiseled, or shadowed

You can display or remove the Formatting toolbar from the screen by selecting
View ➪ Toolbars and selecting Formatting(Form/Report), or by right-clicking on the
toolbar area and selecting Formatting(Form/Report). Figure 12-2 shows the five
formatting windows pulled off of the toolbar and opened. You can use these win-
dows to format the different controls in a form.

Figure 12-2: The five formatting windows.

Note

424 Part I, Section II ✦ Building Forms and Reports

You can tell the selected color in the three color windows (Fill/Back Color,
Font/Fore Color, and Line/Border Color) by looking at the small colored rectangle
just below the three picture icons (Fill/Back Color, Font/Fore Color, Line/Border
Color) in the toolbar.

A formatting window is a window similar to the toolbox or the Field List. You can
move a formatting window around the screen, but you can’t anchor it in the way that
you can dock a toolbar to a window border. To open the window and place it on the
surface, click the formatting tool icon’s down-arrow and then click the title bar and
drag it to where you want it. A formatting window can remain onscreen all the time;
you can use it to change the options for one or more controls. To close a formatting
window, click the Close button or reselect its icon on the Formatting toolbar.

You can modify the appearance of a control by using a formatting window. To mod-
ify the appearance of a control, select it by clicking it, and then click the formatting
window that you need to change the control’s appearance. (Refer to Figure 12-2 to
see all five formatting windows.)

The Font/Fore Color (foreground text) and Fill/Back Color (background color) win-
dows change the color of the text or background of a control. You can make a con-
trol’s background transparent by selecting the Transparent button in the Fill/Back
Color window. The Line/Border Color window changes the color of control’s bor-
ders, lines, and rectangles. Clicking the Transparent button in the Line/Border
Color window makes the border on any selected control invisible.

The Line/Border Width window changes the thickness of control borders, stand-
alone lines, and rectangles. You can select the thickness of a line by using the thick-
ness buttons. Available thicknesses (in points) are hairline, 1 point, 2 points, 3
points, 4 points, 5 points, and 6 points.

A point (approximately 1⁄72 inch) is a unit of measure for text and rule heights.

The Special Effect window lets you choose from Flat, Raised, Sunken, Etched,
Shadowed, and Chiseled appearances for a control. The Special Effect window also
provides a control property that lets you designate the border style. The border
styles include the following:

✦ Transparent

✦ Solid

✦ Dashes

✦ Short Dashes

✦ Dots

✦ Sparse Dots

Note

Tip

425Chapter 12 ✦ Creating Professional-Looking Forms and Reports

✦ Dash Dot

✦ Dash Dot Dot

After you have finished using a formatting window, you can close it by clicking the
Close button in the upper-right corner.

Creating special effects
Figure 12-3 shows some of the special effects that can easily be created for controls
with the Special Effect window. In the figure, you see that controls with gray as a
background color display special effects much better than controls with white as a
background color. In fact, a form background in gray or a dark color is almost
mandatory to make certain special effects easy to see. The following sections
describe each of these effects; you will use some of them later to modify the
frmProductExample data entry form.

You can apply special effects to rectangles, label controls, text box controls, check
boxes, option buttons, and option group boxes. Anything that has a box or circle
around it can be raised, sunken, etched, chiseled, or shadowed.

By simply selecting the control and adding the special effect, you can make your
forms look much better and draw attention to their most important areas.

Figure 12-3: Viewing the various special effects.

426 Part I, Section II ✦ Building Forms and Reports

Flat
In Figure 12-3, the first pair of labels exhibits the Flat special effect. The flat box
stands out better when set against the gray background.

You can also use the Border Width window to increase the width of the border
lines, which makes the box more prominent. The Border Color window lets you
change the color of the border. A thick white border also stands out.

Raised
The raised box is best used to set off a rectangle that surrounds other controls or
for label controls. This box gives the best effect in a dark color against a dark back-
ground. As Figure 12-3 shows, the raised box is difficult to see with a white fill color.
By increasing the width of the box, you can give the control the appearance of
being higher than the surface of the onscreen background. You can achieve the
raised three-dimensional effect by contrasting the white left and top borders with
the black right and bottom borders.

Sunken
The sunken special effect is the most dramatic and most often used; it’s the stan-
dard format for text box (data entry) controls in the Form Wizard. As Figure 12-3
shows, either the white or the gray fill color looks very good on a gray form back-
ground. You can also increase the width of the border to give the effect of a deeper
impression. You achieve the sunken three-dimensional effect by using black left and
top borders and white right and bottom borders. The effect works well with check
boxes and option buttons.

Shadowed
The shadowed special effect places a solid, dark-colored rectangle behind the origi-
nal control, which is slightly offset to give the shadowed effect. As Figure 12-3
shows, the black shadow works well behind a box filled with white or gray. You can
change the border color to change the shadow color.

Etched
The etched effect is perhaps the most interesting of all the special looks.
Essentially, it’s a sunken rectangle with no sunken inside area.

Current Microsoft Windows standards make heavy use of etched rectangles.
Sunken rectangles around groups are a very old Windows 3.1 standard and should
only be used for text box controls. Option groups or rectangles around controls
should use the etched look.

Chiseled
The chiseled effect adds a chiseled line underneath a selected control.

Tip

Tip

427Chapter 12 ✦ Creating Professional-Looking Forms and Reports

Changing the forms background color
If your form is primarily intended for on-screen viewing (instead of print), it may be
beneficial to color the background. A light gray background (the Microsoft
Windows default) seems to be the best neutral color in all types of lighting and
visual conditions. However, you may want to have a different color for the form’s
Header and Footer sections. To change the background for the form header or
detail sections, select the desired section by clicking on the section’s top border
and then select the appropriate background color.

When you change the background color of form sections, also change the back-
ground of individual label controls for a more natural look. A label control gener-
ally doesn’t look good if its background doesn’t match the background of the form
itself. Better yet, you can set the control’s Transparent property to true or select
Transparent from the Transparent button above the little squares of color in the
Background color window.

Enhancing Text-Based Controls
Generally, you should ensure the accuracy of your label text and data before you
start enhancing display items with shading or special effects. When your enhance-
ments include label and text box control changes, begin with them.

Enhancing label and text box controls
You can enhance label and text box controls in several ways:

✦ Change the text font type (Arial, Times New Roman, Wingdings).

✦ Change the text font size (4–200).

✦ Change the text font style (bold, italic, underline).

✦ Change the text color (using a formatting window).

✦ Add a shadow (by duplicating the text and offsetting the copy).

The Windows standards call for text to be non-bold 8-point Tahoma font for all
label and text controls and 12-point non-bold Verdana for large header labels.

In Chapter 10, you change the title’s text in the label control in the form header.
You then change the text’s font size and font style. In the next section, you learn
how to add a text shadow to the label control.

Cross-
Reference

Tip

Tip

428 Part I, Section II ✦ Building Forms and Reports

Creating a text shadow
Text shadows give text a three-dimensional look by making the text seem to float
above the page while its shadow stays on the page. This effect uses the same basic
principle as a shadowed box. Use this process to create text shadows:

1. Duplicate the text.

2. Offset the duplicate text from the original text.

3. Change the duplicate text to a different color (usually a lighter shade).

4. Place the duplicate text behind the original text.

5. Change the original text’s background color to Clear.

To create a shadow for the title’s text, follow these steps:

1. Select the Products Example label control in the Form Header.

2. Click Edit ➪ Duplicate and select the duplicate label.

3. Click the Font/Fore Color window icon and choose white to change the dupli-
cate text’s color to white.

4. Drag the duplicate text up and to the right of the original text to create an off-
set from the text.

5. Click Format ➪ Send to Back from the menu bar.

You may have to move the text or its shadow to be in the best position. You also
may have to increase the Form Header section. The text now appears to have a
shadow, as shown in Figure 12-4.

To move the selected control a very small distance, press an arrow key; the control
moves slightly in the direction of the arrow key that you use.

If you don’t see the shadow, select the original text and then select the
Transparent option on the Fill/Back Color Formatting toolbar.

The box around the label control is not visible when the form is displayed because
the Transparent button in the Border Color window is depressed.

When you duplicate the original text, the duplicate is automatically offset below the
original text. When you place the duplicate text behind the original, it’s hidden. You
can redisplay it by placing the original text in front. If the offset (the distance from
the other copy) is too large, the effect doesn’t look like a shadow. You can perfect
the shadowed appearance by moving one of the label controls slightly.

Tip

Note

Tip

429Chapter 12 ✦ Creating Professional-Looking Forms and Reports

Figure 12-4: The text with a shadow and reverse video.

Although the shadow appears correct on-screen and looks great, it won’t print cor-
rectly on most monochrome laser printers if you decide to save the form as a
report or simply print the form. What you normally see is two lines of black text,
which look horrible. If you plan to print your forms and don’t have a printer that
prints text in color (or prints many shades of gray by using graphics rather than
text fonts), avoid using shadowed text on a form.

Changing text to a reverse video
display and coloring it
Text really stands out when you create white text on a black background. This
setup is called reverse video; it’s the opposite of the usual black letters on white.
You can convert text in a label control or text box to reverse video by changing the
Back Color to black and the Fore Color to white. To change the Product ID text con-
trol to reverse video, follow these steps:

1. Select the Product ID text box control (not the label control).

2. Select Black from the Fill/Back Color formatting window.

3. Select White from the Font/Fore Color formatting window.

To make it more dramatic, you may want to set the font to Bold and resize
the control.

4. Press the Bold button on the toolbar to make the control bold.

Caution

430 Part I, Section II ✦ Building Forms and Reports

5. Change the font size to 10 to make it a little larger.

6. Double-click the bottom right sizing handle to make the control fit the
resized text.

As a key field, it should really stand out. Setting the background to red would
do this.

7. Click on the Red square in the background color window.

The form should look like the one shown in Figure 12-5.

With some laser printers, you may not see reverse video if you print your form,
because the printer’s drivers can’t print it.

Displaying label or text box control properties
As you change appearances of a label control or text box control using a formatting
window, you are actually changing the control’s properties. Figure 12-5 displays the
Property window for the text box control that you just modified. As Figure 12-5
shows, a formatting window can affect many properties. Table 12-1 shows the vari-
ous properties (and their possible values) for both label and text box controls.

Figure 12-5: Text Box control properties.

Caution

431Chapter 12 ✦ Creating Professional-Looking Forms and Reports

Table 12-1
Label or Text Box Format Properties

Property Options Description

Format Various Numeric and Date Determines how the data is
Formats displayed.

Decimal Places Auto, 1-15 Determines how many decimal
places, if any, you want to apply to
this control.

Visible Yes/No Yes: Control is displayed normally No:
Control is invisible when displayed.

Display When Always, Print Only, Screen Only Determines when the control is
displayed.

Scroll Bars None, Vertical, Horizontal, Both Specifies when scrollbars are
displayed.

Can Grow Yes/No If multiple lines of text are in the
control, does the text box get larger?

Can Shrink Yes/No If fewer lines of text are in the control
than in its initial size, does the text
box height get smaller?

Left Position of the left corner of the Specifies the position of an object
control in the current measure on the horizontal axis.
(include an indicator, such as
centimeters or inches, if you use
a different unit of measurement)

Top Position of the top corner of the Specifies the position of an object
control in the current measure on the vertical axis.

Width The width of the control in the Specifies the width of an object.
current unit of measure

Height The height of the control in the Specifies the height of an object.
current unit of measure

Back Style Transparent, Normal Determines whether a control’s
background is opaque or transparent.

Back Color Any available background color Specifies the color for the interior of
the control or section.

Special Effect Flat, Raised, Sunken, Shadowed, Determines whether a section or
Etched, Chiseled control appears flat, raised, sunken,

shadowed, etched, or chiseled.

Continued

432 Part I, Section II ✦ Building Forms and Reports

Table 12-1 (continued)

Property Options Description

Border Style Transparent or Solid, Dashes, Determines whether a control’s
Dots (Lines/Boxes Only) border is opaque or transparent.

Border Color Any available border color Specifies the color of a control’s
border.

Border Width Hairline, 1pt, 2pt, 3pt, 4pt, 5pt, Specifies the width of a control’s
6pt border.

Fore Color Any selection from a formatting Specifies the color for text in a control
window or the printing and drawing color.

Font Name Any system font name that Specifies the name of the font used
appears on the toolbar; for text or a control.
depends on fonts installed

Font Size Any size available for a given Specifies the size of the font used
font for text or a control.

Font Weight Extra Light, Light, Normal, Specifies the width of the line
Medium, Semi-Bold, Bold, Windows uses to display and print
Extra Bold, Heavy characters.

Font Italic Yes/No Italicizes text in a control.

Font Underline Yes/No Underlines text in a control.

Text Align General (default), Left, Center, Sets the alignment for text in a Right
control.

Reading Order Context, Left-To-Right, Right-To- Determines the reading order of Left
the letters based on the language.

Keyboard System, English Determines the keyboard language
Language for entry into the control.

Scroll Bar Align System, Right, Left Scroll bars can be placed on the left
or right side of a control based on the
language.

Numeral Shapes System, Arabic, National, Context Used for Arabic and Hindi languages
for the shapes of numbers.

Left Margin Used to set margins on a control.
Enter in inches for the left margin.
Can only be used for text box and
label controls.

Top Margin Used to set margins on a control.
Enter in inches for the top margin.
Can only be used for text box and
label controls.

433Chapter 12 ✦ Creating Professional-Looking Forms and Reports

Property Options Description

Right Margin Used to set margins on a control.
Enter in inches for the right margin.
Can only be used for text box and
label controls.

Bottom Margin Used to set margins on a control.
Enter in inches for the bottom
margin. Can only be used for text box
and label controls.

Line Spacing Used to specify line spacing for a
control. Enter in inches for the amount
of space between lines. Can only be
used for text box and label controls.

Is Hyperlink Yes, No Used to specify if control is a
hyperlink. If you select Yes, the text is
blue and underlined. Can be used for
a direct link to the Internet and for
text box and label controls.

Although you can set many of these controls from the property sheet, it’s much eas-
ier to drag the control to set the Top, Left, Width, and Height properties or to use a
formatting window to set the other properties of the control.

Displaying Images in Forms
You can display a picture on a form by using an image control. This method is differ-
ent from the way you use a bound OLE (Object Linking and Embedding) control.
Normally, you store an OLE object (sound, video, Word, or Excel document) with a
data record or with an unbound OLE object that is used specifically for storing OLE
objects (those same sound, video, Word, or Excel documents) on a form.

Image controls in Access 2003 are used only for non-OLE objects, such as Paintbrush
(.BMP), Icon file (.ico), or Web-like pictures (.jpg). Image controls offer a distinct
advantage: Unlike OLE objects (which can be edited but use huge amounts of
resources), the image control adds only the size of the bitmap picture to your com-
puter’s overhead. Using too many OLE objects in Access causes resource and per-
formance problems. New and existing applications should use image controls only
when you need to display pictures that don’t change or don’t need to be edited
within Access.

In previous versions of Access, you may have learned to select an unbound OLE
object picture and then select Edit ➪ Save As Picture. This technique broke the OLE
connection but did not fix the resource problem.

Tip

434 Part I, Section II ✦ Building Forms and Reports

You can add an image control to your form by either pasting a bitmap from the
Clipboard or embedding a bitmap file. For example, you may want to add a picture
of some cars to this form. Later you will add a large logo of Access Auto Auctions
to create the main switchboard menu. On the CD that accompanies this book in
the Chapter12 directory, you will find an icon file named cars.ico. In this section,
you add this bitmap to the page header section of the form.

You can display an image object in one of three ways:

✦ Clip. Displays picture in its original size.

✦ Stretch. Fits the picture into the control regardless of size; often displayed out
of proportion.

✦ Zoom. Fits the picture into the control (either vertically or horizontally) and
maintains proportions; often results in white space on top or right side.

To add the logo to the form, follow these steps:

1. Select the Form Header section.

2. Select Insert ➪ Picture from the main menu.

On the CD or on your hard drive, find the directory in which the Access 2003
Bible example files have been placed. Find the directory for Chapter 12. You
should see a list of the graphic files in the directory, as shown in Figure 12-6.

From this dialog box, you can select the type of picture object that you want to
insert into your form. The dialog box supports many picture formats, including
.BMP, .TIF, .WMF, .PCX, .ICO, .WPG, .JPG, .PCT, as well as any other picture format
that your copy of Microsoft Windows supports.

Figure 12-6 shows the Preview of the AAAuctions.jpg file you will use later to
create a background bitmap for the form and for the main switchboard.

If you don’t see a preview of the picture, close the dialog and go back and select
Insert Picture ➪ Views ➪ Preview. If you see a message that the Preview is not
available, you will just have to select the picture to view it. You can always delete
it if it is not what you expected. You can also choose the icon to the left of the
Tools toolbar button in the dialog box and select the preview view.

3. Select cars.ico and click OK.

Notice that when you click on a file, it is first displayed in the Preview area on
the right part of the dialog box before the picture is inserted.

If the file doesn’t already exist and you want to create a new object (such as a
Paintbrush picture), you must add an unbound OLE frame rather than an
image control.

After you complete Step 3, Access returns you to the Form Design View win-
dow, where the picture is displayed.

Tip

Note

On the
CD-ROM

435Chapter 12 ✦ Creating Professional-Looking Forms and Reports

Figure 12-6: Previewing a picture.

The image control is complete and should look like the one shown in Figure 12-7.

Figure 12-7: Viewing the image control.

436 Part I, Section II ✦ Building Forms and Reports

Working with Lines and Rectangles
You can use lines or rectangles (commonly called boxes) to make certain areas of
the form stand out and attract attention. In Figure 12-1, several groups of lines and
rectangles are being used for emphasis. In the next exercise, you need to add the
lines and the rectangle. You can use Figure 12-8 as a guide for this procedure.

To create the rectangle for the auction block, follow these steps:

1. Select the Rectangle control on the toolbox.

2. Click above and to the left of the Auction Type text.

3. Drag the rectangle around the entire set of Auction text box controls, as
shown in Figure 12-8, and release the mouse button.

4. Select the etched effect in the Special Effect formatting window if it isn’t
already selected.

If the default rectangle is not transparent, Select Format ➪ Send to Back or choose
Fill/Back Color and select Transparent to redisplay the text boxes. You can also
redisplay the controls behind the rectangle by checking the Transparent button of
the Background Color option in a formatting window. This method, however,
doesn’t allow you to add other shading effects. For a rectangle, you should always
select Format ➪ Send to Back.

Figure 12-8: Completing the rectangles and lines.

Tip

437Chapter 12 ✦ Creating Professional-Looking Forms and Reports

You still need to add several lines to the form to learn about line placement. You
need to add a single horizontal line between the Taxable and Auction checkboxes
and a thicker vertical line down the left side of the form (beginning with the
Product ID control and ending to the left of the Sales Price control). To add these
lines, complete these steps (use Figure 12-8 as a guide):

1. Click the Line control in the toolbox.

2. Click to the left and below the Taxable control. Hold the Shift key down and
drag the line icon to the right, releasing the mouse a little short of the Picture
control, as shown in Figure 12-8.

Holding the Shift key down keeps the line perfectly horizontal (Top Property
does not change).

The easiest way to make changes to display and formatting properties is to
use the formatting icons in the form design toolbar. While you can always
select a control and make changes or selections from the property window of
each control, it is generally easier to simply select the control and change the
desired properties by using the tool bar icons and their then displayed
windows.

3. Select the chiseled special effect from the Special Effect icon in the formatting
toolbar.

4. Create a new vertical line, starting just to the left of the Product ID field. To
keep the line vertical, hold down the Shift key as you drag the line to just left
of the bottom of the Sales Price control, as shown in Figure 12-8.

5. Select the 3 button in the Line/Border Width icon formatting window to make
the line thicker.

6. Select the Blue color from the Line/Border Color window to make the line blue.

If you hold down the Shift key while creating the line, the line remains perfectly
straight, either horizontally or vertically, depending on the initial movement you
make when drawing the line.

Before you do anything else, you might want to save the form. Everything you do
for the rest of this chapter will not be saved. Currently, the form looks very profes-
sional. The tasks you are about to perform will not increase the professionalism of
this form but are good ideas to know how to do.

Emphasizing Areas of the Form
If you really want to emphasize an area of the form, you can change a rectangle to
raised or shadowed. In fact, you can add a shadow to any control. The most com-
mon types of controls to add a shadow to are rectangles and text boxes. You can
create shadows with the Shadow special effect and a raised control with the Raised
special effect.

Tip

438 Part I, Section II ✦ Building Forms and Reports

Adding a shadow to a control
If the background is light or white, use a dark-colored rectangle. If the background
is dark or black, use a light-colored or white rectangle. To create a shadow for the
Description text box, follow these steps:

1. Select the Description control.

2. Select the Shadow special-effects button.

The Description control should have a shadow, as shown in Figure 12-9.

Figure 12-9: Adding shadows and a raised control.

Raising a group of controls
Raising a block of controls also can really make it stand out. The best way to do this
is to add a rectangle around a group of controls and then change the rectangle
property to raised. The current Microsoft Windows standard is to use etched rect-
angles, but raised can be used in special situations.

To create a raised rectangle, follow these steps:

1. Select the rectangle you recently created around the Auction controls.

2. Select the Raised special-effects button.

Your rectangle should be raised, as shown in Figure 12-9.

439Chapter 12 ✦ Creating Professional-Looking Forms and Reports

Changing the header dividing line
Form headers and footers are automatically separated from the Detail section by a
solid black line. In Access 2003, you can remove this line by setting the Dividing
Lines form property to No. This action removes the line and makes the form appear
seamless. This is especially important if you have a background bitmap on the
entire form, if you’re using form headers or footers, and if you want a single look.

Adding a Background Bitmap
To add a really fun and sometimes important effect, you can add a background
bitmap to any form, just as you added one control behind another. In Access 2003,
you can do this by using the form’s Picture properties. You have five properties to
work with:

✦ Picture. The name of the bitmap picture; it can be any image-type file.

✦ Picture Type. Embedded or linked. You can save the picture in the database
or you can just save the location (pointer) of the picture.

✦ Picture Size Mode. Clip, Stretch, or Zoom. Clip displays the picture only at its
actual size starting at the Picture Alignment property. Stretch and Zoom fill
the entire form from the upper-left corner of any header to the lower-right cor-
ner of any footer.

✦ Picture Alignment. Top-Left, Top-Right, Center, Bottom-Left, Bottom-Right,
and so on. Use this property only when you use the Clip option in Picture Size
mode.

✦ Picture Tiling. Yes/No. When you use a small bitmap with Clip mode, this
repeats the bitmap across the entire form. For example, a brick becomes a
brick wall.

For this example, you can add AAuctions.jpg to the background of the form. Use
these steps to add a background bitmap:

1. Select the form itself by clicking in the upper-left corner of the intersection of
the two design rulers or by selecting Form from the combo box at the left mar-
gin of the Formatting toolbar.

2. Display the Properties window; click the Picture property that’s on the Format
sheet of the Property window.

3. Enter C:\access 2003 Bible\AAuctions.jpg (or the path to where you have
placed your bitmap on the disk). When you move to another property, the
Access Auto Auctions logo (or your bitmap) appears in the upper-left corner
of the form background.

4. Click the Picture Size Mode property and change it from Clip to Stretch. The
picture now occupies the entire form background.

440 Part I, Section II ✦ Building Forms and Reports

As Figure 12-10 shows, the white background of the picture (along with the thick,
black lines) makes it difficult to see the fields.

Figure 12-10: A bitmap picture behind a form.

Using background bitmaps adds some interesting capabilities to your form. For
example, you can take this process a step further and incorporate the bitmap into
your application. A bitmap can have buttons tied to macros (or Visual Basic for
Applications code placed in the right locations). To help the office staff search for a
patient, for example, you can create a form that has a map with three states
behind it. By adding invisible buttons over each state, you can give the staff the
choice of clicking a state to select the patient records from that state.

You can also scan a paper form into your computer and use that image as the form
background. You do this by placing fields on top of the scanned form itself, which
spares you from spending a great deal of time re-creating the form (which gives the
phrase filling out a form a whole new meaning).

Using AutoFormat
You can change the format of an entire form by using the AutoFormat feature in
Access 2003. This is the first menu option on the Format menu. AutoFormat lets
you make global changes to all fonts, colors, borders, background bitmaps, and vir-
tually all other properties on a control-by-control basis. This feature works
instantly and completely and is totally customizable.

Tip

441Chapter 12 ✦ Creating Professional-Looking Forms and Reports

When you select Format ➪ AutoFormat, a dialog box appears, as shown in Figure 12-11.
This window lets you select from the standard AutoFormats or any formats that
you have created. The figure is shown after you click on the Options button. It lets
you apply only fonts, colors, or border style properties separately.

In this example, you can choose the Blends AutoFormat type to change the style of
the control fonts and colors and to change the background bitmap. As you select
the different AutoFormats, you can see an example in the preview area to the right
of the selections.

For example, you could click the Options button and deselect the check box for
color (turn it off).

After you’re finished, the controls appear, as shown in Figure 12-12. Notice that the
title text size has changed and shadow boxes have appeared around most of the
controls. Even the fonts are different. The reason is that the defaults for these con-
trols are different from what you were using. This is probably not a format you will
want to use often.

Figure 12-11: Selecting AutoFormat.

Customizing and adding new AutoFormats
You can modify existing AutoFormats — or define new ones — by creating a form,
setting various form properties, and starting AutoFormat. Although AutoFormat
changes the look of your form totally, it does its job on one control type at a time.
This means that it can format a label differently from a text box and differently from
a line or rectangle. This capability also lets you define your own formats for every
control type, including the background bitmap.

After you have created a form that you want to use as a basis for an AutoFormat,
select AutoFormat and click the Customize button. Another window appears, as
shown in Figure 12-13. This window allows you to create a new format, update the
selected format, or delete the selected format.

442 Part I, Section II ✦ Building Forms and Reports

Figure 12-12: Data-entry form using the Blends format.

Figure 12-13: Creating your own AutoFormat.

Copying individual formats between controls
A subset of the AutoFormat technology is the Format Painter. This tool allows you
to copy formatting properties from one individual control to another. To use the
Format Painter, first select the control whose properties you want to use. Then
click the Format Painter icon on the toolbar (the picture of a paintbrush, next to the
Paste icon). Your mouse pointer changes to a paintbrush. Click the control that you
want to update; Access copies the properties from the control that you first
selected to the newly selected control.

✦ ✦ ✦

Understanding
and Creating
Reports

Reports provide the most flexible way for viewing and
printing summarized information. Reports display infor-

mation with the desired level of detail, while enabling you to
view or print your information in almost any format. You can
add multilevel totals, statistical comparisons, and pictures and
graphics to a report. In this chapter, you learn to use Report
Wizards as a starting point. You also learn how to create
reports and what types of reports you can create with Access.

In this chapter, you will create new reports using the report
wizards and by creating a blank report without using a wiz-
ard. You will use tables created in previous chapters. If you
are following the examples, open the Chap13Start.mdb
database file on the CD-ROM that comes with this book
and follow the instructions in each section of the chapter.

Understanding Reports
Reports are used for presenting a customized view of your
data. Your report output can be viewed onscreen or printed to
a hard copy device. Reports provide the capability to control
summarization of the information. Data can be grouped and
sorted in any order and then presented in the order of the
groupings. You can create totals that add numbers, calculate
averages or other statistics, and display your data graphically.
You can print pictures and other graphics as well as memo
fields in a report. If you can think of a report you want, Access
can probably create it.

What types of reports can you create?
Four basic types of reports are used by businesses:

On the
CD-ROM

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the types
of reports you can
create

Knowing the differences
between a report and a
form

Understanding the
process of creating
reports

Creating reports with
a Report Wizard

Viewing reports
onscreen

Printing reports

Saving reports

Understanding the 11
tasks necessary to
create a great report

Creating a report from
a blank form

Sorting and grouping
data

Adding label and text
controls to your report

Modifying the
appearance of text and
label controls

Adding page breaks

Copying an existing
report

✦ ✦ ✦ ✦

444 Part I, Section II ✦ Building Forms and Reports

✦ Tabular reports. These print data in rows and columns with groupings and
totals. Variations include summary and group/total reports.

✦ Columnar reports. These print data as a form and can include totals and
graphs.

✦ Mail-merge reports. These create form letters.

✦ Mailing labels. These create multicolumn labels or snaked-column reports.

Tabular reports
Figure 13-1 is a typical tabular-type report in the Print Preview window. Tabular
reports (also known as groups/totals reports) are generally similar to a table that dis-
plays data in neat rows and columns. Tabular reports, unlike forms or datasheets,
usually group their data by one or more field values; they calculate and display
subtotals or statistical information for numeric fields in each group. Some
groups/totals reports also have page totals and grand totals. You can even have
snaked columns so that you can create directories (such as telephone books). These
types of reports can use page numbers, report dates, or lines and boxes to separate
information. They can have color and shading and can display pictures, business
graphs, and memo fields, like forms. A special type of tabular report, summary
reports, can have all the features of a tabular report but not print the detail records.

Figure 13-1: A tabular report in the Print Preview window of Access 2003.

445Chapter 13 ✦ Understanding and Creating Reports

Columnar reports
Columnar reports (also known as form reports) generally display one or more
records per page, but do so vertically. Columnar reports display data very much as
a data-entry form does, but the report is used strictly for viewing data and not for
entering data. Figure 13-2 is part of a typical columnar report from the Access Auto
Auctions database system in the Print Preview window.

Figure 13-2: A columnar report showing report controls
distributed throughout the entire page.

Another type of columnar report, known as a form/subform report, generally dis-
plays one main record per page (like a business form) but can show many records
within embedded subforms. (You’ll learn about subforms in Chapter 15.) An invoice
is a typical example. This type of report can have sections that display only one
record and at the same time have sections that display multiple records from the
many side of a one-to-many relationship — and even include totals.

Figure 13-3 shows an invoice report from the Access Auto Auctions database sys-
tem in the Print Preview window.

446 Part I, Section II ✦ Building Forms and Reports

Figure 13-3: An invoice report.

Mailing labels
Mailing labels are also a type of report. You can easily create mailing labels, shown
in Figure 13-4, using the Label Wizard to create a report in Access. The Label Wizard
enables you to select from a long list of Avery label (and other vendors) paper
styles, after which Access correctly creates a report design based on the data you
specify to create your label. After the label is created, you can open the report in
design mode and customize it as needed.

Mailing labels are covered in detail in Chapter 17.

The difference between reports and forms
The main difference between reports and forms is the purpose of the output.
Whereas forms are primarily for data entry, reports are for viewing data (either
onscreen or in hard copy form). Calculated fields can be used with forms and can
calculate an amount based on the fields in the record. With reports, you calculate
on the basis of a common group of records, a page of records, or all the records
processed during the report. Anything you can do with a form — except data
input — can be duplicated by a report. In fact, you can save a form as a report and
then customize the form controls in the Report Design window.

Cross-
Reference

447Chapter 13 ✦ Understanding and Creating Reports

Figure 13-4: A typical mailing-label report in the Print Preview window.

The process of creating a report
Planning a report begins long before you actually create the report design. The
report process begins with your desire to view your data in a table, but in a way
that differs from datasheet display. You begin with a design for this view; Access
begins with raw data. The purpose of the report is to transform the raw data
into a meaningful set of information. The process of creating a report involves
several steps:

✦ Defining the report layout

✦ Assembling the data

✦ Creating the report design using the Access Report Design window

✦ Printing or viewing the report

Defining the report layout
You should begin by having a general idea of the layout of your report. You can
define the layout in your mind, on paper, or interactively using the Access Report
Design window. Figure 13-5 is a report layout created with Microsoft Word and
served as a design from an analyst to a developer. This served as the basic design
for the report shown in Figure 13-1. Good reports can first be laid out on paper,
showing the fields needed and the placement of the fields.

448 Part I, Section II ✦ Building Forms and Reports

Figure 13-5: A sample report layout.

Assembling the data
After you have a general idea of your report layout, you should assemble the data
needed for the report. A report can use data from a single database table or from
the results of a query dynaset. You can link many tables with a query and then use
the result of the query (its dynaset) as the record source for your report. A dynaset
appears in Access as if it were a single table. As you learned earlier in Section I of
this book, you can select the fields, records, and sort order of the records in a
query. Access treats this dynaset data as a single table (for processing purposes) in
datasheets, forms, and reports. The dynaset becomes the source of data for the
report and Access processes each record to create the report. The data for the
report and the report design are entirely separate. In the report design, the field
names to be used in the report are specified. Then, when the report is run, Access
matches data from the dynaset or table against the fields used in the report and
uses the data available at that moment to produce the report.

In this example, you will use data from only the tblProducts table.

Creating a Report with Report Wizards
With Access, you can create virtually any type of report. Some reports, however,
are more easily created than others, when a Report Wizard is used as a starting
point. Like Form Wizards, Report Wizards give you a basic layout for your report,
which you can then customize.

449Chapter 13 ✦ Understanding and Creating Reports

Report Wizards simplify the layout process of your fields by visually stepping you
through a series of questions about the type of report that you want to create and
then automatically creating the report for you. In this chapter, you use Report
Wizards to create both tabular and columnar reports.

Creating a new report
You can choose from many ways to create a new report, including the following:

✦ Select Insert ➪ Report from the main menu when the Database window is
selected.

✦ Select the Reports object button and press the New toolbar button on the
Database window.

✦ From the Database window, the datasheet, or the query toolbar, click the New
Object down arrow and select Report.

Regardless of how you start a new report, the New Report dialog box shown in
Figure 13-6 appears. The dialog box in the figure is already filled in with the choices
you are about to make.

Figure 13-6: The New Report dialog box.

The New Report dialog box enables you to choose from among six ways to create
a report:

✦ Design View. Displays a completely blank Report Design window for you to
start with.

✦ Report Wizard. Helps you create a tabular report by asking you many
questions.

✦ AutoReport: Columnar. Creates an instant columnar report.

✦ AutoReport: Tabular. Creates an instant tabular report.

✦ Chart Wizard. Helps you create a business graph.

✦ Label Wizard. Helps you create a set of mailing labels.

450 Part I, Section II ✦ Building Forms and Reports

To create a new report using a Report Wizard, follow these steps:

For the example below, use the tblProducts table:

1. Create a new report by first selecting the Reports object button and then
pressing the New toolbar button.

2. In the New Report dialog box, select Report Wizard.

3. Select the table tblProducts and click OK. Figure 13-6 shows these choices
selected.

4. Press the OK button to move to the next Report Wizard screen.

Choosing the data source
If you begin creating the report with a highlighted table or from a datasheet or
query, the table or query you are using is displayed in the Choose the table or
query box. Otherwise, you can enter the name of a valid table or query before con-
tinuing. You can also choose from a list of tables and queries by clicking the combo
box selection arrow. In this example, you use the Hospital Report query you saw in
Figure 10-5, which creates data for customer visits on the date 7/11/01.

If you begin creating a report in Design View, you don’t need to specify a table or
query in the New Report dialog box because you can select the Record Source
later on from the Properties sheet.

Choosing the fields
After you select the Report Wizard and click the OK button, a field selection box
appears. This box is virtually identical to the field selection box used in Form
Wizards (see Chapter 9 for detailed information). In this example, select the fields
from left to right (designed in Figure 13-5 and shown in Figure 13-7).

1. Select the chrCategory field and press the Select Field button (>) to place the
field in the Selected Fields: area.

2. Repeat for the chrProductID, chrDescription, intQtyInStock, curCost,
curRetailPrice, and curSalePrice fields and press the Select Field button (>)
each time to place the field in the Selected Fields: area.

3. Click the Next button when you are through to move to the next wizard
screen.

You can double-click any field in the Available Fields list box to add it to the
Selected Fields list box. You can also double-click any field in the Selected Fields
list box to remove it from the box. Access then redisplays the field in the Available
Fields list box.

Tip

Tip

451Chapter 13 ✦ Understanding and Creating Reports

Figure 13-7: Selecting report fields.

You are limited to selecting fields from the original record source you started with.
You can select fields from other tables or queries by using the Tables/Queries:
combo box in this wizard screen. As long as you have specified valid relationships
so that Access can link the data, these fields are added to your original selection
and you can use them on the report. If you choose fields from tables that don’t have
a relationship, a dialog box will ask you to edit the relationship and join the tables.
Or you can return to the Report Wizard and remove the fields.

After you have selected your data, click the Next button to go to the next wizard
dialog box.

Selecting the grouping levels
The next dialog box enables you to choose which field(s) you want to use for a
grouping. In this example, Figure 13-8 shows the chrCategory field selected as the
only group field. This step designates the field(s) to be used to create group head-
ers and footers. Groups are used to combine data with common values.

Using the Report Wizard, you can select up to four different group fields for your
report; you can change their order by using the Priority buttons. The order you
select for the group fields is the order of the grouping hierarchy.

Select the chrCategory field as the grouping field and click (>). Notice that the pic-
ture changes to graphically show chrCategory as a grouping field, as shown in
Figure 13-8. This means that data will be grouped or separated by category and also
totaled as well if the report chosen supports summarized footers.

After you select the group field(s), click the Grouping Options button at the bottom
of the dialog box to display another dialog box, which enables you to further define
how your report will use the group field.

452 Part I, Section II ✦ Building Forms and Reports

Figure 13-8: Selecting report group fields.

You will learn more about groups, headers, and footers later in this chapter.

Defining the group data
The Grouping Options dialog box, which is displayed by pressing the Grouping
Options ... button in the lower-left corner of the Report Wizard screen, enables you
to further define the grouping. This selection can vary in importance, depending on
the data type.

The list box displays different values for the various data types:

✦ Text. Normal, 1st Letter, 2 Initial Letters, 3 Initial Letters, 4 Initial Letters,
5 Initial letters

✦ Numeric. Normal, 10s, 50s, 100s, 500s, 1000s, 5000s, 10000s, 50000s, 100000s.

✦ Date. Normal, Year, Quarter, Month, Week, Day, Hour, Minute.

Normal means that the grouping is on the entire field. In this example, use the entire
Customer Name field. By selecting different values of the grouping, you can limit the
group values. For example, suppose you are grouping on the Product ID field. A typ-
ical Product ID value is CAR-01. The characters to the left of the – represent the cat-
egory and the numbers to the right of the – are a sequential number. By choosing
the Product ID field for the grouping and then selecting 3 Initial Letters as the
grouping data, you can group the products by their category.

In this example, the default text-field grouping option of Normal is acceptable.

If you displayed the Grouping Options dialog box, click the OK button to return to
the Grouping levels dialog box.

Click the Next button to move to the Sort order dialog box.

Cross-
Reference

453Chapter 13 ✦ Understanding and Creating Reports

Selecting the sort order
Access sorts the Group record fields automatically in an order that helps the group-
ing make sense. The additional sorting fields specify fields to be sorted in the detail
section. In this example, Access is already sorting the data by the chrCategory field
in the group section. As Figure 13-9 shows, the data is also to be sorted by Product
ID so that the products appear in alphabetical order in the detail section.

Figure 13-9: Selecting the field sorting order.

The sort fields are selected by the same method that is used for grouping fields in
the report. You can select fields that you have not already chosen to group and
use these as sorting fields. The fields chosen in this dialog box do not affect group-
ing; they affect only the sorting order in the detail section fields. You can determine
whether the order is ascending or descending by clicking the button to the right of
each sort field, which toggles between Ascending and Descending.

Selecting summary options
At the bottom of the sorting dialog box is a button named Summary Options.
Clicking this button displays the dialog box shown in Figure 13-10. This dialog box
provides additional options for numeric fields. As you can see in Figure 13-10, all of
the numeric and currency fields are displayed and selected to be summed.
Additionally, you can display averages, minimums, and maximums.

Sum should be checked. You can also decide whether to show or hide the data in
the detail section. If you select Detail and Summary, the report shows the detail
data; selecting Summary Only hides the detail section and shows only totals in the
report.

Finally, checking the box labeled Calculate Percent of Total for Sums adds the per-
centage of the entire report that the total represents below the total in the group

454 Part I, Section II ✦ Building Forms and Reports

footer. If, for example, you had three products and their totals were 15, 25, and 10,
respectively, they would show 30%, 50%, and 20% below their total (that is, 50) —
indicating the percentage of the total sum (100%) represented by their sum.

Clicking the OK button in this dialog box returns you to the sorting dialog box.
There you can click the Next button to move to the next wizard dialog box.

Figure 13-10: Selecting the summary options.

Selecting the layout
Two more dialog boxes affect the look of your report. The first (shown in Figure
13-11) enables you to determine the layout of the data. The Layout area provides
six layout choices; these tell Access whether to repeat the column headers, whether
to indent each grouping, and whether to add lines or boxes between the detail
lines. As you select each option, the picture on the left changes to show the effect.

The Orientation area enables you to choose between a Portrait (up-and-down) and
a Landscape (across-the-page) layout. This choice affects how it prints on the
paper. Finally, the check mark next to Adjust the Field Width So All Fields Fit on a
Page enables you to cram a lot of data into a little area. (Magnifying glasses may be
necessary!)

For this example, choose Stepped and Landscape, as shown in Figure 13-11. Then
click on the Next button to move to the next dialog box.

Choosing the style
After you choose the layout, you can choose the style of your report from the dia-
log box shown in Figure 13-12. Each style has different background shadings, font
size, typeface, and other formatting. As each is selected, the picture on the left
changes to show a preview. For this example, choose Casual (as shown in Figure
13-12). Finally, click the Next button to move to the last dialog box.

455Chapter 13 ✦ Understanding and Creating Reports

Figure 13-11: Selecting the page layout.

Figure 13-12: Choosing the style of your report.

You can customize the styles, or add your own, by using the AutoFormat option
from the Format menu of the Report Design window and choosing Customize.

Opening the report design
The final Report Wizard dialog box contains a checkered flag, which lets you know
that you’re at the finish line. The first part of the dialog box enables you to enter a
title for the report. This title will appear once at the beginning of the report, not at
the top of each page. The default is the name of the table or query you used initially.

Change the report name to rptProductsCh13.

Tip

456 Part I, Section II ✦ Building Forms and Reports

Next, you can choose one of the option buttons at the bottom of the dialog box:

✦ Preview the report

✦ Modify the report’s design

For this example, leave the default selection intact to preview the report. When you
click the Finish button, your report is displayed in the Print Preview window. Name
the report rptProducts. Click Finish to complete the Report Wizard and view the
report.

Using the Print Preview window
Figure 13-13 displays the Print Preview window in a zoomed view of page 2. This
view displays your report with the actual fonts, shading, lines, boxes, and data that
will be on the printed report. When the Print Preview mode is in a zoomed view,
pressing the mouse button changes the view to a page preview that shows the
entire page.

Figure 13-13: Displaying a report in the zoomed preview mode.

You can move around the page by using the horizontal and vertical scrollbars. Use
the Page controls (at the bottom-left corner of the window) to move from page to
page. These controls include VCR-like navigation buttons to move from page to
page or to the first or last page of the report. You can also go to a specific page of
the report by entering a value in the text box between the previous and next
controls.

457Chapter 13 ✦ Understanding and Creating Reports

Figure 13-14 shows a view of the report in the multi-page preview mode of Print
Preview. The sixth icon from the left displays up to six pages at a time. The magnify-
ing glass mouse pointer selects part of the page to zoom in. In Figure 13-14, you can
see a representation of the printed page. Use the navigation buttons (in the lower-
left section of the Print Preview window) to move between pages, just as you would
to move between records in a datasheet. The Print Preview window has a toolbar
with commonly used printing commands.

If, after examining the preview, you are satisfied with the report, select the Printer
button on the toolbar to print the report. If you are dissatisfied, select the Close
button to return to the design window; Access takes you to the Report Design win-
dow to make further changes.

Figure 13-14: Displaying a report in Multiple Pages Print Preview’s page preview mode.

Viewing the Report Design window
When you click Design View (the left-most button on the toolbar), Access takes you
to the Report Design window, which is similar to the Form Design window. The major
difference is in the sections that make up the report design. As shown in Figure
13-15, the report design reflects the choices you made using the Report Wizard.

You may also see the Toolbox, Sorting and Grouping dialog box, property sheet,
and Field List window, depending on whether you pressed the toolbar buttons to
see these tools. You learn to change the design of a report in this chapter as well
as Chapters 14, 15, and 16.

Cross-
Reference

458 Part I, Section II ✦ Building Forms and Reports

Figure 13-15: The Report Design window.

You can return to the Print Preview mode by selecting the Print Preview button on
the Report Design toolbar or by selecting the Print Preview option on the File menu.
You can also select Print or Page Setup from the File menu. This menu also provides
options for saving your report.

Printing a Report
You can print one or more records in your report, exactly as they look onscreen,
using one of these methods:

✦ Click File ➪ Print in the Report Design window.

✦ Click the Print button in the Preview window.

✦ Click File ➪ Print in the Database window (with a report highlighted).

If you select File ➪ Print, a standard Microsoft Windows Print dialog box appears.
You can select the print range, number of copies, and print properties. If you click
the Print button, the report goes immediately to the currently selected printer with-
out displaying a Print dialog box.

Saving the Report
You can save the report design at any time by selecting File ➪ Save, or File ➪ Save
As, or File ➪ Export from the Report Design window, or by clicking the Save button
on the toolbar. The first time you save a report (or any time you select Save As or
Export), a dialog box enables you to select or type a name.

459Chapter 13 ✦ Understanding and Creating Reports

In Chapters 8 through 12, you learned to create a form and manipulate controls.
Wizards are great for creating quick and simple reports, but they are fairly limited
and give you little control over field type or placement. Although there are advan-
tages to creating a report with a wizard and then modifying the report, the remain-
der of this chapter focuses on creating a report from a blank form without the help
of the wizards. If you haven’t read Chapters 8 through 12, now is a good time to
read or review them, because the basic control and property concepts presented
there are necessary to understand this chapter.

Starting with a Blank Form
Previous chapters about forms introduced you to all the tools available in the
Report Design window. When you create reports, you use some of these tools in a
slightly different manner from the way they are used to create forms. Therefore, it is
important to review some of the unique report menus and toolbar buttons.

You can view a report in three different views: Design View, Layout Preview, and
Print Preview. You can also print a report to the hard copy device defined for
Microsoft Windows. You have already seen the preview windows in previous chap-
ters. This chapter focuses on the Report Design window.

The Report Design window is where you create and modify reports. The empty
Report Design window, shown in Figure 13-16, contains various tools, including the
Toolbox.

Figure 13-16: The Report Design window, showing the Toolbox.

Cross-
Reference

460 Part I, Section II ✦ Building Forms and Reports

The Design Window toolbar
The Report Design toolbar is shown in Figure 13-17. You click the button you want
for quick access to such design tasks as displaying different windows and activating
wizards and utilities. Table 13-1 summarizes what each item on the toolbar does.
(The table defines each tool from left to right on the toolbar.)

Figure 13-17: The Report Design toolbar.

The Report Design toolbar is distinct from the Format toolbar. To make such
changes as font selection and justification, you must first make sure that the
Formatting (Form/Report) design toolbar is displayed.

Table 13-1
The Design View Toolbar

Toolbar Item Description

Report View button Drop-down box displays the three types of views
available

Save button Saves the current report design

File Search button Finds text within a database or on your computer

Print button Prints a form, table, query, or report

Print Preview button Toggles to print preview mode

Cut button Removes selection from the document and adds it to
the Clipboard

Copy button Copies the selection to the Clipboard

Paste button Copies the Clipboard contents to the document

Format Painter button Copies the style of one control to another

Undo/Redo button Undoes/redoes previous commands

Insert Hyperlink button Inserts hyperlink

Field List button Displays or hides the Field List window

Toolbox button Displays or hides the Toolbox

Sorting and Grouping button Displays or hides the Sorting and Grouping box

AutoFormat button Applies a predefined format to a form or report

Code button Displays or hides the Module window

Properties button Displays the properties sheet for the selected item

461Chapter 13 ✦ Understanding and Creating Reports

Toolbar Item Description

Build button Displays the Builder or Wizard for selected control or
item

Database Window button Displays the Database window

New Object button Creates a new object

Microsoft Access Help button Displays Access Help

The tools on the Report Design screen are virtually identical to the Form Design
tools.

Banded Report Writer Concepts
In a report, your data is processed one record at a time. Depending on how you cre-
ate your report design, each data item is processed differently. Reports are divided
into sections, known as bands in most report-writing software packages. (In Access,
these are simply called sections.) Access processes each data record from a table or
dynaset, processing each section in order and deciding (for each record) whether
to process fields or text in each section. For example, the report footer section is
processed only after the last record is processed in the dynaset.

A report is made up of groups of details — for example, as shown in Figure 13-18, all
the products sold by category. Each group must have an identifying group header,
which for the first category in this example is Minivans. Each group also has a
footer where you can calculate the total cost and profit for each category. For
Minivans, the total profit is $17,063. The page header contains column descriptions;
the report header contains the report title. Finally, the report footer contains grand
totals for the report, and the page footer prints the page number.

The Access sections are listed below:

✦ Report header. Prints only at the beginning of the report; used for title page.

✦ Page header. Prints at the top of each page.

✦ Group header. Prints before the first record of a group is processed.

✦ Detail. Prints each record in the table or dynaset.

✦ Group footer. Prints after the last record of a group is processed.

✦ Page footer. Prints at the bottom of each page.

✦ Report footer. Prints only at the end of a report after all records are
processed.

Figure 13-18 shows these sections superimposed on a report.

Note

462 Part I, Section II ✦ Building Forms and Reports

Figure 13-18: Typical Report Writer sections.

How sections process data
Most sections are triggered by changes in the values of the data. Table 13-2 shows
the records that make up the dynaset for the Products Summary Report (Yes indi-
cates that a section is triggered by the data).

Table 13-2
Processing Report Sections

Category Product Report Page Category Detail Category Page Report

Name Name Header Header Header Footer Footer Footer

Minivans Mini-03 Yes Yes Yes Yes No No No

Minivans Mini-111 No No No Yes No No No

Minivans Mini-112 No No No Yes No No No

Minivans Mini-113 No No No Yes No No No

Minivans Mini-114 No No No Yes No No No

Minivans Mini-115 No No No Yes No No No

463Chapter 13 ✦ Understanding and Creating Reports

Category Product Report Page Category Detail Category Page Report

Minivans Mini-125 No No No Yes Yes No No

Motor Mot-01 No No Yes Yes Yes No No
Homes

SUV SUV-076 No No Yes Yes No No No

SUV SUV-111 No No No Yes No No No

SUV SUV-112 No No No Yes No No No

SUV SUV-113 No No No Yes No No No

SUV SUV-114 No No No Yes No No No

SUV SUV-121 No No No Yes No No No

SUV SUV-122 No No No Yes No No No

SUV SUV-123 No No No Yes No No No

SUV SUV-568 No No No Yes Yes Yes No

As you can see, Table 13-2 shows 17 records. Three groups of records are grouped
by the category. There are seven Minivans, one Motor Homes, and nine SUVs. Each
record in the table has corresponding columns for each section in the report. “Yes”
means that the record triggers processing in that section; “No” means that the sec-
tion is not processed for that record. This report is only one page, so it is very
simple.

The report header section is triggered by only the first record in the reports dynaset.
This section is always processed first, regardless of the data. The report footer sec-
tion is triggered only after the last record is processed, regardless of the data.

Access processes the page header section after the report header section for the
first record and then every time a new page is started. The page footer section is
processed at the bottom of each page and after the report footer section of the
last page.

Group headers are triggered only by the first record in a group. Group footers are
triggered only by the last record in a group. Notice that the Mot-01 Motor Homes
record triggers both a group header and a group footer because it is the only record
in a group. If three or more records are in a group, only the first or the last record
can trigger a group header or footer; the middle records trigger only the detail
section.

Access always processes each record in the detail section (which is always trig-
gered, regardless of the value of a data item). Most reports with a large amount of
data have many detail records and significantly fewer group header or footer
records. This small report has as many group header and footer records as it has
detail records.

464 Part I, Section II ✦ Building Forms and Reports

The Report Writer sections
Figure 13-19 shows what a report design looks like in Access. It is the Report Design
window for the Products Summary Report. As you can see, the report is divided
into seven sections. The group section displays data grouped by Categories, so you
see the sections chrCategory Header and chrCategory Footer. Each of the other
sections is also named for the type of processing it performs.

Figure 13-19: The Report Design window.

You can place any type of text or field controls in any section, but Access processes
the data one record at a time. It also takes certain actions (based on the values of
the group fields, the location of the page, or placement in the report) to make the
bands or sections active. The example in Figure 13-19 is typical of a report with mul-
tiple sections. As you learned, each section in the report has a different purpose
and different triggers.

Page and report headers and footers must be added as pairs. To add one without
the other, after the section is added, resize the section you don’t want to a height
of zero or set its Visible property to No.

If you remove a header or footer section, you also lose the controls in those
sections.

Report header section
Controls in the report header section are printed only once at the beginning of the
report. A common use of a report header section is as a cover page or a cover letter
or for information that needs to be communicated only once to the user of the
report.

You can also have controls in the report header section print on a separate page,
which enables you to create a title page and include a graphic or picture in the

Caution

Note

465Chapter 13 ✦ Understanding and Creating Reports

section. There is a Force New Page property in the Report Header that can be set
to After Section that will place the information in the Report Header into a
separate page.

In Figure 13-18, the report header section is not used.

Only data from the first record can be placed in a report header.

Page header section
Text or field controls in the page header section normally print at the top of every
page. If a report header on the first page is not on a page of its own, the information
in the page header section prints just below the report header information.
Typically, page headers serve as column headers in group/total reports; they can
also contain a title for the report. In this example, placing the Products Summary
report title in the Page Header section means that the title appears on every page.

The page header section shown in Figure 13-19 also has lines above and below the
label controls. Each of the report’s label controls is separate and each can be
moved or sized individually. You can also change special effects (such as color,
shading, borders, line thickness, font type, and font size) for each text control.

Both the page header and page footer sections can be set to one of four settings
(this setting can be found in the Report’s properties, not the section properties):

✦ All Pages. Both the page header and page footer print on every page.

✦ Not with Report Header. Neither the page header nor footer prints on a page
with the report header.

✦ Not with Report Footer. The page header does not print with the report
footer. The report footer prints on a new page.

✦ Not with Report Header/Footer. Neither the page header nor the footer
prints on a page with the report header or footer.

Group header
Group headers sections normally display the name of the group. Access knows when
all the records in a group have been displayed in a detail section when the group
name changes. In this example, the detail records are about products and their
costs and profits. The group header field control chrCategory tells you that these
products are of a specific category type. Group header sections immediately pre-
cede detail sections.

It is possible to have multiple levels of group headers and footers. In this report, for
example, the data is only for categories. However, in some reports you might have
groups of information with date values. You could group your sections by year or
month and year, and within those sections by another group such as category.

Note

466 Part I, Section II ✦ Building Forms and Reports

To set group-level properties such as Group On, Group Interval, Keep Together, or
something other than the default, you must first set the Group Header and Group
Footer property (or both) to Yes for the selected field or expression. You will learn
about these later in the chapter.

Detail section
The detail section processes every record in the data and is where each value is
printed. The detail section frequently contains a calculated field such as profit that
is the result of a mathematical expression. In this example, the detail section simply
displays information from the tblProduct table except for the last control. The profit
is calculated by subtracting the value of curCost from the value of curSalePrice.

You can tell Access whether you want to display a section in the report by chang-
ing the section’s Visible property in the Report Design window. Turning off the dis-
play of the detail section (or by excluding selected group sections) displays a
summary report with no detail or with only certain groups displayed.

Group footer
You use the group footer section to calculate summaries for all the detail records in a
group. In the Products Summary report, the expression =Sum([curSalePrice] –
[curCost]) adds all the calculations of Sale Price – Cost for a specific category. In
the Minivans group, this expression sums the seven records. This type of field is
automatically reset to 0 every time the group changes. (You learn more about
expressions and summary fields in later chapters.)

You can change the way summaries are calculated by changing the Running Sum
property of the field box in the Report Design window.

Page footer
The page footer section usually contains page numbers or control totals. In very
large reports, you may want page totals as well as group totals (such as when you
have multiple pages of detail records with no summaries). For the Products
Summary Report, the page number is printed by combining the text Page, and built-
in page number controls show Page x of y where x is the current page number and y
is the total number of pages in the report. A text box control with the following
expression in the Control Source property can be used to display page number
information.

= “Page: ” & [Page] & “ of ” & [Pages]

(which keeps track of the page number in the report).

You can also print the date and the time printed. Figures 13-19 and 13-20 show the
date printed in the Page Footer section as well as the page numbers.

Cross-
Reference

Tip

Note

467Chapter 13 ✦ Understanding and Creating Reports

Report footer
The report footer section is printed once at the end of the report after all the detail
records and group footer sections are printed. Report footers typically display
grand totals or other statistics (such as averages or percentages) for the entire
report. The report footer for the Products Summary report uses the expression
=Sum with each of the numeric fields to sum the amounts.

When there is a report footer, the page footer section is printed after the report
footer.

The Report Writer in Access is a two-pass report writer, capable of preprocessing all
records to calculate the totals (such as percentages) needed for statistical report-
ing. This capability enables you to create expressions that calculate percentages as
Access processes those records that require foreknowledge of the grand total.

Chapter 15 covers calculating percentages.

Creating a New Report
Fundamental to all reports is the concept that a report is another way to view the
records in one or more tables. It is important to understand that a report is bound
to either a single table or a query that brings together data from one or more
tables. When you create a report, you must select which fields from the query or
table you want to see in your report. Unless you want to view all the records from a
single table, bind your report to a query. Even if you are accessing data from a sin-
gle table, using a query lets you create your report on the basis of a particular
search criterion and sorting order. If you want to access data from multiple tables,
you have almost no choice but to bind your report to a query. In the examples in
this chapter, all the reports are bound to a query (even though it is possible to bind
a report to a table).

Access lets you create a report without first binding it to a table or query, but you
will have no fields on the report. This capability can be used to work out page tem-
plates with common text headers or footers such as page numbering or the date
and time, which can serve as models for other reports. You can add fields later by
changing the underlying control source of the report.

Throughout this chapter and the next chapter, you learn the tasks necessary to cre-
ate the Products Display Report (the partial first page is shown in Figure 13-20). In
this chapter, you design the basic report, assemble the data, and place the data in
the proper positions. In Chapter 14, you enhance the report by adding lines, boxes,
and shading so that certain areas stand out.

As with almost every task in Access, there are many ways to create a report without
wizards. It is important, however, to follow some type of methodology, because

Note

Cross-
Reference

Note

468 Part I, Section II ✦ Building Forms and Reports

creating a good report involves a fairly scientific approach. You should create a
checklist that is a set of tasks that will result in a good report every time. As you
complete each task, check it off your list. When you are done, you will have a great-
looking report. The following section outlines this approach.

Figure 13-20: The Products Summary report.

Creating a new report and binding it to a query
The first step is to create a new report and bind it to the tblProducts table. Follow
these steps to complete this process:

1. Press F11 to display the Database window if it is not already displayed.

2. Click the Reports object button.

3. Click the New toolbar button. The New Report dialog box appears.

4. Select Design View.

5. Click the combo box which label starts with Choose a table or query. A drop-
down list of all tables and queries in the current database appears.

469Chapter 13 ✦ Understanding and Creating Reports

6. Select the tblProducts table.

7. Click OK.

8. Maximize the Report window.

A blank Report Design window appears (see Figure 13-21). Notice the three sections
in the screen display: Page Header, Detail, and Page Footer. The report is bound to
the table tblProducts. This means that the fields from the table are available for use
in the report design and that they appear in the Field List window. It also means
that the data from that table will be displayed when the report is viewed or printed.

Figure 13-21: A blank Report Design window.

Defining the report page size and layout
As you plan your report, consider the page-layout characteristics as well as the
kind of paper and printer you want to use for the output. If you use a dot-matrix
printer with a wide-carriage feed, you design your report differently than for print-
ing on a laser printer with 81⁄2 " x 11" paper. After you make these decisions, you
use several dialog boxes and properties to make adjustments; these items work
together to create the desired output. You learn to use these tools in the next sev-
eral chapters.

First, you need to select the correct printer and page-layout characteristics by
selecting File ➪ Page Setup. The Page Setup dialog box, shown in Figure 13-22 with
the Page tab selected, enables you to select your printer and set printer options.

470 Part I, Section II ✦ Building Forms and Reports

Figure 13-22: The Page Setup dialog box
showing the Page tab.

The Page Setup dialog box has three tabs: Margins, Page, and Columns. The infor-
mation under the Page tab is divided into three sections:

✦ Orientation. Select the page orientation you want.

✦ Paper. Select the paper size and paper source you want.

✦ Printer. Select the printer you want.

If you click the Printer button, the Page Setup dialog box for the selected printer
appears. Clicking Properties will then display a more extensive dialog box with all
the applicable options.

The design for Product Summary report is to be a portrait report, which is taller
than it is wide. You want to print on letter size paper that is 81⁄2 " x 11", and you want
the left, right, top, and bottom margins all set to 0.250 or the minimum your printer
will allow.

Follow these steps to create the proper report setup for the Products Summary
report:

1. Open the Page Setup dialog box and select the Page tab.

2. Click the Portrait option button.

Next to the Orientation buttons are two sheet-of-paper icons with the letter A
pictured on them. The picture of the sheet is an indication of its setting.

3. Click the Margins tab.

4. Click the Top margin setting and change the setting to 0.250.

5. Click the Bottom margin setting and change the setting to 0.250.

6. Click the Left margin setting and change the setting to 0.250.

7. Click the Right margin setting and change the setting to 0.250.

Note

471Chapter 13 ✦ Understanding and Creating Reports

Some printers may not allow margins as small as .250 for all four settings. If
you receive a warning, you will need to use a different value.

8. Click OK to close the Page Setup dialog box.

Access displays your reports in Print Preview view by using the driver of the active
printer. If you don’t have a good-quality laser or inkjet printer available for printing,
install the driver for one anyway so that you can view any graphics that you create
(and see the report in a high-resolution display). Later, you can print to your inkjet
or other available printer and get the actual hard copy in the best resolution your
printer offers.

Figure 13-22 shows the option buttons in the bottom-left corner of the Page tab. If
you are going to give your database or report to others, you should always select
the first option, Default Printer. This way, if you have selected a printer the recipi-
ent doesn’t have, the report will use their default printer. If you have selected the
second option (Use Specific Printer), those who don’t have that printer will get an
error message and will not be able to use the report.

After you define your page layout in the Page Setup dialog box, you need to define
the size of your report (which is not necessarily the same as the page definition).

To define the report size, place the mouse pointer on the right-most edge of the
report (where the white page meets the gray background). The pointer changes to a
double-headed arrow. Drag the pointer to change the width of the report. As you
drag the edge, a vertical line appears in the ruler to let you know the exact width if
you release the mouse at that point. Be careful not to exceed the width of the page
you defined in the Page Setup dialog box.

When you position the mouse pointer at the bottom of the report, it changes to a
double-headed arrow similar to the one for changing width. Dragging will change
the height of the page footer section or other specified bottom section, not the
height of the whole page. (Predefining a page length directly in the report section
doesn’t really make sense because the detail section will vary in length, based on
your groupings.) Remember that the Report Design view shows only a representa-
tion of the various report sections, not the actual report.

To set the right border for the Product Display report to 71⁄2 ", follow these steps:

1. Click the right-most edge of the report body (where the white page meets the
gray background). The mouse pointer changes to a double-headed arrow.

2. Drag the edge to the 71⁄2 " mark.

3. Release the mouse button.

You can also change the Width property in the property window for the report.Note

Caution

Tip

472 Part I, Section II ✦ Building Forms and Reports

When you run your report and every other page is blank, it is a sign that the width
of your report exceeds the width of your page. To fix this, decrease your left and
right margin size or your report width. Sometimes, when you move controls
around, you accidentally make the report width larger than your original design.
For example, in a portrait report, if your left margin + report width + right margin
is greater than 81⁄2 , you will see blank pages.

Placing fields on the report
Access takes full advantage of Windows’ drag-and-drop capabilities. The method for
placing fields on a report is no exception. As with forms, when you place a field on
a report, it is no longer called a field; it is called a control. A control has a control
source (a specific table field) that it is bound to, so the terms control and field are
used interchangeably in this chapter.

To place controls on your report:

1. Display the Field List window by clicking the Field List toolbar button.

2. Click the desired Toolbox control to determine the type of control that will be
created if they are to be different from the default control types for the fields.

3. Select each of the fields that you want on your report and then drag them to
the Report Design window.

Displaying the field list
To display the Field List window, click the Field List button on the toolbar. A small
window with a list of all the fields from the underlying query appears. This window
is called a modeless dialog box because it remains onscreen even while you con-
tinue with other work in Access. The Field List window can be resized and moved
around the screen. The enlarged Field List window is illustrated in Figure 13-23,
showing all the fields in the tblProducts table.

You can move the Field List window by simply clicking on the title bar and drag-
ging it to a new location.

Selecting the fields for your report
Selecting a field in the Report field list is the same as selecting a field in the Query
field list. The easiest way to select a field is simply to click it. When you click a field,
it becomes highlighted. After a field is highlighted, you can drag it to the Report
window.

You can highlight contiguous (adjacent) fields in the list by following these steps:

✦ Click the first field you want in the field list.

✦ Move the mouse pointer to the last field you want from the list.

✦ Hold down the Shift key and click the last field you want.

Tip

Tip

473Chapter 13 ✦ Understanding and Creating Reports

Figure 13-23: Dragging fields to the Design window.

The block of fields between the first and last field you selected is displayed in
reverse video, indicating it is selected. You can then drag the block of fields to the
Report window.

You can highlight noncontiguous fields in the list by clicking each field while hold-
ing down the Ctrl key. Each selected field will be displayed in reverse video; then
you can drag the fields as a group to the Report Design window.

Unlike the Query field list, you cannot also double-click a field to add it to the
Report window.

You can begin by selecting the tblProducts fields for the detail section. To select
the fields needed for the detail section of the Product Display report, follow these
steps:

1. Click the chrProductID field.

2. Hold down the Shift key and click the curSalePrice field.

The block of fields from chrProductID to curSalePrice should be highlighted in
the Field List window, as shown in Figure 13-23.

3. Hold down the Ctrl key and click the memFeatures field and the olePicture
field.

Note

474 Part I, Section II ✦ Building Forms and Reports

Holding down the Ctrl key lets you select noncontiguous fields. You should
have two blocks of fields selected (the top seven fields and the bottom two
fields), as shown in Figure 13-23.

Dragging fields onto your report
After you select the proper fields from the tblProducts table, all you need to do is
drag them to the detail section of your report. Depending on whether you choose
one or several fields, the mouse pointer changes shape to represent your selection.
If you select one field, you see a Field icon, which shows a single box with some
unreadable text inside. If you select multiple fields, you see a set of three boxes.
These are the same icons you saw when you were using the Query Design screens.

To drag the selected tbProducts table fields into the detail section of the Report
Design window, follow these steps:

1. Click within the highlighted block of fields in the Field List window. You may
need to move the horizontal scroll bar back to the left before starting this
process.

2. Without releasing the mouse button, drag the mouse pointer into the detail
section; place the icon under the 11⁄2-inch mark on the horizontal ruler at the
top of the screen and next to the 1⁄2-inch mark of the vertical ruler along the left
edge of the screen.

3. Release the mouse button.

The fields appear in the detail section of the report, as shown in Figure 13-23.
Notice that for each field you dragged onto the report, there are two controls.
When you use the drag-and-drop method for placing fields, Access automatically
creates a label control with the field name attached to the text control to which
the field is bound.

Notice the Bound Object Frame control for the field named Picture. Access always
creates a Bound Object Frame control for an OLE-type object found in a table. Also
notice that the detail section automatically resizes itself to fit all the controls.
Above the Bound Object Frame control is the control for the memo field Features.

You also need to place the desired field controls for the customer information you
need in the page header section. Before you do this, however, you need to resize
the page header frame to leave room for a title you will add later.

Resizing a section
To make room on the report for the title information in the page header, you must
resize it. You can resize a section by placing the mouse pointer at the bottom of the
section you want to resize. The pointer turns into a vertical double-headed arrow;
drag the section border up or down to make the section smaller or larger.

Note

475Chapter 13 ✦ Understanding and Creating Reports

Resize the page header section to make it larger by following these steps:

1. Move the mouse pointer between the bottom of the page header section and
the top of the detail section.

2. When the pointer is displayed as a double-sided arrow, hold down the left
mouse button.

3. Drag the page header section border down until it intersects the detail sec-
tion’s ruler at the 3⁄4-inch mark.

4. Release the button to enlarge the page header section.

The page header section expanded to fit the fields that were dragged into the sec-
tion. All the fields needed for the Product Display report are now placed in their
appropriate sections.

Working with unattached label controls and text
When you drag a field from the Field List window to a report, Access creates not
only a data control but also a label control that is attached to the data control. At
times, you will want to add label controls by themselves to create headings or titles
for the report.

Creating unattached labels
To create a new, unattached label control, you must use the Toolbox (unless you
copy an existing label). The next task in the current example is to add the text head-
ers Product Display and Access Auto Auctions to your report. This task demonstrates
adding and editing text.

To begin creating an unattached label control, follow these steps:

1. Display the Toolbox.

2. Click the Label tool in the Toolbox.

3. Click near the top-left edge of the page header at about the 1⁄8-inch mark on the
ruler; then drag the mouse pointer downward and to the right to make a small
rectangle about 21⁄2 inches wide and 1⁄2-inch high.

4. Type Product Display.

5. Press Enter.

Repeat the process for the label Access Auto Auctions and place it just below the
Product Display label, as shown in Figure 13-24. As you create these label rectan-
gles, it may make the Page Header section expand.

To create a multiple-line label entry, press Ctrl+Enter to force a line break where
you want it in the control.

Tip

476 Part I, Section II ✦ Building Forms and Reports

If you want to edit or enter a caption that is longer than the space in the property
window, the contents will scroll as you type. Otherwise, open a Zoom box that
gives you more space to type by pressing Shift+F2.

Modifying the appearance of text in a control
To modify the appearance of the text in a control, select the control by clicking its
border (not in the control itself). You can then select a formatting style to apply to
the label by clicking the appropriate button on the Formatting toolbar.

To make the titles stand out, follow these steps to modify the appearance of
label text:

1. Click the newly created report heading label Product Display.

2. Click the Bold button on the Formatting toolbar.

3. Click the arrow beside the FontSize drop-down box.

4. Select 18 from the FontSize drop-down list box.

5. Repeat for the Access Auto Auctions label, using a 12 pt font and Bold.

Figure 13-24 shows these labels added, resized, and formatted.

Currently, the label rectangles are much large than their displayed text. To tighten
the display or to display all the text when a label rectangle isn’t big enough, you can
simply double-click the bottom left corner handle to resize it (which you will learn
more about later in this chapter).

Figure 13-24: Adding unbound labels to the report.

Tip

477Chapter 13 ✦ Understanding and Creating Reports

Working with text boxes and their
attached label controls
So far, you have added controls bound to fields in the tables and unbound label
controls used to display titles in your report. There is another type of text box con-
trol that is typically added to a report: unbound text boxes that are used to hold
expressions such as page numbers, dates, or a calculation.

Creating and using text box controls
In reports, text box controls serve two purposes. First, they enable you to display
stored data from a particular field in a query or table. Second, they display the
result of an expression. Expressions can be calculations that use other controls as
their operands, calculations that use Access functions (either built-in or user-
defined), or a combination of the two. You have learned how to use a text box con-
trol to display data from a field and how to create that control. Next, you learn how
to create new text box controls that use expressions.

Entering an expression in a text control
Expressions enable you to create a value that is not already in a table or query.
They can range from simple functions (such as a page number) to complex math-
ematical computations. Chapter 20 covers expressions in greater detail; for the
example in this chapter, you use an expression that is necessary for the report.

A function is a small program that, when run, returns a single value. The function
can be one of many built-in Access functions or it can be user-defined. For example,
to facilitate page numbering in reports, Access has a function called Page that
returns the value of the current report page. The following steps show you how to
use an unbound text box to add a page number to your report:

1. Click in the middle of the page footer section, resize the page footer so that it
is a 1.⁄2 inch in height, and then create a text box about three-quarters of the
height of the section and about 1.⁄2-inch wide by resizing the default text box
control.

2. Select the Text Box tool on the Toolbox.

3. Scroll down to the page footer section by using the vertical scroll bar.

4. Click the label control to select it. (It should say something similar to Text38.)

5. Click the beginning of the label control text, drag over the default text in the
label control, and type Page: or double-click the text to highlight it and then
replace it.

6. Click twice on the text box control (it says “Unbound”); type =Page and press
Enter. (Notice that the Control Source property changes on the data sheet of
the Property window to =[Page]. If the Property window is not open, you may
want to open it to see the change.)

Cross-
Reference

478 Part I, Section II ✦ Building Forms and Reports

7. Click the Page label control’s Move handle (upper-left corner); move the label
closer to the =[Page] text box control until the right edge of the label control
touches the left edge of the text box control.

Although this is a good exercise for creating labels and text boxes, a better way to
add a page number in the Page Footer section is to use the automatic Page numbers
dialog box. To do this, follow the steps below:

1. Delete the text box you created in the last example from the Page Footer
section.

2. Select Insert ➪ Page Numbers... from the main menu.

The Page Numbers dialog box is displayed, as shown in Figure 13-25. You can
also see the expression that will be created below in the Page Footer section.

3. Change the Format to Page N of M.

4. Change the Position to Bottom of Page [Footer].

5. Change Alignment to Right.

Format lets you choose between the final text Page N, where N is the page
number, or Page N of M, where N is the current page number and M is the
total number of pages in the report. It is recommended to always use Page N
of M to make sure the report isn’t missing any pages (or the last page).
Position lets you determine if the page number expression is created in the
Page Header or Page Footer. Alignment lets you determine if the text will be
left, right, or centered aligned. Because this text expression is going to be
placed at the bottom right corner of the report, the Right alignment is pre-
ferred. There is also a check box that can be unchecked and lets you eliminate
the page number from the first page (if it were to be used as a cover page).

You can see in Figure 13-25 the completed text box expression:

=“Page ” & [Page] & “ of ” [Pages]

This would display Page 5 of 25 if page 5 was the current page and there were
25 pages in the report.

The = sign begins an expression. The & symbol (known as concatenation) joins
keywords, fields, or other expressions to a text string. Text strings are sur-
rounded by double quotes. [Page] and [Pages] are keywords and are sur-
rounded (known as delimited) by braces ([]). Notice the “Page “ text contains
a trailing space. This is done so that there will be a space between the text
Page and the current page number. Notice that there are both leading and
trailing spaces in the text string “ of .” Again, this separates the page numbers
by a space from the word “of.”

You can always check your result by clicking the Print Preview button on the tool-
bar and zooming in on the page footer section to check the page number.

Tip

479Chapter 13 ✦ Understanding and Creating Reports

Figure 13-25: Adding a page-number expression in a text
box control.

Sizing a text box control or label control
You can select a control by simply clicking it. Depending on the size of the control,
from three to seven sizing handles will appear — one on each corner except the
upper-left corner and one on each side. When you move the mouse pointer over
one of the sizing handles, the pointer changes into a double-headed arrow. When
the pointer changes, click the control and drag it to the size you want. Notice that,
as you drag, an outline appears; it indicates the new size that the label control will
be when you release the mouse button.

If you double-click any of the sizing handles, Access resizes a control to the best fit
for the text in the control. This feature is especially handy if you increase the font
size and then notice that the text is cut off, either on the bottom or to the right.
Note that for label controls, this best-fit sizing resizes both vertically and horizon-
tally, though text controls can resize only vertically. The reason for this difference is
that in the report design mode, Access doesn’t know how much of a field you want
to display; the field name and field contents might be radically different. Sometimes
label controls are not resized correctly, however, and have to be adjusted manually.

Changing the size of a label control
Earlier in this chapter (in the steps that modified the appearance of label text), you
changed the characteristics of the Product Display label; the text changed, but the
label itself did not adjust. The text no longer fits well within the label control. You
can resize the label control, however, to fit the enhanced font size by following
these steps:

1. Click the Product Display label control.

2. Move your mouse pointer over the control. Notice how the pointer changes
shape over the sizing handles.

3. To size the control automatically, double-click one of the sizing handles. The
label control size may still need to be readjusted.

480 Part I, Section II ✦ Building Forms and Reports

4. Place the pointer in the bottom-right corner of the label control so that the
diagonal double-arrow appears.

5. Hold down the left mouse button and drag the handle to resize the label con-
trol until it correctly displays all of the text (if it doesn’t already).

You can also select Format ➪ Size ➪ To Fit to change the size of the label control
text automatically.

Before continuing, you should check how the report is progressing. You should do
this frequently as you create a report. You should also save the report frequently as
you make changes to it. You can send a single page to the printer or view the report
in print preview. Figure 13-26 is a zoomed print preview of how the report currently
looks. The customer information is at the top of the page; the pet information is
below that and offset to the left.

Notice the title at the top of the page. You can see the page number at the bottom if
you click the magnifying glass button to zoom out and see the entire page. Only one
record per page appears on the report because of the vertical layout. In the next
section, you move the fields around and create a more horizontal layout.

Figure 13-26: A print preview of the report.

Tip

481Chapter 13 ✦ Understanding and Creating Reports

Deleting and Cutting attached labels from text controls
In order to create the report shown in Figure 13-20, you must remove the label con-
trols from several of the text box controls and place the label controls in the page
header section.

It’s very easy to delete one or more attached controls in a report. Simply select the
desired controls and press Delete. However, if you want to move the label to the
page header section, you can cut the label instead of deleting it. When removing
attached controls, there are two choices:

✦ Delete only the label control.

✦ Cut the label control to the clipboard.

✦ Delete or cut both the label control and the field control.

If you select the label control and press Cut (Ctrl-X) or the Delete key, only the label
control is removed. If you select the field control and press Cut or Delete, both the
label control and the field control are removed. To cut an attached label control (in
this case, the Product ID controls and their attached label), follow these steps:

1. Click the Close button on the toolbar to exit print preview mode. Select the
Product ID label control only in the detail section.

2. Press Ctrl-X (Cut).

After you have cut the label, you may want to place it somewhere else. In this
example, you will want to place it into the Page Header section.

Pasting labels into a report section
It is probably just as easy to cut labels from controls placed in the detail section
and paste them into the Page Header as it is to just delete the labels and create new
ones in the Page Header. Regardless, you will now paste the label you have cut in
the previous steps:

1. Click anywhere in or on the Page Header section.

2. Press Ctrl-V (Paste).

The Product ID label appears in the Page Header.

3. Repeat for the Description, Category, and Quantity in Stock labels.

4. Delete the remaining label controls in the detail section, leaving all of the text
box controls.

If you accidentally selected the data field control and both controls are cut or
deleted, press the Undo toolbar button to undo the action.

482 Part I, Section II ✦ Building Forms and Reports

If you want to delete only the field control and keep the attached label control,
first select the label control and then select Edit ➪ Copy. Next, to delete both the
field control and the label control, select the field control and press Delete. Finally,
select Edit ➪ Paste to paste only the copied label control to the report.

Moving label and text controls
Before discussing how to move label and text controls, it is important to review a
few differences between attached and unattached controls. When an attached
label is created automatically with a text control, it is called a compound control.
In a compound control, whenever one control in the set is moved, the other control
moves as well. With a text control and a label control, whenever the text control
is moved, the attached label is also moved. Likewise, whenever the label control is
moved, the text control is also moved.

To move both controls in a compound control, select one of the pair by clicking the
control. Move the mouse pointer over either of the objects. When the pointer turns
into a hand, click the controls and drag them to their new location. As you drag, an
outline for the compound control moves with your pointer.

To move only one of the controls in a compound control, drag the desired control
by its Move handle (the large square in the upper-left corner of the control). When
you click a compound control, it looks like both controls are selected, but if you
look closely, you see that only one of the two controls is selected (as indicated by
the presence of both moving and sizing handles). The unselected control displays
only a moving handle. A pointing finger indicates that you have selected the Move
handles and can now move only one control. To move either control individually,
select the control’s Move handle and drag it to its new location.

To move a label that is not attached, simply click any border (except where there
is a handle) and drag it. You can also move groups of controls with the selection
techniques you learned in Chapters 9 through 12.

To make a group selection, click with the mouse pointer anywhere outside a start-
ing point and drag the pointer through (or around) the controls you want to select.
A gray, outlined rectangle is displayed that shows the extent of the selection. When
you release the mouse button, all the controls that the rectangle surrounds are
selected. You can then drag the group of controls to a new location.

The global option Tools ➪ Options – Forms/Reports tab – Selection Behavior is a
property that controls the enclosure of selections. You can enclose them fully (the
rectangle must completely surround the selection) or partially (the rectangle must
only touch the control), which is the default.

Make sure you also resize all of the controls as shown in the figure. The memo field
memFeatures and the OLE picture field olePicture must also be changed in both
size and shape.

Tip

Cross-
Reference

Tip

483Chapter 13 ✦ Understanding and Creating Reports

Place all of the controls in their proper position to complete the report layout. You
want this first pass at rearranging the controls to look like the example shown in
Figure 13-27. You will make a series of block moves by selecting several controls
and then positioning them close to where you want them. Then, if needed, you fine-
tune their position. This is the way most reports are done.

Follow Figure 13-27 to begin placing the controls where they should be. You may
want to notice that the control labels in the Page Header section have been under-
lined. Also notice the new label Cost/Retail/Sale Prices in the Detail section.

At this point, you are about halfway done. The screen should look like the one
shown in Figure 13-27. (If it doesn’t, adjust your controls until your screen matches
the figure.) Remember that these screen pictures are taken with the Windows
screen driver set at 1024 x 768. If you are using 800 x 600, 640 x 480, or large fonts,
you’ll have to scroll the screen to see the entire report.

These steps complete the rough design for this report. There are still properties,
fonts, and sizes to change. When you make these changes, you’ll have to move
fields around again. Use the designs in Figure 13-20 only as a guideline. How it looks
to you, as you refine the look of the report in the Report window, determines the
real design.

Figure 13-27: Rearranging the controls on the report.

Modifying the appearance of multiple controls
The next step is to format all the label controls in the Page Header section directly
above the section separator to be underlined. The following steps guide you
through modifying the appearance of text in multiple label controls:

1. Select all label controls in the bottom of the Page Header section by individu-
ally clicking them while holding down the Shift key. There are four label con-
trols to select, as shown in Figure 13-27.

484 Part I, Section II ✦ Building Forms and Reports

You could also have placed your cursor in the vertical ruler at about 1.25
inches and, when it changed to a right-pointing bold arrow, clicked the mouse
to select all the controls in that horizontal area of the report.

2. Click the Underline button on the toolbar.

You could also have selected all the label controls in the preceding steps by using
the drag-and-surround method.

After you make the final modifications, you are finished, except for fixing the pic-
ture control. To do this, you need to change properties, which you do in the next
section. This may seem to be an enormous number of steps because the proce-
dures were designed to show you how laying out a report design can be a slow pro-
cess. Remember, however, that when you click away with the mouse, you don’t
realize how many steps you are doing as you design the report layout visually. With
a WYSIWYG (What You See Is What You Get) layout like that of the Access report
designer, you may need to perform many tasks, but it’s still easier and faster than
programming. Figure 13-27 shows the final version of the design layout as seen in
this chapter. In the next chapter, you continue to improve this report layout.

Changing label and text box control properties
To change the properties of a text or label control, you need to display the control’s
property sheet. If it is not already displayed, perform one of these actions to dis-
play it:

✦ Double-click the border of the control (anywhere except a sizing handle or
Move handle).

✦ Click the Properties button on the toolbar.

✦ Select View ➪ Properties.

✦ Right-click the mouse and select Properties.

The property sheet enables you to look at a control’s property settings and provides
an easy way to edit the settings. Using tools such as the formatting windows and
text-formatting buttons on the Formatting toolbar also changes the property set-
tings of a control. Clicking the Bold button, for example, really sets the Font Weight
property to Bold. It is usually much more intuitive to use the toolbar (or even the
menus), but some properties are not accessible this way. In addition, sometimes
objects have more options available through the property sheet.

The Size Mode property of an OLE object (bound object frame), with its options of
Clip, Stretch, and Zoom, is a good example of a property that is available only
through the property sheet.

The Image control, which is a bound object frame, presently has its Size Mode
property set to Clip, which is the default. With Clip, the picture is displayed in its

Note

485Chapter 13 ✦ Understanding and Creating Reports

original size and may be too large to fit in the frame. In this exercise, you will
change the setting to Stretch so that the picture is sized automatically to fit the pic-
ture frame.

Chapter 14 covers the use of pictures, OLE objects, and graphs.

To change the property for the bound object frame control that contains the pic-
ture, follow these steps:

1. Click the frame control of the picture bound object.

2. Click the Size Mode property.

3. Click the arrow to display the drop-down list box.

4. Select Stretch.

These steps complete the changes so far to your report. A print preview of the first
few records appears in Figure 13-28. If you look at the pictures, notice how the pic-
ture is properly displayed and the Features field now appears across the bottom of
the detail section. The labels are all underlined.

Figure 13-28: The report print preview.

Cross-
Reference

486 Part I, Section II ✦ Building Forms and Reports

Growing and shrinking text box controls
When you print or print-preview fields that can have variable text lengths, Access
provides options for enabling a control to grow or shrink vertically, depending on
the exact contents of a record. The option Can Grow determines whether a text
control adds lines to fit additional text if the record contains more lines of text than
the control can display. The option Can Shrink determines whether a control
deletes blank lines if the record’s contents use fewer lines than the control can dis-
play. Although these properties are usable for any text field, they are especially
helpful for memo field controls like the Features control.

Table 13-3 explains the acceptable values for these two properties.

Table 13-3
Text Control Values for Can Grow and Can Shrink

Property Value Description

Can Grow Yes If the data in a record uses more lines than the control is
defined to display, the control resizes to accommodate
additional lines.

Can Grow No If the data in a record uses more lines than the control is
defined to display, the control does not resize; it truncates the
data display.

Can Shrink Yes If the data in a record uses fewer lines than the control is
defined to display, the control resizes to eliminate blank lines.

Can Shrink No If the data in a record uses fewer lines than the control is
defined to display, the control does not resize to eliminate
blank lines.

To change the Can Grow settings for a text control, follow these steps:

1. Select the Features text box control.

2. Display the Property window.

3. Click the Can Grow property; then click the arrow and select Yes.

The Can Grow and Can Shrink properties are also available for report sections. Use
a section’s property sheet to modify these values.

The report is starting to look good, but you may want to see groups of like data
together and determine specific orders of data. In order to do this, you will use
sorting and grouping.

Note

487Chapter 13 ✦ Understanding and Creating Reports

Sorting and grouping data
Sorting enables you to determine the order in which the records are viewed in a
datasheet, form, or report, based on the values in one or more fields. This order is
important when you want to view the data in your tables in a sequence other than
that of your input. For example, new products are added to the tblProducts table as
they are needed on an invoice. The physical order of the database reflects the date
and time a product is added. Yet, when you think of the product list, you probably
expect it to be in alphabetical order by Product ID, and you want to sort it by
Description of the cost of the product. By sorting in the report itself, you don’t have
to worry about the order of the data. Although you can sort the data in the table by
the primary key or in a query by any field you want, it is more advantageous to do
it in the report. This way, if you change the query or table, the report is still in the
correct order.

You can take this report concept even further by grouping — that is, breaking
related records into groups. Suppose that you want to list your products first by
Category and then by Description within each Category group. To do this, you must
use the Category and Description fields to sort the data. Groupings that can create
group headers and footers are sometimes called control breaks because changes in
data trigger the report groups.

Before you can add a grouping, however, you must first define a sort order for at
least one field in the report using the Sorting and Grouping dialog box, which is
shown completed in Figure 13-29. In this example, you use the Category field to sort
on first and then the Description field as the secondary sort.

To define a sort order based on Category and Description, follow these steps:

1. Click the Sorting and Grouping button on the toolbar to display the Sorting
and Grouping box.

2. Click in the first row of the Field/Expression column of the Sorting and
Grouping box. A downward-pointing arrow appears.

3. Click the arrow to display a list of fields in the tblProduct table.

4. Select chrCategory in the field list. Notice that Sort Order defaults to
Ascending.

5. Click in the second row of the Field/Expression column.

6. Click the arrow to display a list of fields in the tblProduct table.

7. Select chrDescription in the field list. Notice that Sort Order defaults to
Ascending.

To see more of the Field/Expression column, drag the border between the Field/
Expression and Sort Order columns to the right.

Tip

488 Part I, Section II ✦ Building Forms and Reports

You can also drag a field from the Field List window into the Sorting and Grouping
box Field/Expression column rather than enter a field or choose one from the field
list in the Sorting and Grouping box Field/Expression column.

Although in this example you used a field, you can alternatively sort (and group) by
using an expression. To enter an expression, click in the desired row of the
Field/Expression column and enter any valid Access expression, making sure that it
begins with an equal sign, as in =[curRetailPrice]-[curCost].

To change the sort order for fields in the Field/Expression column, simply click the
Sort Order column and click the down arrow to display the Sort Order list; then
select Descending.

Figure 13-29: The Sorting and Grouping box completed.

Creating a group header or footer
Now that you have added instructions to sort by the Category and Description, you
will also need to create a group header for Category to group all of the products by
category. You don’t need a group footer in this example because there are no totals
by category or other reasons to use a group footer.

To create a group header that enables you to sort and group by the chrCategory
field, follow these steps:

1. Click the Sorting and Grouping button on the toolbar if the Sorting and
Grouping box is not displayed. The field chrCategory should be displayed in
the first row of the Sorting and Grouping box; it should indicate that it is being
used as a sort in Ascending order.

Note

489Chapter 13 ✦ Understanding and Creating Reports

2. Click on the chrCategory row in the Field/Expression column.

3. Click the Group Header property in the bottom pane; an arrow appears.

4. Click the arrow on the right side of the text box; a drop-down list appears.

5. Select Yes from the list. (A header section bar appears on the report.)

After you define a header or footer, the row selection bar changes to the grouping
symbol shown in Figure 13-29. This is the same symbol as in the Sorting and
Grouping button on the toolbar. Figure 13-29 shows both the grouping row symbol
and the newly created report section. The chrCategory header section appears
between the page header and detail sections. If you define a group footer, it appears
below the detail section. If a report has multiple groupings, each subsequent group
becomes the one closest to the detail section. The groups defined first are farthest
from the detail section.

The Group Properties pane (displayed at the bottom of the Sorting and Grouping
box) contains these properties:

✦ Group Header. Yes creates a group header. No removes the group header.

✦ Group Footer. Yes creates a group footer. No removes the group footer.

✦ Group On. Specifies how you want the values grouped. The options you see
in the drop-down list box depend on the data type of the field on which you’re
grouping. If you group on an expression, you see all the options. Group On has
more choices to make.

For Text data types, there are two choices:

✦ Each Value. The same value in the field or expression.

✦ Prefix Characters. The same first n number of characters in the field.

For Date/Time data types, there are additional options:

✦ Each Value. The same value in the field or expression.

✦ Year. Dates in the same calendar year.

✦ Qtr. Dates in the same calendar quarter.

✦ Month. Dates in the same month.

✦ Week. Dates in the same week.

✦ Day. Dates on the same date.

✦ Hour. Times in the same hour.

✦ Minute. Times in the same minute.

490 Part I, Section II ✦ Building Forms and Reports

Currency, or Number data types provide three options:

✦ Each Value. The same value in the field or expression.

✦ Interval. Values falling within the interval you specify.

✦ Group Interval. Specifies any interval that is valid for the values in the field
or expression you’re grouping on.

• The Group Interval has its own options which include:

• Keep Together. This option controls what’s known as widows and
orphans in the word processing world so that you don’t have a header at
the bottom of a page with no detail until the next page.

• Whole Group. Prints header detail and group footer on one page.

• With First Detail. Prevents the contents of the group header from print-
ing without any following data or records on a page.

• No. Do not keep together.

After you create the Category group header, you are done with the Sorting and
Grouping box for this report. You may need to make additional changes to group-
ings as you change the way a report looks; the following three sections detail how
to make these changes. You should not make any of these changes, however, if
you are following the examples or you should press the Save icon now to save the
form in the current state and then discard the changes done to this form after this
point.

Changing the group order
Access enables you to easily change the Sorting and Grouping order without mov-
ing all the individual controls in the associated headers and footers. Here are the
general steps to change the sorting and grouping order:

1. Click the selector bar of the field or expression you want to move in the
Sorting and Grouping window.

2. Click the selector again and hold down the left mouse button.

3. Drag the row to a new location.

4. Release the mouse button.

Removing a group header or footer
To remove a page or report header/footer section, use the View ➪ Page
Header/Footer and View ➪ Report Header/Footer toggles. To remove a group
header or footer while leaving the sorting intact, follow these steps:

1. In the Sorting and Grouping window, click the selector bar of the field or
expression that you want to remove from the grouping.

On the
CD-ROM

491Chapter 13 ✦ Understanding and Creating Reports

2. Click the Group Header text box.

3. Change the value to No.

4. Press Enter.

To remove a group footer, follow the same steps, but click Group Footer in Step 2.

To permanently remove both the sorting and grouping for a particular field (and
thereby remove the group header and footer sections), follow these steps:

1. Click the selector of the field or expression you want to delete.

2. Press Delete. A dialog box appears asking you to confirm the deletion.

3. Click OK.

Hiding a section
Access also enables you to hide headers and footers so that you can break data
into groups without having to view information about the group itself. You can also
hide the detail section so that you see only a summary report. To hide a section,
follow these steps:

1. Click the section you want to hide.

2. Display the section property sheet.

3. Click the Visible property’s text box.

4. Click the drop-down list arrow on the right side of the text box.

5. Select No from the drop-down list box.

Sections are not the only objects in a report that can be hidden; controls also have
a Visible property. This property can be useful for expressions that trigger other
expressions.

Sizing a section
Now that you have created the group header, you might want to put some controls
in the section, move some controls around, or even move controls between sec-
tions. Before you start manipulating controls within a section, you should make
sure the section is the proper height.

To modify the height of a section, drag the border of the section below it. If, for
example, you have a report with a page header, detail section, and page footer,
change the height of the detail section by dragging the top of the page footer sec-
tion’s border. You can make a section larger or smaller by dragging the bottom bor-
der of the section. For this example, change the height of the group header section
to 3⁄8 " with these steps:

Note

492 Part I, Section II ✦ Building Forms and Reports

1. Move your mouse pointer to the bottom of the chrCategory section. The
pointer changes to a horizontal line split by two vertical arrows.

2. Select the top of the detail section (which is also the bottom of the
chrCategory Header section).

3. Drag the selected band lower until three dots appear in the vertical ruler (3⁄8").
The gray line indicates where the top of the border will be when you release
the mouse button.

4. Release the mouse button.

Moving controls between sections
You now want to move the chrCategory control from the Detail section to the
chrCategory Header section. You can move one or more controls between sections
by simply dragging the control with your mouse from one section to another or by
cutting it from one section and pasting it to another section. Follow the instructions
below to move the chrCategory control from the Detail section to the chrCategory
section:

1. Select the chrCategory control in the Detail section.

2. Drag the chrCategory control up to the chrCategory Header section and drop
it close to the vertical ruler, as shown in Figure 13-30.

3. Release the mouse button.

4. Press the Underline button to underline the chrCategory control to further
highlight it as a group header. Sometimes, you might want to bold it or even
increase the font size.

You should now do the following steps to complete the report design:

1. Delete the Category label from the Page Header.

2. Move the chrProductID control and its associated label after the
chrDescription control and its associated label, as shown in Figure 13-30.

3. Move the chrDescription control and its associated label to the left so that it
starts just to the right of the start of the chrCategory control in the
chrCategory Header control.

By offsetting the first control in the Detail section slightly to the right of the
start of the control in the Group Header section, you show the hierarchy of
the data presented in the report. It now will show that each group of products
is for the category listed in the group header.

4. Lengthen the chrDescription control so that it approaches the chrProduct ID
control.

When you are done, the report design should look like the one shown in
Figure 13-30.

493Chapter 13 ✦ Understanding and Creating Reports

Figure 13-30 shows this property window and the completed report design.

Figure 13-30: Completing the Group Header section and setting a Page Break.

Adding page breaks
Access enables you to add page breaks based on group breaks; you can also insert
forced breaks within sections, except in page header and footer sections.

In some report designs, it’s best to have each new group begin on a different page.
You can achieve this effect easily by using the Force New Page property of a group
section, which enables you to force a page break every time the group value
changes.

The four Force New Page property settings are listed below:

✦ None. No forced page break (the default).

✦ Before Section. Starts printing the current section at the top of a new page
every time there is a new group.

✦ After Section. Starts printing the next section at the top of a new page every
time there is a new group.

✦ Before & After. Combines the effects of Before Section and After Section.

To create the report you want, you will force a page break before the chrCategory
group by using the Force New Page property in the chrCategory header. To change
the Force New Page property on the basis of groupings, follow these steps:

494 Part I, Section II ✦ Building Forms and Reports

1. Click anywhere in the chrCategory header.

2. Display the Property window.

3. Select the Force New Page property.

4. Click the drop-down list arrow on the right side of the edit box.

5. Select Before Section from the drop-down list box.

Alternatively, you can create a Group footer and set its Force New Page property to
After Section.

Sometimes, you don’t want to force a page break on the basis of a grouping, but you
still want to force a page break. For example, you may want to split a report title
across several pages. The solution is to use the Page Break tool from the Toolbox;
just follow these steps:

1. Display the Toolbox.

2. Click the Page Break tool.

3. Click in the section where you want the page break to occur.

Be careful not to split the data in a control. Place page breaks above or below con-
trols; do not overlap them.

Making the Report Presentation Quality
As you near completion of testing your report design, you should also test the
printing of your report. Figure 13-31 shows a print preview of the first page of the
Product Display report. You can see six records displayed. There are a number of
things still to do to complete the report.

Obviously, the Picture needs to be changed so that it displays all of each car.
Currently, the default Clip view is set. You will need to change that. But that is not
the major problem. The report is very boring, plain, and not something you want to
give to anyone else. If your goal is to just look at the data, this report is done.
However, you need to do more before you are really done.

Although the report has good data that is well organized, it is not of professional
quality. To make a report more visually appealing, you generally add some lines and
rectangles, possibly some special effects such as shadows or sunken areas if you
have a background on the report. You want to make sure sections have distinct
areas separate from each other using lines or color. Make sure controls aren’t
touching each other (because text may eventually touch if a value is long enough).
Make sure text is aligned with other text above or below and to the right or left.

In Figure 13-31, you can see some opportunities for professionalism.

Note

Tip

495Chapter 13 ✦ Understanding and Creating Reports

Figure 13-31: Print previewing the data.

Adjusting the Page Header
In the Page Header are several large labels. They are too far apart. The column
headers are too small and just hanging there. They could be underlined and made
one font size larger. Access generally creates controls with 8 point fonts. These are
great for screens but awful for people to view in a hard copy report. When you cre-
ate a Word document, the default font size is 10 point. Most people change their
default font size to 12 point because it is more easily readable. You should look at
your hard copy report and decide if you need to issue magnifying glasses to people
over 40. If so, you might want to enlarge some of your fonts.

Column headers should also be underlined and the entire Page Header should be
separated from the Detail section by a line.

If you wanted to add some color to your report, you could make the report name a
different color. Be careful not to use too many colors unless you have a specific
theme in mind. Most serious business reports use one or two colors, and rarely
more than three with the exception of graphs and charts.

496 Part I, Section II ✦ Building Forms and Reports

Figure 13-32 shows these changes. The Product Display label has been changed to a
reverse video blue background color with white foreground text. This is done by
first selecting the control and then selecting Blue for the background. They have
also been placed under each other and left aligned. The rectangle around each of
the controls was also properly sized by double-clicking on the controls lower-right
corner (or by selecting Format ➪ Size ➪ To Fit).

The column labels have been changed to 11 point text, bolded, and underlined.
They were also moved to be above the controls for which they are the column
headers.

The next step is to add a nice thick line separating the Page Header section from
the chrCategory Group Header section. To draw this line, follow the steps below:

1. Select the Line tool in the toolbox.

2. Start the cursor near the far left side of the Page Header, just to the right and
above of the 1 inch mark on the vertical toolbar, as shown in Figure 13-32.

3. Hold down the Shift key and then hold the left mouse button down and drag
the mouse across the Page Header, releasing it just to the left of the 71⁄2 " mark.

The Shift key is held down in order to draw a perfectly horizontal line.

4. Select the line and select the number 2 pt line thickness from the line thick-
ness icon on the toolbar, or select the 2 pt Border Width property from the
line’s Property window.

The line thickness icon should be next to the Border icon on the formatting
toolbar.

Figure 13-32: Adjusting controls in the Page Header.

497Chapter 13 ✦ Understanding and Creating Reports

Creating an expression in the Group Header
Figure 13-32 also shows that the chrCategory field has been replaced by an expres-
sion. If you just place the value of the category in the Group Header section, it looks
out of place and may not be readily identifiable. Most data values should have some
type of labels to identify what they are.

The expression =“Category: ” & [chrCategory] will display the text Category: fol-
lowed by a space and then followed by the data value of the chrCategory field. The
& symbol (known as the concatenation symbol) joins a string to a data field. Make
sure you leave a space after the colon or the value will not be separated from the
label. The text control has been bolded, underlined, and the font point size
increased as well.

There is one more very important task to complete. If you simply changed the
chrCategory text box to the expression and displayed the report, you would have
seen an error in the Group Header where the category expression would be. You
must rename the control to something other than the original name of the data
field. The original control name was chrCategory and that was also the control
name. Under standard naming conventions, the control should have been renamed
txtCategory, but this may not have been done. When you create an expression
using the original text box control and you use the field name in the control, you
will cause an error. You cannot name a control the same name as any data field
used within the expression itself. This is a limitation of Access. See the Caution
below for more information.

When you create a bound control, it often uses the name of the data field as the
control name. If you then change the control to an expression using the data field
in the expression without changing the name of your control, you will get a
#Name or #Error when you display the control on a form or report. You must
rename the control to something other than the original field name.

Follow the steps below to complete the expression and rename the control:

1. Select the chrCategory control in the chrCategory Group Header section.

2. Display the Property window for the control.

3. Change the Control Source property to =“Category: ” & [chrCategory].

4. Change the Name property to txtCategoryDisplay.

Changing the picture properties
and the Detail section
The Detail section is in fairly good shape. Make sure the Description control is
slightly indented from the Category expression in the Group Header. A label should
be created, as shown in Figure 13-33, that identifies the values in the Cost, Retail
Price, and Sale Price controls.

Caution

498 Part I, Section II ✦ Building Forms and Reports

A line is also good to add to this Detail section to separate one record from another.
This is often done when there are multiple lines of a record displayed.

The next step is to add a nice thick line separating each record. Because you don’t
want two lines at the bottom of each page (you’ll be adding a line to the Page
Footer next), you will put this line at the top of the Detail section. To draw this line,
follow the steps below:

1. Select the Line tool in the toolbox.

2. Start the cursor near the far left side of the Detail section, just to the right and
above the 1⁄8 inch mark on the vertical toolbar, as shown in Figure 13-33.

You may have to first move all of the controls down in the Detail section to
do this.

3. Hold down the Shift key and then hold the left mouse button down and drag
the mouse across the Page Header, releasing it just to the left of the 7 1⁄2 inch
mark.

The Shift key is held down in order to draw a perfectly horizontal line.

4. Select the line and select the number 2 pt line thickness from the line thick-
ness icon on the toolbar or select the 2 pt Border Width property from the
line’s Property window.

Normally, numeric fields are right aligned. Because they are next to each other hori-
zontally and not above each other vertically, they can be left aligned. Though the
repeating groups of records are above each other, they are separated by a wide
space and left alignment is okay

One task to complete is to change the Picture control to make the picture fit within
the control and to add a shadow to dress up the picture and give it some depth.
Follow the steps below to complete these tasks:

1. Select the olePicture control in the Detail section.

2. Display the Property window for the control.

3. Change the Size Mode property to Stretch.

4. Select Shadowed from the Special Effect window.

Creating a standard page footer
The Page Footer currently contains a page number control that you created earlier
in this chapter. A standard page footer is one that contains things you place at the
bottom of all your reports and that your users come to expect.

499Chapter 13 ✦ Understanding and Creating Reports

Although a Page n of m control is at the bottom, a date and time control would be
nice as well. Many times, you print off a copy of a report and then discover some
bad data. You correct the values, print off another copy, and discover you can’t tell
them apart. Having a print date and time solves this problem.

To create a date/time control, follow the steps below:

1. Select the TextBox control in the Toolbox.

2. Select the Page Footer section and create a text box control near the left edge.

A text box control should appear with an attached label.

3. Delete the attached label.

4. Display the property window for the control.

5. Enter =Now() into the text box’s Control Source property.

This displays the current date and time when the report is run. If you use the
Date() keyword, you would only get the current date and not the current time.

6. Select General Date from the control’s Format property.

7. Select Align Left text from the formatting toolbar for this control.

This control should have its text left aligned, but make sure the page number
control contains right-aligned text.

The last step is to move the controls down a little from the Page Footer section
band and add a line between the Page Header section band and these controls:

1. Select both the date and page number controls and move them down 1⁄8 inch.

2. While they are selected, press the Italic icon on the formatting toolbar.

An italicized page footer looks more professional.

3. Select the Line tool in the toolbox.

4. Start the cursor near the far-left side of the Page Footer, just to the right and
above the 1⁄8-inch mark on the vertical toolbar, as shown in Figure 13-33.

5. Hold down the Shift key and then hold the left mouse button down and drag
the mouse across the Page Header, releasing it just to the left of the 71⁄2 " mark.

The Shift key is held down in order to draw a perfectly horizontal line.

6. Select the line and select the number 2 pt line thickness from the line thick-
ness icon on the toolbar or select the 2 pt Border Width property from the
line’s Property window.

Your screen should look like the one shown in Figure 13-33. The Print Preview
for this report is shown in Figure 13-34.

500 Part I, Section II ✦ Building Forms and Reports

Figure 13-33: Adjusting controls in the Detail and Page Footer sections.

If every even-numbered page is blank, you accidentally widened the report past
the 8-inch mark. If you move a control to brush up against the right page-margin
border or exceed it, the right page margin increases automatically. When it is past
the 8-inch mark, it can’t display the entire page on one physical piece of paper.
The blank page you get is actually the right side of the preceding page. To correct
this, make sure that all your controls are within the 8-inch right margin; then drag
the right page margin back to 8 inches.

Saving your report
After all the time you spent creating your report, you’ll want to save it. It is good
practice to save your reports frequently, starting as soon as you create them. This
prevents the frustration that can occur when you lose your work because of a
power failure or human error. Save the report as follows:

1. Select File ➪ Save. If this is the first time you have saved the report, the Save
As dialog box appears.

2. Type a valid Access object name. For this example, type
rptProductDisplayFinal.

3. Click OK.

If you already saved your report, Access saves your file with no message about
what it is up to.

Caution

501Chapter 13 ✦ Understanding and Creating Reports

Figure 13-34: Print Preview of the Final Products
Summary Report.

✦ ✦ ✦

Working with
Subforms

This may be one of the most important chapters in this
book. You will learn more in this chapter about creating
the types of forms developed in serious Access applica-
tions than in any other chapter. You will learn how to
create a complex form type report integrating multiple
subforms and data from many different tables. You will
also learn how to create totals within subforms and then
how to use these totals in the main form. This chapter will
use a sales invoice to teach you these concepts.

If you are following the examples, open the Chap14Start.
mdb database file on the CD-ROM that comes with this
book and follow the instructions in each section of the
chapter.

Subforms and subreports give you great flexibility in display-
ing and entering data with multiple tables. By using parent-
child form properties, you can still edit all the fields without
worrying about data integrity problems. With a subform, you
can even enter and edit data into a one-to-many form relation-
ship. Subforms are important because they let you create
forms that bring data together from multiple tables or even
multiple records within a single table.

What Is a Subform?
A subform is simply a form within another form. It enables
you to use data from more than one table in a form; you can
display data from one table in one format while using a differ-
ent format for data from the other table. You can, for example,
display one contact record on a form while displaying other
contact records on a datasheet or continuous format subform.

Although you can edit multiple tables in a typical form, using
a subform gives you the flexibility to display data from several
tables or queries at one time.

On the
CD-ROM

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding what
a subform is

Creating a subform
with a wizard

Creating a subform
by dragging a form
from the Database
window to a form

Adding validation to
a subform

Creating Summary
controls in a subform

Referencing controls
in a subform

Adding totals to a
subform

✦ ✦ ✦ ✦

504 Part I, Section II ✦ Building Forms and Reports

As you may recall, you can display data on a form in several ways:

✦ Form. Display one record on a form.

✦ Continuous. Display multiple records on a form.

✦ Datasheet. Display multiple records using one line per record.

Including a subform on your form enables you to display your data in multiple for-
mats, or you can display data from multiple tables. Figure 14-1 shows the Sales
Invoice form. There are two subforms in this form. The main form uses data from
the tblSales table. The first subform in the middle of the parent (main) form lists
the product selected for the sale. This data is copied using VBA code from the
tblProducts table, although the data in the subform is actually bound to the
tblSalesLineItems table. The second subform at the bottom of the form is used to
enter payments for that invoice. The data is stored in the tblSalesPayments table.
Notice that both the form (at the bottom) and the line item subform (in the middle
of the form) have record selectors; each acts independently. One shows the number
of invoices and the other shows the number of line items for the current form.

Figure 14-1: The Sales Invoice form.

505Chapter 14 ✦ Working with Subforms

When you create a subform, you link the main form to it by a common field of
expression. The subform will then display only records that are related to the main
form. The greatest advantage of subforms is their capability to show the one-to-
many relationship. The main form represents the one part of the relationship; the
subform represents the many side.

The data comes from a variety of tables. Some are the primary tables used on the
form, while others are used as lookups to retrieve data to be copied to the primary
tables.

Understand the data for the sales example
In Figure 14-2, you can see a database diagram. This data is used in various parts of
the Sales Invoice form (frmSales).

Figure 14-2: A Data Diagram for the Invoice form.

The tblSales table stores the data in the main part of the Sales Invoice form. This
includes the Invoice Number, Invoice Date, and Sale Date (Invoice Date is the date
you bill the customer, and Sale Date is the date the sale took place). The Buyer
combo box control is used to look up name and address data in the tblContacts
table. When a contact is selected in the combo box, the name and address informa-
tion is displayed in the controls below. Only the ContactID information is stored in
the tblSales table. Notice the relationship line between tblSales and tblContacts.
The field in tblContacts is named idsContactID, while the value is stored in the
lngzBuyer field in tblSales. As long as the data types are the same, a relationship
can be made.

506 Part I, Section II ✦ Building Forms and Reports

Relationships do not have to be made using the Relationships window in Access.
You can create temporary relationships using queries or implied relationships
using controls, combo boxes, subform controls, or VBA code. You will see many
examples of this throughout the book.

Five fields near the top of the Sales Invoice form just below the Buyer information
display data stored in the tblSales table. The fields Payment Method, Salesperson,
and Tax Location use values that are retrieved from tblPaymentType,
tblSalesperson, and tblTaxRates, respectively. Although they are not shown on the
diagram because there are no real relationships created or implied, the combo
boxes do retrieve and place information into the tblSales fields when the Sales
Invoice is created. The vehicle location field is simply typed in without any require-
ments for data validation. The Tax Rate field is automatically retrieved from the
tblTaxRates table when the Tax Location is selected using the combo box. Because
the data is copied from the tax rates table to the tblSales table, it can be changed.
This process is known as overriding a value.

The rest of the controls in the main frmSales form are at the lower-right corner of
the form. The Subtotal control is a control that references the total of all the
Amount values in the first subform. The Tax Amount and Other Amount controls
are bound fields to the tblSales table. Although the Other Amount field can simply
be typed in, the Tax Amount can be calculated as the sum of the line items that are
taxable multiplied by the Tax Rate value. The Total control simply adds the Tax
Amount and Other Amount values to the Subtotal. The final control Total Due calcu-
lates the Total control minus the total of all the Payment Amount values in the sec-
ond subform.

When a combo box is used to look up a value in another table and the property
Limit to List is Yes, you can only select values from the list. By using a combo box
control for the tax location, you guarantee that only valid tax locations can be
selected. Later, you will use VBA code to copy the value of the dblTaxRate field
from the tblTaxRates table to the dblTaxRate field in the tblSales table. When you
do this, you can then override the value in the tblSales table.

The sales line item subform is a separate form embedded in the frmSales form. This
subform can be looked at in the database window and is the form named
fSubSalesLineitems. The fsub prefix indicates the form is a subform. Notice that the
name also includes the word Sales. This is part of good naming conventions.
fSubSales indicates the subform is used in the main Sales form and the purpose is
to show Lineitems.

The tblSalesLineItems table stores the many side of the one-to-many relationship
between the sales and sales lineitems. Notice the common key field. The tblSales
uses an autonumber data type primary key idsInvoiceNumber and links to the long
integer field lngzInvoiceNumber in the tblSalesLineItems table. You will see how to
create this relationship between the main sales form and sales lineitems subform.

Note

Note

507Chapter 14 ✦ Working with Subforms

If you look at the line item subform in the Sales Invoice form in Figure 14-1, you can
see the Product column is a combo box. Each line in the sales lineitem subform
contains values retrieved from the tblProducts table. When a product is selected in
the lineitem subform, VBA code will be used to copy the product’s description,
price, and taxable status into the tblSalesLineItems table through the controls in
the subform bound to the tblSalesLineItems table. The Qty and Disc % columns
must be entered and the Amount control is calculated using the formula Qty *
(Price * (1-Disc %)).

The Sales Lineitem subform actually would display all of the records in the
tblSalesLineItems table for all of the Invoices if it weren’t for two properties in the
subform control itself. These properties allow you to automatically filter the sub-
form records to display only the records where a value in the subform form
matches a value in the main form. These control names will be entered into these
subform control properties. The fields idsInvoiceNumber from the tblSales table
and lngzInvoiceNumber from the tblSalesLineItems table will be used. You will see
these properties later in the chapter.

The second subform is used to allow entry and display of the payments for the spe-
cific invoice. The tblSalesPayments table stores the many side of the one-to-many
relationship between the sales and payments. Notice the common key field in the
tblSalesPayments table, which is exactly like the common key in tblSalesLineitems.
You will see how to create this relationship separately between the main sales form
and sales payments subform. You will look up the Payment Type on the Payments
subform from the tblPaymentType table to allow only valid values in the payments.

You will learn how to create the referencing controls and the combo boxes that
retrieve information. But before you learn this, you must learn the basics of
subforms.

You can create a subform in several ways:

✦ Use the Form Wizard when you create a new form.

✦ Use the Subform Wizard in an existing form.

✦ Use the Subform button in the toolbox and modify control properties.

✦ Drag a form from the Database window to another form.

Creating Subforms with the Form Wizard
The Access Form Wizard can create a form with an embedded subform if you
choose more than one table (or use a query with more than one table). If you don’t
use the Wizard, you have to create both the form and subform separately; then you
embed the subform and link it to the main form.

508 Part I, Section II ✦ Building Forms and Reports

Creating the form and selecting the Form Wizard
The Form Wizard creates both the form and the subform automatically when you
specify more than one table in a one-to-many relationship. In this example, you cre-
ate a form that displays information from the tblSales table on the main form; the
subform shows information from the tblSalesLineitems table. To create the form,
follow these steps:

1. Create a new form by selecting the Forms object button in the Database win-
dow and clicking the New toolbar button.

2. Select Form Wizard in the New Form dialog box and select the tblSales table
from the tables/queries combo box, as shown in Figure 14-3.

Figure 14-3: Selecting the Form Wizard.

After you select the Form Wizard and the table or query to use for the new form,
you need to select the fields for the main part of the form.

Choosing the fields for the main form
You then select each of the fields you want on the main form. The tblSales table will
be used for these fields. Figure 14-4 shows the completed field selection. To select
the fields for this example, press the >> button to select all of the fields in the
tblSales table.

Now you will change the table selected in the Tables/Queries to add the fields for
the subform.

Selecting the table or query that will be the subform
Because a subform uses a data source separate from the form, you have to select
the table or query to be used on the subform. You do this from the same wizard

509Chapter 14 ✦ Working with Subforms

screen without pressing the Next button. To select another table/query for the
form, select the tblSalesLineItems table from the combo box, as shown in
Figure 14-5. This table will be used as the Record Source for the subform of the pri-
mary form.

Figure 14-4: Selecting the fields for the main form.

You will notice after a few seconds that the field list below in the Available Fields
list box changes to display fields in the tblSalesLineItems table. The fields already
selected from the tblSales table in the Selected Fields list box remain.

Figure 14-5: Selecting the fields for the subform.

510 Part I, Section II ✦ Building Forms and Reports

Choosing the fields for the subform
Fields for the subform are selected in exactly the same way as fields for the main
form. Those you select from the tblSalesLineItems table will be added to the list of
fields already selected from the tblSales table. You want to select all the fields
except the first two fields.

To select the fields for the subform, follow these steps:

1. Press the >> button to select all of the fields in the tblSalesLineItems table.

2. Select lngzInvoiceNumber in the Selected fields box and press the < button to
de-select it.

3. Select idsLineNumber in the Selected fields box and press the < button to de-
select it.

4. Click the Next button to move to the next dialog box.

After you select the fields for the tblSalesLineItems table, you can move to the next
wizard screen to decide how the linkage between forms will be built and how the
data on the form will look.

Selecting the form data layout
The next dialog box is shown as part of a conceptual diagram in Figure 14-6. A mul-
titable relationship gives you many ways to lay out the data. The top part of the fig-
ure shows an automatic decision Access makes on the basis of the one-to-many
relationship between tblSales and tblSalesLineItems. The data is viewed by tblSales,
with a subform with the tblSalesLineItems data.

On the left side of the dialog box, you can choose how you want to view your form.
Below the field view diagram, you can select whether you want to see your data as
a Form with subform(s) or as Linked forms.

In the top part of the figure that shows the entire Form Wizard dialog box, you can
see the form with a subform: tblSales fields are on the main form, and
tblSalesLineItems fields are on the subform. The bottom-left part of the diagram
shows conceptually what the data would look like if you viewed the data by
tblSalesLineItems instead. The data from both tables would be placed on a single
form. The bottom-right part of the figure shows how it would look if you chose to
view the data by tblSales but chose Linked forms instead. Rather than creating a
tblSales form with an embedded tblSalesLineItems subform, Access would create a
tblSales form with a button to display the tblSalesLineItems form.

After you select the type of form you want (the data is viewed by tblSales, with a
Form with subform(s) with the tblSalesLineItems data), as shown in the top half of
Figure 14-6, you can click the Next button to move to the subform layout screen.

511Chapter 14 ✦ Working with Subforms

Figure 14-6: Selecting the data layout.

Selecting the subform layout
When you create a form with an embedded subform, you must decide which type of
layout to use for the subform. The four possibilities are Tabular, Datasheet,
PivotTable, and PivotChart. The datasheet is the easiest, but it may not be the
choice you want to accept. Datasheets are rigid by nature; you cannot change cer-
tain characteristics (such as adding multiline column headers or precisely control-
ling the location of the fields below). You should choose a tabular layout for added
flexibility. Whereas a datasheet combines the headers and data into a single control
type (the datasheet itself), a tabular form places the column headers in a form
header section, placing the field controls in the form’s detail section. A tabular for-
mat creates a Continuous Form layout and also enables you to add any type of con-
trol to the subform where datasheets are limited to text boxes, check boxes, and
combo boxes.

Select the Tabular layout, as shown in Figure 14-7.

512 Part I, Section II ✦ Building Forms and Reports

Figure 14-7: Selecting the subform tabular layout.

Selecting the form style
As with other Form Wizards, you can determine how the form will look by selecting
one of the AutoFormat choices. The style applies to the main form. The subform,
displayed as either a separate tabular form or a datasheet, has the same look.

You can select the Standard style and click the Next button to move to the final dia-
log box. This box enables you to select the title for the form and the subform.

Selecting the form title
You can accept the default titles (the table names that Access gives the main form
and subform), or you can enter a custom title. The text you enter appears in the
form header section of the main form. (See Figure 14-8.) Because the default names
are the table names, you might want to change the tbl prefix to frm.

When you accept the names (or enter names of your choice), both the form and
subform are saved as separate forms; they will appear in the Database window
when you select Forms. You should try to name your forms and subforms some-
thing similar so that you can tell that they go together. After you complete this step,
you can view your form or its design.

Displaying the form
After the forms are named, the screen displays either the form or its design,
depending on the option button you choose. In this example, you see the form, as
shown in Figure 14-9.

513Chapter 14 ✦ Working with Subforms

Figure 14-8: Selecting titles for the form and subform.

Figure 14-9: The frmSalesCh14 and fSubSalesLineItemsCh14 form.

The tabular form layout was chosen for the subform. Whether you create your sub-
form through a wizard, by dragging an already created form to another form or by
using the subform tool in the form toolbox, Access creates a datasheet, tabular
(continuous) form, PivotTable, or PivotChart. You can change this by changing the
Default View property of the subform form to Single Form, Continuous Forms
(Tabular), Datasheet, PivotTable, or PivotChart.

As you can see in Figure 14-9, the subform only shows a portion of the fields. The
controls need to be resized and rearranged. The main form controls also show data
that is cut off (controls that are not wide enough to display the data). You can
change the main form and subform all you need to. You can move fields around,
adjust column widths, change the formatting, modify the distance between rows,
and rearrange columns. When you make these changes, you’ll see them in effect the

514 Part I, Section II ✦ Building Forms and Reports

next time you view the subform. If you scroll down to the bottom of the subform,
you’ll notice that the asterisk (*) appears in the record selector column. As with
any continuous form or datasheet, you can add new records by using this row.

Both the main form and the subform initially have record selectors because they
are separate forms. Later, you will change this. As you use the outer record selector
on the main form, you move from one tblSales record to another. If the link was
properly established in the subform control (this happens when common primary
keys names are found), the data values in the subform would automatically change
when you move from record to record in the main form.

If you notice, the figure shows 84 records in the subform. This is because the link is
not yet established. After it is created, you will see only five records in the subform
for this main form. Depending on how you create a subform, the link between the
parent form and child subform may need to be created manually. You learn how to
do this later in the chapter. If your link was automatically created, it is still impor-
tant to learn how to create a link manually.

In this form right now, if the link is not created, you will not see the subform data
change as you move from record to record in the main sales form. Because when
the field names in the primary keys in the two tables are different, you may have to
create the link manually.

Displaying the main form design
To understand how the forms are linked from main form to subform, view the main
form you just created in Design view, as shown in Figure 14-10.

Figure 14-10 shows this form in design view with the link correctly completed.
When you first open the form in design view, select the subform control, and dis-
play its properties window, the Link Master Fields property will be blank if the link is
not established.

The design for the main form shows the fields from the tblSales table at the top and
the subform control at the bottom. You should be able to see the actual controls
from the subform form within the subform control.

If you are used to using any older version of Microsoft Access, you previously saw
only a gray box indicating the subform. You had to double-click the subform con-
trol to see the subform form itself.

If you do not use the wizard to create your forms and subforms, you must always
first create the form you intend to use as a subform; the main form will not be
usable until the subform form is created.

Caution

Note

515Chapter 14 ✦ Working with Subforms

Figure 14-10: The frmSalesCh14 form in design view showing
the subform control and its properties.

Linking a form and subform
The Subform control property sheet is also shown. Notice the two properties Link
Child Fields and Link Master Fields; these properties determine the link between
the main form and the subform. The field name from the main table/query is
entered in the Link Master Fields property. The field name from the subform
table/query is entered in the Link Child Fields property. When the form is run, the
link determines which records from the child form are displayed on the subform.

In previous versions of Microsoft Access before Access 2000, you could double-
click the subform and instantly open the subform form. Access 2002 improves this
by letting you work with the subform live in the main form. However, the subform
control limits the space in which you have to work. You may find it easier to close
the main form containing the subform control and open the subform form itself.

The subform control is used for both subforms and subreports.

You should now enter the name of the master field link from the tblSales table in
the Link Master Fields property. The field to enter here, as shown in Figure 14-10, is
idsInvoiceNumber, the name of the primary key field in the tblSales table.

1. Enter idsInvoiceNumber into the Link Master Fields property of the subform
control.

Display the form in form view after completing this step. Notice that the num-
ber of records in the subform record selector has decreased to only a few

Note

Tip

516 Part I, Section II ✦ Building Forms and Reports

records. If you move from record to record using the main form record selec-
tor, you will see only the records in the subform for the selected invoice. The
link is working!

2. Close the form.

Displaying the subform design
To understand how the subform is built, view the subform form in Design view (as
shown completed in Figure 14-11). You should close the frmSalesCh14 (or whatever
you named it) form and open the fSubSalesLineItemsCh14 form in design view.

A subform is simply another form; it can be run by itself without a main form. You
should always test your subform by itself, in fact, before running it as part of
another form.

In Figure 14-11, you can see that all the fields are from the tblSalesLineItems table.
You can also create a subform design with fields from multiple tables by using a
query as the data source.

Figure 14-11: The fSubSalesLineItemsCh14 form in design view.

You need to resize the controls in this form to fit within this 51⁄2-inch space including
any scroll bars. You also want to move the controls closer to each other to save
space and decrease the height of the Description field control. This natural restric-
tion of space in a form is known as real-estate issues and is generally a user inter-
face designer’s biggest challenge, just as a home builder’s challenge is designing a
large home to fit on a small lot.

517Chapter 14 ✦ Working with Subforms

After rearranging the controls to fit in a smaller space, you also have to adjust the
form width by selecting the area running vertically along the right edge of the form
where the pointer will change to a double-headed horizontal arrow and move the
border line to the left until it intersects the top ruler at a position slightly less than
5.5 inches. This way there is room for a scroll bar.

You also may want to center the labels on all of the controls to more evenly dis-
tribute them and change the special effects.

Notice that in the Form property sheet for the tblSalesLineItems subform, the
Default View property is set to Continuous Forms. This will print the data in a tabu-
lar view, which gives you complete control over how the data looks and also over
validation. For this example, you will use the Continuous Forms view. This means
that the subform is displayed as a continuous form displaying multiple records,
whether it is run by itself or used in a form. You can change it to a datasheet if you
want or create a multiple-line form (which would then display its multiple lines on a
subform).

A subform that will be viewed as a datasheet needs only to have its fields added
in the order you want them to appear in the datasheet. Remember that you can
rearrange the fields in the datasheet.

You can use the form footer of a subform to calculate totals or averages and then
use the results on the main form. You learn how to do this later in this chapter.

The Form Wizard is a great place to start when creating a form with a subform. In
the next section, however, you learn to create a subform without using a Form
Wizard. Then you customize the subform to add combo box selections for some of
the fields as well as calculate both row and column totals.

Close this subform, because you will not be using this form or subform again.

Creating the Sales Invoice Form
It is now time to learn how to create the frmSales form you saw in Figure 14-1.
Figure 14-12 shows the form that has been created for you as a starting point.

The form in various amounts of completion will be given to you as a starting point.
You will start by opening the form frmSalesExample1 found in the Ch14Start.
mdb database file. This will be the starting point for your exercise.

In Figure 14-12 you can see that the main portion of the form without the subforms
has been created for you. Actually, not only are both subforms missing (you’ll cre-
ate them later in the chapter), but all of the VBA code has been removed from the

On the
CD-ROM

Tip

Tip

518 Part I, Section II ✦ Building Forms and Reports

form. Additionally, the control references to the subforms in the Subtotal and Total
Due along with the calculation in the Total controls have also been removed from
the control’s Control Source property.

Figure 14-12: The Main frmSales form partially completed.

Creating a combo box that retrieves data
The Buyer combo box is a bound control that stores the value of the lngzBuyer field
in the tblSales table. The value is retrieved from the tblContacts table when the
combo box is used to display a buyer and his or her company. Figure 14-13 shows the
form in its current state with the Buyer combo box control open on top of the form.

You can see in the figure that the combo box has two columns (Name and
Company) — or does it? There must be at least three columns because one of the
columns must store the value of the lngzBuyer field from the tblContacts table into
the tblSales table as the bound field in the combo box. The reality is that there are
11 columns in the combo box. Six columns are actually returned to the combo box,
three are on the query grid but not passed back to the combo box control as they

519Chapter 14 ✦ Working with Subforms

are used for sorting, and two more chrContactType and blnActive are out of sight in
the figure and are ignored by this example.

Figure 14-14 shows the query behind the Row Source property of the combo box.
There are actually six columns in the query that are used in the combo box plus
three additional columns used to sort the combo box data in the order of Last
Name, First Name, and Company.

Figure 14-13: The buyer combo box, showing name and company.

Figure 14-14: The buyer combo box Row Source query.

520 Part I, Section II ✦ Building Forms and Reports

The first column is one of the visible columns and is a concatenation of the last and
first name. The field uses the following expression:

Name: tblContacts.chrLastName & “,” & tblContacts.chrFirstName

This concatenates the value of the Last Name field, a comma, a space, and the value
of the first name field. The Name: also renamed the column to Name, so that
appears at the top of the first column in the open combo box.

The second column is simply the chrCompany field, which lists the company. The
third through fifth columns store three fields that can be used to populate control
values on the sales invoice. These are the dblDiscountPercent, dblTaxRate, and
chrTaxLocation fields. You will learn how to copy their values from the combo box
to controls on the Invoice later in this book when you learn VBA coding.

The sixth column is the bound column that gets stored in the combo box control.
This is the idsContactID field from the tblContacts table. By storing this primary
key value, you can later retrieve any data you want from the tblContacts table.

The last three columns shown in Figure 14-14 do not have check marks in the Show:
check boxes. These columns are used only to sort the data displayed in the combo
box but are not available to the Invoice through the combo box control. This is a
common technique when you don’t need the value of the control but want to use it
for sorting or filtering. Later in this chapter, you will see a reason to use these
fields.

If you look at the property window for the Buyer combo box control, you will see
the Column Widths property displays:

1.25”;2”;0”;0”; 0”;0”

This means that only the first two columns (Name and Company) are displayed.
The other columns are hidden, although they are available to the form by referenc-
ing them with the Column method, as you will learn later in this chapter.

Although the Row Source property of a combo box displays a SQL Statement or
the name of a table or query, you can display the query grid behind the SQL
Statement by clicking into the Row Source of the combo box and then pressing
the Builder button (...).

Displaying data from another table in a form
After you have completed the Buyer combo box that places the value from the
Buyer field from the Contacts table, you can use this value to retrieve other values
from the Contacts table. There are several ways to do this.

Tip

521Chapter 14 ✦ Working with Subforms

The first way is to use a function to retrieve the value and display it in the combo
box. In this example, there are four text boxes that display the company, street
address, city/state/zip, and phone number. All of these values can be looked up in
the tblContacts table when the user has selected. Figure 14-12 showed these text
boxes in design view, while Figure 14-15 shows these text boxes displayed on the
form in form view.

Functions are built into Microsoft Access that let you perform a wide variety of
tasks. Functions generally have options known as parameters. Functions are called
by simply using their names and passing from 0 to unlimited parameters to the
function. The function performs its calculations and generally returns a single
value. A simple function could be Max(12,16), which would return the maximum
value of 12 or 16. Obviously, the returned value would be 16.

Using a DLookup function
The DLookup function can be used to look up any one field value in a table. To look
up the value of the Company field, you would enter the following expression in the
first text box below the combo box control:

=DLookup(“[chrCompany]“, ”tblContacts“, ”[idsContactID] = [lngzBuyer]”)

DLookup is a function that contains three parameters. These parameters include:

✦ Field value to return from the specified table (can also be any valid expression)

✦ Table or Query name where the field is found

✦ String Expression with the criteria to use

The example above states to return the value of the chrCompany field from the
tblContacts table where the value of the idsContactID field (from the tblContacts
table) equals the value of the lngzBuyer field (which is stored in the cboBuyerID
combo box control in the form).

As you can see in Figure 14-15, when the form is viewed, there are four text boxes
with DLookup expressions (as shown in Figure 14-12). The third text box uses a
compound expression that looks up several fields at one time.

=DLookUp(“[chrCity] & ‘, ’ & [chrState] & ‘ ’ &
[chrZipCode] “,”tblContacts“,”[idsContactID]=[lngzBuyer]”)

This expression retrieves the values of the chrCity, chrState, and chrZipCode fields
from the tblContacts table, concatenates them together, and produces the expres-
sion. Because all the fields come from one table and from one record criteria, a sin-
gle DLookup could be used. Suppose you needed to get the chrState value from a

Tip

522 Part I, Section II ✦ Building Forms and Reports

fictitious table named States. The other two fields were in the tblContacts table.
You could create an expression with three separate DLookups:

=DLookUp(“[chrCity]“,”tblContacts“,”[idsContactID]=[lngzBuyer]”)

& “, ” &

DLookUp(“[chrState]“,”tblStates“,”[idsContactID]=[lngzBuyer]”)

$ “ ” &

DLookUp(“[chrZipCode]“,”tblContacts“,”[idsContactID]=[lngzBuyer]”)

Figure 14-15: Viewing the Buyer combo box and its text boxes.

This concatenated expression joins the value of chrCity from the tblContacts
table with a comma and space, and then concatenated with the value of chrState
from the tblStates table (remember, this one doesn’t actually exist) with a comma
and space, and then concatenated with the value of chrZipCode from the
tblContacts table.

The DLookup function is used extensively in Access applications, but it is not the
best function to use. DLookup is known as a Domain Function. This means that it

523Chapter 14 ✦ Working with Subforms

works against a set of data. When your data files are small, it is a great function.
However, when there is a large number of records in the table from which you are
retrieving data, the speed of the application could be abysmal. There are much bet-
ter ways to retrieve data from a table than by using a DLookUp most of the time.

One such way, of course, is using VBA code, and you will learn how to do that in
later chapters. Another way without programming is to use the Column method of a
combo box. The cboBuyerID combo box control bound to the field lngzBuyer pro-
vides this opportunity.

Using the Column method of a combo box
To show you an example of this, consider the first text box below the combo box.
This control currently uses a DLookup to retrieve the value of the chrCompany field
from the tblContacts table. This means that when you select a value from the
combo box control (that is already populated with values from the tblContacts
table), the DLookup goes back out to the tblContacts table and retrieves the values
again. This is very inefficient, and if there are a lot of records in the tblContacts
table, it could be very time consuming.

Because the value of chrCompany is already in the combo box control in one of the
columns, why not just retrieve it from the combo box? The Column method of the
combo box enables this. The Column method allows you to reference one value in a
control from another. To change the first text box from a DLookup to a Column
method, follow the steps below:

1. Select the first text box under the combo box control.

2. Display the property window.

3. Replace the Control Source with =[cboBuyerID].Column(1).

Figure 14-16 shows this text box completed.

Only combo boxes can be referenced with the Column method.

Make sure you use the name of the combo box, not its displayed Control Source.
The combo box is named cboBuyerID. Even though the field name lngzBuyer is dis-
played in design view, that is the bound Control Source of the control, not its name.

The Column() method references a column in the combo box. The columns are
numbered starting from 0. This is important. The numbering starts at 0. In this
example, the first column (Column 0) is the First and Last name. The second col-
umn (Column 1) is the Company. Therefore, the column reference is to column(1).
A period separates the control name from the Column() method.

Numbering starts at 0 when referencing a column of a combo box.Caution

Note

524 Part I, Section II ✦ Building Forms and Reports

Later in this book, you will learn how to copy the value from one control or field in
a table to another using VBA program code. This would keep the control editable
because the Control Source would still be bound to a field in the form’s Record
Source, not a reference to another control.

When any control contains a reference to another control for a Control Source, it
becomes read only; you can’t change the value in the control.

Figure 14-16: Using the column property in a text box.

Creating a Subform Without Wizards
As previously discussed, there are several ways to create a subform without wiz-
ards. You can drag an already created form from the Database window to a form, or
you can use the Subform tool in the toolbox. The most desirable way is to drag the
form from the Database window after you’ve already created it, because Access will
try to create the links for you.

In this portion of the chapter, you’ll work with only the frmSalesExample1 that you
used in the last part of this chapter as a main form.

Caution

525Chapter 14 ✦ Working with Subforms

Working with Continuous Form subforms
You will use the form fsubSalesLineItemsExample1 as a subform. It has already been
created for you as a starting point. You can see this subform in Figure 14-17.

As you can see in Figure 14-17, the subform is simply a form with a group of con-
trols arranged horizontally. The property window is displayed. The Record Source
of the form is the tblSalesLineItems table, which contains the line items for the
Invoice form. Notice that the Default view is Continuous Forms. This means that the
form will display multiple records when it is viewed. This is the setting you gener-
ally want in a subform that will display multiple records as the sales line item dis-
play needs to be.

Figure 14-17: The fsubSalesLineitemsExample1 subform in design view.

Creating column labels in the form header
The Form Header of this form is created with a series of label controls. Each con-
trol’s background color is set to black and the text color is set to white to give a
nice highly contrasted look for the column headers. When creating this type of
look, you need to be careful that your borders precisely overlap to create a clean
thin look to the border lines.

Creating controls in the detail section
The detail section contains eight controls that provide the information needed for
the invoice line items. The first control is a combo box that displays the Product ID,
Description, Retail Price, Taxable status, and Quantity in Stock, as shown in
Figure 14-18. The bound column of the cboProductID combo box control is the
chrProductID field in the tblProducts table. You can see this information in the
property window in Figure 14-18.

526 Part I, Section II ✦ Building Forms and Reports

The width of an open combo box can be larger than the closed combo box control
when you use the List Width property.

Figure 14-18 shows this subform being tested by simply viewing it in Form view.
Before you worry about embedding the subform in a main form, you should run it
by itself to test that it is correctly created. Although some complex forms with VBA
code require the form to be embedded to test its visual look, this simple form can
conveniently be looked at in Form view.

Figure 14-18: The fSubSalesLineitemsExample1 subform in form view.

The Qty control is used by the user to enter the quantity sold. The Description,
Price and Tax? checkbox can be automatically filled in by using VBA code to copy
the values from the combo box columns using the Column method, as you previ-
ously learned. You could simply place column method references in those three
controls, but then they would be read only. In this example, you want to be able to
make changes to the copied description, price, and tax status. However, because
you want to copy the values to the controls for later updating, you must use VBA
code. You will learn how to do this working with this example, later in the book in
the programming section.

Tip

527Chapter 14 ✦ Working with Subforms

The Disc % column is another control that can be programmed. This value can
come from the Buyer record in the tblContacts table. You will also see this later in
the book.

One interesting visual task is the area behind the Tax? Check box. There is actually
a rectangle with a white background placed behind the checkbox to continue the
white look. You could also select a white background for the form’s detail section.

Creating a calculated expression
The final control in the Detail section is shown in Figure 14-19. The txtAmount text
box is a calculated expression that multiplies the quantity times the discounted
price. The actual formula is shown in the property window in Figure 14-19. The cal-
culation is:

=nz([intQuantity],0) * (nz([curPrice],0) * (1-nz([dblDiscountPercent],0)))

Figure 14-19: Viewing the calculated expression.

If any of the controls in a calculated expression are null, you might see a #Error or
#Name instead of the calculated value. To fix this, you should use the nz (Null to
Zero) function preceeding each control that could be 0. You can also set the
Default Value of the control or table field to 0, but the 0 could be deleted. The nz
precedes the control name, and the .0 comes after it. The .0 tells Access to substi-
tute a 0 for the null value. You could use any number or even a character string in
place of the value. Any time you are going to use any field in an expression that
could possibly be null, you should use an nz function.

Tip

528 Part I, Section II ✦ Building Forms and Reports

Creating a calculated summary expression
The txtAmount textbox control in the Detail section calculates the amount of a sin-
gle line, but you can create a total of all the lines in the detail section with a sum-
mary expression. Summary expressions are created in the Form Footer section and
use the Sum function to do this. If you look in the Form Footer as shown in Figure
14-20, you can see the control named txtItemsTotal. The expression in the control is:

=Sum(nz([intQuantity],0) * (nz([curPrice],0) * (1-nz([dblDiscountPercent],0))))

The =Sum function tells Access to sum all of the values in the continuous form
using the expression within the parentheses. In this example, the expression from
the detail section is used. Later in the Invoice form, you will create a control that
will reference this total in order to show a total of all the line items.

Calculated summaries cannot simply use the name of the control in the Detail sec-
tion if the control is a calculated expression itself. You must repeat the expression
within the summary control.

Figure 14-20: Viewing the calculated summary expression.

Creating a filtered calculated summary
The calculated summary expression placed in a footer section allows you to create
totals from all records in a detail section. In this example, this allows you to create a
subtotal for the sales invoice form. There may be times when you want to create a
summary, but only for selected records. In this example, you can see in the invoice
that there is a taxable indicator (checkbox) in each record. There is also a tax rate in
the main part of the invoice, and below the subtotal control is a tax amount. In order
to calculate the tax amount, you have to multiply the tax rate by the taxable amount.

The taxable amount is the subtotal of all taxable line items only. A taxable line item
is a line item (record) where the tax checkbox is checked.

Note

529Chapter 14 ✦ Working with Subforms

The control txtTaxableTotal, shown in Figure 14-21, totals all of the line items
where the tax check box is true. This expression — albeit quite long — combines
the Sum function and the expression you saw previously created with an IIF func-
tion (immediate IF).

The Immediate IF (IIF) function lets you make a binary (true false) decision within
an expression. Suppose you want to evaluate whether an item is taxable; if it is tax-
able, you want to display the word “Yes” in a control, and if it is not taxable, you
want to display the word “No.” You could create the following simple expression:

=IIF([blnTaxable] = True,”Yes’,”No”)

The IIF function reads programmatically “If the field blnTaxable = True, Then return
a value of “Yes” to the expression, Else return a value of “No.” It is a way to intro-
duce programming logic within an expression without using VBA coding. The IIF
function is one of the most versatile functions used in Access.

In Figure 14-21, the expression is a little longer, but no more complicated. The fol-
lowing expression sums the quantity times discounted price, where the value of the
blnTaxable field is true:

=Sum(IIF([blnTaxable = True,nz([intQuantity],0) * (nz([curPrice],0) *
(1-nz([dblDiscountPercent],0))),0))

This calculates a taxable total (a total of the taxable items). This total can then be
multiplied by the customer’s tax rate to calculate the tax on the invoice. You will
see this used later in the chapter.

You can combine multiple IIF statements in the same expression to create logic
that is more than a single binary comparison. Two IF statements give you three
comparisons, while three IIF statements together give you four comparisons. For
example, suppose you have a field called chrCarModel that you want to display a
different value in an expression based on three possibilities. You could code the
expression like this:

=IIF(chrCarModel=”Mustang”,”Car”,IIF(chrCarModel=”Explorer”,”SUV”,”Minivan”))

This would first check to see if the value was “Mustang”, and if it were true, it
would return the value “Car” to the expression. If it were false (not equal to
Mustang), another comparison would be made to see if the value of chrCarModel
was “Explorer.” If this were true, the expression would be set to “SUV,” and if it
were not “SUV,” no matter what the value of chrCarModel was, the expression
would be set to “Minivan.”

Tip

530 Part I, Section II ✦ Building Forms and Reports

Figure 14-21: Viewing the filtered calculated summary expression.

Hiding a form section
If you display the form in form view as currently completed, you will notice that you
can see the values in the form footer, as previously shown in Figure 14-18. Notice
that the taxable total control on the left of the form footer is less than the subtotal
control field. This is because not all of the line items are taxable.

Though this is good for testing to make sure the expressions are correct (you
should hand calculate some of the line items and the totals to make sure they work
as well), you do not want the totals visible on the form when it is used as a
subform.

To hide the controls in the form footer, you could change each of the control’s visi-
ble properties to No, but that would still leave the footer visible in the subform. To
hide the form footer, you simply change the Visible property of the form to No. This
will hide the form footer and the controls in it.

To hide the form’s footer section:

1. Make sure the fSubSalesLineItemsExample1 form is open in Design view.

2. Display the Property window.

3. Select the Form Footer section.

4. Change the Visible property to No.

This will hide the Form Footer section.

The form is now complete and ready to be integrated into the main form. In the
next part of this chapter, you will place this form into the main form and create ref-
erences to the subform form footer controls.

531Chapter 14 ✦ Working with Subforms

Adding the subform to the main form
After the subform is complete, you can add it to the main form. The easiest way is
to display the main form in a window and then drag the subform to the main form.
This action automatically creates the subform object control and potentially links
the two forms.

To add fSubSalesLineItemsExample1 to the frmSalesExample1 form you’re using as
the main form, follow these steps:

1. Display the frmSalesExample1 form in a window in Design view so that you
can also see the Database window.

2. Display the Form objects in the Database window.

3. Click the form name fSubSalesLineItemsExample1 and drag it to the
frmSalesExample1 form, as shown in Figure 14-22. Let the cursor go just under
the Payment Method control near the left border of the form. If you do that, it
will fit perfectly on the form.

When you create a form that will be used for a subform, make sure the subform
form will fit within the width of the main form.

Figure 14-22: Dragging the subform to the main form.

Tip

532 Part I, Section II ✦ Building Forms and Reports

4. Delete the label that is automatically added with the subform control (you can
find this between the subform control and the Payment Method control above
it on the far left of the screen).

You should switch to Form view to check the placement and size of the con-
trol. If you see four records in the subform, as shown in Figure 14-23, your
control is sized properly.

You can also tell if your link has been automatically established. Notice the
record counter just below the subform. If it contains a lot of records, the link
is missing or incorrect. If there are only a few records, the link is working. If
you change the main invoice record, you will see the records in the subform
change if the link is correct.

5. If the subform control needs to be resized, make the changes to the subform
control so that it fits onscreen as shown in Figure 14-23.

Figure 14-23: Checking the subform placement and size.

533Chapter 14 ✦ Working with Subforms

Sometimes, to resize a control properly, you must display it in form view, note the
height or width to change, switch to design view, make your changes, and then
start the process over again. You should not feel that this is design by trial and
error; it’s a perfectly normal development process.

The next step is to make sure that the subform correctly figured out the link
between itself (the tblSalesLineItems table) and the main form (the tblSales
table).

6. Display the property window for the subform control to see if there was an
automatic link. If not, you will manually link the fields.

The property window form should look like the one shown in Figure 14-24.
The Link Child Fields and Link Master Fields sections should be correctly
filled in. You can see the field lngzInvoiceNumber in the Link Child Fields
property (which is the primary key in the tblSalesLineItems table) and the field
idsInvoiceNumber in the Link Master Fields property (which is the primary
key in the tblSales table).

The main form (Master) and the subform (Child) are linked because the pri-
mary keys were compatible for both the tables (both were long integers, while
the tblSales key was actually an AutoNumber, which is also a long integer).
Sometimes Access cannot automatically link the primary keys. This is espe-
cially true when the link involves a multiple key field primary key. The next
part of this chapter discusses manually linking these fields.

Figure 14-24: Checking the Master and Child fields
link in the subform.

Linking the form and subform
When you drag a form from the Database window onto another form to create a
subform, Access tries automatically to establish a link between the forms. This is
also true when you drag a form or report onto a report. Figure 14-24 shows that the
link was automatically made.

Tip

534 Part I, Section II ✦ Building Forms and Reports

Access establishes a link under these conditions:

✦ Both the main form and subform are based on tables, and a relationship has
been defined with the Relationships command.

✦ The main form and the subform contain fields with the same name and data
type, and the field on the main form is the primary key of the underlying table.

If Access finds a relationship or a match, these properties show the field names that
define the link. You should verify the validity of an automatic link. If the main form
is based on a query, or if neither of the conditions just listed is true, Access cannot
match the fields automatically to create a link.

The Link Child Fields and Link Master Fields property settings must have the same
number of fields and must represent data of the same type. For example, if the
tblSales table and the tblSalesLineItems table both have a single field primary fields
(one each) that contain the same type of data, it doesn’t matter what the field
names are.

Although the data must match, the names of the fields can differ. For example,
lngzInvoiceNumber is the primary key in the tblSalesLineItems table, and the field
idsInvoiceNumber is the primary key in the tblSales table.

To create the link manually, simply enter the name of each linking field or fields in
the Link Child Fields and Link Master Fields property areas. Remember that the
master field is in the main form and the child field is in the subform form.

Without the link, if you display the form, you see all the records in the subform’s
record source in the subform. By linking the forms, you see only the line items for
the specific invoice being displayed on the main form.

The last change to make to the form now is to reference the fields to display totals
of all the line items in the subform and to calculate the total and subtotals.

Referencing controls in subforms
To create a total of the line items in the subform, you have to create an additional
calculated field on the form you’re using as a subform. Figure 14-19 showed several
controls in the form footer on this form and was discussed previously in the
chapter.

By using the form footer, the calculation occurs after all the detail records are pro-
cessed. When the form is displayed in Single-form view, this total is always equal to
the detail record. In Continuous Forms or Datasheet view, however, this calculation
is the sum of the processed record.

535Chapter 14 ✦ Working with Subforms

As shown in Figure 14-25, these controls calculate the sum of the line items and a
sum of the taxable line items.

Although the text box control containing the summary was created in the subform,
it’s displayed by a text box control (which refers to the subform control) placed in
the main form. This control is shown in Figure 14-25.

Figure 14-25: Referring to a control in another form.

Because the field is in another form, it must be referred to with the fully qualified
terminology. This is called control referencing and means that a control displays a
value by referencing a value in another control and even in another form. This also
makes that control read only.

Object type![Main Form name]![Subform control
name].Form![control name]

The object type is either Forms or Reports. In this example, it is a form and Forms
will be used.

536 Part I, Section II ✦ Building Forms and Reports

The main form is named frmSalesExample1 and the subform control name is
fsubSalesLineitemsExample1. The control name of the control on the subform is
txtItemsTotal.

The .Form means this control path points to another form.

If your form or subform control is named something different, use your names in
place of these.

Although the subform control displays the name of the subform control’s Source
Object property (the name of the subform form) in design view, you must check the
subform control’s Name property setting for the actual control name.

To enter the reference to the subform control, enter the following into the Subtotal
control’s Control Source property. Make sure it looks like Figure 14-25.

As you can see in the property window, the Control Source property is as follows:

=[Forms]![frmSalesExample1]![fSubSalesLineItemsExample1]orm]![t
xtItemsTotal]

The first part of the reference specifies the name of the form; Forms tells Access
that it’s the name of a form. By using the ! character, you tell Access that the next
part is a lower hierarchy. The dot is used before the Form to tell Access you are
now going to another form specified in the subform control. The control name
[txtItemsTotal] contains the value to be displayed on the subform. Remember that
the reference begins with Forms (plural) and later uses .Form (without the s).

Previously in the chapter, you created two summary type controls. One calculated a
sum of all line item amounts. The other calculated only the taxable amounts. In the
main invoice form, you want to take this taxable amount value and multiply it by
the tax rate to calculate the tax. You could do this by referencing the value on the
subform (its control name is txtTaxableTotal). If you wanted to do this, you could
create a calculated expression in the main invoice form and the txtTaxAmount con-
trol would be:

=[Forms]![frmSalesExample1]![fSubSalesLineItemsExample1].[Form]
![txtTaxableTotal]

* txtTaxRate

Caution

537Chapter 14 ✦ Working with Subforms

This multiplies the value of the txtTaxableTotal control by the txtTaxRate value.
However, this would make the control read only because it would be a calculated
expression. Instead, you can create this calculation in VBA code and then copy the
calculated value into the txtTaxRate control. This would allow the customer to
override the tax amount as needed. You will see this later in this book. For now, we
will leave this field as a simple bound control that must be manually calculated.

Creating a simple calculated control
Sometimes you need to create a calculated control that contains references to con-
trols on the current form only and not to any other forms. The TOTAL control on the
invoice form calculates the sum of the Subtotal, Tax, and Other amounts, as shown
in Figure 14-26. The txtTotal control needs to contain the following expression:

= [txtSubTotal] + [txtTaxAmount] + [txtOtherAmount]

Figure 14-26: Displaying the totals.

As shown in Figure 14-26, enter the expression into the txtTotal control. When you
display the form as shown in Figure 14-27, you can see the calculated total.

Never name the control the same as any controls or fields used in the calculation.
If you do, you will receive a #Error or #Name in the control instead of its value
when it is displayed.

The rest of this form will be completed in later chapters after you have learned
some VBA programming commands.

In the next chapter, you will see how to create reports that display and summarize
data including multilevel summaries, complex calculations and formatting, and
even percentages.

Caution

538 Part I, Section II ✦ Building Forms and Reports

Figure 14-27: Displaying the linked subtotal reference and calculated
expression.

✦ ✦ ✦

Creating
Calculations
and Summaries
in Reports

In the preceding chapter, you learned to design and build
the Invoice form with a series of subforms. You also

learned how to create calculated expressions and summary
expressions. In Chapter 13, you learned how to create basic
reports. In this chapter, you learn to create several new
reports using the techniques learned in the previous chapters.

The starting points for both reports you will create in this
chapter are included on your CD in Chap15Start.mdb. You
will use these reports to complete the examples in this
chapter.

Designing a Full-Page Report with
Embedded Subforms and Totals

In the first part of this chapter, you create a report that
displays information similar to the invoice form. This report
displays data in an invoice format that lists the customer,
invoice, line item, and payment information. The data is calcu-
lated for each line item and summarized for each invoice. The
payments are separately summarized and used to determine
an amount due.

Figure 15-1 is a sample printed page of the report. The page
displays a single invoice record. Later in this chapter, you
learn to create summary type reports that list data over time,
including individual line-item percentages and cumulative
running totals.

On the
CD-ROM

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a full-page
report using the sales
invoice

Designing a report
with multiple group
totals

Creating several
levels of sorting and
grouping totals

Entering and using
expressions and
functions in text
boxes

Using concatenation
in text expressions

Calculating sums for
each group

Calculating
percentages based
on group totals

Calculating running
sums

Creating a report
cover page

✦ ✦ ✦ ✦

540 Part I, Section II ✦ Building Forms and Reports

Figure 15-1: The sample Invoice Report page.

Designing and creating the query for the report
The Invoice Report uses fields from the tblSales, tblSalesLineItems, tblContacts,
and tblSalesperson tables. Other tables used in the report but not in the report’s
Record Source include tblSalesPayments and tblCompanySetup.

Unlike the Invoice form, it does not matter if the data is read-only when joined
together. This is why the Invoice form uses two subforms. The data in the main por-
tion of the invoice form, the invoice line item subform, and the invoice payment
subform are all fully editable. This is an important consideration for data entry
forms, which is not important for reports. The report uses the detail section with-
out a subform to display the invoice line items. The payments display will still use a
subform because you cannot display two different sets of continuous (multiple line
items) data in the Detail section. Because both the Invoice Lineitems and the
Invoice Payments are in one-to-many relationships to the Invoice itself, one must be
displayed in a subform.

The Record Source of the rptSales report shows the tables necessary for the report
joined together. This query is a SQL statement (also saved as a query named
qryInvoiceReport) behind the report’s Record Source. The tables displayed in the
top half of the query window have been resized and moved around to display the
relationships properly, as shown in Figure 15-2.

541Chapter 15 ✦ Creating Calculations and Summaries in Reports

Figure 15-2: The Query Design window for the rptSales Record Source.

As you can see in Figure 15-2 and later in Figure 15-4, fields will be placed on the
report from the tblSales table (to fill the top portion of the invoice and the tax and
other amounts). Fields from the tblSalesLineItems table are used in the Detail sec-
tion of the report. Contact information is also used in the top portion of the invoice
(but only one contact for each invoice). The tblSalesperson table is used strictly as
a lookup, so the salesperson name can be displayed instead of the ID stored in the
tblSales table.

After your query is completed, you can create your report.

Chapter 13 provides a detailed explanation of how to create a new report from a
blank form; it also shows you how to set page size and layout properly. Chapter 14
teaches subforms and calculated and summary controls, which are also used in
this chapter. If you are unfamiliar with these topics, read Chapter 13 and Chapter 14
before continuing. This chapter focuses on multiple-level groupings, calculated
and summarized controls, and expressions in reports.

Designing test data
One of the biggest mistakes that you can make when designing and creating com-
plex reports is to not check the results that the report displays. Because a report
only displays the data you give it, you should look at the data created from a
report’s record source (table, query, or SQL statement).

Before creating a complete report, you should have a good understanding of your
data. To check the results, you can simply display the query used for the report. If

Cross-
Reference

542 Part I, Section II ✦ Building Forms and Reports

the report is based on a SQL Statement and not a saved query, you can click on the
report’s Record Source property and display the query that way.

For this example, you will use the report rptSalesExampleStart as a starting point
for this report. To display the data used for the report’s Record Source, follow the
steps below:

1. Display the report rptSalesExampleStart in design view.

2. Display the Property window and place your cursor in the Record Source
property.

3. Press the Builder Button (...) on the right side of the Record Source
property area.

The query grid should be displayed as shown in Figure 15-2.

4. Press the Run button (!) in the query toolbar to run the query.

Your result should be displayed as shown in Figure 15-3.

Figure 15-3 shows the query results to use for checking the first report that
you create in this chapter. Notice for each repeating invoice group, the Invoice
data is the same for the different line items. When joining tables with a one-to-
many relationship, the fields on the one side (tblSales) will be the same for
each of the many side records, because you are displaying the same record’s
fields over and over again. The many side (tblSalesLineItems) will be different
for each record.

Figure 15-3 shows the datasheet that’s produced by this query; you can com-
pare the results of each task in the report design to this datasheet. Some of
the fields in the figure (most notably the line item data) were rearranged to
show you the multiple line items for each invoice.

5. Close the query and return to the report design.

Figure 15-3: A query for checking data results.

543Chapter 15 ✦ Creating Calculations and Summaries in Reports

Examining the Invoice report design
Figure 15-4 shows the Invoice report design named rptSalesExampleStart. You
should have opened this report in the preceding example. Because, in previous
chapters, you have already worked with creating controls using simple expressions
and summaries, much of this is already created for you.

Before you start changing this report, you will get an overview of how the report
was created and how it differs from the Invoice form.

Figure 15-4: The design for the rptSalesExampleStart report.

Creating reports from existing forms
As you know, there are several ways to create a report. One way is to create the
report from a blank report design, placing all of your fields as necessary. Another
way, if you are creating a report that is based on a data entry form, is to simply
right-click on the form in the database window and select Save As from the shortcut
menu. You can then give it a name and save it as a Report.

To create this report, the authors actually did that as a starting point. Then many
things were changed — some solely to discuss new techniques.

544 Part I, Section II ✦ Building Forms and Reports

Changes to the Page Header section
The background of the form was changed from standard Windows gray to white.
Most reports need to be printed or faxed and white is the best background color for
printing or faxing.

The INVOICE label was moved to the upper-right corner of the report and the
Invoice Number, Invoice Date, and Sale Date controls were altered slightly.

A block of DLookUp expressions were added to the top of the Page Header. These
display your company name (Access Auto Auctions) in this example and the com-
pany’s address and tax information. These could have been labels, but by using a
table to store your information, you could use your system for several companies
by simply duplicating your data and changing the Company Setup information
stored in the tblCompanySetup table. The tblCompanySetup table follows an inter-
esting format. There is a standard set of fields. The important ones are OptionName
and Value. Option Name is the name of the option being entered (for example,
CompanyName or Street). Value is the value of the option (for example, Access
Auto Auctions or 200 Northern Avenue). By creating a table like this, you can add
an endless number of options without having to add new fields. Your DLookUps can
pass the desired value of OptionName and the function will return the options value.

The Buyer combo box and text boxes have been replaced by a series of text boxes.
Rather than use DLookUp expressions, the control sources of the text boxes linked
directly to the report’s Record Source is used. DLookUps are notoriously slow
because they require a lookup using the entire table. Directly displaying data from a
record source is usually more efficient. In this query, the tblContacts table was
linked in the query from the BuyerID field providing access to the data in the
tblContacts table for the correct record.

The rest of the controls in the bottom of the Page Header section are all text boxes
that come directly from the tblSales table.

By placing all of these controls in the Page Header section, they will be displayed
at the top of each page of the Invoice if there are more line items than will fit on
one page.

Understanding the Invoice Number Header section
The Invoice Number header contains labels for the detail section controls. They
are displayed in reverse video (black background color, white foreground/text
color). Because the labels are in the Invoice Number Header section, they will only
print out once for each invoice, regardless of whether the invoice requires more
than one page.

These labels could also have been in the Page Header section. If they are in the
Page Header section, they are not repeated if the Invoice has multiple pages due to
many line items. If you want the column headers on every page, move them to the
Page Header section.

545Chapter 15 ✦ Creating Calculations and Summaries in Reports

Working with controls in the Detail section
The Detail section contains the line items from the tblSalesLineItems table linked
from the tblSales table. If you read previous chapters, you learned that the
chrProductID field is selected in the frmSales form from the tblProducts table and
the chrDescription, curPrice, and blnTaxable fields are copied from the tblProducts
table to the tblSalesLineitems table. Here, they are displayed in the reports Detail
section. The value of the dblDiscountPercent field is also displayed from the
tblSalesLineItems table.

The Amount column uses the same expression found in the form:

=nz([intQuantity],0) * (nz([curPrice],0) * (1-nz([txtDiscountPercent],0)))

Remember that the nz function converts nulls to 0, so the calculation in the expres-
sion will work even if a quantity, price, or discount percent is missing.

Using calculations and expressions in the Invoice Number footer
The idsInvoiceNumber Footer section contains the subtotal of all the line items as
well as the tax and other amounts, the grand total, and finally an amount due based
on the total amount of payments from a subform you will be adding later in this
chapter.

In the next section of this chapter, you will add the Access Auto Auctions logo to
the report, add a subform to display and calculate the total payments, and create a
new calculation to display the amount due.

Adding an unbound picture to the report
There are two types of unbound picture controls:

✦ Unbound Object Frame: An unbound object frame is a control that contains
any type of object that is not bound to a table value. This includes pictures,
sound files, video files, Word, Excel, or PowerPoint files, or any object that can
be linked or embedded within another. Generally, when an unbound object
frame is used, the embedded object can be double-clicked on and the source
program is launched and the embedded item can be edited.

✦ Image: An image control displays pictures without any link to the source doc-
uments. You cannot edit the original image but only display it. If you don’t
need to edit the picture, you should use an image control because it takes less
storage space.

You can create an unbound object control in order to edit the object and later
change the unbound object control to an image control when you are through
editing the object. This saves a tremendous amount of storage space and makes
your database smaller. You change control types by right-clicking on an unbound
object control and selecting Change To ➪ Image from the shortcut menu.

Tip

546 Part I, Section II ✦ Building Forms and Reports

To add an unbound picture, you use either the Unbound Object Frame control, the
Image control from the toolbox, or the Insert Picture menu item:

1. Click on the Page Header section so that the control will be added to that
section.

2. Select Insert ➪ Picture from the report menu bar.

This displays a dialog box that will allow you to select a directory where your
picture is and then select the picture.

3. Select the Access 2003 Bible Directory and then the Chapter 15 directory.

4. Select the file AAAuctions.jpg.

You should see the picture in the Insert Picture dialog box, as shown in
Figure 15-5. If you don’t see it, click on the Views button in the dialog box and
select Preview. You can also select Thumbnails to get a preview.

Figure 15-5: Adding an unbound object control (picture) to
a report.

5. Click OK.

The picture should appear and take up the majority of the Page Header sec-
tion. You need to resize it.

6. Resize the picture by grabbing the bottom-right sizing handle of the control
and making it fit in the area between the left ruler and the company informa-
tion controls.

Figure 15-6 shows the report after the image has been added.

7. Notice that the picture does not fit within the size of the control. The next
step is to change the Size Mode property from Clip to Zoom.

547Chapter 15 ✦ Creating Calculations and Summaries in Reports

Figure 15-6: Viewing the image control.

8. Click on the image control and display the Property window.

9. Change the Size Mode property from Clip to Zoom.

You can resize the control rectangle to make the picture larger or smaller.

Adding the Payments subform
In this example, you will add the rsubSalesPaymentsExample subreport to the
main report.

There is no real difference between a subform and a subreport. They both are just
objects used in a specific way. A subform is just a form, and a subreport is just a
report embedded in another form or report.

You can embed a subform in a report.

You already learned how to drag a form or report from the database window
to another form or report to create a subform or subreport. Another way to add a
subreport to a main report is to create a subreport control in the correct place and
then set the necessary properties. When you create the subreport control, if the
subreport record source and the main report record source have a common key, it
will potentially link the two reports automatically.

The Subreport wizard will also help you with this when you create a subreport
control.

Tip

Note

548 Part I, Section II ✦ Building Forms and Reports

To add fSubSalesLineItemsExample1 to the frmSalesExample1 report you’re using
as the main report, follow these steps:

1. Display the rptSalesExampleStart report in Design view.

2. Display the toolbox and select the Subform/Subreport control in the toolbox,
as shown in Figure 15-7.

3. Click into the idsInvoiceNumber Footer section near the upper-left corner of
the section and drag your mouse to draw a rectangle whose bottom-right cor-
ner is just to the left of the AMOUNT DUE label (also as shown in Figure 15-7).

The SubReport Wizard dialog box is displayed.

4. Select Use an existing report or form.

A list of all forms and reports is displayed below the option button.

5. Select the rsubSalesPaymentsExample report from the dialog box.

As you can see in Figure 15-7, the list of forms and reports shows the form or
report name and the object type.

Figure 15-7: Adding the subreport control using the wizard.

549Chapter 15 ✦ Creating Calculations and Summaries in Reports

6. Press the Next button to select a link between the main report and subreport.

7. Choose Define My Own and select idsInvoiceNumber from the left
(Form/report fields) combo box and lngzInvoiceNumber from the right
(Subform/subreport fields) combo box.

8. Press the Next button and then the Finish button to accept the default name
and complete the subform creation.

The payments subreport should appear on your report. You may need to
resize the subreport and either change or eliminate the subreport label.

9. Resize the Payments subreport so that it looks like the one shown in
Figure 15-8.

10. Change the subreport label caption to PAYMENTS and change the background
color to black, change the foreground color to white, and make the text bold.

Your screen should look like the one shown in Figure 15-8. Notice the link in
the Property window between the report and the subreport.

Figure 15-8: Completing the subform control.

550 Part I, Section II ✦ Building Forms and Reports

Display your report by clicking the Preview button in the toolbar to show that the
subreport is in proper size and relationship to the report. Also notice that the link
should be working and two payments should be displayed if you are on the first
record.

When you create a report that will be used for a subreport, make sure the sub-
report report will fit within the width of the main report.

The next step is to reference the control within the subreport to calculate the total
payments and amount due of the entire invoice.

Creating a subreport reference to a summary control
You can see in Figure 15-8, in the bottom of the report’s idsInvoiceNumber footer, a
series of controls.

The SUBTOTAL control uses the Sum function to summarize all of the Amount
records in the report’s detail section. The formula is the same as the Amounts for-
mula itself, except it uses the Sum function first. The expression is:

Sum(nz([intQuantity],0)*(nz([curPrice],0)*
(1-Nz([tblSalesLineitems].[dblDiscountPercent],0))))

You could also have used simply =Sum([txtAmount2]) to reference the control.
Which way you reference controls depends on if there are any references where
one value has to be calculated before another. Sometimes, when processing large
amounts of data, Access gets confused and you will see a zero or a blank where a
calculation would normally be. When you use the entire expression for a summary
instead of referencing a control, this usually will not happen.

The Tax and Other amounts are simply bound controls from the tblSales table.
They are simply listed as text box controls.

The Total control uses the expression =[txtSubtotal] + [txtTax] + [txtOther] to sum
the three control values.

The last tax is to create an expression that references the total payments control
(named txtTotalPayments) in the Payments subform control (named
rsubPaymentsExample).

Figure 15-9 shows this expression in the property window for the txtTotalPayments
control. Notice, in the Payments subform, the control in the Report Footer. This
control, named txtTotalPayments, contains the following expression:

=Sum(curPaymentAmount)

Tip

Tip

551Chapter 15 ✦ Creating Calculations and Summaries in Reports

This can then be referenced as shown in Figure 15-9. The reference is:

=[txtSubtotal]+[txtTax]+[txtOther]–[rsubSalesPaymentsExample].[Report]![txtTotal
Payments]

This expression adds the total amounts, tax, and other and then subtracts the total
payments. To reference the total payments control in the subreport, you have to
use the fully qualified reference to the subreport.

Figure 15-9: Referencing the subform control.

This reference includes:

Subreportcontrolname.Report!controlnameinthesubreport

The .Report tells Access that it is looking for a report and not a form.

The expression:

[rsubSalesPaymentsExample].[Report]![txtTotalPayments]

552 Part I, Section II ✦ Building Forms and Reports

references first the subform control named [rsubSalesPaymentsExample], then it
uses the .Report to pass to the subreport, and finally it references the control
named txtTotalPayments.

When you have completed this Invoice Report, you can view the final Invoice by
displaying the report in Print Preview, as shown in Figure 15-10.

Figure 15-10: Viewing the final invoice report.

Creating a Multilevel Grouping
Report with Totals

Besides a form type report, the most common type of report is a columnar report
used to analyze data. This type of report can be as simple as a series of rows and
columns with no summaries or totals, or a report can be very complex. Figure 15-11
shows a moderately complex report that you will create in the remainder of this
chapter. You will learn how to create a complex record source as well as to format
data and calculate various totals and percentages.

553Chapter 15 ✦ Creating Calculations and Summaries in Reports

Figure 15-11: Sample Sales Invoice and Payment Report.

You’ve learned how to create queries in previous chapters and how to create sim-
ple reports. You’ve been exposed to a variety of queries and expressions and
learned to use them as record sources for reports. Now you are going to learn a
new type of query and learn that a query can use another query (or several queries
and tables) to create a record source for a form or report.

In the first example in this chapter, you created a query in the report’s recordset
(shown in Figure 15-2) that brought together all the fields from the tblSales,
tblSalesLineItems, tblContacts, and tblSalesperson tables.

For the most part, the query and report used non-summarized data. The report
calculated the amount total for each line item and the subtotal summed those
amounts for an invoice total. In this example, the query needs to do all of that work.

Creating a total query
The first query you will need is found in your Chap15Start.mdb database file and is
named qryCalculateTotalExtensionsbyInvoice. If you open it in design view, you will
see that it looks like the query shown in Figure 15-12.

554 Part I, Section II ✦ Building Forms and Reports

Figure 15-12: Creating a query that totals records for total amounts.

This query will be used to calculate a total of the extensions for each invoice. This
will be used later to calculate the total amount owed for the report. Sometimes, the
query has to do most of the work when a report becomes complex, and it is better
to provide summarized or totaled data for a report. By knowing both techniques,
you will be able to make the most productive decision.

The query uses only the tblSalesLineItems table. You might notice that two
columns are used in the query. The first column displays a list of Invoice Numbers,
and the second column calculates the extension and then summarizes the exten-
sions for each invoice.

You might also notice a row in the query you have not seen before. This is the
Total: row, which is a special type of Select query. This type of Select query summa-
rizes data. It also can be used to create averages, minimums, maximums, and sev-
eral other types of summaries.

A total query is created by first displaying the standard query design screen and
then by pressing the total button on the toolbar (looks like an epsilon, ∑) or by
using View ➪ Totals from the query menu.

A total query is generally used to summarize all data in a set of records or to sum-
marize (or average) groups of data within a set of records. The Total: row is used to
determine if a column is used to group a set of values (in this example, all records
that are associated with each invoice number) or to aggregate a set of values (in
this example, the total of the expression in the second column).

After the query is changed to a total query, the Total: row is displayed. Because this
example only needs the Invoice Number and the total of all the extensions for each
invoice number (similar to the subtotal in the last report you created), you only
need two columns.

555Chapter 15 ✦ Creating Calculations and Summaries in Reports

In the first column, the Invoice Number field from the tblSalesLineItems table is
dropped on the query design grid. The Group By parameter is selected from the
Total: row for that field. This tells the query to group the values by the field
(Invoice Number) in the column. What is grouped depends on the other columns.

The second column is the expression:

Sum(Round(nz([intQuantity],0) * nz([curPrice],0) *
(1-nz([dblDiscountPrice],0))),2))

The expression rounds to two decimals the product of quantity x price x 1-discount.
This gives the discounted price. The Sum parameter in the Total: row tells the query
to sum the values.

The Round function is used to round a number when more decimals could be cre-
ated than the field display will allow or is desired. If you have a simple addition or
multiplication, you generally don’t need to round the result. However, in this
example, the discounted price is generally a decimal and this could create a frac-
tional result that would be more than two decimals (pennies). The Round function
will round the result back to two decimals.

To understand this better, suppose you didn’t have a Total type query and you
viewed the data with a simple Select query with just the Invoice Number and the
expression above. You would see the total discounted price extension for each line
item for each invoice. For example, Invoice Number 4 has five line items. You would
see that the discounted price of each of the line items is 18360, 6175, 21900, 19000,
and 39900, as shown in Figure 15-13.

Figure 15-13: A Select query displaying Invoice
Number and Extension Amount for each Lineitem.

When you run the total query, you see only one line for each invoice. The five line
items for Invoice Number have been totaled, as shown in Figure 15-14.

Tip

556 Part I, Section II ✦ Building Forms and Reports

Figure 15-14: A Select query displaying totals
or each Invoice.

The results from this query will be used along with the results from the following
query, as shown in Figure 15-15. In order to calculate the amount due in the report
you will create next, you need not only the total amount of the invoice (which will
consist of the total extensions from the line items) but also you need to add the tax
and other amounts, and then you will need to subtract the total payments. On the
invoice form, you can have more than one payment. The total payments must be
calculated for the report so that they can be subtracted from the total sale on each
invoice to calculate the amount owed at the bottom of each invoice.

Figure 15-15 shows the total query named qryCalculateTotalPaymentsbyInvoice.
The first column sets a Group By parameter on the lngzInvoiceNumber field. The
second column sets a Sum parameter on the curPaymentAmount field. In this exam-
ple, the total payment is simply a sum of the curPaymentAmount field and does not
require an expression as does the total amount.

When you save a total query and look at it again, you may see the Sum parameter
moved from the Total row to the field row and shown as a function Sum (the orig-
inal field or expression). The Total row then displays the parameter Expression in
place of the Sum.

Figure 15-15: Creating a query that totals
records for payments.

Note

557Chapter 15 ✦ Creating Calculations and Summaries in Reports

Now that you have seen how to create a Total query for the new Invoice report you
are about to learn how to create, you need to learn how to bring these queries into
another query to create the Record Source for the report.

Creating a query that uses a query
A query can display data from tables or even other queries. For this report, you will
want to see a series of data that will include simple fields and complex calculations
including summaries.

Figure 15-16 shows the qryInvoiceReport query that will become the record source
for the new report shown in Figure 15-11.

Figure 15-16: Creating a query that uses other queries and tables.

The query will bring together data from the following tables or queries:

✦ tblSales table (to identify the invoice number, invoice date, and contact, and
also to retrieve the Tax and Other amounts)

✦ tblContacts table (to lookup the contact name)

✦ qryCalculateTotalExtensionsbyInvoice (total sale extensions)

✦ qryCalculateTotalPaymentsbyInvoice (total payments)

Notice that the tblSales table is linked to both of the queries through the
idsInvoiceNumber link in the tblSales table to the lngzInvoiceNumber fields in both
queries. The tblSales table is also linked to the tblContacts table from the lngzBuyer
field to the idsContactID field.

The columns in the query are shown in Table 15-1.

558 Part I, Section II ✦ Building Forms and Reports

Table 15-1
Columns in the qryInvoiceReport Query

tblSales.* All of the fields in the tblSales table

chrCompany The Company name used to identify the invoice customer

InvoiceSubtotal The InvoiceSubtotal of all the extensions from the
qryCalculateTotalExtensionsbyInvoice query

InvoiceTotal: tableInvoiceSubtotal+curTaxAmount+curOtherAmount

An expression that includes fields from the query
qryCalculateTotalExtensionsbyInvoice and the tblSales table

TotalPayments The Payment Total from the
qryCalculateTotalPaymentsbyInvoice query

AmtDue: InvoiceTotal – TotalPayments from the other query columns

If you run the query (and only show the columns in Table 15-1), it will look like the
query shown in Figure 15-17.

Now that you have the data ready for the report, it is time to create the report.

Figure 15-17: Displaying the data from the qryInvoiceReport.

Creating a new columnar report
You may want to refer back to Figure 15-11 to remind yourself of the report you are
now going to create. Follow the steps below to create this new report:

559Chapter 15 ✦ Creating Calculations and Summaries in Reports

1. Press F11 to display the Database window if it isn’t already displayed.

2. Click the Reports object button.

3. Click the New toolbar button. The New Report dialog box appears.

4. Select Report Wizard from the list of choices.

5. Select the qryInvoiceReport query, as shown in Figure 15-18.

6. Click OK.

The Report Wizard screen is displayed.

Figure 15-18: Starting a new report with
the Report Wizard.

Selecting fields for the report
The next step is to select the fields that will be on the report. Because you assem-
bled and summarized all of the data in the query you will need for the report, you
simply have to select the fields in the correct order.

When you get proficient at creating reports, you may choose to not start with the
wizard. You may want to create a blank report and just drag the fields you need
from the field list, create your own groupings and summary fields, and format all
of the data. In fact, many developers will not use wizards, stating that they are
“toys for end users.” Don’t believe it. As preparation for this chapter, this author
created this entire report from a blank report, doing everything manually. It took
about 20 minutes. Then, this author used the wizard to accomplish the exact same
steps, including the final formatting. It took about five minutes. Fifteen minutes
may not seem like a lot of time saved, but when an application contains many
forms and reports (sometimes in the hundreds), it adds up quickly. The best devel-
opers really do use wizards and every other tool the software provides for them.

First, select the dtmInvoiceDate field. Then, using Figure 15-19 as a guide, select the
rest of the nine fields you will use for the report. (After you select all nine fields, the
dtmInvoiceDate field is out of sight above the idsInvoiceNumber field.)

Tip

560 Part I, Section II ✦ Building Forms and Reports

Figure 15-19: Selecting the fields for the report.

Selecting grouping fields and options
The next step is to select how to group the report. This report will have one group.
The grouping will be by the month and year of the invoice. This way, all of the
invoices for each month can be grouped together and totaled so that an analysis of
each month can be performed.

1. Select the dtmInvoiceDate field and press the > button. Then, press the Next>
button to accept the choice.

Automatically, the field is grouped by Month, as shown in Figure 15-20. Access
knows it is a date field and selects this automatically.

Figure 15-20: Selecting a group for the report.

561Chapter 15 ✦ Creating Calculations and Summaries in Reports

You can press the Grouping Options...button and choose from a list for date
field types that that include Normal, Year, Quarter, Month, Week, Day, and
Hour or Minute for date fields including time. For other field types, there will
be other options.

Because Month is the default option, you can just accept it.

2. Press the Next button to move to the next wizard screen.

Creating sorting options and calculations
Next, you need to select the sorting fields for the report. Because you selected the
dtmInvoiceDate as a group field, the report is automatically sorted by the month of
the date in the section header. You still may want to sort the data within the detail
section beneath the header. For this example, there should be two sort directives:

1. Select dtmInvoiceDate as the first sort.

2. Select idsInvoice Number as the second sort.

This way, beneath each month group, the detail data is sorted by date first;
then for invoices on the same date, they are in the order of the Invoice Number.

On the Sort Order and Summary Information wizard screen is a button labeled
Summary Options. . . . When you press the button, you can determine what
summary data you want to see with each field. Only numeric fields or expres-
sions are listed here. Figure 15-21 shows this screen.

The summaries on this data are for the InvoiceSubtotal, curTaxAmount,
InvoiceTotal, TotalPayments, and AmtDue. These will appear in group, page,
and report footers as calculated summary expressions.

Figure 15-21: Selecting sorting options and
calculations for the report.

562 Part I, Section II ✦ Building Forms and Reports

Figure 15-21 shows that the Detail and Summary option is selected. If Summary
Only was selected, there would be no fields in the detail section. Optionally,
you can calculate percentages of each detail line or group totals of the report
total by checking the Calculate Percent of Total for Sums check box.

3. Press the Next button to move to the next wizard screen.

Specifying the layout for the report
When the sorting and grouping options are completed, you are almost through. The
next wizard screen lets you select the layout for the report, as shown in Figure 15-22.

In this example, the Layout of Stepped is selected as shown in the figure, the
Orientation is Landscape, and the check box below the Layout option group is
checked so that the width of the fields is small enough for all of the fields to fit on
the report.

Figure 15-22: Selecting the layout of the report.

Completing the Report Wizard
After you complete this screen, you can pres the Finish button and view the report.
Page one of the report is shown in Figure 15-23.

The report contains summarized data for each of the invoices. The title
qryInvoiceReport comes from the name of the query used to create the report.
You could have changed that in the final wizard screen.

Notice the first group February 2003. Each group is outdented and enclosed in a
box. Notice that the labels in the Page Header don’t fit well. Some are using the field
names and encroach on another’s space. You can shorten the labels or make them
multiple line labels and take up less of a width. Each group footer contains several
lines for identification and the actual values. The values are not well formatted.
They need to be currency with two decimal places.

563Chapter 15 ✦ Creating Calculations and Summaries in Reports

Figure 15-23: The report created by the wizard.

The page header has a date with no time and the page number. You will see many
changes before this form is done.

Changing the report design
Before you can make changes you have to display the report in design view. If you
did not follow the wizard in the previous example or you’re not sure you have it
correct, open the report named Sales Invoice and Payment Report Start, as shown
in Figure 15-24.

It is important to understand various parts of the report and then to make the nec-
essary changes to complete your report.

You can see in Figure 15-24 the various controls that make up the report. In previ-
ous chapters, you’ve already learned how to do everything this report requires.
This includes creating and manipulating controls, and creating summary controls
and reference controls in subforms. You’ve also learned how to create Page
Headers and Footers and format controls within these sections.

The first thing to review is a group header and footer.

564 Part I, Section II ✦ Building Forms and Reports

Figure 15-24: The report design created by the wizard.

Working with group headers and footers
The Group Header was created in the wizard. You can view the fields that are used
for the group header and sorting in the detail section by pressing the Sorting and
Grouping icon on the toolbar or by selecting View ➪ Sorting and Grouping from the
report design menu.

Figure 15-25 shows the report design screen, along with both the Sorting and
Grouping window and the Property window showing the text box used in the group
header.

Figure 15-25: The report design showing the Group Header, Sorting and Grouping
Option window, and Property window.

565Chapter 15 ✦ Creating Calculations and Summaries in Reports

The first row in the Sorting and Grouping box lists the dtmInvoiceDate field. Notice
the little icon on the gray area to the left of the first dtmInvoiceDate row. This lets
you know that this field is used in either a group header or a group footer. You can
see in the Sorting and Grouping window in Figure 15-25 that it is used in both. If you
look at this window, you can see that the Group On type is Month, which was speci-
fied in the wizard.

You can see the format in the Property window for the text box that shows the
expression:

=Format$([dtmInvoiceDate],”mmmm yyyy”,0,0)

The Format function changes the display of the field value. The field is
dtmInvoiceDate and the format is mmmm yyyy, which is the full spelling of the
month (January, February, March ...) and the four-digit year with no day display.

The Keep Together option is set to No. The Keep Together option determines
whether a new page is generated before the section header is printed. The choices
for the Keep Together option are:

✦ No: The section header prints in the next available space without regard to
what is in the detail section.

✦ Whole Group: The section header will start on a new page if it can get all of the
detail records on the same page on the current page with the section header.

✦ With First Detail: The section header will print on the current page if at least
one detail record fits on the current page, or if not, it will start on a new page.

The second dtmInvoiceDate field in the Sorting and Grouping window lets you sort
data in the Detail section first by the actual invoice date within the month of the
group header. The idsInvoiceNumber row allows the Detail section to sort the data
first by invoice date and then by invoice number if there were multiple invoices on
the same day.

Another important option is found in the section header properties themselves. If
you click on any section header in a report header, you can see the Force New Page
property, as shown in Figure 15-26.

Figure 15-26: Forcing a new page in the Group
Header property window.

566 Part I, Section II ✦ Building Forms and Reports

The Keep Together and Force New Page properties allow you to precisely control
page breaks within each section, including Page and Report Headers and Footers,
Group Headers and Footers, and even the Detail section.

Notice the four choices within the window:

✦ None: No page break with this section.

✦ Before Section: A page break occurs before this section prints.

✦ After Section: A page break occurs after this section prints.

✦ Before & After: A page break occurs both before and after this section.

Changing controls in the report
Before continuing to learn and review concepts of summary expressions, it is time
to make a number of changes to improve the look and functionality of the report.
Figure 15-27 shows all of these changes completed and should act as a roadmap for
you to follow as you read the numbered instructions.

1. Change the label caption in the Report Header to Sales Invoice and Payment
Report.

2. Change the label font to Arial Black font and use a 20-point font size.

3. Change all the labels in the Page Header section to be two line labels, as
shown in Figure 15-27.

Pressing Ctrl-Enter while on a text label will split the label where the cursor is. You
can split labels into two, three, four, or as many lines as you need.

Figure 15-27: The Sales Invoice and Payment Report.

Note

567Chapter 15 ✦ Creating Calculations and Summaries in Reports

If you are creating multiline labels, you should make all labels the same height and
make sure all the label controls are bottom aligned. If you have a two-line label
and a one-line label in the any header section, you should still split the single line
label so that there is a blank line on the top line and the text label on the bottom
line. You create a blank line by placing your cursor in front of the text and pressing
Ctrl-Enter in front of the single-line label.

4. Delete the dtmInvoiceDatebyMonth label at the beginning of the Page Header
section.

5. Move all of the labels in the Page Header to the left so that the Invoice Date
label is slightly to the right of the text box in the dtmInvoiceDate Header sec-
tion, as shown in Figure 15-27. Move the Company label over one position
as well.

6. Right-align all of the currency labels in the Page Header section with the text
boxes and lines in the Detail section, dtmInvoiceDate Footer section, and
Report Footer section.

7. In the dtmInvoiceDate Header section, make the border around the text box
transparent.

8. In the dtmInvoiceDate Header section, change the font of the text box to Arial
and make it bold and underlined. Also make the text box wider to accommo-
date the bold font.

You can change a label size by stretching the height of the control. You can
change the label text from one line to two lines by positioning your cursor in
the line where you want to break the line and then pressing the Enter key
while holding down the Ctrl key.

9. Center align all of the labels.

10. Move all of the text boxes in the Detail section so that they are aligned under
the labels in the Page Header section.

11. Change all the text boxes in the Detail section to Arial font.

12. Change all the numeric text boxes in the Detail section, group footer section,
and report footer section to Currency format.

13. Delete the long Summary for text box in the dtmInvoiceDate Footer section.

14. Delete the Sum label at the far-left side of the dtmInvoiceDate Footer section.

15. Add some small lines above each of the summary text boxes in the
dtmInvoiceDate Footer section.

16. Add a line across the Page Footer section.

17. Change the font in the Page Footer section to Italic.

18. Change the text from Grand Total to Report Total in the label in the Report
Footer section.

Tip

568 Part I, Section II ✦ Building Forms and Reports

19. In the Report Footer, change the font of the label to Arial Black.

20. Make the label wider so that it fits the full text.

You may have to make some of the fields wider and then realign the right side of the
controls including the label controls in the Page Header section, the text boxes in
the Detail section, the text boxes in the dtmInvoiceDate Footer section, and the text
boxes in the Report Footer section.

When you have completed the changes, your screen should look like the one shown
in Figure 15-27. If you don’t want to make all these changes and simply want to start
with the changed report, open the report named Sales Invoice and Payment Report
Final on your example data file. There are a few other changes that have already
been made, as shown in the rest of the chapter.

Using concatenation to join text and fields
It is good to review the concepts of concatenation. Concatenation operators can
combine two strings, a string and an expression, or two or more expressions. An
expression can consist of a string, a field, a function, or any combination. You can
use several different operators for concatenation, including these:

+ Joins two Text data type strings

& Joins two strings; also converts non-Text data types to Text data

The + operator is standard in many languages, although it can easily be confused
with the arithmetic operator used to add two numbers. The + operator requires
that both strings being joined are Text data types.

The & operator is normally used and also converts non-string data types to string
data types; therefore, it is used more than the + operator. If, for example, you enter
the expression =“Today’s Date Is:” & Date(), Access converts the result of the date
function into a string and adds it to the text Today’s Date Is:. If the date is August
26, 2003, the result returned is a string with the value Today’s Date Is:8/26/03. The
lack of space between the colon and the 8 is not an error; if you want to add a space
between two joined strings, you must add the space by pressing the spacebar on
your keyboard after the : in Is and before the double quotes.

Access can join any data type to any other data type using this method. If you want
to create the control for the dtmInvoiceDate footer concatenating the text “Total”
with a Format function as shown in Figure 15-27, you enter the following expression:

=“Total ” & Format$([dtmInvoiceDate],”mmmm yyyy”,0,0)

This appends the word Total and a space with the contents of the dtmInvoiceDate
field formatted to Month and Year. No conversion occurs because the contents of
the Format$ function and the text value Total are both already text. Notice the
space between the last character in Total and the second double quotation mark.

569Chapter 15 ✦ Creating Calculations and Summaries in Reports

If you use the + operator for concatenation, you must convert any non-string data
types; an example is using the CStr() function to return a date with the Date()
function to a string data type. If you want to display the system date with some
text, you have to create a text control with the following contents:

=”Today’s Date Is: “ +cstr(Date())

You can insert the contents of a field directly into a text expression by using the
ampersand (&) character. The syntax is

=“Text String ”&[Field or Control Name]&“ additional text string”

or

[Field or Control Name]&“ Text String”

Calculating group summaries
Creating a sum of numeric data within a group is very simple. The following is the
general procedure for summarizing group totals for bound text controls:

1. Create a new text control in the group footer (or header).

2. Enter the expression =Sum([somecontrolname]) where somecontrolname is a
valid field name in the underlying query or the name of a control in the report.

If, however, the control name is for a calculated control, you sometimes have to
repeat the control expression depending on when it is calculated. In the
dtmInvoiceDate footer, suppose that you want to enter the following expression
into the text box control to display the total of the detail line:

=Sum([Invoice Total])

If you try this, it will work.

However, suppose you didn’t create the calculation in the query. Suppose the detail
section contained a control named InvoiceTotal, but its Control Source was:

=[InvoiceSubtotal] + [curTaxAmount] + [curOtherAmount]

You couldn’t just enter =Sum([InvoiceTotal]). It wouldn’t work. It is simply a limita-
tion of Access. To create a sum for the InvoiceTotal in the detail section, you have
to enter:

=Sum([InvoiceSubtotal] + [curTaxAmount] + [curOtherAmount])

This is one of the reasons it is easier to create expressions in the query. They can
be more easily summed or other aggregate operations applied (minimum, maxi-
mum, average, etc.).

Note

570 Part I, Section II ✦ Building Forms and Reports

If you look at all of the summary controls in the dtmInvoice Number footer, the
Page Footer, and the Report Footer, they all simply use the Sum function wrapped
around the field name.

Before moving on and closing this chapter, you need to create a few more controls.
Because Access features a two-pass report writer, you can create controls based on
your knowledge of the final report. For example, you can create a control that dis-
plays the percentage of one total to a grand total or create a running sum total to
display cumulative totals.

Changing the report margins and page setup
The report is currently 9 inches across and has margins of 1 inch on the top, bot-
tom, left, and right. Because the paper used is standard 81⁄2 inches in height and 11
inches across in landscape mode, it fits just perfectly.

In order to create the last example where you see running sums and percentages,
you need to widen the report so that about 10 inches across can be used. Figure
15-28 shows the Page Setup window you see when you select File ➪ Page Setup from
the Report Design menu.

In the example shown in Figure 15-28, the value .25 was entered into all four Margin
areas. The last one (Right) was automatically changed to .55 inches because the
maximum width for the printer in landscape mode is apparently 11 inches —
.80 inches or 10.2 inches.

Figure 15-28: Viewing the Page Setup window.

If you are following along in the examples, try to set your margins all to 0.25 inches.
Notice the left and right margins and subtract the total from 11 inches. This is what
you will set your right margin to in the report.

571Chapter 15 ✦ Creating Calculations and Summaries in Reports

The Page tab in the Page Setup window lets you choose between Portrait and
Landscape printing. In Chapter 16, you will learn how to use these options to cre-
ate multi-column reports.

Before you create new controls, you must change the margins of the current report
to allow for more space in the width of the report.

Follow these steps to set the report width:

1. Click the right-most edge of the report body (where the white area meets
the gray).

2. Drag the edge just to the left of the 10-inch mark on the ruler (or whatever you
calculated as your maximum width).

3. Release the mouse button.

These steps complete the initial setup for the report. Next, you can create some
new controls for the report.

Calculating percentages using totals
To determine what percent each line is of the total sales for a month, you will calcu-
late a line percentage. By comparing the line item to the total, you can calculate the
percentage of a particular item to the whole. To do this, you need to add a new con-
trol for the calculation. To create a new control that displays what percentage each
line represents of the whole, follow these steps:

1. Duplicate the InvoiceTotal control in the Detail section, and name it
InvoicePercent.

2. Position the duplicate to the right of the AmtDue control.

3. Change the Control Source to =[InvoiceTotal]/[Sum of InvoiceTotal].

4. Change the Format property to Percent.

5. Create a new label control with the caption “Total Percent” above it, as shown
in Figure 15-29.

The calculation takes the individual line total control [InvoiceTotal]] in the
detail section and divides it by the summary control [Sum of InvoiceTotal] in the
dtmInvoiceDate Footer section. The Percent format automatically handles the
conversion and displays a percentage.

Note

572 Part I, Section II ✦ Building Forms and Reports

Figure 15-29: Creating a percentage control.

Calculating running sums
Access also lets you calculate running sums (also known as cumulative totals)
easily — simply change the Running Sum property for a control. To create a running
total of how much is spent as each pet’s charges are totaled, follow these steps:

1. Duplicate the Invoice Subtotal control in the dtmInvoiceDate footer section.

2. Move it just under the original control, as shown in Figure 15-30.

3. Display the control’s property sheet.

Figure 15-30: Creating a running sum control.

573Chapter 15 ✦ Creating Calculations and Summaries in Reports

4. Change the Name to Running Sum.

5. Click the Running Sum property.

6. Select Over All from the drop-down list, as shown in Figure 15-30.

7. Create a label control and change the caption to Running Total.

Access now adds the current subtotal to all previous subtotals for each invoice.
This is useful to present an overall summary in any group, page, or the report’s
Footer section. You can display the percentages and the running total by perform-
ing a print preview, as shown in Figure 15-31.

Figure 15-31: A print preview displaying percentages and running totals.

Creating a title page in a report header
The primary purpose of the report header is to provide a separate title page that
only prints once in the report. The report header will contain the Access Auto
Auctions logo and the report title.

In the sample Sales Invoice and Payment Report Start report, do the following to
create this report header. They are shown completed in the Sales Invoice and
Payment Report report and in Figure 15-32.

Follow these steps create the new report header:

1. Make the Report Header section much larger so that it is 4 inches in height.

2. Move the Sales Invoice and Payment Report to the bottom of the Report
Header section.

574 Part I, Section II ✦ Building Forms and Reports

3. Select Insert ➪ Picture ... from the main menu and select the AAAuctions.jpg
picture. Press OK to insert the picture and close the dialog box.

4. Position the picture and label as shown in Figure 15-32.

5. Change the Report Header section’s Force New Page property to After Section.

The After Section forces a new page after the report title prints.

Figure 15-32: Creating a report header for a title page.

✦ ✦ ✦

Presenting Data
with Special
Report Types

The starting points for both the reports you will create in
this chapter are included on your CD in Chap16Start.mdb.
You will use these reports to complete the examples in this
chapter.

For correspondence, you often need to create mailing labels
and form letters, commonly known as mail merges. The
Access Report Writer helps you create these types of reports
as well as the reports with multiple columns known as snaked-
column reports.

Creating Mailing Labels
Using the Label Wizard

You create mailing labels in Access by using a report. You can
create the basic label by starting from a blank form, or you
can use the Label Wizard. This wizard is much easier to use
and saves you a great deal of time and effort.

Access 2003 has no special report for creating mailing labels.
Like any other report, the report for a mailing label is made up
of controls; the secret to the mailing label is using the margin
settings and the Page Setup screen.

In previous chapters, you learned how to use the Page Setup
dialog box to change your margins. One of the tabs in the dia-
log box is Columns. When you select this tab, the Columns
dialog box expands to reveal additional choices you use to
control the number of labels across the report as well as how
the data is placed on the report. You learn how to use this dia-
log box later in this chapter.

On the
CD-ROM

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using the
Label Wizard

Modifying mailing
label reports

Using the
expanded Page
Setup dialog box

Understanding
snaked-column
reports

Creating a snaked-
column report

Creating a mail
merge letter in
Access

Using the Access
to Word Mail
Merge Wizard

✦ ✦ ✦ ✦

576 Part I, Section II ✦ Building Forms and Reports

The best way to create mailing labels is to use the Label Wizard. You create a
new report to be used for a mailing label just as you create any other report (see
Figure 16-1). To create a new report for a mailing label, follow these steps:

1. From the Database window, click the Reports object button.

2. Click the New toolbar button to create a new report.

3. Select Label Wizard.

4. Select tblContacts from the table/query combo box.

5. Click OK.

Figure 16-1: Choosing the Label Wizard.

The Label Size dialog box will now display.

Selecting the label size
The first wizard dialog box you see will ask you to select a label size. You can select
the type of label stock you want to print to. Nearly a hundred Avery label stock
forms are listed. (Avery is the world’s largest producer of label paper.)

There are 40 other brands of labels that you can select from, including the following:

AE Agipa A-ONE Boeder CoStar

Durable Ero Formtec Herlitz Herma

HP Inmac Kokuyo Leitz Maco/Wilson Jones

NCR Pimaco RankXerox Rotary Card Unistat

To select a type of label other than Avery, click on the Filter by Manufacturer combo
box to display the manufacturers available.

577Chapter 16 ✦ Presenting Data with Special Report Types

In these lists, you can find nearly every type of paper these manufacturers make.
You can select from lists of English or Metric labels. You can also select sheet feed
for laser printers or continuous feed for tractor-fed printers. Select between the two
using the option buttons below the label sizes.

If you do not see the Avery labels in the Label Wizard, click the Show custom label
sizes check box to turn it off.

The list box shown in Figure 16-2 contains three columns:

✦ Product number. The model number on the Manufacturer label box.

✦ Dimensions. The height and width of the label in either inches or millimeters.

✦ Number across. The number of labels that are physically across the page.

Figure 16-2: Selecting the label size.

When you select a label size, you’re actually setting the Page Setup parameters,
as you learn later in this chapter.

Select Avery number 5160, as shown in Figure 16-2. Notice that there are three
labels across and that the size is shown as 1" x 25⁄8". You’ll see these values again
when you examine the Page Setup dialog box. After you select the label size, you
can again click on the Next button to go to the next dialog box.

You can also select the Customize button to create your own label specifications
if the labels you’re using are not standard labels.

Note

Tip

578 Part I, Section II ✦ Building Forms and Reports

Selecting the font and color
The next dialog box (shown in Figure 16-3) displays a set of combo boxes that
enable you to select various attributes about the font and color of the text to use
for the mailing label. For this example, click on the Italic check box to turn on the
italic effect. Notice that the sample text changes to reflect the difference. Accept the
remaining default choices of Arial, 8, Light, and black text. Click on the Next button
to move to the next dialog box.

Figure 16-3: Selecting the font type, size, and color.

Creating the mailing label text and fields
The next dialog box enables you to choose the fields from the table or query to
appear in the label. You can also add spaces, unbound text, blank lines, and even
punctuation.

The dialog box is divided into two areas. The left area, titled Available fields, lists
all the fields in the query or table. Figure 16-4, shown completed, displays the fields
from the tblContacts table. The right area, titled Prototype label, shows the fields
used for the label and displays a rough idea of how the mailing label will look when
it’s completed.

The fields or text you use in this dialog box serve only as a starting point for the
label. You can make additional changes later in the Report Design window.

You can select a field either by double-clicking the field name in the Available fields
area or by selecting the field name and then clicking on the > command button
between the two areas. You can remove a field by highlighting it and then pressing
Delete on your keyboard. You move to the next line by pressing the Tab key.

You may enter text at any point by simply placing your cursor where you want to
insert the text and then typing the text, including spaces and punctuation marks.

Note

579Chapter 16 ✦ Presenting Data with Special Report Types

If you add a new line to the label and leave it blank, it will appear only as a blank
line on the label (provided you have also manually changed the Can Shrink property
to No for the unbound text box control you created to display that blank line). The
default property for this control is Yes; the blank line is not displayed, and the lines
above and below the blank line appear together.

To create the label as shown completed in Figure 16-4, follow these steps:

1. Double-click the chrFirstName field in the Available fields list.

2. Press the space bar to leave a space after the chrFirstName field.

3. Double-click the chrLastName field in the Available fields list.

4. Press the Tab key to go to the next line.

5. Double-click the chrAddress field in the Available fields list.

6. Press the Tab key to go to the next line.

7. Double-click the chrCity field in the Available fields list.

8. With your cursor on the space after the chrCity field, type a comma (,)
to add a comma to the label.

9. Press the spacebar to add a blank space to the label after the comma.

10. Double-click the chrState field in the Available fields list.

11. Press the spacebar to add a blank space to the label after the chrState field.

12. Double-click the chrZipCode field in the Available fields list.

13. Click the Next button to go to the next dialog box.

The completed label is displayed in Figure 16-4.

Figure 16-4: The completed label in the Label Wizard.

580 Part I, Section II ✦ Building Forms and Reports

Sorting the mailing labels
The next dialog box will prompt you to select a field on which to sort, as shown in
Figure 16-5. Depending on how you have your database set up (and on how you want
to organize your information), you may sort it by one or more fields. The dialog box
consists of two sections: one lists the Available fields; the other lists the selected
Sort by fields. To select a field, double-click it (it will appear in the right-side column
labeled Sort by:) or use the arrow buttons (> and >>). The single > means that only
the highlighted field will be selected; the double > means that every field showing in
the column will be selected. In this example, you will select chrLastName as the field
to sort by. When you’re done, click Next to bring up the final dialog box.

Figure 16-5: The Label Wizard’s Sort By dialog box.

The order of fields in the Sort by column is their sort order, from the top down.
If a database has first and last name, you can select the last name and then the
first name.

The last dialog box of the Label Wizard names your report. The default name is
Label, followed by the table name. In this example, that’s Labels tblContacts. Make
it a meaningful name, such as Customer Mailing Labels. This dialog box is shown in
Figure 16-6. (Do not choose Finish; you use this dialog box in the next section.)

Displaying the labels in the Print Preview window
The final dialog box in the Label Wizard also enables you to decide whether to view
the labels in the Print Preview window or to modify the report design in the Report
Design window.

Make sure that “See the labels as they will look printed” is selected, and click the
Finish button. You are taken directly to the Print Preview window (as shown in
Figure 16-7). This is the normal Print Preview window for a report. By using the

581Chapter 16 ✦ Presenting Data with Special Report Types

magnifying glass mouse pointer, you can switch to a page view to see an entire page
of labels at one time, or you can zoom in to any quadrant of the report. By using the
navigation buttons in the bottom-left corner of the window, you can display other
pages of your mailing label report.

Figure 16-6: The final mailing Label Wizard dialog box.

Figure 16-7: Viewing labels in the Print Preview window.

582 Part I, Section II ✦ Building Forms and Reports

Remember that a mailing label is simply a report; it behaves as a report normally
behaves.

You can print the labels directly from the Print Preview window, or you can click
the first button on the toolbar to display the Report Design window.

Modifying the label design in
the Report Design window
When you click the Close Window button, the label design appears in the Report
Design window, as shown in Figure 16-8. Notice that the height of the detail band
is 1 inch and the right margin of the report is 2 3⁄8 ". This gives you the measurement
you defined when you chose the label size of 1" x 2 5⁄8 ". The difference between 23⁄8
and 25⁄8 is the settings in the page setup box (discussed later in this chapter).

The Zip Code field can be formatted using the @@@@@-@@@@ format to sepa-
rate the first five and last four characters automatically. (@ means “accept any char-
acter”.) This format displays the stored sequence of nine numbers with a hyphen
placed where it properly goes. If there are only five numbers, that is all that is
displayed.

You may notice that there is a function named Trim in front of the concatenated
string. The Trim function is added by the wizard and removes any unused spaces
in the fields. If your City field is 20 characters and contains New York, you don’t want
12 blank spaces before the comma and state values. Trim handles that problem. The
control source expression below (and shown in Figure 16-8) solves for the zip code.

Another change you could make is to the font size. In this example, Arial (the
Helvetica TrueType font) with a point size of 8 is used. Suppose that you want to
increase the text size to 10 points. You select all the controls and then click the Font
Size drop-down list box and change the font size to 10 points. The text inside the
controls becomes larger, but the control itself does not change size. As long as the
text is not truncated or cut off on the bottom, you can make the font size larger.

You can also change the font style of any text. For example, if you want only the
First Name and Last Name text to appear in italics, you will need to select the other
two text box controls and de-select the Italics button on the toolbar. Earlier, you
specified in the Wizard that all fields should be italic.

Now that you’ve changed your text like you want it, it’s time to print the labels.
Before you do, however, you should examine the Page Setup window.

To display the Page Setup window, select File ➪ Page Setup. The Page Setup window
appears. Here, you can select the printer, change the orientation to Portrait or
Landscape (have you ever seen landscape label paper?), change the Paper Size or
Source settings, and set the margins. The margin setting controls the margins for
the entire page. These affect the overall report itself, not just the individual labels.

Note

Note

583Chapter 16 ✦ Presenting Data with Special Report Types

Figure 16-8: The Report Design window.

To view the settings of each label and determine the size and number of labels
across the page, select the Columns tab. The window then displays additional
options, as shown in Figure 16-9.

Figure 16-9: The Columns page
from the Page Setup window.

584 Part I, Section II ✦ Building Forms and Reports

Figure 16-9 shows the Columns page. You first need to click the Margins tab and
make sure the top and bottom margins are set to 0.5” and the left and right margins
to 0.3”.

Several items appear in the Columns dialog box. The first three items (under the
Grid Settings) determine the spacing of the labels on the page:

✦ Number of Columns. Number of columns in the output.

✦ Row Spacing. Space between the rows of output.

✦ Column Spacing. Amount of space between each column (this property is not
available unless you make the Items Across property greater than 1).

The Column Size settings determine the size of the label:

✦ Width. Sets the width of each label.

✦ Height. Sets the height of each label.

✦ Same as Detail. Sets the Width and Height properties to the same width and
height as the detail section of your report.

The Column Layout section determines in which direction the records are printed:

✦ Down, then Across. Prints consecutive labels in the first column and then
starts in the second column when the first column is full.

✦ Across, then Down. Prints consecutive labels across the page and then moves
down a row when there is no more room.

After the settings are completed, you can print the labels.

Printing labels
After you create the labels, change any controls, and view the Page Setup settings,
you can print the labels. It’s a good idea to preview the labels again. Figure 16-10
shows the final labels in the Print Preview window.

You can print the labels by simply selecting the Print button on the toolbar. You can
also print the labels directly from the Report Design window by selecting File ➪ Print.

Of course, you must insert your label paper first. If you don’t have any #5160 label
paper, you can use regular paper. If you want the labels to be printed in consecutive
format, like a telephone directory, select Down, then Across in the Columns tab
shown in Figure 16-9. In fact, that’s another feature of Access reports — the capabil-
ity to create what is known as a snaked-column report.

585Chapter 16 ✦ Presenting Data with Special Report Types

Figure 16-10: The final report print preview.

Creating Snaked-Column Reports
All the reports discussed in this book so far are either form-based (that is, free-form)
or single-column lists. (Single-column means that each column for each field appears
only once on each page.) Often this is not the best way to present your data. Access
gives you another option: snaking columns. This option enables you to define the
sections of a report so that they fit in an area that is less than half the width of the
printed page. When the data reaches the bottom of the page, another column starts
at the top of the page; when there is no more room on the page for another column,
a new page starts.

The snaked-column technique is commonly used for text in telephone directories
or newspapers and other periodicals. An example of a database use is a report that
prints several addresses, side by side, for a page of adhesive mailing labels you feed
through your laser printer. You just learned how to create labels for mailing. Now
you will learn how to apply these same techniques in a report. Snaked-column
reports have a major difference from mailing labels: They often have group sections,
page headers, and footers; mailing labels have only data in the detail section.

586 Part I, Section II ✦ Building Forms and Reports

The general process for creating a snaked-column report is as follows:

✦ Decide how you want your data to be displayed: How many columns do you
want? How wide should each column be?

✦ Create a report that has detail and group section controls no wider than the
width of one column.

✦ Set the appropriate options in the Page Setup dialog box.

✦ Verify your results by using print preview.

Creating the report
You create a snaked-column report in the same way you create any report. You start
out with a blank Report Design window. Then you drag field controls to the report
design and add label controls, lines, and rectangles. Next, you add any shading or
special effects you want. Then you’re ready to print your report. The major differ-
ence is the placement of controls and the use of the Page Setup window.

Figure 16-11 shows a completed design for the Customers by State (three snaking
columns) report. The report displays a label control and the date in the page header,
along with some solid black lines to set the title apart from the directory details.
The detail section contains information that lists the company name, customer
name, address, phone number, and e-mail. Then, within this section, you see three
information fields about the customer’s history with Access Auto Auctions. The
page footer section contains another solid black line and a page number control.

Figure 16-11: Defining a snaked-column report design.

587Chapter 16 ✦ Presenting Data with Special Report Types

What’s important here is to make sure that the controls in the detail section use no
more space for their height or width than you want for each occurrence of the infor-
mation. Because you’re going to be printing or displaying multiple detail records
per page in a snaked-column fashion, you must note the size. In this example, you
can see that the detail section data is about 13⁄4 " high and about 2" wide. This is the
size of the item you will define in the Columns dialog box.

Before continuing, you have to specify a sort order for the report. The report should
be placed in order by State and then by Customer Number. You can do this by click-
ing the Sorting and Grouping button on the toolbar and typing the names of the
fields in the dialog box.

Defining the page setup
Earlier in this chapter, in the “Creating Mailing Labels” section, you learned how to
use Page Setup settings. Because you created the labels by using the Label Wizard,
the values for the Page Setup were automatically adjusted for you. Next, you learn
how to enter these values manually. Figure 16-12 shows the Page Setup dialog box
and the settings used to produce the Customer Directory report. Again, it doesn’t
show you the settings for the margins. Before continuing, click on the Margins tab
and set the left and right margins to 0.5” (the top and bottom should be 1 inch).
Then click on the Columns tab to continue.

Figure 16-12: Defining the layout
setup for a snaked-column report.

The first group of settings (Grid Settings) to change are the Number of Columns,
Row Spacing, and Column Spacing. Notice that the Number of Columns setting is
set to 3. This means that you want three customer listings across the page. This
and the other two settings actually work together. As you learned in the section
about mailing labels, these controls set the spacing between groups of data and

588 Part I, Section II ✦ Building Forms and Reports

how the data is to be shown (the number of columns). The Row Spacing should be
set to 0.2” and the Column Spacing set to 0.4”. This is one way to set up the multiple
columns and allow enough space between both the rows and the columns.

The next grouping is the Column Size settings. In this example, the data is 13⁄4 " high
and about 2" wide in the detail section. You can define Width as 2.75 in and Height
as 2.05 in. By adjusting the Grid Settings and Column Sizes, you control how your
columned report will look.

Notice that the final grouping, Column Layout section, offers two settings: Down,
then Across or Across, then down. The icon under Column Layout shows the
columns going up and down. You saw in Figure 16-9 that when the setting is Across,
then Down, the icon shows rows of labels going across. In this customer directory,
you want to fill an entire column of names first before moving to the right to fill
another column. Therefore, you select the Down, then Across setting. Click OK to
save the Page Setup option changes and close the dialog box.

Printing the snaked-column report
After the expanded Page Setup dialog box settings are completed, you can print
your report. Figure 16-13 shows the top half of the first page of the final snaked-
column report in the Print Preview window. The data is sorted by state and cus-
tomer number. Notice that the data snakes down the page. The first record is for
Iron Springs Auto Sales, in Arizona. Below that is customer M&M Sales. There are
four customers in the first column. After the fourth customer, the next customer
(Montclair Auto) is found at the top of the middle column.

Figure 16-13: A snaked-column report.

589Chapter 16 ✦ Presenting Data with Special Report Types

Creating Mail Merge Reports
Now that you have learned how to create snaked-column reports and mailing labels
(actually, they are the same thing), there is one more type of report to create — the
mail merge report (also known as a form letter). A mail merge report is simply a
report containing large amounts of text that have embedded database fields. For
example, a letter may contain, within the body of the text, the amount a customer
owes and the name of a pet.

The problem is how to control the word wrap. This means that the text may occupy
more than one line, depending on the length of the text and the embedded field
values. Different records may have different length values in their embedded fields.
One record may use two lines in the report, another may use three, and another may
require only one.

Access 2003 contains a Report Wizard that exports your data to Microsoft Word
and launches the Word Print Merge feature. Why would you want to use a word pro-
cessor, however, when you’re working in a database? What happens if you don’t use
Word? Most word processors can perform mail merges using database data. Access
itself does not have a specific capability to perform mail merging. Even so, as you
see in this section, Access can indeed perform mail merge tasks with nearly the
same precision as any Windows word processor!

In the first section of this chapter, you created mailing labels for customers that
had placed an order. You can use these labels to address the envelopes for the mail
merge letter you now create. Suppose that you need to send a letter to all your cus-
tomers who have an order recently shipped. You want to let them know the ship-
ment details such as the shipment date, method, and expected time of delivery.

Figure 16-14 shows a letter created with Access. Many of the data fields embedded
in this letter come from an Access query. The letter was created entirely with the
Access Report Writer, as were its embedded fields.

Assembling data for a mail merge report
You can use data from either a table or a query for a report. A mail merge report is
no different from any other report. As long as you specify a table or query as the
control source for the report, the report can be created. Figure 16-15 shows a typi-
cal query used for the letter. This query is the same query used in previous chapter
examples, except that we have used the * to bring all fields from the tblSales and
tblContacts tables into the query.

590 Part I, Section II ✦ Building Forms and Reports

Figure 16-14: A letter created with the Access Report Writer.

Figure 16-15: A typical query for a mail merge report.

591Chapter 16 ✦ Presenting Data with Special Report Types

Table 16-1 shows the fields or functions embedded in the text blocks used to create
the letter. Compare the values in each line of the letter (shown in Figure 16-14) to
the fields shown in the table. Later in this chapter, you’ll see how each field or func-
tion is embedded in the text.

Table 16-1
Fields Used in the Mail Merge Report

Field Value or Name Table Usage in Report

Company Name tblCompanySetup Page header; displays the company
name as entered in the table

Street tblCompanySetup Page header; displays the street
address as entered in the table

City State Zip tblCompanySetup Page header; displays the City, State,
and Zip Code as entered in the table

Phone Number tblCompanySetup Page header; displays the phone
number as entered in the table

Date() Function Page header; displays current date;
formatted as mmmm dd, yyyy

chrCompany tblContacts Page header; displays Company Name

chrAddress tblContacts Page header; displays street in the
address block

chrCity tblContacts Page header; part of city, state, ZIP
code block

chrState tblContacts Page header; part of city, state, ZIP
code block

chrZipCode tblContacts Page header; part of city, state, ZIP
code block

chrPhone tblContacts Page header; displays phone number

chrEmail tblContacts Page header; displays email address

chrFirstName tblContacts Detail; part of salutation block

chrLastName tblContacts Detail; part of salutation block

dtmSaleDate tblSales Detail; first line of first paragraph;
formatted as “mmmm dd””, “”yyyy”

dtmSaleDate tblSales Detail; second line in first paragraph;
formatted as “ww”,2,[dtmSaleDate]),
“mmmm dd””, “”yyyy”

Continued

592 Part I, Section II ✦ Building Forms and Reports

Table 16-1 (continued)

Field Value or Name Table Usage in Report

AmtDue Query Expression Detail; third line in first paragraph;
formatted as $#,##0.00

InvoiceSubtotal Query Expression Detail; third line in first paragraph;
formatted as $#,##0.00

curTaxAmount Calculation Detail; fourth line in first paragraph;
used to calculate tax and shipping
total; formatted as $#,##0.00

curOtherAmount Calculation Detail; fourth line in first paragraph;
used to calculate tax and shipping
total; formatted as $#,##0.00

dtmOrigCustDate tblContacts Detail; first line in second paragraph;
formatted as mmmm yyyy

CurCurBal Calculation Detail; third line in second paragraph;
formatted as $#,##0.00

Creating a mail merge report
After you assemble the data, you can create your report. Creating a mail merge
report is much like creating other reports. Frequently a mail merge has only a page
header and a detail section. You can use sorting and grouping sections, however, to
enhance the mail merge report (although form letters normally are fairly consistent
in their content).

Usually the best way to begin is with a blank report. Report Wizards don’t really
help you create a mail merge report. After you create a blank report, you can begin
to add your controls to it.

Creating the page header area
A form letter generally has a top part that includes your company’s name, address,
and possibly a logo. You can print on preprinted forms that contain this information,
or you can scan in the header and embed it in an unbound object frame. In our
example, the Access Auto Auctions company name, address, and phone number are
all displayed to the right of the logo. Each field contains a DLookUp Function with a
value from the tblCompanySetup table. You can use the DLookup function to get the
value of a particular field from a specified set of records — in our case, from the
tblCompanySetup table.

593Chapter 16 ✦ Presenting Data with Special Report Types

The DLookUp function is entered as

=DLookUp(“[Value]”,“TblCompanySetup”,“[OptionName]=‘Company Name’”)

The function takes a value from the TblCompanySetup table where the Option
Name is equal to Company Name, and populates the field on the report. When the
report is printed, the company name as entered into the tblCompanySetup table
will display in the page header section. Similar DLookUp functions are used for the
address and phone number fields as well.

Usually, the top part of a form letter also contains the current date along with the
name and address of the person or company to whom you’re sending the letter.
Figure 16-16 shows the page header section of the mail merge report. In this exam-
ple, an unbound bitmap picture is inserted that contains the Access Auto Auctions
logo. The DLookUp functions for the company information are partially displayed.
As you can see in the top half of the page header section, the current date is also
displayed along with a line to separate the top of the header from the body of the
letter. You can see the calculated text box control’s properties at the bottom of
Figure 16-16. The Format() and Date() functions are used to display the date with
the full text for month, followed by the day, a comma, a space, and the four-digit year.

Figure 16-16: The page header section of a mail merge report.

594 Part I, Section II ✦ Building Forms and Reports

The date expression is entered as

=Format(Date(),”mmmm dd, yyyy”)

and then automatically changed to

=Format(Date(),”mmmm dd””,””yyyy”)

This expression takes the system date of 4/16/2003 and formats the date as
April 16, 2003.

The customer name and address fields are also displayed in the page header. The
standard concatenated expression is used to display the city, state, and zip code
fields:

=[chrCity] & “,” & [chrState] & “ ” & [chripCode]

Working with embedded fields in text
The body of the letter is shown in Figure 16-17. Each paragraph is one large block
of text. A standard text box control is used to display each paragraph. The text box
control’s Can Grow and Can Shrink properties are set to Yes, which allows the text
to take up only as much space as needed.

Figure 16-17: The body of the letter in the Report Design window.

595Chapter 16 ✦ Presenting Data with Special Report Types

Embedded in each text block are fields from the query or expressions that use the
fields from the query. In the page header section, the & method is used to concate-
nate the city, state, and zip code. Although this method works for single concate-
nated lines, it does not enable word wrapping, which is critical to creating a mail
merge report. If you use this method in large blocks of text, you get only a single,
truncated line of text.

As you learned in Chapter 21, the & method of concatenation handles word wrap
within the defined width of the text box. When the text reaches the right margin of
a text box, it shifts down to the next line. Because the Can Grow property is turned
on, the text box can have any number of lines. It’s best to convert non-text data to
text when you concatenate with the & method. Although this conversion isn’t
mandatory, the embedded fields are displayed more correctly when they are cor-
rectly converted and formatted.

The first text block is a single-line text box control that concatenates the text “Dear”
with the fields chrFirstName and chrLastName. Notice the special symbols within
the first text box control. Remember that each text box is made up of smaller groups
of text and expressions. By using the & character, you can concatenate them.

The expression =“Dear” & [chrFirstName] & ‘ ’ & [chrLastName] & “:” begins with
an equal sign and a double quote. Because the first item is text, it’s surrounded by “
characters. [chrFirstName] and [chrLastName] need to be enclosed in brackets
because they are field names; they should also be surrounded by & characters for
concatenation. The two single quote marks in the center of the expression repre-
sent a space between the chrFirstName and chrLastName fields; also concatenated
with the &. The colon at the end of the expression appears in the letter; it is text
and must be surrounded by double quotes.

The next control produces the first paragraph of the letter. Notice that there are
five lines in the text box control but only four lines in the first paragraph of the let-
ter (as shown in Figure 16-14). If you compare the two figures carefully, however,
you’ll see that the text box for the second date field is on the third line of the para-
graph in the text control, whereas it’s in the second line of the paragraph in the
printed letter. This is a good example of word wrap. The lines shrank to fit the data.

The first line of the text control displays a text string with the date field at the end
of the line. Notice that the text string is both enclosed in double quotes and con-
catenated to the next expression by the & character. The end of the first line looks
like this:

Format([dtmSaleDate],”mmmm dd”“,””yyyy”) & “

The expression displays the Sale Date and formats the field so that it shows a long
date such as April 16, 2003. The second line of the paragraph is simply a text string
ending with the & character to concatenate it to the next expression.

Note

596 Part I, Section II ✦ Building Forms and Reports

The third line begins with the Sale Date field; however, this field contains extra
parameters to indicate a designated time in the future. The expression is

Format(DateAdd(“ww”,2,[dtmSaleDate]),”mmmm dd””, “”yyyy”)

This expression is formatted in the same way as the last date field in the paragraph
using the mmmm dd yyyy format. The DateAdd function in this example advances
the original sale date by two weeks. In our example, the original shipment date was
January 15. This expression adds two weeks to that date to display the expected
delivery date of January 29.

The rest of the third line of the paragraph through most of the fourth is one long
text string. It’s simply enclosed in double quotes and concatenated by the & charac-
ter. The end of the fourth line of the first paragraph contains an expression that for-
mats a calculated currency field. The expression Format([AmtDue],”$#,##0.00”)
formats the dollar value to display in currency format with two decimal places.

The last line in the first paragraph contains the following expression:

Format([InvoiceSubtotal],”$#,##0.00”)

The InvoiceSubtotal field is from the qryCalculateTotalExtensionsbyInvoice query.
This is a calculated field that is formatted using a dollar sign, a comma (if the value
is 1,000 or more), and two displayed decimal places. Without the format, the field
would have simply displayed 105335 rather than $105,335.00 for this record.

The second paragraph contains two expressions; one on the first line to display the
original customer date, and one on the last line for the current balance. Both fields
are taken from the tblContacts table. The dtmOrigCustDate is formatted using the
mmmm yyyy format. The curCurBal field is formatted using $#,##0.00” currency.

The maximum length of a single concatenated expression in Access is 254 charac-
ters between a single set of quotes. To get around this limitation, just end one
expression, add an & character, and start another. The limit on the length of
an expression in a single text box is 2,048 characters (almost 40 lines)!

The second paragraph also contains one long text string. The expression
Format(DateAdd(“ww”,2,[dtmSaleDate]),”mmmm dd”“,””yyyy”) advances
the dtmSaleDate by 2 weeks by using the part of the expression that is
DateAdd(“ww”,2,[dtmSaleDate]). The bottom of the letter is produced using the
label controls, as shown in Figure 16-17. These label controls display the closing,
the signature, the owner’s title, and the company name. The signature of Patrick E.
Thetic is created here by using the Script font. Normally, you would scan in the sig-
nature and then use an unbound frame object control to display the bitmap picture
that contains the signature.

One thing you must do is set the Force New Page property of the detail section to
After Section so that a page break is always inserted after each letter.

Tip

597Chapter 16 ✦ Presenting Data with Special Report Types

Printing the mail merge report
You print a mail merge report in exactly the same way you would print any report.
From the Print Preview window, you can simply click the Print button. From the
Report Design window, you can select File ➪ Print. The report is printed like any
other report.

Using the Access Mail Merge Wizard
for Microsoft Word

Another feature in Access 2003 is a Wizard to open Word automatically and start the
Print Merge feature. The table or query you specify when you create the new report
is used as the data source for Microsoft Word print merge.

To use the Mail Merge Wizard in Office Access 2003, you must have Microsoft Office
Word 2003.

1. From the Database container window, click either the Tables or Queries object
button.

2. Select the table or query you want to merge with Word.

3. Click the OfficeLinks drop-down button on the toolbar.

4. Select Merge It with Microsoft Word to start the Microsoft Word Mail Merge
Wizard, as shown in Figure 16-18.

Figure 16-18: Selecting the Microsoft Word Mail Merge
Wizard.

598 Part I, Section II ✦ Building Forms and Reports

5. After you select Merge It with Microsoft Word, Access displays the Microsoft
Word Mail Merge Wizard screen, as shown in Figure 16-19.

Figure 16-19: The Microsoft Word Mail Merge
Wizard dialog box.

6. This screen enables you to decide whether to link your data to an existing
Word document or to create a new document. If you select the option that
says to Link your data to an existing Microsoft Word document, Access dis-
plays a standard Windows file-selection box that enables you to select an
existing document. The document is retrieved, Word is displayed, and the
Print Merge feature is active. You can then modify your existing document.

In this example, you start with a new document.

7. Select the option Create a new document and then link the data to it.

8. Click OK to launch Word and display the Print Merge toolbar.

Microsoft Word 2003 moves beyond wizards and embraces a new technology
known as the task pane. As you can see in Figure 16-20, to the right of the standard
Word window, the task pane combines traditional help and task-oriented wizards to
attempt to simplify complex processes.

If you used Microsoft Access 1.0-2.0, you might remember a technology known
as cue cards. Task panes are the next generation of cue cards.

You can display a task pane in any Office XP application by right-clicking any tool-
bar and selecting Task Pane.

Tip

Note

599Chapter 16 ✦ Presenting Data with Special Report Types

Figure 16-20: A blank Microsoft Word document with the Task
Pane displayed.

Although you don’t need to use the task pane to create a mail merge document, it is
a good idea to understand how it can help you. As you can see in Figure 16-20, the
first task pane asks you to select whether you want to create a letter, e-mail message,
envelope, labels, or telephone-type directory. Based on your choices, different suc-
cessive choices are available. For example, if you select Envelope, various envelope
options are displayed in the later task panes. For this example, select the default
choice of Letters.

Then click the Next button at the bottom of the pane. You are presented with the
following choices:

✦ Use the current document.

✦ Start from a template.

✦ Start from existing document.

If you choose to start from an existing document or template, you can then select
one to bring to the Word document area. Figure 16-21 shows a document that has
been entered without any mail merge fields. You generally start with a document
that has already been entered, or you can type one in.

Mail merge means that when the document is printed, data values from fields in a
table are merged into the document. In this example, as you can see in Figure 16-21,
placeholders in the form of xxx’s have been entered where fields will be entered.

600 Part I, Section II ✦ Building Forms and Reports

If you use the task pane, the next pane enables you to select recipients from an
existing list you have created, select from a list of Microsoft Outlook contacts, or
enter a new list. In this example, the recipients are part of the tblContacts table and
do not have to be selected separately.

If you choose to select recipients, you can edit the data in your table using a pop-
up dialog box and sort the data by any column, eliminate blank records, and even
select specific records.

The next task pane (4 of 6) enables you to add specific types of information to your
letter, as shown in Figure 16-21. These special helpers include help for the following
fields:

✦ Address blocks

✦ Greeting lines

✦ Electronic postage

✦ Postal bar code

✦ More items that enable you to insert the merge fields

Figure 16-21 also shows the Insert Merge Field dialog box, showing all of the fields
in the tblContacts table that can be used within the letter.

Figure 16-21: A Microsoft Word document ready for table fields
to be entered.

Note

601Chapter 16 ✦ Presenting Data with Special Report Types

After you decide where you want to include fields from your table in your letter, you
can position your cursor in your letter and then select the field or fields you want in
each position by simply double-clicking on them. Figure 16-22 shows the letter after
the fields have been entered.

You can also display the field list for the merge by pressing the Insert Merge Fields
button located next to the Insert Word Field text on the Mail Merge toolbar.

Notice the name and address information at the top of the letter. This is made
up of six separate fields. In the first sentence of the first paragraph, a field named
dtmLastSalesDate has been added for the date of the customer’s order. The second
paragraph contains the field dtmOrigCustDate for the first time the customer made
a purchase, as well as the curCurBal field for the customer’s current balance.

Figure 16-22: The Microsoft Word document with fields entered
for the mail merge.

The next step automatically merges your date and displays the first record in your
letter. As you can see, not only is the name and address of your customer displayed,
but the dtmLastSalesDate value, the dtmOrigCustDate value, and curCurBal value
are displayed.

The task pane displays some buttons that enable you to move between records and
see how they are displayed, as shown in Figure 16-23. The task pane also enables
you to exclude specific data records or edit the data while you are looking at the
letter.

Tip

602 Part I, Section II ✦ Building Forms and Reports

Figure 16-23: The Microsoft Word document displayed in preview
mode with the data fields merged.

After you are through selecting the data you want, you can move to the last task
pane and print all the letters or even edit individual letters before printing them.
These are incredibly powerful new features and are only available with Microsoft
Word 2003. By combining the database power of Access and the word processing
and editing features of Word, you have a very powerful environment.

✦ ✦ ✦

Using OLE
Objects, Graphs,
Pivot Tables/
Charts, and
ActiveX Controls

A ccess provides many powerful tools for enhancing
your forms and reports. These tools let you add pic-

tures, graphs, sound — even video — to your database appli-
cation. Chart Wizards make it easy to build business graphs
and add them to your forms and reports. ActiveX controls
extend the power of Access 2003; new features borrowed from
Microsoft Office 2003 make using Access forms more produc-
tive than ever. In this chapter, you learn about the different
types of graphical and ActiveX objects you can add to your
system. You also learn how to manipulate them to create pro-
fessional, productive screen displays and reports. You will
also learn how to use some of the new Office 2003 tools that
work with Access 2003 forms.

Understanding Objects
Access 2003 gives you the capability of embedding pictures,
video clips, sound files, business graphs, Excel spreadsheets,
and Word documents; you can also link to any OLE (Object
Linking and Embedding) object within forms and reports.
Therefore, Access lets you not only use objects in your forms
but also edit them directly from within your form.

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
the differences
between bound and
unbound objects

Reviewing the
differences
between linking
and embedding

Learning the different
ways of storing these
objects

Modifying an existing
OLE object from your
form design

Creating a graph
and linking it to a
form

Customizing a graph

Using Office
integration in
Access 2003

Creating an
Excel PivotTable

Creating an
Excel PivotChart

Using ActiveX
custom controls

✦ ✦ ✦ ✦

604 Part I, Section II ✦ Building Forms and Reports

Types of objects
As a general rule, Access can add any type of picture or graphic object to a form or
report. You can interact with OLE objects with great flexibility. For example, you can
link to an entire spreadsheet, a range of cells, or even an individual cell.

Access can embed and store any binary file within an object frame control, including
even sound and full-motion video. As long as you have the software driver for the
embedded object, you can play or view the contents of the frame.

These objects can be bound to a field in each record (bound) or to the form or report
itself (unbound). Depending on how you want to process the OLE object, you may
either place (embed) the copy directly in the Access database or tell Access where
to find the object (link) and place it in the bound or unbound object frame in your
form or report. The following sections describe the different ways to process and
store both bound and unbound objects by using embedding and linking.

Using bound and unbound objects
A bound object is an object displayed (and potentially stored) within a field of a
record in a table. Access can display the object on a form or print it on a report.

A bound object is bound to an OLE object data type field in the table. If you use
a bound object in a form, you can add and edit pictures or documents record by
record, the same way you can edit other data. To display a bound OLE object, you
use a Bound Object Frame control. In Figure 17-1, the picture of the Corvette is a
bound object. Each record stores a photograph of the car in the field named Picture
in the tblProducts table. You can enter a different picture for each record.

An unbound object is not stored in a table; it is placed on the form or report. An
unbound object control is the graphic equivalent of a label control. These are gen-
erally used for OLE objects in the form or report itself; they don’t belong to any of
the record’s fields. Unbound objects don’t change from record to record.

An image control that displays a picture is another example of an unbound object.
Although an unbound OLE object frame allows you to edit an object by double-
clicking on it and launching the source application (Paint, Word, Excel, a sound or
video editor or recorder, and so on), an image control only displays a bitmap pic-
ture (usually in .BMP, .JPG, or .GIF format) that cannot be edited.

Always use an image control for unbound pictures; it uses far fewer computer
resources than an OLE control and significantly increases performance.

In Figure 17-1, the Access Auto Auctions logo is an image control. The car is a bound
OLE object; the graph is an unbound object. Though the graph is unbound, there is
a data link from the graph template to the data on the form. This means the graph
is updated each time data in the record changes.

Tip

605Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Figure 17-1: Bound and unbound objects.

Linking and embedding
The basic difference between linking and embedding objects within a form or report
is that embedding the object stores a copy of it within your database. Linking an
object from another application does not store the object in your database; instead,
the external location of the object is stored.

Linking an object gives you two benefits:

✦ You can make changes to the object using the source application, without
opening Access.

✦ The Access MDB database only uses space for the file path and filename to
the external reference.

If the external file is moved to another directory (or if the file is renamed), the link
to Access is broken. Therefore, opening the Access form that is linked to the object
will result in an error message.

One benefit of embedding is that you don’t have to worry about someone changing
the location or name of the linked file. Because it is embedded, the file is part of the
Access MDB database file. Embedding does have its costs, however. The first is that
it takes up space in your database — sometimes a great deal of it (some pictures can
take several megabytes). In fact, if you embed an .AVI video clip of just 30 seconds
in your database for one record, it can use 10 or more megabytes of space. Imagine
the space 100 records with video could use.

Caution

606 Part I, Section II ✦ Building Forms and Reports

After the object is embedded or linked, you can use the source application (such as
Excel or Paintbrush) to modify the object directly from the form. To make changes
to these objects, you need only display the object in Access and double-click on it.
This automatically launches the source application and lets you modify the object.

When you save the object, it is saved within Access.

Suppose that you’ve written a document management system in Access and have
embedded a Word file in an Access form. When you double-click on the image of the
Word document, Word is launched automatically and you can edit the document.

When you use a linked object, the external application is started, and when you
modify the object the changes are made to the external file, not within your
database as they are with an embedded file.

To edit an OLE object, you must have the associated OLE application installed in
Windows. If you have embedded an Excel .XLS file but don’t own Excel, you can
view the spreadsheet (or use its values), but you won’t be able to edit or change it.

In the next section of this chapter, you use the form shown in Figure 17-2. You can find
the form in the Access Auto Auctions database file, named frmProductExampleStart.

Figure 17-2: The frmProductExampleStart form.

On the
CD-ROM

Note

Note

607Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Embedding Objects
You can embed objects in both unbound and bound object frames as well as in
image frames. Embedding places the object in the Access database, where it is
stored in the form, the report, or a record of a table.

Embedding an unbound object
Access provides two methods you can use to embed an unbound object in a form
or report:

✦ You can simply paste an object on the form or report. Access adds an image
or unbound object frame that contains the object.

✦ You can add an unbound object frame or image frame and then insert the
object or picture into the frame.

Pasting an unbound object
If the object you want to insert is not an OLE object, you must first copy in the
source application and then paste the object on the form. Generally today most
applications include OLE technology and can be recognized by the Insert menu
option. Sometimes, you may just want to select an image using Windows Explorer
and copy and paste the object to an Access form. As an example, to cut or copy an
object and then paste it into an image or unbound object frame, follow these steps:

1. Create or display any object by using any source application like Word, Excel,
or Paint.

2. Select the object and choose Edit ➪ Cut or Edit ➪ Copy.

3. Display the Access form or report in Design View and click Edit ➪ Paste.

This process automatically adds an unbound object frame for an OLE object (such
as Word or Excel) or an Image control for a Paint picture and then embeds the
pasted object in it.

If the object you paste into a form is an OLE object and you have the OLE applica-
tion loaded, you can still double-click on the object to edit it. For example, you can
highlight a range of cells in an Excel worksheet and paste the highlighted selection
into an Access form or report. You can use the same highlight-and-paste approach
with a paragraph of text in Word and paste it on the Access form or report. You can
paste both OLE and non-OLE objects on a form or report with this method, but
you’ll see that there are other ways to add an OLE object.

Inserting an image-type object
You can also use the second method to embed OLE objects or pictures into an
unbound object frame or image frame like you did in Chapter 16. Suppose that

608 Part I, Section II ✦ Building Forms and Reports

you want to embed a file containing a Paint picture. In Figure 17-1, the picture of
the Access Auto Auctions logo appears on the form in the form header in an image
control. You can embed the picture by either pasting it into the image control or by
inserting the object into the image frame (the rectangle that contains and displays
the picture). Follow these steps to add an image control:

1. Open the form frmProductExampleStart in Design View.

2. Select the Image frame tool on the Toolbox.

3. Draw a rectangle in the Form Header, as shown in Figure 17-3, to add the
image frame.

Figure 17-3: Creating an image frame.

When you add an image frame, the Insert Picture dialog box appears. This
dialog box, shown in Figure 17-4, displays the image objects you have on your
system. As you click on each file, a preview of the image appears to the right
of the file selection list. If you don’t see the preview, select Preview from the
Views button in the Insert Picture toolbar.

609Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

To embed the existing Paint file AAAuctions.jpg in the image frame, follow
these steps:

4. Using the standard file navigation dialog box, select AAAuctions.jpg from the
folder in which your other database files reside. (This file was installed when
you installed files from the Access 2003 Bible CD-ROM.)

5. Click on OK after the filename appears in the Insert Picture dialog box.

Figure 17-4: The Insert Picture dialog box.

Access embeds and displays the picture in the unbound object frame, as you can
see in Figure 17-5. Notice that, in this figure, the picture of the auction logo does not
seem to be displayed correctly. You can correct this by using the Size Mode property.

Figure 17-5 also shows some of the other properties of the Image control. The Picture
property is set to the path and filename of the image you selected. The Picture Type
property below has two choices. The default is Embedded and saves a copy of the
bitmap picture in the database container in a compressed form. When you save the
form and have chosen Embedded, the Picture property will change to (bitmap)
rather than the name of the path and file for the original location of the picture. The
other Picture Type option is Linked. This setting will maintain a link to the original
picture. However, if you move the bitmap, the picture will no longer be displayed
and the link will be broken.

Changing the display of an image
After you add an image to a form or a report, you may want to change the size of the
object or the object frame. If you embed a small picture, you may want to adjust
the size of the object frame to fit the picture. Similarly, you might want to reduce the
size of the picture to fit a specific area on your form or report.

610 Part I, Section II ✦ Building Forms and Reports

Figure 17-5: The image frame property sheet.

To change the appearance and proportions of the object you embedded, you must
change the size of the image frame and set the Size Mode property. In Figure 17-6,
you see the result of the three choices for the Size Mode property as well as the
correct view of the picture:

✦ Clip. Shows the picture at its actual size, truncating both the right and bottom.

✦ Stretch. Fits the picture within the frame, distorting the picture’s proportions.

✦ Zoom. Fits the picture proportionally within the frame, possibly resulting in
extra white space.

You should use the Clip option only when the frame is the exact size of the picture
or when you want to crop the picture. Stretch is useful when you can accept a slight
amount of distortion in the picture. Although using Zoom fits the picture to the
frame and maintains the original proportions, it may leave empty space in the frame.
To change the Size Mode setting for the AAAFinalweb.jpg file on the
frmProductExampleStart form, follow these steps:

1. Select the image frame in Design View.

2. Display the property sheet.

3. Change the Size Mode setting to Stretch.

611Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Figure 17-6: Results of using the various scaling options.

If you want to return the selected object to its original size, select it and choose
Format ➪ Size ➪ To Fit.

When you have added a picture whose frame (border) is much larger than the
picture itself and you have selected a Size Mode of Clip, the picture normally is
centered within the frame. You can control this by using one of the Picture
Alignment options, which are Center, Top Left, Top Right, Bottom Left, and Bottom
Right. These options are also the same ones used when placing a picture in the
background of a form using the form’s Picture property. Using the Picture Tiling
property, you can instruct Access to display many copies of a picture within a
frame. For example, a stone wall is made up of many stones. You can specify one
stone (Carved Stone.BMP) in your Windows directory and then set the Picture
Tiling option to Yes to build a wall within your frame. Access copies the bitmap as
many times as it needs to fit within the frame.

Embedding bound objects
You can store pictures, spreadsheets, word-processing documents, or other objects
as data in a table. You can store (for example) a Paintbrush picture, an Excel work-
sheet, or an object created in any other OLE application, such as a sound clip, an
HTML document, or even a video clip from a movie.

You store objects in a table by creating a field in your table that uses the OLE Object
data type. After you create a blank bound object frame, you can bind its Control
Source to the OLE Object field in the table. You can also drag the field to the form
from the Field List window and it will automatically be bound.

You can then use the bound object frame to embed an object into each record of
the table.

612 Part I, Section II ✦ Building Forms and Reports

You can also insert objects into a table from the Datasheet view of a form, table, or
query, but the objects cannot be displayed in a view other than Form. When you
switch to Datasheet view, you’ll see text describing the OLE class of the embedded
object. For example, if you insert a .BMP picture into an OLE object field in a table,
the text Picture or Paintbrush Picture appears in Datasheet view.

Adding a bound OLE object
To add an embedded OLE object in a new bound object frame, follow these steps:

1. Select the Bound Object Frame button from the Toolbox.

2. Drag and size the frame, as shown in Figure 17-7.

3. Display the properties sheet.

4. Type olePicture in the Control Source property. This is the name of the OLE
field in the tblProducts table that contains pictures of the cars.

5. Set the Size Mode property to Zoom so that the picture will be zoomed
proportionally within the area you define.

6. Select and delete only the bound object frame label (OLEBoundxx:).

7. Close and save the changes to this form.

Figure 17-7: Creating a bound object frame.

Note

613Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Adding a picture to a bound object frame
After you define the bound object frame control and place it on a form, you can add
pictures to it in several ways. You can paste a picture into a record or insert a file
object into the frame. You insert the file object for a bound frame in nearly the same
way you would insert an unbound object or image frame. The only difference is that,
where an unbound image frame has a picture inserted in the design screen, a bound
object frame contains a picture that is stored in a table, and therefore the picture is
inserted in Form view like any other data.

To insert a picture or other object into a bound object frame, display the form in
Form view, move to the correct record (each record can have a different picture or
object), select the bound object frame, and then choose Insert ➪ Object from the
Form menu. The dialog box is a little different. Because you can insert any OLE
object (in this example, a picture), you first have to select Create from File and then
choose the first option, Bitmap Image. You can then select the actual picture. When
you’re through, the picture or object appears in the bound object frame in the form.

If you create the object (rather than embed an existing file), some applications dis-
play a dialog box asking whether you want to close the connection and update the
open object. If you choose Yes, Access embeds the object in the bound object
frame or embeds the object in the datasheet field along with text (such as
Paintbrush Picture) that describes the object.

After you embed an object, you can start its source application and edit it from
your form or report. Simply select the object in Form view and double-click on it.

Editing an embedded object
After you have an embedded object, you may want to modify the object itself. You
can edit an OLE object in several ways. Normally, you can just double-click on it and
launch the source application; then you can edit the embedded OLE object. As an
example, you could follow these steps to edit the picture of the car in Windows Paint
or whatever your default application is for editing bitmaps:

1. Display the form frmProductExampleStart in Form view.

2. Move to record 2 (or whichever record contains blue car) and select the
Picture bound object frame of the car.

3. Double-click on the picture. The screen changes to an image-editing environ-
ment with Windows Paint, Microsoft Photo Editor (or your default bitmap
editor) menus and functions available. You may see the icon on the taskbar
for the product (Microsoft Photo Editor) in Figure 17-8. Choose Maximize on
the icon to edit the picture if in place editing is not allowed in Access.

If you get the message The OLE object was changed to a picture or the link was
broken, it just means that our pictures may not be compatible with your system.
Insert your own picture and try again.

Caution

Note

614 Part I, Section II ✦ Building Forms and Reports

Windows can support full in-place editing of OLE objects. Rather than launch a dif-
ferent program, it changes the look of the menus and screen to match Windows
Paint, temporarily adding that functionality to Access.

4. Make any changes you want to the picture.

5. Click on any other control in the form to close Paint or Microsoft Photo Editor.

Figure 17-8: Editing the embedded object.

If you make any changes, you will be prompted to update the embedded object
before continuing.

In most cases, you can modify an OLE object by double-clicking on it. When you
attempt to modify either a sound or video object, however, double-clicking on the
object causes it to use the player instead of letting you modify it. For these objects,
you must use the Edit menu; select the last option, which changes (according to
the OLE object type) to let you edit or play the object. You can also convert some
embedded OLE objects to static images, which breaks all OLE links and simply dis-
plays a picture of the object.

Linking Objects
Besides embedding objects, you can link them to external application files in much
the same way as you would embed them. As you learned earlier, the difference is
that the object itself is not stored in the form, the report, or the database table.
Instead, Access stores the filename and path to the object, saving valuable space in
the MDB file. This feature also allows you to edit the object in its source application
without having to go through Access.

Caution

Note

615Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Linking a bound object
When you create a link from a file in another application (for example, Microsoft
Excel) to a field in a table, the information is still stored in its original file.

Suppose that you decide to use the OLE Object field to store an Excel file containing
additional information about the car’s sales. If the Excel file contains history about
the sales, you might want to link the information from the tblProducts record to
this file.

Before linking information in a file to a field, however, you must first create and save
the file in the source application.

On your CD-ROM should be a file named Car2.xls, which is an Excel 2003 work-
sheet. However, you can use any spreadsheet or word-processing file in this
example.

To link information to a bound object, use the following steps showing you how to
use the Picture bound object frame to link a tblProducts table record to an Excel
worksheet:

1. Open Microsoft Excel or the source application, and load the document that
contains the information you want to link to.

2. Select the information you want to link, as shown in Figure 17-9.

3. Click Edit ➪ Copy.

Figure 17-9: Copying a range from Microsoft Excel.

On the
CD-ROM

616 Part I, Section II ✦ Building Forms and Reports

After you copy the range to the Clipboard, you can paste it into the bound object
frame in the Access form by using the Paste Special option of the Edit menu.

4. Switch to Access and open the form frmProductExampleStart in Form view.

5. Go to record number 2 in the Access form or the record that contains blue car.

6. Select the bound object frame that you have been using at the lower-left part
of the form.

7. Click Edit ➪ Paste Special.

You may have to first click on the double down arrows at the bottom of the
Edit menu to display Paste Special.

The Paste Special dialog box displays and asks you to choose whether you want
to Paste or Paste Link the worksheet. The Paste option lets you embed the work-
sheet either as a static worksheet (the numbers never change until you double-
click on the bound OLE frame to redisplay the worksheet), a picture, or a bitmap
(you see the image of the numbers but it’s just a picture and has no real data).

8. Select Paste Link and then choose Microsoft Excel Worksheet.

The linked Excel worksheet appears in the bound object frame, as shown in Figure
17-10. Access creates the link and displays the object in the bound object frame or
it links the object to the datasheet field, displaying text (such as Microsoft Excel)
that describes the object. When you double-click on the picture of the worksheet,
Excel is launched and you can edit the data.

Figure 17-10: The linked worksheet.

617Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Creating a Graph or Chart
You can use Microsoft Graph to chart data from any of your database tables or data
stored within other applications (such as Microsoft Excel). You can create graphs
in a wide variety of styles — bar graphs, pie charts, line charts, and others. Because
Graph is an embedded OLE application, it does not work by itself; you have to run it
from within Access.

The terms Graph and Chart are used interchangeably in this chapter. Technically, you
use Microsoft Graph to create a chart. There are many chart types that Microsoft
Access cannot create. These have little to do with data, and include organization
charts and flow charts. Because Microsoft Access creates data charts known as
graphs, the term graph will be used throughout the chapter.

After you embed a graph, you can treat it as any other OLE object. You can modify
it from the Design view of your form or report by double-clicking on the graph itself.
You can edit it from the Form or Datasheet view of a form. The following sections
describe how to build and process graphs that use data from within an Access table
as well as from tables of other OLE applications.

The different ways to create a graph
Access provides several ways to create a graph and place it on a form or a report.
Using the Graph form or Report Wizard, you can create a graph as a new form or
report, add it to an existing form or report, or add it to an existing form and link it
to a table data source. (To use this third method, in form Design View, click on the
Unbound Object frame tool on the Toolbox and then choose Microsoft Graph 2003
Chart.) Unless you are already an experienced Graph user, familiar with it from pre-
vious versions of Access or Excel, you’ll find it easier to create a new graph from
the Toolbox. If you examine the Toolbox, however, you will not see a Chart Wizard
icon. You must first customize the Toolbox so that you can add a graph to an exist-
ing form by using the Chart Wizard.

As a general rule (for both types of graph creation), before you enter a graph into a
form or report that will be based on data from one or more of your tables, you must
specify which table or query will supply the data for the graph. You should keep in
mind several rules when setting up your query:

✦ Make sure that you’ve selected the fields containing the data to be graphed.

✦ Be sure to include the fields containing the labels that identify the data.

✦ Include any linking fields if you want the data to change from record to record.

Note

618 Part I, Section II ✦ Building Forms and Reports

Customizing the Toolbox
You may notice that the Chart Wizard button is missing from the Access Toolbox.
This is an optional item, left for you to add. Fortunately, as with toolbars, the
Toolbox can be customized.

The easiest way to customize the Toolbox is to right-click on it, display the shortcut
menu, and choose Customize. The Customize Toolbars dialog box appears. Click on
the Commands tab. You can select Toolbox from the list of toolbars and then (as
shown in Figure 17-11) click on the Chart command and drag it to the Toolbox. This
adds the missing icon permanently. You can rearrange Toolbox icons by clicking on
an icon and dragging it to the desired location in the Toolbox.

Figure 17-11: Customizing the Toolbox toolbar (shown after
dragging the chart icon to the toolbox).

Embedding a Graph in a Form
As you learned earlier in this chapter, you can both link and embed objects in your
Access tables, and you can create and display objects on your Access forms. Next
you create and display a graph based on the Access Auto Auction data and then
display it in a form.

This graph (which was shown in Figure 17-1) will show the dates a car was sold
and the dollars received each time. When you move through the records in the
tblProducts table, the form will display the data in graph format for each car’s
prices. You’ll use a form that already exists but doesn’t contain the graph:
frmProductExample-NoGraph.

619Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

The form frmProductExample-NoGraph is in the Access Auto Auction.MDB database,
along with the final version (called frmProductExampleEnd) that contains the com-
pleted graph.

Assembling the data
As a first step in embedding a graph, make sure that the query associated with the
form provides the information you need for the graph. In this example, you need
both the dtmSalesDate and the curPrice fields from the tblSalesLineItems table as
the basis of the graph. You also need the idsInvoiceNumber field from the tblSales
table to use as a link to the data on the form. This link allows the data in the graph
to change from record to record.

Sometimes, you’ll need to create a query when you need data items from more than
one table. In this example, you can select all the data you need right from the Wizard;
Access will build the query (actually an SQL statement) for you automatically.

Adding the graph to the form
The following steps detail how to create and place the new graph on the existing form
(you should be in Design view of the form named frmProductExample-NoGraph):

1. Select the Insert Chart tool you added to the Toolbox, or select Chart from the
Insert menu.

2. Position the cursor at about 4 inches in the upper-right side of the form.

3. Click the mouse button and hold it down while dragging the box to the
desired size for the graph.

Access 2003 displays the Chart Wizard dialog box you will use to embed a
graph in the form. As shown in Figure 17-12, the first Chart Wizard screen lets
you select the table or query with the data for the chart. By using the row of
option buttons under the list of tables, you can view all the Tables, all the
Queries, or Both.

The following steps take you through the Wizard to create the desired graph
and link it to your form:

4. Choose Query: qryChartExample as the data source for the graph as shown in
Figure 17-12.

5. Click on Next to go to the next Wizard screen.

The second screen of the Chart Wizard lets you select fields to include in your
graph.

620 Part I, Section II ✦ Building Forms and Reports

Figure 17-12: Selecting the query for the source of data for
the graph.

6. You could select all the fields listed by double-clicking on them to move them
to the Fields for Chart box or by clicking on the >> button to move the fields
all at once. However, you want to add them in a specific order. Select the fields
by double-clicking on them in the following specific order; dtmSaleDate,
chrProductID, curPrice.

7. Click on Next to go to the next Wizard screen.

The third Chart Wizard screen (Figure 17-13) lets you choose the type of graph
you want to create and determine whether the data series are in rows or
columns. In this example, select a column chart; you’ll customize it later using
the graph options. As you click on each of the graph types, an explanation
appears in the box in the lower-right corner of the screen.

Figure 17-13: Selecting the type of chart.

621Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

8. Select the Column Chart (as shown in Figure 17-13), and then click on Next to
go to the next Wizard screen. (The Column Chart is easiest to work with.)

The next Wizard screen, shown in Figure 17-14, shows the choices Access has
made for you but lets you change the assumptions. The dtmSaleDate field has
been used for the x-axis, and the InvoiceTotal field has been used in the y-axis
to determine the height of the bars. If you want to change the assumptions,
drag the field buttons on the right side of the screen to the simulated graph
area.

It is important to only choose the fields you will use for the graph if you want the
wizard to figure out for you what to graph. Generally, a numeric field will become
the y-axis variable as you generally graph amounts. A date/time field or text field is
generally used for the x-axis.

For this example, the assumptions made by Access are fine. You may notice
(in Figure 17-14) that each of the fields on the left side of the screen is actually
a button. When you double-click on one, you can further define how the data
is used in the graph.

Figure 17-14: Laying out the chart’s data elements.

There is a button on the top-left corner of the Chart Wizard that lets you preview
that chart at any time. This way, you can see the results of your selections.

Generally, the x-axis variable is either a date or a text field. The y-axis field is
almost always a number (though it can be a count of values). Only numeric
and date fields (such as the y-axis variable curPrice) can be further defined.

9. Double-click the SumofcurPrice field on the left side of the screen, and
the dialog box shown in Figure 17-15 appears; it lets you define options for
summarizing the field. Remember that there may be many records for a given
summary; in this example, many cars may have been sold in the same month.

Note

Note

622 Part I, Section II ✦ Building Forms and Reports

If you had several numeric fields, you could drag them (or any multiple fields) to
the left side for a multiple series; these would appear in a legend and display
more than one bar or lines in the graph. You can also drag the same field to both
the x-axis and the Series indicator, as long as you’re grouping differently. For exam-
ple, you could group the dtmSalesDate by month and use it again in the Series
grouped by year. Without using the dtmSalesDate field a second time as the series
variable, you would have one bar for each month in sequential order — for exam-
ple, Jan01, Feb01, Mar01... Dec01, Jan02, Feb02.... By adding the dtmSalesDate as
a series variable and grouping it by year, you could get pairs of bars. Multiple bars
can be created for each month, each a different color and representing a different
year and a legend for each year.

Figure 17-15: Selecting options to
summarize the y-axis numeric field.

10. As you can see in Figure 17-15, Sum has been chosen as the summarization
type. You could change it to Average to graph the average amount of prices
instead of summing all the price amounts. Click Cancel to accept Sum.

You must supply a numeric variable for all the selections except Count, which can
be any data type.

11. Double-click dtmSaleDate by month, and the dialog box shown in Figure 17-16
appears to let you choose the date hierarchy from larger to smaller roll-ups.
The choices include Year, Quarter, Month, Week, Day, Hour, and Minute. If you
have data for many dates within a month and want to roll it up by month, you
would choose Month. In this example, you want to see all the detail data.
Because the data is in Sales by date (mm/dd/yy), you would select Day to
view all the detail records. For this example, change the default selection from
Month to Day and click OK.

12. After you change the group options from Month to Day for the dtmSaleDate
field, click on Next to go to the next Wizard screen.

Figure 17-17 shows the field linking box. If you run the Chart Wizard from
inside an existing form, you have the option to link a field in the form to a field
in the chart. Even if you don’t specify the field when you select the chart
fields, you can make the link as long as the field exists in the selected table.

Caution

Tip

623Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Figure 17-16: Choosing group options
for a date field.

Figure 17-17: Linking fields between the form and the graph.

In this example, Access has correctly selected the chrProduct ID field from
both the frmProductsExample form and the qryChartExample query. This
way, as you move from record to record (keyed by chrProduct ID) in the
frmProductExample form, the graph changes to display the data for that
product.

13. Click Next to move to the last Wizard screen.

The last Chart Wizard screen, shown in Figure 17-18, lets you enter a title and
determine whether a legend is needed. You won’t need one for this example
because you have only one data series.

14. Enter Sale Prices by Day for the graph title.

624 Part I, Section II ✦ Building Forms and Reports

Figure 17-18: Specifying a chart title and legend.

15. Select the button next to No, Don’t Display a Legend and click Finish to com-
plete the Wizard.

The sample chart appears in the graph object frame on the design screen
(as shown in Figure 17-19). Until you display the form in Form view, the link to
the individual product is not established and the graph is not recalculated to
show the sale dates for a specific car’s record.

In fact, the graph shown is a sample preview; it doesn’t use any of your data. If
you were worried about where that strange-looking graph came from, don’t be.

16. Click the Form View button on the toolbar to display the frmProductExample-
NoGraph form and recalculate the graph. Figure 17-20 shows the final graph in
Form view.

In Figure 17-19, you saw the graph and the property sheet. You display a graph by
using a graph frame, which shows its data in either Form view or Design view. Now
take a look at some properties in the property sheet. The Size Mode property is ini-
tially set to Stretch. You can change this to Zoom or Clip, although the graph should
always be displayed proportionally. You can size and move the graph to fit on your
form. When you work with the graph in the Graph window, the size of the graph you
create is the same size it will be in the Design window.

The OLE Class property is set to Microsoft Graph Chart and the class itself is set to
MSGraph.Chart.8. This is the same graph engine as in Access 97 and hasn’t been
changed in several Microsoft Access revisions. This is linked automatically by the
Chart Wizard.

625Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Figure 17-19: The graph in the Form Design window.

The Row Source property setting comes from the table or query you used with the
graph, but it appears as an SQL statement that is passed to the Graph. The SQL
statement (more on this later) created for this graph is

TRANSFORM Sum(qryChartExample.curPrice) AS SumOfcurPrice SELECT
(Format([dtmSaleDate],”Short Date”)) AS Expr1 FROM
qryChartExample GROUP BY (Int([dtmSaleDate])),
(Format([dtmSaleDate],”Short Date”)) PIVOT
qryChartExample.chrProductID;

The next two properties, Link Child Fields and Link Master Fields, control linking of
the data to the form data itself. Using the link properties, you can link the graph’s
data to each record in the form. In this example, the chrProductID from the current
Product record is linked to Sales records with the same chrProduct ID.

To change the appearance of the graph, you can double-click on the graph in Design
view to open Microsoft Graph. After you make the changes you want, you can select
File ➪ Exit, return to Microsoft Access, and go back to Design view.

626 Part I, Section II ✦ Building Forms and Reports

Figure 17-20: Recalculating the graph in Form view.

Customizing a Graph
After you create a graph within Access, you can enhance it by using the tools within
Microsoft Graph. As demonstrated in the preceding section, just a few mouse clicks
will create a basic graph. The following section describes a number of ways to make
your graph a powerful presentation and reporting tool.

In many cases, the basic chart you create presents the idea you want to get across.
In other cases, however, it may be necessary to create a more illustrative presenta-
tion. You can accomplish this by adding any of these enhancements:

✦ Entering free-form text to the graph to highlight specific areas of the graph

✦ Changing attached text for a better display of the data being presented

✦ Annotating the graph with lines and arrows

✦ Changing certain graphic objects with colors and patterns

✦ Moving and modifying the legend

✦ Adding gridlines to reflect the data better

✦ Manipulating the 3-D view to show your presentation more accurately

627Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

✦ Adding a bitmap to the graph for a more professional presentation

✦ Changing the graph type to show the data in a different graphic format, such
as Bar, Line, or Pie

✦ Adding or modifying the data in the graph

After the graph appears in the Graph application, you can begin to modify it.

Understanding the Graph window
The Graph or Chart window, shown in Figure 17-21, lets you work with and cus-
tomize the graph. As you can see, the graph itself is highlighted and each object of
the graph is active including titles, axis labels, and even the bars themselves. The
data last displayed is shown in the graph. A datasheet containing the data for the
last record used is also displayed. In Figure 17-21, there are two price records for
the graph.

✦ Datasheet. A spreadsheet of the data used in the graph.

✦ Graph or Chart. The displayed chart of the selected data.

Figure 17-21: The Graph window.

628 Part I, Section II ✦ Building Forms and Reports

In the datasheet, you can add, change, or delete data. Any data you modify this way
is reflected immediately in the graph. After you change the datasheet in the Graph
window, you can even tell Access whether to include each row or column when the
graph is drawn.

Changing data in a linked record will change data in the graph for only as long as you
are on that record. After you move off it, the changes are discarded.

More importantly, you can use the Chart portion of the Graph window to change the
way the graph appears. By clicking on objects such as attached text (or on areas of
the graph such as the columns), you can modify these objects. You can customize
an object by double-clicking on an object to display a dialog box or by making
selections from the menus at the top of the window.

Working with attached text
Text generated by the program is called attached text. These graph items are
attached text:

✦ Graph title

✦ Value of y-axis

✦ Category of x-axis

✦ Data series and points

✦ Overlay value of y-axis

✦ Overlay value of x-axis

After the initial graph appears, you can change this text. Click on a text object to
change the text itself, or double-click on any text item in the preceding list and then
modify its properties.

You can choose from three categories of settings to modify an attached text object:

✦ Patterns. Background and foreground colors, borders, and shading.

✦ Font. Text font, size, style, and color.

✦ Alignment. Alignment and orientation.

You can change attributes from the Format menu, too.

The Font options let you change the font assignment for the text within the text
object, as shown in Figure 17-22.

Note

629Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Figure 17-22: The chart fonts dialog box.

The chart fonts dialog box is a standard Windows font-selector box. Here you can
select Font, Size, Font Style, Color, and Background effects. To change the text, fol-
low these steps:

1. Double-click the chart title Sale Prices by Day.

2. Select the Font tab from the Format Chart Title dialog box.

3. Select Arial in the Font list box. (This is probably the default.)

4. Select Bold in the Font Style list box.

5. Select 12 in the Size list box.

6. Click on OK to complete the changes.

As you make the font changes, a sample of each change appears in the Preview box.

The Alignment tab in the dialog box lets you set the horizontal alignment (left, cen-
ter, right, or justify), the vertical alignment (top, center, bottom, or justify), and the
orientation (a control that lets you rotate your text on a compass).

630 Part I, Section II ✦ Building Forms and Reports

Figure 17-23 shows the Alignment tab and the options available.

Figure 17-23: The Alignment tab.

The most important part of this dialog box is the Orientation setting. Although for
some titles it is not important to change any of these settings, it becomes neces-
sary to change them for titles that normally run vertically (such as axis titles).

Sometimes you may need to add text to your graph to present your data better. This
text is called free-form (or unattached) text. You can place it anywhere on your graph
and combine it with other objects to illustrate your data as you want. Figure 17-24
shows free-form text being entered on the graph, as well as the changes you previ-
ously made to the graph title.

In the next steps, you see how to add free-form text to the graph:

1. Type For the Period Jan 1 2003 - Dec 31, 2003 anywhere on the graph, as
shown in Figure 17-24.

Microsoft Graph positions the text near the middle of the graph. The text is
surrounded by handles so that you can size and position the text.

2. Drag the text to the upper-left corner of the graph.

3. Right-click on the text, select FormatText Box, and change the font to Arial,
10 point, italic.

631Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Figure 17-24: Free-form text on a graph.

Changing the graph type
After you create your initial graph, you can experiment with changing the graph
type to make sure that you selected the type that best reflects your data. Microsoft
Graph provides a wide range of graphs to select from; a few mouse clicks can
change the type of graph.

Table 17-1 shows the different types of graphs you can select:

To select a different type of graph, select Chart ➪ Chart Type from the menu bar of
the Chart window to display the various chart types. When you select any of the
graph options, a window opens (as shown in Figure 17-25) to display all the differ-
ent graphing options available within the selected graph type. Click on one of them
to select your new graph type.

632 Part I, Section II ✦ Building Forms and Reports

Table 17-1
Types of Charts

Two-Dimensional Charts Three-Dimensional Charts

Column 3-D Column

Bar 3-D Bar

Line 3-D Line

Pie 3-D Pie

XY (Scatter) 3-D Area

Area 3-D Surface

Doughnut 3-D Cylinder

Radar 3-D Cone

Surface 3-D Pyramid

Bubble

Stock

Cylinder

Cone

Pyramid

Figure 17-25: The chart types.

633Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

To display some different graph types, follow these steps:

1. Select Chart ➪ Chart Type, as shown in Figure 17-25.

2. Select Column from the Standard Types tab and select the 3-D Column type.

3. Click on OK to return to the Graph window.

Changing axis labels
You may want to change the text font of the x-axis so that you can see all the labels.
Follow these steps to change axis labels:

1. Double-click on the x-axis (the bottom axis with the dates on it). You can see
the Format Axis tabbed dialog box showing the Pattern tab in Figure 17-26.

2. Select the Font tab from the Format Axis dialog box.

3. Change the Size setting to 9 points by entering 9 in the Font Size box.

4. Click on OK to return to the chart.

Figure 17-26: The Format Axis dialog box
Pattern tab.

Changing a bar color, pattern, and shape
If you are going to print the graph in monochrome, you should always adjust the
patterns so that they are not all solid colors. You can change the color or pattern
of each bar by double-clicking on any bar in the category you want to select.

634 Part I, Section II ✦ Building Forms and Reports

The Format Data Series dialog box is displayed. You can change the patterns and
color of the bars from the first tab. If you press the Shape tab, as shown in Figure
17-27, you can select from cubes, pyramids, cylinders, or cones.

1. Double-click on any bar.

2. Click the Shape tab, select 4 – Cylinders for the bar shape and click OK.

3. Change to Form View and display the first record to see the graph change and
view the cylinders better. If the graph doesn’t change, press F5 to refresh the
screen.

Figure 17-27: The Format Data Series dialog box
showing the Shape tab.

Modifying gridlines
Gridlines are lines that extend from the axis across the plotting area of the graph to
help you read the graph properly. You can add them for the x-axis and y-axis of your
graph; if it’s three-dimensional, an additional gridline is available for the z-axis. You
can add gridlines for any axis on the graph. The z-axis gridlines appear along the
back and side walls of the plotting area. The x- and y-axis gridlines appear across the
base and up the walls of the graph.

1. Select the graph again, double-click and then click Chart ➪ Chart Options to
begin working with gridlines.

2. Click the Gridlines tab, as shown in Figure 17-28.

Here, you can define which gridlines are shown. The y-axis gridlines are shown on
the left wall; the z-axis gridlines are shown on the back wall; and the x-axis gridlines

635Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

are shown on the floor. You can change the line type by double-clicking on the grid-
lines when you’re in the normal Design view of the graph and working with the
Format Gridlines dialog box to change the Patterns and Scale.

Figure 17-28: The Chart Options dialog box
showing the Gridlines tab options.

Manipulating three-dimensional graphs
In any of the three-dimensional chart options, you can modify the following graph-
display characteristics:

✦ Elevation

✦ Perspective (if the Right angle axes option is turned off)

✦ Rotation

✦ Scaling

✦ Angle and height of the axes

1. Click Chart ➪ 3-D View to change the 3-D View. The dialog box shown in Figure
17-29 appears. You can enter the values for the various settings or use the six
buttons to rotate the icon of the graph in real time. When you see the view you
like, click on OK and your chart will change to that perspective.

The Elevation buttons control the height at which you view the data. The elevation
is measured in degrees; it can range from –90 to 90 degrees.

An elevation of zero displays the graph as if you were level with the center of
the graph. An elevation of 90 degrees shows the graph as you would view it
from above center. A –90-degree elevation shows the graph as you would view
it from below its center.

Note

636 Part I, Section II ✦ Building Forms and Reports

Figure 17-29: The 3-D View dialog box.

The Perspective buttons control the amount of perspective in your graph.
Adding more perspective makes the data markers at the back of the graph
smaller than those at the front of the graph. This option provides a sense of
distance; the smaller data markers seem farther away. If your graph contains
a large amount of data, you may want to use a larger perspective value (the
ratio of the front of the graph to the back of the graph). This value can range
from 0 to 100.

A perspective of 0 makes the back edge of the graph equal in width to the
front edge. You can experiment with these settings until you get the effect
you need.

The Rotation buttons control the rotation of the entire plotting area. The rota-
tion is measured in degrees, from 0 to 360. A rotation of 0 displays your graph
as you view it from directly in front. A rotation of 180 degrees displays the
graph as if you were viewing it from the back. (This setting visually reverses
the plotting order of your data series.) A rotation of 90 degrees displays your
graph as if you were viewing it from the center of the side wall.

2. Change the rotation from 20 to 30 degrees by pressing the left rotation button
once.

The Auto scaling check box lets you scale a three-dimensional graph so that its size
is closer to that of the two-dimensional graph using the same data. To activate this
option, click on the Auto scaling check box so that the X appears in the box. When
this option is kept activated, Access will scale the graph automatically whenever
you switch from a two-dimensional to a three-dimensional graph.

Two options within the 3-D View dialog box pertain specifically to display of the
axes. The Right angle axes check box lets you control the orientation of the axes.
If the check box is on, all axes are displayed at right angles to each other.

If the Right Angle Axes check box is selected, you cannot specify the perspective
for the three-dimensional view.

Caution

637Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

The Height box contains the height of the z-axis and walls relative to the width of
the graph’s base. The height is measured as a percentage of the x-axis length. A
height of 100 percent makes the height equal to the x-axis. A height of 50 percent
makes the height half the x-axis length. You can set this height percentage at more
than 100 percent; by doing so, you can make the height of the z-axis greater than
the length of the x-axis.

If you change the Height setting, your change will not be displayed in the sample
graph shown in the 3-D View dialog box.

After you have made the desired changes, you can select OK which will bring you
back to the Form Design screen. You may just see the buttons Close, or Apply,
which will also do the same thing.

You might want to make one more change: A graph frame is really an unbound
object frame, and you can change its border type and background (as you can for
any unbound object frame). Figure 17-30 shows the final graph after the border has
been changed to an etched special effect, and the background colored light gray or
made transparent to match the background of the form. This allows the graph to
stand out more than it would if you used a sunken white background. Figure 17-30
shows the first record in the database.

Figure 17-30: The final graph.

Caution

638 Part I, Section II ✦ Building Forms and Reports

Integration with Microsoft Office
Access 2003 is not only integrated with Windows, it now shares many major compo-
nents with Microsoft Office 2003. (If you are an Excel 2003 or Word 2003 user, you
will be especially thrilled.) Access 2003 has an integrated Spell Checker that is used
to make sure that the data stored in Access 2003 tables and database objects is
spelled correctly. The dictionary is shared across all Office 2003 applications. There
are also specific technical dictionaries for legal, medical, and foreign languages and
also several custom dictionaries that you can maintain to store your own technical
words. Access 2003 also shares the Office 2003 AutoCorrect features to fix errors
while you type.

Checking the spelling of one or more
fields and records
You can check the spelling of your data in either Form or Datasheet view. In Form
view, you can spell-check only a single record — and field within the record — at a
time. To check the spelling of data in Datasheet view, you would select the field or
text containing spelling you want to check, and then click on the Spelling toolbar
button (the icon with the check mark and the small letters ABC above it).

When you click on the icon, Access checks the field (or selected text within the
field) for spelling, as shown in Figure 17-31.

In the Spelling dialog box that appears, you can click on Add if you want to add the
word in the Not In Dictionary: box to the custom dictionary.

You can select only one field at a time in Form view. You’ll probably want to use
only Form view to spell-check selected memo data. To select multiple fields or
records, you must switch to Datasheet view. To check the spelling of data in
Datasheet view, you would select the records, columns, fields, or text within a field
containing spelling you want to check and then click on the Spelling icon.

You can also check the spelling in a table, query, or form in the Database window
by clicking on the table, query, or form object containing spelling you want to check.

You only spell-check the data inside the objects. Access 2003 cannot spell-check
control names.

639Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Figure 17-31: Spell-checking in Access.

Correcting your typing automatically
when entering data
You can use the AutoCorrect feature to provide automatic corrections to text you
frequently mistype and to replace abbreviations with the long names they stand
for (also automatically). For example, you can create an entry “AAA” for Access
Auto Auctions. Whenever you type AAA followed by a space or punctuation mark,
Microsoft Access replaces AAA with the text Access Auto Auctions.

You can activate AutoCorrect by selecting Tools ➪ AutoCorrect Options. The dialog
box shown in Figure 17-32 appears. You can select the Replace text as you type
check box. In the Replace box, type the text you want corrected. In the With box,
type the corrected text. When you click on Add, the word replacement combination
will be added to the AutoCorrect dictionary.

640 Part I, Section II ✦ Building Forms and Reports

Figure 17-32: Using AutoCorrect in
Access 2003.

AutoCorrect won’t correct text that was typed before you selected the Replace text
as you type check box.

Using OLE automation with Office 2003
Access 2003 takes advantage of drag and drop; you can do it from a Datasheet view
across Excel and Word. You can instantly create a table in a Word document (or add
a table to an Excel spreadsheet) by simply copying and pasting (or dragging and
dropping) data from an Access datasheet to a Word document or an Excel spread-
sheet. (Obviously, you must have Word or Excel to take advantage of these features.)

Creating an Excel type PivotTable
Access 2003 contains a PivotTable Wizard to create Excel PivotTables based on
Access tables or queries. A PivotTable is like a cross-tabulation of your data; you
can define the data values for rows, columns, pages, and summarization. Figure
17-33 shows a conceptual figure of a PivotTable.

A PivotTable can have multiple levels of rows, columns, and even pages. As you can
see in the conceptual figure, the center of the table contains numeric data; the rows
and columns form a hierarchy of unique data. In this figure, dates and employees
are the row hierarchies, along with multiple levels of subtotals. The column head-
ers are types of products, and each page of the PivotTable is a different region.

A PivotTable is like a cross-tab query (see Chapter 23) but much more powerful.Cross-
Reference

641Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Figure 17-33: A conceptual view of a PivotTable displayed
when you start the form PivotTable Wizard.

Before you begin creating a pivot table, you should make sure you can display
a simple datasheet containing the data you want to analyze. Figure 17-34 shows
a query using the tblContacts, tblSales, and tblSalesLineItems tables and the
qryCalculateTotalPaymentsbyInvoice query in order to create an analysis of sales.

Figure 17-34: A query combining data from the tblContacts, tblSales, and
tblSalesLineitems tables and the qryCalculateTotalPaymentsbyInvoice query.

After you have created your query, you should display the datasheet to make sure
that the data you expect to see is displayed and that the type of data lends itself
to PivotTable analysis. Because the idea of a pivot table is to manipulate or pivot

642 Part I, Section II ✦ Building Forms and Reports

various categorization data, there should be many different groupings of data. As
you can see in Figure 17-35, the data is perfect for pivot table analysis. There are
many customers, each having several purchases, on several dates where there is
a total payment for each sale.

Figure 17-35: A datasheet displaying data from the tblContacts
and tblSales tables and the qryCalculateTotalPaymentsbyInvoice
query.

After the data is reviewed, you can create your pivot table. You start creating a
PivotTable from the New Form dialog box, using the PivotTable Wizard selection
from the list of standard Wizards you can select, as you can see in Figure 17-36.
Notice that the query you just created, qryPivotTableExample, has been selected
as the data source.

Figure 17-36: The New Form dialog box
showing the PivotTable Wizard selected and
the PivotTable Example query being used as
the data source.

643Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

After you begin the PivotTable Wizard process, you will first see an introductory
screen explaining how a PivotTable works (Figure 17-33). After you view this screen,
press the Next button. Figure 17-37 displays the table/queries dialog box. You have
already selected the query qryPivotTableExample. In this example, because the
query only selected the four fields you want to use for the PivotTable, you can
select all of the fields in the Available Fields list box, which moves them to the
Fields Chosen for Pivoting list box.

Figure 17-37: Selecting the Table/Query to supply data
for the PivotTable and the fields to be used for pivoting.

Now that you have selected the data, you can press the Finish button to complete
the process. The blank Pivot Table type form is displayed in Figure 17-38. If you were
a user of the Access or Excel 2000 Pivot Tables, you will see a huge improvement.
This layout screen now features live data links. The way it works is that you drag
your fields for the Pivot Table onto the form from the Pivot Table field list shown at
the bottom-right corner of the form. You can move the field list around and expand
and collapse the data lists displayed. It will automatically group date type fields by
week or month. You can also create your own calculated fields and summary fields
at any level.

In this example, you are going to be using all of the fields for the pivot table.
Starting in the upper-left corner of the form, which is where you drag and drop
Filter Fields, you will drag the chrCompany name field. As you can see in Figures
17-39 and 17-40, this will create a combo box with the text chrCompany Name and
initially displays all of the customers in the data sample. You can click on the
combo box and filter the data for any or all of the customers. You can even select
any number of customers using the check boxes you can see in Figure 17-40.

644 Part I, Section II ✦ Building Forms and Reports

Figure 17-38: The Layout window of the PivotTable Wizard.

Figure 17-39: Data displayed in the PivotTable Wizard.

645Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

The chrDescription field will be used for the Row Field, and the dtmSalesDate field
will be used for the Column Field. When you complete dragging and dropping these
field names from the PivotTable Field List to the drop area, the live data appears
along the top (Column Fields) or side (Row Fields). Instantly you can see your col-
umn headers, and the first row data appear like a data sheet. When you drag the
TotalPayments field to the Total or Detail Fields area, data is filled in like a cross-tab
query. Figure 17-39 shows this data after the fields are dragged to the form from the
Field List.

The intersection of a row and a column displays a data value. For example, in Figure
17-39 you can see the value $70,565.00 where 1950 Fordman Coupe and 1/15/2003
intersect. This means that the 1950 Fordman Coupe was sold on 1/15/2003 and the
total payment was $70,565.00. If you filtered the Company Name, you could see who
owns the 1950 Fordman Coupe.

When your fields are dragged to the form and your data is displayed in the form,
you can begin to manipulate the data. If you notice the data elements in either the
rows or the column headers, you can see there are + and – signs on very small but-
tons next to each element. If you click on the – button, the data row or column is
hidden. You can click on the + sign to redisplay the data from that column or row.

Figure 17-40: Changing a filter in the PivotTable Wizard.

646 Part I, Section II ✦ Building Forms and Reports

Remember, the real value of a pivot table view is to pivot the data. You can also
move row fields to the column area and column fields to the row area. You can filter
by any of the selections. The three major filters chrDescription, dtmSaleDate, and
chrCompanyName each have a downward-pointing arrow in the rectangle that con-
tains the name. Figure 17-40 shows what happens when you press the down arrow
on the chrCompany Name field.

A type of list box with a series of check boxes is displayed. If you click on the (All)
selection, all of the customers below are either selected or de-selected. If you de-
select all of the options, you will have no data displayed. You can then select the
Companies you want to include in the selection. You can select 1, 2, 20, or as many
as are displayed. When you press the OK button at the bottom of the list, the pivot
table is filtered.

Pivot tables are very powerful. You can switch the row and columns by simply drag-
ging the column or row designator to the other dimension. For example, you could
move the dtmSaleDate from being a column field to being a row field. That could
show you dates sold by product description. There is no limit to the number of
ways you can manipulate the data.

Figure 17-41 shows the PivotTable menu. This helps you create subtotals, calculated
fields, and totals, and helps you to do many things the individual buttons can do,
such as expanding and collapsing levels and hiding or showing details. You can also
Export the data directly to Microsoft Excel and create a PivotTable on a worksheet.
Pivot Tables provide a great way to view hierarchical data in many ways. It can be
much easier to use a pivot table than to create a multitude of reports.

Creating a PivotChart
Just as the PivotTable lets you display data, a PivotChart lets you represent
data graphically. You begin by creating a new form and selecting the AutoForm:
PivotChart. There is no specific PivotChart Wizard like there is a PivotTable
Wizard. In Figure 17-42, you can see the New Form dialog box with the same query,
qryPivotTableExample, selected that was used in the last example for the PivotTable
Wizard.

After selecting the AutoForm: PivotChart and clicking OK, you will see a screen
similar to the PivotTable design screen, except that an empty chart is shown (see
Figure 17-43). The Chart Field List is identical to the Pivot Table Field list. You drag
and drop fields to the chart areas in the same ways as the Pivot Table.

You can drag the chrCompany field as the overall Filter Field at the top of the screen.
The Series would be what separates the various lines. The chrDescription would be
appropriate for the Series. The Category field is usually time or dates, and the
dtmSaleDate field can be dragged to the Category area. Finally, the TotalPayments
can be dragged to the Data Field area.

647Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Figure 17-41: Using the PivotTable menu.

Figure 17-42: Creating a new PivotChart
using the AutoForm: PivotChart selection.

After you drag these fields, the chart appears with data as shown in Figure 17-44.
You can manipulate the data and change the look of the graph, chart type, axes
lines, and any standard chart options.

648 Part I, Section II ✦ Building Forms and Reports

Figure 17-43: Creating a new PivotChart using the AutoForm: PivotChart selection.

Figure 17-44: Viewing the selections on the PivotChart.

649Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Using the Calendar ActiveX Control
ActiveX controls (also known as OCX controls) are not new to Access. Custom con-
trols extend the number of controls already found in Access. Some of the more pop-
ular controls are Calendars, Tab Dialog box controls, Progress Meters, Spin Boxes,
Sliders, and many others. Although they existed in early versions of Access, they
were seldom used; they required separate sets of properties and were not totally
stable. Access for Windows 95 introduced support for the new 32-bit controls, and
Access 2003 continues their popularity. Access 2003 comes with several ActiveX
controls. One of the most often used is the Calendar control. If you have Office
2003, you have many ActiveX controls from the new Microsoft Forms collection
used to create Office forms without Access. There are many ActiveX controls from
third parties for Access 2003. See the CD appendix for several demos of the best
ActiveX controls that are compatible for Microsoft Access.

The Office Developers Edition is a separate product from Microsoft that allows you
to create a run-time application that runs Microsoft Access applications without hav-
ing Access on the computer. It also includes the Help compiler, a printed-language
reference manual, the Windows Setup Wizard, many other ActiveX controls, and many
new tools for Access 2003 and Office 2003 developers, including many Internet tools.

You can select Insert ➪ ActiveX Control or select the More Controls icon from the
Toolbox to see a list of all your ActiveX controls.

If you don’t have the Office Developer’s Edition or the full Office 2003, you probably
will see only the Calendar control. You add a custom control as you would to any
unbound OLE control. To add a Calendar custom control to a new blank form, fol-
low these steps:

1. Open a new form in Design view and display the Toolbox. Don’t select any
table in the New Form dialog box.

2. Select Insert ➪ ActiveX Control... or choose the More Controls icon from the
Toolbox.

3. Select Calendar Control 11.0 and click on OK.

The Calendar control appears on the new form. The calendar can be resized like
any unbound control, and (of course) it has properties. Figure 17-45 shows the
Calendar control and its basic properties.

The Property window shows the properties specific to a Calendar control. These
are the properties displayed by the Other tab. With these properties, you can
change some of the display characteristics of the calendar, including the following:

✦ DayLength. System (Sunday, Monday, Tuesday), System (Medium) (Sun, Mon,
Tue, . . .).

✦ FirstDay. First day of week displayed (Mon, Tue, Wed, Thu, etc., default is Sun).

650 Part I, Section II ✦ Building Forms and Reports

✦ GridCellEffect. Flat, Raised, Sunken.

✦ MonthLength. System (January, February, . . .), System (Medium) (Jan, Feb, . . .).

✦ ShowDateSelectors. Display a combo box for month and year in Form view.

Figure 17-45: The Calendar control and the standard and additional Access properties.

Many other properties control the various colors and fonts of the calendar compo-
nents. A number of value properties affect the display of the calendar and the
selected date. Four properties change the display of the calendar data:

✦ Day. The day of the current month (21 in this example).

✦ Month. The month of the current date (4 in this example).

✦ Year. The year being displayed (2003 in this example).

✦ Value. The date displayed (4/21/2003 in this example).

The values can be changed in several ways. You can click on a date in the calendar
in Form view, which changes the Value property. When the Value property changes,
so do the Day, Month, and Year properties. You can also change these properties
in the Property window or programmatically from a macro or Visual Basic for
Applications.

Cross-
Reference

651Chapter 17 ✦ Using OLE Objects, Graphs, Pivot Tables/Charts, and ActiveX Controls

Another way to change properties in a custom control is to display the Calendar
Properties dialog box, as shown in Figure 17-46. This provides combo-box access
to certain control properties. You can display this dialog box by selecting Edit ➪
Calendar Object ➪ Properties or by right-clicking on the Calendar control and
selecting Calendar Object ➪ Properties from the shortcut menu.

Figure 17-46: The Calendar Properties
dialog box.

When you display the calendar in Form view, you can also display combo boxes
(using the ShowDateSelectors property) to change the month or year, because you
can only click on a day in the calendar. These are the Month/Year Selectors in the
Property dialog box.

The calendar’s real power is that you can link it to a field. When the calendar is
changed, the field value changes. Likewise, if the field value changes, the calendar
display changes. You can easily do this by linking the calendar to a field by using its
Control Source property.

✦ ✦ ✦

PART I
Creating
Desktop
Applications

SECTION III
Automating
Your
Applications

✦ ✦ ✦ ✦

In This Section
Chapter 18
Understanding Visual
Basic and the VBA
Editor

Chapter 19
Introduction to
Programming and
Events

Chapter 20
Working with
Expressions and
Functions

Chapter 21
Working with SQL,
Recordsets, and ADO

Chapter 22
Automating Filters,
Sorts, and Query
Parameters

Chapter 23
Calling Subprocedures
and Functions

Chapter 24
Effective Debugging
and Error Handling in
VBA

Chapter 25
Creating
Switchboards,
Command Bars,
Menus, Toolbars, and
Dialog Boxes

Chapter 26
Programming
Continuous Forms, Tab
Dialogs, and
Command Buttons

✦ ✦ ✦ ✦

P A R T

II

Understanding
Visual Basic and
the VBA Editor

If you have created or worked with a simple Access applica-
tion, the operations of that application were most likely

created using macros. Although macros provide a quick and
simple method of automating an application, writing Visual
Basic modules is the best way to create applications. Adding
error routines, setting up repetitive looping, and adding pro-
cedures that macros simply can’t perform give you more con-
trol of application development. In this chapter, you learn how
to build an application framework and how to extend the
power of an application using Visual Basic.

In this chapter, you will use the database file
Chap18start.mdb.

Migrating from Macros
to Visual Basic

Should you now convert all of the macros in your applications
to Visual Basic? The answer depends on what you are trying
to accomplish. The fact that Access 2003 includes Visual Basic
does not mean that Access macros are no longer useful; it sim-
ply means that Access developers will want to learn Visual
Basic and add it to their arsenal of tools for creating Access
applications.

Visual Basic is not always the answer. Some tasks, such as
assigning global key assignments, can be accomplished only
via macros. You can perform some actions more easily and
effectively by using a macro.

On the
CD-ROM

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Converting macros
to Visual Basic

Using the Command
Button Wizard to
create Visual Basic
code

Understanding the
basics of Visual Basic

Understanding
modules

Creating a
new module

Using the
Module window

✦ ✦ ✦ ✦

656 Part I, Section III ✦ Automating Your Applications

A Visual Basic procedure may offer better performance. The opposite also is true: A
Visual Basic procedure may run at the same speed as a macro counterpart, or even
more slowly. If you code everything in your application using Visual Basic, you may
find that the time needed to create an application actually increases.

When to use macros and when to use
Visual Basic procedures
In Access, macros often offer an ideal way to take care of many details, such as
running reports and forms. You can develop applications and assign actions faster
using a macro because the arguments for the macro actions are displayed with the
macro (in the bottom portion of the Macro window). You won’t have to remember
complex or difficult syntax.

Several actions you can accomplish via Visual Basic are better suited for macros.
The following actions tend to be more efficient when they are run from macros:

✦ Using macros against an entire set of records — for example, to manipulate
multiple records in a table or across tables (such as updating field values or
deleting records)

✦ Opening and closing forms

✦ Running reports

Visual Basic supplies a DoCmd object that you can use to accomplish most macro
actions. This object actually runs the macro task. You could, for example, specify
DoCmd.Close to run the close macro and close the current active form. Even this
method has flaws. DoCmd cannot perform at least eight macro actions: AddMenu,
MsgBox, RunApp, RunCode, SendKeys, SetValue, StopAllMacros, and StopMacro.
Some of these actions have Visual Basic equivalents.

Although macros sometimes prove to be the solution of choice, Visual Basic is the
tool of choice at other times. You probably will want to use Visual Basic rather than
macros when you want to perform any of the following tasks:

✦ Create and use your own functions. In addition to using the built-in functions
in Access, you can create and work with your own functions by using Visual
Basic.

✦ Create your own error routines and messages. You can create error routines
that detect an error and decide what action to take. These routines bypass
the cryptic Access error messages.

✦ Use Automation to communicate with other Windows applications or to run
system-level actions. You can write code to see whether a file exists before
you take some action, or you can communicate with another Windows appli-
cation (such as a spreadsheet), passing data back and forth.

Note

657Chapter 18 ✦ Understanding Visual Basic and the VBA Editor

✦ Use existing functions in external Windows DLLs. Macros don’t enable you
to call functions in other Windows Dynamic Link Libraries.

✦ Work with records one at a time. If you need to step through records or to
move values from a record to variables for manipulation, code is the answer.

✦ Maintain the application. Unlike macros, code can be built into a form or
report, making maintaining the code more efficient. Additionally, if you move a
form or report from one database to another, the event procedures built into
the form or report move with it.

✦ Create or manipulate objects. In most cases, you’ll find that it’s easiest to cre-
ate and modify an object in that object’s Design view. In some situations, how-
ever, you may want to manipulate the definition of an object in code. Using
Visual Basic, you can manipulate all the objects in a database, including the
database itself.

✦ Pass arguments to your Visual Basic procedures. You can set arguments for
macro actions in the bottom part of the Macro window when you create the
macro, but you can’t change arguments when the macro is running. With
Visual Basic, however, you can pass arguments to your code at the time it
runs or use variables for arguments — something you can’t do with macros.
This capability gives you a great deal of flexibility in the way your Visual Basic
procedures run.

✦ Display a progress meter on the status bar. If you need to display a progress
meter to communicate progress to the user, Visual Basic code is the answer.

If you create a form or report that will be copied to other databases, create your
event procedures for that form or report in Visual Basic instead of using macros.
Because macros are stored as separate objects in the database, you have to
remember which ones are associated with the form or report you are copying. On
the other hand, because Visual Basic code can be attached to the form or report,
copying the form automatically copies the Visual Basic event procedures associ-
ated with it.

Converting existing macros to Visual Basic
After you become comfortable with writing Visual Basic code, you may want to
rewrite some of your application macros as Visual Basic procedures. As you begin
this process, you quickly realize how mentally challenging the effort can be as you
review every macro in your various macro libraries. You cannot merely cut the
macro from the Macro window and paste it into a Module window. For each condi-
tion, action, and action argument for a macro, you must analyze the task it accom-
plishes and then write the equivalent statements of Visual Basic code in your
procedure.

Tip

658 Part I, Section III ✦ Automating Your Applications

Fortunately, Access provides a feature that converts macros to Visual Basic code
automatically. One of the options in the Save As dialog box is Save As Module. You
can use this option when a macro file is highlighted in the Macros object window of
the Database window. This option enables you to convert an entire macro group to
a module in seconds.

To try the conversion process, convert the mcrOpenContacts macro in the
Chapter18 database. Follow these steps to run the conversion process:

1. Click the Macros object button of the Database window.

2. Select the mcrOpenCustomers macro group.

3. Choose File ➪ Save As. The Save As dialog box appears, as shown in Figure 18-1.

Figure 18-1: Saving a macro as a
module.

4. Access assigns a default name for the new module as “Copy of” followed by
the macro name. Enter a name for the new module and select module for the
As option.

5. Choose OK. The Convert Macro dialog box appears, as shown in Figure 18-2.

Figure 18-2: The Convert Macro
dialog box.

5. Select the options that include error handling and comments, and click
Convert.

Access briefly displays each new procedure as it is converted. When the con-
version process completes, the Conversion Finished! message box appears.

6. Click OK to remove the message box.

659Chapter 18 ✦ Understanding Visual Basic and the VBA Editor

7. Access displays the new module in the Visual Basic Editor, as shown in Figure
18-3. Access names the new module Converted Macro- mcrOpenContacts.

Figure 18-3: The newly converted module.

When you open the Visual Basic Editor for the new module, you can view the proce-
dures created from the macros. Figure 18-3 shows the mcrOpenContacts function
that Access created from the mcrOpenContacts macro.

At the top of each function, Access inserts four comment lines for the name of the
function. The Function statement follows the comment lines. Access names the
functions, using the macro library’s name (mcrOpenContacts).

When you specify that you want Access to include error processing for the conver-
sion, Access automatically inserts the On Error statement as the first command in
the procedure. The On Error statement tells Access to branch to other statements
that display an appropriate message and then exit the function.

Error processing is covered in more detail in Chapter 24.

The statement beginning with DoCmd is the actual code that Access created from
the macro. The DoCmd methods run Access actions from Visual Basic. An action
performs important tasks, such as closing windows, opening forms, and setting the
value of controls.

You also can convert macros that are used in a form by opening the form in Design
view and choosing Tools ➪ Macro ➪ Convert Form’s Macros to Visual Basic in
Forms Design view.

Tip

Cross-
Reference

660 Part I, Section III ✦ Automating Your Applications

Using the Command Button Wizard
to create Visual Basic code
A good way to learn how to write event procedures is to use the Command Button
Wizard. When Access creates a command button with a wizard, it creates an event
procedure and attaches it to the button. You can open the event procedure to see
how it works and then modify it to fit your needs.

The wizard speeds the process of creating a command button because it does all the
basic work for you. When you use the wizard, Access prompts you for information
and creates a command button based on your answers.

You can create more than 30 types of command buttons by using the Command
Button Wizard. You can create a command button that finds a record, prints a
record, or applies a form filter, for example. You can run this wizard by creating
a new command button on a form. Figure 18-4 shows a command button being
created in the Record Operations category, with the Delete Record action.

Figure 18-4: The Command Button Wizard.

In the Access Auto Auctions database is a form named frmButton Wizard VBA
Samples. This form, shown in Figure 18-5 in Design mode, contains the result of
running the Command Button Wizard with several selections. The frmButton
Wizard VBA Samples form contains a dozen command buttons created with the
Command Button Wizard. You can review the procedures for each command but-
ton on the form to see how powerful Visual Basic code can be.

To view the sample code, follow these steps:

1. Display the frmButton Wizard VBA Samples form in Design view.

2. Display the Property window for the desired button.

3. Click the Builder button (. . .) for the On Click event property to display the
command button’s Module window, with the procedure.

Note

661Chapter 18 ✦ Understanding Visual Basic and the VBA Editor

Figure 18-5 shows the property sheet for the Delete Record command button, and
Figure 18-6 shows the code for the Delete Record command button.

Figure 18-5: Examples of Command Button Wizard buttons.

Figure 18-6: The Delete button’s On Click procedure.

Figure 18-7 shows the code for a Dialer command button. The Phone_Dialer_Click
procedure retrieves the text in the current field and then passes the text to a utility
that dials the telephone.

662 Part I, Section III ✦ Automating Your Applications

Figure 18-7: The Phone Dialer command button’s On Click procedure.

After you become familiar with the code that the Command Button Wizard can create
automatically, you are ready to begin creating some Visual Basic code of your own.

Creating Programs in Visual Basic
for Applications

Access has an excellent variety of tools that enable you to work with databases and
their tables, queries, forms, and reports without ever having to write a single line of
code. At some point, you may begin building more sophisticated applications. You
may want to make your applications more “bulletproof” by providing more intensive
data-entry validation or implementing better error handling.

Some operations cannot be accomplished through the user interface, even with
macros. You may find yourself saying, “I wish I had a function that would...” or
“There just has to be a function that will let me....” At other times, you find that you
are continually putting the same formula or expression in a query or filter. You may
find yourself saying, “I’m tired of typing this formula into....” or “Doggone it, I typed
the wrong formula in this....”

663Chapter 18 ✦ Understanding Visual Basic and the VBA Editor

For situations such as these, you need the horsepower of a high-level program-
ming language. Access provides a programming language called Visual Basic for
Applications (VBA), which extends the capabilities of Access, offering power
beyond the scope of macros.

Visual Basic has become the common language for all Microsoft applications. Visual
Basic is in all Microsoft Office 2003 applications, including Access, Word, Excel,
PowerPoint, and Outlook. It is available also in Project. Visual Basic is a modern,
structured programming language that offers many of the programming structures
programmers are accustomed to: If. . .Then. . .Else, Select Case, and so on. Visual
Basic enables a programmer to work with functions and subroutines in an English-
like language. The language also is extensible (capable of calling Windows API rou-
tines) and can interact through ADO (ActiveX Data Objects) and with any Access or
Visual Basic data type.

Getting started with Visual Basic programming in Access requires an understanding
of its event-driven environment.

Understanding events and event procedures
In Access, unlike early procedural programming environments, the user controls
the actions and flow of the application. The user determines what to do and when
to do it, such as changing information in a field or clicking a command button. They
determine the flow of action and, through events, the application determines what
action to take or ignore. In contrast, procedural-oriented programming languages
require that the programmer determine the flow of what actions the user must follow.
In fact, the programmer must program for all possibilities of user intervention —
keystrokes a user may enter in error and actions to take based on the actions taken
by the user.

Using macros and event procedures, you implement the responses to these actions.
Access provides event properties for each of the controls you place on the form.
When you attach a macro or event procedure to a control’s event property, you do
not have to worry about the order of actions a user may take on a particular form.

In an event-driven environment such as Access, the objects — forms, reports, and
controls — respond to events. Basically, an event procedure is program code that
executes when an event occurs. The code is directly attached to the form or report
that contains the event being processed. An Exit command button, for example,
exits the form when the user clicks that button. Clicking the command button trig-
gers its On Click event. The event procedure is the program code (or macro) that
you create and attach to the On Click event. Every time the user clicks the com-
mand button, the event procedure runs automatically.

Programming for events is covered in more detail in Chapter 19.Cross-
Reference

664 Part I, Section III ✦ Automating Your Applications

There are two types of procedures:

✦ Sub

✦ Function

Sub and function procedures are grouped and stored in modules. The Modules
object button in the Database window stores the common procedures that any
of your forms can access. You can store all your procedures in a single module.
Realistically, though, you’ll probably want to group your procedures into separate
modules, categorizing them by the nature of the operations they perform; for exam-
ple, an Update module might include procedures for adding and deleting records
from a table.

Sub procedures
A sub procedure is program code that does not return a value. Because it does not
return a value, a sub procedure cannot be used in an expression or be called by
assigning it to a variable. A sub procedure typically runs as a separate program
called by an event in a form or report.

You can use a sub procedure to perform actions when you don’t want to return a
value. In fact, because you cannot assign a value to a control’s event properties,
you can only create sub procedures for an event.

You can call subs and pass a data value known as a parameter. Subs can call other
subs. Subs also can call function procedures.

The code statements inside the sub procedure are lines of Visual Basic statements.
These statements make up the code you want to run every time the procedure is
executed. The following example shows the Exit command button’s sub procedure:

Sub cmdExit_Click ()
DoCmd.Close

End Sub

The cmdExit_Click () sub procedure is attached to the Exit command button’s On
Click event. When the user clicks the Exit command button, the command DoCmd
Close executes to close the form.

Function procedures
A function procedure returns a value. You can use functions in expressions or
assign a function to a variable.

Like sub procedures, function procedures can be called by other functions or by
subs. You also can pass parameters to a function.

665Chapter 18 ✦ Understanding Visual Basic and the VBA Editor

You assign the return value of a function to the procedure name itself. You then can
use the value that is returned as part of a larger expression. The following function
procedure calculates the square footage of a room:

Function nSquareFeet (dblHeight As Double, dblWidth As Double)
As Double
nSquareFeet = dblHeight * dblWidth
End Function

This function receives two parameters for the height and width of the room. The
function returns the results to the procedure that called it by assigning the result of
the calculation to the procedure name (nSquareFeet).

To call this function, you could use code like this:

dblAnswer = nSquareFeet(xHeight, xWidth)

Understanding modules
Modules and their procedures are the principal objects of the Visual Basic program-
ming environment. The programming code that you write is placed in procedures
that are contained in a module. The procedures can be independent procedures,
unrelated to a specific form or report, or they can be integral parts of specific forms
and reports.

Two basic categories of modules can be stored in a database:

Form/Report (CBF - Code Behind Form/CBR - Code Behind Report)

Standard Modules (Stored in the Module Object)

As you create Visual Basic procedures for your Access applications, you use both
types of modules.

Form and report modules
All forms and reports, and their controls, can associate event procedures with their
events. These event procedures can be macros or Visual Basic code. Every form or
report you create in your database contains a form module or report module. This
form or report module is an integral part of the form or report, and is used as a con-
tainer for the event procedures you create for the form or report. This method is a
convenient way to place all of a form’s event procedures in a single collection.

Creating Visual Basic event procedures in a form module can be very powerful and
efficient. When an event procedure is attached to a form, it becomes part of the
form. When you need to copy the form, the event procedures go with it. If you need
to modify one of the form’s events, you simply click the ellipsis button for the

666 Part I, Section III ✦ Automating Your Applications

event, and the form module window for the procedure appears. Figure 18-8 illus-
trates accessing the event procedure of the First Record button’s On Click event
shown in the form named frmButton Wizard VBA Samples. Notice that in the On
Click property is the text [Event Procedure]. When you click the Builder button
next to [Event Procedure], you will see the module window for that form (and
specifically the On Click event for that button control).

Figure 18-8: Accessing a control’s event procedure from the Property sheet.

For more about the frmButton Wizard VBA Samples form, see the section “Using
the Command Button Wizard to create Visual Basic code” earlier in this chapter
(especially Figure 18-5).

Event procedures that work with a single form or report belong in the module of the
form or report. A specific form’s module should contain only the declarations and
event procedures needed for that form and its controls (command buttons, check
boxes, text labels, text boxes, combo boxes, and so on). Placing another form’s or
report’s event procedures in this form’s module doesn’t make sense.

Standard modules
Standard modules are independent from form and report modules. These modules
can be used to store code, in the form of procedures, that can be used from anywhere
within your application. In early versions of Access (1.0 through 2.0), standard mod-
ules were known as global modules.

Cross-
Reference

667Chapter 18 ✦ Understanding Visual Basic and the VBA Editor

You can use standard procedures throughout your application for expressions,
macros, event procedures, and even other procedures. To use a standard procedure,
you simply call it from a control as a function or an event based on an event proce-
dure, depending on the type of procedure that it is. Remember that two basic types
of procedures are stored in modules:

✦ Subs, which perform actions without returning a value

✦ Functions, which always return a value

Procedures run; modules contain. A procedure is executed; it performs some
action. You create the procedures that your application will use. Modules, on the
other hand, simply act like containers, grouping procedures and declarations
together. A module cannot be run; rather, you run the procedures that are con-
tained in the module. These procedures can respond to events or can be called
from expressions, macros, and even other procedures.

You use the modules container of the database to store your standard procedures.
The module container is the section of the database that has an object button
labeled Modules.

Although you can place any type of procedure in any module, you should group
your procedures into categories. Most modules contain procedures that are related
in some way.

Creating a new module
Using the Modules tab, you can create and edit Visual Basic code or procedures.
A procedure is simply some code, written in a programming language that follows
a series of logical steps in performing some action. You could, for example, create a
Beep procedure that makes the computer beep as a warning or notification that
something has happened in your program. Each procedure is a series of code state-
ments that performs an operation or calculation.

Modules are the containers used to organize your code. You can think of a module
as being a library of procedures. You can create many modules for an Access
database.

Creating functions and procedures in modules is covered in more detail in
Chapter 19.

For this example, you can use the Chap18 database, or you can open a new blank
database. To create a new module, follow these steps:

1. Click the Modules object button in the Database window.

2. Click the New toolbar button.

Cross-
Reference

Tip

668 Part I, Section III ✦ Automating Your Applications

Access opens Microsoft Visual Basic and creates a new module, named Module1,
in a Code window. This new module should look like the one shown in Figure 18-9.
In this figure, notice that Access places two lines of text in the first line in the win-
dow, beginning with Option Compare Database and then Option Explicit.

If the new module you open does not show the first two lines of code, you will
need to check to see if the Required Variable Declaration has been turned on (rec-
ommended). The Option Explicit statement appears if you turn on the option
Require Variable Declaration. To check the status of this option, follow these steps:

1. Open an existing module, or create a new one. The Code window displays in
Microsoft Visual Basic.

2. Select Tools ➪ Options... from the Code window toolbar. The Options dialog
box displays.

3. In the Editor tab, check the box for Require Variable Declaration.

Figure 18-9: The newly opened code in the Visual
Basic Editor.

Notice that the Code window in Figure 18-9 displays the tools for the Visual Basic
Editor. Also notice the two combo boxes just below the toolbar. The right combo
box displays Declarations, because you currently are in the declarations part of the
module.

Each module includes two or more sections:

✦ A single declarations section

✦ A section for each procedure

Note

669Chapter 18 ✦ Understanding Visual Basic and the VBA Editor

The module is a convenient way to place a group of related event procedures in a
single collection. Every form or report you create in your database contains a built-
in form module or report module. This form or report module is an integral part of
each form or report; it is used as a container for the event procedures you create

Working in the Code Window

Whenever you create Visual Basic procedures for your Access applications, you write that
code in a Code window. Although the Code window is confusing at first, it is easy to under-
stand and use after you learn how each part is used.

When you enter Design mode of a module — whether it is via a form or report module or
the modules object (Database window) — the Visual Basic Code window and its associated
menu and toolbar open to enable you to create or edit your procedures.

When you open a module from the Modules object button of the Database window, the
Code window has the same features as the Code window for a form or Report Design win-
dow. The only difference between the two is that for a form (or report) module, the Object
and Procedure combo boxes on the toolbar list the form’s objects and events. You can
select these objects and events to create or edit event procedures for the form. The object
combo box for a module you open from the Database window displays only one choice:
General. The Procedure combo box contains only the names of existing procedures.

The Code window has four basic areas: the menu bar, the toolbar, the Code window, and
the Immediate window.

The menu bar of the Code window has 10 menus: File, Edit, View, Insert, Debug, Run, Tools,
Add-Ins, Window, and Help.

The Code window’s toolbar (shown in Figure 18-9) helps you create new modules and
their procedures quickly. The toolbar contains buttons for the most common actions you
use to create, modify, and debug modules.

The Code window — the most important area of the Visual Basic Editor — is where you cre-
ate and modify the Visual Basic code for your procedures. The Code window has the stan-
dard Windows features that enable you to resize, minimize, maximize, and move the
window. You also can split the window into two areas. At times, you may want to edit two
procedures at the same time; perhaps you need to copy part of one procedure to another.
To work on two procedures simultaneously, choose Window ➪ Split from the Code window
toolbar.

You can resize the window by moving the split bar up and down. Now
you can work with both procedures at the same time. To switch
between windows, press the F6 key or click the other window.

The Immediate window enables you to try a procedure while you are still in the module. See
the “Checking your results in the Immediate window” section in this chapter for an example.

Tip

670 Part I, Section III ✦ Automating Your Applications

for the form or report. Generally, if only a single form or report object will use the
module, it should go behind the form or report. To view the module behind a form,
follow these steps:

1. Open the form in Design view.

2. Select View ➪ Code from the Design window menu. The Visual Basic Editor
displays the form’s module in the Code window.

If the module will be needed for several forms or reports, it should be placed
in a standard module. Standard modules are stored in the Modules tab of the
database container.

The declarations section
You can use the declarations section to declare (define) variables you want to use
in procedures. A variable is a temporary storage location for some value and is
given a name. You can declare variables that will be used only by the procedures in
a module or by all procedures across all modules within a database. Examples of
variables include:

✦ intCounter (an integer variable)

✦ curMySalary (a currency variable)

✦ dtmodaysDate (a date variable)

If you have the line of code Option Explicit in your module, which is the default in
Access 2003 Visual Basic, you must explicitly declare your variables or you will get
an error when you try to use them. This speeds up execution of Visual Basic mod-
ules. If you have a small application, you might want to remove the Option Explicit
line of code, which will enable you to use variables without first defining their
name and data type.

You are not required to declare variables in this section, because variables can also
be declared in the individual procedures. In fact, if you remove the Option Explicit
line from a procedure or function, you don’t have to declare a variable at all. Access
enables implicit variable declarations — that is, declarations created on the fly. If
you enter a variable name in an expression and the variable hasn’t been declared,
Access accepts and declares it for you, giving it the data type consistent with its
first use.

Entering the declaration statement Option Explicit forces you to declare any vari-
ables you will use when creating procedures for the module. Although this proce-
dure involves a little more work, it speeds execution of module code by Access.
For others who may need to work with your code later on, declaring variables pro-
vides assistance in documenting your code.

Tip

Caution

671Chapter 18 ✦ Understanding Visual Basic and the VBA Editor

Creating a new procedure
After you complete any declarations for the module, you are ready to create a pro-
cedure. Follow these steps to create a procedure called BeepWarning:

1. Open the Module1 module you previously created as in Figure 18-9. Go to any
empty line in the Code window.

2. Type Sub BeepWarning to name the module. The Code window should look
similar to the one shown in Figure 18-10.

3. Press Enter.

If you enter the name of a function you previously created in this module (or in
another module within the database), Access informs you that the function already
exists. Access does not enable you to create another procedure with the same name.

Figure 18-10: Entering a new procedure in the
Code window.

Notice that when you pressed Enter, Access did three things automatically:

✦ Placed the procedure named BeepWarning in the Procedure combo box in the
toolbar

✦ Placed parentheses at the end of the procedure name

✦ Added the End Sub statement to the procedure

The code window area has changed from the declarations section to the procedure
code area.

672 Part I, Section III ✦ Automating Your Applications

Now you can enter the lines of code needed for your procedure. Enter the following
lines of code into the module:

Dim xBeeps as Integer, nBeeps As Integer
nBeeps = 5
For xBeeps = 1 To nBeeps
Beep

Next xBeeps

In this example, you are running the program five times. Don’t worry about what
the procedure does — you learn more about how to program specific tasks in
Chapter 19.

Your completed function should look like the one shown in Figure 18-11.

When BeepWarning runs, it beeps for the number of times specified.

Figure 18-11: The BeepWarning procedure completed.

Using the Access 2003 Module Help
Suppose that you know you want to use a specific command but can’t remember
the syntax (syntax is computer grammar). Access 2003 features two types of mod-
ule help, called Auto List Members and Auto Quick Info, to help you create each line
of code.

Auto List Members is automatically displayed when you type the beginning of a
command that has objects, properties, and methods following the main object.
For example, if you enter DoCmd, a list of the possible commands is displayed, as
shown in Figure 18-12. You can scroll through the list box and select the option you
want.

673Chapter 18 ✦ Understanding Visual Basic and the VBA Editor

Figure 18-12: Access 2003 Auto List Members help in a module.

In this example, the OpenForm command is being selected. After you choose an
option, either more Auto List Members help is displayed or, if the rest of the com-
mand options are parameters for the other type of module help, Auto Quick Info is
displayed, as shown in Figure 18-13.

Auto Quick Info help guides you through all the options for the specific command.
The bold word is the next parameter available for the command. Figure 18-13 shows
that there are many parameters available for the OpenForm command. After you
type the form name for the form name parameter, you type a comma to separate it
from the next parameter section. As you enter each parameter or a comma to skip
a parameter, the next parameter section in the help highlights as bold. You can
remove the help by pressing Esc.

Compiling procedures
When you complete a procedure, you should compile it by choosing Debug ➪
Compile from the Code window menu. The debug process checks your code for
errors (a process known as syntax checking), and the compile process converts the
programs to a format your computer can understand. If the compile operation is
not successful, an error window appears.

Access compiles all uncompiled procedures in the module, not just the current
procedure.

Saving a module
When you finish creating a procedure, you should save it by saving the module.
You can save the module by choosing File ➪ Save, or simply close the Visual Basic
window to save the module automatically.

Note

674 Part I, Section III ✦ Automating Your Applications

Figure 18-13: Access 2003 Auto Quick Info help in a module.

Creating procedures in the Form or Report Design window
All forms, reports, and their controls can have event procedures associated with
their events. While you are in the Design window for the form or report, you can
add an event procedure quickly in one of three ways:

✦ Choose Build Event from the shortcut menu (see Figure 18-14).

Figure 18-14: Shortcut menu for a control in the Form Design
window.

675Chapter 18 ✦ Understanding Visual Basic and the VBA Editor

✦ Choose Code Builder in the Choose Builder dialog box when you click the
ellipsis button to the right of an event in the Property dialog box.

✦ Enter the text Event Procedure or select it from the top of the event combo
box (see Figure 18-15).

Figure 18-15: Properties dialog box in the Form Design window.

Whether you choose the Build Event from the shortcut menu choice or click the
ellipsis button in the Property dialog box, the Choose Builder dialog box appears.
Choosing the Code Builder item opens the Code window in Visual Basic, as shown
in Figure 18-16. In Visual Basic, if you click the View Microsoft Access button, you
can toggle back and forth between the Access form designer and the Visual Basic
Module window.

If an event procedure is already attached to the control, the text [Event Procedure]
is displayed in the event area. Clicking the Builder button instantly displays the
procedure for the event in a Visual Basic Code window — hence the name Event
Procedure.

Editing an existing procedure
To edit an existing procedure, follow these steps:

1. Click the Modules object button in the Database window.

2. Double-click the module name that contains the procedure. The declaration
portion of the module appears.

Note

676 Part I, Section III ✦ Automating Your Applications

3. Find the procedure you want and select it from the pull-down menu on the
right of the module window.

After you are in a module, you can select any procedure in another module quickly
by pressing F2 or choosing View ➪ Object Browser. Access displays the Object
Browser dialog box, shown in Figure 18-17. Highlight a different module name in
the Modules section of the View Procedures dialog box to see the names of all
procedures in the new module. When you select a module, you then can select a
method and display the function call, as shown in Figure 18-17.

Figure 18-16: A form module open in the Form Designer.

Figure 18-17: Selecting a procedure to edit.

Tip

677Chapter 18 ✦ Understanding Visual Basic and the VBA Editor

Checking your results in the Immediate window
When you write code for a procedure, you may want to try the procedure while
you are in the module, or you may need to check the results of an expression. The
Immediate window enables you to try your procedures without leaving the module.
You can run the module and check variables. You could, for example, type ? and the
name of the variable.

To view the Immediate window, choose View ➪ Immediate Window. Figure 18-18
shows the Immediate window.

After you create a sub procedure, you can run it to see whether it works as
expected. You can test it with supplied arguments.

Figure 18-18: The Immediate window.

To run the BeepWarning Sub procedure, follow these steps:

1. Activate the Immediate pane by selecting it from the View menu or clicking
in it.

2. Type BeepWarning and press Enter. The BeepWarning sub runs.

You may have heard five beeps or (if you have a really fast machine) only a few
beeps because the interval between beeps is short.

Figure 18-11, earlier in this section, shows the Visual Basic code for this sub
procedure.

✦ ✦ ✦

Introduction to
Programming
and Events

When working with a database system, the same tasks
may be performed repeatedly. Rather than doing the

same steps each time, you can automate the process with
VBA.

Database management systems continually grow as you add
records in a form, add new queries, and print new reports.
As the system grows, many of the objects are saved for later
use — for a weekly report or monthly update query, for exam-
ple. You tend to create and perform many tasks repetitively.
Every time you add contact records, for example, you open
the same form. Likewise, you print the same form letter for
contacts that have purchased a vehicle in the past month.

You can create VBA code throughout your application to per-
form these tasks. The Visual Basic language offers a full array
of powerful commands for manipulating records in a table,
controls on a form, or just about anything else. This chapter
continues Chapter 18’s discussion of working with procedures
in forms, reports, and standard modules.

In this chapter, you will use the database file
Chap19start.mdb.

Programming Events
An Access event is the result or consequence of some user
action. An Access event can occur when a user moves from
one record to another in a form, closes a report, or clicks on a
command button on a form.

On the
CD-ROM

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding how
events work

Learning how events
are triggered

Understanding how
event procedures
work

Responding to events
in forms and reports

Creating event
procedures for forms

Creating event
procedures for
reports

Working with
message boxes

Using variables and
data types

Working with Visual
Basic logical
constructs

✦ ✦ ✦ ✦

Robert
Highlight

680 Part I, Section III ✦ Automating Your Applications

Access applications are event-driven. Objects in Access respond to many types of
events. Access responds to events with behaviors that are built in for each object.
Access events can be recognized by specific object properties. For example, if a
user checks or unchecks a check box using the mouse, the property OnMouseDown
recognizes that the mouse button was clicked. You can have this property run an
event procedure when the user clicks the mouse button.

Events in Access can be categorized into seven groups:

✦ Windows (Form, Report) events: Opening, closing, and resizing

✦ Data events: Making current, deleting, or updating

✦ Focus events: Activating, entering, and exiting

✦ Keyboard events: Pressing or releasing a key

✦ Mouse events: Clicking or pressing a mouse button down

✦ Print events: Formatting and printing

✦ Error and timing events: Happening after an error has occurred or some time
has passed

In all, more than 50 events can be checked in forms and reports to specify some
action after they take place.

How do events trigger actions?
You can create an event procedure that runs when a user performs any one of the
53 events that Access recognizes. Access can recognize an event through the use of
special properties for forms, controls (fields), and reports.

A Review of Events and Properties

Simply put, an event is some user action. The event can be an action such as opening a
form or report, changing data in a record, selecting a button, or closing a form or report.
Access recognizes approximately 60 events in forms and reports. To recognize an event,
Access uses form or report properties. Each event has an associated form or report prop-
erty. For example, the On Open property is associated with the event of opening a form or
report.

You trigger an event procedure by selecting [Event Procedure] next to the desired property
you want to respond to. The indicator [Event Procedure] specifies that the property has
associated VBA code that will execute whenever this event is triggered. For example, if you
want to run an event procedure for every record that displays in the frmProduct form, you
select [Event Procedure] in the parameter field alongside the property On Current in the
form named frmProducts.

Robert
Highlight

Robert
Highlight

Robert
Highlight

Robert
Highlight

Robert
Highlight

Robert
Highlight

Robert
Highlight

Robert
Highlight

681Chapter 19 ✦ Introduction to Programming and Events

For example, Figure 19-1 shows the property sheet for a form named frmProducts.
This form has many properties, which may be used to respond to corresponding
events. Forms aren’t the only objects to have events; form sections (page header,
form header, detail, page footer, form footer) and every control on the form (labels,
text boxes, check boxes, and option buttons, for example) have events, too.

Where to trigger event procedures
In Access, you can run event procedures by using properties in forms and reports.
There are no event properties for tables or queries.

Figure 19-1: The property sheet for a form, showing the On Current property
entered. This figure shows the form frmProducts in Design mode with the property
sheet open.

Form Event Procedures
When you work with forms, you can create event procedures that execute based on
events at the form level, the section level, or the control level. If you attach an
event procedure to a form-level event, whenever the event occurs, the action takes
effect against the form as a whole (such as when you move to another record or
leave the form).

To have your form respond to an event, you write an event procedure and attach it
to the event property in the form that recognizes the event. Many properties can be

Robert
Highlight

682 Part I, Section III ✦ Automating Your Applications

used to trigger event procedures at the form level. Table 19-1 shows each property,
the event it recognizes, and how the property works.

When referring to form events, we are talking about events that happen to the form
as a whole — not about an event that can be triggered by a specific control on a
form. Form events execute when moving from one record to another or when a
form is being opened or closed. Responding to control events is covered later in
this chapter.

Table 19-1
The Form Events and Associated Properties

Event Property When the Event Is Triggered

On Current When you move to a different record and make it the
current record

Before Insert After data is first entered into a new record but before the
record is actually created

After Insert After the new record is added to the table

Before Update Before changed data is updated in a record

After Update After changed data is updated in a record

On Dirty When a record is modified

On Undo When a user has returned a form to clean state — record set
back to unmodified state — opposite of On Dirty

On Delete When a record is deleted but before the deletion takes place

Before Del Confirm Just before Access displays the Delete Confirm dialog box

After Del Confirm After the Delete Confirm dialog box closes and
confirmation has happened

On Open When a form is opened, but the first record is not
displayed yet

On Load When a form is loaded into memory but not yet opened

On Resize When the size of a form changes

On Unload When a form is closed and the records unload, and before
the form is removed from the screen

On Close When a form is closed and removed from the screen

On Activate When an open form receives the focus, becoming the
active window

683Chapter 19 ✦ Introduction to Programming and Events

Event Property When the Event Is Triggered

On Deactivate When a different window becomes the active window but
before it loses focus

On Got Focus When a form with no active or enabled controls receives
the focus

On Lost Focus When a form loses the focus

On Click When you press and release (click) the left mouse button
on a control in a form

On Dbl Click When you press and release (click) the left mouse button
twice on a control/label in a form

On Mouse Down When you press the mouse button while the pointer is on
a form

On Mouse Move When you move the mouse pointer over an area of a form

On Mouse Up When you release a pressed mouse button while the
pointer is on a form

On Mouse Wheel When you spin the mouse wheel

On Key Down When you press any key on the keyboard when a form has
focus; when you use a SendKeys macro

On Key Up When you release a pressed key or immediately after the
SendKeys macro

On Key Press When you press and release a key on a form that has the
focus; when you use the SendKeys macro

Key Preview (YES or NO) Evoke keyboard macros for forms before
keyboard events for macros

On Error When a run-time error is produced

On Filter When a filter has been specified but before it is applied

On Apply Filter After a filter is applied to a form

On Timer When a specified time interval passes

Timer Interval Specify the Interval in milliseconds

Before Screen Tip When the screen tip is activated

On Cmd Enabled When a command has become enabled in a PivotChart or
PivotTable

On Cmd Checked When a PivotChart or PivotTable command has been
checked (checked on the toolbar)

On Cmd Before Execute When a PivotChart or PivotTable command has been
selected from the toolbar, but not yet executed

Continued

684 Part I, Section III ✦ Automating Your Applications

Table 19-1 (continued)

Event Property When the Event Is Triggered

On Cmd Execute When a PivotTable or PivotChart command has been
executed (after the execution)

On Data Change When PivotTable or PivotChart data is changed or refreshed

On Data Set Change When a new data set for the chart changes (for example
when filtered)

On PivotTable Change Whenever the list field, field set, or total is added or
deleted in a PivotTable

On Selection Change When a user makes a new selection; cannot be cancelled

On View Change When a different PivotTable view of the current data
is opened

On Connect When a PivotTable connects to the underlying recordset

On Disconnect When a PivotTable disconnects to the underlying recordset

Before Query When a PivotTable is about to get a new data object

On Query When the PivotTable receives a new data object

After Layout When the PivotChart has already been laid out but before
any rendering is done

Before Render When the PivotChart is about to paint itself on the screen
(before drawing begins)

After Render When the object has been rendered in the PivotChart

After Final Render When all the chart objects have been rendered

Begin Batch Edit Fires when a user begins editing a batch in ADPs (form in
batch edit mode)

Undo Batch Edit Fires when a user undoes edits in a batch in ADPs (form in
batch edit mode)

Before Begin Transaction Before a batch transaction begins in ADPs (form in batch
edit mode)

After Begin Transaction After a batch transaction begins in ADPs (form in batch edit
mode)

Before Commit Transaction After you request a commit, but before the commit actually
takes place in ADPs (form in batch edit mode)

After Commit Transaction After a commit has been completed in ADPs (form in batch
edit mode)

Rollback Transaction Fires a batch transaction roll back in ADPs (form in batch
edit mode)

685Chapter 19 ✦ Introduction to Programming and Events

Control Event Procedures
Controls can also trigger event procedures. For example, you can immediately verify
complex data validation for a field (rather than when the record is exited) by using
the field’s Before Update property rather than the form’s Before Update property.

Creating event procedures for a control event is done the same way you create pro-
cedures for form events. You select [Event Procedure] for the event to respond to;
then you create the VBA code in the Visual Basic Editor that will execute when the
event is triggered. Controls have many event properties. Table 19-2 shows each
property, the event it recognizes, and how it works.

As Table 19-2 demonstrates, you can use any of the control events to trigger an
event procedure. One of these, On Click, works only with command buttons.

Table 19-2
The Control Events and Associated Properties

Event Property When the Event Is Triggered

Before Update Before changed data in the control is updated to the table

After Update After changed data is updated in the control to the data

On Dirty When the contents of a form or text of combo box or tab control
changes

On Undo When the form is returned to a clean state.

On Change When the contents of a text box or combo box’s text changes

On Updated When an ActiveX object’s data has been modified

On Not In List When a value that isn’t in the list is entered into a combo box

On Enter Before a control receives the focus from another control

On Exit Just before the control loses focus to another control

On Got Focus When a non-active or enabled control receives the focus

On Lost Focus When a control loses the focus

On Click When the left mouse button is pressed and released (clicked) on
a control

On Dbl Click When the left mouse button is pressed and released (clicked)
twice on a control/label

On Mouse Down When a mouse button is pressed while the pointer is on a control

Continued

686 Part I, Section III ✦ Automating Your Applications

Table 19-2 (continued)

Event Property When the Event Is Triggered

On Mouse Move When the mouse pointer is moved over a control

On Mouse Up When a pressed mouse button is released while the pointer is on
a control

On Key Down When any key on the keyboard is pressed when a control has the
focus or when the SendKeys macro is used

On Key Press When a key is pressed and released on a control that has the
focus or when the SendKeys macro is used

On Key Up When a pressed key is released or immediately after the
SendKeys macro is used

Opening a form with an event procedure
Most applications require multiple forms and reports to accomplish the applica-
tion’s business functions. Instead of requiring the users of the application to
browse the database container to determine which forms and reports accomplish
which tasks, an application generally provides a switchboard to assist users in navi-
gating throughout the application. The switchboard provides a set of command but-
tons labeled appropriately to suggest the purpose of the form or report it opens.
Figure 19-2 shows the switchboard for the Access Auto Auctions application.

Figure 19-2: Using a switchboard to navigate throughout the forms
and reports of an application.

687Chapter 19 ✦ Introduction to Programming and Events

The Access Auto Auctions switchboard includes six command buttons. Each
command button runs an event procedure when the command button is clicked.
The Products command button, for example, runs the event procedure to open the
Products form called frmProducts. Figure 19-3 shows the Properties window for
the Product command button, called cmdProducts. Figure 19-4 shows the VBA
code for the On Click event of the cmdProducts command button.

Figure 19-3: Specifying an event procedure for a control event.

Figure 19-4: Using an event procedure to open a form.

688 Part I, Section III ✦ Automating Your Applications

Running an event procedure when closing a form
At times, you’ll want to perform some action when you close or leave a form. For
example, you may want Access to keep an automatic log of the names of everyone
using the form, or you may want to close the form’s print dialog box automatically
every time a user closes the main form.

To close the frmDialogProductPrint form automatically every time the frmProducts
form is closed, you need to create a new event procedure for the frmProducts form’s
On Close event. Figure 19-5 shows the Properties window for the frmProducts form.
Figure 19-6 shows the VBA code for the On Close event of the frmProducts form.

Figure 19-5: Specifying an event procedure for a form event.

The Form_Close event illustrated in Figure 19-6 first checks to see if the form
frmDialogProductPrint is open. If it is open, the statement to close it executes.

Attempting to close a form that is not currently open will generate a run-time
error.

Caution

689Chapter 19 ✦ Introduction to Programming and Events

Figure 19-6: Running an event procedure when a form closes.

Using an event procedure to confirm a delete
Although it is possible to use the Access Form View toolbar to delete a record in a
form, a better practice is to provide a Delete command button on the form. A Delete
command button is a more user-friendly method because it provides a more obvi-
ous visual cue to the user as to how to delete a record. Additionally, the command
button affords more control over the delete process because you can attach an
event procedure that executes before actually deleting the record. In this event
procedure, you can display a meaningful confirmation prompt to give the user a
chance to cancel the deletion. Or, you may need to perform a referential integrity
check to make sure that deleting the record does not cause a connection to the
record from some other table in the database to be lost.

You can use the MsgBox() function in an event procedure to confirm a deletion.
The event procedure for the cmdDelete button in the frmProducts form uses the
MsgBox() function to confirm the deletion (as shown in Figure 19-7). For more
information on using the MsgBox() function, see the sidebar “Using the MsgBox()
function” later in this chapter.

Figure 19-7: Using the MsgBox() function to confirm a deletion.

690 Part I, Section III ✦ Automating Your Applications

When the cmdDelete_Click() event procedure executes, Access displays a message
box prompt like the one shown in Figure 19-8. Notice that the message box includes
two command buttons: Yes and No. Access displays the prompt and waits for the
user to make a selection. When the user selects the No command button, the event
procedure simply exits and cancels the delete event.

Figure 19-8: A confirmation prompt for deleting a record.

If the user selects the Yes button in the message box, the event procedure executes
the statement RunCommand acCmdDeleteRecord to delete the record.

When the statement RunCommand acCmdDeleteRecord executes, it first checks
to see if deleting the record will violate any Referential Integrity rules that you have
set up in the Relationships diagram. If a violation occurs, an Access error message
displays and the deletion is cancelled.

For more information on setting up referential integrity between tables in a
database, see Chapter 2.

Cross-
Reference

Caution

691Chapter 19 ✦ Introduction to Programming and Events

Using the MsgBox() Function

The MsgBox() function is a very powerful function that can be used to display a message in
a dialog box, wait for a response by the user, and then return a value based on the user’s
selection. The function has five arguments:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

✦ The prompt argument is the text displayed as a question in the prompt.

✦ The buttons argument is the numeric expression controlling the buttons and icons
to display in the dialog box.

✦ The title is the text displayed in the title bar of the prompt.

✦ helpfile and context are used to display helpful information when you also include a
Help button in the message box.

Adding context-sensitive help to an application is covered in Chapter 36.

Only the prompt argument is required. If you don’t specify the buttons or title arguments,
Access displays the default components: an OK button, no icon, and “Microsoft Access” as
the title.

Access offers a wide range of button argument settings. The buttons argument is actually
composed of four arguments that you concatenate together:

✦ Number and type of buttons

✦ Icon style

✦ Default button

✦ Modality of the message box, that is, if all applications or just Microsoft Access must
suspend while waiting for user selection.

The value that you specifiy for each section of the argument is actually an integer value. But,
Access provides some built-in values, called constants, that you can use so that you don’t
need to remember the integer values. The table below lists the MessageBox built-in values,
the corresponding integer values, and the buttons each displays:

Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

Continued

Cross-
Reference

692 Part I, Section III ✦ Automating Your Applications

Continued

Constant Value Description

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

vbDefaultButton4 768 Fourth button is default.

vbApplicationModal 0 Application modal; the user must respond to
the message box before continuing work in the
current application.

vbSystemModal 4096 System modal; all applications are suspended
until the user responds to the message box.

vbMsgBoxHelpButton 16384 Adds Help button to the message box.

VbMsgBoxSetForeground 65536 Specifies the message box window as the
foreground window.

vbMsgBoxRight 524288 Text is right-aligned.

vbMsgBoxRtlReading 1048576 Specifies text should appear as right-to-left
reading on Hebrew and Arabic systems.

Using the preceding table, specify the buttons argument of the MsgBox() function by spec-
ifying one or more of the constants, separating each constant with a + sign. For example, to
display the Yes and No buttons, with Yes as the default button, enter vbYesNo+
vbDefaultButton1.

In addition to displaying the message box with the options you specify, the MsgBox() func-
tion also returns a value that indicates which button the user selected. Each button that
displays in the message box returns a unique value when the user selects it. The following
table shows each button and the value that MsgBox() returns:

693Chapter 19 ✦ Introduction to Programming and Events

Report Event Procedures
Just as with forms, reports can also use event procedures to respond to specific
events. Reports respond to events for the overall report itself and at the section
level. If you attach an event procedure to the overall report, it executes when the
event occurs for the entire report, such as when you open or close the report. If
you attach the event procedure at the section level, it executes when the event
occurs within a section (such as when you format or print a report header section).

Several overall report event properties are available. Table 19-3 shows each prop-
erty, the event that activates it, and how it works. As you can see, the list of report
events is very similar to the form event list.

Table 19-3
The Report Events and Associated Properties

Event Property When the Event Is Triggered

On Open When a report is opened but before it prints

On Close When a report is closed and removed from the screen

On Activate When a report receives the focus and becomes the active window

On Deactivate When a different window becomes the active window

On No Data When the report has no data passed to it from the active table or query

On Page When the report changes pages

On Error When a run-time error is produced in Access

Constant Value Description

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

If the dialog box displays a Cancel button, pressing the Esc key is the same as selecting the
Cancel button.

694 Part I, Section III ✦ Automating Your Applications

Running an event procedure when a report opens
Opening a report that contains no data generally yields erroneous results. The
report may display a title, if you included one, with no detail information. Or, it may
display #error values for missing information. This type of situation can be a little
scary for the user. To avoid this situation, you can use the On No Data event in a
report to control what happens when there is no data for the report. You can attach
an event procedure for the On No Data property to display an informational mes-
sage box to the user and then cancel the opening of the report. Figure 19-9 shows
the Properties window for the rptProducts report. Figure 19-10 shows the VBA code
for the On No Data event of the rptProducts report.

Figure 19-9: Specifying an event procedure for a report event.

Figure 19-10: Running an event procedure when there is no data
for a report.

695Chapter 19 ✦ Introduction to Programming and Events

The Report_No Data event illustrated in Figure 19-10 first displays a message box to
advise the user that the report contains no data. Then the event procedure cancels
the event by setting the variable Cancel to True.

Report Section Event Procedures
In addition to the event properties for the form itself, Access offers three event
properties that you can use for report sections. Table 19-4 shows each property, the
event it recognizes, and how it works.

Table 19-4
The Report Section Events and Associated Properties

Event Property Event When the Event Is Triggered

On Format Format When Access knows what data goes in a section (but
before laying out the data for printing)

On Print Print After Access lays out the data in a section for printing
(but before printing the section)

On Retreat Retreat After the Format event but before the Print event;
occurs when Access has to “back up” past other
sections on a page to perform multiple formatting
passes; this is in all sections except the Headers and
Footers

Using On Format
You use the On Format property when the data to be displayed can affect page lay-
out or when the report section contains calculations that use data from sections
you don’t intend to print. The event procedure will run before Access lays out the
section (following your other property settings for the report, such as Keep
Together, Visible, or Can Grow).

You can set the On Format and On Print properties for any section of the report.
However, the On Retreat is not available for the page header or page footer sections.

For example, you may want to hide some data on the form, based on certain condi-
tions. If the condition is met, the event procedure uses the Visible property of the
control to hide or display the control. Figure 19-11 shows the Properties window for
the On Format property of the detail section of the rptProducts report. Figure 19-12
shows the VBA code for the On Format event of the detail section.

696 Part I, Section III ✦ Automating Your Applications

Figure 19-11: Specifying an event procedure for formatting a report’s detail section.

Figure 19-12: Running an event procedure to display or hide a
control on a report.

697Chapter 19 ✦ Introduction to Programming and Events

The Detail0_Format event illustrated in Figure 19-12 first checks the value of the
blnAuction control. If the value of blnAuction is True, the dtmAuctionEndDate con-
trol displays on the report. If the value of blnAuction is False, the
dtmAuctionEndDate control is hidden.

The Visual Basic language offers a full array of powerful commands for manipulat-
ing records in a table, controls on a form, or just about anything else. To begin cre-
ating more sophisticated procedures with Visual Basic, you need to understand
some of Visual Basic’s fundamental programming elements. These basic elements
include the following:

✦ Variables and how they interact with data

✦ Data types

✦ Programming syntax for logical constructs

The remainder of the chapter explains the concepts of the Visual Basic environ-
ment in Access and how you can use it to manipulate Access objects.

Using Variables
One of the most powerful concepts in programming is the variable. A variable is a
temporary storage location for some value and is given a name. You can use a vari-
able to store the result of a calculation, or you can create a variable to make the
value of a control available to another procedure.

To refer to the result of an expression, you create a name to store the result. The
named result is the variable. To assign an expression’s result to a variable, you use
the = operator. Following are some examples of calculations that create variables:

counter = 1
counter = counter + 1
today = Date()

Naming variables
Every programming language has its own rules for naming variables. In Visual
Basic, a variable name must meet the following conditions:

✦ Must begin with an alphabetical character

✦ Must not contain an embedded period or type-declaration character

✦ Must have a unique name; the name cannot be used elsewhere in the proce-
dure or in modules that use the variables

✦ Must be no longer than 255 characters

698 Part I, Section III ✦ Automating Your Applications

Although you can make up almost any name for a variable, most programmers
adopt a standard convention for naming variables. Some common practices include
the following:

✦ Using uppercase and lowercase characters, as in TotalCost

✦ Using all lowercase characters, as in counter

✦ Preceding the name with the data type of the value; a variable that stores a
number might be called nCounter

When creating variables, you can use uppercase, lowercase, or mixed-case charac-
ters to specify the variable or call it later. Visual Basic variables are not case-sensi-
tive. This fact means that you can use the TodayIs variable later without having to
worry about the case that you used for the name when you created it; TODAYIS,
todayis, and tOdAyIs all refer to the same variable. Visual Basic automatically
changes any explicitly declared variables to the case that was used in the declara-
tion statement (Dim statement).

When you need to see or use the contents of a variable, you simply use its name.
When you specify the variable’s name, the computer program goes into memory,
finds the variable, and gets its contents for you. This procedure means, of course,
that you need to be able to remember the name of the variable.

Visual Basic, like many other programming languages, allows you to create vari-
ables on the fly. In the Counter = 1 example, the Counter variable was not declared
before the value 1 was assigned to it.

Declaring variables
When you declare a variable, Access sets up a location in the computer’s memory
for storing a value for the variable ahead of time. The amount of storage allocated
for the variable depends on the type of data that you plan to store in the variable.
More space is allocated for a variable that will hold a currency amount (such as
$1,000,000) than for a variable that will never hold a value greater than, say, 255.

Even though Visual Basic does not require you to declare your variables before using
them, it does provide various declaration commands. Getting into the habit of declar-
ing your variables is good practice. Declaring a variable assures that you can assign
only a certain type of value to it — always a number or always characters, for exam-
ple. In addition, you can attain real performance gains by pre-declaring variables. A
programming best practice is to declare variables at the top of the procedure. This
practice makes the program easier for other programmers to work with later on.

Although Visual Basic does not require initial declaration of variables, you should
avoid using undeclared variables. If you do not declare a variable, the code may
expect one type of value in the variable when another is actually there. If, in your pro-
cedure, you set the variable TodayIs to Monday and later change the value for TodayIs
to a number (such as TodayIs = 2), the program generates an error when it runs.

Caution

Tip

699Chapter 19 ✦ Introduction to Programming and Events

The Dim statement
To declare a variable, you use the Dim statement. When you use the Dim statement,
you must supply the variable name that you assign to the variable. The format for
the Dim statement is:

Dim [variable name] [As [type]]

The following statement declares the variable xBeeps.

Dim xBeeps As Integer

Notice that the variable name follows the Dim statement. In addition to naming the
variable, you can use the optional As clause to specify a data type for the variable.
The data type is the kind of information that will be stored in the variable: String,
Integer, Currency, and so on. The default data type is known as variant. A variant
data type can hold any type of data.

When you use the Dim statement to declare a variable in a procedure, you can refer
to that variable only within that procedure. Other procedures, even if they are
stored in the same module, do not know anything about the variable. This is known
as a private variable because it was declared in a procedure and is only known in
the procedure where it was declared and used.

Variables can also be declared in the declarations section of a module. Then, all the
procedures in the module can access the variable. Procedures outside the module
in which you declared the variable, however, cannot read or use the variable.

The Public statement
To make a variable available to all modules in the application, use the Public keyword
when you declare the variable. Figure 19-13 illustrates declaring a public variable.

Figure 19-13: Declaring a public variable.

Notice that the statement is in the declarations section of the module. Public vari-
ables must be declared in the declarations section of the module.

700 Part I, Section III ✦ Automating Your Applications

You cannot declare a variable public within a procedure. It must be declared in the
declarations section of a module. If you attempt to declare a variable public within
a procedure, you receive an error message.

Although you can declare a public variable in any module, it seems logical to declare
public variables only within the module that will use them the most. The exceptions
to this rule are true global variables that you want to make available to all procedures
across modules and that are not specifically related to a single module. You should
declare global variables in a single standard module so that you can find them easily.

In a standard, report, or form module, you can refer to a public variable from a dif-
ferent form or report module. To access the value of a public variable from another
module, you must qualify the variable reference, using the name of the form or
report object. Employee_MainForm.MyVariable, for example, accesses a form
named Employee_MainForm and obtains the value of the variable MyVariable.

The Private statement
The declarations section in Figure 19-13 shows the use of the Dim and Private state-
ments to declare variables. Technically, there is no difference between Private and
Dim, but using Private at the module level to declare variables that are available to
only that module’s procedures is a good idea. Declaring private variables does the
following things:

✦ Contrasts with Dim, which must be used at the procedure level, distinguishing
where the variable is declared and its scope (Module versus Procedure)

✦ Contrasts with Public, the other method of declaring variables in modules,
making understanding your code easier

You can go to the declarations section of a module while you are creating an event
procedure in a form by selecting declarations from the Procedure combo box.
Another way to move to the declarations section is to select (general) in the
Object combo box. Refer to the Module window combo boxes in Figure 19-13.

When you declare a variable, you use the AS clause to assign a data type to the vari-
able. Data types for variables are similar to data types in a database table definition.

Working with Data Types
When you declare a variable, you also can specify the data type for the variable. All
variables have a data type. The type of variable determines what kind of informa-
tion can be stored in the variable.

A string variable — a variable with a data type of string — can hold any values rang-
ing from A–Z, a–z, and 0–1, as well as formatting characters (#, -, !, and so on). Once

Tip

Tip

Caution

701Chapter 19 ✦ Introduction to Programming and Events

created, a string variable can be used in many ways: comparing its contents with
another string, pulling parts of information out of the string, and so on. If you have
a variable defined as a string, however, you cannot use it to do mathematical calcu-
lations. Conversely, you cannot assign a number to a variable declared as a string.

Table 19-5 describes the 11 data types that Visual Basic supports.

Table 19-5
Data Types Used in Visual Basic

Type Range Description

Boolean True or false 2 bytes

Byte 0 to 255 1-byte binary data

Currency –922,337,203,685,477,5808 to 8-byte number with
922,337,203,685,477,5807 fixed decimal point

Decimal +/-79,228,162,514,264,337,593,543, 14 bytes
950,335 with no decimal point
+/-7.9228162514264337593543950335
with 28 places to the right of the
decimal; smallest non-zero number is
+/0.0000000000000000000000000001

Date 01 Jan 100 to 31 Dec 9999 8-byte date/time value

Double –1.79769313486231E308 to 8-byte floating-point
–4.94065645841247E–324 number
for negative values and
4.94065645841246544E-324
through 1.79769313486231570E+308
for positive values

Integer –32,768 to 32,767 2-byte integer

Long –2,147,483,648 to 2,147,483,647 4-byte integer

Object Any object reference 4 bytes

Single negative values: –3.402823E38 to 4-byte floating-point
–1.401298E – 45 number
positive values: 1.401298E –45
to 3.402823E38

String (variable-length) 0 to approximately 2,000,000,000 10 bytes plus length
of string

String (fixed-length) 1 to approximately 65,400 Length of string

Continued

702 Part I, Section III ✦ Automating Your Applications

Table 19-5 (continued)

Type Range Description

Variant (with numbers) Any numeric value up to 16 bytes
the range of Double

Variant (with characters) 0 to approximately 2,000,000,000 22 bytes plus length
of string

User-defined (using Type) Same as Range of its data type Number required by
elements

Most of the time, you use the string, date, integer, and currency or double data
types. If a variable always contains whole numbers between –32,768 and 32,767,
you can save bytes of memory and gain speed in arithmetic operations if you
declare the variable an integer type.

When you want to assign the value of an Access field to a variable, you need to
make sure that the type of the variable can hold the data type of the field. Table
19-6 shows the corresponding Visual Basic data types for Access field types.

Table 19-6
Comparative Data Types of Access and Visual Basic

Access Field Data Type Visual Basic Data Type

AutoNumber (Long Integer) Long

AutoNumber (Replication ID) —

Currency Currency

Computed —

Date/Time Date

Memo String

Number (Byte) Byte

Number (Integer) Integer

Number (Long Integer) Long

Number (Single) Single

Number (Double) Double

Number (Replication ID) —

703Chapter 19 ✦ Introduction to Programming and Events

Access Field Data Type Visual Basic Data Type

OLE object String

Text String

Hyperlink String

Yes/No Boolean

Now that you understand variables and their data types, you’re ready to learn how
to use them in writing procedures.

Understanding Visual Basic Logical
Constructs

One of the real powers of a programming language is the capability to have a pro-
gram make a decision based on some condition. Visual Basic has this capability in
two varieties: conditional processing and repetitive looping.

Conditional processing
Often, a program in Visual Basic performs different tasks based on some value. If
the condition is True, the code performs one action. If the condition is False, the
code performs a different action. An application’s capability to look at a value and,
based on that value, decide which code to run is known as conditional processing.

The procedure is similar to walking down a path and coming to a fork in the path; you
can go to the left or to the right. If a sign at the fork points left for home and right for
work, you can decide which way to go. If you need to go to work, you go to the right;
if you need to go home, you go to the left. In the same way, a program looks at the
value of some variable and decides which set of code should be processed.

Visual Basic offers two sets of conditional processing statements:

✦ If. . .Then. . .Else. . .End If

✦ Select Case

The If. . .Then. . .Else. . .End If statement
The If. . .Then and If. . .Then. . .Else statements allow you to check a condition and,
based on the evaluation, perform a single action. The condition must evaluate to
True or False. If the condition is True, the program moves to the next statement in
the procedure. If the condition is False, the program skips to the statement follow-
ing the Else statement, if present, or the End If statement if there is no Else clause.

704 Part I, Section III ✦ Automating Your Applications

In Figure 19-14, the Print Products Dialog box displays an option group, called Print
Choices, that displays three options for printing Product reports. When you choose
the option “Current Product Only,” the report will print including data for the
record currently displayed on the Products form. When you choose the “All
Products” option, the report includes data for all of the products in the Products
table. When you choose the “Product Listing” option, a report displays all of the
products in a tabular format.

Figure 19-14: Choosing the option to print
only the Current Product in the Print Products
Dialog box.

Figure 19-15 illustrates the cmdPrint_Click() event procedure for the cmdPrint but-
ton in the frmDialogProductPrint If Statement form. The first If statement deter-
mines whether to view the report on the screen or send it to the printer. The next
three If statements determine which report to print and whether to include all data
or just the current record in the report.

Figure 19-15: Using the If. . .Then. . .End If statement.

705Chapter 19 ✦ Introduction to Programming and Events

The Else statement is optional. You can use Else to test for a second condition
when the If condition evaluates to False or just to perform an alternate set of
actions when the If condition is false. When the If condition is True, the program
executes the statements between the If condition and the Else condition. When the
If condition evaluates to False, the program skips to the Else condition, if it is pre-
sent. Then, if the Else condition is True, the program executes the following state-
ment. If the Else condition is False, the program skips to the statement following the
End If statement.

The ElseIf condition is also optional and works just like the Else condition. If the If
condition is True, the program executes the following statement. If the If condition
is False, and the program finds a following ElseIf condition, it checks the value of
the ElseIf condition. If the ElseIf condition is True, the program executes the follow-
ing statement. If the ElseIf condition is False, the program checks for an additional
ElseIf condition or for an Else condition. An If...Then...End If statement can contain
only one Else condition, whereas you can code as many ElseIf conditions as neces-
sary. When using ElseIf conditions, the Else condition is optional. Figure 19-16
illustrates the cmdPrint_Click() event procedure for the cmdPrint button in the
frmDialogProductPrint If Else Statement event procedure using ElseIf and Else
conditions.

Figure 19-16: Using the Elseif...Else conditions.

When you have many conditions to test, the If. . .Then. . .ElseIf...Else conditions can
get rather unwieldy. A better approach is to use the Select Case construct.

706 Part I, Section III ✦ Automating Your Applications

The Select Case. . .End Select statement
Visual Basic also offers the Select Case statement to check for multiple conditions.
Following is the general syntax of the statement:

Select Case test_expression
Case expression value1

code statements here (test expression = value1)
Case expression value2

code statements here (test expression = value2) ...
Case Else

code statements (test expression = none of the values)
End Select

Notice that the syntax is similar to that of the If. . .Then statement. Instead of a con-
dition in the Select Case statement, however, Visual Basic uses a test expression.
Then each Case statement inside the Select Case statement tests its value against
the test expression’s value. When a Case statement matches the test value, the pro-
gram executes the next line or lines of code until it reaches another Case statement
or the End Select statement. Visual Basic executes the code for only one matching
Case statement.

If more than one Case statement matches the value of the test expression, only
the code for the first match executes. If other matching Case statements appear
after the first match, Visual Basic ignores them.

The Print Products Dialog box processes the report to print differently for each of
the three Print Choices options. Figure 19-17 shows the cmdPrint_Click() event pro-
cedure for the cmdPrint button in the frmDialogProductPrint Case Statement. The
three condition statements determine which OpenReport action is used to print the
appropriate report.

Figure 19-17: Using the Select Case statement.

Note

707Chapter 19 ✦ Introduction to Programming and Events

The cmdPrint_Click() event procedure, illustrated in Figure 19-17, performs the
same actions as the previous two If...Then...EndIF examples. Notice how much eas-
ier to read the Select Case statement is as compared to the two previous examples.

The Select Case statement looks at the value of the control grpTypeOfPrint and
then checks each Case condition. If the value of grpTypeOfPrint is 1 (Current
Record Only), the Case 1 statement evaluates to True, and the Products report
prints for the current Product record. If grpTypeOfPrint is not 1, Visual Basic goes
to the next Case statement to see whether grpTypeOfPrint matches that value. Each
Case statement is evaluated until a match occurs or the program reaches the End
Select statement.

The Case Else statement is optional. The Case Else clause is always coded as the
last Case statement of Select Case. You use this statement to perform some action
when none of the Case values matches the test value of the Select Case statement.

In some procedures, you may want to execute a group of statements more than one
time. Visual Basic provides some constructs for repeating a group of statements.

Repetitive looping
Another very powerful process that Visual Basic offers is repetitive looping — the
capability to process a single statement or a group of statements over and over.
The statement or group of statements is processed continually until some condition
is met.

Visual Basic offers two types of repetitive-looping constructs:

✦ Do. . .Loop

✦ For. . .Next

The Do. . .Loop statement
The Do. . .Loop statement is used to repeat a group of statements while a condition
is true or until a condition is true. This statement is one of the most common com-
mands that can perform repetitive processes.

Following is the format of the Do. . .Loop statement:

DO [While | Until condition]
code statements [for condition = TRUE]
[Exit DO]
code statements [for condition = TRUE]

LOOP [While | Until condition]

Notice that the Do. . .Loop statement has several optional clauses. The two While
clauses tell the program to execute the code inside Do. . .Loop as long as the test
condition is True. When the condition evaluates to False, the program skips to the

708 Part I, Section III ✦ Automating Your Applications

next statement following the Loop statement. The two Until clauses work in just the
opposite way; they execute the code within Do. . .Loop as long as the condition is
False. Where you place the While or Until clause determines whether the code
inside Do. . .Loop executes at least once. If you place the clause at the beginning of
the statement and the condition is met (until) or not met (while), the statement will
not execute at all. If you place the clause at the end of the statement, the statement
will execute once before evaluating the condition for the first time.

The Exit Do clause is used to terminate the Do. . .Loop immediately. The program
then skips to the next statement following the Loop statement.

The cmdPrint_Click() event procedure for the form frmDialogProductPrint Do
Statement, illustrated in Figure 19-18, prints multiple copies of the report, based on
the value of the Number of Copies control on the form. Notice that the procedure
declares a variable named intCounter. The program increments the intCounter vari-
able each time the report prints. When Counter is greater than Number of Copies,
Do. . .Loop stops printing copies of the report.

Figure 19-18: Using the Do. . .Loop statement.

The While clause causes the Do. . .Loop to exit when Counter reaches the limit.
Using the While or Until clause is equivalent to using the Exit Do statement within
the loop. The following is the same Do. . .Loop example using the Exit Do statement:

Do
Docmd.OpenReport ...
Counter = Counter + 1
If Counter > .[Number of Copies] Then

Exit Do
End If

Loop

709Chapter 19 ✦ Introduction to Programming and Events

The While and Until clauses provide powerful flexibility for processing a Do. . .Loop
in your code. Table 19-7 describes the various alternatives for using the While and
Until clauses and how they affect the processing of code.

Table 19-7
Repetitive Looping Using Do. . .Loop

with the While and Until Clauses

Pseudo Code Purpose of Do. . .Loop

Do Code starts here
If condition Then
Exit Do
End If

Loop The code always runs. The code has some conditional
statement

(If. . .Then) that, if True, runs the Exit Do statement. The Exit
Do statement allows the user to get out of Do. . .Loop. If that
statement were missing, the code inside the loop would run
forever.

Do While condition code starts here for the condition on the
Do While line being TRUE

Loop The code inside the Do While loop runs only if the condition is
True. The code runs down to the Loop statement and then
goes back to the top to see whether the condition is still True.
If the condition is initially False, Do. . .Loop is skipped; if the
condition becomes False, the loop is exited when the code
loops back to the Do While line. Exit Do is not needed for this
purpose.

Do Until condition code starts here for the condition on the
Do Until line being FALSE

Loop This code works the opposite way from Do While.
If the condition is False (not True), the code begins and loops
until the condition is True; then it leaves the loop. Again, the
loop and its code are skipped if the Until condition is True

Do condition Code starts here

Loop While This code always runs at least one time. First, the code is
executed and reaches the Loop While line. If the condition is
True, the code loops back up to process the code again; if not,
the code loop ends

Continued

710 Part I, Section III ✦ Automating Your Applications

Table 19-7 (continued)

Pseudo Code Purpose of Do. . .Loop

Do Code starts here

Loop Until This code works similarly to the preceding one. The code
always runs at least one time. When the code reaches the
Loop Until line, it checks to see whether the condition is True.
If the condition is True, the code drops out of the loop. If the
condition is False, the code loops back up to redo the code

The For. . .Next statement
For. . .Next is a shortcut method for the Do. . .Loop construct. You can use For. . .Next
when you want to repeat a statement for a set number of times. The Step clause fol-
lowed by an increment lets you process the loop in a specified step amount. For
example, if start number was 10 and end number was 100 and you wanted to incre-
ment the counter by 10 each time, you would use Step 10. Though the loop would
only be executed 10 times, the value of the counter would be 10, 20, 30, and so on,
instead of 1, 2, 3, and so on.

Following is the general syntax of the For. . .Next statement:

For counter variable name = start number To end number
[Step increment]
code statements begin here and continue to Next If condition
code
[Exit For]
End If code can continue here after the Exit for
Next [counter]

You can code the previous example, illustrated in Figure 19-18, more efficiently
using the For . . .Next construct. In Figure 19-19, notice that the For. . .Next state-
ments replace the Do While. . .Loop statements used in the example. Notice also
that the statement Counter = Counter + 1 is omitted. The For. . .Next construct is
more efficient than the D While. . .Loop construct because you need to write fewer
lines of code — the counter variable is incremented for you.

At the start of the For. . .Next loop, the program initializes intCounter to 1; then it
moves on and executes the DoCmd statement. Whenever the program encounters
the Next statement, it automatically increments intCounter and returns to the For
statement. The program compares the value of intCounter with the value in the
Number of Copies control. If intCounter is less than or equal to Number of Copies,
the DoCmd executes again; otherwise, the program exits the loop.

711Chapter 19 ✦ Introduction to Programming and Events

Figure 19-19: Using the For. . .Next loop.

✦ ✦ ✦

Working with
Expressions and
Functions

In this chapter, you will gain a fuller understanding of expres-
sions and functions. You have already used expressions and

functions in some of your queries and forms in earlier chapters.
Here you will focus on the parts of expressions, and you will
also work with some of the most common built-in functions of
Access. Built-in functions are very powerful in queries, forms,
reports and the immediate window of Visual Basic.

This chapter will use the database named CHAP20Start.mdb.
If you have not already copied it onto your machine from
the CD, you will need to do so now. When you have com-
pleted this chapter, your database should resemble the
one in CHAP20End.mdb.

What Are Expressions?
In general, an expression is the means used to explain or
model something to someone or something. In computer
terms, an expression is generally defined as a combination of
a symbol, sign, figure, or set of symbols that presents or rep-
resents an algebraic fact as a quantity or operation. The
expression is a representative object that Access can use to
interpret something and, based on that interpretation, to
obtain specific information. Simply put, an expression is a
term or series of terms controlled by operators. Expressions
are a fundamental part of Access operations. They are used to
perform a calculation, manipulate characters, or test data.

You can use expressions in Access to accomplish a variety of
tasks. You can use an expression as a property setting in SQL
statements, in queries and filters, or in macros and actions.
Expressions can set criteria for a query, filter, control macros,
and perform as arguments in user-defined functions.

On the
CD-ROM

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Displaying a
datasheet

Moving within a
datasheet

✦ ✦ ✦ ✦

Robert
Highlight

714 Part I, Section III ✦ Automating Your Applications

Access evaluates an expression each time it is used. If an expression is in a form or
report, Access calculates the value every time the form refreshes (as with changing
records and so forth). This ensures accuracy of the results. If an expression is used
as a criterion in a query, Access evaluates the expression every time the query is
executed, thereby ensuring that the criterion reflects any changes, additions, or
deletions to records since the last execution of the query. If an expression is used
in the table design as a validation rule, Access executes the evaluation each time
the field is trespassed to determine whether the value is allowed in the field; this
expression may be based on another field’s value!

To give you a better understanding of expressions, consider the examples that
follow — all of which are examples of expressions:

=rTrim(chrFirstName) & “ ” & rTrim(chrLastName)

=curPrice - (curPrice * tblSalesLineItems.dblDiscountPercent)<25000

blnTaxable=Yes

chrContactType=“Buyer” And chrState=“MA”

Sales.dtmSalesDate Between 6/2003 And 4/2004

Each is a valid expression. Access can use them as validation rules, query criteria,
calculated controls, control sources, and control-source properties. Some expres-
sions can use built-in functions like the first example, rTrim(), which right trims all
spaces from the field.

Figure 20-1 shows the use of an expression in the first field of the query. Notice that
it has concatenated (joined) the two fields — chrFirstName &“ ”& chrLastName.

Figure 20-1: A simple query using an expression. Notice that the expression has
a name attached to it: “Buyer Full Name” and the actual expression.

715Chapter 20 ✦ Working with Expressions and Functions

To see how this concatenated field was put together, you can find and open the
query in the Chap20End.mdb; it is named zzz Figure20-01.

The parts of an expression
As the examples in the preceding section demonstrated, expressions can be simple
or complex. They can include a combination of operators, object names, functions,
literal values, and constants.

Remembering that expressions don’t need to contain all these parts, you should
understand each of the following uniquely identifiable portions of an expression:

Operators: >, =, *, And, Or, Not, Like, and so on.

Operators indicate what type of action (operation) will be performed on one or
more elements of an expression.

Object names: Forms![frmContacts], chrLastName, curPrice,
tblProducts.chrDescription

Object names, also known as identifiers, are the actual objects: tables, forms,
reports, controls, or fields.

Functions: Date(), DLookUp(), DateDiff()

Functions always return a value. The resultant value can be created by a calcula-
tion, a conversion of data, or an evaluation. You can use a built-in Access function
or a user-defined function that you create.

Literal values: 100, Jan. 1, 2003, “Seller”, “[A-D]*”

These are actual values that you supply to the expression. Literal values can be
numbers, strings, or dates. Access uses the values exactly as they are entered.

Constants: Yes, No, Null, True, False

Constants represent values that do not change.

The following example illustrates the parts of an expression:

[dtmFollowUpDate] = Date() + 30 where:

[dtmFollowUpDate] is an object name or identifier.

= is an operator.

Date() is a function.

+ is an operator.

30 is a literal.

Note

716 Part I, Section III ✦ Automating Your Applications

Figure 20-2 shows a simple form with two entry fields — Contacted On and Follow-
up date. These fields are automatically filled in with today’s date (Contacted On)
and 30 days from now (Follow-up Date). If the user clicks into the memo field and
starts to type a new record, when he leaves the field, the program checks to make
sure that he put a Contacted on date in the field. If not, it adds today’s date. If the
user clicks on the follow-up field and the Contacted on date is not entered, it also
adds today’s date. Also, it automatically puts a value of today plus 30 in the Follow-
Up date field.

Figure 20-2: Using code that uses expressions to add field
values to a record.

To see how this concatenated form was put together, you can find and open the
query in the Chap20End.mdb; it is named zzz Figure20-2 through 20-3. Figure
20-3 shows the code used in this form.

Figure 20-3 shows the code that contains the expressions to automatically check
values in the fields in Figure 20-3.

Examining the code in Figure 20-3, you can see many expressions. A couple of them
are Me.blnFollowUp, IsNull(Me.dtmDateContacted), and Me.dtmDateContacted =
Date. Notice that all three of these use the word ‘Me’ with the field name. Me is a
property, followed by a period, that is used to reference the current object (form,
report, or class module). It is only used in Visual Basic code.

Creating an expression
Expressions are commonly entered in Property windows, action arguments, and cri-
teria grids. As you create expressions, the area is scrolled so that you can continue
to enter the expression. Although you can enter an expression in this manner, it is
usually desirable to see the entire expression as you enter it. This is especially true
when you are working with long, complex expressions. Access has a Zoom box that
you can use to change how much of the expression you see as you enter it. Open
this box by clicking where you want to enter your expression and pressing Shift+F2.

Note

717Chapter 20 ✦ Working with Expressions and Functions

Figure 20-3: The code used for updating the fields in Figure 20-2.

As you enter expressions, Access may insert certain characters for you when you
change focus. Access checks your syntax and automatically inserts these characters:

✦ Brackets ([]) around control names that have no spaces or punctuation in the
name

✦ Pound signs (#) around dates it recognizes

✦ Quotation marks (“ ”) around text that contains no spaces or punctuation in
the body

The term changing focus refers to the movement of the insertion point out of the
location where you are entering the expression, which is accomplished by press-
ing Tab or by moving the mouse and clicking another area of the screen.

Access reports an error when it changes focus when Access doesn’t understand
the date form entered, when the name of the control contains spaces, when a
control is not placed in brackets, when an end parenthesis is missing in a function,
and on and on.

Entering object names
Object names are identified by placing brackets ([]) around the element. Access
requires the use of brackets when the object contains a space or punctuation
in its name (like a dash). If these conditions are not present, you can ignore the
brackets — Access inserts them automatically. The following expressions are
syntactically identical:

lngzBuyer & [Sales Person ID]

[lngzBuyer] & [Sales Person ID]

Caution

Note

Robert
Highlight

Robert
Highlight

718 Part I, Section III ✦ Automating Your Applications

The field name IngzSalespersonID has been changed in the above example to
Sales Person ID, placing spaces between the names to demonstrate how you
would use brackets around the field name if it had spaces in it.

Notice that in both cases the brackets are placed around the lngzSales Person ID
name because this object name contains spaces.

Although it isn’t necessary to enter brackets around objects such as lngzBuyer in
the second example, it is good programming practice to always surround object
names with brackets for consistency in entry.

Entering text
Placing quotation marks around the text element of an expression identifies text.
Access automatically places the quotation marks for you if you forget to add them.

As an example, you can type Buyer and Both into separate criteria cells of a query,
and Access automatically adds the quotation marks around each of these two
entries. Access recognizes these as objects and helps you.

Entering date/time values
Placing pound signs (#) around the date/time element identifies date/time data.
Access will evaluate any valid date/time format automatically and place the pound
signs around the element for you.

Expression Builder
Access has added an Expression Builder tool to help you build complex expressions.
You can use it anywhere you can build an expression (such as creating a calculated
field on a form or report). You can activate the builder tool in two ways:

✦ Press the Build button on the toolbar (the button with the ellipsis on it).

✦ Click the right mouse button and select Build from the shortcut menu.

Special identifier operators and expressions
Access has two special identifier operators: the dot (.) and the exclamation point (!).
Access tables provide many ways to display any Access objects. You can use fields
and their contents, and any field object can be reused repeatedly. You can display
the field object in numerous forms and reports by using the same reference, the
field object name, in every form and report.

For example, the field dtmSaleDate from the Sales table can be used in several differ-
ent forms. When you want to use the dtmSaleDate field in an expression for a com-
parison, how do you tell Access which copy of the field dtmSaleDate it should use

Caution

Robert
Highlight

719Chapter 20 ✦ Working with Expressions and Functions

for the expression? Because Access is a Windows database, it is possible to have
several different forms open in the same session on the same computer. In fact, it is
possible to have multiple copies of Access running the same data and forms.

With all this repetition, there must be a way to tell Access which dtmSaleDate field
object you want the expression to use. That is the purpose of the dot and exclama-
tion point as operator identifiers. These symbols clarify which field to use.

The ! (exclamation) identifier operator
The exclamation mark (!) is used in conjunction with several reserved words. One
such reserved word is Forms. When this word is followed by !, Access is being told
that the next object name is the form object name that you want to refer to.

Additional keywords can be found in the next section, titled Special Keywords and
Properties.

As an example, say that you have a Description field (chrDescription) that is in two
forms — frmProducts and frmSales. (These two form names are objects; because

Cross-
Reference

A Few Words about Controls and Properties

When you create a form or report, you place many different objects on the form — fields in
text boxes, text labels, buttons, check boxes, combo boxes, lines, rectangles, and so on.

As you select and place these objects on a form, each object is assigned a control name.
Access supplies the control name according to predefined rules. For example, control
names for fields default to a control-source name of the field name. The field name appears
in the text box on the form. The label for the text box is assigned the control name Text,
with a sequence number attached to it (for example, Text11 or Text12). The sequence num-
ber is added to make each control name unique.

After all objects are placed on the form, you can identify any object on the form (line, but-
ton, text box, and so on) by its unique control name. This control name is what you use to
refer to a specific table field (or field on a form). You can change the name of the control
that Access assigned to the object if you want. The only requirement for the new control
name is that it must be unique to the form or report that contains it.

Every object on the form (including the form itself) has associated properties. These are the
individual characteristics of each object; as such, they are accessible by a control name.
Properties control the appearance of the object (color, size, sunken, alignment, and so
forth). They also affect the structure, specifying format, default value, validation rules, and
control name. In addition, properties designate the behavior of a control — for instance,
whether the field can grow or shrink and whether you can edit it. Behaviors also affect
actions specified for the event properties, such as On Enter and On Push.

Robert
Highlight

720 Part I, Section III ✦ Automating Your Applications

there are no spaces in the names, you do not need to use square brackets to refer
to them. However, it is a good idea to do so.) You want to refer to the Description
field in the [frmProducts] form. The way to specify this form is by use of the ! and
the Forms reserved word:

Forms![frmProducts]

Now that the form is specified, further refine the scope to add the field
chrDescription.

Although earlier chapters cover controls and properties, by this point you should
have a partial understanding of what properties and controls are (for a refresher,
see the preceding sidebar).

Actually, what you are specifying is a control on the form. That control will use the
field you need, which is chrDescription. The control has the same name as the field.
Therefore, you access this specific object by using the following expression:

Forms! [frmProducts]![chrDescription]

The second exclamation mark specifies a control on a form — one identified by the
reserved word Forms.

By following the properties of each object, starting with the object Forms, you can
trace the control source object back to a field in the original table.

In summary, the exclamation-point identifier is always followed by an object name.
This object name is defined by using the name of a form, report, field, or other con-
trol name that was created in the database. If you don’t use the existing name for
the desired object, you can change the default value name of the source.

The . (dot) identifier operator
The . (dot) is also a key symbol that is used in conjunction with expression identifi-
cation operators. Normally it is placed immediately after a user-defined object.
Unlike the !, the . (dot) usually identifies a property of a specific object. Therefore, if
you want to determine the value of the Visible property of the same control you
worked with before, you specify it as follows:

Forms! [frmProducts]![chrDescription].Visible

This gives the value for the Visible property of the specific field on the specific
form.

Normally, the . (dot) identifier is used to obtain a value that corresponds to a prop-
erty of an object. Sometimes, you can use it between a table name and a field
name when you access a value associated with a specific field in a specific table,
such as [tblSales].[IngzBuyer].

Note

Note

Robert
Highlight

Robert
Highlight

Robert
Highlight

721Chapter 20 ✦ Working with Expressions and Functions

A thorough analysis of the two special identifier operators is beyond the scope of
this book. Even so, you’ll find that these identifiers enable you to find any object
and the values associated with its properties.

Special keywords and properties
There are many special keywords and properties that Access uses to reference
active objects. Two have already been referenced earlier in this chapter — the prop-
erty Me used in Visual Basic to reference forms or reports and Forms used to refer-
ence the current active form. Although there are many keywords and properties,
the following list are the most common keywords and properties you will use as ref-
erences in your events and code for forms and reports:

Forms The complete collection of forms in a database — used to specify
a specific form. The Syntax is:

Forms!frmContacts

Form The current active form — used to access an object on a sub
form within a specific form. The syntax is:

Forms!frmMyForm.mySubFormObject.Form!theControlName

Reports The complete collection of reports in a database — used to
specify a specific report. The syntax is:

Reports!rptContacts

Screen The Screen object is used for the particular form, report, or con-
trol that has focus. It uses many properties to reference these
objects. The syntax is:

Screen.ActiveForm (used for active form)

Screen.ActiveReport used for active report)

Screen.ActiveDatasheet (used for active datasheet)

Screen.ActiveControl (used for active control)

Me Me is a special property that is used to reference the active form,
report, or class module. It can only be used in Visual Basic code.
The syntax is:

Me!chrLastName (the same as Forms!frmContacts.chrLastName)

Me!chrFirstName (the same as Screen.ActiveForm.chrFirstName)

As you work with your forms, report, and visual basic code, these special keywords
and properties will be useful for writing efficient events.

Robert
Highlight

Robert
Highlight

Robert
Highlight

Robert
Highlight

Robert
Highlight

Robert
Highlight

722 Part I, Section III ✦ Automating Your Applications

What Are Functions?
Functions are small programs that always, by definition, return a value based on
some calculation, comparison, or evaluation that the function performs. The value
returned can be string, logic, or numeric, depending on the type of function. Access
provides hundreds of common functions that are used in tables, queries, forms, and
reports. You can also create your own user-defined functions (UDFs) using the
Access Visual Basic language.

Using functions in Access
Functions perform specialized operations that enhance the utility of Access. Many
times, you find yourself using functions as an integral part of Access. The following
are examples of the types of tasks that functions can accomplish:

✦ Define a default value in a table

✦ Place the current date and time on a report

✦ Convert data from one type to another

✦ Perform financial operations

✦ Display a field in a specific format

✦ Look up and return a value based on another

✦ Perform an action upon the triggering of an event

Access functions can perform financial, mathematical, comparative, and other oper-
ations. Therefore, functions are used just about everywhere — in queries, forms,
reports, validation rules, and so forth.

A Quick Review of Events and Properties

Simply put, an event is some action. The event can be an action such as opening a form or
report, changing data in a record, selecting a button, or closing a form or report. Access rec-
ognizes approximately 60 events in forms and reports.

To recognize one of these events, Access uses special form or report properties. Each event
has an associated form or report property. For example, the OnOpen property is associated
with the event of opening a form or report. These properties are known as event properties.

To perform some action when the event is triggered, you create either a macro or code and
associate it with the property (in the above case, the OnOpen event property) by assigning
the name of the macro or code function to that property as a parameter against the event
property. When the user triggers the event, the code is executed, or run.

723Chapter 20 ✦ Working with Expressions and Functions

Many Access functions evaluate or convert data from one type to another; others
perform an action. Some Access functions require use of parameters; others oper-
ate without them.

A parameter is a value that you supply to the function when you run it. The value
can be an object name, a constant, or a quantity.

Access functions can be quickly identified because they always end with parenthe-
ses. If a function uses parameters, the parameters are placed inside the parenthe-
ses immediately after the function name.

Examples of Access functions are as follows:

Now() Returns the current date and time

Rnd() Returns a random number

DateAdd() Returns a date based on an interval added

Ucase() Returns the uppercase of an object

Format() Returns a user-specified formatted expression

Types of functions
Access offers several types of functions. They can be placed in the following gen-
eral categories:

✦ Conversion

✦ Date/Time

✦ Financial (SQL)

✦ Financial (monetary)

✦ Mathematical

✦ String manipulation

✦ Programming

✦ Domain

Immediate window
Microsoft Visual Basic has an Immediate window that you can use to test your code
or functions. Figure 20-4 shows the Immediate window open in Visual Basic. It is
located toward the bottom center of the figure. It has two lines of text in it — the
print statement of LCase() function and the results answer.

The Immediate window is a nice tool to check on how a function works.

Note

724 Part I, Section III ✦ Automating Your Applications

You can activate Visual Basic from inside Access by simply pressing the hot key
combination of Ctrl+G, by opening Visual Basic by clicking on the New button of the
Modules container, or by clicking on the design button of an existing module. When
you are in Visual Basic, select View ➪ Immediate Window or press Ctrl+G. When you
are active, you can use the print command (a question mark: ?) to display the
results of any function.

Figure 20-4: The Immediate window of Visual Basic with the LCase()
function displayed.

What Is a Program?

A program is a series of defined steps that specify one or more actions the computer should
perform. A program can be created by the user or can already exist in Access; all Access
functions are already created programs. For example, a Ucase() function is a small pro-
gram. If you employ Ucase () on a string, such as “Michael R. Irwin,” Access creates a new
string from the existing string, converting each letter to uppercase. The program starts at the
leftmost letter, first converting M to M and then i to I, and so forth, until the entire string is
converted. As it converts each letter, the program concatenates it to a new string.

725Chapter 20 ✦ Working with Expressions and Functions

Conversion
Conversion functions change the data type from one type to another. A few common
functions are listed here:

Str() Returns a string, converted from a numeric. It always
reserves (adds) a leading space for the plus sign:

Str(921.23) returns “ 921.23” — A leading space is added.

Str(-123) returns “-123” — No leading space is added and
the sign is shown.

LCase() Returns a string that is converted to lowercase:

LCase(“Mike Irwin”) returns “mike irwin” as in Figure 20-4.

UCase() Returns a string that is converted to uppercase:

LCase(“Mike Irwin”) returns “MIKE IRWIN”.

Val() Returns a numeric value found in a string up to the first non-
numeric character in the string:

Val(“1234.56”) returns 1234.56.

Val(“10 Farmview 2 Ct”) returns 10. The 2 is after the first
non-numeric character ‘F’.

CDate() Converts a string to a Date:

CDate(“04 Feb 52”) returns 02/04/1952.

CDate(“February 4, 1952”) returns 02/04/1952.

CSTR() Converts a numeric or Date to a string:

CSTR(#Feb 04, 52#) is converted to the string “02/04/1952”
from date.

CSTR(12345) is converted to the string “12345” from number.

Format() Returns an expression according to the user-specified format:

Format(“Next”,”>”) returns NEXT.

Format(“123456789”,”@@@-@@-@@@@”) returns 123-45-6789.

Format(#12/25/03#,”d-mmmm-yyyy”) returns 25-December-
2003.

Format(Date(), “Long Date”) returns Wednesday, April 16,
2003 (or the current date)

Format(Now(),“Long Time”) returns 12:37:58 PM (or the
current time)

726 Part I, Section III ✦ Automating Your Applications

The Format() function is one of the most powerful ways to display data in a specific
format. You can specify a specific format by using keywords or a mask of symbols
telling the Format() function how to display the data. Figure 20-5 shows a query
using two Format() functions, both using a keyword — Long Date for the way the
date is to be displayed and Percent for displaying the percent value instead of decimal.

Figure 20-5: The Format() function being used in a query to display data in a
specific manner.

Figure 20-6 shows the resulting datasheet using the format() function for the two
fields. Notice that it shows the fields alongside each formatted field.

Figure 20-6: The datasheet from the format() function used in Figure 20-5.

727Chapter 20 ✦ Working with Expressions and Functions

Date/Time
Date/Time functions work with date and time expressions. The following are some
common Date/Time functions:

Now() Returns the current date and time: 04/04/2003 12:22:34 PM.

Time() Returns the current time in 12-hour format: 12:22:34 PM.

Date() Returns the current date (vs. Now(), which returns date and
time):

04/04/2003.

Month() Returns a whole number that represents the month portion
of a date.

Month(Now()) returns 04 (or today’s month number).

Day() Returns a whole number that represents the day portion of a
date.

Day(Date()) returns 16 (or today’s day number of the
month)

Weekday() Returns a whole number that represents the day of week for a
specific date.

Weekday(Date()) returns 4 (for Wednesday or today’s day
of week number).

Year() Returns a whole number that represents the year portion
of a date.

Year(Date()) returns 2003 (or today’s year number).

DateDiff() Returns a number based on a specific time interval
between two different dates. The time interval can be
d (day), ww (weeks), m (months), q (quarters), yyyy (years).
The syntax is:

DateDiff(“d”, date(), #02/04/52#) returns –18699 days if the
date is 16 Apr 2003.

DateDiff(“y”, date(), #02/04/52#) returns –51 years if date
is same.

DateDiff(“q”, date(), #02/04/52#) returns –205 quarters if
date is same.

728 Part I, Section III ✦ Automating Your Applications

DateAdd() Returns a new date based on a specific time interval. The
time interval can be d (day), ww (weeks), m (months), q
(quarters), yyyy (years). The syntax is:

DateAdd(“d”,22, date()) returns 5/8/2003 if the date is 16
Apr 2003.

DateAdd(“ww”,10, #01/01/2004#) returns 3/11/2004.

DatePart() Returns a number based on a specific time interval for a date.
The time interval can be d (day), y (day of year), w (week-
day), ww (weeks), m (months), q (quarters), yyyy (years).
The syntax is:

DatePart(“y”, date()) returns 106 if the date is 16 Apr 2003.

DatePart(“ww”, date()) returns 16 if the date is 16 Apr 2003.

DatePart(“q”, date()) returns 2 if the date is 16 Apr 2003.

Financial (SQL)
Financial (SQL) functions perform aggregate financial operations on a set of values.
The set of values is contained in a field. The field can be in a form, report, or query.
Two common SQL functions are listed below:

Avg() An example is Avg([Scores]).

Sum() An example is Sum([Gross Amount] + [Tax] + [Shipping]).

Financial (monetary)
Financial (monetary) functions perform financial operations. Several monetary func-
tions are listed below:

DDB() Is the double-declining balance method of depreciation
return. The syntax is:

DDB(initial cost, salvage value, life of product, period of
asset depreciation)

NPV() Is the net present value, based on a series of payments and a
discount rate. The syntax is:

NPV(discount rate, cash flow array())

FV() Is the Future Value of an annuity based on periodic, fixed
payment and fixed interest rate. The syntax is:

FV(rate of percent - %/12, total number of payments,
payment made each period, [OPTIONAL present value])

729Chapter 20 ✦ Working with Expressions and Functions

PV() Is the Present Value of an annuity based on periodic, fixed
payments to be paid in future and fixed interest rate. The syn-
tax is:

FV(rate of percent - %/12, total number of payments, pay-
ment made each period, [OPTIONAL future value])

SYD() Is the sum-of-years depreciation of an asset for a specific
period. The syntax is:

SYD(cost of asset, salvage value, length of useful life in
months, period given in months)

PMT() Is the payment for an annuity based on periodic, fixed pay-
ment and fixed interest rate. The syntax is:

PMT(rate per period - %/12, total number of payments, pre-
sent value of note)

PMT(.005, 360, -110000) returns payment amount of 659.51
for a 6% loan of 360 months for $110,000 USD.

Mathematical
Mathematical functions perform specific calculations. The following are some mathe-
matical functions, with examples of how to use them.

Abs() Determines the absolute value of a number, the number with-
out a sign:

Abs(-14) results in 14.

Abs(14) results in 14.

Fix() Determines the correct integer for a negative number:

Fix(-1234.55) results in -1234.

Int() Determines the integer of a specific value:

Int(1234.55) results in 1234.

Int(-55.1) results in -56.

Round() Returns a number rounded to the specified number of
decimals:

Round(14.245, 2) results in 14.24 – rounding occurs over 5.

Round(17.1351, 2) results in 17.14 rounding up to .14.

730 Part I, Section III ✦ Automating Your Applications

Rnd() Returns a random number:

Rnd() will return a random number – the next in the
sequence.

Rnd(-1) or any negative number will return the same ran-
dom number every time, using the number as the seed
(-1 in this case).

Rnd(1) or any positive number will return a random
number — the next in the sequence.

Sgn() Determines the correct sign of a number:

Sgn(-14) results in -1 as will any negative number.

Sgn(12) results in 1 as will any positive number.

Sgn(0) results in 0.

Sqr() Determines the square root of a number:

Sqr(9) returns 3.

Sqr(14) returns 3.742.

There is another mathematical operator known as MOD, which lets a user deter-
mine the remainder between two numbers. That is, if you divide one number by
another, the remaining digits are the Mod of the numbers. For example:

10 MOD 2 results in an answer of 0 (10 is evenly divisible by 2 with no
remainder).

10 MOD 3 results in an answer of 1 (10 is divisible by 3, 3 times with a
remainder of 1).

10 MOD 4 results in an answer of 2 (10 is divisible by 4, 2 times with
a remainder of 2).

String manipulation
String functions manipulate text-based expressions. Here are some common uses of
these functions:

InStr() Returns a number that represents the first position of one
string in another string:

Instr(“abcd123efg234”, “23”) returns 6, the start position
of ‘23’.

Instr(7,”abcd123efg234”,”23”) returns 11 — the 7 in the
beginning tells the instr() function to start after position
7 of the string.

731Chapter 20 ✦ Working with Expressions and Functions

Left() Returns the leftmost characters of a string:

Left(“abcdefg”,4) returns “abcd.”

Len() Returns the length of a string:

Len(“abcdefgh”) results in 8.

Lcase() Returns the lowercase of the string:

Lcase(“Michael R. Irwin”) Returns michael r. irwin.

LTrim() Removes leading spaces from a string:

LTrim(“abcd”) returns “abcd.”

Mid() Returns characters from the middle of a string:

Mid(“abcdefgh”,3,4) returns “cdef.”, starting at position 3
and reading 4 characters

Right() Returns the rightmost characters of a string:

Right(“abcdefg”,4) returns “defg.”

RTrim() Removes trailing spaces from a string:

RTrim(“abcd”) returns “abcd.”

Space() Inserts the specific number of spaces:

Space(6) returns “ ” (six blank spaces).

Trim() Removes leading and trailing spaces from a string:

Trim(“ abcd ”) returns “abcd.”

Programming
Programming functions are those that don’t fit in a specific category, yet are very
useful in programming. The following are some programming functions, with exam-
ples of how to use them.

Choose() Returns a value based on an index parameter from a list.

Choose(2, “Slow”, “Average”, “Fast”) returns “Average”.

Choose(3, “A”, “B”, “C”, “D”) returns “C”.

IsDate() Determines if an expression is a valid date.

IsDate(“Feb 29, 2000”) returns TRUE.

IsDate(“Jup 4, 2003”) returns FALSE.

732 Part I, Section III ✦ Automating Your Applications

IIF() Is used to return one of two parts based on the initial evalua-
tion inside the function:

Function TestIt (TestNum as Integer)

TestIt = IIF(TestNum > 250, “Greater”, “Smaller”)

‘

‘ if number passed is > than 250, returns the word “Greater”

‘ if number is less than 250, returns the word “Smaller”

‘

End Function

IsMissing() Is used to check to see if a variable has been passed to the
function:

Dim ReturnVal

ReturnVal = ReturnCheck()

ReturnVal = ReturnCheck(4)

‘ Function ReturnCheck

Function ReturnCheck(Optional ABC)

If IsMissing(ABC) Then

ReturnCheck = NULL

Else

ReturnCheck = ABC * 2

End If

End Function

IsNull() Determines if an expression has no value (no data — Null),
returning true or false:

IsNull([chrLastName]) returns false if there is a value in the
field or true if no value is present.

NZ() Use this function to return a zero, a zero-length string, or
another value when a variant is null. Default is zero-length
string.

xName = “Mike”

? Nz(xName) results in “Mike”

? Nz(yName) results in “”

? Nz(yName,0) results in 0

Domain
A domain is a set of records contained in a table, a query, or an SQL expression. A
query dynaset is an example of a domain. Domain aggregate functions determine

733Chapter 20 ✦ Working with Expressions and Functions

specific statistics about a specific domain. If you need to perform statistical calcula-
tions in code, it must be done using domain aggregate functions. Domain aggregate
functions can also be used to specify a criteria, update values, or even create calcu-
lated fields in a query expression.

Several examples of domain functions are listed below:

DAvg() Returns the arithmetic mean (average) of a set of values.

DAvg(“curCost”,”tblProducts”) determines the average
cost of vehicles sold. Figure 20-7 shows an example using
DAvg() to show only vehicles where the cost is greater
than or equal to the mean average.

DCount() Returns the number of records specified.

DCount(“chrProductID”,”tblProducts”, “chrCategory =
‘cars’”) will go through the tblProducts table and count all
records whose chrCategory value is ‘cars’. Answer should
be 25 for the table.

DFirst() Function returns a random record from a field in a table or
query, when you need any value

DFirst(“chrFirstName”, “tblContacts”) will return a random
name from the field chrFirstName. DLast() works the same.

DLookup() Returns the value of a specific field from the specified records.

DLookUp(“[Short Name]”, “[tblPayType]”,
“[tblPayType].[chrPaymentType] =
‘“&[tblSales].[chrPaymentMethod]&”’”) will find the cor-
rect short name for all payment types in the query. Figure
20-8 shows how the query field will look.

DMax() Function returns the highest value in a range of values.

DMax(“curCost”,”tblProducts”) will return the highest
price curCost from the tblProducts table. Should be
$165,000.00 USD.

DMin() Function returns the lowest value in a range of values.

DMin(“curCost”,”tblProducts”) will return the lowest price
curCost from the tblProducts table. Should be $200.00 USD.

DSum() Returns the sum for a set of records specified.

DSum(“curCost”,”tblProducts”, “chrCategory = ‘cars’”) will
go through the tblProducts table and sum the chrCost of all
record where the chrCategory is ‘cars’. Answer should be
$779,356.00 USD.

734 Part I, Section III ✦ Automating Your Applications

Figure 20-7: The DAvg() function being used in a query to show only those records
that are valued greater than or equal to the mean average of all vehicles.

Figure 20-8: The DLookUp() function being used in a query to show values found
in another table.

735Chapter 20 ✦ Working with Expressions and Functions

Using the DLookUp() Function for Lookup Tables

The DLookUp() function is rather difficult for people to understand. It is just a way to find a
specific field value by looking up information based on a condition. DLookUp() finds infor-
mation in a table that is not currently open. Although it can be easy to program and works
well with small amounts of records, if your tables contain more than 5,000 records, you
should do this with DAO code. This is the general syntax for the DLookUp() function:

DLookUp(“[Field to display]”, “[Lookup Table]”, “<Criteria for
Search>”)

“[Field to display]” in quotation marks is the field in the lookup table you want to find.

“[Lookup Table]” in quotation marks is the table containing the field you want to display.

“<Criteria for Search>” in quotation marks signifies criteria used by the lookup function.

Access suggests that Criteria for Search is not necessary, but if you want to use a different
criterion for each record, it is essential. When you use DLookUp(), the format of your crite-
ria is critical. The syntax of Criteria for Search is as follows:

“[Field in Lookup Table] = ‘<Example Data>’ “

You can replace the equal operator with any valid Access operator.

‘<Example Data>’ in single quotation marks is usually a literal, such as ‘Cars’ or ‘AMEX’. If
the data is a field in the current table, you must use the following syntax:

“& [Field in This Table] & “

Notice that the field is surrounded with double quotation marks (“) and ampersands (&).

Although using the DLookUp() function to build a calculated field seems complex, it can be
a simple way to create a query for use by a form or report. To create the query in Figure
20-8, follow these steps:

1. Select the tblSales table in the query design window.

2. Double-click the dtmSaleDate field in the table, and any other fields you want to
look at.

3. In an empty field in the QBE pane, type: How Pay:DLookUp(“[Short Name]”,
“[tblPayType]”, “[tblPayType].[chrPaymentType] =
‘“&[tblSales].[chrPaymentMethod]&”’”).

Note: Before the &[tblSales] is a single quotation and then a double quotation
mark.

After [chrPaymentMethod]& is a double, then a single, then another double
quotation mark.

The current table value is specified second — ‘“&[tblSales].
[chrPaymentMethod]&”’. The lookup table value is specified first —
“[tblPayType].[chrPaymentType] =

736 Part I, Section III ✦ Automating Your Applications

✦ ✦ ✦

When you enter the field name of the current table in the criteria for the DLookUp() func-
tion, you must not use spaces. After the equal sign, type the entry in this format:

single quote - double quote - ampersand - [field name] -
ampersand - double quote - single quote - double quote

No spaces can be entered between the quotation marks (single or double).

If you’re having problems typing in Step 3, press Shift+F2 to activate the Zoom window.
After activating the window, the entire contents will be highlighted; press F2 again to de-
select the contents and move to the end of them.

If you now select the Datasheet option using the Query View button on the toolbar, you see
a datasheet similar to the one in Figure 20-9. Notice that several records have no Payment
method name, because these records have not been paid for.

Figure 20-9: The datasheet using the DLookUp() function being used in
a query to show values found in another table.

Working with
SQL, Recordsets,
and ADO

The Visual Basic language offers a full array of powerful
commands for manipulating records in a table, display-

ing data for controls on a form, or just about anything else.
This chapter provides some in-depth examples of working
with procedures that use SQL and ADO to manipulate
database data.

Understanding SQL
Many of the procedures that you will write for working with
Recordsets utilize Structured Query Language (SQL) state-
ments to retrieve data from a database, add new data to a
database, or update records in a database. When you use the
graphical tools of the Query Design window to create a query,
Access converts what you create into an SQL statement. This
SQL statement is what Access actually executes when the
query runs. SQL is a standardized language for querying and
updating database tables, and it is used by many relational
databases.

Although Recordsets do have the ability to work with the
queries that are stored in the Access database container,
many times you will find that creating the query on the fly in
your code is quicker and easier than working with Access
queries. SQL is relatively easy to understand and work with.
This is a quick overview of SQL statements and how to create
them in Access 2003.

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Viewing and using
SQL statements

Using ADO

Updating tables

Updating a
calculated field

Adding new records

Deleting records

✦ ✦ ✦ ✦

738 Part I, Section III ✦ Automating Your Applications

In this chapter, you will use the database file Chap21start.mdb.

Viewing SQL statements in queries
To view the SQL statement that Access creates while building a query, select
View ➪ SQL View from the Query menu. Figure 21-1 shows a typical SQL statement
that will display the product description, company name, and state for products
purchased by contacts in Connecticut or New York.

Figure 21-1: An SQL statement in the SQL view window for an Access
query

You can make changes to the query using either the Design window or the SQL win-
dow. As you are working with the query, you can alternately switch between view
modes. If you are viewing in SQL view, you can return to the Design view by select-
ing View ➪ Design View. Any changes that you made to the query in SQL view are
reflected in the Design view. When you make changes to the query in the Design
view window, the changes are immediately updated in the SQL view window.

If you are proficient in creating SQL queries on your own, you can even create a
new query directly in the SQL window. To add new lines to the SQL statement,
simply press Enter.

An SQL primer
As you can see, one way to learn how to create SQL statements is to build a query
in Design view and then view the corresponding SQL statement in the SQL view win-
dow. The example in Figure 21-1 utilizes the four most common SQL commands.
Table 21-1 shows each command and explains its purpose.

Using these four basic keywords, you can build very powerful SQL statements to
use in your Access forms and reports.

Tip

On the
CD-ROM

739Chapter 21 ✦ Working with SQL, Recordsets, and ADO

Table 21-1
Four Common SQL Keywords

Keyword Purpose in SQL Statement

SELECT This keyword starts an SQL statement. It is followed by the names of
the fields that will be selected from the table or tables (if more than
one is specified in the FROM clause/command). This is a required
keyword.

FROM This keyword specifies the name(s) of the table(s) containing the
fields specified in the SELECT command. This is a required keyword.
If more than one table is used you need to also specify a JOIN type,
known as a Table Expression.

WHERE This keyword specifies any condition used to filter (limit) the records
that will be viewed. This keyword is used only when you want to
limit the records to a specific group on the basis of the condition.

ORDER BY This keyword specifies the order in which you want the resulting
dataset (the selected records that were found and returned) to
appear.

The SELECT keyword
The SELECT keyword is the first keyword used in two query types: in a select query
or a make-table query. The SELECT keyword specifies the field(s) you want dis-
played in the result data.

After specifying the keyword SELECT, you need to specify the fields you want to dis-
play. The general syntax is:

SELECT Field_one, Field_two, Field_three ...

where Field_one, Field_two, and so on are replaced with the names of the table
fields.

Notice that commas separate each field in the list from the others. For instance, if
you want to specify Company Name and city using fields from a contacts table, you
would specify the following:

SELECT [Company Name], City

The field name Company Name needs brackets around it because it has a space in
the name (see sidebar).

Note

740 Part I, Section III ✦ Automating Your Applications

If you need to view fields from more than one table, specify the name of the tables
in which to find the fields. The SELECT statement would, for example, look like this
to select fields from both the Contacts and Sales tables:

SELECT tblContacts.chrCompany, tblContacts.chrCity,
tblSales.dtmSaleDate, tblSales.idsInvoiceNumber

When you build a query in Access, it places the table name before the field name
automatically. Actually, the table name is optional. You need only specify the table
name if more than one table in the SQL statement has fields with the same name.
For instance, a field named Invoice Number may appear in both a Sales table and a
SalesLineItems table. If you want to SELECT an invoice number field in your SQL
statement, you must specify which of these to use — the one in Sales or the one in
SalesLineItems.

The following SQL SELECT Statement illustrates the syntax:

SELECT tblContacts.chrCompany, tblContacts.chrCity,
tblSales.dtmSaleDate, tblSales.idsInvoiceNumber,
tblSalesLineItems.chrProductID

Although table names are not required for non-duplicate fields in an SQL state-
ment, it’s a good idea to use them for clarity.

You can use the asterisk wildcard (*) to specify that all fields should be selected. If
you’re going to select all fields from more than one table, specify the table, a period
(.), and then the name of the field — in this case, the asterisk.

Specifying SELECT predicates
When you create an SQL SELECT statement, several predicates are available for the
SELECT clause:

✦ ALL

✦ DISTINCT

✦ DISTINCTROW

✦ TOP

Tip

Using the Brackets around Field Names

Any field name that contains spaces requires the use of brackets. The brackets, [], let the
SQL parser know you are referring to a specific field. If the field name does not contain
spaces, you do not need to use the brackets.

741Chapter 21 ✦ Working with SQL, Recordsets, and ADO

The predicates are used to restrict the number of records returned. They can work
in conjunction with the WHERE clause (actually, in SQL terminology, the WHERE
condition) of an SQL statement.

The ALL predicate selects all records that meet the WHERE condition specified in
the SQL statement. If you do not specify the keyword ALL, all records are returned
by default.

Use the DISTINCT predicate when you want to omit records that contain duplicate
data in the fields specified in the SELECT statement. For instance, if you create a
query and want to look at both the Company Name and the Products the customer
purchased, without considering the number of products of a single Category, the
SELECT statement would be as follows:

SELECT DISTINCT chrCompany, chrCategory

If a customer purchased two minivans — that is, has two minivan records (one 2002
Fordman Mini Van and one 1992 Fordman Conversion Van) in the tblSalesLineItems
table — only one record will appear in the result set. The DISTINCT predicate tells
Access to show only one record if the values in the selected fields are duplicates
(that is, same company name and same product category). Even though two differ-
ent records are in the tblSalesLineItems table for the customer, only one is shown.
DISTINCT eliminates duplicates based on the fields selected to view.

The DISTINCTROW predicate is unique to Access. It works much like DISTINCT,
with one big difference: It looks for duplicates on the basis of all fields in the
table(s), not just the selected fields. For instance, if a customer has purchased two
different product records in the tblSalesLineItems table, use the predicate DISTINC-
TROW in this SQL statement:

SELECT DISTINCTROW chrCompany, chrDescription

In this example, both product records are displayed. DISTINCTROW looks for dupli-
cates across all of the fields selected for the query. If any field is different (in this
case, the description), both records are displayed in the result set.

The TOP predicate is also unique to Access. It enables you to restrict the number of
records returned to the TOP <number> of values. For instance, the following
SELECT statement will display the first five contact records:

SELECT TOP 5 chrCompany FROM tblContacts

You can use the TOP predicate in conjunction with the ORDER BY clause to answer
some practical business questions. This example uses the TOP predicate with the
ORDER By clause:

SELECT TOP 5 chrCompany FROM tblContacts ORDER BY
dtmLastSalesDate DESC

742 Part I, Section III ✦ Automating Your Applications

This example returns a list of companies with the five highest last sales dates. In
other words, the query lists all of the companies and orders them by their last sales
date in descending order, and then it only picks the first five companies in the
ordered list.

The TOP predicate has an optional keyword, PERCENT, that displays the top num-
ber of records on the basis of a percentage rather than a number. To see the top
two percent of your contacts, you would use a SELECT statement like this one:

SELECT TOP 2 PERCENT chrCompany

The FROM clause of an SQL statement
As the name suggests, the FROM clause specifies the tables (or queries) that hold
the fields named in the SELECT statement. This clause is required; it tells SQL
where to find the records. If you fail to use the FROM portion of the SELECT state-
ment, you will receive an error. Due to the required use of the FROM clause, some
people refer to the SELECT statement as the SELECT ... FROM statement.

When you’re working with one table, the FROM clause simply specifies the table
name:

SELECT chrCompany, chrCity
FROM tblContacts

When you are working with more than one table, you can supply a table expression
to the FROM clause to specify how to retrieve data from the multiple tables. The
FROM clause is where you set the relationship between two or more tables for the
SELECT statement. The table expression can be one of three types:

✦ INNER JOIN ... ON

✦ RIGHT JOIN ... ON

✦ LEFT JOIN ... ON

Use INNER JOIN ... ON to specify the traditional inner or equijoin of Access. To join
two tables, you link them using a field that both tables have in common. For
instance, the contacts and sales tables have a common contactID field. To join the
sales and contacts tables, the table expression syntax is:

SELECT tblSalesLineItems.chrDescription, tblContacts.chrState,
tblContacts.chrCompany
FROM (tblContacts INNER JOIN tblSales ON
tblContacts.idsContactID=tblSales.lngzBuyer)

Notice that the FROM clause specifies the main table to use (tblContacts). Then the
INNER JOIN portion of the FROM clause specifies the second table to use (tblSales).
Finally, the ON portion of the FROM clause specifies which fields will be used to join
the table.

743Chapter 21 ✦ Working with SQL, Recordsets, and ADO

The LEFT JOIN and RIGHT JOIN work exactly the same, except that they specify an
outer join instead of an inner join, or equijoin. You use outer joins when you want
to return records from a parent table even if the dependent table does not contain
any records with matching values specified in the ON clause. The following example
shows the same query coded as an outer join:

SELECT tblSalesLineItems.chrDescription, tblContacts.chrState,
tblContacts.chrCompany
FROM (tblContacts RIGHT JOIN tblSales ON
tblContacts.idsContactID=tblSales.lngzBuyer)

In this example, the query will include contacts that had no sales. If the query does
not find a match in the sales table, the fields chrState and chrCompany will still dis-
play in the result set even if the sales table contains no records that match the
idsContactID in the contacts table. The chrDescription field will simply be blank in
the result set for any contacts that had no sales.

The WHERE clause of an SQL statement
Use the WHERE clause of the SQL statement only when you want to specify a condi-
tion. This clause is optional, unlike SELECT ... and FROM.

The SQL statement in Figure 21-1 specified the following WHERE clause:

WHERE (((tblContacts.chrState)=”NY” Or (tblContacts.chrState)=”CT”))

The WHERE condition can be any valid expression. It can be a test on a single field,
as in the example above, or a complex expression based on several criteria.

If you use the WHERE condition, it must follow the FROM clause of the SQL state-
ment.

The ORDER BY clause
Use the ORDER BY clause to specify a sort order. It will sort the displayed data by the
field(s) you specify after the clause, in ascending or descending order. Using the exam-
ple in Figure 21-1, the query was sorted by all three of the fields in the SELECT clause:

ORDER BY tblSalesLineItems.chrDescription, tblContacts.chrState,
tblContacts.chrCompany;

The fields specified in the ORDER BY clause do not have to be the same fields speci-
fied in the SELECT clause. You can sort by any of the fields included in the tables
you specify in the FROM clause.

Specifying the end of an SQL statement
Because an SQL statement can be as long as 64,000 characters, a way is needed to
tell the database language that you’ve finished creating the statement. End an SQL
statement with a semicolon (;).

Note

744 Part I, Section III ✦ Automating Your Applications

Access is very forgiving about the ending semicolon. If you forget to place one at
the end of an SQL statement, Access will assume that it should be there and run
the SQL statement as if it were there. On the other hand, if you place a semicolon
inside an SQL statement accidentally, Access will report an error and attempt to
tell you where it occurred.

When you become proficient at creating SQL statements, you can begin using
them to create very powerful programs that retrieve and manipulate data in your
applications.

For a more in-depth introduction to SQL, get the book SQL Bible, by Alex Kriegel
and Boris M. Trukhnov, published by Wiley Publishing, Inc.

Creating Programs to Update a Table
Updating data in a table by using a form is easy. You simply place controls on the
form for the fields of the table that you want to update. For example, Figure 21-2
shows the Sales form. The name of the form is frmSales. The fields that you see on
the form update the tblSales, tblSalesLineitems, and tblSalesPayments tables.

Figure 21-2: Using a form to update data in tables.

Note

Note

745Chapter 21 ✦ Working with SQL, Recordsets, and ADO

Sometimes, however, you want to update a field in a table that you do not want to
display on the form. When information is entered in the Sales form, for example, the
field for the last sales date (dtmLastSalesDate) in the tblContacts table should be
updated to reflect the most recent date on which the Contact purchased a product.
When you enter a new sale, the value for the dtmLastSalesDate field is the value of
the field for Sale Date (dtmSaleDate)on the Sales form.

Because the contact’s last sales date refers to the field labeled Sale Date on the
Sales form, you do not want the user to have to enter it in two places. Theoretically,
you could place the dtmLastSalesDate field as a calculated field that is updated
after the user enters the Sale Date. Displaying this field, however, could be confus-
ing and really does not pertain to the items for the current sale.

The best way to handle updating the dtmLastSalesDate field is to use a Visual Basic
procedure. You can use Visual Basic procedures to update individual fields in a
record, add new records, or delete records.

Updating fields in a record using ADO
To update the dtmLastSalesDate field by using a Visual Basic procedure, you use
the After Update event for the Sales form. The After Update event runs a procedure
to update the tblContacts table. The procedure is shown in Figure 21-3.

The Form_AfterUpdate procedure for the Sales form updates the dtmLastSalesDate
field in the tblContacts table. This procedure uses special programming language to
operate directly on a table in the Access Auto Auctions database.

Figure 21-3: Using ADO to update a table.

746 Part I, Section III ✦ Automating Your Applications

The programming language used to access and manipulate the data in a database is
called ActiveX Data Objects, or ADO. When you update data by using a form,
Access itself uses an entire system of programs, written in ADO, to access and
update the database.

ADO is a versatile means of accessing data from various locations. The Access Auto
Auctions examples you have seen so far show you how you can use Access to
update data in a local Access database. That is, all of the tables, queries, forms, and
reports are stored in one Access database located either in a folder on your desk-
top or on a server. But Access, as a client-server development tool, can interact
with all kinds of databases. You can develop forms and reports in one Access
database that get their data from an entirely separate Access database that may be
on your local desktop or on a remote server. You can even link to non-Access
databases like Oracle and SQL Server just as easily as linking to an Access
database.

As a data access interface, ADO allows you to write programs to manipulate data in
local or remote databases. Using ADO, you can perform database functions includ-
ing querying, updating, data-type conversion, indexing, locking, validation, and
transaction management.

Earlier versions of Access included the Data Access Objects (or DAO) data access
interface. Improvements in data access technology have taken Access to new levels
as a client-server development tool. ADO, a refinement of DAO, represents these
improvements and provides a simpler, more powerful array of data access tools.

Visual Basic currently supports DAO. However, Microsoft does not plan to provide
any future DAO enhancements. All new features will be incorporated only into
ADO. You should use ADO for any new development projects.

Writing An ADO Procedure
To use ADO functions and methods, you first declare ADO variables using the Dim
statement. The Dim statements in this example declare ADO variables for the name
of the recordset that the procedure wants to access (rsContacts), and a string vari-
able (SQLStmt) to hold the SQL statement for retrieving the tblContacts record. A
recordset is simply a set of records from a database table or the set of records that
result from running a query.

DAO and ADO share some data types. Because both ADO and DAO have a
Recordset type, you must precede the variable name with the appropriate class.
When you are referring to a DAO recordset, you use the DAO.Recordset data type.
ADO recordsets are referred to as type ADODB.Recordset.

The ADO Recordset object provides the Open method to retrieve data from a
table or query. The Open method has four parameters: Source, ActiveConnection,
CursorType, and LockType. The Source parameter is the name of the data source
to open. The Source parameter in this example is the variable SQLStmt, which

Tip

Caution

747Chapter 21 ✦ Working with SQL, Recordsets, and ADO

contains an SQL statement to retrieve the tblContacts record for the contact who
made a purchase in the Sales form. The ActiveConnection parameter refers to a pre-
defined connection to the database. A connection is a communication line into the
database. You use CurrentProject.Connection to refer to the currently active
Microsoft Access database connection — Access Auto Auctions in this example.
The Open method runs the query specified in the SQLStmt variable and assigns the
record or records resulting from running the query to the ADO recordset variable.

You can make a recordset updatable by using the CursorType and LockType param-
eters. The CursorType and LockType properties determine how ADO can access
and modify the recordset.

Table 21-2 describes the recordset properties you can set.

Table 21-2
Recordset Properties

ADO Cursor Type ADO Lock Type Description

adOpenForwardOnly adLockReadOnly You can only scroll forward through
records. This improves performance in
situations where you do not need to
update, as in finding records and printing
reports.

adOpenDynamic adLockOptimistic Additions, changes, and deletions by other
users are visible, and all types of
movement through the Recordset are
allowed.

adOpenStatic adLockReadOnly A static copy of a set of records that you
can use to find data or generate reports.
Additions, changes, or deletions by other
users are not visible.

If you don’t specify a CursorType or LockType, ADO automatically creates the
Recordset as an adOpenForwardOnly/adLockReadOnly type Recordset. This type
of Recordset is not updatable. So if you will need to make changes to the data
in the Recordset, you need an understanding of the various CursorType/LockType
combinations and how they affect the capabilities of a Recordset.

When you use ActiveX Data Objects, you interact with data almost entirely by using
Recordset objects. Recordset objects are composed of rows and columns, just like
database tables. When the Recordset has been opened, you can begin working with
the values in its rows and columns.

748 Part I, Section III ✦ Automating Your Applications

If the Recordset is opened as an updatable Recordset — that is, by using the
adOpenDynamic cursortype and adLockOptimistic locktype — the Recordset opens
in Edit mode automatically.

Before you change data in any of the Recordset’s fields, however, you need to make
sure that you are in the record you want to edit. When a Recordset opens and the
Recordset contains a record or records, the current record is the first record. If the
Recordset contains no records, the property EOF is true. Because the SQL state-
ment in the example in this topic is based on the table’s unique key, you know that
the first record in the Recordset is the only record.

If you attempt to manipulate data in a Recordset that contains no records, a run-
time error occurs.

To update a field in the current record of the Recordset, you simply assign a new
value to the name of the field. In Form_AfterUpdate procedure in Figure 21-3, you
assign the value of the Sale Date field (txtSaleDate) on the frmSales form to the Last
Sale Date field (dtmLastSalesDate) in the Recordset.

After you make the desired changes in the record, use ADO’s Update method to
save your changes. The Update method copies the data from the buffer to the
Recordset, overwriting the original record.

In ADO, changes are automatically saved when you move to another record or close
the recordset. In addition, the edited record is also saved if you close a recordset or
end the procedure that declares the recordset or the parent Database. However,
you should use the Update method for better code readability and maintainability.

To cancel pending changes to a recordset in either ADO, use the CancelUpdate
method. In ADO, you must issue the CancelUpdate method before moving to
another record.

The Close statement at the end of the Form_AfterUpdate procedure closes the
Recordset. Closing recordsets when you finish using them is good practice.

Updating a calculated field for a record
In the Sales form example, the form’s Tax Amount field displays the tax that must
be collected at the time of the sale. The Tax Amount field is not a simple calcula-
tion. The Tax Amount is determined by the following items:

✦ The sum of the item amounts purchased that are taxable

✦ The customer’s tax rate that is in effect on the sale date

✦ The Other Amount field and whether or not the Other Amount field is a tax-
able item

Caution

749Chapter 21 ✦ Working with SQL, Recordsets, and ADO

When the user changes information for the current sale, any one or all three of
these factors can change the Tax Amount. The Tax Amount field must be recalcu-
lated whenever any of the following events occur in the form:

✦ Adding or updating a line item

✦ Deleting a line item

✦ Changing the buyer to another customer

✦ Changing the Tax Location

✦ Changing the Other Amount

To recalculate the tax amount when any of these events occur, you must create
Visual Basic procedures.

Recalculating a field when updating or adding a record
Figure 21-4 shows the code for adding or updating a line item on the Sales form.

Figure 21-4: Recalculating a field after a form is updated.

A single event can handle recalculating the Tax Amount when new line items are
added or when a line item is changed — when an item’s price is changed, for exam-
ple. For both of these events, you can use the subform’s After Update event. The
After Update event occurs when a new record is entered or when any value is
changed for an existing record.

The Form_AfterUpdate procedure for the fsubSalesLineItems subform executes
when a line item is added to the Sales form’s subform, or when any information
is changed in a line item. The Form_AfterUpdate procedure recalculates the Tax
Amount field on the Sales form. The variable dblTaxRate is used to temporarily hold
the customer’s tax rate (the value of the control txtTaxRate on the frmSales form).
The variable curTaxAmount is used to temporarily store the value returned by the
CalcTax() function. The CalcTax() function is the code that actually calculates the tax

750 Part I, Section III ✦ Automating Your Applications

amount. When the After_Update procedure calls the CalcTax() function, it passes
two parameters: the value of dblTaxRate and the value of the current line item’s
invoice number (Me.lngzInvoiceNumber). Figure 21-5 shows the CalcTax() function.

Figure 21-5: Using ADO to recalculate a total field.

The CalcTax function uses ADO to create a recordset that sums up the quantities
and prices for the taxable items in the tblSalesLineItems table for the current sale.
The function receives two parameters: the buyer’s tax rate (dblTaxPercent) and the
invoice number for the current sale (lngInvoiceNum). The function’s return value is
initially set to 0 at the top of the function. The ADO code checks to see if the record-
set returned a record. If the recordset is at the end of the field (EOF), the recordset
did not find any line items for the current sale — and CalcTax remains set to 0. If the
recordset did return a record, the return value for CalcTax is set to the recordset’s
TaxableAmount field times the tax rate (dblTaxPercent).

When the Form_AfterUpdate procedure receives the result of the CalcTax() function,
it continues to the next statement in the procedure. The next statement in the proce-
dure checks to see if the Sales form’s Other Taxable field (chkOtherTaxable) is True.
If Other Taxable is true, the procedure must also calculate tax on the Other Amount
field. The calculation for the tax on Other Amount simply multiplies the value of the
Other Amount field (txtOtherAmount) times the tax rate (dblTaxRate). Then it must
add this result to the curTaxAmount value returned by the CalcTax() function.

At the end of the procedure, the form’s Tax Amount field is set to the value of the
curTaxAmount variable.

When the Buyer, Tax Location, or Tax Rate fields are changed in the Sales form, you
use the AfterUpdate event for the individual control to recalculate the Tax Amount.
Figure 21-6 shows the code for the txtTaxRate_AfterUpdate event.

751Chapter 21 ✦ Working with SQL, Recordsets, and ADO

Figure 21-6: Recalculating a field after a control is updated.

The code for the txtTaxRate_AfterUpdate event is the same code used for the line
items subform’s AfterUpdate event. In fact, you can use the same code for the
Buyer and Tax Location controls as well.

Checking the status of a record deletion
To recalculate the Tax Amount field when deleting a line item, you use the form’s
AfterDelConfirm event. The form’s AfterDelConfirm event, shown in Figure 21-7, is
similar to the code for the subform’s AfterUpdate event.

Figure 21-7: Recalculating a field after a record is deleted.

The AfterDelConfirm event occurs after a record is actually deleted or after a deletion
is canceled. If the BeforeDelConfirm event isn’t canceled, the AfterDelConfirm event
occurs after the Delete Confirm dialog box is displayed. The AfterDelConfirm
event occurs even if the BeforeDelConfirm event is canceled. The AfterDelConfirm
event procedure returns status information about the deletion. Table 21-2 describes
the deletion status values.

752 Part I, Section III ✦ Automating Your Applications

Table 21-2
Deletion Status Values

Status value Description

acDeleteOK Deletion occurred normally

acDeleteCancel Deletion canceled programmatically

acDeleteUserCancel User canceled deletion

The AfterDelConfirm procedure for the Sales form example checks to see if the dele-
tion actually occurred (acDeleteOK). If the deletion occurred, the procedure runs
the code to recalculate the Tax Amount.

Adding a new record
You can use ADO to add a record to a table just as easily as you can to update a
record. To add a new record to a table, you use the AddNew method. The following
shows the ADO procedure for adding a new customer to the Customer table:

Private Sub New_Contact_Click()
On Error GoTo New_Contact_Click_Err
Dim rst As New ADODB.Recordset

rst.Open “tblContacts”, CurrentProject.Connection,
adOpenDynamic, adLockOptimistic

With rst
‘Add new record to end of Recordset object
.AddNew
![chrLastName] = “Townshend” ‘Add data
![chrFirstName] = “Charles”
.Update ‘Save changes

End With
rst.Close
Set rst = Nothing
New_Contact_Click_Exit:

Exit Sub
New_Contact_Click_Err:

MsgBox Err.Description
Resume New_Contact_Click_Err

End Sub

As you see in this example, using the AddNew method is very similar to using ADO
to edit Recordset data. The AddNew method creates a buffer for a new record. After
entering the AddNew command, you simply assign values to the fields. When you
enter the Update command, the new record buffer is added to the end of the
Recordset.

753Chapter 21 ✦ Working with SQL, Recordsets, and ADO

Deleting a record
To remove a record from a table, you use the ADO method Delete. The following
code shows the ADO procedure for deleting a record from the tblContacts table.

Notice that you need to code only one statement to delete a record. You do not
follow the Delete method with Update. As soon as the Delete method executes,
the record is removed from the Recordset permanently.

Private Sub Delete_Contact_Click()
On Error GoTo Delete_Contact_Click_Err
Dim rst As New ADODB.Recordset, SQLStmt as string

SQLStmt = “SELECT * FROM tblContacts WHERE [idsContactID] = “ &
_

Me![txtContactID]
Rst.Open SQLStmt, CurrentProject.Connection, adOpenDynamic, & _
adLockOptimistic

With rst
If not .EOF Then

‘Delete the record
.Delete

End If
End With
rst.Close
Set rst = Nothing
Delete_Contact_Click_Exit:

Exit Sub
Delete_Contact_Click_Err:

MsgBox Err.Description
Resume Delete_Contact_Click_Exit

End Sub

Deleting related records in multiple tables
When you write ADO code to delete records, you need to be aware of the applica-
tion’s relationships. The table containing the record you are deleting may be partic-
ipating in a one-to-many relationship with another table.

Take a look at the Relationships Diagram, shown in Figure 21-8, for the tables used
in the Sales form example. The tblSales table has two dependent tables associated
with it: tblSalesLineItems and tblSalesPayments.

The Edit Relationships dialog box shows how the relationship is set up between
the tables tblSales and tblSalesLineItems. The relationship type is defined as a
One-To-Many and Referential Integrity is Enforced. A One-To-Many relationship type
indicates that the parent table (the One side), tblSales, has a dependent table (the
Many side), tblSalesLineItems. While tblSales can contain only unique instances of

Note

754 Part I, Section III ✦ Automating Your Applications

the values in idsInvoiceNumber, tblSalesLineItems may contain several records
with the same value as idsInvoiceNumber in tblSales. When you enforce referential
integrity on a One-To-Many relationship, you are telling Access that a record in
tblSales cannot be deleted if records with the same invoice number are in the table
tblSalesLineItems. If Access encounters a delete request that violates referential
integrity, Access will display an error message and the delete will be cancelled.

Figure 21-8: Examining the tables of a one-to-many relationship.

When you write ADO code to delete a record, you need to first check to see if
there are any One-To-Many relationships between the table containing the record
to delete and any other tables in the database. If there are dependent tables, the
records in the dependent tables need to be deleted before Access will allow you
to delete the record in the parent table.

Fortunately, you can write a single procedure using ADO code to delete records in
both the dependent table or tables and the parent table. Figure 21-9 shows the code
for the cmdDelete command button in the frmSales form.

The cmdDelete_Click procedure deletes the records in the tables tblSalesPayments,
tblSalesLineItems, and tblSales that have an Invoice Number that matches the cur-
rent Invoice Number displayed on the Sales form.

The first statement in the cmdDelete_Click procedure uses the NewRecord property
to check to see if the current record displayed in the Sales form is a new record. If the
record is a new record, the next statement, Me.Undo, simply undoes any changes that
were made to the record. If the current record is not a new record, the procedure dis-
plays a message box to confirm that the user really wants to delete the record. If the

755Chapter 21 ✦ Working with SQL, Recordsets, and ADO

user selects the Yes button, the procedure issues the commands to delete the
records from the tables. The variable SQLStmt is used to hold the SQL statement
for locating and deleting all of the records in the tblSalesPayments table that have
an lngzInvoiceNumber that matches the idsInvoiceNumber on the Sales form. The
SQLStmt variable is passed as a parameter to the Execute method of the current
project’s (CurrentProject) Connection. You can pass either the name of a query or
an SQL statement as a parameter to the Execute method. The Execute method sim-
ply runs the specified query or SQL statement.

Figure 21-9: Using ADO code to delete multiple records.

If the query or SQL statement contains a WHERE clause and the Execute method
does not find any records that meet the WHERE condition, no error occurs. If the
query or SQL statement contains invalid syntax or an invalid field or table name,
however, the Execute method will fail and an error situation will occur.

When the Execute command completes for deleting the tblSalesPayments records,
the procedure changes the value of SQLstmt to the SQL statement required to
delete the records in the tblSalesLineItems table. Then the new SQLstmt parameter
is passed to run the Execute method for the tblSalesLineItems table.

After the tblSalesLineItems records are deleted, the tblSales record can then be
deleted. The following statements in the cmdDelete_Click procedure, are used to
select the current record and then delete the current record:

RunCommand acCmdSelectRecord
RunCommand acCmdDeleteRecord

In this example, the two RunCommand statements will select and delete the current
record in the frmSales form.

✦ ✦ ✦

Note

Automating,
Searches, Filters,
and Query
Parameters

In the previous few chapters, you learned the basics of pro-
gramming, reviewed some of the built-in functions, and

experienced the various logical constructs. You’ve learned
about ADO and how to access data in tables and queries
through SQL recordsets. You have also learned a lot about
forms and queries in previous chapters. In this chapter, you
will use all of this knowledge and learn how to display
selected data in forms or reports using a combination of tech-
niques involving forms, visual basic code, and queries.

In the Chap22Start.mdb database, you will find a number
of forms to use as a starting point and other completed
forms to compare to the forms you change in this exam-
ple. All of the examples use a modified version of the
frmProducts form and the tblProducts table.

Adding an Unbound Combo Box to
Select One or More Records

When viewing a form, you often have to page through hundreds
or thousands of records to find the record or set of records you
want to work with. You can teach your user to press the Find
(binoculars) button on the toolbox, explain how to first place
their cursor in the field being searched, how to use wildcards,
what to do to see other records, and so on, but this defeats the
purpose of a programmed application. If you build an applica-
tion, you want to make it easier for your users to become pro-
ductive with your system, not teach them Microsoft Access.

On the
CD-ROM

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating code that
finds a record by
using a form field

Creating code that
uses a bookmark to
find a record

Using the form’s filter
options

Using a form to filter
records

Creating a parameter
query

Interfacing a
parameter query to a
form dialog

✦ ✦ ✦ ✦

758 Part I, Section III ✦ Automating Your Applications

Figure 22-1 shows the frmProducts form with an additional control at the top. This
is a combo box that is not bound to any control source in the form. The unbound
combo box is used to look up a record in the tblProducts table and then display
that record in the form through some code. You will see several ways to do this in
the chapter.

Figure 22-1: The frmProductsExample1Start form with an unbound combo
box displaying the record description, seller, and company.

The design for the combo box is shown in Figure 22-2. Notice that the Control
Source property is empty. This combo box is not bound to any field in a table. It is
used only by the form. There are four columns that can be viewed in the query for
the Row Source, as shown in Figure 22-3. The first is the Description from the
tblProducts table. The second and third columns are taken from the tblContacts
table. The second column is the seller from an auction’s Last Name and First Name
together. The third column is the seller’s company. The last column is not displayed
and is the chrProductID field in the tblProducts table.

This is also the Bound Column for the combo box and is what the value of the
combo box will equal when a description record is selected in the combo box.
Notice that the fourth column width is 0”, which hides the displayed value when
the combo box is pulled down.

The Column Heads property is set to Yes because whenever there are three or more
displayed columns, you should display column heads as well.

This combo box will be used for all the examples in this chapter. Now you will learn
how to find records in a variety of ways using the combo box and the code behind it.

759Chapter 22 ✦ Automating Searches, Filters, Sorts, and Query Parameters

Figure 22-2: The frmProducts form in design view, showing the Property window
for the unbound combo box control.

Figure 22-3: The query behind the Row Source property of the cboQuickSearch
combo box.

760 Part I, Section III ✦ Automating Your Applications

Using the FindRecord Command to Locate
a Record

The first form you will use is the frmProductsExample1Start form where you will
enhance it to add code behind the form and the combo box that selects a specific
record by going to it. The completed code is found in the form
frmProductsExample1End.

When a user selects a record using a combo box, it triggers the AfterUpdate event
to run some code. In this example, you are going to take the unbound combo box
found in the form and add an event and code to find the record selected in the
combo box.

The FindRecord command will locate a record in any field by specifying a value
passed to the FindRecord command. This is the programmed equivalent of using
the binoculars in the toolbar to find a record.

To create an event procedure behind the combo box, follow the steps below:

1. Display the frmProductsExample1Start form in design view.

2. Click on the cboQuickSearch combo box and display the Property window.

3. Select the Event tab and click on the After Update event.

4. Press the combo box arrow in the After Update event line and select Event
Procedure.

5. Press the Builder button (...) that appears in the right side of the line.

The procedure appears in a separate Visual Basic window. The first line,
Private Sub cboQuickSearch_AfterUpdate(), is automatically created. As you
have learned, whenever you create an event procedure, the name of the con-
trol and event are part of the subprocedure. The last line End Sub is also auto-
matically created.

6. Enter the four lines of code exactly as shown in Figure 22-4.

The first line is:

Me.txtProductID.SetFocus

This line programmatically moves the cursor to the txtProductID control. This is
the first step in using the FindRecord command. Just as you need to manually move
the cursor to a control in order to use the Find icon in the toolbar, you programmat-
ically must place the cursor in the control.

761Chapter 22 ✦ Automating Searches, Filters, Sorts, and Query Parameters

The next block of code is:

If Not IsNull(Me.cboQuickSearch) Then
DoCmd.FindRecord Me.cboQuickSearch

End If

This block of code first checks to make sure that the value is filled in (is not null)
before using the FindRecord command. If a value is found in the combo box, the
FindRecord command is run using the selected value of the chrProductID (the
bound column) from the combo box row source.

If the value is found in the current control on the form, the record is displayed as
the current record in the form. If the value is not found, the current record contin-
ues to be displayed.

The first value found by the FindRecord command is determined by a series of param-
eters, including whether the case is matched and whether the search is forward, back-
ward, or the first record found. When you enter DoCmd.FindRecord and press the
spacebar, you will see all of the available options. Regardless, the FindRecord com-
mand only finds one record at a time while allowing all other records to be viewed.

Me. is always faster than using Forms!someformname in front of the control name.
When you use Me, the program can instantly find the current form. When you use
the syntax Forms!someformname, the program must search for the form alpha-
betically from the list of all forms in the database file. Forms starting with the letter
A are found first and those with Z last.

Figure 22-4: FindRecord code used to find a record.

Tip

762 Part I, Section III ✦ Automating Your Applications

Using the Bookmark to Locate a Record
The FindRecord command is a good way to search when the control you want to
use to find a record is displayed on the form. It is also a good way if the value being
searched for is a single value. However, many times the value being used in the
search is a field or more than one field in the control source of the form, but not
necessarily a control on the form. A bookmark is another way of finding a record.

You can use the form named frmProductsExample2Start to follow this example. The
completed code is found in the form frmProductsExample2End.

Figure 22-5 shows code to use a bookmark that is added behind the AfterUpdate
event of the combo box.

Figure 22-5: Bookmark code used to find a record.

The first two lines are:

Dim MyRs As Recordset, Criteria As String
Set MsRs = Me.RecordsetClone

These two lines dimension a recordset named MyRs and a string named Criteria.
These will be used later in the code. The next line uses the recordset and sets it to a
copy of the currently displayed data (known as the RecordsetClone). This is a key
word that you can use in code.

The next line builds a SQL string that can be as complicated as you want. It also
shows how to build a SQL statement in code. Thefollowing line concatenates the
field name chrProductID with the value of cboQuickSearch:

Criteria = “[chrProductID] = ‘“ & Me.cboQuickSearch & “‘“

763Chapter 22 ✦ Automating Searches, Filters, Sorts, and Query Parameters

Notice that three parts of the criteria string are concatenated together.

The first part is a double quote, then the field name followed by an equal sign, and
then a single quote followed by a double quote. This builds the following string:

[chrProductID] = ‘

The single quote at the end is the first delimiter for a string that will be built next.
The value of Me. cboQuickSearch is then concatenated to the string. Assuming the
value of cboQuickSearch is CAR-001, the string would now be:

[chrProductID] = ‘CAR-001

Notice that the value is not properly delimited. It still needs another single quote at
the end. The last part of the criteria concatenated is “’”, which adds the needed sin-
gle quote.

Creating criteria in code is sometimes complicated. Remember that the objective
is to build a string that could be copied into a query SQL window and run as is.
Often, the best way to create a criteria string is to create a query design, switch to
SQL view, and then copy the SQL to a code window. Then, break up the code’s
WHERE clause into field names and control values, inserting concatenation sym-
bols and delimiters. In this example, there is no WHERE clause but the idea is the
same.

After the criteria string is completed, you can use the recordset to search for the
record. The following line uses the FindFirst method of the recordset, passing the
criteria string like a WHERE clause of a SQL statement:

MyRs.FindFirst Criteria

The FindFirst method attempts to find a record matching the criteria in the Criteria
string.

You don’t have to create a Criteria variable and then set the criteria string to it. You
can simply place the criteria after the MyRs,FindFirst method, like this:

MyRs.FindFirst “chrProductID = ‘“ & Me.cboQuickSearch &
“‘“

However, when you have complex criteria, it may be easier to create the criteria
separately from the command that will use the criteria string so you can debug the
string separately.

The next lines are used to determine if the record pointer in the form should be
moved.

If Not MyRs.NoMatch = True Then
Me.Bookmark = MyRS.Bookmark

End If

Note

Tip

764 Part I, Section III ✦ Automating Your Applications

When a bookmark is set, a value is also set to determine if the bookmark is valid
(the record was found). The .NoMatch method is used to determine if the record
was found. Unfortunately, this command requires the computer equivalent of a dou-
ble negative. Essentially, it says if there is not a nomatch, then the bookmark is valid.
Why the syntax is not If MyRs.Match is a mystery to everyone, but it simply isn’t.

If the match is found, the forms bookmark (Me.Bookmark) is set to the recordset
bookmark (MyRs.Bookmark) and the form repositions itself to the first matching
record. This does not filter the records but merely finds the first record that
matches the criteria. All of the other records are still visible in the form.

The last line of code simply closes the recordset.

Criteria can be as complex as you need them to be, even involving multiple fields
of different data types. Remember that strings need to be delimited by single
quotes, dates need to be delimited by pound signs, and numerics don’t require
any delimiters.

The bookmark method is preferable to the FindRecord method because it allows for
more complex criteria and doesn’t require the control being searched to be visible.

Filtering a Form Using Code
The form frmProductsExample3Start form can be used to add code behind the form
and the combo box that selects a specific record by going to it. The completed
code is found in the form frmProductsExample3End.

Although using the FindRecord method or a bookmark to locate a record allows you
to quickly go to a record meeting the criteria you want, it still shows all the other
records in a table or query recordset and doesn’t necessarily keep all the records
together. Filtering a form lets you view only the record or records you want, hiding
all nonmatching records.

Filters are good when you have large recordsets and want to view only data match-
ing your needs.

Figure 22-6 shows the two lines of code necessary to create and apply a filter to a
recordset. Each form contains a filter behind the form. Usually it is blank and
means the form is unfiltered (all of the records are displayed).

The first line of code sets the criteria to the Me.Filter property:

Me.Filter = “chrProductID = ‘“ & Me.cboQuickSearch & “‘“

Note

765Chapter 22 ✦ Automating Searches, Filters, Sorts, and Query Parameters

The second line of code turns on the filter. You can put all the criteria that you want
in a filter property, but unless you turn it on with the Me.FilterOn = True statement,
the filter will not be active. By using a filter, you hide all the records that do not
meet the criteria. You show only the records that meet the criteria. With a filter, you
can page from record to record and only see the records matching the filter.

Me.FilterOn = True

The first line sets the filter using the same SQL string built in the previous example.
The difference is that you don’t have to create a criteria string. You just set the
Me.Filter property to the criteria string itself.

Figure 22-6: Code for filtering and clearing a filter behind a form.

If you create a form filter and then save the form design with the filter set, the filter
is saved with the form. The next time the form is opened, the filter is active. Always
clear the filter manually from the form’s Filter property before saving the form.

Whenever you turn on a filter, you must create a way to turn it off. If you look at the
top of Figure 22-6, you can see a small button next to the combo box. This button
could be used to turn off the filter. The second procedure shown in Figure 22-6 in
the Visual Basic code window is attached to the OnClick event of the button. The
following line of code turns off the filter and displays all of the records in the form:

Me.FilterOn = False

Caution

766 Part I, Section III ✦ Automating Your Applications

Using a Query to Filter a Form Interactively
There may be times when you want to have one form control another. There may be
times when you want a recordset to display selected data based on instant user
decisions. For example, each time a report is run, a dialog box is displayed and the
user can enter a set of dates or a specific product or customer. One way to do this
is to use a parameter query.

Creating a parameter query
A parameter query is any query that contains one or more criteria that are based
on a variable. Normally, you enter a value such as “SMITH”, 26, or 6/15/04 in a crite-
ria entry area. You can also enter a variable such as [Enter the Last Name] or a ref-
erence to a control on a form such as Forms!frmProducts![cboQuickFind].

You can see this query completed in your database with the name
qryProductParameterQuery.

The simplest way to create a parameter query is to create a standard select query,
add a criteria, and run it to make sure it works. Then change the criteria to Like
[some string], where some string is the question you want to ask the user. Figure
22-7 shows a parameter query that asks the user whenever the query is run to enter
the Product ID.

Figure 22-7: Creating a simple parameter query.

767Chapter 22 ✦ Automating Searches, Filters, Sorts, and Query Parameters

Any time the query is run, even if it is used as the record source for a form or
report or the row source for a list or combo box, the parameter will be displayed —
and depending on what is entered, the query criteria filters the query results.

You may remember learning that the Like operator allows for wildcard searches.
For example, if you want to filter the query records for any Product ID that starts
with the letters CAR, you would enter CAR* when the parameter dialog box dis-
plays the question Enter the Product ID. Without the parameter, you would have to
enter Like “CAR*” in the criteria area of the query.

Also notice in Figure 22-7 that there is a dialog box with Query Parameters in the
title bar. This is necessary only when a parameter query requires special formatting
for the parameters. These would primarily include date/time entries or specially
formatted numbers. One entry has been placed in the dialog box that is actually not
necessary to show how it works. You enter the name of the parameter text and then
choose the data type. The Text data type, in reality, would never do anything
because anything can be treated as text.

The wildcards * (anything after this position) and ? (one character in this position)
can be used with a Like operator in any query or SQL string.

Figure 22-8 shows this query running and the parameter dialog box being displayed.
The text CAR* has been entered into the dialog box, meaning that any product
whose Product ID begins with the characters CAR will be displayed.

Figure 22-8: Running the parameter query.

If you want to add more complex parameters, such as a range of dates, you could
enter Between [Enter the Start Date] and [Enter the End Date] as a criteria in a
date field. This would display two separate parameter dialog boxes and then filter
the date value appropriately.

Creating an interactive dialog box
The only problem with parameter queries is that they are great for simple things
but not for complex situations. A better technique is to create a simple form and
place controls in the form that can then be used to be passed to a query that uses
the values from the dialog box to filter the query data.

Tip

Tip

768 Part I, Section III ✦ Automating Your Applications

Figure 22-9 shows the form frmFilterProductbyDescription, showing a combo box to
be used to select a record. A combo box gives the user the choice of selecting a sin-
gle record from a known set of records or entering a wildcard election (if the Limit
to List property is False).

Figure 22-9: Creating a dialog box for
selecting records.

The combo box shown in Figure 22-9 displays two columns — Description and
Product ID. The dialog box contains only the combo box and some instructional
text labels. The Description is the bound column and makes the chrDescription
field available to a query that references the form control, as shown in Figure 22-10.

Figure 22-10 displays the query in your database named
qryProductFormReferenceQuery. It selects all the fields from the tblProducts table
and then creates a criteria line using the chrDescription field that references the
form control. Notice the expression in the query criteria area:

Like [Forms]![frmFilterProductsbyDescription]![cboDescription]

This expression references the control named cboDescription (the combo box) in
the form named frmFilterProductsbyDescription. The combo box returns the value
of the selected Description or a wildcard selection like 1992*, which would show all
of the vehicles starting with 1992.

Figure 22-10: Creating a query that references a form
control.

769Chapter 22 ✦ Automating Searches, Filters, Sorts, and Query Parameters

Linking the dialog box to another form
The dialog box shown in Figure 22-10 does more than just create a value that can be
referenced from a query. It actually contains code to open the form named
frmProductsExample4Start, which contains the query named
qryProductFormReferenceQuery as its record source.

Figure 22-11 shows the design of this dialog box and the Event Procedures behind
the Cancel and OK buttons found on this form. When the OK button is pressed, the
code in Figure 22-11 is run.

Figure 22-11: Creating a dialog box that opens a form.

Using the With Command

The With command is used to save time by not referencing the controls on the form explic-
itly (which means directly): for example, Forms!frmProductsExample4Start.SetFocus. This
requires Access to search alphabetically through the list of forms in the database container.
If there were 500 forms (and some large systems have this many or more) and the form
name started with z, this would take a measurable amount of time. Because there is more
than one reference to the form, this would have to take place multiple times. The With com-
mand finds the exact location of the find and sets up an internal pointer to the form so that
all subsequent uses of the form to reference a form control or property or to use a form
method (like .Requery or .SetFocus) are much faster.

When you use the With command and reference the form name, you simply use a . or a !
and reference the control, property, or method just like the Forms!formname was first. You
can see this in Figure 22-11.

For each With, you must have an End With.

770 Part I, Section III ✦ Automating Your Applications

The code opens the form, sets focus to it, and then requeries the form to make sure
the latest selection is used within that form. The .SetFocus command is necessary
to move focus to the form that is opened. The .Requery command requeries the
form when it is opened. This actually isn’t necessary because a form automatically
requeries the form’s Record Source the first time it is opened. However, if the form
is already opened — for example, if you use the dialog box a second time to search
for another record — the requery command must run to change the data.

✦ ✦ ✦

Calling
Subprocedures
and Functions

In this chapter, you will learn how to create reusable proce-
dures and functions to make coding easier and allow multi-

ple events or objects to use the same code. You will learn how
to pass parameters to a function and how a function can
return values as well. You have already seen how to create
many different types of procedures, but you may not under-
stand when to create each one. This chapter will teach you
why and when to create each type of procedure.

In the Chap23Start.mdb database, you will find the
frmSales form and its accompanying subforms. You will
also find all of the tables from the Access Auto Auctions
application and several modules. You will use the
frmSales form as a starting point as you learn how to
create functions and procedures. The file Chap23End.mdb
contains all of the code for the form that you will see in
this chapter and some additional completed code as well.

Understanding the Difference
Between a Subprocedure and
a Function

Procedures and functions both contain lines of code that you
can run. When you run a procedure or function, you call it.
Calling, running, or invoking are all terms meaning to execute
(or run) the statements (or lines of code) within the proce-
dure or function. All of these terms can be used interchange-
ably (and they will be, by different developers). Although,
technically, you call a program with the Call command, invoke

On the
CD-ROM

2323C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the
difference between
procedures and
functions

Creating a procedure

Creating a function

Calling procedures
and functions

Passing parameters
to procedures and
functions

Handling returned
values from a
function

✦ ✦ ✦ ✦

772 Part I, Section III ✦ Automating Your Applications

a function by using its name as the first thing on a line, or run code with the Run
command in the immediate window, they all do the same thing — which is to cause
lines of code to be processed, run, executed, or whatever you want to call it.

The real and only difference between a procedure and a function is that functions
return a value when called. Returning a value means that the function creates a vari-
able and places a value into it when it is done running. You can ask the function to
return a Boolean (yes/no) value to determine, for example, if the process being run
was successful. You could see if a file exists, if a value was greater than another
value, or anything you choose. A function can return a date, a number, or a string.
In one of the examples, you will see a function that is used to calculate the tax
amount for the invoice and then returns the value so that it can be placed into the
tax control.

A procedure does not return a value. However, while a function directly returns a
value to a variable created as part of the function call, there are other ways within a
function or procedure to communicate values to form controls or declared vari-
ables in memory.

Understanding where to create a procedure
You can create a procedure in one of two places:

✦ In a module object

✦ Behind a form or report event

You create a subprocedure or function in a module when the procedure will be
shared by events in more than one form or report or by an object other than a form
or report (queries can use functions to handle very complex criteria).

If the code you are creating will only be called by a single procedure or form, the
subprocedure or function should be created behind an event in the form or report.

A module is a container for multiple subprocedures and functions.

Calling procedures and functions
Procedures (actually subprocedures) can be called in a variety of ways and from a
variety of places. They can be called from events behind forms and reports. They
can be placed in module objects and called by simply using their name or by using
the Call statement. Here are some examples:

someprocedurename

Call someprocedurename

Somevalue = somefunctioname

Note

773Chapter 23 ✦ Calling Subprocedures and Functions

Only functions have equalities as they return values. Subprocedures are simply
called, do their work, and close. Although functions return a single value, both sub-
procedures and functions can place values in tables, in form controls, or even in
public variables available to any part of your program. You will see several exam-
ples of this in this chapter.

Creating a procedure
The first procedure you will create in this chapter will be used to retrieve several
values from the cboBuyerID combo box columns and use them in the form. The
RowSource of the cboBuyerID combo box contains six active columns, which are
as follows:

Visual Basic
Column Number Value

0 Name: tblContacts.chrLastName & “, ” & :
tblContacts.chrFirstName

1 chrCompany (from tblContacts)

2 dblDiscountPercent (from tblTaxRates)

3 dblTaxRate (from tblTaxRates)

4 chrTaxLocation (from tblContacts)

5 idsContactID (from tblContacts) — the Bound Column

Combo box row sources start with column 0, so column 2 is the third column in
the row source.

The objective of this exercise is to learn about procedures, but it will also serve to
teach you some additional Visual Basic commands. The code should be entered
into the cboBuyerID AfterUpdate event.

To create an Event Procedure in a form, follow the steps below:

1. Select the cboBuyerID control in the frmSales design view.

2. Display the Property window for the control.

3. Select Event from the tabs in the Property window.

4. Click in the After Update event and select [Event Procedure] using the combo
box arrow on the After Update line.

5. Press the builder button (...) to open the Visual Basic window.

6. Enter the lines of code below into the Visual Basic coding window, as shown
in Figure 23-1.

7. Select Compile Chap23Start from the Debug menu to check your syntax.

8. Close the Visual Basic window and return to the frmSales form.

Note

774 Part I, Section III ✦ Automating Your Applications

Me.Recalc
If Not IsNull(Me!cboBuyerID) Then

If Not IsNull(Me!cboBuyerID.Column(2)) Then
Me!txtDiscountRate =

Format(Me!cboBuyerID.Column(2),”Percent”)
Me!txtTaxLocation = nz(Me!cboBuyerID.Column(4))
Me!txtTaxRate = nz(Me!cboBuyerID.Column(3),0)

End If
Else
Me!txtDiscountRate = Null
Me!txtTaxLocation = Null
Me!txtTaxRate = Null

End If

The code first performs a Recalc on the form to update any values that may be in
an uncalculated state, like a buyer ID in the process of being selected or a line item
that was in the process of being selected when the combo box was used. Anytime
you are doing data entry and need code to run to perform some process, it is a
good idea to first run a Recalc command. The Me. refers to the current form and
substitutes in this example for Forms!frmSales!.

Technically, there is no such thing as a procedure. In Access, a procedure begins
with the Subprocedure command. However, it is still referred to as a procedure.

The first IF statement checks to make sure a buyer ID was selected by making sure
the current value of the bound column in the combo box was not null. If it is not (a
valid value was selected in the combo box), a second IF statement checks to make
sure that not only the value of cboBuyerID is valid but also that the value of the
third column (dblDiscountPercent) is not null.

If the discount field is valid, the values from that and other combo box columns can
be used to fill controls on the form.

Notice the nz function in front of the statements that retrieve the value from col-
umn 3 and column 4 of the combo box. The nz function (null to zero) is used to pre-
vent null or zero length string errors. For example, in the following statement if the
value of Me!cboBuyerID.Column(4) was null, it would cause an error when
Me!txtTaxLocation was set to the null value:

Me!txtTaxLocation = nz(Me!cboBuyerID.Column(4))

The nz function around the right side of the equation sets it to a blank if the value
is null.

The following line uses an alternative value to the default blank:

Me!txtTaxRate = nz(Me!cboBuyerID.Column(3),0)

This line of code sets the value of the equality to 0 if the third column in null. This
is important that numeric variables are set to 0 instead of a blank.

Note

775Chapter 23 ✦ Calling Subprocedures and Functions

Figure 23-1 shows the procedure created in the Visual Basic editing window after
entering the commands described previously. After you complete entering them,
press the Save button on the toolbar to save your code before closing the Visual
Basic window.

Figure 23-1: The frmSales cboBuyerID AfterUpdate event procedure
in the Visual Basic editing window.

The procedure behind this form will be run each time the value of the cboBuyerID
combo box is changed. When the value of the Buyer ID is changed, this will update
the value of the tax location and tax rate. However, you must then change the value
of the tax amount. This code can now be added to this procedure. Later, you will
make a separate procedure from this new code.

Creating Functions
Functions differ from procedures in that you generally pass functions parameters, and
most importantly, functions return a single value. In these examples, you will create
functions to calculate the extension for a single line item, create a function to calculate
the total of all the taxable line items, and then apply the current tax rate to that value.

Although functions can be created behind individual forms or reports, usually they
are created in modules. This first function will be created in a new module that you
will name basSalesFunctions. To do this, follow the steps below:

1. Display the Database window by pressing the F11 key.

2. Select the Modules tab.

3. Select the module named basSalesFunctions and press the Design icon in the
database toolbar. This has already been provided for you.

776 Part I, Section III ✦ Automating Your Applications

4. The Visual Basic window is displayed with the title basSalesFunctions (Code)
in the title bar. The next task is to create and name the first procedure or
function.

Select Procedure... from the Insert menu.

The Add Procedure dialog box is displayed, as shown in Figure 23-2.

Figure 23-2: The Add Procedure
dialog box.

5. Enter CalcExtension as the name of the procedure.

6. Select Function from the option group on the dialog box.

7. Press the OK button to complete the new function.

The empty function now appears in the Visual Basic editor. Notice that the top
line begins with Public Function and the function name. Later, you will add the
passed parameters to this first line.

Enter the statements below into the Visual Basic editor:

Dim curExtension As Currency
CalcExtension = 0
curExtension = intQuantity * curPrice
CalcExtension = curExtension -

(curExtension*dblDiscountPercent)

The first statement declares the variable curExtension as Currency. This will be
used in an intermediate step. The next line of code sets the value of CalcExtension
to 0. Notice that this variable is not declared with a Dim statement. You might also
notice that it has the same name as the function. This is not by coincidence. The
name of the variable used to return the value to the calling program is automati-
cally declared by the name of the function itself. You will also learn how it gets its
data type in the next section.

777Chapter 23 ✦ Calling Subprocedures and Functions

The next line of code creates a calculation setting the product of two variables,
intQuantity and curPrice, to the previously declared variable, curExtension. You
might notice that the two variables on the right side of the equation are not
declared. You will also learn how it gets its data type in the next section.

Finally, the last line of code performs one more calculation to take the extension
and apply any discount to it. By placing the calculated value into the CalcExtension
variable, it is automatically passed back to the calling program.

Handling passed parameters
Now, the question you should be asking is this: Where are these variables coming
from and how are they declared? The answer is simple. They are the passed param-
eters from the original function call.

The next step is to modify the Function statement at the top to handle the passed
parameters and the returned data type.

Before you can create variables for the passed parameters, you must know what
parameters are being passed. In this example, three parameters will be passed:

Parameter Name Data Type

intQuantity Integer

curPrice Currency

dblDiscountPercent Double

These parameter names can be anything you want them to be. Think of them as
variables you would normally declare. All that is missing is the Dim statement. They
do not have to be the same name as the variables used in the function call.
Normally, you would use the names of fields in a table or controls on a form or even
variables created in the calling procedure.

These variables are passed and their data types declared by placing them in paren-
theses after the function name with the syntax variable name as datatype.

For example:

Public Function somecame(varname1 as somedatatype, varname2 as somedatatype)

For this example, you will change the first line as described in the following steps:

1. Type the entire line over the original Public Function CalcExtension line using
a single line.

Public Function CalcExtension(intQuantity As Integer,
curPrice As Currency, dblDiscountPercent As Double) As
Currency

778 Part I, Section III ✦ Automating Your Applications

2. Select Compile Chap23Start from the Debug menu to check your code.

Correct any errors you might find and then close the Visual Basic window.

3. Save the module basSalesFunctions if you are asked.

Each parameter is listed in the form varname as somedatatype separated by
commas. In this example, there are three parameters. Each one corresponds
to the table previously shown. After the parentheses, the data type declara-
tion of the value is passed back to the calling program. CalcExtension is the
name of the function and the variable, and its data type will be Currency.

Your screen should look like the one shown in Figure 23-3.

Figure 23-3: The completed CalcExtension function.

Calling a function and passing parameters
Now that you have completed the function it is time to test it.

Normally, a function call comes from a form or report event or from another proce-
dure, and it passes variables or the controls on a form or report. However, the func-
tion call may not even use variables. For example, you can test this function by
going to the immediate window and using hardcoded numbers or characters known
as literals.

Follow the steps below to test the function:

1. Press Ctrl-G to display the Immediate Window.

2. Enter ? CalcExtension(5,3.50,.05).

This would pass the values as 5 to the intQuantity variable, 3.50 to the
curPrice variable, and .05 (5%) to the dblDiscountPercent variable. This would
calculate and return an extension of 16.625 using those numbers, as shown in
Figure 23-4.

3. Close the Immediate window and the Visual Basic window and return to the
Database window.

779Chapter 23 ✦ Calling Subprocedures and Functions

Figure 23-4: Testing the CalcExtension
function in the Immediate window.

The next task is to use the function to calculate the extension. You can add a call to
the function from the frmSales form’s line item subform’s Amount field. You can dis-
play the frmSales form in design view, then click into the fsubSalesLineitems sub-
form, and finally click into the txtAmount control in the subform. Display the
property window and enter the following into the Control Source property, as
shown in Figure 23-5.

=CalcExtension(Nz([intQuantity],0),Nz([curPrice],0),Nz([dblDiscountPercent],0))

This function call passes the values from three controls in the subform to the
CalcExtension function in the module and returns the value back to the control
source of the txtAmount control each time the line is recalculated or any of the
parameters change.

Figure 23-5: Adding a function call to the Control Source of a control.

780 Part I, Section III ✦ Automating Your Applications

Of course, entering a function call or any expression into the control source of a
control makes the control read only. In this example, it is also an unbound control.
There is no field in the tblSalesLineItems table that the txtAmount control is bound
to. This is as designed. Because the quantity, price, or discount can be changed, all
three places would need to trigger a change to the amount.

Our business rule is that this value should always be calculated, and the user can
enter the quantity and item number, override the price retrieved from the inventory
table, and override the discount retrieved from the contacts table, but the calcula-
tion of extended amount (quantity * price * discount) will always be used.

The CalcExtension function can be used in a variety of ways by other events within
this form and by any form or report, because it lives in a module. If it were created
behind the frmSales form, it would be accessible from only that form.

Creating a Function to Calculate Taxes
When you create a line item, you determine whether or not it is taxable. You can
then add up all the extensions for all the taxable line items to determine the taxable
total. This total can then be multiplied by the tax rate to determine the tax.

When you learned how to create the frmSales form in Chapter 14, you never created
a calculation for the tax amount. You could have simply created an expression for
the control named txtTaxAmount, such as the following:

=fSubSalesLineitems.Form!txtTaxableTotal * txtTaxRate

This expression would reference the sum control expression (txtTaxableTotal) cre-
ated in the fSubSalesLineitems subform (fSubSalesLineitems) and multiply it by the
tax rate (txtTaxRate) in the frmSales form.

However, while this would display the value of the tax, the expression entered into
the txtTaxAmount control would also make the txtTaxAmount control read-only
because it contains an expression. You would not be able to override the calculated
amount if you wanted to. Being able to override some amounts is potentially impor-
tant. Tax is one of the fields that needs to be changed once in a while for specific
business purposes.

A better way than using a hardcoded expression to calculate a value of a control is
to create a function to calculate a value and then place the value of the calculation
in the control. This way, you can type over the calculated value if you need to or
even determine when the calculation will occur.

You could enter the following line of code at the end of the cboBuyerID AfterUpdate
event code you entered previously. This way, each time you chose a new contact on

781Chapter 23 ✦ Calling Subprocedures and Functions

the sales form, after the contacts tax rate is retrieved on the frmSales form, the tax
is recalculated.

Me.txtTaxAmount = Me.fSubSalesLineitems.Form!txtTaxableTotal * Me.txtTaxRate

You could also enter this line of code in the After Update events behind the
intQuantity, curPrice, dblDiscountPercent, and even the chkTaxable controls. Each
time one of those fields changes, the value of the tax needs to be updated as well.
Actually, a better place would be to place the code in the AfterUpdate event of the
fsubSalesLineitems. This way, the tax can be recalculated each time any of the val-
ues are updated in any form line.

Although you can use a simple expression that references controls on forms and sub-
forms, this would only work behind the specific form. Suppose you also need to cal-
culate tax in other forms or in reports. There is a better way than relying on a form.

This is an old developer’s expression: “Forms and reports lie. Tables never lie.” This
means that the controls of a form or report often contain expressions, formats, and
Visual Basic code that may make a value seem to be one thing when the table con-
tains another. The table containing the data is where the real values are stored and
from where calculations and reports should retrieve data.

Figure 23-6 shows this function created. You can go to the basSalesFunctions mod-
ule in Chap23Start and enter this code into the CalcTax function header provided
for you or you can see it in action in the Chap23End.mdb database file.

Figure 23-6: The CalcTax function.

The function will be called from the After Update events behind the intQuantity,
curPrice, or dblDiscountPercent controls in the subform. The CalcExtension func-
tion is used to calculate the sum of the taxable line items from the tblSalesItems
table. The SQLstatement combined with the ADO code creates the total. The calcu-
lated total amount is then multiplied by the passed parameter dblTaxPercent to cal-
culate the tax. The tax is set to the variable CalcTax (the name of the expression).

782 Part I, Section III ✦ Automating Your Applications

Functions and subprocedures are important to the concepts of reusable code
within an application. You should try to use functions and subprocedures and pass
them parameters every time you can. A good rule is this: The first time you find
yourself copying a group of code, it is time to create a procedure or function.

✦ ✦ ✦

Effective
Debugging and
Error Handling
in VBA

Great systems have great error handling. Error handling is
important for both the end user and the developer. A

system must be able to handle expected errors as well as
unforeseen ones. In this chapter, you will first learn the process
of debugging an Access application. You will learn about the
built-in error handling tools in Microsoft Access, including VBA
Assistance, the VBA syntax checker, compiler, breakpoints,
watchpoints, and the Immediate windows. You will then learn
advanced techniques, including building a generic error han-
dler and system information screen to give the user control
over the errors and learn how to leave an audit trail for the
developer. You will finally learn ways to handle errors remotely.

This chapter is a departure from the other example files you
have used in the book. When you load the sample database
file named Chap24.mdb, you will see an interface, as shown
in Figure 24-1. Match the chapter headers and the interface
lines to go to the right code for each example.

Click on any item to display an explanation of the technique.
Double-click on any of the items to display the module code
in design view, and follow the instructions in the interface
display or code window comments. Because the code win-
dow in Visual Basic is a separate physical window, it some-
times must be moved to display any dialog boxes.
Comments start with a single quote. Much of the code in the
examples also has single quotes in front of it because it is
purposely typed incorrectly and causes errors (the purpose
of this chapter). You may have to remove the single quote in
front of some of the early examples to view the error or view
the assistance already built into Microsoft Access.

On the
CD-ROM

2424C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Testing and
debugging your
applications

VBA assistance

Compiling
procedures

Handling runtime
errors

Using debugging
windows and tools

Handling errors

Creating an error
handling routine

✦ ✦ ✦ ✦

784 Part I, Section III ✦ Automating Your Applications

There are many more examples in Chap24.mdb than are described in the text of
this chapter. After you read the chapter, go back through all of the examples and
try them. You will learn more about debugging than you probably ever want to
know, but it will serve you well as you develop and debug your programs.

Good developers spend one-third of their time designing a program, one-third of
their time programming, and one-third of their time testing and debugging. It is
advisable to have someone other than the developer test the program.

Figure 24-1: The Chap24Start.mdb example database.

Testing and Debugging Your Applications
Testing is the first step in a process that lets you insure that your application is
working as designed. Each time you move from form or report design or the Visual
Basic Editor to running those same forms, reports, and VBA code, you are testing
your application. Each time you write a line of code and move to another line, you
are testing your code. Each time you change a property in a form or report and
move your cursor to another property, you are testing your form or report.

Testing is the time to see if your application runs the way you designed it, or even if
it runs at all. When you run an application and it doesn’t work, you have found a
bug. Fixing the problem is known as debugging. This term dates back to the earliest
electron tube computers. Legend has it that a moth shorted out a hardware circuit.
Removing the moth was known as debugging the system and is attributed to the
late Admiral Grace Hopper, an early pioneer in computing.

You may have already learned a lot about testing and debugging. When you run a
report and no data appears, you probably have learned to check the report’s
Record Source property and to view the data in the query or table to see if the data

Tip

785Chapter 24 ✦ Effective Debugging and Error Handling in VBA

source is the problem. If you run a form and you see #Name or #Error in individual
controls, you have learned to check the Control Source of the Control. Perhaps you
have an incorrect reference to a table field or you spelled something wrong.

Maybe you had too many parentheses or have used a control name in a formula
that uses the control name. Each time you had this problem, you probably asked
someone with more experience than you what the problem was, or perhaps you
looked it up in a manual or researched the syntax of the formula.

When you run forms and reports, Access may report an error if it finds something
seriously wrong. When you create VBA code, there are a wide variety of tools built
into the editor to help you.

VBA Assistance: Auto Quick Info and Auto
List Members

While you are learning VBA syntax, working in the code window can seem awkward
compared to everything else you may have developed in your Access application.
The Visual Basic Editor, however, has some built-in features to help you on your
way to becoming a VBA expert.

As you type each line of code in your procedure, on-screen help — called Auto
Quick Info and Auto List Members — guides you through the vast array of com-
mands and options available for your procedure.

Auto Quick Info help displays the options for the command you entered. The next
parameter to enter displays in bold. As you specify each parameter and press the
spacebar between parameters or you enter the comma separator, the next parame-
ter you would enter displays in bold. Figure 24-2 shows the Auto Quick Info help for
all of the parameters of the MsgBox command.

Figure 24-2: Auto Quick Info help for the MsgBox command.

786 Part I, Section III ✦ Automating Your Applications

Auto List Members automatically displays when you type the beginning of a
command — for example, when you enter MsgBox and press the spacebar key to
display a list of options. You can then enter the message and press the comma (,)
key. Then, a list of possible commands displays, as shown in Figure 24-3. You can
either select one of the commands in the list, or continue typing the command if
you already know the one you want to use.

Figure 24-3: Auto List Members help in the code window.

Syntax checking — The first step
When you type a line of code in VBA, each character is being evaluated against the
known but limited set of valid VBA commands. When you have completed entering
each line of code, another built-in tool known as the syntax checker is used to make
sure the line of code contains valid entries.

Syntax is the name given to computer grammar. Figure 24-4 shows a statement
typed incorrectly and the error message that is displayed. You may also notice that
the lines are different colors. Black indicates a valid line of code. Green is used for
comments, and red is used when a line has been flagged by the syntax checker and
not yet corrected.

Unlike some other languages, VBA will let you leave a line of code that has an error
and fix it later. Sometimes, it is another line of code that needs to be added or
changed in order to fix a subsequent line.

787Chapter 24 ✦ Effective Debugging and Error Handling in VBA

Figure 24-4: A Microsoft Access 2003 syntax error.

Compiling Procedures
After you create a subprocedure or function and want to make sure all of your syn-
tax is correct, you should compile your procedures by choosing Debug ➪ Compile
project name from the VBA menu. This action checks your code for errors and also
converts the programs to a form your computer can understand. If the compile
operation is not successful, an error window appears, as shown in Figure 24-5.

This level of checking is more stringent than the single-line syntax checker.
Variables are checked for proper references and type. Each statement is checked
for all proper parameters. All text strings are checked for proper delimiters such as
“text string.”

Figure 24-5: Viewing a compile error.

788 Part I, Section III ✦ Automating Your Applications

Access compiles all currently uncompiled procedures, not just the one you are cur-
rently viewing. If you receive a compile error, you should immediately modify the
code to rectify the problem. Then try to compile the procedure again. If there are
further compile errors, you will see the next error.

When your application is compiled, the Debug ➪ Compile menu choice is disabled.
Before implementing an application at the customer’s site, you should make sure
that your application is compiled.

Handling Null Values

Null values require special handling when they can potentially exist. This is especially true
when assigning the value of an unknown table field, combo box column, or memory vari-
able to another. If an unexpected error occurs because the value being retrieved is not valid,
your system will crash. The most common type of assignment errors are handling nulls,
blanks, and zero-length strings as well as invalid data types.

The IsNull function handles null values. This is a value that has never been entered. A string
is null until something is entered into it. Using the IsNull function is a great start but does
not cover all possibilities.

If IsNull(somevariable) Then dosomething

Suppose you enter a value into a variable and then, after saving it, you go back and delete
the value. This creates a zero-length string. The IsNull function does not trap zero-length
strings. This requires a check of the length of the value.

You could enter If Len(somevariable) = 0 to check for a zero-length string. If the statement
evaluated to True, you would not place the zero-length string into the variable. However,
suppose the value was Null; checking the length of it would cause an error. You can use a
different function to convert null values to blanks and then combine the two functions to
perform both checks. The command would be:

If Len(Nz(somevariable)) = 0

The nz function (null to zero) converts a null to a blank for strings and to a zero for numer-
ics or dates. The length of this can then be checked. There is, however, one more function
that may need to be used. If the value was null and the nz function is used, the resulting
blank value would return a value of 1 when the Len function is used to check the length.
The Trim function can be used to remove trailing blanks (or all blanks if the string consists
only of blanks) and will allow a value of 0 to be returned to the check. The final statement
would then be:

If Len(Trim(Nz(somevariable))) = 0

789Chapter 24 ✦ Effective Debugging and Error Handling in VBA

Your database is named with a standard Windows name such as Chap24, but there
is a separate project name that Microsoft Access uses internally. You will see this
when you compile your database. When the database file is first created, the pro-
ject name and the Windows filename will be the same. The project name is not
changed when you change the Windows filename. You can change the project name
by selecting Tools ➪ projectname Properties (where project name is the current
internal project name).

Compiling your database only makes sure that you have no syntax errors. The com-
piler can only check for language problems by first recognizing the VBA statement
and then checking to see that you specify the right number of options and in the
right order.

After you compile your program, you should also compact your database. Each
time you make a change to your program, it stores both the changes and the origi-
nal version. When you compile your program, it may double in size as the compiled
and uncompiled versions of your code are stored. When you compact the database,
it will reduce the size of the database by as much as 80 percent as it eliminates all
previous versions internally.

Handling Runtime Errors
You might create a line of code that references a certain form, and that form is
expected to be opened by a previous module. If that form is not open when the pro-
gram runs, you cannot determine that during the compile step, because the com-
piler evaluates each procedure separately and does not try to compare the logic
between procedures or modules. When the program runs, however, you will get an
error message.

When you get an error message, you can likely respond to it. However, some errors
are harder to understand than others, and some require you to instantly recognize
the problem. For example, Figure 24-6 shows a simple program that declares and
creates a text string variable and a numeric variable and then tries to assign the
numeric variable the value of the text string. You probably already know that you
can’t put letters in a numeric field.

The error message in Figure 24-6 reports a Runtime error ‘13:’ — which happens to
be a Type mismatch. Unless you know the problem, how does this message help
you? Without a great deal of experience, how do you then fix this type of problem?
In fact, how do you determine what the problem is?

790 Part I, Section III ✦ Automating Your Applications

Figure 24-6: A runtime error message.

In the error dialog box in Figure 24-6, you can see a button labeled Debug. The
Debug button will stop the program where it is running and place you on the offend-
ing statement. The program is in a state of limbo. All of the values of temporary
variables are intact, and you can view them to help you solve the error. The End
button will cause the program to stop running, and you cannot use any tools to
check the problem.

Figure 24-7 shows this statement. It is highlighted by a yellow background, indicat-
ing that it is the offending statement, and there is an arrow in the left margin. There
are several tools you can then use to find your problem.

Figure 24-7: Displaying the value from a running variable.

791Chapter 24 ✦ Effective Debugging and Error Handling in VBA

If you place your cursor over any variable in the highlighted area, you can see the
current value. If you examine Figure 24-7, you can see the arrow in the left margin,
indicating that the highlighted line is the currently running line of code. You can
also see the rectangle containing the text somenum = 156, the current value of the
variable named somenum, which has been set to 156. You could also see that the
value of somenum is currently 156.

Although you can place your cursor on the running variable and determine the val-
ues, you may want to see the value of other variables as well. Sometimes, depend-
ing on how the program is structured, you can do this, but you are usually limited
to the latest values created.

Using the Immediate, Locals, and Watches
Windows

There are several more tools that can help you debug a program. These include the
Immediate, Locals, and Watches windows. Each can be displayed as part of the
Visual Basic editor window by selecting View ➪ Immediate Window, View ➪ Locals
Window, and View ➪ Watch Window. Each may be necessary depending on the
severity of your problems and the mysteriousness of the error.

The Immediate window is an area where you can run procedures, check the value of
variables, check an expression, or run a single line of VBA code. You can run a VBA
subprocedure by using the syntax Call procedurename where procedurename is a
subprocedure. You can also run a function by adding a ? in front of the call and
adding a variable for the return value, such as ? x = functionname. You can check
the value of any variable running in your program by adding a ? in front of the vari-
able name.

You can see the values of the running variables in Figure 24-8. Here, in the
Immediate window, you see that ? somenumber was entered and produced the
value 200.

You can add watchpoints by using the Add Watch or Edit Watch options from the
Debug menu.

The Locals window can be used to display all of the active memory items in your
running program. These include forms, modules, and variables. In Figure 24-8, you
can see the Locals window in the bottom-left corner of the figure. Because only a
simple module is running, you only see the reference to that object. If you were also
running a form, you would see a reference to the form object along with a tree dia-
gram that could be exploded to show each control on the form and the value of
each control for the current record. This is important when you are debugging a
module behind a form or report.

792 Part I, Section III ✦ Automating Your Applications

Figure 24-8: Using the Immediate, Locals, and Watches windows.

Generally, you start with just the module debugger and then, if necessary, move into
the Immediate window. If you need to view more variables, you might display the
Locals window. There is also an advanced window known as the Watches window.
Although this is outside the scope of this book, the Watches window lets you set up
specific values to watch for and then stop the program when a value is reached. For
example, if you are expecting an incremental value to reach 500 by 1 and it never
does, you might set a Watch variable to see if it hits 100, rather than randomly check
the program when it runs. If the watchpoint (as it is called) hits 100, the program is
stopped and the line of code that the program was on when the value reached 100 is
highlighted. This is the same as a runtime error without the actual error.

When the program stops, there are some other tools you can use to step through
the program one line at a time. You can also move to previously executed lines to
check your program logic. Besides the watch window, you can stop your program
at a specific point by using a breakpoint.

Creating a Breakpoint
There is one more code debugging tool that professional developers use, known as
breakpoints. Whereas the watch window watches for a specific value, breakpoints sim-
ply watch for a specific line to be executed and stop the program at that statement.

A breakpoint is often used to stop a program from running before it causes an error.
This way, all the variables and conditions of the objects can be checked before the
error occurs.

793Chapter 24 ✦ Effective Debugging and Error Handling in VBA

To set a breakpoint, display your program in design view and press the F9 function
key or press the Toggle Breakpoint menu item from the Debug menu. Figure 24-9
shows a breakpoint on the line that starts a loop. After you set the breakpoint, you
can close the module and the breakpoint will be remembered until the database file
is closed. When you run the program and that module is executed, the program will
stop on that line and display the program at the breakpoint.

Figure 24-9: Setting a breakpoint.

When the program is run (by moving to the top line and pressing F5 or F8 to run one
line at a time) and is stopped, you can use options on the Debug menu to control the
execution. The Debug menu is shown in Figure 24-10 with the line stopped where the
breakpoint is set. Notice the solid red circle and the yellow arrow in the margin. The
red circle indicates the breakpoint, and the arrow indicates the current line.

You can set as many breakpoints as you want, but generally more than one may be
confusing unless you are trying to determine if a block of code is being run at all.

The Debug menu is broken into five areas. The first area lets you compile the appli-
cation. You generally don’t do this while the program is running.

The next area lets you use different methods to continue running your program one
or more statements at a time.

✦ Step Into: Run the next one line of code.

✦ Step Over: Run the next line of code and all the code in any called
procedures.

✦ Step Out: Run the entire current procedure and then stop with the next line in
the original called procedure.

794 Part I, Section III ✦ Automating Your Applications

✦ Run To Cursor: You can move your cursor to a later line and run all the state-
ments between the current line and the line where the cursor is.

Figure 24-10: Using the Debug menu.

The next group lets you add or edit a watchpoint in the Watch window. You can also
run a quick watch to just see the value of a variable, similar to entering ? somevari-
ablename in the Immediate window.

The next group lets you toggle a breakpoint on or off or clear all breakpoints. When
you close a database file, all breakpoints are automatically cleared.

The final menu choices are perhaps the most powerful. Set Next Statement lets you
move the cursor to any line of code — forward or backward — and then run the pro-
gram starting with that line. If you are trying to correct an error and keep getting it
wrong, being able to go backward is very important. Show Next Statement simply
highlights without running the next statement that will run.

There are also several options on the Run menu that will help you debug a program:

✦ Continue: Continues running the program without stopping, until it reaches
the next error, breakpoint, or the program’s conclusion.

✦ Break: Stops the program where it is running. You can also use Ctrl-Break to
stop a running program and cause a manual break. If you accidentally create
an endless loop, this will stop the program.

✦ Reset: Stops the error process and lets you restart the program from any
desired line of code.

795Chapter 24 ✦ Effective Debugging and Error Handling in VBA

When you are debugging a running program and finally get a line of code corrected,
make sure you press the Save icon, or your changes will not be saved when you
close the procedure.

By using the wide variety of debugging tools, you will be able to diagnose your cod-
ing problems and quickly solve them. You can also use the Visual Basic Help system
to help you understand the problem being reported, but generally errors will be
yours to solve.

Errors
Assuming you get past the syntax checking using the VBA editor and you also get
past the errors that Access will find when you compile your application, the only
remaining errors that can occur will occur at runtime. Runtime errors occur for a
multitude of reasons. When they do occur, the error will cause one of following four
things to happen:

✦ A fatal error and the application crashes

✦ An untrapped error and the Access error dialog box appears

✦ A handled error and your code takes care of the problem

✦ An Unknown application error that will not cause an Access error

Types of errors
A fatal error is a non-recoverable error that will crash an application. These errors
are generally a result of an operation outside the Access environment, so Access
cannot handle it and your code will therefore not be able to handle it. These types
of errors generally occur when a Windows API is called. Because you cannot do
much about these fatal errors other than to fix them, you can concentrate on the
types of errors you can control.

The Access Error dialog box will appear for untrapped errors, as shown in Figure
24-11. This can be good for development because problems can be traced to the
specific line of code that caused the error. When you press the Debug button, the
VBA window will open and highlight the guilty line of code. But this is not the kind
of reaction you generally want with your applications and end users. For this rea-
son, having an error handler and making it a handled error is much better. You can
sometimes not just alert the user of a problem, but maybe prevent the user from
even worrying about the problem by having the code take some action to either
work around the error or correct the problem.

The last type of error is the unknown application error. This is a logic error in the
code. No error is displayed because the program is working the way it was coded.
For example, an endless loop can occur if you forget to advance a record pointer as
you traverse a recordset or your Do Loop never ends. The problem is that the code

796 Part I, Section III ✦ Automating Your Applications

is doing the wrong thing. This could be the hardest type of error to discover. There
are several different ways to handle these errors:

✦ Check the results programmatically by redundantly checking the results.

✦ Use the Watch window or breakpoints to watch the code run line by line.

Figure 24-11: The Access Error dialog box.

The elements of error handling
Access 2003 provides several basic programming elements to work with for errors,
including the following:

✦ VBA Error statements

✦ The Error event

✦ The Errors collection

✦ The Err object

When Access detects an error, most of the time an object is created for the error.

VBA error statements
There are two basic VBA statements for handling errors:

✦ On Error ...

✦ Resume ...

797Chapter 24 ✦ Effective Debugging and Error Handling in VBA

The On Error statement enables or disables error handling There are three forms of
the On Error statement:

✦ On Error Resume Next

✦ On Error GoTo somelabelname

✦ On Error GoTo 0

The On Error GoTo somelabelname statement enables an error-handling routine.
The label should be the label for the error-handling routine. When this statement is
executed, error handling is immediately enabled. When an error then occurs, execu-
tion goes to the line specified by the label argument, which should be at the begin-
ning of the error-handling routine.

To disable error handling, use the On Error GoTo 0 statement. This statement also
resets the properties of the Err object.

The On Error Resume Next statement ignores the line that causes an error and
continues execution with the line following the line that caused the error. No error-
handling routine is called. This statement is useful if you want to ignore errors.
Figure 24-12 shows a program that simply ignores a potential null or EOF error.

Figure 24-12: Ignoring errors with On Error Resume Next.

You return to the main procedure from an error handler using the Resume state-
ment. If you do not want to resume execution in case of an error, the Resume state-
ment is not necessary. All you need to do is exit the procedure.

798 Part I, Section III ✦ Automating Your Applications

As with the On Error statement, there are three forms of the Resume statement:

✦ Resume or Resume 0

✦ Resume Next

✦ Resume somelabelname

The Resume or Resume 0 statement returns execution to the line at which the error
occurred. This statement is typically used when the user must make a correction.
This might occur if you prompt the user for the name of a file to open and the user
enters a filename that doesn’t exist. You can then force the execution of the code
back to the point where the filename is requested.

When your error handler corrects or works around the problem that caused the
error, the Resume Next statement is used. It returns execution to the line immedi-
ately following the line at which the error occurred.

If you need to continue execution at some other place besides the line that caused
the error or the line after the line that caused the error, the Resume Label statement
should be used. It returns execution to the line specified by the label argument.

Handling an error with error messages
The On Error GoTo Label format allows you to trap an error and then display either
a custom message box or generic display. Figure 24-13 shows a program with a sim-
ple recordset. Notice the On Error GoTo DisplayError command. When an error
occurs, control is transferred to the DisplayError label, which displays a simple
message box.

The message box uses the Err object to report the error number, description, and
source.

Figure 24-13: Handling errors with On Error GoToLabel.

799Chapter 24 ✦ Effective Debugging and Error Handling in VBA

The two types of error objects in Access are based on whether the error was
detected by ADO or Access. The Errors collection is part of the ADO object model.
The Err Object is part of the Access and DAO object model. In addition to these two
elements, Access has an Error Event that gets triggered when an error occurs with
a form or report.

The Err object
The err object is created by VBA. When an error occurs, information about that
error is stored in the Err object. The Err object contains information about only one
error at a time. When an error occurs, the Err object is cleared and updated to
include information about that most recent error.

The Err object has several properties, including Number, Description, and Source.
The Number is the internal number of the error, and the Description gives you a lit-
tle more information about the error. The Err object also has two methods: Clear, to
clear information from the Err object; and Raise, to simulate an error.

When an error occurs relative to the Jet database engine or ADO, you need to refer
to the Errors collection to get more information.

The error event
Access also provides for an error event when running a form or report. This pro-
vides a nice way to trap an error when VBA code is not running. This event is trig-
gered when an error occurs on a form or report. You need to create an event
procedure for the On Error event to trap these errors. The procedure would look
like one of the following, depending on whether it was a form or a report:

Private Sub Form_Error(DataErr As Integer, Response As Integer)
‘Insert error handler here
End Sub

Private Sub Report_Error(DataErr As Integer, Response As
Integer)
‘Insert error handler here
End Sub

There are two arguments for these subroutines: DataErr and Response. DataErr is
the error code returned by the Err object when an error occurs. Note that the Err
object isn’t populated with information after the event occurs. You need to use the
DataErr argument to determine what error occurred. The second argument,
Response, should contain either one of the following constants:

✦ AcDataErrContinue: Ignore the error and continue without displaying the
default Access error message.

✦ AcDataErrDisplay: Display the default Access error message. (This is the
default.)

800 Part I, Section III ✦ Automating Your Applications

When you use AcDataErrContinue, you can then supply a custom error message or
handler in place of the default error message.

Error-handling procedures
There are obviously numerous ways to deal with errors within forms, reports, and
code. Each form and report, as well as each function and subroutine, can and prob-
ably should have an error-handling routine. It is not unusual to see a good part of
the development effort devoted to error handling. As you look through the various
components in our example application, you will see numerous examples of error-
handling routines.

Probably the most common routine is the following one:

Function SampleCode
‘Dim statements here

On Error goto ErrorHandler
‘insert functional code here
Exit Function

ErrorHandler:
‘error handler code here
Msgbox err.description
‘either enter a resume statement here or

‘ nothing and let the function end

End Function

The On Error statement enables the error handler, and if an error occurs, execution
will continue on the line after the label ErrorHandler. This label could be any valid
VBA label. The error-handler code would deal with the error and then either
resume execution back in the body of the procedure or just exit the function or sub-
routine. The inclusion of the Msgbox statement in the error handler is a typical way
of informing the user what happened.

When an error occurs in a called function or subroutine that doesn’t have an
enabled error handler, VBA will return to the calling procedure looking for an
enabled error handler. This process will proceed up the calling tree until one is
found — or if one is not found, execution will stop with an Access error message
displayed.

The Errors collection
When an error occurs in an ADO object, an error object is created in the Errors col-
lection of the Connection object. These are referred to as Data Access errors. When
an error occurs, the collection is cleared and the new set of objects is put into the

801Chapter 24 ✦ Effective Debugging and Error Handling in VBA

collection. Although the collection only exists for one error event, the event could
generate several errors. Each of these errors is stored in the Errors collection. The
Errors collection is an object of the Connection object, not ADO.

The Errors collection has one property, “Count,” which contains the number of
errors or error objects. It has a value of zero if there are no errors. There are a few
properties of the Error object. These include Description, HelpContext, HelpFile,
Number, and Source. When there are multiple errors, the lowest-level error is the
first object in the collection, and the highest-level error is the last object in the
collection.

When an ADO error occurs, the VBA Err object contains the error number for the
first object in the Errors collection. You need to check the Errors collection to see
whether additional ADO errors have occurred.

In the following code, you will find an error handler that can be used in a procedure
that deals with an ADO connection. When an error occurs, the code following the
label ErrorHandler runs and first checks to see if the Error object contains any
items. If it does, it checks to see if the error is the same as the Err object. If it is the
same, the error was an ADO error and the variable strMessage will contain the
descriptions of all the errors in the Errors collection. If it is not an ADO error, the
error is from VBA and the single Err.Description value will be displayed:

Dim cnn As New ADODB.Connection
Dim errX As ADODB.Error
Dim strMessage As String

On Error goto ErrorHandler

‘insert code here

GoTo Done

ErrorHandler:
If cnn.Errors.Count > 0 Then
If err.Number = cnn.Errors.Item(0).Number Then
‘error is an ADO Connection Error
For Each errX In cnn.Errors
strMessage = strMessage & err.Description & vbCrLf

Next
MsgBox strMessage, , “ADO Error Handler”

End If
Else

‘error is a VBA Error
MsgBox err.Description, , “VBA Error Handler”

End If
Done:

802 Part I, Section III ✦ Automating Your Applications

Logging Errors
An even better option is to trap errors and log them to a file for later use. The pro-
gram shown in Figure 24-14 causes an error and runs a function called DispError.

Figure 24-14: Handling errors with a logging routine.

The DispError function is passed two parameters from the module that identifies
the primary and secondary source of the error. This is entered by the developer to
later determine the exact location of the error. Sometimes, an error occurs but you
cannot pinpoint the procedure or function where it came from. Sometimes, it can be
from a form module or report module, or sometimes the source is a procedure in a
specific module.

Figure 24-15 shows the DispError function. The function uses the two passed
parameters as well as the number and description from the error to open another
form that gives a brief look at the problem.

The form shown in Figure 24-16 is named AppError on the example database. As
you can see, the four parameters are passed from the error routine through the
DispError function to the AppError form.

803Chapter 24 ✦ Effective Debugging and Error Handling in VBA

Figure 24-15: The DispError function.

Figure 24-16: The AppError form.

On the AppError form is a button with the caption Problem Report. This opens a
form named Problem Report Dialog, as shown in Figure 24-18. Before the form is
opened, a set of code (as shown in Figure 24-17) is run to create a record in the
Problem Report table. This allows errors to be recalled by the user and enhanced if
necessary by allowing them to add more information about the error, including the
steps to duplicate the error and comments about how the error occurred.

The Problem Report form can also be printed or e-mailed to a technician. The
Problem Report form and logging system can be an invaluable debugging tool for
the technical support person because it allows an end user to better communicate
a problem without losing the details or miscommunicating the problem.

By using proper debugging techniques and using error handlers, you can create
great crash-proof applications.

804 Part I, Section III ✦ Automating Your Applications

Figure 24-17: Opening the Problem Report form.

Figure 24-18: The Problem Report form.

✦ ✦ ✦

Creating
Switchboards,
Command Bars,
Menus, Toolbars,
and Dialog Boxes

In previous chapters, you learned how to create individual
Access objects, such as tables, queries, forms, reports, and

macros. You worked with each object interactively in Access,
selecting the Database window and using the assorted
objects.

In this chapter, you tie these objects together into a single
database application — without having to write or know how
to use a complex database program. Rather, you automate the
application through the use of switchboards, dialog boxes,
and menus. These objects make your system easier to use,
and they hide the Access interface from the final user.

This chapter will use the database named CHAP25Start.mdb.
If you have not already copied it onto your machine from the
CD, you will need to do so now. After you have completed
this chapter, your database should resemble the one in
CHAP25End.mdb.

On the
CD-ROM

2525C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a
switchboard by using
a form and command
buttons

Using the Command
Button Wizard

Using the Picture
Builder

Adding a custom
command bar to a
form

Creating custom
menu bars

Creating custom
toolbars

Creating shortcut
menus

Creating control tips

Creating a Print
dialog box

✦ ✦ ✦ ✦

806 Part I, Section III ✦ Automating Your Applications

Switchboards and Command Buttons
A switchboard is fundamentally a form. The switchboard form is a customized appli-
cation menu that contains user-defined command buttons. With these command
buttons, you can run macros that automatically select actions, such as opening
forms or printing reports.

Using a switchboard button, you can replace many interactive user steps with a sin-
gle button selection (or click). For example, if you want to interactively open the
frmContacts and frmSales forms, you must perform three actions: Switch to the
Database window, select the Forms tab, and open the two forms individually. If you
use a switchboard button to perform the same task, you simply click the button.
Figure 25-1 shows the switchboard window for the Access Auto Auctions system
with several buttons. Each command button triggers a macro that performs a series
of steps, such as opening the frmContacts form or running the
rptCustomerMailingLabels Report.

Figure 25-1: A switchboard with several command buttons for forms
and reports.

By using a switchboard and other objects that we discuss in this chapter, you can
tie your database objects together in a single database application. The application
has a user interface that you create rather than the Access interactive interface.
A primary component of that user-defined interface is the switchboard that you
create.

807Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Using a switchboard
A switchboard’s primary use is as an application interface menu. The switchboard
in Figure 25-1 is the application interface menu for the Access Auto Auctions
database. As the figure shows, the switchboard contains several command buttons.
When the user clicks on any switchboard button, a macro is triggered that performs
some action or a series of actions.

Creating the basic form for a switchboard
You create a switchboard by adding command buttons to an existing Access form.
The form in Figure 25-1 is a standard Access display form. Forms can have many
uses, including data entry, data display, and switchboards.

Because switchboard forms are used as application menus, they tend to use a lim-
ited number of form controls. Typically, you find command buttons, labels, object
frames (OLE objects, such as pictures), lines, and rectangles. Normally, switch-
boards lack the other types of form controls, such as text boxes (bound to fields),
list and combo boxes, graphs, subforms, and page breaks.

To create a basic switchboard form, you place labels like titles and group headings
on the form. In addition to the labels, you may also want to place lines, rectangles,
and pictures on the form to make it aesthetically appealing. You create the basic
switchboard form by using the techniques that you learn in the chapters that cover
form objects.

Consider, for example, the switchboard in Figure 25-1. Apart from the command but-
tons, this is a typical Access application form. Its major components are a title,
some other text controls, various colored rectangles, a line, and a picture (image
control).

You can create a switchboard using a standard Access form or having Access cre-
ate your menu for you using the Switchboard Manager under the Database
Utilities choice of the Tools menu. Using the Switchboard Manager is covered later
in this chapter.

To create the basic form for the Access Auto Auctions system, follow these steps:

1. Create a new form by clicking on the New button in the Forms Objects
window.

2. Select Design View in the New Form dialog box and click the OK button.

3. Resize the form to be approximately 7 inches wide and 4 inches high by drag-
ging the bottom-right corner of the detail section (after making the form
design window large enough to resize it visually).

Tip

808 Part I, Section III ✦ Automating Your Applications

4. Double-click in the details section, or click on the properties button to open
the property sheet for the form.

5. Select the Format tab and then click in the Back Color; then click on the Build
button for the Back Color property. This will activate the Color dialog box.
Your screen should resemble the one shown in Figure 25-2.

Figure 25-2: The new AAASwitchboard form with the
property sheet open and the Color picker dialog box.

6. Select white from the choice of colors and click the OK button to change the
Background color to white. You will be returned to the Property Sheet and the
color will be changed to the number 16777215, which represents white.

7. Click in any other property area and the background color will be changed to
white.

8. Select a label object from the Toolbox, place it on the form starting at
about the 3 inch wide and 1⁄2 inch down location, and change the following
properties — Caption: Access Auto Auctions; Font Size: 22; Fore Color: to a
medium gray.

9. Select a line object from the Toolbox and place it immediately below the label
object.

10. Select an image object from the Toolbox and place it on the left side of the
form and size it to fit the blank area.

11. Select the AAAfinalweb.jpg filename in the Insert Picture dialog box that
appears (you may have to go to the directory that has the file to find it), and
press the OK button. Change the Size Mode property (under the Format tab)
to Stretch.

Your form should now resemble the one shown in Figure 25-3.

12. Save your form, naming it frmAAASwitchboard.

809Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Figure 25-3: The basic frmAAASwitchboard before putting the command buttons
on it.

With the basic form created, you are ready to work with command buttons.

Working with command buttons
Command buttons are the type of form control that you use to run macros or VBA
routines. Command buttons are the simplest type of form controls, having the sin-
gle purpose of executing a macro or VBA procedure that can exist behind a form or
in a module procedure.

In this example, you create command buttons that run macros or VBA procedures.
As you learned in previous chapters, macros or VBA procedures perform a multi-
tude of tasks in Access, including:

✦ Opening and displaying other forms

✦ Opening a pop-up form or dialog box to collect additional information

✦ Opening and printing reports

✦ Activating a search or displaying a filter

✦ Exiting Access

Figure 25-4 shows a command button named Command1 and its property sheet.
This property sheet contains the event properties available for a command button.

810 Part I, Section III ✦ Automating Your Applications

Figure 25-4: A single-button switchboard form with its open property
sheet. Notice that it has a command button and a label added to it.

Each event property can trigger a macro or VBA procedure. For example, to
trigger a macro named mcrOpenSales when the user clicks on the button, place the
mcrOpenSales macro in the parameter box for the On Click property. The keyword
On identifies an event property. The property identifies the user event that must
occur to trigger an action.

Linking is covered in the section “Linking a command button to a macro,” later in
this chapter.

On Click and On Dbl Click are mutually compatible. If you activate both the On Click
property (giving it a macro name) and the On Dbl Click property, Access follows
this order of precedence for the mouse clicking and trapping:

1. On Click (single click)

2. On Dbl Click (double-click)

3. On Click (single click)

In other words, Access processes an On Click first and then an On Dbl Click and,
finally, an On Click again. Access always processes the On Click if it is defined. To
prevent the second On Click macro from running, place a CancelEvent action in the
On Dbl Click macro.

Cross-
Reference

811Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

In addition, if the macro you call from an On Click opens a dialog box (message box,
pop-up form, and so forth), the second click is lost and the On Dbl Click is never
reached. If you use On Click and On Dbl Click, the On Click should not open a dialog
box if you need to capture the On Dbl Click.

Creating command buttons
A command button’s primary purpose is to activate, or run, a macro or event pro-
cedure (VBA procedure). Access gives you two ways to create a command button:

✦ Click the Command Button icon in the Form toolbox.

✦ Drag a macro name from the database container to the form.

In this chapter, both of these methods are used at least once as you learn to create
the six command buttons that are shown in Figure 25-1 (four buttons to display a
form, one to display a report switchboard, and one to exit the application). In this
first example, you learn to create the first form button using the Command Button
Wizard.

When using the Command Button Wizard, in addition to creating a command but-
ton, you can also automatically display text or embed a picture on the button. More
importantly, you can create VBA modules to perform tasks (even if you don’t know
a single command in VBA), including:

✦ Record Navigation (Next, Previous, First, Last, Find)

✦ Record Operations (Save, Delete, Print, Add, Duplicate)

✦ Form Operations (Open, Close, Print, Filter)

What Is Focus?

To understand the terminology associated with command buttons, you need to know the
term focus. The two command button properties On Enter and On Exit gain or lose focus. In
other words, the focus represents the next item of input from the user. For example, if you
tab from one button to another, you lose the focus on the first button as you leave it, and
you gain the focus on the second as you enter it. In a form with several command buttons,
you can tell which button has focus by the dotted box around the label of the button. Focus
does not denote the state of input, such as when you press a button; rather, focus is the
object that is currently active and awaiting some user action.

The focus for mouse input always coincides with the button down, or pointer, location.
Because focus occurs at the moment of clicking a command button, the property On Enter
is not triggered. The reason for this is that On Enter occurs just before the focus is gained;
that state is not realized when you select a command button by using a mouse. The On
Enter state never occurs. Rather, the focus and On Click occur simultaneously, bypassing the
On Enter state.

812 Part I, Section III ✦ Automating Your Applications

✦ Report Operations (Print, Preview, Mail)

✦ Application (Run Application, Quit, Notepad, Word, Excel)

✦ Miscellaneous (Print Table, Run Query, Run Macro, Auto Dialer)

In Chapters 18 and 19, you learn to create and edit Visual Basic code with the
Command Button Wizard.

To create the Contact form button using the Command Button Wizard, follow these
steps:

1. Open the frmAAASwitchboard form in Design mode.

2. Make sure that the Control Wizards icon is toggled on in the toolbox. Located
at the top of the toolbox, it looks like a wand with three little blue circles
below it in a triangle and three black dots on a line. It should look similar to
the button shown in Figure 25-5.

Figure 25-5: The Control Wizards icon button toggled on in the
toolbox.

3. Click the Command Button icon in the toolbox.

4. Place the mouse pointer on the form in the form design screen, below the line
object and to the top right of the image object, and draw a small rectangle. It
should be immediately below the word Access.

Command buttons have no control source. If you try to create a button by drag-
ging a field from the Field List, a text box control (not a command button) is cre-
ated. You must draw the rectangle or drag a macro to create a command button.

The Command Button Wizard displays the dialog box shown in Figure 25-6. You
can select from several categories of tasks. As you choose each category, the
list of actions under the When Button Is Pressed header changes. In addition,
the sample picture changes as you move from action to action. In Figure 25-6,
the specified category is Record Navigation and the desired action is Find Next.

Note

Cross-
Reference

813Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Figure 25-6: The Command Button Wizard’s
Categories and Actions dialog box.

5. Choose the Form Operations category and the Open Form action.

6. Click Next to move to the next screen.

The Wizard displays a list of the Access Auto Auctions database’s forms.

7. Select the frmContacts form and click Next> to move to the next Wizard
screen.

The next screen is a specific dialog box for this button. Because you chose the
Open Form action, Access uses built-in logic to ask what you want to do now
with this form. As Figure 25-7 shows, Access can automatically write a VBA
program behind the button to open the form and show all records; if neces-
sary, it can let you specify fields to search for specific values after you open
the form.

Figure 25-7: The Command Button Wizard open
form with a specific data question.

814 Part I, Section III ✦ Automating Your Applications

8. Select Open the form and show all the records (default). Then click Next to
move on.

The next screen lets you decide what you want to appear on the button. You
can display text or a picture on the button. You can resize the button to
accommodate any size text. The default is to place a picture on the button.
You can choose from the default button for the selected action, or you can
click in the Show All Pictures check box to select from over 100 pictures. You
also can click on the Browse button to select an icon (.ICO) or bitmap (.BMP)
file from your hard drive or CD.

9. Click on the Text option button and erase the Open Form text in the text box.

The sample button displays nothing instead of the picture (see Figure 25-8).

Figure 25-8: Selecting a picture or text for the button.

10. Click Next to move to the final Wizard screen, which lets you enter a name for
the button and then displays the button on the form.

11. Enter CommandContacts as the name of the button and click Finish.

The button appears on the Form Design screen, as shown in Figure 25-9.

Notice the property sheet displayed in Figure 25-9. The On Click property displays
Event Procedure, which means that a module is stored behind the form. You can see
this VBA module library by pressing the Builder button (three dots) next to the
[Event Procedure] text. Figure 25-10 shows the code created and associated with
this command button.

When you click the CommandContacts button, the VBA program runs and the
frmContacts form opens.

A module window appears with the specific VBA program code necessary for
opening the frmContacts form (see Figure 25-10). You don’t need to look at this
code unless you plan to change the program. To close this module window, press
Alt+Q or select File ➪Close and Return to Microsoft Access. This topic is discussed
in Chapter 18.

Note

815Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Figure 25-9: Adding a button to the form design.

Figure 25-10: The event procedure module for opening the frmContacts
form.

You can create a command button and attach a macro very easily — or attach pic-
tures — without using the wizard. However, if you want to dabble in Visual Basic,
the Command Button Wizard is a great place to start.

Note

816 Part I, Section III ✦ Automating Your Applications

Associate a text label with a command button
With the command button now linked to open the form frmContacts, you may want
to create a label object and associate it with this button.

To associate a label with this command button, follow these steps:

1. Select the label object and place the label on the form alongside the command
button you just created.

2. Change the Caption Property to Open Contacts Form or type this into the
label object directly.

Now your form should look similar to the one shown in Figure 25-11. Notice that
the label has a small box to the left of it containing a yellow yield sign with an
exclamation point. This lets you known that the label you have just created is not
associated with a control object. If you deactivate the label control, the small yel-
low box will disappear until it is reactivated.

Figure 25-11: A label object added to the form to associate with the
command button.

3. Select the small box with the yellow yield sign and select Associate Label with
Control form the pull-down menu.

Access opens the Associate Label dialog box, similar to the one shown in
Figure 25-12.

Note

817Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Figure 25-12: The Associate Label dialog box, open
to associate a label with the command button.

4. Select the CommandContacts control object from the choices (currently the
only choice) and click the OK button.

You are returned to the design surface and the label is now associated with the
command button as shown in Figure 25-13.

Figure 25-13: The label associated with the command button.

Copying existing command buttons and labels
You can use the Command Button Wizard, as shown on the previous page, to create
the remaining buttons and their associated labels. However, it is just as easy to
associate a macro or an event procedure to a command button after it is created.

For instance, you can click on the first button and choose Edit ➪ Duplicate from the
menu bar to duplicate the button. Doing this four times will place four new command

818 Part I, Section III ✦ Automating Your Applications

buttons and their associated labels on the form under the first one — for a total of
five buttons. The Exit button will be discussed later. You would then only need to
change the text or graphic on each button and change the code or macro behind
each button’s On Click event.

This only duplicates the button itself, not the code behind the button.

After you duplicate the Customer button for all the other text entries except the
last one, your screen should look like the one shown in Figure 25-14. Notice that all
the buttons have the same text associated with them — Open Contacts Form.
However, only the first button has an actual procedure associated with it. The oth-
ers have no macro or event procedure associated with them yet. You need to
change the text associated with each button and assign either your own VBA proce-
dure or a macro with them.

Figure 25-14: The switchboard with five buttons onscreen; all but the
first one need to be modified.

Linking a command button to a macro
As soon as you create a command button in the Design window, it becomes active.
You can click on it, although it doesn’t perform any action unless you created it
with the Wizard. Switching to the Form window by clicking on the Form button on
the toolbar displays the switchboard. You can use any of the six buttons that you
created in form design mode.

Each time you click on a button, it graphically pushes down, showing that it is
selected. Except for the first Contacts button, however, nothing else occurs; only
the button movement happens. By switching back to design mode and clicking on
the Design button on the toolbar, you can link a macro to the button.

Note

819Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

To link a command button to a macro, you enter the macro name into the property
cell of one of the command button’s event properties. To see the property sheet for
a command button, follow these steps:

1. Select the second command button on the form. This will become the Open
Sales command button.

2. If the Properties Sheet is not active, click the Properties button on the toolbar
or select View ➪ Properties.

A property sheet similar to the one shown in Figure 25-15 should be visible on your
screen. Notice that the event properties begin with the word On in the property
sheet. The On Click pull-down has been selected, showing several macros available.

Figure 25-15: The property sheet for the second command button linking
a macro to the On Click property.

The property most commonly used to link a command button to a macro is On
Click. This property runs a macro whenever a user clicks the button. When the but-
ton is selected, the On Click property becomes True and the specified macro runs.
To associate the OpenFormSales macro in the AAA Switchboard macro group, fol-
low these steps:

1. Make sure the Open Sales command button is still selected.

2. In the property sheet for the command buttons, click the On Click property
cell in the Event tab area.

3. Select AAA Switchboard.OpenFormSales from the list of macros in the cell and
press Enter.

820 Part I, Section III ✦ Automating Your Applications

Make sure that both the macro group name and then the macro name separated by
a period display in the On Click property.

When you enter a macro name, the macro doesn’t have to exist. You can enter the
name of a macro that you want to create later. In this way, you can create the
switchboard first and the macros later. If the macro name that you enter in the On
Click cell doesn’t exist when you open the form and click the button, Access dis-
plays an error message.

With the macro now assigned to the command button, you should change the text
associated with it to reflect that it will open the Sales form. Follow these steps to
change the text of the label:

1. While still in design mode with the property sheet open, select the second
label (associated with the button you just changed).

2. Change the text of label by assigning the value Open Sales Form to the
Caption property or by double-clicking on the label and changing it directly
on the form.

By using these methods, you can now complete the properties for five of the form’s
buttons, assigning a macro for each button on the basis of the On Click property.
Table 25-1 shows each button name and the procedure or macro that it calls.

Table 25-1
The Five Form Buttons and Their Procedure/Macro Names

In Rectangle Button Function Macro Name.Macro for On Click

Form Contacts Event Property (created by Button Wizard)

Form Sales AAA Switchboard.OpenFormSales

Form Products AAA Switchboard.OpenFormProducts

Form Reports Switchboard AAA Switchboard.OpenFormReportSwitchboard

Form Company Setup AAA Switchboard.OpenFormCompanySetUp

The AAASwitchboard.OpenFormReportSwitchboard macro actually opens a sec-
ond switchboard that has a series of reports for the system that can be selected
and printed. This switchboard form will be created later in this chapter, using the
switchboard manager.

The macros for the frmAAASwitchboard form
In this example, each command button opens a form by using the OpenForm macro
actions. If you want to open a report, you can assign a command button a macro
that uses the OpenReport macro action instead. The Exit button closes the form
with the Quit macro action.

Note

Note

821Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

You can create each macro and its actions by following these general steps:

1. Enter a macro name in the Macro Name column. You may need to display this
column if it is off.

2. Enter a macro action in the Action column (such as OpenForm, OpenReport,
or Close) or select the macro action from the drop-down list box.

3. Enter a macro argument (name of the form or report) for each action.

4. Optionally, enter a remark (as a reminder) in the Comment Column.

Another way to add a macro action and argument is to drag the form or report from
the Database window to the macro’s Action column. Access automatically adds the
correct action in the Action column, which is OpenForm or OpenReport. Access
also adds the correct argument in the Name cell of the arguments.

There is a group macro already created for this chapter in the CHAP25Start.mdb
database. However, if you want to create the group macro for this chapter from
scratch, follow Table 25-2. This table shows each macro name, the action for each
macro, and the form name. (These are shown in Figure 25-16.) The AAA
Switchboard macro should already exist in the Macro Object list of the Database
window.

Figure 25-16: The macros used for the frmAAASwitchboard form.

The last macro, ExitAAARptSwtBrd, is not used by frmAAASwitchboard. However, it will
be used later when you create the Report Switchboard, frmAAAReportSwitchboard,
using the Switchboard Manager.

Note

822 Part I, Section III ✦ Automating Your Applications

Table 25-2
Macros Used in the Group Macro

Macro Name Action Argument Name (Form, Report, Object)

OpenFormContacts OpenForm frmContacts

OpenFormSales OpenForm frmSales

OpenFormProducts OpenForm frmProducts

OpenFormCompanySetUp OpenForm frmCompanySetup

OpenFormRptSwitchboard OpenForm frmAAAReportSwitchboard

ExitAAASwtBrd Close frmAAASwitchboard

ExitAAARptSwtBrd Close frmAAAReportSwitchboard

Table 25-2 shows that the Close action, associated with the ExitAAASwtBrd macro,
closes the frmAAASwitchboard form. The last macro created will be used later in
this chapter when you create another switchboard using the Switchboard Manager.
All, except the last macro, work with the actual frmAAASwitchboard form. You learn
to create the Exit command button next.

Dragging a macro to the form to create a button
The frmAAASwitchboard form is missing the Exit command button. Earlier in this
chapter, you learn a way to add a command button in the Form Design window.
Another way that you can create a command button is to drag and drop a macro
name from the macro Database window to a position on the switchboard.

For example, to create an Exit command button for the frmAAASwitchboard form
by using the drag-and-drop method, follow these steps:

1. Enter the design mode for the frmAAASwitchboard form.

2. Activate the Database window by pressing F11 or Alt+F1.

3. In the Database window, click the Macros object button to display all macros.

4. Highlight AAA Switchboard on the Macro Object list.

5. Click on the AAA Switchboard macro; drag and drop it onto the form below
the rectangles.

6. Click in the cell of the On Click property, which is under the Event tab, of the
Exit button.

7. Move to the end of the macro group name and type .ExtAAASwtBrd or select
AAA Switchboard.ExitAAASwtBrd from the pull-down menu.

8. Click on the button name and change it to Exit.

823Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Your screen should now look similar to the screen shown in Figure 25-17. Notice
that when you add the macro to the form using the drag-and-drop method, Access
automatically creates a command button, names it the same as the macro, and
places the macro name (in this case, a group name) in the On Click property of the
button.

Figure 25-17: The new button that you created by dragging and dropping a
macro onto the form.

When you add the macro name to the On Click property, you don’t have to add the
macro group name. Rather, you move to the end and place a period after the group
name and then the macro name. Access automatically brings the group name into
the On Click property for you.

If you drag and drop a macro that is not a group macro, Access correctly places the
macro name in the On Click property and names the button the same as the
macro.

If you drag a macro group, as you did in this example, and do not add a macro
name to the On Click property, Access runs the first macro in the macro group.

Caution

Note

824 Part I, Section III ✦ Automating Your Applications

Adding a picture to a command button
The five command buttons that you create contain nothing in the Caption property
of the button. The last button currently contains the text, Exit, in the Caption
property of the command button. Instead of entering text in the caption property,
you can have any button display a picture. For example, one of the files with the
CHAP25Start.mdb is named EXIT.BMP, which is a bitmap of an exit sign. You can
have the Exit command button show the picture EXIT.BMP rather than the word Exit.

To change a command button to a picture button, use one of these methods:

✦ Type the name of the bitmap (.BMP) containing the picture into the Picture
property of the button.

✦ Use the Picture Builder to select from an icon list that comes with Access.

✦ Specify the name of an icon or bitmap file.

To change the Exit command button to the picture button EXIT.BMP, using the
Picture Builder, follow these steps:

1. With the frmAAASwitchboard form in Design mode, click on the Exit command
button.

2. Display the Property window.

3. Select the Picture property, which is under the Format tab, for the Exit button.

4. Click the Builder button (three dots on a little button).

The Picture Builder dialog box appears. No picture initially appears in the left
frame because the button that you are modifying has none. Because you are
adding a picture for an Exit button, you may want to see if Access contains an
Exit button. You can scroll down the list of Available Pictures, as shown in
Figure 25-18. Access has an Exit picture, but it may not be what you want. You
can select any bitmap or icon file on your disk.

Figure 25-18: The Picture Builder
is active with the default exit button
highlighted.

5. Click the Browse button.

The Select Picture dialog box shows a standard Windows directory list. Select
the directory that contains your EXIT.BMP file.

825Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

6. Select the EXIT.BMP file and click Open.

The Select Picture dialog box closes and you are returned to the Picture
Builder dialog box. The new EXIT.BMP bitmap appears in the sample area.
Although it doesn’t fit in the sample, it should fit on the button when it is dis-
played. Figure 25-19 shows the EXIT.BMP in the sample area.

Figure 25-19: Viewing a sample
bitmap in Picture Builder.

7. Click OK to accept the bitmap.

Access places the path of the bitmap in the Picture property. After you save the
application, however, the bitmap is no longer required to exist in the path because
it is embedded in the database. You can remove the name of the path.

8. Resize the button so that the picture shows only the word Exit.

Your form should look like the one shown in Figure 25-20. Notice that the button
has been resized and moved slightly closer to the right margin of the form in Figure
25-20. If you examine the Property Sheet in Figure 25-20, you can see that Access
added the path and filename of the bitmap to the Picture property cell for the Exit
button.

You also can type the filename directly into the Picture property. If Access can’t
find the picture file, it displays a dialog box stating that it can’t find your file. If you
know the drive and directory where the file is located, enter them in the Picture
cell with the filename (for example, C:\Access Bible\Examples\EXIT.BMP).

This action completes frmAAASwitchboard. Save your switchboard. Your next task
is to create frmAAAReportSwitchboard using the Switchboard Manager.

At this point, you could go back and add graphics to all the buttons as shown in the
initial switchboard at the beginning of this chapter — Figure 25-1.

You have several other bitmaps pictures with the chapter files that you can use to
duplicate the Switchboard shown in Figure 25-1.

Note

Tip

Note

826 Part I, Section III ✦ Automating Your Applications

Figure 25-20: The final form with a Picture button added.

Working with the Switchboard Manager
Previously, you created a switchboard by placing all the command buttons on a
new form. Access has a Wizard that allows you to create a switchboard; it is called
the Switchboard Manager.

In the previous section, you created frmAAASwitchboard and placed a command
button on it to open frmAAAReportSwitchboard. This form has not been created
yet. You could create this switchboard the same way as you created the AAA
Switchboard; however, you can also create it using the Switchboard Manager.

The Switchboard Manager lets you create a dynamic switchboard that can be modi-
fied, changed, and added to anytime during the life of your application. Figure 25-21
shows a Switchboard created with the Switchboard Manager. After it was created,
the picture was embedded and a label was changed in the form design window.

The Switchboard Manager creates a special table, called Switchboard Items, which
is used to maintain the information for the actions and choices on each switch-
board. Although you can browse through and change the records in this table, you
should never make changes to it unless you are thoroughly familiar with how it
works.

Caution

827Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Figure 25-21: A Switchboard created with the
Switchboard Manager.

Creating the Report Switchboard
You can skip this section unless you are interested in how the Switchboard
Manager works.

To create frmAAAReportSwitchboard (as shown in Figure 25-21) using the
Switchboard Manager, follow these steps:

1. Select Tools ➪ Database Utilities ➪ Switchboard Manager from the main menu
as shown in Figure 25-22.

Figure 25-22: Starting the Switchboard Manager.

Note

828 Part I, Section III ✦ Automating Your Applications

If this is the first time Access has created a switchboard in your application, it
will show a dialog box similar to the one shown in Figure 25-23. It informs you
that the Switchboard Manager could not find a valid switchboard for this
database and asks if you want to create one. Click Yes to continue.

Figure 25-23: First time running Switchboard Manager dialog box.

Access will create the Switchboard Items table that it uses for the
Switchboard and open the Switchboard Manager dialog box, as shown in
Figure 25-24.

If you have a form named Switchboard when you first run the Switchboard
Manager, Access will report an error and tell you to either rename the form named
Switchboard or delete it before it will begin.

Figure 25-24: The Switchboard Manager
dialog box.

The Switchboard Manager window will automatically create a default
Switchboard named Main Switchboard (default).

2. With the Main Switchboard (default) switchboard name highlighted, press the
Edit button.

Access opens the Edit Switchboard Page dialog box, as shown in Figure 25-25.
Here you can change the name of the title bar (Switchboard Name) for the
switchboard and add the individual switchboard items.

3. Click in the Switchboard Name entry field and change the name from
Main Switchboard to Report Switchboard.

Caution

829Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Figure 25-25: The Edit Switchboard Page
dialog box.

4. Click the New button to add the first command button to the report
switchboard.

Access opens the Edit Switchboard Item dialog box as shown in Figure 25-26.
Here you can enter the text you want to associate with the command button,
the command (or action), and Object name.

5. Change the Text entry field content from New Switchboard Command to Open
Contacts Report.

6. Select Open Report from the Command entry field, as shown in Figure 25-26.

Figure 25-26: The Edit Switchboard item dialog
box with the Command pull-down menu open to
select Open Report.

7. Select rptContacts from the pull-down menu of the Report entry field.

8. Click the OK button to return to the Edit Switchboard Page.

The first menu choice, Open Contacts Report, has now been added to your
switchboard. Now you need to continue to add the other reports to the
switchboard and, finally, click the Exit button.

The remaining steps have been shortened to show the selections for each
menu choice; simply click on the New button, add the selections as described,
press the OK button to return, and add the next menu choice.

830 Part I, Section III ✦ Automating Your Applications

9. Enter Open Contact List Report to Text; Open Report to Command;
rptContactListing to Report.

10. Enter Open Customer Mailing Label Report to Text; Open Report to
Command; rptCustomerMailingLabels to Report.

11. Enter Open Invoice Report to Text; Open Report to Command; rptInvoice to
Report.

12. Enter Open Products Report to Text; Open Report to Command; rptProducts
to Report.

13. Enter Exit – to AAA Switchboard to Text; Run Macro to Command; AAA
Switchboard.ExitAAARptSwtBrd to Macro.

At this point, the Edit Switchboard Page should look like the one shown in
Figure 25-27.

Figure 25-27: The finished Edit Switchboard
Page dialog box with all seven menu items listed.

14. Click the Close Button to return to the Switchboard Manager main dialog box.

The Switchboard Manager main dialog box should now show the one
Switchboard in the Switchboard pages, named Report Switchboard (default).

15. Click the Close Button to save your work and return to the database window.

Access creates two files — a table named Switchboard Items and a switchboard
form with the name Switchboard.

The table named Switchboard Items, as shown in Figure 25-28, is used by Access
to build the switchboards that were initially created by the Switchboard Manager.
You can use the Manager to create numerous switchboards that call each other or
open forms and reports. All the switchboard information is stored in this table and
used every time you create a switchboard or modify it. When you run the switch-
board, Access uses this table to create command buttons dynamically.

Note

831Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Figure 25-28: The Switchboard Items table open. This table was created by the
Switchboard Manager.

With the Switchboard created, you can now run it and test the buttons. Figure 25-29
shows the Switchboard being run. If you try all the buttons, all of them should
work, except the Exit button.

Figure 25-29: The Report Switchboard Items table
created by the Switchboard Manager.

Modifying a switchboard in the form design window
Normally, any switchboard you create using the Switchboard Manager must have
menu items edited, deleted, or added via the Manager. However, there are some
cosmetic changes you can make to the switchboard form in the form designer.

Looking at the Report Switchboard form in Figure 25-29, you see that it automati-
cally put the name of the database (CHAP25Start) in the form. It also places a pic-
ture holder to the left of the menu choices (not obvious in the figure) that you can
change in the form design window. At this point, click on the Design button to add a

832 Part I, Section III ✦ Automating Your Applications

graphic and change the label of the form. While in the design surface, follow these
steps to add a graphic and change the database name:

1. Double-click anywhere in the left side of the Detail section.

Access selects the picture object and opens the property sheet for the picture
object.

2. Select Picture property under the Format tab and click the Builder button
(three dots on a little button).

Access opens the Insert Picture dialog box.

3. Select the picture file AAAfinalweb.jpg from the correct directory and press
the OK button.

Access brings the picture in and shows it in the picture object. However, the
picture will appear stretched, as shown in Figure 25-30.

Figure 25-30: The picture added to the Report switchboard is stretched and
the property sheet shows the picture name added to the Picture property.

4. Change the Size Mode property from Stretch to Zoom for the picture object.

5. Click on the label object with the Caption saying ‘CHAP25Start’.

6. Change the Caption property to Report Menu and leave the field to make the
change on the form.

833Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Your Report Switchboard should look similar to the one shown in Figure 25-31.

Figure 25-31: The new Report Switchboard with the label
changed to Report Menu and a picture added.

Notice that the command buttons are there, but there is no text associated with
them. Access fills them and their action automatically when the form is run, using
the values in the Switchboard Items table.

Do not attempt to add command buttons or make changes to the command but-
tons or their labels in a switchboard created using the Switchboard Manager.
Access will ignore the changes and use those in the table.

At this time, you should save the changes you made to the switchboard and run it
to verify that the changes took.

With the switchboard running, you will quickly determine that you still have not fixed
the Edit button. To fix the Exit Button, you need to simply rename the name of the
switchboard from Switchboard to frmAAAReportSwitchboard. When it is renamed,
the Exit button works because the macro that is associated with the Exit command
button is looking for the form named frmAAAReportSwitchboard. This macro was
created earlier in this chapter when you created the macro named AAA Switchboard.

Running the form again, the Exit button works correctly; it closes the form. Because
the form is supposed to be opened from the frmAAASwitchboard, it will return you
to that form if it was called from it.

Now both switchboards should work correctly.

Caution

834 Part I, Section III ✦ Automating Your Applications

Renaming the switchboard will not affect the Switchboard Manager, because the
form name of the switchboard is not used by the Manager. Rather, it uses an inter-
nal pointer to switchboard.

Editing an existing switchboard
With frmAAAReportSwitchboard created, you can add additional menu choices,
change existing actions, and even delete menu choices.

To change any menu choices in the switchboard, you need to rerun the
Switchboard Manager and make the changes there. For instance, to add another
report (the rptProductListing report), follow these steps:

1. Open the Switchboard Manager by selecting Tools ➪ Database Utilities ➪
Switchboard Manager.

2. Click on the Edit button with the Report Switchboard (default) highlighted.

3. In the Edit Switchboard Page, click on the New button.

4. In the Edit Switchboard Item, enter the following values — Text: Open Product
Listings Report; Command: Open Report; Report: rptProductListing.

5. Click the OK button to return to the Edit Switchboard Page.

6. Highlight the newest menu item — Open Product Listings Report — and press
the Move Up button one time.

Access will move the newest menu item above the Exit - to AAA Switchboard
menu item. The Edit Switchboard Page dialog box should now look like the
one shown in Figure 25-32.

Figure 25-32: The Edit Switchboard Page
dialog box with the newest menu item added
and moved up one position.

7. Click the Close button to return to the main Switchboard Manager dialog box.

8. Click the Close button to return to the database container and save the
changes you have made to the switchboard.

Tip

835Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

When you run frmAAAReportSwitchboard, the new report has been added, as
shown in Figure 25-33.

Figure 25-33: The final frmAAAReportSwitchboard
with all the reports added.

In addition to adding new menu choices, you can use the Switchboard Manager to
create new switchboards, delete menu items from an existing switchboard, or mod-
ify the action of a menu item in an existing switchboard.

This action completes frmAAAReportSwitchboard. Save your switchboard. Your
next task is to customize the menu bar to correspond to the buttons on the switch-
board so that you can make your choices from the menu or the buttons.

Creating Custom Menu Bars, Toolbars, and
Shortcut Menus

Not only can you create switchboards with Access; you can also create a custom
drop-down menu bar that adds functionality to your system. You can add com-
mands to this menu that are appropriate for your application. These commands
may be the actions specified in your switchboard command buttons. When you cre-
ate a custom drop-down menu bar, the new bar replaces the Access menu bar.

Only a form references the menu bar; you can create a single menu bar and use it
for several forms.

Figure 25-34 shows frmAAASwitchboard with a custom drop-down menu bar. Each
choice on the bar menu (File, Forms, and Reports) has a drop-down menu associ-
ated with it.

Tip

836 Part I, Section III ✦ Automating Your Applications

Figure 25-34: The custom drop-down menu bar for
frmAAASwitchboard.

You can create custom menus in Access in two ways:

✦ Use the Access Command Bar Object.

✦ Use macros (this was the only way to create menus in very early versions of
Access — Access 95 and earlier).

If you previously created menus in Access 2.0 or Access 95, you can convert them
to the new menu bar object by selecting the macro to be converted and then by
choosing Tools ➪ Macro ➪ Create Menu from Macro. You also can use the other
two options, Create Toolbar from Macro and Create Shortcut Menu from Macro, to
create these objects.

If you have menus that you previously created in Access 97, Access 2000, or Access
2002 you don’t need to convert them.

Understanding command bars
The Access Command Bar object lets you create three types of menus:

✦ Menu Bars. Menus that go along the top of your forms and that can have
drop-down menus, too.

✦ ToolBars. Groups of icons generally found under the menu bars.

✦ Shortcut Menus. Pop-up menus that display when you right-click on an
object.

Tip

837Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Command Bars enable you to duplicate the Access user interface, including adding
pictures to your menus.

Creating custom menu bars with command bars
You can create the custom menu bar that’s shown in Figure 25-34 by first creating
the top-level menu consisting of three elements — File, Forms, and Reports. You can
create the top-level menu by selecting View ➪ Toolbars ➪ Customize, as shown in
Figure 25-35.

Figure 25-35: Selecting the View ➪ Toolbars ➪ Customize menu option.

If you’ve never really looked at an Access menu bar, Figure 25-35 is a good example
because many of the menu bars have pictures in front of the text. Notice the separa-
tor lines on the View menu — you learn how to add these lines in this chapter. Also
notice the check box on the toolbar’s submenus. This option indicates whether the
menu bar is displayed. In this example, only the Database menu bar is displayed.
The Web menu bar is hidden.

You learn about Access and the Internet in Chapters 31 and 32.Cross-
Reference

838 Part I, Section III ✦ Automating Your Applications

Select Customize and the dialog box shown in Figure 25-36 appears.

Figure 25-36: The Customize dialog
box for toolbars.

Changing existing menus and toolbars
From this dialog box, you can also select any of the pre-existing menus and toolbars
and customize them by adding, removing, or moving menu items. You can also
change pictures and the purpose of the menu.

To change the menu items, display the toolbar or menu that you want to change
and then directly change it by clicking the menu items that you want to manipulate.
If you click and hold the mouse on a menu item, a submenu item, or a toolbar icon,
a little gray button appears over the top of the item. You can then move the icon to
a different location by dragging it to the new location. To remove the menu item or
icon, simply drag it to a place away from the toolbar. To add a new item, select the
Commands tab in the Customize dialog box, find the category that contains the
item you want, and then drag the item to the toolbar or menu.

You can create a whole new item by selecting All Macros or New Menu and dragging
it to the menu or toolbar that you want it to be on. See the next section to learn
how to add a new menu.

Creating a new menu bar
To create a new menu bar, click the New button from the Customize dialog box. A
dialog box appears, asking you to name the custom toolbar. The default name is
Custom 1. Name this new menu bar AAA Custom Command Bar and click OK.

The new menu bar is added at the bottom of the Customize dialog box and a small
gray rectangle (the new menu bar) appears in the center of the screen, along side

839Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

the Customize dialog box. The new toolbar name also appears in the list at the bot-
tom of the Toolbars list, as shown in Figure 25-37.

Figure 25-37: Creating a new menu bar in the Customize dialog box.
Notice that the last entry in the Customize dialog box is the new
toolbar you just created. The figure also shows the new toolbar to
the top-left corner of the Customize dialog box.

You can move this menu to the top of the screen by dragging it so that it looks like
a normal menu bar — however, it would have no items on it.

Before you begin to drag commands or text to the command bar, you must decide
what type of command bar it is. Highlight the AAA Custom Command Bar under the
Toolbars tab in the Customize dialog box and then click on the Properties button.

Figure 25-38 shows the Toolbar Properties dialog box. Here you can select each of
the command bars in your system.

Figure 25-38: The Toolbar Properties
dialog box for the AAA Custom Command
Bar.

Tip

840 Part I, Section III ✦ Automating Your Applications

The important portion of this dialog box is the middle portion. The first option is
Type. You have three Type choices:

✦ Menu Bar. Used for drop-down menus of commands containing text and,
optionally, pictures.

✦ Toolbar. Used for button bars of pictures only.

✦ Popup. Used either for drop-down menu lists or shortcut menus; can contain
pictures and text.

For this example, you want to create a menu, so choose the Menu Bar option.

The next option, Docking, has four options:

✦ Allow Any. Allows docking horizontally or vertically.

✦ Can’t Change. Can’t change where the command bar is docked.

✦ No Vertical. Can dock only horizontally (across the screen).

✦ No Horizontal. Can dock only vertically (up and down the screen).

For this example, you want to create a menu, so choose the Allow Any option.

The rest of the options are five check boxes:

✦ Show on Toolbars Menu. Displays the selected toolbar on the View ➪
Toolbars menu list.

✦ Allow Customizing. Allows the user to change this with the Customize menu.

✦ Allow Resizing. Allows you to resize a floating toolbar or menu bar.

✦ Allow Moving. Lets you move the menu or toolbar between floating or
docking.

✦ Allow Showing/Hiding. Lets you show/hide the menu through the View ➪
Toolbars menu.

For this example, you can select all the choices to give the menu maximum flexibil-
ity. After you have made the selections, click the Close button to return to the
Customize dialog box.

You may want to drag the new menu bar to the top of the Office window so that
it shows on the toolbar menu to complete creating the AAA Custom Command
Bar, as shown in Figure 25-39. Figure 25-39 shows the menu bar right below the
Office toolbar on the toolbar menu.

Tip

841Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Adding a submenu to a custom menu bar
Most menu commands are placed on submenus. It is rare for a top-level menu item
to do anything but display a submenu. The submenu contains the actual menu item
that — when clicked — runs the desired action, such as opening a form or printing a
report.

To create a submenu menu bar, select New Menu from the Categories list box within
the Commands tab section; then select the New Menu choice from the Commands
list box, as shown in Figure 25-39, drag it to the AAA Custom Command Bar, and
drop it. Figure 25-39 shows the New Menu command being dragged to the AAA
Custom Command Bar. After it is dropped on the bar, the New Menu text appears
on the menu bar. Click on the New Menu choice on the bar, and a gray rectangle
appears immediately below it. This is the area where you place additional com-
mands, under the New Menu choice. This New Menu is actually a submenu of the
custom menu bar AAA Custom Command Bar.

Figure 25-39: Creating a submenu using the
Commands tab of the Customize dialog box.

To rename the menu name from New Menu to File, right-click on it, and then name it
File by clicking in the Name area of the pop-up menu and changing the name from
New Menu to File. Figure 25-40 shows the right-click menu with the name being
changed to File. Repeat these steps to create two new submenus alongside the new
File menu, and name them Forms and Reports.

842 Part I, Section III ✦ Automating Your Applications

After you have defined your three menus, you can add commands to the submenus.
Again, you can drag the menu commands directly to the submenu area.

Dragging the New Menu item to another menu automatically links the main menu
and the submenu and makes the original menu choices non-selectable. The main
menu (AAA Custom Command Bar) is now permanently a menu bar. You can still
change the defaults for the submenu items as you create them to display text, pic-
tures, or both.

After you add submenus to a menu bar, you can’t change it to a toolbar or pop-up
menu.

Figure 25-40: Changing the name of the
submenu to File using the right-click
menu.

Adding commands to a menu bar to create a submenu
You can add commands to a custom menu bar by dragging any of the preexisting
commands to the menu bar, or you can add any of your tables, queries, forms,
reports, or macros to the menu bar. You can add any of these items to preexisting
menus as well.

Using a pre-existing command fills in all the options for you. Unless you are plan-
ning to use an action found on one of the Access built-in menus, however, you
should create your own menus by first creating a new command bar and making it a
menu bar, as discussed in the previous section.

After you have defined the blank submenus on the menu bar, you can drag com-
mands to them. For this example, you may want to add the Forms menu items first.

Caution

843Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Follow these steps to add an item to display the Contacts form when the first item
is selected on the Forms menu:

1. If you are not in the Customize dialog box for toolbars, select View ➪
Toolbars ➪ Customize . . . to activate it. In the Customize dialog box, select the
Commands tab.

2. Select All Forms from the Categories list.

3. Select frmContacts from the Commands list box on the right and drag it to the
Forms menu bar. When you drop it, the text frmContacts appears on the menu
bar; name it Contacts.

4. Repeat the process for the frmSales command; name it Sales.

5. Repeat the process for the frmProdocts form and name it Products.

Your Forms submenu commands should now look similar to the ones shown in
Figure 25-41.

Figure 25-41: Creating command items for
the submenu Forms.

Changing the look of the submenu items
When you click on the Forms menu, each of the items has a form icon along side
the name of each form, as you can see in Figure 25-41. You can change how any
menu item will appear in the menu. There are several options available. You can
have each menu item display a graphic Image and text, Text only, or even change
the graphic image along side the text.

844 Part I, Section III ✦ Automating Your Applications

If you right-click on any of the submenu items while the Customize dialog box is
active, you can change the picture, or even change whether a picture is displayed
at all. Figure 25-42 shows the Change Button Image selection of the View ➪
Toolbars ➪ Customize menu.

Figure 25-42: Changing the display of a menu bar item.

For the forms menu bar, you can change the image along side the text for each
choice. Notice that all three button images have been changed; to do this, simply
right-click each menu item, select Change Button Image, and then select the desired
picture to add a new picture. To have the text only show, select Text Only (in Menus).

When working with the graphic image, the shortcut menu contains five options for
changing pictures on menus or toolbar icons:

✦ Copy Button Image. Copies the current button face image to the Clipboard.

✦ Paste Button Image. Copies the current picture in the Clipboard to the button
face.

✦ Reset Button Image. Changes the button face image to the default image.

✦ Edit Button Image. Uses the internal image editor to change an image.

✦ Choose Button Image. Changes the button face image from a list of images
stored in Access.

You can change the button image in several ways. The easiest method is to select
from a set of button images that Access stores internally, as shown in Figure 25-42.
When you choose a picture and click OK, the button image changes.

As Figure 25-42 shows, you don’t have many pictures to choose from. You can, how-
ever, create your own image and copy it to the Clipboard. After you have an image

845Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

on the Clipboard, you can use the Paste Button Image option of the shortcut menu
to add the image to the button. You must size the image to fit the button. You can
also use the Edit Button Image to change the image after you’ve placed it on the
button face. You can edit the button face by moving the image around and changing
individual pixels of color.

As Figure 25-42 also shows, you can change the caption of the text and the way it’s dis-
played. You have four additional options for displaying the menu or toolbar option:

✦ Default Style. Displays image and text for menu bars, pictures for toolbars,
and both for pop-ups.

✦ Text Only (Always). Displays text only for menu bars and pop-ups.

✦ Text Only (in Menus). Displays text on menu bars, graphics on toolbars, and
both on pop-ups.

✦ Image and Text. Displays pictures and text on menu bars and pop-ups.

To remove the images and display just text, select the Text Only choice for each
submenu item.

The pop-up menu also has a Begin a Group choice. If you check the Begin a Group
check box, Access places a horizontal separator line before the menu item.

You can further customize each item for your specific purpose. You can display the
properties for any menu by clicking on the Properties button, as shown at the bottom
of the pop-up menu in Figure 25-42. Figure 25-43 shows the properties for the Contacts
Item that has been enhanced. Here, you set the rest of the actions for the menu item.

Figure 25-43: Changing the display of a menu bar
item in the property dialog box.

Tip

Tip

846 Part I, Section III ✦ Automating Your Applications

Each menu item has a list of properties, as shown in Figure 25-43. After the Control
Properties window displays, you can change the Selected Control to any of the
menu items without returning to the previous menu. Changing the caption changes
the text on the menu.

To define a hot key for the menu item, you can add an ampersand (&) in front of
the hot key letter.

The caption property has been changed with the addition of an ampersand (&) in
front of the letter C. This allows you to press the letter C after displaying the Forms
menu in this example. Any letter can be used as a hot key by placing the ampersand
before it. If you set up an AutoKeys macro list, you can also specify the shortcut
text, as shown in Figure 25-43. Notice the Ctrl + C next to the Contacts menu item as
well as in the shortcut text area.

You also can define the screen tip text for the control by entering text in the
ScreenTip area.

The most important option is normally the On Action item. This option allows you
to specify a VBA function or macro that should run when the menu item is selected.
In this example, because you drag each form from the forms list to the menu, the
action is already known in the Properties sheet for the item. In fact, the name of the
form to open is stored in the Parameter option of the window.

The other options let you choose the Help File name and entry point if you click on
Help while selecting the menu. The Parameter entry is used to specify optional
parameters when calling a VBA function.

You can complete the Reports menu items by dragging the desired reports to the
Reports menu item from the All Reports commands. You can add the Exit function
to the File menu by dragging the Exit command from the File category.

Attaching the menu bar to a form
After you have completed the AAA Custom Command Bar menu bar and its sub-
menus, you are ready to attach the menu bar to a form.

To attach a menu bar to a form, open the form in design mode and set the Menu Bar
property of the form to the menu bar name. To attach the AAA Custom Command
Bar menu bar to the frmAAASwitchboard - No Buttons form, follow these steps:

1. Open the frmAAASwitchboard form in design mode.

2. Display the property sheet by clicking on the Properties button on the toolbar
if it is not already displayed.

Tip

847Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

3. Click on the small black box to the left of the ruler (immediately below the
toolbar).

Access displays the title Form for the property sheet.

4. Click on the Other tab in the property sheet and click in the Menu Bar prop-
erty of the Property window.

5. Select the AAA Custom Command Bar from the pull-down menu (or type the
menu bar name).

By following these steps, you attach the menu bar named AAA Custom Command
Bar with its drop-down menus to the form. You should have a design screen similar
to the one shown in Figure 25-44.

Figure 25-44: Attaching a menu bar to the form frmAAASwitchboard
using the Menu Bar property.

Every time the form frmAAASwitchboard is opened, the new menu bar will automat-
ically be displayed. Access will replace its default menu bar with the one you cre-
ated. When the form is closed, the menu bar will also be closed and the Access
default menu will be displayed.

Creating shortcut menus
Access allows you to create custom shortcut menus that open when you right-click
them. These menus can replace the standard shortcut menus in Access. Shortcut

848 Part I, Section III ✦ Automating Your Applications

menus can be defined for the form itself or for any control on the form. Each con-
trol can have a different shortcut menu.

A shortcut menu is simply another type of command bar. You can begin a shortcut
menu by selecting View ➪ Toolbars ➪ Customize and then choosing the New button
from the Toolbars tab of the Customize dialog box. In this example, you can name
the new menu Sales Shortcut.

After you create the new command bar, you can select it and click on the Properties
button in the Customize dialog box. The Toolbar Properties dialog box displays.
Change the Type to Popup, as shown in Figure 25-45.

Figure 25-45: Creating a pop-up shortcut
menu requires converting a new toolbar to
a pop-up shortcut menu.

Changing the type of the toolbar from the default Menu Bar to Popup raises a
message warning you that you must edit the menu items in the Shortcut Menus
Custom section. Shortcut Menus is a standard Access toolbar that is found under
the Toolbars tab in the Customize dialog box of toolbars, as shown in Figure 25-46.
When you click on Shortcut Menus, a list of all menu bars appears on a command
bar. By selecting any of these menu items, such as Database, Filter, or Form (which
are shown on the left side of the menu bar in Figure 25-46), a submenu displays list-
ing all of the shortcut menus available on the standard Access design screens. All of
the shortcut menus, except the extreme right Custom submenu, are built-in pop-up
menus for Access.

Looking at the Shortcut Menus toolbar, the last item on the command bar is
Custom. When you click on this item, a list of all the shortcut (pop-up) menus that
you have defined displays. The only shortcut menu defined prior to this point in
the book is the Sales Shortcut. Notice the Sales Shortcut pop-up menu is displayed
with a blank menu bar to the right of the Sales Shortcut menu. This is where you
drag your selections, the same way you did for menus.

849Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

You add menu items to a shortcut menu in exactly the same way that you add any
menu item. Although the empty Sales Shortcut menu rectangle displays, as shown
in Figure 25-46, click on the Commands tab in the Customize dialog box and then
select All Forms in the Categories list. You can then drag any command to the
shortcut menu. For this example, add three forms (frmContacts, frmSales, and
frmProducts) by dragging them to the menu.

Figure 25-46: The activate list of shortcut menus is displayed by activating
the Shortcut Menus toolbar.

As you add each of the forms, it appears on the shortcut menu. You can change
their name and the image next to them, as you did with menus earlier. You display
the menu to change the details of each of these menu items by clicking the item and
then right-clicking. The shortcut menu in Figure 25-47 has been defined and each of
the original form names has been changed to the more standard names for the
example. It has also had a menu choice of DatabaseWindow and Access Help added
from the Window and Help Categories: list box. Also notice the separator line
between the forms and the last two choices. You can create this line by selecting
the Begin a Group option while on the Database Window, as shown in Figure 25-47.
If you want to, you can change the pictures for each of the icons next to the menu
item by using the button image options.

By clicking on Properties for any of the menu items, you can set the shortcut keys,
ToolTips, actions, and Help file.

Tip

850 Part I, Section III ✦ Automating Your Applications

Figure 25-47: Creating and modifying the shortcut menu bar.

After you create the menu definition and save the shortcut menu, you can attach
the shortcut menu to either the form or any control on the form. If you attach the
shortcut menu to a form, it overrides the standard shortcut menu for the form. If
you attach a shortcut menu to a control, it displays only after you right-click the
control. Figure 25-48 shows the Sales shortcut menu being attached to the Shortcut
Menu Bar property of the frmAAASwitchboard Buttons.

Figure 25-48: Adding the shortcut menu to the frmAAASwitchboard form.

851Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

You may also notice that the Shortcut Menu property is set to Yes. This is for either
the default shortcut menus or the shortcut menus that you create. If it is set to No,
you don’t see any shortcut menus when you right-click.

Figure 25-49 shows the shortcut menu on the Access Auto Auctions Switchboard -
No Buttons form. The menu displays to the right of wherever you clicked the
mouse, even if it extends beyond the window. The actions listed in the menu macro
run when you select the desired menu item.

Figure 25-49: Viewing the frmAAASwitchboard with the shortcut menu
active.

If you want to delete a shortcut menu, you must first select the shortcut menu by
displaying the list of toolbars in the View ➪ Toolbars ➪ Customize dialog box and
then click on the Properties button. The Shortcut menus are visible only by open-
ing the Selected Toolbar combo box at the top of the Toolbar Properties dialog
box. You must change the type from Popup to Menu Bar. After you do this, you can
return to the Toolbars tab, where you can now see the shortcut menu, and press
the Delete button. Remember that when you change a command bar to a pop-up
menu, it is visible only on the shortcut menu’s Custom tab or in the Selected
Toolbar list in the Toolbar Properties dialog box.

Creating and using custom toolbars
In addition to creating new menus and pop-up menus, Access lets you define new
toolbars for your application and customize existing toolbars. Access also lets you
customize the pictures on the buttons (known as button faces). For example, suppose
that when you display frmAAASwitchboard, you want a toolbar that lets you open the
various forms with one button push. You can create a new toolbar or even add some
icons to the standard form toolbar. For this example, you create a new toolbar.

Note

852 Part I, Section III ✦ Automating Your Applications

A toolbar is just another type of command bar. To create a custom toolbar, follow
these steps:

1. Select View ➪ Toolbars ➪ Customize.

2. Click the New button from the Toolbars tab in the Customize dialog box.

3. Type AAA Toolbar in the New Toolbar dialog box and click OK.

4. Select Properties.

5. Make sure the Type: property is set to Toolbar, Docking: Allow Any, and all
five check boxes checked.

After you verify that the new command bar is created as a toolbar, you can close
the Properties window and drag the three forms to the toolbar. You use the same
technique to do this as you use when creating menu bars and shortcut menus.

To drag the three forms to the toolbar, click the Commands tab in the Customize
dialog box and then select All Forms in the Categories list. Then drag the three form
names (frmContacts, frmSales, and frmProducts) to the toolbar. The toolbar shows
the form names and a form icon for each form.

At this point, you can drag any additional command to the shortcut menu. Select
Print and Print Preview from the File Category and drop them on the toolbar. Notice
that unlike the three forms, they show an image only. Your toolbar should look simi-
lar to the one shown in Figure 25-50.

Figure 25-50: Creating a new toolbar for the application.

853Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

You can add a space and a separator line between icons by selecting Begin a
Group on the icon that you want placed to the left of the line.

To have a toolbar object only show the graphical image, select default style from
the pop-up menu for each object.

Examining Figure 25-50, you notice that all the forms have both the graphic image
and the form name on the toolbar. At this point, you can right-click on each toolbar
object and change these properties. For instance, right-click on the frmContacts
button; select the Change Button Image of a graphical figure and select default
style. Changing these two items will make the toolbar button show the graphic of a
graphical figure. You can do the same to the other two forms. To place a separator
between the print button and products form, right-click on the print button and
select Begin a Group.

Attaching the toolbar to a form
After you complete AAA Toolbar, you are ready to attach the toolbar to a form.

To attach a toolbar to a form, open the form in design view and set the Toolbar
property of the form to the toolbar name. To attach AAA Toolbar to the
frmAAASwitchboard form, follow these steps:

1. Open the frmAAASwitchboard form in design view.

2. Display the property sheet by clicking the Properties button on the toolbar if
it is not already displayed.

3. Click the small blank box to the left of the ruler (immediately below the toolbar).

Access displays the title Form for the property sheet.

4. Click the Toolbar property in the Property window.

5. Select the AAA Toolbar from the pull-down menu (or type the toolbar name).

By following these steps, you can attach the AAA Toolbar with its picture buttons
to the form. You should end up with a design screen similar to the one shown in
Figure 25-51.

When you set a form’s menu bar or toolbar to a custom menu bar or toolbar, the
menu bar and toolbar display automatically when you open the form. When the
focus changes to another form, the custom menu bar and toolbar for the previous
form are removed. The menu bar and toolbar are replaced with the newly displayed
form’s menu bar and toolbar if the form’s properties specify them.

After you have made these changes, you display the frmAAASwitchboard, as shown
in Figure 25-52. The AAA Toolbar, AAA Custom Command Bar menu, and the Sales
Shortcut menu bar are all seen in the figure. A tool tip for each toolbar button will
display when you hold the mouse pointer over one of the toolbar buttons.

Note

Tip

854 Part I, Section III ✦ Automating Your Applications

Figure 25-51: Attaching a toolbar to the frmAAASwitchboard form using
the Toolbar property.

Figure 25-52: Displaying a custom toolbar in a form.

855Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Adding control tips to any form control
Although you must add screen tips to toolbars by using the toolbar customization
windows, you can add a tool tip known as a control tip to any control using the form
designer.

When users place their mouse pointer on a control, textual help resembling a tool
tip can display with a cream-colored background. You can create a control tip by
entering text into the ControlTip Text property of any control. Whatever you enter
into this property displays when you place the mouse pointer on a control and
pause it there for about a second.

Starting the switchboard automatically when you
open the database
With the frmAAASwitchboard form created — along with the menu, toolbar, and
pop-up menus associated with it — you may want to have the form automatically
start up every time you open the database. There are two ways to automatically
start the form every time the database is loaded: Create an AutoExec macro file, or
specify the form name in the Startup options dialog box.

Running a macro automatically when you start Access
After you create the switchboard, a menu bar, and the associated submenus and
toolbars, you may want Access to open the form automatically each time you open
the database. One method to automatically load a form at startup is to write an
AutoExec macro. When Access opens a database, it looks for a macro named
AutoExec. If the macro exists, Access automatically runs it. To create an AutoExec
macro to open the switchboard automatically, follow these steps:

1. Create a new macro (you name it AutoExec later).

2. Type Minimize (or select the action) in the next empty Action cell.

This command will minimize the database window when it is first loaded.

3. Type OpenForm (or select the action) in the next empty Action cell.

4. Type frmAAASwitchboard (or select the switchboard form name) in the Form
Name cell in the Action Arguments pane.

Save the macro with the name AutoExec. After you do this, Access runs the macro
automatically each time you open the database.

The AutoExec macro shows two actions. The Minimize action minimizes the
Database window, and the OpenForm action opens the switchboard.

856 Part I, Section III ✦ Automating Your Applications

This method has the advantage of assigning multiple actions to be performed when
first starting a database. In this case, you minimized the database window before
opening the switchboard form.

To bypass an AutoExec macro, simply hold down the Shift key while you select the
database name from the Access File menu.

Controlling options when starting Access
Rather than run a macro to open a form when Access starts, you can use the
Access startup form to control many options when you start Access, including:

✦ Changing the text on the title bar

✦ Specifying an icon to use when Access is minimized

✦ Global custom menu bar

✦ Global custom shortcut menu bar

✦ Displaying a form on startup (for example, the application’s switchboard)

✦ Controlling the display of default menus, toolbars, the Database window, and
the status bar

Figure 25-53 shows the Access Startup dialog box. You can display this by selecting
Tools ➪ Startup or by right-clicking the border of the Database window and select-
ing Startup.

Figure 25-53: The Startup dialog box for the database.

You can bypass the options in the Startup dialog box by holding the shift key
while starting the database.

If you uncheck Display Database Window in the Startup dialog box, the database
will not be displayed and when you leave the Switchboard program, it will still not
be visible.

Note

Tip

Tip

857Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Creating a Print Report Dialog Box Form
in Visual Basic

A dialog box is also a form, but it’s different from a switchboard in that the dialog
box usually displays information, captures a user entry, or lets the user interact
with the system. In this section, you create a complex dialog box that prints
reports.

By using a form and some event procedure code, you can create a dialog box that
controls printing of your reports. For example, the products dialog box in Figure
25-54 displays a list of choices so that you can print only one product’s record, all
products, or a product listing.

Figure 25-54: A Products Print Reports
dialog box.

Although this dialog box is more complex than a switchboard, it uses the same
types of Access objects, which include the following:

✦ Forms

✦ Form controls and properties

✦ Event procedures

Creating a form for printing products
The form that you create in this example displays the various controls. The form
contains three basic sections.

The upper-left corner of the form contains three option buttons, which are placed
within an option group titled Print Choices. The option buttons let you select one of
the three listed printing choices. If you select All Products, you can print or preview
that report. If you select Current Product Only, as shown in Figure 25-54, you can
print or preview only the current record.

858 Part I, Section III ✦ Automating Your Applications

The upper-right corner of the form contains two buttons. The first option button,
Print Preview, can be passed to a simple event procedure as a value to open the
report in Print Preview mode. The second option button, Print, will pass a value to
the same event procedure to print the choice selected in the first section to the
default printer. These values are passed when the user presses the Print button
contained in the final section of the form.

To create a printer dialog form, first create a blank form and size it properly by fol-
lowing these steps:

1. Create a new blank form unbound to any table or query.

2. Resize the form to 1⁄2 inches x 3 inches.

3. Change the Back color to dark gray.

With the basic dimensions created, place three rectangles on the form to give it a
distinctive look. You can create the three rectangles by following these steps:

1. Click on the Rectangle button in the toolbox.

2. Using Figure 25-54 as a guide, create three separate rectangles.

The first two rectangles are approximately 1 inch high, and the third is about
3⁄4-inch high.

Each rectangle in this example is shown with the Raised special effect. To create
this effect, follow these steps:

1. Select a rectangle.

2. Change the Back color to light gray.

3. Click on the Raised special-effect button in the Special Effect window.

4. Click on the Transparent button in the Border Color window for the first two
rectangles (leave the third one solid).

5. Change the Border Width to 2 pt for the first two rectangles. Leave the third
rectangle’s width set to hairline.

6. Repeat Steps 1 through 5 for the second and third rectangles.

7. Finally, to enhance the Raised special effect, drag each rectangle away from
the adjacent rectangles so that the darker background of the form shows
between the rectangle borders. You may need to resize one of the rectangles
to line up the edges.

859Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Creating the option group
After you create the form and the special effects, you can create the necessary
controls.

The first set of controls is the option group. In Chapter 9, you learn to use the
Option Group Wizard to create option buttons. To create the option group and
option buttons, follow the steps given here and use Figure 24-54 as a guide. In this
example, the option group buttons are not bound to a field; they are used to select
the specific type of report to print — not to enter data:

1. Click the Option Group button in the toolbox, making sure that the Control
Wizard icon is on.

2. Draw an option-group rectangle within the left side of the upper rectangle, as
shown in Figure 25-54.

3. Enter Current Product Only, All Products, and Product Listing as three sepa-
rate labels in the first Option Group Wizard.

4. Click the Finish button to exit the wizard screen.

Your option buttons and the option group appear in the first rectangle. You
may need to move or resize the option group’s box to fit properly. You may
also need to change the color and caption for the “Print Choices” label for the
option group.

5. With the Option group selected, change the name of the control to
grpTypeOfPrint in the Property Sheet.

This name will be used in your event procedure.

With the first Option Group created, you can create the second object group along-
side the first, in the right side of top rectangle. This group should have Print
Preview and Print as the two separate labels in the second Option Group Wizard.
Then change the name of the caption to “Print Destination.” Name this option group
grpTypeOfOutPut; this name will be used in your event procedure.

Creating two text boxes on the print report form
The next controls that you need in the dialog box are the two text boxes in the cen-
ter rectangle. These text boxes are used to capture two title lines from the user for
the report. To create the text boxes, using Figure 25-54 as a guide, follow these steps:

1. Click on the Text Box button in the toolbox.

2. Using Figure 25-54 as a guide, create the first text box in the middle rectangle.

3. Move the label control to a position above the text box if necessary.

860 Part I, Section III ✦ Automating Your Applications

4. Change the name of the control to txtFirstTitle to be used by the event
procedure.

5. Change the caption of the associated label to First Title:.

6. Repeat Steps 1 through 5 for the second text box, placing it below the first
and changing the name of the control to txtSecondTitle and its label to
Second Title:.

Creating command buttons
After you complete the option group, the option buttons, and the text boxes, you
can create the two command buttons. These pushbuttons trigger the actions for
your dialog box. Figure 25-54 shows the two buttons:

✦ Print. Prints the selected report to the default print device.

✦ Cancel. Closes the dialog box without printing any report.

To create each command button, follow the next set of steps. Because each button
is the same size, duplicate the second button from the first:

1. Turn the Wizard off; then Click the command button in the toolbox.

2. Create the first command button, as shown in Figure 25-55.

3. Select Edit ➪ Duplicate to duplicate the first command button.

4. Move the button to the right of the first.

You now need to change the command button captions. The remaining steps
show how to make these changes.

5. Select the first command button and change the Caption property to &Print.

6. Select the second command button and change the Caption property to
&Cancel.

You now need to change the name of each button.

7. Select the first command button and change the Name property to cmdPrint.

8. Select the second command button and change the Name property to
cmdCancel.

Before continuing, you should save the form. Save the file but leave the form
onscreen by selecting the menu option File ➪ Save. Name the form
frmDialogProductPrint.

This form already exists in the CHAP25Start database. You can assign a different
name to the one you created — perhaps frmProductPrintDialog, to continue with
this section.

Note

861Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

Figure 25-55: The dialog box with all the pieces in place.

When you have completed the form, you are halfway done. Your next task is to cre-
ate the event procedures and attach them to the two command buttons. You can
specify the event procedures to the correct event properties of the two command
buttons on the form.

Creating the Print event procedures
Event procedures are attached to the events of controls or objects. These events
include entering, exiting, updating, or selecting a control. In this example, the event
procedures are attached to command buttons of the form.

In Chapter 23, you learned how to create subroutines using Visual Basic for
Applications. The event procedures used for this dialog box are similar.

Creating the Print Event procedure
The Print command button, cmdPrint, simply calls an event procedure when the
user presses the button.

To create the code, follow these steps:

1. While in design mode for the form frmDialogProductPrint, activate the
Property Sheet.

2. Select the Print command button.

3. Click in the On Click event property under the Event tab.

862 Part I, Section III ✦ Automating Your Applications

4. Click on the build button (three dots) to start the Event Procedure.

Access displays the Choose Builder dialog box, like the one shown in
Figure 25-56.

Figure 25-56: The dialog box to select
which type of builder you want to
work with.

5. Select Code Builder.

Access Microsoft Visual Basic design surface and place a skeleton on the
screen with the name of the subroutine [Private Sub cmdPrint_Click() ... End
Sub].

6. Type in the following code between the Private Sub End Sub:

Dim ReportDest As Integer
Me.Visible = False
If Me![grpTypeOfOutput] = 1 Then

ReportDest = acPreview
Else ‘ Destination is printer

ReportDest = acNormal
End If
Select Case Me![grpTypeOfPrint]
Case 1
DoCmd.OpenReport “rptProducts”, ReportDest, ,
“[chrProductID]=[Forms]![frmProducts]![txtProductID]”
Case 2
DoCmd.OpenReport “rptProducts”, ReportDest
Case 3
DoCmd.OpenReport “rptProductListing”, ReportDest
End Select
Exit Sub

This code is fairly easy to understand. The first line simply dimensions (or
declares) the variable ReportDest as an integer.

The next line, Me.Visible = False, is used to hide the print dialog box.

The next few lines (If Else ... Endif) look at the value of the button option group
to determine if it should print the report to the printer (value 2, or not 1) or display
in print preview (value 1). It looks at the grpTypeOfOutput object you named for
the button object grouping.

863Chapter 25 ✦ Creating Switchboards, Command Bars, Menus, Toolbars, and Dialog Boxes

The next few lines (Select Case ... End Select) look at the value of the button option
group for the Type of Choice to determine if it should print the current product
only, print the entire list of products, or create a product list report. It looks at the
grpTypeOfPrint object you named for the button object grouping. If the
grpTypeOfPrint value is one, it will print only the current product. The code imme-
diately after the Case 1 line should be on one continuous line (rather than two as
shown above). The first two Cases use the rptProducts report and the last choice
uses the rptProductListing report.

That is all there is to the code. The other fields in the frmDialogProductPrint form
are picked up by the report program to print the headings.

Creating the Cancel Event procedure
The Cancel command button, cmdCancel, also calls an event procedure when the
user presses the button.

To create the code, follow these steps:

1. Select the Cancel command button.

2. Click in the On Click event property under the Event tab.

3. Click on the build button (three dots) to start the Event procedure.

Access displays the Choose Builder dialog box, like the one in Figure 25-56.

4. Select Code Builder.

Access Microsoft Visual Basic design surface and place a skeleton on the
screen with the name of the subroutine [Private Sub cmdCancel_Click() ...
End Sub].

5. Type in the following code between the Private Sub ... End Sub:

DoCmd.Close

That is all the code that is needed for the Cancel button. Simply close the form and
return to whatever program called it.

Creating dialog boxes to obtain user input and then pass those values on is a rela-
tively easy way to communicate between products. In this case, you built a dialog
box that printed reports based on user input. Dialog boxes can be used as a way to
let a user search for a specific record, find it, and return to the calling program. The
Access Auto Auctions system has several dialog boxes that are used to search and
print based on user input. They are already created for you with their underlying
code in the forms container of the database. They all begin with frmDialog.

✦ ✦ ✦

Programming
Continuous
Forms, Tab
Dialogs, and
Command
Buttons

Up to this point, you have learned how to create profes-
sional forms and reports. In the last few chapters, you

have learned how to add programmed routines to your forms.
In this chapter, you will learn to automate some of the tasks
that too often are left to the user to learn, and you will use the
Access user interface. Although Access has a great user inter-
face that allows a knowledgeable user to control nearly any-
thing on a form, it is better to provide a simple set of buttons
for your specific application that the user can consistently fol-
low from task to task.

In this chapter, you will work with the frmProducts form that
you created in Chapters 8 through 12. You will enhance it by
adding a tab control to the form and moving all of the controls
to the first tab in the tab control. You will view a continuous
form that lists all of the products, and then you will embed
the form on a subform that you create on the second page of
the tab control. This continuous form will contain a button
that you will program to change tabs and display the current
record in the continuous form. Finally, you will add several
buttons to the form footer and program them to do routine
tasks such as create a new record, delete the current record,
and display a search or print dialog box.

2626C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a tab
control

Working with
continuous forms

Programming tab
controls

Creating and
programming
command buttons

✦ ✦ ✦ ✦

866 Part I, Section III ✦ Automating Your Applications

To begin this chapter, open the database file named Chap26Start.mdb. This file
contains the frmProducts form and table, ready for you to add the tab control and
already created continuous form named fsubProductsDisplayAll (without the nec-
essary code you will add).

Working with Tab Controls
Tab controls (also known as tabbed dialog boxes) are one of the most used controls
today, after the basic text box. They provide a seamless way to take advantage of
precious screen real estate while allowing you to divide your form into logical sec-
tions. A tab control can have a nearly endless number of tabs in multiple rows. You
can control the placement of each tab as well as the number of rows, the width of
the tabs, and even how the tabs look and behave.

To begin this chapter, open the form frmProducts in design view.

As you can see in Figure 26-1, there are many controls on this form. These controls
are in the Detail section of the form. You can think of a form itself as a foundation.
The controls on a form can be thought of as the first story or layer. These controls
sit on the form just as the first story of a building sits on the foundation. When you
add a subform control to a form, it creates its own layer. The controls on a sub-
form’s form can be thought of as a second story. The same is true for a tab control
and each of its pages. The tab control itself sits on the form, but the controls that
are placed on each page make up a separate layer. However, unlike a subform
whose controls must be referenced through the subform control name, controls on
pages of a tab control can be referenced directly.

The next step will be to create the tab control and copy all of the controls currently
in the Detail section to the first page you will create in the tab control. Before you
create the tab control, you should cut the controls from the form, because it is
more difficult to move them after you create the tab control.

1. Select all the controls in the form’s detail section.

The best way to do this is to place your cursor in the top left corner of the Detail
section and then highlight all of the controls within the section. If you choose
Select All from the Edit menu, you will get all of the controls in all of the sections.

2. Select Edit➪Cut from the form design menu. (You can also press Ctrl-X to cut
the controls to the clipboard.)

Your controls in the Detail section should all disappear. They are held safely
in the clipboard, including their control names, all of their relative placement
information, and their formatting. Any code behind the controls remains with
the form itself.

When you paste the controls back onto the form after you create the tab control,
any events behind these controls must be reconnected to the code behind the
form by clicking into each event and selecting Event Procedure.

Caution

On the
CD-ROM

867Chapter 26 ✦ Programming Continuous Forms, Tab Dialogs and Command Buttons

Figure 26-1: The frmProducts form

You can see a list of all your procedures by opening the Visual Basic code window
and looking at the procedures using the General selection in the left combo box.
Each of the orphaned event procedures are listed with the control name and
event. This is also a good way to spot orphaned procedures that were created and
later had the control to which they were connected, renamed, or deleted.

Creating a tab control
The Detail section of your form should be blank if you followed the previous steps.
The controls from your Detail section should be safely stored in the clipboard. You
can now create your tab control.

1. Display the form toolbox.

2. Select the tab control.

3. Use the tab control tool cursor to draw a rectangle from the top left to the
bottom right of your Detail section, as shown in Figure 26-2.

Tip

868 Part I, Section III ✦ Automating Your Applications

Figure 26-2: Adding a tab control

Figure 26-3: The empty tab control

869Chapter 26 ✦ Programming Continuous Forms, Tab Dialogs and Command Buttons

When you release the mouse, your tab control appears as shown in Figure 26-3. Two
tab control pages are shown. This is the default number of tabs. You can add as
many tab pages as you need — and even create multiple rows of tabs. When the tab
control is created with two default pages, there are actually three controls created:
the tab control itself, page 1, and page 2. Each of these controls has its own name
and other properties. The properties specific to the tab control are shown at the
bottom of the property window in Figure 26-3.

The tab control itself is named TabCtlxxx. Each tab control page has a default
name of Pagexxx, where xxx is a three digit number, dependent on a lot of things
outside your control. You can change the Name property of each page and of the
tab control itself.

You can set several properties for a tab control that change the look of the tab area
of the control. See Table 26-1.

Table 26-1
Tab Control Properties

Tab Control Property Explanation

Back Style Determines the color of the area below the tabs themselves.
The tab area is standard windows gray and cannot be
changed.

Transparent: Shows the background through the area below
the tabs.

Normal: Displays the area below the tabs in the same gray
color as the tabs themselves.

Multi Row Determines if multiple rows are displayed when the number
of tabs exceeds the width of the tab control. You can change
the width of each tab by using the Tab Fixed Height option.
You have little control over which tab is in which row. By
changing the order of the tabs (by using each tab page’s Page
Index property), you can determine the order of the tabs, and
by watching the width of the tab control itself and the width
of the tabs, you can usually move tabs to desired rows.

Yes: Multiple Rows are allowed.

No: Only one row is allowed.

Continued

870 Part I, Section III ✦ Automating Your Applications

Table 26-1 (continued)

Tab Control Property Explanation

Style Specifies the visual look of the tab area.

Tabs: The default look. Shows the tabs as in Figure 26-3. Each
tab looks like a file folder tab with the currently selected page
appearing to be in front of the other tabs.

Buttons: Appears as little raised rectangles sitting at the top of
the tab control area. The selected tab button is depressed like
a toggle button.

None: The tabs are invisible and do not appear above the tab
control area. The tab pages must be manipulated with code.
This setting is used when you want to programmatically
control what users see without giving them the ability to
select each page. Can also be used when a large number of
controls need to be viewed on a single form but in specific
groups.

Tab Fixed Height 0" displays the tabs as normally viewed. Really small numbers
(.001) can also hide the tabs, and large numbers (such as 2”)
can make them large.

Tab Fixed Width 0" displays the tabs based on the amount of text in each tab
page’s Name or Caption property. Any other number makes all
the tabs the same width. Used to fill out the tabs across an
entire area or to manipulate their location on one or more rows.

Changing the tab control page properties
If you click on a tab control page, you can see that it has some properties specific
to that page. The most important properties are Caption, Picture, Picture Type, and
Page Index. The Caption property lets you change the text in each tab.

1. Select the first tab and change the Caption to Product.

2. Select the second tab and change the Caption to Show All Products.

The Picture property allows you to add a picture or icon to the left side of each tab.
The pictures are not resizable and must already be small enough to fit on the tab.
You select the pictures the same way you select any picture, by clicking on the
builder button in the property and selecting a built-in picture file from the Picture
Builder or an external .bmp or .ico file from the available browse file dialog box.

871Chapter 26 ✦ Programming Continuous Forms, Tab Dialogs and Command Buttons

The Picture Type property lets you embed a picture from an external source or link
to an external picture to save space within the .mdb file.

The Page Index property lets you determine the order of the tabs. The tabs gener-
ally are numbered from 0 to the number of tabs –1. If you change the Page Index
property to a different number, it can change the order of the tabs. You could
change the first tab’s Page Index property to 11 and the second to 6, which would
switch the order of the tabs.

It is good to keep the tab pages in a sequential order. In order to programmatically
change tabs, you can reference the Page Index property. It is a lot easier if the Page
index numbers correspond to the visual order of the tabs.

Copying controls from a Detail section to a tab
control page
Now that you have created the tab control on the form, you can paste the controls
you previously cut to the clipboard back to the tab page you want. Follow the steps
below to paste the controls on the first tab page:

1. Click on the first tab (which should be labeled Products).

The property window should display the properties from the first page to
show that you have successfully selected the first page of the tab control and
not the tab control itself.

2. Select Paste from the Edit menu (or press Ctrl-V).

The controls cut from the form now appear on the first tab page. You may need to
move the group of controls slightly to place them beginning in the upper left por-
tion of the tab control’s first page. You may also want to adjust the placement of the
tab control itself and the space to the right and below the Detail section to give the
control good visual placement. By adding space all around the control, you enhance
the three-dimensional look of the control. A tab control should never be simply
stuck up in the top left corner of a form.

Make sure you have selected the tab control page. If you have incorrectly selected
the tab control itself, any controls pasted to the control will actually be pasted to
the tab control and not to any of the pages. The controls will be displayed on all
pages.

If you want to display a control such as a label that you want displayed on all tab
pages, place the control on the tab control itself and not on any specific page.

Figure 26-4 shows these controls on the first tab page.

Tip

Caution

Tip

872 Part I, Section III ✦ Automating Your Applications

Figure 26-4: Placing the controls on the tab page

Programming Continuous Forms
In the example database Chap26Start.mdb, there is a form named
fsubProductsDisplayAll, as shown in Figure 26-5. This form contains selected con-
trols from the frmProducts form. The form Default View property is set to
Continuous Forms so that all the records in the underlying tblProducts table can be
viewed together. The important controls in this form are the two buttons at the
beginning of the line.

Figure 26-5: The fsubProductsDisplayAll subform in design view

The first button contains code to delete the current record. You will see this code
later in this chapter. The second button contains code to display the entire record
on the first page. Although the Quick Search combo box works well at the top of the
frmProducts form, this is another way of viewing all your records and quickly
selecting one record.

873Chapter 26 ✦ Programming Continuous Forms, Tab Dialogs and Command Buttons

This subform also contains code to quickly re-sort the data by each of the columns
in the subform. This code is linked to the OnClick event of each label in the Form
Header section of the subform. All the code for the buttons and labels is already
coded for you behind the subform. It will all be explained in the following pages.

This form will be used as a subform in the tab control, so the first task is to create a
subform control on the tab control’s second page and then select this subform in
the subform control’s Source Object property.

Embedding a subform in a tab control
You create a subform control in a tab control page the same way you create a sub-
form control in any form’s Detail section:

1. Select the second page of the tab control.

Make sure you have selected the second tab itself, or the subform will be
placed on the tab control itself and display on every page.

2. Select the Subform/Subreport control from the toolbox.

3. Draw a subform rectangle within the tab control page, as shown in Figure 26-6.

Using the SubForm Wizard that is displayed, select Use an existing form, and
choose the fsubProductsDisplayAll form.

This automatically fills the Source Object property of the subform control
with the fsubProductsDisplayAll form name.

Figure 26-6: Creating a subform control

874 Part I, Section III ✦ Automating Your Applications

4. Press Next to move to the next wizard screen.

This screen displays only when you place a subform in the Detail section of a
form. It is used to create a parent-child subform link to filter the data dis-
played in the subform to match the data in the main form. In this example,
you do not want a link. You want to show all the records in a continuous form
so that you can see all of the records.

5. Select Choose from a list, and then choose None from the list of links.

None will be the last selection in the list. When you choose None, you will see
all of the records in the continuous form.

6. Press Finish.

The subform control is created with the fsubProductsDisplayAll form as the
Source Object. You should see the actual form (fsubProductsDisplayAll) in the
subform control, as shown in Figure 26-7. Sometimes, you only see a gray box
and you have to leave the form and reopen it.

Before continuing and learning how to add code to the various buttons on the sub-
form, view the form in form view by pressing the View button on the toolbar (the
first button) and choosing Form View. Then select the second tab (Show All
Products). Your form should look like the one shown in Figure 26-8.

Figure 26-7: The subform control with the fsubProductsDisplayAll form embedded
in it

875Chapter 26 ✦ Programming Continuous Forms, Tab Dialogs and Command Buttons

If you don’t see the tabs separated by space on all four sides, you should move the
tab control away from the top or left borders. If there is too much space to the right
or below the tab control, you should adjust the form borders so that there is equal
space around the control. When you have the form exactly as you want it displayed,
press the Save button (second from the right) on the form view toolbar, which will
lock in the size of the form window.

Figure 26-8: The frmProducts form’s Show All Products tab

Referencing Controls in a Tab Control and Subform

When you reference controls within a tab control, you can simply reference the controls as
if they were on the form itself. When you reference a control within a subform, you must
first reference the subform control itself. For example, to reference the control named
txtProductID in the first tab, you would use the following reference:

Forms!frmProducts!txtProductID

However, if you want to reference the same control on the second tab, which contains the
subform, you would have to use the following reference:

Forms!frmProducts!fSubProductsDisplayAll.Form!txtProductID

Referencing controls on any subform requires you to reference the control through the sub-
form control and the .Form parameter, regardless of whether or not it is embedded in a tab
control. Although the tab control is not a container type control, the subform control is.

876 Part I, Section III ✦ Automating Your Applications

Creating code to delete a record from a continuous
form
In the continuous form, there is a command button that has been created. Code will
be entered behind the On Click event to confirm that the user really wants to delete
the record and then the code will delete the record.

There are several ways to delete a record. Generally, you are going to use the fol-
lowing command:

RunCommand acCmdDeleteRecord

This command can be run as long as a single record is currently selected.
Sometimes, you have to explicitly select a record by using the following command:

RunCommand acCmdSelectRecord

However, if you are sitting on a record (for example, when you press a Delete but-
ton on a continuous form’s line), you can simply run the RunCommand
acCmdDeleteRecord statement.

Good coding means that you always want to think about more than just the simple
task at hand. When deleting a record, you always should do a few things first:

✦ Confirm the delete: This means that you want to ask users if they are sure
that they want to delete the record. You can do this with a simple message
box and an If-Then-Else statement. Access can display a custom confirmation
message, but it happens after the deletion and is not the most user-friendly
message.

✦ Trap for any errors (New Record, Null Record, Deleted Record): If you use
the RunCommand acCmdDeleteRecord and the cursor is on a record with a
valid key, the delete command will work fine. However, if the record is a new
record, contains a null key value, is deleted, has a referential integrity prob-
lem with a related table value, or several other situations, the delete will fail. If
you don’t properly trap for an error, your program will crash. Whenever you
delete a record, you must trap for a possible error.

✦ Handle the post-delete message: Whenever you delete a record, Access will
automatically confirm the delete as it is happening. If you have already con-
firmed the delete before you run the delete code, you will want to stop Access
from confirming the delete a second time. (This becomes user-interface
harassment.) In this example, you will create a custom deletion, so you will
write code to suppress the automatic deletion message from Access.

Figure 26-9 shows the code to accomplish this task. The first line sets an error trap
in case there are any problems. The error trap would trigger the message box at the
bottom of the code window. The Dim statement sets up a variable to use to confirm
the delete.

877Chapter 26 ✦ Programming Continuous Forms, Tab Dialogs and Command Buttons

Figure 26-9: The code window to delete a record in the continuous
form

The second block of code checks to make sure the line is not a new record or a null
record. In this continuous form, because new records are not allowed to be created,
this should be an impossible situation. But if the form property is ever changed,
this code is ready. The code uses the NewRecord method of a form and the IsNull
function to check both conditions. If either condition is True, a message box is dis-
played to let the user know the record cannot be deleted, and the program exits the
procedure.

The program continues if the record can be deleted, and a message box is dis-
played to collect a response and set it to the variable previously dimensioned. The
message box confirms if you want to delete the product and if the response is
vbYes (the user clicks on the Yes button in the message box), the command is run
to delete the record. There is no Else clause, so if the user presses the No button in
the message box, the program just ends and nothing happens.

There is one more task for any delete procedure that uses a custom confirmation
message. The code goes behind the form’s BeforeDelConfirm property, as you can
see in Figure 26-10. The code goes behind the BeforeDelConfirm property of the
form because it is a form event. The simple two lines of code use built-in variables
to stop the automatic delete message.

Figure 26-10: The code window to suppress Access’s
automatic confirmation message

878 Part I, Section III ✦ Automating Your Applications

Creating code to reposition the record pointer
between tabs
The next task is to understand the many ways you can display a record in the same
form in different views when using a tab dialog box. In this example (as shown in
Figure 26-8), there is another button next to the delete button. This button will be
used to change from the continuous form showing all the records on the second tab
to the one complete record on the first tab. When you move between records on
the second tab, the displayed record in the first tab is unchanged. When you press
the button, the record pointer on the first tab is repositioned to the matching
record by using the value of the chrProductID field in the txtProductID control on
the form, as you can see in Figure 26-11.

Figure 26-11: The code window to reposition the
record pointer on the main form

A variable named strProductID is set to capture the value of the txtProductID con-
trol on the continuous form. Focus is moved to the main form’s txtProductID con-
trol. Rather than use Forms!frmProducts, the Parent method is used, which moves
from the subform to the main form that contains the subform. This way, if you ever
rename the main form, you do not have to change the code.

Any time you need to reference the main form from a subform, use the Parent
method instead of the Forms!formname method. You cannot use Me because that
would refer to the subform.

Now that focus is on the main form, the tab will automatically change. This works
only when the controls are on the main form and are not embedded in a subform. In
fact, sometimes you have to manually (programmatically) change the tab, as will
see later in this chapter.

The final line of code uses the DoCmd.FindRecord method to reposition the pointer
to the record. When the key field is displayed and the form uses a single field key, it
is the easiest method to reposition the pointer.

Tip

879Chapter 26 ✦ Programming Continuous Forms, Tab Dialogs and Command Buttons

Suppose you have a more complex situation, requiring you to change the tab manu-
ally and reposition the record pointer to a field. Additionally, you need to display a
record that contains a multi field key or the primary key field is not on the form.
You must use a more complex version of code. The following code shows this
alternative:

Me.TabCtl02.Pages(0).SetFocus
Dim rstProducts As New ADODB.Recordset
Set rstProducts = Me.RecordsetClone
rstProducts.FindFirst “[chrProductID] = ‘“ & txtProductID & “‘“
If Not rstProducts.NoMatch = True Then

Me.Bookmark = rstProducts.Bookmark
End If
rstProducts.Close

The first line allows you to manually change pages and set focus to the tab itself.
Tabs are numbered by default from 0 to the number of tabs –1, so the first page usu-
ally will have an index of 0. You use the .Pages method of the tab control to set
focus to the tab. However, you must check the Page Index property of the tab page
you want to go to, because you can change this property to any number.

The next block of code creates a recordset and then uses the RecordsetClone
method of the form (which is like creating a query to the Record Source of the
form) to set what is known as a bookmark. A bookmark is a pointer to a record.
When you use the FindFirst method to locate a record whose chrProductID table
field matches the value of the txtProductID control, a bookmark on the form can be
set to the recordset’s bookmark, which repositions the form’s record pointer to the
matching record.

Creating code to sort data columns using labels
If you look at the fSubProductsDisplayAll form in design view, as shown in Figure
26-12, you can see the lblCategory label selected, code behind the On Click event of
the label (yes, labels can be clicked on), and the code behind the event.

The code shown at the bottom of Figure 26-12 sorts the data in the chrCategory
control alternatively in ascending or descending order. The OrderBy property of the
form is used to sort the data by the field name listed in the code. You must use the
underlying table field name and not the control name. By checking the current
value of the property, you can tell if the data is currently sorted by the value and
you can switch it from ascending to descending or descending to ascending.

880 Part I, Section III ✦ Automating Your Applications

Figure 26-12: The code window to reposition the record pointer on the
main form

Common Code for Common Functions
At the bottom of the frmProducts form is a series of four buttons to handle com-
mon functions that users need to do in every form. These include creating new
records, deleting the current record, displaying a custom search dialog box, and
displaying a custom print dialog box to print one or more records in one or more
reports.

The command buttons use the On Click property to run the code behind the event.
The code for the New button is very simple and consists of one line, as shown in
Figure 26-13.

Deleting the current record can be a little more complicated, depending on error
trapping, relationships, and any custom messages you want to display to the user.
The code shown in Figure 26-14 is the code behind the Delete button at the bottom
of the form.

In this example, there is a lot of code. After first setting a basic error trap, several
variables and a recordset are dimensioned.

881Chapter 26 ✦ Programming Continuous Forms, Tab Dialogs and Command Buttons

Figure 26-13: Code to go to a new record in a form

Figure 26-14: Code to delete a record in a form

882 Part I, Section III ✦ Automating Your Applications

Next, a custom message is displayed to make sure the button was not pressed acci-
dentally. Then code is added to make sure that before the product is deleted, it is
not used in other tables. There is a relationship between the tblSalesLineItems
table and the tblProducts table. If the record is used in the sales line item table, it
cannot be deleted from the products table. If the relationships are properly set in
the database window, attempting to delete the record will cause an error and the
record will not be deleted. However, it is better to code for relationships than to
allow Access to generate errors.

To do this, a SQL statement is used to create a recordset from the tblSalesLineItems
table using the current product ID in the WHERE clause. If any records are found,
the product cannot be deleted. Otherwise, the record is selected and deleted.
Because focus is currently on the Delete button itself and not on a field from the
record, the current record must first be selected before it can be deleted.

The other buttons display forms that have been created to search and print
records. They are not part of Chap26Start.mdb but are fully working in the
AccessAutoAuctions.mdb database file. Feel free to explore them. They will be cov-
ered in more detail in later chapters, but now is a good time to examine them.

✦ ✦ ✦

PART II
Creating
Enterprise
Applications

SECTION IV
Upsizing to
SQL Server and
MSDE 2000

✦ ✦ ✦ ✦

In This Section

Chapter 27
Upsizing Data to a
SQL Server Database

Chapter 28
Working with Access
Projects

Chapter 29
Working with Access
Projects and SQL
Server Tables and
Queries

✦ ✦ ✦ ✦

P A R T

IIII

Upsizing Data to
a SQL Server
Database

SQL Server 2000 Desktop Engine, also called MSDE 2000,
is a client/server data engine alternative to the Microsoft

Jet database engine. In Access 2003, MSDE 2000 is built on
SQL Server 2000 and is compatible with the full Microsoft SQL
Server 2000 version. If you anticipate your small workgroup
application to eventually accommodate 20 or more users — or
even hundreds or thousands of users — you probably want to
use MSDE 2000. In this chapter, you learn how to set up MSDE
2000 and how you can use it to build powerful client/server
database applications.

In this chapter, you will use the database file
Chap27start.mdb.

Understanding MSDE 2000
MSDE 2000, also called SQL Server 2000 Desktop Engine,
is a client/server database engine that is designed to be com-
patible with the SQL Server database engine. Think of MSDE
2000 as a scaled-down version of SQL Server. With some
exceptions, it provides all of the power of SQL Server, yet it
has been optimized to run on desktop computers running
Windows 98, Windows ME, Windows XP, Windows NT 4.0,
and Windows 2000 (or later).

Applications developed using MSDE 2000 can be run
under SQL Server 2000 Standard Edition or SQL Server 2000
Enterprise Edition without modification. This capability is
a great advantage to both application developers and their
customers.

On the
CD-ROM

2727C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the
MSDE 2000

Comparing MSDE
2000 to Jet

Working with SQL
Server Service
Manager

Upsizing from Jet

✦ ✦ ✦ ✦

886 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

In the rapidly changing business environments of today, many software develop-
ment projects begin targeting a handful of users. Within a relatively short span of
time, the application needs to be available across the enterprise, consisting of pos-
sibly hundreds or thousands of users. In a typical scenario like this, the customer
faces expensive development costs and lost time when the application needs to be
modified to accommodate the larger environment. Or, in the worst-case scenario,
the customer may be forced to abandon the smaller application and reengineer it
with a client/server toolset. MSDE 2000 provides the scalability required by growing
business environments.

Developers who don’t have access to a network running SQL Server can build
client/server applications using MSDE 2000 on a personal computer. Some simple
changes to the connection information are all that is required when the time comes
to connect the application to SQL Server.

Comparing MSDE 2000 and Jet
MSDE 2000 is a true client/server database engine. That is, the interface objects
(forms, reports, and shortcuts to data access pages) are stored locally on the work-
station in a Microsoft Access project. The data, however, is stored on a local or net-
work server. Additionally, much of the processing of data (running queries and
stored procedures) occurs on the server. This is very different from the Jet
database because, regardless of where you have the data, all the records in a table
are returned to the local workstation when processing a bound form or report.
Client/server architecture minimizes the work of both the client and the server and
cuts down on the amount of information traveling over the network.

Microsoft Jet is the default database engine included with Access 2002. MSDE 2000
is an alternative database engine to the Microsoft Jet database engine. If you have
developed applications in previous versions of Microsoft Access, you should be
familiar with Microsoft Jet.

Jet is the file/server data manager behind the Microsoft Access database. A
Microsoft Access database can store all of an application’s database objects, includ-
ing the interface objects and the data. Jet moves the data back and forth between
tables and forms and reports. Jet is described as a file server database engine
because its job is merely to store and retrieve data. There is no distribution of pro-
cessing between server and workstation as occurs in the client/server architecture.

Although MSDE 2000 provides the optimum in power and flexibility, Jet is the
appropriate environment for many types of situations. Therefore, it’s important to
choose the right database engine for the job.

Choosing the right database engine
Designing a database application requires careful consideration of the business envi-
ronment’s current situation, as well as strategic planning for expansion — either in
the number of users or in the volume of data to be stored and retrieved. Delivering an

887Chapter 27 ✦ Upsizing Data to a SQL Server Database

application that’s unable to handle the growing needs of the business — or, worse,
that can’t handle even the initial needs of the business environment — can be a real
career-buster. Although it’s tempting to design every application with a “the sky’s the
limit” approach so that it can accommodate the full spectrum of business environ-
ments, you need to find the right balance between maximum flexibility and simplicity.

When selecting the database engine that is most appropriate for your application,
consider these four criteria:

✦ Simplicity

✦ Data integrity

✦ Number of users

✦ Volume of data

In the simplicity category, Jet gets the score. As the default database in Access
2003, creating a Jet database is much easier than creating one for MSDE 2000. It is
also the most compatible with previous versions of Access. Although Access pro-
vides built-in security administration, Jet databases don’t require security (user IDs
and passwords). MSDE 2000 does require security and uses the Windows NT secu-
rity model. The memory and hard drive space requirements for Jet databases are
low as compared to MSDE 2000.

You can always upsize a Jet database to SQL Server later on using the Upsizing
Wizard. You may need to make some modifications to the application, however.

When considering data integrity, MSDE 2000 is the most reliable choice. MSDE 2000
includes the same data integrity technology that is provided in SQL Server 2000. All
changes that you make to the database are logged to a transaction file. In the event
of a database disaster — a hardware failure or power interruption, for example —
the database can repair itself using the log file. With Jet, however, this kind of disas-
trous event can permanently corrupt the database. As anyone who has ever tried to
repair an Access database knows, a reliable backup strategy is a must. For some
mission-critical applications, though, restoring from yesterday’s backup can result
in a major business interruption. For those types of applications, MSDE 2000 is the
best option.

When addressing the limitations of MSDE 2000, remember that it is 100-percent
compatible with SQL Server 2000.

Both Jet and SQL Server 2000 Desktop Engine are designed for the single worksta-
tion or small workgroup. Generally, MSDE 2000 can handle the same number of
simultaneous users as Jet. MSDE 2000, however, has a limit of five active simultane-
ous query batches. That is, the database engine can process up to five queries at
one time. The server will queue any subsequent queries until one or more of the
previous five query batches completes. Despite this limitation, MSDE 2000, as a
client/server database engine, has the performance advantage over Jet even in a
small workgroup situation. MSDE 2000 processes queries on the server and moves

Note

Tip

888 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

only the resulting data to the client workstation. Jet, on the other hand, must move
the data to the client so that the client workstation can process the query.

Both Jet and MSDE 2000 have a maximum database size of 2GB. For applications
that accumulate a large volume of data over a long period of time, consider includ-
ing an archive/purge utility in the application. For many business situations, only a
relatively small volume of data needs to be active at any point in time.

If you have determined that MSDE 2000 is the right database engine to utilize in
your database application, you are ready to begin working with this powerful fea-
ture of Access 2003.

Table 27-1 compares the capabilities of SQL Server and Jet. The table comes from
the “Microsoft Access 2000 Data Engine Options” whitepaper and is reprinted with
permission from Microsoft.

Access msdn at http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/dnacc2k/html/acmsdeop.asp for more information on MSDE.

Table 27-1
Comparison of SQL Server/MSDE 2000 and Jet

SQL Server (use MSDE if these
Requirement are future requirements) Microsoft Access (Jet)

Scalability SMP support No SMP support

Virtually unlimited number of Maximum of 255 users
concurrent users

Terabyte levels of data 2 GB of data

Transaction logging No transaction logging

Business Critical 7X24 support and QFE No 7X24 support

Point-in-time recovery Recoverable to last
backup

Guaranteed transaction integrity No transaction logging

Built-in fault tolerance No built-in fault
tolerance

Security integrated with Windows NT No integrated security
with Windows NT

Rapid Application Access is UI for both engines and offers WYSIWYG
Prototyping database tools and built-in forms generation

Note

889Chapter 27 ✦ Upsizing Data to a SQL Server Database

Installing MSDE 2000
MSDE 2000 doesn’t install automatically when you install Office 2003. It is provided
as a separate installation process included on the Microsoft Office 2003 CD-ROM.

Hardware requirements
Chances are, if you are successfully running Microsoft Office Access 2003 on your
personal computer, your hardware meets the minimum requirements for MSDE
2000.

MSDE 2000 requires a computer with a Pentium 166-MHz or higher processor with
32MB of RAM, although 64MB or more is recommended. MSDE 2000 requires
approximately 45MB of hard drive space for a typical installation — 25MB for pro-
gram files and 20MB for data files. Optionally, you can store the program files and
data files on separate drives. Remember that you need additional space for your
database files.

In reality, you should have a minimum of 128MB on any computer system run-
ning Microsoft business software purchased in 2001 or later.

MSDE, Microsoft Data Engine, is the previous version of Microsoft SQL Server 2000
Desktop Engine. MSDE is compatible with SQL Server Version 7. Although MSDE
2000 provides some additional features, the two desktop versions are very similar.
For the purposes of this discussion, any of the concepts that applied to MSDE cer-
tainly apply to SQL Server 2000 Desktop Engine.

Software requirements
MSDE 2000 requires one of the following operating systems: Windows 98, Windows
Me, Windows NT Workstation 4.0 with Service Pack 5 or later, Windows NT Server
4.0 with Service Pack 5 (SP5) or later, Windows NT version 4.0 Server Enterprise
Edition with SP5 or later, Windows 2000 Professional, Windows 2000 Server,
Windows 2000 Advanced Server, or Windows 2000 Datacenter Server.

Running the SQL Server 2000 Desktop Engine
Installation Program
To install MSDE 2000, insert the Office 2003 CD-ROM into your CD-ROM drive and
select Run from the Start menu. In the Run box, type D:\MSDE2000\MSDE2KS3.
EXE (or use whatever letter corresponds to the drive containing your installation
CD-ROM). Click OK to begin the installation.

Note

Tip

890 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

If you have installed MSDE, an older version of MSDE 2000, you should uninstall
it before installing MSDE 2000.

Because some Windows programs interfere with the Setup program, the installation
program may warn you to shut down any applications that are currently running.
You can simply click on the Continue button to continue the setup, or you can click
on the Cancel button to cancel the installation and run the installation later.

When you run MSDE2KS3.EXE, the License Agreement screen displays. Click the
I Agree button to accept the terms of the license agreement and begin the installa-
tion process. Next, the installation program prompts for a folder name where it can
unpack the MSDE installation files. The Installation Folder dialog box is shown in
Figure 27-1.

Figure 27-1: Choosing a folder for the
installation files.

When the installation program finishes copying the files to the installation folder, you
are ready to install MSDE 2000. In the Run box, type C:\sql2ksp3\MSDE\setup.exe
SAPWD=sa (or use whatever drive letter and folder corresponds to the Installation
Folder you specified. Click OK to begin the installation.

The installation program installs and configures MSDE 2000 automatically. A
progress meter displays during the installation and configuration process, as
shown in Figure 27-2.

These installation instructions correspond to the installation procedure provided
by Microsoft’s beta-testing staff at the time this chapter was written. Actual instal-
lation instructions may be revised by the time the product is released.

Note

Caution

891Chapter 27 ✦ Upsizing Data to a SQL Server Database

Figure 27-2: The SQL Server Desktop
Engine installation progress meter.

When you have installed all of the MSDE 2000 files, the progress meter disappears.
Depending on the installation operating system, the installation program may
request that you restart the computer to complete the installation.

It is a good idea to restart the computer after installing new software.

Customizing the installation of SQL Server 2000
Desktop Engine
The Setup program for MSDE 2000 comes with built-in setup parameters. It does not
display any screens for customizing the setup for parameters, such as the target
directory for the MSDE 2000 program files, the target directory for storing the SQL
Server data files, or the default SQL Server name. To override these built-in settings,
you must run Setup.exe using command line switches.

Table 27-2 displays the command line switches that you can use to customize the
installation.

Table 27-2
Configuration Options for Installing MSDE 2000

Setting Description

TARGETDIR The name of the folder to install MSDE 2000. The default value is
C:\Program Files\Microsoft SQL Server\.

DATADIR The name of an optional folder for data files. The default value is
the value of TARGETDIR.

COLLATION The name of a collation sequence.

INSTANCENAME The name of the SQL Server. The Default value is MSSQLSERVER.

USEDEFAULTSAPWD Set the default password to NULL when the SA user logs in.

SAPWD=”sa_password” Assign the specified password to the SA login.

SECURITYMODE=SQL Use Mixed-Mode SQL Server security instead of Windows
Integrated Security.

Note

892 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

You must enter the setting options in uppercase.

The following is an example of entering command line switches with Setup.exe:

C:\sql2ksp3\MSDE\setup.exe TARGETDIR=”C:\Program Files\Microsoft SQL Server\”
DATADIR=”C:\Program Files\Microsoft SQL Server\MSSQL\Data\”
COLLATION=”SQL_Latin1_General_CP1257_CS_AS” INSTANCENAME=myinstance SAPWD=sa

Starting the SQL Server 2000 Desktop Engine
When you have completed the setup, the SQL Server Service Manager displays on
the Windows taskbar. To work with an MSDE 2000 database, you must first start the
SQL Server Service Manager.

When you install MSDE 2000, SQL Server Service Manager starts automatically. You
can run the SQL Server Service Manager any time by choosing it from your
Windows taskbar.

The SQL Server Service Manager, shown in Figure 27-3, allows you to choose the
type of service that you want to start. The Server box lists the names of the servers
that SQL Server Service Manager has found. In this example, the JENXP server is
the name of the desktop where MSDE 2000 was installed. The Services box lists the
names of the SQL Server services that you can start. The services you can start
include:

✦ SQL Server: Database server for SQL Server.

✦ Distributed Transaction Coordinator: Distributed transaction server.

✦ SQL Server Agent: Runs scheduled administrative tasks.

Figure 27-3: Using SQL Server Service
Manager.

Note

893Chapter 27 ✦ Upsizing Data to a SQL Server Database

To open the SQL Server Service Manager dialog box, double-click on the SQL Server
Service Manager icon in the Windows taskbar. To start MSDE 2000, select SQL
Server in the Services box. Then click Start/Continue.

Selecting the option “Auto-Start service when OS starts” in the SQL Server Service
Manager automatically starts the service when you boot up Windows.

When MSDE 2000 has started, an arrow displays next to the server in SQL Server
Service Manager, as shown in Figure 27-4.

Figure 27-4: Starting MSDE 2000.

When MSDE 2000 starts, the Pause and Stop buttons in SQL Server Service Manager
are enabled. When you are running SQL Server in a multi-user environment, you
may need to stop the server at some point in order to perform an administrative
task. Before stopping the server, select the Pause button to pause the server.
Pausing the server prevents any additional users from logging into the server. Then
you can alert any currently logged-in users to complete their work and log out of
the server. When you are certain that all users have logged out, select the Stop but-
ton to stop the server.

Stopping SQL Server prevents anyone from connecting to the database and drops
any currently connected users. Disconnecting a user unexpectedly could lead to
data loss.

After you have successfully installed MSDE 2000 and started the server, it’s time to
get started working with a SQL Server database.

Using the Upsizing Wizard
Many organizations today are becoming more and more dependent on their
database applications to manage everyday business operations, and these applica-
tions are growing both in volume of data and number of users. Applications that

Caution

Tip

894 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

you may have developed using Microsoft Access — even in the past year or two —
may be starting to strain the organization’s network. At the same time, client/server
databases like SQL Server 2000 are becoming more popular, even with smaller busi-
nesses, as these databases become easier to install, use, and maintain.

If any of your clients are among the Fortune 500 set, you may be among those who
have been recently advised of a new mandate that all applications must conform to
client/server technology only — no file-server database management allowed. Your
business partner at one of these corporations has probably contacted you in a
state of alarm. Having already invested a significant amount of their budget into the
Access application that you developed for them, they are naturally concerned that
they may have to invest at least the same amount, if not a substantially larger
amount, to redesign it to fit the new architecture.

Fortunately, with Access 2003 and its Upsizing Wizard, you can provide a relatively
simple and inexpensive solution that retains a significant amount of the original
development effort while providing a database that conforms to client/server
methodology.

You can convert the tables stored in an existing Microsoft Access database (.mdb)
to a client/server database automatically using the Microsoft Access Upsizing
Wizard. The Upsizing Wizard takes a Jet database and creates an equivalent SQL
Server database with the same table structures, data, and many other attributes of
the original database. The Upsizing Wizard re-creates table structures, indexes, vali-
dation rules, defaults, autonumbers, and relationships, and takes advantage of the
latest SQL Server functionality wherever possible.

Before upsizing an application
You should perform these steps prior to converting an application using the
Upsizing Wizard:

✦ Back up your database: Although the Upsizing Wizard doesn’t remove any
data or database objects from your Access database, it’s a good idea to create
a backup copy of your Access database before you upsize it.

✦ Ensure that you have adequate hard drive space: At a minimum, you must
have enough hard drive space to store the new SQL Server database. Plan to
allow at least twice the size of your Access database to allow room for future
growth. If you expect to add a lot of data to the database, make the multiple
larger.

✦ Set a default printer: You must have a default printer assigned, because the
Upsizing Wizard creates a report snapshot as it completes the conversion.

✦ Assign yourself appropriate permissions on the Access database: You need
read/design permission on all database objects to upsize them.

✦ Start the SQL Server Service Manager: It must be running for the Upsizing
Wizard to create the new SQL Server database.

895Chapter 27 ✦ Upsizing Data to a SQL Server Database

Starting the Upsizing Wizard
After you have completed the steps to prepare for the conversion, you are ready to
upsize your application. First, open the Microsoft Access database that you want to
convert. This example upsizes the Chapter 27 version of the Access Auto Auctions
database (Chap27Start.mdb). Second, select Tools ➪ Database Utilities ➪ Upsizing
Wizard from the Access menu. The first screen of the Upsizing Wizard displays, as
shown in Figure 27-5.

Figure 27-5: The Upsizing Wizard.

In the first Upsizing Wizard screen, you can choose to either copy your existing
data to an already existing SQL Server database, or to create a new SQL Server
database. For this example, choose Create new database. Then click Next. The sec-
ond Upsizing Wizard screen displays, as shown in Figure 27-6.

Figure 27-6: Setting up the new SQL Server
database.

896 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

In this Wizard screen, you define the connection information for the new SQL
Server database. For this example, type (local) as the name of the SQL Server.
Check the Use Trusted Connection check box. Type Access Auto AuctionsSQL as
the name of the new SQL Server database. Then click Next to continue.

You use (local) when creating an MSDE database on a desktop computer. If you
want to create the database on a server on your network, select the server name
from the list.

The next Wizard screen, shown in Figure 27-7, allows you to select the tables to
upsize to the new SQL Server database. Click the >> (double-arrow) button to
export all of the tables. Then click Next to continue.

Figure 27-7: Selecting the tables to upsize.

In the next screen, which is shown in Figure 27-8, you can take advantage of many of
the powerful database features available in SQL Server, including:

✦ Indexes: The Upsizing Wizard converts Microsoft Access primary keys to
Microsoft SQL Server non-clustered, unique indexes and marks them as SQL
Server primary keys. Other indexes are converted unchanged.

✦ Validation rules: The Upsizing Wizard upsizes all table, record, and field valida-
tion rules, and it upsizes field required properties as update and insert triggers.

✦ Defaults: The Upsizing Wizard upsizes all default values as ANSI defaults.

✦ Table relationships: Choose this option to preserve the relationships that you
have defined for your tables. If your Access application uses cascading
updates or deletes, also select the Use Triggers option. Use Declared
Referential Integrity (DRI) if your application does not make use of cascading
updates and deletes.

✦ Timestamp fields: Microsoft SQL Server uses a timestamp field to indicate
that a record was changed (not when it was changed) by creating a unique
value field and then updating this field whenever a record is updated. In

Tip

897Chapter 27 ✦ Upsizing Data to a SQL Server Database

general, a timestamp field provides the best performance and reliability.
Without a timestamp field, SQL Server must check all the fields in the record
to determine whether the record has changed, which slows performance. If
you choose Yes, let wizard decide, timestamp fields are created only for tables
that contain floating-point (Single or Double), memo, or OLE object fields.

✦ Don’t upsize any data: Choose the option Only Create the Table Structure;
Don’t Upsize Any Data if you only want to create the SQL Server database
structures using your existing database, but leave the new tables empty.

Figure 27-8: Selecting the table attributes.

After you have made all of your selections, click Next to continue.

Figure 27-9 shows the next Wizard screen. In this screen, you can tell the Upsizing
Wizard to change the existing Access application so that it can work with the new
SQL Server database. Or, you can tell the Upsizing Wizard to use the existing Access
application to create a new Access project.

If you select Create New Access Client/Server Application, the Upsizing Wizard cre-
ates a new Access project. The File Name for the new project (.adp) is the Access
application’s file name followed by the “CS” suffix. The Upsizing Wizard converts all
of the Access application’s interface objects (forms, data access pages, reports, and
code) into the new Access project and connects the project to tables and queries
stored in the new SQL Server database.

The Link SQL Server Tables to Existing Application selection tells the Upsizing
Wizard to modify your Access database to work with the new SQL Server database.
Queries, forms, reports, and data access pages automatically connect to the data in
the new Microsoft SQL Server database rather than the data in your Microsoft
Access database. The Upsizing Wizard renames the Microsoft Access tables that
you upsize with the suffix _local. For example, if you upsize the Customers table,
the table is renamed Customers_local in your Access database. Then, the Upsizing
wizard creates a linked SQL Server table named Customers.

898 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Figure 27-9: Creating a new Access project for
the new SQL Server database.

Selecting No Application Changes tells the Upsizing Wizard to simply upsize the
data to SQL Server. No changes are made to the Access application.

Upsizing the entire Access application to an Access project connected to a SQL
Server database converts your application to a true client/server implementation.
However, if you have been developing only Access databases until this point, you
will find client/server development is very different. The Upsizing Wizard takes you
only part of the way. The Upsizing Wizard doesn’t make any changes to modules and
macros. In Chapter 21, you learned that programming with recordsets in Access pro-
jects requires a different command set. You also need to make many changes to your
tables and queries to reach full functionality in the new architecture.

For this example, choose the option Link SQL Server Tables to Existing Application.
Although this option continues to use the Jet database engine to retrieve data from
the database, it requires the least amount of application modification.

If you leave the Save Password and User ID option unchecked, users are prompted
for the user ID (SA in our example) and password (none in our example) each time
they try to open the SQL Server database.

After you have completed the information for this screen, click Next.

You have now reached the final Wizard screen, which is shown in Figure 27-10. The
Upsizing Wizard now has all of the information that it needs to create the SQL
Server database. Click Finish to begin the conversion.

The conversion process takes several minutes to complete. A message box displays
the progress of the conversion, as shown in Figure 27-11.

899Chapter 27 ✦ Upsizing Data to a SQL Server Database

Figure 27-10: The final Upsizing Wizard screen.

Figure 27-11: Waiting for the Upsizing Wizard to
complete the conversion process.

If the Upsizing Wizard encounters any referential integrity errors while converting
your data to the new SQL Server database, an error message displays. If you
encounter an error message, you can click Yes to proceed with the conversion. Any
problem data is not converted to the new database. If you don’t want to omit the
problem data, you must click No to cancel the conversion process.

When the conversion process completes, the Upsizing Wizard automatically dis-
plays a report snapshot. An example of the report snapshot is shown in Figure
27-12. The report snapshot includes information about each step of the conversion
process for your application. The Upsizing Wizard report contains information
about the following:

✦ Database details, including database size.

✦ Upsizing parameters, including what table attributes you chose to upsize and
how you upsized.

✦ Table information, including a comparison of Access and SQL Server values
for names, data types, indexes, validation rules, defaults, triggers, and
whether or not timestamps were added.

Note

900 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Figure 27-12: The Upsizing Wizard report.

✦ Any errors encountered, including database or transaction log full; inadequate
permissions; device or database not created; table, default, or validation rule
skipped; relationship not enforced; query skipped (because it can’t be trans-
lated to SQL Server syntax); and control and record source conversion errors
in forms and reports.

The report snapshot is stored in the same folder as your application so that you
can refer to it later.

The Upsizing Wizard will successfully convert the data types used in Access to the
corresponding data types used in SQL Server. Table 27-3 shows the equivalent SQL
Server data type for each Access data type.

Table 27-3
Comparison of Access and SQL Server Data Types

Microsoft Access Data Type SQL Server Data Type

Yes/No Bit

Number Tinyint, smallint, int, real, bigint, float, decimal, numeric

Currency Money, Smallmoney

Date/Time Datetime, Smalldatetime

Tip

901Chapter 27 ✦ Upsizing Data to a SQL Server Database

Microsoft Access Data Type SQL Server Data Type

AutoNumber int (with Identity property defined)

Text Varchar(n), Nvarchar(n)

Memo Text

OLE Object Image

ReplicationID (GUID) uniqueidentifier (SQL Server 7.0 or later)

Hyperlink char, nvarchar (With the Hyperlink property set to Yes)

(no equivalent) Nchar

(no equivalent) varbinary

(no equivalent) smallint

(no equivalent) timestamp

(no equivalent) Char, nchar

(no equivalent) user-defined

(no equivalent) sql_variant

Although the Upsizing Wizard can handle mapping Access data types to SQL Server
datatypes, there are other conversion issues you will need to be aware of. If the
Upsizing Wizard Report indicates that a table has been skipped, examine the field
names in each of the Access tables to ensure that they adhere to the following
constraints:

✦ The first character must be a letter or the “at” sign (@).

✦ The remaining characters may be numbers, letters, the dollar sign ($), the
number sign (#), or the underscore (_).

✦ Spaces are allowed, but the Upsizing Wizard will insert brackets ([]) around
the field name.

✦ The name must not be a Transact-SQL keyword. SQL Server reserves both the
uppercase and lowercase versions of keywords.

For a list of SQL Server reserved keywords, open the database SQLKeywords.mdb
on the companion CD.

If any field name in an Access table fails to follow these guidelines, the Upsizing
Wizard will not be able to upsize the table. The Upsizing Wizard Report will inform
you that it has skipped the table with the offending field name. However, the wizard
does not always provide the reason the table was skipped. When you review the
report, you can refer back to this section to review the field naming rules.

On the
CD-ROM

902 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

In addition to field name constraints, the Upsizing Wizard will also fail to upsize a
table if it encounters any of these situations:

✦ If the field size between two fields participating in an Access relationship are
not exactly the same for both fields.

✦ No unique index.

✦ A unique index on a field and Required property is set to No.

✦ More than two foreign keys defined on a single table.

✦ Invalid values for a date/time field — values must be >=1/1/1753.

There is a handy tool available called SSW Upsizing Pro! that you can use to ana-
lyze your Access database before upsizing it to SQL Server. Check their website at
www.ssw.com.au/ssw/UpsizingPRO for more information.

After you are finished reviewing the report, close it. When you close the report, the
Upsizing Wizard displays the modified Access application. As you can see in Figure
27-13, the tables tab of the Access database container has changed. Each of the
original Access tables has been renamed with the suffix _local. An arrow and a
world icon precede the SQL Server tables. The arrow indicates that the table is an
attached table. The world icon indicates that the table is an ODBC-attached table.

Figure 27-13: Viewing the tables in the upsized
database.

✦ ✦ ✦

Tip

Working with
Access Projects

The Access 2003 Upsizing Wizard provides a quick and
easy way to upsize Access data to SQL Server 2000

Desktop Engine (MSDE 2000). The Upsizing Wizard automati-
cally creates an Access project (an Access data file that allows
you to work directly with the MSDE 2000 database). The sim-
plest and quickest upsizing method simply links the new SQL
Server data to the existing Access application. Although this
option moves your data to a client/server architecture, it
takes you only part of the way. Even though the data now
resides in a client/server database, the linked tables in the
existing Access front end (the forms, reports, and data access
pages) continue to use the Microsoft Jet database engine to
retrieve information from the database.

For a comparison of Jet and SQL Server 2000 Desktop
Engine, see Chapter 27.

In this chapter, you will use the database file
Chap28Start.mdb.

Using linked SQL Server tables in an Access front end can be
an acceptable solution for most small-workgroup environ-
ments. However, for environments with large numbers of
users or where large volumes of data are processed, you need
a solution that utilizes client/server architecture in both the
front-end and back-end databases.

In addition to providing access to SQL Server data, Access
projects can also contain front-end objects, such as forms,
reports, data access pages, macros, and modules. The good
news is that if you are moving from an existing Access front
end to SQL Server, you don’t have to build these objects from
scratch. The Access Upsizing Wizard does most of the work
for you.

On the
CD-ROM

Cross-
Reference

2828C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Upsizing an Access
application to
client/server

Using a form to view
and update
client/server data

✦ ✦ ✦ ✦

904 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Upsizing to an Access Project
In Chapter 27, you learn how to use the Access Upsizing Wizard to convert Access
data to MSDE 2000. You can use the Access Upsizing Wizard to convert the Access
front end, along with its data, to an Access project.

Back up your database before upsizing.

Starting the Upsizing Wizard
When you are ready to upsize, open the Access application. The following example
shows you how to upsize the Access Auto Auctions database. For this chapter, use the
Chap28Start.mdb. Select Tools ➪ Database Utilities ➪ Upsizing Wizard from the Access
menu. The first screen of the Upsizing Wizard displays, as shown in Figure 28-1.

Figure 28-1: The Upsizing Wizard.

In the first Upsizing Wizard screen, you can choose to copy your existing data to an
SQL Server database that already exists or to create a new SQL Server database.
For this example, choose Create new database. Then click Next. The second
Upsizing Wizard screen displays, as shown in Figure 28-2.

Be sure to start the SQL Server Service Manager before completing this wizard
screen.

See Chapter 27 for more information on working with the SQL Server Service
Manager.

Cross-
Reference

Caution

Caution

905Chapter 28 ✦ Working with Access Projects

Figure 28-2: Setting up the new SQL Server database.

In this Wizard screen, you define the connection information for the new SQL
Server database. For this example, type (local) as the name of the SQL Server.
Select “Use Trusted Connection.” You create the AccessAutoAuctionsSQL in
Chapter 27, so for this database, use the name AccessAutoAuctionsSQL1. Then
click Next to continue.

The next wizard screen, shown in Figure 28-3, allows you to select the tables to
upsize to the new SQL Server database. Click the >> button to export all of the
tables. Then click Next to continue.

Figure 28-3: Selecting the tables to export.

906 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

In the screen shown in Figure 28-4, you can specify which of the many SQL Server
features you want to enable in your new SQL Server database.

Figure 28-4: Selecting the SQL Server table attributes.

Refer to Chapter 27 for more information on each of these SQL Server features.

When you have made all of your selections, click Next to continue.

Using the Upsizing Wizard to create
a Client/Server Application
Figure 28-5 shows the next wizard screen. Here you can automatically create
a Microsoft Access project file to store the application objects for your new
client/server application. Choose the option Create a new Access client/
server application. The wizard automatically assigns a default name for your
new project by adding the suffix “CS” to your Access database file name. Type
AccessAutoAuctionsCS for the ADP file name. Leave the Save password and
user ID option unchecked to force the user to enter a logon ID and password
whenever the project is opened. After you have completed the information for
this screen, click Next.

You have now reached the final wizard screen, which is shown in Figure 28-6. The
Upsizing Wizard now has all of the information that it needs to create both the SQL
Server database and the Access project. Click Finish to begin the conversion.

Cross-
Reference

907Chapter 28 ✦ Working with Access Projects

Figure 28-5: Automatically creating an Access
project.

Figure 28-6: The final Upsizing Wizard screen.

The conversion process takes several minutes to complete.

When the conversion process completes, the Upsizing Wizard automatically dis-
plays a report snapshot. An example of an Upsizing Wizard report snapshot is
shown in Figure 28-7. Browse the report snapshot to review the conversion details
about each of the objects that the Upsizing Wizard converted.

After you are finished reviewing the report, close it. When you close the report, the
Upsizing Wizard automatically loads the new Access project. Figure 28-8 shows the
database container for the AccessAutoAuctionsCS project.

908 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Figure 28-7: The Upsizing Wizard report.

Figure 28-8: The upsized Access project.

909Chapter 28 ✦ Working with Access Projects

The Access Upsizing Wizard migrates the native Access objects into their corre-
sponding objects in the new Access project. Although Access projects are orga-
nized into the same groupings of objects (tables, queries, forms, reports, and so on)
as native Access databases, project objects differ significantly in how they work
compared to native Access. The similarities and differences are outlined below.

✦ Tables: Individual tables are converted to SQL Server tables. Data types are
converted to their corresponding SQL Server data types.

Refer to Chapter 27 for a listing of SQL Server data types and how they compare to
native Access data types.

✦ Queries: Queries are converted into views, stored procedures, and functions
according to the following rules:

• Select queries that don’t have an ORDER BY clause or parameters are
converted to views.

• Action queries are converted to stored procedure action queries. Access
adds SET NOCOUNT ON after the parameter declaration code to make
sure the stored procedure runs.

• Select queries that use either parameters or an ORDER BY clause are
converted to user-defined functions. If necessary, the TOP 100 PERCENT
clause is added to a query that contains an ORDER BY clause.

• Parameter queries that use named parameters maintain the original text
name used in the Access database and are converted either to stored
procedures or inline user-defined functions.

✦ Forms and Reports: Converted with no changes.

✦ Data Access Pages: The Upsizing Wizard changes the OLE DB connection and
the data binding information in the Microsoft Office data source control to
work with the new SQL Server database, and it copies the page’s correspond-
ing HTML file to the same location as the Access project, renaming the HTML
file with a “_CS” suffix. The new pages in the Access project retain the original
name, so that hyperlinks between the Access project Pages continue to work.

✦ Command Bars: Converted with no changes.

✦ Macros and Modules: Converted with no changes.

To take full advantage of SQL Server and an Access project, you need to make some
fairly significant changes to your newly converted application. Although the
Upsizing Wizard tries to make its best guess as to the most efficient conversion
approach, you should review the table and query designs and revise them as neces-
sary. Recordsources and Controlsources for forms and reports are converted with-
out any changes. In an implementation with a large number of users, you don’t want
to bind forms and reports directly to a table or even a query.

If you are converting an application created in an earlier version of Access, you
may also need to manually convert code from Data Access Objects (DAO) to
ActiveX Data Objects (ADO) in your modules.

Note

Cross-
Reference

910 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Using Unbound Forms
Access projects allow you to bind a form’s Recordsource directly to a table. A
bound form is a form that’s tied directly to a table or query, providing a constant
open connection to all of the data in the table or query. Although this approach is a
quick and easy way to present and update data on the form, this is not the most
efficient way to work with data in the client/server world.

Bound forms maintain a constant connection between the server and the worksta-
tion. The server must maintain a record lock on the data displayed on the form —
even if the user is simply viewing it. Open connections and record locks consume
server resources. If you are operating in an environment with many users or where
users are working with large volumes of data and transactions, you want to use
unbound forms.

An unbound form is a form that doesn’t maintain a constant open connection to a
table or query. You retrieve data from a table or query one record at a time. The
load on the server is significantly reduced because it doesn’t need to maintain open
connections or record locks.

Here are some common reasons to implement unbound forms:

✦ Improved performance due to retrieval of a minimal amount of data.

✦ Improved control of record-locking conflicts.

✦ Bypasses Access automatic record saving, providing ability to confirm saving
or canceling record changes.

✦ Required for database security considerations.

VBA code is used to handle all of the data used in the form. You must write a proce-
dure to handle searching for and displaying the data. You must write other proce-
dures to handle updating the data. The following list covers most of the tasks that a
typical unbound form needs to handle:

✦ Retrieving the set of data to be viewed or edited on the form.

✦ Loading the data into the form’s controls.

✦ Searching for another record.

✦ Determining when data on the form has changed.

✦ Saving changed data.

✦ Undoing changes to data.

✦ Moving to other records in the set (first, last, next, previous).

✦ Creating a new record.

911Chapter 28 ✦ Working with Access Projects

Creating the code for each of these tasks may seem like a lot of work. But if you
want to build a true client/server application, this is the best approach.

Working with unbound forms
Creating the VBA functions to display and process data in an unbound form
requires the use of the ActiveX Data Objects (ADO) programming model. ADO
enables you to write an application to access and manipulate data in a database
server through an OLE DB provider. ADO supports key features for building
client/server and Web-based applications.

See Chapter 21 to review the basic concepts of the ADO programming model.

For an example of a working unbound form, we use the frmContactsUnbound form.
Figure 28-9 shows the Customers Unbound form in Normal view.

Figure 28-9: Viewing data in an unbound form.

The frmContactsUnbound form demonstrates virtually any function you need to
add, edit, delete, and find records. The buttons in the form’s footer section perform
these functions. The Undo button allows the user to restore the original data for the
record after changes have been made but before the Save button is selected. The
Print button opens a print dialog box that provides several choices for printing the
form’s data. The Save button allows the user to immediately process changes made
to the data.

In bound forms, changes are saved automatically when the user closes the form or
moves to another record. Because these automatic update features are disabled
when using unbound forms, you must provide a way to actively save the data.

Note

Cross-
Reference

912 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Because the unbound form doesn’t have a record source, it doesn’t contain any
built-in record navigation buttons. The record navigation buttons included on the
frmContactsUnbound form provide the same functionality provided by a bound
Access form. The user is also provided with controls to show the current record
number as well as the total number of records.

Creating an unbound form
In unbound forms, the form’s Record Source is blank. Additionally, the Control
Source for each of the form’s controls is blank. The controls are named using the
corresponding column names of the form’s table. The Design view of the Customers
Unbound form is shown in Figure 28-10.

Figure 28-10: Designing an unbound form.

A quick and easy way to set up the controls for an unbound form is to initially bind
the form to the table. Then, drag the table’s fields to the form. This action reduces
any errors in naming the fields to match the names of the fields in the table.
Before completing the design of the form, remove the Control Source properties
of the fields and the Record Source property for the form.

On the top right of the Customers Unbound form are four dark gray controls. You
use these controls to connect the form to the database. The Visible property of
these controls is set to False so that they can’t be seen when the user is viewing the
form. The names and Control Source properties for these special fields must be set
according to the items listed in Table 28-1.

Tip

913Chapter 28 ✦ Working with Access Projects

Table 28-1
Connecting an Unbound Form to a SQL Server Database

Control Name Control Source

xProvider =”Provider=SQLOLEDB;”

xDataSource =”Data Source=(local);Integrated Security=SSPI;Initial
Catalog=AccessAutoAuctionsSQL1”

xRecordset =”tblContacts”

xKey =”idsContactID”

The bottom right area of the unbound form also contains the following hidden
controls:

✦ FlagEdited is checked when a field’s data is updated.

✦ FlagFind is checked when searched criteria is selected.

✦ UpdateCtr is incremented each time the record is changed.

Displaying data on the form
The form actually contains only a minimal amount of code. The form’s On Load
event retrieves the data to display on the form. Figure 28-11 shows the On Load
event procedure code.

Figure 28-11: The On Load event procedure for an
unbound form.

The On Load event procedure calls the function uf_DisplayRecord. The code for the
uf_DisplayRecord function is not stored with the form. In fact, most of the form’s
code is stored in the basUnboundFormUtilities module. By storing these functions
in a module, you can use the same functions over and over for any other unbound
forms that you want to include in your application. Figure 28-12 shows the
basUnboundFormUtilities Module Window.

914 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Figure 28-12: The functions of the basUnboundFormUtilities module.

The first task of the uf_DisplayRecord function is to retrieve the data to display on
the form. The following code snippet shows the statements used to retrieve the
form’s data:

‘Open connection
cnn.Open frm.Controls(“xProvider”) &

frm.Controls(“xDataSource”)

‘Open recordset
If Len(frm.Filter) = 0 Then

rst.Open “Select * From “ & frm.Controls(“xRecordset”)
& “ Order by “ & frm.Controls(“xKey”), cnn, adOpenStatic

Else
rst.Open “Select * From “ & frm.Controls(“xRecordset”)

& “ WHERE “ & frm.Filter & “ Order by “ & frm.Controls(“xKey”),
cnn, adOpenStatic

End If

The uf_DisplayRecord function establishes a connection to the database specified
in the form’s xProvider and xDataSource fields. Then, it checks the form’s filter
property. If a filter is not set, the function retrieves all of the rows in the table
specified in the form’s xRecordset field. If the form’s filter is set, the function speci-
fies a WHERE clause to include only some of the rows specified in the form’s
xRecordset field.

The second task of the uf_DisplayRecord function is to display the first row of
retrieved data on the form. The following code snippet shows the statements used
to load the data into the form’s fields:

915Chapter 28 ✦ Working with Access Projects

‘Iterate through controls on form that match fields in
recordset

For Each ctl In frm

‘if error the field is not on the form
On Error Resume Next
Err = 0
vartemp = rst.Fields(ctl.Name).Name
If Err = 0 Then

On Error GoTo ErrorHandler
‘if control enables then set default value from tag
‘ and set focus if tab index 0
If ctl.Enabled Then

ctl.Value = rst.Fields(ctl.Name).Value
If ctl.TabIndex = 0 Then ctl.SetFocus

End If
End If

Next

Basically, this section of code steps through each of the controls on the form. This
is the reason that you name the control to match the name in the database table.
The value of the control is set to the value of the column name in the table that
matches the control’s name. Then, the focus is set to the field that is first in the tab
order (TabIndex 0).

Along with the uf_DisplayRecord function, the basUnboundFormUtilities module
contains all of the other functions that make an unbound form work, including:

✦ uf_NewRecord adds a new record.

✦ uf_SaveRecord saves the current data on the form to a new or existing record.

✦ uf_FindRecord finds a set of records meeting a specified criteria.

✦ uf_DisplayRecord retrieves and displays a selected record.

✦ uf_DeleteRecord deletes a record.

✦ uf_ClearForm clears all fields on the form.

✦ uf_SetEditedFlag is called by a field on the form when the field is updated.

You can find both the frmContactsUnbound form and the basUnboundFormUtilities
module in the AccessAutoAuctionsCS project file in the Examples folder of this book’s
CD-ROM.

You should take a few minutes to become familiar with the code for these functions.
Each function, except for the uf_SetEditedFlag function, receives the name of the
calling form as a parameter.

On the
CD-ROM

916 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Updating data
You can use the functions in the basUnboundFormUtilities to add new records,
delete records, and save edited records. To implement any of these functions in the
unbound form, simply create an event procedure for the appropriate button on the
form. Then call the function from the button’s event procedure.

To add a new record, you create an event procedure for the New button’s On Click
event. The New button’s On Click event calls the uf_NewRecord function. Figure 28-13
shows the On Click event procedure for the Customers Unbound form’s New button.

Figure 28-13: Using a button to call a
basUnboundFormUtilities function.

The New button’s On Click event procedure first updates the record number and
record count fields in the form’s navigation button section. These fields should be
empty when creating a new record. Then the event procedure calls the
uf_NewRecord function passing the name of the form as a parameter.

The uf_NewRecord function sets the form up to enter a new record. The following
code snippet shows the statements used to clear the form’s fields.

‘Iterate through controls on form that match fields in
recordset

For Each ctl In frm

‘if error the field is not on the form
On Error Resume Next
Err = 0
vartemp = rst.Fields(ctl.Name).Name
If Err = 0 Then

On Error GoTo ErrorHandler
‘if control enables then set default value from tag
‘ and set focus if tab index 0
If ctl.Enabled Then

If IsNull(ctl.Tag) Then
ctl.Value = Null

Else
ctl.Value = ctl.Tag

917Chapter 28 ✦ Working with Access Projects

End If
If ctl.TabIndex = 0 Then ctl.SetFocus

End If
End If

Next

The code in the uf_NewRecord function loops through each field on the form. Each
field’s value property is set to Null. Then, the focus is set to the first field in the tab
order.

Before clearing the fields on the form, check to see if the user changed any of the
data. If the data has changed, prompt the user to save or undo the changes.

You can use the uf_SaveRecord function to save the data on the form. Use the
Save button’s On Click event to call the uf_SaveRecord function.

The first task of the uf_SaveRecord function is to locate the record in the table. This
section of code is illustrated in the following code snippet:

‘Check to see if data has been changed
If Not frm.FlagEdited Then

MsgBox “Nothing to save”
GoTo Done

End If

‘Open connection
cnn.Open frm.Controls(“xProvider”) & frm.Controls(“xDataSource”)

‘Open recordset to determine type of key field and setup Criteria
rst.Open “Select * From “ & frm.Controls(“xRecordset”), cnn, adOpenStatic
Select Case rst(frm.Controls(“xKey”).Value).Type

Case adChar, adVarWChar, adLongVarWChar
strCriteria = frm.Controls(“xKey”) & “ = “ & Chr(39) &

frm.Controls(frm.Controls(“xKey”)).Value & Chr(34)
Case adDate

strCriteria = frm.Controls(“xKey”) & “ = “ & “#” &
frm.Controls(frm.Controls(“xKey”)).Value & “#”

Case Else ‘assume numeric
strCriteria = frm.Controls(“xKey”) & “ = “ &

str(frm.Controls(frm.Controls(“xKey”)).Value)
End Select
rst.Close

‘Determine if this is a new record or a changed record
rst.Open “Select * From “ & frm.Controls(“xRecordset”) & “ WHERE “ &

strCriteria, cnn, adOpenKeyset, adLockOptimistic

The function first checks to see if the form has been edited. If not, the function simply
exits. Otherwise, it opens a connection to the recordset simply to determine the key
field’s data type so that a criteria string can be created. The criteria string is used to
search the recordset for a record with the same key field. This is necessary so that the
function can determine whether to update an existing record or create a new record.

Caution

918 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

If it is a new record, the function uses the AddNew method and iterates through the
controls on the form that match the fields in the recordset to create a record with
the new data. The UpdateCtr field is set to 1 for the new record.

If an existing record has the same key field, the code must check to make sure that
the record has not been changed. The code to perform the check is shown below:

‘Check to see if this record was already updated by another user
If rst(“UpdateCtr”) <> frm.Controls(“UpdateCtr”).Value Then

Response = MsgBox(“This record was already updated by another user.”
& vbCrLf & _

“Do you want to overwrite the other user’s changes?”, _
vbInformation + vbYesNo, “Data already changed”)
If Response = vbNo Then

rst.Close
Exit Function

End If
End If

The UpdateCtr field in the form is compared to the value of the UpdateCtr field in
the table. If the two values are different, the record was updated in between the
time that the record was displayed on the form and the time that the user pressed
the Save button. A message prompts the user to go ahead and overwrite the record
in the table with the user’s changes or to cancel the user’s update.

To update the existing record, the values in the form’s fields are copied to the
recordset’s field and the recordset is updated. The code to update the recordset is
shown below:

‘Iterate through controls on form that match fields in recordset
For Each ctl In frm

‘if error the field is not on the form
On Error Resume Next
Err = 0
vartemp = rst.Fields(ctl.Name).Name
If Err = 0 Then

On Error GoTo ErrorHandler
‘if control enabled then
‘ if it is not an auto increment field
‘ if data is not null or an empty string
If ctl.Enabled Then

If Not rst.Fields(ctl.Name).Properties(“IsAutoIncrement”)
Then

If Not IsNull(ctl.Value) And Not ctl.Value = “” Then
vartemp = ctl.Value
rst(ctl.Name).Value = vartemp

End If
End If

End If
End If

Next
‘Increment the Update Counter

919Chapter 28 ✦ Working with Access Projects

rst(“UpdateCtr”) = rst(“UpdateCtr”) + 1
‘Update the recordset
rst.Update
rst.Close

The fields are also checked to see if the field is an Auto Increment type and whether
it is enabled. If it is an Auto Increment type, the field value is not updated. The
UpdateCtr is incremented by 1.

A message box displays if the record has been successfully saved, and the
flagEdited field is reset.

Finding a record
You can find records with the function uf_FindRecord. This function can find a
record based on criteria entered in any field on the form. The function checks the
value of the FlagFind field on the form. If this flag is true, the form contains the cri-
teria to do the find. If the flag is false, the form is cleared so that the user can enter
the criteria. A message displays, telling the user to enter the criteria and to press
the Find button again to retrieve the records.

You can set the default value of this flag to True so that when the form is opened,
the user can start entering criteria right away. After the function completes, the
resulting criteria is stored in the Form’s filter property for later use. The function
does a check to see if the current record has been saved before clearing the form
out for the criteria.

The heart of the operation of this function is to create a criteria string. Criteria can
be specified for any combination of fields on the form. The function creates a crite-
ria string with an “AND” between all of the selected fields. For example, in our sam-
ple application, you can enter a state and all records for that state are retrieved.
You can search for a customer number or a phone number as well. The code to cre-
ate the criteria string is shown below:

‘Iterate through controls on form that match fields in recordset
strCriteria = “”
For Each ctl In frm
‘if error the field is not on the form
On Error Resume Next
Err = 0
vartemp = rst.Fields(ctl.Name).Name
If Err = 0 Then
On Error GoTo ErrorHandler
If ctl.Enabled Then
If Not IsNull(ctl.Value) And Not ctl.Value = “” Then
If Len(strCriteria) > 0 Then strCriteria = strCriteria & “ AND “
Select Case rst(ctl.Name).Type
Case adChar, adVarWChar, adLongVarWChar
strCriteria = strCriteria & ctl.Name & “ = “ & Chr(39) &

ctl.Value & Chr(39)

920 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Case adDate
strCriteria = strCriteria & ctl.Name & “ = “ & “#” &

ctl.Value & “#”
Case Else ‘assume numeric
strCriteria = strCriteria & ctl.Name & “ = “ &

str(ctl.Value)
End Select

End If
End If

End If
Next
rst.Close

The trick to making the criteria string is to find the fields on the form that the user
has filled in and then look up the type of field in the recordset to determine how to
format the criteria string. For text fields, we need to enclose the search value in sin-
gle quotes, and for dates the search value needs to be enclosed with “#”. For num-
bers, no delimiter is needed.

When all of the controls have been checked, the recordset is opened with the crite-
ria. The code below shows how the criteria string is used to retrieve the data:

‘Open recordset with criteria
If Len(strCriteria) > 0 Then strCriteria = “ WHERE “ & strCriteria
rst.Open “Select * From “ & frm.Controls(“xRecordset”) & strCriteria & “

ORDER by “ & frm.Controls(“xKey”), cnn, adOpenStatic, adLockBatchOptimistic
If rst.RecordCount = 0 Then
MsgBox (“No records found”)
uf_FindRecord = 0

Else
uf_FindRecord = rst.RecordCount
frm.Filter = Mid(strCriteria, 8) ‘store the criteria for later
frm.FlagFind = False
frm.FlagEdited = False
‘Display first record
uf_DisplayRecord frm, 1

End If

If the record count is not zero, the criteria string is stored in the form’s filter prop-
erty and the first record is displayed on the form. The uf_FindRecord function calls
the uf_DisplayRecord function to display the filtered data on the form.

Unbound forms can improve performance when you are developing an applica-
tion for a client/server database. However, although bound forms in Access
provide built-in processing for retrieving and updating data, you need to dupli-
cate this functionality yourself using Visual Basic code and ADO. Hopefully,
the basUnboundFormUtilities module and frmContactsUnbound form included
with this book can get you well on your way.

✦ ✦ ✦

Working with
Access Projects
and SQL Server
Tables and
Queries

You can use an Access project to create and maintain an
MSDE 2000 database. You can also use an Access proj-

ect to create the user-interface objects — forms, reports, data
access pages, macros, and modules — that get their data from
MSDE 2000. The database window for a project looks very
similar to the Access database window you are already accus-
tomed to. In fact, creating the user-interface objects is virtu-
ally the same as creating them in Access. Figure 29-1 shows
the database window for the Access Auto Auctions project.

In this chapter, you will use the database file
Chap29Start.adp.

Be sure to start the SQL Server Service Manager before
opening the example project.

See Chapter 27 for more information on working with the
SQL Server Service Manager.

Cross-
Reference

Caution

On the
CD-ROM

2929C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Checking a project’s
SQL Server
connection

Working with tables
in an Access project

Using views to query
Data

Manipulating data
with stored
procedures

Using a user-defined
function to perform a
calculation

Automatically
updating data with
triggers

✦ ✦ ✦ ✦

922 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Figure 29-1: Viewing the database window for a project.

Even though you can create the data objects — tables, views, and stored proce-
dures — in a project, the data objects are actually being stored in a separate MSDE
2000 database (.MDF) file. The MSDE 2000 file is created automatically when you
upsize data from an Access .mdb file, or when you create a new project.

Determining a Project’s Database Name
You can determine the name of the MSDE 2000 database that is connected to the
current project by selecting File ➪ Connection from the Access menu. The File ➪
Connection menu option displays the Data Link Properties dialog box. The Data
Link Properties dialog box, shown in Figure 29-2, shows the properties for the
database connection for the current project.

The data link properties shown in Figure 29-2 are the properties for the connection
to the Chap27StartSQL2 database.

The properties for creating an MSDE 2000 database connection are covered in
Chapter 27.

Cross-
Reference

923Chapter 29 ✦ Working with Access Projects and SQL Server Tables and Queries

Figure 29-2: Determining a project’s
database connection.

Working with Tables
Working with a table in an Access project is very similar to working with a table in
an Access database. Because the topics of creating tables, queries, forms, and
reports are covered in detail in other chapters, this section focuses on the design
tool methods that differ from Access database design tool methods.

To view the design of a table, first make sure that the Tables object is selected.
Select the name of the table to view. Then select the Design button in the database
container. The Table Design window displays.

Working with fields in the Table Design window
Figure 29-3 shows the Table Design window for the tblSales table. The table design
tool is fairly similar to the Access database table design tool. The Table Design win-
dow consists of two areas:

✦ The field entry area

✦ The field properties area

The field entry area is where you enter each field’s name and the data type and
length for each field. The properties area is a tabbed dialog box containing the two
tabs, Columns and Lookup. The Columns tab contains a list of properties for each
field selected in the field entry area. Field properties are a set of characteristics that
provide additional control over how the data in a field is stored, entered, or dis-
played. The Lookup tab allows you to specify the default control type to use for the
field when it is placed on a form.

924 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Figure 29-3: The Table Design window.

You can create fields by entering a field name and a field data type in each row of
the field entry area of the Table Design window. You must enter a data type and
length for each field name that you enter. You can further describe each field by
completing any of the extended properties available for the data type that you
selected. Table 29-1 describes some of the extended properties that you can set for
each field.

Chapter 27 discusses the comparison of Access and SQL Server data types.

Table 29-1
Extended Properties

Field Property Description

Default Value The default value to set for this column whenever a new row is
added to the table.

Precision Maximum number of digits. Default value provided based on
data type.

Scale Maximum number of digits to the right of the decimal point.
Default is 0.

Identity Autonumbers the records in a table.

Identity Seed The first number to assign to an identity record. Default is 1.

Identity Increment The amount to increment each identity record.

Cross-
Reference

925Chapter 29 ✦ Working with Access Projects and SQL Server Tables and Queries

Field Property Description

Is RowGuid Shows whether the column is used by SQL Server as a ROWGUID
column. You can set this value to Yes only for a column that is an
identity column.

Formula Shows the formula for a computed column.

Collation Shows the collating sequence that SQL Server applies by default
to the column whenever the column values are used to sort rows
of a query result. To use the default collating sequence for the
database, choose <database default>.

Format Shows the display format for the column.

Decimal Places Shows the number of decimal places to be used for displaying
values of this column. If you choose Auto, the number of decimal
places is determined by the value you choose in Format.

Input Mask Provides a default mask for inputting data into the field.

Caption Shows the text label that appears by default in forms using this
column.

Indexed Shows whether an index exists on the column.

Hyperlink Indicates whether the values in this column can be interpreted as
hyperlinks.

IME Mode Determines the IME (Input Method Editor) status of the column
for entering international data into the values for the column.

IME Sentence Mode Determines what additional IME conversion applies by default
when users enter values into the column.

Furigana Used with Japanese IME. Indicates a column into which the
Furigana equivalent of the text entered by the user is stored.
When the user enters a value into this column, that value is
stored, and in addition, the Furigana equivalent of the entered
text is stored in the column named in this control.

Postal Address Specifies a control or field that displays either an address
corresponding to an entered postal code or customer barcode
data corresponding to an entered address.

The Table Properties window
Figure 29-4 shows the Table Properties window for the tblSales table. The Table
Properties window includes five tabs. These five tabs allow you to specify proper-
ties for your table.

926 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Figure 29-4: Setting the Table properties.

You can set the following properties using the Tables tab:

✦ Selected table: Shows the name of the table that you selected in the Database
Container. You cannot update this property.

✦ Owner: The name of the user who created the table. The Owner is automati-
cally assigned using the logon ID of the person who created the table, or using
the Microsoft SQL Server role that the logon ID is a member of. You cannot
update this property. Shows the name of the table’s owner.

✦ Table name: Shows the name of the table that you selected in the Database
Container.You can rename the table using this property.

✦ Table Identity Column: Identifies the column that will be auto-incremented.
You can choose a column from the drop-down list, or leave the property blank
if you do not want an auto-increment column for the table.

✦ Table ROWGUID Column: Identifies the column that will be used as a unique
identifier for database replication. You can choose a column from the drop-down
list, or leave the property blank if you do not want to use database replication.

✦ Table Filegroup: Identifies the file group where the table’s data will be stored.
If you have created file groups for your project, you can select a file group
from the drop-down list. If you have not set up a file group for your project,
Access assigns the table to the default file group called Primary.

✦ Text Filegroup: Identifies the file group where the table’s text and image data
will be stored. You can select a file group from the drop-down list. Access
assigns the Primary file group if you have not set up a file group for the project.

✦ Description: Displays a description for the table. This field can be edited.

927Chapter 29 ✦ Working with Access Projects and SQL Server Tables and Queries

The Relationships tab, shown in Figure 29-5, shows the relationships properties for
the tblSales table. You can use this tab to set up relationships between a table and
one or more other tables in the database.

Figure 29-5: Setting the Relationships
properties.

You can set up a relationship for the table using the following properties:

✦ Table name: Displayes the name of the table that you selected in the
Database Container.

✦ Selected relationship: Displays the name of a relationship that has been
defined for the table. You can view the properties for other relationships
defined for this table using the drop-down list.

✦ New: Select this button to create a new relationship for the selected database
table.

✦ Delete: Select this button to remove the selected relationship from the database.

✦ Relationship name: Displays the name of the relationship shown in the
Selected relationship field. To rename the relationship, enter a new name in
this field.

✦ Primary key table: Displays the name of the table that is the primary key
table for the relationship. The column names listed below the Primary key
table field are the primary key table’s columns that are participating in the
relationship.

✦ Foreign key table: Displays the name of the table that is the foreign key table
for the relationship. The column names listed below the Foreign key table field
are the foreign key table’s columns that are participating in the relationship.

928 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

✦ Check existing data on creation: If you check this option after making
changes to the Relationship properties, the database will check to make sure
that the changes can be applied to data that already exists in the database.

✦ Enforce relationship for replication: If you check this option, the database
will copy the relationship to replicas of the current database.

✦ Enforce relationship for INSERTs and UPDATEs: If you check this option, the
database will apply the relationship when new rows are added to or rows are
deleted from the database. This option prevents users from deleting a row in
the primary key table if it matches a row in the foreign key table.

✦ Cascade Update Related Fields: This option tells the database that when the
primary key value changes in the primary key table, to overwrite the match-
ing key values in the foreign key table with the new key value.

✦ Cascade Delete Related Fields: Tells the database that when a row is deleted
in the primary key table, to automatically delete the matching rows in the for-
eign key table.

When a key icon displays next to the Relationship Name property, this indicates
that the selected table acts as the lookup table for the values in the table named
as the foreign-key table. An infinity icon indicates that the table contains values
that are looked up in the table listed as the primary-key. See Chapter 6 for more
information about primary and foreign keys.

The Indexes/Keys tab (see Figure 29-6) shows the primary key columns and other
indexes created for the tblSales table. You can use the Indexes/Keys tab to specify
primary keys, indexes, and unique constraints for the table.

Figure 29-6: Setting the Indexes/Keys
properties.

Note

929Chapter 29 ✦ Working with Access Projects and SQL Server Tables and Queries

Use the following properties to set up an index for the table:

✦ Table name: Displays the name of the table that you selected in the Database
Container.

✦ Selected index: Displays the name of an index that has been defined for the
table. You can view the properties for other indexes defined for this table
using the drop-down list.

✦ Type: Displays the type of the index selected in the Selected index field. The
type can be Index, Primary key, or Unique constraint. You cannot update this
property.

A constraint is a way to limit the values that a user can enter into a field in a table.
A unique constraint ensures that no duplicate values are entered into specified
columns that are not a table’s primary key. For example, a Social Security Number
column could be defined as a unique constraint, so a user cannot enter the same
social security number for two different employees.

✦ New: Select this button to create a new Index or Key for the table.

✦ Delete: Select this button to remove the index selected in the Selected index field.

If you try to delete a primary key that participates in relationships, a message
appears asking you if you want to delete all the relationships, too. You cannot
delete a primary key without first deleting the relationships that it participates in.

✦ Index name: Displays the name of the index in the Selected index field. You
can rename the index by entering a new name in this field.

✦ Column name/Order: Lists one or more column names that are participating
in the selected index. You can use the Order column to sort the column values
in either ascending or descending order.

✦ Index Filegroup: If you have defined Filegroups, you can select one for the
selected index here, or accept the default Primary Filegroup.

✦ Create Unique: When you check this option, the database will check all new
rows added to the table to make sure the values for the index columns are
unique. When you select this option, you also must specify whether you are cre-
ating an index or a constraint. When you select the Index button, you can also
select the option Ignore Duplicate Key. The Ignore Duplicate Key options tells
the database that it can allow duplicate values for the index columns for bulk
inserts. If you leave Ignore Duplicate Key unchecked and perform a bulk insert,
the entire bulk insert will be rejected if any values for this index are not unique.

✦ Fill factor: You can use this option to specify how full the database can fill
each index page. If you leave this option as 0%, the database will use the
default Fill factor. Use this option for fine-tuning database performance.

✦ Pad Index: If you specified a Fill Factor of more than zero percent, and you
selected the option to create a unique index, you can use this option to tell
the database to use the Fill Factor as the amount of space to leave open on
each interior node of the index.

✦ Create as CLUSTERED: Use this option to create the index as a clustered index.

Note

Note

930 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Creating an index as clustered tells the database to keep the physical order of the
rows in the table the same as the order of the index’s key values. You can create
only one clustered index for a table. A clustered index is a good idea for a table
that will participate in queries that return large volumes of data. It is also a good
idea for lookup-type tables that contain only a small number of rows that are fairly
static. It can take a significant amount of time to modify a clustered index because
the database must physically reorder the rows in the table.

✦ Don’t automatically re-compute statistics: Use this option to tell the database
to continue using previously created statistics. If you select this option, the
index will be created much more quickly, but over time performance will
degrade using outdated statistics.

✦ Validation Text: Use this field to enter an appropriate message to display
when a user attempts an operation that violates the index.

When you want to define a non-unique constraint for a table, you can use the Check
Constraints tab, shown in Figure 29-7. Constraints are similar to validation rules in
an Access database.

Figure 29-7: Viewing the Check
Constraints page.

Use the following properties on the Check Constraints tab to set up a new con-
straint for a table:

✦ Table name: Displays the name of the table that you selected in the Database
Container.

✦ Selected Constraint: Displays the name of a constraint that has been defined
for the table. You can view the properties for other constraints defined for
this table using the drop-down list.

Note

931Chapter 29 ✦ Working with Access Projects and SQL Server Tables and Queries

✦ New: Select this button to create a new constraint for the selected database
table.

✦ Delete: Select this button to remove the selected constraint from the database.

✦ Constraint name: Displays the name of the constraint in the Selected Constraint
field.You can rename the constraint by entering a new name in this field.

✦ Constraint expression: Displays the SQL syntax of the constraint you selected
in the Selected Constraint field. This field is required for new constraints.

✦ Validation Text: : Use this field to enter an appropriate message to display
when a user attempts an operation that violates the constraint.

✦ Check existing data on creation: If you check this option after making changes
to the Check Constraint properties, the database will check to make sure that
the changes can be applied to data that already exists in the database.

✦ Enforce constraint for replication: If you check this option, the database will
copy the check constraint to replicas of the current database.

✦ Enforce constraint for INSERTs and UPDATEs: : If you check this option, the
database will apply the check constraint when new rows are added to or rows
are deleted from the database.The Data tab allows you to set the sort order and
subdatasheet for a table. Figure 29-8 shows the Data tab for the tblSales table.

Figure 29-8: Setting the Data properties.

932 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

To set up a sort order or subdatasheet, use these properties in the Data tab:

✦ Filter: Displays the SQL syntax for the Filter to apply to the table.

✦ Order By: Displays the column name to sort the table on. To enter more than
one column name, separate the column names with a comma.

Setting the Filter and/or Order By properties performs client-side operations. That
is, the data is filtered and/or sorted by the client when the client receives the
entire result set from the database.

If you want to sort records in descending order, type DESC at the end of the string
expression.

✦ Subdatasheet Name: Displays the name of the table or query to bind to the
subdatasheet. Accept the default, [Auto], to tell the database to use existing
relationships to determine which table to bind to the subdatasheet.

✦ Link Child Fields: Displays the column or columns in the subdatasheet that
match the column or columns in Link Master Fields. Although the column
names do not have to be the same as the column names in Link Master Fields,
the data in the columns must match.

✦ Link Master Fields: Displays the column or columns that coincide with the
column or columns in Link Child Fields. Although the column names do not
have to be the same as the column names in Link Child Fields, the data in the
columns must match.

✦ Subdatasheet Height: Displays the default heightfor viewing the subdata-
sheet.. A vertical scroolbar will display automatically if all of the rows do not
fit in the selected height.

✦ Subdatasheet Expanded: Select Yes to automatically expand the subdata-
sheet when the table opens. Select No if you do not want the subdatasheet
to expand automatically.

✦ Default View: Displays the view type for the subdatasheet. You can select
from Datasheet, PivotTable, or PivotChart.

Subdatasheets in a project work just like Access subdatasheets. For more informa-
tion on working with subdatasheets, see Chapter 6.

✦ Link Child Fields: Shows the list of linking fields in the subdatasheet. The
fields that you list here should coincide with the fields that you supply in the
Link Master Fields control.

Cross-
Reference

Tip

Caution

933Chapter 29 ✦ Working with Access Projects and SQL Server Tables and Queries

Understanding Project Queries
You use queries in an Access project the same way you use them in an Access
database — to view, change, add, or delete data.

Projects provide three types of queries for working with data:

✦ Views

✦ Stored procedures

✦ User-defined functions

As Chapter 27 explains, project tables are not stored within the Access project.
Neither are views, stored procedures, and user-defined functions. Instead, they are
stored in the server database.

Access projects don’t store any data or data-definition type objects. Only code-type
objects, such as forms, reports, links to data access pages, macros, and modules
are stored in the project. All data-related objects are stored directly in the server
database.

Creating views
Of the three query types, the view is the type most similar to an Access query. You
use a view when you need to retrieve one or more columns from one or more
related tables in the database. The View Query Designer works just like the Access
Query Designer. If you are comfortable using the Access Query Designer, you will
find that the Query Designer for a View is just as easy to use.

To create a view, select the Queries object and then select Create view in designer.
The Query Designer opens. You can add a table, another view, or a function to the
new view by selecting from the list of tables, views, and functions shown in the Add
Table window. The Add Table window displays, as shown in Figure 29-9.

When you have finished using the Add Table window, select the close button to
close the Add Tables window. When the Add Tables window closes, you can begin
working with the Query Designer window. You can select columns and enter criteria
in the same way that you design queries in an Access database. Figure 29-10 shows
the qryCustomerMailingLabels query in the Query Designer window.

Note

934 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Figure 29-9: The Add Table window in the Query Designer window.

Figure 29-10: The Query Designer window for the qryCustomerMailingLabels
query.

935Chapter 29 ✦ Working with Access Projects and SQL Server Tables and Queries

With views, you can retrieve information that is stored in tables or related tables
from functions, or even from other views. You can retrieve all the rows and columns
from a table, or select individual columns and specify criteria to filter the rows to
retrieve. When you select columns and specify criteria, symbols display next to the
table’s column name to indicate the type of operation to be performed on the field.
Figure 29-10 shows that criteria have been specified for the chrContactType column.

Views support only SELECT queries. If you need to use commands, such as
UPDATE, INSERT, or APPEND, you must create a stored procedure.

Creating stored procedures
A stored procedure is a special type of query that allows you to use commands to
manipulate data in the database. Creating a stored procedure is very similar to cre-
ating a view or an Access database query.

Stored procedures provide a handy container for storing all of the SQL statements
that you use throughout your application. Instead of writing SQL statements in your
code, you can store them here and call them from your code in much the same way
that you call a function stored in a module. Some of the many benefits of stored
procedures are as follows:

✦ Can contain multiple SQL statements.

✦ Can call another stored procedure name.

✦ Can receive parameters and return a value or a result set.

✦ Are stored in a compiled state on the server, so they execute faster than if
they were embedded in your code.

✦ Are stored in a common container in your application so that others can main-
tain them more easily.

Using a stored procedure to sort data
To create a new stored procedure, first make sure that the Queries object is
selected. Then select the item labeled Create stored procedure in designer. The
Design window for the spCustomersAlphabetized stored procedure is shown in
Figure 29-11.

The spCustomersAlphabetized stored procedure includes the same table, columns,
and criteria as the qryCustomerMailingLabels view. The difference is that the
spCustomersAlphabetized stored procedure specifies a Sort Order for the
chrLastName and chrFirstName columns.

936 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Figure 29-11: Creating a stored procedure.

You can specify a Sort Order for a column in a view. However, to sort a view
requires the use of the TOP 100 PERCENT clause with the Select statement. When
you add a Sort Order to a view, Access automatically adds the TOP 100 PERCENT
clause to the Select statement.

The TOP clause degrades performance because it causes the sorting to be done on
the client machine instead of on the server. The TOP clause is not required for sort-
ing Select queries in a stored procedure. The server performs sorting of stored pro-
cedure data.

You can add a view to a stored procedure.

When you use the graphical tools of the Query Design window to create a stored
procedure, Access converts what you create into Transact-SQL programming lan-
guage. The Transact-SQL commands are what SQL Server actually executes when
the query runs. You can view the Transact-SQL program for the stored procedure
by selecting View ➪ SQL View from the Query menu. Figure 29-12 shows the SQL
View for the spCustomersAlphabetized stored procedure.

You can make changes to the stored procedure using either the Design window or
the SQL window. As you are working with the stored procedure, you can alternately
switch between view modes. If you are viewing in SQL view, you can return to the
Design view by selecting View ➪ Design View. Any changes that you made to the
query in SQL view are reflected in the Design view. When you make changes to the
query in the Design view window, the changes are immediately updated in the SQL
view window.

Tip

Caution

937Chapter 29 ✦ Working with Access Projects and SQL Server Tables and Queries

Figure 29-12: Viewing the SQL View of a stored procedure.

If you are proficient in creating stored procedures on your own, you can even cre-
ate a new stored procedure directly in the SQL window.

Using parameters with a stored procedure
If you want to run a stored procedure with different criteria values every time you
run it, you can add a parameter to the stored procedure’s criteria. A parameter is a
place-holder for the column’s criteria. For example, you may want to retrieve all
sales of a certain product category. But, you may want to retrieve all sales of SUV-
types one time, or all sales of Minivans another time. The spSalesForCategory
stored procedure uses the Enter_Category parameter, as shown in Figure 29-13.

Figure 29-13: Creating a stored procedure with a parameter.

Tip

938 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

You can’t specify a parameter in a view.

Using a stored procedure to update data
Although views support only Select queries, stored procedures support action
queries as well as Select queries. An action query is a stored procedure that inserts,
modifies, or deletes data by using the SQL INSERT, UPDATE, and DELETE state-
ments. The spUpdateProductPrice stored procedure, shown in Figure 29-14, is an
example of an Update action query.

Figure 29-14: An Update action query.

The spUpdateProductPrice stored procedure increases each of the values in the
curRetailPrice column in the tblProducts table by 10 percent. Notice that the Grid
pane of the stored procedure contains different columns than the columns shown
in the Select query examples. To create an action query using the Query Designer,
select the Query menu item. Then choose the type of action query that you want to
create: Make-Table, Update, Append, Append Values, or Delete.

Creating user-defined functions
User-defined functions combine the best features of views and stored procedures
into a single query. You can pass parameters to user-defined functions. They can
also include views, stored procedures, or other functions. User-defined functions
can’t be used to update, insert, or delete data in a database.

Note

939Chapter 29 ✦ Working with Access Projects and SQL Server Tables and Queries

To create a function, select the Queries object and then select Create function in
designer. The Query Designer opens. You can add a table, a view, or another func-
tion to the new function by selecting from the list of tables, views, and functions
shown in the Add Table window.

The design for the fnSalesForCategory function, shown in Figure 29-15, looks just
like the design for the spSalesForCategory stored procedure.

Figure 29-15: Creating a user-defined function.

Basically, the user-defined function is a simpler version of the stored procedure. If
your query needs to accept one or more parameters and return a single value or a
single table, you should use a user-defined function for the query rather than a
stored procedure. Stored procedures are geared for performing more complex
query operations, such as multiple Select statements, table updates, and returning
multiple result sets.

You can create two types of user-defined functions:

✦ Scalar functions

✦ Table-valued functions

940 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Creating a function to return a single value
Scalar functions return a single data value of the type defined in a RETURNS clause.
Figure 29-16 shows the SQL View for the fnCalcBalDue function.

Figure 29-16: Creating a scalar function.

The fnCalcBalDue function calculates the total amount due for a selected buyer.
The buyer to use for the function’s calculation is passed via the integer variable
@lngzBuyerNum. The RETURNS statement indicates that the function returns a sin-
gle value of the datatype money. The statements between the BEGIN and END state-
ments are the Transact-SQL statements that compute the return value. When the
function executes, it performs the query specified in the SELECT statement. The
SELECT statement retrieves the data from the database to compute the value of
TotAmt. The value of TotAmt that results from the SELECT statement becomes the
RETURN value for the function.

You can use a scalar user-defined function in a query the same way you use built-in
functions in queries. To call the fnCalcBalDue function, you use a query like this one:

SELECT * FROM tblContacts WHERE dbo.fnCalcBalDue(tblContacts.idsContactID) >=
2000

When you call a user-defined function, you must use two-part syntax. Two-part syn-
tax refers to prefixing an object reference with the object owner’s name. In the
example above, dbo refers to the owner of the function fnCalcBalDue. When you
select a table, view, or function in the Query Designer, Access automatically inserts
the object owner’s name.

In SQL Server, the dbo is a special user who has permissions to perform all activi-
ties in the database. Any member of the sysadmin fixed server role who uses a
database is automatically identified as a dbo. When a dbo user creates database
objects, SQL Server assigns the ownership of those objects to the user dbo. Users
who belong to server roles other than sysadmin are not identified as dbo users.
When non-dbo users create database objects, their username is assigned as the
object’s owner.

Note

941Chapter 29 ✦ Working with Access Projects and SQL Server Tables and Queries

Creating a function to return a table
Table-valued functions return a table of data. Figure 29-17 shows the SQL View for
the fnSalesForCategory function.

Figure 29-17: Creating an inline function.

The function shown in Figure 29-17 is the SQL View of the function shown in Figure
29-15. The fnSalesForCategory function returns the sales detail information for sales
of a specified category. The nvarchar variable @Enter_Category contains the cate-
gory parameter passed by the calling program. The RETURNS TABLE statement
shows that the function will return a table of data containing one or more records.
The RETURN statement contains a single SQL statement. When the function exe-
cutes, it performs the query specified in the SELECT statement. The SELECT state-
ment retrieves the row or rows of data from the database. The table that results
from the SELECT statement becomes the RETURN value for the function.

Using functions in stored procedures
You can create a stored procedure that combines information from tables with
tables and values that are returned from user-defined functions. Figure 29-18 shows
the spCombined stored procedure.

The spCombined stored procedure calculates the total amount due for each invoice
in the tblSales table. This stored procedure joins the tblSales table to the
fnCalcPayments and fnCalcExtension functions.

When you add a function to the Query Designer, the Query Designer displays the
function’s columns just as if they were columns in a table. In the spCombined
stored procedure, the ExtendedAmount value in the fnCalcExtension function is
included as a column in the stored procedure’s output. It is also included in the
stored procedure’s calculated column called TotalDue.

942 Part II, Section IV ✦ Upsizing to SQL Server and MSDE 2000

Figure 29-18: Combining a table with a user-defined function.

Using triggers to automatically update data
A trigger is a special type of stored procedure that you can implement that will
execute automatically whenever a table is updated, records are deleted, or new
records are added. Triggers can include complex SQL statements that can query or
even update other tables the instant that a change occurs to the table associated
with the trigger.

To create a trigger, select the Tables object and then select the table that you want
to create the trigger on. Right-click the name of the table to display the shortcut
menu. Choose Triggers . . . from the shortcut menu. The Triggers for Table dialog
box displays. Select New to create a new trigger for the table. The SQL View window
for the new trigger displays as shown in Figure 29-19.

Figure 29-19: Creating a trigger.

943Chapter 29 ✦ Working with Access Projects and SQL Server Tables and Queries

The SQL View window for a new trigger looks very similar to the SQL View window
for a new stored procedure. The statements that automatically display serve as a
template to assist you in creating the Transact-SQL statements for the new trigger.

Figure 29-20 shows the tblSales_UpdateContact trigger for the tblSales table.

Figure 29-20: Using a trigger to update data in another table.

The trigger tblSales_UpdateContact executes whenever an insert or update occurs
to the tblSales table. This trigger includes some complex Transact-SQL statements.
It first declares two local variables: @lngzBuyer and @BalDue. The @lngzBuyer vari-
able is used to retrieve the buyer ID (lngzBuyer) of the new or changed record.

In SQL Server, when a new record is added to a table, it is first stored temporarily
in a table called inserted. When the new record is saved, the record is moved from
the inserted table to the target database table. When a record is changed, it is first
stored temporarily in the inserted table. When the changed record is saved, the
original record is deleted and the changed record is added from the inserted table
to the target table.

Next, the trigger calls the function fnCalcBalDue to calculate the total of the invoice
amounts and payments for this buyer and stores the function’s result in the vari-
able @BalDue. Then, the UPDATE SQL Statement updates the curCurBal field in the
tblContacts record with the @BalDue value for the selected buyer.

The big advantage of implementing a stored procedure as a trigger is that a trigger
will execute regardless of whether the change to the table’s data has occurred in
the table manually or through a form.

✦ ✦ ✦

Note

PART III
Creating Web
Applications

SECTION V
Creating Data
Access Pages
and Using XML
and InfoPath

✦ ✦ ✦ ✦

In This Section

Chapter 30
Using and Creating
Access Objects for
Intranets and the
Internet

Chapter 31
Building and
Working with Data
Access Pages

Chapter 32
XML, Access, and
InfoPath

✦ ✦ ✦ ✦

P A R T

IIIIII

Using and
Creating Access
Objects for
Intranets and
the Internet

The Internet, and particularly the World Wide Web, has
become an important part of all businesses today.

Whether you simply use the Internet to search for information
or whether you’re part of a vast corporate intranet, you need
to be able to use Microsoft Access to store and disseminate
the data that is moved across the network wire.

Access contains many features that allow you to store data
found on the Internet in your database container in standard
Access tables. You can also create a table, form, or report in
Access and save it as an HTML-based table, which you can
then use on any Web site. In addition, Access offers a feature
known as data access pages; these are a special type of Web
page. They allow you to view and work with data by using
Microsoft’s Internet Explorer browser (version 5.x or better),
which gives you access to dynamic (live) and static (non-
updated) information across an intranet or the Internet.
You can store this data in a Microsoft Access database or
a Microsoft SQL Server database.

3030C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
the Internet, the
World Wide Web,
and HTML

Exporting Access
objects to HTML

Understanding static
and dynamic HTML

Importing HTML data
to Access tables

Creating a Hyperlink
data type

Adding hyperlinks to
forms and reports

✦ ✦ ✦ ✦

948 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

This chapter will use the database named CHAP30Start.mdb. It also requires two
additional HTML files — New Customers.htm and MyTemplate01.htm. If you have
not already copied them onto your machine from the CD, you will need to do so
now. When you have completed this chapter, your database should resemble the
one in CHAP30End.mdb and all the associated files with it.

Before you can use Chap30End.mdb, you will need to refresh the links for all the
HTML files and Data Access Pages (DAP).

Types of Web Pages That Access Can Create
Microsoft Access can create many different types of Web pages. It can create Data
Access Pages, up-to-date read-only data pages, or (static) snapshots of data from a
table, query, form, or report.

If you need to manipulate the data from your databases directly in a Web page, you
need to create data access pages. If you simply want to have up-to-date, read-only
data displayed, you can create Active Server Pages (ASP) or IDC/HTX files used by
Microsoft Internet Information Server. If you only want to display a snapshot of
information from a specific point and time, you can create plain static HTML
documents.

To make sure that your Web pages appear consistent, you can also use an HTML
template file that you create.

Data access pages
Data access pages, or DAPs, were first introduced in Access 2000. In the simplest
sense, data access pages are a combination of forms and reports for the Web.

On the
CD-ROM

What Are Intranets?

An intranet is simply the use of Internet technologies within an organization (or company).
Intranets help in cutting costs and offer fast and easy accessibility to day-to-day information.
They offer some features that are often lacking in Internet technology — speed, security, and
control. An intranet is a network (or networks) that works on a local or wide area network
that uses TCP/IP, HTTP, and other Internet protocols and looks like a private version of the
Internet. You can use an intranet in much the same way that you use the World Wide Web
to store information on home pages and Web sites. One of the leading methods of creating
World Wide Web pages is to use HyperText Markup Language (HTML). This is the de facto
language of the Web. Web browsers (such as Amaya, Internet Explorer, Netscape, Opera,
and others) read and interpret this HTML code to display the text and graphics on the
screen.

949Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

DAPs are HTML pages that are attached directly to data in the database and can be
used to display static or dynamic information. They can be attached to a single
table or several tables via a query. They can be used like Access forms, except that
data access pages are designed to run in the Internet Explorer 5.x Web browser.
They are HTML pages that can be deployed to the Internet, deployed to an
intranet, or used within Access.

Older versions of Access, like Access 97, didn’t use or create data access pages;
however, you had the ability to create a form or report and publish it to an HTML
document viewable on the Web. These HTML documents, or pages, were static —
the data was fixed, not updatable. Access still lets you create static data pages from
your tables, queries, forms, and reports (discussed later in this chapter), but data
access pages remove the interim step of exporting an object to an HTML page,
because they are HTML documents from the start. As pointed out at the beginning
of this section, data access pages were first introduced in Access 2000.

You can view active and dynamic data, update data, and print data access pages.
You can apply filters, sort, or manipulate objects within the HTML document (like
Pivot Tables, Charts, and Spreadsheets) in real-time.

Access 2003 extends the functionality of data access pages in several areas,
including deployment, ability to directly create a data access page from other
objects (tables, queries, forms, and reports), and more flexibility in designing and
browsing DAPs. It also includes more robust support for eXtensible Markup
Language (XML) — including it in your DAPs. This functionality is a result of the
technologies that are built into Internet Explorer (version 5.5 is recommended)
and the Office Web Components.

Unlike Access forms and reports, data access pages are stored in the Windows file
system as HTML pages, rather than in the Access database or project.

After you create them, you can use data access pages directly in an Access pro-
gram or within the Web browser. These files are specifically designed for Internet
Explorer 5.0 (or greater) and make use of dynamic HTML and XML technology.

New
Feature

Note

What Is HTML?

If you’re unfamiliar with HTML, you should make this topic your next learning experience.
Web pages are formatted by using a special language called HyperText Markup Language
(HTML). With HTML, you can create a Web page containing text, pictures, or links to other
Web pages. Each Web page is identified by its address, which is called a Uniform Resource
Locator (URL): for example, http://www.databasecreations.com or http://www.
ItInAsia.com. Using Access’ Internet tools, you can translate Access objects and data into
an HTML-compatible format.

950 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

At the time of this writing, data access pages (DAPs) work only with Microsoft’s
Internet Explorer 5.0 (or greater). To take advantage of many of the new features
of DAPs in Access, you need to use IE 5.5 (or greater). Many of the features of
DAPs also rely upon the Office XP Microsoft Web Components (MSOWC). Both of
these applications need to be installed on your computer to take full advantage of
the power of DAPs.

Data access pages are more than simple forms for the Internet. They offer a totally
new way for the user to interact with live data. Using the browser, you can display
summarized data, such as Sales By Product or Sales By Month. With a mouse click,
you can also display the detail information for each summarized item — for example,
individual sales by invoice. The tools to summarize, expand, sort, and filter the data
are available in the browser itself. These pages let you work with dynamic informa-
tion; that is, your browser can access live data from within your databases in an
interactive fashion.

To build a data access page, users work with the new Data Access Page designer;
Access can open any existing HTML file in this feature. After you open a page in
Access, you can add data-bound fields to the page easily and quickly. To build a
data access page, users work with the Data Access Page designer.

Working with dynamic and static views
of Web-based data
When working with data in Web-based files, you can access the data statically (data
that never changes) or dynamically (data that can change). If the data doesn’t
change, the HTML file can display the information statically. Data access pages are
not necessary to create stagnant data. However, if the data that is to be displayed in
the HTML page changes often, you want to display the data dynamically, using a
data access page.

Typically, an HTML page, created via the data access page, gets its data from an
Access database or an Access project connected to a SQL Server database (version
6.5 or greater).

How Web applications use static HTML pages
Web applications — specifically browsers — use static HTML pages to display data
that was originally in a database table or series of tables. It is static; after you cre-
ate the HTML page, the data in the page doesn’t change. The data is a physical part
of the page; it is actually embedded in the page.

Access lets you create a static Web page from any table or query by exporting the
datasheet results to an HTML page.

Tip

Note

951Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

To create a static Web page from any table or query, simply select the table or
query object that you want to export from within the correct database container
(table or query object type). After you highlight the table or query object, select
File ➪ Export from the menu. An alternate method is to right-click the object (table
or query name) and select Export from the pop-up menu. This activates an Export
As dialog box that allows you to specify a name for the new file and how you want
to save it. Follow these steps to export the tblContacts table of the Chap30Start
database to a static HTML page:

1. Select the tblContacts table in the Chap30Start database (only highlight it;
you don’t need to open it).

2. Select File ➪ Export from the menu, or right-click and select Export from the
pop-up menu. Access displays the Export Table dialog box (and displays the
Customer table name in the title bar).

3. Select “HTML Documents” from the Save as type text box.

4. Type ContactsTable in the File name text box.

5. Click Export to save the tblContacts table to the file named
ContactsTable.html.

Figure 30-1 shows the exporting of the tblContacts table to an HTML page. It shows
the active Export [table or query name] As dialog box.

As Figure 30-1 shows, you can choose a specific format for the HTML page to be cre-
ated. To choose a specific format, simply click the Save formatted check box, and
when you click the Export button, you are given another dialog box — the HTML
Output Options, as shown in Figure 30-2. You can choose a specific HTML template
format file by typing in a name or by clicking the Browse button and selecting from
existing HTML templates.

Figure 30-1: Exporting the tblContacts table to an HTML page.

952 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 30-2: Specifying an HTML template
format file for saving a table in HTML format.

How Web applications use dynamic HTML pages
In contrast to static pages, dynamic HTML pages support viewing and working with
live, up-to-date data. A Web application can display and work with live data from
databases in several ways. Traditionally, this was accomplished using server-side
technology. Methods such as CGI (Common Gateway Interface) and Microsoft’s ASP
(Active Server Pages) do the job. These are programming methodologies that allow
you to write code and store it at the server level where the database application
resides. Then, when the user wants to look at live data, the user sends a CGI script
or ASP query to the database sitting on the Web server. The server takes this
request and processes it, returning the requested data to the end user.

Previously, the data being sent back was up-to-date, but not live, and it was stored
in an HTML file that your browser displayed. This changed with Access 2000 and is
enhanced in Access 2003, which uses ASP technology tied together with Microsoft’s
implementation of the Extensible Markup Language (XML).

What Are HTML Template Files?

An HTML template file is a file that you create in HTML that is used by Access to enhance
the appearance and navigation of your HTML-generated files. You can use it to include a
company logo in the header section, a background image in the body section, and your
own navigation buttons in the footer section of an HTML report.

The template is a text file that includes HTML tags and tokens that are unique to Access. The
tokens are used to tell Access where to insert output and other information in the gener-
ated HTML files.

If you specify an HTML template file in the dialog box, Access merges the HTML template
file with the .html, .asp, and .htx output files, replacing the tokens with the appropriate
items.

For a more detailed explanation of HTML Template Files, see the
“HTML Template Files” section later in this chapter.

Cross-
Reference

953Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

Working with dynamic HTML
You use dynamic HTML when you need to access data that changes frequently and
you or your users need to enter and retrieve live data from an Access database
using a Web form.

Access lets you create dynamic HTML pages, or data access pages, from within
Access and display them in Access or Microsoft’s Internet Explorer 5.0 or greater.
Figure 30-3 shows a data access page in Access. This page displays information
about buyers and their purchases.

Figure 30-3: A data access page in Access showing a buyer and the buyer’s
purchases for each invoice.

You can create these pages to display and work with your data in either datasheet
or form mode.

After you create them, you can add new records, modify existing information stored
in the tables, or simply view records in the Access tables from the Web. You can
even move between records in the table or from within the browser by using HTML-
based controls located on the dynamic HTML Web form.

Access 2003 uses HTML table tags for the navigational controls — thus improving
performance of DAPs — and removes the ActiveX controls from the Office Web
Components DLL file (as in previous versions). Finally, the Navigation control now
uses styles and images, letting you customize the images and formatting of the
Control.

Note

954 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Exporting Tables, Queries, Forms,
and Reports to Web Pages

You may often want to output information from an Access table, query, form, or
report to a Web page. Using the File ➪ Export option, you can export individual
tables, forms, reports, and datasheets to static HTML format. Access creates one
Web page for each report page, datasheet, and form that you export. Exporting
objects to HTML format is useful for creating a simple Web application, verifying
the format and appearance of an object’s output, or adding files to existing Web
applications.

When you export an object, you can also specify an HTML template file along with
your output files. The HTML template contains HTML tags and special tokens unique
to Access that enhance the appearance, consistency, and navigation of your Web
pages.

Exporting an Access table to static HTML format
If you want to export a table to static HTML format, you simply click the table name
in the database container and select File ➪ Export. For example, earlier in the chap-
ter, you exported the tblContacts table to an HTML page named ContactsTable.html.

See the section titled “How Web applications use static HTML pages,” earlier in this
chapter.

The resulting HTML page is based on the entire table. Values from most fields (except
OLE objects and hyperlink fields) are output as strings. Fields with a Hyperlink data
type are output as HTML links using <A HREF> tags. All unformatted data types,
except Text and Memo, are saved with right alignment as the default. Text and Memo
fields are saved with left alignment by default. OLE objects are simply ignored and
not included in the resulting HTML page.

Cross-
Reference

What Is XML?

XML, or eXtensible Markup Language, is a standard language for describing how data,
which is displayed on the Web in browsers, is delivered across the Web. It works in con-
junction with HyperText Markup Language (HTML), which is the language that is used to
create and display Web pages. HTML is an excellent tool for displaying text and image infor-
mation in Web browsers, but it is very limited in the way it can handle data and data struc-
tures. This job is delegated to XML, which defines the data and how it should be structured,
separating the data from the presentation.

955Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

Figure 30-4 shows the resulting HTML page that you can create by following the
above steps. Notice that it doesn’t include many items you may expect. For exam-
ple, it doesn’t include column headings for each of the columns. Also, the widths of
several of the columns (for example, ZipCode and Telephone Number) appear ran-
domly selected. It does include the name of the table centered across the top line
(you may have to move the horizontal direction bar to see it). Also, the discount
field has been converted from a percentage using the percent sign to a decimal
value (5% is now 0.05) and some records appear to be missing values (have blank
spaces like the notes and some of the discount amount records).

Figure 30-4: The HTML page created by exporting the tblContacts table to the
ContactsTable.html file, shown in IE.

When exporting a table to an HTML file, Access doesn’t save the heading column
names, nor does it save data in the same format as it appears in the datasheet —
unless you use an HTML template to export the file. It doesn’t support the Format
or Input Mask Properties of the table.

Caution

956 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

If you want Access to automatically display the HTML page after generating it,
select Autostart in the Export dialog box and it displays immediately after you cre-
ate it in Internet Explorer.

Although the layout of the HTML page doesn’t simulate the formatting, headers, or
even page orientation and margins that are set for the datasheet of the table, you
can correct this by using an HTML template file that is covered later in this section.

After you have created your HTML pages, you can publish them to your Web site.

Exporting an Access query datasheet
to static HTML format
In the previous section, you export an Access table to an HTML page. Actually, you
export the datasheet contents of the table to static HTML format. In addition to
tables, you can also export datasheets from queries and forms.

In general, to export a datasheet from a query, simply select the query name instead
of the table and follow the steps for exporting a table, earlier in this chapter. If the
query is a standard query, the process works exactly like exporting a table.

If you don’t specify an HTML format file, the resulting HTML page doesn’t show any
formatting or input masks. However, it does support the Sort orders and the non-
display of any fields that have their Show check box unchecked. Figure 30-5 shows
a query named qryCustomers Alphabetized (representing the contacts that are
either buyers or both [sellers and buyers]) in Design mode with three fields speci-
fied for a Sort — chrLastName, chrFirstName, and then chrCompany. By exporting
this query to an HTML document, the HTML page sorts the items in the correct
order. It also specifies a criteria of “Buyer” or “Both” (lacking all Sellers) in the
chrContactType field. For instance, you can export this query to an HTML docu-
ment named Customers Alphabetized HTML.htm.

Figure 30-5: A query with three fields specified for sort order and criteria for another field.

Tip

957Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

A large datasheet produced from a query may take a long time to output and to
display through a Web browser. Consider reducing the size of the datasheet, divid-
ing the datasheet into smaller datasheets by using criteria (such as a date field), or
using a report or form to view the data.

One important issue to keep in mind when exporting a query to an HTML page is
working with parameter queries — queries that work interactively with the user at
run-time. The resulting HTML document is created after the parameter query is run
to obtain the parameter from the user.

Access creates the new HTML document with the user-specified parameter. If you
compare this HTML page to the structure of the query in Figure 30-5, you can see
that it is indeed in sort order by Last Name, then First Name, and finally by Company,
as in the query. Figure 30-6 shows the Customers Alphabetized HTML html file in
sorted order.

Figure 30-6: The resulting html file from the query in Figure 30-5.

After you create your HTML pages, you can publish them to your Web site.

Caution

Tip

958 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Exporting an Access form datasheet
to static HTML format
In the previous sections, you learn how to export an Access table and query to an
HTML page. Actually, you export the datasheet contents of them to a static HTML
format. In addition to tables and queries, you can also export the datasheet of forms.

Exporting a form to an HTML document doesn’t export the form’s structure; rather
it simply exports the field contents of the form, based on the underlying table or
query of the form and the tab order. To see what is actually exported, you can click
on the datasheet button on the toolbar when the form is open.

To better understand what actually occurs when you export the datasheet of a form,
consider the Customer and Sales form (actual name — frmCustomer&Sales in the
Access Auto Auctions.mdb), as shown in Figure 30-7.

Figure 30-7: The Customer and Sales form.

Examining Figure 30-7, you can see that the form displays the Customer and Sales
Invoice information in the upper portion of the form, one record at a time, while dis-
playing the associated Sales line items records in a datasheet-like subform in the
bottom half of the form. Actually, this form is a FORM that has a subform included
within it.

To understand how Access exports the contents of this form to an HTML docu-
ment, follow these steps:

1. In the Database window, click the Forms button to see the names of the forms.

2. Open the frmCustomer&Sales form. Access opens the form, and you can see
the same form as shown in Figure 30-7.

Note

959Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

3. Either select View ➪ Datasheet View from the menu or select Datasheet view
from the View button on the toolbar.

4. After the datasheet displays, you can scroll from left to right to see the fields
being displayed in the datasheet of the form. Access shows 10 fields total,
starting with (column headings) ID:, Type:, and Name:, and ending with Sale
Date: and Invoice Date:. Figure 30-8 shows the Datasheet view of the form.

Figure 30-8: Datasheet of the form opened in Figure 30-7, showing the fields.

5. Select File ➪ Export from the menu. Access displays the Export Form As
dialog box.

6. In the Save As Type dialog box of the Export Form As dialog box, select HTML
Documents. Access automatically assigns the default name of the HTML page
as the same name of the form — replacing the ampersand with an underscore
(frmCustomer_Sales). Keep this name for the example.

7. The Save formatted check box is checked and grayed out for the form. You
can’t change this check box.

8. Click the Export All or Export button, whichever is displayed. Access responds
by activating an HTML Output Options dialog box, as shown in Figure 30-9.
You use this box to select an HTML template to use for the exporting of the
datasheet.

Figure 30-9: The HTML Output Options
dialog box.

960 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

9. If the check box for Select a HTML Template is checked, you need to uncheck
it at this time; otherwise, skip this step.

10. Click the OK button to start exporting the datasheet of the form.

Unlike exporting a table or query, forms require use of an HTML template file. If you
don’t specify one, Access automatically uses an internal default value for a format.

Figure 30-10 shows part of the resulting HTML page displayed in Internet Explorer.
Your fields may show different values — for example most of the discount rate fields
may show 0.

Figure 30-10: The HTML page created from the frmCustomer&Sales form.

As Figure 30-10 shows, this HTML page has some basic formatting added. It has the
header row with field names above each column. The formatting specified for any
fields is shown as formatted in the form (Discount Rate is still a percent instead of
decimal). Comparing this form to the datasheet of Figure 30-8, you can see that it is
a better match than the HTML pages for the tables and queries created earlier.

You can view the HTML source code of any HTML document being viewed in
Internet Explorer by selecting View ➪ Source from the file menu while the HTML
document is active.

If you want Access to automatically display the HTML page after generating it,
select Autostart in the Export dialog box, and it displays immediately after it is cre-
ated in Internet Explorer.

Tip

Note

961Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

Access only creates an HTML document from the fields of the primary form, not
the sub-form.

Comparing the HTML page in Figure 30-10 to the actual form in Figure 30-7, you can
see that none of the Sales Line Item fields are added to the HTML page — only the
Contact and Sales fields. When converting a form to an HTML document, only the
principal form objects are converted — in this case, the Customer and Sales infor-
mation. The Sales Line Item fields are actually in a separate form, named
frmSubCustomer&Sales.

When converting forms, the values from most fields (except OLE objects and hyper-
link fields) are output as strings. They are transferred to the HTML document, as
shown in Figure 30-10. If you have an OLE object, it is simply ignored when out-
putting to the HTML page. The hyperlinks are copied over and stored in the HTML
document as hyperlinks, using the tag.

After you create your HTML pages, you can publish them to your Web site.

Changing Page Setup properties for datasheets
When exporting a form, table, or query, objects are formatted similarly to the way
they appear in the datasheet, including defined Format or Input Mask properties if
you specify an HTML template. However, the column widths are automatically fitted
to the display page properties of the datasheet (normally 8 inches wide). To change
these settings, display the datasheet of the form and use the Page Setup command
on the File menu before you export it.

Exporting a datasheet to dynamic HTML format
You can create dynamic HTML documents for datasheets that reside in Microsoft
IIS 1-2 (IDC/HTX format) or Microsoft Active Server Pages (ASP format). These pages
are created at run-time when the user requests the information — thus, they are
dynamic.

When you export a datasheet to either of these formats, the generated HTML docu-
ment queries the database for current data and sends that information back to the
requesting browser.

You can also save forms as ASP files that emulate most of the functionality of the
original form and display the data from your database on the Web server.

The process of exporting a dynamic HTML format is essentially the same as export-
ing a static format except that you choose the Microsoft IIS 1-2 or Microsoft Active
Server Pages choice instead of the HTML Documents choice.

Caution

962 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Exporting to an Active Server or IIS 1-2 document is not the same as a data access
page. These options create both an HTML document and an appropriate related
file for access by the corresponding server (an IIS or an ASP server).

In general, to export a datasheet to dynamic HTML format, follow these steps:

1. In the Database window, click the name of the table, query, or form that you
want to export, and then click Export on the File menu.

2. In the Export dialog box, in the Save As Type dialog box, click Microsoft IIS 1-2
or Microsoft Active Server Pages, depending on which dynamic HTML format
you want to use.

3. If you want to save to a different drive or directory, click the down arrow at
the right of the Save in combo box and select the drive or folder to export to.

4. In the File name box, enter the file name.

5. Click Export.

6. Enter the appropriate information in the HTX/IDC Output Options or Microsoft
Active Server Pages Output Options dialog box, as shown in Figures 30-11 and
30-12.

7. For either Output Options box, enter the location of the HTML template (or let
it use the default value) in the HTML Template text box.

8. In the Data Source Name text box, enter the name of the ODBC data source
that you connect to when the server-generated HTML files are processed on
the Web server.

Figure 30-11: The HTX/IDC Output Options
dialog box for exporting to a dynamic datasheet.

You must specify the machine or file data source name that you use on the World
Wide Web server and, if required,a username and password to open the database.
If you are exporting to ASP file format, you must enter the full destination URL for
the ASP file’s directory (folder). For example, if you are storing the ASP files in the
\SalesApp folder on the \\Pubweb server, type http://pubweb//salesapp/.

Caution

Note

963Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

Figure 30-12: The Microsoft Active Server
Pages Output Options dialog box for exporting
to a dynamic datasheet.

After you finish, you are ready to publish your dynamic HTML document(s) to
the Web.

Exporting a form to dynamic HTML format
You can design an Access form for use in a World Wide Web application and then
save it to dynamic HTML format as ASP files. Several types of forms can be out-
putted: view forms (to display records), switchboard forms (to act as the home
page or to navigate to related pages, such as all reports), and data-entry forms (to
add, update, and delete records). Most of the controls on your forms are saved as
ActiveX controls that perform the same or similar functions as on the original forms.

If you have any Visual Basic code behind your forms or controls, none of it is saved
or run when you create or activate the ASP file.

In general, to export a form in dynamic HTML format, follow these steps:

1. In the Database window, click the name of the form that you want to export,
and then click Export on the File menu.

2. In the Export dialog box, in the Save As Type dialog box, click Microsoft IIS 1-2
(*.htx; *.idc) or Microsoft Active Server Pages (*.asp), depending on which
dynamic HTML format you want to use.

3. Change the drive or folder to Export to (if you want to) by clicking the Save in:
combo box.

4. In the File name box, enter the file name.

5. Click Save.

Caution

964 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

You must specify the machine or file data source name that you use on the Web
server, and , if required, a username and password to open the database. If you
are exporting to ASP file format, you must enter the full destination URL for the
ASP file’s directory (folder). For example, if you are storing the ASP files in the
\SalesApp folder on the \\Pubweb server, type http://pubweb//salesapp/.

Access outputs a continuous form as a single form. Access outputs most controls
as ActiveX controls but ignores any Visual Basic code behind them. The output files
simulate, as closely as possible, the appearance of the form by creating the appro-
priate HTML tags to retain attributes, such as color, font, and alignment. However,
all data types are output unformatted, and all Format and InputMask properties are
ignored.

If a form is in Datasheet view or its Default View property is set to Datasheet when
you export to ASP file format, Access outputs the form as a datasheet. If the form
is in Form or Design view, or its Default View property is set to Single Form or
Continuous Forms, Access outputs the form as a form.

After you finish, you are ready to publish your dynamic HTML document(s) to
the Web.

Processing an IDC/HTX file on the Web server
After you output a table, query, or form to an IDC/HTX file, Access creates two files:
an HTML extension file (*.htx) and an Internet Database Connector file (*.idc). The
.idc file contains a query in the form of an SQL statement. For example, exporting
the qryCustomerSales query produced the .idc file, as shown in Figure 30-13.

Figure 30-13: The SQL statement created for an .idc file that was exported
to Microsoft IIS 1-2 format.

965Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

The .htx file is an HTML file that contains the formatting information and placehold-
ers for where to insert the values returned from the query in the .idc file. Using
Microsoft FrontPage, you can examine the format skeleton for the qryCustomerSales
query. Figure 30-14 shows the associated .htx file in Front Page.

Figure 30-14: A portion of the associated .htx file that was exported to Microsoft
IIS 1-2 format.

Figure 30-14 shows the left-most portion of the Preview view of the .htx file created.
It is displayed in Microsoft’s FrontPage.

After you publish the IDC/HTX files to a Web server, IIS can open the database (via
an ODBC driver and the .idc file connection information), run the query in the .idc
file, obtain the data, merge the results with the .htx file, and publish one .html file,
sending it dynamically to the Web browser that requested the information.

Processing ASP files on the Web server
When you export a table, query, or form as an ASP file, Access creates a Microsoft
Active Server Page (*.asp) file. Active Server is an integral part of Microsoft Internet
Information Server 3.x or later.

The .asp file contains the HTML tags combined with one or more queries in the form
of SQL statements, Visual Basic Scripting code (VBScript), and template directives.
The .asp file also contains the ODBC connection information to connect to the source
database — either an Access or SQL Server database. It includes the data source
name and user name/password (can be prompted at run-time).

966 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

After you publish an .asp file to a Web server, IIS can do the following: Run the
VBScript code located in the .asp file, call ActiveX controls, open the database, run
the queries in the .asp file, obtain the results, merge them with the HTML tags, and
send the resulting page back to the Web browser that requested the information.

Exporting a report to static HTML format
Reports can also be exported to HTML format. However, reports are always output
to a static file format type.

When exporting a datasheet from a table, query, or form, Access creates a single
HTML page. Every record that is in the datasheet is placed into the single HTML
document. If you have a few thousand records, all of them are submitted to the
same page. If the HTML document is too large, it takes a very long time to load in
the browser. This is why you should limit the amount of information being exported
from a datasheet to an HTML document.

In contrast, exporting Access reports is a bit smarter. When you export a report
object, each page of the report is sent to its own HTML document. In other words,
if a report has two pages, two HTML documents are created. The second and subse-
quent pages maintain the same name as the first, simply appending a chronological
numeric value (2, 3, 4, etc.) after the primary HTML document name.

To export the rptContacts First 5 Only in the Access Auto Auctions database, follow
these steps:

1. In the Database window, click the Reports button to show the names of the
reports.

2. Select the rptContacts First 5 Only.

3. Click Export on the File menu (or right-click and select Export).

4. In the Export dialog box, in the Save As Type dialog box, click HTML
Documents. Access supplies the default name of rptContacts First 5 Only
in the File Name text box.

5. In the File name box, change the filename to Customer Report - 5 Records.

6. The Save formatted check box is checked and grayed out for the form. You
can’t change this check box.

7. Click the Export button. Access responds by activating an HTML Output
Options dialog box. This box is used to select an HTML template to use for
the exporting of the datasheet.

8. If the check box for Select a HTML Template is checked, you need to uncheck
it at this time; otherwise, skip this step.

9. Click the OK button to start exporting the report to an HTML document.

967Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

In the HTML Output Options dialog box, you can specify an HTML template to use.
If you don’t specify an HTML template file containing navigation tokens, Microsoft
Access provides a default navigation scheme. The default scheme for Reports
includes adding page numbers and several text navigation links (first, previous,
next, and last) at the bottom of each page.

If you want Access to automatically display the first HTML page of the Report after
generating it, select Autostart in the Export dialog box, and it is displayed immedi-
ately after it is created in Internet Explorer.

Figure 30-15 shows the resulting HTML report created by exporting the Access
report.

Figure 30-15: The first page of an HTML document that was created by exporting
an Access report.

Tip

Note

968 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Looking at the bottom of the HTML document, you can see several navigation con-
trols similar to the ones shown in Figure 30-15. Looking closely at the bottom of the
page, you see several things automatically added to the report. First is the date it
was printed on. To the right of that is the Page counter (1 of 2), and at the very
bottom-left corner are four navigation text hyperlinks — First, Previous, Next, and
Last. If you click on the Next text, you are taken to the second page of the report.

The HTML file is based on the recordset behind the report, including any current
Order By or Filter property settings. If the datasheet contains a parameter query,
Access first prompts you for the parameter values and then exports the results that
match the query. Most controls and features of a report, including subreports, are
supported except for lines, rectangles, OLE objects, and subforms. However, you
can use an HTML template file to include report header and footer images in your
output files.

If the Access report contains more than one page, Access exports a different HTML
document for each page.

The output files simulate, as closely as possible, the appearance of the report by
creating the appropriate HTML tags to retain attributes, such as color, font, and
alignment. Fields with a hyperlink data type are output as HTML links using <A
HREF> tags. Access outputs a report, unlike a datasheet, as multiple HTML files, one
file per printed page. The counting systems for multi-page reports follows the pat-
tern of the filename with no number for the first page, then the filename with an
incrementing number for every page after that: Customer Report - 5 Records.html,
Customer Report - 5 Records 2.html, Customer Report - 5 Records 3.html, and so
on. If you create an HTML document for the Customer Report - 5 Records report,
Access will create five different pages for the report. The layout of the HTML pages
simulates the page orientation and margins set for the report. To change these set-
tings, display the report in Print or Layout Preview, and then use the File menu’s
Page Setup command before you export it. If you look at the query behind the
report, you will see that it specifies the top five records only; if you remove the top
5 option, the report will print 54 records instead.

You can’t output a report to dynamic HTML format.

HTML template files
When Exporting datasheets, forms, and reports to HTML documents, IIS 1 or 2
documents, and ASP documents, you can specify one or more HTML template files,
which you can use to enhance the functionality of those pages. Typically, you want
to enhance the navigational functionality of datasheets, add graphics or other
appearance features, and maintain consistency between your HTML documents.

Note

Note

969Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

HTML template files let you add these types of enhancements to your static HTML
pages or dynamic server-generated HTML files.

For example, you may want to add a company logo in the header of a report or at
the top of all HTML static pages; or you may want to place navigational controls on
your pages.

An HTML template file is a text file that you create by using HTML tags and tokens
that are unique to Access. These tokens are used to input specific information into
the final HTML document that is created when you export a table, query, form, or
report.

Access recognizes seven specific template tokens:

✦ <!--AccessTemplate_Title-->, which is used to place the name of the object in
the Browser title bar.

✦ <!--AcessTemplate_Body-->, which is used to designate where the output of the
object is to be placed in the <body> of the HTML document.

✦ <!--AccessTemplate_FirstPage-->, which is used to create an HTML anchor
tag () in the document to point to the first page of a multi-page
document.

✦ <!--AccessTemplate_NextPage-->, which is used to create an HTML anchor
tag () in the document to point to the next page, after the current
page, of a multi-page document.

✦ <!--AccessTemplate_PreviousPage-->, which is used to create an HTML anchor
tag () in the document to point to the previous page, after the cur-
rent page, of a multi-page document.

✦ <!--AccessTemplate_LastPage-->, which is used to create an HTML anchor
tag () in the document to point to the last page of a multi-page
document.

✦ <!--AccessTemplate_PageNumber-->, which is used to display the current page
number of the document.

Each of these tokens can be placed in an HTML document that can be used as a
template to tell Access how to format or display the object being exported to HTML
code. It lets you enhance the appearance and navigation of your static HTML docu-
ments. For instance, you can add images, add backgrounds, specify foreground and
background colors, and so on to the document.

Figure 30-16 shows a simple HTML template file named MyTemplate01.htm.

970 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

As Figure 30-16 shows, several HTML Access tokens are placed in the HTML
code of the template. It uses the token <!--AccessTemplate_Title--> to display
the title of the table in the browser when the HTML document is created. It also
uses two of the navigational tokens — <!--AccessTemplate_FirstPage--> and <!--
AccessTemplate_LastPage--> — to place links for multi-page documents.

Figure 30-16: An HTML template file named MyTemplate01.htm.

After you create the template file, you can use it by specifying it in the HTML Output
options dialog box that appears when you specify Save Formatted in the Export dialog
box. Figure 30-17 shows the top part of an HTML document that is running in Internet
Explorer and that was exported from a query named qryCustomerMailingLabels. It
used the HTML template file MyTemplate01.htm to create the HTML document.

Notice that the exported HTML code shows a graphic and two navigational links
(TopPage and LastPage). It also shows the name of the query object
(qryCustomerMailingLabels) that was used for the HTML export and column head-
ings, and some basic color was added to the page.

971Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

Figure 30-17: The top part of an HTML document in IE that was created using
the HTML template file.

Importing and Linking (Read-Only)
HTML Tables and Lists

In addition to exporting an HTML table, query, form datasheet, or report, you can
import or link to an HTML table directly. This process uses the standard Import or
Linked Table Wizard shown and used in Chapter 7.

972 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Importing an HTML table
When importing, you can only import HTML tables into Access tables — not into
queries or forms. For instance, to import the file New Customers.htm, follow these
steps:

1. Switch to the Database window for the database to show all tables in the
database.

2. Select File ➪ Get External Data ➪ Import from the File menu.

3. Select file type HTML Documents (*.html;*.htm).

4. Select the filename New Customer.htm, as shown in Figure 30-18.

Figure 30-18: The Import dialog box — selecting the New
Customer HTML page.

5. Click the Import button. Access starts the Import HTML Wizard.

6. Click the First Row Contains Column Headings check box.

7. Review the data and column headings to make sure the table imports cor-
rectly, and press the Next button. The next screen asks if you want to import
to a New table (default) or to an existing table. Accept the default to import to
a new table.

8. Click the Next button to accept the default values. The next screen lets you
move through the fields and specify indexing or Skip the field.

9. Select an Indexed value of Yes (No Duplicates) for the Contact ID field, as
shown in Figure 30-19.

973Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

Figure 30-19: The Import HTML Wizard specifying
an index field for the Contact ID field.

10. Click the Next button. Access moves to the Choose a primary key page. The
default value is let Access add a primary key. It adds a new field to the left of
the structure labeled ID.

11. Click the Choose my own primary key radio button. Access removes the ID
field and selects the Contact ID field in the text box.

12. Click the Next button. Access then moves to the last page of the Wizard.

13. Type the name New Customers in the Import to Table text box.

14. Click the Finish button. Access imports the file and reports that it did so suc-
cessfully by displaying a message box.

15. Click OK to return to the database container and see that the New Customers
table has been imported.

If your HTML file contains more than one table or list, repeat the steps for each table
or list that you want to import or link.

A table that is embedded within a table cell in an HTML file is treated as a separate
table when you import or link. A list embedded in a table cell is treated as the con-
tents of a cell, and each item in the list is delimited with the carriage return/line feed
characters.

If the data being imported contains a URL link or file hyperlink, Access converts
HTML links to a Hyperlink data-type column, but only if all values in a table column
or list contain hyperlink addresses defined by an <A HREF> tag. You can change the
data type when using the Import HTML Wizard or the Link HTML Wizard. Access

974 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

ignores GIF and JPEG images embedded in the HTML tables or lists. For data that
spans rows or columns, Access 2002 duplicates the data in each cell. On the other
hand, Microsoft Excel 2000 stores the data in the first or upper-left cell and then
leaves other cells blank.

Before continuing on to the next section, you will need to delete the New
Customer table that you just created. If you don’t delete it and do the linking to an
HTML table (same HTML document — New Customers.htm), you will be prompted
to overwrite the existing table to link to it.

Linking to an HTML table
When you link to an HTML table, it is read-only. You are unable to make changes to
the table.

For instance, to link to the file New Customers.htm, follow these steps:

1. Switch to the Database window for the database to show all tables in the
database.

2. Select File ➪ Get External Data ➪ Link Tables from the File menu.

3. Select file type HTML Documents (*.html;*.htm).

4. Select the filename New Customers.htm and either double-click or click the
Link button after selecting it. Access starts the Link HTML Wizard.

5. Check the First Row Contains Column Headings checkbox to turn it on.

6. Click the Next button. Access takes you to the screen that allows you to skip
any fields in the structure.

7. Click the Next button. Access takes you to the last page, which asks if you
want to change the name of the Linked file.

8. Click the Finish button to accept the name given. Access displays a message
box informing you that it linked to the table correctly.

9. Click OK to be returned to the database container.

The HTML table is now linked in the table section of the database container.

Using Hyperlinks to Connect
Your Application to the Internet

Microsoft Access includes hyperlinks that help you connect your application to the
Internet or to an intranet. A hyperlink can jump to a location on the Internet or on
an intranet, to an object in your database or in another database, or to a document
on your computer or on another computer connected by a network. Normally, you

Caution

975Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

embed a hyperlink in a form. However, by storing hyperlinks in a table, you can pro-
grammatically move to Internet URLs or Office objects, such as a Word document
by using a bookmark, an Excel spreadsheet using a sheet or range, a PowerPoint
presentation using a slide, or an Access object, such as a table, form, or report.

Using the Hyperlink data type
Microsoft Access provides a Hyperlink data type that can contain a hyperlink
address. You can define a table field with this data type in order to store hyperlinks
as data in a table. Imagine, for a moment, the future where all customers have
e-mail addresses — or even their own Web sites. You want to include a customer’s
e-mail address or Web site in a linkable file, much like an automatic phone dialer
code is commonly added to a customer’s phone number today.

Figure 30-20 shows the Hyperlink data type being assigned to the hlkWebSite field in
the tblContacts table; changing from Text type to Hyperlink.

The field hlkWebSite should be left text type for the overall system. However, you
can change it to hyperlink for this chapter.

Figure 30-20: Creating a hyperlink in a table design.

Using the Hyperlink data type lets you input text or combinations of text and num-
bers stored as text and used as a hyperlink address. A hyperlink address can have
as many as three parts:

✦ Displaytext. The text that appears in a field or control.

✦ Address. The path to a file (UNC path) or Web page (URL).

✦ Subaddress. A location within the file or page.

Note

976 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

The easiest way to insert a hyperlink address in a field or control is to click on the
Hyperlink menu choice on the Insert menu. The Insert Hyperlink dialog box appears,
as shown in Figure 30-21.

The dialog box gives you many options. You can specify an existing file or Web page,
choose an object in the database, create a new page, or specify an e-mail address.

The Hyperlink data type can contain as many as 2,048 characters.

Figure 30-21: Inserting a hyperlink in the hyperlink field of a
table is easy using the Hyperlink dialog box.

When you click on a hyperlink field, Access jumps to an object, document, Web
page, or other destination.

Hyperlinks are not limited to Web pages. You can specify a hyperlink to forms,
reports, or other objects in the database. You can even create a link to an Excel
spreadsheet or Word document. For that matter, you can link to any file on your
network or across your in-house intranet or the Internet.

Adding a hyperlink to a form, report, or datasheet
You can use hyperlinks in forms, reports, and datasheets to jump to objects in the
same or another Access database; to documents created with Microsoft Word,
Microsoft Excel, and Microsoft PowerPoint; and to documents on the global Internet
or on a local intranet. You can also add hyperlinks to reports. Although hyperlinks
in a report won’t work when viewed in Access, the hyperlinks do work when you
output the report to Word, Excel, or HTML.

You can store hyperlinks in fields in tables, just as you store phone numbers and
fax numbers. For example, the Suppliers table in the Northwind sample database
(that comes with Access) stores hyperlinks to home pages for some of the suppliers.

977Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

You can also create a label or picture on a form or report or a command button on
a form that you can click to follow a hyperlink path.

Figure 30-22 shows the frmCustomer&SalesHyper Form open in the form designer
and specifying a hyperlink. Notice that there are two hyperlinks in the figure: New
Customers HTML file and Open Products Table. Both hyperlinks are built using
label fields. The first link opens the html file New Customers.htm in the default
browser when the label is clicked. The second opens the form frmProductsSimple
in the current database.

To specify an external file, place the name of the file in the Hyperlink Address prop-
erty, as shown in Figure 30-22. If you are going to specify a link to an object in the
current database, leave the Hyperlink Address field blank and fill in the Hyperlink
SubAddress with the object type and the object name.

Figure 30-22: Specifying a hyperlink address on a form for a label.

To see how the hyperlink was created, open frmCustomer&SalesHyper in design
mode and examine the Hyperlink and SubHyperlink properties of both labels. You
can view it, and it should resemble the one shown in Figure 30-23.

Looking at Figure 30-23, you see the pointer has been changed to a pointing finger
of a hand and it shows the help tip. If you pass your pointer over the link and hold
it there for a second or two, Access will display the help tip with the link filename.

If you entered a valid hyperlink and you click on the link, Access takes you to that
location on the Web, opens the new form, or performs whichever action is associ-
ated with the link.

978 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 30-23: The frmCustomer&SalesHyper form with two
hyperlinks created on the form.

Creating a label using the Insert Hyperlink button
If you want to automatically create a label using the Insert Hyperlink button on a
form, follow these general steps:

1. Open a form or a report in Design view.

2. Click Insert Hyperlink (a picture of a globe with a single chain link below it —
to the left of the field list button) on the toolbar.

3. In the Insert Hyperlink dialog box, specify a UNC path or a URL in the Link to
File or Web Page dialog box. If you are unsure of the filename, click the File
button to navigate to a file on your hard drive, on a local area network, or on
an FTP server that you’ve registered. For a Web page name, click the Web
page button to navigate to the Web page that you want to use.

To jump to a location in a file, enter a location. For example, type a bookmark
name for a Microsoft Word document or a slide number for a PowerPoint
presentation.

To jump to an Access object, enter the object type and object name (for exam-
ple, Form Customer), or click the Browse button. The Browse button displays
a list of the objects in the current database. Select the object that you want to
open.

4. Click OK in the Insert Hyperlink dialog box.

Access adds a label to the form or report. To test the link, right-click the label, point
to Hyperlink on the shortcut menu, and click Open.

979Chapter 30 ✦ Using and Creating Access Objects for Intranets and the Internet

When you create a label this way, Access sets the Hyperlink Address property of
the label to the value that you specified in the Link to File or URL box, and the
Hyperlink SubAddress property to the value (if any) that you specified in the
Named Location in File box. Access uses the Caption property for the display text
that you see in the label itself. You can change any of these properties to modify the
hyperlink.

You can also add hyperlinks to a picture (Image Control) or command button con-
trol in the same way.

✦ ✦ ✦

Building and
Working with
Data Access
Pages

Using Access, you can create many different types of Web
pages. In Chapter 30, you work with Access to create

static and dynamic Web pages based on the different objects
of Access — tables, queries, forms, and reports. You learn how
to create snapshots of your data by creating HTML docu-
ments and even up-to-date, read-only data, created at the
server side, by creating Active Server Pages (ASP). This chap-
ter demonstrates the power of data access pages in Access.

Data access pages (DAPs) were first introduced in Access
2000. They are a special type of Web page connected directly
to the data in your database. This data can be stored in a
Microsoft Access database (*.mdb) or a Microsoft SQL Server
database (accessed via an Access Data Project database —
*.adp).

This chapter will use the database named CHAP31Start.mdb.
It also uses the external file named ContactsAccess2002.htm.
If you have not already copied them onto your machine
from the CD, you will need to do so now. After you have
completed this chapter, your database should resemble
the one in CHAP31End.mdb.

If you use CHAP31End.mdb, you will need to reestablish
links to the external tables before they will work correctly.

Caution

On the
CD-ROM

3131C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Working with data
access pages

Creating data
access pages
using the Wizard

Creating and
working with
grouped pages

Exporting Access
objects to a data
access page

Importing an existing
data access page

✦ ✦ ✦ ✦

982 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Working with the Data Access Pages
You can use data access pages like any another Access object — select them from
the Pages Object container. Unlike other Access objects, however, you can also use
them independent of Access with Microsoft’s Web browser.

It’s easy to create a new data access page. You can build one from scratch, using the
Page Designer, or you can use a wizard to create a new page.

What is a data access page?
In its simplest form, a data access page (DAP) is a Web page that is connected
directly to the data in your Access database. The page allows you to display and
sometimes edit the data in the underlying database.

The most exciting part about DAPs is the ability to drill down into grouped data.
This ability lets you use DAPs to explore and analyze information stored in the
underlying tables. The user can view summary information or drill into the data to
learn more about the detail records associated with the summary information.

Figure 31-1 shows a data access page created to display Contacts and Sales informa-
tion. Currently it shows only the customer (contact) information, and if you click on
the next button of the navigation bar, it moves to the next Customer and shows that
customer’s information. The sales information is not visible at this time.

To show the Sales information, you simply click on the Expand/Collapse control
button in the form to the left of the Customer ID (the mouse pointer in Figure 31-1
is pointing to it). Notice that the Expand/Collapse button (a small box with a visible
plus or minus sign) next to the Contact ID is displaying a plus sign. By clicking this
object, the information being displayed expands, as shown in Figure 31-2, display-
ing the sales information for that customer. This process is known as drilling down
into the data.

Figure 31-1: A data access page for Customers (Contacts) and
Sales in Access with the Expand/Collapse control closed (+) on
the Customers.

983Chapter 31 ✦ Building and Working with Data Access Pages

Microsoft’s Internet Explorer and data access pages
The DAP shown in Figure 31-1 is running in Access. However, you can also run the
same data access page in Microsoft’s Internet Explorer. Figure 31-2 shows the same
form displayed in IE 6.0, with the sales detail area shown by expanding both the
Contact ID Expand/Collapse control and the Invoice Number Expand/Collapse con-
trol. The Invoice Number Expand/Collapse control has actually been set to expand
automatically — thus showing the details of each sale on the invoice.

Figure 31-2: The same data access page for Customers and Sales in IE with the
Expand/Collapse controls open (-).

To display data access pages, users need to have both Microsoft Internet Explorer
5.x or higher and the newest Microsoft Office 2003 Web Components (MSOWC) files
installed on their machines. Internally, Access uses Internet Explorer and MSOWC
(Office 2003 version) to actually display and work with the information in the data
access page.

In Access 2000, each person wanting to use data access pages was required to
purchase a separate copy of Microsoft Office for their computer to obtain the
MSOWC files, which IE 5.x or greater needed to access and display DAPs. In the
current version of Access, this is no longer a requirement. The users must still have
IE 5.x or greater and MSOWC, but they can obtain them from Microsoft’s Web site.

New
Feature

984 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

You can go to Microsoft’s Web site at www.microsoft.com and download the
MSOWC (for Office XP) and the current version of IE from the site. You can find
these files by searching the support section of Microsoft’s site. Downloading these
files takes an inordinate amount of time if you are downloading at 56K or slower.
You can also contact Customer Support by telephone to have a copy sent for a
small shipping charge.

The records in the page shown in Figure 31-1 and 31-2 can only be viewed; however,
you could make the fields capable of being updated, edited, deleted, filtered — even
grouped or sorted. This is live data from an Access database — the tblContacts,
tblSales, tblSalesLineItems, and tblProducts tables.

When Access creates a new data access page, it utilizes Microsoft Internet Explorer
technology (in edit mode) as the actual design environment to create the page
within Access.

The Page container of a database
Figure 31-3 shows the database container, CHAP31Start.mdb, with the Pages object
button selected and the container active. Inside the Pages container are three
choices for creating and working with DAPs — two let you create a new data access
page (you can create a data access page in Design View or by using the wizard), and
one lets you edit an existing page (you can edit a Web page that already exists).

Figure 31-3: The Pages container of a database.

When you create a data access page within Access, you are actually creating two
separate parts:

✦ The Data Access Page object, which is stored in the Pages container and main-
tains a link to the underlying HTML file

✦ The HTML document, which contains the HTML and XML code for the page

Tip

985Chapter 31 ✦ Building and Working with Data Access Pages

The HTML document, or file, is stored independently of the DAP object in the
database. This allows the browser (IE 5.x or later) to use this file independently of
Access. It also makes it easy for you to deploy the HTML documents for use in your
intranet or across the Internet.

The separation of the object and document can cause deployment problems that
are covered later in this chapter.

Creating a data access page is very similar to creating a form or report in Access.
You use the Data Access Page design mode, or the wizard, to create the page. After
it’s completed, the page becomes a fully functional HTML document.

When you create your pages, you need to decide if you are creating a page using a
single table/query or multiple tables. If you use multiple tables, you create what is
known as grouped pages.

Creating a single table data access page
You can create a single table data access page by using the wizard or building it
yourself in Design view.

You can also convert an existing table, query, form, or report to a data access page
directly. This is covered later in this chapter.

Using the Page Wizard to create a single table data access page
The easiest way to create a single table data access page is to let the Data Access
Page Wizard help you. For instance, to create a new data access page for the
Customers table, follow these steps:

1. Select the Pages object button from the Objects bar of the CHAP31Start.mdb
database.

2. Double-click Create Data Access Page by Using Wizard.

3. Select the tblContacts table from the Tables/Queries drop-down combo box
on the first page of the wizard.

Figure 31-4 shows the first page of the Page Wizard with the tblContacts table
selected.

4. Select chrContactType, idsContactID, chrFirstName, chrLastName,
chrAddress, chrCity, chrState, chrZipCode, and dtmOrigCustDate from the
Available Fields list box. You can select them by highlighting each field and
pressing the right arrow button (>) or by double-clicking the field name.

5. Click Next to move to the next page.

Access displays the grouping levels page of the wizard.

Cross-
Reference

Cross-
Reference

986 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 31-4: The first page of the Page Wizard.

6. Select chrContactType for a grouping level by double-clicking the field name.
Figure 31-5 shows the grouping level set.

7. Click Next to move to the next page.

Access displays the sort order page of the wizard.

8. Specify chrLastName and chrFirstName (Ascending for both) for the sort
order on this page.

9. Click Next to move to the next, and final, page.

10. Specify Contact Info by Type as the title for the new page.

11. While still on this page, choose the Open the page radio button.

12. Click the Finish button and be patient. The wizard performs many steps to
create the new data access page.

Figure 31-5: The grouping level set in the Page
Wizard.

987Chapter 31 ✦ Building and Working with Data Access Pages

Access creates the new Web document, giving it a title name of Contact Info by
Type (on the title bar when the HTML document is open).

Access has not saved the file to the hard drive yet; Access has only created and
opened it as a virtual file.

Figure 31-6 shows the newly created Contacts Info by Type data access page run-
ning in Access. As this figure shows, only the Contact Type (chrContactType) field
is initially displayed on the form. When the page is initially created (using the wiz-
ard), the expand button (plus [+] sign) displays next to Group of chrContactType.
When you click the plus (+) sign, it is replaced by the collapse button (minus [–]
sign), and the detail information for each contact displays below the Contact Type
heading.

Figure 31-6: The new Contact Info data access page running in
Access.

The form in Figure 31-6 also has a navigation bar, known as a record management
control in Access, along the bottom of the page. It shows three records that can be
viewed, based on “chrContactType.” There are three contact types: Both, Buyer,
and Seller. If you click the expand button alongside of the Contact Type, you see a
second navigation bar (above the first one) also displayed — this one for all the
records that match that contact Type (in this case “Both”). These are used to per-
form several functions, including the following:

✦ Moving between records in the page

✦ Adding new records to the underlying table(s)

✦ Deleting records

988 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

✦ Sorting records by a specific field

✦ Setting filter conditions for viewing records

In addition to these navigational controls, the page also has an expand control next
to the chrContactType text (top-left corner). It is the small box that displays either
a plus (+) sign or a negative (–) sign. It is used to expand and close a level of infor-
mation in the page. In this case, it is used to display individual customer information
(level 2) when the negative sign is showing (as in Figure 31-7), or only the Contact
type information when the positive sign is showing (as in Figure 31-6). When you
run the form, clicking the expand control toggles between expanded (+) and closed
(–) modes.

Figure 31-7: The new Customer Info data access page, expanded
to show both levels of the page.

You can change the default action of this expand control before saving your new
data access page by making a change to the page in the Design view window. Follow
these steps to change the default behavior of the expand control:

1. Click the View button or select View ➪ Design View from the menu.

2. Open the Properties dialog box by selecting View ➪ Properties from the menu
or by clicking the Property button on the toolbar.

3. With the property sheet open, right-click the gray Header: tblContacts-
chrContactType band, as shown in Figure 31-8 (or anywhere in the page —
on or below the Header band Header: tblContacts-chrContactType).

989Chapter 31 ✦ Building and Working with Data Access Pages

If you click in a different area, your menu looks slightly different from the one
in Figure 31-8.

Figure 31-8: Activating the right-click menu. Notice that the Property sheet
shows the Section: Header: tblContacts-chrContactType object active.

4. Select Group Level Properties from the menu.

Access changes the property sheet focus to the properties of the Group level
object, as shown in Figure 31-9.

5. Change the ExpandedByDefault property to True, as shown in Figure 31-9.

Figure 31-9: Changing the ExpandedByDefault
property of the Group Level object to True.

990 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

6. Save your work by selecting File ➪ Save (or press Ctrl+S, or close the window
and answer Yes to the Save Changes dialog box).

Access opens the Save As Data Access Page dialog box. This is where you
save the DAP as an actual HTML document (*.html or *.htm).

7. You can accept the default name of the Contact Info by Type.html and click
the Save button.

Access saves the page as an HTML document and displays a warning dialog
box that tells you that the Connection string to this page specifies an absolute
page. It lets you know that this page may not work on a network, unless the
connection string of the page is changed to a network path (using Universal
Naming Convention — UNC). This problem is covered later in this chapter in
the section “Making your DAPs available to the Web.”

If the Warning dialog box does not appear, it is because you have previously
checked the Don’t Show This Warning Again check box.

8. Click OK.

The HTML file is not stored in the database container. Rather, it is stored in the
Windows file system in a subdirectory. Microsoft’s Internet Explorer 5.x or higher
can be used to display and work with these files. Access stores only a page object
that points to the HTML file in the Pages container of the database window — not
the actual file.

If you saved your page in Step 6 by pressing Ctrl+S or selecting File ➪ Save from the
menu, close the page to return to the Pages container of the database.

In Access 2000, you had the option of accomplishing this same process by clicking
on the Sorting and Grouping button (the seventh button from the right side of the
toolbar) or by selecting View ➪ Sorting and Grouping on the menu. This method
has been removed from Access 2002 and 2003.

Creating a single table data access page using Page Design View
Although the easiest way to create a single table data access page is to use the Data
Access Page Wizard, it’s also good to know how to build a page using the Design
View tools. For example, follow these steps to create a new data access page for the
Pets table:

1. Select the Pages object type from the Objects Bar of the CHAP31Start
database.

2. Double-click Create data access page in Design View.

Access warns you that the page you are about to create can’t be opened in
Design view of Access 2000 or 2002. However, the page can be used in view
mode in Access 2000 or 2002 if you have installed the newest Microsoft Office
Web Components.

Note

Note

991Chapter 31 ✦ Building and Working with Data Access Pages

3. Click OK.

Access takes you to the page’s Design view. If the Property sheet is open,
close it at this time.

4. Click in the area Click Here and Type Title Text (labeled in light gray), and
then type Products Info.

5. Click in the area labeled “Drag fields from the Field List and drop them on the
page” to select it. Notice that the area has been selected.

Access highlights the unbound section of the page.

6. With the Unbound section selected in the Design View, select View ➪ Field List
from the menu (or click the Field List button) if the field list is not already
open.

Access opens the Field List, as shown in Figure 31-10.

Figure 31-10: The Page Design view with the Field List open.

7. The Tables folder should already be expanded — if it isn’t, click it to show all
the table names in the list.

8. Click the Products table to show all the fields from this table.

9. Select the chrProductID, chrDescription, chrCategory, intQtyInStock,curCost,
curRetailPrice, curSalePrice, blnTaxable, and blnAuction fields and drag them
to the section on the page labeled Drag Fields from the Field List. . . .

Access opens a Layout Wizard, as shown in Figure 31-11. This wizard lets
you select the method that Access should use to lay out the fields you have
selected from the tblProducts table.

992 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 31-11: The Layout Wizard
activated.

If the Layout Wizard does not activate, delete the field dropped onto the page and
open the toolbox. When the toolbox is open, click on the Control Wizards button
(on the top row, second button) to activate it.

10. Select the default value (Columnar) and click OK.

Access creates a simple bound span (Input Box) and a label for each field.
It also changes the section heading by renaming it to “Header: tblProducts,”
and adds a Navigation: tblProducts section below the Header section for the
Products table and places the Record management toolbar and its control
objects in it.

11. Save your work and name it Products Info.html.

After you save your data, you can use it in Access or IE 5.x or later. This page can
only be edited in Access 2003. It can be used and displayed in Access 2000 and 2002
if the user has installed both IE 5.x or later and the Office 2003 Web Components
DLL on his or her computer.

Notice that all of the fields in Figure 31-12 are selected. Access, using Internet
Explorer, lets you select more than one object at a time in the Page Design view. If
your computer doesn’t have IE5.5 or later, you are only capable of selecting one
object at a time with IE 5.0.

Figure 31-13 shows the finished Products Info page that you just created. Notice
that this page doesn’t have an Expand/Collapse button. This page could have had
additional control objects to make it more functional.

New
Feature

Note

993Chapter 31 ✦ Building and Working with Data Access Pages

Figure 31-12: The resulting layout of control objects created by the
Layout Wizard.

Figure 31-13: The Products Info Web page running in Access.

Editing a single table Web page that already exists
You can bring any preexisting HTML document into Access by selecting the third
choice in the Pages object container — Edit Web page that already exists.

When you select this option, a Locate Web Page dialog box displays so that you can
select and open the Web page (*.htm, *.html) file that you want to link to in Access.

994 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

For example, to open and link to the ContactsAccess2002.htm document, follow
these steps:

1. In the Pages container, double-click Edit Web page that already exists.

Access opens the Locate Web Page dialog box.

2. Select ContactsAccess2002.htm from the dialog box and click the Open button.

Access displays a message box similar to the one shown in Figure 31-14,
informing you that this html file was created in another version of Access and
you must first convert it to the current version of Access. After it is converted,
you cannot open it in a previous version of Access.

Figure 31-14: The Message box informing you that this html file
was created in a previous version of Access.

This message will not appear if the html page was created in Access 2003.

3. Click the Convert button.

Access displays a second message box stating that it made a backup copy of
your original page. It named it the same with the tag ‘bak’ added to the last
part of the name.

4. Click the OK button.

Another message box opens, informing you that the program cannot find the
database or some of its objects and that you need to update the connection
information on the page.

5. Click the OK button.

Access now opens the HTML document in Page Design View, as shown in
Figure 31-15. Notice that no tables are displayed in the Field List dialog box.

At this point, you will need to link the Data Page to the correct table in the
current database — tblContacts.

If the form was created in Access 2003 and the connection string is recognized by
the program, the document will be opened in the Page Design View and Access
also opens the Field list to the appropriate table.

6. Click on the Page connection properties button on the Field List.

The Page connection properties button is on the Field List dialog box toolbar
(the first button under the title bar Field List — pointed to by the cursor in
Figure 31-15).

Note

Note

995Chapter 31 ✦ Building and Working with Data Access Pages

Access opens the Data Links Properties dialog box and activates the Connection
tab, highlighting the 1. Select or Enter a Database Name: entry field.

Figure 31-15: The ContactsAccess2002.htm document in the Page Design
view of Access.

7. Click on the build button to the right of the 1. Select or Enter a Database
Name: entry field.

Access opens the Select Access Database dialog box.

8. Select CHAP31Start.mdb and press the Open button.

Access returns to the Data Links Properties dialog box, placing the path and
name of the database you have selected.

9. Click on the Test Connection button to verify that the connection has been set
for this html file.

Access displays the Microsoft Data Link message box, informing you that the
Test completed successfully.

10. Click the OK button.

Access returns to the Data Links Properties dialog box.

11. Click the OK button of the Data Links Properties dialog box.

Access returns you to the ContactsAccess2002 data access page and opens
and displays the tblContacts fields in the Field List dialog box.

12. Make any changes you want to the ContactsAccess2002 document.

996 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

13. Close your page.

Access activates a dialog box, asking you if you want to save changes made to
the ContactsAccess2002 data access page.

14. Select the Yes button to save your work and return to the database.

Notice that when editing an existing Web page, Access automatically uses the same
name as the Web page and displays a link in the Pages container with the same
name as the underlying HTML document.

If the existing HTML document that you are editing doesn’t contain any Extended
Markup Language (*.xml) code, the data access page displays static data only. If it
contains Microsoft’s Internet Explorer understandable XML code, it creates a table
that displays dynamic Web pages.

You can edit any existing html file and link to it using this method. In Page Design
View, you can modify any part of the html file. However, if the original html file is
from another version of Access, as in the above example, you will no longer be able
to modify it in the older version.

Working with multiple tables and grouped pages
Up to this point you have worked with single tables — Contact Info by Type,
Products Info, or the tblContacts table in the ContactsAccess2002.htm document.

You have even worked with a simple grouped page in the Contact Info By Type doc-
ument of Figures 31-6 and 31-7. You created this page by using the Page Wizard. The
grouped page was based on the type of Contact in the top-most group and specific
customer information in the inner group (detailed customer information).

Although this is one way you can use grouped pages, most of the time you work
with multiple related tables, placing each in its own grouping.

Understanding grouped pages
Usually, grouped pages are data access pages that contain data from more than one
database object. Most of the time, the database objects are tables, but they can also
be multiple queries or a combination of tables and queries.

You group a page based on one or more fields from the selected database objects.
Each page can contain multiple levels of groups.

You can create grouped data access pages by using the Page Wizard or in the Page
Design view. When working with the Design view, you can create new groups by
promoting fields or entire objects to a new group, or by dragging fields from other
objects into a group section.

Note

997Chapter 31 ✦ Building and Working with Data Access Pages

After a group is created, it can also be demoted.

When creating a grouped page, use the UniqueTable property to allow updates to
the data in the various groups. Sometimes, this property is automatically set.

Creating a grouped data access page using the Page Wizard
By using the Page Wizard, you can create a grouped page for multiple tables. You
can create a page using the wizard by selecting a single query with all the appropri-
ate fields in it or by selecting multiple tables when you work with the wizard.

When creating a grouped page with the Page Wizard, the resulting page is based on
one recordset and one or more grouping definitions behind the page. The recordset
contains information from all tables used and the grouping definition for the fields
used in the group. The Page Wizard doesn’t prompt you for the Unique Table for
the group field, making the page unable to be updated. You can manually set the
Unique Table property to the appropriate table in the group properties if necessary.

Using a query to create a group data page with the Page Wizard
You can create a grouped page for contacts and their sales with line item and prod-
uct information (type of vehicle and description) by using the qrySales Info for
Buyers query. This query has fields from all four primary tables. In this case, you
may want to show several fields from the related tables, and you need to group the
information by the tblContacts.idsContactID field and then create a second group-
ing by tblSales.idsInvoiceNumber. The remaining fields remain in the third group.

To create this type of DAP, follow these steps:

1. With the CHAP31Start pages database open and the Pages object button
selected, double-click the Create data access page by using wizard choice
in the container.

Access starts the Page Wizard.

2. Select the Query: qrySales Info for Buyers from the Tables/Query drop-down
box on the first page.

3. After you select the query, press or click the > button to select and move all
fields to the Selected Fields list box.

4. Click the Next button to move to the next screen.

5. Select idsContactID as a grouping level by highlighting it and pressing the >
button. After you select idsContactID, select idsInvoiceNumber to create a
second grouping level.

At this point, the wizard screen should look similar to the screen shown in
Figure 31-16.

998 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 31-16: Page Wizard with two group levels set.

6. Click the Next button.

Access moves to the sort order screen.

7. Select the chrLastName field in the first combo box to sort by name first.

8. Select the chrFirstName field in the second combo box.

9. Click the Next button.

Access displays the last screen of the Page Wizard. Accept the default name of
qrySales Info for Buyers.

10. Click the Open the page radio button.

11. Click the Finish button to complete the data access page.

Access creates the DAP with three grouping levels and opens it. If you click on
the Expand/Collapse button for the idsContactID field group and then open the
idsInvoiceNumber group by clicking on its Expand/Collapse button, your grouped
page should look similar to the one shown in Figure 31-17.

As Figure 31-17 shows, this page contains three levels of group data. Each level has
its own navigation controls. If you scroll down to the bottom of the page, you will
see three navigation controls. If you click the Next button of either top-level group,
the idsInvoiceNumber or idsContactID, the groups below collapse automatically.
The default action for the Expand/Collapse control button is to collapse automati-
cally. You can change this default action by setting a value of True for the
ExpandByDefault property of each Group level.

999Chapter 31 ✦ Building and Working with Data Access Pages

At this point, the DAP isn’t saved to an HTML file. You should save your work by
clicking the Save button and saving the HTML file.

Figure 31-17: The top half of a grouped data access page with three
levels of grouping.

The resulting group page is one recordset, and one grouping definition is set behind
the page. This DAP is not updateable as created. You can tell this by looking at the
New, Delete, Save, and Undo buttons of the navigation bar for each group. You can
change the UniqueTable property manually to make the innermost group updateable
for a specific table.

You change the UniqueTable property in the next section when you create a multi-
grouping page based on two tables.

At this point, you can take the page into the Design view and make any changes to
it, such as leaving groups expanded by default, or changing background colors for
the individual groups, or even moving fields around. Figure 31-18 shows the same
data access page after being redesigned.

Cross-
Reference

Note

1000 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 31-18: The same three-group data access page with
modification made to the page and the Products fields of the
innermost group updateable.

Creating a two level group data page in the wizard using three tables
You can create a grouped page for Contacts and their Sales by using the three
tables — tblContacts, tblSales, and tblSalesLineItems. In this case, you may want to
show several fields from the related tables, and you need to group the information
by the Contact ID field and then further group by the Invoice Number. The remain-
ing fields remain in the third group.

To create this type of DAP, follow these steps:

1. With the CHAP31Start database open and the Pages object button selected,
double-click the Create data access page by using wizard choice in the
container.

Access starts the Page Wizard.

2. Select the Table: tblContacts from the Tables/Query drop-down box on the
first page.

3. Move the idsContactID, chrFirstName, chrLastName, chrAddress, chrCity,
chrState, chrZipCode, and dtmOrigCustDate fields to the Selected Fields
list box.

1001Chapter 31 ✦ Building and Working with Data Access Pages

4. Select the Table: tblSales from the Tables/Query drop-down box on the first
page.

5. Move the idsInvoiceNumber, dtmSaleDate, and dtmInvoiceDate fields to the
Selected Fields list box.

6. Select the Table: tblSalesLineItems from the Tables/Query drop-down box on
the first page.

7. Move the intQuantity, chrDescription, and curPrice fields to the Selected
Fields list box.

8. Click the Next button to move to the next screen.

The Grouping levels screen of the Page Wizard is shown.

9. Select the idsContactID field as a grouping level field by highlighting it and
pressing the > button or double-clicking on it. Next > button.

10. Select the idsInvoiceNumber field as a grouping level field by highlighting it
and pressing the > button or double-clicking on it.

11. Click the Finish button.

Access creates the DAP with three grouping levels and opens it in Design View.

12. Click in the Group section with the idsContactID field and make the section
larger to accommodate several tblContacts fields.

13. Click in the inner section and select the fields labeled First Name, Last Name,
Address, City, State, Zip Code, and Orig Cust Date. After you select them, cut
them by pressing Ctrl+X or selecting Edit ➪ Cut from the menu.

14. Click in the top group section and paste the fields into this section by press-
ing Ctrl+V or selecting Edit ➪ Paste.

You can now rearrange the fields to look more pleasing to the user.

15. Click in the center group section, containing the idsInvoiceNumber field, and
expand it.

16. Click in the inner section and select the Sale Date and Invoice Date fields.
After you select them, cut them by pressing Ctrl+X or selecting Edit ➪ Cut
from the menu.

17. Click in the center group section and paste the fields into this section by
pressing Ctrl+V or selecting Edit ➪ Paste.

At this point, you should have three fields left in the inner grouping: Quantity,
Description, and Price.

18. Select and move the three fields in the inner group section to the top of the
section, placing the labels atop each text box as shown in Figure 31-19.

Figure 31-19 shows all three groups with their left and right borders moved
and all three made large enough to accommodate the fields within them.

1002 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 31-19: Page Design View with three group levels set and the
inner group with the final three fields at the top of the group.

19. While at the inner group containing the three fields, right-click on the Header:
of this section to select the header only of the section.

20. Select Caption from the menu.

Access opens a caption section for this inner group. Figure 31-20 shows the
Caption section added to the inner group.

21. With the Caption Section open, move all three of the labels to the Caption sec-
tion from each of the text boxes in the inner group. Make sure that they are
still above the text boxes they are associated with. Then move the text boxes
to the top of the inner group as shown in Figure 31-20. Then resize both the
Caption and Inner Group sections to only show their contents.

22. Switch to Page View by clicking the View button.

After you are in View mode, you can expand the Expand/Collapse button for the
idsContactID field group to see the Sales Invoice Number and Invoice and Sales Dates.
You can further drill down into the line items by expanding the Expand/Collapse
button for the idsInvoiceNumber to see the remaining fields in the page. It should
look similar to the one shown in Figure 31-21.

1003Chapter 31 ✦ Building and Working with Data Access Pages

Figure 31-20: The Caption Section opened with the three labels from
the fields placed inside the section.

Figure 31-21: Three non-updateable tables, showing information by
Contact, then by Invoice, and then by associate line items.

1004 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Looking at the data access page in Figure 31-21, you see it is sitting on Contact
record number 17. Looking further, you can see that there are two line item records
(inner group) for the first of four Sales records for the Contact named Karl Johnson.

At this point, you may want to make both grouping levels remain expanded at all
times. To accomplish this, you need to set the ExpandedByDefault property of
the Group Level to True. Follow these steps to set each group level to expand
automatically:

1. Switch to Design View by clicking the View button.

2. View the Group Properties for the idsContactID section by right-clicking in the
Header: or the group itself and selecting the Group Level Properties.

3. In the Properties box for the Section with the text box idsContactID, change
the ExpandedByDefault property in the Properties dialog box to True.

4. View the Group Properties for the idsInvoiceNumber section by right-clicking
in the Header: or the group itself and selecting the Group Level Properties.

5. In the Properties box for the Section with the text box idsInvoiceNumber,
change the ExpandedByDefault property in the Properties dialog box to True.

6. Switch to Page View by clicking the View button.

Now the grouping sections will remain open as you move level to level through the
pages.

You now have a data access page based on tblContacts, tblSales, and tblSalesLineItems
grouped by Customer ID and Invoice Number. Notice that you can’t update any data
in any of the groups, as shown in Figure 31-21. This inability to update data is visibly
apparent by the disabled New, Delete, Save, and Undo buttons on the Navigation bar.

To allow updates to the data in the Line Items fields of the group, you must set the
UniqueTable property of the Section to the tblSalesLineItems table. To set the
UniqueTable to tblSalesLineItems, follow these steps:

1. Switch to Design View by clicking the View button.

2. View the Sections Properties for the Header: tblSalesLineItems section (inner
grouping). A quick way to open the Properties dialog box with this section
active is to double-click the Header section.

3. In the Properties box for the Section HeadertblSalesLineItems, select the
Data tab.

4. Select tblSalesLineItems from the UniqueTable property combo box, as shown
in Figure 31-22.

5. Switch to Page View.

1005Chapter 31 ✦ Building and Working with Data Access Pages

Figure 31-22: Selecting the tblSalesLineItems
table for the UniqueTable property of the
data access page.

If you wish, you can abandon or save this page to any filename you wish. It will not
be used any more in this chapter.

Working with grouped data access pages in Design view
You can also create a grouped data access page in Design view.

Access has several enhancements to creating grouped pages. These features
include Lightweight Headers, automatic indenting, drop zones (used to easily cre-
ate a new grouping), and selecting multiple objects in Design view (with IE 5.5 or
later installed). These are covered in this section and the next.

Creating a Grouped Data Access Page manually
To manually create a grouped page of Contacts and Sales with two groups, follow
these steps:

1. From the Pages object in the Database Window, click the New button.

2. In the New Data Access Page dialog box, accept the default of Design View
and click OK.

If you haven’t turned off the warning dialog box, Access displays a message
telling you that the page created can’t be changed in Access 2000 or 2002.
However, if you have loaded Microsoft Office 2003 Web Components, you are
capable of viewing and working with it in Access 2000 or 2002.

3. If the field list is not open, open it by clicking the Field List button.

4. From the field list, expand the tblContacts table.

New
Feature

1006 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

5. Highlight and select the idsContactID, chrFirstName, and chrLastName fields
and drag them to the design grid on the new data access page.

Access displays the Layout Wizard and asks how you want the fields to be dis-
played in the section.

If the Layout Wizard does not activate, open the Toolbox and select the Control
Wizards button at the top of the box.

6. Select the default value of Columnar for the layout type and click OK.

Access puts the three fields on the page and names the section Header:
tblContacts, as shown in the center left of Figure 31-23. Notice that the labels
and text boxes are a set size.

7. Drag the chrContactType field to the page. As it moves into the page, a new
section called Create New Section above tblContacts appears. Drop the
chrContactType field in this new section. It receives a bright highlighted
border as you move the chrContactType field into it.

Figure 31-23 shows the new section header appearing where you drop the
Type of Customer Field. This is called a drop zone. After you drop the field,
Access automatically creates a new group based on the chrContactType
(Contact Type).

Figure 31-23: The new section header Create New Section above tblContacts
is visible as the chrContactType field is dragged onto the work surface of the
page.

Note

1007Chapter 31 ✦ Building and Working with Data Access Pages

8. Now you can remove the section at the top that says Click Here and Type Title
Text. To remove it, click anywhere on the grayed text.

9. Press the Delete key three times to remove this section.

10. Go to the section with the customer fields (Header: tblContacts), rearrange
the fields by moving them up, and then resize the labels to make them fully
readable. Then resize the section so that only a little white space remains after
the last field. Figure 31-24 shows how the screen may look after it is fixed.

Figure 31-24: The new section header for Contact Type is visible,
the section labeled Header: tblContacts has been resized, and the
fields have been moved around.

Notice in Figure 31-24 that the groups are automatically indented by Access
when it creates them.

11. Click the View button (datasheet icon on left) to see how the page looks so far.

Viewing the data access page, all three Types of Contact records are visible
with an Expand/Collapse button to the left of them. When creating a grouping
page in this manner, the default value for the DataPageSize property is 10.
This means that the grouping shows 10 records at a time.

If you click on the Expand/Collapse button of the first Type of Customer, you
see that it displays the first 10 (of 46) records for the next group as well. These
can be changed later. Figure 31-25 shows the first several records where the
Type of Contact is “both.”

1008 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 31-25: The new page with the first Type of Contact section
expanded and showing several Contact records for the Type of
Contact being “both.”

Notice that, in Figure 31-25, you can update the fields in the tblContacts table
section (not the Type of Contact or the Contact ID, but the other two fields).
Access automatically updates the Section Header: tblContacts’s UniqueTable
property with the tblContacts table name. To verify this, while in Design View,
double-click on the Header: tblContacts table section to activate the property
sheet and display all the properties for Section: HeadertblContacts. Then
select the Data tab, and the value tblContacts is placed in the UniqueTable
text box.

12. Return to Design View by clicking the View button again if you haven’t
returned.

Now you can add the Sales table below the tblContacts group. If the Property
sheet is active, close it.

13. Returning to the Field List, expand the Related Tables option under the
tblContacts table. Then expand the Sales table under this option.

14. Select and drag the fields idsInvoiceNumber, dtmSaleDate, and dtmInvoiceDate
on the new drop zone that appears at the bottom of the Header: tblContacts
section (right above the Navigation bar for the tblContacts section). Figure 31-26
shows the new drop zone named Create New Section below tblContactgs.
When this new drop zone becomes visible, drop the fields on the left-most
side of the new section.

1009Chapter 31 ✦ Building and Working with Data Access Pages

Access displays the Layout Wizard and asks how you want the fields to be dis-
played in the section.

15. Select the Tabular radio button and click OK.

Access automatically creates a Caption section and a Header section, putting
the titles for each field in the Caption section and the three fields in tabular
fashion under the field titles. The field names and titles section may need to
be resized at this point.

Figure 31-26: Another new drop zone below the tblContacts Section.
This is where you drop the tblSales table fields. Notice that the multi-
field pointer is on the left-most side of the drop zone.

At this point you can change the Group Level Property ExpandedByDefault to
true for both groups, or leave it as is.

16. Switch to Page view to examine the data access page.

If you expanded both the chrContactType (1) and the idsContactID groups,
your screen should look similar to the one shown in Figure 31-27. Notice that
the page has been scrolled down to Contact Type: Buyer.

As Figure 31-27 shows, each group level is indented approximately 1⁄2 inch from
its higher group. Access does this automatically when you create the page.

1010 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 31-27: A data access page with three groups shown. The first
two groups have been expanded.

Notice that the fields in the Sales table area (Invoice Number, Sale Date,
and Invoice Date) are also updateable by default. This also indicates that
the UniqueTable property for this section has been set to the tblSales table
automatically.

Design Features Enabled by Internet Explorer 5.5
or Later

If you have installed Internet Explorer 5.5 or later in Access, several features have been added
to the design surface of data access pages. The most important one is the ability to select
multiple objects while in Design view. Access 2000 DAPs didn’t allow you to select multiple
controls to move, size, or apply common property settings. In Access 2003, you can select
multiple controls and move them or resize them simultaneously. You can even activate the
Property sheet, and if you select multiple controls, a Multiple Selection section appears,
allowing you to change many format, data, and other properties universally to all the controls
selected.

In addition, IE 5.5 or later has eliminated the alignment and sizing toolbar controls and has
added them to the Format menu of the Page Design. If you use IE 5.0, in Access 2002 or
2003, the alignment and sizing work the same as in Access 2000 — using the alignment and
sizing toolbar to align or size individually selected controls.

1011Chapter 31 ✦ Building and Working with Data Access Pages

Before continuing, you should save this data access page and name it Contacts and
Sales Grouped.

Creating a grouped page by promoting a field
You can also create a grouped page by promoting a field in an existing group. For
instance, you can create a simple data access page of Contacts and promote the
Type of Contact (chrContactType) field in the group to a group above it. To accom-
plish this, follow these steps:

1. Click Create data access page in Design View in the Pages container of the
database window.

2. If the Field List is not active, activate it, and if the Properties dialog box is
active, turn it off.

3. Expand the tblContacts Table.

4. Select the chrContactType, chrFirstName, and chrLastName fields, and drag
them to the design grid on the new data access page.

Access creates a Group titled Header: tblContacts and opens the Layout
Wizard.

5. Accept the default value Columnar and click OK.

6. You may rearrange the fields to make the page more pleasing.

7. Select and right-click the Type of Contact (chrContactType) field in the
Header: tblContacts group.

Access opens a right-click menu.

8. Click the menu choice Promote, as shown in Figure 31-28.

Access moves the field and adds a new group level.

9. Save this page and name it Contacts with Sales Pivot Table.

Access promotes the field Type of Contact to its own group above the remaining
Contact fields. After it’s saved, you can look at the data access page to verify that it
promoted the group Type of Contact correctly. It shows all three Type of Contact
records with an Expand/Collapse button along each one. Clicking this button shows
you the Contact records for each type.

This data access page is used in the next section.

Creating a multi-table page with a pivot table
When working with multiple tables in data access pages, you are not limited to
putting fields from a linked table in their own grouping as you were above with
the tblSales table in Figure 31-27. You can create a simpler page that displays the
tblSales table in a pivot table.

Note

1012 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 31-28: The right mouse menu that’s used to promote a field to a
higher group level.

Pivot tables were first introduced in Access 2000 and offer the ability to place an
entire table or select fields from a table in a pivot table that is similar in appearance
to a datasheet. This pivot table doesn’t have to exist in its own group; rather, it can
exist in the current group. For example, to add the tblSales table to the Contacts
and Sales Pivot Table page that you just created in the previous section, follow
these steps:

1. Open the Contacts and Sales Pivot Table page in Design view, if it isn’t already
open.

2. If the field list is not active, open it.

3. Expand the tblContacts table icon and click the Related Tables icon to expand
it; finally, expand the tblSales table icon.

4. Select the idsInvoiceNumber, dtmSaleDate, dtmInvoiceDate, and
lngzSalespersonID fields of the tblSales table, drag them to the Group Header:
tblContacts section of the page (below the current fields), and drop them.

1013Chapter 31 ✦ Building and Working with Data Access Pages

Access displays the Layout Wizard and asks how you want the fields to be
displayed in the section.

5. Choose the PivotTable radio button and click OK.

Access drops the PivotTable in the group below the Contact fields.

6. Resize the pivot table to fit in the space while showing all the fields.

The page design should now look similar to the one shown in Figure 31-29.

Figure 31-29: A pivot table that has been added to an existing group.

7. Switch to Page view to examine the data access page.

8. While in Page view, click the Expand button of the Type of Contact to see the
tblContacts fields and tblSales fields (which are in the pivot table).

The page should now look similar to the one shown in Figure 31-30. Notice
that both the Contact fields in the group and the Sales fields in the pivot table
are all editable.

9. Save your data access page.

1014 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 31-30: A Page view with the pivot table that has been added
to an existing group.

Changing some key properties on data access pages
While creating the data access page Contacts and Sales grouped, Access automati-
cally assigns values to several properties. This section discusses those properties
and how to change them.

Working with group level properties
After you start working with more than one table, you probably put fields in different
groups, as in the section “Working with Multiple Tables and Grouped Pages” earlier
in this chapter. You may be interested in changing two properties — DataPageSize
and ExpandedByDefault. The DataPageSize property value is set to 10 in many
instances. This means that you automatically see up to 10 records for each group of
records. The ExpandedByDefault property value is set to False in most instances.
You may want to set it to True in some groups so that you automatically see the
next level without having to expand the control.

To change these properties, you need to activate the Property sheet and show all
the properties related to that group. The property sheet in the Page Design view
is different than the one in the forms or Reports Design view; it is lacking the drop-
down list field (in forms and reports) that lets you select any control object on
the page.

1015Chapter 31 ✦ Building and Working with Data Access Pages

In Access 2000, you could change the properties by clicking on the sorting and
grouping button or select View ➪ Sorting and Grouping in the Page Design View.
After selecting this, you would then select the group whose properties you want to
change. These choices have been eliminated from Access 2002 and 2003. In lieu
of this method, Access has added what are called lightweight headers. These
lightweight headers are designed to work with the changes that have been made
to Office 2003 visuals — they are like a menu of choices for each header section.
The properties of each section are more discoverable. To get to the properties of
any section, you can right-click on the header or click on the drop-down arrow in
the header as shown in Figure 31-31.

Figure 31-31: A new lightweight header in Page Design view.

As Figure 31-31 shows, the lightweight header has five choices — four are toggle
switch types (caption, header, footer, and record navigation), and the fifth is the
Show the Group Level Properties.

Figure 31-31 also shows that both the Header section and the Record Navigation
section are active (check marked on). If you click-off the Record Navigation section,
the corresponding Navigation control section is removed from the data access page.

Turning on the Caption section creates a new area for the group titled Caption, as in
the Caption area for Sales in Figure 31-27, shown earlier in the chapter.

New
Feature

1016 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Turning on the Footer section also creates a new area for the group just above the
Navigation section, titled Footer.

If you uncheck the Header section to deactivate it, Access removes the entire sec-
tion and all corresponding sections for that group — Caption, Footer, and Record
Navigator.

Using the lightweight header menu, you can access the properties of the Group
Level. For instance, you may want to access the Group Level properties for the
Contact Type Group, in the Contacts and Sales grouped DAP, to change the
ExpandedByDefault value to True and the DataPageSize property to 1. To accom-
plish this, follow these steps:

1. Open the Contacts and Sales grouped data access page in Design View.

2. Click the down arrow of the Contact Type Header bar (tblContacts-
chrContactType) to activate the Lightweight Headers (or right-click it).

3. Select Group Level Properties from the menu.

Access opens the property sheet (if it is closed) and displays all the proper-
ties for the Group Level tblContacts.

4. Select the DataPageSize property in the property box and set to 1.

5. Select the ExpandedByDefault property and select True.

6. Switch to Page view to examine the data access page.

While in Page view, you can see that the Contact Type group is automatically
expanded, showing the next group level (Contact information) — this is
because ExpandedByDefault has been set to True.

7. Click on the Expand/Collapse button of the Contact Type to close the Customer
records.

Access is only showing one Contact Type group — this is because DataPageSize
has been reset to 1.

8. Switch to Page view to examine the data access page.

9. Click the down arrow of the tblContacts Header bar to activate the
Lightweight Headers (or right-click it).

10. Select Group Level Properties from the menu for this heading.

11. Select the DataPageSize property in the property box and set to 1.

12. Select the ExpandedByDefault property and also select True.

13. Switch to Page view to examine the data access page with both
Expand/Collapse controls set to True.

Caution

1017Chapter 31 ✦ Building and Working with Data Access Pages

While in Page view, you can see that the Contact Type group and the
tblContacts group are automatically expanded showing the next group level
(Sales information) — this is because ExpandedByDefault has been set to
True for both. The data access page should look similar to the one shown
in Figure 31-32.

Figure 31-32: A three-group page in Page View with the
ExpandByDefault and DataPageSize set.

14. Save your data access page.

Another Group level property, RecordSelector, lets you display a record selector
when you have more than one record present on the page — when the DataPageSize
property is set to a number greater than 1. The default value for this property is
False. For example, you may want to display a record selector for the Sales table
group in the same page you just worked with. To put a Record Selector alongside
each record in the Sales Group (tblSales), follow these steps:

1. Open the Contacts and Sales grouped data access page in Design mode.

2. Click the down arrow of the tblSales Header bar to activate the lightweight
headers (or right-click it).

3. Select Group Level Properties from the menu.

Access opens the property sheet (if it is closed) and displays all the properties
for the Group Level tblSales.

1018 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

4. Select the RecordSelector property in the property box and set it to True.
(It should be the last property of the GroupLevel: tblSales.)

5. Switch to page view to examine the data access page with a record selector
alongside of each Sales record in the tblSales Group Section.

The new data access page should now look similar to the one shown in
Figure 31-33.

6. Save your page.

Figure 31-33: A three-group page in Page View with the
RecordSelector set on the Sales records.

The DAP in Figure 31-33 shows record selectors alongside each record of the Sales
table (in this case, four records). The mouse pointer is pointing to the first record
selector. The user can quickly move to any record in the set by clicking the selector.

Changing the title of a page
Examining Figure 31-33, you see that the title of the DAP is currently Page1. You can
change this by opening the Property sheet and following these steps:

1. Open the Contacts and Sales grouped data access page in Design mode.

2. Open the Property sheet and then click on the title bar of the DAP.

3. Select Other tab in the property sheet Page: Page1.

Access opens the Other section of the property sheet.

1019Chapter 31 ✦ Building and Working with Data Access Pages

4. Select the Title property in the property box and set the value to Contacts and
Sales Grouped. (It should be the second-to-last property of the Page: Page1.)

5. Switch to page view to examine the data access page with the new title in the
title bar.

6. Save your page.

Changing the absolute path property of a page
If you have not turned the warning off, every time you save a data access page,
Access pops up a warning box like the one shown in Figure 31-34.

Figure 31-34: The Warning box that appears
when saving a DAP.

As you can see in Figure 31-34, Access informs you that the connection string for
the page is an absolute page (hard-coded to a specific drive and directory). When
using this on a network, or when you copy the database and files, you need to let
Access know where the database is moved. In a network environment, you need to
change the connection string to specify a network path, called a Universal Naming
Convention (UNC) path.

To change the absolute path for the data source of a data access page, you need
to change the ConnectionString property of the page. To change the path for the
Contacts with Sales Pivot Table page, follow these steps:

1. Open the Contacts with Sales Pivot Table page in Design view.

2. If the property sheet is not open, open it.

3. Click one time on the title bar of the Page window or in the white area above
the top group.

The Property sheet informs you that it is displaying the properties for the
Page by the title, which has changed to Page: Contacts with Sales Pivot Table.

4. In the Data tab section, move the cursor to the ConnectionString property text
box (second one from the top).

5. While the cursor is in the ConnectionString text box, press the Shift-F2 key
combination to activate the Zoom window.

The Zoom window appears with the entire connect string highlighted.

1020 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

6. In the Zoom window, move the cursor to the right side of the first line where it
says “Data Source=”, positioning it just after the equals sign.

7. Select and remove the drive and path information all the way up to the name of
the database (CHAP31Start.mdb) as shown in Figure 31-35. After the physical
path is highlighted, simply press Delete to remove it.

Figure 31-35: The Zoom window with the cursor moved
to the insertion point to correct the data source of this
database and the physical path highlighted to be removed.

8. Click OK to save the changes and return to the property sheet.

9. Save your page.

With the absolute page reference gone, you can now use this database on a network
drive and simply refer to the database as you do for other files in the network.

There is one other side issue — moving the database. If you move the database and
the underlying HTML file, you also need to change the hard-coded path of where to
find the HTML file from the page object in the Access Pages container. Follow these
steps to remove the hard-coded path from the properties of the page object:

1. Select the Pages button of the database and then select (highlight) the
Contacts with Sales Pivot Table object name.

2. Select View ➪ Properties from the menu or right-click and select Properties
from the right-mouse button menu.

Access opens the Objects Property sheet for the page object Contacts with
Sales Pivot Table. It should look similar to the one shown in Figure 31-36.

3. Click in the Path: text box.

4. Remove the path reference to the HTML filename, leaving only the HTML
filename in the Path text box.

1021Chapter 31 ✦ Building and Working with Data Access Pages

5. After you have removed the drive and path name, click on the Apply Button to
store the filename without a path.

6. Click OK to save the newly set properties.

Figure 31-36: The Object property sheet for objects in a database.

With the path removed from the page object reference, the database and its associ-
ated HTML files can be moved to any drive or directory and will run as expected.

Changing properties of the Expand/Collapse control

In Access 2000, the Expand/Collapse control was an ActiveX control. It has been
changed to HTML code using graphic files in Access 2002 and 2003. It has several
new properties that you can work with to change the physical appearance of the
control.

Under the Format tab of the Control object (Expand/Collapse) property sheet, you
can change the Cursor property to 25 different values — the default is a pointing
hand. This property controls what is displayed when the user moves the cursor
over the control. Also of interest is the Display property, which has seven different
values — the default is inline. If you change this property, it controls how the con-
trol displays; for instance, if you select block, the control is displayed in an outlined
solid block.

Under the Other tab, the Src property can be set to change the appearance, or pic-
ture, as displayed by the Expand/Collapse control. You have six choices — the
default is a Black Plus/Minus sign. You can select a black arrow to have it show a
right-pointing arrow when collapsed and a down-pointing arrow when expanded.

New
Feature

1022 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Changing properties of the Navigation control

In Access 2000, the Navigation control was also an ActiveX control, and you were
limited to the functionality of the ActiveX control. In Access 2002 and 2003, the
Navigation control is an HTML table with styles and images associated with all the
buttons. This feature lets you customize the images and formatting of the buttons.
Also, by using HTML code instead of an ActiveX control, it loads faster and requires
fewer resources to operate.

Figure 31-37 shows the Navigation control bar for data access pages.

Figure 31-37: The Navigation control for DAPs.

The look of the Control and all the buttons on the Control are built based on HTML
styles. These styles are implemented as classes in the page’s <STYLE> tag. Because
they are based on styles, you can easily change the look of the Navigation control.

Removing buttons from the Navigation bar
Using HTML code makes it a simple matter to remove buttons on the navigation
control. For instance, to remove the new, delete, save, undo, filters, sort, and help
buttons from the tblContacts - chrContactType Navigation bar of the Contacts and
Sales grouped page, follow these steps:

1. Open the Contacts and Sales group page in Design view.

2. Move to the bottom of the page in Design view to show the Navigation bar for
tblContacts - chrContactType.

3. If you have IE 5.5 or later loaded on your machine, select all the buttons from
the New button through the Help button, as shown in Figure 31-38. If you don’t
have IE 5.5 or later on your machine, you must select each one independently
(repeating Steps 3 and 4 until they are all gone).

4. Press Delete to remove all the buttons at one time. If you don’t have IE 5.5 or
later on your machine, you must repeat Steps 3 and 4 until all the buttons are
removed. At this point, the Navigation bar should look similar to the one
shown in Figure 31-39.

5. With the buttons removed, you can now resize the Navigation bar by selecting
the right side and moving it inward (toward the left) until it is resized to what
you like.

6. Save your work.

New
Feature

1023Chapter 31 ✦ Building and Working with Data Access Pages

Figure 31-38: Selecting multiple Navigation bar buttons to delete
them.

Figure 31-39: The Navigation bar with several buttons deleted.

Changing images on a button of the navigation bar
To change the image of any control on the Navigation bar, you simply follow these
general steps:

1. With the data access page in Design view, click After on the Navigation control.

2. Click the image that you want to change.

3. View the property sheet and select the Other tab.

4. Replace the Src property with the path to the new image. It can be a file path
or HTTP address.

Specifying default settings for new DAPs
When you add a Caption section to a header, the default background color of the
Caption is set to blue, as in the Caption section of the Pets table shown in Figure
31-31 earlier in the chapter. This enables the user to visually see a contrast between
the sections.

1024 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

When you right-click to add multiple fields to the header section after adding a
Caption, the labels are automatically added to the Caption section (that is, if the
control wizards are enabled and you choose Tabular from the Layout Wizard, as
you did previously in the chapter with the Pets table in the Customer and Pets
Grouped page).

If you add a footer section to a header, the footer section puts a 1-point blue line
across the top border.

When you create a new section, Access automatically indents the section a specific
amount.

If you have multiple records displayed in a group — such as when the DataPageSize
property is set to a number greater than 1, the alternating rows display a different
color — for contrast.

All of these actions are controlled by the default page format properties of Access.
Figure 31-40 shows the new options that you can set for data access pages. To
access these options, simply select Tools ➪ Options from the menu and select the
Pages tab.

Figure 31-40: The default page format properties
of Access.

As Figure 31-40 shows, you can change the default values of four properties —
Section Indent, Alternate Row Color, Caption Section Style, and Footer Section Style.

1025Chapter 31 ✦ Building and Working with Data Access Pages

Working with the Data Outline in Page Design view
Access has a data outline graphical tool for data access pages. The Data Outline
displays a tree-like view of the data model of a data access page. Figure 31-41 shows
the Data Outline window open with the data model of the Contacts and Sales grouped
data access page.

Figure 31-41: The data outline of a data access page.

As Figure 31-41 shows, the Data Outline window displays a tree view of the data
model of the data access page. It shows the record sources, fields, and any calcu-
lated controls on the page. As you click on any object in the data model, it is auto-
matically selected in the Design window.

You can use the data outline to review the structure of a page.

To activate the Data Outline tool, simply select View ➪ Data Outline from the Page
Design view menu or click the Data Outline button.

Saving other Access objects as data access pages
You can convert any table, query, view, form, and report to a data access page. To
do this, you simply need to select an object and save it as a data access page. The
type of page that is created depends on the type of object being saved.

1026 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

When you save an object to a data access page, Access uses XML Transform inter-
nally to create the data access page. This Transform, actually a Style sheet (named
ReportML2DAP.xsl) containing XML code, is used to convert the objects into a data
access page. However, this is not visible to the user.

To save any of these objects as a data access page, you simply follow these general
steps:

1. Select the object you want to create a data access page from in the database.

2. After you select it, choose File ➪ Save As (or right-click and select Save As . . .)
from the menu.

Access opens the Save As dialog box and puts a default name of “Copy of
[Object Name]” in the text box, as shown in Figure 31-42.

Figure 31-42: The Save As dialog box
is used to save any object to a data access
page; in this case, it is saving a table.

3. Either accept the default Save to filename or enter a new name to save the
data access page to.

4. Select Data Access Page in the AS: drop-down list box.

5. Click OK.

Access opens the New Data Access Page dialog box and puts the default name
in the text box.

6. Click OK to save the new Web page.

That is all there is to creating a DAP from any database object.

You need to be aware of some other issues when saving certain types of Access
objects to a data access page. These issues are covered in the following sections.

Converting a table, query, or view to a data access page
When saving a table, query, or view to a data access page, the new page contains all
the fields from the table in a tabular layout. The fields are outlined, record selectors
are enabled, and the page size is set to display 10 records at a time.

The resulting DAP appears similar to a table datasheet. Figure 31-43 shows a data
access page created from the tblContacts table.

1027Chapter 31 ✦ Building and Working with Data Access Pages

Figure 31-43: A data access page created from a table.

The data access page created in Figure 31-43 is updateable, as you can see from the
active New and Delete buttons on the Navigation bar.

If the Default view of your object is set to PivotTable or PivotChart view, the page
created contains the PivotTable or PivotChart representation of the object instead.

Converting a form to a data access page
When saving a form to a data access page, the new page contains most of the fields
from the underlying table or query.

When converting a form to a DAP, the following objects are either ignored or
changed, as follows:

✦ Any bound or unbound object frames are not supported and will not be
converted — they are simply ignored.

✦ Toggle buttons and tab controls are not supported and will not be
converted — they are simply ignored.

✦ Any diagonal lines will be converted to horizontal lines on the new data
access page.

✦ Any subform in a form will not be converted to a data access page.

✦ Any value lists used as row sources will be placed as an unbound list type
when converted.

✦ If a list box or combo box uses multiple columns as its data source and dis-
play, only the first visible column of the original control will be converted.

✦ Controls placed in the header section will be placed in unbound controls in
the caption section of the outermost group level (top level).

Caution

1028 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

✦ Controls placed in the footer section will be placed in unbound controls in the
navigation section of the outermost group level (top level).

✦ Pictures in a form are converted to bitmaps and placed in a folder below the
current location that is named “Images.” These are not pictures in bound
object frames — only those that are image types in forms.

✦ Expressions that refer to the properties of a form or subform are ignored.

✦ Any code that would not run in a data access page is imported into the page
as a comment block at the end of the document. Any code behind the form or
control events is not converted to a data access page.

✦ Hyperlinks associated with a label or command button control are not con-
verted over to the data access page. They will not be active when the form is
converted to a page.

✦ If the form contains ActiveX controls, only those controls that support the
IpersistPropertyBag interface are implemented in the page.

Creating a DAP from a form with the default view of Single Form
Most forms have the Default View property set to Single Form. If you create a page
from a form that has this value, the new data access page looks similar to the form
you are creating it from. The fields and text are placed in the same relative position
on the new Web document as they were in the form.

For example, follow these steps to create a data access page from the Pets table:

1. Open the form frmContactsAll from the Form container of the database.

The frmContactsAll form should look similar to the one shown in Figure 31-44.

Figure 31-44: The frmContactsAll form has multiple pull-down combo
boxes.

1029Chapter 31 ✦ Building and Working with Data Access Pages

2. With the form still open, select File ➪ Save As . . . from the menu.

Access opens the Save As dialog box and puts a default name of
“frmContactsAll” in the text box.

3. Accept the default “frmContactsAll” name and select Data Access Page in the
AS: drop-down list box.

4. Click OK.

Access opens the New Data Access Page dialog box and puts the default name
in the text box.

5. Click OK to save the new Web page.

Access attempts to create the new frmContactsAll data access form, and if there
are no errors, it then opens it for you to examine. In this case, Access encountered
errors and displays a message box that says “Microsoft Access is unable to
create the data access page,” as shown in Figure 31-45. The problem is that the
drop-down combo boxes and the Tax Rate field use a lookup function
(=Format([cboTaxLocation].[Column](1),”Percent”)).

Figure 31-45: A message box reporting the form can’t
be converted to a DAP.

These combo boxes need to be converted to text boxes before you can create a
data access page. To change the combo boxes to text boxes, follow these steps:

1. Click on the View button to go into the Design View with the frmContactsAll
form.

2. With the form in Design view, you need to select any one of the four combo
box fields — chrContactType, chrCustomerType, chrCreditStatus, and
chrTaxLocation.

Although you can select all four simultaneously by holding the shift key and
selecting each one, you will not be able to convert all of them at the same time.
You must select one field at a time.

3. With one of the four fields selected, right-click to activate the menu and select
Change To >> Text Box.

Access immediately changes the combo box to a text box.

1030 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

4. Repeat Steps 2 and 3 until you have converted all four fields.

Access opens the New Data Access Page dialog box and puts the default name
in the text box.

5. Click on the txtTaxRate field (labeled Tax Rate:) and press the delete key to
remove it.

6. Click OK to save the changed form.

With the four fields changed to Text Boxes and the Tax Rate field removed, you can
now save the form as a DAP. When it is saved as a DAP, it should look similar to the
one shown in Figure 31-46.

Figure 31-46: A new data access page created from the frmContactsAll form.

All of the other fields are on the page in the same relative positioning as the original
frmContactAll form. It even has a Navigation control and a record selected bar
added to the data access page.

Creating a DAP from a form with the default view of datasheet
If the form you are converting has the Default View property set to Datasheet, the
resulting Datasheet is also a datasheet-like view. The data access page is very simi-
lar to the ones you created by saving a table or query.

1031Chapter 31 ✦ Building and Working with Data Access Pages

For example, if you save the frmSubCustomer&Sales form to a data access page, the
new page looks like the one shown in Figure 31-47. Because the form’s Default View
is set to Datasheet, the page created is also similar to a datasheet.

Figure 31-47: A new data access page created from the
frmSubCustomer&Sales form.

Creating a DAP from a form with the default view of continuous forms
If the form that you are converting has the Default View property set to Continuous
Forms, the resulting Datasheet has the page size property set to All and the naviga-
tion control is present but not used for First Record, Previous, Next, or Last.
However, the Navigation control is still present if the record selector is on in the
form. If present, the buttons available are Add, Delete, Sort, Filter, and Help. For
example, if you save the form frmContactsSimple to a data access page, they both
look similar to those shown in Figure 31-48.

As Figure 31-48 shows, the Form (top left corner) has the navigational bar visible
with the ability to step through the individual form pages. In contrast, the data
access page (bottom right corner) created from this form, shows all 58 forms con-
tinuously, and at the bottom (not visible in the figure) the navigation bar has several
buttons deactivated.

Creating a DAP from a form with the default view of PivotTable or PivotChart
If the form that you are converting has the Default View property set to PivotTable
or PivotChart view, the resulting Datasheet uses the appropriate ActiveX control to
represent the component.

1032 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 31-48: A continuous form, frmContactsSimple, saved as a page.

Creating a DAP from a form with a subform
If the form that you are converting has a subform in it, such as the frmCustomer&Sales
form shown in Figure 31-49, the subform is not converted.

Figure 31-49: A form with a subform to be saved as a data access
page.

1033Chapter 31 ✦ Building and Working with Data Access Pages

When you convert this form to a data access page, the resulting page looks like the
one in Figure 31-50. Notice that none of the Sales information from the subform was
brought over to the page from the original form in Figure 31-49.

Figure 31-50: A page converted from a form with a subform.

Converting a report to a data access page
Reports in Access databases (both *.mdb and *.adp) can be saved as data access
pages. The same objects that are ignored or changed in forms are ignored or
changed in data access pages.

See the section titled “Converting a form to a data access page” earlier in this
chapter.

Unlike forms, a report is not interactive: Data in reports is saved as text boxes in
data access pages with a style and appearance similar to what appears on the
report.

Because reports only have two views, they are simpler to work with as compared to
forms. However, reports support subreports, groupings, multiple columns, multiple
headers and footers, ActiveX controls, and many summary functions. Understanding
how a report is converted to a DAP is important.

Cross-
Reference

1034 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Creating a DAP from a report with multiple columns
When you convert a report that contains multiple columns to a data access page,
the resulting page is a single column wide.

Creating a DAP from a report with groupings
A report can have up to 10 levels of groupings in Access. When you convert a report
that contains groupings to a data access page, each level of groupings is applied to
a different level in the data access page.

Looking at the report rptProducts First 5 Only in Figure 31-51, you see that one page
is displayed at a time.

Figure 31-51: A report with groupings.

The DAP created from the report in Figure 31-1 does not display the same as the
report. It has added an Expand/Collapse control to the innermost level with the
vehicle information. Figure 31-52 shows the resulting DAP from the report. There
are five records shown, each having an Expand/Collapse control.

It also has added a navigation bar for this level. You can expand the level to see the
product information, which makes the data access page more functional. The DAP
has eliminated the page footer formulas for the date on which the report was printed
and the page numbers. You can go into Design view and modify the page to correct
these problems.

1035Chapter 31 ✦ Building and Working with Data Access Pages

Figure 31-52: The DAP from a report with grouping.

You can get unexpected results when converting multiple grouped reports to data
access pages.

The resulting data access page has two titles for Products and the grouping title
has been made Product Information. Also notice that none of the fields are linked to
the text boxes in the Caption section of the Header Group Level 0. You can change
these in Design View of the DAP.

Creating a DAP from a report with subreports
Like forms with subforms, if you convert a report with a subreport to a data access
page, the subreport is not included in the page.

✦ ✦ ✦

Caution

XML, Access,
and InfoPath

In this chapter, you work with XML inside Access. After
completing this chapter, you should have a working knowl-

edge of XML and how Access utilizes its power.

This chapter will use the database named CHAP32Start.
mdb. It also uses several other files for importing that are
included with the database (NewCustomersANDSales.xml,
New Customers AND Student TWO FILES.xml, Binding-
ReadingPrograms.html, Products.xml, and Products.xsd). If
you have not already copied them onto your machine from
the CD, you will need to do so now. When you have com-
pleted this chapter, your database should resemble the
one in CHAP32End.mdb

XML Data and Access
Office 2003 has added system-wide support for eXtensible
Markup Language (XML). It is one of the biggest changes
offered in this version of Office. The biggest winners for
enhancements are Excel and Word; however, Access has also
added more support for XML data than in previous releases.
Using Access, you can include XML in several ways:

✦ Use the built-in tools to import and export XML data
(started in Access 2002), including related tables (new
in 2003 release).

✦ Import XML files and information from SharePoint Team
Services (also in XML format) directly to Access tables.

✦ Export XML forms and reports using an XML-based lan-
guage called ReportML. It is also used to create HTML
and DAP files.

✦ Link an HTML page to an XML data file by taking the
page offline in Internet Explorer 5.x or later.

On the
CD-ROM

3232C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding and
working with XML

Creating an
XML document

Creating an HTML
document to read
XML files

Exporting an Access
object to an XML
document

Importing an existing
XML document
into Access

✦ ✦ ✦ ✦

1038 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

✦ Set Data Access Page properties inside Access to allow the page to bind to an
external XML data file.

✦ Embed the XML data directly inside the page by setting page properties.

Using XML in Access, data from almost any external application can be transformed
for use by Access.

Using Access, you can import and export XML data, including related tables.

Import XML data into Access (Jet, SQL Server or SQL Server Desktop Engine —
formally known as MSDE) if it was a previously generated XSD file from Access.
This gives you the data typing, relationships, keys, and indices.

Export Access objects (tables, queries, views, datasheets, forms, or reports) to
XML data (as an XML file) and associated schema (as an XSD file). It can export
to Jet, SQL Server, or SQL Server Desktop Engine databases. You can also export
reports as XML/XSD with presentation, which creates the data, and XSL that for-
mats the data, and an ASP or HTML wrapper to view the data/report in a browser
capable of using XML. You can bind the exported report to an SQLS database and
view live Access reports in the browser.

Using eXtensible Stylesheet Language Transformation (XSLT) files, you can even
convert data into an Access data format.

Understanding XML
XML is the standards-based language protocol for describing and delivering data
across the Web to a browser, just as HTML (HyperText Markup Language) code is
the standard language for creating and displaying Web pages with graphics and text
in them. The best part of XML in Access is that you can work with XML without ever
writing a single line of XML code. However, knowing the basics of XML can help you
visualize how it will help you in a business.

HTML describes how a Web page should look; in contrast, XML defines the data and
describes how the data should be structured. XML separates the data from the pre-
sentation so that the same XML data can be presented in multiple ways by using
different presentation methods. XML, like HTML, uses tags and attributes. However,
XML uses these tags only to delimit pieces of data, leaving the interpretation of the
data up to the application that receives and reads it.

By using XML, it is possible to use and move data across the Internet or intranet
between dissimilar applications and systems. The XML protocol specifies the
guidelines, rules, and formal conventions to be used for designing data formats
and structures. By following these recommendations, the data files produced can

New
Feature

1039Chapter 32 ✦ XML, Access, and InfoPath

be easily created and read by different computer systems. XML data structures are
self-describing; thus, any platform that can interpret XML can use and display the
data they contain.

XML and Internet Glossary

The many new terms associated with XML and the Internet can be confusing. Here are some
of the basic XML terms you will see in this chapter and others on XML:

✦ CSS (Cascading Style Sheet) is a collection of formatting instructions to control the
display of a document. Generally, they are stored separately from the data, but can
be in the same document as the data.

✦ DTD (Document Type Definition) is a set of rules that store element names and
attributes. It defines how these can be combined and in which order they will be
applied.

✦ Element is any tag — the start and stop identifiers of an item defined in an XML
document.

✦ HTML (HyperText Markup Language) is a set of rules that specify how a Web
page is created and displayed.

✦ Open (Open Standard) is a technology that has been adapted for use and develop-
ment by the public, without the need for paying licensing fees. It is owned by no
single organization or company. This is in contrast to proprietary standards owned
by a specific company or organization.

✦ SGML (Standard Generalization Markup Language) is a set of rules that specify
how a Web document is created and displayed.

✦ W3C (World Wide Web Consortium) is an organization that creates standards for
the Web. Its sole purpose is to create new technologies and standards for the Web.

✦ XHTML (eXtensible HyperText Markup Language) extends the use of
traditional HTML.

✦ XML (eXtensible Markup Language) is a data interchange format. XML data
is also referred to as XML document, the .xml file that contains the raw XML data,
stored independently of how it is presented.

✦ XML schema is the document that defines the content, entities, and elements
allowed in an XML document.

✦ XSD (XML schema definition) is the file containing the schema information for an
XML file.

✦ XSL (eXtensible Stylesheet Language) is used to create style sheets that can be
attached to XML documents for presenting data.

✦ XSLT (XLS Transformations) is used to transform the structure of an XML docu-
ment for creating different views.

1040 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

What is XML?
XML was developed by the W3C as a means of specifying an easy-to-use and easy-
to-read standard that allows the exchange of data across different hardware,
database, and other software platforms all over the world.

It is hard to specify a concise definition for XML. It is a specification, a format, and
a standards-based language protocol. It is a subset of the SGML that is designed
for Web documents. In its easiest concept, it is a format used to exchange data
between applications.

Some people call XML a markup language, because that is what its name suggests.
But XML is more than a language of tags. Users do not rely on a specific set of tags;
rather, they can create their own markup language specific to their own data needs.
They can specify rules to create their own tags and style sheets. This is because
each individual tag describes the content and meaning of the data, rather than how
it is formatted or displayed. The following code shows a simple example of an XML
document containing information about new customers:

<NewCustomers>
<NewCustomer>
<CustomerID>DI001</CustomerID>
<CustomerName>Dinbart, Duane</CustomerName>
<CustomerCompany>Dingbats All Around</CustomerCompany>
<CustomerTitle>Sales Representative</CustomerTitle>
</NewCustomer>
<NewCustomer>
<CustomerID>MC001</CustomerID>
<CustomerName>McCormic, Michael</CustomerName>
<CustomerCompany>Tiles R Us</CustomerCompany>
<CustomerTitle>Vice President</CustomerTitle>
</NewCustomer>
</NewCustomers>

As the code in shows, each element has an opening tag and a closing tag (for
example, the Customer ID is enclosed with a beginning <CustomerID> and an
ending </CustomerID> tag). The tagged elements are nested inside other tags:
<CustomerID> and <CustomerName> are nested inside <NewCustomer>,
</NewCustomer> tags. <NewCustomer> is nested in <NewCustomers>.

Working with XML, you use your own class information — <NewCustomer> — that
can be easily converted into an Access database or any other database. Using an
XML schema, you can make the XML data usable in different forms, reports, and
tables.

All the tags in this example are defined by the person creating the XML document.
The example above could have had the tag <NewCustomers> named <MyNewPeople>
or anything else. The critical part is that it has an end tag by the same name. When

1041Chapter 32 ✦ XML, Access, and InfoPath

importing the above file into an Access table, the tags <NewCustomer> and
</NewCustomer> are used to delineate individual records in the table definition
titled NewCustomer. The NewCustomers tag can have more than one table defini-
tion within it. In fact, NewCustomer can also have additional related tables embed-
ded within it.

This is covered in more detail in the section “Creating your own XML Documents,”
later in this chapter.

By separating the data from the function of the data, you can add a new function for
use of that data in another form. Because XML data is stored separately from how it
is displayed, it can be used in a wide variety of formats.

What are XML schemas?
When working with XML, you need to describe the structure of the data in a format
that Web browsers and other XML-enabled programs can recognize. The data needs
some way to let the document that is using it know how to read and apply the data
inside the document. The XML schema (*.xsd) is used to create that description.
The XML schema file is a formal specification of the rules for an XML document,
specifying a series of element names, as well as which elements are permissible in
the document and in which combinations. It is a part of the XML standard, known
as the XML Schema standard.

By using a schema, you can verify that any XML document that is used to import
data into or export data from Access to another format contains the defined struc-
ture and specific data requirements needed by Access. After you create a schema,
it can be given to your customers or other users to let them use it to structure any
data they provide to you.

Using XSL to display XML data
XML uses syntax that describes the data in an XML document without describing
how the data should be displayed. eXtensible Stylesheet Language (XSL) is what is
used to actually tell the XML-enabled program how to display the XML data. Using
XSL, you can direct which data should be selected and displayed, and the order of
displaying. It uses a combination of XML-like and HTML tags to create a template
for creating the output.

When Access creates a data access page using the Save As option, it uses an XML
schema file internally and an XSL file named RPT2DAP.xsl to write the data access
page telling the page how to display the data. The contents of that file are shown in
Figure 32-1.

Cross-
Reference

1042 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 32-1: The top-most part of the RPT2DAP.xsl file.

If you open the file in Figure 32-1 and scroll through it, you see many new tags that
are XML specific. After you became familiar with XML, schema, and XSL files, you
can modify this one to add additional functionality to the capabilities of exporting
an Access object to a data access page.

Access also uses an XML schema file, named RPT2HTML4.xsl, for creating HTML
documents based on the W3C HTML 4.x standard.

XSL files do not have to be linked to XML documents for IE 5.x or greater to display
the document correctly.

Using XSLT with XML data
XSLT (eXtensible Stylesheet Language for Transformations) lets you transform XML
documents into a new form. This lets you bring legacy data, stored in proprietary
format, into an XML form and transform it to fit your specific XML standards.

Tip

1043Chapter 32 ✦ XML, Access, and InfoPath

Creating Your Own XML Documents
When you export a table, query, form, or report to XML, Access automatically
creates an XML file and any associated .xsd, .xsl, and .html file you specify.

However, you can create your own XML file (.xml) using any simple text editor. You
do not need to create your own XML documents from scratch, but doing so will give
you a firm understanding of what XML documents actually are.

The process of creating a simple XML document
The code shown in the “What is XML” section shows the contents of a simple XML
document that stores several fields for each customer. This file can be created in
Notepad or any other simple text editor. The XML document NewCustomers.xml is
shown in Figure 32-2.

Figure 32-2: The top-most part of the NewCustomers.xml file.

The NewCustomers.xml document in Figure 32-2 shows a typical single table XML
document. It is simply a listing of tags and data.

To create a simple XML document, you need to follow these general steps:

1. Decide on what type of data you want to put in your XML document — a
customer table, library system, inventory system, cookbook recipes, and
on and on.

2. Decide on the name of the table or tables you want to create.

1044 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

3. Decide on the fields you want to include in each record.

4. Specify a name for the general category (step 1), table (step 2), and fields
(step 3), and use it for tags for each level.

5. Specify the field contents for each record in the XML document.

6. Create your XML document starting with a declaration line specifying that the
document is the type XML. This uses the special tag <?xml version=“x.x”?>.
Currently, the version number is 1.0.

7. Enter the start tags, end tags, and all the contents for your XML document.

8. Save and name your XML document.

Deciding on the tags for an XML document
As the steps show above, you need to decide on what type of XML document you
want to create and then decide on the table name and field names that you want in
the XML document.

As you decide what type of document you want, you can also create the tags names
that will be used for each step of the document at the same time.

For example, you may want to create a system that tracks books read by first through
third graders in a table named SchoolBooks. In this system, you may want to track
the book title, author name, student name, student grade, and date when the stu-
dent read the book. Although this is the only table you want to create, you realize
that the system will probably grow in time, so you want to be able to expand on it
as necessary.

The first tag you will need to create goes at the beginning and end of the XML docu-
ment and will be used to enclose all the other tags in it. Called the root element, this
is the entity that you are describing in your document. You can think of it as an XML
grouping tag. There can only be one root element in each XML document. Perhaps
you want to make this system a reading program system. Therefore, you can use the
names <ReadingProgram> and </ReadingProgram> as the first-level tag names — the
root elements for the XML document.

Next, you create your child nodes inside the root element. These child nodes are the
elements that make up your data. Think of these child nodes (first level of child
nodes inside the root elements) as the tags you will use to name your tables. You
can have more than one child node name or, using the database analogy, table in
each grouping inside the root element of an XML document.

These child nodes will actually describe the contents of your data. Child nodes can
be created inside child nodes. Thus, it is possible to have multiple levels of child
nodes in a single XML document.

1045Chapter 32 ✦ XML, Access, and InfoPath

Assuming you want to create this table and have all these records to be in the same
table, you now need to create a set of child node tags that will be used for the start
and end for each record with a specific table. For instance, you may want to have a
child node called <SchoolBooks>. This child node is the first level of child nodes
under the root element <ReadingProgram>. Just think of this as the name of the
individual table that you are creating. For this exercise, use the tags <SchoolBooks>
and </SchoolBooks>. These tags will be used inside the root element, system-level
(analogy) tags (<ReadingProgram>, </ReadingProgram>).

With the root element tags and the first-level child node tags (table analogy) identi-
fied, you are ready to decide on the tags to use for each field of each record inside
each child node tag. Here you will create another level of child nodes; these child
nodes will specify the database fields in the table. These child tags are actually
nested within other child tags. These tags are used before and after every field of
each record: <BookTitle>, <Author>, <Student>, <Grade>, and <DateRead> will be
the start tags and </BookTitle>, </Author>, </Student>, </Grade>, and </DateRead>
will be the end tags.

The difference between the start and end tag is simply using the slash in front of
the end tag name. The end tag name is the same name you used for your start tag.

Deciding on the data for an XML document
With the tags specified, you are ready to move to the next step. Now you need to
define the contents for each field of each record in the table. Using this information,
you can create a simple XML document, using Notepad, which will hold the records.
For instance, you will want to enter the following four records:

One:

Captain Pajamas, Defender of the Universe
Bruce Whatley
David Johnson
2
2003-07-14

Two:

The Cat in the Hat
Dr. Suess
David Johnson
2
2003-07-20

Tip

1046 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Three:

I ‘ m Not Going to Get Up Today
Dr. Suess
Kyle Stevens
3
2003-07-14

Four:

Julie B. Jones Has a Peep in Her Pocket
Barbara Park
Carmen Wilson
1
2003-08-16

Putting the tags and data together
With the four record contents defined and the structure defined, you are ready to
create the actual XML document. Figure 32-3 shows the skeletal structure of your
XML document.

Figure 32-3: The skeletal structure of the XML document.

Notice in Figure 32-3 that all the tags (root element and child nodes) have already
been placed in the text file and in their correct positions. None of the data has been
entered yet. It is often a good idea to create skeletal structure first for your XML file

1047Chapter 32 ✦ XML, Access, and InfoPath

and then fill in the data after you complete the structure. Notice that the child node
tags <BookTitle>, </BookTitle> and <Author>, </Author> are nested within the child
node tags <SchoolBooks> and </SchoolBooks>. Finally, these child nodes are nested
within the root elements <ReadingProgram> and </ReadingProgram>.

Figure 32-3 shows the first line of the XML document with a special declaration tag
that you must enter for any document to know how to work with your XML file. It is
simply the text <?xml version=“1.0”?>. This tells any program that will use this XML
document that it is using xml version 1.0. As an XML document grows more sophis-
ticated, you can include more information in this declaration. You can specify what
tags are legal in your document and where the style sheet is on the computer.

Now that the skeleton is created, you can add the actual data to each field of each
record by creating a record skeleton for each record and placing the data between
the field tags you have created. Figure 32-4 shows two record skeletons, which are
child nodes (beginning with the <SchoolBooks> tag and ending with the
</SchoolBooks> tag).

Figure 32-4 shows the same XML document with the data added.

Figure 32-4: The completed XML document.

1048 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

As Figure 32-4 shows, the actual XML document is only concerned with the data —
its structure and data contents.

With the XML document now created, your last step is to save it, calling it Reading
Program.xml.

You will use the Reading Program.xml file later when you import an XML table into
Acess, in the section tltled “Importing XML Data.”

Creating a multi-table XML document
Now that you have created a simple, single table XML document, you are ready to
create a more complex XML document — one that contains two or more tables.

A multi-table XML document can import more than one table into Access at the
same time.

When creating a multi-table document, you can create one that has independent
tables or one that is composed of linked tables. Both series of tables are created
the same way.

Again you specify the names of the tables and fields by using child node tags. To
have Access utilize a multi-table XML document for importing, you need to make
sure that all the tables being imported are within the system grouping start and
end tags.

For example, Figure 32-5 shows a multi-table XML document, named
NewCustomersANDSales.xml, displayed in the Microsoft Internet Explorer.
This file is already created for you so that you can examine it more closely.

This is a much more complex, but simple to understand, XML document. It is made
up of more than one table, each embedded within the other. Opening
NewCustomersANDSales.xml in Internet Explorer, you can go through it and see
that it has three tables specified:

<NewCustomer> with customer information.

<NewCarsBought> with a link field to customer, an invoice number, and sales
date.

<NewCarsBoughtLineItem> with a link field to the invoice table
(NewCarsBought) and vehicle information.

Each tag has a dash next to it, making it easy to see where each table starts and
ends. Only the beginning tag has a dash; the ending tag does not have one. This
XML document has all three tables within the <NewCustomers> system grouping
<NewCustomers>. You could have also created each table separately, as long as
they were all within the <NewCustomers> grouping.

Cross-
Reference

1049Chapter 32 ✦ XML, Access, and InfoPath

Figure 32-5: A multi-table XML document. Only the top-most portion of the file
can be seen.

You must make sure that all the tables you want to have in your XML document
are within the root element, the first set of tags you specify (<NewCustomers> and
</NewCustomers> in this case). If you try to put them outside of the root element
tags, Access will not process the file correctly.

If you try to create two root element tags — two or more system-level tags using
the database analogy — in a single XML document, Access will have problems trying
to parse them and may crash. At a minimum, it will simply ignore the file. You must
maintain only one root element in each XML document.

You do not need to embed another table and its child nodes (<NewCarsBought>
is inside <NewCustomer>), within another as in the XML document shown in
Figure 32-5. When working with related tables, it is usually easier to embed the
linked tables under each table so that you are sure that you have placed the
correct linking information for joining the table later.

If you have two independent tables in the same XML document you can place each
table separate within the primary tags, as shown in Figure 32-6.

Caution

1050 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 32-6: A non-related multi-table XML document.

This file, New Customers AND Student TWO FILES.xml, is also supplied for you.
Examining it, you can see that there are two distinct tables: <NewCustomer>, with
two records (field contents) specified, and <NewStudents>, with three records
(field contents) specified.

Displaying XML Documents
in Internet Explorer

After you create an XML document, there are times you will probably want to dis-
play it in Internet Explorer (version 4.x or later).

You can create a relatively simple Dynamic HTML (DHTML) document to create an
HTML table and display specific child nodes from the XML file you created. This
Dynamic HTML file can use a Java applet that is found in IE 4.x or later to data bind
the XML data saved in the XML file to the HTML table.

1051Chapter 32 ✦ XML, Access, and InfoPath

You can create a simple Web page with the code shown here:

<html>
<head>
<title> XML Data binding </title>

</head>
<body>
<! --Java Applet-->
<APPLET code=”com.ms.xml.dso.XMLDSO.class”
MAYSCRIPT id=xmldatasource Width=”75%” Height=”20”>
<PARAM NAME=”URL” VALUE=” Reading Program.xml “>

</APPLET>
<p> Databinding of XML from file Reading Program </p>
<table id=”table” border=”1” width=”100%”

datasrc=”#xmldatasource”>
<thead>
<tr>
<th> Student </th>
<th> Grade </th>
<th> Title of Book </th>
<th> Author </th>

</tr>
</thead>
<tr>
<td><div datafld=”Student”></td>
<td><div datafld=”Grade”></td>
<td><div datafld=”BookTitle”></td>
<td><div datafld=”Author”></td>
</tr>

</table>
</body>
</html>

You can type the code shown here or modify it using the file named
BindingReadingPrograms.html, included with this chapter.

This HTML code parses the XML document by using a Java applet that is a standard
part of IE 4.x or later. You can also download this applet from Microsoft’s Web site.
Add the applet code as shown in Listing 32-2 to your HTML. You only need to
change the PARAM NAME “URL” VALUE property to the location or URL of the XML
document.

This DHTML code works by data binding with the datasrc=“#xmldatasource” tag
in the Table declaration where #xmldatasource is the same name of the Java applet
ID object in your code. After you have linked the table to the datascr, you need to
specify the field names of each field you want to see in the table to an XML child
node name. To link the field name to the child node name, assign the correct child
node name to each datafld property of the <div> tag.

1052 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

After creating them, you can add additional records to the XML document and the
Web page will automatically reflect the changes. Figure 32-7 shows the resulting
Web page when you run the BindingReadingPrograms.html program in Internet
Explorer (4.x or later).

Figure 32-7: A Web page that displays the contents of specific fields from an XML
document.

Exporting to XML
Exporting database data to an XML file is a great way to move and store your
information in a format that can be used across the Web. You can export any of
the following:

✦ Just the data from a table, query, datasheet, form, or report in an XML file.

✦ Just the schema (data structure=) of a table, query, datasheet, form, or report
to an XML schema file (with the extension of xsd), including the primary key
and index information.

✦ Both the data and schema into both XML and XSD files.

✦ Embed the schema in the XML document or create a separate schema file.

Export the data in linked tables at the same time as the main table.New
Feature

1053Chapter 32 ✦ XML, Access, and InfoPath

Select a transforms file to use after exporting.

✦ Save the structure of a table, query, datasheet, form, or report into a file that
describes the presentation (*.xsl) of the structure and data.

✦ Access will create a custom display format (*.xsl) file and can create a Web
document to run in either the browser (an *.html document) or server (an
*.asp formatted file).

After an XML file is created, it can be bound to an HTTP query request, an SQL
Server database, or SQL Server Desktop Edition to work with live Access reports
in a browser.

Exporting a table or query to XML
To export a table or query to an XML document, follow these general steps:

1. Select the table or query object name in the database container.

2. Select File ➪ Export from the menu (or right-click and select Export... from the
menu).

Access opens the Export Table dialog box.

3. Select XML (*.xml) in the Save As Type drop-down list box. Then select the
directory you want to save the files to.

4. Enter a new filename to save the XML document to.

5. Click the Export button.

Access opens the Export XML dialog box, shown in Figure 32-8. It has already
selected to export the data and schema.

Figure 32-8: The Export XML
dialog box.

6. If you want to export only the data or only the schema, deselect the item that
you don’t want to export.

7. If you want to also have Access create an XSL file and an HTML document so
that you can view the data in the Web browser, select the Presentation of your
data (XSL) check box.

New
Feature

1054 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

8. Click the More Options ... button to open the expanded Export XML dialog box
(shown in Figure 32-9) and specify more options.

Figure 32-9: The Export XML dialog box that is opened
when you press the More Options button on the
standard Export XML dialog box.

In the Data tab section, you can specify linked table records to be exported in the
XML document. You can also specify a Transforms file to use to transform the data
after exporting data by clicking on the Transforms ... button. Finally, you can specify
a different filename and location for the .xml file in this section.

You can click on the Schema tab and specify to include primary key and
index information as well as to embed the schema in the .xml file or save as
another file.

Finally, if you click on the Presentation tab, you can specify the type of Export
presentation you want to create and the name and location of the presenta-
tion file.

9. After you have completed these steps, Click OK.

Access automatically creates all specified files — XML, XSD, XSL (if requested), and
HTML.

Figure 32-10 shows the contents of the xml file created by exporting the Customers
table.

You could also export the table named Products, which has an OLE Object of pic-
tures of vehicles in it. The field OLEPicture is encoded and exported.

New
Feature

1055Chapter 32 ✦ XML, Access, and InfoPath

Figure 32-10: The Customers.xml file viewed in IE 6.x.

If your table or query has an OLE Object in it, the field contents will be exported to
the XML document; however, the corresponding html document will not show it.
In lieu of being able to see the picture, the field name will be there and the cell
containing the OLE Object will display an ellipsis enclosed in brackets: [...].

If you import an XML document with the contents of an OLE Object, the OLE
Object will be imported correctly. Refer to the section “Importing XML Data.”

Exporting linked tables
If you export the Customers table in the CHAP32Start database and select the
linked tables (CarSales and CarSalesLineItems) in the expanded Export XML dialog
box, under the Data tab, Access will store the records from these tables in the XML
document with the Customers records. However, the HTML document that is cre-
ated when you select Export Presentation (HTML 4.0 Sample XSL) and select Client
(HTML) will not show the linked table records. Access will create a simple HTML
file that will display only the Customers records.

If you want to create an HTML document that displays all the records from all three
tables, you will need to create it yourself.

Exporting a form to XML
When you export a form to an XML document, the resulting XML document will cre-
ate a continuous form type HTML file that displays each record in a continuous form.
This is true even when the Default View property is set to Datasheet or Single Form.

Cross-
Reference

Caution

1056 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

The form Mailing Info On Contacts, shown in Figure 32-11, can be exported to an
XML document for presentation. Notice the graphic in the top left corner. If you
export a form with image objects (pictures from external files), Access will export
them for use in the HTML document.

You cannot export an OLE Object type to an XML document; the OLE object field
will simply be ignored.

If your form has an OLE Object in it, the field contents of the underlying table or
query will be exported to the XML document, but the corresponding HTML document
will not show it in the form. In lieu of being able to see the picture, the field label will
be shown and the area where the picture would show is simply blank.

Figure 32-11: The Mailing Info On Contacts form.

For example, to export the form named Mailing Info On Contacts, follow these
steps:

1. Select the form named Mailing Info On Contacts from the database container.

2. Select File ➪ Export ... from the menu (or right-click and select Export... from
the menu).

Access opens the Export Form dialog box.

3. Select XML in the Save As Type drop-down list box. Then select the directory
you want to save the files to.

4. Enter a new filename to save the XML document to, or accept the default
name of Mailing Info On Contacts.

5. Click the Export button.

Access opens the Export XML dialog box. It only has Data (XML) choice
checked.

Caution

Note

1057Chapter 32 ✦ XML, Access, and InfoPath

6. If you only want to export the data or want to also export the schema, make
the correct adjustments.

7. Click the Presentation of your data (XSL) button.

8. Click the More Options button and when the expanded Export XML dialog
box opens, click on the Presentation tab.

9. Click Export Presentation (HTML 4.0 Sample XSL) to select export to presenta-
tion files.

Notice the section in the middle titled Include Report Images and the button
Put Images In have been selected. The default directory that will be created is
named Images. Keep this name. However, you can change the name and
Access will create the new directory with the name you specify. This directory
is used to store any embedded image files in the form. In this case, it will store
the picture of people in the top left corner. This screen is shown in Figure 32-12.

Figure 32-12: The Export XML dialog box with the
Presentation tab selected. Notice the center with
the Include report images information.

10. Click OK.

Access creates the XML document, an XSL file, and a corresponding HTML docu-
ment that can be opened in IE 4.x or later to look at the data and new page. It also
creates a subdirectory named Images below the current directory where the XML,
XDS, XSL, and HTML files are located. Figure 32-13 shows the Mailing Info On
Contacts HTML created from the XML, XDS, and XSL documents being viewed
in IE 6.x.

1058 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 32-13: The Mailing Info On Contacts HTML document.

As Figure 32-13 shows, the HTML document shows the record contents in continu-
ous form style. It also shows the image of the people in the top left corner of each
record. This image has been stored in the subdirectory named \Images.

When you move your XML files (XML, XSD, XSL, and HTML), you will also have to
move the subdirectory named \Images and its contents.

Exporting a report to XML
To export a report to an XML document, you follow the same general steps you did
for creating an XML document from a form.

If you export the Listing of Customer who purchased vehicles report, you are given
the same options as when you exported a form when you click on the More Options
choice in the Export XML dialog box. You can specify a directory name to hold any
images that may be in the report. The resulting output of the HTML file will again
display all the records in one continuous form.

Note

1059Chapter 32 ✦ XML, Access, and InfoPath

Figure 32-14 shows the Listing of Customer who purchased vehicles report
exported to an XML document and an associated HTML presentation file.

Figure 32-14: The Listing of Customer who purchased vehicles HTML document.

Importing XML Data
You can also import existing XML documents into Access. They will be imported
into an Access table. The actual data that is being imported is stored in the XML
file, and the schema information (structure, keys, and indices) is stored in the
XSD file.

Importing simple, single table XML data
To import the XML file named Reading Program.xml (that you created in the section
titled “Creating your own XML documents”), follow these steps:

1060 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

1. With the database open, select File ➪ Get External Data ➪ Import from the
menu or right-click in the Tables container of the database and select Import.

Access opens the Import dialog box.

2. Select XML (*.xml; *.xsd) from the Files of type drop-down list box.

Access shows all XML and XSD files.

3. Go to the directory containing the file Reading Program.xml.

4. Select Reading Program.xml and press the Import button.

Access displays the Import XML dialog box and shows the Reading Program.
xml table name. Figure 32-15 shows the dialog box. If you only want to import
the structure, you can click the Options button and select structure only. If
you click on the Options button, you are also allowed to choose a Transform
file to select to apply a transform before importing.

Figure 32-15: The Import XML dialog box.

5. Click OK.

Access imports the table Reading Program.xml and displays an information
box that tells you that it imported the file.

6. Click OK.

The new table, Reading Program.xml, has been added to the database.

When Importing XML files, you can import the XML file or the XSD file. If you want
to import the key or indices information (primary keys and secondary), you select
the XSD file instead of the XML file.

If there is only an XSD file (no associated XML document), you can import the
structure and key information, but there will be no data in the new database struc-
ture. The data is stored in the XML file.

Tip

1061Chapter 32 ✦ XML, Access, and InfoPath

Importing a single table with OLE Object
from an XML document
You can also import an XML document that has OLE Objects embedded in it. For
instance, you can import the Products.xml table and its associated Products.xsd
file by following the same steps outlined above.

When it is imported, which will take some time because the file has encrypted
information for the OLE field olePicture, you can link it to the form Products in the
database and display the contents of the new imported Products table from the
XML document.

Figure 32-16 shows the form named Products with the imported Products table
linked to it and displaying the olePicture field (picture of the vehicle). This shows
that you can store and import OLE type objects in an XML document.

Figure 32-16: The imported Products table shown in the Products form with the
olePicture field intact.

To link the Products table to the Products form, go into design mode of the
Products form, open the Properties dialog box, and change the Record Source
property under the Data tab to the Products table you just imported.

Importing multi-table XML data
In addition to importing data from a single file stored in an XML document, you can
also import multiple tables from a single XML document.

Note

1062 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

You have two XML documents with the database: NewCustomersANDSales.xml and
New Customers AND Student TWO FILES.xml. Both of these XML documents have
more than one table in them.

If you import the two tables (NewCustomer and NewStudents) from the New
Customers AND Student TWO FILES.xml file, you will see that the Import XML
dialog box will show you two tables, as shown in Figure 32-17.

Figure 32-17: The Import XML dialog box
with two tables shown.

When you click on the OK button, it will import two tables — NewCustomer and
NewStudents — into your database from the single XML document.

InfoPath and Access
Although this book is about Access, this section offers a quick overview of InfoPath
and how it can enhance or integrate with Access.

Most businesses do not live in a void, with branches running independently from
each other. For instance, a software development company has several departments
or branches that interact with each other daily or weekly. The Sales branch needs
to know the amount of inventory available in the purchasing department at any
given time. Management needs to know what the Research and Development office
is working on. This interaction is typical in any company. The amount of informa-
tion, or data, that is moving between branches of a business during the normal
business process of any company is often done in a non-productive way.

Microsoft Office 2003 has added a new XML-specific product known as InfoPath
2003, which can assist many businesses in addressing their information needs effi-
ciently and effectively. InfoPath 2003 is based entirely on XML technology, offering

1063Chapter 32 ✦ XML, Access, and InfoPath

the end user a way to use dynamic forms that can be immediately placed in an XML
document or linked to a database. Using XML as the underlying file format makes
the document universally available within a business. Using InfoPath requires no
special XML coding.

Figure 32-18 shows a simple form that is used to gather membership information.

Figure 32-18: An InfoPath form that gathers membership
information.

Figure 32-18 shows a typical form that you can create quickly in InfoPath. The form
saves its data in native XML format.

Because InfoPath creates native XML files, the resulting XML file can be imported or
attached to an existing Access table. InfoPath can also be used to create indepen-
dent forms for data entry based on an existing Access table.

Quick overview of InfoPath
InfoPath lets you quickly create a form using a familiar Office design interface and
forms-based controls and text-editing (data validation and conditional formatting)
methods. After you create a form, it is then published as a template in a shared
location for your users to enter data into. After a user enters data, he can save the

1064 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

data into a standard XML-formatted file. By using XML-formatted data, companies
can make better use of the stored information across the organization.

Because InfoPath’s file format is XML, information collected in InfoPath forms can
easily be shared by other applications. It is a great tool that can be used by organi-
zations and companies to gather data that is essential to their business. Using
InfoPath, companies can quickly develop dynamic forms that can be used to gather
that data, without needing a knowledge of XML or the capability to write XML code.
InfoPath can also used predefined schemas based on the specific needs of the
corporation.

When creating InfoPath forms, you can create them for data entry or for querying
existing data. You can submit data to a database or query a database (Microsoft
SQL Server or Microsoft Access) or even link to a web service to receive or
submit data.

InfoPath includes numerous sample forms to help you get started quickly. These
forms can be used as is or modified to your specific needs. InfoPath can also be
used on a Tablet PC so that your users can add data anywhere.

InfoPath can be used to replace any manual form process. Instead of having users
enter data from a paper form, they can enter it directly into InfoPath to be used
across the company. The underlying schema of the XML form can control data
entry and ensure that the data is stored immediately in the linked database or
web service.

InfoPath can create an XML form that saves all data in XML format or a form that
is bound to an underlying SQL Server or Access table. A form that is bound to
a database table can have the records submitted (appended) to the underlying
database table. Figure 32-19 shows an InfoPath form that is bound to a table named
Customer for InfoPath in the CHAP32Start database.

Figure 32-19: An InfoPath form that is bound to an Access table.

1065Chapter 32 ✦ XML, Access, and InfoPath

Creating an XML-Based InfoPath form
The simplest type of form to create in InfoPath is a standard XML-based form. The
form in Figure 32-18, shown earlier in this section, is a simple XML form that was
created in InfoPath.

After you start InfoPath, you can select File ➪ Design a Form... from the menu. This
opens the Design a Form task pane along the right side of the screen. Figure 32-20
shows the Design a Form task pane.

Figure 32-20: InfoPath open with the Design a Form task pane active.

Follow these steps to quickly create a simple XML form table with a title:

1. Select the New Blank Form choice from the menu.

InfoPath creates a blank page with the Design Task’s pane open.

2. Select Layout from the Design Task pane.

InfoPath opens the Insert layout tables area.

3. Click on the choice Table with Title.

InfoPath places the table object on the empty form, as shown in Figure 32-21.

4. Click in Click to add a Title.

5. Type in Mailing List Names.

6. Click on Data Source in the Task pane.

InfoPath opens the Work with the data source: area, as shown in Figure 32-22.

1066 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 32-21: A table object with Title placed on the empty form.

Figure 32-22: The Work with the data source: area.

Now you are ready to add your data entry fields to the form. However, before
adding fields, you need to add their labels first. Unlike Access, you can type
directly on the form, using the spacebar and Enter key to move the visible text
around.

1067Chapter 32 ✦ XML, Access, and InfoPath

7. Click in the area labeled Click to add form content.

InfoPath removes the words Click to add form content.

8. In the top-left corner, press the Enter key three or four times to move the cur-
sor down a few lines. Then press the spacebar four times to move the cursor
four spaces.

9. Type Address: and press the Enter key to move to the next line.

10. On this line, type in City: State: Zip: with sufficient spaces
between them. Then move the cursor in front of the word City: and press the
spacebar until the colons line up for City: and Address:.

Your form should now look similar to the one shown in Figure 32-23.

Figure 32-23: The form with the text portion entered.

You are now ready to create and enter the linked XML fields. You can add
fields directly in the Data Source task pane or you can use the Controls task
pane. First, you create and enter a Text field for name in the Data Source
task pane.

11. Click the Add button in the Data Source task pane or right-click on the table
name myFields and select Add from the popup menu.

InfoPath opens the Add Field or Group dialog box, as shown in Figure 32-24.
Initially, there are no values in the Name field.

12. Type in the value FullName with no spaces in the Name: box and check the
Cannot be blank (*) check box, as shown in Figure 32-24.

13. Click the OK button

InfoPath places the text field FullName under the table name myFields, with
an asterisk next to it to show that it cannot be blank.

1068 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 32-24: The Add Field
or Group dialog box.

14. Drag the field FullName to the work surface of your form, dropping it on the
line directly above the Address: label.

InfoPath places the text Full Name: and the text box for the field FullName
above the label. The FullName text box is placed immediately below the label
Full Name. Resize the FullName field so that it is small enough to relocate
immediately after the label. Then move in front of the label Full Name, and put
sufficient spaces to align the colon of this label with the one for the Address.

Now you will add fields using the Control task pane.

15. Select Controls from the menu in the Data Source task pane to open the
Controls task pane.

16. Move the cursor in the form alongside of the Address: label.

17. Select the Text Box from the Insert controls: pane of the Controls task pane by
clicking on it or dragging it to the insert position.

If you simply click on the Text Box control in the Insert controls: pane,
InfoPath places the Text Box control under the label Address:. This is also
true if you drag it alongside the label. Again, you need to resize the Text Box
control to align next to the label Address.

18. Select the Text Box label again for the remaining three fields (City, State,
and Zip).

At this point, your form should have all the fields and labels in positions
similar to the form shown in Figure 32-25 (minus the check box field at the
bottom).

Finally, you can add a check box to the form for a field to determine whether
the address is a work address. (If the check box is checked, the addresss is a
work address; if it’s not checked, the address is not a work address.)

19. The line under the last field label (State:) moves the cursor so that it is one
line below and in front of the word State. Click on the check box control.

The check box is added with a default label named Field xx.

20. Change the label Field xx to Is This a Work Address?. Your form should now
look like the one shown in Figure 32-25.

1069Chapter 32 ✦ XML, Access, and InfoPath

Figure 32-25: The new form with all text fields placed,
including a check box field.

Now that your form is created, you need to publish it. Publishing a form is the act of
saving it and making it available to all the users.

The name of the default table, myFields, can be changed by displaying the Data
Source Task pane, right-clicking on the table name, selecting properties, and then
renaming the table name. When you created the fields that you entered on the
form using the Insert Controls method above, the field names were simply named
in chronological order — field1, field2, field3, and so on. You can also change these
names to a more usable name by changing their name properties. You may want
to rename the fields Address, City, State, Zip and WorkAddr for clarity.

To publish your form, follow these steps:

1. Select File ➪ Save to activate a Microsoft Office InfoPath dialog box with two
choices — Publish... and Save....

Figure 32-26 shows this dialog box.

Figure 32-26: The dialog box
activated the first time you save
the form.

Note

1070 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

2. Click the Publish... button.

The Publishing Wizard is activated.

3. Click the Next button. The next screen is displayed, enabling you to select
where to publish the form.

4. Select the default value of where to publish this form (to a shared folder on
this computer or on a network). Click the Next button. The next screen is dis-
played, enabling you to select where to save the file and give the form a name.

5. Click on the Browse button to specify where to save the form. Make sure you
save it to a directory where others can access it.

The Browse dialog box is activated. Select the drive and subdirectory, and
specify a name for the InfoPath template file that you want to save.

6. After selecting a Drive and Directory to save the file to, name it Mailing List
Template and press the OK button.

You are returned to the Publishing Wizard and the filename is entered in both
fields — the actual filename and the name of the form.

7. You can keep the default values of the names and press the Next button.

8. Click on the Finish button of the next screen that simply re-checks to confirm
that you have saved the file to a common directory for all users to access.

9. When you are on the last page, you are informed that the template has been
saved and is ready for use. You can notify users that the template is available
if you click on the Notify Users button. Your default e-mail program is acti-
vated with a notification message ready to send to users. All you have to do is
add the e-mail addresses of the users that you want to advise.

10. Click on the Close button to return to InfoPath and save your work.

With the template file created, you can now close the InfoPath program.

Creating an InfoPath form attached to a database
The second type of form you can create is one that is attached to a database. For
example, you can create an InfoPath template form to attach to the Customer for
InfoPath table in the CHAP32Start database. After you create the form, you can
save each record added to the form in InfoPath as an XML document or submit the
record to be attached to the Access table.

Creating this form is similar to creating the non-attached form in the previous exam-
ple. However, when you start, you specify that you want to create a New [form]
from Data Source ... in the Design a Form task pane.

1071Chapter 32 ✦ XML, Access, and InfoPath

Using the Data Source Setup Wizard
Follow these steps to use the Data Source Setup Wizard to create a form based on
the CHAP32Start.mdb table Customer for InfoPath:

1. Select File ➪ Design a Form ... from the menu.

2. Select New from Data Source ... from the Design a Form task pane.

InfoPath opens the Data Source Setup Wizard, as shown in Figure 32-27.

Figure 32-27: The Data Source Setup Wizard.

3. Select Database (Microsoft SQL Server or Microsoft Access only) on the first
screen of the setup wizard. Click the Next button.

4. Click on the Select Database button on the second screen. When the Wizard
opens the Select Data Source dialog box, find CHAP32Start.mdb.

5. With CHAP32Start.mdb highlighted, click the Open button.

6. In the Select Table dialog box (as shown in Figure 32-28), select the Customer
for InfoPath table and press the OK button.

Figure 32-28: The Select Table dialog box.

1072 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

InfoPath returns to page two of the Data Source Setup Wizard and displays the
Data source structure in the bottom area of the screen.

7. Press the Next button to continue.

8. You are taken to the final screen, as shown in Figure 32-29.

Figure 32-29: The final screen of the Data Source
Setup Wizard.

This final screen shows pertinent information about linking the InfoPath form
to the database table. Notice that the Submit status of this form is Enabled
and that the Design data view first option has been selected.

9. Select Design data view first and press the Finish button.

The Submit status is only Enable, meaning that you are able to save the record
directly to the database table when the table has a primary index field. Otherwise,
the form can only write XML documents, and you will have to import them into the
database table within Access.

InfoPath returns you to the design window with a blank form visible. Using the
Setup Wizard, InfoPath creates two views in your form: one for queries (which add
the fields from the table to the view), and one for the data view (for entering data).
The data view is just a blank form.

When you click on the Views choice in the Data Source task pane, the Select a View:
area of the pane is displayed and you can see two choices: Data Entry (default) and
Query. These are the two views of the form that InfoPath has created for you. Figure
32-30 shows the Views task pane open on the right side of the program and the two
view names displayed in the Select a View area.

Caution

1073Chapter 32 ✦ XML, Access, and InfoPath

Figure 32-30: An InfoPath form with two views linked to a database.

At this point, you can create your Data Entry form (view) or you can click on
the Query view to see the Query form that InfoPath created for you already.
Figure 32-31 shows the Query view form created by the wizard.

Figure 32-31: The Query form.

1074 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Notice that the Query form view has two buttons on it: Run Query and New Record.
The appropriate code is already attached to each button. If you click on the Preview
Form button or select File ➪ Preview Form from the menu, you can see how this
form will work.

When you click on the Preview Form, InfoPath activates a preview window and lets
you enter a value in any field of the Query form. After you enter a value, click on the
Run Query button to query against the table and find any record that matches your
request. Activate the Data Entry view to display the results. In this case, it will dis-
play a blank Data Entry view because you have not placed any control objects on
the form yet. Clicking on the Close Preview button returns you to the design window.

Placing field objects on the Data Entry view
Now you can start to add the fields and data validation rules to your Data Entry
view. First, you need to redisplay the Data Entry (default) view by selecting it in
the Select a view: portion of the pane.

When you have the Data Entry form view (blank form) displayed, select Data Source
from the menu of the Views task pane. This displays the Work with the data source:
area of the Data Source task pane. Figure 32-32 shows the Data Source Task pane
opened. Notice that two sub-data sources are under the source myFields. The first
sources (queryFields) are the fields used in the Query view form that you already
visited. The second sources (dataFields) are the fields that you need to add to the
form for adding and displaying data from the table.

Figure 32-32: The Data Source task pane with
the dataFields sub-data source expanded.

1075Chapter 32 ✦ XML, Access, and InfoPath

With the sub-data source dataFields expanded, you can now add these fields to the
form. You can add any title you want and then add each field to the form until your
form resembles the one shown in Figure 32-33.

Figure 32-33: The completed Data Entry form.

Looking at the form in Figure 32-33, you can see that it has a title consistent with
the one from the Query view and the fields entered on the form.

At this point, you may want to try your form to see whether the two views work
correctly. Click on the Views choice in the pane to activate the Views Task pane and
select the query view, and then select Preview From from the toolbar. With the
Preview active, type 102 in the idsCustomerID field and press the Run Query button.
InfoPath should now display a record for Hank Williams, as shown in Figure 32-34.

Now that you have verified that the form and views are working correctly, click the
Close Preview button to return to the design window. Finally, you can save your
work and name it New Customer Info Template.

Working with an InfoPath form
To use any InfoPath form, you simply need to find its location on your network and
run it like any other Windows application.

1076 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 32-34: The Data Entry form with a record displayed.

For example, Figure 32-35 shows the Mailing List Template.xsn form being run and a
new record being added.

Figure 32-35: The Mailing List form active with a record
added.

Saving data to an XML document
When a form is active, you can save the record to an XML document for later use
by simply selecting File ➪ Save from the menu and specifying a name for the XML
document.

1077Chapter 32 ✦ XML, Access, and InfoPath

Only one record can be saved at a time to an XML document using InfoPath. You
cannot enter more than one record and have it save multiple records to one XML
document.

For example, run the Mailing List Template form and add the values you see in
Figure 32-36.

Figure 32-36: Data entered into the Mailing List Template
form.

With the data entered, select File ➪ Save to save the file and name it MRI001.xml.
Now the file has been saved to an XML document.

Querying an InfoPath form linked to Access
If you created a query form as you did earlier in the New Customer Info Template.
xsn form, you can query for a single record or multiple records. For example, after
activating the New Customer Info Template form, you can enter a value of MD in the
chrState field and press the Run Query button. InfoPath finds any records where
the state is Maryland in the table Customer for InfoPath within the CHAP32Start
database; then it displays the results in the Data Entry form.

Figure 32-37 shows two records retrieved and displayed.

To return to the query window, select View ➪ Query.

While displaying the resulting query against an Access table, you select either
record and you cut, copy, and remove the record from the linked table.

Submitting new data to an Access table
Using the same form, New Customer Info Template, you can add a new record to the
form and save it to an XML document as you did earlier with File ➪ Save, or you can
Submit the new record to the Access table it is linked to by selecting File ➪ Submit.

Tip

Note

1078 Part III, Section V ✦ Creating Data Access Pages and Using XML and InfoPath

Figure 32-37: Displaying more than one record that
matches a query.

If there are any problems, InfoPath does not save the record and it displays an error
message box informing you of the problem.

Importing an InfoPath XML document into Access
After you have created your InfoPath templates and created XML documents,
you can import them into Access just like you import any other XML document.

For example, you can import the MRI001.xml file that you saved earlier. To import
this file, follow these steps:

1. Open the CHAP32Start database in Access if it isn’t already open. Make sure
the Tables object is selected and the Tables container is visible.

2. Select File ➪ Get External Data ➪ Import... from the menu.

3. Select XML (*.xml, *.xsd) as the file type.

4. Select the MRI001.xml file after locating it and click the Import button.

Access displays the Import XML dialog box, as shown in Figure 32-38. Notice
that it shows a table named myFields. When you expand it, you see the field
names, as shown in the figure. This is the table you created when you made
the template form earlier.

The Options button in Figure 32-38 has also been pressed to show the three
Import Options available: Structure Only, Structure and Data, and Append
Data to Existing Table(s).

1079Chapter 32 ✦ XML, Access, and InfoPath

Figure 32-38: The Import XML dialog box.

5. Click the OK button to import the single record in the MRI001.XML document
into a table named myFields.

If you have several XML documents that contain myFields records, you can select
the Append Data to Existing Table(s) option to append each record individually to
the table myFields. If you do not append each record, a new table will be created
for each record, adding a number after the table name: myFields1, myFields2, and
so on.

✦ ✦ ✦

Advanced
Access Database
Topics

✦ ✦ ✦ ✦

In This Part

Chapter 33
Exchanging Data
with Office
Applications

Chapter 34
Adding Security to
Applications

Chapter 35
Creating Help
Systems

Chapter 36
Working with
Advanced Select
Queries and Other
Query Topics

Chapter 37
Working with Action
and SQL Queries

Chapter 38
Increasing the Speed
of an Application

Chapter 39
Using the Access
Developers Edition

✦ ✦ ✦ ✦

P A R T

IVIV

Exchanging Data
with Office
Applications

This chapter will use the database named CHAP33Start.
mdb. A word template file named Thanks.dot, is also
included for use in this chapter. If you have not already
copied them onto your machine from the CD, you will
need to do so now. There is no CHAP33End.mdb. Because
this chapter relies on the use of Visual Basic code, it and
the forms that are driven by it have already been created
for you.

As companies standardize their computer practices and soft-
ware selections, it is becoming more and more important to
develop total solutions: In other words, solutions that inte-
grate the many procedures of an organization. Usually, vari-
ous procedures are accomplished by using different software
packages, such as Word for letter writing, Exchange and
Outlook for mailing and faxing, Powerpoint for presentations,
and Excel for financial functions. If the organization for which
you are developing has standardized on the Microsoft Office
suite, you can leverage your knowledge of Visual Basic for
Applications to program for all of these products.

Automation, formerly called OLE Automation, is a means
by which an application can expose objects, each with its
own methods and properties, that other applications can
create instances of and control through code. Not all com-
mercial applications support Automation, but more and
more applications are adopting Automation to replace the
outdated DDE interface. Consult with a specific applica-
tion’s vendor to find out if it supports or plans to support
Automation in the program.

Note

On the
CD-ROM

3333C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using Automation to
integrate with Office

Creating Automation
references

Creating an instance
of an Automation
object

Getting an existing
object instance

Working with
Automation objects

Closing an instance
of an Automation
object

Using Microsoft
Word to create an
Automation example

Using Office’s Macro
Recorder

✦ ✦ ✦ ✦

1084 Part IV ✦ Advanced Access Database Topics

Using Automation to Integrate with Office
The Microsoft Office applications mentioned in the previous section all support
Automation. Using Automation, you can create objects in your code that represent
other applications. By manipulating these objects (setting properties and calling
methods), you can control the referenced applications as though you were pro-
gramming directly in them, thus allowing you to create seamless integrated applica-
tions by using Automation.

Creating Automation references
Applications that support Automation provide information about their objects in an
object library. The object library contains information about an application’s prop-
erties, methods, and classes. An application’s class is its internal structure for
objects; each class creates a specific type of object — a form, a report, and so on.
To reference an application’s objects, Visual Basic must determine which specific
type of object is being referenced by an object’s variable in your code. The process
of determining the type of an object variable is called binding. You can use two
methods for binding an object — early binding and late binding.

Early binding an object
Using the References dialog box in the Visual Basic window of Access, you can
explicitly reference an object library. When you explicitly reference an object
library, you are performing early binding. Automation code executes more quickly
when you use early binding.

To access the References dialog box of VBA, you need to activate the Visual Basic
window by either creating a new module or displaying the design of an existing
module.

To create a reference, first create a new module or open any existing module in
your application database in the Visual Basic Design screen. After you have a mod-
ule in Design view, a new command, References, is available from the Tools menu.
Figure 33-1 shows the References selection on the Tools menu. Select Tools ➪
References to access the References dialog box. Figure 33-2 shows the References
dialog box.

In the References dialog box, you specify all the references that your application
needs for using Automation or for using other Access databases as library
databases. To select or deselect a reference, click its check box.

Note

1085Chapter 33 ✦ Exchanging Data with Office Applications

Figure 33-1: The Tools ➪ References menu item is available only after you
have a module in Design or New view in Access. This menu item activates
the VBA window.

Figure 33-2: Early binding by setting references
is the most efficient way to perform Automation.

For this chapter, you will need to make sure that several reference libraries are
active. You may not initially have the following four references available (checked):

Microsoft DAO 3.6 Object Library
Microsoft ActiveX Data Objects Recordset 2.7 Library
Microsoft Word 11.0 Object Library
Microsoft Office 11.0 Object Library

If these libraries aren’t active (or, visible at the top of the list), find them in the
selection list box by scrolling to them, and then check them on.

After you reference an application for Automation, you can explicitly dimension
any object variable in that reference library. The New object coding help feature

Caution

1086 Part IV ✦ Advanced Access Database Topics

displays the available objects as you type, as shown in Figure 33-3. In addition, after
you have selected the primary object and have entered a period (.), the help feature
of Access enables you to select from the available class objects (see Figure 33-4).

Late binding an object
If you don’t explicitly reference an object library by using the References dialog
box, you can set an object’s reference in code by first declaring a variable as an
object and then using the Set command to create the object reference. This process
is known as late binding.

To create an object to reference Microsoft Word, for example, you can use the fol-
lowing code:

Dim WordObj As Object
Set WordObj = New Word.Application

The Set command is discussed in the next section.

If you create an object for an application that is not referenced, no drop-down
help box, such as the ones shown in Figures 33-3 and 33-4, will display.

Figure 33-3 shows the automatic drop-down box that appears immediately after you
type the word new in the Dim statement. At this point, you can select one of the
application object name types displayed (such as word) or enter a new application
object name type that you define. Figure 33-4 shows the new drop-down box that
appears when you type a period (.) after the object type word. This box helps you
by displaying all known object types that can be associated with the particular pri-
mary object name. In this case, clicking the Application object type adds this to the
word. portion of the object, thus word.application.

Figure 33-3: When an Automation Server is referenced, its objects are
immediately known by Visual Basic.

Tip

1087Chapter 33 ✦ Exchanging Data with Office Applications

Figure 33-4: The new drop-down syntax help of Visual Basic makes
using referenced Automation Servers easy.

Creating an instance of an Automation object
To perform an Automation operation, the operating system needs to start the
application — if it isn’t already started — and obtain a reference, or handle, to it.
This reference will be used to access the application. Most applications that sup-
port Automation, called Automation Servers, expose an Application object. The
Application object exists at the top of the object application’s hierarchy and often
contains many objects, as well.

Using the New keyword to create a new instance
The simplest (and most efficient) method to create any Automation object is to
early bind the specific Automation Server reference library to the module by acti-
vating it, using the Tools ➪ References menu. After you bind it, you can then create
a new instance of the object by using the New keyword in Visual Basic. In the exam-
ples shown in Figure 33-3 and Figure 33-4, the variable MyWordObj is set to a new
instance of Word’s Application object. If you have not bound the Microsoft Word
11.0 Object Library, you will need to do so or you will receive an error.

If you don’t create a reference to the Automation Server by using the References
dialog box, Visual Basic doesn’t recognize the object type and generates an error
on compile.

Every time you create an instance of an Automation Server by using the New key-
word, a new instance of the application is started. If you don’t want to start a new
instance of the application, use the GetObject function, which is discussed later in
this chapter. Not all Automation Servers support the New keyword. Consult the spe-
cific Automation Server’s documentation to determine whether it supports the New
keyword. If the New keyword is not supported, you need to use the CreateObject
function, which is discussed in the following section, to create an instance of the
Automation Server.

Caution

1088 Part IV ✦ Advanced Access Database Topics

Using the CreateObject function to create a new instance
In addition to creating an instance of an object library by using the New keyword,
you can create an instance of an object library by using the CreateObject function.
You use the CreateObject function to create instances of object libraries that do not
support the New keyword. To use the CreateObject function, first declare a variable
of the type equal to the type of object that you want to create. Then use the Set
statement in conjunction with the CreateObject function to set the variable to a
new instance of the object library.

For example, Microsoft Binder doesn’t support the New keyword, but it does pro-
vide an object library, so you can reference it by using the References dialog box.
To early bind the object library of Binder, use the CreateObject function, as shown
in the following code:

Dim BinderObj As OfficeBinder.Binder
Set BinderObj = CreateObject(“Office.Binder”)

In the preceding example, the object library name for Binder is OfficeBinder.Binder,
and the class instance is “Office.Binder.” You can view the names of object libraries
and their available classes by using the Object Browser.

You can create an object instance with the CreateObject function, which is late
bound, by not declaring the object variable as a specific type. For example, the fol-
lowing code creates an instance of the Binder object by using late binding:

Dim BinderObj As Object
Set BinderObj = CreateObject(“Office.Binder”)

If you have different versions of the same Automation Server on your computer,
you can specify the version to use by adding it to the end of the class information.
For example, the following code uses Office as the Automation Server:

Dim BinderObj As Object
Set BinderObj = CreateObject(“Word.Application.11”)

Word 97 was the first true Automation Server, and like its predecessor, Word 2003
doesn’t require you to specify a version when creating instances of Word object
libraries; Word is always used, regardless of the other versions of Word on the
computer. In fact, you get an error if you try to specify a version number. Therefore,
you can use the following syntax instead:

Set BinderObj = CreateObject(“Word.Application.11”)

Getting an existing object instance
As stated previously in this chapter, using the New keyword or the CreateObject
function creates a new instance of the Automation Server. If you don’t want a new

Tip

Note

Note

1089Chapter 33 ✦ Exchanging Data with Office Applications

instance of the server created each time you create an object, use the GetObject
function. The format of the GetObject function is as follows:

Set objectvariable = GetObject([pathname][, class])

The pathname parameter is optional. To use this parameter, you specify a full path
and file name to an existing file for use with the Automation Server.

The specified document is then opened in the server application. Even if you omit
the parameter, you must still include the comma (,).

The class parameter is the same parameter that’s used with the CreateObject func-
tion. See Table 33-1 for a list of some class arguments used in Microsoft Office.

Table 33-1
Class Arguments for Common Office Components

Component Class Argument Object Returned

Access Access.Application Microsoft Access Application object

Excel Excel.Application Microsoft Excel Application object

Excel.Sheet Microsoft Excel Workbook object

Excel.Chart Microsoft Excel Chart object

Word Word.Application Microsoft Word Application object

Word.Document Microsoft Word Document object

For example, to work with an existing instance of Microsoft Word, but not a specific
Word document, you can use the following code:

Dim WordObj as Word.Application
Set WordObj = GetObject(, “Word.Application”)

To get an instance of an existing Word document called MyDoc.Doc, on your C:
drive, you can use the following code:

Dim WordObj as Word.Application
Set WordObj = GetObject(“c:\MyDoc.Doc”, “Word.Application”)

Of course, this code is always placed in a new function or sub that you declare in
your module.

Note

1090 Part IV ✦ Advanced Access Database Topics

Working with Automation objects
After you have a valid instance of an Automation Server, you manipulate the object
as though you were writing code within the application itself, using the exposed
objects and their properties and methods.

For example, when developing directly in Word, you can use the following code to
change the directory that Word uses when opening an existing file:

ChangeFileOpenDirectory “C:\My Documents\”

Consult the development help for the Automation Server for specific information
on the objects, properties, and methods available.

Just as in Access, Word is implicitly using its Application object; the command
ChangeFileOpenDirectory is really a method of the Application object. Using the fol-
lowing code, you create an instance of Word’s Application object and call the
method of the object:

Dim WordObj As New Word.Application
WordObj.ChangeFileOpenDirectory “C:\My Documents\”

When using Automation, you should avoid setting properties or calling methods
that cause the Automation Server to ask for input from the user via a dialog box.
When a dialog box is displayed, the Automation code stops executing until the dia-
log box is closed. If the server application is minimized or behind other windows,
the user may not even be aware that he or she needs to provide input, and there-
fore may assume that the application is locked up.

Closing an instance of an Automation object
Automation objects are closed when the Automation object variable goes out of
scope. Such a closing, however, doesn’t necessarily free up all resources that are
used by the object, so you should explicitly close the instance of the Automation
object. You can close an Automation object by doing either of the following:

✦ Using the Close or Quit method of the object (consult the specific Automation
Server’s documentation for information on which method it supports)

✦ Setting the object variable to nothing, as follows:

Set WordObj = Nothing

The best way to close an instance of an Automation object is to combine the two
techniques, like this:

WordObj.Quit
Set WordObj = Nothing

Tip

Note

1091Chapter 33 ✦ Exchanging Data with Office Applications

An Automation Example Using Word
Perhaps the most common Office application that is used for Automation from a
database application like Access is Word. Using Automation with Word, you can cre-
ate letters that are tailored with information from databases. The following section
demonstrates an example of merging information from an Access database to a let-
ter in Word by using Automation and Word’s Bookmarks. Ordinarily, you create a
merge document in Word and bring field contents in from the records of an Access
database. This method relies on using Word’s MergeField, which is replaced by the
contents of the Database field. It normally requires that you perform this action in
Word — thus limiting the scope and capability of the function. For example, you will
merge all records from the table that is being used rather than a single record.

The following example uses the Orders form, which calls a module named
WordIntegration. The WordIntegration module contains a function named
MergetoWord() that uses the Word Thanks.dot template file.

When you attempt to run this example, you must make sure that the path for the
template in the Visual Basic code is the actual path in which the Thanks.dot tem-
plate file resides. This path may vary from computer to computer.

The items that are discussed in this Word Automation example include the following:

✦ Creating an instance of a Word object

✦ Making the instance of Word visible

✦ Creating a new document based on an existing template

✦ Using bookmarks to insert data

✦ Activating the instance of Word

✦ Moving the cursor in Word

✦ Closing the instance of the Word object without closing Word

This example prints a thank-you letter for an order based on bookmarks in the
thank you letter template (Thanks.dot). Figure 33-5 shows the data for customers;
Figure 33-6 shows the data entry form for orders; Figure 33-7 shows the Thanks.dot
template; and Figure 33-8 shows a completed merge letter.

The bookmarks in Figure 33-7 are shown as grayed large I-beams (text insert). The
bookmarks are normally not visible, but you can make them visible by selecting
Tools ➪ Options, selecting the View tab and going to the top section titled Show and
then turning on the Bookmarks option by checking the option (third choice in the
first column). The names won’t be visible — only the bookmark holders (locations)
will be visible, as shown in Figure 33-7. The names and arrows in Figure 33-7 were
placed using text boxes to show where the bookmark names are assigned.

Note

1092 Part IV ✦ Advanced Access Database Topics

Figure 33-5: Customer data used in the
following Automation example is
entered on the Customers form.

Figure 33-6: Each customer can have an unlimited
number of orders. Thank-you letters are printed
from the Orders form.

Figure 33-7: The Thanks.dot template contains bookmarks where the
merged data is to be inserted.

1093Chapter 33 ✦ Exchanging Data with Office Applications

Figure 33-8: After a successful merge, all the bookmarks have been
replaced with their respective data.

If you click the Print Thank You Letter button in Access while Word is open with an
existing document — which lacks the bookmark names specified in the code — the
fields will simply be added to the text inside Word at the point where the cursor is
currently sitting.

When the user clicks the Print Thank You Letter button on the Orders form, Word
generates a thank-you letter with all the pertinent information. The following code
shows the MergetoWord function in its entirety so you can see in-depth how it
works.

Public Function MergetoWord()
‘ This method creates a new document in MS Word
‘ using Automation.
On Error Resume Next
Dim rsCust As Recordset, iTemp As Integer
Dim WordObj As Word.Application
Set rsCust =
DBEngine(0).Databases(0).OpenRecordset(“Customers”, _
dbOpenTable)
rsCust.Index = “PrimaryKey”
rsCust.Seek “=”, Forms!Orders![CustomerNumber]

If rsCust.NoMatch Then
MsgBox “Invalid customer”, vbOKOnly
Exit Function

End If
DoCmd.Hourglass True
Set WordObj = GetObject(, “Word.Application”)

Caution

1094 Part IV ✦ Advanced Access Database Topics

If Err.Number <> 0 Then
Set WordObj = CreateObject(“Word.Application”)

End If
WordObj.Visible = True
WordObj.Documents.Add

‘ WARNING:
‘ Specify the correct drive and path to the
‘ file named thanks.dot in the line below.

Template:=”G:\Access 11 Book\thanks.dot”,

‘ The above path and drive must be fixed

NewTemplate:=False
WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”FullName”

WordObj.Selection.TypeText rsCust![ContactName]
WordObj.Selection.Goto what:=wdGoToBookmark,
Name:=”CompanyName”

WordObj.Selection.TypeText rsCust![CompanyName]
WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”Address1”

WordObj.Selection.TypeText rsCust![Address1]
WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”Address2”

If IsNull(rsCust![Address2]) Then
WordObj.Selection.TypeText “”

Else
WordObj.Selection.TypeText rsCust![Address2]

End If
WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”City”

WordObj.Selection.TypeText rsCust![City]
WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”State”

WordObj.Selection.TypeText rsCust![State]
WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”Zipcode”

WordObj.Selection.TypeText rsCust![Zipcode]
WordObj.Selection.Goto what:=wdGoToBookmark,
Name:=”PhoneNumber”

WordObj.Selection.TypeText rsCust![PhoneNumber]
WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”NumOrdered”

WordObj.Selection.TypeText Forms!Orders![Quantity]
WordObj.Selection.Goto what:=wdGoToBookmark,
Name:=”ProductOrdered”

If Forms!Orders![Quantity] > 1 Then
WordObj.Selection.TypeText Forms!Orders![Item] & “s”

Else
WordObj.Selection.TypeText Forms!Orders![Item]

End If
WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”FName”

iTemp = InStr(rsCust![ContactName], “ “)
If iTemp > 0 Then

WordObj.Selection.TypeText Left$(rsCust![ContactName],
iTemp _ - 1)

End If

1095Chapter 33 ✦ Exchanging Data with Office Applications

WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”LetterName”
WordObj.Selection.TypeText rsCust![ContactName]

DoEvents
WordObj.Activate
WordObj.Selection.MoveUp wdLine, 6
‘ Set the Word Object to nothing to free resources
Set WordObj = Nothing
DoCmd.Hourglass False
Exit Function
TemplateError:

Set WordObj = Nothing
Exit Function

End Function

Creating an instance of a Word object
The first step in using Automation is to create an instance of an object. The sample
creates an object instance with the following code:

On Error Resume Next
...
Set WordObj = GetObject(, “Word.Application”)
If Err.Number <> 0 Then

Set WordObj = CreateObject(“Word.Application”)
End If

Obviously, you don’t want a new instance of Word created every time a thank-you
letter is generated, so some special coding is required. This code snippet first
attempts to create an instance by using an active instance (a running copy) of
Word. If Word is not a running application, an error is generated. Because this func-
tion has On Error Resume Next for error trapping, the code doesn’t fail, but instead
proceeds to the next statement. If an error is detected (the Err.Number is not equal
to 0), an instance is created by using CreateObject.

Making the instance of Word visible
When you first create a new instance of Word, it runs invisibly. This approach
enables your application to exploit features of Word without the user even realizing
that Word is running. In this case, however, it is desirable to let the user edit the
merged letter, so Word needs to be made visible by setting the object’s Visible prop-
erty to True by using this line of code:

WordObj.Visible = True

If you don’t set the object instance’s Visible property to True, you may create hid-
den copies of Word that use system resources and never shut down. A hidden
copy of Word doesn’t show up in the Task tray or in the Task Switcher.

Caution

1096 Part IV ✦ Advanced Access Database Topics

Creating a new document based
on an existing template
After Word is running, a blank document needs to be created. The following code
creates a new document by using the Thanks.dot template:

WordObj.Documents.Add Template:=”G:\Access 11 Book\thanks.dot”,
_ NewTemplate:=False

The path must be corrected in order to point to the Thanks.dot template on your
computer.

The Thanks.dot template contains bookmarks (as shown in Figure 33-7) that tell
this function where to insert data. You create bookmarks in Word by highlighting
the text that you want to make a bookmark, selecting Insert ➪ Bookmark, and then
entering the bookmark name and clicking Add.

Using Bookmarks to insert data
Using Automation, you can locate bookmarks in a Word document and replace
them with the text of your choosing. To locate a bookmark, use the Goto method of
the Selection object. After you have located the bookmark, the text comprising the
bookmark is selected. By inserting text (which you can do by using Automation or
simply by typing directly into the document), you replace the bookmark text. To
insert text, use the TypeText method of the Selection object, as shown here:

WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”FullName”
WordObj.Selection.TypeText rsCust![ContactName]

You can’t pass a null to the TypeText method. If the value may possibly be Null, you
need to check ahead and make allowances. The preceding sample code checks
the Address2 field for a Null value and acts accordingly. If you don’t pass text to
replace the bookmark — even just a zero length string (“ “) — the bookmark text
remains in the document.

Activating the instance of Word
To enable the user to enter data in the new document, you must make Word the
active application. If you don’t make Word the active application, the user has to
switch to Word from Access. You make Word the active application by using the
Activate method of the Word object, as follows:

WordObj.Activate

Note

Note

1097Chapter 33 ✦ Exchanging Data with Office Applications

Depending on the processing that is occurring at the time, Access may take the
focus back from Word. You can help to eliminate this annoyance by preceding the
Activate method with a DoEvents statement. Note, however, that this doesn’t
always work.

Moving the cursor in Word
You can move the cursor in Word by using the MoveUp method of the Selection
object. The following example moves the cursor up six lines in the document. The
cursor is at the location of the last bookmark when this code is executed:

WordObj.Selection.MoveUp wdLine, 6

Closing the instance of the Word object
To free up resources that are taken by an instance of an Automation object, you
should always close the instance. In this example, the following code is used to
close the object instance:

Set WordObj = Nothing

This code closes the object instance, but not the instance of Word as a running
application. In this example, the user needs access to the new document, so closing
Word would defeat the purpose of this function. You can, however, automatically
print the document and then close Word. If you do this, you may even choose to
not make Word visible during this process. To close Word, use the Quit method of
the Application object, as follows:

WordObj.Quit

Inserting pictures by using Bookmarks
It is possible to perform other unique operations by using Bookmarks. Basically,
anything that you can do within Word, you can do by using Automation. The follow-
ing code locates a bookmark that marks where a picture is to be placed and then
inserts a .BMP file from disk. You can use the following code to insert scanned sig-
natures into letters:

WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”Picture”
WordObj.ChangeFileOpenDirectory “D:\GRAPHICS\”
WordObj. ActiveDocument.Shapes.AddPicture
Anchor:=Selection.Range, _ FileName:= _

“D:\GRAPHICS\PICTURE.BMP”, LinkToFile:=False,
SaveWithDocument _

:=True

Tip

1098 Part IV ✦ Advanced Access Database Topics

Using Office’s Macro Recorder
Using Automation is not a difficult process when you understand the fundamentals.
Often, the toughest part of using Automation is knowing the proper objects, proper-
ties, and methods to use. Although the development help system of the Automation
Server is a requirement for fully understanding the language, the easiest way to
quickly create Automation for Office applications like Word is the Macro Recorder.

Most versions of Office applications have a Macro Recorder located on the
Tools menu (see Figure 33-9). When activated, the Macro Recorder records all
events, such as menu selections and button clicks, and creates Visual Basic
code from them.

Figure 33-9: The Macro Recorder in Word is a powerful tool to help
you create Automation code.

After selecting Tools ➪ Macro ➪ Record New Macro, you must give your new macro
a name (see Figure 33-10). In addition to a name, you can assign the macro to a tool-
bar or keyboard combination and select the template in which to store the macro.
If you are creating the macro simply to create the Visual Basic code, the only thing
that you need to be concerned with is the macro name.

After you enter a macro name and click OK, the Macro Recorder begins recording
events and displays a Stop Recording window, and the arrow changes to an open
pointer attached to a cassette, as shown in Figure 33-11. You can stop recording
events by clicking the Stop button (the button with a square on it). To pause
recording events, click the other button, which is the Pause button.

1099Chapter 33 ✦ Exchanging Data with Office Applications

Figure 33-10: Enter a macro name and click
OK to begin recording the macro. In this
example, the macro is named “MyMacro.”

Figure 33-11: The Macro Recorder records all events until you click
the Stop button.

After you have finished recording a macro, you can view the Visual Basic code cre-
ated from your events. To view the code of a macro, select Tools ➪ Macro ➪ Macros
to display a list of all saved macros. Then select the macro that you recorded and
click the Edit button to display the Visual Basic editor with the macro’s code.
Figure 33-12 shows the Visual Basic editor with a macro that recorded the creation
of a new document using the Normal template and the insertion of a picture using
the Insert ➪ Picture ➪ From File menu item.

In the application for which a macro is created, the Application object is used
explicitly. When you use the code for Automation, you must create an Application
object accordingly. For example, the preceding macro uses the following code to
create a new document:

1100 Part IV ✦ Advanced Access Database Topics

Documents.Add Template:=” Normal.dot”, NewTemplate:= False,
DocumentType:=0

This code implicitly uses the Application object. To use this code for Automation,
copy the code from the Visual Basic editor, paste it into your procedure, and create
an object that you use explicitly, as follows:

Dim WordObj as New Word.Application
WordObj.Documents.Add Template:=” Normal.dot”, NewTemplate:=
False, DocumentType:=0

Figure 33-12: The Macro Recorder records all events until you click the
Stop button.

The Macro Recorder enables you to effortlessly create long and complete Automation
code without ever needing to read the Automation Server’s documentation.

✦ ✦ ✦

Adding Security
to Applications

Although Access provides the interface to maintain secu-
rity options, it is Jet that actually performs security

functions. The Jet security model has changed little since
Access 95. Jet’s security is still a workgroup-based security
model; all users in a workgroup are bound to the same security
rules. The rules enforced for individual users may vary from
user to user, based on the permissions assigned to each user.

In this chapter, you will use the database file Chap34
Start.mdb.

Understanding Jet Security
Jet security is defined at the object level for individuals or
groups of users. The Jet security model is rather complex, but
it isn’t too difficult to understand when broken down into its
core components, which are as follows:

✦ Workgroups

✦ Groups

✦ Users

✦ Object owners

✦ Object permissions

The two main reasons for employing user-level security are

✦ To protect sensitive data in the database.

✦ To prevent users from accidentally breaking an applica-
tion by changing the objects (tables, queries, and so on)
of the application.

On the
CD-ROM

3434C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding Jet
security

Deciding on a
security level to
implement

Creating a database
password

Using the /runtime
option

Using a database’s
Startup options

Manipulating users
and groups

Securing objects by
using permissions

Using the Access
Security Wizard

Protecting Visual
Basic code

Encrypting a
database

Preventing virus
infections

✦ ✦ ✦ ✦

1102 Part IV ✦ Advanced Access Database Topics

By using passwords and permissions, you can allow or restrict access of an individ-
ual or groups of individuals to the objects (forms, tables, and so on) in your
database. This information, known as a workgroup, is stored in a workgroup infor-
mation file.

Understanding workgroup files
Jet stores security information for databases in workgroup information files, usually
the default file is named “SYSTEM.MDW.” This workgroup information file is a spe-
cial Access database that contains a collection of user names and passwords, user
group definitions, object owner assignments, and object permissions. The SYSTEM.
MDW file is often located, by default, in the C:\Documents and Settings\<user
name>\Application Data\Microsoft\Access\System.MDW folder. When Access
opens a database, it reads the workgroup information file associated with the
database. Access reads the file to determine who is allowed — and at what level —
access to the objects in the database and what permissions they have to those
objects.

You can use the same workgroup file for multiple databases. After you enable secu-
rity for a database, however, users must use the workgroup information file contain-
ing the security information. If users use a workgroup other than the one used to
define security, however, they are limited to logging into the database as the Admin
user — with whatever permissions the database administrator left for the Admin user.

When securing a database, one of the first things that you need to do is to remove
all permissions for the Admin user. Removing these permissions prevents other
users from opening the database as the Admin user by using another Access work-
group file and obtaining the rights of the Admin user. Users can still open the
database as the Admin user by using a different workgroup, but they won’t have
any object permissions. This measure is discussed later in this chapter in the sec-
tion “Working with workgroups.”

Understanding permissions
The permissions in Jet security are defined at the object level; each object, such as
a form or report, has a specific set of permissions. The system administrator
defines what permissions each user or group of users has for each object. Users
may belong to multiple groups, and they always inherit the highest permission set-
ting of any of the groups to which they belong.

For example, every table object has a set of permissions associated with it: Read
Design, Modify Design, Read Data, Update Data, Insert Data, Delete Data, and
Administrator. (See Table 34-1 later in this chapter for a complete list of permis-
sions and their meanings.) The database administrator has the ability to assign or
remove any or all of these permissions for each user or group of users in the work-
group. Because the permissions are set at the object level, the administrator may

Tip

1103Chapter 34 ✦ Adding Security to Applications

give a user the ability to read data from Table A, as well as read data from and write
data to Table B, but prevent the user from even looking at Table C. In addition, this
complexity allows for unique security situations, such as having numerous users
sharing data on a network, each with a different set of rights for the database
objects. All security maintenance functions are performed from the Tools ➪
Security menu item (see Figure 34-1).

Figure 34-1: All Jet security functions are performed from the
Tools ➪ Security menu.

Understanding security limitations
You need to be aware of the fact that you can’t depend on the Jet security model to
be foolproof. For example, security holes have been discovered and exposed in pre-
vious versions of Access — in effect, unprotecting every database distributed under
the assumption that the code and objects were protected. The amount of resources
involved in developing an application is often huge, and protecting that investment
is essential. The most that you can do for protection is to fully and properly imple-
ment the Jet 4.0 security model and use legally binding licensing agreements for all
of your distributed applications. Unfortunately, the security of your databases is at
the mercy of software hackers.

As of the printing of this book, Microsoft has released the Microsoft Jet 4.0 Service
Pack 7 update, which provides an updated sandbox mode. Sandbox mode allows
Microsoft Office Access 2003 to block potentially unsafe expressions. In fact, if you
do not install this service pack, some features in Office Access 2003 will not func-
tion properly.

1104 Part IV ✦ Advanced Access Database Topics

You should monitor the Microsoft Update service on the Web at http://office.
microsoft.com/ProductUpdates/default.aspx to keep your Windows
operating system and Office programs up to date.

We recommend that you use Microsoft Access security to lock up your tables and
prevent access to the design of your forms, reports, queries, and modules. However,
if you want to control data at the form level — for example, suppose that you want
to hide controls or control access to specific form-level controls or data — you have
to write your own security commands. You can also use the operating system
(Windows) to prevent access to the directories.

Choosing a Security Level to Implement
As an Access developer, you must determine the level of security appropriate for
your application — not every database needs user-level security. If your application
contains non-sensitive data or is implemented in a fairly low-risk workgroup, you
may not need the powerful permission protection of Jet’s security. For applications
that need to be secure, you need to make the following decisions:

✦ Which users are allowed to use the database?

✦ Can individual users be categorized into similar groups?

✦ Which objects need to be restricted for individual users or groups?

After you have made these determinations, you are ready to begin implementing
security in your application. Access includes a tool to help you implement
security — the User-Level Security Wizard (available from the Tools ➪ Security
menu choice). This chapter teaches you how you can implement security by using
Access’s interface; each security element is discussed in detail. A thorough under-
standing of the workings of the security model is essential in developing well-
secured applications. (The wizard is discussed later in this chapter.)

This chapter uses two example databases: Chap34Start.mdb and AAASecureWizard.
Later in this chapter, you will see how the second database is created from the first
database. You should copy the Chap34Start.mdb database from the CD, included
with this book, into a subdirectory on your hard drive.

Creating a Database Password
You can use Jet security at its most basic level simply by controlling who can open
the database. You control database access by creating a password for the
databases that you want to protect. When you set a database password for a
database, users are prompted to enter the password each time they attempt to
access the database. If they don’t know the database password, they are not

On the
CD-ROM

Tip

1105Chapter 34 ✦ Adding Security to Applications

allowed to open the database. When using this form of security, you are not control-
ling specific permissions for specific users; you are merely controlling who can and
can’t access the secured database.

To create a database password, follow these steps:

1. In Access, open the Chap34Start.mdb database exclusively.

You must open the database exclusively in order to set the database password. To
open the database exclusively, select the Open Exclusive button from the Open
pull-down menu in the lower-right corner of the Open dialog box, as shown in
Figure 34-2.

Figure 34-2: Opening a database in exclusive mode.

2. Select Tools ➪ Security ➪ Set Database Password (refer to Figure 34-1).

3. In the Password field, type the password that you want to use to secure the
database (see Figure 34-3). For this example, use the password bible. Access
does not display the password; rather, it shows an asterisk (*) for each letter.

Figure 34-3: Creating a database password is the
simplest way to secure your database.

Note

1106 Part IV ✦ Advanced Access Database Topics

4. In the Verify field, type the password again. This security measure ensures
that you don’t mistype the password (because you can’t see the characters
that you type) and mistakenly prevent everyone, including you, from access-
ing the database.

For maximum security, when entering a password, you should follow standard pass-
word naming conventions. That is, you should make the password a combination of
letters and numbers that won’t represent any easily known or deduced combina-
tion. People often unwisely use a birthday, their name, their address number, or a
loved one’s name, which are all poor choices for passwords because another per-
son could deduce them fairly easily. On the other hand, you shouldn’t make the
password so difficult to remember that you and others accessing the database will
have to write it down to use it. A written password is a useless password.

5. Click OK to save the password.

You can’t synchronize replicated databases that have database passwords. If you
plan to use Jet’s replication features and you need database security, you must use
user-level security.

After you save the database password, any user who attempts to open the database
must enter the password. Although this method controls who can access the
database, it doesn’t control what users are allowed to do with the objects and data
after they have opened the database. To control objects, you need to fully imple-
ment Jet’s user-level security, which is discussed in the following section.

After a database has been protected with a database-level password, you must
supply the password when linking to any of its tables. This password is stored in
the definition of the link to the table.

To remove a database password, follow these steps:

1. In Access, open the secure database exclusively. You must open the database
exclusively to be able to remove the database password.

2. Select Tools ➪ Security ➪ Unset Database Password. This menu option
replaced the option labeled Set Database Password before the database pass-
word was set.

3. In the Password field, type the password of the database (see Figure 34-4).

4. Click OK to unset the password.

Figure 34-4: You can remove a database password
by entering the password in the Unset Database
Password dialog box.

Note

Caution

Tip

1107Chapter 34 ✦ Adding Security to Applications

If you remove a database password from an Access database, users are no longer
required to enter a password to access the database unless you have enabled user-
level security.

Any user who knows the database password has the ability to change or remove
the database password. You can prevent this situation by removing the Administer
permissions from the database for all users except the database administrator.
This is discussed in more detail later in this chapter.

Microsoft Access stores the database password in an unencrypted form. If you
have sensitive data, this can compromise the security of the password-protected
database. In situations where data security is critical, you should consider defining
user-level security to control access to sensitive data. User-level security is covered
in depth later in this chapter.

Using the /runtime Option
If you’re not concerned with protecting your application but simply want to prevent
users from mistakenly breaking your application by modifying or deleting objects,

Caution

Note

Using Visual Basic to Set a Password

You also can set a database password using Visual Basic code. The following code changes
the database password of the currently opened database:

Public Sub ChangeDatabasePassword()
On Error GoTo ChangeDatabasePasswordErr
Dim szOldPassword As String, szNewPassword As String
Dim db As Database
Set db = CurrentDb
szOldPassword = “”
szNewPassword = “shazam”
db.NewPassword szOldPassword, szNewPassword
Exit Sub
ChangeDatabasePasswordErr:
MsgBox Err & “: “ & Err.Description
Exit Sub

End Sub

If no database password is set, you pass a zero-length string (“”) as the old password
parameter. If a database password is assigned and you want to remove the password, pass
the database password as the old password parameter and pass a zero-length string (“”) as
the new password.

1108 Part IV ✦ Advanced Access Database Topics

you can force your application to be run in Access’s runtime mode. When a
database is opened in Access’ runtime mode, all the interface elements that allow
changes to objects are hidden from the user. In fact, while in runtime mode, it is
impossible for a user to access the Database window. When using the runtime
option, you must ensure that your application has a startup form that gives users
access to whatever objects that you want them to be able to access. Normally this
is the main menu or main switchboard of your application.

You must purchase and install the Microsoft Visual Studio Tools for the Microsoft
Office System to use the /runtime switch. This suite of tools includes a runtime
version of Access that allows you to distribute a royalty-free licensed copy of your
Access 2003 applications to users, whether they have Access on their machine
or not.

To assign a form as a startup form, open the database that you want to use,
choose Tools ➪ Startup and select the form that you want to be the startup form
from the Display Form/Page drop-down list. Startup forms are covered more in-
depth in the following section.

To create a shortcut to start your application in Access’s runtime mode, follow
these steps, using the Chap34Start.mdb database:

1. Go to the subdirectory that contains Microsoft Access (MSACCESS.exe).

On most computers, the MSACCESS.EXE file is located in the “C:\Program
Files\Microsoft Office\OFFICE11\” folder.

2. Highlight the Microsoft Access program and select File ➪ Create Shortcut, or
right-click on the program file and select Create Shortcut from the menu-on-
demand.

Windows creates a shortcut in the same directory, naming it “Shortcut to
Msaccess.exe.”

3. Right-click the newly created shortcut, select Properties from the menu, and
then click the Shortcut tab when the Properties dialog box opens.

4. In the Target: field, append the following parameters to the path of MSACCESS.
EXE (program): A space, the full path name and filename of the database to
open in runtime mode, another space, and then /runtime.

For example, the following command line starts Access and opens the
Chap34Start.mdb database in runtime mode on our computers:

“C:\Program Files\MicrosoftOffice\OFFICE11\MSAccess.exe” “C:
\Access 2003 Access Auto Auctions\Chap34Start.mdb” /runtime

Note

Tip

Note

1109Chapter 34 ✦ Adding Security to Applications

The path to MSAcess.exe should have already been in the Target: field. Note that
Windows automatically places the path and filename for MSAccess.exe in quota-
tion marks. The /runtime switch should not be enclosed in quotes. If you enclose
the /runtime switch in quotes, an error occurs when you attempt to execute the
shortcut.

5. After you have specified the path and filename, placing the /runtime switch at
the end of the Target: field, you can optionally remove the path name in the
Start in: field.

Figure 34-5 shows how the Shortcut properties should look at this point.

Figure 34-5: Modifying the Target: and
Start in: fields of the shortcut by using
the /runtime switch of Access 2003.

6. After the fields have been updated, click the Apply button to process the
changes and save the shortcut.

7. Finally, you can rename the shortcut icon to any name that you want and
move it from the current directory to another directory, or even to the desk-
top. After you have created the shortcut, you can distribute or re-create the
same shortcut for each user installation.

If your database has a password associated with it, the user will still be prompted
to enter the password prior to opening the database.

Chapter 38 covers working with the Access runtime environment.Cross-
Reference

Tip

Note

1110 Part IV ✦ Advanced Access Database Topics

Using a Database’s Startup Options
A slightly less secure alternative to using the /runtime option is to set a database’s
startup options. This alternative is not a complete solution for situations where
tight security is paramount. Figure 34-6 shows the Startup options dialog box. To
access the Startup options dialog box, select Tools ➪ Startup.

Figure 34-6: Using the Startup options dialog box provides
another option for securing an application.

By making the appropriate specifications in the Startup options dialog box, you can
do the following:

✦ Assign a title to the application.

✦ Assign an Application Icon to the application.

✦ Assign a form or data access page to immediately run when the database
is open.

✦ Prevent the Database window (container) from being displayed.

✦ Prevent the status bar from being displayed.

✦ Designate a menu bar to be used on startup of your application.

✦ Designate a shortcut menu to be used on startup of your application.

✦ Prevent Access’s built-in menus (full menus) from being displayed.

✦ Prevent Access’s built-in shortcut menus from being displayed.

✦ Prevent Access’s built-in toolbars from being displayed.

✦ Prevent users from modifying toolbars (toolbar/menu changes).

✦ Prevent users from using Access’s special keys to display the Database
window, display the immediate window, display the VB window, or pause
execution.

1111Chapter 34 ✦ Adding Security to Applications

To designate the frmSwitchboard form as the default form to open whenever the
Chap34Start.mdb database opens, follow these steps:

1. Open the Chap34Start.mdb database and select Tools ➪ Startup to open the
Startup dialog box.

2. Click in the Display Form/Page: field and select the frmSwitchboard form from
the pull-down list (refer to Figure 34-6).

3. Click OK.

After you have assigned a form to open automatically, you can also specify that the
Database window or status bar not be displayed to give even greater security to
your application. By selecting these two items, when the user clicks the Close but-
ton on the startup form, the database window (container) will not display. By using
a database password and the Startup options, you can assign minimum security to
the database and your application.

The user can bypass the Startup options by simply holding down the Shift key
while opening the database. However, if you assign a database password, users
will still be required to enter the password in order to use the database.

Using the Jet User-Level Security Model
Most often when security is required, setting a database password and run-time
options is simply not enough.

When you need more security, you can use Access user profiles that are imple-
mented by the user-level/object permissions security of Jet 4.0. The Jet Database
Engine offers additional levels of customization and security for your application.
When using Jet level security, you need to complete the following series of functions:

1. Select or create a workgroup database.

2. Define the workgroup database’s security groups.

3. Create the users of the workgroup database.

4. Define permissions for each user and security group.

5. Enable security by setting an Admin user password.

Enabling security
Jet database security is always on. Whenever a new workgroup database is created,
an Admin user is automatically created within the workgroup. This Admin user has
no password assigned to it. When the Admin password is blank, Access assumes

Caution

1112 Part IV ✦ Advanced Access Database Topics

that any user attempting to open the database is the Admin user, and that this user
is automatically logged in to the database as the Admin user. To force Access (Jet)
to ask for a valid user name and password to log in to the database (see Figure 34-7),
you simply need to create a password for the Admin user. (Creating passwords is
discussed later in this section.) To disable security, simply clear the Admin user’s
password. The security permissions that you have designed are still in effect, but
Access doesn’t ask for a user name and password — it logs on all users as the
Admin user with whatever permissions were assigned to the Admin user. Be careful
about clearing the Admin user’s password when you have modified the permissions
of your users.

Figure 34-7: When security is enabled, Jet
forces all users to enter a valid user name
and password to use the secured database.

Any changes that you make to security won’t take effect until you restart Access. If
you have cleared the Admin password only to find that some or all of the Admin
user’s permissions have been revoked, open the database and create a password
for the Admin user. Then exit Access and restart Access (not the database). When
you restart Access, you are prompted to enter a user name and password.

Working with workgroups
A workgroup is a collection of users, user groups, and object permissions. You can
use a single workgroup file for all of your databases, or you can use different work-
groups for different databases. The method that you use depends on the level of
security that you need. If you give Administrative rights to users of some databases
but not to users of other databases, you need to distribute separate workgroup files
with each database. Access always uses a workgroup file when you open it. By
default, this workgroup file is the SYSTEM.MDW workgroup file. This file comes
with Access 2003.

Creating a new workgroup
You can create new workgroups or join existing workgroups by using the
Workgroup Administrator program that comes with Access 2003 (see Figure 34-8).
To begin creating a new workgroup, select Tools ➪ Security from the Access menu.

You should completely close down Access after creating new workgroups or join-
ing existing workgroups. When you use the Workgroup Administrator to join a
workgroup, that workgroup is not actually used until the next time you start
Access.

Note

Tip

1113Chapter 34 ✦ Adding Security to Applications

Figure 34-8: Using the Workgroup
Administrator to create new workgroups
and to join existing workgroups.

To create a new workgroup file, follow these steps:

1. Start Access (with or without a database), select Tools ➪ Security, and then
select Workgroup Administrator.

2. Select the Create button in the Workgroup Administrator dialog box to display
the Workgroup Owner Information dialog box.

The workgroup that you create is identified by three components: Name,
Organization, and Workgroup ID (see Figure 34-9).

In order to re-create the workgroup file in the event that it becomes corrupt or
deleted, you need all three pieces of information. For this reason, to ensure that
no other user can create your workgroup and access your secured database, you
should supply a unique, random string for the Workgroup ID. Someone may pos-
sibly guess the name and organization used in your workgroup file if he or she
knows who you are, but to guess all three items — especially if you create a ran-
dom, unique ID — is almost impossible.

3. When you are satisfied with your entries, select OK to display the Workgroup
Information File dialog box.

Figure 34-9: Workgroups are identified by
these three key pieces of information. A
workgroup can’t be re-created without all
three of these items.

4. Enter a name for the new workgroup file, and select OK to save it (see
Figure 34-10). If you enter a filename that already exists, like SYSTEM.MDW,
you will receive a confirmation box requesting that you confirm replacing
the existing file.

Caution

1114 Part IV ✦ Advanced Access Database Topics

Figure 34-10: Assigning a filename for the
new workgroup.

5. The Workgroup Administrator displays a confirmation dialog box (see
Figure 34-11) containing the information that you entered for the new work-
group and explains the importance of writing down and storing the informa-
tion. If you are satisfied with your entries, select OK to save your workgroup.
If you want to change anything, click the Change button to return to Step 3.

Figure 34-11: Confirming the information for
the new workgroup.

When you select the OK button in the Confirm Workgroup Information dialog
box, a message displays to inform you that you have created the workgroup
information file correctly.

In order to ensure that you can recover from the loss of your workgroup file, you
should immediately make a copy of the workgroup file. In addition, you should
write down the three pieces of information that you used to create the workgroup
file, exactly as they were entered, in the event that you have to re-create the work-
group file from scratch. Store both the backup file copy and the written informa-
tion in a secure place.

Joining an existing workgroup
When you create a new workgroup, Access automatically joins the new workgroup.
If you don’t want to use the new workgroup right away, or if at any time you need to
use a workgroup other than the current workgroup, you can use the Workgroup
Administrator to join another workgroup.

Tip

1115Chapter 34 ✦ Adding Security to Applications

To join an existing workgroup, follow these steps:

1. Activate the Workgroup Administrator program from the Tools ➪ Security
menu.

2. The Workgroup Administrator dialog box displays the current workgroup
(refer back to Figure 34-10). Click the Join button to select a workgroup file. If
you aren’t sure of the filename, click the Browse button to display a File dialog
box in which to locate the workgroup file.

3. A prompt displays so that you can confirm or cancel joining the workgroup.
Select OK and then select Exit to close the Workgroup Administrator.

Working with users
Every time a user opens an Access (Jet) database, Jet must identify the user open-
ing the database. In Access, security is always enabled — regardless of whether or
not you have explicitly created a workgroup for your database. If you have not
defined a workgroup, Jet assumes that any user who opens the database is the
Admin user. When a new workgroup is created, Access automatically creates a
default user named Admin. The Admin user automatically receives full permissions
to all objects in the database. Obviously, when you secure a database, you don’t
want everyone to be able to open the database with full permissions on all objects,
so you must create additional users for the workgroup.

What Is Jet and a User Profile?

When you create a Microsoft Access database (.mdb or .mde), Access uses an internal pro-
gram to create and work with the database and its objects. Microsoft calls this internal pro-
gram the Jet Database Engine. Its purpose is to retrieve and store data in user and system
databases. Some people refer to the Jet engine as a data manager that the database sys-
tem is built upon. Jet only works with Access databases — it doesn’t work with other ODBC
databases, such as SQL Server, Oracle, and others. The current version of Jet is 4.0 (also in
Access 2000 and 2002). When you installed Access, the installation program created sev-
eral registry settings for the Jet engine. You can use the Registry Editor to examine and even
change these settings for Access. However, we highly recommend that you do not change
the setting in the Microsoft Windows registry.

Using Jet, you can build an Access user profile that is comprised of a special set of Window’s
registry keys, which will override the standard Access and Jet database engine settings.

1116 Part IV ✦ Advanced Access Database Topics

Adding and deleting user accounts
To add, delete, and edit user information, you use the User and Group Accounts dia-
log box (see Figure 34-12). To open the User and Group Accounts dialog box, select
Tools ➪ Security ➪ User and Group Accounts ... from the Access menu. The Users
tab of the User and Group Accounts dialog box consists of two sections: User and
Group Membership. You use the User section to create and maintain user names
and passwords. You use the Group Membership section to assign users to user
groups. Assigning users to groups is discussed in detail later in this chapter.

To fully secure your database with users and groups, you should generally follow
these steps:

1. Create a new user.

2. Add the new user to the Admins group.

3. Remove the Admin user from the Admins group.

4. Assign all object ownerships to the new user.

Figure 34-12: Creating and maintaining
users in the User and Group Accounts
dialog box.

When you create a user, you supply the user name and a personal identifier. Jet
then combines these two items and processes them in a special algorithm, produc-
ing a unique security ID (SID). It is this SID that Jet uses to recognize users. In order
to re-create a user in the workgroup, you need to know the user name and the per-
sonal ID (PID) that was used to create the user. Consequently, you should always
write down and store all names and PIDs of users that you create in a safe place.

To create a new user in a workgroup, follow these steps:

1. Open the database Chap34Start.mdb.

2. Select Tools ➪ Security ➪ User and Group Accounts to display the User and
Group Accounts dialog box.

1117Chapter 34 ✦ Adding Security to Applications

3. Select the New button in the User section to display the New User/Group dia-
log box (see Figure 34-13).

Figure 34-13: Jet combines the User Name and
Personal ID to create a unique SID for the user.

4. Enter the name Student1 for the Name, and enter a unique Personal ID of
1234. (You can enter any appropriate information into these two fields, if you
don’t want to use these example names.) Write this information down and
store it in a safe place; you will need it if you have to re-create the user in the
workgroup.

5. Select OK to save the new user.

After you have created the new user, Student1, you can assign Group Memberships
and/or a password for the user. Notice that Student1 is automatically a member of
the Users group. Any new member must at least belong to this group. You can make
Student1 a member of the Admins group by simply selecting the Add button in the
Group Membership section.

To fully secure your database, you must remove all permissions for the Admin
user, found under the Tools ➪ Security ➪ User and Group Permissions menu.
(Defining Group Permissions is covered later in this chapter.) All Admin users
share the same SID in all workgroups, on all machines. If you don’t remove the
permissions for the Admin user, an unauthorized user using a different workgroup
can open the database as the Admin user with all permissions of the Admin user.
The Admin user can’t be deleted, so the Admin user account needs to be adjusted
accordingly.

If you want to delete the user Student1 that you just created, follow these steps:

1. Select Tools ➪ Security ➪ User and Group Accounts to display the User and
Group Accounts dialog box.

2. From the User Name drop-down list, select the User Student1.

3. Click the Delete button to delete the selected user.

Creating and changing user passwords
Any user who is a member of the Admins group can remove a password from any
user account. A user who is a not a member of the Admins group can change his or
her own password. However, a user who is not a member of the Admins group can-
not change or create a password for any other user.

Caution

1118 Part IV ✦ Advanced Access Database Topics

When Access opens and a password has been assigned to any user, the Logon
Dialog box displays (refer back to Figure 34-7).

If no passwords are assigned to any of the users, however, Access will automati-
cally open, using the Admin user. This means that any additional users that you
create in Security will not be able to set a password. To correct this, you will need
to create a password for the Admin user. Then exit from Access and restart Access,
logging on as the user whose password you want to change.

To create or change the Admin password, follow these steps:

1. Open the database Chap34Start.mdb.

2. Select Tools ➪ Security ➪ User and Group Accounts.

Make sure that the user name selected is Admin (not Student1 that you created
earlier).

3. Click the Change Logon Password tab (see Figure 34-14).

4. Because no password has been assigned to Admin, leave the Old Password
field blank.

Figure 34-14: The Change Logon
Password tab of the User and Group
Accounts dialog box. Notice that the
name is “Admin” and can’t be changed.

If you are logging on as the Admin user after you have assigned a password, or if
a password exists for the user that you logged on as, enter it in the Old Password
field. If no password is assigned to the user, leave the Old Password field blank.

5. Move to the New Password field and enter the new password Admin (or any
other password that you want to assign — remember that Access’s security is
case-sensitive) in the New Password field. Access won’t show you the word that
you are typing; rather, it shows an asterisk for each character that you type.

Tip

Caution

Caution

1119Chapter 34 ✦ Adding Security to Applications

6. Move to the Verify field and enter the new password Admin again. (Again,
remember that Access’s security is case-sensitive.) Each character is replaced
with an asterisk.

7. Click the Apply button to save the new password for the Admin user.

8. Click OK to close the User and Group Accounts dialog box.

After you have created a password for the user, you will have to exit from Access
and restart Access for the changes to take effect. Simply closing the database and
opening it again won’t activate the security changes (such as assigning a password
to Admin) that you made.

The Logon dialog box will not display if no passwords have been set for any users.

Users can’t create or change passwords for other users, regardless of their permis-
sion settings.

Any user who is a member of Admins can clear the password of another user, so
that user can log on if he or she has forgotten his or her password.

To change another person’s password, you will have to start Access and open the
database by logging on as the user whose password you want to change.

Working with groups
Groups are collections of users. A user may belong to one or more groups. You use
groups to organize multiple users together who will be granted the same object per-
mission privileges. You can then define object permissions to the group once, ver-
sus having to assign them individually for each user. When you create a new user,
you simply add the user to the group that has the object permission privileges that
the new user should have.

For example, you may have a number of users in a credit department and in a sales
department. If you want to allow all of these users to look at a customer’s credit his-
tory but restrict the sales staff to viewing only basic customer information, you
have the following options:

✦ Create an individual user account for each user in each department and
assign object permissions for each user.

✦ Allow all users in the credit department to log on as one user, and allow all
users in the sales department to log on as a different user. You can then
restrict the object permissions for each of these two users.

✦ Create an individual user account for each user in each department, and cre-
ate a group account for each department. You can then make the permissions
assignments for each of the two groups and place each user into his or her
respective group to inherit the group’s permissions.

Tip

1120 Part IV ✦ Advanced Access Database Topics

Although creating a unique user account and assigning specific permissions to each
user is a valid scenario, it is an administrator’s nightmare. If policy dictates that one
of the departments needs to have permissions added or revoked, the change has to
be made to each of the users’ accounts in that department.

The second method is straightforward and simple but presents many problems. If a
user transfers from one department to another, he knows the user names and pass-
words for both departments and may be able to retrieve data that he is no longer
authorized to view. In addition, if an employee leaves, the user name and password
need to be changed, and each user of the workgroup has to be made aware of the
change. In a multi-user environment, creating a unique user account for each user
and then grouping them accordingly is a much better solution.

With the third option, the change can be made to the department group once, and
all users inherit the new permission settings.

Adding and deleting groups
Just as Access automatically creates an Admin user in all new workgroups, it also
automatically creates two groups: Users and Admins. Every user account in the sys-
tem belongs to the Users group; you can’t remove a user from the Users group. The
Admins group is the all-powerful, super-user group. Users of the Admins group have
the ability to add and delete user and group accounts, as well as to assign and
remove permissions for any object for any user or group in the workgroup. In addi-
tion, a member of the Admins group has the ability to remove other user accounts
from the Admins group. For this reason, you need to carefully consider which users
you allow to be a member of the Admins group. The Admins group and the Users
group are permanent groups; they can never be deleted.

Access doesn’t enable you to remove all users from the Admins group; one user
must belong to the Admins group at all times (the default is the user named
Admin). If you were allowed to remove all users from the Admins group, you
could set up security so tight that you would never be able to bypass it yourself! In
general, when securing a database, you should place only one user and one
backup user in the Admins group.

Unlike the Admin user’s SID, which is identical in every Access workgroup, the
Admins group’s SIDs are not identical from workgroup to workgroup, so unautho-
rized users using a workgroup other than the one that you used to define security
can’t access your database as a member of the Admins group. The Users group’s
SIDs are the same throughout all workgroups, however, so you need to remove all
permissions for the Users group. If you don’t remove permissions from the Users
group, any user in any workgroup can open your database with the Users group’s
permissions.

Note

Tip

1121Chapter 34 ✦ Adding Security to Applications

To create a new group named Sales, follow these steps:

1. Open Access and then open the Chap34Start.mdb database and log in with
the Admin user name and Admin password. Then select Tools ➪ Security ➪
User and Group Accounts to display the User and Group Accounts dialog box.

2. Select the Groups tab.

3. Select the New button to display the New User/Group dialog box (see
Figure 34-15).

Figure 34-15: Jet uses the group name
and personal identifier to create a unique
SID for a group, just as it does for user
accounts.

4. Just as you do to create users, enter the group name Sales and a personal ID
of Dept405. (If you aren’t following along with this example, you can enter
your own group name and personal ID.) Also, just as before, write down this
information and put it in a safe place because you will need it if you ever need
to re-create the group.

5. Select OK to save the new group.

6. After this is complete, you can select OK in the User and Group Accounts
dialog box to save your work.

If, at a later time, you want to delete the Sales group that you just created, follow
these steps:

1. Select Tools ➪ Security ➪ User and Group Accounts ... to display the User and
Group Accounts dialog box.

2. Select the Groups tab (refer to Figure 34-15).

3. From the drop-down list, select the Sales group to delete.

4. Select the Delete button to delete the selected group.

1122 Part IV ✦ Advanced Access Database Topics

Assigning and removing group members
Assigning users to and removing users from groups is a simple process. You use the
Users tab on the User and Group Accounts dialog box to add to and remove users
from a group. You may place any user in any group, and a user may belong to more
than one group. You cannot remove a user from the Users group nor can you
remove all users from the Admins group — you must always have at least one user
in the Admins group.

To add the user Student1 to the new group Sales, follow these steps:

1. Open Chap34Start. Select Tools ➪ Security ➪ User and Group Accounts to dis-
play the User and Group Accounts dialog box.

2. From the User Name drop-down list, select the user Student1 to modify her
group assignments.

3. To assign the user Student1 to the group Sales, select the Sales group in the
Available Groups list and select the Add button (see Figure 34-16). The Sales
group displays in the Member Of list.

4. Select OK to save the new group assignments.

Figure 34-16: Assigning users to groups
makes controlling object permissions
much easier for the system administrator.

To remove the user Student1 from the group Sales, follow these steps:

1. Select Tools ➪ Security ➪ User and Group Accounts to display the User and
Group Accounts dialog box.

Make sure that the user name selected is Student1 (not Admin).

2. Select the group Sales in the Member Of list and select the Remove button.
The Sales group no longer displays in the Member Of list.

Caution

1123Chapter 34 ✦ Adding Security to Applications

3. Select OK to save the new group assignments.

4. Because Jet uses the same SIDs for all Admin user accounts throughout all
workgroups, you always need to remove the Admin user from the Admins
group when securing a database. Figure 34-16 shows that the user Student1
has been added to the Sales group. Notice that Student1 is a member of two
groups: Users and Sales. Before leaving this section, assign Student1 to the
Admins group so that you can use this example later in this chapter.

The only remaining task is to set the appropriate object permissions for the Users
and Sales groups.

Securing objects by using permissions
After you have defined your users and groups, you must determine the appropriate
object permissions for each group. Permissions control who can view data, update
data, add data, and work with objects in Design view. Permissions are the heart of
the Jet security system and can be set only by a member of the Admins group, by
the owner of the object (see the next section), or by any user who has
Administrator permission for an object.

Setting an object’s owner
Every object in the database has an owner. The owner is a user account in the work-
group that is designated to always have Administrator rights to the object.
Administrator rights override the permissions defined for the logged-on user or
defined for any of the user’s groups. You can designate one user to be the owner of
all the objects in a database, or you can assign an owner to individual objects.

Access queries require special consideration when assigning owners to objects.
When creating a query, you can set the Run Permissions property of the query to
either User’s or Owner’s (see Figure 34-17). When a password is defined for a work-
group, Run Permissions is automatically set to User’s. Setting Run Permissions to
User’s limits the users of the query to viewing only the data that their security per-
missions permit. If you want to enable users to view or modify data for which they
do not have permissions, you can set the Run Permissions property to Owner’s.
When the query is run with the Owner’s permissions (WITH OWNERACCESS OPTION
in an SQL statement), users inherit the permissions of the owner of the query.
These permissions are applicable only to the query and not to the entire database.

When a query’s Run Permissions property is set to Owner’s, only the owner can
make changes to the query. If this restriction poses a problem, you may want to
set the owner of the query to a group rather than to a user account. Note that only
the owner of an OwnerAccess query can change the query’s owner.

If you haven’t assigned passwords to Admin or other users, the user is automatically
assumed to be Admin and the query’s Run Permissions property is set to Owner’s.

Note

Tip

1124 Part IV ✦ Advanced Access Database Topics

Figure 34-17: Setting a query’s Run Permissions determines which users can run the
query or modify the query.

To change the owner of any object in the database, follow these steps:

1. Select Tools ➪ Security ➪ User and Group Permissions to display the User and
Group Permissions dialog box.

2. Select the Change Owner tab (see Figure 34-18).

Figure 34-18: Transferring ownership of
one or more tables from the Admin user to
the Sales group.

3. Select the object (or objects) whose ownership you want to transfer. You
can select the type of objects to display by changing the Object Type field.

4. Select the user or group that you want to make the owner of the selected
object. To select a group name, first select the List: Groups radio button.

1125Chapter 34 ✦ Adding Security to Applications

5. Select the Change Owner button to change the object’s owner to the selected
user or group.

Each object in a database has an owner. The database itself also has an owner.
You can view the owner of the database by selecting Database from the Object
Type drop-down list. You can’t change an object’s owner by using Access’s inter-
face. The only way to change a database’s owner is to log on as the user that you
want to make the owner of the database, create a new database, and then import
the original database into the new database by using the File ➪ Get External Data
➪ Import menu option. When you import a database, the current user is assigned
as the new owner of the database and all of its database objects. This is essentially
what the Security Wizard (discussed later in this chapter) does for you.

Setting object permissions
Object permissions are the heart of Jet security. You can set one or more object
permissions at a time for a user or group. When assigning permissions, you must
keep in mind that some permissions automatically imply other permissions. For
example, if you assign a user Read Data permission for a table, the Read Design
permission is also granted because a table’s design must be available to access the
data. A more complex example is assigning permission for Insert Data — this auto-
matically grants permission for Read Data and Read Design.

An object’s permission assignments are persistent until one of the following condi-
tions occurs:

✦ A member of the Admins group changes the object’s permissions.

✦ The object is saved with a new name by using the Save As command from the
File menu.

✦ The object is cut and pasted in the Database window.

✦ The object is imported or exported.

If any of the preceding actions occurs, all permissions for the manipulated object
are lost and you will need to reassign them. When you perform any of these actions,
you are actually creating a new object. Access assigns default permissions for each
object type.

There are two ways that permissions can be granted to a user:

✦ Explicit permissions are permissions that are granted directly to a user. When
you manually assign a permission to a user, no other user’s permissions are
affected.

✦ Implicit permissions are permissions that are granted to a group. All users
belonging to a group inherit the permissions of that group.

Note

1126 Part IV ✦ Advanced Access Database Topics

Because permissions can be assigned implicitly and because some permissions
grant other permissions (Insert Data, Read Data, and Read Design permissions),
users may be able to grant themselves permissions that they do not currently
have. Because of this possibility, you must plan carefully when assigning permis-
sions to groups of users and to individual users.

To assign or revoke a user’s permissions for an object, follow these steps:

1. Select Tools ➪ Security ➪ User and Group Permissions ... to display the User
and Group Permissions dialog box. Select the Permissions tab.

2. In the Object Type drop-down list, select the type of object whose permis-
sions you want to change.

3. In the User/Group Name list box, select the user or group account that you
want to modify. To see a list of all Groups, click the List: radio button in the
Name section.

4. In the Object Name list box, select the object (or objects) that you want to
modify.

5. In the Permissions grouping section, select or unselect the permissions check
boxes for the object(s).

6. Select Apply to save the permission assignments.

Remember that Admin user SIDs are identical throughout all workgroups. So after
you assign Administer permissions to a specific user, you need to remove all per-
missions for the Admin user in order to secure your database. Figure 34-19 shows
the Admin user’s permissions being revoked for all tables in the database. Notice
that all checkboxes have been cleared for all tables. Clearing the checkboxes pre-
vents an Admin user from doing anything with table objects. You must repeat the
process for each Object type until the Admin user has no permissions for any object.

Figure 34-19: Removing all permissions for
the Admin user is critical to securing your
database.

Note

1127Chapter 34 ✦ Adding Security to Applications

Setting default object permissions
You can create default permission assignments for each type of object in a
database. These default permissions are assigned when you create new objects in
the database. You set the default permissions just as you set them for any other
object’s permissions. You select the user or group to assign the default permis-
sions, but you do not select a specific object name. Instead, select the first item in
the Object Name list that is enclosed in <> and begins with “New.” When you select
the Object Type Table, for example, you select <New Tables/Queries> in the Object
Name list. When you assign permissions for users and groups to these <New> items,
the permissions are used as defaults for all new objects of that type.

When removing default permissions for table objects, make sure that users have
the necessary permissions to create new tables. Otherwise, users will not be able
to execute make-table queries.

Setting database permissions
Just as objects in a database have permissions, the database itself also has its own
permissions. Selecting Database from the Object Type drop-down list will display
the database permissions that can be modified (see Figure 34-20). The database
permissions enable you to control who has administrative rights to the entire
database, who can open the database exclusively (locking out other users), and
who can open or run the database.

Figure 34-20: Assigning permissions for the
entire database.

Securing your database for distribution: A basic approach
If you are securing a database for distribution, setting up detailed security for multi-
ple users for all the objects in your database may not be important to you. Often,
the only concern with shipping a secured database is protecting your development
investment by securing the design of the application’s objects and code. If you need
this type of protection, you can distribute your application as an .MDE file (see the
section “Protecting Visual Basic Code”). Another method is to follow these steps:

Caution

1128 Part IV ✦ Advanced Access Database Topics

1. Create a workgroup to distribute with your database.

2. Remove the Admin user from the Admins group.

3. Remove all permissions for the Users group.

4. Remove all design permissions for the Admin user for all objects in the
database.

5. Do not supply a password for the Admin user.

Remember that if you do not specify a password for the Admin user, Access will log
on all users as the Admin user. Because the Admin user has no rights to the design
of any object, users cannot access objects or code in Design view.

Table 34-1 summarizes the permissions that you can assign.

Table 34-1
Summary of Assignable Permissions

Permission Permits a User To Applies To

Open/Run Open a database, form, report, Databases, forms, reports, and or
or run a macro. macros

Open Exclusive Open a database with exclu- Databases only
sive access.

Read Design View objects in Design view. Tables, queries, forms, macros, and
modules

Modify Design View and change the design Tables, queries, forms, macros,
of objects, or delete them. and modules

Administer For databases, set database Databases, tables, queries, forms,
password, replicate a database, reports, macros, and modules
and change start-up properties.
For database objects, have full
access to objects and data,
including the ability to assign
permissions.

Read Data View data. Tables and queries

Update Data View and modify but not insert Tables and queries
or delete data.

Insert Data View and insert but not modify Tables and queries
or delete data.

Delete Data View and delete but not modify Tables and queries
or insert data.

1129Chapter 34 ✦ Adding Security to Applications

Using the Access Security Wizard
Access includes the Security Wizard tool to assist you in securing your database.
The Security Wizard makes it easy for you to select the objects to secure. It then
creates a new database containing secured versions of the selected objects. The
Security Wizard assigns the currently logged-in user as the owner of the objects in
the new database and removes all permissions from the Users group for those
objects. The original database is not modified in any way. Only members of the
Admins group and the user who ran the Security Wizard have access to the secured
objects in the new database.

When you use the Security Wizard, make sure that you are logged in as the user
that you want to become the new database’s owner. You must already belong to
the Admins group and you cannot log in as Admin. If you log in as Admin, Access
will report an error when you attempt to run the Security Wizard. If you receive this
error, simply log in as another Admins group user.

To start the Security Wizard, log into the database as a user who is a member of the
Admins group. Then select Tools ➪ Security ➪ User-Level Security Wizard.

Follow these steps to create and open the AAASecureWizard database.

These steps assume that you have created the user Student1 and assigned the
user to the Admins group.

1. Exit Access and open the folder that contains Chap34Start.mdb. Copy this file
and name the new copy AAASecureWizard.mdb.

2. Start Access and open the AAASecureWizard database. When Access attempts
to open the database, the Logon dialog box displays. The Logon dialog box
displays automatically because the AAASecureWizard database inherited its
permissions from the original database (Chap34Start).

3. Enter Student1 in the Name field and select OK. (The user Student1 has no
assigned password.) Access opens the AAASecureWizard database.

4. Select Tools ➪ Security ➪ User-Level Security Wizard from the menu to start
the wizard.

The wizard displays a message advising you that you will need to use the existing
workgroup information file, or it can create a new one for the current open
database (see Figure 34-21). Select Create a new workgroup information file and
click the Next button.

When you select Create a new workgroup information file, the next screen, shown
in Figure 34-22, asks you for the filename for the new file, a Workgroup ID number
(WID) — which you should write down and save, and optionally, your name and
company.

Note

Tip

1130 Part IV ✦ Advanced Access Database Topics

Figure 34-21: The Security Wizard helps jump-start your
security implementation.

Figure 34-22: Assigning a unique WID and name to new
workgroup information file.

When the new workgroup information file screen appears, it automatically assigns a
random 20-character string of numbers and letters to the WID (Workgroup ID) field.
You can change this WID to any value.

As Figure 34-22 shows, you can choose to make this the new default workgroup
file for all databases (not recommended), or have Access create a shortcut to use
this file only for this database (default). Selecting the option to create a shortcut

1131Chapter 34 ✦ Adding Security to Applications

associates this file with only one database. Click the Next button to display the next
screen of the wizard.

The next screen of the wizard, shown in Figure 34-23, lets you select the objects to
secure. By default, the wizard secures all objects in the database. If you deselect an
object type (such as Tables or Forms), none of the objects of that type are exported
to the secured database. If you do not want to restrict security permissions for a
set of objects but still want those objects included in the new secured database, be
sure to select the objects in the wizard. Later on, modify the user and group permis-
sions for those objects in the new secured database. When you are satisfied with
your object selections, select the Next button to continue.

Figure 34-23: Selecting the objects to secure.

The next screen of the wizard, shown in Figure 34-24, asks you to create an optional
security group account for a series of group actions. These include:

✦ Backup Operators: Can open the database exclusively for backing up and
compacting.

✦ Full Data Users: Can edit data, but not alter design.

✦ Full Permissions: Has full permissions for all database objects, but can’t
assign permissions.

✦ New Data Users: Can read and insert data only (no edits or deletions).

✦ Project Designers: Can edit data and objects, and alter tables or relationships.

✦ Read-Only Users: Can read data only.

✦ Update Data Users: Can read and update, but can’t insert or delete data or
alter design of objects.

1132 Part IV ✦ Advanced Access Database Topics

Check all of the optional security groups displayed in the wizard screen. After you
have selected all groups, select the Next button to continue.

Notice that the next page of the wizard, shown in Figure 34-25, lets you choose to
grant permissions to the Users group (the default is no permissions). By selecting
Yes, you are able to assign rights to all object types in the database. Figure 34-25
shows this page with the Yes option selected. However, you should select the
default choice: No — the Users group should not have any permissions. Select the
Next button to continue to the next wizard screen.

Figure 34-24: Additional optional security groups for the
database.

Figure 34-25: Choosing whether or not to assign
permissions to the Users group.

1133Chapter 34 ✦ Adding Security to Applications

If you decide to grant any permissions to the Users group, you should be aware
that anyone with a copy of Access will have the same permissions that you assign
to this group. Essentially, you are exposing the database to a security breach if you
assign rights to this group.

The next page, shown in Figure 34-26, lets you add users to the workgroup informa-
tion file. To add a user, enter the name and password information in the appropriate
fields and select the Add a New User button.

Figure 34-26: Adding users and passwords to the
workgroup information file.

As Figure 34-26 shows, you can also remove users from the list by simply selecting
their name from the list box on the left and selecting the Delete User from the List
button. Select the Next button to continue.

The next wizard screen to display, shown in Figure 34-27, enables you to assign
users to groups in your workgroup information file. If you added optional groups
from the previous page (as shown in Figure 34-24), you can assign a user to any of
these groups by checking the appropriate check box. To assign rights to a user, sim-
ply select the user from the drop-down list and then assign that user to groups
using the check boxes. By default, all users, except the person creating the wizard,
are assigned to new groups. Click the Next button to continue on to the next screen.

The last page of the wizard displays, as shown in Figure 34-28. In this screen, the
Security Wizard asks you to provide a name for the old, and now unsecure,
database. The default name is the same name as the current database with the
extension .bak. Select the Finish button to finish creating the new secure database.

Caution

1134 Part IV ✦ Advanced Access Database Topics

Figure 34-27: Adding users to groups for group rights.

Figure 34-28: In the Final wizard screen, the Security
Wizard asks you to assign a name for the old database.

Technically, the Security Wizard doesn’t make any modifications to the current
database; rather, it makes a backup copy by using the name that you specify and
creates an entirely new database with secured objects. However, the new database
is given the name of the original database.

When you distribute your secured application, be sure to distribute the database
that the Security Wizard created for you.

Caution

1135Chapter 34 ✦ Adding Security to Applications

When the Security Wizard has finished creating the new database, it generates a
report called One-Step Security Wizard Report, as shown in Figure 34-29. The report
contains all of the settings used to create the users and groups in the workgroup
information file. You should keep this information. You will need it if you ever have
the need to re-create the workgroup file.

If you click the Finish button and Access finds any problems, it won’t create the
security database or the backup that you requested. Generally, you will get this
error if you have created the database and logged on as a user that secured the
table and then re-logged on as another user to secure it. This wizard works best
with databases that have not had any previously defined security.

Generally, making a copy of the original database and working with the secured
database is a good idea. If you make changes to the original database, you will need
to run the Security Wizard again to create a secured version of the database. In
addition, making a copy of the original database and then removing it from develop-
ment helps prevent accidentally distributing the unsecured database.

Figure 34-29: Choosing whether or not to assign permissions to the Users group.

Caution

1136 Part IV ✦ Advanced Access Database Topics

Encrypting a Database
When security is of utmost importance, one final step that you need to take is to
encrypt the database. Although it takes a great deal of skill (far more than the aver-
age computer user — or developer — possesses), it is possible to view the structure
of an unencrypted database. A skilled hacker may use this information to recon-
struct SIDs and gain full access to your secured database.

Encrypting a database makes using such tools to gain any useful information about
the database virtually impossible. Only the database owner or a member of the
Admins group (or a really good computer hacker) can encrypt or decrypt a
database.

To encrypt a database, follow these steps:

1. Open Access, but do not open a database. Select Tools ➪ Security ➪
Encrypt/Decrypt Database (see Figure 34-30).

Figure 34-30: Encrypting a database helps secure it from highly
skilled hackers.

2. Select the database to encrypt from the Encrypt/Decrypt dialog box.

3. Provide a name for the new encrypted database.

Access doesn’t modify the original database when it encrypts it. Rather, Access
creates a clone of the database and encrypts the clone. Just like when using the

1137Chapter 34 ✦ Adding Security to Applications

Security Wizard, you should make a backup copy of the original database and store
it somewhere safe to prevent accidentally distributing the unencrypted database.
Remember that in a world of rapidly changing data, your backup will rapidly
become out of date.

When encrypting a database, however, be aware of the following drawbacks:

✦ Encrypted databases don’t compress from their original size when used with
compression programs, such as WINZIP or the ODE Setup Wizard. Encryption
modifies the way that the data is stored on the hard drive so compression util-
ities have no effect.

✦ Encrypted databases suffer some performance degradation (up to 15 per-
cent). Depending on the size of your database and the speed of your com-
puter, this degradation may be imperceptible.

Encryption is performed in addition to securing a database. A secure database is
one that is secured using users, groups, and permissions. Simply encrypting a
database does nothing to secure the database for general Access users.

Decrypting a Database
You can decrypt a previously encrypted database. To decrypt a database, simply
follow these steps (which are similar to the encrypting process):

1. Start Access but do not open a database. Select Tools ➪ Security ➪
Encrypt/Decrypt Database.

2. Select the database to decrypt from the Encrypt/Decrypt dialog box.

3. Provide a name for the new decrypted database.

Protecting Visual Basic Code
Although setting user-level security allows you to restrict access to tables, forms,
and reports in your database, it does not prevent access to the Visual Basic code
stored in modules. You control access to the Visual Basic code in your application
by creating a password for the Visual Basic project that you want to protect. When
you set a database password for a project, users are prompted to enter the pass-
word each time they attempt to view the Visual Basic code in the database.

A Visual Basic project refers to the set of standard and class modules (the code
behind forms and reports) that are part of your Access database (.mdb) or Access
project (.adp).

Note

Note

1138 Part IV ✦ Advanced Access Database Topics

1. Open any standard module in the database. For this example, open the
basSalesFunctions modules in Chap34Start.mdb. When you open the
basSalesFunctions module, the Visual Basic Editor displays.

2. In the Visual Basic Editor, select Tools ➪ Access Auto Auctions Properties. The
Access Auto Auctions — Project Properties dialog box displays.

3. Select the Protection tab in the Project Properties dialog box. Check the
option labeled “Lock project for viewing.”

4. In the Password field, type the password that you want to use to secure the
project (see Figure 34-31). For this example, use the password bible. Access
does not display the password; rather, it shows an asterisk (*) for each letter.

Figure 34-31: Creating a project password
restricts users from viewing the application’s
Visual Basic code.

5. In the Confirm Password field, type the password again. This security measure
ensures that you don’t mistype the password (because you can’t see the char-
acters that you type) and mistakenly prevent everyone, including you, from
accessing the database.

6. Click OK to save the password.

After you save and close the project, any user who attempts to view the applica-
tion’s Visual Basic code must enter the password. Access prompts for the project
password only once per session.

A more secure method of securing your application’s code, forms, and reports is to
distribute your database as an .MDE file. When you save your database as an .MDE
file, Access compiles all code modules (including form modules), removes all

1139Chapter 34 ✦ Adding Security to Applications

editable source code, and compacts the database. The new .MDE file contains no
source code but continues to work because it contains a compiled copy of all of
your code. Not only is this a great way to secure your source code, it also enables
you to distribute databases that are smaller (because they contain no source code)
and always keep their modules in a compiled state.

See Chapter 36 to learn how to create an .MDE file.

Preventing Virus Infections
Implementing a good user-level security scheme will protect your database from
unauthorized access to the information or objects in your database. User-level
security does not, however, protect the physical database file from malicious macro
virus attacks.

You probably have had experience at some point with a virus attack on your com-
puter. Or most likely, you know someone who has. It goes without saying that it is
imperative to install and run a virus scanning utility on your workstation. Even
though you may be religious about keeping your virus scanner up to date, new
viruses crop up all the time. Therefore, you have to be proactive about protecting
your applications and sensitive data from exposure to these kinds of attacks.

When you run forms, reports, queries, macros, data access pages, and Visual Basic
code in your application, Microsoft Office Access 2003 uses the Microsoft Jet
Expression Service to scan the commands these objects execute to make sure that
these commands are safe. Unsafe commands could allow a malicious user to hack
into your hard drive or other resource in your environment. A malicious user could
possibly delete files from your hard drive, alter the computer’s configuration, or
generally create all kinds of havoc in your workstation or even throughout your net-
work environment.

The Microsoft Jet Expression Service checks its list of unsafe commands. When
Access encounters one of the unsafe commands, it can block the command from
execution. To tell Access to block these potentially unsafe commands, you must
enable sandbox mode.

To review the list of unsafe commands, search Access help for “About Microsoft Jet
Expression Service sandbox mode.”

Enabling sandbox mode
Sandbox mode allows Access to block any of the commands in the unsafe list it
encounters when running forms, reports, queries, macros, data access pages, and
Visual Basic code. To enable sandbox mode, follow these steps:

Tip

Cross-
Reference

1140 Part IV ✦ Advanced Access Database Topics

1. Open Access, but do not open a database. Select Tools ➪ Macro ➪ Security.
The Security dialog box displays, as shown in Figure 34-32.

2. In the Security dialog box, select the High or Medium option.

3. Select the OK button to close the Security dialog box.

4. Restart Access to apply the security change.

Figure 34-32: Enabling sandbox mode.

When you enable sandbox mode, it applies to all Access users on the workstation.

The Security dialog box provides three levels of macro security:

✦ High: Macros must be digitally signed. Unsigned macros will not run. The sta-
tus of the macro’s digital signature is validated for digitally signed macros.

✦ Medium: The status of the macro’s digital signature is validated for digitally
signed macros. For unsigned macros, a prompt displays advising the user to
enable the macro or to cancel opening the database.

✦ Low: Macros are not checked for digital signatures and no warning displays
for unsigned macros.

A digital signature is an encrypted secure file that accompanies a macro or docu-
ment. It confirms that the author is a trusted source for the macro or document. A
digital signature is contained in a digital certificate. You, or your organization’s IT
department, can obtain a digital certificate through a commercial certification
authority, like VeriSign, Inc. Search www.msdn.com for “Microsoft Root Certificate
Program Members” to obtain information on how to obtain a digital certificate.

If you are sure of the integrity of your database, you can select the Low security set-
ting. Digital signatures are generally implemented within large organizations that

Note

1141Chapter 34 ✦ Adding Security to Applications

are willing to fund the added expense of purchasing and keeping digital signatures
up to date. For most applications, however, you will probably use the Low setting.

If you or your organization has acquired a digital certificate, you can use it to digi-
tally sign your Access project. To digitally sign your Access project, follow these
steps:

1. Open the Access database to digitally sign. Select Tools ➪ Macro ➪ Visual
Basic Editor from the Access menu. The Visual Basic Editor opens.

2. Select Tools ➪ Digital Signature from the Visual Basic Editor menu. The Digital
Signature dialog box displays, as shown in Figure 34-33.

Figure 34-33: Digitally signing an Access
project.

3. Select Choose. The Select Certificate dialog box displays, as shown in
Figure 34-34.

4. Select the certificate to add to the Access project. Then select OK to close the
Select Certificate dialog box.

5. Select OK to close the Digital Signature dialog box and save the security
setting.

Figure 34-34: Choosing a digital certificate.

1142 Part IV ✦ Advanced Access Database Topics

Do not sign your Access project until the application has been thoroughly tested
and you do not expect to make any further changes to it. Modifying any of the
code in the project will invalidate the digital signature.

To prevent users from making unauthorized changes to the code in your project,
be sure to lock the project and apply a project password.

With a full understanding of the Jet security model and how to manage it, you can
create databases that protect your development investment and your users’ data.

✦ ✦ ✦

Tip

Note

Creating Help
Systems

One item of an application that is often overlooked
entirely is the inclusion of a comprehensive Help sys-

tem. Creating a complete and useful Help system is a skill
unto itself, and programmers often don’t take the time to
learn how to do it right. Understanding what makes a good
Help system and how to create one can be a powerful tool in
your development arsenal.

In this chapter, you will use the database file Chap35Start.
mdb.

Understanding the Windows
Help Structure

Great Help systems are more than just online documentation.
A Help system needs to explain the how-to of your application
in bits and pieces, and the user needs to be able to access a
specific bit or piece of information related to the task at hand
with minimum effort. In addition, these bits and pieces —
called topics — need to be linked in a comprehensive web,
enabling a user to easily travel from one related topic to
another. Each topic can be linked to a form or control’s Help
Context Id property (see Figure 35-1) to provide instant access
to the topic when the user presses F1 while the control or
form has the focus.

On the
CD-ROM

3535C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
the Windows
Help structure

Creating a Windows
Help program by
using Help Workshop

Integrating graphics
and sound in
a Help system

Compiling a
Help system

Integrating a Help
system with your
Access application

Third-party Help tools

✦ ✦ ✦ ✦

1144 Part IV ✦ Advanced Access Database Topics

Figure 35-1: You can link Help topics to the form or control they relate to
by using the Help Context Id property.

Help systems may consist of simple linked text topics, or they may contain graphics
and multimedia to help educate the user. A good application of graphics in a Help
system is the use of hotspot graphics to help explain an application’s toolbars.
Hotspot graphics, or hypergraphics, are graphic pictures that have links assigned
to various regions of the graphic. These regions are often invisible; the user knows
when the cursor is over a hotspot because the pointer turns into a pointing hand.
When the user clicks the hotspot, the topic linked to the hotspot displays. When
creating a hypergraphic of a toolbar, you can link a related topic to each tool button
in the toolbar graphic. Then users can simply click the button that they want help
on to display the appropriate Help topic, just as they would click the button on the
toolbar.

The Help interface consists of numerous components, and understanding these
components is key to mastering the task of designing great Help files, as well as
getting the most out of using a Help file.

The Help Viewer
The Help Viewer is the application that displays the Help system. The Help Viewer
contains three panes (see Figure 35-2):

✦ The Topic pane displays on the right side of the Help Viewer. This is where
the topic information displays.

1145Chapter 35 ✦ Creating Help Systems

✦ The Navigation pane displays on the left side of the Help Viewer. You can cus-
tomize this pane to display a table of contents, an index, a list of favorite Help
topics, or a full-text search tab.

✦ The toolbar, which displays at the top of the viewer, allows users to display or
hide the Navigation pane, or move forward to the next topic or back to the
previous topic. Stop, Refresh, Locate, and Home buttons are also available.

Figure 35-2: The Help Viewer displays the Help system.

You can customize the appearance of the Help Viewer to include or exclude the
Index or Search tabs in the Navigation pane. However, every Help system must have
a Contents tab. A Contents tab lists the topics that are available when a user clicks
Help Topics in your application’s Help menu, when a user clicks the Contents tab of
any Help topic, or when he or she double-clicks your Help file in Windows Explorer.
The Contents feature of a Help system is similar to the table of contents in a book.

The Contents tab
The Contents tab displays the Contents items in a collapsible outline format.
Contents items that can be expanded are shown with a closed book icon. To expand
a Contents item, select an item, and then select the Open button — or simply double-
click the Contents item. When you expand a Contents item, the closed book icon
changes to an open book icon, and the individual topics that can be viewed display.
Each topic is preceded by a document icon. When users locate the items that they
want help with, they can double-click the Help topic, or select it and click the

1146 Part IV ✦ Advanced Access Database Topics

Display button to view the Help topic. To view a specific Help topic, select the Help
Topic item, and then select the Display button — or just double-click the item. The
Help Topic displays in the Help Topic pane.

The Topic pane
Help topics are the core element of a Help system. Each topic covered in your Help
System should be contained in its own Help topic. Help topics are displayed in the
Help Topic panes (see Figure 35-3). A Help Topic pane contains information specific
to the topic, such as pertinent text, graphics, animation, or sound, and it may con-
tain links to other topics.

Figure 35-3: The Help Topic pane is where users of your
Help system get the topical information that they need.

The Office 2003 Resource Kit includes Microsoft HTML Help Workshop. Microsoft
HTML Help is an online Help authoring system based on Microsoft WinHelp 4.0. If
you’ve used WinHelp or Help Workshop before, you will be familiar with many of
the features of HTML Help and HTML Help Workshop.

The Office 2003 Resource Kit is included in Microsoft Office Enterprise Edition
2003. Or, you can download it, free of charge, from the Microsoft Office Resource
Kit Web site.

Like WinHelp, HTML Help uses a project file to combine topic, contents, index,
image, and other source files into one compiled Help file. HTML Help also provides
you with HTML Help Workshop, an authoring tool that makes it easy to view,

Note

1147Chapter 35 ✦ Creating Help Systems

manage, and edit your files in an enhanced user interface. Unlike WinHelp, HTML
Help has no practical Help system limits. Help file size, topic size, contents entry
limits, and keyword limits have all been (essentially) eliminated.

If you want even more control over how HTML Help is displayed and integrated into
your solution, you can work directly with HTML Help Application Programming
Interface (API) calls from your Visual Basic for Applications (VBA) code.

Implementing a Help button in Access requires that you use an API call to the
HTML Help or WinHelp engine to display the Help topic.

Other Help tools included in the Office 2003 Resource Kit are

✦ The Answer Wizard Builder lets you add your own Help topics to the ones
provided by the Microsoft Office Assistant.

✦ The HTML Help ActiveX control is used for creating Help pages on the Web.

These new tools greatly enhance the usability of the Help interface for the end user
of your application.

Creating a Windows Help System
Creating Help systems for Windows involves the following:

✦ Write your Help topic files in HTML. You can use Microsoft Word or any
authoring tool to create HTML files, as long as you create standard version 3.2
HTML source code.

✦ Create a Help project file (.hhp) to manage the interface objects that make up
your Help system — topics, graphics, contents (.hhc), index (.hhk), and other
source files — and to define the overall style of these objects.

✦ Create window definitions to define the style of window for displaying the
Help information.

✦ Create a table of contents file for easy navigation to Help topics.

✦ Create an index file for indexing Help topics.

✦ Compile your Help file. (This is optional if you are using the HTML Help
ActiveX control.)

✦ Test the Help system.

You don’t need to include all of your Help topics in one Help file. The Help engine
has the capability to use one index and one table of contents for multiple Help
files, which is very useful when you have an application that consists of modular
components. If the Help engine doesn’t locate a referenced Help file on the end
user’s computer, that Help file’s topics won’t show up in the table of contents.

Tip

Tip

1148 Part IV ✦ Advanced Access Database Topics

Creating Help topics
The most fundamental element in a Help file is the Help topic. The documents that
you write are created by using a special formatting language known as Hypertext
Markup Language (HTML). HTML topic files have an .htm or .html filename extension.

Although each Help topic or Web page that you write appears to be a document
with text, graphics, or animated images on it, .htm files are actually text documents
that have special HTML formatting codes. These codes, called tags, tell a browser
how to display each page. Only the text that appears in a topic or Web page is actu-
ally in the .htm file. Any graphics, sounds, animated images, or other elements that
appear are separate files that your HTML file points to. The browser copies or
downloads the graphics, sounds, or other elements when it sees the tags telling it
to do so.

Before you begin typing the descriptive text for your topics, you should define a list
of all the topics that you want to include in your Help system. After you have created
this list, organize it as best as possible (see Figure 35-4). This organization, in effect,
creates a level 1 outline for your topics. After you have organized the topics, simply
type the descriptive text below each topic. Creating your topics this way simplifies
the effort in designing your topic structure.

Figure 35-4: Organizing your topic list before you begin writing simplifies
the design process.

1149Chapter 35 ✦ Creating Help Systems

The easiest way to write your Help system is to create a new HTML file for each
Help topic. HTML Help is designed to work with multiple files, each containing a
single topic. For larger Help systems, however, you may find it easier to develop
one HTML file that contains all of the topics. By using the HTML Help Workshop,
you can split the large file into individual HTML files later.

To create an HTML topic file, follow these steps:

1. Create a new document in Microsoft Word (or another product that supports
HTML files).

2. Enter the text to be displayed for each topic.

3. Identify separate topic sections with a hard page break. You can create a hard
page break in Microsoft Word by selecting Insert ➪ Break and then selecting
Page Break.

4. Save the file as a Web page.

You can create a document template to use when creating your HTML files. A tem-
plate is a file that contains all of the font, style, heading, and design elements that
you use most frequently. You can distribute the template to all of the authors who
will be creating the Help contents files.

Creating a Help project file
After you have written all of the Help contents files that you will use in your Help
system, you can create an HTML Help Workshop project file. A Help project (.hhp)
file contains information about the location of your HTML topic files, contents
(.hhc) files, index (.hhk) files, image (.png, .jpg, .gif) files, and other files. Project
files also contain Help window definitions and other options that customize the
way that a Help system functions.

To create a Help project file, follow these steps:

1. Open the HTML Help Workshop.

2. Select File ➪ New ➪ Project. The New Project Wizard opens.

3. Follow the instructions on the wizard pages to begin creating the new project.

4. On the Existing Files page of the wizard, as shown in Figure 35-5, select the
HTML files option to import your existing Help files into the project. The
HTML Files page displays.

5. On the HTML Files page, shown in Figure 35-6, use the Add button to select
the files to import. After you have selected all of the HTML files to include,
select the Next button.

Tip

1150 Part IV ✦ Advanced Access Database Topics

6. When the Finish page displays, select the Finish button to create the new pro-
ject. The new project displays, as shown in Figure 35-7.

Figure 35-5: Using the New Project Wizard to
import HTML files into a new project.

Figure 35-6: Selecting the HTML files to
import into a new project.

When you create a new project, contents, or index file, the minimum necessary set-
tings are added automatically. The project file is divided into sections; for example,
[FILES] and [OPTIONS] are included in every Help project file. You can edit these
sections by double-clicking the section title.

1151Chapter 35 ✦ Creating Help Systems

Figure 35-7: A new HTML Help Workshop project.

Adding graphics to a topic
Although most of your Help topics will consist primarily of text, it is often beneficial
to include graphics in your Help topics. For example, if you use lots of buttons with
images on them (such as toolbar images), you can display the picture with its Topic
text to help the user associate the image with its function.

You can include the following types of graphics in your Help topics — .gif, .jpg, and
.png. To insert a graphic in an HTML file using Microsoft Word, follow these steps:

1. Place the cursor where you want the graphic to appear in the topic.

2. Select Insert ➪ Picture ➪ From File from the menu.

3. Select the image file to insert.

Setting the Help project options
Your first task when creating a new Help project is to define the options for the pro-
ject. Click the Change Project Options button on the HTML Help Workshop main
screen to access the project Options dialog box (see Figure 35-8). The two main
tabs that you need to be concerned with initially are the General and the Files tabs.

1152 Part IV ✦ Advanced Access Database Topics

Figure 35-8: The Options dialog box is where
you define parameters for your Help project,
such as the title for the Help system.

Setting the General tab options
The General tab is the tab displayed when you first click the Change project options
button. On the General tab, you can modify these settings:

✦ Title. This is the text string that appears in the title bar of your Help system.
The words Windows Help are used if you leave this field blank and if the con-
tents (.htm) file doesn’t have a title specified. You should always provide a
title specific to your Help program.

✦ Default File. This is the first HTML file to open in the Help system.

Setting the Files tab options
Clicking the Files tab on the HTML Help Workshop Options dialog box displays the
page that you use to enter information about files associated with the current pro-
ject (see Figure 35-9). The information that you supply on this tab is discussed in
the following section, item by item. However, you need to be aware that you must
specify the Contents file to use on this tab, or your Help system won’t have
Contents. Although you may not have created the Contents file yet, you may still
specify the name of the Contents file that you plan to create (with full path), or you
may create the Contents file first and then reopen the project and supply the name.

The information that you supply on the Files tab consists of the following:

✦ Compiled file. This is where you specify the name for your project when it
compiles. You can name the file anything that you want, as long as it has the
extension .chp. Prefixing the filename with a .\ causes the Help file to be
created in the same directory as the HTML Help Workshop.

1153Chapter 35 ✦ Creating Help Systems

✦ Log file. You can create a text log file when your Help project is compiled by
specifying a valid filename here. This log file contains the information printed
to the screen during compilation. For small projects, you may not need a log
file, so you can leave this box blank. For larger projects, however, you may
want to create a log file so that you can review errors that you encounter
when compiling the project.

✦ Contents file. You should always include a Contents for your Help project.
Creating a Help Contents is discussed later in this chapter, but this is where
you specify the full name and the path of the Contents file.

✦ Index file. You should also include an Index for your Help project. Creating a
Help Index is discussed later in this chapter, but this is where you specify the
full name and the path of the Index file. The specified Help Index must exist
when you compile the Help file.

Figure 35-9: To include Contents in your
Help file, you must specify the Contents
filename here.

Defining windows
The Help Viewer is the three-paned window in which topics automatically appear.
You never have to create a Help Viewer, but you can customize it. You can make
changes to just one of the panes or to all of them. Window definitions change the
size of the Help Viewer window, its position, its background color, and other
attributes.

1154 Part IV ✦ Advanced Access Database Topics

To specify the Help Viewer definition, follow these steps:

1. Select the Add/Modify Window Definitions button on the Project page. When
you add the first window definition, a prompt displays, as shown in Figure
35-10, requesting the type of new window to define. Enter Main as the new
type, and then click OK. The Window Types dialog box displays, as shown in
Figure 35-11.

Figure 35-10: Adding the first window
type to the Help project.

Figure 35-11: Defining the Main window
type for the Help Viewer.

2. In the General tab, the Window Type field shows Main as the type that you
specified in Step 1. In the Title bar text field, enter an appropriate title for the
Main window.

3. In the Navigation Pane tab, select the check box labeled Window with
Navigation Pane, Topic Pane, and Button.

1155Chapter 35 ✦ Creating Help Systems

4. Make sure that the Search Tab option and the Auto sync option are selected,
as shown in Figure 35-12.

5. Click OK to save the window definition.

Figure 35-12: Selecting the display options
for the window definition.

The HTML Help Workshop cross-checks the options that you selected for the
new window definition with the Project Options. If the window definition contains
any inconsistencies, the Resolve Window Definition Wizard displays, as shown in
Figure 35-13.

Figure 35-13: The Resolve Window Definition
Wizard.

1156 Part IV ✦ Advanced Access Database Topics

To use the wizard to resolve inconsistencies in your Help, follow these steps:

1. When the first screen in the Resolve Window Definition Wizard displays the
name of the window definition that contains the inconsistencies, click the
Next button to continue.

The second wizard screen, shown in Figure 35-14, compares the options that
you set for the window definition and the options that you have set in Project
Options. In this example, the wizard shows that the Search tab option was
selected in the Navigation pane for the Main window definition. It also shows
that the Compile full-text Information option was not selected in Project
Options. The wizard recommends that you implement the Compile full-text
Information option in order to complement the Search tab definition for the
Main window.

Figure 35-14: Resolving Search option
inconsistencies.

2. If you agree with the wizard’s recommendation, you can click the Compile
full-text Information option in the wizard screen and then click the Next
button to continue.

The wizard then sets the option in Project Options so that additional new
window definitions will include the full-text search feature.

Adding topic files to a project file
When you create a new project, you can automatically load existing files. If you cre-
ate additional HTML files later, you can always add these to your project. You must
supply at least one topic file in order to compile a Help project into a Help file. To
add or remove topic files in a Help project, use the Add/Remove Topic Files button
on the HTML Help Workshop main screen (see Figure 35-15).

1157Chapter 35 ✦ Creating Help Systems

Figure 35-15: Use the Topic Files dialog box to
add or remove topic files in your Help project.

To add topic files to your Help project, first select the Add/Remove Topic Files
button to display the Topic Files dialog box. Then follow these steps:

1. Click the Add button.

2. Select the topic file that you want to add to the Help project.

3. Click the Open button to add the topic file to the project file. Files that you add
to the project appear in the Help project definition script (see Figure 35-16).

To remove a topic file from your Help project, select the Add/Remove Topic Files
button to display the Topic Files dialog box, and then follow these steps:

1. Select the filename that you want to remove from the Help project.

2. Click the Remove button.

Saving and compiling the project
In order to ensure that you are shipping a Help system without errors or broken
links, you need to test your Help. In HTML Help Workshop, the Help project file
compiles all of the necessary files into a compiled Help (.chm) file. When you com-
pile a Help project, all of the included topic files, bitmap files, and Contents files are
placed into one Help file with the .chm extension.

The compiled Help file can then be placed on your hard drive, a removable storage
disk, a compact disc, a server location, an Internet location, or an intranet location.

During compilation, HTML Help Workshop uses the Help project (.hhp) file to deter-
mine how HTML topic files, contents (.hhc) files, index (.hhk) files, image (.jpg, .gif,
.png) files, and any other elements that you have added to the project file will look
in the single, compressed Help file. If any errors are found during the compilation,
compiler messages are generated that point out the problems to the author.

1158 Part IV ✦ Advanced Access Database Topics

Figure 35-16: As you add files and change options, the text script that defines
your Help project changes.

HTML Help Workshop performs these tasks during the compilation process:

✦ Reports missing topics or other errors in Contents and index files

✦ Reports broken links in topic, index, and Contents files

✦ Removes unnecessary white space or comments

To save and compile the project, select the Save all files and compile button on the
Project page. As the project compiles, a progress report displays in the right pane
of the HTML Help Workshop (see Figure 35-17).

Creating a table of contents
When you have finished adding all of the topic files that your Help project will use,
you need to create a Contents file for your Help system. It is critical that you create
a clear, concise, and comprehensive Contents file to make it easy for users to locate
the topics that they need in order to get their job done.

1159Chapter 35 ✦ Creating Help Systems

Figure 35-17: The right pane of the HTML Help Workshop displays the results of
compilation.

Creating a new Help Contents file
Contents files are ASCII files saved with the .hhc extension. Contents files consist
of specifications of three items:

✦ Headings

✦ Topics

✦ Commands

To create a new Contents file by using the HTML Help Workshop, follow these steps:

1. Select the Change Project Options button.

2. Select the Files tab.

3. Specify a filename for the new Contents file.

4. Select the Automatically Create Contents File (.hhc) When Compiling check
box, as shown in Figure 35-18. In the Maximum Head Level field, click the max-
imum heading level for which you want entries generated in your Contents file.
For example, if you select 3 for the maximum head level, entries are generated
with <H1>, <H2>, and <H3> heading tags.

1160 Part IV ✦ Advanced Access Database Topics

5. Save and compile the project. The new Contents items display on the
Contents page, as shown in Figure 35-19.

Figure 35-18: Automatically creating
a Contents file.

If you make changes to a Contents file that has been automatically generated, you
will lose those changes if you compile the project again. To prevent this, make sure
that the Automatically Create Contents File When Compiling check box is cleared
before you recompile.

Help Contents are just like tables of contents in books: They are essentially outlines.
Headings appear with book pictures in the Help Contents. If the user clicks the book
or the heading text, the Contents expands to show all items under the heading.
When the HTML Help Workshop automatically creates the Contents file, it looks for
text formatted as headings within the HTML files that you have included in the pro-
ject. The hierarchy of the HTML file’s styles becomes the hierarchy of the Contents
items. For example, you have formatted your HTML file title as Heading 1, and you
have formatted each topic under the title as Heading 2. When the HTML Help
Workshop creates the Contents, it uses the Heading 1 items as Contents Headings,
and the Heading 2 items as Page items under each respective heading.

Caution

1161Chapter 35 ✦ Creating Help Systems

Figure 35-19: The Help system’s Table of Contents.

Modifying the Contents items
You can add new Contents headings and pages to the ones that were automatically
generated. To add another heading entry to the Contents, follow these instructions:

1. Position the cursor in the Contents page on the item immediately above the
intended location for the new heading.

2. Select the Insert a heading button to add the heading above the selected
item in the Contents page. The Table of Contents Entry dialog box displays
(see Figure 35-20).

3. Enter a title for the new heading.

4. Select the Add button. The Path or URL dialog box displays, as shown in
Figure 35-21.

5. Select the HTML file to use for the new heading, and then click OK. The
filename displays in the Table of Contents Entry dialog box.

6. Click OK to create the heading.

1162 Part IV ✦ Advanced Access Database Topics

Figure 35-20: Defining a new Table of Contents
heading.

Figure 35-21: Selecting the HTML file
for a new heading.

Creating a Help Index
Put yourself in the user’s seat for a little while and ask yourself this question: If I
needed to find this information, what keywords would I expect to find it under? In
general, you should specify any and all keywords that a user may use to search for
each topic.

1163Chapter 35 ✦ Creating Help Systems

Adding keywords to an index
Topic keywords are words that are listed in the index of a Help system. These
keywords are used to quickly locate Topics; searching by keywords is faster than
performing a full-text search. In addition, you can create keywords that don’t even
appear in the text of a topic, thereby allowing for many different ways to locate a
topic of interest.

Consider using the following types of keywords:

✦ Nontechnical terms that are likely to occur to a beginning user.

✦ Technical terms that are likely to occur to an advanced user.

✦ Common synonyms for technical terms.

✦ Words that describe the topic in a general manner.

✦ Words that describe specific subjects within the topic.

✦ Inverted forms of keyword phrases, such as “combining Help files” and “Help
files, combining.”

To add a keyword to the Index, follow these steps:

1. Select the index tab. Select the Insert a Keyword button on the Index page.
The Index Entry dialog box displays, as shown in Figure 35-22.

Figure 35-22: Adding a keyword to the Index.

2. Enter the keyword to include in the Keyword field, and then select the Add
button. The Path or URL dialog box displays, as shown in Figure 35-23.

1164 Part IV ✦ Advanced Access Database Topics

Figure 35-23: Selecting the HTML file
source for the keyword.

3. Select the HTML file or files containing the information for the keyword.
Then click OK. The Index Entry dialog box displays the selected filename.

4. Click OK to save the new keyword.

5. Compile and save the project. Then select View Compiled File. In the View
Compiled File dialog box, select the View button to display the Help viewer.
The keyword displays in the Index page of the Help system, as shown in
Figure 35-24.

Figure 35-24: Using the Index to locate Help by a keyword.

1165Chapter 35 ✦ Creating Help Systems

Implementing a full-text search
Index keywords allow you to connect Help files to predefined search words. Users
often want to locate information on a topic that doesn’t appear in the predefined
keyword list. A powerful feature of any Help system is the capability to perform full-
text searches. The Search tab of the Help system allows the user to search by using
any word or combination of words or letters.

Ordinarily, when a user runs your Help system and clicks the Search tab for the first
time, the Find Setup Wizard appears. The wizard helps users set up a full-text search
index on their computers. A full-text search index lists all of the unique words in the
Help file.

You can create the full-text index for your users and ship it with your Help files.
The disadvantage to this technique is that it can greatly add to the disk space
needed to distribute your Help file. You can define your full-text search file by using
the “Compile full-text search information” check box located on the Compiler tab in
the Help project Options dialog box (see Figure 35-25).

Figure 35-25: Using the Help project Options
dialog box to define full-text search files.

When you compile your project with the Compile Full-Text Search Information
option turned on, a full-text search (.fts) file is created for your Help system.
You need to distribute this file with your Help file.

When using HTML Help Workshop, the number of topic files that you can view and
add is limited to 5,000. Projects with more than 5,000 files will compile correctly,
and links from entries in the index and Contents files will work, but you will need
to use a text editor to view, add, or edit them.

Caution

1166 Part IV ✦ Advanced Access Database Topics

Running your compiled Help file
To run your compiled Help file, click the View Compiled File button on the toolbar
(the button with the eyeglasses on it). When you click this button, HTML Help
Workshop displays the View compiled file dialog box (see Figure 35-26). In this
dialog box, you tell HTML Help Workshop which Help file to run.

Remember to save and compile your Help system whenever you make any changes.

Figure 35-26: It’s very important to
thoroughly test your Help file before
distributing it to users.

After you have selected the compiled Help file name, select the View button to run
the Help file. The Help system displays (as shown in Figure 35-27).

Figure 35-27: A finished Help file showing the Contents tab.

Caution

1167Chapter 35 ✦ Creating Help Systems

You can now test the contents and topic jumps in the Help file. If you click the Index
tab of the Help file’s main window, you see a searchable list of all the keyword index
entries that you created for the topics (as shown in Figure 35-28).

Figure 35-28: The keywords that you created for topics
appear in the index for the Help file.

Integrating a Help File with Your Application
After you have created and compiled a working Help file, it’s time to integrate it
with your Access application. You can tie controls, forms, command buttons, and
menu items to specific Help topics by using the techniques described in the follow-
ing section.

Displaying form-level Help
The most common way to link an application to a Help file is to link forms or spe-
cific controls to topics in the Help file. You accomplish this task in two stages: first
by specifying the Help File to use, and then by setting the Help Context ID property
on the forms and controls. See Figure 35-29 for an example of setting the properties
for the form.

You must specify the Help File name on each form in your application to prevent
Access Help from displaying. If you are distributing your application with the Office
Enterprise tools, and you don’t supply a Help File name, an error occurs when the

1168 Part IV ✦ Advanced Access Database Topics

user attempts to access Help. If the Help file is located in a different folder than the
running Access application, the Help File property on the form must include the full
path to the Help file.

Figure 35-29: Setting up Help for a form.

After you have set the Help File property on each form, you need to set the Help
Context ID for the form. This should be the ID of a topic that talks about the form
in general.

Displaying control-level Help
After you have set the form’s Help Context ID, you can set the Help Context IDs of
all controls. Specify a unique number for each control that will display a different
topic than the topic to which the form is linked. If you don’t want a control to dis-
play a unique topic, leave its Help Context ID as 0. When the control’s Help Context
ID is 0, the form’s topic displays when the user presses F1 while the control has the
focus; otherwise, the topic whose ID matches the Help Context ID of the control
with the focus is displayed when the user presses F1. See Figure 35-30 for an exam-
ple of setting up Help for a control.

Make sure that you set Help Context IDs for the labels as well as the controls. Some
users click the text box to get Help, while others click the label for the control. This
way, the Help topic will display regardless of where the user attempts to locate Help.

1169Chapter 35 ✦ Creating Help Systems

Figure 35-30: Setting up Help for a form control.

If the user presses F1 in a control that has its Help Context ID set to 0, and the
form’s Help Context ID is also set to 0, Access Help displays. If your application is
distributed with the Office XP Developer Tools, Access’s Help won’t display and an
error will occur. For this reason, you should always link each form’s Help Context
ID to a valid topic.

Mapping a Help Context ID to a Help topic
After you have established Help Context IDs for your forms and controls, you need
to map each Help Context ID to its corresponding topic in the Help file. The HTML
Help Workshop provides a tool for assigning a unique number to each of your Help
file’s topics.

The HTMLHelp API, included in HTML Help Workshop, provides information to
applications about the Help file. This information enables an application to display
a Help window.

Before you can use the HTMLHelp API to map your Help Context IDs, you must
first create a header file. The header file establishes a link between the Help
Context ID that you set in the application to a symbolic ID that can be used by
the HTMLHelp API.

Tip

1170 Part IV ✦ Advanced Access Database Topics

To create the header file, follow these steps:

1. Open Notepad (or your favorite text editor).

2. Create an entry for each symbolic ID, followed by its corresponding numeric
ID, by using the following format:

#define IDH_symbolicID 1000

3. You can name the symbolic ID anything that you want. You should name it
something that indicates the name of the topic that it refers to — VehMake,
for example. The number 1000 in the previous line of code refers to the Help
Context ID in your application. See Figure 35-31 for an example header file.

4. Save the file with a .h extension.

If you use an IDH prefix with the symbolic ID, as shown in the preceding example,
HTML Help Workshop will automatically check that the topics mapped in your pro-
ject file actually exist in your compiled Help (.chm) file, and that your context-
sensitive Help topics are all mapped in your project file.

Figure 35-31: Creating a header file.

After you have created the header file, you can set up the HTMLHelp API to use the
header file. To set up the HTMLHelp API, follow these steps:

1. Click the HTMLHelp API information button in the HTML Help Workshop. The
HTMLHelp API information dialog box displays, as shown in Figure 35-32.

2. Click the Header file button in the Map page of the HTMLHelp API information
dialog box. The Include File dialog box displays.

3. Enter the name of the header file that you created. Then click OK. The header
filename displays in the Map page.

4. Select the Alias tab of the HtmlHelp API information dialog box. The Alias page
displays (see Figure 35-33).

Tip

1171Chapter 35 ✦ Creating Help Systems

Figure 35-32: Setting up the HTMLHelp
API information.

Figure 35-33: Mapping the symbolic
IDs to Topics.

5. Select the Add button on the Alias page. The Alias dialog box displays, as
shown in Figure 35-34.

6. Enter the first symbolic ID that you created in the header file.

7. Select the HTML file that contains the Topic that the symbolic ID refers to.
Then click OK.

8. Repeat the Alias definitions for each of the symbolic IDs that you created in
the header file.

1172 Part IV ✦ Advanced Access Database Topics

Figure 35-34: Adding an HtmlHelp
API map definition.

9. After you have created all of the Alias definitions, click OK to save the
HTMLHelp API information.

10. Save and compile the project.

The Map page of the HTMLHelp API allows you to include the header file informa-
tion in your project. The Alias definitions establish the link between the symbolic
IDs and the individual Help topics in the Help system.

Testing the HTMLHelp API
After you have defined the HTMLHelp API information, you can use the HTML Help
Workshop to test the API connections. To test each API connection, follow these
steps:

1. Select the Test ➪ HTMLHelp API button in the HTML Help Workshop. The Test
HTMLHelp API dialog box displays, as shown in Figure 35-35.

2. In the Compiled file field, make sure that the correct file displays. If not, select
the current project to test. In the command field, select HH_HELP_CONTEXT.
In the Map Number field, enter the Help Context ID that you want to test.

3. Select the Test button. The Help Viewer displays the Topic that you entered
in the test dialog box.

If you encounter problems when testing the HTMLHelp API information, use the fol-
lowing checklist to locate and solve the problem:

✦ Have you included the numeric ID in the header file?

✦ Have you included the proper header file in the HTMLHelp API dialog box?

✦ Does each symbolic ID that you included in the header file match the alias?

1173Chapter 35 ✦ Creating Help Systems

✦ Is the alias mapped to the proper HTML file?

✦ Have you saved and recompiled the project?

Figure 35-35: Testing the HTMLHelp API
definitions.

Testing Help in Access
After you have created the connections between your Access application and
your Help system, you should be able to request Help directly from a form in your
Access application. To try out your new Access Help system, run the Access form.
Then press F1 on any field for which you have set a Help Context ID. The field’s
Help Topic displays in the Help Viewer, as shown in Figure 35-36.

Figure 35-36: Displaying Help in an Access form.

1174 Part IV ✦ Advanced Access Database Topics

Displaying the Table of Contents
When Help content displays for a field in an Access form, it displays in the Access
Help window. Notice, in Figure 35-36, that the Help topic “The Make of the Vehicle”
displays in the topic pane of the Help Viewer. But, the window title of the Help
Viewer displays as Microsoft Office Access Help instead of “Vehicle Listing
Program” as was defined in HTML Help Workshop. Notice also that no Table of
Contents displays.

By default, Office Help displays an individual topic alone in the Office Help window.
The Office Help window does not display a Navigation pane. This occurs even if
you have defined a Table of Contents in HTML Help Workshop. This behavior is the
default for all Help in Microsoft Office. You can verify this by pressing the F1 key for
any property in an Access form. Figure 35-37 shows how Help displays when you
press F1 for Help on a form’s Record Source property.

Figure 35-37: Normal Microsoft Office F1 Help behavior.

When the user requests Help on a specific topic, displaying the Help topic in its
own window with no Navigation pane is a quick and efficient method to provide
Help contents. In many situations, however, the user needs more guidance to obtain
the help he needs. When the user is uncertain of the specific topic she needs help
for, it is much more effective to provide a way to drill down through the available
topics or to search by a keyword.

1175Chapter 35 ✦ Creating Help Systems

The Contents tab of the Help Viewer’s Table of Contents pane provides the tools for
drilling down through the Help system’s available topics. The Index and Search tabs
allow the user to search for a keyword. To display your Help system’s Navigation
pane, you must include Visual Basic code to call the HtmlHelp API.

To interface with the HtmlHelp API, you can use the mod_Help module included in
this chapter’s example file, Chap35Start.mdb. The mod_Help module includes the
declarations for the API call to HtmlHelp. The module also includes the Show_Help
procedure and the HelpEntry function. Figure 35-38 shows the mod_Help module in
the Visual Basic Editor.

Figure 35-38: Declaring the HtmlHelp API.

The HelpEntry function instructs the HtmlHelp API to use the compiled Help file
stored in the variable FormHelpFile. Figure 35-39 shows the Code window for the
HelpEntry function. The FormHelpFile is initially set to a specific filename in a
specific folder. For this example, the FormHelpFile is set to “C:\Bible2004
\Chap35\Vehicle.chm.”

In your own applications, set FormHelpFile to the folder and filename for your
application’s Help system.

Tip

1176 Part IV ✦ Advanced Access Database Topics

Figure 35-39: Defining the Help system’s filename.

Next, the HelpEntry function assigns the default Help context ID for the topic to
display in the HelpViewer’s topic pane to the variable FormHelpId. The Help con-
text ID refers to one of the Help Context IDs you created in the HtmlHelpWorkshop.
For this example, the FormHelpId is set to “2” to display the topic “The Make of the
Vehicle.”

To review assigning Help context IDs, refer to the section “Mapping a Help Context
ID to a Help topic” earlier in this chapter.

The HelpEntry function calls the Show_Help procedure using the FormHelpFile and
FormHelpId parameters. The Show_Help procedure uses the procedures to execute
the HtmlHelp API call. The Code window for the Show_Help procedure is shown in
Figure 35-40.

The mod_Help module provides the toolset for making the call to the HtmlHelp API.
In order to execute the code in this module to display the complete Help Viewer,
you need to include some Visual Basic code in your form.

You can include a command button on a form to display the Help Viewer with the
Navigation pane. In this chapter’s example file, the VehicleListings form includes
the command button HelpSearch. When you select the HelpSearch button, the Help
Viewer displays the Help Viewer showing the Navigation pane, the Topic pane, and
the Help system title “Vehicle Listing Program” as was defined in HtmlHelp Workshop.
Figure 35-41 shows the Help Viewer for the HelpSearch button.

Note

1177Chapter 35 ✦ Creating Help Systems

Figure 35-40: Calling the HtmlHelp API.

Figure 35-41: Displaying the Navigation pane in an Access form.

The HelpSearch command button’s On Click event includes the Visual Basic
code to call the HelpEntry function. Figure 35-42 shows the Code window for the
HelpSearch_Click event procedure.

1178 Part IV ✦ Advanced Access Database Topics

Figure 35-42: Using a command button to display the
Help Viewer.

The HelpSearch_Click procedure calls the Show_Help procedure. When you call the
Show_Help procedure , you pass the name of the Help file and the Help context ID
to display.

By supplying complete, accurate Help that is fully linked with your application,
you will be providing a professional program that lowers the amount of support
required for the application and greatly increases the application’s usability.

✦ ✦ ✦

Working with
Advanced Select
Queries and
Other Query
Topics

In this chapter, you work with more complex queries in
greater detail than you did in earlier chapters. So far, you

have worked with types of select queries and parameters.
Earlier parts of this book (Chapters 5, 6, and 22) explained
relatively simple select queries, in which you select specific
records from one or more tables based on some criteria.
Chapter 22 covered using parameters in queries so that you
could pass information to the query at the time you run it.
You have not, however, worked with all the options that can
be used with these types of queries.

You work with advanced select queries and other query top-
ics, such as using calculated fields and working with query
properties and options. This chapter shows you how to create
queries that display totals, create cross-tabulations, use calcu-
lated fields, find specific numbers of records in a query, and
set properties and options of queries.

Select queries specify criteria for single or multiple fields
(including calculated fields) using multiple tables. Select
queries may also work with wildcard characters and fields not
having a value (Is Null). Functions in queries can specify record
criteria or create calculated fields. Finally, Access queries are
a great tool for performing ad-hoc what-if scenarios.

3636C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using calculated
fields

Creating queries that
calculate totals

Performing totals on
groups of records

Using different types
of queries that total

Specifying criteria for
queries that total

Creating crosstab
queries

Specifying criteria for
crosstab queries

Specifying fixed
column headings for
crosstab queries

✦ ✦ ✦ ✦

1180 Part IV ✦ Advanced Access Database Topics

This chapter focuses on four specialized types of advanced select queries:

✦ Calculated Fields. Using calculated fields in the query.

✦ Number of records. Finding a specific number of records in a query.

✦ Total. Calculates totals for records.

✦ Crosstab. Summarizes data in an easy-to-read, row-and-column format.

This chapter will use the database named CHAP36Start.mdb. If you have not
already copied it onto your machine from the CD, you will need to do so now.
After you have completed this chapter, your database should resemble the one in
CHAP36End.mdb.

Using Calculated Fields
Queries are not limited to actual fields from tables; you can also use calculated
fields (created by performing some calculation). A calculated field can be created in
many different ways, including the following:

✦ Concatenating two Text type fields using the ampersand (&).

✦ Performing a mathematical calculation on two Number type fields.

✦ Using an Access function to create a field based on the function.

In the next example, you create a simple calculated field, DiscountPrice, from the
curPrice and dblDiscountPercent fields in the tblSalesLineItems table by following
these steps:

1. Create a new query by using the tblSalesLineItems table.

2. Select lngzInvoiceNumber, chrDescription, curPrice, and dblDiscountPercent
from the tblSalesLineItems table.

3. Click an empty Field: cell of the QBE pane.

4. Press Shift+F2 to activate the Zoom box (or right-click and select Zoom).

5. Type DiscountPrice: tblSalesLineItems.CurPricetblSalesLineItems.CurPrice*
tblSalesLineItems.dblDiscountPercent.

Your Zoom box should look similar to the one shown in Figure 36-1.

Because you are only using one table, you did not have to type in the name of the
table before each field name. However, it is good practice to do so. You could have
typed DiscountPrice: CurPrice-CurPrice*dblDiscountPercent.

Note

On the
CD-ROM

1181Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

6. Click the OK button in the Zoom box (or press Enter) to return to the Design
Window.

7. Click the View button on the toolbar to see the resulting Calculated field.

Your screen should look similar to the one shown in Figure 36-2.

Figure 36-1 shows the expression from Step 5 being built in the Zoom window.
DiscountPrice is the calculated field name for the expression. The field name and
expression are separated by a colon.

At this point, you can save this query to use later, naming it qrySales Totals
with Tax.

Figure 36-1: Creating a simple calculated field.

Figure 36-2: The resulting dynaset shown using calculated field DiscountPrice.

1182 Part IV ✦ Advanced Access Database Topics

Calculated fields and the Expression Builder
Access has an Expression Builder that helps you create any expression, such as a
complex calculated field for a query. In the next example, you create a calculated
field named DueDate that displays a date 45 days in the future, based on an invoice
date in tblSales table. You can use this date for a letter you plan to send to all buy-
ers that have outstanding invoices; the date is based on the dtmInvoiceDate field in
the table. To create this calculated field, follow these steps:

1. Create a new query using the tblSales table from the Chap36Start database.

2. Select the idsInvoiceNumber, dtmSaleDate, and dtmInvoiceDate fields from
the tblSales table.

3. Click an empty Field: cell in the QBE pane.

4. Activate the Expression Builder by clicking the Build button on the toolbar
(fourth from right side, the wand with three stars to the left and three dots
across the bottom). Another method is to right-click to display the shortcut
menu and select Build, while in an empty Field: cell of the QBE pane.

Access displays the Expression Builder dialog box, as shown in Figure 36-3.

In the next several steps, you will build the expression DateAdd (“d”, 45,
[tblSales]![dtmInvoiceDate]) for the calculated field. The DateAdd function
adds a specified number of days, weeks, months, quarters, or years to
another date. In this example, it is adding 45 days to the invoice date value.

5. Go to the bottom-left window of the Expression Builder dialog box and expand
the Functions tree by double-clicking it.

6. Select the Built-In Functions choice (click it).

Access places information in the two panes to the right of the one you’re in
(see Figure 36-4).

Figure 36-3: The Expression Builder
dialog. This dialog box can be used to
create any type of expression you want.

1183Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

7. Go to the second window (which lists all the different categories of functions).

You could skip this step and go immediately to the third column to find your
function. If you do not select a category of functions, Access shows all the
functions in the third window.

8. Go to the third window (which lists all the different types of date/time
functions).

9. Move down through the column and select the DateAdd function (double-
click it).

Access places the function in the top-left window, with information about the
three necessary parameters.

10. Go to the top-left window and click the parameter <interval>.

11. When the parameter is highlighted, simply type “d” (quotation mark, d, quota-
tion mark).

12. Click <number> and replace it with 45.

13. Click <date> to highlight it.

The function should look like the one shown in Figure 36-4.

14. Go back to the bottom-left window; double-click Tables.

15. Select the tblSales table (click it once).

Access moves the parameter <Value> into the third, rightmost, column.

Figure 36-4: Expanding the Built-In
Functions choice of the first window
opens the other two, displaying a
multitude of functions. It is being used
to build a calculated field. The <date>
parameter needs to be replaced with a
field name.

16. Select dtmInvoiceDate from the middle window on the bottom (double-click it).

Access places the table and field names (separated by an exclamation mark)
in the last part of the DateAdd function.

1184 Part IV ✦ Advanced Access Database Topics

17. Click OK in the Expression Builder.

Access returns you to the QBE pane and places the expression in the cell
for you.

18. Access assigns a name for the expression automatically, labeling it Expr1.
Should your field now show this name, change it from Expr1 to DueDate by
overwriting it.

If you perform these steps correctly and widen the column to display the entire
expression, the cell should look like the one shown in Figure 36-5. The DateAdd()
function enables you to add 45 days to the field dtmInvoiceDate in the tblSales
table. The d signifies that you are working with days rather than months, weeks,
or years.

Figure 36-5: A query showing a calculated field built in the Expression builder and
named DueDate.

Clicking on the View button, you can show the datasheet of the dynaset showing
the new calculated field, DueDate, that will display a value 45 days from the
invoice date.

Of course, you could type in the calculated field, but the Expression Builder is a
valuable tool when you’re creating complex, hard-to-remember expressions.

1185Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Creating complex calculated fields
In addition to creating calculated fields from fields in a single table, you can also
create them using fields from multiple tables. You can even create calculated fields
based on values in other calculated fields in the query.

For instance, you may want to create another calculated field based on fields in
both the tblSales and tblSalesLineItems tables and the calculated field named
DiscountAmount that you created earlier in the query qrySales Totals with Tax.
This new calculated field, named Total Due with Discount/Tax, needs to use the pre-
viously created DiscountAmount calculated field and the dblTaxRate field from the
tblSales table.

To create this calculated field, follow these steps:

1. Open the query qrySales Totals with Tax from earlier in Design mode.

2. Add the table tblSales to the query by clicking the Show Table button on the
toolbar and adding the tblSales to the query.

Resize the table and move it to the left of tblSalesLineItems.

3. Select the blnTaxable field from the tblSalesLineItems table and the
dblTaxRate field from the tblSales table.

4. Click an empty Field: cell of the QBE pane.

5. Press Shift+F2 to activate the Zoom box (or right-click and select Zoom).

6. Type Total Due with Discount/Tax: IIf(tblSalesLineItems.blnTaxable,
DiscountPrice + (DiscountPrice*tblSales.dblTaxRate), DiscountPrice).

Your Zoom box should look similar to the one shown in Figure 36-6.

Figure 36-6: The Expression Builder dialog box. This dialog
box can be used to create any type of expression you want.

1186 Part IV ✦ Advanced Access Database Topics

7. Click the OK button in the Zoom box (or press Enter) to return to the Design
Window.

8. Click the View button on the toolbar to see the resulting Calculated field.

Clicking on the view button, you should see a datasheet similar to the one shown in
Figure 36-7. You will have to resize the fields to see the entire datasheet.

You can re-save your new query, with the new calculated field added.

Figure 36-7: The datasheet containing two calculated fields.

The calculated field created in Step 6 is relatively complex. It uses the IIF() function,
called the immediate if function, to check whether the blnTaxable field is checked
in the tblSalesLineItems. It also uses the previously created calculated field named
DiscountPrice.

The IIF function lets the calculated field perform two different calculations, based
on the value of the blnTaxable field. If it is checked (or positive), the Total Due with
Discount/Tax calculated field displays the resulting value of the DiscountPrice cal-
culated field plus the correct amount of tax added, based on the tax rate field from
the tblSales table. If the blnTaxable field is not checked (negative), it just displays
the DiscountPrice field without performing a tax calculation.

This query now uses two calculated fields: DiscountPrice and Total Due with
Discount/Tax. The second calculated field uses the values calculated in the first one
and a field from the second table, tblSales.

This query demonstrates the power available in queries using calculated fields.

1187Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Finding the Number of Records
in a Table or Query

To quickly determine the total number of records in an existing table or query, use
the Count(*) function. This is a special parameter of the Count() function. For
example, to determine the total number of records in the tblContacts table, follow
these steps:

1. Start a new query using the tblContacts table.

2. Click the first empty Field: cell in the QBE pane.

3. Type Count(*) in the cell.

Access adds the calculated field name Expr1 to the cell in front of the Count(*)
function. Your query’s QBE pane should now look like the one shown in Figure 36-8.
This query as created is pretty useless, because you can obtain the same informa-
tion by simply selecting fields, setting no conditions in a query, and then looking at
the bottom of the datasheet on the navigation line when you view it.

Figure 36-8: The QBE pane of a query using the Count(*) function.

The datasheet now has a single cell that shows the number of records for the
Contacts table. The datasheet should look like the one shown in Figure 36-9.

If you use this function with the asterisk wildcard (*), this is the only field that can
be shown in the datasheet, although you can use additional fields to set a criterion.

1188 Part IV ✦ Advanced Access Database Topics

Figure 36-9: The datasheet of a Count(*) function for the tblContacts table.

The Count(*) function can also be used to determine the total number of records
that match a specific criterion. For example, you may want to know how many con-
tacts you have in the tblContacts table that are not sellers (buyers or both) and
that live in Connecticut. Follow these steps to ascertain the number in the table:

1. Start a new query and select the tblContacts table.

2. Click the first empty Field: cell in the QBE pane.

3. Type Count(*) in the cell.

4. Double-click the chrContactType and chrState fields in the table to add them
to the query.

5. Deselect the Show: cell for the chrContactType and chrState fields.

6. Type <> seller in the Criteria: cell for chrContactType.

7. Type CT in the Criteria: cell for chrState.

8. Go back to the first cell Expr1:Count(*).

9. Replace Expr1: with Total non Sellers in State of CT.

Figure 36-10 shows how the query should look. If you select the Datasheet option
from the Query View button on the toolbar, Access again displays only one cell in
the datasheet; it contains the number of non Sellers (Buyer and both) from the
state of CT in the resulting dynaset (11). You could have left the default expression
name of Expr1 if you wished. Renaming the default Expr1 to something more under-
standable makes the datasheet value more understandable.

Remember that only the field that contains the Count(*) function can be shown in
the datasheet. If you try to display any additional fields, Access reports an error.

1189Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Figure 36-10: The query QBE pane that is used to show the number of
no Sellers in state of CT.

Finding the Top (n) Records in a Query
Access not only enables you to find the number of records in an existing table or
query, but it also provides the capability of finding the query’s first (n) records
(that is, a set number or percentage of its records).

Suppose that you want to identify the first 10 buyer records for the year 2003 —
in other words, the first 10 sales of the year 2003. This is known as the Top (n)
records. To determine the first (top) 10 sales for 2003 and their owners, follow
these steps:

1. Create a new query using the tblContacts and tblSales tables.

2. Create a calculated field named Buyer Name using the chrFirstName and
chrLastName fields from the tblContcts table.

The calculation should be Buyer Name: chrFirstName &“ ”&chrLastName.

3. Select the chrContactType field from the tblContacts table and the
dtmSaleDate field from the tblSales table.

4. Enter a criterion of <> Seller in the chrContactType field.

5. Enter a criterion of Between 1/1/03 and 1/1/04 in the dtmSaleDate field.

6. Specify a sort order of Ascending in the dtmSaleDate field.

At this point, you can click on the view button to see that there are 26 records
in the resulting dynaset. Click on the view button to return to the Design
surface.

7. Click the Top Values combo box next to the Totals button (_) on the toolbar.

8. Enter 10 in the Top Values property cell, as shown in Figure 36-11.

1190 Part IV ✦ Advanced Access Database Topics

Figure 36-11: A query with five highlighted in the Top Values combo box on the
toolbar open and showing a value of 10.

If you click the selection arrow of the Top Values combo box, you will see a
series of default values — 5, 25, 100, 5%, 25%, and All. You can select one of
these or type in your own value as was done here (10).

You are ready to run your query. When you click the Query View button on the tool-
bar, you should see the top 10 records in the dynaset, which should look like the one
shown in Figure 36-12. This datasheet displays only the first 10 records in the dynaset.

Figure 36-12: Datasheet view of the dynaset of the top (first)
10 records in a query.

1191Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

You can specify any percent or real number for the Top (n) values of a query. This
is very helpful for those times when you want to see only a specific number of
records. It can be used with total queries, which you will create later in this chap-
ter, showing the top 5%, 15%, or any other value you want to specify of records.
Perhaps you may want to see the top 10% in value of buyers in the system.

How Queries Save Field Selections
When you open a query design, you may notice that the design has changed since
you last saved the query. When you save a query, Access rearranges (even elimi-
nates) fields on the basis of several rules:

✦ If a field does not have the Show: box checked but has criteria specified,
Access moves it to the rightmost columns in the QBE pane.

✦ If a field does not have the Show: box checked, Access eliminates it from the
QBE pane column unless it has sorting directives or criteria.

✦ If you create a totaling expression with the Sum operator in a total query,
Access changes it to an expression using the Sum function.

Because of these rules, your query may look very different after you save and
reopen it. In this section, you learn how this happens (and some ways to
prevent it).

Hiding (not showing) fields
Sometimes you won’t want certain fields in the QBE pane to show in the actual
dynaset of the datasheet. For example, you may want to use a field such as
chrContactType to specify a criterion or a sort without showing the actual field.

To hide, or exclude, a field from the dynaset, you simply click off the Show: box
under the field you want to hide. Figure 36-13 demonstrates this procedure. Notice
that the field chrContactType is used to specify a criterion of displaying only
Buyers or Both (<> “Seller”). Because you don’t want this field in the actual
datasheet, you deselect the Show: cell for the chrContactType field.

Figure 36-13: The easiest way to hide a field is to uncheck the Show: check box of
the field, as in chrContactType.

1192 Part IV ✦ Advanced Access Database Topics

Any fields that have the Show: cell turned off (and for which you entered criteria)
are placed at the end of the QBE pane when you save the query. Figure 36-14 shows
the same query as Figure 36-13 after it is saved and redisplayed on the design
screen. Notice that the chrContactType field has been moved to the end (extreme
right) of the QBE pane. The location of a hidden field will not change the dynaset.
Because the field is not displayed, its location in the QBE pane is unimportant. You
always get the same results, even if you’ve placed a hidden field in the QBE pane.

Figure 36-14: A query that has been saved with a hidden field (shown unchecked);
the field is moved to the end of the query. (Compare Figure 36-13.)

If you hide any fields in the QBE pane that are not used for sorts or criteria, Access
eliminates them from the query automatically when you save it. If you want to use
these fields and need to show them later, you’ll have to add them back to the
QBE pane.

If you’re creating a query to be used by a form or report, you must show any fields
it will use, including any field to which you want to bind a control.

Renaming fields in queries
When working with queries, you can rename a field to describe the field’s contents
more clearly or accurately. This new name is the one that would be shown in the
datasheet of the query. For example, you may want to rename the chrTaxLocation
field of the tblContacts table to State for Tax Purposes. As you have already seen,
renaming is useful for working with calculated fields or calculating totals; Access
automatically assigns nondescript names such as Expr1 or AvgOfWeight, but it’s
easy to rename fields in Access queries.

If you specified a Caption name for the field in the table designer, this name will
be used in the query.

To change the display name of the chtTaxLocation field, for example, follow these
steps:

1. Create a new query and select the tblContacts table. Add the chrFirstname,
chrLastName, and chrTaxLocation fields to the query.

2. Click in the chrTaxLocation field.

Note

Note

1193Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

3. Place the cursor in front of the first letter of chrTaxLocation in the Field: cell.

4. Type State for Tax Purposes: (be sure to include the colon).

Figure 36-15 shows the query field renamed. The field has both the display name,
which is State for Tax Purposes, and the actual field name, which is chrTaxLocation.

When you view this query, the new Column heading is State for Tax Purposes,
instead of chrTaxLocation.

Figure 36-15: A query field with the chrTaxLocation field renamed to State for Tax
Purposes for display purposes.

When naming a query field, delete any names assigned by Access (to the left of
the colon). For example, remove the name Expr1 when you name the calculated
field.

If you rename a field, Access uses only the new name for the heading of the query
datasheet; it does the same with the control source in any form or report that uses
the query. Any new forms or reports you create on the basis of the query will use
the new field name. (Access does not change the actual field name in the underlying
table.)

When working with renamed fields, you can use an expression name (the new name
you specified) in another expression within the same query. For example, you may
have a calculated field called Full Name that uses an Access function to join the first
and last names fields. You created this type of field in an earlier query.

When you work with referenced expression names, you cannot have any criteria
specified against the field you’re referring to.

Hiding and unhiding columns in the QBE pane
Sometimes you may want to hide specific fields in the QBE pane. This is not the
same as hiding a field by clicking the Show: box. Hiding a column in the QBE pane is
similar to hiding a datasheet column, which is easy: You simply resize a column
(from right to left) until it has no visible width. Figure 36-16 shows several fields in
the QBE pane; in the next example, you hide one of its columns.

Note

Tip

1194 Part IV ✦ Advanced Access Database Topics

Figure 36-16: A typical QBE pane showing fields from several tables — tblContacts,
tblSales, and tblProducts.

If you create the query shown in Figure 36-16, you can then hide the
idsInvoiceNumber column. Follow these steps to hide the idsInvoiceNumber
column:

1. Move the mouse pointer to the right side of the idsInvoiceNumber field on the
field selector. The double-arrow sizing pointer displays.

2. Click the right side of the idsInvoiceNumber field and drag it toward the
chrFirstName field until it totally disappears.

Figure 36-17 shows the QBE pane with the idsInvoiceNumber field being hidden.
You can see the double-arrow mouse pointer as it is being moved to the left. In the
picture, the field wasn’t completely hidden so that you can see where the column
has been moved to (next to chrFirstName) and see the double-arrow sizing pointer.

Figure 36-17: The QBE pane with a column being hidden by moving the double-
arrow pointer.

Although the idsInvoiceNumber field is hidden in the QBE panel of the design sur-
face, it is still shown in the datasheet when you click the View button. Hiding a
field in the query design only hides it in the query design.

After you hide a field, you can unhide it by reversing the process. If you want to
unhide the idsInvoiceNumber column, follow these steps:

1. Move the mouse pointer to the left side of the field chrCategory on the selec-
tor bar (the bar with arrows appears). Make sure that you are to the right of
the divider between chrFirstName and chrCategory fields.

Note

1195Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

2. Click the left side of chrCategory and drag it toward the chrDescription field
until you size the column to the correct length.

3. Release the button; the field name idsInvoiceNumber will appear in the column
you unhide.

Query Design Options
There are several specifiable default options when working with a query design.
These options can be viewed and set by selecting Tools ➪ Options from the main
menu and then selecting the Tables/Queries tab. Figure 36-18 shows this Options
dialog box.

Figure 36-18: The Table/Queries page of the
Options dialog box. The lower half concerns t
he fields for queries.

These six items can be set for queries:

✦ Show Table Names

✦ Output All Fields

✦ Enable AutoJoin

✦ Run Permissions

✦ Query Design Font

✦ SQL Server Compatibility Syntax (ANSI 92)

1196 Part IV ✦ Advanced Access Database Topics

Generally, the default for Show Table Names is Yes, and the default for Output All
Fields is No. Run Permissions offers a choice of either the Owner’s permission or
the User’s (the default). Enable AutoJoin controls whether Access will use common
field names to perform an automatic join between tables that have no relationships
set; the default value is Yes. The Query Design Font is by default Tahoma and 10.
The final section determines if the current database should use ANSI 92 SQL Server
Syntax; the default is No.

When you set query design options, they specify default actions for new queries
only; they do not affect the current query. To show table names in the current
query, select View ➪ Table Names from the main Query menu while designing the
query.

Table 36-1 describes each Query design option and its purpose.

Table 36-1
Query Design Options

Option Purpose

Show Table Names Shows the Table: row in the QBE pane when set to Yes; hides
the Table: row if set to No.

Output All Fields Shows all fields in the underlying tables or only the fields
displayed in the QBE pane.

Enable AutoJoin Uses common field names to perform an automatic join
between tables that have no relationships set to occur; the
tables must have a field with the same name and type of data
and one of the fields must be a primary key field.

Run Permissions Restricts use in a multi-user environment; a user restricted
from viewing the underlying tables can still view the data from
the query. If set to Owner’s, the user cannot view data returned
from the query or run an action query.

Query Design Font Used to set the Font type (name of font) and the size of the
font used in queries.

SQL Server Compatible Select this database to enable ANSI-92 SQL query mode so
that you can create and run queries using ANSI 92 SQL Syntax.
This is compatible with Microsoft SQL Server. Existing queries
may not run correctly if you set this option after creating other
queries.

Tip

1197Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Setting Query Properties
While creating a query, you can set query properties several ways: click the
Properties button on the toolbar; right-click Properties and choose it from the
shortcut menu; or select View ➪ Properties from the main Query menu. Access dis-
plays a Query Properties dialog box. Your options depend on the query type and on
the table or field with which you’re working.

You can use the query-level properties just as you would the properties in forms,
reports, and tables. Query-level properties depend on the type of query being cre-
ated and on the table or field with which you’re working. Table 36-2 shows the
query-level properties you can set.

Table 36-2
Query-Level Properties

Property Description Query Select Cross- Update Delete Make- Append
tab Table

Description Text describing X X X X X X X
table or query

Default View Values Datasheet, X X X
Pivot Table, or
Pivot Chart

Output All Show all fields X X X
Fields from the under-

lying tables in
the query

Top Values Number of X X X
highest or lowest
values to be
returned

Unique Return only X X X
Values unique field

values in the
dynaset

Unique Return only X X X X X X
Records unique records

for the dynaset

Continued

1198 Part IV ✦ Advanced Access Database Topics

Table 36-2 (continued)

Property Description Query Select Cross- Update Delete Make- Append
tab Table

Run Establish X X X X X X X
Permissions permissions for

specified user

Source External database X X X X X X X
Database name for all

tables/queries in
the query

Source Name of appli- X X X X X X X
Connect Str cation used to

connect to
external database

Record Locks Records locked X X X X X X X
while query runs
(usually action
queries)

Recordset Which records can X X X
Type be edited:

Dynaset, Dynaset
(inconsistent
updates), or
Snapshot

ODBC Number of X X X X X X X
Time-out seconds before

reporting error
for opening DB

Filter Filter name X X
loaded auto-
matically with
query

Order By Sort loaded auto- X X
matically with
query

Max Records Max number of X X
records returned
by ODBC database

Orientation Set view order for X X X X X X X
fields from left-to-
right or right-to-left

1199Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Property Description Query Select Cross- Update Delete Make- Append
tab Table

SubDatasheet Identify subquery X X X X X X
Name

Link Child Field name(s) X X X X X X
Fields in subquery

Link Master Field name(s) X X X X X X
Fields in main table

Subdatasheet Maximum height X X X X X X
Height of subdatasheet

Subdatasheet Records initially X X X X X
Expanded in their expanded

state?

Column Fixed-column X
Headings headings

Use Run action query X X X X
Transaction in transaction?

Fail on Error Fail operation X X
if errors occur

Destination Table name X X
Table of destination

Destination Name of X X
DB database

Dest Database
Connect Str connection string X X

As you can see, working with queries offers many options for how the fields can be
displayed and properties for each specific type of query.

The remainder of this chapter works with Advanced Select queries, and the next
chapter works with all the action queries shown in Table 36-2.

Creating Queries That Calculate Totals
Many times, you want to find information in your tables based on data related to
the total of a particular field or fields. For example, you may want to find the total
number of contacts that are both buyers and sellers or the total amount of money
each buyer has spent on vehicles last year. Access supplies the tools to accomplish
these queries without the need for programming.

1200 Part IV ✦ Advanced Access Database Topics

Access performs calculation totals by using nine aggregate functions that let you
determine a specific value based on the contents of a field. For example, you can
determine the average price for vehicles by type, the maximum and minimum price
paid for a vehicle, or the total count of all records in which the type of contact is a
buyer or both. Performing each of these examples as a query results in a dynaset of
answer fields based on the mathematical calculations you requested.

You have already worked with counts using the Count (*) function in the previous
section.

To create a total query, you use a new row in the Query by Example (QBE) pane —
the Total: row. The following section describes this handy tool in detail.

Showing and hiding the Total: row in the QBE pane
To create a query that performs a total calculation, create a select query and then
activate the Total: row of the QBE pane. You can activate the Total: row by using
either of these two selection methods (but, first, open a new query using the
tblProducts table):

✦ Select View ➪ Totals from the Design menu.

✦ Select the Totals button (the Greek sigma symbol button — ∑ — which is to
the right of the midway mark) on the toolbar (seventh from the right side).

Figure 36-19 shows the Total: row after it is added in the QBE pane. The Totals but-
ton is selected on the toolbar and the Total: row is placed in the QBE pane between
the Table: and Sort: rows.

If the toolbar is not visible, select View ➪ Toolbars from the Query menu. Then
select Query Design and close the dialog box.

If the Table: row is not present on your screen, the Total: row appears below the
Field: row and above the Sort: row. You can activate the Table: row by selecting
View ➪ Table Names from the Design menu.

To deactivate the Total row in the QBE pane, simply reselect either activation
method (the Design menu or the Totals button). The Totals button is a toggle-type
control that alternately turns the Total: row on and off.

Note

Cross-
Reference

1201Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Figure 36-19: The Total row of the QBE pane is active in this figure. Notice the
arrow pointing to the Total: row label, just below the Table: row.

The Total: row options
You can perform total calculations on all records or groups of records in one or
more tables. To perform a calculation, you must select one of the options from the
drop-down list in the Total: row for every field you include in the query, including
any hidden fields (with the Show: option turned off). Figure 36-20 shows the drop-
down list box active in the Total: row of the field.

Figure 36-20: The drop-down list box of the Total: row
activated. It has 12 choices in it. The Group By option is
already selected, but the Sum option is highlighted as the
cursor moves on it.

1202 Part IV ✦ Advanced Access Database Topics

Although only eight options are shown in Figure 36-20, you can choose from 12. You
can view the remaining options by using the scroll bar on the right side of the box.
The 12 options can be divided into four distinct categories: group by, aggregate,
expression, and total field record limit. Table 36-3 lists each category, its number of
Total options, and its purpose.

Table 36-3
Four Categories of Total Options

Category Number of Options Purpose of Operator

Group By 1 Groups common records together.
Access performs aggregate calculations
against the groups.

Aggregate 9 Specifies a mathematical or selection
operation to perform against a field.

Expression 1 Groups several total operators together
and performs the group totals.

Total Field Record Limit 1 Limits records before record limit
performing a total calculation against a
field.

The Group By, Expression, and Total Field Record Limit categories have one option
each. The Aggregate category has nine options, all of which are used by the other
three categories. The following sections provide details about the options available
in each category.

Group By category
This category has one option, the Group By option. You use this option to specify
that a certain field in the QBE pane will be used as a grouping field. For example, if
you select the field chrCustomerType, the Group By option tells Access to group all

What Is an Aggregate Function?

The word aggregate implies gathering together a mass (a group or series) of things and
working on this mass as a whole — a single entity. Therefore, an aggregate function is a
function that takes a group of records and performs some mathematical function against
the entire group. The function can be a simple count or a complex expression you specify,
based on a series of mathematical functions.

1203Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Dealer records together, all Wholesaler records together, and so on. This option is
the default for all Total: cells. In other words, when you drag a field to the QBE
pane, Access automatically selects this option. Figure 36-20 shows that this is also
the first choice in the drop-down list box. These groups of records will be used for
performing some aggregate calculation against another field in the query. We dis-
cuss this subject in more detail in the section titled “Specifying criteria for a Group
By field,” later in this chapter.

Expression category
Like the Group By category, the Expression category has only one option:
Expression. This is the second-from-last choice in the drop-down list. You use this
option to tell Access to create a calculated field by using one or more aggregate cal-
culations in the Field: cell of the QBE pane. For example, you may want to create a
query that shows each customer (buyer) and how much money the customer
saved, based on the individual’s discount rate. This query requires creating a calcu-
lated field that uses a sum aggregate against the curPrice field of the
tblSalesLineItems table, which is then multiplied by the dblDiscountPercent field in
the tblSalesLineItems table.

We discuss this type of calculation in detail in the section titled “Creating expres-
sions for totals,” later in this chapter.

Total Field Record Limit category
The Total Field Record Limit category is the third category that has a single option:
the Where option. This option is the last choice in the drop-down list. When you
select this option, you tell Access that you want to specify limiting criteria against
an aggregate type field, as opposed to a Group By or an Expression field. The limit-
ing criteria are performed before the aggregate options are executed. For example,
you may want to create a query that counts all vehicles by types of vehicles that
are priced over $10,000 USD. Because the curSalePrice field is not to be used for a
grouping (as is chrCategory) and won’t be used to perform an aggregate calcula-
tion, you specify the Where option. By specifying the Where option, you are telling
Access to use this field only as a limiting criteria field — before it performs the
aggregate calculation (counting types of vehicles). This type of operation is also
discussed in detail later in this chapter.

Aggregate category
The Aggregate category, unlike the others, has multiple options that you can choose
from (a total of nine options): Sum, Avg, Min, Max, Count, StDev, Var, First, and Last.
These options appear as the second through tenth options in the drop-down list.
Each option performs an operation on your data (check out Table 36-2 for how you
can use each option) and supplies the new data to a cell in the resulting dynaset.
Aggregate options are what database designers think of when they hear the words
total query. Each of the options performs a calculation against a field in the QBE
pane of the query and returns a single answer in the dynaset.

Cross-
Reference

1204 Part IV ✦ Advanced Access Database Topics

For example, you may want to determine the maximum (Max), minimum (Min), and
average (Avg) value of each type of vehicle in the tblProducts table. There can be
only one maximum value for all vehicles. Several vehicles may have the same maxi-
mum value, but only one price is the largest. Another example of a total query
would be if you wanted the total number (Count) of vehicles for each category in
the tblProducts table (again, the query returns a single answer for each type). You
can use these aggregate options to solve these types of queries.

You can also use it to find a single value in the table, without creating an aggregate
grouping.

Whereas the Group By, Expression, and Total Field Record Limit categories of
options (which we discuss in previous sections) can be used against any type of
Access field (Text, Memo, or Yes/No, for example), some of the aggregate options
can be performed against certain field types only. For example, you cannot perform
a Sum option against Text type data; nor can you use a Max option against an OLE
object.

Table 36-4 lists each option, what it does, and which field types you can use with
the option.

Table 36-4
Aggregate Options of the Total: Row

Option Finds Field Type Support

Count Number of non-Null AutoNumber, Number, Currency, Date/
values in a field Time, Yes/No, Text, Memo, OLE object

Sum Total of values in a field AutoNumber, Number, Currency,
Date/Time, Yes/No

Avg Average of values in a field AutoNumber, Number, Currency,
Date/Time, Yes/No

Max Highest value in a field AutoNumber, Number, Currency,
Date/Time, Yes/No, Text

Min Lowest value in a field AutoNumber, Number, Currency,
Date/Time, Yes/No, Text

StDev Standard deviation of AutoNumber, Number, Currency,
values in a field Date/Time, Yes/No

Var Population variance of AutoNumber, Number, Currency,
values in a field Date/Time, Yes/No

First Field value from the first AutoNumber, Currency, Date/Time,
record in a number, table, or query Yes/No, Text, Memo, OLE object

Last Field value from the last record AutoNumber, Currency, Date/Time,
in a number, table, or query Yes/No, Text, Memo, OLE object

1205Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Performing totals on all records
You can use total queries to perform calculations against all records in a table or
query. For example, you can find the total number of vehicles in the tblProducts
table, the average sale price, and the maximum and minimum sale price for each
category. To create this query, follow these steps:

1. Select the tblProducts table.

2. Click the Totals button on the toolbar to turn it on.

3. Select the chrProductID and curSalePrice fields in the table.

4. Select the curSalePrice field two more times from the tblProducts table.

5. In the Total: cell of chrProductID, select Count.

6. In the Total: cell of the first curSalePrice, select Avg.

7. In the Total: cell of the second curSalePrice, select Min.

8. In the Total: cell of the third curSalePrice, select Max.

Your query should look similar to the one shown in Figure 36-21.

Figure 36-21: A query against all records in the tblProducts table to show
four calculated values — count, average price, min, and maximum price.

This query calculates the total number of records in the tblProducts table as well
as the average, minimum, and maximum price for all vehicles.

You can save this query, naming it Calculations for Vehicles. You will use it again
later.

The Count option of the Total: cell can be performed against any field in the table
(or query). However, Count eliminates any records that have a Null value in the
field you select. Therefore, you may want to select the primary key field on which
to perform the Count total because this field cannot have any Null values, thus
ensuring an accurate record count. That is why you selected chrProductID from
tblProducts for the count operator.

If you select the Datasheet button on the toolbar, you should see a datasheet simi-
lar to the one shown in Figure 36-22. Notice that the dynaset has only one record.

Note

1206 Part IV ✦ Advanced Access Database Topics

This record specifies the count, average, minimum, and maximum value for all vehi-
cles (regardless of type) in the tblProducts table.

Figure 36-22: This datasheet of a dynaset was created from a total
query against the tblProducts table. It only has one row, or record,
in the dynaset.

Access creates default column headings for all total fields in a totals datasheet,
such as those shown in Figure 36-22. The heading name is a product of the
name of the total option and the field name. Thus, in Figure 36-22, the heading
names are CountOfchrProductID, AvgOfcurSalePrice, MinIOfcurSalePrice and
MaxOfcurSalePrice. You can change a column heading name to something more
appropriate by renaming the field in the QBE pane of the Design window. As with
any field that you want to rename, place the insertion point at the beginning of the
field cell to be renamed (to the left of the field name) and type the name you
want to display followed by a colon.

This query was performed against all records in a table or query, and the resulting
dynaset has only one record.

Performing totals on groups of records
Most of the time, you need to perform totals on a group of records rather than on
all records. For example, you may need to calculate the query for each type of
vehicle (chrCategory). In other words, you want to create a group for each type
of vehicle (car, minivan, truck, and so on) and then perform the total calculations
against each of these groups. In database parlance, this is known as control break
totaling.

Calculating totals for a single group
When you create your query, you specify which field or fields to use for grouping
the totals and which fields to perform the totals against. Using the preceding exam-
ple, to group the chrCategory field, you select the Group By option of the Total: cell.
Follow these steps to create the query:

1. Open the Calculations for Vehicles query in design mode.

2. Add the chrCategory field to the beginning of the query.

3. Double-check to make sure the Total: cell for chrCategory says Group By.

Note

1207Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

The query in Figure 36-23 groups all like vehicles together and then performs the
count total for each type of vehicle as well as the average price, min, and max price.
Unlike performing totals against all records, this query produces a dynaset of many
records — one record for each type of vehicle. Figure 36-24 shows how the
datasheet looks.

Figure 36-23: Totals against a group of records. First it groups all like vehicles
together; then it counts the number of similar vehicles.

Figure 36-24: Datasheet of totals against the group chrCategory field, which
shows the number of vehicles, average, minimum, and maximum price for
each type.

The dynaset in Figure 36-24 has a single record for each type of vehicle. The count
was performed against each type of vehicle; there are 25 cars, 7 Minivans, 1 Motor
Homes, and so on. The Group By field displays one record for each unique value in
that field. The chrCategory field is specified as the Group By field and displays a
single record for each type of vehicle. Each of these records is shown as a row
heading for the datasheet, indicating a unique record for each type of vehicle speci-
fied that begins with the Group By field content (cars, trucks , and so on). In this
case, each unique record is easy to identify by the single-field row heading under
Category.

Calculating totals for several groups
You can perform group totals against multiple fields and multiple tables as easily as
with a single field in a single table. For example, you may want to group by both
chrCustomerType from the tblContacts table and chrCategory to determine the

1208 Part IV ✦ Advanced Access Database Topics

number of vehicles each customer type (dealer, wholesaler, and so on) owns by
vehicle type. To create a total query for this example, you specify Group By in both
Total: fields (chrCustomerType and chrCategory).

The order in which you place the fields on the query will determine the order of
grouping. For instance, selecting the chrCategory first will first sort by Vehicle
Category type and then sort by Customer Type.

This query, shown in Figure 36-25, uses multiple tables and also groups by two
fields to perform the count total. First, the query groups by chrCustomerType
(from the tblContacts table) and then by chrCategory (from the tblProducts table).
When the Datasheet button on the toolbar is selected, a datasheet similar to the
one shown in Figure 36-26 appears.

Figure 36-25: A multiple-table, multiple-field Group By total query to show all types
of Customers and how many vehicles each owns, broken down by the type of vehicle.

The datasheet in Figure 36-26 shows several records for the customer type Dealer.
This type of customer has 37 Cars, 4 Minivans, 1 Motor Home, 6 SUV and 7 Trucks.
You can also see that the Auctioneer type has only 3 Cars, and Wholesalers have 7
Cars, 1 Minivans, 2 SUV and 3 Trucks. This datasheet has a unique record based on
two Group By fields: chrCustomerType and chrCategory (as shown in Figure 36-25).
Therefore, the unique row headings for this datasheet are created by ordering
(Group By) both fields — first the chrCustomerType and then the chrCategory.

You can think of the Group By fields in a total query as fields that specify the row
headings of the datasheet. The Group By option creates the rows of the resulting
dynaset in sorted order within each column.

Tip

Tip

1209Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Figure 36-26: Datasheet of a multiple-field Group
By query.

Access groups records based on the order of the Group By fields in the QBE pane
(from left to right). Therefore, you should pay attention to the order of the Group
By fields. Although the order doesn’t change the aggregate totals of the fields,
the order of Group By fields does determine how the results are displayed in the
datasheet. If you place the chrCategory field before the chrCustomerType field,
the resulting datasheet shows the records in order by vehicle category first and
then by type of customer. Figure 36-27 demonstrates this setup, showing the vehicle
type records and the type of customers who bought them (with the total number).

Figure 36-27: Changing the order of Group By fields.
This datasheet has vehicle category before type of
customer (versus the opposite in Figure 36-25).

1210 Part IV ✦ Advanced Access Database Topics

By changing the order of the Group By fields in a totals query, you can look at your
data in new and creative ways.

Specifying criteria for a total query
In addition to grouping records for total queries, criteria to limit the records that
will be processed or displayed in a total calculation can be specified. When you’re
specifying record criteria in total queries, several options are available. A criterion
against any of these three fields can be created:

✦ Group By

✦ Aggregate Total

✦ Non-Aggregate Total

Using any one, any two, or all three of these criteria types, you can easily limit the
scope of your total query to finite criteria.

Specifying criteria for a Group By field
To limit the scope of the records used in a grouping, you can specify criteria in the
Group By fields. For example, to calculate the total amount of money each cus-
tomer paid for vehicles, the minimum and maximum value and where the customer
last name is between “A” and “L” requires specifying criteria on the Group By calcu-
lated field: Full Name. Full Name is created by concatenating the last and full name
together — Full Name: chrLastName & “, ” & chrFirstName. Then it needs to sum,
min, and max the values of the curPrice field of tblProducts. This type of query
looks like the one shown in Figure 36-28. Notice that the Group By field, Full Name,
has criteria of ‘>”A” And <”M”. The other fields — lngzInvoiceNumber and three
curPrice — specify the aggregate totals count, sum, min, and max.

By specifying criteria in the Full Name calculated field, you can ensure that Access
performs the aggregate calculations on only those records that meet the Group By
criteria. In this example, the count, sum, minimum and maximum value will be per-
formed only for contacts whose last names are between A and L, inclusive. This
query results in a 22 record dynaset, with one record each for each customer
whose last name begins with A through L. Each record shows the total number of
vehicles purchased, the total each customer has spent on vehicles they have
bought, and the minimum and maximum price they have paid for a vehicle.

1211Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Figure 36-28: Specifying criteria in a Group By field. The calculated field Full Name
specifies criteria.

Specifying criteria for an Aggregate Total field
At times, you may want a query to calculate aggregate totals first and then display
only those totals from the aggregate calculations that meet a specified criterion.
More specifically, you may want to perform aggregate calculations against all
records and then add to the dynaset only those aggregate totals that meet a certain
criterion. In effect, you’re saying “I won’t know which records I want to see until
they’re all totaled first. Then I want to see only those records that meet a particular
criterion in my dynaset.”

For example, you may want a query to find the average price for each type of vehi-
cle, grouped by type of vehicles, where the average price of any vehicle is greater
than $7,500 USD. This query should look like the one shown in Figure 36-29. Notice
that the criterion >7500 is placed in the Aggregate Total field, curCost. This query
calculates the average price of all vehicles grouped by type of vehicle. Then the
query determines whether the calculated totals for each record are greater than
7500. Records greater than 7500 are added to the resulting dynaset, and records
less than or equal to 7500 are discarded. The criterion is applied after the aggregate
calculations are performed.

The resulting datasheet has only four of the five categories of vehicles; the Motor
Homes average price is $1,200 USD, which is less than $7,500 USD and is not dis-
played.

1212 Part IV ✦ Advanced Access Database Topics

Figure 36-29: A query with a criterion set against an Aggregate Total field
(Avg of the curCost field, greater than 7500).

Specifying criteria for a Non-Aggregate Total field
The preceding section showed you how to limit the records after performing the
calculations against total fields. You also can specify that you want Access to limit
the records based on a total field before performing total calculations. In other
words, you can limit the range of records against which the calculation is per-
formed. Doing so creates a criterion similar to the first type of criteria in the pre-
ceding example; the field you want to set a criterion against is not a Group By field.

The preceding section shows you how to limit the fields included in the dynaset by
using the Group By criteria, which allows you to state specific criteria for which
records you want to appear in the resulting dynaset. Suppose, however, that you
want to filter the group of records based on criteria that you don’t want in the
resulting dynaset. Access allows you to do this as well. You can limit the range of
records against which the calculation is performed, and you can make this limita-
tion based on criteria that you don’t want to appear in the resulting dynaset.

For example, you may want to display the total amount of money each customer
has paid for vehicles during the first half of 2003 (through 30 Jun 2003), starting
with February 4, 2003. You want to use the dtmSaleDate field of the tblSales table to
specify criteria, but you don’t want to perform any calculations against this field or
use it to group by; you don’t even want to show the field in the resulting datasheet.

Figure 36-30 shows how the query should look. Here you used the Where type of
Total to limit the scope of records shown. Notice that Access automatically turned

1213Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

off the Show: cell in the dtmSaleDate field; when using a Where clause, this field
cannot be used in the query. If you wanted to also see the dtmSaleDate field, simply
add a second dtmSaleDate field to the QBE pane.

Figure 36-30: Specifying criteria for a Non-Aggregate field. Here you used the
Where type of Total to limit the scope of the records shown.

In the query you just completed, Access displays only those records for customers
that have purchased vehicles from February 4 to June 30, 2003, inclusive. All other
records are discarded. Clicking the view button will show only five records.

Access automatically turns off the Show: cell whenever it encounters a Where
option in the Total: cell of a field. Access understands that you are using the field
only to specify criteria and that you don’t want to see the actual field value dis-
played for the criteria field. The reason is that Access uses the field to evaluate the
Where criteria before performing the calculation. Therefore, the contents are useful
only for the limiting criteria. If you try to turn on the Show: cell, Access displays an
error message. If you need to see the field contents in the datasheet, simply add a
second copy of the field to the QBE pane. Only the field that has the Where condi-
tion in the Total: row is not shown.

Creating expressions for totals
In addition to choosing one of the Access totals from the drop-down list, you can
create your own total expression based on several types of totals, such as using
Avg and Sum or multiple Sums together. Or you can base your expression on a cal-
culated field composed of several functions, or on a calculated field that is based
on several fields from different tables.

Suppose that you want a query that shows the total amount of money each
customer owed before discount. Then you want to see the amount of money these
customers saved based on their discount (a calculated field you create named Total

Note

1214 Part IV ✦ Advanced Access Database Topics

Saved). You further want the information to be grouped by customer and sorted by
highest amount owed. Finally, you want the Total Saved field to display dollar
amounts (formatted like this $111.11). Follow these steps to create this query:

1. Start a new query and select the tblContacts, tblSales, and tblSalesLineItems
tables.

2. Click the Totals button (the ∑) on the toolbar to turn it on.

3. Double-click the chrLastName and chrFirstName fields in the tblContacts
table.

4. Double-click the curPrice field in the tblSalesLineItems table.

5. In the Total: cell of chrLastName and chrFirstName, make sure Group By is
selected.

6. In the Total: cell of curPrice, select Sum.

7. In the curPrice column, select a Sort: order of Descending.

8. Click on an empty Field: cell in the QBE pane.

9. Type Total Saved: Sum(tblSalesLineItems.curPrice *
tblSalesLineItems.dblDiscountPercent) in the cell.

10. In the Total: cell of the Total Saved expression, select Expression.

11. Making sure the cursor is still in the Total Saved field, click the Criteria: cell.

12. If the Property sheet is not opened, right-click to bring up the right-click menu
and select Properties.

13. On the General tab, select a Format of Currency (for the Total Saved field).

Your query should be similar to the one shown in Figure 36-31. Notice that the
query uses two fields from the tblProducts table to create the Total Saved: calcu-
lated field. You had to specify the table and the field name for the
dblDiscoutPercent in the Sum function because the field exists in both the
tblSalesLineItems and the tblContacts tables.

You had to use the tblSales table, although you did not use any of its fields in the
QBE pane for the query. It was necessary to use the tblSales table to maintain and
build a link between the tblContacts table and the tblSalesLineItems table. In
other words, if you had omitted the tblSales table, there would be no way to link
the other two tables.

If you click the Datasheet button on the toolbar, your dynaset should be similar to
the one shown in Figure 36-32. The Total Saved field is a calculated field that you
created using the expression you built and specified as an Expression Total. Notice
that the resulting display shows a currency format for the Total Saved field.

Note

1215Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Figure 36-31: A query using an Expression Total.

Figure 36-32: A datasheet created by an Expression total.

In the datasheet in Figure 36-32, the calculated field Total Saved shows the infor-
mation in Currency format, using the Dollar sign and two decimal places. If you did
not specify a format for the field in the query design, you would see as many as 12
decimal places and no dollar sign. If all you want to do is limit the number of dec-
imal places while using the thousands comma, you can specify a format of
Standard.

Note

1216 Part IV ✦ Advanced Access Database Topics

Although specifying a Field format is relatively easy to do in the QBE pane, it has
one drawback: You do not visually see that a format has been assigned to the field.
In lieu of using the field format property, you can also use the Format() function
around the Sum() function making the Calculated field more complex, yet visibly
accurate. For example, to do so, add the following line to the existing criteria for-
mula in the calculated field cell:

Total Saved: Format(Sum(tblSalesLineItems.curPrice *
tblSalesLineItems.dblDiscountPercent),”Currency”)

Using the Format function in the calculated field cell takes precedence over the
format field property. If you specify a format function in the calculated field cell, it
will be used instead of the format property you set in the property list.

At this point, you should close the query without saving it because it will not be
used again.

Creating Crosstab Queries
Access permits use of a specialized type of total query — the crosstab — to display
summarized data in a compact and readable format. A crosstab query summarizes
the data in the fields from your tables and presents the resulting dynaset in a row-
and-column format.

Understanding the crosstab query
Simply put, a crosstab query is a spreadsheet-like summary of the things specified
by the row header and column header that is created from your tables. This query
presents summary data in a spreadsheet-like format created from fields that you
specify. In this specialized type of total query, the Total: row in the QBE pane is
always active. The Total: row cannot be toggled off in a crosstab query!

In addition, the Total: row of the QBE pane is used for specifying a Group By total
option for both the row and the column headings. Like other total queries, the
Group By option specifies the row headings for the query datasheet and comes
from the actual contents of the field. However, unlike other total queries, the
crosstab query also obtains its column headings from the value in a field (table or
calculated) rather than from the field names themselves.

The fields used as rows and columns must always have Group By in the Total: row.
Otherwise, Access reports an error when you attempt to display or run the query.

For example, you may want to create a query that displays the type of customer
field (chrCustomerType) as the row heading and the category of vehicle
(chrCategory) as the column heading, with each cell containing a total for each
type of vehicle for each type of customer. Table 36-5 demonstrates how you want
the query to look.

Note

Tip

1217Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

In Table 36-5, the row headings are specified by Type of Customer: Auctioneer,
Dealer, Other Retail, and so on. The column headings are specified by the vehicle
types: Cars, Minivans, Motor Homes, SUV, and Trucks. The cell content in the inter-
section of any row and column is a summary of records that meets both conditions.
For example, the Dealer row that intersects the Minivans column shows that they
bought four minivans. The Wholesaler row that intersects with the Trucks column
shows that they purchased three trucks.

This table shows a simple crosstab query created from the fields chrCustomerType
and chrCategory, with the intersecting cell contents determined by a Count total on
any field in any of the tables.

Table 36-5
A Typical Crosstab Query Format

Type of Customer Cars Minivans Motor Homes SUV Trucks

Auctioneer 3

Dealer 37 4 1 6 7

Other Retail 4 1 1

Parts Store 3 1 1 2

Wholesaler 7 1 2 3

Creating the crosstab query
Now that you have a conceptual understanding of a crosstab query, it is time to cre-
ate one. To create a crosstab query like the one described in Table 36-5, follow
these steps:

1. Start a new query and select the tblContacts, tblSales, tblSalesLineItems, and
tblProducts tables.

2. Double-click the chrCustomerType field in the tblContacts table.

3. Double-click the chrCategory field in the tblProducts table.

4. Double-click the chrProductID field in the tblProducts table.

You could select any field from any of the tables for this cell.

5. Select Query ➪ Crosstab Query in the Query menu or click the Query Type
button on the toolbar (this method displays a drop-down list showing the
types of queries), and select Crosstab Query.

6. In the Crosstab: cell of chrCustomerType, select Row Heading.

7. In the Crosstab: cell of chrCategory, select Column Heading.

1218 Part IV ✦ Advanced Access Database Topics

8. In the Crosstab: cell of chrProductID, select Value.

9. In the Total: cell of chrProductID, select Count.

Your query should look similar to the one shown in Figure 36-33. Notice that Access
inserted a new row named Crosstab: between the Total: and Sort: rows in the
QBE pane.

Figure 36-33: Creating a crosstab query of Type of Customers and Type of Vehicles.

As Figure 36-33 demonstrates, you must specify a minimum of three items for
crosstab queries:

✦ The Row Heading field

✦ The Column Heading field

✦ The summary Value field

These three items are specified in the appropriate Crosstab: cells of the fields. After
you specify the contents for the three Crosstab: cells, you specify Group By in the
Total: cell of both the Row Heading and the Column Heading fields and an aggregate
Total: cell operator (such as Count) for the Value field.

If you have done this procedure correctly, selecting the Datasheet button on the
toolbar reveals a datasheet similar to the one shown in Figure 36-34.

1219Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Notice that the dynaset is composed of distinct (non-repeating) rows of customers,
five columns (one for each type of vehicle), and summary cell contents for each
type of customer and each type of vehicle. When no values are found, a null value is
used rather than 0.

Figure 36-34: Datasheet of a crosstab query. Notice that the
Headings for both the columns and rows are actual field values
from the tables.

Figure 36-34 shows the default display value for null values — a blank cell. You can
force Access to display a zero in these cells by simply entering a Format field prop-
erty for the chrProductID field (Total Count, Crosstab Value field) by entering the
format value of 0;;;0 (a zero, followed by three semicolons and another zero). This
format tells Access to display all regular values as their actual value and the null
values as a zero (fourth option in the custom format).

Entering multiple-field row headings
When working with crosstab queries, only one summary Value field and one
Column Heading field can be specified. You can add more than one Row Heading
field, however. By adding multiple Row Heading fields, you can refine the type of
data to be presented in the crosstab query.

Suppose that you’re interested in seeing the types of vehicles (columns) from the
last crosstab query further refined to the level of state and city (instead of by type
of customer). In other words, you want to see how many of each type of vehicle
that you have from each city within each state. To accomplish this task, you will
need to switch the type of headings being displayed — making the type of vehicle
(chrCategory) the Column Headings and the State/City fields the Row Heading
(chrState, chrCity). Such a query is shown in Figure 36-35. Notice that it has two
Crosstab: cells that show Row Heading for the fields state and city. Access groups
the Crosstab: rows first by the state and then by the city. Access specifies the group
order from left to right.

Tip

1220 Part IV ✦ Advanced Access Database Topics

Figure 36-35: Crosstab query using two fields for the row heading. The type
of vehicle field is now used for the column headings of this crosstab query.

Access presents a datasheet similar to the one shown in Figure 36-36 when the view
button on the toolbar is selected. The row heading depends on both the State and
City fields. The dynaset is displayed in order: first by state and then by city within
the state.

Figure 36-36: Datasheet with multiple-field row headings (State and then City)
of a crosstab query.

A crosstab query can have several row headings but only one column heading. To
achieve the same effect as a several-field column heading and a single-field row
heading, simply reverse the heading types. Change the multiple-field column head-
ings to multiple-field row headings and change the single-row heading to a single-
column heading.

Although Access limits you to a single-field column heading, it is possible to create
a multi-field column heading, as in a State and City, using a Calculated field. You
can create a Calculated field of [state]+’ ‘+[city] to create a Column Heading field
and specify the type of vehicle as the Row Heading. The resulting datasheet will
display all the combined Values of state and city as individual column heading.

Tip

1221Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

Specifying criteria for a crosstab query
When working with crosstab queries, you may want to specify record criteria for
the crosstab. Criteria can be specified in a crosstab query against any of these
fields:

✦ A new field

✦ A Row Heading field

✦ A Column Heading field

Specifying criteria in a new field
You can add criteria based on a new field that will not be displayed in the crosstab
query itself. For example, you may want to create the crosstab query you see in
Figure 36-35, in which the two fields, chrState and chrCity, are used as the row
heading. However, you want to see only records in which the type of customer
(chrCustomerType) is a Dealer. To specify criteria, follow these additional steps:

1. Start with the crosstab query shown in Figure 36-35.

2. Double-click the chrCustomerType field in the tblContacts table to add it to
the QBE pane.

3. Select the Criteria: cell of chrCustomerType.

4. Type Dealer in the cell.

The Crosstab: cell of the chrCustomerType field should be blank. If it is not, select
the check box (not shown) to blank the cell.

Your query should resemble the one shown in Figure 36-37. Notice that you
added a criterion in a field that will not be displayed in the crosstab query. The
chrCustomerType field is used as a grouping field, and because nothing appears
in the Crosstab row, the field value is not displayed.

Figure 36-37: Specifying a criterion in a crosstab query on a new field. The
chrCustomerType has a criterion of Dealer and the Crosstab: cell is left blank.

Now that the new criterion is specified, you can click on the Datasheet button of
the toolbar to see a datasheet similar to the one shown in Figure 36-38.

Note

1222 Part IV ✦ Advanced Access Database Topics

Figure 36-38: The datasheet, after specifying a criterion on a new field.
It shows a crosstab only for all customers who have a type of ‘Dealer’
(individual).

The datasheet in Figure 36-38 shows only columns and rows in which at least
one of the intersecting row cells has a value. It only has 21 rows, instead of 30 in
Figure 36-36 — nine were removed because there are no values in the columns of
those rows. It also removes any columns that have no value in any of the cells.

Specifying criteria in a Row Heading field
You can also specify criteria for a field being used for a row heading. When you
specify a criterion for a row heading, Access excludes any rows that do not meet
the specified criteria.

For example, you may want to modify the crosstab query from Figure 36-35 to show
only records for the states of New York, Massachusetts, and Connecticut. To create
this query, start with the crosstab query shown in Figure 36-35. If you created the
last query, remove the chrCustomerType column from the QBE pane. To create this
query, make the QBE pane look like the one shown in Figure 36-39. When this query
is viewed, only records from CT, NY, and MA are seen.

Figure 36-39: Criteria set against a Row Heading field — chrState for all NY,
CT, and MA customers

1223Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

You can specify criteria against any field used as a Row Heading field or for multiple
Row Heading fields to create a finely focused crosstab query.

Specifying criteria in a Column Heading field
You can also specify criteria for the field you use as the column heading. When you
specify the criteria for a column heading, Access excludes any columns that don’t
meet the specified criteria. For the next example, you want to modify the crosstab
query to show only columns for Minivans, Motor Homes, and SUVs. To create this
query, again start with the crosstab query shown in Figure 36-35. If you created the
last query, remove the criteria for the chrState field from the QBE pane. Add the cri-
teria of In (“Minivans”,“Motor Homes”,“SUV”) to the chrCatetory field. The QBE
pane should look similar to the one shown in Figure 36-40.

Figure 36-40: A criterion specified against the Column Heading field — chrCategory.
Here you want to see only three columns — Minivans, Motor Homes, and SUV.

The specified criterion is placed in the Criteria: cell of the Column Heading field
chrCategory. If you now select the Datasheet button on the toolbar, you should see
a datasheet that has only three column headings: Minivans, Motor Homes, and SUV.
The other headings are eliminated.

Specifying criteria in multiple fields of a crosstab query
Now that you’ve worked with each type of criterion separately, you may want to
specify criteria based on several fields. In the next example, you create a complex
crosstab query with multi-field criteria from the previous examples.

You want to limit your records to only the states of NY, MA, and CT and only where
the type of vehicle is a Minivan, Motor Home, or SUV. Finally, you want to see
records where the only type of customer is a Dealer.

Starting with the query in Figure 36-40, add the chrCustomerType field and specify
a criterion of “Dealer”. Finally, specify criteria of In (“NY”,“CT”,“MA”) for the
chrState field. With these steps complete, your query should look similar to the one
shown in Figure 36-41.

1224 Part IV ✦ Advanced Access Database Topics

Figure 36-41: A complex crosstab query with three field criteria.

When you select the View button on the toolbar, you see a datasheet similar to the
one shown in Figure 36-42. The datasheet has three columns. The order of the rows
and columns is alphabetical.

Figure 36-42: A datasheet of very complex crosstab
criteria, with three criteria specified.

Specifying fixed column headings
At times, you will want more control over the appearance of the column headings.
By default, Access sorts column headings alphabetically or numerically. This sort
order can be a problem, especially when working with months or days of the week.
In this case, your columns will be more readable if the columns are in chronological
month order rather than alphabetical order.

Take the query in Figure 36-43 that shows vehicles by category. This crosstab query
shows the number of cars sold for the first four months of date of sale. It doesn’t
differentiate between years — simply the months.

Figure 36-43: A query with months specified as the column heading.

1225Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

The resulting datasheet is shown in Figure 36-44. Notice that the months are in
alphabetical order (April, February, January, March) instead of chronological order
(Jan, Feb, Mar, Apr).

Figure 36-44: The datasheet of a query with months
specified as the column heading.

To fix this problem, you can use the option Column Headings in the Query
Properties box. This option lets you do the following:

✦ Specify an exact order for the appearance of the column headings.

✦ Specify fixed column headings for reports and forms that use crosstab
queries.

To specify fixed column headings, follow these steps:

1. Begin with the crosstab query shown in Figure 36-43. Move the pointer to
the top half of the query screen and click it once to make sure you are in the
top pane.

2. If the Property window is not already open, click the Properties button
(a hand holding a piece of paper) on the toolbar or select View ➪ Properties
from the Query Design menu.

3. Select the Column Headings text box entry area (third choice).

4. Type Jan, Feb, Mar, Apr in the box.

The Query Properties dialog box should look like the one shown in Figure 36-45.
When you move to another entry area, Access converts your text into “Jan,” “Feb,”
“Mar,” and “Apr,” in the Query Properties dialog box.

1226 Part IV ✦ Advanced Access Database Topics

Figure 36-45: The Query Properties dialog
box, specifying a display order for the
Column Headings.

If you look at the datasheet, you see that it now looks like the one shown in Figure
36-46. The order for the column headings is now chronological Month order.

Figure 36-46: The datasheet with the column order
specified in month chronological order.

The Crosstab Query Wizard
Access employs several Query Wizards, which are helpful additions to the query
design surface. One such Wizard, the Crosstab Query Wizard, is an excellent tool to
help you create a simple crosstab query quickly. To see the Crosstab choice, simply
click on the New button, and the New Query selection window appears, as shown in
Figure 36-47.

Figure 36-47: Selecting the Access
Query Wizard from the New Query
dialog box.

1227Chapter 36 ✦ Working with Advanced Select Queries and Other Query Topics

The Crosstab Query Wizard has some limitations, however:

✦ Limitation: To use more than one table for the crosstab query, you need to
create a separate query that has the tables you need for the crosstab query.
For example, you may have a Group By row heading from the tblContacts
table (chrCustomerType) and a Group By column heading from the
tblProducts table (chrCategory). The Crosstab Query Wizard allows you to
select only one table or query for the row and column heading.

✦ Workaround: Create a query of the four tables, selecting the All Fields refer-
ence for each, and save this intermediate query. Then use this intermediate
query as the record source for the Wizard.

✦ Limitation: The limiting criteria for the Wizard’s query cannot be specified.
Workaround: Make the Wizard do the query and then go in and set the limit-
ing criteria.

✦ Limitation: You cannot use a calculated field for Row or Column headings.
Workaround: Add the calculated field to an intermediate query and use the
query for the Wizard.

✦ Limitation: Column headings or column orders cannot be specified.
Workaround: Again, have the Wizard create the query and then modify it.

To use the crosstab query wizard, click the New button in the database window
toolbar after clicking the Queries Object button and then select the Crosstab
Wizard (third from the top, Figure 36-47) in the dialog box. Click OK and then follow
the prompts. Access asks for the following:

✦ The table or query name for the source

✦ The fields for the row headings

✦ The fields for the column headings

✦ The field for the body

✦ The title

After you specify these things, Access creates your crosstab query and then runs it
for you.

✦ ✦ ✦

Working with
Action and SQL
Queries

In this chapter, you learn about a special type of query,
called the action query, which enables you to change the

field values in your records. For example, you can change a
discount field to increase all discounts that are currently 0 to
5 percent or delete all information from the records of a con-
tact that has not sold or bought anything in the past two
years.

This chapter will use the database named CHAP37Start.mdb.
If you have not already copied it onto your machine from the
CD, you will need to do so now. After you have completed
this chapter, your database should resemble the one in
CHAP37End.mdb.

About Action Queries
The term action query defines a query that does something
more than simply select a specific group of records and then
present it to you in a dynaset. The word “action” suggests per-
forming some operation — doing, influencing, or affecting
something. The word is synonymous with operation, perfor-
mance, and work. This is exactly what an action query does —
some specific operation or work.

An action query can be considered a select query that is given
a duty to perform against a specified group of records in the
dynaset.

On the
CD-ROM

3737C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding action
queries

Learning how action
queries work

Creating an update
action query

Creating new tables
with a make-table
query

Creating an append
query

Creating a delete
query

Using query wizards

Troubleshooting
action queries

Working with SQL
queries

✦ ✦ ✦ ✦

1230 Part IV ✦ Advanced Access Database Topics

Types of action queries
When you create any query, Access creates it as a select query automatically. You
can specify a different type (such as action) from the Query Design menu. From this
menu, you can choose from several types of action queries. The menu’s selections
are Make-Table, Update, Append, and Delete.

Like select queries, action queries create a dynaset that you can view in a
datasheet. To see the dynaset, click the Datasheet button on the toolbar. Unlike
select queries, action queries perform an action — specified in the Query by
Example (QBE) pane of the query design — when you click the Run button (the but-
ton with the exclamation point) on the toolbar.

You can quickly identify action queries in the Database window by the special
exclamation point icons that sit beside their names (to the right side). There are
four different types of action queries (see Figure 37-1, which shows three of the four
types); each has a different icon.

Figure 37-1: The query container of
the Database window, showing the
different types of queries and their
icons — including Action, and SQL
specific queries.

Looking at Figure 37-1, several types of action queries can be seen toward the top of
the container. Notice that each has a unique icon associated with it. All have the
exclamation point as part of the icon — the Append shows a Plus sign and the excla-
mation point, a Delete query (not shown) has a graphical X and the exclamation
point, the Make-Table has a new table (starburst over top-right corner) and the
exclamation point, and the Update has a pencil writing and the exclamation point.

Uses of action queries
Action queries can accomplish these tasks:

✦ Delete specified records from a table or group of tables.

✦ Append records from one table to another.

✦ Update information in a group of records.

✦ Create a new table from specified records in a query.

1231Chapter 37 ✦ Working with Action and SQL Queries

The following examples describe some practical uses for action queries:

✦ Example: You want to create history tables and then copy all inactive records
to them. (You consider a record inactive if a customer hasn’t bought anything
in more than two years.) You decide to remove the inactive records from your
active database tables.

What to do? Use a make-table query to create the history tables and a delete
query to remove the unwanted records.

✦ Example: One of your former customers, whom you haven’t heard from in
more than four years, wants to make a purchase; you need to bring the old
information back into the active file from the backup files.

What to do? Use an append query to add records from your backup tables to
your active tables.

Unlike select queries, which display data in a specific manner, Action Queries per-
form actions against the data stored in the underlying tables. This action may be
copying the information (data) to another table, modifying the contents of records
within the current table, or even deleting records in the current table.

Because of the destructive nature of action queries, it is a good idea to observe the
following rules: Always back up your table before performing the Action query,
and always create and view the action query (use the Datasheet button on the
toolbar) before performing it.

The process of action queries
Because action queries are irreversible, follow this four-step process when you’re
working with them:

1. Create the action query specifying the fields and the criteria.

2. View the records selected in the action query by clicking the Datasheet but-
ton on the toolbar.

3. Run the action query by clicking the Run button on the toolbar.

4. Check the changes in the tables by clicking the Datasheet button on the toolbar.

Consider backing up your table before creating and running action queries.

If you follow these steps, you can use action queries relatively safely.

Viewing the results of an action query
Action queries perform a specific task — many times a destructive task. Be very
careful when using them. It’s important to view the changes that they will make

Caution

Caution

1232 Part IV ✦ Advanced Access Database Topics

(by clicking the datasheet button) before you run the action query and to verify
afterward that they made the changes that you anticipated. Before you learn how to
create and run an action query, it’s also important to review the process for seeing
what your changes will look like before you change a table permanently.

Viewing a query before using update and delete queries
Before actually performing an action query, you can click the Datasheet View but-
ton to see which set of data the action query will work with. Meanwhile, when
you’re updating or deleting records with an action query, the actions take place on
the underlying tables that the query is currently using. To view the results of an
update or a delete query, click the Datasheet button to see whether the records will
be updated or deleted before committing the action.

If your update query made changes to the fields you used for selecting the records,
you may have to look at the underlying table or change to a Select query to see the
changes. For example, if you deleted a set of records with an action button, the
resulting select dynaset of the same record criteria will show that no records exist—
the condition specified has been performed. By removing the delete criteria, you can
view the remaining table and verify that all the records specified have been deleted.

Switching to the result table of a make-table or append query
Unlike the Update or Delete queries, Make-Table and Append queries copy resultant
records to another table. After specifying the fields and the criteria in the QBE pane
of the Query Design window, the Make-Table and the Append queries copy the
specified fields and records to another table. When you run the queries, the results
take place in another table, not in the current table.

Clicking the Datasheet button shows you a dynaset of only the criteria and fields
that were specified, not the actual table that contains the new or added records. To
view the results of a Make-Table or Append query, open the new table and view the
contents to verify that the Make-Table or Append query worked correctly. If you
won’t be using the action query again, do not save it. Delete it.

Reversing action queries
Action queries copy or change data in underlying tables. After an action query is
executed, it cannot be reversed. Therefore, when you’re working with action
queries, create a select query first to make sure that the record criteria and selec-
tion are correct for the action query.

Action queries are destructive; before performing one, always make a backup of
the underlying tables. You may also consider removing the Action query from your
database after the action has been performed if the query will not be used again
in the future.

Caution

Note

1233Chapter 37 ✦ Working with Action and SQL Queries

Creating Action Queries
Creating an action query is very similar to creating a select query. You specify the
fields for the query and any scoping criteria. In addition to specifying the fields and
criteria, you must tell Access to make this query an action-specific one — Append
To, Table, Update To, or Delete.

Creating an update action query to change values
In this section, you learn to handle an event that requires changing many records.
The type of query used is called an update action query.

Suppose that you have noticed that there are many more contact names in the
tblContacts table (58) than in the tblSales table (53). This raises your curiosity, so
you create a quick totals query to check the buyers who made sales and you find
out that there were only 30 buyers based on that query. You then create a simple
select query to check how many contacts were actual sellers or both (sellers and
buyers) against the products table. To your surprise, there are only three records.
Finally, you create another select query to check to see if you have any buyers that
have no sales records, and you find two records. So if there are only 30 buyer con-
tact records and only three seller/both contact records, why are the other contact
records marked as active (blnActive)? You also know that there are at least two
buyer records with no associated sales, and those records have the blnActive field
set to yes (true).

Figure 37-2 shows all three of the queries you created to see how many buyers and
sellers there were. Notice that Query2, top left corner, uses the Count aggregate
function to determine how many sales each customer (contact) has. In contrast,
Query3 simply creates a select query with a join between the tblProducts table and
the tblContacts table, where the join includes only rows where both tables have the
same value — thus, you see only the records that have associated sellers listed. In
Query4, the type of link has been changed to show all contacts and only those
records where the fields are equal from the sales table. It also has two criteria —
only buyers where the idsInvoiceNumber field is Null.

Scoping Criteria

Action queries can use any expression composed of fields, functions, and operators to spec-
ify any limiting condition that you need to place on the query. Scoping criteria are one form
of record criteria. Normally, the record criteria serve as a filter to tell Access which records to
find and/or leave out of the dynaset. Because action queries do not create a dynaset, you
use scoping criteria to specify a set of records for Access to operate on.

1234 Part IV ✦ Advanced Access Database Topics

At this time, you do not want to delete any contact records that have no apparent
relationship to the system; however, you do want to mark those records as inactive,
changing the value from true to false for the blnActive field in the tblContacts table.

If these contact records have no corresponding sales or products records, they are
known as widowed records.

Figure 37-2: Three queries to determine how many contacts made purchases and
how many were sellers.

It’s possible to update each record in a table individually by using a form or even
creating a select query dynaset to make these changes in the datasheet; however,
this process can take a very long time if there are many records to change. The
method is not only time-consuming but also inefficient. In addition, this method
lends itself to typing errors as you enter new text into fields.

The best way to handle this type of event is to use an update action query to make
many changes in just one operation. You save time and eliminate many of those
typos that crop up in manually edited records.

To create an update query that performs these tasks, follow a four-step process:

1. Create a select query. View the data you want to update by clicking the
Datasheet button.

2. Convert the select query to an update query; then re-check the query, by
clicking on the view button to re-verify that only those records will be affected.

Note

1235Chapter 37 ✦ Working with Action and SQL Queries

3. Run the update query after you’re satisfied that it will affect only the records
you want to affect.

4. Check your results.

Creating a select query before an update action
As outlined earlier, the first step in making an update query is to create a select
query. In this particular case, the query is to find all contacts who have not made
any purchases or are sellers and to change their active status from yes/true to
no/false. Perform these steps to create this query:

1. Create a new query using tblContacts, tblSales, tblSalesLineItems, tblProducts,
and a second copy of tblContacts from the CHAP37Start database.

2. Change the link from tblContacts to tblSales to include all records from
tblContacts and only those from tblSales where the join fields are equal.

3. Link the tblProducts table to the second copy of tblContacts (named
tblContacts_1) by linking the lnqzSellerId in tblProducts to idsContactID in
tblContacts.

4. Select the idsContactID and chrContactType fields from the tblContacts table;
the idsContactID field from the tblContacts_1 table; the idsInvoiceNumber and
dtmSaleDate fields from the tblSales table; and the blnActive, chrLastName,
and chrFirstName fields from the tblContacts table.

5. Specify a criterion of Is Null in the idsContactID field of the tblContacts_1 table.

6. Specify a criterion of Is Null in the idsInvoiceNumer field of the tblSales table.

7. Specify a criterion of Is Null in the dtmSaleDate field of the tblSales table.

The Select Query Design window should now resemble the one shown in
Figure 37-3.

Add the sorting directives you see in the figure as well; the three fields are:
idsContactID chrLastName, and chrFirstName of tblContacts tables,

Notice that the QBE pane shows all the fields but shows criteria in only the
three fields specified in Steps 5 through 7.

8. Click on the View button and examine the datasheet to make sure that it has
only the records you want to change. Return to the design surface when
you’re finished.

The select query datasheet should resemble the one shown in Figure 37-4. Notice
that only the records for contacts that have no sales or no contact ID as a seller
appear in the dynaset — in other words, contacts with no associated records in the
sales or products table. It shows a check box instead of yes, no, 0, or –1. This is
done by specifying the field property Format as type Yes/No in the field blnActive in
the table design.

Your example may show zeros instead — to see Yes/No, simply specify a field
property of Yes/No as the Format type for the column.

Note

1236 Part IV ✦ Advanced Access Database Topics

Figure 37-3: Creating a select query to be converted to an update query to change
the value of the blnActive field.

Figure 37-4: Dynaset showing only the records for contacts that have no associated
records in products or sales.

As you see in Figure 37-4, in this case 28 records show no corresponding records,
yet all these contacts are marked as active. You are now ready to convert the select
query to an update query.

Converting a select query to an update query
After you create a select query and verify the selection of records, it’s time to cre-
ate the update query. To convert the select query to an update query, follow these
steps:

1. Click on the View button to return to the design window.

2. Select Update Query from the Query Type button on the toolbar or select
Query ➪ Update Query from the menu.

1237Chapter 37 ✦ Working with Action and SQL Queries

Access changes the title of the Query window from Query1: Select Query to
Query1: Update Query. Access also adds the Update To: property row to the
QBE pane, above the Criteria: row.

3. In the Update To: cell of blnActive, enter No as shown in Figure 37-5.

Figure 37-5: The design pane for the update query. Notice that the blnActive
Update To: cell has No in it.

4. Click the view button to re-verify that only those 28 records will be affected.
After you verify that only those records are affected, return to the design win-
dow by clicking on the View button again.

5. Click the Run button on the toolbar (or select Query ➪ Run from the menu).

Access displays the dialog box shown in Figure 37-6. This dialog box displays
a message: “You are about to update x row(s). Once you click Yes, you can’t
use the Undo command to reverse the changes. Are you sure you want to
update these records?” Two command buttons are presented: Yes and No.

Figure 37-6: The dialog box for
updating records warns you that
you are about to update x row(s)
and that this action is irreversible.

6. Click the Yes button to complete the query and update the records. Selecting
No stops the procedure (no records are updated).

If you’re changing tables that are attached to another database, you cannot cancel
the query after it is started.

You can change more than one field at a time by filling in the Update To: cell of
any field that you want to change. You can also change the field contents of fields
that you used for limiting the records — that is, the criteria.

Note

Caution

1238 Part IV ✦ Advanced Access Database Topics

Checking your results
After completing the update query, check the results by clicking the datasheet but-
ton and examining the values in the datasheet. You could have converted back to a
select query to be safe; however, the update query can be viewed more quickly by
clicking the datasheet button — the update has already been performed at this
stage.

The update made permanent changes to the field blnActive for all contacts that
have no associated records in the tblSales or tblProducts tables. If you did not back
up the tblContacts table before running the update query, you cannot easily restore
the contents to their original Yes or No settings. (You’ll need a good memory if your
query affects more than a few records!)

If you update a field that was used for a limiting criterion, you must change the cri-
terion in the select query to the new value to verify the changes.

Although you will not use this query again, if you like, you can save this query by
naming it a_Action_Update blnActive Contacts.

The results of this table will be used later in the section “Creating a simple append
query.”

Creating a new table using a make-table query
You can use an action query to create new tables based on scoping criteria. To
make a new table, you create a make-table query. Consider the following situation
as an example that might give rise to this particular task and for which you would
create a make-table query.

Suppose a local automobile supply company has approached you for a mailing list
of customers who have made car or truck purchases from you. This company
wants to send these customers a coupon book for several cleaning products for
each vehicle they have purchased. The supply company plans to create the mailing
labels and send the form letters if you supply a table of customer information, sales
dates, and vehicle information they purchased. The company also stipulates that,
because this is a trial mailing, only those customers you’ve seen in the past six
months should receive letters.

You have decided to send the company the requested table of information, so now
you need to create a new table from the system tables. A make-table query will per-
form these actions.

Cross-
Reference

Note

1239Chapter 37 ✦ Working with Action and SQL Queries

Creating the make-table query
You decide to create a make-table query for all customers who purchased vehicles
(cars and trucks only) and who have visited you in the past six months. Perform
these steps to create this query:

1. Create a new query using the tblContacts, tblSales, tblSalesLineItems, and
tblProducts tables.

2. Select chrFirstName, chrLastName, chrAddress, chrCity, chrState, and
chrZipCode from the tblContacts table; dtmSaleDate from the tblSales table;
chrDescription from the tblSalesLineItems table; and chrCategory from the
tblProducts table.

3. Specify a criterion of Between Now() and Now()–182 in the dtmSaleDate field.

4. Specify a criterion of Cars or Trucks in the chrCategory field.

The Query Design window should resemble the one shown in Figure 37-7.
Some of the fields are missing from the left side of the query so that you can
see the two fields (dtmSaleDate and chrCategory) that contain criteria.

Figure 37-7: The select table for creating a make table of customer information for
the past six months.

5. Click on the View button to verify that only the past six months of records are
shown. Then re-click on the View button to return to query design mode.

6. Select Make-Table from the Query Type button on the toolbar.

Access displays the Make Table dialog box, as shown in Figure 37-8.

1240 Part IV ✦ Advanced Access Database Topics

Figure 37-8: The Make Table
dialog box with a table name
entered. Notice that the table can
be saved in this database or
another database.

7. Type Mailing List for Coupons in the Table Name: field; press Enter or
click OK.

Notice that the name of the window changes from Query1: Select Query to
Query1: Make Table Query. Other than the title, there is no other visual
change to the query to tell you that it is a Make Table query.

8. Click the Datasheet View button on the toolbar to view the dynaset
(re-verifying the fields and data that will be sent to the new table).
See Figure 37-9.

9. Make sure that the dynaset has only the records you specified.

10. Click the Design button to switch back to the Query Design view.

Figure 37-9: The dynaset of contacts that have purchased cars or trucks from you
in the past six months. In this example, the current date is before June 12, 2003.
Your results will be different unless you use the same date.

11. Click the Run button on the toolbar or select Query ➪ Run from the menu.

Access indicates how many records it will copy to the new table (see Figure
37-10).

12. Click the Yes button to complete the query and make the new table. Selecting
No stops the procedure (no records are copied).

1241Chapter 37 ✦ Working with Action and SQL Queries

Figure 37-10: The dialog box for copying records.

Although you will not use this query again, if you like, you can save this query by
naming it a_Action_MakeTable Mailing List.

When you’re creating numerous make-table queries, you need to select Make-Table
Query from the Query Type button on the toolbar or select Query ➪ Make-Table
from the menu; either method renames the make-table query each time. Access
assumes that you want to overwrite the existing table if you don’t reselect the
make-table option. Access warns you about overwriting before performing the new
make-table query; as an alternative, you could change the Destination table name
on the Property sheet.

Checking your results
After you complete the make-table query, check your results by opening the new
table Mailing List for Coupons, which was added to the database container (see
Figure 37-11).

Figure 37-11: The new table Mailing List for Coupons created from a Make-Table
query.

When you create a table from a make-table query, the fields in the new table
inherit the data type and field size from the fields in the query’s underlying tables;
however, no other field or table properties are transferred. If you want to define a
primary key or other properties, you need to edit the design of the new table.

You can also use a make-table action query to create a backup of your tables
before you create action queries that change the contents of the tables. Backing
up a table using a make-table action query does not copy the table’s properties or
primary key to the new table.

Tip

Note

1242 Part IV ✦ Advanced Access Database Topics

Creating queries to append records
As the word append suggests, an append query attaches or adds records to a speci-
fied table. An append query adds records from the table you’re using to another
table. The table you want to add records to must already exist. You can append
records to a table in the same database or in another Access database.

Append queries are very useful for adding information to another table on the basis
of some scoping criteria. Even so, append queries are not always the fastest way of
adding records to another database. For example, if you need to append all fields
and all records from one table to a new table, the append query is not the best way
to do it. Instead, use the Copy and Paste options on the Edit menu when you’re
working with the table in a datasheet or form.

You can add records to an open table. You don’t have to close the table before
adding records. However, Access does not automatically refresh the view of the
table that has records added to it. To refresh the table, press Shift+F9. This action
requires the table so that you can see the appended records.

When you’re working with append queries, be aware of these rules:

✦ If the table you’re appending records to has a primary key field, the records
you add cannot have Null values or duplicate primary key values. If they do,
Access will not append the records and you will get no warning.

✦ If you add records to another database table, you must know the location and
name of the database.

✦ If you use the asterisk (*) field in a QBE row, you cannot also use individual
fields from the same table. Access assumes that you’re trying to add field con-
tents twice to the same record and will not append the records.

Note

Copying Any Database Object

To copy any database object (table, query, form, or other object) while you’re in the
Database window, follow these steps:

1. Highlight the object you need to copy.

2. Press Ctrl+C (or select Edit ➪ Copy) to copy the object to the Clipboard.

3. Press Ctrl+V (or select Edit ➪ Paste) to paste the object from the Clipboard.

4. Enter the new object name (table, form, and so forth) and click the OK button in the
dialog box. If the object is a table, you also can specify Structure with or without the
data or append it to an existing table.

1243Chapter 37 ✦ Working with Action and SQL Queries

✦ If you append records with an AutoNumber field (an Access-specified primary
key), do not include the AutoNumber field if the table you’re appending to
also has the field and record contents (this causes the problem specified in
the first rule). Also, if you’re adding to an empty table and you want the new
table to have a new AutoNumber number (that is, order number) based on the
criteria, do not use the AutoNumber field.

By following these simple rules, your append query will perform as expected and
become a very useful tool.

Creating a simple append query
Here’s an example that will help illustrate the use of append queries: You have
found that you have many contacts records (from earlier in this chapter when you
updated the blnActive field using the a_Action_Update blnActive Contacts query)
that have no associated sales or products records related to them. You have
decided to archive the records by appending them to an existing backup table
named Non Active Contacts. This is a relatively simple process, because you have
already identified the records by creating the query.

In this case, you want to add records to the backup table named
tblNonActiveContacts for the nonrelated contacts in your active tables.

1. Create a new query using the tblContacts table.

2. Click on the title bar of the tblContacts table to select all the fields and drag
them to the table grid.

3. Specify a criterion of No in the last field — blnActive.

4. Click the View button to verify that only those records where blnActive is No
are displayed.

Click the View button to return to the design window.

5. Select Append Query from the button or Query menu.

Access opens the Append dialog box, as shown in Figure 37-12.

Figure 37-12: The Append dialog box for
creating an Append Query.

1244 Part IV ✦ Advanced Access Database Topics

6. Select Non Active Contacts in the Table Name: field; press Enter or click OK.

Notice that the name of the window changes from Query1: Select Query to
Query1: Append Query. Access also adds the Append To: property row to the
QBE pane, above the Criteria: row. It populates each cell with the name of the
field in the Non Active Contacts table that the field contents will be moved to.

7. Click the Datasheet View button on the toolbar to view the dynaset
(re-verifying the fields and data that will be sent to the new table).

8. Make sure that the dynaset has only the records you specified.

9. Click the Design button to switch back to the Query Design view.

10. Click the Run button on the toolbar or select Query ➪ Run from the menu.

Access indicates how many records it will append to the new table
(see Figure 37-13).

11. Click the Yes button to complete the query and make the new table. Selecting
No stops the procedure (no records are copied).

Figure 37-13: The Append information box for
appending records.

Although you will not use this query again, if you like, you can save this query by
naming it a_Action_AppendTable Non Active Contacts.

There is another query in your database named a_Action_Append NewSellers to
tblContacts. This append query is used to append records from the table named
NewSellers to the tblContacts table. It is put here so that you can see how you can
append records from one system’s tables into your tables. This could be when you
obtain another company’s list of sellers. Note that the NewSellers table does not
have a idsContactID field. When you append the three records from the new table,
Access will automatically assign a new idsContactID to each record.

At this point, you could create a delete query to remove these records from the
table. You may want to read the next sections before moving on to the delete query.

You could jump ahead to the section “Creating a query to delete records” if you
want to remove some records.

Cross-
Reference

Note

1245Chapter 37 ✦ Working with Action and SQL Queries

Backing up tables for a complex append query

The next several sections will demonstrate appending records from your four main
tables into Inactive contacts and related records tables.

In addition to copying off nonrelated records, you may want to append records that
are old in the system to backup tables. In other words, you may want to copy out-
dated records from the three primary tables (tblSales, tblSalesLineItems, and
tblProducts) to back up files. Perhaps, you will copy off any records where the cus-
tomer (contact) has not made any purchases over the past two years. In this case,
you need four backup files to perform this exercise. To create the backup files from
the four tables, perform the following steps:

1. Press F11 or Alt+F1 to display the Database window.

2. Click the Tables object button to display the list of tables.

3. Click the tblSales table to highlight it.

4. Press Ctrl+C (or select Edit ➪ Copy) to copy the object tblSales table to the
Clipboard.

5. Press Ctrl+V (or select Edit ➪ Paste) to display the Paste Table As dialog box.

6. Click Structure Only in the Paste Options section of the dialog box (or press
Alt+S to select Structure Only).

7. Click the Table Name: box and type Inactive Sales Backup.

8. Click OK (or press Enter after typing the filename).

9. Open the Inactive Sales Backup table (which should be empty); then close the
table.

Repeat this process for the remaining two tables (tblSalesLineItems and
tblProducts tables), naming them Inactive SalesLineItems Backup and Inactive
Products Backup, respectively.

To create an append query that copies the inactive contacts records, follow a four-
step process:

1. Create a select query to verify that only the records that you want to append
are copied.

2. Convert the select query to an append query and run it.

3. Check your results.

When you’re using the append query, only fields with names that match in the two
tables are copied. For example, you may have a small table with six fields and
another with nine fields. The table with nine fields has only five of the six field
names that match fields in the smaller table. If you append records from the smaller
table to the larger table, only the five matching fields are appended; the other four
fields remain blank.

Note

Note

1246 Part IV ✦ Advanced Access Database Topics

Creating the select query for an append query
To create a select query for an append query, follow these steps:

1. Create a new query using the tblContacts, tblSales, tblSalesLineItems, and
tblProducts tables from the database.

2. Select the dtmSaleDate field from the tblSales table.

3. Specify a criterion of < 1/1/2001 in the dtmSaleDate field.

You may want to select some additional fields from each table, such as
chrFirstName, chrLastName, chrDescription, chrCatetory, and so forth. The
Select Query Design window should resemble the one shown in Figure 37-14.
The only field and criterion that must be in this select query is the first field:
dtmSaleDate. If you add any other fields, make sure that you remove them
before converting this query to an append query.

4. Go to the datasheet and make sure that all the dtmSaleDate field contents are
before January 1, 2001 (see Figure 37-15).

5. Return to design mode.

6. If you added additional fields to look at, remove all fields from the QBE pane
except the dtmSaleDate field with the Criteria: of < #1/1/2001#.

With the select query created correctly, you are ready to convert the select query
to an append query.

Figure 37-14: The tables tblContacts, tblSales, tblSalesLineItems, and tblProducts
are in the top pane, and selected fields are in the QBE pane. Only the first field
must be there for an append query.

1247Chapter 37 ✦ Working with Action and SQL Queries

Figure 37-15: A dynaset of records for all sales before
1/1/2001. This will be converted to an append query.

Converting to an append query
After you create the select query and verify that it is correct, you need to create the
append query (actually, three different append queries — one each for the tables
tblProducts, tblSalesLineItems, and tblSales — because append queries work with only
one table at a time). For this example, first copy all fields from the tblProducts table.

To convert the select query to an append query and run it, perform the following
steps:

1. Make sure that only the dtmSaleDate field is present in the QBE pane.

2. Deselect the Show: property of the dtmSaleDate field.

3. Select Append Query from the Query Type button on the toolbar, or select
Query ➪ Append Query from the Design menu.

Access displays the Append dialog box, as shown in Figure 37-16.

Figure 37-16: The Append dialog box. Use this
box to select the table you want to append
records into.

4. Type Inactive Products Backup in the Table Name: field or select it from the
pull-down menu and press Enter or click OK.

5. Drag the asterisk (*) field from the tblProducts table to the QBE pane to select
all fields.

The QBE pane should look like the one shown in Figure 37-17. Access automat-
ically fills in the Append To: field under the All field-selector column.

1248 Part IV ✦ Advanced Access Database Topics

At this point, you can click the datasheet button to see what records Access
will actually append to the new table. It should show you two records. After
you view the records, you should then return to the design mode to continue
with the action query.

6. Click the Run button on the toolbar (or select Query ➪ Run from the menu).

Access displays a dialog box that displays the message “You are about to
append x row(s).” Then it presents two buttons (Yes and No). After you click
Yes, the Undo command cannot be used to reverse the changes.

7. Click the Yes button to complete the query and copy (append) the records to
the backup table. Selecting No stops the procedure (no records are copied).

Figure 37-17: The QBE pane for an appended query. Append all older records from the
tblProducts table into another table.

After you have run the Append query, you may want to open the Inactive Products
Backup table to verify that it copied the records over — if you are following along
with the example tables, it should have two records in the table.

After the tblProducts table’s older records are backed up, you are ready to append
records into the Inactive SalesLineItems Backup table and the Inactive Sales Backup
table. Before you append fields from these other tables, however, you must remove
the previous All selector field [tblProducts.*] from the QBE pane and the Visit
Details table from the top pane.

To append the tblSalesLineItem records, follow these steps:

1. Continuing with the same query above, delete the tblProducts table from the
top pane — this will automatically remove the tblProducts.* field from the grid.

Because you have already copied off the records from the tblProducts table, you
no longer need it for the last two append queries.

Tip

Tip

1249Chapter 37 ✦ Working with Action and SQL Queries

2. Select Select Query from the Query menu or the toolbar.

3. Select the asterisk (*) field for the tblSalesLineItems table and drag it down to
the QBE pane.

4. Click the View button to verify that the correct records have been selected.
The datasheet should display two records. Click the View button again to
return to the design window.

5. Reselect Query ➪ Append Query to activate the Append dialog box.

6. Type, or select, Inactive SalesLineItems Backup for the name of the table to
append to and click the OK button.

7. Click the Run button on the toolbar (or select Query ➪ Run from the menu).

Access displays a dialog box that displays the message “You are about to
append x row(s).” Then it presents two buttons (Yes and No). After you click
Yes, the Undo command cannot be used to reverse the changes.

8. Click the Yes button to complete the query and copy (append) the records to
the backup table. Selecting No stops the procedure (no records are copied).

If you receive an error stating that there is an INSERT INTO error, check to see if
you have a field name in the Append To: cell of the dtmSaleDate. If you do,
remove it because this field should be blank.

With the tblSalesLineItems table records backed up, you should create an Append
query for the tblSales table. To do so, follow these steps:

1. Remove the tblSalesLineItems table from the query (which will also remove
the All selector field for the [tblSalesLineItems.*] QBE automatically).
Leave the dtmSaleDate Field in the first row of the QBE pane with a criteria
of < #1/1/2001#.

2. Repeat the preceding Steps 2 through 8 with the appropriate responses for
the tblSales table.

3. After you have a select query active, select the asterisk (*) field for the
tblSales table. Check your records: there should only be one.

4. Reselect Query ➪ Append, and type or select Inactive Sales Backup for the
name of the table to append to.

Access will add the field name dtmSaleDate from the Append To: cell of the
dtmSaleDate Field cell — and remove it from the Append To: cell, making the
cell blank.

5. Click Run.

You do not have to save this query because it has already been run.

Tip

1250 Part IV ✦ Advanced Access Database Topics

If you create an append query by using the asterisk (*) field and you also use a
field from the same table as the All asterisk field to specify a criterion, you must
take the criteria field name out of the Append To: row. If you don’t, Access reports
an error. Remember that the field for the criterion is already included in the aster-
isk field.

Checking your results
After you complete the three append table queries, re-check your results. To do so,
follow these steps:

1. Go to the Database window and select each of the three tables to be appended
to (Inactive Sales Backup: 1 record; Inactive SalesLineItems Backup: 2 records;
and Inactive Products Backup: 2 records).

2. View the new records.

At this point, you could see if Michael Irwin’s record is now inactive; that is, it has
no sales records associated with it. If it is, you could create another append query
to move this record to another Inactive Backup database (perhaps named Inactive
Contacts Backup).

Creating a query to delete records
Of all the action queries, the delete query is the most dangerous. Unlike the other
types of queries you’ve worked with, delete queries remove records from tables
permanently and irreversibly.

Like other action queries, delete queries act on a group of records on the basis of
scoping criteria.

A delete action query can work with multiple tables to delete records. If you intend
to delete related records from multiple tables, however, you must do the following:

✦ Define relationships between the tables in the Relationships Builder.

✦ Check the Enforce Referential Integrity option for the join between tables.

✦ Check the Cascade Delete Related Records option for the join between tables
(for one-to-one or one-to-many relationships).

Figure 37-18 shows the Edit Relationships dialog box for the join line between the
tblSales and tblSalesLineItems tables. Notice that the options Enforce Referential
Integrity and Cascade Delete Related Records are both selected (as is Cascade
update).

Notice that the relationship between the tblSalesLineItems and tblProducts tables
is a many-to-one rather than a one-to-many. Therefore, cascade deletes from the
tblSalesLineItems side will not work. To delete related records in the tblProducts

Note

Caution

1251Chapter 37 ✦ Working with Action and SQL Queries

table, you will need to create a separate Delete query first. However, the tblSales
and tblSalesLineItems tables can have records deleted from both of them in one
operation.

Figure 37-18: The Edit Relationships dialog box, showing that Referential Integrity
is being Enforced and the Cascade Delete Related Records is active.

When working with one-to-many relationships without defining relationships and
putting Cascade Delete on, Access deletes records from only one table at a time.
Specifically, Access deletes the many side of the relationship first. Then you must
remove the many table from the query and delete the records from the one side of
the query.

This method is time-consuming and awkward. Therefore, when you’re deleting
related records from one-to-many relationship tables, make sure that you define
relationships between the tables and check the Cascade Delete box in the Edit
Relationships dialog box. By doing this, you can delete from all related tables by
creating a single Delete query.

Because of the permanently destructive action of a delete query, always make
backup copies of your tables before working with them.

The following example illustrates the use of two Access action Delete queries. In
this case, you have a couple of records to delete from the tlbSales and
tblSalesLineItems tables. However, you also have two records to delete from the
tblProducts table. This table will have to be worked with first.

Earlier, you copied records from tlbContacts to a non active contacts table. These
records could also be deleted by separately deleting these records, based on the
query that was used to append them to a new table.

Note

Caution

1252 Part IV ✦ Advanced Access Database Topics

Because the tblProducts records are dependent upon the tblSalesLineItems and
tblSales tables, you will need to create a separate Delete query to get rid of these
records.

You are going to delete all records of products that were sold before January 1,
2001. Recall that you already copied all old sales records to three backup tables in
the append query section. The tables you’re dealing with have these relationships:

✦ One tblSales record can have many tblSalesLineItems records.

✦ Many tblSalesLineItem records can have one related tblProduct record.

One of these is a one-to-many relationship; the other is a many-to-one relationship.

As a result, you will have to delete the tblProduct records separately from the other
two. If you don’t, these records may stay in the tblProducts table with no corre-
sponding records in the other tables — widowed.

For the other two tables, if you don’t define permanent relationships between the
tables and turn on Cascade Delete, you’ll need to create two additional delete
queries. (You would need to delete from the tblSalesLineItems and tblSales tables —
in that order.)

With relations set and Cascade Delete on, however, you have to delete only the
records from the tblSales table; Access automatically deletes all related records in
the tblSalesLineItems table. For this example, you have already appended the
records to another table — or you have made a new table of the records that you’re
about to delete, set up permanent relationships among the three tables, and turned
on Cascade Delete for relationships between tblSales and tblSalesLineItems.

Creating a dependent delete query
To create a delete query for all products that were used in sales older than 1/1/2001,
perform these steps:

1. Make a backup copy of the tblProducts table, naming it “Copy tblProducts”
using the Ctrl+C, Ctrl+V method.

2. Create a new query using the tblSales, tblSalesLineItems, and tblProducts
tables.

3. Select dtmSaleDate from the tblSales table.

4. Specify a criterion of <1/1/2001 for the dtmSaleDate field.

5. Select the tblProducts.* field and drop it in the grid.

6. Click the View button to verify that it found the two records, appended to the
Inactive Products Backup table earlier. Return to the Design window by click-
ing the View button again.

7. Select Query ➪ Delete Query from the Design menu or the toolbar.

1253Chapter 37 ✦ Working with Action and SQL Queries

The name of the window changes from Query1: Select Query to Query1:
Delete Query. A new row is added to the QBE pane — Delete:. This row is
immediately above the Criteria field.

The Delete: cell of the dtmSaleDate field will say “Where” in it.

The Delete: cell of the tblProducts.* field will say “From” in it. The Delete
Query Design window is shown in Figure 37-19. Notice that it has the criteria
field, dtmSaleDate, in the first column with a criteria set of < #1/1/2001# and
the tblSales.* field in the second column. The Delete: row shows a value of
Where under the dtmSaleDate column and From under the tblSales.* column.

Figure 37-19: The delete query’s QBE pane. The Delete: row has been
added to the pane, and the where and from conditions are automatically
set by Access.

8. Click the Run button on the toolbar (or select Query ➪ Run from the menu).

Access displays a dialog box with the message “You are about to delete x
row(s) from the specified table (tblProducts). After you click Yes, you can’t
use the Undo command to reverse the changes. Are you sure that you want to
delete the selected records?” In this case, it will report that you are about to
delete 1 row(s) from the tblProducts table.

9. Click the Yes button to complete the query.

The records are removed from the tblProducts table. When you click Yes,
Access deletes the records only in the tblProducts table. It does nothing with
the records in the tblSalesLineItems or tblSales tables.

At this point, you could remove the tblProducts table, do the same delete proce-
dure for the tblSalesLineItems table, and then follow up by doing the same to the
tblSales table. However, there is a better way — cascade deleting from both tables
at once.

1254 Part IV ✦ Advanced Access Database Topics

Creating a cascading delete query
To create a cascading delete query for all sales older than 1/1/2001, along with their
line items, perform these steps:

1. Make backup copies of both tables (tblSales and tblSalesLineItems), naming
them “Copy of <name of file>” using the Ctrl+C, Ctrl+V method.

2. Create a new query using the tblSales table.

3. Select Query ➪ Delete Query from the Design menu.

The name of the window changes from Query1: Select Query to Query1:
Delete Query. A new row is added to the QBE pane — Delete:. This row is
immediately above the Criteria field.

4. Select the dtmSaledate field from the tblSales table.

The Delete: cell of the dtmSaleDate field will say “Where” in it.

5. Specify the criterion < 1/1/2001 in the dtmSaleDate field.

6. Select the all fields selector from the tblSales table — asterisks (*) field and
drag it to the QBE pane.

The Delete: cell of the tblSales.* field will say “From” in it. The Delete Query
Design window is shown in Figure 37-20. Notice that it has the criteria field,
dtmSaleDate, in the first column with a criteria set of < #1/1/2001# and the
tblSales.* field in the second column. The Delete: row shows a value of Where
under the dtmSaleDate column and From under the tblSales.* column.

Figure 37-20: The delete query’s QBE pane. The Delete: row has been added
to the pane, and the where and from conditions are automatically set by Access.

7. Go to the datasheet and verify that only records that show a date less than
January 1, 2001 (< 1/1/2001) are there.

8. Return to the Design window.

1255Chapter 37 ✦ Working with Action and SQL Queries

9. Click the Run button on the toolbar (or select Query ➪ Run from the menu).

Access displays a dialog box with the message “You are about to delete x
row(s) from the specified table (tblSasles). After you click Yes, you can’t use
the Undo command to reverse the changes. Are you sure that you want to
delete the selected records?” In this case, it will report that you are about to
delete 1 row(s) from the tblSales table. However, Access will also automati-
cally delete the two rows from the tblSalesLineItems table. It will not report
how many rows will be deleted from the other table that is linked to the table
you selected.

10. Click the Yes button to complete the query.

The records are removed from both tables. When you click Yes, Access
deletes the records in the tblSales table and then automatically deletes the
related records in the tblSalesLineItems table. Selecting No stops the proce-
dure (no records are deleted).

Remember that a delete query permanently and irreversibly removes the records
from the table(s). Therefore, it is important that the records to be deleted are
backed up before they are deleted.

Checking your results
After completing the delete query, you can check your results by clicking the
Datasheet button on the toolbar. If the delete query worked correctly, you will see
no records in the datasheet.

You have now deleted all records of old sales (<1/1/2001) from the database tables
tblProducts, tblSales, and tblSalesLineItems.

Delete queries remove entire records, not just the data in specific fields. If you
need to delete only values in specific fields, use an update query to change the
values to empty values.

Creating other queries using the Query Wizards
In the preceding chapter, you learned to use a Query Wizard to create a crosstab
query. Access has two other Wizards that can help maintain your databases:

✦ Find Duplicate Query Wizard: Shows duplicate records in a single table on
the basis of a field in the table.

✦ Find Unmatched Query Wizard: Shows all records that do not have a corre-
sponding record in another table (for example, a sale with an invalid contact).

The Find Duplicate Query Wizard works on a single table. The Find Unmatched
Query Wizard compares records from one table with another.

These Wizards (along with all the others, such as the Crosstab Wizard) are listed
when you first start a new query.

Tip

1256 Part IV ✦ Advanced Access Database Topics

Find Duplicate Query Wizard
This Wizard helps you create a query that reports which records in a table are
duplicated using a field or fields in the table as a basis. Access asks which fields
you want to use for checking duplication and then prompts you to enter some other
fields that you may want to see in the query. Finally, Access asks for a title and then
it creates and displays the query.

This type of Wizard query can help you find duplicate key violations, a valuable
trick when you want to take an existing table and make a unique key field with exist-
ing data. If you try to create a unique key field and Access reports an error, you
know that you have Nulls in the field or you have duplicate records. The query
helps find the duplicates.

Find Unmatched Query Wizard
This Wizard helps you create a query that reports any orphan or widow records
between two tables.

An orphan is a record in a many-side table that has no corresponding record in the
one-side table. For example, you may have a sale tblSales table that does not have
any corresponding contact it is related to (the sale is an orphan).

A widow is a record in the one side of a one-to-many or one-to-one table that does
not have a corresponding record in the other table. For example, you may have a
contact who has no sales in the tblSales table or product in the tblProducts table.
The same situation exists if you have any products in the tblProducts table that
have no corresponding sales related to them. We covered this situation in the
update table section earlier in this chapter.

Access asks for the names of the two tables to compare; it also asks for the link
field name between the tables. Access prompts you for the fields that you want to
see in the first table and for a title. Then it creates the query.

This type of query can help find records that have no corresponding records in
other tables. If you create a relationship between tables and try to set referential
integrity but Access reports that it cannot activate the feature, some records are
violating integrity. This query helps find them quickly.

To create an unmatched record from tblProducts to tblSalesLineItems (products in the
system with no corresponding sales) query, using the Wizard, perform these steps:

1. Select the Queries button and click the New button of the Queries container of
the Database window.

Access displays the New Query window.

2. Select Find Unmatched Query Wizard from the choices and double-click it or
click OK.

The Find Unmatched Query Wizard’s first screen appears, as shown in
Figure 37-21.

1257Chapter 37 ✦ Working with Action and SQL Queries

Figure 37-21: The first screen of the Unmatched Query
Wizard. Here is where you select the tblProducts table.

3. Select the tblProducts table from the first screen of the Wizard by either high-
lighting it and clicking the Next button or double-clicking the tblProducts
table name.

You are moved to the second screen of the Wizard. Here you select the second
table to match against.

4. Select the tblSalesLineItems table from the choices and click the Next button.

5. Make sure the chrProductID number field is highlighted in both tables on the
third screen and click the Next button.

6. Select the fields you wish to see in the query — chrProductID, chrDescription,
chrCategory, intQtyInStock, and curCost. Then click the Next button for the
final screen, which is shown in Figure 37-22.

Figure 37-22: This is the fourth screen, where you
select fields to see in the query.

1258 Part IV ✦ Advanced Access Database Topics

7. In the final screen, you can specify a new name for the query. Simply accept
the default name (tblProducts Without Matching tblSalesLineItems), and click
the Finish button.

After the Query is created and you click the Finish button, Access automatically opens
the query and shows any records that are widows (products with no related sales).
Figure 37-23 shows multiple records that were found having no sales relationship.

Figure 37-23: The datasheet shows the results of the Find Unmatched
Query created with the Wizard.

After you have created the Wizard, you can easily delete these records by selecting
them in the datasheet and pressing the Delete key. Then answer Yes to “are you
sure you want to delete these records?” The unmatched record will be removed
from the tblProducts table.

Saving an action query
Saving an action query is just like saving any other query. From design mode, you
can save the query and continue working by clicking the Save button on the toolbar
(or by selecting File ➪ Save from the Query menu). If this is the first time you’re sav-
ing the query, Access prompts you for a name in the Save As dialog box.

You can also save the query and exit by selecting File ➪ Close from the menu or by
double-clicking the Control menu button (in the top-left corner of the Query win-
dow) and answering Yes to this dialog box question: “Save changes to the design of
‘<query name>’?” You also can save the query by pressing F12.

Running an action query
After you save an action query, you can run it by double-clicking its name in the
Query container (window). Access will warn you that an action query is about to be
executed and ask for confirmation before it continues with the query.

1259Chapter 37 ✦ Working with Action and SQL Queries

Troubleshooting Action Queries
When you’re working with action queries, you need to be aware of several potential
problems. While you’re running the query, any of several messages may appear,
including messages that several records were lost because of key violations or that
records were locked during the execution of the query. This section discusses some
of these problems and how to avoid them.

Data-type errors in appending and updating
If you attempt to enter a value that is not appropriate for the specified field, Access
doesn’t enter the value; it simply ignores the incorrect values and converts the
fields to Null values. When you’re working with append queries, Access will append
the records, but the fields may be blank!

Key violations in action queries
When you attempt to append records to another database that has a primary key,
Access will not append records that contain the same primary key value.

Access does not enable you to update a record and change a primary key value to
an existing value. You can change a primary key value to another value under these
conditions:

✦ The new primary key value does not already exist.

✦ The field value you’re attempting to change is not related to fields in other
tables.

Access does not enable you to delete a field on the one side of a one-to-many rela-
tionship without first deleting the records from the many side.

Access does not enable you to append or update a field value that will duplicate a
value in a unique index field — one that has the Index property set to Yes (No
Duplicates).

Record-locked fields in multi-user environments
Access will not perform an action query on records locked by another user. When
you’re performing an update or append query, you can choose to continue and
change all other values. But remember this: If you enable Access to continue with
an action query, you won’t be able to determine which records were left unchanged!

Text fields
When appending or updating to a Text field that is smaller than the current field,
Access truncates any text data that doesn’t fit in the new field. Access does not
warn you that it has truncated the information.

1260 Part IV ✦ Advanced Access Database Topics

SQL-Specific Queries
Access has three query types that cannot be created by using the QBE pane;
instead, you type the appropriate SQL (Structured Query Language) statement
directly in the SQL view window. These SQL-specific queries are as follows:

✦ Union query: Combines fields from more than one table or query into one
recordset.

✦ Pass-through query: Enables you to send SQL commands directly to ODBC
(Open Database Connectivity) databases using the ODBC database’s SQL syntax.

✦ Data definition query: Enables you to create or alter database tables or cre-
ate indexes in a database, such as Access databases, directly.

To create any of these queries, select from the Query ➪ SQL Specific menu the type
you want to create. (No applicable button is available on the toolbar.)

In addition to these three special SQL-specific queries, you can use SQL in a sub-
query (inside a standard Access query) to define a field or define criteria for a field.

Creating union queries
Union queries enable you to quickly combine fields from several tables or queries
into one field. The resultant snapshot (like a dynaset) is not updateable.

For example, suppose a competing company retires and gives you all the client
records from its business. You decide to create a union query to combine the data
from both businesses and examine it. You will need to take your original
tblContacts table and combine it with the records from the NewSellers table (3
records). Figure 37-24 shows a union query that returns the customer name, cus-
tomer number, city, and state in order (by customer number). To create this query,
follow these steps:

1. Create a new query using no tables (close the Show Table dialog box without
adding tables).

2. Select Query ➪ SQL Specific ➪ Union from the Query Design menu bar.

An SQL window is opened. This window is used to type in the Union Query
that you wish to create.

3. Type SELECT [chrLastName], [chrFirstName], [chrContactType], [chrCity]
FROM tblContacts on the first line.

4. Press Enter to move down a line in the SQL window.

5. Type UNION SELECT [chrLastName], [chrFirstName], [chrContactType],
[chrCity] FROM NewSellers on the second line of the SQL window.

The fields being specified for the union must be the same as those in the first
table.

1261Chapter 37 ✦ Working with Action and SQL Queries

6. Press Enter to move down to another blank line in the SQL window.

7. Type ORDER BY [chrLastName], [chrFirstName]; (ends with semi-colon) on
the third line.

Your query should look similar to the one shown in Figure 37-24. You do not
have to have a blank line between each of the parts of the statement as in the
one shown in Figure 37-24.

Figure 37-24: An SQL union query that combines the field contents of
two different tables to be displayed as a single dynaset.

Notice that a union query has two or more SQL SELECT statements. Each SELECT
statement requires the same number of fields, in the same order.

If you run this query, you will see the information requested in order by contact last
name and first name.

The dynaset created from a Union query is not updateable.

This union dynaset comprises 62 records (combining 59 from the tblContacts and 3
from the NewSellers tables).

When you use the Union command in the SQL SELECT statement, it copies only
those records that are NOT duplicates when it joins the tables. The contents of all
the fields being selected in the SQL Union query determine if duplication exists. If
two records have the same contents in all the fields selected, they are considered
duplicates and only one record will be displayed. If there are other fields, not used
in the Union query, that have different values, they are not used to determine
duplicity. If you want to see all records from the Union of two tables, simply use the
keyword ALL after the UNION command — that is, UNION ALL SELECT.

Creating pass-through queries
A pass-through query sends SQL commands directly to an SQL database server
(such as Microsoft SQL Server, Oracle, and so on). Often these database servers are
known as the back-end of the system; with Access being the client tool or front-end.
You send the command by using the syntax required by the particular server. Be
sure to consult the documentation for the appropriate SQL database server.

Note

1262 Part IV ✦ Advanced Access Database Topics

You can use pass-through queries to retrieve records or change data, or to run a
server-side stored procedure or trigger. They can even be used to create new tables
at the SQL server database level (versus local tables).

After you create a pass-through query, you need to specify information about the
database you want to connect to. You can type a connection string in the
ODBCConnectStr property of the query property sheet directly or click Build and
enter the information about the server you want to connect to. If you do not specify
a connection string, you are prompted for the connection information when you
run the query.

Figure 37-25 shows a pass-through query for a Microsoft SQL Server that creates a
new table named Payroll and defines the fields in the table. A pass-through query is
not limited to data definitions (creating a table or index); it can be any valid SQL
statement to examine or manipulate the records in a back-end server.

Figure 37-25: A pass-through
query for SQL Server that will
create a table named payroll in
a database that resides on an
SQL Server.

Never attempt to convert a pass-through query to another type of query. If you do,
Access erases the entire SQL statement you had typed in.

When working with pass-through queries, you should not perform operations
that change the state of the connection. Halting a transaction in the middle, for
example, may cause unexpected results.

Creating data definition queries
Of the three SQL-specific queries, the data definition query is the least useful against
local tables. Everything that can be done with it also can be done by using the
design tools in Access. The data definition query is, however, an efficient way to
create or change database objects. With a data definition query, any of these SQL
statements can be used:

✦ CREATE TABLE

✦ ALTER TABLE

✦ DROP TABLE

✦ CREATE INDEX

✦ DROP INDEX

Caution

1263Chapter 37 ✦ Working with Action and SQL Queries

For example, you could type the following code into the SQL query window (Data
Definition Query) to create a local Access table named TelephoneList:

CREATE TABLE TelephoneList
([TeleID] integer, [FullName] text, [Address1] text,
[Address2] text, [Address3] text, [Country] text, [Phone 1]
text, [Phone 2] text, [FaxPhn 1] text, [Notes] memo,
CONSTRAINT [Index1] PRIMARY KEY ([TeleID]));

After it is created, this query could be run to create a new table named Telephone
List. You could create a second Data-Definition Query to create an index for the
table. For instance, you could create an index that would be in order by country
and full name:

CREATE INDEX CountryName ON TelephoneList ([Country],
[FullName]);

You can have only one SQL statement in each Data-Definition Query.

Creating SQL subqueries in an Access query
Access 2002 enables you to create an SQL SELECT statement inside another select
query or action query. You can use these SQL statements in the Field row to define
a new field, or in the Criteria row to define criteria for a field. Using subqueries, you
can do the following:

✦ Find values in the primary query that are equal to, greater than, or less than
values returned by the subquery using the ANY, IN, or ALL reserved words.

✦ Test for the existence of a result from a subquery using the EXISTS or NOT
EXISTS reserved words.

✦ Using the ANY, IN, or ALL reserve words in a subquery, you can compare val-
ues in the main query to the results of the subquery (not equal, equal, greater
than, or less than).

✦ Create nested subqueries (subqueries within subqueries).

You can place an SQL statement in the Field: cell or in the Criteria: cell of the design
grid. You would place it in the Field: cell to create a new field for the query. In con-
trast, you can use an SQL statement in the Criteria: cell of a field to define the crite-
ria used for limiting the records of the cell.

✦ ✦ ✦

Note

Increasing the
Speed of an
Application

When Microsoft introduced 32-bit Access, a number of
new performance concerns came part and parcel

with the new features and functions. Microsoft continues to
make a conscious effort to improve the performance of
Access 2003 with improvements in Jet as well as compilation
techniques and features such as the formerly undocumented
decompile command. The end result is that Microsoft has
helped to ease your burden, but in no way has it completely
taken it from you.

The published minimum RAM requirement for a computer
to run Access 2003 on Windows XP or Windows 2000 is
128MB — with an emphasis on minimum. If you’re going
to do serious development with Access 2003, you should
have at least 256MB of RAM or, preferably, 512MB or
more. With today’s computers and memory prices, this
amount of memory is a valuable investment. In fact, simply
adding more memory (128MB to 256MB) will increase
speed much more than changing your processor (Pentium
II to Pentium III or 4) or speed, due to the fact that Access
2003 must use the hard drive as a virtual memory area if it
doesn’t have enough memory. Hard drives are slow, and
big hard drives are even slower — regardless of the proces-
sor speed.

Understanding Module Load
on Demand

One of the great features of Visual Basic for Applications (the
core language that replaced Access Basic in earlier versions of
Microsoft Access) is the load on demand functionality of VBA.
Using load on demand, Access loads code modules only as

Tip

3838C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Tuning your computer
for maximum
performance

Increasing
performance
dramatically by
keeping your code in
a compiled state

Using the Access
2003 large database
file format

Using MDE
databases for better
performance

Adjusting the Jet
registry settings

Getting the most from
your tables

Tuning your queries
for maximum speed

Getting the most out
of your forms and
reports

Increasing
performance by
optimizing your
VBA code

Increasing the
perceived speed of
your application

Working with large
databases

✦ ✦ ✦ ✦

1266 Part IV ✦ Advanced Access Database Topics

they are needed or referenced. In previous versions of Access, load on demand of
modules wasn’t fully realized because loading a module loaded the entire module’s
potential call tree. With Access 2003, the load on demand feature truly does help
reduce the amount of RAM needed and helps your program run faster.

Because Access doesn’t unload code after it has been loaded into memory, you
should periodically close your application while you develop. When developing,
you have a tendency to open and work with many different procedures in many
different modules. These modules stay in memory until you close Access.

Organizing your modules
You should be aware that when any procedure or variable is referenced in your
application, the entire module that contains the procedure or variable is loaded
into memory. To minimize the number of modules loaded into memory, you need to
organize your procedures and variables into logical modules. For example, it’s a
good idea to place all Global variables in the same module. If only one Global vari-
able is declared in a module, the entire module is loaded into memory. By the same
token, you should put only procedures that are always used by your application
(such as start-up procedures) into the module containing the Global variables.

Access 2003 prunes the call tree
The call tree for a procedure is any additional functions or procedures that the cur-
rent procedure (or function) has referenced within it, as well as those referenced by
the newly loaded functions and procedures, and so forth. Because a procedure may
reference numerous additional functions/procedures (stored in different modules)
based on the action taken by the procedure, this loading of all potentially called
functions/procedures takes a lot of time and memory.

Remember that when a procedure or function is called, the entire module in which
that function is stored is placed in memory.

Therefore, a potential call tree consists of all the procedures that could be called by
the current procedure that you are calling. In addition, all the procedures that
could be called from those procedures and so forth are also part of the potential
call tree. For example:

1. If you call Procedure A, the entire module containing Procedure A is loaded.

2. Modules containing variable declarations used by Procedure A are loaded.

3. Procedure A has lines of code that call Procedures B and C — the modules
containing Procedure B and Procedure C are loaded. (Even if the call state-
ments are in conditional loops and are never executed, they are still loaded
because potentially they could be called.)

Tip

1267Chapter 38 ✦ Increasing the Speed of an Application

4. Any procedures that could be called by Procedure B and Procedure C are
loaded, as well as the entire modules containing those potential procedures.

5. And so on and so on and . . .

Fortunately for all Access developers, this complete loading of a potential call tree
has been addressed in Access 2003. Access 2003 automatically compiles modules
on demand, rather than the entire potential call tree. However, you can turn this
feature off, thus making Access 2003 compile all modules at one time. Do this in the
Visual Basic for Applications program rather than in Access. Access 2003 links
directly to VBA’s development environment for working with Visual Basic code. To
check the status of the Compile on Demand option, follow these steps:

1. Select the Modules object type from the Object toolbar of the database.

2. Click the New object button to activate the Visual Basic Development
Environment.

3. Select Tools ➪ Options. The Options dialog box appears.

4. Select the General tab.

5. Verify that the Compile on Demand check box, located on the bottom right
side of the dialog box, is checked. If it’s not, select it. Figure 38-1 shows the
dialog box with the option selected.

Figure 38-1: For maximum
performance, leave the Compile on
Demand check box selected.

6. Click OK.

7. Select File ➪ Close and Return to Microsoft Access (Alt + Q) or click the
Access button (first button on toolbar) if you want to return to Access and
leave the VBA window open.

Unless you have a specific reason to do so, never deselect the Compile on Demand
option. When you deselect this option, you can conceivably cause all of the mod-
ules in a database to load and compile, simply by calling just one procedure.

Tip

1268 Part IV ✦ Advanced Access Database Topics

With the Compile on Demand option selected, Access 2003 won’t load the entire
call tree of a module, but it will load a portion of the call tree of the executed proce-
dure. For example, if you call procedure A in module A, any modules that contain
procedures referenced in procedure A are loaded and compiled. However, Access
2003 doesn’t take into consideration procedures that may be called from other pro-
cedures in module A, and it doesn’t look at the potential call tree of the modules
loaded because one of their procedures is referenced in procedure A. Because
Access 2003 loads modules one-deep from the executed procedure’s immediate call
tree only — and not the module’s call tree — your applications should load and exe-
cute many times faster than they did in previous versions.

Even though Access 2003 has made a significant improvement in the way modules
are loaded and compiled, you can still do a number of things to reduce the number
of modules loaded and compiled. For example, you should never place infrequently
called procedures in a module with procedures that are called often. At times, this
may make your modules less logical and harder to conceptualize. For example, you
may have a dozen functions that perform various manipulations to contact informa-
tion in your application. Ordinarily, you may make one module called “modContacts”
and place all the contact-related procedures and variables into this one module.
Because Access loads the entire module when one procedure or variable in it is
called, you may want to separate the contact-related procedures into separate mod-
ules (one for procedures that are commonly used and one for procedures that are
rarely used and not referenced in commonly used procedures).

You need to be aware at all times that all modules having procedures referenced
in a procedure of a different module are loaded when that procedure is called. In
your application, if any of your common procedures reference a procedure that
isn’t commonly used, you will want to place the uncommon procedure in the
same module with the common procedures to prevent a different module (con-
taining the uncommon procedures) from being loaded and compiled. You may
even decide to use more than two modules if you have very large amounts of
code in multiple procedures that are rarely called. Although breaking related pro-
cedures into separate modules may make your code a little harder to understand,
it can greatly improve the performance of your application.

To fully take advantage of Compile on Demand, you have to carefully plan your
procedure placement. Third-party tools, such as Total Access Analyzer from FMS
(www.fmsinc.com) print a complete module reference report. This can be invaluable
for visualizing where all of the potential calls for various procedures are located.

Using the Access 2002-2003
Database File Format

Access 2003 supports several file formats including Access 2002, 2000, and 97.
The new Access 2002-2003 file format exists (according to Microsoft literature)
to ensure upward compatibility to future versions of Microsoft Access. Some
Microsoft literature has claimed that the Access 2002-2003 file format enhanced

Tip

1269Chapter 38 ✦ Increasing the Speed of an Application

performance for large database files. We have been unable to verify this on large
data databases or large program files, but we do know that Access 2003 itself is
slightly faster than Access 2002 and significantly faster than Access 2000 given the
proper amount of memory.

You can open and even run Access 97 database files, but you can’t make any design
changes. You can open Access 2000 database files and make any desired changes to
them. However, if you use features specific to Access 2002 or Access 2003, a user
using Access 2000 won’t be able to use those features and may have problems with
compiling or running the application.

If you create a new database in Access 2003, the default new database file format is
the Access 2000 file format. You can convert an Access 97 or Access 2000 database
file to an Access 2002 database file format by using the menu selections Tools ➪
Database Utilities ➪ Convert Database ➪ To Access 2002-2003 File Format.

You can change the default file format for new files by using the Tools ➪ Options ➪

Advanced selection and selecting Access 2002-2003 from the combo box, as
shown in Figure 38-2.

Figure 38-2: For maximum performance, change
the default file format to Access 2002–2003.

The Access 2002-2003 file format should only be used in an Access 2002 or Access
2003 only environment where all users are using Access 2002 or Access 2003.
Besides complete compatibility with all Access 2002 or Access 2003 features, you
may experience some performance advantages when using the Access 2002-2003
file format with larger databases. However, in a mixed environment of Access 2000
and Access 2003 or Access 2003 users, you should stay with the Access 2000 file
format for compatibility with Access 2000 users. An Access 2003 program can
attach to Access 97 data files, but if you are trying to accommodate Access 97
users, you should simply stay with Access 97 data files.

Tip

1270 Part IV ✦ Advanced Access Database Topics

Distributing .MDE Files
One way to ensure that your application’s code is always compiled is to distribute
your database as an .MDE file. When you save your database as an .MDE file, Access
compiles all code modules (including form modules), removes all editable source
code, and compacts the database. The new .MDE file contains no source code, but
continues to work because it does contain a compiled copy of all of your code. Not
only is this a great way to secure your source code, but it also allows you to dis-
tribute databases that are smaller (because they contain no source code) and
always keep their modules in a compiled state. Because the code is always in a
compiled state, less memory is used by the application, and you suffer no perfor-
mance penalty for code being compiled at run time.

In addition to not being able to view existing code because it is all compiled, the fol-
lowing restrictions apply:

✦ You can’t view, modify, or create forms, reports, or modules in Design view.

✦ You can’t add, delete, or change references to object libraries or databases.

✦ You can’t change your database’s VBA project name by using the Options
dialog box.

✦ You can’t import or export forms, reports, or modules. Note, however, that
tables, queries, and macros can be imported from or exported to non-MDE
databases.

If you want to create a demo of your application — and if you don’t want the users
to be able to see your code or form and report designs — you should create an
.MDE file. Because the designs of your forms, reports, and all code modules are
simply not present (they are stored in a compiled version only), you don’t have to
worry about someone stealing your designs or code. An .MDE file is also good for
distributing your work in environments where you don’t want the user to change
your designs.

Because of these restrictions, it may not be possible to distribute your application
as an .MDE file. For example, if your application creates forms at run time, you
would not be able to distribute the database as an .MDE file.

You have no way to convert an .MDE file into a normal database file. Therefore,
always save and keep a copy of the original database! When you need to make
changes to the application, you must open the normal database and then create a
new .MDE file before distribution. If you delete your original database, you will be
unable to access any of your objects in Design view.

Some prerequisites must be met before a database can be saved as an .MDE file.
First, if security is in use, the user creating the .MDE file must have all applicable
rights to the database. In addition, if the database is replicated, you must remove
all replication system tables and properties before saving the .MDE file. Finally, you
must save all databases or add-ins in the chain of references as .MDE files or your
database will be unable to use them.

Note

Caution

Tip

1271Chapter 38 ✦ Increasing the Speed of an Application

To create an .MDE file, follow these steps:

1. Close the database if it’s currently open. If you don’t close the current
database, Access will attempt to close it for you, prompting you to save
changes where applicable. When working with a shared database, all users
must close the database; Access needs exclusive rights to work with the
database.

2. Select Tools ➪ Database Utilities and then click Make MDE File (see Figure
38-3). The Database To Save as MDE dialog box displays unless you have a
database open. See the next step for more information.

Figure 38-3: Access doesn’t convert the existing database into an .MDE file;
it creates a new .MDE file for the database.

3. In the Database To Save As MDE dialog box, specify the database that you
want to save as an .MDE file, and click Make MDE.

If you had a database open when you selected Make MDE File, this step is
skipped and Access assumes that you want to use the previously opened
database. If you want to use a different database, you need to stop creating
the .MDE file, close the database, and select Make MDE File again. At that
time, you will be asked for the database to save as an .MDE file.

4. In the Database to Save as MDE dialog box, specify a name, drive, and folder
for the database. Don’t attempt to save the .MDE file with the same filename
as the original database.

1272 Part IV ✦ Advanced Access Database Topics

Don’t delete or overwrite your original database! As stated previously, you have no
way to convert an .MDE file to a normal database, and you can’t edit any objects in
an .MDE file. If you delete or otherwise lose your original database, you will never
again be able to access any of the objects in the design environment.

You can create an .MDE file only if you first convert the database into the Access
2002-2003 database format.

Understanding the Compiled State
Understanding how Access performs Compile on Demand is critical to achieving
maximum performance from your Access application. However, it is also paramount
that you understand what compilation is and what it means for an application to be
in a compiled state. Access has two types of code — code that you write and code
that Access can understand and execute. Before a procedure of VBA code that you
have written can be executed, the code must be run through a compiler to generate
code in a form that Access can understand — compiled code. Access lacks a true
compiler and instead uses partially compiled code and an interpreter. A true com-
piler converts source code to machine-level instructions, which are executed by
your computer’s CPU. Access converts your source code to an intermediate state
that it can rapidly interpret and execute. The code in the converted form is known
as compiled code, or as being in a compiled state.

If a procedure is called that isn’t in a compiled state, the procedure must first be
compiled and then the compiled code is passed to the interpreter for execution. In
reality, as previously stated, this doesn’t happen at the procedure level, but at the
module level; when you call a procedure, the module containing the procedure and
all modules that have procedures referenced in the called procedure are loaded and
compiled. You can manually compile your code, or you can let Access compile it for
you on the fly. It takes time to compile the code, however, so the performance of
your application will suffer if you let Access compile it on the fly.

In addition to the time required for Access to compile your code at run time,
uncompiled programs use considerably more memory than compiled code. When
your application is completely compiled, only the compiled code is loaded into
memory when a procedure is called. If you run an application that is in a decom-
piled state, Access loads the decompiled code and generates the compiled code as
needed (explained previously). Access does not unload the decompiled code as it
compiles, so you are left with two versions of the same code in memory.

There is one drawback to compiled applications: They use more hard drive space
than their decompiled versions. This is because both the compiled and decompiled
versions of the code are stored on the hard drive.

Hard drive space shouldn’t often become a problem, but if you have an application
with an enormous amount of code, you can save hard drive space by keeping it in a
decompiled state. Remember that a trade-off is made between hard drive space

Caution

Caution

1273Chapter 38 ✦ Increasing the Speed of an Application

used and the performance of your database. Most often, when given the choice, a
user would rather give up a few megabytes of hard drive space in exchange for
faster applications.

You may use this space-saving technique to your advantage if you need to dis-
tribute a large application and your recipients have a full development version of
Access. By distributing the uncompiled versions, you will need much less hard
drive space to distribute the application, and the end users can compile it again at
their location. If you are going to do this, you should put the entire application into
a decompiled state. The topic of fully decompiling an application is discussed later
in this chapter.

Putting your application’s code into a compiled state
You have only one way to put your entire application into a compiled state: Use the
Compile [mdb name] menu item from the Debug menu on the Modules toolbar in
the Visual Basic for Applications development window (see Figure 38-4). To access
the Debug menu, you must have a module open. Generally, you should always use
the Compile [mdb name] command to ensure that all of the code is saved in a com-
piled state. Complex applications can take a long time to compile, and, in general,
you should only perform a Compile [mdb name] before you distribute your applica-
tion or before performing benchmark tests.

Figure 38-4: Compile [mdb name] (in this example, Ch38Start)
is the only way to fully compile your application.

When you use the Compile option in the Debug menu, you actually see the name
of your project. This is the name that you used to save your database file the first
time that it was created or saved. If you later rename the database file, the project
name doesn’t change. You can change it by using the Tools menu in the module
window and selecting the current project name with the word Properties beside it.

Note

Tip

1274 Part IV ✦ Advanced Access Database Topics

Access 2003 has an option for compiling code to the Visual Basic for Applications
program — Background Compile. Figure 38-1 shows this option under Compile on
Demand; the default value for this option is True (selected). This option tells
Access to compile code in the background rather than to compile it all at one time.

It is especially important to close your application after performing a Compile
[mdb name]. To compile all of your modules, Access needs to load every single
one of them into memory. All of this code stays in memory until you close down
Access.

Losing the compiled state
One of the greatest roadblocks to increasing the performance of Access applica-
tions was the fact that an application could be uncompiled very easily. When the
Access application was in an uncompiled state, Access had to constantly compile
code as it was called. In fact, losing the compiled state was so easy to do in previ-
ous versions of Access that it would often happen without developers even realiz-
ing that they had done it.

In Access 2003, only portions of code affected by certain changes are put into an
uncompiled state — not the entire application. By itself, this is a tremendous
improvement over previous versions of Access.

The following actions will cause portions of your code to be uncompiled:

✦ Modifying a form, report, control, or module. (If you don’t save the modified
object, your application is preserved in its previous state.)

✦ Adding a new form, report, control, or module (this includes adding new code
behind a form).

✦ Deleting or renaming a form, report, control, or module.

✦ Adding or removing a reference to an object library or database by using the
References command on the Tools menu.

Okay, so you think that you have a handle on code that loses its compiled state?
Well, here are a couple of “gotchas” that you need to consider:

✦ If you modify objects like reports or forms at run time through VBA code, por-
tions of your application are put into an uncompiled state when the objects
are modified. (Wizards often do this.)

✦ If your application creates objects like reports or forms on the fly, portions of
your application are put into an uncompiled state when the objects are cre-
ated. (Wizards often do this as well.)

Tip

1275Chapter 38 ✦ Increasing the Speed of an Application

Another serious flaw of Access was that an application’s entire compiled state was
tied to the filename of the database. This feature meant that your entire application
would lose its compiled state, and all code would have to be compiled at the time that
it was called if you renamed your database, compacted your database into a database
of a different name, or copied your database to a database with a different name.

Fortunately, Access 97 fixed this serious problem, and it doesn’t even exist in
Access 2003. The compiled state of an application is still tied to its name, but now it
is tied to its project name rather than to its filename.

When you change a project name (but not the filename), the entire application
loses its compiled state. Because of this, you should change the project name only
if absolutely necessary, and you should perform a Compile [mdb name] immedi-
ately after changing the project name.

Distributing applications in a compiled
or uncompiled state
When distributing your Access application, you need to take into consideration a
couple of issues concerning compilation.

Distributing source code for your application
First and foremost, if you distribute source code and allow your users access to mod-
ify or add objects, you must make them completely aware of the compilation issues. If
your users don’t fully comprehend what is happening with your application’s com-
piled state, you can be sure that you will receive phone calls about how your pro-
gram seems to be getting slower the more that users make changes to objects.

Putting an application in an uncompiled state
If your application is the type that will be constantly changing its compiled state
(due to creating forms and reports dynamically), or if end users will be making
modifications to the application’s objects often, or if distributed file size is an issue,
you may want to consider distributing the database in a fully uncompiled state.

To put your entire application into an uncompiled state, follow these steps:

1. Create a new database.

2. Import all of your application objects into the new database.

3. Compact the new database.

Later in this chapter, you will also learn how to manually decompile the project.
This has more benefits than simply letting the project become partially or com-
pletely uncompiled.

Cross-
Reference

Caution

1276 Part IV ✦ Advanced Access Database Topics

Organizing commonly used code that is never modified into a library
After your application is finished and ready for distribution, you may want to con-
sider placing all commonly used code that will never be modified by an end user
into a library database. A library database is an external database that your applica-
tion database can reference and access. You will incur slight overhead by calling
code from the library rather than by accessing it directly in the parent application,
but the benefit is that the library code will never be put into a decompiled state —
even if your application creates or modifies objects on the fly or if your users add
new objects or modify existing objects. This technique can greatly increase an
application’s performance and keep the performance relatively consistent over
time.

The first step for referencing procedures in an external database is to create the
external database with all its modules, just as you would do in an ordinary Access
database.

Any procedures that you declare as “Private” are not made available to the calling
application, so plan carefully what you want and don’t want to expose to other
databases.

After you have created the database and its modules, you must create a reference
to that database in your application database (which is the database that your
users will run). To create a reference, first open any module in your application
database in Design view. When you have a module in Design view, a new
command — References — is available from the Tools menu (see Figure 38-5).
Select Tools ➪ References to access the References dialog box (see Figure 38-6).

Figure 38-5: The References option appears on the Tools menu
only when you have a module open and selected in Design view.

Caution

1277Chapter 38 ✦ Increasing the Speed of an Application

Figure 38-6: The References dialog box is
where you resolve references to OLE automation
servers and Access library databases.

In the References dialog box, you specify all the references that your application
needs for using OLE automation or for using other Access databases as library
databases. When making a reference to another Access database, as opposed to an
OLE server created with another development tool like Visual Basic, you will proba-
bly need to browse for the database. Use the Browse dialog box as if you were going
to open the external database. After you have selected the external Access
database, it shows up in the References dialog box with a check mark to indicate
that it is referenced.

To remove a reference, access the References dialog box again and deselect the ref-
erenced item by clicking its check box. After you have made all the references that
you need to make, click OK.

After a database is referenced, you can call the procedures in the referenced
database as if they existed in your application database. No matter what happens in
your application database to cause code to decompile, the referenced database
always stays in a compiled state unless it is opened and modified directly by using
Access.

To reference an external Access database to call its procedures, follow these steps:

1. Create the library database and its modules.

2. Open the database in which you want to use the external procedures.

3. Open any module in Design view.

4. Select Tools ➪ References.

5. Select the OLE server that you want to register. If it is an Access database, you
will probably have to use the Browse feature to locate the database.

1278 Part IV ✦ Advanced Access Database Topics

If your application uses add-in databases (a special type of library database), you
should open the add-in database for read-only access. Opening add-ins for read-
only access increases performance because Jet doesn’t have to maintain locking
information for the add-in database in an .LDB file.

Creating a library reference for distributed applications
If you are distributing your application, references stay intact only if the calling
database and the library database are in the same or relative path. For example, if
the main database is in C:\myapp on your machine, and if the library database is in
C:\myapp\library, the reference remains intact if the library database is located in
the same relative path, such as in C:\newdir for the main database and C:\newdir\
library for the library database. If the relative path won’t remain consistent upon
distribution, your application’s users must add the reference manually or you must
create the reference by using VBA code.

The following procedure creates a reference to the file whose name is passed to it.
For this function to work, the full filename with path must be passed:

bResult = CreateReference(“c:\My Documents\MyLib.mdb”).

The function is:

Public Function CreateReference(szFileName As String) As
Boolean

On Error GoTo CreateReferenceError
Dim ref As Reference

Set ref = References.AddFromFile(szFileName)
CreateReference = True

Exit Function
CreateReferenceError:

MsgBox Err & “: “ & Err.Description
CreateReference = False
Exit Function

End Function

You can verify that a reference is set by using the ReferenceFromFile function.
To verify a reference, pass the function, the full path, and the filename like this:

bResult =
ReferenceFromFile(“C:\Windows\System\mscal.ocx”).

The function returns True if the reference is valid and False if it isn’t.

With the References collection, the primary concern of using and distributing
libraries — losing references upon distribution — is now gone. However, library
databases still have one major drawback: Access doesn’t support circular refer-
ences. This means that the code in your library databases can’t reference variables
or call procedures that exist in your parent database.

Tip

Tip

1279Chapter 38 ✦ Increasing the Speed of an Application

Whether you distribute your application as one database or as a primary database
that uses library databases, if your applications are static (meaning that they don’t
allow modification of objects by end users or wizards, and don’t perform object mod-
ifications on themselves), you should always distribute the databases in a fully com-
piled state so that your users experience the highest level of performance possible.

Improving Absolute Speed
When discussing an application’s performance, the word performance is usually syn-
onymous with speed. You will find two types of speed in software development —
absolute and perceived. Absolute speed refers to the actual speed at which your
application performs a function, such as how long it takes to run a certain query.
Perceived speed is the phenomenon of an end user actually perceiving one applica-
tion to be faster than another application, even though it may indeed be slower. This
phenomenon of perceived speed is often a direct result of visual feedback provided
to the user while the application is performing a task. Absolute speed items can be
measured in units of time; perceived speed can’t be measured in this manner.

Of course, some of the most important items for increasing actual speed are the
following:

✦ Keeping your application in a compiled state

✦ Organizing your procedures into “smart” modules

✦ Opening databases exclusively

✦ Compacting your databases regularly

You should always open a database exclusively in a single-user environment. If your
application is a standalone application (meaning that nothing is shared over a net-
work), opening the database in exclusive mode can really boost performance. If
your application is run on a network and shared by multiple users, you won’t be
able to open the database exclusively. (Actually, the first user can open it exclu-
sively, but if he does, no other user can access the database until the first user
closes it.) The preferred method for running an application in a network environ-
ment is to run Access and the main code .MDB file locally, and then link to a shared
database containing the data on the server. If your application is used in this man-
ner, you can open and run the code database exclusively, but you can’t use exclu-
sive links to the shared data.

To open a database exclusively in Access 2003, select the pull-down Open button
and select Open Exclusive in the Open Database dialog box (see Figure 38-7).

1280 Part IV ✦ Advanced Access Database Topics

Figure 38-7: Select the Open Exclusive button on the pull-down Open button to
open a database in a single-user environment to increase the performance of the
database.

You can set the default open mode for a database on the Advanced tab of the
Options dialog box to Exclusive. The default open mode is Shared.

Another often-overlooked way of maximizing your database’s performance is to
compact your database regularly. When records are deleted from a database, the
hard drive space that held the deleted data is not recovered until a compact is per-
formed. In addition, a database becomes fragmented as data is modified in the
database. Compacting a database defragments the database and recovers used
hard drive space.

All of the preceding methods are excellent (and necessary) ways to help keep your
applications running at their optimum performance level, but these are not the only
tasks that you can perform in order to increase the absolute speed of your applica-
tion. Almost every area of development, from forms to modules, can be optimized
to give your application maximum absolute speed.

If you use Jet as your data access engine, an Access application can run only so fast.
With Jet, each time you open a table, run a query, or perform an operation on data,
all the data referenced by the process or query must be moved from the data
database (assuming that you have split your program and data database files) to the
computer that’s running the program. This means that you may be moving a lot of
data across your network. This is simply not fast. An Access project that’s using the

Tip

1281Chapter 38 ✦ Increasing the Speed of an Application

Microsoft Desktop Engine (MSDE or SQL Server 2000) can use stored procedures to
minimize network traffic and can drastically speed up applications with large data
databases. If you are working with large amounts of data, you should strongly con-
sider writing the application using SQL Server as your back-end database file.

Tuning your system
One important aspect of performance has nothing to do with the actual application
design—that is, the computer on which the application is running. Even though it’s
impossible to account for all the various configurations your clients may have, you can
do some things for your computer and recommend that end users do them for theirs:

✦ Equip the computer with as much RAM as possible. This step often becomes
an issue of dollars. However, RAM prices continue to decrease, and adding to
a computer’s RAM is one of the most effective methods that you can employ
to increase the speed of Access.

✦ Don’t use wallpaper. Removing a standard Windows wallpaper background
can free up anywhere from 25K to 250K of RAM, and removing complicated
bitmaps or high-color bitmaps can free up even more space.

✦ Close all applications that aren’t being used. Windows makes it very handy to
keep as many applications loaded as you want — in the odd chance that you
may need to use one of them. Although Windows XP and Windows 2000 are
pretty good at handling memory for multiple open applications, each running
application still uses RAM. On machines with little RAM, unnecessary open
applications can significantly degrade performance.

✦ Make sure that your Windows swap file is on a fast drive with plenty of free
space. If possible, you should also set the minimum hard drive space available
for virtual memory to at least 25MB of RAM and make it a permanent swap file.

✦ Defragment your hard drive often. Defragmenting a hard drive allows data to
be retrieved from the drive in larger sections, thus causing fewer direct reads
and less repositioning of the read heads.

Getting the most from your tables
In addition to reviewing all of the technical issues discussed in the preceding sec-
tions, it is advantageous to get back to the basics when designing your applica-
tions. Tools like Access enable novices to create relational databases quickly and
easily, but they don’t teach good database design techniques in the process. An
exception to this statement is the Table Analyzer Wizard. However, even though the
Table Analyzer Wizard offers suggestions that are often helpful in learning good
design technique, its recommendations should never be taken as gospel. The Table
Analyzer has proven to be wrong on many occasions.

Entire volumes of text have been devoted to the subject of database theory.
Teaching database theory is certainly beyond the scope of this chapter (or even this
book). However, you should be familiar with many basics of good database design.

1282 Part IV ✦ Advanced Access Database Topics

Creating efficient indexes
Indexes help Access find and sort records faster and more efficiently. Think of these
indexes as if they were book indexes. To find data, Access looks up the location of
the data in the index and then retrieves the data from its location. You can create
indexes based on a single field or based on multiple fields. Multiple-field indexes
enable you to distinguish between records in which the first field may have the same
value. If they are defined properly, multiple-field indexes can be used by Microsoft’s
Rushmore query optimization, which is the technology that Jet uses to optimize the
speed at which queries execute, based on the search and sort fields of the queries
and indexes of the tables included in the queries, in order to greatly speed queries.

Deciding which fields to index
People new to database development typically make two mistakes: First, not using
indexes and, second, using too many indexes (usually putting them on every field in
a table). Both of these mistakes are serious — sometimes a table with indexes on
every field may give slower performance than a table with no indexes. Why? When a
record is saved, Access must also save an index entry for each defined index. This
can take time and use a considerable amount of hard drive space. The time used is
usually unnoticed in the case of a few indexes, but many indexes can require a huge
amount of time for record saves and updates. In addition, indexes can slow some
action queries (such as append queries) when the indexes for many fields need to
be updated while performing the query’s operations. Figure 38-8 shows the index
property sheet for a sample tblContacts table.

Figure 38-8: Note that common search fields like chrZip
Code, chrCustomerType, and chrTaxLocation are indexed.

1283Chapter 38 ✦ Increasing the Speed of an Application

When you create a primary key for a table, the field (or fields) used to define the
key is automatically indexed, and you can index any field unless the field’s data
type is Memo or OLE Object. You should consider indexing a field if all of the follow-
ing factors apply:

✦ The field’s data type is Text, Number, Currency, or Date/Time.

✦ You anticipate searching for values stored in the field.

✦ You anticipate sorting records based on the values in the field.

✦ You will join the field to fields in other tables in queries.

✦ You anticipate storing many different values in the field. (If many of the values
in the field are the same, the index may not significantly speed up searches or
sorting.)

When defining an index, you have the option of creating an ascending (the default)
or a descending index.

Jet can use a descending index when optimizing queries only when the equal sign
(=) operator is used. If you use an operator other than the equal sign, such as <,
>, <=, or >=, Jet can’t use the descending index. If you plan on using operators
other than an equal sign on an index, you should define the index as an ascending
index.

Using multiple-field indexes
If you often search or sort by two or more fields at the same time, you can create an
index for that combination of fields. For example, if you often set criteria for
LastName and FirstName fields in the same query, it makes sense to create a multi-
ple-field index on both fields.

When you sort a table by a multiple-field index, Access first sorts by the first field
defined for the index. If the first field contains records with duplicate values, Access
then sorts by the second field defined for the index, and so on. This creates a drill-
down effect. For a multiple-field index to work, a search criterion must be defined
for the first field in the index, but not for additional fields in the index. In the pre-
ceding example, if you wanted to search for someone with the first name Robert,
but you didn’t specify a last name to use in the search, the second field in the index
wouldn’t be used. If you need to perform searches on the second field in a multiple-
field index, but are not always specifying criteria for the first field in the index, you
should create an index for the second field in addition to the multiple-field index.

Continuing with the LastName, FirstName index, if you wanted to search for the
first name John, the multiple-field index wouldn’t be used because you would be
attempting to search only on the second field in the index.

Tip

1284 Part IV ✦ Advanced Access Database Topics

Getting the most from your queries
The performance problems of many Access applications result from the design of
their queries. Database applications are all about looking at and working with data,
and queries are the heart of determining what data to look at or work with. Queries
are used to bind forms and reports, fill list boxes and combo boxes, make new
tables, and many other functions within an Access application. Because they are so
widely used, it is extremely important to optimize your queries. A query that is
properly designed can provide results minutes to hours faster than a poorly
designed query that returns the same result set. Consider the following:

✦ When designing queries and tables, you should create indexes for all fields
that are used in sorts, joins, and criteria fields. Indexes enable Jet to quickly
sort and search through your database.

Sorting and searching is much faster if the indexes are unique rather than
nonunique. Also, if you are using conditions in your queries, you will find that
queries can run faster if the index is based on ascending order (as opposed to
reverse, z to a, or descending order).

✦ When possible, use a primary key in place of a regular index when creating
joins. Primary keys don’t allow nulls and give the Rushmore query optimizer
more ways to use the joins.

✦ Limit the columns of data returned in a select query to only those you need. If
you don’t need the information from a field, don’t return it in the query.
Queries run much faster when they must return less information.

If you need to use a field for a query condition and if it isn’t necessary to display
the field in the results table, deselect the view check box to suppress displaying
the field and its contents.

✦ When you need to return a count of the records returned by an SQL state-
ment, use Count(*) instead of Count([FieldName]) because Count(*) is
considerably faster. Count(*) counts records that contain null fields;
Count([FieldName]) checks for nulls and disqualifies them from being
counted. If you specify a field name instead of using the asterisk, Count
doesn’t count records that have a null in the specified field.

You may also replace FieldName with an expression, but this slows down the
function even further.

✦ Avoid using calculated fields in nested queries. A calculated field in a subordi-
nate query considerably slows down the top-level query. You should use cal-
culated fields only in top-level queries, and even then, only when necessary.

✦ When you need to group records by the values of a field used in a join, specify
the Group By for the field that is in the same table that you are totaling. You
can drag the joined field from either table, but using Group By on the field
from the table that you are totaling yields faster results.

Tip

Tip

Tip

1285Chapter 38 ✦ Increasing the Speed of an Application

✦ Domain Aggregate functions, such as DLookup or DCount, that are used as
expressions in queries slow down the queries considerably. Instead, you
should add the table to the query or use a subquery to return the information
that you need.

✦ As with VBA code modules, queries are compiled. To compile a query, Jet’s
Rushmore query optimizer evaluates the query to determine the fastest way
to execute the query. If a query is saved in a compiled state, it runs at its
fastest speed the first time that you execute it. If it isn’t compiled, it takes
longer the first time that it executes because it must be compiled, but it then
runs faster in succeeding executions. To compile a query, run the query by
opening it in Datasheet view and then close the query without saving it. If you
make changes to the query definition, run the query again after saving your
changes and then close it without saving it.

✦ If you really want to squeeze the most out of your queries, you should experi-
ment by creating your queries in different ways (such as specifying different
types of joins). You will be surprised at the varying results.

Getting the most from your forms and reports
Forms and reports can slow an application by taking a long time to load or process
information. You can perform a number of tasks in order to increase the perfor-
mance of forms and reports.

Minimizing form and report complexity and size
One of the key elements to achieving better performance from your forms and
reports is reducing their complexity and size. Try these methods to reduce a form’s
or report’s complexity and size:

✦ Minimize the number of objects on a form or report. The fewer objects used,
the less resources needed to display and process the form or report.

✦ Reduce the use of subforms. When a subform is loaded, two forms are in
memory — the parent form and the subform. Use a list box or a combo box in
place of a subform whenever possible.

✦ Use labels instead of text boxes for hidden fields because text boxes use more
resources than labels. Hidden fields are often used as an alternative to creat-
ing variables to store information.

You can’t write a value directly to a label like you can to a text box, but you can
write to the label’s caption property like this: Label1.Caption = “MyValue”.

✦ Move some code from a form’s module into a standard module. This enables
the form to load faster because the code doesn’t need to be loaded into mem-
ory. If the procedures that you move to a normal module are referenced by
any procedures executed upon loading a form (such as in the form load
event), moving the procedures won’t help because they are loaded anyway as
part of the potential call tree of the executed procedure.

Tip

1286 Part IV ✦ Advanced Access Database Topics

✦ Don’t overlap controls on a form or report.

✦ Place related groups of controls on form pages. If only one page is shown at a
time, Access doesn’t need to generate all of the controls at the same time.

✦ Use a query that returns a limited result set for a form’s or report’s
RecordSource rather than using a table or underlying query that uses tables.
The less data returned for the RecordSource, the faster the form or report
loads. In addition, return only those fields actually used by the form or report.
Don’t use a query that gathers fields that won’t be displayed on the form or
report (except for a conditional check).

Using bitmaps on forms and reports
Bitmaps on forms and reports make an application look attractive and can also help
convey the purpose of the form or report (as in a wizard). However, graphics are
always resource-intensive, so you should use the fewest possible number of graphic
objects on your forms and reports. This helps to minimize form and report load
time, increase print speed, and reduce the resources used by your application.

Often you will display pictures that a user never changes and that are not bound to
a database. Examples of such pictures include your company logo on a switchboard
or static images in a wizard. When you want to display images like these, you have
two choices:

✦ Use an Unbound Object Frame.

✦ Use an Image control.

If the image will never change and if you don’t need to activate it in Form Design
view, use an Image control. Image controls use fewer resources and display faster. If
you need the image to be a linked or embedded OLE object that you can edit, use
an Unbound Object Frame. You can convert OLE images in Unbound Object Frames.

If you have an image in an Unbound Object Frame that you no longer need to edit,
you can convert the Unbound Object Frame to an Image control by selecting
Change To Image from the Format menu.

When you have forms that contain unbound OLE objects, you should close the
forms when they are not in use in order to free up resources. Also avoid using
bitmaps with many colors — they take considerably more resources and are slower
to paint than a bitmap of the same size with fewer colors.

If you want to display an Unbound OLE object but don’t want the user to be able to
activate it, set its Enabled property to False.

Tip

Tip

1287Chapter 38 ✦ Increasing the Speed of an Application

Speeding up list boxes and combo boxes
It’s important to pay attention to the optimization of list boxes and combo boxes
when optimizing your application. You can take a number of steps to make your
combo boxes and list boxes run faster:

✦ When using multipage forms that have list boxes or combo boxes on more
than one page, don’t set the RowSource of the list boxes or combo boxes until
the actual page containing the control is displayed.

✦ Index the first field displayed in a list box or combo box. This enables Access
to find entries that match text entered by the user much faster.

✦ Although it’s not always practical, try to refrain from hiding a combo box’s
bound column. Hiding the bound column causes the control’s searching fea-
tures to slow down considerably.

✦ If you don’t need the search capabilities of AutoExpand, set the AutoExpand
property of a combo box to No. Access is then relieved of the task of con-
stantly searching the list for entries matching text entered in the text portion
of the combo box.

✦ When possible, make the first nonhidden column in a combo or list box a text
data type, and not a numeric one. To find a match in the list of a combo box
or list box, Access must convert a numeric value to text in order to do the
character-by-character match. If the data type is text, Access can skip the
conversion step.

✦ Often overlooked is the performance gain achieved by using saved queries for
RecordSource and RowSource properties of list boxes and combo boxes. A
saved query gives much better performance than an SQL SELECT statement
because an SQL query is optimized by Rushmore on the fly.

You will find one problem with combo boxes present in Access 2003, which poses
a performance concern. Because Access 2003 supports hyperlinks, Access has to
perform some additional work when first painting a combo box; it needs to deter-
mine the data type of the combo box.

The result is that the combo box takes a little longer to paint — up to a couple of
seconds on some computers. If your combo box is a bound combo box, this isn’t
a problem because Access gets the data type from the ControlSource’s data type.
In addition, if you save a RowSource for the combo box when you save the form,
Access determines the data type from the RowSource and doesn’t need to deter-
mine the data type at run time. The only time that this paint delay is an issue is
when you have an unbound combo box that has its RowSource set programmati-
cally. When this is the case, the combo box will take slightly longer to paint the first
time it is displayed.

Tip

1288 Part IV ✦ Advanced Access Database Topics

Getting the most from your modules
Perhaps the area where you’ll be able to use smart optimization techniques most
frequently is in your modules. For example, in code behind forms, you should use
the Me keyword when referencing controls. This approach takes advantage of the
capabilities of Access 2003; using Me is faster than creating a form variable and ref-
erencing the form in the variable. Other optimization techniques are simply smart
coding practices that have been around for many years. You should try to use the
optimum coding technique at all times. When in doubt, try different methods to
accomplish a task and see which one is fastest.

Consider reducing the number of modules and procedures in your application by
consolidating them whenever possible. A small memory overhead is incurred for
each module and procedure that you use, so consolidating them may free up
some memory.

Using appropriate data types
You should always explicitly declare variables using the Dim function rather than
arbitrarily assigning values to variables that haven’t been dimmed. To make sure
that all variables in your application are explicitly declared before they are used in
a procedure, while in Visual Basic for Application’s design surface, select Tools ➪
Options, choose the Editor tab, and then set the Require Variable Declarations
option on the tab (second from the top in the Code settings section).

Use integers and long integers rather than singles and doubles when possible.
Integers and long integers use less memory, and they take less time to process than
singles and doubles. Table 38-1 shows the relative speed of the different data types
available in Access.

Table 38-1
Data Types and Their Mathematical Processing Speed

Data Type Relative Processing Speed

Integer/Long Fastest

Single/Double Next to Fastest

Currency Next to Slowest

Variant Slowest

In addition to using integers and long integers whenever possible, you should also
use integer math rather than precision math when applicable. For example, to divide
one long integer by another long integer, you can use the following statement:

x = Long1 / Long2

Tip

1289Chapter 38 ✦ Increasing the Speed of an Application

This statement is a standard math function that uses floating-point math. You can
perform the same function by using integer math (notice that the mathematical sign
is the regular slash versus the backward slash) with the following statement:

x = Long1 \ Long2

Of course, integer math isn’t always applicable. It is, however, commonly applied
when returning a percentage. For example, you can return a percentage with the fol-
lowing precision math formula:

x = Total / Value

However, you can perform the same function using integer math by first multiplying
the Total by 100 and then using integer math like this:

x = (Total * 100) \ Value

You should also use string functions ($) where applicable. When you are manipulat-
ing variables that are of type String, use the string functions (for example, Str$()) as
opposed to their variant counterparts (Str()). If you are working with variants, use
the non-$ functions. Using string functions when working with strings is faster
because Access doesn’t need to perform type conversions on the variables.

When you need to return a substring by using Mid$(), you can omit the third
parameter to have the entire length of the string returned. For example, to return a
substring that starts at the second character of a string and returns all remaining
characters, use a statement like this:

szReturn = Mid$(szMyString, 2)

When using arrays, use dynamic arrays with the Erase and ReDim statements to
reclaim memory. By dynamically adjusting the size of the arrays, you can ensure
that only the amount of memory needed for the array is allocated.

In addition to using optimized variables, consider using constants when applica-
ble. Constants can make your code much easier to read and won’t slow your
application if you compile your code before executing it.

Writing faster routines
You can make your procedures faster by optimizing the routines that they contain
in a number of ways. If you keep performance issues in mind as you develop, you
will be able to find and take advantage of situations like the ones discussed here.

Some Access functions perform similar processes but vary greatly in the time that
they take to execute. You probably use one or more of these regularly, and knowing

Tip

1290 Part IV ✦ Advanced Access Database Topics

the most efficient way to perform these routines can greatly affect your applica-
tion’s speed:

✦ For/Next statements are normally faster than Select Case statements. They
tend to process less logic.

✦ The IIF() function is much slower than a standard set of If/Then/Else
statements.

✦ The With and For Each functions accelerate manipulating multiple objects
and/or their properties.

✦ Change a variable with Not instead of using an If . . . Then statement.
(For example, use x = Not(y) instead of If y = true then x= false.)

✦ Instead of comparing a variable to the value True, use the value of the vari-
able. (For example, instead of saying If X = True then . . ., say If X then . . .)

✦ Use the Requery method instead of the Requery action. The method is signifi-
cantly faster than the action.

✦ When using OLE automation, resolve references when your application is
compiled rather than resolving them at run time by using the GetObject or
CreateObject functions.

Using control variables
When referencing controls on a form in code, there are some very slow ways and
some very fast ways to use references to form objects. The slowest possible way is
to reference each control explicitly. This requires Access to sequentially search for
the form name, starting with the first form name in the database and continuing until
it finds the form name in the forms list (msysObjects table). If the form name starts
with a z, this can take a long time if the database contains many forms. For example:

Forms![frmSales]![dtmSaleDate] = something
Forms![frmSales]![dtmInvoiceDate] = something
Forms![frmSales]![lngzSalespersonID] = something

If the code is in a class module behind the frmSales form, you can use the Me refer-
ence. The Me reference refers to the open object (forms or reports) and substitutes
for Forms![formname]. This is a much faster method because it can go right to the
form name. For example:

Me!dtmSaleDate] = something
Me![dtmInvoiceDate] = something
Me![frmSales]![lngzSalespersonID] = something

1291Chapter 38 ✦ Increasing the Speed of an Application

If your code is not stored behind the form but is in a module procedure, you can
use a control variable like the following:

Dim frm as Form
set frm = Forms![frmSales]
frm![dtmSaleDate] = something
frm![dtmInvoiceDate] = something
frm!frmSales]![lngzSalespersonID] = something

This way, the form name is looked up only once. An even faster way is to use the
With construct. For example:

With Forms![frmSales]
![dtmSaleDate] = something
![dtmInvoiceDate] = something
!frmSales]![lngzSalespersonID] = something

End With

You can then reference the variable rather than reference the actual control. Of
course, if you don’t need to set values in the control but rather use values from a
control, you should simply create a variable to contain the value rather than the
reference to the control.

Using field variables
The preceding technique also applies to manipulating field data when working with
a Recordset in VBA code. For example, you may ordinarily have a loop that does
something like this:

...
Do Until tbl.EOF
MyTotal = MyTotal + tbl![OrderTotal]
Loop

If this routine loops through many records, you should use the following code snip-
pet instead:

Dim MyField as Field
...
Set MyField = tbl![OrderTotal]
Do Until tbl.EOF
MyTotal = MyTotal + MyField

Loop

The preceding code executes much faster than code that explicitly references the
field in every iteration of the loop.

1292 Part IV ✦ Advanced Access Database Topics

Increasing the speed of finding data in code
Use the FindRecord and FindNext methods on indexed fields. These methods are
much more efficient when used on a field that is indexed. Also, take advantage of
bookmarks when you can. Returning to a bookmark is much faster than performing
a Find method to locate the data.

The procedure shown in Listing 38-1 is an example of using a bookmark. Bookmark
variables must always be dimmed as variants, and you can create multiple book-
marks by dimming multiple variant variables. The following code opens the
tblCustomers table, moves to the first record in the database, sets the bookmark
for the current (first) record, moves to the last record, and finally repositions back
to the bookmarked record. For each step, the debug.print command is used to
show the relative position in the database as evidence that the current record
changes from record to record.

Listing 38-1: Using a Bookmark to Mark a Record

Public Sub BookmarkExample()
Dim rs As Recordset, bk As Variant
Set rs =
Workspaces(0).Databases(0).OpenRecordset(“tblContacts”, _
dbOpenTable)
‘ Move to the first record in the database

rs.MoveFirst
‘ Print the position in the database
Debug.Print rs.PercentPosition

‘ Set the bookmark to the current record
bk = rs.Bookmark

‘ Move to the last record in the database
rs.MoveLast
‘ Print the position in the database
Debug.Print rs.PercentPosition

‘ Move to the bookmarked record
rs.Bookmark = bk
‘ Print the position in the database
Debug.Print rs.PercentPosition

rs.Close
Set rs = Nothing
End Sub

Eliminating dead code and unused variables
Before distributing your application, remove any dead code — code that is not used
at all — from your application. You will often find entire procedures, or even mod-
ules, that once served a purpose but are no longer called. In addition, it isn’t
uncommon to leave variable declarations in code after all code that actually uses
the variables has been removed. By eliminating dead code and unused variables,

1293Chapter 38 ✦ Increasing the Speed of an Application

you reduce the amount of memory your application uses and the amount of time
required to compile code at run time.

Although it isn’t easy and is often impractical, removing large numbers of com-
ments from your code can decrease the amount of memory used by your
application.

Other things that you can do to increase the speed of your modules include open-
ing any add-ins that your application uses for read-only access and replacing proce-
dure calls within loops with in-line code. Also, don’t forget one of the most
important items: Deliver your applications with the modules compiled.

Increasing Network Performance
The single most important action that you can take to make sure that your network-
able applications run at their peak performance is to run Access and the applica-
tion database on the workstation and link to the shared network database. Running
Access over the network is much slower than running it locally.

Improving Perceived Speed
Perceived speed is how fast your application appears to run to the end user. Many
techniques can increase the perceived speed of your applications. Perceived speed
usually involves supplying visual feedback to the user while the computer is busy
performing some operation, such as constantly updating a percent meter when
Access is busy processing data.

Using a splash screen
Most professional Windows programs employ a splash screen, as shown in Figure
38-9. Most people think that the splash screen is simply to show the product’s name
and copyright information as well as the registered user’s information, but this isn’t
entirely correct. The splash screen greatly contributes to the perceived speed of an
application. It shows the user that something is happening, and it gives users some-
thing to look at (and hence occupy their time) for a few seconds while the rest of
the application loads.

In large applications, you may even display a series of splash screens with different
information, such as helpful hints, instructions on how to use the product, or even
advertisements. These are known as billboards.

To create a splash screen, create a basic form with appropriate data, such as your
application information, logo, and registration information. Then set this form as
the Display Form in the Start Up dialog box. Setting the form as the Display Form
ensures that the splash screen is the first form to be loaded. You then want to call
any initialization procedures from the On Open event of the splash form. A good

Note

Tip

1294 Part IV ✦ Advanced Access Database Topics

splash screen should automatically disappear after a few seconds. To make this
happen, use the timer event. Chap 38Start.MDB contains a simple splash screen
named frmSplashScreen to help get you started and includes some simple code to
initialize the timer and remove the form after a few seconds.

Figure 38-9: A Splash Screen to display
product and version information.

You need to remember a few issues when using splash forms:

✦ Never use custom controls in a startup form. Custom controls take time to
load and consume resources.

✦ Minimize code in startup forms. Use only code that is absolutely necessary to
display your startup form and use a light form if possible.

✦ The startup form should call only initialization procedures. Be careful about
call trees; you don’t want your startup form to trigger the loading of many
modules in your application.

Loading and keeping forms hidden
If you have forms that are displayed often, consider hiding them rather than closing
them. To hide a form, set its Visible property to False. When you need to display the
form again, set its Visible property back to True. Forms that remain loaded con-
sume memory, but they display more quickly than forms that must be loaded each
time they are viewed. In addition, if you are morphing a form or report (changing
the way it looks by changing form and control properties), keep the form hidden
until all changes are made so that the user doesn’t have to watch the changes take
place.

1295Chapter 38 ✦ Increasing the Speed of an Application

Using the hourglass
When your application needs to perform a task that may take a while, use the hour-
glass. The hourglass mouse pointer shows the user that the computer is not locked
up but is merely busy. To turn on the hourglass cursor, use the Hourglass method
like this:

DoCmd.Hourglass True

To turn the hourglass back to the default cursor, use the method like this:

DoCmd.Hourglass False

Using the built-in progress meter
In addition to using the hourglass, you should consider using the progress meter
when performing looping routines in a procedure. The progress meter gives con-
stant visual feedback that your application is busy, and it shows the user in no
uncertain terms where it is in the current process.

Chap38Start.MDB includes two types of progress meters. Using the standard
Microsoft Access progress meter that is displayed in the status bar creates the first
type that is discussed in this chapter. The other meter is a pop-up form that uses a
colored rectangle to show the progress of an activity.

The sample database file Ch38.mdb contains a number of progress meter sam-
ples. Each uses the progress meter a little differently but all run the same example.
The example creates 50,000 records in a table named SampleData. Each of the
examples uses a simple form with several text box controls and a button to start
the process. The basic progress meter form in Design view is shown in the follow-
ing figure. Each of the examples contains code to display either the built-in Access
progress meter or one within the pop-up form. Each contains a button to start the
process, as well as two text boxes to display the start time and end time of the
process.

The following code demonstrates how to use the built-in progress meter in a loop
to show the meter starting at 0 percent and expanding to 100 percent, 1 percent at a
time. The first example is named ProgressMeterUsingBuiltInAccessMeter. This exam-
ple doesn’t actually use the text box in the sample progress meter form, but rather
uses the progress meter built into Microsoft Access that displays as a series of little
squares at the bottom left corner of the screen in the status bar.

If you don’t display the status bar, you won’t see the built-in progress meter
when it runs.

The code to initialize, update, and remove the meter is shown in Figure 38-10.

Caution

Tip

1296 Part IV ✦ Advanced Access Database Topics

Figure 38-10: Code to run the built-in progress meter.

The first step for using the percent meter is initializing the meter. You initialize the
meter by calling the SysCmd function like this:

ReturnValue = SysCmd(acSysCmdInitMeter, “Creating Records”, counter)

The acSysCmdInitMeter in this line is an Access constant that tells the function that
you are initializing the meter. The second parameter is the text that you want to
appear to the left of the meter. Finally, the last value is the maximum value of the
meter (in this case, 100 percent). You can set this value to anything that you want.
For example, if you were iterating through a loop of 50,000 records, you may set this
value to 50,000. Then you can pass the record count at any given time to the
SysCmd function; Access decides what percentage the meter shows as filled.

After the meter has been initialized, you can pass a value to it to update the meter.
To update the meter, you call the SysCmd function again and pass it the
acSysCmdUpdateMeter constant and the new update meter value. Remember, the
value that you pass to the function is not necessarily the percent displayed by the
meter. It can be the number of records processed or any number that when divided

1297Chapter 38 ✦ Increasing the Speed of an Application

by the initial counter provides a percentage from 1 to 100. For example, if 50,000
records are being processed and the number 12,500 is passed to the meter, it will
display 25 percent.

ReturnValue = SysCmd(acSysCmdUpdateMeter, i)

After all the records are processed, you will want to remove the meter from the sta-
tus bar. To do this, use the following command. (There are no parameters to pass
when you remove the meter.)

ReturnValue = SysCmd(acSysCmdRemoveMeter)

The progress meter displayed in the status bar is shown in Figure 38-11.

Figure 38-11: The progress meter displayed in the
status bar.

Creating a progress meter with a pop-up form
To run the sample Progress Meter that uses the pop-up form, open the form
ProgressMeterCallingEveryRecord and click the Search button. The progress meter
form appears, and the bar grows from 0 to 100 percent. This should take about 30
seconds on a high-end Pentium machine, but a little longer on a slower machine.

The Progress Meter form in progress is shown in Figure 38-12.

Figure 38-12: A graphical progress meter.

This progress meter has some advantages over the standard Microsoft Access
progress meter. The progress meter that comes with Access uses the status bar to
display the meter and isn’t always as visible as you may want it to be. The pop-up
progress meter pops up in the middle of the screen and is immediately visible to

1298 Part IV ✦ Advanced Access Database Topics

the user. The meter that comes with Access, however, usually displays faster
because it requires less overhead to run, although with longer tasks the difference
may not be noticeable. The speed of the pop-up meter can be controlled by updat-
ing the meter every x percent. Therefore, if the form meter is set for fast execution,
it displays with comparable speed to that of the built-in meter.

The progress meter form is created from a few simple controls, as shown in Figure
38-9. It contains a rectangle control, two label controls, and option group controls.
In Figure 38-12, you can see that the rectangle is shown 60 percent completed. In
reality, the width of the rectangle is manipulated by the program that is used to dis-
play the meter’s progress. The width is reset to 0 when the progress meter starts,
and it is slowly built back to its original length.

The code for the progress meter is also simple and shown in its entirety, including
the three-line function that is called in Figure 38-13.

Figure 38-13: The Progress Meter form call to the pop-up progress
meter.

The code that calls the meter is one simple line buried in the middle of the iteration
loop. It calls the display function by passing it the iteration number and total
number of iterations expected. In this example, i is the record number being pro-
cessed and counter is the expected 50,000 records.

SetPMeter i / counter

1299Chapter 38 ✦ Increasing the Speed of an Application

The function SetPMeter consists of only three lines: one to display the rectangle
and manipulate its width, one to display the caption on the bar as it grows inside
the rectangle in the form, and one to repaint the screen each time so that the bar is
animated.

Public Function SetPMeter(p As Single)
‘p is percent of total
Me.PMeterBar.Width = p * Me.PMeter.Width
Me.PMeterBar.caption = Format(p, “##%”)
Me.Repaint

End Function

Speeding up the progress meter display
This routine is called whenever you want to update the progress meter. You can
decide when to do this. Generally, you should call the progress meter only when it
is likely to be updated. If you know that you have 1000 records, you may call the
meter every 10 records; if you have 10,000 records, you may call the meter every
100 records.

Although this code is simple, it is not the best. In fact, because this code calls the
progress meter for every record, it is much slower than the built-in progress meter.
Although the built-in progress meter processes this code in about 10 seconds, on
our Pentium IV laptop with 256MB of memory, it takes over a minute to run this rou-
tine. A better approach is to call the progress meter only once in a while. The fol-
lowing code can replace the call in the code previously discussed:

If (i / counter) * 100 = Int((i / counter) * 100) Then
SetPMeter i / counter

End If

The If statement checks to see if the calculation of the completion percentage is an
integer (whole number). This calls the progress meter function (SetPMeter) that
moves the progress meter rectangle and display the percentage completed. It is
called only 100 times to move the rectangle; even though the IF statement is run
50,000 times, you may wonder why the If statement is faster. The reality is that the If
statement takes very few resources to process, but a function that changes the
width of a rectangle or control, writes to the screen, and then repaints the screen
uses a lot of resources — as evidenced by the time to process falling by 90 percent.

Follow these steps to integrate the Progress Meter into your application:

1. Import the Form ProgressMeter into your application.

2. Change the code behind the form to interact with your application.

1300 Part IV ✦ Advanced Access Database Topics

Working with Large Program Databases
in Access 2003

When someone mentions large databases in Microsoft Access, they are generally
thinking about a database with tables that contain hundreds of thousands of data
records. Though this can be considered to be a large database, another definition is
a database that contains hundreds of objects — tables, queries, forms, reports, and
thousands of lines of VBA program code. Although you can sometimes solve data
performance problems by changing the back end from Jet to SQL Server, you will
probably have to deal with much more complex problems if you create applications
with many queries, forms, reports, and lots of VBA module code.

If your database has hundreds of objects, especially forms and reports, you may
have run into problems that cause your database to exhibit strange behavior. These
include

✦ Not staying compiled or not compiling at all

✦ Growing and growing and growing in size, even after compiling and compacting

✦ Running slower and slower

✦ Displaying the wrong record in linked subforms

✦ Displaying compile errors when you know that the code is correct

✦ Corrupting constantly

Compacting your database doesn’t always work as advertised. Compiling and
Saving All Modules becomes a long wait with a seemingly perpetual hourglass. After
you compact and open the database, it is uncompiled again. If you work with large
databases, chances are good that these are well-known experiences. If you have one
of these out-of-control databases, this section will show you how to solve these
problems and get you up and running fast again.

How databases grow in size
Many things can cause a database to grow. Each time that you add an object to an
Access 2003 database (.mdb) file, it gets larger. And why shouldn’t it? You are cer-
tainly using more space to define the properties and methods of the object. Reports
and forms take the most space because the number of properties associated with
each form or report and each control on a form or report uses space. Table attach-
ments (links) and queries take up very little space, but VBA code grows proportion-
ally to the number of lines in both modules and code behind forms and reports. If
you store data in your program database, this also takes up space proportionally to
the number of records in the table. Many other reasons cause a database to grow.

When you first create a database using the Access 2002-2003 or Access 2000
database file formats, it uses about 60KB, depending on your hard drive type, size,

1301Chapter 38 ✦ Increasing the Speed of an Application

and Access format (Access 2002 database format files are larger than Access 2000
database files). As you add objects, the database will start to grow. Adding a very
simple form takes about 6K, whereas a simple report uses about 25K of hard drive
space. Each time that you add another new form or report, more space is used.
Each time that you add a new control and define some properties, even more space
is used. When you define any event in a form or report that contains even a single
line of VBA code, more overhead is used, because the form or report is no longer a
lightweight object but one that is VBA-aware. This requires more space and
resources than a lightweight form or report containing no VBA code. If you embed
images into your forms and reports, these also will use space. Embedding bound
OLE aware data, such as pictures, sound, video, or Word or Excel documents, uses
more space than unbound objects or images.

Each time that you make a change to any object — even a simple one — a duplicate
copy of the object is created until you compact the database. Within even a few
hours of work, Access 2002 databases can begin to grow larger and larger. If the
database contains thousands of lines of VBA code, the database can grow to two or
three times its original size very quickly, especially when compiled and before it is
compacted.

Simply compiling and compacting may not be enough
As you add, delete, and modify objects, Access doesn’t always clean up after itself.
You have probably learned that after you make changes to your objects, especially
VBA code, you should open any module and select Debug ➪ Compile and Save All
Modules. After you do this, you should close the module, select the database con-
tainer, and select Tools ➪ Database Utilities ➪ Compact and Repair Database... This
action compacts the database to the same name and reopens the database running
any startup commands or Autoexec macros that you may have. For the less aggres-
sive, you may want to close the database first and compact the database to a differ-
ent name, thus effectively creating a compacted backup. You can then use the new
database or delete the old one and rename the new database to the original name.

Compiling and Compacting may not be enough to solve some of the problems men-
tioned at the beginning of the section. We worked with a large database that was
originally converted from Access 97; we noticed it started at 15MB. After hundreds
of minor changes, it was growing at a rate of 50K each time that we compiled and
compacted it — even if we added no new objects, properties, methods, or VBA
code. Out of necessity, this author has experimented with a variety of techniques to
understand this phenomenon and solve our problems. More importantly, strange
things started happening.

Even though we noticed that the database was growing larger, it took several com-
piles and compacts to get it to compile, and frequently after we compacted the
database, it was no longer compiled. It also ran slower the first time we opened it.
When the database displayed compile errors on perfectly written code, we knew
that it was time to try new techniques.

1302 Part IV ✦ Advanced Access Database Topics

Rebooting gives you a clean memory map
We have always noticed that strange behavior in any program gets better when you
reboot your system. Access is particularly bad at memory leaks, especially if you’re
going in and out of form, report, and module design. If you don’t want to reboot, at
least close your database and exit Access before beginning the examination of your
problem.

Repair does nothing if the database is not corrupt
We started by trying to repair the database. Though it was not corrupt, we thought
maybe that would help. Although the repair utility ran fine and automatically com-
pacted the database, it did nothing else, and the database was still growing.

You can fix a single corrupt form by removing
the record source
Sometimes, you may have a single form that doesn’t run properly. To fix this, try
opening the form in Design view and removing any record source. Then, close and
save the form. Reopen the form in Design view and reenter the original (or a new)
record source. This may fix your problem. When the record source of an Access
form or report is changed, it forces various pieces of internal code behind the form
to be rebuilt. Sometimes, this simple process works.

Create a new database and import all of the objects
It’s important to have your database as clean as possible. Although we’re not sure if
gremlins crawl into some obscure portion of the database file, we are sure that you
can’t import or export them. A technique that usually proves to be successful is to
simply create a new database and then import all of the objects from the original
database. Access 2003 makes it easy to import all of your objects by using the
Select All button found in the Import Objects dialog box. You can get to this dialog
box by first going to the database container of the new empty database file that you
create and then selecting File ➪ Get External Data ➪ Import, selecting the original
program database, and then clicking the Import button. You can then import all of
your objects.

If you have any custom menus and toolbars, or if you have defined any Import/
Export specifications, you should remember to use the Options button and check
off those options as shown in Figure 38-14. The default for these options is False. If
you have created any startup properties in the database, you will have to create
them again because they are not importable.

1303Chapter 38 ✦ Increasing the Speed of an Application

If you use externally referenced libraries or add-ins, you must manually reference
these libraries in the new database. You can display a module and use the Tools ➪

References menu to do this.

Figure 38-14: Importing Database Objects with
the Options button pressed.

After working for some time in our large database, even creating a new database
and importing all of the objects failed to help the database stay compiled or
become smaller.

The decompile option in Access 2003
A little known startup command-line option is called “/decompile.” You may have
seen many of the command-line options, such as /nostartup, /cmd, and /compact.
This option starts Access 2003 in a special way and, when a database is opened,
saves all VBA modules as text. This works with module objects and all the code
behind forms and reports.

To do this, go to the Windows Start menu Run command and type msaccess /decom-
pile as shown in Figure 38-15. Hold down the Shift key before you launch Microsoft
Access. This prevents any startup forms or autoexec macro processes from running.
You don’t want the database to run code that forces even a single module to be com-
piled. This prevents the decompile process from actually doing any good.

Figure 38-15: Starting Access 2003 with
the decompile command-line option.

Caution

1304 Part IV ✦ Advanced Access Database Topics

Access appears to start as usual. It takes about three minutes to open a database
and decompile all of the objects in a 20MB database. At this point, the real question
was if the database would get sufficiently smaller, run faster, and stay compiled
after it was compiled and compacted.

After the database window is displayed, close Access. Don’t just close the database
window — actually exit Microsoft Access.

After you exit Access, you can restart Access normally. You can then open your
database, open any module, and select Debug ➪ Compile projectname where pro-
jectname is simply the name of your project (original database file name). After the
database compiles, you should close the module, return to the database container,
and select Tools ➪ Database Utilities ➪ Compact and Repair Database. You will find
that Access runs these procedures much faster than usual.

Make sure that you immediately exit Access 2003 after it finishes decompiling and
then start Access again before running Compile projectname or Compact and
Repair Database.

Using our test database, we then went to Windows Explorer and checked the size of
the database. It had shrunk from 22MB to 15MB, a reduction of over 30 percent, and
it has stayed compiled every time we compact it. The first time we ran the applica-
tion, it seemed to run faster than ever. We aren’t sure why it works faster or differ-
ently than manually opening and saving each VBA module as text — it simply does.
Even more strangely, the database no longer seems to be growing each time we
make a minor change, recompile, and compact the database. Although the decom-
pile option may be a small miracle, it’s always a good idea to follow the six steps to
success (presented in the next section) before releasing any application to the ulti-
mate users.

Summary — six steps to large database success
If you’re ready to release your application for a real test by the users, you should
follow the steps below to insure a clean-running system:

1. Reboot your computer to clean up memory.

2. Create a new Access database and import all the objects. Then close Access.

3. Restart Access by using the /decompile option while holding down the Shift
key. Close Access after the database window is displayed.

4. Restart Access normally while holding down the Shift key.

5. Compile the database.

6. Compact and Repair the database.

Caution

1305Chapter 38 ✦ Increasing the Speed of an Application

By releasing a clean, fully compiled and compacted system, you will have fewer
problems, your application will run faster, and you will have fewer technical or
maintenance problems.

An interface for detecting an uncompiled database
and automatically recompiling
It’s very important that you make sure that a database is always in a compiled
state. If you release your application as a modifiable .MDB file, your customers may
make simple or even complex changes to your application and then complain
because their system is running slowly. Although some of your customers may be
serious developers, our experience is that many customers who make changes to
Access databases don’t know about compilation or compacting.

To see if your database is compiled, you can open the Visual Basic window for any
module, display the Debug window, and type ? IsCompiled(), as shown in Figure
38-16. If the database is compiled, it will display True. If it is in a decompiled state,
it will display False, as shown in Figure 38-16.

Figure 38-16: Checking to see if an
Access 2003 program is compiled.

To solve this problem, you can create an interface that automatically detects if the
database is not in a compiled state and then gives the user the option of compiling
the application. This automatic detection runs each time the database is opened.
The user still has to compact the database, but the hard part is compiling. Figure
38-17 shows the message that is automatically displayed if the database is uncom-
piled. The code is shown in the following example.

Figure 38-17: A dialog box to help the
user compile your application.

1306 Part IV ✦ Advanced Access Database Topics

One line of code can be added anywhere in your program to detect an uncompiled
application and start the process.

If IsCompiled() = False Then DoCmd.OpenForm “MessageImprovingPerformance”

The code uses the Access 2003 built-in function IsCompiled to determine the com-
piled state of the application. If the application isn’t compiled, the form is dis-
played, as shown in Figure 38-17. Users have two choices. If they are still testing,
they may not want to compile yet. If they want to compile, they simply have to
press the Yes button.

The compile and compact code is shown in Figure 38-18. The application is com-
piled first and then compacted. If the database is already compiled, the compile
function is skipped and the database is only compacted. You can simply insert this
module and the message box into any application and call the form.

Figure 38-18: A module to automatically compile and
compact your database.

1307Chapter 38 ✦ Increasing the Speed of an Application

Making small changes to large databases — export
One final tip for working with large databases: Always work with a copy of the pro-
gram file and export the changed objects. When you are making lots of changes to a
few objects to try a new technique or to get a stubborn algorithm to work, you are
constantly opening and closing objects. This tends to negatively affect large
databases. Work with a copy of the database, and then when you have the changes
just the way you want, you can export the changed objects from the test database
to the production database. Any object that you export with the same name as the
production database will be exported with a 1 at the end of the name. You can then
open the production database, delete the original objects, and rename the changed
objects that have a 1 on the end of their name. New objects are obviously exported
with their name intact.

Anything that you can do to make fewer changes to a large database, the better off
you are. By following the tips and techniques in this section, you will have fewer
problems and you will be more productive.

Through judicious use of the techniques discussed in this chapter, you will be able
to increase the performance of your Access application to the highest level possible.

✦ ✦ ✦

Preparing Your
Application for
Distribution

You are indeed lucky if you have the luxury of developing
only single-user, in-house applications and you never

have to worry about distributing an application within a com-
pany or across the country. Most developers, in fact, have to
worry about application distribution sooner or later. You
don’t even have to develop commercial software to be con-
cerned with distribution; when you develop an application to
be run on a dozen workstations in one organization, for exam-
ple, you need to distribute your application.

This chapter covers all the preceding points to some degree.
However, because some of the listed items, such as splitting
tables and creating Help systems, are covered in detail in
other chapters, this chapter focuses primarily on using the
Package Wizard in Microsoft Office 2003 Developer.

You need to be concerned with many issues when preparing
an Access application for distribution. Distributing your appli-
cation properly not only makes installing and using the appli-
cation easier for the end user, but it also makes updating and
maintaining the application easier for you. In addition, you
can decrease the support required for your application by
including comprehensive online help.

This chapter will use the database named CHAP39Start.mdb.
If you have not already copied it onto your machine from the
CD, you will need to do so now. The Package Wizard used
later in this chapter will use the Access Auto Auctions.mdb.
There is no CHAP39End.mdb for this chapter.

On the
CD-ROM

3939C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Defining the startup
parameters of the
application

Testing the
application

Polishing the
application

Creating
comprehensive and
intuitive menus and
toolbars

Bulletproofing the
application

Documenting the
application

Packaging and
deploying the
application

✦ ✦ ✦ ✦

1310 Part IV ✦ Advanced Access Database Topics

Defining the Startup Parameters
of the Application

An Access database has a number of startup parameters that can greatly simplify
the process of preparing your database for distribution (see Figure 39-1). You can
access the startup parameters for a database by selecting Tools ➪ Startup or by
right-clicking the database window and selecting Startup. You can still use an
Autoexec macro to execute initialization code, but the Startup parameters dialog
box enables you to set up certain aspects of your application, thus reducing the
amount of startup code that you have to write. It is extremely important to cor-
rectly structure the startup parameters before distributing your Access application.

Figure 39-1: The Startup parameters dialog box enables
you to take control of your application from the moment
a user starts it.

Application Title
The text that you provide in the Application Title field displays on the main Access
title bar. You should always specify an application title for your distributed applica-
tions. If you don’t, the words Microsoft Access appears on the title bar of your
application.

Application Icon
The icon that you specify in the Startup dialog box is displayed on the title bar of
your application and in the task switcher (Alt+Tab) of Windows. Checking the box
“Use as Form and Report Icon” also displays this icon when a form or report is min-
imized. If you don’t specify your own icon, Access displays the default Access icon;
therefore, you should always provide an application-specific icon for your applica-
tion. You can create small bitmaps in Windows Paint and use available conversion
tools to convert a .BMP file to an .ICO file format. You can also create icons or
choose from tools such as IconMaker or the Command Bar Image Editor, which are
available on many Internet sites.

1311Chapter 39 ✦ Preparing Your Application for Distribution

Menu Bar
The Menu Bar box is used to specify a custom menu bar as the default menu bar. If
you don’t supply a custom menu bar, Access uses its own default menu bar, which
may be inappropriate for your application.

Allow Full Menus
This setting determines whether Access displays its menus with all options avail-
able to the user or whether it disables items that can be used to create or modify
objects. If you supply custom menus for all of your forms and reports and set the
Menu Bar property to a custom menu bar, this setting has no effect.

If you supply your own menu bars or use Access’s menu bars but don’t allow full
menus, you must deselect Allow Built-in Toolbars or supply your own custom tool-
bars for each form. If you don’t, the built-in toolbars may give users access to some
features that you don’t want to make available.

Allow Default Shortcut Menus
The Allow Default Shortcut Menus setting determines whether Access displays its
own default shortcut menus when a user clicks an object.

Display Form/Page
The form that you select in this field displays automatically when your application
is run. When the form loads, the Form Load event fires if it contains any code, thus
eliminating the need to use an Autoexec macro. You should consider using a splash
screen (which is discussed later in this chapter) as your startup Display Form.

Display Database Window
With most distributed applications, you may never want your users to have direct
access to any of your forms or other database objects. Deselecting this option
hides the Database window from the user at startup. But unless you also deselect
the Use Access Special Keys option (which is discussed later in this chapter), users
can press F11 or select Window ➪ Unhide to unhide the Database window.

Display Status Bar
You can deselect the Display Status Bar option to completely remove the status bar
from the screen. However, the status bar is an incredibly informative and easy-to-
use tool; it automatically displays the various key-states, as well as the status bar
text for the active control. Instead of hiding the status bar, you should make full use
of it and disable only it if you have a very good reason to do so.

Tip

1312 Part IV ✦ Advanced Access Database Topics

Shortcut Menu Bar
This setting is similar to the Menu Bar option (which was discussed previously),
only it enables you to specify a menu bar to use as the default shortcut menu bar
when a user right-clicks an object. Using custom shortcut menus that have func-
tionality specific to your application is always preferable.

Allow Built-in Toolbars
Deselecting this option prevents Access from displaying any of its built-in toolbars.
In general, you should always deselect this option and provide your own custom
toolbars that you can display by using the Toolbar property for the form.

Allow Toolbar/Menu Changes
Deselecting this option prevents users from modifying either Access’s built-in tool-
bars or your own toolbars, whichever you choose to use. Again, you almost always
want to deselect this item to prevent your users from gaining access to features
that you don’t want them to have.

Use Access Special Keys
If you select this option, users of your application can use keys that are specific to
the Access environment in order to circumvent some security measures, such as
unhiding the Database window. If you deselect this option, the following keys are
disabled:

✦ F11 and Alt+F1: Use these keys to show the database window (if hidden) and
bring it to the front.

✦ Ctrl+G: Use this key to display the Immediate window.

✦ Ctrl+Break: In Access projects, use this key to stop Access from retrieving
records from the server database.

✦ Ctrl+F11: Use this key to toggle between using a custom menu bar for a form
and using a built-in menu bar.

✦ Alt+F11: Use this key to start the Microsoft Visual Basic Editor.

You should always deselect this option when distributing the application.

Using the Startup options saves you many lines of code that you would ordinarily
need in order to perform the same functions and enables you to control your appli-
cation’s interface from the moment the user starts it. Always verify the Startup
options before distributing your application.

1313Chapter 39 ✦ Preparing Your Application for Distribution

Testing the application before distribution
After you finish adding features and have everything in place within your applica-
tion, you need to take some time to thoroughly test the application. Testing may
seem obvious, but this step is apparently overlooked by many developers, evi-
denced by the amount of buggy software appearing on the shelves of your local
software stores. If you don’t believe this to be true, check out the software support
forums on the Internet; almost every major commercial software application has
some patch available or known bugs that need to be addressed.

Distributing an application that is 100-percent bug-free is almost impossible. The
nature of the beast in software development is that if you write a program, someone
can — and will — find a way to break it. Specific individuals even seem to have a
black cloud above their heads and can usually break an application (in other words,
hit a critical bug) within minutes of using it. If you know of such people, hire them!
They can be great assets to you when testing your application.

While working through the debugging process of an application, categorize your
bugs into one of three categories:

✦ Category 1: Major ship-sinking bug. These bugs are absolutely unacceptable —
for example, numbers in an accounting application that don’t add up the way
they should or a routine that consistently causes the application to terminate
unexpectedly. If you ship an application with known Category 1 bugs, prepare
yourself for a lynching party from your customers!

✦ Category 2: Major bug that has a workaround. Category 2 bugs are fairly
major bugs, but they don’t stop users from performing their tasks. For exam-
ple, a toolbar button that doesn’t call a procedure correctly is a bug. If the
toolbar button is the only way to run the procedure, this bug is a Category 1
bug. If, however, a corresponding menu item calls the procedure correctly, the
bug is a Category 2 bug. Shipping an application with a Category 2 bug is
sometimes necessary. Although shipping a bug is officially a no-no, deadlines
sometimes dictate that exceptions need to be made. Category 2 bugs will
annoy your users but shouldn’t send them into fits.

If you ship an application with known Category 2 bugs, document them! Some
developers have a don’t-say-anything-and-act-surprised attitude regarding
Category 2 bugs. This attitude can frustrate users and waste considerable
amounts of their time by forcing them to discover not only the problem, but
also the solution. For example, if you were to ship an application with the
Category 2 bug just described, you should include a statement in your appli-
cation’s README file that reads something like this:

“The button on the XYZ form does not correctly call procedure suchand-
such. Please use the corresponding menu item suchandsuch found on
the Tools menu. A patch will be made available as soon as possible.”

1314 Part IV ✦ Advanced Access Database Topics

✦ Category 3: Small bugs and minor nits. Category 3 bugs are small issues that
in no way affect the workings of your application. They may be misspellings of
captions or incorrect colors of text boxes. Category 3 bugs should be fixed
whenever possible but should never take precedence over Category 1 bugs.
They should take precedence over Category 2 bugs only when they are so
extreme that the application looks completely unacceptable.

By categorizing your bugs and approaching them systematically, you can create a
program that looks and behaves the way its users think it should. Sometimes you
may feel like you will never finish your Category 1 list, but you will. You will surely
be smiling the day you check your bug sheet and realize that you’re down to a few
Category 2s and a dozen or so Category 3s! Although you may be tempted to skip
this beta testing phase of development, don’t. You will only pay for it in the long run.

Not all Access features are available when an application is run within the Access
runtime environment (which is discussed with the Package Wizard, later in this
chapter). You can operate in the runtime environment and use the full version of
Access to test for problems with your code and with the runtime environment by
using the /Runtime command line option when starting your Access application.
Click Run on the Windows Start menu or create a shortcut. The following com-
mand line example starts Access and opens the Invoices database (if it is located
at D:\MYAPPS\) in the runtime environment:

D:\OFFICE2003\ACCESS\MSACCESS.EXE /RUNTIME
D:\MYAPPS\INVOICES.MDB

You should always test and debug your application in the runtime environment if
you plan to distribute the application with the Access 2003 Package Wizard.

Polishing Your Application
When your application has been thoroughly tested and appears ready for distribu-
tion, spend some time polishing your application. Polishing your application con-
sists of the following:

✦ Giving your application a consistent look and feel.

✦ Adding common, professional components.

✦ Adding clear and concise pictures to buttons.

✦ Using common, understandable field labels and button captions.

Giving your application a consistent look and feel
First and foremost, you should decide on some design standards and apply them to
your application. This is incredibly important if you want your application to look
professionally produced. Figure 39-2 shows a form with samples of different styles
of controls.

Tip

1315Chapter 39 ✦ Preparing Your Application for Distribution

Your design decisions may include the following:

✦ Will text boxes be sunken, flat with a border, flat without a border, chiseled,
or raised?

✦ What backcolor will the text boxes be?

✦ What color will the forms be?

✦ Will you use chiseled borders to separate related items or opt for a sunken or
raised border?

✦ What size will buttons on forms be?

✦ For forms that have similar buttons, such as Close and Help, in what order will
the buttons appear?

✦ Which accelerator keys will you use on commonly used buttons, such as
Close and Help?

Making your application look and work in a consistent manner is the single most
important way to make it appear professional. For ideas on design standards to
implement in your applications, spend some time working with some of your
favorite programs and see what standards they use. In the area of look and feel,
copying from another developer is generally not considered plagiarism but is rather
often looked upon as a compliment. Copying does not extend, however, to making
use of another application’s icons or directly copying the look and feel of a competi-
tor’s product; this is a very bad practice. For an example of a good look-and-feel
environment, see the Microsoft Office Compatible program.

An application may be certified Office Compatible by meeting certain user-interface
requirements as laid out by Microsoft. An Office-Compatible application uses the
same menu structures as all the Office applications, such as Word, Access, Excel, and
so on. In addition, toolbars are also similar and, where applicable, have the same but-
ton image that Microsoft uses. Making an application look like an Office application
saves the developer time by giving clear and concise guidelines for interface features,
and it helps end users by lowering the learning curve of the application.

Figure 39-2: You can decide on any interface style
that you like for your application. However, after you
decide on a style, use it consistently.

1316 Part IV ✦ Advanced Access Database Topics

Although you may not want to have your application independently tested and cer-
tified Office Compatible, you may want to check out the specifications and use
some of the ideas presented to help you get started designing your own consistent
application interfaces.

Adding common professional components
Most commercial/professional applications have some similar components. The
most common components are the splash screen, About box, and switchboard. Be
aware that the splash screen (see Figure 39-3 for a good example) not only aids in
increasing perceived speed of an application but also gives the application a pol-
ished, professional appearance from the moment a user runs the program. Figure
39-4 shows a skeleton splash screen that can be used with any system. You simply
change the content to what you want.

Figure 39-3: A splash screen not only
increases perceived speed of your
application, but it also gives your
application a professional appearance.

Figure 39-4 shows the design window for a splash screen template that you can
use when building your own applications. This form is included in the CHAP39Start.
mdb database. It is named SplashScreenTemplateSimple. Import this form into your
application and use it as a template for creating your own splash screen.

Figure 39-4: Use this form as a
template to create your own splash
screens for your applications.

Note

1317Chapter 39 ✦ Preparing Your Application for Distribution

Your splash screen should contain the following items:

✦ The application’s title

✦ The application’s version number

✦ Your company information

✦ A copyright notice ((c) Copyright)

In addition, you may want to include the licensee information and/or a picture on
the splash screen. If you use a picture on your splash screen, make it relevant to
your application’s function. For example, some coins and an image of a check could
be used for a check writing application. If you like, you can also use clip art for your
splash screen; just be sure that the picture is clear and concise and doesn’t inter-
fere with the text information presented on your splash screen.

To implement the splash screen, have your application load the splash form before it
does anything else (consider making your splash screen the Startup Display Form).
When your application finishes all of its initialization procedures, close the form.
Make the splash form a light form and be sure to convert any bitmaps that you place
on your splash screen to pictures in order to decrease the splash form’s load time.

The second component that you should implement is an application switchboard.
The switchboard is essentially a steering wheel for users to find their way throughout
the functions and forms that are available in the application. You can use the switch-
board itself as a data-entry form, as shown in the switchboard example in Figure 39-5.
You can also use a command button to display another form. This is the switchboard
named frmSwitchboard created for the Access Auto Auctions systems in this book.

Make sure that the switchboard redisplays whenever the user closes a form. The
switchboard provides a familiar place where users can be assured that they won’t
get lost in the application.

Figure 39-5: The switchboard provides a handy way to
navigate throughout the application.

1318 Part IV ✦ Advanced Access Database Topics

The third component that you should implement is an About box (see Figure 39-6).
The About box should contain your company and copyright information, as well
as the application name and current version. Including your application’s licensee
information (if you keep such information) in the About box is also a good idea.
The About box serves as legal notice of your ownership and makes your applica-
tion easier to support by giving your users easy access to the version information.
Some advanced About boxes call other forms that display system information
(Figure 39-6 has an additional button — System Info). You can make the About
box as fancy as you want, but usually a simple one works just fine.

Figure 39-6: The implementation
of an About box is a polishing
technique that also provides useful
information to the user and protects
your legal interests.

Figure 39-6 shows the an About box template form that you can use when build-
ing your own applications. This form is included in the CHAP39Start.mdb
database. It is named AboutTemplateA. Import this form into your application and
use it as a template for creating your own About box.

Most users love pictures, and most developers love to use pictures on buttons.
Studies have shown that clear and concise pictures are more intuitive and are
more easily recognized than textual captions. Most developers, however, are not
graphic artists and usually slap together buttons made from any clipart images
that are handy. These ugly buttons make an application look clumsy and unpro-
fessional. In addition, pictures that don’t clearly show the function of the button
make the application harder to use.

Select or create pictures that end users will easily recognize. Avoid abstract pic-
tures or pictures that require specific knowledge to understand them, such as
wiring symbology. If your budget permits, consider hiring a professional design
firm to create your button pictures. A number of professional image galleries and
tools to create and edit buttons are available.

Picture buttons that are well thought out can really make your application look
outstanding, as well as make it easier to use.

Tip

Note

1319Chapter 39 ✦ Preparing Your Application for Distribution

The About box should be accessible from a Help menu on all menu bars. The sub-
menu title should be About My Application. Of course, substitute Your program
name here with your application’s actual name.

The splash screen, About box, and switchboard may seem like trivial features, but
they can greatly enhance your application’s appeal. They take little time to imple-
ment and should be included in all of your distributed applications.

Creating comprehensive and intuitive menus
and toolbars
Before you even consider distributing an application, you need to make the applica-
tion as intuitive as possible. Menus and toolbars are absolutely vital for usability
with any Windows application.

Bulletproofing an Application
Bulletproofing an application is the process of making the application idiot-proof. It
involves trapping errors that can be caused by users, such as invalid data entry,
attempting to run a function when the application is not ready to run the function,
and allowing users to click a Calculate button before all necessary data has been
entered. Bulletproofing your application is an additional stage that should be com-
pleted in parallel with debugging, and should be performed again after the applica-
tion is working and debugged.

Using error trapping on all Visual Basic procedures
An error-handling routine gives you a chance to display a friendly message to the
user, rather than some unintuitive default message box; Figure 39-7 shows a mes-
sage box with a Run-Time error ‘2102’ which is unintuitive; however, it also shows a
more detailed message of a form missing or misspelled. The user, will not know the
name of the form or if it is misspelled or missing. Thus an error trap routine is
needed.

Figure 39-7: An error message resulting
from a procedure with no error-handling
routine.

1320 Part IV ✦ Advanced Access Database Topics

One of the most important elements of bulletproofing an application is making sure
that the application never crashes — that is, never ceases operation completely
and unexpectedly. Although Access provides built-in error processing for most
data-entry errors (for example, characters entered into a currency field), automatic
processing doesn’t exist for Visual Basic code errors. You should include error-
handling routines in every Visual Basic procedure, even if you use just the following
error line in your code:

On Error Resume Next

When running an application distributed with the Office 2003 Developer Package
Wizard, any untrapped error encountered in your code causes the program to ter-
minate completely. Your users can’t recover from such a crash, and serious data
loss may occur. Your users have to restart the application after such an application
error.

Separating the code objects from the tables
in the application
You should separate your code objects (forms, reports, queries, modules, and
macros) from your table objects. Many benefits are gained from distributing these
objects in separate .MDB files:

✦ Network users benefit from speed increases by running the code .MDB (the
database containing the queries, forms, macros, reports, and modules) locally
and accessing only the shared data on the network.

✦ Updates can easily be distributed to users.

✦ Data can be backed up more efficiently because only one file is needed, and
disk space and time aren’t used to continuously back up the code objects.

All professionally distributed applications — especially those intended for network
use — should have separate code and data database (.MDB) files.

Documenting the application
Most developers don’t like to write documentation; it’s simply no fun and can be
quite frustrating and time-consuming. Taking the time and effort now to prepare
thorough documentation, however, can save hours of technical support time down
the road. Even if you don’t plan to distribute a full user’s manual, take time to docu-
ment how to perform the most common functions in your application. If you have
created shortcuts, make sure to share them with the users.

1321Chapter 39 ✦ Preparing Your Application for Distribution

Creating a help system
Although documentation is extremely important for getting users started on your
application, a Help system that is well-written, thorough, and context-sensitive is
just as important. A Help system puts pertinent information at users’ disposal with
just a click of the mouse or a push of a button.

Implementing a security structure
The final item that you need to consider before distributing your application is the
level at which you want to secure your application. You can secure specific individ-
ual objects, or you can secure your entire application. If it’s important to you to
secure design permissions for all of your objects in order to protect your source
code, you need to be aware that you can’t rely solely on Microsoft’s word that the
security in Access works. Microsoft touted the security model of Access 2.0 as
being the most secure available. It was discovered, however, that an average Access
developer can unsecure an Access 2.0 database in about five minutes, with only
minimum coding! Although no method for unsecuring a secured Access 97, Access
2000, Access 2002, or Access 2003 application has yet been discovered, a method
may be uncovered in the future. You must understand and accept this risk when
you distribute a secured Access application.

The Access 2003 Developer Extensions
After you finish your application, you need to find a way to distribute it to your cus-
tomers. Distribution includes delivering all files necessary to run your application
on some form of media, such as floppy disk or CD-ROM, or via electronic distribu-
tion channels, such as the Internet. The media should include some sort of setup
program that automates copying the files to the user’s computer, sets up any short-
cut items, registers necessary controls, and sets values in the system registry. The
Access 2003 Developer Extensions Package Wizard is just the tool. It is one of the
tools included in the Access 2003 Developer Extensions (ADE). These are part of
the new Visual Studio Tools for the Microsoft Office System software package. The
tools provide the resources needed by developers to quickly and easily test, create,
and deploy their Access solutions to their clients. They consist of the following
components:

Access Runtime Provides a standalone, redistributable Runtime
Solution. The ADE gives you a license to install
unlimited copies of the Access Runtime.

Package Wizard Used to bundle and deploy Access database sys-
tems you build. The wizard guides you through
configuring and redistributing your product. It
outputs a Microsoft Windows Installer (*.msi)
setup file.

1322 Part IV ✦ Advanced Access Database Topics

Custom Startup Wizard Used to create MDE files with custom startup
properties.

Property Scanner Used to search all collections, objects, and prop-
erties of a database for a specific value or term. It
lets you search any or all objects in the database.

Using the Package Wizard
The Package Wizard lets you package and deploy Access database solutions. The
wizard guides you through the steps necessary to bundle standalone Access appli-
cations, with options to also bundle the Access Runtime as well as create shortcuts
that start the correct Access binary. The resulting output of the Package Wizard is a
Microsoft Windows Installer (.msi) setup file that guides end users step-by-step in
deploying your Access solution files, based on your specifications.

The wizard is an Access database add-in and is included in and installed, by default,
with the Microsoft Office Access 2003 Developer Edition.

You may be asking yourself, “What if my users don’t own Access?” When you dis-
tribute your application with the Package Wizard, end users can run your applica-
tion by using the Access runtime environment without needing to purchase a full
version of Access. The Package Wizard makes it easy to package and distribute all
the necessary runtime files. This is (mostly) transparent to users; they don’t realize
that Access is running in the background. Certain design interfaces are hidden from
users to prevent them from creating Access applications with the runtime exe-
cutable. Purchasing Microsoft Office Access 2003 Developer Edition gives you the
licensing rights to distribute your application with the runtime environment to an
unlimited number of users — with no royalty fees! So, even if you plan to create
your setup program with a third-party tool, you need to purchase at least one copy
of Microsoft Office Access 2003 Developer Edition to obtain the legal rights to dis-
tribute your application with the runtime files.

Note that the runtime version of Access can’t be used to open .adp or .ade files;
however, you can use the Package Wizard to create a setup program to distribute
.adp or .ade files to users who already have the full version of Access installed.

When you distribute your application using the Package Wizard, you can configure
your custom setup program to do the following:

✦ Specify a product name for your install package and install language you want
to use.

✦ Copy your application’s files to specified root and subfolder locations on a
user’s hard drive.

✦ Create Windows shortcuts that start your application or program files in the
Start Menu and Desktop.

Tip

1323Chapter 39 ✦ Preparing Your Application for Distribution

✦ Include Access Runtime files.

✦ Embed a EULA (End User License Agreement) file, banner image, and back-
ground image.

✦ Specify runtime parameters at startup (/ro Open Read Only, /user UserName,
/pwd Password, and so on).

✦ Add Windows Registry keys and entries for your application.

✦ Group files, shortcuts, and registry keys and entries into components that
users can select to install or uninstall.

✦ Install other Access files, such as drivers for accessing various data sources
and any .OCX custom controls that are used by your application.

✦ Run an application or open a file after the setup program is finished installing
your application.

Restrictions of the Package Wizard
The Access runtime environment is an excellent way (and currently the only way)
to distribute your applications to users who don’t own a licensed copy of Microsoft
Access. As previously stated, the Access runtime is almost transparent to the user.
Unfortunately, some limitations do exist with the release version of the ADE. Some
of these issues affect the behavior of your application, and some are problems
inherent in the Package Wizard itself. You need to be aware of the limitations, and
you probably want to make your end users aware of some of them as well.

Some key points and pitfalls to be aware of when designing your setup routine
include the following:

✦ Runtime applications that don’t include custom help files generate errors
when referring to the Access Help file. As stated previously, you should
always attempt to distribute applications with Help systems. Even a rudimen-
tary Help system is better than no online help at all.

If you elect against shipping a Help file with your application, you can prevent
Access from generating an error by not providing a Help menu item on any of your
custom menus and by creating an Autokeys Macro that traps the F1 key. The F1
key doesn’t have to do anything in the macro. Simply including it in the Autokeys
macro causes the macro to trap the F1 key when it is pressed. This prevents it from
being passed to the Access runtime, thus calling up the Help file.

✦ Attempting to close a runtime application with the CloseCurrentDatabase
method generates an error. The runtime version of Access doesn’t run with-
out an application loaded and therefore generates the error if you attempt to
close the current database. To terminate your application, use the Quit
method of the DoCmd object.

Tip

1324 Part IV ✦ Advanced Access Database Topics

✦ Uninstalling Microsoft Access 2003 breaks applications installed with a cus-
tom setup program. Unfortunately, the uninstall program in Access doesn’t
know when a runtime Access application is installed on the computer, and it
changes registry settings that are crucial to running your runtime Access
application.

✦ The Package Wizard doesn’t support Administrative (setup /a) and Run From
Network Server installations. Performing a network installation places all the
setup files onto a server drive so that all workstations on the network can
run the setup program from the server rather than from floppy disk. If you
distribute your application to run in a network environment, instruct your
users to copy all files from each disk in the distribution set to the same
directory on the network and then run the setup program in this directory
from each workstation.

✦ Reinstalling your application with the custom setup program fails if the user
has performed a Maintenance Removal of Workgroup Administrator. A user
can do this by rerunning the setup program and deselecting the Workgroup
Administrator component (which is discussed later in this chapter). If a user
removes the Workgroup Administrator component and attempts to reinstall
your Access runtime application, the installation fails. Attempting to run the
setup program again after the failure results in a successful installation.

You can prevent end users from removing the Workgroup Administrator compo-
nent by setting the component to Hidden on the Components page of the Setup
Wizard. This setting is discussed later in this chapter.

The Package Wizard is unable to use exclusively locked files. If you try to add a file
in the wizard that is exclusively locked by another user or another application, the
wizard responds with an application-defined or object-defined error. When users
trigger this error, Access cancels the creation of your custom setup program disk
images. When creating disk images with the Package Wizard, you should close all
possible applications in order to avoid potential lock conflicts.

Using the Package Wizard to create distribution disks
The Package Wizard makes it easy for you to create the necessary .cab and .msi
files and setup programs for your application. Like other wizards, the Package
Wizard prompts you for information so that it can create the exact configuration
that you want.

To start the Package Wizard, simply select Start ➪ All Programs ➪ Microsoft Office ➪
Microsoft Office Access 2003 Developer Extensions ➪ Package Wizard from Windows.
You may have placed your Developer Extensions in another location and may have
to find where they are. Figure 39-8 shows how to start the Package Wizard.

The Package Wizard will be used to package the Access Auto Auctions.mdb. You
will need to have it available for doing this part of the chapter.

On the
CD-ROM

Tip

1325Chapter 39 ✦ Preparing Your Application for Distribution

Figure 39-8: Starting the Package Wizard.

After you have loaded the Package Wizard, you are ready to begin the process of
creating a setup routine for your application. Follow these steps to package the
Access Auto Auctions database:

1. Start the Package Wizard from the Start button in Windows.

The first time you run it, the Welcome screen is displayed. You can check the
Skip the welcome screen check box to stop it from displaying in the future.

2. Click the Next button in the Welcome Screen to go to Step 1 of 7.

3. Accept the Create a new template radio button choice and click the Next but-
ton to move to Step 2 of 7.

4. On this screen (2 of 7), under the Installation Options section (top half of
screen), select the File to package field and find the Access Auto Auctions.mdb
file by clicking on the Browse ... button to the right of the field. After you find
and select the Access Auto Auctions.mdb, you will be returned to this screen.

5. In the Installation Options section, accept the default Root installation folder:
of Program Files and type in AccessAutoAuctions in the Installation subfolder:
field.

If you want to include the Runtime files, check the check box for this option.

6. Drop to the Output Options section, and specify a Destination for files gener-
ated by this wizard: *.

7. Make sure both of the check boxes are checked: Compress install files into a
cab file and Embed the cab file in the setup msi.

At this point, your screen should look similar to the one shown in Figure 39-9.

1326 Part IV ✦ Advanced Access Database Topics

Figure 39-9: The second of seven screens for the Package Wizard.

8. Click the Next button.

9. On the Step 3 of 7 screen, select the Icon named MtnScene.ico or another icon
to be used in the package.

10. Click the Next button.

This takes you to the fourth screen. Here, you can specify any other files or
registry keys that you would like to install.

11. Click the Next button again to skip this screen.

12. On Step 5 of 7, you must enter a value for the following fields: [General
Properties] Product Name: and Install Language:. [Featured Information]
Feature Title: and Feature Description:. You can use the values shown in
Figure 39-10.

Notice that you can also specify an EULA and two image files.

13. Click on the Next button.

14. You are now on the Step 6 of 7 screen and must fill in the following fields:
Publisher, Product Version, and Title [Windows Explorer “Properties”
Information]. Figure 39-11 shows the sixth screen with values added. You can
add these values or the values you want to add.

15. Click the Next button to move to the final screen.

1327Chapter 39 ✦ Preparing Your Application for Distribution

Figure 39-10: The fifth of seven screens for the Package Wizard.

Figure 39-11: The sixth of seven screens for the Package Wizard.

1328 Part IV ✦ Advanced Access Database Topics

16. On this last screen, you can save the template file that you created for dis-
tributing the Access Auto Auctions database by clicking on the Save Template
As . . . button. If you will be using this database again, you may want to save
your work.

17. Click the Finish button.

If you have not saved your work, a dialog box appears warning you that
you have modified the template and again asks if you want to save it before
continuing.

If you click Yes, you will be prompted for a file name. If you click No, the
system will start to create the installation package for you in the directory
you specified.

When the package has been created, you will receive an information box to tell you
that it has finished and the files are now ready to be placed on a CD for distribution.
The package has created, at a minimum, the Setup.exe Autorun.inf and a subdirec-
tory named Files with an .msi file and another directory named setup. This direc-
tory setup contains one file: setup.ini.

You can copy these files onto a CD or any other media that you will use to dis-
tribute your application system.

Testing the setup program
Whenever you create a new setup program or make changes to an old one, you
should take the time to run the setup program before releasing it to your users.
When you run the Package Wizard using your saved scripts, it is quick and easy to
make any last minute adjustments.

To run the setup program, locate the Setup.exe file in the folder that you indicated
to use in the Package Wizard. When you run Setup.exe, a professional welcome
screen displays, as shown in Figure 39-12.

After the user clicks the Next button to continue with the installation, the Customer
Information page displays. On this page, users enter their name and organization
and then click the Next button to move to the next page.

The next page asks users the type of setup they want: Typical or Custom. If users
select Typical, they are immediately taken to the Ready to Install page. If users select
Custom, they are taken to the Custom Setup page, like the one shown in Figure 39-13.

On this page, users can accept the recommended installation folder that you desig-
nated in the Package Wizard, or they can select Browse to choose another folder.

When ready, users select the Next button to move to the Ready to Install page.
Then, users click the Install button to install the application.

The setup program confirms that the installation has been successfully completed.

1329Chapter 39 ✦ Preparing Your Application for Distribution

Figure 39-12: The setup program starts with a welcome and
a warning about shared files.

Figure 39-13: This is the custom setup page users see if they
request Custom setup.

1330 Part IV ✦ Advanced Access Database Topics

The Package Wizard makes it easy to create a setup routine for any Access applica-
tion. It virtually eliminates the guesswork involved in identifying all the files that an
application needs in order to run correctly. Additionally, it automatically builds a
professional installation interface that adds that final finishing touch to a well-built
application.

Although deciding what to distribute to your users and how to distribute it requires
some time and considerable thought, taking this time and energy to learn the
Package Wizard enables you to create perfect installations every time!

Working with the Property Scanner Add-In
In addition to the Package Wizard, the ADE includes a Property Scanner Add-In tool.
This tool lets developers search globally throughout the Access application for a
custom string. The tool searches all the properties or code in tables, queries,
forms, reports, and modules. When completed, the Property Scanner Add-In dis-
plays a search results list and lets the user jump directly to the object where the
custom string was found.

You access the Property Scanner Add-In by selecting Tools ➪ Add-Ins ➪ Property
Scanner from the menu.

Figure 39-14 shows the full Property Scanner dialog box that is displayed when the
Advanced button is clicked.

Figure 39-14: The Property Scanner dialog box is activated.

Notice that it is being used to find the value IT in Asia. To find all instances of this
value, the user clicks the Search button and Access finds all occurrences, activating
a display window showing a record for each value found.

✦ ✦ ✦

Appendixes
and Reference
Material

✦ ✦ ✦ ✦

In This Part

Appendix A
Access 2003
Specifications

Appendix B
Access Auto Auction
Tables

Appendix C
Using the CD-ROM
Included with the
Book

Appendix D
Standard Naming
Conventions

✦ ✦ ✦ ✦

P A R T

VV

Access 2003
Specifications

This appendix shows the limits of Microsoft Access
databases, tables, queries, forms, reports, and macros.

AAA P P E N D I X

✦ ✦ ✦ ✦

1334 Part V ✦ Appendixes and Reference Material

Microsoft Access Database Specifications

Databases

Attribute Maximum

MDB file size 2GB, minus space needed for system
objects (because your database can
include attached tables in multiple files,
its total size is limited only by available
storage capacity)

Number of objects in a database 32,768

Number of Modules 1,000

Number of characters in object names 64

Number of characters in a password 14

Number of characters in a user name 20
or group name

Number of concurrent users 255

Tables

Attribute Maximum

Number of characters in a table name 64

Number of characters in a field name 64

Number of fields in a record or table 255

Number of open tables 2,048, including tables opened by
Microsoft Access internally

Table size 2GB (minus space needed for system
objects)

Number of characters in a Text field 255

1335Appendix A ✦ Access 2003 Specifications

Attribute Maximum

Number of characters in a Memo field 65,535 when entering data through the
user interface; 1GB when entering data
programmatically

Size of OLE object field 1GB

Number of indexes in a record or table 32

Number of fields in an index 10

Number of characters in a validation message 255

Number of characters in a validation rule 2048

Number of characters in a table or 255
field description

Number of characters in a record 2,000 (excludes Memo and OLE
Object fields)

Number of characters in a field property setting 255

Queries

Attribute Maximum

Number of tables in a query 32

Number of enforced relationships 32 per table, minus indexes that are on
the table for the fields or combinations
of fields that are not involved in the
relationship

Number of fields in a recordset 255

Dynaset size 1GB

Sort limit 255 characters in one or more fields

Number of sorted fields in a query 10

Number of levels of nested queries 50

Number of characters in a cell of the design grid 1,024

Number of ANDs in a WHERE or HAVING clause 99

Number of characters in a SQL statement 64,000 (approximately)

1336 Part V ✦ Appendixes and Reference Material

Forms and Reports

Attribute Maximum

Number of characters in a label 2,048

Number of characters in a text box 65,535

Form or report width 22 inches (55.87 cm)

Section height 22 inches (55.87 cm)

Height of all sections plus section 200 inches (508 cm)
headers in design view

Number of levels of nested forms or reports 7 (form-subform-subform)

Number of fields/expressions you can sort 10
or group on (reports only)

Number of headers and footers in a report 1 report header/footer;
1 page header/footer;
10 group headers/footers

Number of printed pages in a report 65,536

Number of characters in an SQL statement 32,750
that is the Recordsource or Rowsource
property of a form, Report, or control
(both .mdb and .adp)

Number of controls or sections you can 754
add over the lifetime of the form or report

Macros

Attribute Maximum

Number of actions in a macro 999

Number of characters in a condition 255

Number of characters in a comment 255

Number of characters in an action argument 255

1337Appendix A ✦ Access 2003 Specifications

Access Projects Specifications

Access Project

Attribute Maximum

Number of objects in a Microsoft Access 32,768
project (.adp)

Modules (including forms and report modules) 1,000

Number of characters in an object name 64

Number of columns in a table 250 (MS SQL Server 6.5)
1,024 (MS SQL Server 7.0 and 2000)

Forms and Reports

Attribute Maximum

Number of characters in a label 2,048

Number of characters in a text box 65,535

Form or report width 22 inches (55.87 cm)

Section height 22 inches (55.87 cm)

Height of all sections plus section headers 200 inches (508 cm)
in design view

Number of levels of nested forms or reports 7 (form-subform-subform)

Number of fields/expressions you can sort 10 (reports only)
or group on

Number of headers and footers in a report 1 report header/footer;
1 page header/footer;
10 group headers/footers

Number of printed pages in a report 65,536

Number of characters in an SQL statement 32,750
that is the Recordsource or Rowsource
property of a form, Report, or control
(both .mdb and .adp)

Number of controls or sections you can 754
add over the lifetime of the form or report

1338 Part V ✦ Appendixes and Reference Material

Macros

Attribute Maximum

Number of actions in a macro 999

Number of characters in a condition 255

Number of characters in a comment 255

Number of characters in an action argument 255

Microsoft SQL Server database
Maximum capacity specifications can be found in the SQL Server documentation.

✦ ✦ ✦

Access Auto
Auction Tables

The Access Auto Auctions database file is made up of 13
tables. There are six primary data tables, five lookup

tables, and two support tables.

The primary data tables contain data that is used and
updated daily by users of the system, such as sales and inven-
tory information. The lookup tables also contain data that is
updated on a less regular basis, such as contact types, prod-
uct categories, and tax rates. Support tables are used by the
system itself to display menus or preference items used to set
up the company.

The primary data tables are as follows:

✦ tblSales

✦ tblSalesLineItems

✦ tblSalesPayments

✦ tblContacts

✦ tblContactLog

✦ tblProducts

The lookup tables are as follows:

✦ tblCustomerTypes

✦ tblTaxRates

✦ tblPaymentType

✦ tblSalesperson

✦ tblCategories

The support tables are as follows:

✦ tblCompanySetup

✦ tblSwitchboardItems

BBA P P E N D I X

✦ ✦ ✦ ✦

1340 Part V ✦ Appendixes and Reference Material

This appendix displays a database diagram of the 11 primary and lookup tables and
the relations between them. Figures of each of the tables are shown in the Table
Design window.

Table Structures
Figure B-1 diagrams the Access Auto Auctions tables in the database container.

Figure B-1: Tables in the Access Auto Auctions database
container.

Figure B-2 diagrams the Access Auto Auctions database relationships.

Figure B-2: The database diagram showing tables and relationships.

1341Appendix B ✦ Access Auto Auction Tables

Figures B-3 through B-14 show the structures of the primary tables in the
AccessAutoAuctions.mdb database file.

Figure B-3: The tblSales table.

Figure B-4: The tblSalesLineItems table.

Figure B-5: The tblSalesPayments table.

Figure B-6: The tblContacts table.

1342 Part V ✦ Appendixes and Reference Material

Figure B-7: The tblContactLog table.

Figure B-8: The tblProducts table.

Figure B-9: The tblCustomerTypes table.

Figure B-10: The tblTaxRates table.

Figure B-11: The tblPaymentType table.

Figure B-12: The tblSalesperson table.

1343Appendix B ✦ Access Auto Auction Tables

Figure B-13: The tblCategories table.

Figure B-14: The tblCompanySetup table.

✦ ✦ ✦

Using the
CD-ROM
Included with
the Book

This appendix provides you with information on the con-
tents of the CD that accompanies this book. For the lat-

est and greatest information, please refer to the ReadMe file
located at the root of the CD.

This appendix provides information on the following topics:

✦ System Requirements

✦ Using the CD

✦ Files and software on the CD

✦ Troubleshooting

System Requirements
Make sure that your computer meets the minimum system
requirements listed in this section. If your computer doesn’t
match up to most of these requirements, you may have a
problem using the contents of the CD.

CCA P P E N D I X

✦ ✦ ✦ ✦

1346 Part V ✦ Appendixes and Reference Material

You must have Windows XP or Windows 2000 or later. Microsoft Office 2003
only works with these operating systems.

✦ PC with a Pentium processor running at 120 Mhz or faster

✦ At least 128MB of total RAM installed on your computer; for best perfor-
mance, we recommend at least 256MB or more

✦ A CD-ROM drive

Office 2003 Specific Requirements:

✦ PC with Pentium III, IV or Pentinum M recommended

✦ Microsoft Windows 2000 with Service Pack 3 or Windows XP or later operating
system

Using the CD
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.

2. A window appears displaying the License Agreement. Press Accept to con-
tinue. Another window appears with the following buttons (which are
explained in greater detail in the next section):

Access 2003 Bible: Click this button for options to install all of the example
files specific to the book and to view an eBook version of the book.

Super Bible: Click this button to view an electronic version of the Office 2003
Super Bible, along with any author-created materials from the Super Bible,
such as templates and sample files.

Bonus Software: Click this button to view the list and install the supplied
third-party software.

Related Links: Click this button to open a hyperlinked page of Web sites.

Other Resources: Click this button to access other Office-related products
that you might find useful.

Files and Software on the CD
The following sections provide more details about the software and other materials
available on the CD.

1347Appendix C ✦ Using the CD-ROM Included with the Book

Example files for Access 2003 Bible
These files will be installed into a directory named Access 2003 Bible or you can
choose any directory to install these files. Below this directory will be 39 subdirec-
tories named Chapter 01, Chapter 02 ... through Chapter 39. Each subdirectory will
contain all of the files necessary to follow the examples in each chapter. Some chap-
ter directories in the beginning of the book contain no files. Most chapters contains
a start file to begin the chapter with such as CHAP03Start.mdb while some have
both a start and end file so you can follow the examples or see the completed exam-
ples in files such as CHAP04End.mdb. Many chapters also use additional database
files, graphics, document files or help files as found in each chapter subdirectory
and explained at the beginning of each chapter. You will also find links on the CD to
a Wiley web site to download any later corrections to the material. You can also go
to www.databasecreations.com which is maintained by the authors where you can
also download corrected files, demos and free software specifically related to
Microsoft Access.

eBook version of Access 2003 Bible
The complete text of the book you hold in your hands is provided on the CD in
Adobe’s Portable Document Format (PDF). You can read and quickly search the
content of this PDF file by using Adobe’s Acrobat Reader, also included on the CD.

eBook version of Office 2003 Super Bible
The Super Bible is an eBook PDF file made up of select chapters pulled from the
individual Office 2003 Bible titles. This eBook also includes some original and exclu-
sive content found only in this Super Bible. The products that make up the
Microsoft Office 2003 suite have been created to work hand-in-hand. Consequently,
Wiley has created this Super Bible to help you master some of the most common
features of each of the component products and to learn about some of their inter-
operability features as well. This Super Bible consists of over 500 pages of content
to showcase how Microsoft Office 2003 components work together.

Bonus software
The CD contains software distributed in various forms: shareware, freeware, GNU
software, trials, demos, and evaluation versions. The following list explains how
these software versions differ:

✦ Shareware programs: Fully functional, trial versions of copyrighted pro-
grams. If you like particular programs, you can register with their authors for
a nominal fee and receive licenses, enhanced versions, and technical support.

1348 Part V ✦ Appendixes and Reference Material

✦ Freeware programs: Copyrighted games, applications, and utilities that are
free for personal use. Unlike shareware, these programs do not require a fee
or provide technical support.

✦ GNU software: Software governed by its own license, which is included inside
the folder of the GNU product. See the GNU license for more details.

✦ Trial, demo, or evaluation versions: Software usually limited either by time
or functionality, such as not permitting you to save projects. Some trial ver-
sions are very sensitive to system date changes. If you alter your computer’s
date, the programs may “time out” and will no longer be functional.

Software highlights
Here are descriptions of just a few of the programs available on the CD:

Database Creations, Inc. — Business!, POSitively Business, EZ Access Developer
Tools Suite, appBuilder, Access Project Security Manager(APSM), Inventory
Manager with Barcoding, Report Manager Professional, appWatcher, and Search
Manager Professional.

Business! Accounting Demo — Database Creations —www.databasecreations.
com: Business! is the most popular accounting software available for Microsoft
Access users today. The product is fully customizable and includes all source code.
It includes all typical accounting functions including sales, customers, A/R, pur-
chases, suppliers, A/P, inventory, banking, general ledger, fixed assets, and features
multi-company accounting for any size business. Priced under $1,000 for a multi-
user LAN version, it is one of the best values for small businesses. For developers, a
version is available with inexpensive distribution rights for around $2,500. Business
received 4 stars from CPA Software News for best mid-range accounting software. It
also won the Microsoft Access Advisor reader’s choice award for best accounting
system. View more information on this product at www.databasecreations.com.

POSitively Business Demo — Database Creations —www.databasecreations.
com: POSitively Business is an add-on system for Business!. It adds point of sale
functionality and includes all source code. The product includes a mouse-less point
of sale interface, security, administrative and setup options, cashiers, cash counter,
sales analyzer, barcoding and much more. The software works with standard point
of sale hardware including cash drawers, light poles, hand-held scanners, receipt
printers and credit card scanning keyboards. Pricing is currently $795 for one regis-
ter and discounts are available for multi registers. You can also purchase a point of
sale hardware bundle which includes a cash drawer, receipt printer, credit card
scanning keyboard, laser scanner, light pole and bar code font. Call for latest pric-
ing. Developer versions of POSitively Business with royalty free distribution rights
are also available. We also have a reseller program for resellers and VAR’s. Call us or
visit www.positivelybusiness.com to learn more.

1349Appendix C ✦ Using the CD-ROM Included with the Book

EZ Access Developer Tools Suite — Database Creations —www.database
creations.com: The EZ Access Developer Tools is specifically designed for Access
developers to help them create great Access applications. The suite consists of
eight separate products. Each can be easily integrated into your application to pro-
vide new functions in a fraction of the time it would take you to create them your-
self. These products will save you hundreds of hours of development time. Think of
them as a library of over 100 pre-designed, pre-programmed interfaces you can
legally steal and use with your applications royalty free!

Read each of the embedded reviewers guides in the demo for a complete over-
view of each product. Currently, you can purchase the entire EZ Access Developer
Tools Suite for only $395. View additional information on this product from
www.databasecreations.com.

The eight EZ Access Developer Tools that comprise the Suite include:

✦ EZ Report Manager

✦ EZ Search Manager

✦ EZ Support Manager

✦ EZ Extensions

✦ EZ Security Manager

✦ EZ File Manager

✦ EZ Application Manager

✦ EZ Controls

appBuilder — Database Creations —www.databasecreations.com: The
appBuilder provides a way for Access developers to create an application shell
when building custom applications. There are two ways to use the appBuilder. Start
with our application shell and add your objects (tables, queries, reports, forms,
modules, etc..) or use our Application Generator Wizard to choose, configure and
automatically add the components to your Access application. The Wizard guides
you through the process of selecting over 40 different features and lets you add
your own custom text and graphics. Then, add your tables, queries, forms and
reports to the application switchboard you have selected. We even include a sec-
ond wizard to help you build flexible menu systems for your application.

With the appBuilder you receive:

✦ appBuilder including 40 components from the EZ Access Developer Tools
Suite

✦ Application Generator Wizard

1350 Part V ✦ Appendixes and Reference Material

✦ Menu Editor Wizard

✦ On-line Help

✦ FREE Check Writer Application with Source Code

✦ Five additional Switchboards not found in the Suite

✦ Source code included

✦ Use Royalty Free in your applications

Purchase the appBuilder for only $495 or for $595, purchase both the appBuilder
and EZ Access Developer Tools Suite.

Access Project Security Manager — Database Creations —www.database
creations.com: If you use Access 2003 or Access 2003 Projects with the new MSDE
or SQL Server 2000, there is no security provided for forms or reports. You only
have the limited data security provided by MSDE and SQL Server 7 and no user
security. With the Access Project Security Manager, you can easily add your own
security. This avoids having to create separate application front ends for each group
of users.

Purchase the Access Project Security Manager for $299 for a single developer/single
application. Multi developer/applications and site licenses are also available. Visit
www.databasecreations.com for more information and pricing.

Inventory Manager 4 with Barcode Modules — Database Creations —www.
databasecreations.com: The Inventory Manager is an open source code, fully
customizable stand-alone inventory management program for Microsoft Access.
This product allows you to enter inventory items, enter suppliers and warehouses
and includes a simple chart of accounts and general ledger. Use the Inventory
Manager stand-alone or integrated with existing purchasing or sales applications
you may have developed. The demo also includes a demo version of the optional
barcode modules, which allow you to print barcodes and adjust inventory quanti-
ties in stock or transfer goods between warehouses.

Purchase Inventory Manager 4 for $595 for a multi-user version or for $995 with the
bar code modules. A royalty free developer version is also available. Please visit
www.databasecreations.com for more information and current pricing.

PenSoft Payroll — Pensoft Corporation — www.pensoft.com: PenSoft Payroll
from PenSoft Corp. is a stand-alone payroll package for small to medium busi-
nesses. It interfaces with Yes! I Can Run My Business to provide complete
employee, hour, tax, deduction, and benefit processing. The software contains
all tax tables for the United States. For more information and pricing, please visit
www.databasecreations.com.

1351Appendix C ✦ Using the CD-ROM Included with the Book

Report Manager Professional — Database Creations —www.databasecreations.
com: The Report Manager Professional is a tool for managing and printing reports
you create in Microsoft Access. All source code is included and you can use the
interfaces royalty free in your applications.

Search Manager Professional — Database Creations —www.databasecreations.
com: The Search Manager Professional is a collection of powerful search interfaces
and search engines for Microsoft Access applications. All source code is included
and you can use the interfaces and search engines royalty free in your applications.

Comprehensive list of software
Here is a list of all the products available on the CD. For more information and a
description of each product, see the CD Interface Bonus Software section of the CD.

Acc Compact Access Form Resizer Access Image Albums

Access Property Editor Access to VB Object AccessBooks
Converter

AccessBooks Updater AccessViewer Acrobat Reader

Advanced Office Password All-in-1 Personal Organizer appBuilder
Recovery

Application Builder/ appWatcher Business Forms Library
Application Generator Sampler

c:JAM Camtasia Studio Capture Express

Change Management Check Writer ClipMate
System

Code 128 Fonts demo COM Explorer CompareDataWiz 2002
with VBA

CompareWiz 2002 CONTACT Sage Cool Combo Box Techniques

Data Analysis Data Flow Manager, Adv Ed Data Flow Manager, Stnd Ed

Data Wiz Database Database Browser Plus

Database Password Sniffer DataDict Datahouse

DataMoxie DataWiz 2002 DB Companion

DBSync DeskTop.VBA Document Management

Drag-N-Dropper DynaZIP MAX Excel Import Assistant

Excel Link EZ Access Developer’s EZ File Manager Sampler
Tool Suite

1352 Part V ✦ Appendixes and Reference Material

Filter Builder Fort Knox Fundraising Mentor

Gantt Chart Builder (Access) GuruNet InspireApps.com Manager

Inventory Manager Jeff-Net Access Utility Judy’s TenKey
with Barcoding

Keyboard Express King James Access Bible LASsie

Mach5 Mailer Macro Express Macro Magic

Mdb2txt Mouse Over Effects OfficeRecovery Enterprise

OfficeSpy Outcome XP Pendragon Forms

Picture Builder Wizard Positively Business PrettyCode.Print

Procedure Creator Project Security Manager PROMODAG StoreLog

Recover My Files Registry Crawler ReplaceWiz 2002

Responsive Time Logger RFFlow Rovoscape ActiveCandy

Schedule XP Screen Capture Search Manager Pro

Secrets Keeper Selector ShortKeys

ShrinkerStretcher SimpleRegistry Control Smart Login

SmartBoardXP SmartList To Go SnagIt

SPEED Ferret Splitter for Access Spreadsheet Assistant

Summary Wizard Surgical Strike Table Lynx

TeeChart Pro ActiveX Turbo Browser UnTools
Control

User Manager VBToolBox V-Tools

WBS Chart Pro WebMerge WinACE

WinRAR WinZIP Word Link

X2Net WebCompiler Xbooks Yes I Can Run My Business

Zip Code Companion ZipCode Lookup

Related Links
Check out this page for links to all the third-party software vendors included on the
CD, plus links to other vendors and resources that can help you work more produc-
tively with Office 2003.

1353Appendix C ✦ Using the CD-ROM Included with the Book

Other Resources
This page provides you with some additional handy Office-related products.

ReadMe file
The ReadMe contains the complete descriptions of every piece of bonus software
on the CD, as well as other important information about the CD.

Troubleshooting
If you have difficulty installing or using any of the materials on the companion CD,
try the following solutions:

✦ Turn off any anti-virus software that you may have running. Installers
sometimes mimic virus activity and can make your computer incorrectly
believe that it is being infected by a virus. (Be sure to turn the anti-virus soft-
ware back on later.)

✦ Close all running programs. The more programs you’re running, the less
memory is available to other programs. Installers also typically update files
and programs; if you keep other programs running, installation may not work
properly.

✦ Reference the ReadMe: Please refer to the ReadMe file located at the root of
the CD-ROM for the latest product information at the time of publication.

If you still have trouble with the CD, please call the Customer Care phone number:
(800) 762-2974. Outside the United States, call 1 (317) 572-3994. You can also con-
tact Customer Service via the web at www.wiley.com/techsupport. Wiley
Publishing, Inc. will provide technical support only for installation and other gen-
eral quality control items; for technical support on the applications themselves,
consult the program’s vendor.

✦ ✦ ✦

Using Standard
Naming
Conventions

As you can imagine, you can use quite a few variables in
a program. This can make it difficult to remember what

all of your variables are used for. The same is true of objects
in your Access databases, such as tables, forms, and reports.
As the number of objects and variables increases, so does the
inherent complexity of the programs that use those objects
and variables.

Part of the solution to this problem is to use descriptive names
for both objects and variables. This is only part of the solution,
however. The other part involves using some sort of standard
naming convention so you can immediately understand the
type of data referred to by a variable or object name.

For professional developers, adhering to a standard makes
it easier to maintain other developer’s programs. In develop-
ment projects with multiple programmers, naming conven-
tions can make it easier to understand what each object or
variable is used for, the data type of variables or other critical
information needed to properly code and debug a program
efficiently

However, for a casual or power user or even the novice devel-
oper, adhering to naming conventions can be a less than
productive experience. Where naming conventions are sup-
posed to make programs easier to read and maintain because
they instantly tell the VBA developer, they can do the exact
opposite.

Figure D-1 shows two Microsoft Access database containers.
The database container on top uses a standard naming con-
vention prefix. The database container on the bottom uses no
special naming convention for the table objects. Which do
you think is easier to read?

DDA P P E N D I X

✦ ✦ ✦ ✦

1356 Part V ✦ Appendixes and Reference Material

Figure D-1: Object naming conventions

There are several competing naming conventions used for Microsoft Access. One is
the Leszynski Naming Conventions (LNC) developed by Stan Leszynski (www.
kwery.com) and the other is the Reddick Naming Conventions developed by
Greg Reddick. The tables in the remaining portion of this chapter provide an
overview of these standards. If you wish to see the entire detailed naming con-
ventions, you can view the file ReddickNamingConventions.pdf on the example
CD in this book.

Both of these naming conventions suggest using prefixes for several different types
of Microsoft Access items – objects (tables, queries, forms, reports, data access
pages, macros, modules), table fields, form and report controls, ADO and DAO
recordset objects, and variables.

Tip

1357Appendix D ✦ Using Standard Naming Conventions

Microsoft Access database object
naming conventions
These naming conventions suggest using leading tags also known as prefixes. This
means that the naming convention precedes the standard business name such as
tblProducts.

The standard Microsoft Access object names are shown in Table D-1.

Table D-1
Object Naming Conventions

Prefix Object Example

tbl Table tblProducts

qry Query qryActiveProducts

frm Form frmProducts

rpt Report rptProducts

mcr Macro mcrAutoexec

mod Module modSalesFunctions

cls Class Module clsSetup

fsub Subform fsubProductsDisplayAll

rsub Subreport rsubSalesLineItems

Microsoft Access table field naming conventions
Another portion of the naming conventions covers fields in tables. Figure D-2 shows
the tblSales table with and without these prefixes. Table D-2 shows these table-field
naming conventions.

1358 Part V ✦ Appendixes and Reference Material

Figure D-2: Table field naming conventions

Table D-2
Table Field Naming Conventions

Prefix Object

idn Autonumber (Random)

idr Autonumber (Replication ID)

ids Autonumber (Sequential)

bin Number (Binary)

byt Number (Byte)

cur Currency

dtm Date/Time

1359Appendix D ✦ Using Standard Naming Conventions

Prefix Object

dbl Number (dbl)

hlk Hyperlink

int Number (Integer)

lngz Number (Long)

mem Memo

ole OLE Object

sng Number (Single)

chr Text (Character)

bln Yes/No (Boolean)

Microsoft Access form/report control
naming conventions
Another area covered by naming conventions are control names on forms on
reports. These are used whenever you are naming a control on a form or report.
Table D-3 shows these conventions.

Table D-3
Form/Report Control Naming Conventions

Prefix Object

frb Bound Object frame

cht Chart (Graph)

chk Check Box

cbo Combo Box

cmd Command Button

ocx ActiveX Custom Control

det Detail (section)

gft[n] Footer (group section)

fft Form footer section

Continued

1360 Part V ✦ Appendixes and Reference Material

Table D-3 (continued)

Prefix Object

fhd Form header section

ghd[n] Header (group section)

hlk Hyperlink

img Image

lbl Label

lin Line

lst List Box

opt Option Button

grp Option Group

pge Page (tab)

brk Page break

pft Page Footer (section)

phd Page Header (section)

shp Rectangle

rft Report Footer (section)

rhd Report Header (section)

sec Section

sub Subform/Subreport

tab Tab Control

txt Text Box

tgl Toggle Button

fru Unbound Object Frame

Microsoft Access Visual Basic variable
naming conventions
The final major area covered by the standard Access naming conventions are Visual
Basic data variables. Table D-4 shows these conventions.

1361Appendix D ✦ Using Standard Naming Conventions

Table D-4
Visual Basic Data Variable Naming Conventions

Prefix Object

bln Boolean

byt Byte

ccc Conditional Compilation Constant (#xxx)

Cur Currency

dtm Date

dbl Double

err Error

int Integer

lng Long

obj Object

sng Single

str String

typ User-Defined Type

var Variant

There are many more tags that are defined by the standard naming conventions. In
fact, there are close to one thousand different tags. Professional developers use
these standards to varying degrees. Some ignore them for anything but data vari-
ables while others ignore them completely. Others try their best to follow them reli-
giously. You will have to make your own decisions.

Are naming conventions really necessary in Access?
The human mind is a wonderful thing. It can provide wondrous creative solutions
to problems. It can turn manual nightmares into automated algorithmic processes.
But give the human mind something just a little foreign and processing slows to a
crawl as the brain’s disruptive subroutine circuitry is invoked with a nearly endless
loop. Having to filter out the characters that precede the business names makes it
much more difficult to read and understand the purpose of the application.

1362 Part V ✦ Appendixes and Reference Material

The same could be true for variable and field naming in tables. Imagine if written
English words required naming conventions. Perhaps all predicates could be pre-
fixed with pre, verbs with vrb, nouns with nou, adverbs with adv, adjectives with
adj, and so on. The sentence below:

The Quick Brown Fox Jumps Over The Big Computer

would become:

preThe adjQuick adjBrown nouFox vrbJumps advOver preThe adjBig
nouComputer

Though it can be read, it makes it much harder to understand the words as you first
must filter out the prefixes. Only in rare instances would a word be questionable as
to its meaning or content. Our experience is far more important than our need to
explicitly understand sentence structure or grammar.

How does a professional developer know that zip codes, phone numbers, and Social
Security numbers are almost always defined as text strings? Fields like Salary, Total
Expense, or Amount Paid are obviously currency or numeric data types, while Date
of Birth or the Last Sale Date is probably always stored as a date data type. This
simply takes experience and common sense. This same experience or training lets
us all know how to read a sentence with the correct understanding of words, into-
nation, or grammar.

The bottom line is that sometimes less is more. You have to program in a style that
suits you and your environment. While naming conventions can be good, consis-
tency is always better. If you are investing in a set of naming conventions, check a
few simple things:

1. Do they make sense? Do they seem like common sense dictated them rather
than some committee whose sole purpose was to get something on paper
through compromises, endless debate, and finally exhaustion and frustration?

2. Are they endorsed by an international board such as ISO or even Microsoft?
Notice the main Microsoft Access sample file named Northwinds.mdb does
not use any naming conventions.

✦ ✦ ✦

SYMBOLS AND
NUMERICS
& (ampersand)

concatenation operator, 210–212
hot keys, 846
input mask character, 71
Text data-type format, 65

* (asterisk)
all-field reference tag, 167, 188
any number of characters

wildcard, 101, 214, 740
Count(*) function, 1188
multiplication operator, 204,

205, 218
@ (at sign), Text data-type format, 65
\ (back slash)

input mask character, 71
integer division operator, 204,

207, 218
[] (brackets)

around criterion, 226
around table and field names

containing spaces, 223
when used in expressions, 717

^ (caret), exponentiation operator,
204, 208, 218

: (colon)
input mask character, 71
time separator, 67, 293

, (comma)
input mask character, 71
Numeric custom format, 65

$ (dollar sign), Numeric format, 66
“ (double quotation marks)

Text Qualifier, 265
used in expressions, 717

= (equal sign)
query criteria comparison

operator, 178
relational operator, 208, 209

! (exclamation mark), using with
reserved words, 719

/ (forward slash)
date separator, 67, 292
division operator, 204, 206, 218
input mask character, 71

> (greater than)
input mask character, 71
query criteria comparison

operator, 178
relational operator, 208, 210
Text data-type format, 65

>= (greater than or equal to),
relational operator,
208, 210

∞ (infinity), 124
< (less than)

input mask character, 71
query criteria comparison

operator, 178
relational operator, 208, 209
Text data-type format, 65

<= (less than or equal to), relational
operator, 208, 209–210

[list], any single character in list
wildcard, 214

[!list], any single character not in
list wildcard, 214

– (minus sign)
data access page, 987–988
input mask character, 71
subtraction operator, 204,

206, 218
<> (not-equal), relational

operator, 209
% (percent), Numeric custom

format, 65
. (period)

input mask character, 71
Numeric custom format, 65
object references, 1086
used in expressions, 720–721

+ (plus sign)
addition operator, 204,

205–206, 218
data access page, 987–988
datasheet view, 98
string concatenation, 205–206

(pound sign)
any one number wildcard,

101, 214
input mask character, 71

Numeric format, 66
query criteria data value

delimiter, 178, 717
? (question mark)

any one character wildcard,
101, 214

determining value of
mathematical
formula, 206

input mask character, 71
; (semicolon)

ending SQL statements with, 743
input mask, 70, 71
Text custom format, 65

–1 (negative one), Yes/No date-
type format, 68

9 (nine), input mask, 71
1NF. See first normal form
2NF. See second normal form
3D Area chart, 632
3D Bar chart, 632
3D Column chart, 632
3D Cone chart, 632
3D Cylinder chart, 632
3D Line chart, 632
3D Pie chart, 632
3D Pyramid chart, 632
3D Surface chart, 632
3NF. See third normal form
0 (zero)

input mask character, 71
Numeric custom format, 65
Yes/No data-type format, 68

A
<A HREF> tag, 954
A input mask, 71
Abs() function, 729
absolute path, data access page,

1019–1021
absolute speed. See also perceived

speed
bitmaps, 1286
closing unused

applications, 1281
combo boxes, 1287

Continued

Index

1364 Index ✦ A

absolute speed (continued)
compacting data, 1280
control variables, 1290–1291
CreateObject function, 1290
data types, 1287
dead code, 1292–1293
definition, 1279
defragmenting hard drive, 1281
efficient indexes, 1282–1283
field variables, 1291
FindNext method, 1292
FindRecord method, 1292
For Each function, 1290
form and report

complexity, 1285
For/Next statement, 1290
GetObject function, 1290
If...Then...Else statement, 1290
IIF() function, 1290
increasing RAM, 1281
list boxes, 1287
modules, 1287
multi-field indexes, 1283
network performance,

1292–1293
numeric data types,

mathematical processing
speed, 1288–1289

opening database in single-
user environment, 1279

optimizing query design,
1284–1285

remove wallpaper, 1281
swap file location, 1281
Table Analyzer Wizard, 1281
True value, 1290
unused variables, 1292–1293
With function, 1290

absolute value, 729
Acc Compact, 1351
Access 2002-2003 Database File

Format, 1268–1269
Access 2003 Developer Extensions

(ADE), 1321
Access 2003 Developer Extensions

Package Wizard
creating distribution disks,

1324–1328
distributed applications, 1321
importance of, 1322–1323
restrictions, 1323–1324
setup program, 1328–1330

Access 2003 Module Help, Visual
Basic, 672–673

Access Auto Auctions database
automation tasks, 13
CD-ROM, 41
comparing data items, 21
conceptual design, 13
Contact Log data, 23
Contact Log form example, 31
Contacts form example, 32
Contacts Report customer-

related data, 18
creating, 39
Individual Invoice Report

sales data, 19
interviewing users, 14
Invoice Report customer-

related data, 18
key fields, 22–23
laying out reports, 15–17
Line Item data items, 20
normalization, 22, 25
primary keys, 127–129
Products form example, 32
prototyping, 14–15
Sales form example, 32
Sales Payment data, 23
structure, 1339–1343
table relationships, 123–126,

145–146
Access form datasheet, exporting

to HyperText Markup
Language, 958–961

Access Form Resizer, 1351
Access Image Albums, 1351
Access object, importing data into,

276–277
Access project

Add Table window, 933
Caption extended

property, 925
Cascade Delete Related

Fields relationship
property, 928

Cascade Update Related
Fields relationship
property, 928

Check existing data on
creation constraint
property, 931

Check existing data on
creation relationship
property, 928

Collation extended
property, 925

Column name/Order index
property, 929

Constraint expression
constraint property, 931

Constraint name constraint
property, 931

converting Access front end
into, 904–909

Create as CLUSTERED index
property, 929

Create Unique index
property, 929

creating views, 933–935
data link properties, 922
Decimal Places extended

property, 925
Default Value extended

property, 924
Default View property, 932
Delete constraint property, 931
Delete index property, 929
Delete relationship

property, 927
Description table

property, 926
Don’t automatically

re-compute
statistics index
property, 930

Enforce constraint for
INSERTs and UPDATEs
constraint property, 931

Enforce constraint for
replication
constraint property, 931

Enforce relationship
for INSERTs and
UPDATEs relationship
property, 928

Enforce relationship
for replication
relationship
property, 928

field entry area, 923
Fill factor index

property, 929
Filter data property, 932
Foreign key table

relationship
property, 927

Format extended property, 925
Formula extended

property, 925

1365Index ✦ A

Furigana extended
property, 925

Hyperlink extended
property, 925

Identity extended
property, 924

Identity Increment
extended property, 924

Identity Seed extended
property, 924

IME Mode extended
property, 925

IME Sentence Mode extended
property, 925

Index Filegroup index
property, 929

Index name index property, 929
Indexed extended

property, 925
Input Mask extended

property, 925
Is RowGuid extended

property, 925
Link Child Fields

property, 932
Link Master Fields

property, 932
New constraint property, 931
New index property, 929
New relationship

property, 927
Order By data property, 932
Owner table property, 926
Pad index property, 929
Postal Address extended

property, 925
Precision extended

property, 924
Primary key table

relationship
property, 927

Relationship name
relationship
property, 927

Scale extended property, 924
SELECT query, 934
Selected Constraint

property, 930
Selected index property, 929
Selected relationship

property, 927
Selected table property, 926
stored procedure, 935–938

Subdatasheet Expanded
property, 932

Subdatasheet Height
property, 932

Subdatasheet Name data
property, 932

Table Design window, 923
Table Filegroup table

property, 926
Table Identity Column table

property, 926
Table name table property, 926
Table Properties window,

925–926
Table ROWGUID Column table

property, 926
Text Filegroup table

property, 926
triggers, 942–943
Type index property, 929
user-defined functions, 938–942
Validation Text constraint

property, 931
Validation Text index

property, 930
View Query Designer, 933

Access Project Security Manager
(Database
Creations, Inc.), 1350

Access Project specifications,
1337–1338

Access Property Editor, 1351
Access query datasheet, exporting

to HyperText Markup
Language, 956–957

Access Security Wizard, 1129–1135
Access Startup dialog box, 85856
Access table, exporting to

HyperText Markup
Language, 954–956

Access to VB Object Converter, 1351
Access window toolbar, 44–45
Access.Application class

argument, 1089
AccessBooks, 1351
AccessBooks Updater, 1351
<!-AccessTemplate_Body-> HTML

template token, 969
<!-AccessTemplate_FirstPage->

HTML template
token, 969

<!-AccessTemplate_LastPage->
HTML template
token, 969

<!-AccessTemplate_NextPage->
HTML template
token, 969

<!-AccessTemplate_PageNumber->
HTML template
token, 969

<!-AccessTemplate_PreviousPage->
HTML template
token, 969

<!-AccessTemplate_Title-> HTML
template token, 969

AccessViewer, 1351
AcDataErrContinue, 799
AcDataErrDisplay, 799
acDeleteCancel status value, 752
acDeleteOK status value, 752
acDeleteUserCancel status

value, 752
Acrobat Reader, 1351
Action query type

backing up tables, 1245
converting select query into

append query,
1247–1250

converting select query into
update query, 1236–1237

copying database objects, 1242
creating append query,

1243–1245
creating cascading delete

query, 1254–1255
creating delete query,

1250–1252
creating dependent delete

query, 1252–1253
creating make-table query,

1239–1241
creating select query,

1235–1236, 1246–1247
creating update action query,

1233–1235
Find Duplicate Query Wizard,

1255–1256
Find Unmatched Query Wizard,

1256–1258
importance of, 156, 1229
irreversible, 1231
processing, 1231
results, 1238, 1241, 1250, 1255
reversing, 1232–1233
running, 1258
saving, 1258
troubleshooting, 1258

Continued

1366 Index ✦ A

Action query type (continued)
types, 1230
viewing results of, 1231–1232
when to use, 1230–1231

Active Server Pages (ASP), 952,
961, 965–966

ActiveConnection parameter,
ActiveX Data Objects,
746–747

ActiveX controls
calendar, 649–651
compared to Access form

controls, 309
ActiveX Data Objects (ADO)

ActiveConnection parameter,
746–747

adding records, 752
adLockOptimistic

property, 747
adLockReadOnly property, 747
adOpenDynamic property, 747
adOpenForwardOnly

property, 747
adOpenStatic property, 747
After Update event, 749
CalcTax() function, 749–750
calculated fields, 748–749
CancelUpdate method, 746
checking status of record

deletion, 751–752
Close statement, 746
CursorType parameter, 746–747
Delete Confirmation dialog

box, 751
deleting related records across

tables, 753–755
deleting single record, 753
Dim statement, 746
Execute command, 755
Form_AfterUpdate procedure,

748, 749
LockType parameter, 746–747
Open method, 746
recalculating fields, 749
Recordset object, 746, 748
RunCommand statement, 755
saving, 748
Source parameter, 746
Update method, 748
updating records with, 746
writing procedures with,

746–748
ad hoc queries, 157

.ADB file extension (SQL Server
Desktop Engine), 5

add all fields button, Form
Wizard, 323

Add Procedure dialog box, 776
add selected field button, Form

Wizard, 323
Add Table window, Access

project, 933
adding

all table fields to query, 166–167
commands, custom menu bar,

842–843
fields to table, 58–59
multiple fields to query, 165–166
multiple tables to query, 180–181
new record, 103
pictures to command buttons,

824–826
records, ActiveX Data

Objects, 752
records in Datasheet window,

49, 91, 93–94
records to table, 83–84
relationship to table, 146
single field to query, 163–164
single table to query, 160–161
submenus, custom menu bar,

841–842
unbound picture to report,

545–547
adding user accounts, 1116–1117
addition operator, 204, 205–206, 218
Add/Remove Topic Files

button, 1157
Address Text, Hyperlink data-type

format, 69
ADE. See Access 2003 Developer

Extensions
adLockOptimistic property,

ActiveX Data Objects, 747
adLockReadOnly property, ActiveX

Data Objects, 747
Admin user, 1102, 1118–1119, 1126
administrator, 1102–1103
Administrator permission, 1128
ADO. See ActiveX Data Objects
adOpenDynamic property, ActiveX

Data Objects, 747
adOpenForwardOnly property,

ActiveX Data
Objects, 747

adOpenStatic property, ActiveX
Data Objects, 747

Advanced Office Password
Recovery, 1351

AE label brand, 576
After Begin Transaction form

event property, 684
After Commit Transaction

form event property, 684
After Del Confirm form event

property, 682
After Final Render form event

property, 684
After Insert form event

property, 682
After Layout form event

property, 684
After Render form event

property, 684
After Update event, ActiveX Data

Objects, 749
After Update form event

property, 682
aggregate function, Total: row,

1202–1203
Aggregate Total criteria, Total: row,

1211–1212
Agipa label brand, 576
ALL, 739–740
all-field reference tag, 166–167, 188
All-in-1 Personal Organizer, 1351
Allow Additions form

property, 370
Allow Any Docking option,

Toolbar Properties
dialog box, 840

Allow Customizing option,
Toolbar Properties
dialog box, 840

Allow Datasheet View form
property, 365

Allow Deletions form
property, 370

Allow Design Changes form
property, 372

Allow Edits form property, 370
Allow Filters form property, 370
Allow Form View form

property, 365
Allow Moving option, Toolbar

Properties dialog box, 840
Allow PivotChart View form

property, 365
Allow PivotTable View form

property, 365

1367Index ✦ A–B

Allow Resizing option, Toolbar
Properties dialog
box, 840

Allow Showing/Hiding option,
Toolbar Properties
dialog box, 840

Allow Zero Length field
property, 63

ALTER TABLE statement, 1262
Alternate Row Color property,

data access page, 1024
Amaya Web browser, 948
ampersand (&)

concatenation operator, 210–212
hot keys, 846
input mask character, 71
Text data-type format, 65

Analyze button, Access window
toolbar, 45

And operator, 213–214, 222–224
And operator resultants, 214, 225
annuity payment, calculating, 729
Any Part of Field option, Match

drop-down list, 101
any single character in list

wildcard ([list]), 214
any single character not in list

wildcard ([!list]), 214
A-ONE label brand, 576
appBuilder, 1351
appBuilder (Database Creations,

Inc.), 1349
AppError function, 803
Application Builder/Application

Generator, 1351
application errors, 795–796
Application Icon, assigning to

application, 1110
Application object,

Automation, 1087
appWatcher, 1351
Area chart, 632
arithmetic mean, 733
arithmetic operators, 204–208
ascending sort, Datasheet toolbar

command, 90, 116
ASP. See Active Server Pages
.asp file extension, 963–965
assembling data for report, 448
assigning object permissions,

1125–1126
assigning users to groups, 1122

asterisk (*)
all-field reference tag, 188
any number of characters

wildcard, 101, 214, 740
Count(*) function, 1188
multiplication operator, 204,

205, 218
at sign (@), Text data-type

format, 65
attached text, graphs, 628–631
Auto Center form property, 366
Auto List Members, 785–786
Auto Order button, 384
Auto Quick Info, 785
Auto Resize form property, 366
AutoExec macro file, 85856
AutoForm, 306–308
AutoForm: Columnar, New Form

dialog box, 322
AutoForm: Datasheet, New Form

dialog box, 322
AutoForm: PivotChart, New Form

dialog box, 322
AutoForm: PivotTable, New Form

dialog box, 322
AutoForm: Tabular, New Form

dialog box, 322
AutoFormat

copying formats between
controls, 442

customizing, 441–442
making global changes with,

440–441
AutoFormat button, Design View

toolbar, 460
automatic data-type validation, 95
automatic updates using triggers,

942–943
Automation

Application object, 1087
binding, 1084
classes, 1084
creating instances, 1087–1088
early binding, 1084–1086
GetObject function, 1089
getting existing object

instances, 1088–1089
importance of, 1083
late binding, 1086–1087
Macro Recorder, 1098–1100
Microsoft Word example,

1091–1097

object, 1090
object library, 1084
reference libraries, 1085
References dialog box, 1084

AutoNumber data type
changing previously-defined

field into, 55
compared to SQL Server data

type, 901
compared to Visual Basic data

type, 702
definition, 27, 53
editing, 104
rules, 55

AutoQuick Info, Visual Basic, 673
AutoReport: Columnar option, New

Report dialog box, 449
AutoReport: Tabular option, New

Report dialog box, 449
Available Fields: list box, Form

Wizard, 323–324
Avg() function, 728
Avg option, Total: row, 1204
.AVI file extension, 331
axis labels, graph, 633

B
Back Color format property, 431
Back Style format property, 431
background bitmap, adding to

form, 439–440
backing up data, Upsizing

Wizard, 894
backing up tables, 1245
backslash (\)

input mask character, 71
integer division operator, 204,

207, 218
Backup Operators group

account, 1131
banded report, 461
bands, 461
Bar chart, 632
bar color, graph, 633
basUnboundFormUtilities Module

Window, 913
BDE. See Borland Database Engine
Before Begin Transaction

form event property, 684
Before Commit Transaction

form event property, 684

1368 Index ✦ B–C

Before Del Confirm form event
property, 682

Before Insert form event
property, 682

Before Query form event
property, 684

Before Render form event
property, 684

Before Screen Tip form event
property, 683

Before Update form event
property, 682

BeforeDelConfirm property, 877
Begin Batch Edit form event

property, 684
best-fit sizing, label controls, 379
Between...And operator, 216–217
Big-Endian code page type, 291
bin prefix, table field naming

conventions, 1358
bigint, SQL Server data type, 900
binActive, 58, 75
binding, Automation, 1084
binding to query in reports, 468–469
Bit, SQL Server data type, 900
bitmap picture, storing as OLE

object, 97
bitmapped image, adding to toggle

button, 405–406
bitmaps, 1286
Blank Database option, New File

menu, 39
Blends format, 442
bln prefix, table field naming

conventions, 1359
.BMP file extension, 405, 433, 434
Boeder label brand, 576
bookmarks, 762–764
Boolean operators, 213–216
Border Color format property, 432
border style, 424–425
Border Style form property, 366
Border Style format property, 432
Border Width format property, 432
Borland Database Engine (BDE),

257, 259
Bottom Margin format

property, 433
bound control, 336, 355
bound form, 355–356

bound object, 604
Bound Object Frame control,

311, 604
embedding, 611–612
linking, 615–616

boxes, adding to forms, 436–437
brackets ([])

around criterion, 226
around field and table names

containing spaces, 223
when used in expressions, 717

breakpoints, 792–795
brk (Page break), form/report

control naming
convention prefix,
359, 1360

browse screen, 9
Bubble chart, 632
Build button, Design View

toolbar, 461
Builder button, 814
built-in progress meter, impact

on perceived speed,
1295–1297

built-in shortcut menus, preventing
display of, 1110

built-in toolbars menus, preventing
display of, 1110

bulletproofing distributed
applications, 1319

Business! Accounting Demo
(Database Creations,
Inc.), 1348

Business Forms Library
Sampler, 1351

business graph, storing as OLE
object, 97

button down location, 811
button face, customizing, 851
button images, custom menu

bar, 844
byt prefix, table field naming

conventions, 1358
Byte field size setting, 64

C
C input mask, 71
CalcTax() function, ActiveX Data

Objects, 749–750
calculated controls, 356

calculated expressions,
subform, 527

calculated field
ActiveX Data Objects, 748–749
basic example, 1180–1181
complex example, 1185–1186
creating, 387–388
editing, 104
Expression Builder example,

1182–1185
importance of, 246

calculating
group summaries, 569–570
percentages, 571–572
running sums, 572–573
summary expressions, 528

calculations, including in query, 157
Calendar ActiveX Control, 649–651
call tree, 1266–1268
calling

functions, 778–780
programs, 771

Camtasia Studio, 1351
Can Grow property, 431, 486
Can Shrink property, 431, 486
CancelUpdate method, ActiveX

Data Objects, 746
Can’t Change Docking option,

Toolbar Properties
dialog box, 840

Can’t Undo message, 104
caption, 73
Caption extended property,

Access project, 925
Caption field property, 63
Caption form property, 365
Caption property

linked table, 270
tabs, 870

Caption section, data access
page, 1015

Caption Section Style
property, data access
page, 1024

Capture Express, 1351
caret (^), exponentiation operator,

204, 208, 218
Cartesian product, 201–202

1369Index ✦ C

Cascade Delete Related
Fields relationship
property, Access
project, 928

Cascade Delete Related Records
check box, Relationships
window, 144

Cascade Update Related Fields
check box, Relationships
window, 143–144

Cascade Update Related
Fields relationship
property, Access
project, 928

Cascading Style Sheet (CSS), 1039
cbo (Combo Box), form/report

control naming
convention prefix,
359, 1359

CDate() function, 725
CD-ROM, contents of, 41, 1345–1353
cell gridlines, displaying, 112–113
CGI. See Common Gateway Interface
Change Management System, 1351
changing

column header, 107–108
column name in Datasheet

View, 49
column width, 110
field data type, 61–62
field display width, 110
field location, 60
field name, 60
field order, 108–109
field size, 60–61
focus, 717
menu items, custom menu

bar, 838
object owner, 1124–1125
passwords, 1117–119
record height, 111–112

chart types, 632
Chart Wizard

New Form dialog box, 322
New Report dialog box, 449

check box control, 311, 314–316
check box, displaying Yes/No

options, 403–404
Check existing data on

creation constraint
property, Access
project, 931

Check existing data on
creation relationship
property, Access
project, 928

Check Writer, 1351
checking status of record deletion,

ActiveX Data Objects,
751–752

checking syntax, 786–787
child table, 136
Chiseled control appearance

option, 424, 426
chk (Check Box), form/report

control naming
convention prefix,
359, 1359

Choose Button Image, 844
Choose() function, 731
choosing objects for query, 157
chr prefix, table field naming

conventions, 1359
chrAddress, 58, 75
chrCity, 58, 75
chrCompany, 58, 75
chrContactType, 58, 75
chrCreditStatus, 58, 75
chrCustomerType, 58, 75
chrEmail, 58, 75
chrFax, 58, 75
chrLastName, 58, 75
chrPhone, 58, 75
chrState, 58, 75
chrTaxLocation, 58, 75
cht (Chart), form/report control

naming convention
prefix, 359, 1359

c:JAM, 1351
classes, Automation, 1084
client/server architecture, 903
Clip display, image object, 434
ClipMate, 1351
Close Button form property, 367
Close statement, ActiveX Data

Objects, 746
closing

forms, 656
unused applications, 1281

cmd (Command Button),
form/report control
naming convention
prefix, 359, 1359

Codd, E. F. (Normalized Data
Structure: A Brief Tutorial
and Relational
Completeness of Data
Base Sublanguages), 24

Code 128 Fonts demo with
VBA, 1351

Code button
Access window toolbar, 45
Design View toolbar, 460

code page types, 291
Code window, Visual Basic, 669
Collation extended property,

Access project, 925
COLLATION setting, 891
colon (:)

input mask character, 71
time separator, 67, 293

color
area behind tabs, 869
forms and reports, 424

column
adding, 107–108
changing header, 107–108
definition, 6
deleting, 107–108
freezing, 115
hiding and unhiding, 114
labels, subform, 525
name, changing in Datasheet

View, 49
width, changing, 110

Column chart, 632
Column Header Underline, 113
Column Headings property, 1199
Column method, subform, 523–524
Column name/Order index

property, Access
project, 929

columnar form layout, 324–325
Columnar report, 445
COM Explorer, 1351
combo box

absolute speed, 1287
changing text box into, 414
compared to list box, 406–407
control, 311, 318
definition, 407
multiple-column, creating,

412–419
Continued

1370 Index ✦ C

combo box (continued)
Row Source property

settings, 411
Row Source Type property

settings, 411
single-column, creating,

408–410
Combo Box Wizard, 408–410
comma (,)

input mask character, 71
Numeric custom format, 65

comma-delimited file, 282
command bars

custom menu bar, 837–838
Upsizing Wizard, 909

command button, 809–811
command button control, 311
Command Button Wizard, 660–662,

811–815
Commands tab, Customize dialog

box, 849
common functions, code examples,

880–882
Common Gateway Interface

(CGI), 952
common link field, 132
communicating with other Windows

applications, 656
compacting data, impact on

absolute speed, 1280
CompareDataWiz 2002, 1351
CompareWiz 2002, 1351
comparison operators. See

relational operators
compilation errors, 787–789
Compile on Demand, 1272
compiled state

importance of, 1272–1273
losing, 1274–1275
putting application code into,

1273–1274
compiling procedures, Visual

Basic, 673
complex query, 155
compound control, 381–382
Computed data type, compared

to Visual Basic data
type, 702

concatenation operators
ampersand, 210–212, 415
plus sign, 205–206

conditional processing
If...Then...Else...End If

statement, 703–705
Select Case...End Select

statement, 706–707
Cone chart, 632
confirming delete, 876
constants, expressions, 715
constraint, 929
Constraint expression

constraint property,
Access project, 931

Constraint name constraint
property, Access
project, 931

Contact Sage, 1351
container type control, 875
Contents tab, Help system,

1145–1146
continuous form

deleting records from, 876–877
embedding subform control in

tab control page, 873–875
repositioning record pointer

between tabs, 878–879
sorting columns using labels,

879–880
subform layout, 511
when to use, 872–873

Control Box form property, 366
control event properties

After Update property, 685
Before Update property, 685
On Change property, 685
On Click property, 685
On Dbl Click property, 685
On Dirty property, 685
On Enter property, 685
On Exit property, 685
On Got Focus property, 685
On Key Down property, 686
On Key Press property, 686
On Key Up property, 686
On Lost Focus property, 685
On Mouse Move property, 686
On Mouse Up property, 686
On Not In List property, 685
On Undo property, 685
On Updated property, 685

control name
assignment of, 719
Standard Naming

Conventions, 384

control properties
attached label controls, 361
Auto Colon property, 361
Auto Label property, 361
Builder button, 362
compound controls, 361
Control Source property, 362
Data, 358
Display When property, 362
Event, 358
Expression Builder, 362
Format, 358
Label Align property, 361
Macro Builder, 362
Module Builder, 362
naming conventions, 358–359
property setting, changing, 362
Property window, 357–358

control source, 372
Control Source property, 651
control variables, impact on absolute

speed, 1290–1291
control-level Help, 1168–1169
controls

aligning, 344–345
attaching label to, 347–348
bound, 336
bound object frame, 311
changing type, 383
check box, 311, 314–316
combo box, 311, 318
command button, 311
compared to ActiveX

controls, 309
copying, 348
deleting, 347, 381
deselecting, 341
grouping, 346–347
image, 311
importance of, 309
label, 310, 313–314
line, 311
list box, 311, 317–318
modifying multiple, 382
moving, 343–344
option button, 311, 314–316
option group, 310, 316–317
page break, 311
rectangle, 311
report, 566–568
resizing, 342
selecting, 340–341
sizing, 345–346

1371Index ✦ C

subform/subreport, 311
tab, 311, 318–320
text box, 310, 314
toggle button, 310, 314–316
unbound object frame, 311

conversion functions, 725–726
conversion process, Upsizing

Wizard, 898–899
converting

Access front end into Access
project, 904–909

application interface objects,
Upsizing Wizard, 897

database formats, 41
form into data access page,

1027–1032
form into report, 390
macros into Visual Basic,

657–659
query into data access page,

1026–1027
report into data access page,

1033–1035
select query into append query,

1247–1250
select query into update query,

1236–1237
table into data access page,

1026–1027
view into data access page,

1026–1027
Cool Combo Box Techniques, 1351
Copy button

Access window toolbar, 45
Datasheet toolbar, 90
Design View toolbar, 460

Copy Button Image, 844
copying

buttons and labels, 817–818
database objects, 1242
table, 82–83

CoStar label brand, 576
Count(*) function, 1187
Count option, Total: row, 1204
Create a new file... option, Getting

Started dialog box, 36
Create as CLUSTERED index

property, Access
project, 929

Create Form by Using Wizard
shortcut, 42

Create Form in Design View
shortcut, 42

CREATE INDEX statement,
1262–1263

Create Table by Entering Data
shortcut, 42

Create Table in Design View
shortcut, 42

CREATE TABLE statement,
1262–1263

Create Unique index property,
Access project, 929

CreateObject function, impact on
absolute speed, 1290

creating
append query, 1243–1245
basic form, 807–809
calculated control, subform,

537–538
cascading delete query,

1254–1255
Client/Server application,

Upsizing Wizard,
906–909

criteria in code, 763
Crosstab query, 1217–1219
custom menu bar, 838–840
database file, 36
database password, 1104–1106
database structure without

data, Upsizing
Wizard, 897

delete query, 1250–1252
dependent delete query,

1252–1253
expressions, 716–717
forms, 157, 306–308
function, 656, 775–777
graphs, 158, 617
groups, 43, 1120–1121
instances, 1087–1088
make-table query, 1239–1241
modules, 667–670
option group control, 397–402
passwords, 1117–119
procedures, 671–672
query, 158–159
reports, 157, 449–450,

467–468, 543
select query, 1235–1236,

1246–1247
tables, 46–51, 157
unbound form, 912–913
update action query, 1233–1235

views, 933–935
Web pages with data access

page, 948–950
workgroups, 1112–1114

criteria, entering
And operator, 238–240, 242–243
complex example, 245
In operator, 238
Like operator, 228
logical operators, 234–235, 235,

241–242
Memo, 227–228
non-matching value, 232–233
Null data, 240–241
numeric, 233–234
Or operator, 236–237, 243–244
single-value, 226
Text, 227–228
using And and Or together,

244–245
wildcards, 228

Criteria row, Query by Example
design pane, 163, 175–178

Crosstab query type
creating, 1217–1219
Crosstab Query Wizard,

1226–1227
fixed column headings,

1224–1226
importance of, 156, 1216–1217
multi-field row headings,

1219–1220
specifying criteria in Column

Heading field, 1223
specifying criteria in multiple

fields, 1223–1224
specifying criteria in new field,

1221–1222
specifying criteria in Row

Heading field, 1222–1223
Crosstab Query Wizard, 1226–1227
CSS. See Cascading Style Sheet
CSTR() function, 725
cumulative totals, 572
cur prefix, table field naming

conventions, 1358
curCreditLimit, 58, 75
curCurBal, 58, 75
Currency data type

automatic data-type
validation, 95

changing other data types to, 61
Continued

1372 Index ✦ C–D

Currency data type (continued)
compared to SQL Server data

type, 900
compared to Visual Basic data

type, 702
data entry, 96
default value, 73
definition, 27, 53
formats, 66–67
rules, 55

current record pointer, datasheet
view, 92

CurrentProject.Connection, 747
cursor, controlling movement of on

data-entry forms, 385
CursorType parameter, ActiveX

Data Objects, 746–747
Custom format, Text and Memo

fields, 65
custom menu bar

adding commands, 842–843
adding submenus, 841–842
attaching to form, 846–847
button images, 844
changing menu items, 838
command bars, 837–838
creating, 838–840
example, 835–836
hot key, 846
modifying submenus, 843–846
On Action item, 846
Properties button, 845–846
shortcut menus, 847–851

custom toolbar
attaching to form, 853–854
control tips, 855
creating, 851–853

Customize dialog box, 838–839
customizing graphs, 626–627
Cut button

Access window toolbar, 45
Datasheet toolbar, 90
Design View toolbar, 460

Cycle form property, 371
Cylinder chart, 632

D
DAO. See Data Access Objects
DAP. See data access page
Dash Dot border style, 113, 425
Dash Dot Dot border style, 113, 425

Dashes border style, 113, 424
data

definition, 5
separating from interface

objects, 40
Data Access Objects (DAO), 746
data access page (DAP)

absolute path, 1019–1021
Alternate Row Color

property, 1024
building with Design View

tools, 990–993
Caption section, 1015
Caption Section Style

property, 1024
converting form into,

1027–1032
converting query into,

1026–1027
converting report into,

1033–1035
converting table into,

1026–1027
converting view into, 1026–1027
creating manually, 1005–1011
creating Web pages with,

948–950
Data Outline tool, 1025
DataPageSize property, 1014
default settings, 1023–1024
definition, 982
editing existing pages, 993–996
Expand/Collapse control, 1021
ExpandedByDefault

property, 1014
Footer section, 1015
Footer Section Style

property, 1024
group level properties,

1014–1018
grouped pages, 985, 996–997
Header section, 1015
HyperText Markup Language,

948–949
Internet Explorer, 983–984
lightweight headers, 1015
moving database, 1020–1021
Navigation control, 1022–1023
Page container, 984–985
page title, 1018–1019
Page Wizard, 985–990, 997–1000

pivot tables, 1011–1014
promoting fields, 1011
Record Navigation section,

1015
Record Selector property,

1017–1018
running immediately when

database opens, 1110
saving, 990
saving objects as, 1025–1026
Section Indent property,

1024
Universal Naming Convention,

1019
Upsizing Wizard, 909
using multiple tables,

1000–1005
when to use, 981

Data Analysis, 1351
data definition query, 1262–1263
data design step

combining information, 20–22
customer-related data items, 18
foreign key, 23
key field, 22
line item information, 20
linking tables, 22–24
normalizing, 17
primary key, 23
sales data items, 19–20

Data Entry form property, 370
data entry reports, read-only data,

540
Data Flow Manager, Adv Ed, 1351
Data Flow Manager, Stnd Ed, 1351
Data Links Properties dialog box,

922, 994–995
data manager, 1115
Data Outline tool, data access

page, 1025
data redundancy, eliminating, 25
Data Sheet View option, New Table

dialog box, 47
data source report, 450
data source types, bound form, 355
data type

Access compared to Visual
Basic, 702–703

automatic assignment of in
Datasheet View, 50

Boolean, 701
changing, 60–61

1373Index ✦ D

compared to Access data types,
702–703

conversion, 278
Currency, 701
Date, 701
Decimal, 701
Double, 701
impact on absolute speed, 1287
Integer, 701
Long, 701
Object, 701
Single, 701
String (fixed length), 701
String (variable length), 701
User-defined, 702
variable declaration, 700–701
Variant (with characters), 702
Variant (with numbers), 702

Data Type drop-down list, Table
Design window, 54

data validation expression
definition, 394
entering, 394–395
importance of, 392
status line message, 393

Database, 1351
Database Browser Plus, 1351
Database Creations, Inc.,

1348–1349, 1351
database decryption, 1137
database, definition, 4–5
database distribution, 1127–1128
Database Documenter, 80
database encryption, 1136–1137
database file

creating, 36, 39–41
definition, 35–36

database format
converting, 41
selecting earlier Access

version, 40
database management system

(DBMS), 4
database object pane, viewing

options, 43
Database Password Sniffer, 1351
database permissions, Upsizing

Wizard, 894
database security

Access Security Wizard,
1129–1135

adding user accounts,
1116–1117

Admin user, 1102, 1118–1119,
1126

administrator, 1102–1103
Administrator permission, 1128
assigning object permissions,

1125–1126
assigning users to groups, 1122
Backup Operators group

account, 1131
changing object owner,

1124–1125
changing passwords, 1117–1119
creating database password,

1104–1106
creating groups, 1120–1121
creating passwords, 1117–119
creating workgroups,

1112–1114
database decryption, 1137
database distribution,

1127–1128
database encryption,

1136–1137
default object permissions, 1127
Delete Data permission,

1102, 1128
deleting groups, 1121
deleting user accounts, 1117
enabling, 1111–1112
explicit permissions, 1125
Full Data Users group

account, 1131
Full Permissions group

account, 1131
groups, 1119–1120
implicit permissions, 1125
Insert Data permission,

1102, 1128
joining existing workgroups,

1114–1115
level, 1104
limitations, 1103–1104
Microsoft Jet, 887
Modify Design permission,

1102, 1128
New Data Users group

account, 1131
One-Step Security Wizard

Report, 1135
Open Exclusive permission, 1128
Open/Run permission, 1128
permissions, 1102–1103,

1123–1128

personal ID, 1116
preventing viruses, 1139–1142
Project Designers group

account, 1131
Read Data permission,

1102, 1128
Read Design permission,

1102, 1128
Read-Only Users group

account, 1131
removing database password,

1106–1107
removing object

permissions, 1126
removing users from groups,

1122–1123
runtime mode, 1107–1109
sandbox mode, 1139–1142
security ID, 1116
separating data from interface

objects, 40
setting database

permissions, 1127
setting object owner, 1123
setting password with Visual

Basic, 1107
Startup options dialog box,

1110–1111
Update Data permission,

1102, 1128
Update Data Users group

account, 1131
user name, 1117
user profile, 1115
user-level, 1101–1102
Visual Basic Code, 1137–1139
Workgroup Administrator, 1113
Workgroup ID, 1129
workgroup information file, 1102
workgroups, 1112

Database Splitter Wizard, 267–269
Database window

appearance of, 41–42
Groups menu bar, 43
Object menu bar, 42–43
preventing display of, 1110
toolbar buttons, 45

Database Window button, Design
View toolbar, 461

Database Window icon, Datasheet
toolbar, 92

DataDict, 1351
DATADIR setting, 891

1374 Index ✦ D

data-entry form
controlling cursor movement

on, 385
creating, 350
importance of, 349–350
purpose, 10
resizing workspace, 350–352
tab order, 384–386

Datahouse, 1351
DataMoxie, 1351
DataPageSize property, data

access page, 1014
datasheet

appearance of, 86
compared to form, 305–306
definition, 6, 85
exporting to dynamic HTML,

961–963
opening, 92
spreadsheet view, 9–10

Datasheet Border, 113
Datasheet form layout, 324
Datasheet Formatting dialog

box, 112
Datasheet View, Datasheet window,

49–50, 89
Datasheet window

adding new record, 91
Copy button, 90
Cut button, 90
Database Window icon, 92
deleting record, 91–92
File Search button, 89
Filter By Form icon, 91
Filter By Selection icon, 91
Find icon, 91
Internet icon, 90
Microsoft Access Help icon, 92
moving around in, 88
Navigation buttons, 88–89
New Object: AutoForm icon, 92
Paste button, 90
Print button, 90
Print Preview button, 90
QuickSort icons, 90
Save button, 89
spellcheck icon, 90
status bar, 87
Undo button, 90
View button, 89
viewing data in, 86–87

data-type validation, automatic, 95
DataWiz 2002, 1351
date, converting to a string, 725

Date() function, 727
Date Order combo box, 292
DateAdd() function, 728, 1184
DateDiff() function, 727
DatePart() function, 728
Date/Time data type

automatic data-type
validation, 95

changing other data types to, 62
compared to SQL Server data

type, 900
compared to Visual Basic data

type, 702
data entry, 96
definition, 27, 53
formats, 67–68
rules, 55
specifying ranges for

validation, 74
Date/Time functions, 727–728
datetime, SQL Server data

type, 900
Date/Time values, using in

expressions, 718
DAvg() function, 733, 734
Day() function, 727
Day of the month date format, 68
day of week setting, 68
day of year setting, 68
Day property, 650
DayLength property, 649
DB Companion, 1351
.DB file extension, 259
dBase database table, importing,

277–278
dBase file icon, 253
dBASE ISAM driver, 257
dBASE versions, 248, 275, 278, 295
.DBF file extension, 257
dbl prefix, table field naming

conventions, 1359
dblDiscountPercent, 58, 75
db1.mdb (default database

name), 39
DBMS. See database management

system
dbo, SQL Server user, 940
DBSync, 1351
.DBT file extension, 258
DCount() function, 733
DDB() function, 728
dead code, impact on absolute

speed, 1292–1293
Debug menu, 793

Decimal field size setting, 64
Decimal Places extended property,

Access project, 925
Decimal Places field property, 63
Decimal Places format

property, 431
Decimal Places property, linked

table, 270
decimal places, specifying, 73
decimal, SQL Server data type, 900
declarations section, Visual

Basic, 670
Declared Referential Integrity

(DRI), 896
Default Check Box Label X

property, 404
default database name, 39
Default File Format option, 40
default object permissions, 1127
default printer, Upsizing Wizard, 894
default tab order, 384
default table and field names,

Datasheet View, 49
default value, 73
Default Value extended

property, Access
project, 924

Default Value field property, 63
Default View property, 365, 872,

932, 1197
defragmenting hard drive, impact

on absolute speed, 1281
Delete button code, 880
Delete Confirmation dialog box, 751
Delete constraint property,

Access project, 931
Delete Data permission, 1102, 1128
Delete index property, Access

project, 929
Delete relationship property,

Access project, 927
deleting

characters, 103
controls, 381
current record, 103
field from table, 59–60
groups, 1121
joins, 194–195
record, Datasheet window,

91–92
reference to linked table, 274
related records across tables,

ActiveX Data Objects,
753–755

1375Index ✦ D

relationship, 1347
single record, ActiveX Data

Objects, 753
table, 82
user accounts, 1117

delimited text file, importing,
282–286

demo software, 1347
depreciation, calculating, 728, 729
descending sort, Datasheet toolbar

command, 90, 116
Description property, 1197
Description table property,

Access project, 926
design

data design step, 17–24
field design data-entry rules and

validation step, 27–30
form design step, 30–32
importance of, 11–12
menu design step, 32–33
overall system design step,

13–15
report design step, 15–17
seven-step method, overview

of, 12
table design and relationships

step, 24–27
Design View option

New Form dialog box, 322
New Report dialog box, 449
New Table dialog box, 47

Design window, Visual Basic,
674–675

DeskTop.VBA, 1351
Dest Connect Str property, 1199
Destination DB property, 1199
Destination Table property, 1199
det (Detail), form/report control

naming convention
prefix, 359, 1359

detail section
controls, 525–527
forms, 867
reports, 461, 466

DFirst() function, 733
DHTML. See Dynamic HTML
dialog boxes, obtaining user input

from, 863
Dim statement, 699, 746
directional keys, scrolling with, 10
disabled fields, editing, 104
DispError function, 802

Display Control property,
linked table, 270

display fonts, 113–114
Display Text, Hyperlink data-type

format, 69
Display When format property, 431
displaying

data from another table on
subform, 520–521

data on unbound forms, 913
form design, 514–515
query statements, 738
subform, 512–514
subform design, 516–517

display-only screen, 11
DISTINCT, 741
DISTINCTROW, 741
distributed applications. See also

Access 2003 Developer
Extensions Package
Wizard

About box, 1318–1319
add-in database, 1278
Allow Built-in Toolbars, 1312
Allow Default Shortcut

Menus, 1311
Allow Full Menus, 1311
Allow Toolbar/Menu

Changes, 1312
Application Icon, 1310
Application Title, 1310
bulletproofing, 1319
consistent look and feel,

1314–1316
Display Database Window, 1311
Display Form/Page, 1311
Display Status Bar, 1311
documentation, 1320
error trapping on Visual Basic

procedures, 1319–1320
Help system, 1321
library database, 1276–1278
library references, 1278–1279
Menu Bar, 1311
References dialog box,

1276–1277
security, 1321
separating code objects from

tables, 1320
Shortcut Menu Bar, 1312
source code, 1275
splash screen, 1316–1317
Startup parameters dialog

box, 1310

switchboard, 1317
testing, 1313–1314
uncompiled state, 1275
Use Access Special Keys, 1312

Distributed Transaction
Coordinator service, 892

Dividing Line form property,
366, 439

division operator, 204, 206, 218
DLL. See Dynamic Link Library
DLookup() function, 733, 734–736
DMax() function, 733
DMin() function, 733
DMY date order, 292
DoCmd methods, Visual Basic, 659
DoCmd object, 656
DoCmd.FindRecord method, 878
Document Management, 1351
Document Type Definition

(DTD), 1039
dollar sign ($), Numeric format, 66
Do...Loop statement, 707–710
domain functions, 732–736
Don’t automatically re-

compute statistics
index property, Access
project, 930

DOS code page type, 291
dot. See period
Dots border style, 424
Dots, datasheet border line

style, 113
Double field size setting, 64
double quotation marks (“)

Text Qualifier, 265
used in expressions, 717

Double Solid, datasheet border line
style, 113

double-declining balance method
of depreciation, 728

Doughnut chart, 632
dragging fields onto report, 474
dragging macros into form,

822–823
Drag-N-Dropper, 1351
DRI. See Declared Referential

Integrity
DROP INDEX statement, 1262
DROP TABLE statement, 1262
DSum() function, 733
DTD. See Document Type

Definition
dtm prefix, table field naming

conventions, 1358

1376 Index ✦ D–E

dtmLastSalesDate, 58, 75
dtmOrigCustDate, 58, 75
Durable label brand, 576
DYM date order, 292
Dynamic HTML (DHTML),

1050–1052
Dynamic Link Library (DLL), 657
dynamic Web pages, 952–954
dynaset

definition, 10, 154, 158
displaying, 167–168
printing, 178–179

Dynaset size, query
attribute, 1335

DynaZIP MAX, 1351

E
early binding, Automation,

1084–1086
Edit Button Image, 844
Edit Relationships dialog box,

139–144
Edit Web page that already exists

option, 993
editing

fields, 102–104
objects, 613–614

editing existing pages, data access
page, 993–996

editing procedures, Visual Basic,
675–676

efficient indexes, impact on
absolute speed,
1282–1283

embedded fields in text, mail
merge report, 594–596

embedding bound objects, 611–612
embedding compared to linking, 605
embedding objects, 604
embedding unbound objects,

607–611
Enable AutoJoin option, 1195–1196
encryption, 1136–1137
end of field (EOF), 750
End With command, 769
Enforce constraint for

INSERTs and UPDATEs
constraint property,
Access project, 931

Enforce constraint for
replication
constraint property,
Access project, 931

Enforce Referential Integrity check
box, Relationships
window, 142

Enforce relationship for
INSERTs and UPDATEs
relationship property,
Access project, 928

Enforce relationship for
replication
relationship
property, Access
project, 928

EOF. See end of field
equal sign (=)

query criteria comparison
operator, 178

relational operator, 208, 209
equi-join, 195–196
Ero label brand, 576
Err object, 799
Error dialog box, 795
error event, 799
error handling

AcDataErrContinue, 799
AcDataErrDisplay, 799
AppError function, 803
application errors, 795–796
Auto List Members, 785–786
Auto Quick Info, 785
breakpoints, 792–795
checking syntax, 786–787
compiling procedures, 787–789
Debug menu, 793
disabling, 797
DispError function, 802
Err object, 799
Error dialog box, 795
error event, 799
Errors collection, 800–801
fatal error, 794
handled errors, 795
Immediate window, 791–792
importance of, 783
importing, 294–295
Locals window, 791–792
logging, 802–804
MsgBox command, 785
null values, 788
On Error GoTo 0 statement, 797
On Error GoTo somelabelname

statement, 797, 798
On Error Resume Next

statement, 797–798

Problem Report form, 803–804
procedure, 800
runtime, 789–791
testing applications, 784
untrapped errors, 795
Watches window, 791–792
watchpoint, 794

error messages, creating, 656
error routines, creating, 656
Errors collection, 800–801
Etched control appearance option,

424, 426
Euro numeric format type, 66
evaluation software, 1347
event

definition, 680, 722
[Event Procedure] indicator,

680, 814
form event properties, 682–684
properties, 680
triggering actions, 680–681
types, 680

event procedure
closing forms with, 688–689
confirming deletes with, 689–690
control event properties,

685–686
form event properties, 682–684
opening forms with, 686–688
report event properties, 693
report section event

properties, 696
running when report opens,

694–695
when to use, 681–682

event-driven environment, Visual
Basic, 663–664

example files, 1346–1347
Excel Import Assistant, 1351
Excel Link, 1351
Exchange documents, 249, 275
exclamation mark (!), using with

reserved words, 719
Execute command, ActiveX Data

Objects, 755
Exit Do clause, 708
expand control, 987–988
Expand/Collapse control, data

access page, 1021
ExpandedByDefault property,

data access page, 1014
explicit permissions, 1125

1377Index ✦ E–F

exponentiation operator, 204,
208, 218

Export Form As dialog box, 959
Export Table dialog box, 951
exporting data

Access database, 296
external formats, 295–296
process overview, 296–297

Expression Builder, 718, 1182–1185
Expression category, Total:

row, 1203
expressions

Access evaluation of, 714
basic form example, 716
constants, 715
creating, 716–717
date/time values, 718
definition, 713
Expression Builder, 718
functions, 715
literal values, 715
object names, 715, 717–718
operators, 715
text, 718

eXtensible HyperText Markup
Language (XHTML), 1039

eXtensible Markup Language
(XML). See also InfoPath

benefits of using, 1037–1038
Cascading Style Sheet, 1039
child nodes, 1044
combining tags and data,

1046–1048
creating documents, 1043–1044
creating Web pages with, 949,

952, 954
data selection, 1045–1046
definition, 1040–1041
Document Type Definition, 1039
Dynamic HTML, 1050–1052
element, 1039
exporting forms to, 1055–1058
exporting linked tables to, 1055
exporting query to, 1053–1055
exporting report to, 1058–1059
exporting table to, 1053–1055
eXtensible HyperText Markup

Language, 1039
eXtensible Stylesheet

Language, 1039,
1041–1042

HyperText Markup
Language, 1039

importance of, 1038–1939
importing multi-table data,

1061–1062
importing single table data,

1059–1061
importing single table data with

OLE Object, 1061
Internet Explorer, 1050–1052
Open Standard, 1039
root element, 1044
schema, 1039, 1041
Standard Generalization

Markup Language, 1039
tags, 1044–1045
using multiple tables,

1048–1050
World Wide Web

Consortium, 1039
XML schema definition, 1039
XSL transformation, 1039, 1042

eXtensible Stylesheet Language
Transformation
(XSLT), 1038

eXtensible Stylesheet Language
(XSL), 1039, 1041–1042

external data. See also importing
data; linked table

Access database table, 255–256
application types, 248
database management systems,

252–255
dBase database tables, 257–259
delimited files, 251
Excel spreadsheet, 261–262
file types, 248–249
fixed-width files, 251
HTML documents, 263–264
import process, automating, 252
importance of, 247–248
Paradox table, 259–261
splitting single database into two

linked databases, 267–269
text files, 264–266
when to import, 250–251
when to link, 250

external file types, importing, 275
EZ Access Developer’s Tools Suite

(Database Creations,
Inc.), 351, 1348–1349,
1351

EZ File Manager Sampler, 1351
EZ Form Resizer (Database

Creations, Inc.), 1351

F
Fail on Error property, 1199
False value, relational

operators, 208
Fast Laser Printing form

property, 372
fatal error, 794
fft (Form footer section),

form/report control
naming convention
prefix, 359, 1359

fhd (Form header section),
form/report control
naming convention
prefix, 359, 1360

field
adding to table structure, 58–59
changing data type, 61–62
changing location, 60
changing name, 60
changing size, 60–61
definition, 6
deleting from table, 59–60
group, 560–561
inserting into existing table, 59
placing on form, 373–375
selecting all with all-field

reference tag, 187
selecting all with title bar

method, 187
selecting for report, 559–560

field design data-entry rules and
validation step

data types, 27
designing, 28–29
field names, 27
test data, 29–30

field display width, changing, 110
field entry area, Access project, 923
field entry pane, 63
Field List button, Design View

toolbar, 460
Field List dialog box, 994
Field List Row Source Type, 411
Field List window, 184, 185, 354,

373, 472
field name

compared to caption, 73
definition, 6
design guidelines, 27
rules, 901

field order, changing, 108–109
field placement in reports, 472

1378 Index ✦ F

field properties, 62–64
field property pane, 63
Field row, Query by Example design

pane, 163, 164, 166
field selection

report, 450–451, 472–474
subform, 508, 510

field selector row, Query by
Example design pane, 169

Field Size field property
definition, 63
numeric field settings, 64

field variables, impact on absolute
speed, 1291

File Search button
Access window toolbar, 45
Datasheet toolbar, 89
Design View toolbar, 460

Files tab options, Help system,
1152–1153

Fill factor index property,
Access project, 929

Fill/Back Color, 424
filling forms interactively, 766–770
Filter Builder, 1351
Filter By Form icon, Datasheet

toolbar, 91, 118
Filter By Selection icon, Datasheet

toolbar, 91, 116–117
Filter data property, Access

project, 932
Filter property, 369, 1198
filtered calculated summary,

subform, 528–530
financial monetary functions,

728–729
Find and Replace dialog box,

100–102, 105
Find Duplicate Query Wizard,

1255–1256
Find icon, Datasheet toolbar, 91
Find Unmatched Query Wizard,

1256–1258
FindFirst method, 763, 879
finding records

bookmarks, 762–764
containing specific values,

99–102
creating criteria in code, 763
DLookup(), 735
End With command, 769
filling forms interactively,

766–770
FindFirst method, 763

FindRecord command, 760–761
form filtering, 764–765
interactive dialog box, 767–769
linking to another form, 769–770
Me.Bookmark, 762–764
parameter query, 766–767
.Requery command, 769, 770
.SetFocus command, 769, 770
With command, 769
with unbound combo box,

757–759
FindNext method, impact on

absolute speed, 1292
FindRecord command, 760–761
FindRecord method, impact on

absolute speed, 1292
First field of current record

datasheet navigation
key, 88

First field of first record
datasheet navigation
key, 88

first normal form (1NF), 25–26
First option, Total: row, 1204
FirstDay property, 649
Fix() function, 729
fixed column headings, Crosstab

query, 1224–1226
Fixed numeric format type, 66
fixed-width text file, importing, 283,

286–290
FlagEdited hidden control,

unbound form, 913
FlagFind hidden control, unbound

form, 913
Flat control appearance option,

424, 426
float, SQL Server data type, 900
focus, 717, 811
Font Italic format property, 432
Font Size format property, 432
Font Underline format

property, 432
Font Weight format property, 432
Font/Fore Color, 424
fonts, displaying, 113–114
Footer section, data access

page, 1015
Footer Section Style property,

data access page, 1024
For Each function, impact on

absolute speed, 1290
Force New Page property, 566
Fore Color format property, 432

foreign key, 132
Foreign key table

relationship
property, Access
project, 927

form. See also controls; data-entry
form

adding graph to, 619–626
attaching custom menu bar to,

846–847
Autoform, 306–308
background bitmap, 439–440
changing design of, 327–329
closing, 656
columnar, 302–303
compared to datasheets,

305–306
compared to report, 446–447
converting into report, 390
creating, 306–308
data-entry, 349–350
Datasheet view, 332
displaying data with, 331
displaying images on, 433–435
embedded, 304–305
exporting to dynamic HTML,

963–964
Field List window, 336–338
finishing, 327
Form Design window, 336
Form Wizard, 321–322
headers and footers, 375–376
importance of, 301–302
layout, 324–325
Memo data type, 332
navigation buttons, 329–331
New Form dialog box, 322
opening, 656
placing fields on, 373–375
printing, 333–335, 389–390
Raised special effect, 438
resizing, 336
running immediately when

database opens, 1110
saving, 333, 356–357
saving as data access page,

1027–1032
selecting fields for, 323–324
Shadow special effect, 438
style, 325–326
tab order, 384–386
tabular, 303–304
title, 326
toolbar, 329

1379Index ✦ F

toolbox, 310, 312, 337
Upsizing Wizard, 909
using OLE object in, 331–332
using pictures in, 331–332

form and report complexity,
impact on absolute
speed, 1285

form and report modules, Visual
Basic, 665–666

form color, 424–427
form data layout, subform, 510–511
form design step

Contact Log form example, 31
Contacts form example, 32
data-entry screen, 30–31
Products form example, 32
Sales form example, 32

Form Design view
benefits of using, 422–423
formatting windows, 423
What You See Is What You

Get, 422
form event properties

After Begin Transaction
property, 684

After Commit Transaction
property, 684

After Del Confirm
property, 682

After Final Render
property, 684

After Insert property, 682
After Layout property, 684
After Render property, 684
After Update property, 682
Before Begin Transaction

property, 684
Before Commit Transaction

property, 684
Before Del Confirm

property, 682
Before Insert property, 682
Before Query property, 684
Before Render property, 684
Before Screen Tip

property, 683
Before Update property, 682
Begin Batch Edit

property, 684
Key Preview property, 683
On Activate property, 682
On Apply Filter property, 683
On Click property, 683, 814
On Close property, 682

On Cmd Before Execute
property, 683

On Cmd Checked property, 683
On Cmd Enabled property, 683
On Cmd Execute property, 683
On Connect property, 684
On Current property, 682
On Data Change property, 684
On Data Set Change

property, 684
On Dbl Click property, 683
On Deactivate property, 683
On Delete property, 682
On Dirty property, 682
On Disconnect property, 684
On Error property, 683
On Filter property, 683
On Got Focus property, 683
On Key Down property, 683
On Key Press property, 683
On Key Up property, 683
On Load property, 682
On Lost Focus property, 683
On Mouse Down property, 683
On Mouse Move property, 683
On Mouse Up property, 683
On Mouse Wheel property, 683
On Open property, 682
On PivotTable Change

property, 684
On Query property, 684
On Resize property, 682
On Selection Change

property, 684
On Timer property, 683
On Undo property, 682
On Unload property, 682
On View Change property, 684
Rollback Transaction

property, 684
Timer Interval property, 683
Undo Batch Edit property, 684

form filtering, 764–765
Form Footer, 375–376
Form Header, 375–376
Form Name format property, 432
Form object, 9, 42
Form or report width, forms and

reports attribute, 1336
form properties

Allow Additions, 370
Allow Datasheet View, 365
Allow Deletions, 370
Allow Design Changes, 372

Allow Edits, 370
Allow Filters, 370
Allow Form View, 365
Allow PivotChart View, 365
Allow PivotTable View, 365
Auto Center, 366
Auto Resize, 366
Border Style, 366
Caption, 365
Close Button, 367
Control Box, 366
Cycle, 371
Data Entry, 370
default view, 363–364
Default View, 365
Dividing Lines, 366
Fast Laser Printing, 372
Filter, 369
Grid X, 368
Grid Y, 368
Has Module, 372
Help Context Id, 372
Help File, 372
importance of, 353–354, 362
Layout for Print, 369
Menu Bar, 371
Min Max Buttons, 366
Modal, 371
Moveable, 369
Navigation Buttons, 366
Order By, 370
Orientation, 369
Palette Source, 369
Picture, 367
Picture Alignment, 368
Picture Size Mode, 367
Picture Tiling, 368
Picture Type, 367
Pop Up, 371
Record Locks, 371
record selector bar, 364
Record Selectors, 366
Record Source, 369
Recordset Type, 370
Scroll Bars, 365
Shortcut Menu, 372
Single Form view, 363
Subdatasheet Expanded, 369
Subdatasheet Height, 369
Tag, 372
title bar text, 363
Toolbar, 371
What’s This Button, 367
Width, 367

1380 Index ✦ F–G

Form reserved word, 721
form size, 351–352
form style, subform, 512
form title, subform, 512
Form Wizard, 321–327, 507–508
Form_AfterUpdate procedure,

ActiveX Data Objects,
748, 749

Format Data Series dialog box, 634
Format extended property, Access

project, 925
Format field property, 63
Format format property, 431
Format() function, 725, 726
Format Painter, 442
Format Printer button, Design View

toolbar, 460
Format property, linked table, 270
Format(Now(),”Long Time”)

function, 725, 726
formats

Currency data type, 66–67
data display compared to data

storage, 96
Date/Time data type, 67–68
Hyperlink data type, 69
importance of, 65
Memo data type, 65–66
Number data type, 66–67
Text data type, 65–66
Yes/No data type, 68–69

Formatting toolbar, 378
formatting window, 424
FormHelpFile, 1175
FormHelpId, 1176
form-level Help, 1167–1168
form/report control naming

conventions, 1359–1360
Forms reserved word, 718–719, 721
Formtec label brand, 576
Formula extended property,

Access project, 925
For...Next statement, 710–711
For/Next statement, impact on

absolute speed, 1290
Fort Knox, 1351
forward slash (/)

date separator, 67, 292
division operator, 204, 206, 218
input mask character, 71

Four Digit Years check box, 293
FoxPro, 248, 275, 295
frame, graphs, 624

frb (Bound Object frame),
form/report control
naming convention
prefix, 359, 1359

free-form text, adding to graphs, 630
freeware programs, 1347
freezing, column, 115
frm prefix, object naming

conventions, 1357
FROM, 739, 742
front-end object, 903
fru (Unbound Object Frame),

form/report control
naming convention
prefix, 360, 1360

fsub prefix, object naming
conventions, 506, 1357

Full Data Users group account, 1131
Full Permissions group

account, 1131
full year setting, 68
full-text search, 1165
function

calling, 778–780
conversion, 725–726
creating, 656, 775–777
date/time, 727–728
definition, 722
domain, 732–736
financial monetary, 728–729
financial SQL, 728
Immediate window, 723–724
mathematical, 729–730
parameter, 723
passing parameters, 777–778
programming, 731–732
string manipulation, 730–731
tax calculation example, 780–782
types, 723
using in expressions, 715
when to use, 722–723

Function procedures, Visual Basic,
664–665

Fundraising Mentor, 1351
Furigana extended property,

Access project, 925
Future Value, 728
FV() function, 728

G
Gantt Chart Builder, 1351
General Date, Date/Time date-type

format, 67
General numeric format type, 66

General tab options, Help
system, 1152

GetObject function
Automation, 1089
impact on absolute speed, 1290

getting existing object instances,
Automation, 1088–1089

Getting Started dialog box, 36
gft (Footer), form/report control

naming convention
prefix, 359, 1359

ghd (Header), form/report control
naming convention
prefix, 359, 1360

.gif file extension, 1157
GNU software, 1347
Go to record number box

datasheet navigation
key, 88

graph
adding to form, 619–626
attached text, 628–631
axis labels, 633
bar color, 633
creating, 617
customizing, 626–627
frame, 624
Graph window, 627–628
grid lines, 634–635
Link Child Fields

property, 625
Link Master Fields

property, 625
Row Source property, 625
selecting data, 619
Size Mode property, 624
three-dimensional, 635–637
Toolbox bar, 618
type, 631–633
unattached text, 630

Graph window, 627–628
greater than(>)

input mask character, 71
query criteria comparison

operator, 178
relational operator, 208, 210
Text data-type format, 65

greater than or equal to (>=),
relational operator,
208, 210

grid lines, graphs, 634–635
Grid X form property, 368
Grid Y form property, 368
GridCellEffect property, 650

1381Index ✦ G–H

gridlines, displaying, 112–113
Group By category, Total: row,

1202–1203
Group By criteria, Total: row,

1210–1211
group data in reports, 452
group footer section in reports,

461, 466, 488–491,
564–566

group header section in reports,
461, 465–466, 488–491,
497, 564–566

group level properties, data access
page, 989, 1014–1018

Group Properties pane, 489–490
grouped pages, data access page,

985, 996–997
grouping fields in reports, 451
Grouping Option dialog box, 452
groups, 43, 1119–1120
Groups menu bar, Database

window, 43
grp (Option Group), form/report

control naming
convention prefix,
359, 1360

GuruNet, 1351

H
handled errors, 795
Has Module form property, 372
Header section, data access

page, 1015
heading column names, exporting

table to HTML, 955
Height format property, 431
Height of all sections plus

section, forms and
reports attribute, 1336

Help contents file, 1159–1161
Help Context Id form property,

372, 1169–1172
Help File form property, 372
Help index, 1162–1167
Help project file, 1149–1151
Help system

adding graphics to project, 1151
adding topic files to project file,

1156–1157
changing project options,

1151–1152
compiling project, 1157–1158
Contents tab, 1145–1146
control-level Help, 1168–1169

defining windows, 1153–1156
Files tab options, 1152–1153
form-level Help, 1167–1168
full-text search, 1165
General tab options, 1152
Help contents file, 1159–1161
Help Context ID, 1169–1172
Help index, 1162–1167
Help project file, 1149–1151
Help topic, 1143, 1148–1149
Help View application, 1144–1145
hotspot graphics, 1143
HTMLHelp API, 1172–1173
hypergraphics, 1143
HyperText Markup

Language, 1148
Microsoft Access Help icon,

Datasheet window, 92
Navigation pane, 1145
running, 1166–1167
saving project, 1157
table of contents, 1158–1162,

1174–1178
testing in Access, 1173
Tool Tip, 44
toolbar, 1145
topic keywords, 1163–1164
Topic pane, 1144, 1146–1147
What’s This?, 44

Help topic, 1143, 1148–1149
Help View application, 1144–1145
HelpEntry function, 1175–1176
HelpSearch button, 1176
HelpSearch_Click procedure, 1178
Herlitz label brand, 576
Herma label brand, 576
.hhc file extension, 1157
.hhk file extension, 1157
.hhp file extension, 1157
hiding

columns, 111, 114
fields, 1191–1192
forms, impact on perceived

speed, 1294
report sections, 491
subform sections, 530
tabs, 870

highest value in range, 733
hlk prefix, table field naming

conventions, 1359
hlk (Hyperlink), form/report

control naming
convention prefix,
359, 1360

hlkWebSite, 75
Horizontal Gridline, 113
horizontal scroll bar, 352
hot key, 846
hotspot graphics, 1143
hour setting, 68
hourglass, impact on perceived

speed, 1295
HP label brand, 576
HTML. See HyperText Markup

Language
HTML documents, 248, 275, 295
HTML Help Workshop, 1151
HTML Output Options dialog

box, 959
HTML table, importing, 293
HTMLHelp API, 1172–1173
.htx file extension, 963–965
hypergraphics, 1143
Hyperlink data type

adding to form, 976–978
changing other data types to, 62
compared to SQL Server data

type, 901
compared to Visual Basic data

type, 703
definition, 27, 53
formats, 69
Insert Hyperlink button,

978–979
parts of address, 975
rules, 55

Hyperlink extended property,
Access project, 925

HyperText Markup Language
(HTML)

Active Server Pages, 952, 961,
965–966

.asp file, 964–965
Common Gateway Interface, 952
data access pages, 948–949
dynamic Web pages, 952–954
exporting Access form

datasheet to, 958–961
exporting Access query

datasheet to, 956–957
exporting Access table to,

954–956
exporting datasheet to dynamic

HTML, 961–963
exporting form to dynamic

HTML, 963–964
exporting report to, 966–968

Continued

1382 Index ✦ H–I

HyperText Markup Language
(HTML) (continued)

.htx file, 964–965

.idc file, 964
IIS 1-2, 961–962, 964–965
importing HTML table, 972–974
linking to HTML table, 974
static Web pages, 950–952
template file, 952, 968–971

I
.ico file extension, 405, 433–434
icon size picture, 405
.idc file extension, 963–964
Identity extended property,

Access project, 924
Identity Increment extended

property, Access
project, 924

Identity Seed extended
property, Access
project, 924

idn prefix, table field naming
conventions, 1358

idr prefix, table field naming
conventions, 1358

ids prefix, table field naming
conventions, 1358

idsContactId, 56–58, 75, 557
idsInvoiceNumber, 557
If...Then...Else...End If statement,

703–705, 1290
IIF() function, 732, 1186, 1290
IIS 1-2, 961–962, 964–965
image, changing display of,

609–611
Image control, 311, 433–435, 545, 604
image-type object, inserting, 607–609
IME Mode extended property,

Access project, 925
IME Mode field property, 64
IME Sentence Mode extended

property, Access
project, 925

IME Sentence Mode field
property, 64

IME Sequence Mode property,
linked table, 270

img (Image), form/report control
naming convention
prefix, 359, 1360

Immediate window
debugging, 791–792
functions, 723–724, 779
Visual Basic, 677

implicit permissions, 1125
Import Errors table, 295
Import Objects dialog box, 276–277
Import Specification window,

290–293
Import Spreadsheet Wizard, 280–282
Import Table option, New Table

dialog box, 47
Import Text Wizard, 285–290
importing data

Access object, 276–277
data type conversion, 278
dBase database table, 277–278
delimited text file, 282–286
errors, 294–295
external file types, 275
fixed-width text file, 283, 286–290
HTML table, 293
Import Specification window,

290–293
Paradox database table, 277–278
redefining table, 293–294
spreadsheet, 279–282
word processing file, 282

In operator, 217
increasing RAM, impact on

absolute speed, 1281
index file

linking dBASE files, 257–258
linking Paradox files, 260–261
linking xBASE files, 258–259

Index Filegroup index property,
Access project, 929

Index name index property,
Access project, 929

Indexed extended property,
Access project, 925

Indexed field property, 63
indexes

displaying, 131
Upsizing Wizard, 896

Indexes/Keys properties, 928–930
InfoPath. See also eXtensible

Markup Language
creating XML-based form,

1065–1070
Data Entry View, 1074–1075

Data Source Setup Wizard,
1071–1074

Data Source task pane, 1074
importance of, 1062–1063
importing XML document into

Access, 1078–1079
overview, 1063–1064
using forms created with,

1075–1078
Inmac label brand, 576
inner join, 195–196
INNER JOIN...ON, 742
input mask

characters, 71
Input Mask Wizard, 72
parts, 70–71
purpose, 70

Input Mask extended property,
Access project, 925

Input Mask field property, 63
Input Mask property, linked

table, 270
Insert Data permission, 1102, 1128
Insert Hyperlink button, 460,

978–979
Insert mode, datasheet view, 103
Inserted table, SQL Server, 943
inserting

current date into field, 103
current time into field, 103
field into existing table, 59
line break in Text or Memo

field, 103
value within a field, 103

InspireApps.com Manager, 1351
installing CD, 1346
INSTANCENAME setting, 891
InStr() function, 730
Int() function, 729
int prefix, table field naming

conventions, 1359
int, SQL Server data type, 900
integer, definition, 207
integer division operator, 204,

207, 218
Integer field size setting, 64
interactive dialog box, 767–769
interface object, 40, 886
Internet icon, Datasheet toolbar, 90
intranet, definition, 948

1383Index ✦ I–L

Inventory Manager 4 with Barcode
Modules (Database
Creations, Inc.), 1350

Inventory Manager with
Barcoding, 1351

Invoice Report example
columnar report, 558–563
complex queries, 557–558
multilevel grouping with totals,

552–553
Payments subform, 547–550
query, 540–541
referencing Subtotal control,

550–552
report design, 543–545
Subtotal control, 550
test data, 541–542
total query, 553–557

invoking programs, 771
irreversible action query, 1231
Is Hyperlink format property, 433
Is operator, 217
Is RowGuid extended property,

Access project, 925
IsDate() function, 731
IsMissing() function, 732
IsNull() function, 732, 788
ISO code page type, 291

J
Jeff-Net Access Utility, 1351
Jet. See Microsoft Jet
Jet Database Engine, 1115
join

automatic, 191–192
Cartesian product, 201–202
deleting, 194–195
displaying, 198
example, 192–193
inner, 195–196
left outer, 201
outer, 198–200
properties, 196–198
right outer, 199–201
specifying type, 193–194

join line, 147, 181–182
Join Properties dialog box, 141, 197
joining existing workgroups,

1114–1115
joining fields in reports, 568–569
.jpg file extension, 433, 1157
Judy’s TenKey, 1351

junction table, 135
justified form layout, 324

K
Kanji Conversion Mode field

property, 64
Keep Together property, 566
key fields, establishing links

between, 126
Key Preview form event

property, 683
Keyboard Express, 1351
Keyboard Language format

property, 432
King James Access Bible, 1351
Kokuyo label brand, 576

L
L input mask, 71
label and text box controls,

changing font
appearance, 427

label control, 310, 313–314, 379–382
label control properties, 430–433
Label Wizard option, New Report

dialog box, 449
large program database

cleaning recommendations,
1302–1305

compacting, 1301
compiling, 1301
contributors to database size,

1300–1301
corrupt forms, 1302
decompile option, 1303–1304
detecting uncompiled

databases automatically,
1305–1307

exporting, 1307
memory map, 1302
problems with, 1300
rebooting, 1302
repair, 1302

LASsie, 1351
Last field of current record

datasheet navigation
key, 88

Last field of last record
datasheet navigation
key, 88

Last option, Total: row, 1204
last two digits of year setting, 68

late binding, Automation, 1086–1087
laying out fields in reports, 15–18
layout

report, 447–448, 454, 471–472
saving, 115
subform, 511

Layout for Print form
property, 369

Layout Wizard, data access
page, 991

lbl (Label), form/report control
naming convention
prefix, 359, 1360

LCase() function, 725, 731
Leading Zeroes in Dates option, 293
Left format property, 431
Left() function, 731
LEFT JOIN...ON, 742–743
Left Margin format property, 432
left outer join, 201
Leitz label brand, 576
Len() function, 731
less than (<)

input mask character, 71
query criteria comparison

operator, 178
relational operator, 208, 209
Text data-type format, 65

less than or equal to (<=),
relational operator,
208, 209–210

level, 1104
lightweight headers, 1015

data access page, 1015
Like operator, 212–213, 229–232
limitations, 1103–1104
limits, Microsoft Access, 1333–1338
lin (Line), form/report control

naming convention
prefix, 359, 1360

Line chart, 632
line control, 311
Line Spacing format property, 433
line styles, datasheet borders, 113
Line/Border Color, 424
Line/Border Width, 424
lines, adding to forms, 436–437
link arrow indicator, 253
Link Child Fields property,

149–150, 625, 932, 1199
Link dialog box, 255, 258
Link HTML Wizard, 262, 263–264

1384 Index ✦ L–M

Link Master Fields property,
149–150, 514, 625,
932, 1199

Link Spreadsheet Wizard, 262
Link Table option, New Table

dialog box, 47
Link Tables dialog box, 255
Link Text Wizard, 264
Link Wizard, 261
linked fields, 126
linked table

Caption property, 270
changing information about,

274–275
creating additional links to, 271
Decimal Places property, 270
deleting reference to, 274
Display Control property, 270
Format property, 270
IME Sequence Mode

property, 270
Input Mask property, 270
Linked Table Manager, 274–275
optimizing, 273
relationships, 270–271
renaming, 273
Unicode Compression

property, 270
using in queries, 271–272
viewing information about,

274–275
linking

command buttons to macros,
818–820

HTML table, 974
objects, 604, 605, 614–616
one form to another form,

769–770
subform to form, 515–516,

533–534
list box

compared to combo box,
406–407

impact on absolute speed, 1287
list box control, 311, 317–318
literal criteria, 228
literal values, using in expressions,

715
lngz prefix, table field naming

conventions, 1359
load on demand functionality,

38–39
loading forms, impact on perceived

speed, 1294

local table, 40
Locals window, 791–792
Locate Web Page dialog box, 993
locked fields, editing, 104
LockType parameter, ActiveX Data

Objects, 746–747
logging, 802–804
logical operators, Select query,

222–224
Long Date, Date/Time date-type

format, 67
Long Integer field size setting, 64
Long Time, Date/Time date-type

format, 67
Lookup function, subform, 521–523
Lookup Property window, 76
lookup table relationship, 135
lookup tables, 28, 124–125
Lookup Wizard data type, rules, 55
Lotus versions, 248, 275, 295
lowest value in range, 733
lst (List Box), form/report control

naming convention
prefix, 359, 1360

LTrim() function, 731

M
Mach5 Mailer, 1351
Macintosh applications, obtaining

external data from, 248
Maco/Wilson Jones label brand, 576
macro examples, 820–822
Macro Express, 1351
Macro Magic, 1351
Macro object, 9, 42
Macro Recorder, Automation,

1098–1100
macros

compared to Visual Basic,
655–656

converting to Visual Basic,
657–659

Upsizing Wizard, 898, 909
when to use, 656–657

mail merge report
creating, 592
data selection, 589–592
embedded fields in text, 594–596
importance of, 589
Microsoft Word Mail Merge

Wizard, 597–602
page header, 592–594
printing, 594–596

mailing label report
creating fields, 578–579
font type, size, and color, 578
importance of, 446
label brands, 576
label size, 576–577
Label Wizard, 575–576
Print Preview window, 580–582
printing, 584–585
Report Design window, 582–584
sorting, 578–579

Make MDE File, 1271
manual filing system, 4
many-to-many relationship, 135
many-to-one relationship, 135
margins in reports, 570–571
Match Case check box, Find and

Replace dialog box, 101
Match drop-down list, Find and

Replace dialog box, 101
mathematical formula, determining

value of, 206
mathematical functions, 729–730
mathematical operators, 204–208
Max option, Total: row, 1204
Max Records property, 1198
mcr prefix, object naming

conventions, 1357
MDAC. See Microsoft Data Access

Component
.MDB file extension (multiple

database), 5
MDB file size, database

attribute, 1334
Mdb2txt, 1351
.MDE file extension, 1270–1272
MDX. See Multiple Index File
.MDX file extension, 257
MDY date order, 292
Me., property, Visual Basic, 716,

721, 761
Me.Bookmark, 762–764
Medium Date, Date/Time date-type

format, 67
Medium Time, Date/Time date-type

format, 67
Me.Filter, 764–765
mem prefix, table field naming

conventions, 1359
memNotes, 58, 75
Memo data type

changing other data types to, 62
compared to SQL Server data

type, 901

1385Index ✦ M

compared to Visual Basic data
type, 702

data entry, 97–98
definition, 27, 53
formats, 65–66
rules, 54

Memo field, using multiple-line text
box controls, 386–387

menu bar, displaying at application
startup, 1110

Menu Bar form property, 371
Menu Bar type, Toolbar Properties

dialog box, 840
menu design step, 32–33
message, displaying in dialog box,

691–693
Microsoft Access database

specifications,
1334–1336

Microsoft Access Help button
Access window toolbar, 45
Design View toolbar, 461

Microsoft Access Help icon,
Datasheet toolbar, 92

Microsoft Active Server Pages,
249, 295

Microsoft ActiveX Data
Objects Recordset
2.7 Library, 1085

Microsoft DAO 3.6 Object
Library, 1085

Microsoft Data Access Component
(MDAC), 257

Microsoft Database Engine,
connecting to, 40

Microsoft Excel
compared to Datasheet View, 50
Excel.Application class

argument, 1089
Excel.Chart class

argument, 1089
Excel.Sheet class

argument, 1089
file icon, 253
storing file as OLE object, 97
versions, 248, 275, 295

Microsoft IIS, 249, 295
Microsoft Internet Explorer, data

access page, 983–984
Microsoft Internet Explorer Web

browser, 948, 950, 1010

Microsoft Jet. See also security;
Upsizing Wizard

business critical, 888
compared to MSDE 2000, 886
data integrity, 887
deciding when to use, 887–888
maximum database size, 888
number of users, 887–888
rapid application

prototyping, 888
scalability, 888
simplicity, 887
version, 257

Microsoft Office
AutoCorrect feature, 639–640
checking spelling in fields,

638–639
integrating, 638
OLE automation, 640
PivotChart Wizard, 646–648
PivotTable Wizard, 640–646

Microsoft Office 11.0 Object
Library, 1085

Microsoft Office 2003 Web
Components (MSOWC),
950, 983

Microsoft Office Online, 37
Microsoft Office Web

Components, 990
Microsoft Script Editor button,

Access window
toolbar, 45

Microsoft Visual Basic Window,
Immediate window, 206

Microsoft Word 11.0 Object
Library, 1085

Microsoft Word, Automation
example, 1091–1097

Microsoft Word Mail Merge Wizard,
597–602

Microsoft Word Merge documents,
249, 296

Mid() function, 731
Min Max Buttons form

property, 366
Min option, Total: row, 1204
minus sign (–)

data access page, 987–988
input mask character, 71
subtraction operator, 204,

206, 218
minute setting, 68

mod (modulo) operator, 204,
208, 218

mod prefix, object naming
conventions, 1357

Modal form property, 371
mod_Help module, 1175
Modify Design permission,

1102, 1128
modifying submenus, custom

menu bar, 843–846
Module object, 9, 42
modules

impact on absolute speed, 1287
organization of, 1266
Upsizing Wizard, 898, 909

Modules, Access Project
attribute, 1337

money, SQL Server data type, 900
Month() function, 727
month name setting, 68
month of year setting, 68
Month property, 650
MonthLength property, 650
Mouse Over Effects, 1351
Moveable form property, 369
moving

between records, 98–99
controls between sections in

reports, 492
insertion point within a field, 103
label controls, 381–382
text controls, 381–382

.MP3 file extension, 331

.MPE file extension, 331
MSAccess.exe, 1109
MSDE 2000. See SQL Server 2000

Desktop Engine
MSDE2KS3.EXE, 889–890
MsgBox command, 785
MsgBox() function, 691–693
.msi file extension, 1322
MSOWC. See Microsoft Office 2003

Web Components
multi-field indexes, impact on

absolute speed, 1283
multi-field primary key, 130
multi-field row headings, Crosstab

query, 1219–1220
multiple controls, modifying, 382
multiple databases, using at one

time, 5
Multiple Index File (MDX), 258

1386 Index ✦ M–N

multiple tab rows, displaying, 869
multiple tables

benefits of working with, 8–9
creating calculated field

from, 1185
multiple-column combo box,

412–419
multiple-field sort criteria, 174–175
multiple-line label, 377
multiple-line text box controls,

386–387
multiple-table query

one-to-many relationship, 190
primary key, 190
updating fields, 190–191
updating rules, 189

multiplication operator, 204,
205, 218

multi-user locked records, editing
fields in, 104

MYD date order, 292

N
naming, sub-datasheet, 149
Navigation Buttons form

property, 366
Navigation control, data access

page, 1022–1023
Navigation pane, 1145
nchar, SQL Server data type, 901
NCR label brand, 576
.NDX file extension, 257
needs analysis, 12
negative numbers, 66, 729
negative one (–1), Yes/No date-type

format, 68, 209
net present value, 728
Netscape Web browser, 948
network performance, impact on

absolute speed,
1292–1293

New button, Access window
toolbar, 45

New button code, 880
New constraint property, Access

project, 931
New Data Users group account, 1131
New File Database dialog box, 39
New File dialog box, 36
New Form dialog box, 322
New index property, Access

project, 929

New Object: AutoForm icon,
Datasheet toolbar, 92

New Object button
Access window toolbar, 45
Design View toolbar, 461

new object shortcuts, 42
New Object toolbar menu, 306
New Project Wizard, 1149–1150
New Query dialog box, 159
new record pointer, datasheet

view, 92
New relationship property, Access

project, 927
New Report dialog box, 449
New Table dialog box, 47–48
New Values field property, 63
Next field datasheet navigation

key, 88
Next record datasheet navigation

key, 88
9 (nine), input mask, 71
No Horizontal Docking option,

Toolbar Properties
dialog box, 840

No value, relational operators, 208
No Vertical Docking option,

Toolbar Properties
dialog box, 840

Non-Aggregate Total criteria, Total:
row, 1212–1213

non-matching value, field criteria,
232–233

non-Microsoft servers,
connecting, 40

normalization
definition, 8, 24
first normal form, 25–26
second normal form, 26
third normal form, 24–25, 26–27

Normalized Data Structure: A Brief
Tutorial (E. F. Codd), 24

NOT Like operator, 212–213
Not operator, 215–216
Not operator resultants, 216
Notebook icon, 253
not-equal (<>), relational

operator, 209
Now() function, 727
NPV() function, 728
null

compared to zero length, 63
definition, 7
error handling, 788

relational operators, 208
specifying in Numeric custom

format, 66
using concatenation operator

with, 212
Number data type

automatic data-type
validation, 95

changing other data types to,
61–62

changing to AutoNumber, 56–57
compared to SQL Server data

type, 900
compared to Visual Basic data

type, 702
converting to string, 725
data entry, 96
default value, 73
definition, 27, 53
formats, 66–67
mathematical processing

speed, impact on
absolute speed,
1288–1289

rules, 55
Number of actions in a macro,

macro attribute, 1336
Number of ANDs in a WHERE or

HAVING clause, query
attribute, 1335

Number of characters in a
cell of the design
grid, query
attribute, 1335

Number of characters in a
comment, macro
attribute, 1336

Number of characters in a
condition, macro
attribute, 1336

Number of characters in a
field name, table
attribute, 1334

Number of characters in a
field property
setting, table
attribute, 1335

Number of characters in a
label, forms and
reports attribute, 1336

Number of characters in a
Memo field, table
attribute, 1335

1387Index ✦ N–O

Number of characters in a
password, database
attribute, 1334

Number of characters in a
record, table
attribute, 1335

Number of characters in a SQL
statement

forms and reports attribute,
1336

query attribute, 1335
Number of characters in a

table name, table
attribute, 1334

Number of characters in a
table or field
description, table
attribute, 1335

Number of characters in a
text block, forms and
reports attribute, 1336

Number of characters in a
Text field, table
attribute, 1334

Number of characters in a
user name or group,
database attribute, 1334

Number of characters in a
validation message,
table attribute, 1335

Number of characters in a
validation rule,
table attribute, 1335

Number of characters in an
action argument,
macro attribute, 1336

Number of characters in an
object name, Access
Project attribute, 1337

Number of characters in
object names,
database attribute, 1334

Number of columns in a table,
Access Project
attribute, 1337

Number of concurrent users,
database attribute, 1334

Number of control sections
you can add over the
lifetime of the form
or report, forms and
reports attribute, 1336

Number of control sections
you can add over the
lifetime of the form
or report, macro
attribute, 1336

Number of enforced
relationships, query
attribute, 1335

Number of fields in a record
or table, table
attribute, 1334

Number of fields in a
recordset, query
attribute, 1335

Number of fields in an index,
table attribute, 1335

Number of fields/expressions
you can sort or group
on, report attribute, 1336

Number of headers and footers
in a report, forms and
reports attribute, 1336

Number of indexes in a record
or table, table
attribute, 1335

Number of levels of nested
forms or reports,
forms and reports
attribute, 1336

Number of levels of nested
queries, query
attribute, 1335

Number of modules, database
attribute, 1334

Number of objects in a
database, database
attribute, 1334

Number of objects in a
Microsoft Access
project, Access
Project attribute, 1337

Number of open tables, table
attribute, 1334

Number of printed pages in a
report, forms and
reports attribute, 1336

number of records, determining,
1187–1189

Number of sorted fields in a
query, query
attribute, 1335

Number of tables in a query,
query attribute, 1335

Numeral Shapes format
property, 432

numeric sign, determining, 730
numeric, SQL Server data type, 900
numeric value

converting to string, 725
finding in string, 725

nvarchar, SQL Server data
type, 901

NZ() function, 545, 732

O
object

bound, 604
creating, 657
editing, 613–614
embedding bound objects,

611–612
embedding compared to

linking, 605
embedding unbound objects,

607–611
image control, 604
linking, 605, 614–616
naming conventions, 1357
saving, 606
types, 604
unbound, 604

object library, 1084
Object menu bar, Database

window, 42–43
object names, using in expressions,

715, 717–718
ocx (ActiveX Custom Control),

form/report control
naming convention
prefix, 359, 1359

ODBC Time-out property, 1198
OfficeLinks button, Access window

toolbar, 45
OfficeRecovery Enterprise, 1351
OfficeSpy, 1351
OLE Object data type

compared to SQL Server data
type, 901

compared to Visual Basic data
type, 703

control, 433
data entry, 97
definition, 27, 53

Continued

1388 Index ✦ O

OLE Object data type (continued)
embedding, 612
rules, 55
using in forms, 331–332

ole prefix, table field naming
conventions, 1359

On Action item, custom menu
bar, 846

On Activate form event
property, 682

On Apply Filter form event
property, 683

On Click form event property,
683, 814

On Click property, 810, 819–820, 880
On Close form event property, 682
On Cmd Before Execute form

event property, 683
On Cmd Checked form event

property, 683
On Cmd Enabled form event

property, 683
On Cmd Execute form event

property, 683
On Connect form event

property, 684
On Current form event

property, 682
On Data Change form event

property, 684
On Data Set Change form event

property, 684
On Dbl Click form event

property, 683, 810
On Deactivate form event

property, 683
On Delete form event property, 682
On Dirty form event property, 682
On Disconnect form event

property, 684
On Enter property, 811
On Error form event property, 683
On Error GoTo 0 statement, 797
On Error GoTo somelabelname

statement, 797, 798
On Error Resume Next

statement, 797–798
On Error statement, 659
On Exit property, 811
On Filter form event property, 683
On Got Focus form event

property, 683

On Key Down form event
property, 683

On Key Press form event
property, 683

On Key Up form event property, 683
On Load form event property, 682
On Lost Focus form event

property, 683
On Mouse Down form event

property, 683
On Mouse Move form event

property, 683
On Mouse Up form event

property, 683
On Mouse Wheel form event

property, 683
On My Computer choice,

Templates section, 37
On No Data property, 693
On Open form event property, 682
On Page property, 693
On PivotTable Change form

event property, 684
On Query form event property, 684
On Resize form event property, 682
On Selection Change form event

property, 684
On Timer form event property, 683
On Undo form event property, 682
On Unload form event property, 682
On View Change form event

property, 684
1NF. See first normal form
One-Step Security Wizard

Report, 1135
one-to-many relationship, 148, 505
one-to-one relationship, 134
On/Off settings, Yes/No data-type

format, 69
Open button, Access window

toolbar, 45
Open Exclusive permission, 1128
Open Form action, Command

Button Wizard, 813
Open method, ActiveX Data

Objects, 746
Open option, Getting Started dialog

box, 36
opening

database in single-user
environment, 1279

forms, 656
report, 455–456

Open/Run permission, 1128
Opera Web browser, 948
operator precedence, 217–219
operators

Between...And, 216–217
Boolean, 213–216
definition, 203
In, 217
Is, 217
mathematical, 204–208
precedence, 217–219
relational, 208–210
string, 210–213
types, 204
using in expressions, 715
when to use, 204

opt (Option Button), form/report
control naming
convention prefix,
359, 1360

optimizing query design, impact on
absolute speed,
1284–1285

option button control, 311,
314–316, 395–397

Option Explicit statement, Visual
Basic, 670

option group control
creating, 397–402
data validation, 395–397
importance of, 310, 316–317

Option Group Wizard, 397–400
Option Value property, 402
Or: cell, QBE pane, 237
Or operator, 215, 222–224, 236–237
or row, Query by Example design

pane, 163
ORDER BY, 739, 743
Order By data property, Access

project, 932
Order By form property, 370
Order By property, 879, 1198
Orientation form property, 369
Orientation property, 1198
Outcome XP, 1351
outer join, 198–200
Outlook, 249, 275
Outlook Express, 249
Output All Fields option, 1195–1196
Output All Fields property, 1197
overall system design step

conceptual design, 13
importance of, 13

1389Index ✦ O–P

interviewing users, 14
prototyping, 14–15

overriding a value, 506
Overstrike mode, datasheet

view, 103
Owner table property, Access

project, 926

P
Pad index property, Access

project, 929
page break control, 311
page breaks in reports, 493–494
Page connection properties

button, 994
Page container, 984–985, 996
Page Footer, 375–376
page footer section in reports, 461,

466, 498–500
Page Header, 375–376
page header section in reports,

461, 465, 495–496, 544
Page Index property, tabs, 870, 871
Page Setup dialog box, 469–471
page title, data access page,

1018–1019
Page Wizard, data access page,

985–990, 997–1000
Pages object, 9, 42
Pages object button, 985
Paintbrush file, 433
Palette Source form

property, 369
panel resizing bar, 183
Paradox database table, importing,

277–278
Paradox file icon
Paradox versions, 248, 275, 278, 295
parameter

functions, 723
stored procedures, 937

parameter query, 766–767, 957
parent form, 504
Parent method, 878
parent-child relationship between

tables, 136
pass-through query, 1261–1262
Paste button

Access window toolbar, 45
Datasheet toolbar, 90
Design View toolbar, 460

Paste Button Image, 844

PC database management systems,
obtaining external data
from, 248

.PCT file extension, 434

.PCX file extension, 434
Pendragon Forms, 1351
PenSoft Payroll (PenSoft

Corporation), 1350
perceived speed. See also

absolute speed
built-in progress meter,

1295–1297
definition, 1293
hiding forms, 1294
hourglass, 1295
loading forms, 1294
progress meter with pop-up

form, 1297–1298
speeding up progress meter

display, 1299
splash screen, 1293–1294

percent sign (%), Numeric custom
format, 65

Percentage numeric format
type, 66

period (.)
input mask character, 71
Numeric custom format, 65
object references, 1086
used in expressions, 720–721

permissions, 1102–1103, 1123–1128
personal ID (PID), 1116–1117
pft (Page Footer), form/report

control naming
convention prefix,
359, 1360

pge (Page), form/report control
naming convention
prefix, 359, 1360

phd (Page Header), form/report
control naming
convention prefix,
359, 1360

picture, adding to bound object
frame, 613

Picture Alignment form
property, 368

Picture Alignment property, 439
Picture Builder dialog box, 405, 824
Picture Builder Wizard, 1351
picture display, adjusting, 388–389
Picture form property, 367
picture properties, report, 497–498

Picture property, 439, 870
Picture Size Mode form

property, 367
Picture Size Mode property, 439
Picture Tiling form

property, 368
Picture Tiling property, 439
Picture Type form property, 367
Picture Type property, 439,

870, 871
pictures, using in forms, 331–332
PID. See personal ID
Pie chart, 632
Pimaco label brand, 576
pivot tables, data access page,

1011–1014
PivotChart form layout, 324
PivotChart View, Datasheet

window, 89
PivotTable, 640–646
PivotTable form layout, 324
PivotTable View, Datasheet

window, 89
PivotTable Wizard, 322, 640–646
plus sign (+)

addition operator, 204,
205–206, 218

data access page, 987–988
datasheet view, 98
string concatenation, 205–206

PMT() function, 729
.png file extension, 1157
pointer location, 811
Pop Up form property, 371
Popup type, Toolbar Properties

dialog box, 840
positive number, specifying in

Numeric custom
format, 66

Positively Business, 1351
POSitively Business Demo

(Database Creations,
Inc.), 1348

Postal Address extended property,
Access project, 925

post-delete message, 876
pound sign (#)

any one number wildcard,
101, 214

input mask character, 71
Numeric format, 66
query criteria data value

delimiter, 178, 717

1390 Index ✦ P–Q

precedence, operators, 217–219
Precision extended property,

Access project, 924
Present Value, 729
presentation quality, report, 494
PrettyCode.Print, 1351
preventing viruses, 1139–1142
Previous field datasheet

navigation key, 88
Previous record datasheet

navigation key, 88
primary key

benefits of using, 129–130
creating, 50, 78, 130–131
default AutoNumber field, 77
definition, 126
determining which fields to

use, 128–129
entity integrity, 76, 127
importance of, 23, 26
Indexes window, 78–79
multi-field, 130

Primary key table relationship
property, Access
project, 927

Print button
Access window toolbar, 45
Datasheet toolbar, 90
Design View toolbar, 460

Print Preview button
Access window toolbar, 45
Datasheet toolbar, 90
Design View toolbar, 460

Print Preview window, 119–121,
456–457, 501

Print Report dialog box
Cancel Event procedure, 863
command buttons, 860–861
example, 857
form, 857–858
option group, 859
Print Event procedure, 861–863
text boxes, 859–860

printing
datasheet, 119
forms, 333–335, 389–390
mail merge report, 594–596
mailing label reports, 584–585
Print dialog box, 119
Print Preview window, 119–121
report, 458
report of relationship, 147
snaked-column report, 588
table design, 80

Private statement, 700
Problem Report form, 803–804
procedure

calling, 772–773
compared to function, 771–772
creating, 773–775
viewing list of, 867
where to create, 772

Procedure Creator, 1351
processing action queries, 1231
program, definition, 724
programming, functions, 731–732
progress meter, displaying, 657
progress meter with pop-up form,

impact on perceived
speed, 1297–1298

Project Designers group
account, 1131

Project Security Manager, 1352
PROMODAG StoreLog, 1352
promoting fields, data access

page, 1011
properties, 356. See also control

event properties; form
event properties; form
properties

Properties button
Access window toolbar, 45
custom menu bar, 845–846
Design View toolbar, 460

property, determining value of, 720
Property Scanner Add-In tool, 1330
Property sheet, 356
property sheet, displaying, 484
Property Sheet window, 353–354
Property window, 354–355
prototype system, 14–15
Public statement, 699–700
PV() function, 729
Pyramid chart, 632

Q
QBE. See Query by Example
QBE Design Window, entering

queries in, 10
QBE pane, 161, 1193–1195, 1200
qry prefix, object naming

conventions, 1357
qryCalculateTotalExtensionsbyInv

oice, 553
qryCalculateTotalPaymentsbyInvoi

ce, 556
qryInvoiceReport, 562
quarter of the year setting, 68

Queries Objects button, Database
window, 158

query
Action, 156
adding all table fields, 166–167
adding multiple fields, 165–166
adding multiple tables to,

180–181
adding single field, 163–164
adding single table to, 160–161
changing tables, 158
choosing fields, 157
choosing records, 157
choosing tables, 157
Column Headings

property, 1199
comparison operators, 178
complex, 155
creating, 158–159
creating forms, 157
creating graphs, 158
creating reports, 157
creating tables, 157
Crosstab, 156
Default View property, 1197
definition, 10, 154
Description property, 1197
Dest Connect Str

property, 1199
Destination DB

property, 1199
Destination Table

property, 1199
dynaset, 10, 154, 158, 167–168
Enable AutoJoin option,

1195–1196
Fail on Error property, 1199
Filter property, 1198
hiding fields, 1191–1192
importance of, 153–154
Link Child Fields

property, 1199
Link Master Fields

property, 1199
Max Records property, 1198
ODBC Time-out property, 1198
Order By property, 1198
Orientation property, 1198
Output All Fields option,

1195–1196
Output All Fields

property, 1197
performing calculations, 157
Query Design Font, 1195–1196

1391Index ✦ Q–R

Record Locks property, 1198
Recordset Type property, 1198
renaming fields, 1192–1193
Run Permissions, 1195–1196
Run Permissions

property, 1198
saving, 179–180
saving as data access page,

1025–1027
Search and Filter

capabilities, 154
Select, 156
Show Table Names option,

1195–1196
sorting records, 157
Source Connect Str

property, 1198
Source Database

property, 1198
SQL Server Compatible option,

1195–1196
Structured Query Language, 156
Subdatasheet Expanded

property, 1199
Subdatasheet Height

property, 1199
SubDatasheet Name

property, 1199
subquery, 158
Top Values property, 1197
Top(n), 157, 1189–1191
Total, 156
Unique Records property, 1197
Unique Values property, 1197
Upsizing Wizard, 909
Use Transaction

property, 1199
using other queries with,

557–558
Query by Example (QBE)

adding a single field, 185–186
adding all table fields, 187
adding multiple fields, 186–187
changing field display names,

171–172
changing field order, 170
extended mode, 169
field selector row, 168–169
importance of, 161, 163
inserting fields, 171
removing fields, 171
resizing columns, 170–171
showing fields, 173

showing table names, 172
sorting, 173–175
viewing table names, 186

Query data source, 355
Query Design Font, 1195–1196
Query Design window

adding table, 160
navigating, 161–162
opening, 159
Query by Example design pane,

161, 163
table/query entry pane, 161
toolbar, 162–163

Query object, 9, 42
query selection, subform, 508–509
Query Type button, Query Design

window, 162
Query window

adding tables to, 185
removing table from, 184–185
views, 161

question mark (?)
any one character wildcard,

101, 214
determining value of

mathematical
formula, 206

input mask character, 71
Quick Search combo box, 872
QuickSort icons, Datasheet toolbar,

90, 116

R
Radar chart, 632
radio button. See option button

control
Raised control appearance option,

424, 426
random numbers, 730
RankXerox label brand, 576
RDBMS. See relational database

management system
Read Data permission, 1102, 1128
Read Design permission, 1102, 1128
Reading Order format

property, 432
read-only data, including in

reports, 540
Read-Only Users group

account, 1131
real, SQL Server data type, 900
recalculating fields, ActiveX Data

Objects, 749

record
adding in Datasheet window,

49, 93–94, 106
adding to table, 83–84
definition, 6
deleting, 107
determining number of in

query, 1187–1189
displaying, 108–109
finding Top(n), 1189–1191
height, 111–112
moving between pages, 987
navigation, 98–102
saving, 115
saving in datasheet view, 94–95

record being edited pointer,
datasheet view, 92

record criteria
character, 176–177
comparison operators, 178
date, 177
definition, 175
numeric, 177

record is locked pointer, datasheet
view, 92

Record Locks form property, 371
Record Locks property, 1198
record management control, 987
Record Navigation section, data

access page, 1015
Record Selector property, data

access page, 1017–1018
Record Selectors form

property, 366
Record Source form property,

355, 369
Recordset object, ActiveX Data

Objects, 746, 748
Recordset Type form

property, 370
Recordset Type property, 1198
RecordSetClone method, 879
Recover My Files, 1352
rectangle control, 311
rectangles, adding to forms, 436–437
reference libraries, 1085
References dialog box,

Automation, 1084
referencing controls, subform,

534–537
referential integrity, 136,

141–143, 182
Registry Crawler, 1352

1392 Index ✦ R

Relational Completeness of Data
Base Sublanguages
(E. F. Codd), 24

relational database management
system (RDBMS), 4

relational operators, 178, 208–210
relationship

adding, 146
creating, 136, 139–140
deleting, 1347
Edit Relationships dialog box,

139–144
Join line, 147
linked table, 270–271
many-to-many, 135
many-to-one, 135
one-to-many, 135
one-to-one, 134
primary table, 140
printing report of, 147
Relationships window, 137–138
saving, 146
table-level compared to

query-level, 133
types, 133–134

Relationship name relationship
property, Access
project, 927

Relationships button, Access
window toolbar, 45

remove all fields button, Form
Wizard, 323

remove selected field button, Form
Wizard, 323

removing
database password, 1106–1107
object permissions, 1126
users from groups, 1122–1123

renaming
fields in query, 1192–1193
linked table, 273
table, 81
tables, Upsizing Wizard, 897

repetitive looping
Do...Loop statement, 707–710
Exit Do clause, 708
For...Next statement, 710–711
Until clause, 708–709
While clause, 707–709

ReplaceWiz 2002, 1352
replacing existing values in

fields, 103
Replication ID field size

setting, 64

ReplicationID data type, compared
to SQL Server data
type, 901

report. See also text box controls
adding unbound picture to,

545–547
assembling data, 448
banded, 461
benefits of using, 443
binding to query, 468–469
calculating group summaries,

569–570
calculating percentages,

571–572
calculating running sums,

572–573
calculations, 561–562
Columnar, 445
compared to forms, 446–447
controls, 566–568
converting form into, 390
creating, 449–450, 467–468
creating from existing form, 543
data source, 450
details section, 461, 466
dragging fields onto report, 474
Field List window, 472
field placement, 472
field selection, 450–451, 472–474
group data, 452
group footer section, 461, 466,

488–491, 564–566
group header section, 461,

465–466, 488–491, 497,
564–566

grouping fields, 451
hiding sections, 491
joining fields, 568–569
layout, 447–448, 454,

471–472, 562
mailing labels, 446
margins, 570–571
moving controls between

sections, 492
opening, 455–456
page breaks, 493–494
page footer section, 461, 466,

498–500
page header section, 461, 465,

495–496, 544
Page Setup dialog box, 469–471
picture properties, 497–498
presentation quality, 494

Print Preview window,
456–457, 501

printing, 458
purpose, 11
report footer section, 461, 467
report header section, 461,

464–465
Report Wizard, 448–449
resizing sections, 474–475
running, 656
saving, 458–459, 500
saving as data access page,

1025–1026, 1027–1032
section processing, 462–463
sizing sections, 491–492
sort order, 453
sorting, 487–488, 561–562
style, 454–455
summarizing, 453–454
Tabular, 444
text, 476
title page, 573–574
unattached labels, 475–476
Upsizing Wizard, 909

report design step, 15–17
Report Design window

mailing label reports, 582–584
opening, 457–458
toolbar, 460–461

report event properties
On Activate property, 693
On Close property, 693
On Deactivate property, 693
On Error property, 693
On Open property, 693

report footer section, 461, 467
report header section, 461, 464–465
Report Manager Professional

(Database Creations,
Inc.), 1350

Report object, 9, 42
report section event properties

On Format property, 695–697
On Print property, 695
On Retreat property, 695

report snapshot, Upsizing Wizard,
899–900

Report View button, Design View
toolbar, 460

Report Wizard, 448–449
Report Writer, 461–467
Reports reserved word, 721
.Requery command, 769, 770
Required field property, 63

1393Index ✦ R–S

reserved words, 721
Reset Button Image, 844
resizing sections in reports,

474–475
Resolve Window Definition

Wizard, 1156
Responsive Time Logger, 1352
retrieving data in combo boxes,

subform, 518–520
returned values, 772
reverse video, 429–430
reversing action queries,

1232–1233
RFFlow, 1352
rft (Report Footer), form/report

control naming
convention prefix,
360, 1360

rhd (Report Header), form/report
control naming
convention prefix,
360, 1360

Rich Text Format documents,
249, 295

Right() function, 731
RIGHT JOIN...ON, 742–743
Right Margin format property, 433
right outer join, 199–201
right-pointing triangle, datasheet

record pointer, 92
Rnd() function, 730
Rollback Transaction form

event property, 684
Rotary Card label brand, 576
Round() function, 207729
rounding numeric values, 729
Rovoscape ActiveCandy, 1352
row, definition, 6
Row Source property, 625
rpt prefix, object naming

conventions, 1357
rptSales report, 540
rsub prefix, object naming

conventions, 1357
rsubSalesPaymentsExample

subreport, 547
RTrim() function, 731
Run button, Query Design

window, 162
Run Permissions, 1195–1196
Run Permissions property, 1198
RunCommand statement, ActiveX

Data Objects, 755

running
programs, 771
system-level actions, 656

runtime error handling, 789–791
runtime mode, 1107–1109
/runtime switch, 1109

S
sample files, 1346–1347
sandbox mode, 1139–1142
SAPWD=”sa_password”

setting, 891
Save As Data Access Page dialog

box, 990
Save As Module, 658
Save button

Datasheet toolbar, 89
Design View toolbar, 460
Query Design window, 162

saving
action queries, 1258
ActiveX Data Objects, 748
current record, 103
data access page, 990
form, 333, 356–357
layout, 115
modules, Visual Basic, 673
objects, 606
objects as data access page,

1025–1026
project, 1157
query, 179–180
record, 115
record in datasheet view, 94–95
relationship, 146
report, 458–459, 500
table, 81
table as data access page,

1025–1027
Scale extended property, Access

project, 924
Scatter chart, 632
Schedule XP, 1352
scientific notation (E+), Numeric

custom format, 65
scientific notation (E-), Numeric

custom format, 65
Scientific numeric format

type, 66
Screen Capture, 1352
Screen reserved word, 721
screen resolution, 351
Scroll Bar Align format

property, 432

Scroll Bars form property, 365
Scroll Bars format property, 431
Scroll down one page datasheet

navigation key, 88
Scroll up one page datasheet

navigation key, 88
scrolling

between records in
datasheet, 99

with directional keys, 10
Search and Filter capabilities, 154
Search Fields As Formatted check

box, Find and Replace
dialog box, 101–102

Search Manager Pro, 1352
Search Manager Professional

(Database Creations,
Inc.), 1350

Search Office Online: choice,
Templates section, 37

sec (Section), form/report control
naming convention
prefix, 360, 1360

second normal form (2NF), 26
seconds setting, 68
Secrets Keeper, 1352
Section height, forms and

reports attribute, 1336
Section Indent property, data

access page, 1024
section processing, report, 462–463
security

Access Security Wizard,
1129–1135

adding user accounts,
1116–1117

Admin user, 1102,
1118–1119, 1126

administrator, 1102–1103
Administrator permission, 1128
assigning object permissions,

1125–1126
assigning users to groups, 1122
Backup Operators group

account, 1131
changing object owner,

1124–1125
changing passwords, 1117–1119
creating database password,

1104–1106
creating groups, 1120–1121
creating passwords, 1117–119

Continued

1394 Index ✦ S

security (continued)
creating workgroups,

1112–1114
database decryption, 1137
database distribution,

1127–1128
database encryption,

1136–1137
default object permissions,

1127
Delete Data permission,

1102, 1128
deleting groups, 1121
deleting user accounts, 1117
enabling, 1111–1112
explicit permissions, 1125
Full Data Users group

account, 1131
Full Permissions group

account, 1131
groups, 1119–1120
implicit permissions, 1125
Insert Data permission,

1102, 1128
joining existing workgroups,

1114–1115
level, 1104
limitations, 1103–1104
Microsoft Jet, 887
Modify Design permission,

1102, 1128
New Data Users group

account, 1131
One-Step Security Wizard

Report, 1135
Open Exclusive permission, 1128
Open/Run permission, 1128
permissions, 1102–1103,

1123–1128
personal ID, 1116
preventing viruses, 1139–1142
Project Designers group

account, 1131
Read Data permission, 1102, 1128
Read Design permission,

1102, 1128
Read-Only Users group

account, 1131
removing database password,

1106–1107
removing object

permissions, 1126
removing users from groups,

1122–1123

runtime mode, 1107–1109
sandbox mode, 1139–1142
security ID, 1116
separating data from interface

objects, 40
setting database

permissions, 1127
setting object owner, 1123
setting password with Visual

Basic, 1107
Startup options dialog box,

1110–1111
Update Data permission,

1102, 1128
Update Data Users group

account, 1131
user name, 1117
user profile, 1115
user-level, 1101–1102
Visual Basic Code, 1137–1139
Workgroup Administrator, 1113
Workgroup ID, 1129
workgroup information file, 1102
workgroups, 1112

security ID (SID), 1116–1117
SECURITYMODE=SQL setting, 891
Select, 156
SELECT, 739–740
Select Case...End Select statement,

706–707
Select Index Files dialog box, 258
Select Picture dialog box, 824–825
Select query

Access project, 934
calculated fields, 220, 1180–1186
common operators, 221
comparison operators, 220
default operator, 221
definition, 156, 219
logical operators, 222–224
scope criteria, 220
simple criteria compared to

complex criteria, 220
SQL View, 223

Selected Constraint property,
Access project, 930

Selected Fields: list box, Form
Wizard, 323–324

Selected index property, Access
project, 929

Selected relationship property,
Access project, 927

Selected table property, Access
project, 926

selecting data for graphs, 619
selecting entire field, editing

technique, 103
Selector, 1352
semicolon (;)

ending SQL statements with, 743
input mask, 70, 71
Text custom format, 65

Send to Back option, 436
separating data from interface

objects, 40
separator, delimited file, 284
server-based database

management systems,
obtaining external data
from, 248

.SetFocus command, 769, 770
setting database permissions, 1127
setting object owner, 1123
setting password with Visual

Basic, 1107
SGML. See Standard Generalization

Markup Language
Sgn() function, 730
Shadowed control appearance

option, 424, 426
Sharepoint Team Services, 249,

275, 295
shareware programs, 1347
Short Dashes border style, 424
Short Dashes datasheet border

line style, 113
Short Date, Date/Time date-type

format, 67
Short Time, Date/Time date-type

format, 67
Shortcut Menu Bar form

property, 372
shortcut menu

custom menu bar, 847–851
displaying at application

startup, 1110
Shortcut Menu form property, 372
Shortcut Menus toolbar, 848
ShortKeys, 1352
Show on Toolbars Menu option,

Toolbar Properties
dialog box, 840

Show row, Query by Example
design pane, 163, 173

Show Table button, Query Design
window, 162

Show Table dialog box, 159, 160

1395Index ✦ S

Show Table Names option,
1195–1196

ShowDateSelectors property, 650
Show_Help procedure, 1175–1176
shp (Rectangle), form/report

control naming
convention prefix,
360, 1360

ShrinkerStretcher, 1352
SID. See security ID
SimpleRegistry Control, 1352
Single field size setting, 64
single-column combo box, 408–410
Size Mode property, 388–389,

546, 624
Size of OLE object field, table

attribute, 1335
sizing sections in reports, 491–492
smalldatetime, SQL Server data

type, 900
smallint, SQL Server data

type, 900
smallmoney, SQL Server data

type, 900
Smart Tags field property, 64
Smart Login, 1352
SmartBoardXP, 1352
SmartList To Go, 1352
snaked-column report

creating, 586–587
importance of, 585–586
page setup, 587–588
printing, 588

SnagIt, 1352
snapshot, 189
sng prefix, table field naming

conventions, 1359
software products on disk,

1351–1352
Solid border style, 424
Solid datasheet border line

style, 113
Sort limit, query attribute, 1335
sort order, 174, 453
Sort row, Query by Example design

pane, 163, 173
sorting

data access pages, 988
data columns, 879–880
Datasheet toolbar commands,

90, 116
mailing label reports, 578–579
Query by Example design pane,

173–175

records, 157
report, 487–488

Sorting and Grouping button,
Design View toolbar, 460

Sorting and Grouping in the Page
Design View, 1015

sound file, storing as OLE object, 97
Source Connect Str

property, 1198
Source Database property, 1198
Source Object property, 873
Source parameter, ActiveX Data

Objects, 746
Space() function, 731
Sparse Dots border style, 424
Sparse Dots datasheet border line

style, 113
Special Effect format

property, 431
Special Effect property, 404
Special Effects window, 424–427
special keys, preventing user

access to, 1110
specifying criteria in Column

Heading field, Crosstab
query, 1223

specifying criteria in multiple
fields, Crosstab query,
1223–1224

specifying criteria in new field,
Crosstab query,
1221–1222

specifying criteria in Row Heading
field, Crosstab query,
1222–1223

SPEED Ferret, 1352
speeding up progress meter

display, impact on
perceived speed, 1299

spellcheck icon, Datasheet
toolbar, 90

Spelling button, Access window
toolbar, 45

splash screen, impact on perceived
speed, 1293–1294

Splitter for Access, 1352
splitting one database into two, 269
spreadsheet

importing, 279–282
obtaining external data from, 248

Spreadsheet Assistant, 1352
SQL. See Structured Query Language
SQL database, 275

SQL query type, 156
SQL Server 2000 Desktop Engine

(MSDE 2000)
business critical, 888
COLLATION setting, 891
compared to Microsoft Jet, 886
customizing, 891–892
data link properties, 922–923
data types, 900–901
database engine selection,

886–888
DATADIR setting, 891
determining project’s database

name, 922
Distributed Transaction

Coordinator service, 892
hardware requirements, 889
importance of, 885–886
Installation Folder dialog

box, 890
installing, 889–891
INSTANCENAME setting, 891
License Agreement screen, 890
MSDE2KS3.EXE, 889–890
Pause button, 893
rapid application

prototyping, 888
SAPWD=”sa_password”

setting, 891
scalability, 888
SECURITYMODE=SQL

setting, 891
Setup.exe, 892
software requirements, 889
SQL Server Agent service, 892
SQL Server Desktop Engine

installation progress
meter, 890

SQL Server service, 892
SQL Server Service Manager

dialog box, 892–893
starting, 892–893
Stop button, 893
TARGETDIR setting, 891
USEDEFAULTSAPWD setting, 891

SQL Server Agent service, 892
SQL Server Compatible option,

1195–1196
SQL Server data types, 900–901
SQL Server database, connecting

to, 40
SQL Server Service Manager, 894
SQL Statement, creating, 414–416

1396 Index ✦ S

SQL Statement data source, 355
SQL View, Select query, 223
sql_variant, SQL Server data

type, 901
Sqr() function, 730
square root, 730
Standard Generalization Markup

Language (SGML), 1039
standard modules, Visual Basic,

666–667
Standard Naming Conventions, 384,

1355–1362
Standard numeric format type, 66
Start of Field option, Match drop-

down list, 101
Startup options dialog box,

1110–1111
static Web pages, 950–952
status bar, preventing display

of, 1110
StDev option, Total: row, 1204
Stock chart, 632
stored procedure

Access project, 935–938
benefits of using, 935
definition, 935
sorting data with, 935–937
updating data with, 938
using parameters with, 937

Str() function, 725
Stretch display, image object, 434
Stretch setting, Size Mode

property, 388
string

converting to a date, 725
converting to lowercase, 725
converting to uppercase, 725
determining leftmost

character, 731
determining rightmost

character, 731
inserting spaces into, 731
removing leading spaces, 731
removing parts of string, 731
removing trailing spaces, 731

string manipulation functions,
730–731

string operators, 210–213
strings

finding inside another string, 730
length, 731

Structured Query Language (SQL)
ALL, 739–740

ALTER TABLE statement, 1262
CREATE INDEX statement,

1262–1263
CREATE TABLE statement,

1262–1263
data definition query,

1262–1263
displaying query statements, 738
DISTINCT, 741
DISTINCTROW, 741
DROP INDEX statement, 1262
DROP TABLE statement, 1262
FROM, 739, 742
importance of, 156, 737
INNER JOIN...ON, 742
LEFT JOIN...ON, 742–743
ORDER BY, 739, 743
pass-through query, 1261–1262
relationship to QBE, 10
RIGHT JOIN...ON, 742–743
SELECT, 739–740
subquery, 1263
TOP, 741–742
union query, 1260–1261
WHERE, 739, 743

style, report, 454–455
Sub procedures, Visual Basic, 664
sub (Subform/Subreport),

form/report control
naming convention
prefix, 360, 1360

Sub-Address, Hyperlink data-type
format, 69

sub-datasheet
expanding, 151
height, 150–151
Link Child Fields property

setting, 149–150
Link Master Fields property

setting, 149–150
naming, 149
one-to-many relationship, 148
setting up, 149

Subdatasheet Expanded form
property, 369

Subdatasheet Expanded
property, 932, 1199

Subdatasheet Height form
property, 369

Subdatasheet Height property,
932, 1199

SubDatasheet Name property, 1199

Subdatasheet Name data
property, Access
project, 932

subform
adding to main form, 531–533
calculated expressions, 527
calculated summary

expressions, 528
column labels, 525
Column method, 523–524
creating calculated control,

537–538
creating without wizards, 524
definition, 304–305, 503–505
detail section controls, 525–527
displaying data from another

table, 520–521
displaying design, 514–515
displaying form, 512–514
displaying subform design,

516–517
field selection, 508, 510
filtered calculated summary,

528–530
form data layout, 510–511
form style, 512
form title, 512
Form Wizard, 507–508
hiding sections, 530
layout, 511
linking to form, 515–516, 533–534
Lookup function, 521–523
query selection, 508–509
referencing controls, 534–537
retrieving data in combo boxes,

518–520
Sales Invoice form example,

505–507, 517–518
table selection, 508–509

subform/subreport control, 311
subprocedure

calling, 772–773
compared to function, 771–772
creating, 773–775
viewing list of, 867
where to create, 772

subquery, 158, 1263
Subtotal control, 550
subtraction operator, 204, 206, 218
sum, 733
Sum() function, 728
Sum option, Total: row, 1204

1397Index ✦ S–T

summarizing, report, 453–454
Summary Wizard, 1352
sum-of-years depreciation, 729
Sunken control appearance option,

424, 426
Surface chart, 632
Surgical Strike, 1352
swap file location, impact on

absolute speed, 1281
switchboard

adding pictures to command
buttons, 824–826

Command Button Wizard,
811–815

command buttons, 809–811
copying buttons and labels,

817–818
creating basic form, 807–809
definition, 806
dragging macros into form,

822–823
focus, 811
linking command buttons to

macros, 818–820
macro examples, 820–822
On Click property, 810,

819–820
On Dbl Click property, 810
On Enter property, 811
On Exit property, 811
text labels, 816–817

Switchboard Manager
changing menu choices,

834–835
Edit Switchboard Item dialog

box, 829
Edit Switchboard Page dialog

box, 828
Exit button, 833
Insert Picture dialog box,

832–833
Main Switchboard, 828
modifying switchboard,

831–834
opening, 827
renaming switchboard, 834
Switchboard Items table, 826

SYD() function, 729
syntax, checking, 786–787
sysadmin fixed server role, 940
system requirements, 1345–1346

T
tab control

Back Style property, 869
copying from Detail section,

871–872
creating, 867–869
importance of, 311, 318–320
Multi Row property, 869
page properties, 870–871
Style property, 870
Tab Fixed Height

property, 870
Tab Fixed Width

property, 870
when to use, 866–867

Tab order dialog box, 384
tab order, setting for forms, 384–386
tab style, 870
tab (Tab Control), form/report

control naming
convention prefix,
360, 1360

tabbed dialog box, 866
tab-delimited file, 282
table. See also linked table

adding fields to, 58–59
adding records to, 83–84
adding to query, 160–161
copying, 82–83
creating, 46–51
definition, 5
deleting, 82
moving in Table/Query pane, 184
number of records in, 1187–1189
printing design, 80
removing from Query window,

184–185
renaming, 81
saving, 81
saving as data access page,

1025–1027
Upsizing Wizard, 909

Table Analyzer Wizard, 282, 1281
Table data source, 355
table design and relationships step

first normal form, 25–26
normalization, 24
second normal form, 26
third normal form, 24–25, 26–27

Table Design View, Datasheet
window, 89

Table Design window
Access project, 923
data types, 53–55
field datatype, 52
field description, 52, 56
field entry area, 51
field name, 52–53
property area, 51
toolbar, 52

table field naming conventions,
1358–1359

Table Filegroup table property,
Access project, 926

Table Identity Column table
property, Access
project, 926

Table Lynx, 1352
table name, creating in Datasheet

View, 50
Table name table property, Access

project, 926
Table Name.Field Name format, 223
Table object, 9, 42
table of contents, 1158–1162,

1174–1178
Table of Contents Entry dialog

box, 1161
Table Properties window, 79–80,

925–926
table relationships, Upsizing

Wizard, 896
Table row, Query by Example

design pane, 163, 172
Table ROWGUID Column table

property, Access
project, 926

table selection, subform, 508–509
Table size, table attribute, 1334
table view, 9
Table Wizard, benefits of using, 48
Table Wizard option, New Table

dialog box, 47
Table/Query pane, resizing, 182–183
Table/Query Row Source Type, 411
Tables/Queries drop-down combo

box, 985
tabular form layout, 324
Tabular report, 444
Tag form property, 372
TARGETDIR setting, 891
tbl prefix, object naming

conventions, 1357

1398 Index ✦ T

tblCategories, 125, 127, 129, 1343
tblCompanySetup, 544, 1343
tblContactLog, 125, 127, 129, 1342
tblContacts

changing idsContactID field
from number to
AutoNumber, 56–57

creating, 49–50
formats, 69–70
importance of, 125, 127, 128
primary key, 77
property settings, 74–75
structure, 58, 1341

tblCustomerTypes, 125, 127,
129, 1342

tblPaymentType, 125, 127, 129
tblProducts, 125, 127, 128, 1342
tblSales, 125, 127–128, 541, 550, 1341
tblSalesLineItems, 125, 127, 128,

541, 1341
tblSalesPayments, 127, 128, 1341
tblSalesPerson, 125, 127, 129,

541, 1342
tblTaxRates, 125, 127, 129, 1342
TCP/IP, 948
TeeChart Pro ActiveX Control, 1352
template file, 952, 968–971
templates

online access, 37
Templates dialog box, 37–38

Templates home page, connecting
to, 37

Templates option, New File dialog
box, 36

test data, designing, 29–30, 541–542
testing applications, 784
testing in Access, 1173
text

modifying format of in a
control, 378–379

modifying in a control, 377
report, 476
reverse video, 429–430
using in expressions, 718

Text Align format property, 432
text box, changing into combo

box, 414
text box control properties, 430–433
text box controls

creating, 477
deleting labels, 481
displaying properties, 484–485
expressions, 477

formatting, 478
functions, 477
growing and shrinking, 486
importance of, 310, 314
label control, 479–480
modifying multiple, 483–484
moving, 482–483
pasting labels into sections,

481–482
previewing text in, 478
sizing, 379–380, 479
using with reports, 477

text controls, moving, 381–382
Text data type

changing other data types to, 61
compared to SQL Server data

type, 901
compared to Visual Basic data

type, 703
converting to lowercase, 725
converting to uppercase, 725
data entry, 96
definition, 27, 53
formats, 65–66
rules, 54

Text file icon, 253
Text Filegroup table property,

Access project, 926
text files, obtaining external data

from, 248
text labels, 816–817
text shadow, 428–429
text, SQL Server data type, 901
tgl (Toggle Button), form/report

control naming
convention prefix,
360, 1360

third normal form (3NF), 24–25,
26–27

3D Area chart, 632
3D Bar chart, 632
3D Column chart, 632
3D Cone chart, 632
3D Cylinder chart, 632
3D Line chart, 632
3D Pie chart, 632
3D Pyramid chart, 632
3D Surface chart, 632
three-dimensional charts, 632
three-dimensional graphs, 635–637
three-dimensional look, creating

with shadows, 428–429
.TIF file extension, 434

Time Delimiter option, 293
Time() function, 727
Timer Interval form event

property, 683
timestamp fields, Upsizing Wizard,

896–897
timestamp, SQL Server data

type, 901
tinyint, SQL Server data type, 900
title, assigning to application, 1110
title page, report, 573–574
toggle button control, 310, 314–316,

405–406
toggling values in check box, 103
Tool Tip, 44
toolbar, 1110, 1145
Toolbar form property, 371
Toolbar Options button, Access

window toolbar, 45
Toolbar Properties dialog box, 839
Toolbar type, Toolbar Properties

dialog box, 840
Toolbox, 354, 376–377
Toolbox bar, 618
Toolbox button, Design View

toolbar, 460
TOP, 741–742
Top format property, 431
Top Margin format property, 432
Top Values property, 1197
topic keywords, 1163–1164
Topic pane, 1144, 1146–1147
Top(n) query type, 1189–1191
Total Field Record Limit category,

Total: row, 1203
Total query, 156, 553–557
Total: row

activating and deactivating, 1200
Aggregate category, 1203
aggregate function, 1202
Aggregate Total criteria,

1211–1212
all records example, 1205–1206
Avg option, 1204
Count option, 1204
Expression category, 1203
expressions, 1213–1216
First option, 1204
Group by category, 1202–1203
Group By criteria, 1210–1211
groups of records example,

1206–1210
Last option, 1204

1399Index ✦ T–U

Max option, 1204
Min option, 1204
Non-Aggregate Total criteria,

1212–1213
options, 1201
QBE pane, 1200
StDev option, 1204
Sum option, 1204
Total Field Record Limit

category, 1203
Var option, 1204

Transact-SQL keyword, 901
Transparent Border datasheet

border line style, 113
Transparent border style, 424
trapping errors, 876
trial software, 1347
triggers, 942–943
Triggers for Table dialog box, 942
Trim() function, 731
Triple State, check boxes, 404
troubleshooting, 1258, 1353
True value

absolute speed, 1290
relational operators, 208

True/False settings, Yes/No data-
type format, 69

Turbo Browser, 1352
twelve hour clock setting, 68
2NF. See second normal form
two-dimensional charts, 632
two-pass report writer, 467
txt (Text Box), form/report

control naming
convention prefix,
360, 1360

txtTotalPayments, 550
Type index property, Access

project, 929

U
UCase() function, 725
UDF. See user-defined function
uf_ClearForm function, unbound

form, 915
uf_DeleteRecord function,

unbound form, 915
uf_DisplayRecord function,

unbound form, 913–914
uf_FindRecord function, unbound

form, 915, 920
uf_NewRecord function, unbound

form, 915

uf_SaveRecord function, unbound
form, 915

uf_SetEditedFlag function,
unbound form, 915

unattached label control, 376–377
unattached labels in reports,

475–476
unattached text, graphs, 630
unbound combo box, 757–759
unbound controls, 338–340, 355–356
unbound form, 919–920

basUnboundFormUtilities
Module Window, 913

connecting to SQL Server
database, 913

creating, 912–913
definition, 910
displaying data on, 913
example, 911–912
finding records, 919–920
FlagEdited hidden control, 913
FlagFind hidden control, 913
uf_ClearForm function, 915
uf_DeleteRecord function, 915
uf_DisplayRecord function,

913–914
uf_FindRecord function, 915, 920
uf_NewRecord function, 915
uf_SaveRecord function, 915
uf_SetEditedFlag function, 915
UpdateCtr hidden control, 913
updating data, 916–919
when to use, 910–911
xDataSource control, 913
xKey control, 913
xProvider control, 913
xRecordset control, 913

unbound object, 604, 607
Unbound Object Frame control, 545
unbound object frame control, 311
unbound picture, adding to report,

545–547
UNC. See Universal Naming

Convention
Undo Batch Edit form event

property, 684
Undo button

Access window toolbar, 45
Datasheet toolbar, 90

Undo Current Field/Record
command, 104

Undo Saved Record command, 104
Undo Typing command, 104

undoing, change to current
record, 103

Undo/Redo button, Design View
toolbar, 460

unhiding, column, 111
Unicode code page type, 291
Unicode Compression field

property, 63
Unicode Compression property,

linked table, 270
Uniform Resource Locator

(URL), 949
union query, 1260–1261
Unique Records property, 1197
Unique Values property, 1197
uniqueidentifier, SQL Server

data type, 901
Unistat label brand, 576
Universal Naming Convention

(UNC), 1019
Until clause, repetitive looping,

708–709
UnTools, 1352
untrapped errors, 795
unused variables, impact on

absolute speed,
1292–1293

Update Data permission, 1102, 1128
Update Data Users group

account, 1131
Update method, ActiveX Data

Objects, 748
UpdateCtr hidden control,

unbound form, 913
updating data, unbound form,

916–919
updating records with ActiveX

Data Objects, 746
updating rules, multiple-table

query, 189
Upsizing Wizard

Access and SQL Server data
types, 900–901

backing up data, 894
command bars, 909
conversion process, 898–899
converting Access front end

into Access project,
904–906

converting application
interface objects, 897

creating Client/Server
application, 906–909

Continued

1400 Index ✦ U–V

Upsizing Wizard (continued)
creating database structure

without data, 897
data access pages, 909
database permissions, 894
default printer, 894
defaults, 896
forms, 909
indexes, 896
macros, 898, 909
modules, 898, 909
purpose of upsizing, 893–894
queries, 909
renaming tables, 897
report snapshot, 899–900
reports, 909
SQL Server Service Manager, 894
starting, 895–896, 904
table relationships, 896
tables, 909
timestamp fields, 896–897
validation rules, 896
verifying hard drive space

requirements, 894
URL. See Uniform Resource

Locator
Use Transaction property, 1199
USEDEFAULTSAPWD setting, 891
User Manager, 1352
user name, 1117
user profile, 1115
user-defined custom formats

Date/Time settings, 67
Yes/No data-type, 69

user-defined function (UDF)
Access project, 938–942
creating, 939
definition, 722, 938
scalar, 940
table-valued, 941
using in stored procedures,

941–942
user-defined, SQL Server data

type, 901
using multiple tables, data access

page, 1000–1005
using other queries with, 557–558
UTF-7 code page type, 291
UTF-8 code page type, 291

V
Val() function, 725
valid date, 731

validation
automatic, 95
date ranges, 74
definition, 73
entering incorrect data type

into field, 74
Validation Rule field property, 63
Validation Rule property box, 394
validation rules, Upsizing

Wizard, 896
Validation Text constraint

property, Access
project, 931

Validation Text field property, 63
Validation Text index property,

Access project, 930
Validation Text property box, 394
value

copying and pasting, 105
definition, 7
editing techniques, 103
finding and replacing, 105–106
replacing manually, 102
undoing changes, 104

Value List Row Source Type, 411
Var option, Total: row, 1204
varbinary, SQL Server data

type, 901
varchar, SQL Server data type, 901
variables

declaring, 698
Dim statement, 699
naming, 697–698
Private statement, 700
Public statement, 699–700

VBA. See Visual Basic for
Applications

vbAbort constant, 693
vbAbortRetryIgnore

constant, 691
vbApplicationModal

constant, 692
vbCancel constant, 693
vbCritical constant, 692
vbDefaultButton1 constant, 692
vbDefaultButton2 constant, 692
vbDefaultButton3 constant, 692
vbDefaultButton4 constant, 692
vbExclamation constant, 692
vbIgnore constant, 693
vbInformation constant, 692
vbMsgBoxHelpButton

constant, 692

vbMsgBoxRight constant, 692
vbMsgBoxRrlReading

constant, 692
vbMsgBoxSetForeground

constant, 692
vbNo constant, 693
vbOK constant, 693
vbOKCancel constant, 691
vbOKOnly constant, 691
vbQuestion constant, 692
vbRetry constant, 693
vbRetryCancel constant, 692
vbSystemModal constant, 692
VBToolBox, 1352
vbYes constant, 693
vbYesNo constant, 692
vbYesNoCancel constant, 691
verifying hard drive space

requirements, Upsizing
Wizard, 894

Vertical Gridline, 113
vertical scroll bar, 352
View button

Datasheet toolbar, 89
Query Design window, 162

View Compiled File dialog box, 1164
View Query Designer, Access

project, 933
view, saving as data access page,

1026–1027
viewing code sample, Visual Basic,

660–661
viewing options, database object

pane, 43
Visible format property, 431
Visual Basic

Access 2003 Module Help,
672–673

AutoQuick Info, 673
Code window, 669
column numbers, 773
Command Button Wizard,

660–662
compared to macros, 655–656
compiling procedures, 673
converting macros into,

657–659
creating modules, 667–670
creating procedures, 671–672
data types, 700–703
declarations section, 670
Design window, 674–675
DoCmd methods, 659

1401Index ✦ V–Z

editing procedures, 675–676
event-driven environment,

663–664
form and report modules,

665–666
Function procedures, 664–665
Immediate window, 677
Option Explicit statement, 670
saving modules, 673
standard modules, 666–667
Sub procedures, 664
viewing code sample, 660–661
widespread use of, 662–663

Visual Basic Code, 1137–1139
Visual Basic data variable naming

conventions, 1361
Visual Basic for Applications

(VBA), 9, 385
Visual dBase file, 257
V-Tools, 1352

W
wallpaper, impact on absolute

speed, 1281
Watches window, 791–792
watchpoint, 794
.WAV file extension, 331
WBS Chart Pro, 1352
Web browsers, types, 948
Web hyperlink, storing as OLE

object, 97
Web page. See also HyperText

Markup Language
converting to latest version of

Access, 994
storing as OLE object, 97

WebMerge, 1352
week of year setting, 68
Weekday() function, 727
weekday name setting, 68
Western European code page

type, 291
What’s This Button form

property, 367
What’s This? help, 44
WHERE, 739, 743
While clause, repetitive looping,

707–709
Whole Field option, Match

drop-down list, 101
WID. See Workgroup ID

widespread use of Visual Basic,
662–663

Width form property, 367
Width format property, 431
wildcards

using to find data, 101
using with Like operator,

214, 229–232
WinACE, 1352
WinRAR, 1352
window split bar, 183
Windows applications, obtaining

external data from, 248
Windows code page type, 291
WinZIP, 1352
With command, 769
With function, impact on absolute

speed, 1290
.WMF file extension, 434
.WMV file extension, 331
Word file, storing as OLE object, 97
Word Link, 1352
word processing file, importing, 282
Word.Application class

argument, 1089
Word.Document class

argument, 1089
Workgroup Administrator, 1113
Workgroup ID (WID), 1129
workgroup information file, 1102
workgroups, 1112
workspace, 350–351
World Wide Web Consortium

(W3C), 1039
.WPG file extension, 434
writing procedures with ActiveX

Data Objects, 746–748
W3C. See World Wide Web

Consortium

X
xBase database, 257
Xbooks, 1352
xDataSource control, unbound

form, 913
XHTML. See eXtensible HyperText

Markup Language
xKey control, unbound form, 913
.XLS file extension, 262
XML. See eXtensible Markup

Language

XML document, 249, 275, 295
XML schema definition (XSD), 1039
XML Transform, 1026
xProvider control, unbound

form, 913
xRecordset control, unbound

form, 913
XSD. See XML schema definition
.xsd file extension, 1038, 1041
XSL. See eXtensible Stylesheet

Language
XSL transformation (XSLT),

1039, 1042
X2Net WebCompiler, 1352
XY chart, 632

Y
YDM date order, 292
Year 2000 compliancy, Date/Time

date-type format, 67
Year() function, 727
Year property, 650
Yes I Can Run My Business, 1352
Yes value, relational operators, 208
Yes/No data type

automatic data-type
validation, 95

changing other data types to, 62
compared to SQL Server data

type, 900
compared to Visual Basic data

type, 703
controls used with, 315–316
definition, 27, 53
formats, 68–69
rules, 55

Yes/No options, displaying, 403–404
YMD date order, 292

Z
zero (0)

input mask, 71
Numeric custom format, 65
Yes/No data-type format, 68

zero length, 63
Zip Code Companion, 1352
ZipCode Lookup, 1352
Zoom display, image object, 434
Zoom setting, Size Mode

property, 388

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the soft-
ware packet(s) included with this book “Book”. This is a license agreement “Agreement”
between you and Wiley Publishing, Inc. “WPI”. By opening the accompanying software
packet(s), you acknowledge that you have read and accept the following terms and condi-
tions. If you do not agree and do not want to be bound by such terms and conditions,
promptly return the Book and the unopened software packet(s) to the place you obtained
them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license
to use one copy of the enclosed software program(s) (collectively, the “Software,”
solely for your own personal or business purposes on a single computer (whether a
standard computer or a workstation component of a multi-user network). The Software
is in use on a computer when it is loaded into temporary memory (RAM) or installed
into permanent memory (hard disk, CD-ROM, or other storage device). WPI reserves all
rights not expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and
to the compilation of the Software recorded on the disk(s) or CD-ROM “Software
Media”. Copyright to the individual programs recorded on the Software Media is owned
by the author or other authorized copyright owner of each program. Ownership of the
Software and all proprietary rights relating thereto remain with WPI and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes,
or (ii) transfer the Software to a single hard disk, provided that you keep the orig-
inal for backup or archival purposes. You may not (i) rent or lease the Software,
(ii) copy or reproduce the Software through a LAN or other network system or
through any computer subscriber system or bulletin-board system, or (iii) mod-
ify, adapt, or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may
transfer the Software and user documentation on a permanent basis, provided
that the transferee agrees to accept the terms and conditions of this Agreement
and you retain no copies. If the Software is an update or has been updated, any
transfer must include the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual require-
ments and restrictions detailed for each individual program in the About the CD-ROM
appendix of this Book. These limitations are also contained in the individual license
agreements recorded on the Software Media. These limitations may include a require-
ment that after using the program for a specified period of time, the user must pay a
registration fee or discontinue use. By opening the Software packet(s), you will be
agreeing to abide by the licenses and restrictions for these individual programs that
are detailed in the About the CD-ROM appendix and on the Software Media. None of the
material on this Software Media or listed in this Book may ever be redistributed, in
original or modified form, for commercial purposes.

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in mate-
rials and workmanship under normal use for a period of sixty (60) days from the
date of purchase of this Book. If WPI receives notification within the warranty
period of defects in materials or workmanship, WPI will replace the defective
Software Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED
THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFTWARE WILL BE
ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other
rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and work-
manship shall be limited to replacement of the Software Media, which may be
returned to WPI with a copy of your receipt at the following address: Software
Media Fulfillment Department, Attn.: Access 2003 Bible, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow
four to six weeks for delivery. This Limited Warranty is void if failure of the
Software Media has resulted from accident, abuse, or misapplication. Any
replacement Software Media will be warranted for the remainder of the original
warranty period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (includ-
ing without limitation damages for loss of business profits, business interruption,
loss of business information, or any other pecuniary loss) arising from the use of
or inability to use the Book or the Software, even if WPI has been advised of the
possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for
consequential or incidental damages, the above limitation or exclusion may not
apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for
or on behalf of the United States of America, its agencies and/or instrumentalities “U.S.
Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs
(c) (1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR
52.227-19, and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and
revokes and supersedes all prior agreements, oral or written, between them and may
not be modified or amended except in a writing signed by both parties hereto that
specifically refers to this Agreement. This Agreement shall take precedence over any
other documents that may be in conflict herewith. If any one or more provisions con-
tained in this Agreement are held by any court or tribunal to be invalid, illegal, or other-
wise unenforceable, each and every other provision shall remain in full force and effect.

Business is a complete accounting system for small/mid-size businesses. It
is as easy to set up and use and able to handle unlimited transactions.
Contains all standard accounting features including general ledger, banking,
invoices, purchase orders, A/R, A/P, customers, and suppliers all built
around the most incredible inventory system found in a low cost system.

Business! for Microsoft Access is:

¥ Fully Customizable Ñ change anything
¥ Open Source Code Ñ use and learn from the best
¥ Visual Interface Ñ easy to use
¥ Available for Microsoft Access 2003, 2002, 2000, 97
¥ Great User Guides and Tutorials
¥ Power Utilities for exporting, archiving and importing
¥ Wizards for Complex Tasks
¥ 30 Days Free Technical Support

Optional Modules Include:

Payroll Ñ for any size business with state tax tables
POSitively Business Ñ Point of Sale for Business
Mobile Data Collection and Barcoding Ñ Warehouses
PC Charge Credit Card Charge Interface
Developer/VAR Program with Free Marketing Assistance

Prices Start at $995
Call for free brochure and demo CD
or visit www.databasecreations.com

Business! for Microsoft¨ Access
Accounting for Microsoft Access Users

POSitively Businessª

Point-of-Sale for Microsoft Access
We have a truly easy-to-use optionally mouseless interface. The cashier can scan
with one hand and use function keys or the mouse with the other to handle all sales.
Also includes complete cash counting and reconciliation screens and advanced
reporting and security systems. Works with touch screens as well.

Prices Start at $795
(requires Business!)
Call for free brochure and demo CD
or visit www.databasecreations.com

download demos from www.databasecreations.com

Call 1-800-277-3117
Intnl: (860) 644-5891 ¥ Fax: (860) 648-0710
475 Buckland Road, S. WIndsor, CT 06074 USA
www.databasecreations.com

ÒA very well-designed accounting
program.Ó - CPA Software News

www.databasecreations.com

Accounting

Demos

Add-Ons

Hardware

Software

Free Stuff

On-Line
Ordering

475 Buckland Road, S. Windsor, CT 06074

(800) 277-3117
Intnl (860) 644-5891 ¥ Fax: (860) 648-0710
sales@databasecreations.com
www.databasecreations.com

Software Add-Ons Accounting Systems Custom Development
¥ An Exciting Array of Add-Ons for

-Microsoft Access 2003, 2002
-Microsoft Office XP

¥ EZ Access Developers Suite
¥ Pen Based Applications for

Hand Held Devices Using
Windows CE and Palm OS

¥ User Interface Design Tools
-appBuilder
-appWatcher

¥ Surgical Strike Ñ Patch Manager
¥ Image Editor / Picture Libraries

¥ Fully Customizable
¥ All Source Code
¥ Low End and Mid-Size
¥ AllAccounting Features
¥ Optional Point-of-Sale
¥ Payroll Barcoding
¥ Fixed Assets
¥ Handheld PC Inventory
¥ Great User Guides
¥ Credit Cards
¥ Developer Versions
¥ Low Prices

¥ Microsoft Access
¥ SQL Server
¥ Web Development
¥ Financial Applications
¥ Employee Benefits
¥ Developer Tools
¥ Office Automation
¥ Handheld PCs
¥ Health Care
¥ Contact Management
¥ Inventory Management

Visit Our Web Site for More Details...

Demos ¥ Business Products ¥ Developer Tools
Third Party Software ¥ Hardware ¥ Support

Business Partners

From the Author
of this Book...
The WorldÕs Most
Complete Access/Office
Web Site

Database Analysis

Application Design

Programming Development

Data Conversion

Documentation/Training

Data Driven Web Sites

Hire the best. Owned by Cary Prague, author of
the bestselling Access Bible book series, we employ
some of the top Microsoft Access developers and
authors in the world. Our Microsoft Certified
developers can provide you with custom solutions
for your application development needs at
reasonable prices.

We understand your business. We use the latest
tools and technology and have years of experience
in developing systems for many types of industries.
Our clients include Fortune 500 customers,
government agencies and small businesses.

We specialize in anything database for any industry
Ñ mobile data collecting, mapping, and interactive
website development.

Call or e-mail us today and ask for Larry Kasevich,
VP Development, or any of our staff for a FREE
quote and visit our web site for more information.

Custom Business Applications

1-800-277-3117

Inventory ¥ Bar Code ¥ Financial ¥ Proposal Management ¥ Employee Benefits ¥ Contacts
Office Automation ¥ Health Care ¥ Sales Automation ¥ Developer Tools ¥ Handheld PCs

The World's Largest Microsoft ¨ Access add-on company provides
custom development in Microsoft Access, SQL Server and Web Development

475 Buckland Road, S. Windsor, CT 06074

(860) 644-5891
Intnl (860) 644-5891 ¥ Fax: (860) 648-0710
sales@databasecreations.com

www.databasecreations.com

	Access 2003 Bible
	Access 2003 Bible
	Copyright
	About the Author
	Credits
	Preface
	Is This Book for You?
	Yes ¡ª If you have no database experience
	Yes—If you’ve used other database managers

like dBASE or Filemaker
	Yes—If you want to learn the basics of Visual Basic

Applications Edition (VBA) programming

	Conventions Used in This Book
	Icons and Alerts
	How This Book Is Organized
	Part I: Creating Desktop Applications
	Part II: Creating Enterprise Applications
	Part III: Creating Web Applications
	Part IV: Advanced Access Database Topics
	Part V: Appendixes and Reference Material

	Guide to the Examples
	The Main Menu Switchboard
	Understanding the Data Tables
	Understanding the Products Form
	Understanding the Product form subform
	Understanding the Contacts Form
	Using the Invoice form
	Understanding the Search Dialogs
	Understanding the Print Dialogs

	Acknowledgments
	Contents at a Glance
	Contents
	Wiley Publishing, Inc.

End-User License Agreement
	Custom Business Applications

	Part I: Creating Desktop Applications
	Section I: Working with Data Tables and Queries
	Chapter 1: Understanding Data
	The Database Terminology of Access
	What is a database?
	Databases, tables, records, fields, and values

	Using More Than One Table
	Working with multiple tables
	Why you should create multiple tables

	Access Database Objects and Views
	Datasheets
	Queries and dynasets
	Data- entry and display forms
	Reports
	Designing the system¡¯s objects

	The Seven- Step Design Method
	Step 1: The overall design ¡ª From concept to reality
	Step 2: Report design ¡ª Placing your fields
	Step 3: Data design ¡ª What fields do you have?
	Step 4: Table design and relationships
	Step 5: Field design data- entry rules and validation
	Step 6: Form design ¡ª Input
	Step 7: Automation design ¡ª Menus

	Chapter 2: Creating and Building Tables
	Creating Database Tables
	Creating a Database
	Templates Section
	Blank database

	The Database Window
	Objects menu bar
	Groups menu bar
	The Database window toolbar buttons
	The Access window toolbar

	Creating a New Table
	The table design process
	The New Table dialog box
	Creating a new table with a Datasheet View

	The Table Design Window
	Using the Table Design window toolbar
	Working with fields

	Creating the tblContacts Table
	AutoNumber fields and Access
	Completing the tblContacts Table

	Changing a Table Design
	Inserting a new field
	Deleting a field
	Changing a field location
	Changing a field name
	Changing a field size
	Changing a field data type

	Understanding Field Properties
	Entering field- size properties
	Using formats
	Entering formats
	Entering input masks
	The Input Mask Wizard
	Entering decimal places
	Creating a caption
	Setting a default value
	Working with validation
	Understanding the Lookup Property window

	Determining the Primary Key
	Creating a unique key
	Creating the primary key
	The Indexes window
	The Table Properties window

	Printing a Table Design
	Saving the Completed Table
	Manipulating Tables in a Database Window
	Renaming tables
	Deleting tables
	Copying tables in a database
	Copying a table to another database

	Adding Records to a Database Table

	Chapter 3: Entering Data into Tables and Forms
	Understanding Datasheets
	The Datasheet Window
	Moving within a datasheet
	The Navigation buttons
	The Datasheet toolbar

	Opening a Datasheet
	Entering New Data
	Saving the record
	Understanding automatic data- type validation
	Understanding how properties affect data entry

	Navigating Records in a Datasheet
	Moving between records
	Finding a specific value

	Changing Values in a Datasheet
	Replacing an existing value manually
	Changing an existing value
	Fields that you can¡¯t edit

	Using the Undo Feature
	Copying and Pasting Values
	Replacing Values
	Adding New Records
	Deleting Records
	Adding, Changing, and Deleting Columns
	Deleting a column from a datasheet
	Adding a column to a datasheet
	Changing a field name (column header)

	Displaying Records
	Changing the field order
	Changing the field display width
	Changing the record display height
	Displaying cell gridlines
	Changing display fonts
	Hiding and unhiding columns
	Freezing columns
	Saving the changed layout
	Saving a record

	Sorting and Filtering Records in a Datasheet
	Using the QuickSort feature
	Using Filter By Selection
	Using Filter By Form

	Printing Records
	Printing the datasheet
	Using the Print Preview window

	Chapter 4: Creating and Understanding Relationships
	Tables Used in the Access Auto Auctions Database
	Understanding Keys
	Deciding on a primary key
	Benefits of a primary key
	Creating a primary key
	Understanding foreign keys

	Understanding Relations between Tables
	A review of relationships
	Understanding the four types of table relationships

	Understanding Referential Integrity
	Creating Relationships
	Using the Relationships window
	Creating relationships between tables
	Specifying relationship options in the Edit Relationships dialog box
	Finishing the relationships between the tables of the Access Auto Auctions system
	Saving the relationships between tables
	Adding another relationship
	Deleting an existing relationship
	Join lines in the Relationships window
	Printing a report of the relationships

	Using Subdatasheets
	Setting up sub- datasheets

	Chapter 5: Displaying Selected Data with Queries
	Understanding Queries
	What is a query?
	Types of queries
	Query capabilities
	How dynasets work

	Creating a Query
	Selecting a table
	Using the Query window
	Navigating the Query Design window
	Using the Query Design toolbar
	Using the QBE pane of the Query Design window

	Selecting Fields
	Adding a single field
	Adding multiple fields
	Adding all table fields

	Displaying the Dynaset
	Working with the datasheet
	Changing data in the query datasheet
	Returning to the query design

	Working with Fields
	Selecting a field
	Changing field order
	Resizing columns in design mode
	Removing a field
	Inserting a field
	Changing the field display name
	Showing table names
	Showing a field

	Changing the Sort Order
	Specifying a sort

	Displaying Only Selected Records
	Understanding record criteria
	Entering simple character criteria
	Entering other simple criteria

	Printing a Query Dynaset
	Saving a Query
	Adding More than One Table to a Query
	Working with the Table/ Query Pane
	The join line
	Resizing the Table/ Query pane
	Manipulating the Field List window
	Moving a table
	Removing a table
	Adding more tables
	Resizing a Field List window

	Adding Fields from More than One Table
	Adding a single field
	Viewing the table names
	Adding multiple fields at the same time
	Adding all table fields

	Understanding the Limitations of Multiple- Table Queries
	Updating limitations
	Overcoming query limitations

	Creating and Working with Query Joins
	Joining tables
	Specify the type of join
	Deleting joins

	Understanding Types of Table Joins
	Inner joins (Equi- joins)
	Changing join properties
	Inner and outer joins
	Creating a Cartesian product

	Chapter 6: Using Operators and Expressions

in Multi-table Select Queries
	What Are Operators?
	Types of operators
	When are operators used?
	Mathematical operators
	Relational operators
	String operators
	Boolean (logical) operators
	Miscellaneous operators
	Operator precedence

	Moving beyond Simple Queries
	Using query comparison operators
	Understanding complex criteria selection
	Using functions in select queries
	Referencing fields in select queries

	Entering Single- Value Field Criteria
	Entering character (Text or Memo) criteria
	The Like operator and wildcards
	Specifying non- matching values
	Entering numeric (Number, Currency,or Counter) criteria
	Entering Yes/ No (logic) criteria
	Entering a criterion for an OLE object

	Entering Multiple Criteria in One Field
	Understanding an Or operation
	Specifying multiple values for a field using the Or operator
	Using the Or: cell of the QBE pane
	Using a list of values with the In operator
	Understanding an And query
	Specifying a range using the And operator
	Using the Between... And operator
	Searching for Null data

	Entering Criteria in Multiple Fields
	Using And and Or across fields in a query
	Specifying And criteria across fields of a query
	Specifying Or criteria across fields of a query
	Using And and Or together in different fields
	A complex query on different lines

	Creating a New Calculated Field in a Query

	Chapter 7: Working with External Data
	Access and External Data
	Types of external data
	Methods of working with external data
	Should you link to or import data?

	Linking External Data
	Types of database management systems
	Linking to other Access database tables
	Linking to dBASE databases (tables)
	Linking to Paradox tables
	Linking to non- database tables
	Splitting an Access database into two linked databases

	Working with Linked Tables
	Setting view properties
	Setting relationships
	Setting links between external tables
	Using external tables in queries
	Renaming tables
	Optimizing linked tables
	Deleting a linked table reference
	Viewing or changing information for linked tables

	Importing External Data
	Importing other Access objects
	Importing non- Access PC- based database tables
	Importing spreadsheet data
	Importing from word- processing files
	Importing text file data
	Importing HTML tables
	Modifying imported table elements
	Troubleshooting import errors

	Exporting to External Formats
	Exporting objects to other Access databases
	Exporting objects to other external databases or to Excel, HTML, or text files

	Section II: Building Forms and Reports
	Chapter 8: Understanding the Many Uses of Forms and Controls
	Understanding Forms
	What are the basic types of forms?
	How do forms differ from datasheets?
	Creating a form with AutoForm

	Understanding Form Controls
	What Is a Control?
	The different control types

	Standards for Using Controls
	Label controls
	Text box controls
	Toggle buttons, option buttons, and check boxes
	Option groups
	List boxes
	Combo boxes
	Tab controls

	Chapter 9: Building and Manipulating Forms and Controls
	Creating a Form with Form Wizards
	Creating a new form
	Selecting the New Form type and data source
	Choosing the fields
	Choosing the form layout
	Choosing the style of the form
	Creating a form title
	Completing the form

	Changing the Design
	Using the Form Window
	The Form toolbar
	Navigating between fields
	Moving between records in a form

	Displaying Your Data with a Form
	Working with pictures and OLE objects
	Memo field data entry
	Switching to a datasheet

	Saving a Record and the Form
	Printing a Form
	Using the Print Preview window

	Creating New Controls
	Resizing the form area
	The two ways to add a control
	Dragging a field name from the Field List window
	Creating unbound controls with the toolbox

	Selecting Controls
	Deselecting selected controls
	Selecting a single control
	Selecting multiple controls

	Manipulating Controls
	Resizing a control
	Moving a control
	Aligning controls
	Sizing controls
	Grouping controls
	Deleting a control
	Attaching a label to a control
	Copying a control

	Chapter 10: Creating Bound Forms and Placing Controls
	Creating a Data- Entry Form without a Wizard
	Creating a new blank form
	Resizing the form¡¯s workspace
	Understanding the design windows
	Creating a bound form
	Saving the form
	Working with control properties
	Working with form properties

	Placing Bound Fields on a Form
	Displaying the field list
	Selecting the fields for your form

	Adding a Form Header or Footer
	Working with Label Controls and Text Box Controls
	Creating unattached labels
	Modifying the text in a label or text control
	Modifying the format of text in a control
	Sizing a text box control or label control
	Deleting a control
	Moving label and text controls
	Modifying the appearance of multiple controls
	Changing the control type

	Setting the Tab Order
	Using Multiple- Line Text Box Controls for Memo Fields
	Working with Bound Object Frames on a Form
	Creating a Calculated Field
	Fixing a Picture¡¯s Display
	Printing a Form
	Converting a Form to a Report

	Chapter 11: Adding Data-Validation Features to Forms
	Creating Data- Validation Expressions
	Creating status line messages
	Entering table level validation expressions
	Entering validation expressions

	Creating Choices with Option Groups and Buttons
	Creating option groups

	Creating Yes/ No Options
	Creating check boxes

	Creating Visual Selections with Toggle Buttons
	Adding a bitmapped image to the toggle button

	Working with List Boxes and Combo Boxes
	The differences between list boxes and combo boxes
	Settling real- estate issues

	Creating and Using Combo Boxes
	Creating a single- column combo box
	Understanding combo box properties
	Creating a multiple- column combo box

	Chapter 12: Creating Professional-Looking Forms and Reports
	Making a Good Form Look Great
	Understanding visual design
	Using the formatting windows and toolbar
	Creating special effects
	Changing the forms background color

	Enhancing Text- Based Controls
	Enhancing label and text box controls
	Creating a text shadow
	Changing text to a reverse video display and coloring it
	Displaying label or text box control properties

	Displaying Images in Forms
	Working with Lines and Rectangles
	Emphasizing Areas of the Form
	Adding a shadow to a control
	Raising a group of controls
	Changing the header dividing line

	Adding a Background Bitmap
	Using AutoFormat
	Customizing and adding new AutoFormats
	Copying individual formats between controls

	Chapter 13: Understanding and Creating Reports
	Understanding Reports
	What types of reports can you create?
	The difference between reports and forms
	The process of creating a report

	Creating a Report with Report Wizards
	Creating a new report
	Choosing the data source
	Choosing the fields
	Selecting the grouping levels
	Defining the group data
	Selecting the sort order
	Selecting summary options
	Selecting the layout
	Choosing the style
	Opening the report design
	Using the Print Preview window
	Viewing the Report Design window

	Printing a Report
	Saving the Report
	Starting with a Blank Form
	The Design Window toolbar

	Banded Report Writer Concepts
	How sections process data
	The Report Writer sections

	Creating a New Report
	Creating a new report and binding it to a query
	Defining the report page size and layout
	Placing fields on the report
	Resizing a section
	Working with unattached label controls and text
	Working with text boxes and their attached label controls
	Changing label and text box control properties
	Growing and shrinking text box controls
	Sorting and grouping data
	Adding page breaks

	Making the Report Presentation Quality
	Adjusting the Page Header
	Creating an expression in the Group Header
	Changing the picture properties and the Detail section
	Creating a standard page footer
	Saving your report

	Chapter 14: Working with Subforms
	What Is a Subform?
	Understand the data for the sales example

	Creating Subforms with the Form Wizard
	Creating the form and selecting the Form Wizard
	Choosing the fields for the main form
	Selecting the table or query that will be the subform
	Choosing the fields for the subform
	Selecting the form data layout
	Selecting the subform layout
	Selecting the form style
	Selecting the form title
	Displaying the form
	Displaying the main form design
	Linking a form and subform
	Displaying the subform design

	Creating the Sales Invoice Form
	Creating a combo box that retrieves data
	Displaying data from another table in a form

	Creating a Subform Without Wizards
	Working with Continuous Form subforms
	Adding the subform to the main form
	Linking the form and subform
	Referencing controls in subforms
	Creating a simple calculated control

	Chapter 15: Creating Calculations and Summaries in Reports
	Designing a Full- Page Report with Embedded Subforms and Totals
	Designing and creating the query for the report
	Designing test data
	Examining the Invoice report design
	Adding an unbound picture to the report
	Adding the Payments subform
	Creating a subreport reference to a summary control

	Creating a Multilevel Grouping Report with Totals
	Creating a total query
	Creating a query that uses a query
	Creating a new columnar report
	Changing the report design
	Changing the report margins and page setup
	Calculating percentages using totals
	Calculating running sums
	Creating a title page in a report header

	Chapter 16: Presenting Data with Special Report Types
	Creating Mailing Labels
	Selecting the label size
	Selecting the font and color
	Creating the mailing label text and fields
	Sorting the mailing labels
	Displaying the labels in the Print Preview window
	Modifying the label design in the Report Design window
	Printing labels

	Creating Snaked- Column Reports
	Creating the report
	Defining the page setup
	Printing the snaked- column report

	Creating Mail Merge Reports
	Assembling data for a mail merge report
	Creating a mail merge report
	Creating the page header area
	Working with embedded fields in text
	Printing the mail merge report

	Using the Access Mail Merge Wizard for Microsoft Word

	Chapter 17: Using OLE Objects, Graphs, Pivot Tables/Charts, and

ActiveX Controls
	Understanding Objects
	Types of objects
	Using bound and unbound objects
	Linking and embedding

	Embedding Objects
	Embedding an unbound object
	Embedding bound objects
	Adding a bound OLE object
	Adding a picture to a bound object frame
	Editing an embedded object

	Linking Objects
	Linking a bound object

	Creating a Graph or Chart
	The different ways to create a graph
	Customizing the Toolbox

	Embedding a Graph in a Form
	Assembling the data
	Adding the graph to the form

	Customizing a Graph
	Understanding the Graph window
	Working with attached text
	Changing the graph type
	Changing axis labels
	Changing a bar color, pattern, and shape
	Modifying gridlines
	Manipulating three- dimensional graphs

	Integration with Microsoft Office
	Checking the spelling of one or more fields and records
	Correcting your typing automatically when entering data
	Using OLE automation with Office 2003
	Creating an Excel type PivotTable
	Creating a PivotChart

	Using the Calendar ActiveX Control

	Section III: Automating Your Applications
	Chapter 18: Understanding Visual Basic and the VBA Editor
	Migrating from Macros to Visual Basic
	When to use macros and when to use Visual Basic procedures
	Converting existing macros to Visual Basic
	Using the Command Button Wizard to create Visual Basic code

	Creating Programs in Visual Basic for Applications
	Understanding events and event procedures
	Understanding modules
	Creating a new module

	Chapter 19: Introduction to Programming and Events
	Programming Events
	How do events trigger actions?
	Where to trigger event procedures

	Form Event Procedures
	Control Event Procedures
	Opening a form with an event procedure
	Running an event procedure when closing a form
	Using an event procedure to confirm a delete

	Report Event Procedures
	Running an event procedure when a report opens

	Report Section Event Procedures
	Using On Format

	Using Variables
	Naming variables
	Declaring variables

	Working with Data Types
	Understanding Visual Basic Logical
	Constructs
	Conditional processing
	Repetitive looping

	Chapter 20: Working with Expressions and Functions
	What Are Expressions?
	The parts of an expression
	Creating an expression
	Special identifier operators and expressions
	Special keywords and properties

	What Are Functions?
	Using functions in Access
	Types of functions

	Chapter 21: Working with SQL, Recordsets, and ADO
	Understanding SQL
	Viewing SQL statements in queries
	An SQL primer

	Creating Programs to Update a Table
	Updating fields in a record using ADO
	Updating a calculated field for a record
	Adding a new record
	Deleting a record
	Deleting related records in multiple tables

	Chapter 22: Automating, Searches, Filters, and Query Parameters
	Adding an Unbound Combo Box to Select One or More Records
	Using the FindRecord Command to Locate a Record
	Using the Bookmark to Locate a Record
	Filtering a Form Using Code
	Using a Query to Filter a Form Interactively
	Creating a parameter query
	Creating an interactive dialog box
	Linking the dialog box to another form

	Chapter 23: Calling Subprocedures and Functions
	Understanding the Difference Between a Subprocedure and a Function
	Understanding where to create a procedure
	Calling procedures and functions
	Creating a procedure

	Creating Functions
	Handling passed parameters
	Calling a function and passing parameters

	Creating a Function to Calculate Taxes

	Chapter 24: Effective Debugging and Error Handling in VBA .
	Testing and Debugging Your Applications
	VBA Assistance: Auto Quick Info and Auto List Members
	Syntax checking ¡ª The first step

	Compiling Procedures
	Handling Runtime Errors
	Using the Immediate, Locals, and Watches Windows
	Creating a Breakpoint
	Errors
	Types of errors
	The elements of error handling
	VBA error statements

	Logging Errors

	Chapter 25: Creating Switchboards, Command Bars, Menus, Toolbars,

and Dialog Boxes
	Switchboards and Command Buttons
	Using a switchboard
	Creating the basic form for a switchboard
	Working with command buttons
	Creating command buttons
	Linking a command button to a macro
	Adding a picture to a command button

	Working with the Switchboard Manager
	Creating the Report Switchboard

	Creating Custom Menu Bars, Toolbars, and
	Understanding command bars
	Creating custom menu bars with command bars
	Changing existing menus and toolbars
	Creating a new menu bar
	Attaching the menu bar to a form
	Creating shortcut menus
	Creating and using custom toolbars
	Attaching the toolbar to a form
	Adding control tips to any form control
	Starting the switchboard automatically when you open the database

	Creating a Print Report Dialog Box Form
	Creating a form for printing products
	Creating the option group
	Creating two text boxes on the print report form
	Creating command buttons
	Creating the Print event procedures

	Chapter 26: Programming Continuous Forms, Tab Dialogs, and

Command Buttons
	Working with Tab Controls
	Creating a tab control
	Changing the tab control page properties
	Copying controls from a Detail section to a tab control page

	Programming Continuous Forms
	Embedding a subform in a tab control
	Creating code to delete a record from a continuous form
	Creating code to reposition the record pointer between tabs
	Creating code to sort data columns using labels

	Common Code for Common Functions

	Part II: Creating Enterprise Applications
	Section IV: Upsizing to SQL Server and MSDE 2000
	Chapter 27: Upsizing Data to a SQL Server Database
	Understanding MSDE 2000
	Comparing MSDE 2000 and Jet
	Choosing the right database engine

	Installing MSDE 2000
	Hardware requirements
	Software requirements
	Running the SQL Server 2000 Desktop Engine Chapter 27: Upsizing Data to a SQL Server Database
	Customizing the installation of SQL Server 2000 Desktop Engine

	Starting the SQL Server 2000 Desktop Engine
	Using the Upsizing Wizard
	Before upsizing an application
	Starting the Upsizing Wizard

	Chapter 28: Working with Access Projects
	Upsizing to an Access Project
	Starting the Upsizing Wizard
	Using the Upsizing Wizard to create a Client/ Server Application

	Using Unbound Forms
	Working with unbound forms
	Creating an unbound form
	Displaying data on the form
	Updating data
	Finding a record

	Chapter 29: Working with Access Projects and SQL Server Tables

and Queries
	Determining a Project¡¯s Database Name
	Working with Tables
	Working with fields in the Table Design window
	The Table Properties window

	Understanding Project Queries
	Creating views
	Creating stored procedures
	Creating user- defined functions
	Using triggers to automatically update data

	Part III: Creating Web Applications
	Section V: Creating Data Access Pages and Using XML

and InfoPath
	Chapter 30: Using and Creating Access Objects for Intranets

and the Internet
	Types of Web Pages That Access Can Create
	Data access pages
	Working with dynamic and static views of Web- based data

	Exporting Tables, Queries, Forms,and Reports to Web Pages
	Exporting an Access table to static HTML format
	Exporting an Access query datasheet to static HTML format
	Exporting an Access form datasheet to static HTML format
	Changing Page Setup properties for datasheets
	Exporting a datasheet to dynamic HTML format
	Exporting a form to dynamic HTML format
	Processing an IDC/ HTX file on the Web server
	Processing ASP files on the Web server
	Exporting a report to static HTML format
	HTML template files

	Importing and Linking (Read- Only)HTML Tables and Lists
	Importing an HTML table
	Linking to an HTML table

	Using Hyperlinks to Connect Your Application to the Internet
	Using the Hyperlink data type
	Adding a hyperlink to a form, report, or datasheet
	Creating a label using the Insert Hyperlink button

	Chapter 31: Building and Working with Data Access Pages
	Working with the Data Access Pages
	What is a data access page?
	Creating a single table data access page
	Working with multiple tables and grouped pages
	Changing some key properties on data access pages
	Saving other Access objects as data access pages

	Chapter 32: XML, Access, and InfoPath
	Understanding XML
	What is XML?
	What are XML schemas?
	Using XSL to display XML data
	Using XSLT with XML data

	Creating Your Own XML Documents
	The process of creating a simple XML document
	Deciding on the tags for an XML document
	Deciding on the data for an XML document
	Putting the tags and data together
	Creating a multi- table XML document

	Displaying XML Documents in Internet Explorer
	Exporting to XML
	Exporting a table or query to XML
	Exporting linked tables
	Exporting a form to XML
	Exporting a report to XML

	Importing XML Data
	Importing simple, single table XML data
	Importing a single table with OLE Object from an XML document
	Importing multi- table XML data

	InfoPath and Access
	Quick overview of InfoPath
	Creating an XML- Based InfoPath form
	Creating an InfoPath form attached to a database
	Working with an InfoPath form
	Importing an InfoPath XML document into Access

	Part IV: Advanced Access Database Topics
	Chapter 33: Exchanging Data with Office Applications
	Using Automation to Integrate with Office
	Creating Automation references
	Creating an instance of an Automation object
	Getting an existing object instance
	Working with Automation objects
	Closing an instance of an Automation object

	An Automation Example Using Word
	Creating an instance of a Word object
	Making the instance of Word visible
	Creating a new document based on an existing template
	Using Bookmarks to insert data
	Activating the instance of Word
	Moving the cursor in Word
	Closing the instance of the Word object
	Inserting pictures by using Bookmarks
	Using Office¡¯s Macro Recorder

	Chapter 34: Adding Security to Applications
	Understanding Jet Security
	Understanding workgroup files
	Understanding permissions
	Understanding security limitations

	Choosing a Security Level to Implement
	Creating a Database Password
	Using the / runtime Option
	Using a Database¡¯s Startup Options
	Using the Jet User- Level Security Model
	Enabling security
	Working with workgroups
	Working with users
	Working with groups
	Securing objects by using permissions

	Using the Access Security Wizard
	Encrypting a Database
	Decrypting a Database
	Protecting Visual Basic Code
	Preventing Virus Infections
	Enabling sandbox mode

	Chapter 35: Creating Help Systems
	Help Structure
	The Help Viewer
	The Contents tab
	The Topic pane

	Creating a Windows Help System
	Creating Help topics
	Creating a Help project file
	Creating a table of contents
	Creating a Help Index

	Integrating a Help File with Your Application
	Displaying form- level Help
	Displaying control- level Help
	Mapping a Help Context ID to a Help topic
	Testing the HTMLHelp API
	Testing Help in Access
	Displaying the Table of Contents

	Chapter 36: Working with Advanced Select Queries and

 Other Query Topics
	Using Calculated Fields
	Calculated fields and the Expression Builder
	Creating complex calculated fields

	Finding the Number of Records in a Table or Query
	Finding the Top (n) Records in a Query
	How Queries Save Field Selections
	Hiding (not showing) fields
	Renaming fields in queries
	Hiding and unhiding columns in the QBE pane

	Query Design Options
	Setting Query Properties
	Creating Queries That Calculate Totals
	Showing and hiding the Total: row in the QBE pane
	The Total: row options
	Performing totals on all records
	Performing totals on groups of records
	Specifying criteria for a total query
	Creating expressions for totals

	Creating Crosstab Queries
	Understanding the crosstab query
	Creating the crosstab query
	Entering multiple- field row headings
	Specifying criteria for a crosstab query
	Specifying fixed column headings
	The Crosstab Query Wizard

	Chapter 37: Working with Action and SQL Queries
	About Action Queries
	Types of action queries
	Uses of action queries
	The process of action queries
	Viewing the results of an action query
	Reversing action queries

	Creating Action Queries
	Creating an update action query to change values
	Creating a new table using a make- table query
	Creating queries to append records
	Creating a query to delete records
	Creating other queries using the Query Wizards
	Saving an action query
	Running an action query

	Troubleshooting Action Queries
	Data- type errors in appending and updating
	Key violations in action queries
	Record- locked fields in multi- user environments
	Text fields

	SQL- Specific Queries
	Creating union queries
	Creating pass- through queries
	Creating data definition queries
	Creating SQL subqueries in an Access query

	Chapter 38: Increasing the Speed of an Application
	Understanding Module Load on Demand
	Organizing your modules
	Access 2003 prunes the call tree

	Using the Access 2002- 2003 Database File Format
	Distributing . MDE Files
	Understanding the Compiled State
	Putting your application¡¯s code into a compiled state
	Losing the compiled state
	Distributing applications in a compiled or uncompiled state

	Improving Absolute Speed
	Tuning your system
	Getting the most from your tables
	Getting the most from your queries
	Getting the most from your forms and reports
	Getting the most from your modules
	Increasing Network Performance

	Improving Perceived Speed
	Using a splash screen
	Loading and keeping forms hidden
	Using the hourglass
	Using the built- in progress meter
	Creating a progress meter with a pop- up form
	Speeding up the progress meter display

	Working with Large Program Databases or uncompiled state
	How databases grow in size
	Simply compiling and compacting may not be enough
	Rebooting gives you a clean memory map
	Repair does nothing if the database is not corrupt
	You can fix a single corrupt form by removing the record source
	Create a new database and import all of the objects
	The decompile option in Access 2003
	Summary ¡ª six steps to large database success
	An interface for detecting an uncompiled database and automatically recompiling
	Making small changes to large databases ¡ª export

	Chapter 39: Preparing Your Application for Distribution
	Defining the Startup Parameters of the Application
	Application Title
	Application Icon
	Menu Bar
	Allow Full Menus
	Allow Default Shortcut Menus
	Display Form/ Page
	Display Database Window
	Display Status Bar
	Shortcut Menu Bar
	Allow Built- in Toolbars
	Allow Toolbar/ Menu Changes
	Use Access Special Keys
	Testing the application before distribution

	Polishing Your Application
	Giving your application a consistent look and feel
	Adding common professional components
	Creating comprehensive and intuitive menus and toolbars

	Bulletproofing an Application
	Using error trapping on all Visual Basic procedures
	Separating the code objects from the tables in the application
	Documenting the application
	Creating a help system
	Implementing a security structure

	The Access 2003 Developer Extensions
	Using the Package Wizard
	Working with the Property Scanner Add- In

	Part V: Appendixes and Reference Material
	Appendix A: Access 2003 Specifications
	Microsoft Access Database Specifications
	Access Projects Specifications
	Microsoft SQL Server database

	Appendix B: Access Auto Auction Tables
	Table Structures

	Appendix C: Using the CD-ROM Included with the Book
	System Requirements
	Using the CD
	Files and Software on the CD
	Example files for Access 2003 Bible
	eBook version of Access 2003 Bible
	eBook version of Office 2003 Super Bible
	Bonus software
	Software highlights
	Comprehensive list of software
	Related Links
	Other Resources
	ReadMe file

	Troubleshooting

	Appendix D: Using Standard Naming Conventions
	Microsoft Access database object

naming conventions
	Microsoft Access table field naming conventions
	Microsoft Access form/report control

naming conventions
	Microsoft Access Visual Basic variable

naming conventions
	Are naming conventions really necessary in Access?

	Index
	SYMBOLS AND NUMERICS
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

