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Preface

Optimization is central to any problem involving decision making, whether in en-
gineering or in economics. The task of decision making entails choosing between
various alternatives. This choice is governed by our desire to make the "best" de-
cision. The measure of goodness of the alternatives is described by an objective
function or performance index. Optimization theory and methods deal with selecting
the best alternative in the sense of the given objective function.

The area of optimization has received enormous attention in recent years, primarily
because of the rapid progress in computer technology, including the development and
availability of user-friendly software, high-speed and parallel processors, and artificial
neural networks. A clear example of this phenomenon is the wide accessibility of
optimization software tools such as the Optimization Toolbox of MATLAB1 and the
many other commercial software packages.

There are currently several excellent graduate textbooks on optimization theory
and methods (e.g., [3], [26], [29], [36], [64], [65], [76], [93]), as well as undergraduate
textbooks on the subject with an emphasis on engineering design (e.g., [1] and [79]).
However, there is a need for an introductory textbook on optimization theory and
methods at a senior undergraduate or beginning graduate level. The present text
was written with this goal in mind. The material is an outgrowth of our lecture
notes for a one-semester course in optimization methods for seniors and beginning

1 MATLAB is a registered trademark of The Math Works, Inc. For MATLAB product information, please
contact: The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA, 01760-2098 USA. Tel: 508-647-7000,
Fax: 508-647-7101, E-mail: info@mathworks.com, Web: www.mathworks.com

xiii



XIV PREFACE

graduate students at Purdue University, West Lafayette, Indiana. In our presentation,
we assume a working knowledge of basic linear algebra and multivariable calculus.
For the reader's convenience, a part of this book (Part I) is devoted to a review of
the required mathematical background material. Numerous figures throughout the
text complement the written presentation of the material. We also include a variety
of exercises at the end of each chapter. A solutions manual with complete solutions
to the exercises is available from the publisher to instructors who adopt this text.
Some of the exercises require using MATLAB. The student edition of MATLAB
is sufficient for all of the MATLAB exercises included in the text. The MATLAB
source listings for the MATLAB exercises are also included in the solutions manual.

The purpose of the book is to give the reader a working knowledge of optimization
theory and methods. To accomplish this goal, we include many examples that illus-
trate the theory and algorithms discussed in the text. However, it is not our intention
to provide a cookbook of the most recent numerical techniques for optimization;
rather, our goal is to equip the reader with sufficient background for further study of
advanced topics in optimization.

The field of optimization is still a very active research area. In recent years,
various new approaches to optimization have been proposed. In this text, we have
tried to reflect at least some of the flavor of recent activity in the area. For example,
we include a discussion of genetic algorithms, a topic of increasing importance in the
study of complex adaptive systems. There has also been a recent surge of applications
of optimization methods to a variety of new problems. A prime example of this is
the use of descent algorithms for the training of feedforward neural networks. An
entire chapter in the book is devoted to this topic. The area of neural networks
is an active area of ongoing research, and many books have been devoted to this
subject. The topic of neural network training fits perfectly into the framework of
unconstrained optimization methods. Therefore, the chapter on feedforward neural
networks provides not only an example of application of unconstrained optimization
methods, but it also gives the reader an accessible introduction to what is currently a
topic of wide interest.

The material in this book is organized into four parts. Part I contains a review
of some basic definitions, notations, and relations from linear algebra, geometry,
and calculus that we use frequently throughout the book. In Part II we consider
unconstrained optimization problems. We first discuss some theoretical foundations
of set-constrained and unconstrained optimization, including necessary and sufficient
conditions for minimizers and maximizers. This is followed by a treatment of vari-
ous iterative optimization algorithms, together with their properties. A discussion of
genetic algorithms is included in this part. We also analyze the least-squares opti-
mization problem and the associated recursive least-squares algorithm. Parts III and
IV are devoted to constrained optimization. Part III deals with linear programming
problems, which form an important class of constrained optimization problems. We
give examples and analyze properties of linear programs, and then discuss the simplex
method for solving linear programs. We also provide a brief treatment of dual linear
programming problems. We wrap up Part III by discussing some non-simplex algo-
rithms for solving linear programs: Khachiyan's method, the affine scaling method,
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and Karmarkar's method. In Part IV we treat nonlinear constrained optimization.
Here, as in Part II, we first present some theoretical foundations of nonlinear con-
strained optimization problems. We then discuss different algorithms for solving
constrained optimization problems.

While we have made every effort to ensure an error-free text, we suspect that some
errors remain undetected. For this purpose, we provide on-line updated errata that
can be found at the web site for the book, accessible via:

http://www.wiley.com/mathematics

We are grateful to several people for their help during the course of writing this
book. In particular, we thank Dennis Goodman of Lawrence Livermore Laboratories
for his comments on early versions of Part II, and for making available to us his
lecture notes on nonlinear optimization. We thank Moshe Kam of Drexel University
for pointing out some useful references on non-simplex methods. We are grateful
to Ed Silverman and Russell Quong for their valuable remarks on Part I of the first
edition. We also thank the students of EE 580 for their many helpful comments
and suggestions. In particular, we are grateful to Christopher Taylor for his diligent
proofreading of early manuscripts of this book. This second edition incorporates
many valuable suggestions of users of the first edition, to whom we are grateful.
Finally, we are grateful to the National Science Foundation for supporting us during
the preparation of the second edition.

E. K. P. CHONG AND S. H. ZAK
Fort Collins, Colorado, and West Lafayette, Indiana
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1
Methods of Proof and Some

Notation

1.1 METHODS OF PROOF

Consider two statements, "A" and "B," which could be either true or false. For
example, let "A" be the statement "John is an engineering student," and let "B" be the
statement "John is taking a course on optimization." We can combine these statements
to form other statements, like "A and B" or "A or B." In our example, "A and B"
means "John is an engineering student, and he is taking a course on optimization."
We can also form statements like "not A," "not B," "not (A and B)," and so on. For
example, "not A" means "John is not an engineering student." The truth or falsity of
the combined statements depend on the truth or falsity of the original statements, "A"
and "B." This relationship is expressed by means of truth tables; see Tables 1.1 and
1.2.

From Tables 1.1 and 1.2, it is easy to see that the statement "not (A and B)" is
equivalent to "(not A) or (not B)" (see Exercise 1.3). This is called DeMorgan 's law.

In proving statements, it is convenient to express a combined statement by a
conditional, such as "A implies B," which we denote "A=>B." The conditional "A=>B"
is simply the combined statement "(not A) or B," and is often also read "A only if B,"
or "if A then B," or "A is sufficient for B," or "B is necessary for A."

We can combine two conditional statements to form a biconditional statement
of the form "A B," which simply means "(A=>B) and (B=>A)." The statement
"A B" reads "A if and only if B," or "A is equivalent to B," or "A is necessary and
sufficient for B." Truth tables for conditional and biconditional statements are given
in Table 1.3.

1



2 METHODS OF PROOF AND SOME NOTATION

Table 1.1 Truth Table for "A and B" and "A or B'

A

F
F
T
T

B

F
T
F
T

A and B

F
F
F
T

A or B

F
T
T
T

Table 1.2 Truth Table for "not A"

A not A

F T
T F

Table 1.3 Truth Table for Conditionals and Biconditionals

A

F
F
T
T

B

F
T
F
T

A=>B

T
T
F
T

A<=B

T
F
T
T

A B

T
F
F
T

It is easy to verify, using the truth table, that the statement "A=>B" is equivalent to
the statement "(not B)=>(not A)." The latter is called the contrapositive of the former.

If we take the contrapositive to DeMorgan's Law, we obtain the assertion that "not
(A or B)" is equivalent to "(not A) and (not B)."

Most statements we deal with have the form "A=>B." To prove such a statement,
we may use one of the following three different techniques:

1. The direct method

2. Proof by contraposition

3. Proof by contradiction or reductio ad absurdum.

In the case of the direct method, we start with "A," then deduce a chain of various
consequences to end with "B."
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A useful method for proving statements is proof by contraposition, based on the
equivalence of the statements "A=>B" and "(not B)=>(not A)." We start with "not B,"
then deduce various consequences to end with "not A" as a conclusion.

Another method of proof that we use is proof by contradiction, based on the
equivalence of the statements "A=>B" and "not (A and (not B))." Here we begin with
"A and (not B)" and derive a contradiction.

Occasionally, we use the principle of induction to prove statements. This principle
may be stated as follows. Assume that a given property of positive integers satisfies
the following conditions:

• The number 1 possesses this property;

• If the number n possesses this property, then the number n + 1 possesses it
too.

The principle of induction states that under these assumptions any positive integer
possesses the property.

The principle of induction is easily understood using the following intuitive argu-
ment. If the number 1 possesses the given property then the second condition implies
that the number 2 possesses the property. But, then again, the second condition im-
plies that the number 3 possesses this property, and so on. The principle of induction
is a formal statement of this intuitive reasoning.

For a detailed treatment of different methods of proof, see [94].

1.2 NOTATION

Throughout, we use the following notation. If X is a set, then we write x € X to
mean that x is an element of X. When an object x is not an element of a set X, we
write x X. We also use the "curly bracket notation" for sets, writing down the
first few elements of a set followed by three dots. For example, {x 1 ,x 2 ,x 3 , . . .} is
the set containing the elements x1, x2, x3, and so on. Alternatively, we can explicitly
display the law of formation. For example, {x : x € R, x > 5} reads "the set of
all x such that x is real and x is greater than 5." The colon following x reads "such
that." An alternative notation for the same set is {x € R : x > 5}.

If X and Y are sets, then we write X C Y to mean that every element of X is also
an element of Y. In this case, we say that X is a subset of Y. If X and Y are sets,
then we denote by X \ Y ("X minus Y") the set of all points in X that are not in Y.
Note that X \ Y is a subset of X. The notation / : X Y means "f is a function
from the set X into the set Y" The symbol := denotes arithmetic assignment. Thus,
a statement of the form x := y means "x becomes y." The symbol = means "equals
by definition."

Throughout the text, we mark the end of theorems, lemmas, propositions, and
corollaries using the symbol . We mark the end of proofs, definitions, and examples
by .
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We use the IEEE style when citing reference items. For example, [77] represents
reference number 77 in the list of references at the end of the book.

EXERCISES

1.1 Construct the truth table for the statement "(not B)=>(not A)," and use it to show
that this statement is equivalent to the statement "A=>B."

1.2 Construct the truth table for the statement "not (A and (not B))," and use it to
show that this statement is equivalent to the statement "A=>B."

1.3 Prove DeMorgan's Law by constructing the appropriate truth tables.

1.4 Prove that for any statements A and B, we have "A (A and B) or (A and (not
B))." This is useful because it allows us to prove a statement A by proving the two
separate cases "(A and B)," and "(A and (not B))." For example, to prove that |x| > x
for any x e R, we separately prove the cases "|x| > x and x > 0," and "|x| > x
and x < 0." Proving the two cases turns out to be easier than directly proving the
statement |x| > x (see Section 2.4 and Exercise 2.4).

1.5 (This exercise is adopted from [17, pp. 80-81]) Suppose you are shown four
cards, laid out in a row. Each card has a letter on one side and a number on the other.
On the visible side of the cards are printed the symbols:

S8 3 A

Determine which cards you should turn over to decide if the following rule is true
or false: "If there is a vowel on one side of the card, then there is an even number on
the other side."
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Vector Spaces and Matrices

2.1 REAL VECTOR SPACES

We define a column n-vector to be an array of n numbers, denoted

The number ai is called the ith component of the vector a. Denote by R the set of
real numbers, and by Rn the set of column n-vectors with real components. We call
Rn an n-dimensional real vector space. We commonly denote elements of Rn by
lower-case bold letters, e.g., x. The components of x € Rn are denoted x 1 , . . . , xn.

We define a row n-vector as

5

The transpose of a given column vector a is a row vector with corresponding elements,
denoted aT. For example, if

then
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Equivalently, we may write a = [ a 1 , a 2 , . . . , an]
T. Throughout the text, we adopt

the convention that the term "vector" (without the qualifier "row" or "column") refers
to a column vector.

Two vectors a = [ a 1 , a 2 , . . . , an]
T and b = [b1,b2, ........,bn]T are equal if ai = bi,

i = 1,2, . . . ,n .
The sum of the vectors a and b, denoted a + b, is the vector

The operation of addition of vectors has the following properties:

1. The operation is commutative:

2. The operation is associative:

3. There is a zero vector

such that

The vector

is called the difference between a and 6, and is denoted a — b.
The vector 0 — b is denoted —b. Note that

The vector 6 — a is the unique solution of the vector equation

Indeed, suppose x = [ x 1 , x2, .......,xn]
T is a solution to a + x = b. Then,

and thus
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We define an operation of multiplication of a vector a € Rn by a real scalar a e R
as

This operation has the following properties:

1. The operation is distributive: for any real scalars a and b,

2. The operation is associative:

3. The scalar 1 satisfies:

4. Any scalar a satisfies:

5. The scalar 0 satisfies:

6. The scalar —1 satisfies:

Note that aa = 0 if and only if a = 0 or a — 0. To see this, observe that aa = 0
is equivalent to aa1 = aa2 = • • • = aan = 0. If a = 0 or a = 0, then aa = 0. If
a 0, then at least one of its components ak 0. For this component, aak = 0,
and hence we must have a = 0. Similar arguments can be applied to the case when
a 0.

A set of vectors (a1 , . . . , ak } is said to be linearly independent if the equality

implies that all coefficients ai, i = 1,... ,k, are equal to zero. A set of the vectors
{a1,..., ak} is linearly dependent if it is not linearly independent.

Note that the set composed of the single vector 0 is linearly dependent, for if
a 0 then a0 = 0. In fact, any set of vectors containing the vector 0 is linearly
dependent.

A set composed of a single nonzero vector a 0 is linearly independent since
aa = 0 implies a = 0.

A vector a is said to be a linear combination of vectors a1, a 2 , . . . , ak if there are
scalars a 1 , . . . , ak such that
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Proposition 2.1 A set of vectors {a1, a 2 , . . . , ak } is linearly dependent if and only
if one of the vectors from the set is a linear combination of the remaining vectors.

Proof. =>: If {a1, a 2 , . . . , ak} is linearly dependent then

<=: Suppose
a1 = a2a2+a3a3 +........+akak,

then
(-l)a1 + a2a2 +........+akak = 0.

Because the first scalar is nonzero, the set of vectors {a1, a 2 , . . . , ak} is linearly
dependent. The same argument holds if ai, i = 2 , . . . , k, is a linear combination of
the remaining vectors.

A subset V of Rn is called a subspace of Rn if V is closed under the operations
of vector addition and scalar multiplication. That is, if a and 6 are vectors in V, then
the vectors a + b and aa are also in V for every scalar a.

Every subspace contains the zero vector 0, for if a is an element of the subspace,
so is (—l)a = -a. Hence, a - a = 0 also belongs to the subspace.

Let a1, a 2 , . . . , ak be arbitrary vectors in Rn. The set of all their linear combina-
tions is called the span of a1, a2,..., ak and is denoted

Given a vector a, the subspace span [a] is composed of the vectors aa, where a is
an arbitrary real number (a e R). Also observe that if a is a linear combination of
a1,a2, ........, ak then

where at least one of the scalars ai 0, whence

The span of any set of vectors is a subspace.
Given a subspace V, any set of linearly independent vectors {a1, a 2 , . . . , ak} C V

such that V = span[a1, a 2 , . . . , ak] is referred to as a basis of the subspace V. All
bases of a subspace V contain the same number of vectors. This number is called the
dimension of V, denoted dim V.

Proposition 2.2 If {a1 , a2,..., ak} is a basis of V, then any vector a of V can be
represented uniquely as
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where ai e R, i = 1,2,.. . , k.

Proof. To prove the uniqueness of the representation of a in terms of the basis
vectors, assume that

and

We now show that ai = bi, i = 1,. . . , k. We have

or

Because the set {ai : i = 1,2,... , k} is linearly independent, a1 — b1 = a2 — b2 =
• • • = ak - bk = 0, that is, ai = bi, i = 1,..., k.

Suppose we are given a basis {a1 ,a2 , . . . , ak } of V and a vector a e V such that

The coefficients ai, i = 1,..., k, are called the coordinates of a with respect to the
basis {al,a2,... , ak}.

The natural basis for Rn is the set of vectors

The reason for calling these vectors the natural basis is that

We can similarly define complex vector spaces. For this, let C denote the set of
complex numbers, and Cn the set of column n-vectors with complex components.
As the reader can easily verify, the set Cn has similar properties to Rn, where scalars
can take complex values.
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2.2 RANK OF A MATRIX

A matrix is a rectangular array of numbers, commonly denoted by upper-case bold
letters, e.g., A. A matrix with m rows and n columns is called an m x n matrix, and
we write

Let us denote the kth column of A by ak, that is,

The maximal number of linearly independent columns of A is called the rank of the
matrix A, denoted rank A. Note that rank A is the dimension of span [a 1 , . . . , an].

Proposition 2.3 The rank of a matrix A is invariant under the following operations:

1. Multiplication of the columns of A by nonzero scalars,

2. Interchange of the columns,

3. Addition to a given column a linear combination of other columns.

Proof.

1. Let bk = akak , where ak 0, k = 1,..., n, and let B = [b1,b2, ......., bn].
Obviously

span[a1,a2,...,an] = span[b1,b2, • • • ,bn],

and thus

2. The number of linearly independent vectors does not depend on their order.

3. Let
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So, for any a 1 , . . . , an,

a1b1 + a2b2 +.........+anbn = a1a1 + (a2 + a1c2)a2 +.......+ (an + a1cn)an,

and hence

On the other hand

Hence,

Therefore,

Associated with each square (n x n) matrix A is a scalar called the determinant of
the matrix A, denoted det A or | A|. The determinant of a square matrix is a function
of its columns and has the following properties:

1. The determinant of the matrix A = [a1 ,a2 , . . . ,an] is a linear function of
each column, that is,

for each a,b e R, ak
(1), ak

(2) e Rn.

2. If for some k we have ak = ak+1, then

det A = det[a1 , . . . , ak, ak+1, ......, an] = det[a1 , . . . , ak, a k , . . . , an] = 0.

3. Let

where {e1,..., en} is the natural basis for Rn. Then,
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Note that if a = b = 0 in property 1, then

Thus, if one of the columns is 0, then the determinant is equal to zero.
The determinant does not change its value if we add to a column another column

multiplied by a scalar. This follows from properties 1 and 2 as shown below:

However, the determinant changes its sign if we interchange columns. To show
this property note that

A pth-order minor of an m x n matrix A, with p < min(m, n), is the determinant
of a p x p matrix obtained from A by deleting m— p rows and n — p columns.

One can use minors to investigate the rank of a matrix. In particular, we have the
following proposition.

Proposition 2.4 If an m x n (m > n) matrix A has a nonzero nth-order minor, then
the columns of A are linearly independent, that is, rank A = n.

Proof. Suppose A has a nonzero nth-order minor. Without loss of generality, we
assume that the nth-order minor corresponding to the first n rows of A is nonzero.
Let xi, i = 1,..., n, be scalars such that

The above vector equality is equivalent to the following set of m equations:
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Fori = 1,... ,n, let

Then, x1a1 +.....+ xnan = 0.
The nth-order minor is det[a1, a 2 , . . . , an], assumed to be nonzero. From the

properties of determinants it follows that the columns a1, a 2 , . . . , an are linearly in-
dependent. Therefore, all xi = 0, i = 1 , . . . , n. Hence, the columns a1, a 2 , . . . , an

are linearly independent.

From the above it follows that if there is a nonzero minor, then the columns
associated with this nonzero minor are linearly independent.

If a matrix A has an rth-order minor |M| with the properties (i) |M| 0 and (ii)
any minor of A that is formed by adding a row and a column of A to M is zero, then

rank A = r.

Thus, the rank of a matrix is equal to the highest order of its nonzero minor(s).
A nonsingular (or invertible) matrix is a square matrix whose determinant is

nonzero.
Suppose that A is an n x n square matrix. Then, A is nonsingular if and only if

there is another n x n matrix B such that

AB = BA = In,

where In denotes the n x n identity matrix:

We call the above matrix B the inverse matrix of A, and write B = A-1.
Consider the m x n matrix

The transpose of A, denoted AT, is the n x m matrix

that is, the columns of A are the rows of AT, and vice versa. A matrix A is symmetric
if A = AT.
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2.3 LINEAR EQUATIONS

Suppose we are given m equations in n unknowns of the form

Associated with the above system of equations are the following matrices

Theorem 2.1 The system of equations Ax = 6 has a solution if and only if

rank A = rank[A b].

Proof. =>: Suppose the system Ax = b has a solution. Therefore, b is a linear
combination of the columns of A, that is, there exist x 1 , . . . , xn such that x1a1 +
x2a2 + • • • + xnan = b. It follows that b belongs to span[a1,..., an] and hence

rank A = dim span[a1,..., an]

= dim span[a1,... ,an, b]

= rank[A b].

We can represent the above set of equations as a vector equation

where

and an augmented matrix

We can also represent the above system of equations as

where
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<=: Suppose that rank A = rank[Ab] = r. Thus, we have r linearly independent
columns of A. Without loss of generality, let a1 ,a2 , . . . ,ar be these columns.
Therefore, a1, a 2 , . . . , ar are also linearly independent columns of the matrix [A b].
Because rank[A b] = r, the remaining columns of [A b] can be expressed as
linear combinations of a1, a 2 , . . . , ar. In particular, b can be expressed as a linear
combination of these columns. Hence, there exist x1, . . . ,x n such that x1a1 +
x2a2 + • • • + xnan = b.

Let the symbol Rmxn denote the set of m x n matrices whose elements are real
numbers.

Theorem 2.2 Consider the equation Ax = b, where A e Rm x n , and rank A = m.
A solution to Ax = b can be obtained by assigning arbitrary values for n — m
variables and solving for the remaining ones.

Proof. We have rank A = m, and therefore we can find m linearly independent
columns of A. Without loss of generality, let a 1 ,a 2 , . . . , am be such columns.
Rewrite the equation Ax — b as

Assign to xm+1, xm + 2 , . . . , xn arbitrary values, say

and let

Note that det B 0. We can represent the above system of equations as

The matrix B is invertible, and therefore we can solve for [x1, x2 ,........, xm]T. Specif-
ically,
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2.4 INNER PRODUCTS AND NORMS

The absolute value of a real number a, denoted \a\, is defined as

The following formulas hold:

1. |a| = |-a|;

2. -|a| < a < |a|;

3. |a + b| < |a| + |b|;

4. ||a| -Ib|| < |a - b| < |a| + |b|;

5. |ab| = |a||b|;

6. |a| < c and |b| < d imply |a + b| < c + d;

7. The inequality |a| < b is equivalent to — b < a < b (i.e., a < b and —a < 6).
The same holds if we replace every occurrence of "<" by "<."

8. The inequality |a| > b is equivalent to a > b or — a > b. The same holds if we
replace every occurrence of ">" by ">."

For x, y e Rn, we define the Euclidean inner product by

The inner product is a real-valued function : Rn xRn R having the following
properties:

1. Positivity: <x,x> > 0, <x,x> = 0 if and only if x = 0;

2. Symmetry: <x ,y> = <y,x>;

3. Additivity: <x + y , z> = <x,z> + <y,z>;

4. Homogeneity: < rx , y> = r<x,y> for every r e R.

The properties of additivity and homogeneity in the second vector also hold, that
is,
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The above can be shown using properties 2 to 4. Indeed,

and

It is possible to define other real-valued functions on Rn x Rn that satisfy properties
1 to 4 above (see Exercise 2.5). Many results involving the Euclidean inner product
also hold for these other forms of inner products.

The vectors x and y are said to be orthogonal if <x, y> = 0.
The Euclidean norm of a vector x is defined as

Theorem 2.3 Cauchy-Schwarz Inequality. For any two vectors x and y in Rn, the
Cauchy-Schwarz inequality

holds. Furthermore, equality holds if and only if x = ay for some a e R

Proof. First assume that x and y are unit vectors, that is, \\x\\ = \\y\\ = 1. Then,

or

with equality holding if and only if x = y.
Next, assuming that neither x nor y is zero (for the inequality obviously holds

if one of them is zero), we replace x and y by the unit vectors x/||x|| and y//||y||.
Then, apply property 4 to get

Now replace x by — x and again apply property 4 to get

The last two inequalities imply the absolute value inequality. Equality holds if and
only if x/||x|| = ±y/||y||, that is, x = ay for some a e R

The Euclidean norm of a vector ||x;|| has the following properties:
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1. Positivity: ||x|| > 0, ||x|| = 0 if and only if x = 0;

2. Homogeneity: ||rx|| = |r|||x||,r € R;

3. Triangle Inequality: ||x + y|| < ||x|| + ||y||.

The triangle inequality can be proved using the Cauchy-Schwarz inequality, as
follows. We have

By the Cauchy-Schwarz inequality,

and therefore

Note that if x and y are orthogonal, that is, (x, y) = 0, then

which is the Pythagorean theorem for Rn.
The Euclidean norm is an example of a general vector norm, which is any func-

tion satisfying the above three properties of positivity, homogeneity, and triangle
inequality. Other examples of vector norms on Rn include the 1-norm, defined by
||x||1 = |x1| + ........ + |xn|, and the -norm, defined by ||x|| = maxi |xi|. The
Euclidean norm is often referred to as the 2-norm, and denoted ||x||2. The above
norms are special cases of the p-norm, given by

We can use norms to define the notion of a continuous function, as follows. A
function f : Rn Rm is continuous at x if for all e > 0, there exists 6 > 0 such
that ||y — x|| < d ||f(y) — f ( x ) | | < e. If the function / is continuous at every
point in Rn, we say that it is continuous on Rn. Note that f = [ f 1 , . . . , fm]T is
continuous if and only if each component fi, i = 1,. . . , m, is continuous.

For the complex vector space C n , w e define an inner product <x,y> to be
xiyi, where the bar over yi denotes complex conjugation. The inner prod-

uct on Cn is a complex valued function having the following properties:

1. <x,x> > 0, <x,x> = 0 if and only if x = 0;

2. < x , y > = <y,x>;

3. <x + y , z > = <x,z> + <y,z>;

4. <rx, y> = r<x, y>, where r e C.
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From properties 1 to 4, we can deduce other properties, such as

where r1,r2 e C. For Cn, the vector norm can similarly be defined by ||x||2 =
(x, x). For more information, consult Gel'fand [33].

EXERCISES

2.1 Let A e Rmxn and rank A = m. Show that m < n.

2.2 Prove that the system Ax = b, A e Rm x n , has a unique solution if and only if
rank A = rank[A b] = n.

2.3 (Adapted from [25]) We know that if k > n +1, then the vectors a1, a 2 , . . , ak e
Rn are linearly dependent, that is, there exist scalars a1 , . . . , ak such that at least
one ai 0 and Sk

i=1 aiai = 0. Show that if k > n + 2, then there exist scalars

a 1 , . . . , ak such that at least one a i 0, Sk
i=1 aiai =0 and Sk

i=1 ai = 0.
Hint: Introduce the vectors ai = [1, aT

i ]
T e Rn+1, i = 1 , . . . , k, and use the fact

that any n + 2 vectors in Rn+1 are linearly dependent.

2.4 Prove the seven properties of the absolute value of a real number.

2.5 Consider the function (., .)2 : R2 x R2 . R, defined by (x,y)2 = 2 x1y l +
3x2y1 + 3x1y2 + 5x2y2, where x = [x1,x2]

T and y = [y1 ,y2]T . Show that (., .)2
satisfies conditions 1 to 4 for inner products.
Note: This is a special case of Exercise 3.14.

2.6 Show that for any two vectors x, y € Rn, |||x|| — ||y||| < ||x — y||.
Hint: Write x = (x — y) + y, and use the triangle inequality. Do the same for y.

2.7 Use Exercise 2.6 to show that the norm || • || is a uniformly continuous function,
that is, for all e > 0, there exists d > 0 such that if ||x-y|| < d, then |||x|| — ||y|| < e.
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3_
Transformations

3.1 LINEAR TRANSFORMATIONS

A function : Rn Rm is called a linear transformation if

1. (ax) = a (x) for every x € Rn and a e R; and

2. (x + y) = (x) + (y) for every x, y e Rn.

If we fix the bases for Rn and Rm, then the linear transformation £ can be
represented by a matrix. Specifically, there exists A e Rmxn such that the following
representation holds. Suppose x e Rn is a given vector, and x' is the representation
of x with respect to the given basis for Rn. If y = (x) , and y' is the representation
of y with respect to the given basis for Rm, then

We call A the matrix representation of £ with respect to the given bases for Rn and
Rm. In the special case where we assume the natural bases for Rn and Rm, the
matrix representation A satisfies

Let {e1, e 2 , . . . , en} and {e'1, e'2,..., e'n} be two bases for Rn. Define the matrix

We call T the transformation matrix from {e 1 , e 2 , . . . , en} to {e'1, e'2,....... e'n}. It
is clear that

21
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that is, the ith column of T is the vector of coordinates of ei with respect to the basis
{e'1,e'2,... ,e'n}.

Fix a vector in Rn, and let x be the column of the coordinates of the vector with
respect to {e1, e 2 , . . . , en}, and x' the coordinates of the same vector with respect
to {e'1, e ' 2 , . . . , e'n}. Then, we can show that x' = Tx (see Exercise 3.1).

Consider a linear transformation

and let A be its representation with respect to {e1, e 2 , . . . , en}, and B its represen-
tation with respect to {e'1, e'2,..., e'n}. Let y = Ax and y' = Bx'. Therefore,
y' = Ty = TAx = Bx' = BTx, and hence TA = BT, or A = T-1 BT.

Two n x n matrices A and B are similar if there exists a nonsingular matrix T
such that A = T-1 BT. In conclusion, similar matrices correspond to the same
linear transformation with respect to different bases.

3.2 EIGENVALUES AND EIGENVECTORS

Let A be an n x n square matrix. A scalar A (possibly complex) and a nonzero
vector v satisfying the equation Av =lv are said to be, respectively, an eigenvalue
and eigenvector of A. For A to be an eigenvalue it is necessary and sufficient for the
matrix lI — A to be singular, that is, det[lI — A] = 0, where / is the n x n identity
matrix. This leads to an nth-order polynomial equation

We call the polynomial det[lI — A] the characteristic polynomial of the matrix A,
and the above equation the characteristic equation. According to the fundamental
theorem of algebra, the characteristic equation must have n (possibly nondistinct)
roots that are the eigenvalues of A. The following theorem states that if A has n
distinct eigenvalues, then it also has n linearly independent eigenvectors.

Theorem 3.1 Suppose the characteristic equation det[lI — A] = 0 has n distinct
roots l1, l2,..., ln. Then, there exist n linearly independent vectors v 1 , v 2 , • • • ,vn

such that

Proof. Because det[liI — A] = 0, i — l , . . . ,n , there exist nonzero vi, i =
1,. . . , n, such that Avi = l iv i,i = l , . . . ,n . We now prove linear independence
of {v1 , v2,..., vn}. To do this, let c1, . . . , cn be scalars such that Sn

i=1 civi = 0.
We show that ci = 0, i = 1,. . . , n.

Consider the matrix
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We first show that c1 = 0. Note that

since lnvn — Avn = 0.
Repeating the above argument, we get

But

Using the above equation, we see that

Because the li are distinct, it must follow that c1 = 0.
Using similar arguments, we can show that all ci must vanish, and therefore the

set of eigenvectors {v1 ,v2 , . . . ,vn} is linearly independent.

Consider a basis formed by a linearly independent set of eigenvectors
{v1,v2, • • •, vn}. With respect to this basis, the matrix A is diagonal (i.e., if
aij is the (i, j)th element of A, then aij = 0 for all i j). Indeed, let

Then,
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because T-1T = I.
Let us now consider symmetric matrices.

Theorem 3.2 All eigenvalues of a symmetric matrix are real.

Proof. Let

where x 0. Taking the inner product of Ax with x yields

On the other hand

The above follows from the definition of the inner product on Cn. We note that
(x, x) is real and (x, x) > 0. Hence,

and

Because (x, x) > 0,

Thus, A is real.

Theorem 3.3 Any real symmetric n x n matrix has a set of n eigenvectors that are
mutually orthogonal.

Proof. We prove the result for the case when the n eigenvalues are distinct. For a
general proof, see [43, p. 104].

Suppose Av1 = l1v1 ,Av2 = l2v2, where l1 l2. Then,

Because A = AT,

Therefore,
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Because l1 l2, it follows that

If A is symmetric, then a set of its eigenvectors forms an orthogonal basis for Rn.
If the basis {v1 , v2,, ......., vn} is normalized so that each element has norm of unity,
then defining the matrix

we have

and hence

A matrix whose transpose is its inverse is said to be an orthogonal matrix.

3.3 ORTHOGONAL PROJECTIONS

Recall that a subspace V of Rn is a subset that is closed under the operations of
vector addition and scalar multiplication. In other words, V is a subspace of Rn if
x1, x2 e V ax1 + bx2 € V for all a, b e R. Furthermore, the dimension of a
subspace V is equal to the maximum number of linearly independent vectors in V. If
V is a subspace of Rn, then the orthogonal complement of V, denoted V , consists
of all vectors that are orthogonal to every vector in V. Thus,

The orthogonal complement of V is also a subspace (see Exercise 3.3). Together, V
and V span Rn in the sense that every vector x e Rn can be represented uniquely
as

where x1 e V and x2 e V . We call the above representation the orthogonal
decomposition of x (with respect to V). We say that x1 and x2 are orthogonal
projections of x onto the subspaces V and V , respectively. We write Rn = V V ,
and say that Rn is a direct sum of V and V . We say that a linear transformation
P is an orthogonal projector onto V if for all x e Rn, we have Px € V and
x - Px e V .

In the subsequent discussion, we use the following notation. Let A € Rmxn . Let
the range, or image, of A be denoted

and the nullspace, or kernel, of A be denoted
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Note that R(A) and N (A ) are subspaces (see Exercise 3.4).

Theorem 3.4 Let A be a given matrix. Then, R(A) = N(AT), and N(A) =
R(AT) .

Proof. Suppose x e R (A) . Then, yT(ATx) = (Ay}Tx = 0 for all y, so that
ATx = 0. Hence, x e N(AT). This implies that R (A) C N(AT).

If now x € N(AT), then (Ay)Tx = yT(ATx) = 0 for all y, so that x e
R(A) and consequently N(AT) C R (A} . Thus,R(A) =N(AT).

The equation N(A) = R(AT) follows from what we have proved above, and
the fact that for any subspace V, we have (V ) = V (see Exercise 3.6).

Theorem 3.4 allows us to establish the following necessary and sufficient condition
for orthogonal projectors. For this, note that if P is an orthogonal projector onto V,
then Px = x for all x e V , and R ( P ) = V (see Exercise 3.9).

Theorem 3.5 A matrix P is an orthogonal projector (onto the subspace V = R ( P ) )
if and only if P2 = P = PT.

Proof. =>: Suppose P is an orthogonal projector onto V = R(P). Then, R(I —
P) C R(P) . But, R(P) = N(PT) by Theorem 3.4. Therefore, R(I - P) C
N(PT). Hence, PT(I - P)y = 0 for all y, which implies that PT(I - P) = O,
where O is the matrix with all entries equal to zero. Therefore, PT = PTP, and
thus P = PT = P2.

: SupposeP2 = P = PT. For any x, we have(Py)T(I-P)x = yTPT(I-
P)x = yTP(I - P)x = 0 for all y. Thus, (I - P)x e R(P) , which means that
P is an orthogonal projector.

3.4 QUADRATIC FORMS

A quadratic form f : Rn —> R is a function

where Q is an n x n real matrix. There is no loss of generality in assuming Q to be
symmetric, that is, Q = QT. For if the matrix Q is not symmetric, we can always
replace it with the symmetric matrix

Note that

A quadratic form xTQx, Q = QT, is said to be positive definite if xTQx > 0 for
all nonzero vectors x. It is positive semidefinite if xTQx > 0 for all x. Similarly,
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we define the quadratic form to be negative definite, or negative semidefinite, if
xTQx < 0 for all nonzero vectors x, or xTQx < 0 for all x, respectively.

Recall that the minors of a matrix Q are the determinants of the matrices obtained
by successively removing rows and columns from Q. The principal minors are det Q
itself and the determinants of matrices obtained by successively removing an ith row
and an ith column. That is, the principal minors are:

The leading principal minors are det Q and the minors obtained by successively
removing the last row and the last column. That is, the leading principal minors are:

We now prove Sylvester's criterion, which allows us to determine if a quadratic
form xTQx is positive definite using only the leading principal minors of Q.

Theorem 3.6 Sylvester's Criterion. A quadratic form xTQx, Q = QT, is positive
definite if and only if the leading principal minors of Q are positive.

Proof. The key to the proof of Sylvester's criterion is the fact that a quadratic form
whose leading principal minors are nonzero can be expressed in some basis as a sum
of squares

where xi are the coordinates of the vector x in the new basis, D0 1, and D1 , . . . , Dn

are the leading principal minors of Q.
To this end, consider a quadratic form f ( x ) = xTQx, where Q = QT. Let

{e1 , e 2 , . . . , en} be the natural basis for Rn, and let

be a given vector in Rn. Let {v1, v 2 , . . . , vn} be another basis for +n. Then, the
vector x is represented in the new basis as x, where

Accordingly, the quadratic form can be written as
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where

Note that qij = (vi, Qv+). Our goal is to determine conditions on the new basis
{v1 , v2,..., vn} such that qij = 0 for i j.

We seek the new basis in the form

Observe that for j = 1,..., i - 1, if

then

Our goal then is to determine the coefficients ai1, ai2, . . . , a i i , i = 1,..., n, such
that the vector

satisfies the i relations

In this case, we get

For each i = 1,..., n, the above i relations determine the coefficients a i 1 , . . . , aii

in a unique way. Indeed, upon substituting the expression for vi into the above
equations, we obtain the set of the equations
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The above set of equations can be expressed in matrix form as

If the leading principal minors of the matrix Q do not vanish, then the coefficients
aij can be obtained using Cramer's rule. In particular,

Hence,

In the new basis, the quadratic form can be expressed as a sum of squares

We now show that a necessary and sufficient condition for the quadratic form to be
positive definite is Di > 0, i = 1,. . . , n.

Sufficiency is clear, for if Di > 0, i = 1,..., n, then by the previous argument
there is a basis such that

for any x 0 (or, equivalently, any x 0).
To prove necessity, we first show that for i = 1,..., n, we have Di 0. To see

this, suppose that Dk = 0 for some k. Note that Dk = det Qk,

Then, there exists a vector v € Rk, v 0, such that vTQk = 0. Let now x € Rn

be given by x = [vT, 0T]T. Then,

But x 0, which contradicts the fact that the quadratic form / is positive definite.
Therefore, if xTQx > 0 then Di 0, i = 1,... ,n. Then, using our previous
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argument, we may write

where x = [v1 , . . . , vn]x. Hence, if the quadratic form is positive definite, then all
leading principal minors must be positive.

Note that if Q is not symmetric, Sylvester's criterion cannot be used to check
positive definiteness of the quadratic form xTQx. To see this, consider an example
where

The leading principal minors of Q are D1 = 1 > 0 and A2 = det Q = 1 > 0.
However, if x = [1,1]T, then xTQx = —2 < 0, and hence the associated quadratic
form is not positive definite. Note that

The leading principal minors of Q0 are D1 = 1 > 0 and A2 = det Q0 = — 3 < 0,
as expected.

A necessary condition for a real quadratic form to be positive semidefinite is
that the leading principal minors be nonnegative. However, this is not a sufficient
condition (see Exercise 3.11). In fact, a real quadratic form is positive semidefinite
if and only if all principal minors are nonnegative (for a proof of this fact, see [31,
p. 307]).

A symmetric matrix Q is said to be positive definite if the quadratic form xTQx
is positive definite. If Q is positive definite, we write Q > 0. Similarly, we define a
symmetric matrix Q to be positive semidefinite (Q > 0), negative definite (Q < 0),
and negative semidefinite (Q < 0), if the corresponding quadratic forms have the
respective properties. The symmetric matrix Q is indefinite if it is neither positive
semidefinite nor negative semidefinite. Note that the matrix Q is positive definite
(semidefinite) if and only if the matrix — Q is negative definite (semidefinite).

Sylvester's criterion provides a way of checking the definiteness of a quadratic
form, or equivalently a symmetric matrix. An alternative method involves checking
the eigenvalues of Q, as stated below.

Theorem 3.7 A symmetric matrix Q is positive definite (or positive semidefinite) if
and only if all eigenvalues of Q are positive (or nonnegative).

Proof. For any x, let y = T-1x = TTx, where T is an orthogonal matrix whose
columns are eigenvectors of Q. Then, xTQx = yTTTQTy = Sn

i=1 liy
2
i. From

this, the result follows.
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Through diagonalization, we can show that a symmetric positive semidefinite
matrix Q has a positive semidefinite (symmetric) square root Q1'2 satisfying
Q1'2Q1'2 = Q. For this, we use T as above and define

which is easily verified to have the desired properties. Note that the quadratic form
xTQx can be expressed as ||Q1//2x||2.

In summary, we have presented two tests for definiteness of quadratic forms and
symmetric matrices. We point out again that nonnegativity of leading principal
minors is a necessary but not a sufficient condition for positive semidefiniteness.

3.5 MATRIX NORMS

The norm of a matrix may be chosen in a variety of ways. Because the set of matrices
Rmxn can be viewed as the real vector space Rmn, matrix norms should be no
different from regular vector norms. Therefore, we define the norm of a matrix A,
denoted || A||, to be any function || • || that satisfies the conditions:

1. ||A|| > 0 if A O, and ||O|| = 0, where O is the matrix with all entries
equal to zero;

2. \\cA\\ = |c|||A||, for any c e R;

3. ||A + B||<||A|| + ||B||.

An example of a matrix norm is the Frobenius norm, defined as

where A e Rm x n. Note that the Frobenius norm is equivalent to the Euclidean norm
on +mn.

For our purposes, we consider only matrix norms that satisfy the following addi-
tional condition:

4. ||AB|| < ||A|| ||B||.
It turns out that the Frobenius norm above satisfies condition 4 as well.

In many problems, both matrices and vectors appear simultaneously. Therefore,
it is convenient to construct the norm of a matrix in such a way that it will be related
with vector norms. To this end, we consider a special class of matrix norms, called
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induced norms. Let || • ||(n) and || • ||m(m) be vector norms on Rn and Rm, respectively.
We say that the matrix norm is induced by, or is compatible with, the given vector
norms if for any matrix A € Rmxn and any vector x € Rn, the following inequality
is satisfied:

We can define an induced matrix norm as:

that is, || A|| is the maximum of the norms of the vectors Ax where the vector x runs
over the set of all vectors with unit norm. When there is no ambiguity, we omit the
subscripts (m) and (n) from || • ||(m) and || • ||(n).

Because of the continuity of a vector norm (see Exercise 2.7), for each matrix A
the maximum

is attainable, that is, a vector x0 exists such that ||x0|| = 1 and ||Ax0|| = \\A\\. This
fact follows from the theorem of Weierstrass (see Theorem 4.2).

The induced norm satisfies conditions 1 to 4, and the compatibility condition, as
we prove below.

Proof of Condition 1. Let A O. Then, a vector x, \\x\\ = 1, can be found such
that Ax 0, and thus ||Ax|| 0. Hence, ||A|| = max||x||=1 ||Ax|| 0. If, on the
other hand, A = O, then ||A|| = max^n-i \\Ox\\ = 0.

Proof of Condition 2. By definition, ||cA|| = max||x||=1 ||cAx||. Ob-
viously ||cAx|| = |c|||Ax||, and therefore ||cA|| = max | |x | |=1 |c|||Ax|| =
|c|max||x||=1 ||Ax|| = |c|||A||.

Proof of Compatibility Condition. Let y 0 be any vector. Then, x = y/||y|| sat-
isfies the condition ||x|| = 1. Consequently \\Ay\\ = ||A(||y||x)|| = ||y||||Ax|| <

||y||||A||.
Proof of Condition 3. For the matrix A + B, we can find a vector x0 such that
||A + B|| = ||(A + B)x0|| and ||x0|| = 1. Then, we have
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Proof of Condition 4. For the matrix AB, we can find a vector x0 such that
||x0|| = 1 and ||ABx0|| = ||AB||. Then, we have

Theorem 3.8 Let

The matrix norm induced by this vector norm is

where l1 is the largest eigenvalue of the matrix A A.

Proof. We have

The matrix ATA is symmetric and positive semidefinite. Let l1 > l2 > ...... >
ln > 0 be its eigenvalues and x1, x2 , . . . , xn the orthonormal set of the eigenvectors
corresponding to these eigenvalues. Now, we take an arbitrary vector x with ||x|| = 1
and represent it as a linear combination of xi, i = 1,..., n, that is:

Note that

Furthermore,

For the eigenvector x1 of AT A corresponding to the eigenvalue l1 , we have
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and hence

Using arguments similar to the above, we can deduce the following important
inequality.

Rayleigh's Inequality. If an n x n matrix P is real symmetric positive definite, then

where Amin(P) denotes the smallest eigenvalue of P, and Xm&x(P) denotes the
largest eigenvalue of P.

Example 3.1 Consider the matrix

and let the norm in E2 be given by

Then,

and det[AJ2 - ATA] = A2 - 10A + 9 = (A - 1)(A - 9). Thus, \\A\\ = ^9 = 3.
The eigenvector of AT A corresponding to AI — 9 is

Note that \\Axi\\ = \\A\\. Indeed,

Because A = AT in this example, we also have \\A\\ = maxi<;<n |Aj(A)|, where
AI (A),..., \n(A) are the eigenvalues of A (possibly repeated).

Warning: In general, max.i<i<n \\i(A)\ / ||A||. Instead, we have ||A|| >
maxi<j<n |Aj(A)|, as illustrated in the following example (see also Exercise 5.2).
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Example 3.2 Let

then

and

Note that 0 is the only eigenvalue of A. Thus, for i = 1,2,

For a more complete but still basic treatment of topics in linear algebra as discussed
in this and the previous chapter, see [33], [47], [69], [91]. For a treatment of matrices,
we refer the reader to [31], [43]. Numerical aspects of matrix computations are
discussed in [27], [37].

EXERCISES

3.1 Fix a vector in En, and let x be the column of the coordinates of the vector
with respect to the basis [e\, 6 2 , . . . , en}, and x1 the coordinates of the same vector
with respect to the basis {e(, e'2,..., e'n}. Show that x' = Tx, where T is the
transformation matrix from [e\, 6 2 , . . . , en} to {e{, e'2,..., e'n}.

3.2 Let AI , . . . , An be the eigenvalues of the matrix A € Enxn. Show that the
eigenvalues of the matrix In — A are 1 — AI , . . . , 1 — An.

3.3 Let V be a subspace. Show that V1- is also a subspace.

3.4 Let A 6 Ewxn be a matrix. Show that K(A) is a subspace of Rm and M(A)
is a subspace of lRn.

3.5 Prove that if A and B are two matrices with m rows, and J\f(AT} C JV(I?T),
thenft(B) CU(A).
Hint: Use the fact that for any matrix M with m rows, we have dim7£(M) +
dimjV(MT) = m (this is one of the fundamental theorems of linear algebra (see
[91, p. 75])).

3.6 Let V be a subspace. Show that (V^}-1 = V.
Hint: Use Exercise 3.5.
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3.7 Let V and W be subspaces. Show that if V C W, then W1- C V-1.

3.8 Let V be a subspace of Rn. Show that there exist matrices V and U such that
V = ft(V) = JV(I7).

3.9 Let P be an orthogonal projector onto a subspace V. Show that

a. Px = x for all x € V;

b. ft(P) = V.

3.10 Is the quadratic form

positive definite, positive semidefinite, negative definite, negative semidefinite, or
indefinite?

3.11 Let

Show that although all leading principal minors of A are nonnegative, A is not
positive semidefinite.

3.12 Consider the matrix

a. Is this matrix positive definite, negative definite, or indefinite?

b. Is this matrix positive definite, negative definite, or indefinite on the subspace

3.13 Consider the quadratic form

Find the values of the parameter £ for which this quadratic form is positive definite.

3.14 Consider the function {-, ->Q : Rn x Rn -> R, defined by (a;, T/)Q = xTQy, where
x, y € Mn and Q e Mnxn is a symmetric positive definite matrix. Show that {, -}Q
satisfies conditions 1 to 4 for inner products (see Section 2.4).



EXERCISES 37

3.15 Consider the vector norm || • ||oo on Rn given by ||aj||oo = maxf \Xi\, where
x = [xi,..., xn]

T. Similarly define the norm || • ||oo on Mm. Show that the matrix
norm induced by these vector norms is given by

where a^ is the (i, j)th element of A G Rmxn.

3.16 Consider the vector norm || • ||i on Rn given by ||x||i = Y^i=i \xi\> where
x = [xi,..., xn]

T. Similarly define the norm || • ||i on Rm. Show that the matrix
norm induced by these vector norms is given by

where a*.,- is the (i, j)th element of A 6 Rmxn.
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4_
Concepts from Geometry

4.1 LINE SEGMENTS

In the following analysis, we concern ourselves only with En. The elements of this
space are the n-component vectors x = [xi, £2, • • • > xn]

T.
The line segment between two points x and y in W1 is the set of points on the

straight line joining points x and y (see Figure 4.1). Note that if z lies on the line
segment between x and y, then

where a is a real number from the interval [0,1]. The above equation can be rewritten
as z = ax + (1 — a)y. Hence, the line segment between x and y can be represented
as

4.2 HYPERPLANES AND LINEAR VARIETIES

Let 1/1,1/2,... , un, v G M, where at least one of the Ui is nonzero. The set of all
points x = [xi, £2, • • • , xn]

T that satisfy the linear equation

is called a hyperplane of the space W1. We may describe the hyperplane by

39
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Figure 4.2 Translation of a hyperplane

where

A hyperplane is not necessarily a subspace of En since, in general, it does not contain
the origin. For n = 2, the equation of the hyperplane has the form u\ x\ + 113X2 = v,
which is the equation of a straight line. Thus, straight lines are hyperplanes in R2.
In M3 (three-dimensional space), hyperplanes are ordinary planes. By translating a
hyperplane so that it contains the origin of En, it becomes a subspace of Mn (see
Figure 4.2). Because the dimension of this subspace is n — 1, we say that the
hyperplane has dimension n — 1.

The hyperplane H = [x : u\x\ + • • • + unxn = v} divides Rn into two half-
spaces. One of these half-spaces consists of the points satisfying the inequality
uiXi + U-2.X-2 + • • • + unxn > v, denoted
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Figure 4.3 The hyperplane H = {x € Kn : UT(X - a) = 0}

where, as before,

The other half-space consists of the points satisfying the inequality u\x\ + u^x^ +
• • • + unxn < v, denoted

The half-space H+ is called the positive half-space, and the half-space H- is called
the negative half-space.

Let a = [a i ,O2, . . . ,an]
T be an arbitrary point of the hyperplane H. Thus,

uTa — v = 0. We can write

The numbers (xi — a^), i = 1,..., n, are the components of the vector x — a.
Therefore, the hyperplane H consists of the points x for which (u, x — a) = 0.
In other words, the hyperplane H consists of the points x for which the vectors u
and x — a are orthogonal (see Figure 4.3). We call the vector u the normal to the
hyperplane H. The set H+ consists of those points x for which (u, x — a} > 0, and
H- consists of those points x for which (u, x — a) < 0.

A linear variety is a set of the form

for some matrix A e Emxn and vector b 6 En. If dim N(A) = r, we say that the
linear variety has dimension r. A linear variety is a subspace if and only if b = 0. If
A = O, the linear variety is En. If the dimension of the linear variety is less than n,
then it is the intersection of a finite number of hyperplanes.
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Figure 4.4 Convex sets

Figure 4.5 Sets that are not convex

4.3 CONVEX SETS

Recall that the line segment between two points u, v £ En is the set {w E En :
w = au + (I — o)v, a 6 [0,1]}. A point w = au 4- (1 — ot)v (where a € [0,1])
is called a convex combination of the points u and v.

A set 0 C En is convex if for all w, v e 0, the line segment between u and v is
in 0. Figure 4.4 gives examples of convex sets, whereas Figure 4.5 gives examples
of sets that are not convex. Note that 0 is convex if and only if au + (1 — a)v e 0
for all u, v e 0 and a € (0,1).

Examples of convex sets include:

• the empty set

• a set consisting of a single point

• a line or a line segment

• a subspace

• ahyperplane

• a linear variety
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• a half-space

• En.

Theorem 4.1 Convex subsets ofW1 have the following properties:

a . I f Q is a convex set and /3 is a real number, then the set

is also convex;

b. If ©i and 02 are convex sets, then the set

is also convex;

c. The intersection of any collection of convex sets is convex (see Figure 4.6 for
an illustration of this result for two sets).

Proof.

a. Let pv\,j3v-2 e /?©, where Vi,v2 € ©• Because 0 is convex, we have
avi + (1 - a)v-2 6 9 for any a e (0,1). Hence,

and thus /30 is convex.

b. Let vi,Vz € ©i + ©2- Then, Vi — v( + v", and v2 = v'2 + v2', where
v{,v'2 e ©i, and v^v'^ e ©2- Because ©i and ©2 are convex, for all
a €(0,1) ,

and

By definition of ©i + ©2, x\ + x2 e ©i + ©2- Now,

Hence, ©i + @2 is convex.

c. Let C be a collection of convex sets. Let x\, #2 € Heec ® (where Heec ®
represents the intersection of all elements in (7). Then, #1, #2 € © for each
0 e C. Because each 0 € C is convex, ax\ + (I — a)#2 € 0 for all
a e (0,1) and each 0 e C. Thus, axi + (1 - a)x2 G fleec ®-
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Figure 4.6 Intersection of two convex sets

Figure 4.7 Examples of neighborhoods of a point in R2 and E3

A point a; in a convex set 0 is said to be an extreme point of 0 if there are no two
distinct points u and v in 0 such that x = au + (1 — a)v for some a e (0,1). For
example, in Figure 4.4, any point on the boundary of the disk is an extreme point,
the vertex (corner) of the set on the right is an extreme point, and the endpoint of the
half-line is also an extreme point.

4.4 NEIGHBORHOODS

A neighborhood of a point x G Rn is the set

where e is some positive number. The neighborhood is also called the ball with
radius £ and center x.

In the plane E2, a neighborhood of x = [x\, x-2\T consists of all the points inside
of a disc centered at x. In R3, a neighborhood of x = [x\, x2, XS]T consists of all
the points inside of a sphere centered at x (see Figure 4.7).

A point x G S is said to be an interior point of the set S if the set 5 contains some
neighborhood of x, that is, if all points within some neighborhood of x are also in 5
(see Figure 4.8). The set of all the interior points of 5 is called the interior of 5.

A point x is said to be a boundary point of the set 5 if every neighborhood of
x contains a point in S and a point not in 5 (see Figure 4.8). Note that a boundary
point of 5 may or may not be an element of S. The set of all boundary points of 5 is
called the boundary of S.
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Figure 4.8 x is an interior point, while y is a boundary point

Figure 4.9 Open and closed sets

A set 5 is said to be open if it contains a neighborhood of each of its points, that
is, if each of its points is an interior point, or equivalently, if 5 contains no boundary
points.

A set 5 is said to be closed if it contains its boundary (see Figure 4.9). We can
show that a set is closed if and only if its complement is open.

A set that is contained in a ball of finite radius is said to be bounded. A set is
compact if it is both closed and bounded. Compact sets are important in optimization
problems for the following reason.

Theorem 4.2 Theorem of Weierstrass. Let f : 1) —> E be a continuous function,
where fi C W1 is a compact set. Then, there exists XQ € ffc such that /(XQ) < f ( x )
for all x 6 £1 In other words, f achieves its minimum on fl D

Proof. See [82, p. 89] or [2, p. 154].

4.5 POLYTOPES AND POLYHEDRA

Let 0 be a convex set, and suppose y is a boundary point of 0. A hyperplane passing
through y is called a hyperplane of support (or supporting hyperplane) of the set
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Figure 4.10 Polytopes

Figure 4.11 One-dimensional polyhedron

0, if the entire set 0 lies completely in one of the two half-spaces into which this
hyperplane divides the space R™.

Recall that by Theorem 4.1, the intersection of any number of convex sets is
convex. In what follows, we are concerned with the intersection of a finite number of
half-spaces. Because every half-space H+ or H- is convex in W1, the intersection
of any number of half-spaces is a convex set.

A set that can be expressed as the intersection of a finite number of half-spaces is
called a convexpolytope (see Figure 4.10).

A nonempty bounded polytope is called a polyhedron (see Figure 4.11).
For every convex polyhedron 0 C W1, there exists a nonnegative integer k < n

such that 0 is contained in a linear variety of dimension k, but is not entirely contained
in any (k — 1)-dimensional linear variety of En. Furthermore, there exists only one
fc-dimensional linear variety containing 0, called the carrier of the polyhedron 0,
and k is called the dimension of 0. For example, a zero-dimensional polyhedron is a
point of W1, and its carrier is itself. A one-dimensional polyhedron is a segment, and
its carrier is the straight line on which it lies. The boundary of any fc-dimensional
polyhedron, k > 0, consists of a finite number of (k — 1)-dimensional polyhedra.
For example, the boundary of a one-dimensional polyhedron consists of two points
that are the endpoints of the segment.

The (k — 1)-dimensional polyhedra forming the boundary of a fc-dimensional
polyhedron are called the faces of the polyhedron. Each of these faces has, in turn,
(k — 2)-dimensional faces. We also consider each of these (k — 2)-dimensional faces
to be faces of the original fc-dimensional polyhedron. Thus, every fc-dimensional
polyhedron has faces of dimensions k — 1, k — 2 , . . . , 1,0. A zero-dimensional face
of a polyhedron is called a vertex, and a one-dimensional face is called an edge.



EXERCISES 47

EXERCISES

4.1 Show that a set 5 C Mn is a linear variety if and only if for all x, y £ S and
a € R, we have ax + (1 — a)y € 5.

4.2 Show that the set [x € En : ||x|| < r} is convex, where r > 0 is a given real
number, and ||x|| = VxTx is the Euclidean norm of x € Mn.

4.3 Show that for any matrix A e Emxn and vector 6 e Em, the set (linear variety)
{x 6 En : Ax = 6} is convex.

4.4 Show that the set {x € Mn : x > 0} is convex (where x > 0 means that every
component of x is nonnegative).
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Elements of Calculus

5.1 SEQUENCES AND LIMITS

A sequence of real numbers is a function whose domain is the set of natural numbers
1 , 2 , . . . , & , . . . and whose range is contained in R Thus, a sequence of real numbers
can be viewed as a set of numbers {x\, x^,..., Xk,...}, which is often also denoted
as {xk} (or sometimes as {xk}^-i, to indicate explicitly the range of values that k
can take).

A sequence {xk} is increasing if x\ < x? < • • • < Xk • • •, that is, x/t < Xk+i for
all k. Ifxk < Xk+i, then we say that the sequence is nondecreasing. Similarly, we
can define decreasing and nonincreasing sequences. Nonincreasing or nondecreasing
sequences are called monotone sequences.

A number x* € M is called the limit of the sequence {xk } if for any positive e
there is a number K (which may depend on e) such that for all k > K, \Xk — x* \ < e;
that is, Xk lies between x* — e and x* + e for all k > K. In this case, we write

or

A sequence that has a limit is called a convergent sequence.
The notion of a sequence can be extended to sequences with elements in En.

Specifically, a sequence in Mn is a function whose domain is the set of natural
numbers 1 , 2 , . . . , & , . . . and whose range is contained in En. We use the notation
{x^l\x(2\...} or {x^} for sequences in Rn. For limits of sequences in En, we
need to replace absolute values with vector norms. In other words, x* is the limit of

49
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{x^} if for any positive e there is a number K (which may depend on e) such that
for all k > K, \\x^ — x*\\ < e. As before, if a sequence {x^} is convergent, we
write x* = lim^oo x^ or x^ -» x*.

Theorem 5.1 A convergent sequence has only one limit.

Proof. We prove this result by contradiction. Suppose that a sequence {x^} has
two different limits, say x\ and x2. Then, we have \\x\ — x2\\ > 0. Let

From the definition of a limit, there exist K\ and K2 such that for k > K\ we have
||X(A:)-XI|| < e, and for A; > K2 wehave||x(fc)-x2|| < e. L&tK = max(Ki,K2).
Then, if k > K, we have ||x^ - x i j j < £ and \\x^ - x2\\ < e. Adding
IJa;^) — xi|| < e and \\x^ — x^\\ < £ yields

Applying the triangle inequality gives

Therefore,

However, the above contradicts the assumption that 11xi — #211 = 2e, which completes
the proof.

A sequence {x^} in Rn is bounded if there exists a number B > 0 such that
||x<*>|| <B for all k = 1,2,....

Theorem 5.2 Every convergent sequence is bounded.

Proof. Let {x^ } be a convergent sequence with limit x*. Choose e = I. Then, by
definition of the limit, there exists a natural number K such that for all & > K

By the result of Exercise 2.6, we get

Therefore,

Letting
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we have

which means that the sequence {x^ } is bounded.

For a sequence {xk} in E, a number B is called an upper bound if Xk < B for
all k = 1,2, In this case, we say that {xk} is bounded above. Similarly, B is
called a lower bound if Xk > B for all k = 1,2, In this case, we say that {xk}
is bounded below. Clearly, a sequence is bounded if it is both bounded above and
bounded below.

Any sequence {xk} in E that has an upper bound has a least upper bound (also
called the supremuni), which is the smallest number B that is an upper bound of
{ x k } . Similarly, any sequence {x^ in E that has a lower bound has a greatest
lower bound (also called the infimuni). If B is the least upper bound of the sequence
{ x k } , then Xk < B for all k, and, for any s > 0, there exists a number K such that
XK > B — s. An analogous statement applies to the greatest lower bound: if B is
the greatest lower bound of {xk}, then Xk > B for all k, and, for any e > 0, there
exists a number K such that XK < B + e.

Theorem 5.3 Every monotone bounded sequence in E is convergent.

Proof. We prove the theorem for nondecreasing sequences. The proof for nonin-
creasing sequences is analogous.

Let {xk} be a bounded nondecreasing sequence in E, and x* the least upper
bound. Fix a number e > 0. Then, there exists a number K such that XK > x* — e.
Because {xk} is nondecreasing, for any k > K,

Also, because x* is an upper bound of {xk}, we have

Therefore, for any k > K,

which means that Xk —> x*.

Suppose we are given a sequence {x^} and an increasing sequence of natural
numbers {m^}. The sequence

is called a subsequence of the sequence {x^ }. A subsequence of a given sequence
can thus be obtained by neglecting some elements of the given sequence.

Theorem5.4 Consider a convergent sequence {x^} with limit x*. Then, any
subsequence of{x^ } also converges to x*.
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Proof. Let {x^™^} be a subsequence of {x^}, where {m^} is an increasing
sequence of natural numbers. Observe that m^ > A; for all A; = 1,2, To show
this, first note that mi > 1 because mi is a natural number. Next, we proceed by
induction by assuming that rafc > A;. Then, we have m^+i > m* > k, which implies
that mjfc+i > A; + 1. Therefore, we have shown that m^ > A; for all A; = 1,2,

Let £ > 0 be given. Then, by definition of the limit, there exists K such that
||aj(*) -x*\\ < e for any A; > K. Because m* > A;, we also have Ho^™*1) -x*|| < e
for any k > K. This means that

It turns out that any bounded sequence contains a convergent subsequence. This
result is called the Bolzano-Weierstrass theorem (see [2, p. 70]).

Consider a function / : Rn ->• Mm and a point XQ € E". Suppose that there
exists /* such that for any convergent sequence {x^} with limit XQ, we have

Then, we use the notation

to represent the limit /*.
It turns out that / is continuous at XQ if and only if, for any convergent sequence

{x^ } with limit XQ, we have

(see [2, p. 137]). Therefore, using the notation introduced above, the function / is
continuous at XQ if and only if

We end this section with some results involving sequences and limits of matrices.
These results are useful in the analysis of algorithms (e.g., Newton's algorithm in
Chapter 9).

We say that a sequence {Ak} of m x n matrices converges to the m x n matrix
A if

Lemma 5.1 Let A e Rnxn. Then, limfc-^oo Ak = O if and only if the eigenvalues
of A satisfy |Ai(A)| < 1, i = 1,..., n.
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Proof. To prove this theorem, we use the Jordan form (see, e.g., [33]). Specifically,
it is well known that any square matrix is similar to the Jordan form, that is, there
exists a nonsingular T such that

where «7r(A) is the r x r matrix:

The AI , . . . , \q above are distinct eigenvalues of A, the multiplicity of AI is mi +
• • • + ms, and so on.

We may rewrite the above as A = T~1JT. To complete the proof observe that

where

Furthermore,

Hence,

if and only if | Aj| < l,i = 1,... , n.

Lemma 5.2 The series ofnxn matrices

converges if and only iflimit^^ A = O. In this case the sum of the series equals
(In ~ A}'1-

Proof. The necessity of the condition is obvious.
To prove the sufficiency, suppose that lim^oo Ak = O. By Lemma 5.1, we

deduce that |A;(A)| < 1, i - 1,..., n. This implies that det(/n - A) ^ 0, and
hence (In — A)"1 exists. Consider now the following relation:
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Postmultiplying the above equation by (In — A)"1 yields

Hence,

because lim^oo Ak+l = O. Thus,

A matrix-valued function A : W -> Enxn is continuous at a point £0 e W if

Lemma 5.3 Let A : W -»• Enxn be an n x n matrix-valued function that is
continuous at£0. //"A(^0)~1 emto, ^en A^)"1 exists for £ sufficiently close to ̂ 0

an^/ A(-)"1 is continuous at £0.

Froo/ We follow [84]. We first prove the existence of A(£)-1 for all £ sufficiently
close to £0 • We have

where

Thus,

and

Because A is continuous at £0, for all £ close enough to £0, we have

where 9 6 (0,1). Then,

and
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exists. But then

which means that A(£) l exists for £ sufficiently close to £0.
To prove the continuity of A(-)~l note that

However, since ||.K"(£)|| < 1, it follows from Lemma 5.2 that

Hence,

when \\K(£)\\ < 1- Therefore,

Because

we obtain

which completes the proof.

5.2 DIFFERENTIABILITY

Differential calculus is based on the idea of approximating an arbitrary function by
an affine function. A function A : Rn -> Em is affine if there exists a linear function
L : En -)• Rm and a vector y e Mm such that

for every x 6 En. Consider a function / : Rn -» Em, and a point x0 E Mn. We
wish to find an affine function A that approximates / near the point XQ. First, it is
natural to impose the condition
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Because A(x) = £(x) + y, we obtain y = /(XQ) — £(XQ). By the linearity of £,

Hence, we may write

Next, we require that A(x) approaches f ( x ) faster than x approaches XQ, that is,

The above conditions on A ensure that A approximates / near XQ in the sense that
the error in the approximation at a given point is "small" compared with the distance
of the point from XQ .

In summary, a function / : fi -» Em, J7 C En, is said to be differentiable at
XQ 6 1) if there is an affine function that approximates / near XQ, that is, there exists
a linear function £ : En ->• Em such that

The linear function C above is uniquely determined by / and XQ, and is called
the derivative of / at XQ. The function / is said to be differentiable on fi if / is
differentiable at every point of its domain ffc.

In E, an affine function has the form ax 4- b, with a, b G E. Hence, a real-valued
function f ( x ) of a real variable x that is differentiable at XQ can be approximated
near XQ by a function

Because /(XG) = A(x0) = axo + b, we obtain

The linear part of A(x), denoted earlier by £(x), is in this case just ax. The norm of
a real number is its absolute value, so by the definition of differentiability,

which is equivalent to

The number a is commonly denoted /'(XQ), and is called the derivative of / at XQ.
The affine function A is therefore given by

This affine function is tangent to / at XQ (see Figure 5.1).
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Figure 5.1 Illustration of the notion of the derivative

5.3 THE DERIVATIVE MATRIX

Any linear transformation from Rn to Rm, and in particular the derivative C of
/ : E." —>• Em, can be represented by an m x n matrix. To find the matrix
representation L of the derivative L of a differentiable function / : En -> Rm, we
use the natural basis {e\,..., en} for En. Consider the vectors

By the definition of the derivative, we have

for j = 1,..., n. This means that

for j = 1,..., n. But Lej is the jth column of the matrix L. On the other hand,
the vector Xj differs from XQ only in the jth coordinate, and in that coordinate the
difference is just the number t. Therefore, the left side of the last equation is the
partial derivative

Because vector limits are computed by taking the limit of each coordinate function,
it follows that if
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then

and the matrix L has the form

The matrix L is called the Jacobian matrix, or derivative matrix, of / at XQ, and is
denoted D f (XQ). For convenience, we often refer toDf(xo] simply as the derivative
of / at XQ. We summarize the above discussion in the following theorem.

Theorem 5.5 If a function f : E" —>• Rm is differentiable at XQ, then the derivative
off at XQ is uniquely determined and is represented by them x n derivative matrix
Df(xo). The best affine approximation to / near XQ is then given by

in the sense that

andlimas-+as0 ||r(a:)||/||x ~ XQ\\ — 0- The columns of the derivative matrix Df(xo)
are vector partial derivatives. The vector

is a tangent vector at XQ to the curve f obtained by varying only the jth coordinate
ofx.

If / : W1 ->• R is differentiable, then the function V/ defined by

is called the gradient of /. The gradient is a function from En to Rn, and can be
pictured as a vector field, by drawing the arrow representing V f ( x ) so that its tail
starts at x.

Given / : W1 -» M, if V/ is differentiable, we say that / is twice differentiable,
and we write the derivative of V/ as
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The matrix D2f(x) is called the Hessian matrix of / at x, and is often also denoted
F(x).

5.4 DIFFERENTIATION RULES

A function / : fi —>• Rm, fi C Rn, is said to be continuously differentiable on
fi if it is differentiable (on 17), and Df : fJ -> Rmxn is continuous, that is, the
components of / have continuous partial derivatives. In this case, we write / € C1.
If the components of / have continuous partial derivatives of order p, then we write
/ € Cp. Note that the Hessian matrix of a function / : Rn ->• E at x is symmetric if
/ is twice continuously differentiable at x.

We now prove the chain rule for differentiating the composition g ( f ( t ) ) , of a
function / : R ->• En and a function 5 : En -» K.

Theorem 5.6 Let g :T> -> Rbe differentiable on an open set T> C Mn, and /e/ / :
(a, 6) -t T> be differentiable on (a, 6). 77zen, the composite function h : (a, 6) —> R
given fry /i(t) = g(f(t)) is differentiable on (a, 6), and

Proof. By definition,

if the limit exists. By Theorem 5.5, we write

where lims_>.t r ( s ) / ( s — t) = 0. Therefore,

Letting s —>• t yields

Next, we present the product rule. Let / : W1 -> Em and g : En -»• Em be two
differentiable functions. Define the function /i : En —>• E by /i(x) = f(x)Tg(x).
Then, /i is also differentiable, and
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We end this section with a list of some useful formulas from multivariable calculus.
In each case, we compute the derivative with respect to x. Let A 6 Mm x n be a given
matrix, and y 6 Mm a given vector. Then,

It follows from the first formula above that if y € En, then

It follows from the second formula above that if Q is a symmetric matrix, then

In particular,

5.5 LEVEL SETS AND GRADIENTS

The level set of a function / : En -> E at level c is the set of points

For / : E2 —> R, we are usually interested in 5 when it is a curve. For / : R3 ->• R,
the sets 5 most often considered are surfaces.

Example 5.1 Consider the following real-valued function on M2:

The above function is called Rosenbrock's function. A plot of the function / is shown
in Figure 5.2. The level sets of / at levels 0.7, 7, 70, 200, and 700 are depicted in
Figure 5.3. These level sets have a particular shape resembling bananas. For this
reason, Rosenbrock's function is also called the "banana function."

To say that a point XQ is on the level set 5 at level c means /(XQ) = c. Now suppose
that there is a curve 7 lying in S and parameterized by a continuously differentiable
function 0 : IR —»• En. Suppose also thatp(io) = XQ andDg(to) = v ^ 0, so that v
is a tangent vector to 7 at XQ (see Figure 5.4). Applying the chain rule to the function
h(t] = f ( g ( t ) ) at t0, gives

But since 7 lies on 5, we have
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Figure 5.2 Graph of Rosenbrock's function

Figure 5.3 Level sets of Rosenbrock's (banana) function
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Figure 5.4 Orthogonality of the gradient to the level set

that is, h is constant. Thus, h'(to] = 0 and

Hence, we have proved, assuming / continuously differentiable, the following theo-
rem (see Figure 5.4).

Theorem 5.7 The vector V/(XQ) is orthogonal to the tangent vector to an arbitrary
smooth curve passing through XQ on the level set determined by f ( x ) = /(XQ). d

It is natural to say that V/(XQ) is orthogonal or normal to the level set S corre-
sponding to XQ, and to take as the tangent plane (or line) to S at XQ the set of all
points x satisfying

As we shall see later, V/(XQ) is the direction of maximum rate of increase of
/ at XQ. Because V/(XQ) is orthogonal to the level set through XQ determined by
f ( x ) = /(XQ), we deduce the following fact: the direction of maximum rate of
increase of a real-valued differentiable function at a point is orthogonal to the level
set of the function through that point.

Figure 5.5 illustrates the above discussion for the case / : E2 —>• E. The curve
on the shaded surface in Figure 5.5 running from bottom to top has the property that
its projection onto the (x\, a^-plane is always orthogonal to the level curves, and is
called a path of steepest ascent, because it always heads in the direction of maximum
rate of increase for /.
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Figure 5.5 Illustration of a path of steepest ascent

The graph of / : W1 -> R is the set {[XT, f ( x ) ] T : x e W1} C En+1. The
notion of the gradient of a function has an alternative useful interpretation in terms of
the tangent hyperplane to its graph. To proceed, let XQ G Mn and ZQ = f(xo). The
point [XQ, ZQ]T € En+1 is a point on the graph of /. If / is differentiable at £, then
the graph admits a nonvertical tangent hyperplane at £ = [XQ, ZQ]T. The hyperplane
through £ is the set of all points [x i , . . . , xn,z]T G Rn+1 satisfying the equation

where the vector [ w i , . . . , wn, v]T € Rn+1 is normal to the hyperplane. Assuming
that this hyperplane is nonvertical, that is, v ^ 0, let

Thus, we can rewrite the hyperplane equation above as

We can think of the right side of the above equation as a function z : W1 —>• M.
Observe that for the hyperplane to be tangent to the graph of /, the functions / and
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z must have the same partial derivatives at the point XQ. Hence, if / is differentiable
at XQ, its tangent hyperplane can be written in terms of its gradient, as given by the
equation

5.6 TAYLOR SERIES

The basis for many numerical methods and models for optimization is Taylor's
formula, which is given by Taylor's theorem below.

Theorem 5.8 Taylor's theorem. Assume that a function f : E -> E is m times
continuously differentiable (i.e., f 6 Cm) on an interval [a, b]. Denote h = b — a.
Then,

(called Taylor's formula) where f^ is the ith derivative off, and

with 0,6' e (0,1).

Proof. We have

Denote by gm(x) an auxiliary function obtained from Rm by replacing a by x.
Hence,

Differentiating gm (x) yields
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Observe that gm(b) = Oand#m(a) = Rm. Applying the mean-value theorem yields

where 9 6 (0,1). The above equation is equivalent to

Hence,

To derive the formula

see, e.g., [60] or [61].

An important property of Taylor's theorem arises from the form of the remainder
Rm. To discuss this property further, we introduce the so-called order symbols, O
ando.

Let g be a real-valued function defined in some neighborhood of 0 € Mn, with
g(x) ^ 0 if x ^ 0. Let / : H -> Em be defined in a domain ft C En that includes
0. Then, we write

1. f ( x ) = O(g(x)} to mean that the quotient ||/(a:)||/|<7(a:)| is bounded near 0;
that is, there exist numbers K > 0 and 6 > 0 such that if ||cc|| < S, x € fi,
then||/(x)||/|p(*)|<ff.

2. f ( x ) = o(g(x)) to mean that

The symbol O(g(x)) (read "big-oh of g(x)") is used to represent a function that
is bounded by a scaled version of g in a neighborhood of 0. Examples of such a
function are:
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On the other hand, o(g(x}} (read "little-oh of g(x)") represents a function that
goes to zero "faster" than g(x) in the sense that limaj^o ll°(5(aj))il/lfll(^)l = 0.
Examples of such functions are:

Note that if f ( x ) = o(g(x}}, then f ( x ) = O(g(x}} (but the converse is not neces-
sarily true). Also, if/(«) = O(||aj||p), then f ( x ) = o(||a;||p-e) for any e > 0.

Suppose / € Cm. Recall that the remainder term in Taylor's theorem has the form

where 9 G (0,1). Substituting the above into Taylor's formula, we get

By the continuity of /<m), we have f(m)(a + 0ti) -» /(m)(a) as h -> 0, that is,
/("0(a + eh] = fW(a) + o(l). Therefore,

since hmo(l] = o(hm). We may then write Taylor's formula as

If, in addition, we assume that / e Cm+1, we may replace the term o(hm) above
by O(hm+1). To see this, we first write Taylor's formula with Rm+i:

where

with 9' G (0,1). Because /(m+1) is bounded on [a, b] (by Theorem 4.2),
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Therefore, if / € Cm+1, we may write Taylor's formula as

We now turn to the Taylor series expansion of a real-valued function / : W1 —> E
about the point XQ G W1. Suppose / 6 C2. Let x and XQ be points in En, and let
z(a} = XQ + a(x — XQ}/\\X — XQ\\. Define 0 : E —> E by:

Using the chain rule, we obtain

and

where we recall that

and D2f = (D2f)T since / 6 C2. Observe that
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Hence,

If we assume that / G C3, we may use the formula for the remainder term R$ to
conclude that

For further reading in calculus, consult [9], [60], [61], [85], [87], [97]. A basic
treatment of real analysis can be found in [2], [ 82], whereas a more advanced treatment
is provided in [66], [81]. For stimulating reading on the "big-oh" notation, see [56,
pp. 104-108].

EXERCISES

5.1 Show that a sufficient condition for limfe-^ Ak = O is || A\\ < 1.

5.2 Show that for any matrix A e Mnxn,

Hint: Use Exercise 5.1.

5.3 Define the functions / : E2 -> E and g : E -)• M2 by f ( x ) = x?/6 + x|/4,
g(t) = [3* + 5,2* - 6]T. Let F : R ->• E be given by F(t) = f ( g ( t ) } . Evaluate
^ (t) using the chain rule.

5.4 Consider f ( x ) = xix2/2, g(s, t) = [4s + 3i, 2s + i]T. Evaluate £f(g(s, t})
and -jtf(g(s,t)) using the chain rule.

5.5 Let x(t) = [e* + t3,t2,t + 1]T, t e R, and f ( x ] = xfx2ar| + Xix2 + x3,
x = [xi,x2,x3]

T € I3. Find ^f(x(t)) in terms of t.

5.6 Suppose that/(x) = o(g(x)). Show that for any given e > 0, there exists 6 > 0
such that if ||x|| < 6, then ||/(x)|| < e\g(x)\.

5.7 Use Exercise 5.6 to show that if functions / : W1 -» E and g : En -> R satisfy
f ( x ) = —g(x] + o(g(x)) and g(x] > 0 for all x ^ 0, then for all x 7^ 0 sufficiently
small, we have f ( x ) < 0.
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5.8 Let

Sketch the level sets associated with f i ( x i , X 2 ) — 12 and f i ( x i , X 2 ) = 16 on the
same diagram. Indicate on the diagram the values of x = [xi,o;2]T for which
/(x) = [/i(*i,*2),/2(*i,*2)]T - [12,16]T.

5.9 Write down the Taylor series expansion of the following functions about the
given points XQ. Neglect terms of order three or higher.

a. /(x) = xie~X2 + x-2 + 1, x0 = [1,0]T

b. /(x) = x\ + 2x\xl + x\, x0 = [1,1]T

c. /(x) = exi~x* + eXl+X2 +xi+x2 + l,x0 = [1,0]T
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6_
Basics of Set-Constrained

and Unconstrained
Optimization

6.1 INTRODUCTION

In this chapter, we consider the optimization problem

minimize f ( x )

subject to x € fi.

The function / : En -» E that we wish to minimize is a real-valued function,
and is called the objective function, or cost function. The vector x is an n-vector
of independent variables, that is, x = [x\,X2,... ,xn]

T 6 En. The variables
x\,..., xn are often referred to as decision variables. The set fHs a subset of Mn,
called the constraint set or feasible set.

The optimization problem above can be viewed as a decision problem that involves
finding the "best" vector x of the decision variables over all possible vectors in £1. By
the "best" vector we mean the one that results in the smallest value of the objective
function. This vector is called the minimizer of / over 17. It is possible that there
may be many minimizers. In this case, finding any of the minimizers will suffice.

There are also optimization problems that require maximization of the objective
function. These problems, however, can be represented in the above form because
maximizing / is equivalent to minimizing —/. Therefore, we can confine our
attention to minimization problems without loss of generality.

The above problem is a general form of a constrained optimization problem,
because the decision variables are constrained to be in the constraint set fi. If
1) = En, then we refer to the problem as an unconstrained optimization problem. In
this chapter, we discuss basic properties of the general optimization problem above,

73
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Figure 6.1 Examples of minimizers: x\: strict global minimizer; x%: strict local minimizer;
#3: local (not strict) minimizer

which includes the unconstrained case. In the remaining chapters of this part, we
deal with iterative algorithms for solving unconstrained optimization problems.

The constraint "x G fi" is called a set constraint. Often, the constraint set ft takes
the form ft = {x : h(x) = 0, g ( x ) < 0}, where h and g are given functions.
We refer to such constraints as functional constraints. The remainder of this chapter
deals with general set constraints, including the special case where ft = E". The
case where ft = En is called the unconstrained case. In Parts III and IV, we consider
constrained optimization problems with functional constraints.

In considering the general optimization problem above, we distinguish between
two kinds of minimizers, as specified by the following definitions.

Definition 6.1 Local minimizer. Suppose that/ : En —>• R is a real-valued function
defined on some set f) C Mn. A point x* G 17 is a local minimizer of / over ft if
there exists £ > 0 such that/(x) > /(x*) for all x G ft \ {x*} and ||x — x*|| < e.

Global minimizer. Apointx* G ft, is & global minimizer of f over ft if f (x) > /(x*)
for all x G H\{x*}.

If, in the above definitions, we replace ">" with ">", then we have a strict local
minimizer and a strict global minimizer, respectively.

In Figure 6.1, we graphically illustrate the above definitions for n = 1.
Given a real-valued function /, the notation argmin /(x) denotes the argument

that minimizes the function / (a point in the domain of /), assuming such a point
is unique. For example, if / : E —> M. is given by f ( x ) =• (x + I)2 + 3, then
argmin f ( x ) = —1. If we write argmin^Q, then we treat ft as the domain of /.
For example, for the function / above, argminx>0 f ( x ) = 0. In general, we can
think of argmina!€n /(x) as the global minimizer of / over fJ (assuming it exists
and is unique).
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Strictly speaking, an optimization problem is solved only when a global minimizer
is found. However, global minimizers are, in general, difficult to find. Therefore, in
practice, we often have to be satisfied with finding local minimizers.

6.2 CONDITIONS FOR LOCAL MINIMIZERS

In this section, we derive conditions for a point x* to be a local minimizer. We use
derivatives of a function / : En -» R Recall that the first-order derivative of /,
denoted Df,is

Note that the gradient V/ is just the transpose of D f ; that is, V/ = ( D f ) T . The
second derivative of / : En -» E (also called the Hessian of /) is

Example6.1 L e t f ( x i , x 2 } = 5xi + 8x2 + x\X2—x\ — 1x\. Then,

and

Given an optimization problem with constraint set ft, a minimizer may lie either in
the interior or on the boundary of ft. To study the case where it lies on the boundary,
we need the notion of feasible directions.

Definition 6.2 Feasible direction. A vector d € En, d ^ 0, is a feasible direction
at x € ft if there exists a0 > 0 such that x + ad 6 ft for all a € [0, ao] •

Figure 6.2 illustrates the notion of feasible directions.
Let / : Mn -> E be a real-valued function and let d be a feasible direction at

x € ft. The directional derivative of f in the direction d, denoted d f / d d , is the
real-valued function defined by
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Figure 6.2 Two-dimensional illustration of feasible directions; di is a feasible direction,
d-i is not a feasible direction

If \\d\\ = 1, then df/dd is the rate of increase of / at x in the direction d. To
compute the above directional derivative, suppose that x and d are given. Then,
f ( x + ad) is a function of a, and

Applying the chain rule yields

In summary, if d is a unit vector, that is, \\d\\ — 1, then (V/(x), d) is the rate of
increase of / at the point x in the direction d.

Example 6.2 Define / : E3 ->• E by f ( x ) = xix2x3, and let

The directional derivative of / in the direction d is

Note that because \\d\\ = 1, the above is also the rate of increase of / at x in the
direction d.

We are now ready to state and prove the following theorem.

Theorem 6.1 First-Order Necessary Condition (FONC). Let fi be a subset ofW1

and f 6 Cl a real-valued function on$l. Ifx* is a local minimizer of f over £), then
for any feasible direction d at x*, we have
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Proof. Define

Note that x(0) = a;*. Define the composite function

Then, by Taylor's theorem,

/(x* + ad) - /(x*) = <f>(a) - 0(0) = 0'(0)a + o(a) = adTVf(x(Q)) + o(a),

where a > 0 (recall the definition of o(a) ("little-oh of a") in Part I). Thus, if
(j>(a) > 0(0), that is, f ( x * + ad) > /(x*) for sufficiently small values of a > 0
(x* is a local minimizer), then we have to have dTVf(x*) > 0 (see Exercise 5.7).

The above theorem is graphically illustrated in Figure 6.3.
An alternative way to express the FONC is:

for all feasible directions d. In other words, if x* is a local minimizer, then the rate of
increase of/ at x* in any feasible direction d in fi is nonnegative. Using directional
derivatives, an alternative proof of Theorem 6.1 is as follows. Suppose that x* is a
local minimizer. Then, for any feasible direction d, there exists a > 0 such that for
alia G (0,a),

Hence, for all a € (0, a), we have

Taking the limit as a ->• 0, we conclude that

A special case of interest is when x* is an interior point of fi (see Section 4.4). In
this case, any direction is feasible, and we have the following result.

Corollary 6.1 Interior case. Let ft be a subset ofW1 and f G C1 a real-valued
function on 17. 7/x* is a local minimizer off over fi and ifx* is an interior point of
D, then
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Figure 6.3 Illustration of the FONC for the constrained case; x\ does not satisfy the FONC,
X2 satisfies the FONC

Proof. Suppose that / has a local minimizer x* that is an interior point of fi.
Because x* is an interior point of ft, the set of feasible directions at x* is the whole
of En. Thus, for any d G Mn, dTV/(x*) > 0 and -dTV/(x*) > 0. Hence,
dTV/(x*) = 0 for all d € Rn, which implies that V/(x*) = 0.

Example 6.3 Consider the problem

minimize x\ + O.Sa;^ + 3^2 -f 4.5

subject to x i , X 2 > 0.

Questions:

a. Is the first-order necessary condition (FONC) for a local minimizer satisfied at
x = [l,3p?

b. Is the FONC for a local minimizer satisfied at x = [0,3]T?

c. Is the FONC for a local minimizer satisfied at x = [1,0]r?

d. Is the FONC for a local minimizer satisfied at x = [0,0]T?

Answers: First, let / : E2 -» E be defined by f(x] = x\ 4- O.Sa^ + 3ar2 + 4.5,
where x = [x\, X2JT. A plot of the level sets of / is shown in Figure 6.4.

a. At x = [1,3]T, we have V/(x) = [2xi,x2 + 3]T = [2,6]T. The point
x = [1,3]T is an interior point of fi = {x : x\ > 0, x<± > 0}. Hence, the
FONC requires V/(x) = 0. The point x = [1,3]T does not satisfy the FONC
for a local minimizer.



CONDITIONS FOR LOCAL MINIMIZERS 79

Figure 6.4 Level sets of the function in Example 6.3

b. At x = [0,3]T, we have V/(x) = [0,6]T, and hence dTV/(x) = 6d2, where
d = [d\,d2]

T. For d to be feasible at x, we need d\ > 0, and d2 can take
an arbitrary value in E. The point x = [0,3]T does not satisfy the FONC
for a minimizer because d2 is allowed to be less than zero. For example,
d = [1, -1]T is a feasible direction, but dTVf(x) = -6 < 0.

c. At x = [1,0]T, we have V/(x) = [2,3]T, and hence dTVf(x) = 2di + 3d2.
For d to be feasible, we need d2 > 0, and d\ can take an arbitrary value in R
For example, d = [-5,1]T is a feasible direction. But dTVf(x) = — 7 < 0.
Thus, x = [1,0]T does not satisfy the FONC for a local minimizer.

d. Atx = [0,0]T, we have V/(x) = [0,3]T, and hence dTVf(x] = 3d2. For
d to be feasible, we need d2 > 0 and d\ > 0. Hence, x = [0,0]T satisfies the
FONC for a local minimizer.

Example 6.4 Figure 6.5 shows a simplified model of a cellular wireless system (the
distances shown have been scaled down to make the calculations simpler). A mobile
user (also called a "mobile") is located at position x (see Figure 6.5).

There are two basestation antennas, one for the primary basestation and another
for the neighboring basestation. Both antennas are transmitting signals to the mobile
user, at equal power. However, the power of the received signal as measured by the
mobile is the reciprocal of the squared distance from the associated antenna (primary
or neighboring basestation). We are interested in finding the position of the mobile
that maximizes the signal-to-interference ratio, which is the ratio of the received
signal power from the primary basestation to the received signal power from the
neighboring basestation.
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Figure 6.5 Simplified cellular wireless system in Example 6.4

We use the FONC to solve this problem. The squared distance from the mobile
to the primary antenna is 1 + x2, while the squared distance from the mobile to the
neighboring antenna is 1 + (2 — re)2. Therefore, the signal-to-interference ratio is

We have

By the FONC, at the optimal position x*, we have /'(x*) = 0. Hence, either
x* = 1 — \/2 or x* = 1 + \/2. Evaluating the objective function at these two
candidate points, it easy to see that x* = 1 — -\/2 is the optimal position.

We now derive a second-order necessary condition that is satisfied by a local
minimizer.

Theorem 6.2 Second-Order Necessary Condition (SONC). Let ft C Mn, / € C2 a
function on J7, x* a local minimizer of f over D, and d a feasible direction at x*. If
dTV/(z*) = 0, then

where F is the Hessian of f.

Proof. We prove the result by contradiction. Suppose that there is a feasible direction
d at x* such that dTVf(x*) = 0 and dT F(x*]d < 0. Let x(a] = x* + ad and
define the composite function 0(a) = f ( x * + ad) = f ( x ( a ) ) . Then, by Taylor's
theorem
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where by assumption 0'(0) = dTV/(x*) = 0, and </>"(0) = dTF(x*}d < 0. For
sufficiently small a,

that is,

which contradicts the assumption that x* is a local minimizer. Thus,

Corollary 6.2 Interior Case. Letx* be an interior point of ft C En. Ifx* is a local
minimizer off : ft -t E, f e C2, then

and F(x*) is positive semidefinite (F(x*) > 0); that is, for all d G En,

Proof. If x* is an interior point then all directions are feasible. The result then
follows from Corollary 6.1 and Theorem 6.2.

In the examples below, we show that the necessary conditions are not sufficient.

Example 6.5 Consider a function of one variable f(x] = x3, f : E —> E. Because
/'(O) = 0, and /"(O) = 0, the point x = 0 satisfies both the FONC and SONC.
However, x = 0 is not a minimizer (see Figure 6.6).

Example 6.6 Consider a function / : E2 ->• E, where f ( x ) -x\-x\. The FONC
requires that V/(x) = [2xi, -2x2]

T = 0. Thus, x = [0,0]T satisfies the FONC.
The Hessian matrix of / is

The Hessian matrix is indefinite; that is, for some d\ € E2 we have d^Fd\ > 0,
e.g., d\ = [1,0]T; and, for some d-2, we have d^Fdi < 0, e.g., d% — [0,1]T. Thus,
x = [0,0]T does not satisfy the SONC, and hence it is not a minimizer. The graph
of/(x) — x\— x\ is shown in Figure 6.7.

We now derive sufficient conditions that imply that x* is a local minimizer.
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Figure 6.6 The point 0 satisfies the FONC and SONC, but is not a minimizer

Figure 6.7 Graph of f ( x ) = x\- x\. The point 0 satisfies the FONC but not SONC; this
point is not a minimizer

Theorem 6.3 Second-Order Sufficient Condition (SOSC), Interior Case. Let f 6
C2 be defined on a region in which x* is an interior point. Suppose that

1. V/(x*) = 0; and

2. F(x*) > 0.

Then, x* is a strict local minimizer off.

Proof. Because / € C2, we have F(x*) = FT(x*). Using assumption 2 and
Rayleigh's inequality it follows that if d £ 0, then 0 < Amin(F(a;*))||d||2 <
dTF(x*)d. By Taylor's theorem and assumption 1,
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Figure 6.8 Graph of }(x] = x\ + x\

Hence, for all d such that ||d|| is sufficiently small,

and the proof is completed. I

Example 6.7 Let f ( x ) = x\ + x\. We have V/(x) = [2xi, 2x2]
T = 0 if and only

if x = [0,0]T. For all x € M2, we have

The point x = [0,0]T satisfies the FONC, SONC, and SOSC. It is a strict local
minimizer. Actually x = [0,0]T is a strict global minimizer. Figure 6.8 shows the
graph of f ( x ) = x\ + x\.

In this chapter, we presented a theoretical basis for the solution of nonlinear un-
constrained problems. In the following chapters, we are concerned with iterative
methods of solving such problems. Such methods are of great importance in prac-
tice. Indeed, suppose that one is confronted with a highly nonlinear function of 20
variables. Then, the FONC requires the solution of 20 nonlinear simultaneous equa-
tions for 20 variables. These equations, being nonlinear, will normally have multiple
solutions. In addition, we would have to compute 210 second derivatives (provided
/ 6 C2) to use the SONC or SOSC. We begin our discussion of iterative methods in
the next chapter with search methods for functions of one variable.

EXERCISES

6.1 Consider the problem

minimize /(#)
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subject to x € f t ,

where / € C2. For each of the following specifications for ft, x*, and /, determine
if the given point x* is: (i) definitely a local minimizer; (ii) definitely not a local
minimizer; or (iii) possibly a local minimizer. Fully justify your answer.

a. / : E2 -» E, ft = {x = [xi,x2]
T : Xi > 1}, x* = [1,2]T, and gradient

V/(*') = [l,l]r.

b. / : R2 -> 1, ft = {x = [xi,x2]
T : Xl > I,x2 > 2}, x* = [1,2]T, and

gradient V/(x*) = [l,0]T.

c. / : E2 -* K, 1) = {x = [zi,z2]
T : xi > 0,x2 > 0}, x* = [1,2]T, gradient

V/(x*) = [0,0]T, and Hessian F(x*) = / (identity matrix).

d. / : R2 ->• K, ft = {x = [zi,z2]
T : zi > I,x2 > 2}, x* = [1,2]T, gradient

V/(x*) = [1,0]T, and Hessian

6.2 Show that if x* is a global minimizer of / over fi, and x* 6 H' C ft, then x* is
a global minimizer of / over !)'.

6.3 Suppose that x* is a local minimizer of / over H, and 1) C ft'. Show that if x*
is an interior point of ft, then x* is a local minimizer of / over ft'. Show that the
same conclusion cannot be made if x* is not an interior point of ft.

6.4 Let / : En -> M, x0 € Mn, and ft C W1. Show that

where ft' = {y : y — x0 6 ft}.

6.5 Consider the function / : E2 -> E given below:

a. Find the gradient and Hessian of / at the point [1,1]T.

b. Find the directional derivative of / at [1,1]T with respect to a unit vector in
the direction of maximal rate of increase.

c. Find a point that satisfies the FONC (interior case) for /. Does this point
satisfy the SONC (for a minimizer)?
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6.6 Consider the function / : E2 -» E given below:

a. Find the directional derivative of / at [0,1]T in the direction [1,0]T.

b. Find all points that satisfy the first-order necessary condition for /.

Does / have a minimizer? If it does, then find all minimizer(s); otherwise
explain why it does not.

6.7 Consider the problem

minimize — x\

subject to |#21 < x\

xi >0 ,

where x\, x^ G E.

a. Does the point [ x i , x\]T — 0 satisfy the first-order necessary condition for a
minimizer? That is, if / is the objective function, is it true that dTV/(0) > 0
for all feasible directions d at 0?

b. Is the point [XI,XI]T = 0 a local minimizer, a strict local minimizer, a local
maximizer, a strict local maximizer, or none of the above?

6.8 Consider the problem

minimize f ( x )

subject to x G fi,

where / : E2 —>• E is given by f ( x ) — 5x2 with x = [zi,#2]T, and ^ = {x =
[zi,x2]T : x\ +X2 > 1}. Answer each of the following questions, showing complete
justification.

a. Does the point x* — [0,1]T satisfy the first-order necessary condition?

b. Does the point x* = [0,1]T satisfy the second-order necessary condition?

c. Is the point x* = [0,1]T a local minimizer?

6.9 Consider the problem

minimize f ( x )

subject to x e fi,
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where x = [ari,X2]T, / : M2 -> R is given by /(a;) = 4xf — x|, and 1) = {x :
xf + 2xi - z2 > 0, xi > 0, x2 > 0}.

a. Does the point x* = 0 = [0,0]T satisfy the first-order necessary condition?

b. Does the point x* = 0 satisfy the second-order necessary condition?

c. Is the point x* = 0 a local minimizer of the given problem?

6.10 Suppose that we are given n real numbers, x\,..., xn. Find the number x 6 E
such that the sum of the squared difference between x and the above numbers is
minimized (assuming the solution x exists).

6.11 An art collector stands at distance of x feet from the wall where a piece of art
(picture) of height a feet is hung, b feet above his eyes, as shown in Figure 6.9.

Figure 6.9 Art collector's eye position in Exercise 6.11

Find the distance from the wall for which the angle 6 subtended by the eye to the
picture is maximized.
Hint: (1) Maximizing 9 is equivalent to maximizing tan(0);
(2) If 6 = 02 - 0i. then tan(0) = (tan(02) - tan(0i))/(l + tan(02) tan(0i)).

6.12 Figure 6.10 shows a simplified model of a fetal heart monitoring system (the
distances shown have been scaled down to make the calculations simpler). A heartbeat
sensor is located at position x (see Figure 6.10).

The energy of the heartbeat signal measured by the sensor is the reciprocal of the
squared distance from the source (baby's heart or mother's heart). Find the position
of the sensor that maximizes the signal-to-interference ratio, which is the ratio of the
signal energy from the baby's heart to the signal energy from the mother's heart.

6.13 An amphibian"vehicle needs to travel from point A (on land) to point B (in
water), as illustrated in Figure 6.11. The speeds at which the vehicle travels on land
and water are v\ and v<i, respectively.
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Figure 6.10 Simplified fetal heart monitoring system for Exercise 6.12

Figure 6.11 Path of amphibian vehicle in Exercise 6.13

a. Suppose that the vehicle traverses a path that minimizes the total time taken to
travel from A to B. Use the first-order necessary condition to show that for the
above optimal path, the angles 9\ and #2 in the Figure 6.11 satisfy Snell's Law:

b. Does the minimizer for the problem in part a satisfies the second-order sufficient
condition?

6.14 Let / : R2 -> E be defined by
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where x = [xi, £2]
T. Suppose that we wish to minimize / over E2. Find all points

satisfying the FONC. Do these points satisfy the SONG?

6.15 Show that if d is a feasible direction at a point x G f2, then for all J3 > 0, the
vector j3d is also a feasible direction at x.

6.16 Let ft = {x e En : Ax = b}. Show that d € Kn is a feasible direction at
x G ft if and only if Ad = 0.

6.17 Let / : E2 -4 E. Consider the problem

minimize /(x)

subject to xi, £2 > 0,

where x = [x\, £2]
T. Suppose that V/(0) ^ 0, and

Show that 0 cannot be a minimizer for the above problem.

6.18 Let c e En, c ^ 0, and consider the problem of minimizing the function
/(x) = CTX over a constraint set ft C En. Show that we cannot have a solution
lying in the interior of Q.

6.19 Consider the problem:

maximize c\x\ + c2a;2

subject to x\ + X2 < 1

zi,z2 > 0,

where c\ and c2 are constants such that c\ > c2 > 0. The above is a linear
programming problem (see Part III). Assuming that the problem has an optimal
feasible solution, use the First-Order Necessary Conditions to show that the unique
optimal feasible solution x* is [1,0]T.
Hint: First show that x* cannot lie in the interior of the constraint set. Then,
show that x* cannot lie on the line segments L\ = {x : x\ — 0,0 < x2 < 1}»
L-i = {x : 0 < x\ < 1, x-i = 0}, L3 = {x : 0 < x\ < 1, x2 = 1 - x\}.

6.20 Line Fitting. Let [xi, yi]T,..., [rcn, yn]
7\ n > 2, be points on the E2 plane

(each Xi, yi € E). We wish to find the straight line of "best fit" through these points
("best" in the sense that the average squared error is minimized); that is, we wish to
find a, 6 e E to minimize
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a. Let

Show that f ( a , b) can be written in the form zTQz — 2cTz + d, where
z = [a,b]T, Q = QT e_E^x^,_c €_E2 and d € R, and find expressions for
Q, c, and d in terms of X, F, X2, F2, and XF.

b. Assume that the Xj, z = 1,..., n, are not all equal._Find the parameters a* and
6* for the line of best fit in terms of X, F, X* F2, and XF. Show that the
point [a*, 6*]T is the only local minimizer of /.

ffwr:*>-pf)2 = £E2=i(*i-*)2.

c. Show that if a* and 6* are the parameters of the line of best fit, then Y =
a*X + 6* (and hence once we have computed a*, we can compute b* using
the formula 6* = F - a*X).

6.21 Suppose that we are given a set of vectors {x^l\... ,x^}, x^ 6 En,
i = 1,... ,p. Find the vector x £ En such that the average squared distance (norm)
between x and x^,..., x^p\

is minimized. Use the SOSC to prove that the vector x found above is a strict local
minimizer.

6.22 Consider a function / : fi —> E, where H C En is a convex set and / G C1.
Given x* E fi, suppose there exists c > 0 such that dTV/(a;*) > c||d|| for all
feasible directions d six*. Show that x* is a strict local minimizer of / over ffc.

6.23 Prove the following generalization of the second-order sufficient condition:
Theorem: Let fi be a convex subset of En, / 6 C2 a real-valued function on fi,

and x* a point in fl. Suppose that there exists c G E, c > 0, such that for all
feasible directions d at x* (d ^ 0), the following hold:
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1. dTV/(x*) >0;and

2. dTF(x*)d > c\\d\\2.

Then, x* is a strict local minimizer of /.

6.24 Consider the quadratic function / : En ->• M. given by

where Q = QT > 0. Show that x* minimizes /if and only if x * satisfies the FONC.

6.25 Consider the linear system x k+i = axk+buk+i,k > 0, where Xi € M, U{ G M,
and the initial condition is x0 = 0. Find the values of the control inputs u i , . . . , un

to minimize

where q, r > 0 are given constants. The above can be interpreted as desiring to make
xn as large as possible, but at the same time desiring to make the total input energy
Z)[Li Mi as smaU as possible. The constants q and r reflect the relative weights of
the above two objectives.



7_
One-Dimensional Search

Methods

7.1 GOLDEN SECTION SEARCH

The search methods we discuss in this and the next section allow us to determine
the minimizer of a function / : M —> R over a closed interval, say [ao, &o]- The
only property that we assume of the objective function / is that it is unimodal, which
means that / has only one local minimizer. An example of such a function is depicted
in Figure 7.1.

The methods we discuss are based on evaluating the objective function at different
points in the interval [ao, 60]• We choose these points in such a way that an approx-
imation to the minimizer of / may be achieved in as few evaluations as possible.
Our goal is to progressively narrow the range until the minimizer is "boxed in" with
sufficient accuracy.

Consider a unimodal function / of one variable and the interval [ao, bo]. If we
evaluate / at only one intermediate point of the interval, we cannot narrow the range
within which we know the minimizer is located. We have to evaluate / at two
intermediate points, as illustrated in Figure 7.2. We choose the intermediate points
in such a way that the reduction in the range is symmetric, in the sense that

where

We then evaluate / at the intermediate points. If /(ai) < /(&i), then the minimizer
must lie in the range [ao, 61]. If, on the other hand,/(ai) > /(61), then the minimizer
is located in the range [ai, &o] (see Figure 7.3).

91
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Figure 7.1 A unimodal function

Figure 7.2 Evaluating the objective function at two intermediate points

Figure 7.3 The case where /(oi) < /(&i); the minimizer x* e [ao, 61]
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Starting with the reduced range of uncertainty we can repeat the process and
similarly find two new points, say 0,3 and 62> using the same value of p < | as before.
However, we would like to minimize the number of the objective function evaluations
while reducing the width of the uncertainty interval. Suppose, for example, that
/(oi) < /(bi), as in Figure 7.3. Then, we know that x* G [ao,6i]. Because a\
is already in the uncertainty interval and f ( a \ ) is already known, we can make a\
coincide with 62 • Thus, only one new evaluation of / at 02 would be necessary.
To find the value of p that results in only one new evaluation of /, see Figure 7.4.
Without loss of generality, imagine that the original range [ao, 60] is of unit length.
Then, to have only one new evaluation of / it is enough to choose p so that

Because 61 — do = 1 — p and b\ — 62 = 1 — 2p, we have

We write the above quadratic function of p as

The solutions are

Because we require p < ~, we take

Observe that

and

that is,

Thus, dividing a range in the ratio of p to 1 — p has the effect that the ratio of the
shorter segment to the longer equals the ratio of the longer to the sum of the two.
This rule was referred to by ancient Greek geometers as the Golden Section.

Using this Golden Section rule means that at every stage of the uncertainty range
reduction (except the first one), the objective function / need only be evaluated at
one new point. The uncertainty range is reduced by the ratio 1 — p « 0.61803 at
every stage. Hence, N steps of reduction using the Golden Section method reduces
the range by the factor

(1 - p)N « (0.61803)^.
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Figure 7.4 Finding value of p resulting in only one new evaluation of /

Example 7.1 Use the Golden Section search to find the value of x that minimizes

in the range [0,2] (this function comes from an example in [16]). Locate this value
of x to within a range of 0.3.

After N stages the range [0,2] is reduced by (0.61803)^. So, we choose N so
that

Four stages of reduction will do; that is, N = 4.
Iteration 1. We evaluate / at two intermediate points ai and b\. We have

where p = (3 — \/5)/2. We compute

Thus, /(ai) < /(&i), and so the uncertainty interval is reduced to

Iteration 2. We choose 62 to coincide with ai, and / need only be evaluated at
one new point

We have

Now, 7(62) < 7(^2), so the uncertainty interval is reduced to
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Iteration 3. We set 03 = 62 > and compute 63:

We have

So /(6a) > /(as). Hence, the uncertainty interval is further reduced to

Iteration 4. We set 64 = 03, and

We have

Hence, f(a^} > f(b±). Thus, the value of x that minimizes / is located in the
interval

Note that 63 - a4 = 0.292 < 0.3.

7.2 FIBONACCI SEARCH

Recall that the Golden Section method uses the same value of p throughout. Suppose
now that we are allowed to vary the value p from stage to stage, so that at the fcth
stage in the reduction process we use a value pk, at the next stage we use a value
pk+i, and so on.

As in the Golden Section search, our goal is to select successive values of pk,
0 < Pk < 1/2, such that only one new function evaluation is required at each stage.
To derive the strategy for selecting evaluation points, consider Figure 7.5. From
Figure 7.5, we see that it is sufficient to choose the pk such that

After some manipulations, we obtain
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Figure 7.5 Selecting evaluation points

There are many sequences pi,p2, • • • that satisfy the above law of formation, and
the condition that 0 < pk < 1/2. For example, the sequence pl = p2 = p3 =
• • • = (3 — \/5)/2 satisfies the above conditions, and gives rise to the Golden Section
method.

Suppose that we are given a sequence p i , p 2 , - - • satisfying the above conditions,
and we use this sequence in our search algorithm. Then, after N iterations of the
algorithm, the uncertainty range is reduced by a factor of

Depending on the sequence p\, p2,..., we get a different reduction factor. The natural
question is as follows: What sequence p\, p2,... minimizes the above reduction
factor? This problem is a constrained optimization problem that can be formally
stated:

Before we give the solution to the above optimization problem, we first need
to introduce the Fibonacci sequence, FI,F2,F3, — This sequence is defined as
follows. First, let F_i = 0 and F0 = 1 by convention. Then, for k > 0,

Some values of elements in the Fibonacci sequence are as follows:
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It turns out that the solution to the above optimization problem is:

where the Fk are the elements of the Fibonacci sequence. The resulting algorithm
is called the Fibonacci search method. We present a proof for the optimality of the
Fibonacci search method later in this section.

In the Fibonacci search method, the uncertainty range is reduced by the factor

Because the Fibonacci method uses the optimal values of pi,p%, • • •» the above
reduction factor is less than that of the Golden Section method. In other words, the
Fibonacci method is better than the Golden Section method in that it gives a smaller
final uncertainty range.

We point out that there is an anomaly in the final iteration of the Fibonacci search
method, because

Recall that we need two intermediate points at each stage, one that comes from
a previous iteration and another that is a new evaluation point. However, with
pN = 1/2, the two intermediate points coincide in the middle of the uncertainty
interval, and therefore we cannot further reduce the uncertainty range. To get around
this problem, we perform the new evaluation for the last iteration using PN = 1/2 - e,
where e is a small number. In other words, the new evaluation point is just to the left
or right of the midpoint of the uncertainty interval. This modification to the Fibonacci
method is, of course, of no significant practical consequence.

As a result of the above modification, the reduction in the uncertainty range at the
last iteration may be either

or
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depending on which of the two points has the smaller objective function value.
Therefore, in the worst case, the reduction factor in the uncertainty range for the
Fibonacci method is

Example 7.2 Consider the function

Use the Fibonacci search method to find the value of x that minimizes / over the
range [0,2]. Locate this value of x to within a range 0.3.

After N steps the range is reduced by (1 + 2e}/F^+i in the worst case. We need
to choose N such that

Thus, we need

If we choose e < 0.1, then N = 4 will do.
Iteration 1. We start with

We then compute

The range is reduced to

Iteration 2. We have
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So the range is reduced to

Iteration 3. We compute

The range is reduced to

Iteration 4. We choose e = 0.05. We have

The range is reduced to

Note 63 - a4 = 0.275 < 0.3.

For the diligent reader, we now turn to a proof of the optimality of the Fibonacci
search method. Skipping the rest of this section does not affect the continuity of the
presentation.

To begin, recall that we wish to prove that the values of p\, p2,..., PN used in
the Fibonacci method, where pk = 1 — FM-k+\IFN-k+i* solve the optimization
problem:
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It is easy to check that the values of p\, />2, • • • above for the Fibonacci search method
satisfy the feasibility conditions in the optimization problem above (see Exercise 7.4).
Recall that the Fibonacci method has an overall reduction factor of (1 — p\ ) • • • ( ! —
PN) = I/FN+I. To prove that the Fibonacci search method is optimal, we show that
for any feasible values of p\,..., PN, we have (1 — pi) • • • (1 — pjv) > 1/Fjv+i-

It is more convenient to work with r^ = 1 — pk rather than pk. The optimization
problem stated in terms of r* is:

Note that if ri, TI ,... satisfy rjt+i = ^— 1, then r^ > 1/2 if and only if rk+i < 1.
Also, rfc > 1/2 if and only if r^-i < 2/3 < 1. Therefore, in the above constraints,
we may remove the constraint r^ < 1, because it is implicitly implied by r* > 1/2
and the other constraints. Therefore, the above constraints reduce to

To proceed, we need the following technical lemmas. In the statements of the
lemmas, we assume that ri, TI , . . . is a sequence that satisfies

Lemma 7.1 For k>2,

Proof. We proceed by induction. For k = 2, we have

and hence the lemma holds for k = 2. Suppose now that the lemma holds for k > 2.
We show that it also holds for k + 1. We have
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where we used the formation law for the Fibonacci sequence.

Lemma 7.2 For k>2,

Proof. We proceed by induction. For k — 2, we have

But ri = 1/(1 + r2) < 2/3, and hence 1 - ri > 0. Therefore, the result holds for
k = 2. Suppose now that the lemma holds for A; > 2. We show that it also holds for
k + 1. We have

By Lemma 7.1,

Substituting for 1/rfc+i, we obtain

and the proof is completed

Lemma 7.3 For k>2,

Proof. Because rfc+i = ±- — 1 and r* > |, we have r^+i < 1. Substituting for
rk+i from Lemma 7.1, we get

Multiplying the numerator and denominator by (—1)* yields

By Lemma 7.2, ( — l ) k ( F k - 2 — ̂ fc-if"i) > 0, and therefore we can multiply both
sides of the above inequality by (—l) f c(Ffc_2 — Fk-iri) to obtain
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Rearranging the above yields

Using the law of formation of the Fibonacci sequence, we get

which upon dividing by Fk+i on both sides gives the desired result.

We are now ready to prove the optimality of the Fibonacci search method, and the
uniqueness of this optimal solution.

Theorem 7.1 Let TI , . . . , r^, N >2, satisfy the constraints

Then,

Furthermore,

if and only ifrk = FN-k+i/FN-k+2> k = 1, . . . , N. In other words, the values
ofr\,..., ryv used in the Fibonacci search method form the unique solution to the
optimization problem.

Proof. By substituting expressions for r\,..., r^v from Lemma 7.1 and performing
the appropriate cancellations, we obtain

Using Lemma 7.3,

By Exercise 7.5, (-l)N(FN-2FN+l - FN-iFN) = 1. Hence,
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From the above, we see that

if and only if

The above is simply the value of ri for the Fibonacci search method. Note that fixing
7*1 uniquely determines r < z , . . . , rjy.

For further discussion on the Fibonacci search method and its variants, see [96].

7.3 NEWTON'S METHOD

Suppose again that we are confronted with the problem of minimizing a function / of
a single real variable x. We assume now that at each measurement point x^ we can
calculate f(x^}, f'(x^}, and f'(x^). We can fit a quadratic function through
x^ that matches its first and second derivatives with that of the function /. This
quadratic has the form

Note that g(z<*>) = /(z<*>), q'(x^} = / '(z< fc)). andg"(z<*}) = /"(z<*>). Then,
instead of minimizing /, we minimize its approximation q. The first-order necessary
condition for a minimizer of q yields

Setting x — x^k+l\ we obtain

Example 7.3 Using Newton's method, find the minimizer of

The initial value is 2^°) = 0.5. The required accuracy is e = 10 5, in the sense that
we stop when |z(*+1) — x^ \ < e.

We compute
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Figure 7.6 Newton's algorithm with /" (x) > 0

Hence,

Proceeding in a similar manner, we obtain

Note that \x^ - x^\ < e = 1(T5. Furthermore, /'(z(4)) = -8.6 x 10~6 * 0.
Observe that f"(x^) = 1.673 > 0, so we can assume that x* « x^ is a strict
minimizer.

Newton's method works well if f " ( x ) > 0 every where (see Figure 7.6). However,
if f"(x) < 0 for some x, Newton's method may fail to converge to the minimizer
(see Figure 7.7).

Newton's method can also be viewed as a way to drive the first derivative of / to
zero. Indeed, if we set g(x) = f ' ( x ) , then we obtain a formula for iterative solution
of the equation g(x) = 0:
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Figure 7.7 Newton's algorithm with /"(x) < 0

Example 7.4 We apply Newton's method to improve a first approximation, x^ =
12, to the root of the equation

We have g'(x) = 3x2 - 24.4x + 7.45.
Performing two iterations yields

Newton's method for solving equations of the form g(x] = 0 is also referred to as
Newton's method of tangents. This name is easily justified if we look at a geometric
interpretation of the method when applied to the solution of the equation g(x) = 0
(see Figure 7.8).

If we draw a tangent to g(x) at the given point x( fc), then the tangent line intersects
the x-axis at the point x(fe+1), which we expect to be closer to the root x* of g(x) = 0.
Note that the slope of g(x) at x^ is

Hence,

Newton's method of tangents may fail if the first approximation to the root is such
that the ratio g(x^)/g'(x^) is not small enough (see Figure 7.9). Thus, an initial
approximation to the root is very important.
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Figure 7.8 Newton's method of tangents

Figure 7.9 Example where Newton's method of tangents fails to converge to the root x* of
g(x) = o

7.4 SECANT METHOD

Newton's method for minimizing / uses second derivatives of /:

If the second derivative is not available, we may attempt to approximate it using first
derivative information. In particular, we may approximate f"(x^} above with
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Using the above approximation of the second derivative, we obtain the algorithm

The above algorithm is called the secant method. Note that the algorithm requires
two initial points to start it, which we denote o^"1) and x^0\ The secant algorithm
can be represented in the following equivalent form:

Observe that, like Newton's method, the secant method does not directly involve
values of f(x^). Instead, it tries to drive the derivative /' to zero. In fact, as we did
for Newton's method, we can interpret the secant method as an algorithm for solving
equations of the form g(x) =Q. Specifically, the secant algorithm for finding a root
of the equation g(x) = 0 takes the form

or, equivalently,

The secant method for root finding is illustrated in Figure 7.10 (compare this with
Figure 7.8). Unlike Newton's method, which uses the slope of g to determine the
next point, the secant method uses the "secant" between the (k — l)st and kth points
to determine the (A; + l)st point.

Example 7.5 We apply the secant method to find the root of the equation

We perform two iterations, with starting points x^ ^ = 13 and x^ = 12. We obtain

Example 7.6 Suppose the voltage across a resistor in a circuit decays according to
the model V(t) = e~Rt, where V(t) is the voltage at time t, and R is the resistance
value.

Given measurements V\,..., Vn of the voltage at times ti,..., tn, respectively,
we wish to find the best estimate of R. By the "best estimate" we mean the value
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Figure 7.10 Secant method for root finding

of R that minimizes the total squared error between the measured voltages and the
voltages predicted by the model.

We derive an algorithm to find the best estimate of R using the secant method.
The objective function is:

Hence, we have

The secant algorithm for the problem is:

For further reading on the secant method, see [20].

7.5 REMARKS ON LINE SEARCH METHODS

One-dimensional search methods play an important role in multidimensional opti-
mization problems. In particular, iterative algorithms for solving such optimization
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problems (to be discussed in the following chapters) typically involve a "line search"
at every iteration. To be specific, let / : W1 -4 R be a function that we wish to
minimize. Iterative algorithms for finding a minimizer of / are of the form

where x^ is a given initial point, and ctk > 0 is chosen to minimize 0fc(a) =
f(x^ + ad^k'). The vector d^ is called the search direction. Note that choice
of ctk involves a one-dimensional minimization. This choice ensures that, under
appropriate conditions,

We may, for example, use the secant method to find a^. In this case, we need the
derivative of 0fc, which is

The above is obtained using the chain rule. Therefore, applying the secant method
for the line search requires the gradient V/, the initial line search point x^k\ and
the search direction dsk' (see Exercise 7.9). Of course, other one-dimensional search
methods may be used for line search (see, e.g., [29] and [64]).

Line search algorithms used in practice are much more involved than the one-
dimensional search methods presented in this chapter. The reason for this stems
from several practical considerations. First, determining the value of otk that exactly
minimizes </>& may be computationally demanding; even worse, the minimizer of
$k may not even exist. Second, practical experience suggests that it is better to
allocate more computational time on iterating the optimization algorithm rather than
performing exact line searches. These considerations led to the development of
conditions for terminating line search algorithms that would result in low-accuracy
line searches while still securing a decrease in the value of the / from one iteration to
the next. For more information on practical line search methods, we refer the reader
to [29, pp. 26-40], [34], and [35]l.

EXERCISES

7.1 Suppose that we have a unimodal function over the interval [5,8]. Give an
example of a desired final uncertainty range where the Golden Section method
requires at least 4 iterations, whereas the Fibonacci method requires only 3. You
may choose an arbitrarily small value of e for the Fibonacci method.

7.2 Let f ( x ) = x2 + 4 cos x, x £ E. We wish to find the minimizer x* of / over the
interval [1,2]. (Calculator users: Note that in cos x, the argument x is in radians).

1 We thank Dennis M. Goodman for furnishing us with references [34] and [35].
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a. Plot f ( x ) versus x over the interval [1,2].

b. Use the Golden Section method to locate x* to within an uncertainty of 0.2.
Display all intermediate steps using a table as follows:

Iteration/: a,k bk f(ak) f(bk) New uncertainty interval

1 ? ? ? ? [?,?]
2 ? ? ? ? [?,?]

c. Repeat part b using the Fibonacci method, with e = 0.05. Display all interme-
diate steps using a table as follows:

Iteration k pk ak bk f(o>k) S(bk) New uncertainty interval

1 ? ? ? ? ? [?,?]
2 ? ? ? ? ? [?,?]

d. Apply Newton's method, using the same number of iterations as in part b, with
*<°> = 1.

7.3 Let f ( x ) = Sel~x + 71og(x), where log(-) represents the natural logarithm
function.

a. Use MATLAB to plot f ( x ) versus x over the interval [1,2], and verify that /
is unimodal over [1,2].

b. Write a simple MATLAB routine to implement the Golden Section method
that locates the minimizer of / over [1, 2] to within an uncertainty of 0.23.
Display all intermediate steps using a table as in Exercise 7.2.

c. Repeat part b using the Fibonacci method, with e = 0.05. Display all interme-
diate steps using a table as in Exercise 7.2.

7.4 Suppose that p\,..., px are the values used in the Fibonacci search method.
Show that for each k = 1,..., N, 0 < pk < 1/2, and for each A; = 1, . . . , N - 1,
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7.5 Show that if FQ, FI , . . . is the Fibonacci sequence, then for each A; = 2,3,.. . ,

7.6 Show that the Fibonacci sequence can be calculated using the formula

7.7 Suppose that we have an efficient way of calculating exponentials. Based on
this, use Newton's method to devise a method to approximate log(2) (where log(-)
is the natural logarithm function). Use an initial point of x^ = 1, and perform 2
iterations.

7.8 The objective of this exercise is to implement the secant method using MATLAB.

a. Write a simple MATLAB routine to implement the secant method to locate the
root of the equation g(x) = 0. For the stopping criterion, use the condition
|x(fc+1) — a;(*) I < |x(fc) |e, where e > 0 is a given constant.

b. Let g(x] = (2x - I)2 + 4(4 - 1024x)4. Find the root of g(x) = 0 using the
secant method with a^"1) = 0, x^ = 1, and e = 10~5. Also determine the
value of g at the obtained solution.

7.9 Write a MATLAB function that implements a line search algorithm using
the secant method. The arguments to this function are the name of the M-file
for the gradient, the current point, and the search direction. For example, the
function may be called linesearch_secant, and used by the function call
alpha=linesearch_secant ( 'grad' , x , d ) , where grad.m is the M-file
containing the gradient, x is the starting line search point, d is the search direction,
and alpha is the value returned by the function (which we use in the following
chapters as the step size for iterative algorithms (see, e.g., Exercises 8.18, 10.8)).

Note: In the solutions manual, we used the stopping criterion \dTVf(x + ad) \ <
£\dTVf(x)\, where e > 0 is a prespecified number, V/ is the gradient, x is the
starting line search point, and d is the search direction. The rationale for the above
stopping criterion is that we want to reduce the directional derivative of / in the
direction d by the specified fraction e. We used a value of e — 10~4, and initial
conditions of 0 and 0.001.
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8_
Gradient Methods

8.1 INTRODUCTION

In this chapter, we consider a class of search methods for real-valued functions on
En. These methods use the gradient of the given function. In our discussion, we use
terms like level sets, normal vectors, tangent vectors, and so on. These notions were
discussed in some detail in Part I.

Recall that a level set of a function / : W1 —> R is the set of points x satisfying
f ( x ) = c for some constant c. Thus, a point XQ G Mn is on the level set corresponding
to level c if /(XQ) = c. In the case of functions of two real variables, / : M2 -» K,
the notion of the level set is illustrated in Figure 8.1.

The gradient of / at XQ, denoted V/(a?o), if it is not a zero vector, is orthogonal
to the tangent vector to an arbitrary smooth curve passing through XQ on the level
set f ( x ] = c. Thus, the direction of maximum rate of increase of a real-valued
differentiable function at a point is orthogonal to the level set of the function through
that point. In other words, the gradient acts in such a direction that for a given small
displacement, the function / increases more in the direction of the gradient than in
any other direction. To prove this statement, recall that (V/(x),d), ||d|| = 1, is
the rate of increase of / in the direction d at the point x. By the Cauchy-Schwarz
inequality,

because ||d|| = 1. But if d = V/(x)/||V/(x)||,then

113
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Figure 8.1 Constructing a level set corresponding to level c for /

Thus, the direction in which V/(oj) points is the direction of maximum rate of
increase of / at x. The direction in which —V/(x) points is the direction of
maximum rate of decrease of / at x. Hence, the direction of negative gradient is a
good direction to search if we want to find a function minimizer.

We proceed as follows. Let x^ be a starting point, and consider the point
oj(°) — aV/(x(°)). Then, by Taylor's theorem we obtain

Thus, if V/(z(0)) ^ 0, then for sufficiently small a > 0, we have

This means that the point aj(°) — aVf(x^) is an improvement over the point x^
if we are searching for a minimizer.

To formulate an algorithm that implements the above idea, suppose that we are
given a point x^. To find the next point z(fc+1), we start at x^ and move by an
amount —akVf(x^), where a.k is a positive scalar called the step size. The above
procedure leads to the following iterative algorithm:

We refer to the above as a gradient descent algorithm (or simply a gradient algorithm}.
The gradient varies as the search proceeds, tending to zero as we approach the
minimizer. We have the option of either taking very small steps and re-evaluating the
gradient at every step, or we can take large steps each time. The first approach results
in a laborious method of reaching the minimizer, whereas the second approach may
result in a more zigzag path to the minimizer. The advantage of the second approach is
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Figure 8.2 Typical sequence resulting from the method of steepest descent

a possibly fewer number of the gradient evaluations. Among many different methods
that use the above philosophy the most popular is the method of steepest descent,
which we discuss next.

Gradient methods are simple to implement and often perform well. For this reason,
they are widely used in practical applications. For a discussion of applications of the
steepest descent method to the computation of optimal controllers, we recommend
[62, pp. 481-515]. In Chapter 13, we apply a gradient method to the training of a
class of neural networks.

8.2 THE METHOD OF STEEPEST DESCENT

The method of steepest descent is a gradient algorithm where the step size a* is
chosen to achieve the maximum amount of decrease of the objective function at
each individual step. Specifically, a& is chosen to minimize </>/fc(a) = f(x^ —
aVf(x^)). In other words,

To summarize, the steepest descent algorithm proceeds as follows: at each step,
starting from the point x^k\ we conduct a line search in the direction —Vf(x^)
until a minimizer, x^k+1^, is found. A typical sequence resulting from the method of
steepest descent is depicted in Figure 8.2.

Observe that the method of steepest descent moves in orthogonal steps, as stated
in the following proposition.
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Proposition 8.1 If {jc^}£L0 is a steepest descent sequence for a given function
f : W1 —> 1, then for each k the vector x(k+1^ — x^ is orthogonal to the vector
x(*+2) _ x(k+i\ D

Proof. From the iterative formula of the method of steepest descent it follows that

To complete the proof it is enough to show that

To this end, observe that c<k is a nonnegative scalar that minimizes (f>k (a) = f(x^ —
aVf(xW)). Hence, using the FONC and the chain rule,

and the proof is completed.

The above proposition implies that Vf(x^) is parallel to the tangent plane to the
level set {f(x) = f(x^k+1^)} at x^k+l^. Note that as each new point is generated by
the steepest descent algorithm, the corresponding value of the function / decreases
in value, as stated below.

Proposition 8.2 If{x^}^LQ is the steepest descent sequence for f : En —» E and
ifVf(x^) ^ 0, then /(x^+1)) < /(z<*>). O

Proof. First recall that

where a* > 0 is the minimizer of

over all a > 0. Thus, for a > 0, we have

By the chain rule,
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because Vf(x^) ^ 0 by assumption. Thus, 0jk(0) < 0 and this implies that there
is an a > 0 such that 0^(0) > 0jt(a:) for all a G (0, a]. Hence,

and the proof of the statement is completed.

In the above, we proved that the algorithm possesses the descent property:
/(x(fc+1)) < /(x<*)) if V/(x<*>) ^ 0. If for some A;, we have V/(x(*>) = 0, then
the point a;^ satisfies the FONC. In this case, x(*+1) = x^. We can use the above
as the basis for a stopping (termination) criterion for the algorithm.

The condition V/(x^+1^) = 0, however, is not directly suitable as a practical
stopping criterion, because the numerical computation of the gradient will rarely
be identically equal to zero. A practical stopping criterion is to check if the norm
||V/(jc(*))|| of the gradient is less than a prespecified threshold, in which case we
stop. Alternatively, we may compute the absolute difference \f(x^h+1^) — f(x^}\
between objective function values for every two successive iterations, and if the
difference is less than some prespecified threshold, then we stop; that is, we stop
when

where e > 0 is a prespecified threshold. Yet another alternative is to compute the
norm ||o;(fc+1) — x^ \\ of the difference between two successive iterates, and we stop
if the norm is less than a prespecified threshold:

Alternatively, we may check "relative" values of the above quantities; for example,

or

The above two (relative) stopping criteria are preferable to the previous (absolute)
criteria because the relative criteria are "scale-independent." For example, scaling
the objective function does not change the satisfaction of the criterion \ f ( x ^ k + l ^ } —
f(x^)\/\f(x^)\ < e. Similarly, scaling the decision variable does not change the
satisfaction of the criterion ||x(fc+1)—a:^||/||x(fc))|| < e. To avoid dividing by very
small numbers, we can modify these stopping criteria as follows:

or
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Note that the above stopping criteria are relevant to all the iterative algorithms we
discuss in this part.

Example 8.1 We use the method of steepest descent to find the minimizer of

The initial point is x^ = [4,2, -1]T. We perform three iterations.
We find

Hence,

To compute x^l\ we need

Using the secant method from the previous chapter, we obtain

For illustrative purpose, we show a plot of (j>o(a) versus a in Figure 8.3, obtained
using MATLAB.

Thus,

To find x(2), we first determine

Next, we find ot\, where

Using the secant method again, we obtain a\ = 0.5000. Figure 8.4 depicts a plot of
0i (a) versus a.

Thus,

To find x(3\ we first determine
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Figure 8.3 Plot of 00 (a) versus a

Figure 8.4 Plot of 0i (a) versus a
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Figure 8.5 Plot of 02 (a) versus a

and

We proceed as in the previous iterations to obtain a2 = 16.29. A plot of <fo(a)
versus a is shown in Figure 8.5.

The value of x^ is

Note that the minimizer of / is [4,3, —5]T, and hence it appears that we have arrived
at the minimizer in only three iterations. The reader should be cautioned not to draw
any conclusions from this example about the number of iterations required to arrive
at a solution in general.

It goes without saying that numerical computations, such as those in this example,
are performed in practice using a computer (rather than by hand). The above cal-
culations were written out explicitly, step by step, for the purpose of illustrating the
operations involved in the steepest descent algorithm. The computations themselves
were, in fact, carried out using a MATLAB routine (see Exercise 8.18).

Let us now see what the method of steepest descent does with a quadratic function
of the form
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where Q e Mnxn is a symmetric positive definite matrix, b e Mn, and x € Mn. The
unique minimizer of / can be found by setting the gradient of / to zero, where

because!) (xTQx) = xT(Q + QT) = 2zTQ,andD(6Tz) = 6T. There is no loss
of generality in assuming Q to be a symmetric matrix. For if we are given a quadratic
form XT Ax and A ^ AT, then because the transposition of a scalar equals itself,
we obtain

Hence,

Note that

The Hessian of / is F(x) = Q = QT > 0. To simplify the notation we write
g(k) — V/^*)). Then, the steepest descent algorithm for the quadratic function
can be represented as

where

In the quadratic case, we can find an explicit formula for otk. We proceed as follows.
Assume gW ^ 0, for if g^> = 0, then x^ = x* and the algorithm stops. Because
a/t > 0 is a minimizer of $k(ot) = f(x^ — ag^), we apply the FONC to (f>k(a)
to obtain

Therefore, <j>'k(a) = 0 ifag^TQg^ = (x^TQ - bT)g(k\ But

Hence,
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Figure 8.6 Steepest descent method applied to f ( x \ , x-z) = x\ + x\

In summary, the method of steepest descent for the quadratic takes the form

where

Example 8.2 Let

Then, starting from an arbitrary initial point x^ G M2 we arrive at the solutio
x* = 0 € M2 in only one step. See Figure 8.6.

However, if

then the method of steepest descent shuffles ineffectively back and forth when search-
ing for the minimizer in a narrow valley (see Figure 8.7). This example illustrates
a major drawback in the steepest descent method. More sophisticated methods that
alleviate this problem are discussed in subsequent chapters.

To understand better the method of steepest descent we examine its convergence
properties in the next section.

8.3 ANALYSIS OF GRADIENT METHODS

8.3.1 Convergence

The method of steepest descent is an example of an iterative algorithm. This means
that the algorithm generates a sequence of points, each calculated on the basis of
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Figure 8.7 Steepest descent method in search for minimizer in a narrow valley

the points preceding it. The method is a descent method because as each new point
is generated by the algorithm, the corresponding value of the objective function
decreases in value (i.e., the algorithm possesses the descent property).

We say that an iterative algorithm is globally convergent if for any arbitrary starting
point the algorithm is guaranteed to generate a sequence of points converging to a
point that satisfies the FONC for a minimizer. When the algorithm is not globally
convergent, it may still generate a sequence that converges to a point satisfying the
FONC, provided the initial point is sufficiently close to the point. In this case, we
say that the algorithm is locally convergent. How close to a solution point we need
to start for the algorithm to converge depends on the local convergence properties
of the algorithm. A related issue of interest pertaining to a given locally or globally
convergent algorithm is the rate of convergence; that is, how fast the algorithm
converges to a solution point.

In this section, we analyze the convergence properties of descent gradient methods,
including the method of steepest descent and gradient methods with fixed step size.
We can investigate important convergence characteristics of a gradient method by
applying the method to quadratic problems. The convergence analysis is more
convenient if instead of working with / we deal with

where Q = QT > 0. The solution point x* is obtained by solving Qx = 6, that
is, x* = Q~lb. The function V differs from / only by a constant |x*TQx*. We
begin our analysis with the following useful lemma that applies to a general gradient
algorithm.

Lemma 8.1 The iterative algorithm

with gW = Qx^ — b satisfies
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where, ifg^ = 0 then 7* = 1, and if g^ ^ 0 then

Proof. The proof is by direct computation. Note that if gW — o, then the desired
result holds trivially. In the remainder of the proof, assume g^ ^ 0. We first
evaluate the expression

To facilitate computations, let j/fe> = x<*> - x*. Then, V(x^} = |y<*>TQy<*>.
Hence,

Therefore,

Because

we have

Therefore, substituting the above, we get

Note that 7* < 1 for all k, because 7* = 1 - V(x^k+l^/V(x^) and V is a
nonnegative function. If 7* = 1 for some k, then V(aj(fc+1)) = 0, which is equivalent
to x(k+l) = x*. In this case, we also have that for all i > k + 1, x^ = x* and
7i = 1. It turns out that 7jfc = 1 if and only if either gW = Qorg^ is an eigenvector
of Q (see Lemma 8.3).
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We are now ready to state and prove our key convergence theorem for gradient
methods. The theorem gives a necessary and sufficient condition for the sequence
{a;(fc)} generated by a gradient method to converge to x*; that is, x^ -> x*, or
limjfc^oo x(fc) = x*.

Theorem8.1 Let {x^} be the sequence resulting from a gradient algorithm
x(fc+i) — x(k) _ afc0(*0 i^t 7fc be as defined in Lemma 8.1, and suppose that
7fc > 0 far all k. Then, {x^} converges to x* for any initial condition x^ if and
only if

Proof. From Lemma 8.1, we have V(x^k+l^) = (1 — 7*) V(x^), from which we
obtain

Assume that 7* < 1 for all k, for otherwise the result holds trivially. Note that
x^ -> x* if and only if V(x^) ->• 0. By the above equation, we see that
this occurs if and only if Oi^o(l ~ 7») = ^, which, in turn, holds if and only
if Z)°^0 ~~ l°g(l ~ 7i) — °° (we §et tms simply by taking logs). Note that by
Lemma 8.1, 1 - 7; > 0 and log(l - 7*) is well defined (log(O) is taken to be oo).
Therefore, it remains to show that X^o ~ l°s(l — 7i) = oo if and only if

We first show that £)^0 7^ = 00 implies that £° .̂0 ~~ l°s(l ~~ 7») = °°- F°r

this, first observe that for any x G M, x > 0, we have log(x) < x — 1 (this is easy
to see simply by plotting log(x) and x - 1 versus x). Therefore, log(l - 7^) <
1 - 7i - 1 = -7;, and hence - log(l - 7^) > 7^. Thus, if XlSo ̂  = °°' men

clearly X)£0 ~
 los(l ~ 7i) = oo-

Finally, we show that ][3°̂ o — log(l — 7^) = oo implies that ̂ ^0 "ft = °°-
We proceed by contraposition. Suppose that X^i^o 7* ^ °°- Then, it must be that
7i -> 0. Now observe that for x e E, x < 1 and x sufficiently close to 1, we
have log(:r) > 2(x — 1) (as before, this is easy to see simply by plotting log(x) and
2(x — 1) versus x). Therefore, for sufficiently large i, log(l — 7*) > 2(1 — 7^ — 1) =
—27j, which implies that — log(l — 7^) < 27^. Hence, J^i^o 7i < °° implies that
££o-l°g(l-7i)<oo.

This completes the proof.

The assumption in the above theorem that 7/t > 0 for all k is significant in that
it corresponds to the algorithm having the descent property (see Exercise 8.16).
Furthermore, the result of the theorem does not hold in general if we do not assume
that 7fc > 0 for all k, as shown in the following example.
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Example 8.3 We show, using a counterexample, that the assumption that 7* > 0 in
Theorem 8.1 is necessary for the result of the theorem to hold.

Indeed, for each k = 0,1,2,..., choose a^ in such a way that 72* = 1/2 and
72fc+i = —1/2 (we can always do this if, for example, Q = In). From Lemma 8.1,
we have

Therefore, V(x^ -» 0. Because V(x^k+1^ = (3/2)V(a;(2fc)), we also have
that V(x(2k+V) -> 0. Hence, V(x^) -» 0, which implies that x<*> -> 0 (for all
x^). On the other hand, it is clear that

for all k. Hence, the result of the theorem does not hold if jk < 0 for some k.

Using the above general theorem, we can now establish the convergence of specific
cases of the gradient algorithm, including the steepest descent algorithm and algo-
rithms with fixed step size. In the analysis to follow, we use Rayleigh's inequality,
which states that for any Q = QT > 0, we have

where Amjn(Q) denotes the minimal eigenvalue of Q, and Amax(Q) denotes the
maximal eigenvalue of Q. For Q = QT > 0, we also have

and

Lemma 8.2 Let Q = Q > 0 be ann x n real symmetric positive definite matrix.
Then, for any x 6 En, we have

Proof. Applying Rayleigh's inequality and using the previously listed properties of
symmetric positive definite matrices, we get
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and

We are now ready to establish the convergence of the steepest descent method.

Theorem 8.2 In the steepest descent algorithm, we have x^ —>• x* for any x^°\

Proof. If gW = 0 for some k, then a;^ = x* and the result holds. So assume that
0(fc) -£ 0 for all k. Recall that for the steepest descent algorithm,

Substituting the above expression for o^ in the formula for 7^ yields

Note that in this case, 7^ > 0 for all k. Furthermore, by Lemma 8.2, we have
7* > (Amin(Q)/Amax(Q)) > 0. Therefore, we have ££L0 7* = oo, and hence by
Theorem 8.1, we conclude that x^ -> x*,

Consider now a gradient method with fixed step size; that is, o^ = o: E E for all
k. The resulting algorithm is of the form

We refer to the above algorithm as a fixed step size gradient algorithm. The algorithm
is of practical interest because of its simplicity. In particular, the algorithm does
not require a line search at each step to determine a*, because the same step size
a is used at each step. Clearly, the convergence of the algorithm depends on the
choice of a, and we would not expect the algorithm to work for arbitrary a. The
following theorem gives a necessary and sufficient condition on a for convergence
of the algorithm.

Theorem 8.3 For the fixed step size gradient algorithm, x^ —» x* for any x^ if
and only if

Proof. •$=: By Rayleigh's inequality, we have
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and

Therefore, substituting the above into the formula for 7*., we get

Therefore, 7^ > 0 for all k, and X^fcLoTfc = °°- Hence, by Theorem 8.1, we
conclude that x^ —> x*.

=>: We use contraposition. Suppose that either a < 0 or a > 2/Amax(Q). Let
2j(°) be chosen such that x^ - x* is an eigenvector of Q corresponding to the
eigenvalue Amax(Q). Because

we obtain

where in the last line we used the property that x^ — x* is an eigenvector of Q.
Taking norms on both sides, we get

Because a < 0 or o: > 2/Amax(Q),

Hence, ||o;(*+1) — x*|| cannot converge to 0, and thus the sequence {x^} does not
converge to x*.

Example 8.4 Let the function / be given by

We wish to find the minimizer of / using a fixed step size gradient algorithm

where a 6 M is a fixed step size.
To apply Theorem 8.3, we first symmetrize the matrix in the quadratic term of /

to get

The eigenvalues of the matrix in the quadratic term are 6 and 12. Hence, using
Theorem 8.3, the above algorithm converges to the minimizer for all aj(°) if and only
if a lies in the range 0 < a < 2/12.
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8.3.2 Convergence Rate

We now turn our attention to the issue of convergence rates of gradient algorithms. In
particular, we focus on the steepest descent algorithm. We first present the following
theorem.

Theorem 8.4 In the method of steepest descent applied to the quadratic function, at
every step k, we have

Proof. In the proof of Theorem 8.2, we showed that 7^ > Amin(Q)/Amax(Q)-
Therefore,

and the result follows.

The above theorem is relevant to our consideration of the convergence rate of the
steepest descent algorithm as follows. Let

the so-called condition number of Q. Then, it follows from Theorem 8.4 that

The term (1 — 1/r) plays an important role in the convergence of {V(x^k')} toO (and
hence of {x^ } to x*). We refer to (1 — 1/r) as the convergence ratio. Specifically,
we see that the smaller the value of (1 - 1/r), the smaller V(x^k+^) will be relative to
V(x^), and hence the "faster" V(x^) converges to 0, as indicated by the inequality
above. The convergence ratio (1 — 1/r) decreases as r decreases. If r — 1, then
Amax(Q) = Amin(Q), corresponding to circular contours of / (see Figure 8.6). In
this case, the algorithm converges in a single step to the minimizer. As r increases, the
speed of convergence of {V(x^}} (and hence of {x^}) decreases. The increase
in r reflects that fact that the contours of / are more eccentric (see, e.g., Figure 8.7).
We refer the reader to [64, pp. 218, 219] for an alternative approach to the above
analysis.

To investigate further the convergence properties of {x^ }, we need the following
definition.

Definition8.1 Given a sequence {x^} that converges to x*, that is,
lirrifc-j.oo \\x^ —x*\\ = 0, we say that the order ofconvergence is p, where p 6 M, if
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I f fo ra l lp>0 ,

then we say that the order of convergence is oo.

Note that in the above definition, 0/0 should be understood to be 0.
The order of convergence of a sequence is a measure of its rate of convergence;

the higher the order, the faster the rate of convergence. The order of convergence
is sometimes also called the rate of convergence (see, e.g., [70]). If p = 1 (first-
order convergence), we say that the convergence is linear. If p = 2 (second-order
convergence), we say that the convergence is quadratic.

Example 8.5 1. Suppose that x^ = l/k, and thus x^ ->• 0. Then,

If p < 1, the above sequence converges to 0, whereas if p > 1, it grows to oo.
If p — 1, the sequence converges to 1. Hence, the order of convergence is 1
(i.e., we have linear convergence).

2. Suppose that z(A:) = 7*, where 0 < 7 < 1, and thus x(fc) -> 0. Then,

If p < 1, the above sequence converges to 0, whereas if p > 1, it grows to oo.
If p = 1, the sequence converges to 7 (in fact, remains constant at 7). Hence,
the order of convergence is 1.

3. Suppose that x^ = 7^ ), where q > 1 and 0 < 7 < 1, and thus x^ ->• 0.
Then,

If p < q, the above sequence converges to 0, whereas if p > q, it grows to oo.
If p = q, the sequence converges to 1 (in fact, remains constant at 1). Hence,
the order of convergence is q.

4. Suppose that x^ = I for all k, and thus x^ -> 1 trivially. Then,

for all p. Hence, the order of convergence is oo.

The order of convergence can be interpreted using the notion of the order symbol
O, as follows. Recall that a = O(h) ("big-oh of /i") if there exists a constant c such
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that |a| < c\h\ for sufficiently small h. Then, the order of convergence is at least p
if

(see Theorem 8.5 below). For example, the order of convergence is at least 2 if

(this fact is used in the analysis of Newton's algorithm in Chapter 9).

Theorem 8.5 Let {x^ } be a sequence that converges to x*. If

then the order of convergence (if it exists) is at least p.

Proof. Let s be the order of convergence of {xW }. Suppose

Then, there exists c such that for sufficiently large k,

Hence,

Taking limits yields

Because by definition s is the order of convergence,

Combining the above two inequalities, we get

Therefore, because limfc_>oo \\x^ — x*\\ = 0, we conclude that s > p, that is, the
order of convergence is at least p.
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It turns out that the order of convergence of any convergent sequence cannot be
less than 1 (see Exercise 8.2). In the following, we provide an example where the
order of convergence of a fixed step size gradient algorithm exceeds 1.

Example 8.6 Consider the problem of finding a minimizer of the function/ : E -> E
given by

Suppose we use the algorithm x(k+1^ = x^ — af'(x^} with step size a = 1/2
and initial condition x^ = 1. (The notation /' represents the derivative of /.)

We first show that the algorithm converges to a local minimizer of /. Indeed, we
have f ' ( x ) = 2x — x2. The fixed step size gradient algorithm with step size a = 1/2
is therefore given by

Withx^0) = 1, we can derive the expressions;^ = (1/2)2 1. Hence, the algorithm
converges to 0, a strict local minimizer of /.

Next, we find the order of convergence. Note that

Therefore, the order of convergence is 2.

Finally, we show that the steepest descent algorithm has an order of convergence
of 1 in the worst case; that is, there are cases for which the order of convergence of
the steepest descent algorithm is equal to 1. To proceed, we will need the following
simple lemma.

Lemma 8.3 In the steepest descent algorithm, ifg^ ^ Qfor all k, then 7* = 1 if
and only ifg^ is an eigenvector ofQ. D

Proof. SuDoose a^ ^ 0 for all k. Recall that for the steepest descent algorithm.

Sufficiency is easy to show by verification. To show necessity, suppose that 7^ = 1.
Then, V(x^k+l^) = 0, which implies that aj(fc+1) = x*. Therefore,

Premultiplying by Q and subtracting b from both sides yields
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which can be rewritten as

Hence, g^k' is an eigenvector of Q.

By the above lemma, if gW is not an eigenvector of Q, then 7^ < 1 (recall that
7fc cannot exceed 1). We use this fact in the proof of the following result on the
worst-case order of convergence of the steepest descent algorithm.

Theorem 8.6 Let [x^ } be a convergent sequence of iterates of the steepest descent
algorithm applied to a function f . Then, the order of convergence of {x^} is 1 in
the worst case; that is, there exist a function f and an initial condition x^ such that
the order of convergence of{x^ } is equal to I. D

Proof. Let / : En -> E be a quadratic function with Hessian Q. Assume that the
maximum and minimum eigenvalues of Q satisfy Amax(Q) > Amjn(Q). To show
that the order of convergence of {x^ } is 1, it suffices to show that there exists x^
such that

for some c > 0 (see Exercise 8.1). Indeed, by Rayleigh's inequality,

Similarly,

Combining the above inequalities with Lemma 8.1, we obtain

Therefore, it suffices to choose x^ such that 7^ < d for some d < 1.
Recall that for the steepest descent algorithm, assuming gW ^ 0 for all k, 7^

depends on gW according to

First consider the case where n = 2. Suppose that x^ ^ x* is chosen such that
x(o) _ x* js not an eigenvector of Q. Then, g^ — Q(x^ — x*) ^ 0 is also
not an eigenvector of Q. By Proposition 8.1, gW = (x^k+l^ — x^)/ak is not an
eigenvector of Q for any k (because any two eigenvectors corresponding to Amax (Q)
and Amin(Q) are mutually orthogonal). Also, g^ lies in one of two mutually
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orthogonal directions. Therefore, by Lemma 8.3, for each k, the value of 7* is one
of two numbers, both of which are strictly less than 1. This proves the n = 2 case.

For the general n case, let vi and v? be mutually orthogonal eigenvectors corre-
sponding to Amax(Q) and Amin(Q). Choose x^ such that x^ — x* ^ 0 lies in
the span of v\ and u2 but is not equal to either. Note that g^ — Q(x^ — x*}
also lies in the span of v\ and v^, but is not equal to either. By manipulating
x(*+i) — 3j(fc) _ akg(k) as before, we can write g(k+1) = (I — ctkQ}g^. Any
eigenvector of Q is also an eigenvector of I —a/tQ. Therefore,*;^) lies inthespanof
v\ and v^ for all k; that is, the sequence {g^ } is confined within the 2-dimensional
subspace spanned by v\ and v^- We can now proceed as in the n — 2 case.

In the next chapter, we discuss Newton's method, which has order of convergence
at least 2 if the initial guess is near the solution.

EXERCISES

8.1 Let {#(*)} be a sequence that converges to x*. Show that if there exists c > 0
such that

for sufficiently large k, then the order of convergence (if it exists) is at most p.

8.2 Let {x^} be a sequence that converges to x*. Show that there does not exist
p < 1 such that

8.3 Suppose that we use the Golden Section algorithm to find the minimizer of a
function. Let Uk be the uncertainty range at the fcth iteration. Find the order of
convergence of \Uk } •

8.4 Suppose that we wish to minimize a function / : M —>• E that has a derivative /'.
A simple line search method, called derivative descent search (DDS), is described as
follows: given that we are at a point x^, we move in the direction of the negative
derivative with step size a; that is, x^k+1^ — x^ — af'(x^}, where a > 0 is a
constant.

In the following parts, assume that / is quadratic: f ( x ) = |ax2 — bx + c (where
a, 6, and c are constants, and a > 0).

a. Write down the value of x* (in terms of a, b, and c) that minimizes /.

b. Write down the recursive equation for the DDS algorithm explicitly for this
quadratic /.
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c. Assuming the DDS algorithm converges, show that it converges to the optimal
value x* (found in part a).

d. Find the order of convergence of the algorithm, assuming it does converge.

e. Find the range of values of a for which the algorithm converges (for this
particular /) for all starting points x^.

8.5 Consider the function

where x = [x\, x-2\T € E2. Suppose we use a fixed step size gradient algorithm to
find the minimizer of /:

Find the largest range of values of a for which the algorithm is globally convergent.

8.6 Consider the function / : E2 -» E given by

where a and b are some unknown real-valued parameters.

a. Write the function / in the usual multivariable quadratic form.

b. Find the largest set of values of a and b such that the unique global minimizer
of / exists, and write down the minimizer (in terms of the parameters a and 6).

c. Consider the following algorithm:

Find the largest set of values of a and b for which the above algorithm converges
to the global minimizer of / for any initial point x^.

8.7 Consider the function / : E -» E given by f ( x ) = |(z - c)2, c 6 E. We are
interested in computing the minimizer of / using the iterative algorithm

where /' is the derivative of / and a^ is a step size satisfying 0 < a* < 1.

a. Derive a formula relating /(x^+1) with /(rcfc), involving ajt.
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b. Show that the algorithm is globally convergent if and only if

Hint: Use part a and the fact that for any sequence {&k} C (0,1), we have

8.8 Consider the function / : R —» R given by /(re) = x3 — x. Suppose we use
a fixed step size algorithm x^+1^ = x^ — af'(x^) to find a local minimizer of
/. Find the largest range of values of a such that the algorithm is locally convergent
(i.e., for all x(0) sufficiently close to a local minimizer x*, we have x^ -> x*).

8.9 Consider the function / given by f ( x ) = (x - I)2, x G R. We are interested in
computing the minimizer of / using the iterative algorithm Xk+i = X k — a 2 ~ k f ' ( x k ) ,
where /' is the derivative of /, and 0 < a < 1. Does the algorithm have the descent
property? Is the algorithm globally convergent?

8.10 Let / : R ->• R, / e C3, with first derivative /' and second derivative /", and
unique minimizer x*. Consider a fixed step size gradient algorithm

Suppose /"(x*) ^ 0 and a = l//"(x*). Assuming the algorithm converges to x*,
show that the order of convergence is at least 2.

8.11 Consider the optimization problem:

minimize \\Ax — b\\2,

where A e Rmxn, m > n, and b 6 Mm.

a. Show that the objective function for the above problem is a quadratic function,
and write down the gradient and Hessian of this quadratic.

b. Write down the fixed step size gradient algorithm for solving the above opti-
mization problem.

c. Suppose

Find the largest range of values for a such that the algorithm in part b converges
to the solution of the problem.
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8.12 Consider a function/ : En ->• En given by f ( x ) = Ax + 6, where A € Enxn

and 5 6 En. Suppose A is invertible, and x* is the zero of / (i.e., f ( x * } = 0). We
wish to compute x* using the iterative algorithm

where a G E, a > 0. We say that the algorithm is globally monotone if for any x^°',
||X(*+D _ x*|| < ||x(*) _ x*|| for all k.

a. Assume that all the eigenvalues of A are real. Show that a necessary condition
for the algorithm above to be globally monotone is that all the eigenvalues of
A are nonnegative.
Hint: Use contraposition.

b. Suppose

Find the largest range of values of a for which the algorithm is globally
convergent (i.e., x^ -> x* for all x^).

8.13 Let / : En ->• E be given by /(x) = \xTQx - xTb, where 6 € En and
Q is a real symmetric positive definite n x n matrix. Suppose that we apply the
steepest descent method to this function, with x^0) 7^ Q""1^. Show that the method
converges in one step, that is, x^1) = Q~1b, if and only if x^0) is chosen such that
0(°) = Qx(°) — b is an eigenvector of Q.

8.14 Suppose we apply a fixed step size gradient algorithm to minimize

a. Find the range of values of the step size for which the algorithm converges to
the minimizer.

b. Suppose we use a step size of 1000 (which is too large). Find an initial
condition that will cause the algorithm to diverge (not converge).

8.15 Let / : En -> E be given by /(x) = |xTQx - xT6, where 6 € En, and Q
is a real symmetric positive definite n x n matrix. Consider the algorithm

where g^ = Qz<*> - 6, ak = g(k)Tg(k)/g(k)TQg(k), and 0 e E is a given
constant. (Note that the above reduces to the steepest descent algorithm if J3 — 1.)
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Show that {x^} converges to x* = Q~1b for any initial condition x^ if and
only if 0 < (3 < 2.

8.16 Let / : Rn ->• E be given by f ( x ) = \XTQx - xTb, where b € Mn, and Q
is a real symmetric positive definite n x n matrix. Consider a gradient algorithm

where g^ = Qx^ — b is the gradient of/ at x ( / c ), and o.k is some step size.
Show that the above algorithm has the descent property (i.e., f(x^k+l'>) < f(x^)

whenever g^ =£ 0) if and only if 7^ > 0 for all k.

8.17 Given / : W1 -» E, consider the general iterative algorithm

where d^\d^\ . . . are given vectors in Mn, and a^ is chosen to minimize f(x^ +
ad(k)}; that is,

Show that for each k, the vector x^k+1^ —x^ is orthogonal to Vf(x^k+l^) (assuming
the gradient exists).

8.18 Write a simple MATLAB routine for implementing the steepest descent al-
gorithm using the secant method for the line search (e.g., the MATLAB function
of Exercise 7.9). For the stopping criterion, use the condition ||<7^|| < £, where
£ = 10~6. Test your routine by comparing the output with the numbers in Exam-
ple 8.1. Also test your routine using an initial condition of [—4, 5,1]T, and determine
the number of iterations required to satisfy the above stopping criterion. Evaluate the
objective function at the final point to see how close it is to 0.

8.19 Apply the MATLAB routine from Exercise 8.18 to Rosenbrock's function:

Use an initial condition of o^0) = [—2, 2]T. Terminate the algorithm when the norm
of the gradient of / is less than 10~4.



9_
Newton's Method

9.1 INTRODUCTION

Recall that the method of steepest descent uses only first derivatives (gradients) in
selecting a suitable search direction. This strategy is not always the most effective.
If higher derivatives are used, the resulting iterative algorithm may perform better
than the steepest descent method. Newton's method (sometimes called the Newton-
Raphson method) uses first and second derivatives and indeed does perform better
than the steepest descent method if the initial point is close to the minimizer. The
idea behind this method is as follows. Given a starting point, we construct a quadratic
approximation to the objective function that matches the first and second derivative
values at that point. We then minimize the approximate (quadratic) function instead
of the original objective function. We use the minimizer of the approximate function
as the starting point in the next step and repeat the procedure iteratively. If the
objective function is quadratic, then the approximation is exact, and the method
yields the true minimizer in one step. If, on the other hand, the objective function is
not quadratic, then the approximation will provide only an estimate of the position
of the true minimizer. Figure 9.1 illustrates the above idea.

We can obtain a quadratic approximation to the given twice continuously differ-
entiable objection function / : En —> E using the Taylor series expansion of / about
the current point x^, neglecting terms of order three and higher. We obtain

139
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Figure 9.1 Quadratic approximation to the objective function using first and second deriva-
tives

where, for simplicity, we use the notation gW = Vf(x^). Applying the FONC to
q yields

If F(x^ ') > 0, then q achieves a minimum at

This recursive formula represents Newton's method.

Example 9.1 Use Newton's method to minimize the Powell function:

Use as the starting point a;^ = [3, —1,0, l]T. Perform three iterations.
Note that /(x(0)) = 215. We have

and F(x) is given by
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Iteration 1.

Hence,

Iteration 2.

Hence,

Iteration 3.

Observe that the fcth iteration of Newton's method can be written in two steps as
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1. Solve F(xW)d(k} = -0<*> fordw;

2. Setx<*+1> =xW+d ( * J .

Step 1 requires the solution of an n x n system of linear equations. Thus, an efficient
method for solving systems of linear equations is essential when using Newton's
method.

As in the one-variable case, Newton's method can also be viewed as a technique
for iteratively solving the equation

g(x) = 0,

where x € En, and g : En ->• Rn. In this case, F(x) is the Jacobian matrix
of g at x, that is, F(x) is the n x n matrix whose (z,j) entry is ( d g i / d x j } ( x ) ,
ij = l , 2 , . . . , n .

9.2 ANALYSIS OF NEWTON'S METHOD

As in the one-variable case, there is no guarantee that Newton's algorithm heads in
the direction of decreasing values of the objective function if F(x^) is not positive
definite (recall Figure 7.7 illustrating Newton's method for functions of one variable
when /" < 0). Moreover, even if F(x^} > 0, Newton's method may not be a
descent method; that is, it is possible that f ( x ^ k + 1 ^ } > f(x^). For example, this
may occur if our starting point x^ is far away from the solution. See the end of
this section for a possible remedy to this problem. Despite the above drawbacks,
Newton's method has superior convergence properties when the starting point is near
the solution, as we shall see in the remainder of this section.

The convergence analysis of Newton's method when / is a quadratic function is
straightforward. In fact, Newton's method reaches the points:* such that V/(x*) = 0
in just one step starting from any initial point x^. To see this, suppose that Q = QT

is invertible, and

Then,

and

Hence, given any initial point x^,by Newton's algorithm
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Therefore, for the quadratic case, the order of convergence of Newton's algorithm is
oo for any initial point x^ (compare the above with Exercise 8.13, which deals with
the steepest descent algorithm).

To analyze the convergence of Newton's method in the general case, we use results
from Section 5.1. Let {x^} be the Newton's method sequence for minimizing a
function / : En —>• E. We show that {x^} converges to the minimizer x* with
order of convergence at least 2.

Theorem 9.1 Suppose that f € C3, andx* € En is a point such that V f (x*} = 0
and F(x*} is invertible. Then, for all x^ sufficiently close to x*, Newton's method
is well defined for all k, and converges to x* with order of convergence at least 2. D

Proof. The Taylor series expansion of V/ about x^ yields

Because by assumption / G C3 and F(x*) is invertible, there exist constants e > 0,
GI > 0 andc2 > 0 such that if a;(0), x 6 {x : \\x - x*\\ < e}, we have

and by Lemma 5.3, F(x) 1 exists and satisfies

The first inequality above holds because the remainder term in the Taylor series
expansion contains third derivatives of / that are continuous and hence bounded on
{x : \\x — x*\\ < e}.

Suppose that x^ £ {x : \\x-x* \\ < e}. Then, substituting x = x* in the above
inequality and using the assumption that V/(x*) = 0, we get

Now, subtracting x* from both sides of Newton's algorithm and taking norms yields

Applying the above inequalities involving the constants c\ and c^ gives

Suppose that x^ is such that
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where a € (0,1). Then,

By induction, we obtain

Hence,

and therefore the sequence {x^} converges to x*. The order of convergence is
at least 2 because \\x^+^ - x*|| < cic2||z<*> - x*||2, that is, ||x<*+1> - x*|| =
0(||zW-z*||2).

As stated in the above theorem, Newton's method has superior convergence prop-
erties if the starting point is near the solution. However, the method is not guaranteed
to converge to the solution if we start far away from it (in fact, it may not even be well
defined because the Hessian may be singular). In particular, the method may not be
a descent method; that is, it is possible that /(o;(fc+1)) > f(x^). Fortunately, it is
possible to modify the algorithm such that the descent property holds. To see this,
we need the following result.

Theorem 9.2 Let {x^} be the sequence generated by Newton's method for min-
imizing a given objective function /(x). If the Hessian F(x^) > 0 and
g(V = V/(x(A;)) ^ 0, then the direction

from x^*) to x(fc+1) is a descent direction for f in the sense that there exists an a > 0
such that for all a G (0, a),

Proof. Let

Then, using the chain rule, we obtain

Hence,
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because F(x^)~l > 0 and g^ ^ 0. Thus, there exists an a > 0 so that for all
a e (0, a), 0(a) < 0(0). This implies that for all a € (0, a),

and the proof is completed.

The above theorem motivates the following modification of Newton's method:

where

that is, at each iteration, we perform a line search in the direction —F(x^) 1g^•
By Theorem 9.2, we conclude that the above modified Newton's method has the
descent property; that is,

whenever g^ ^ 0.
A drawback of Newton's method is that evaluation of F(x^) for large n can

be computationally expensive. Furthermore, we have to solve the set of n linear
equations F(x^)d^ = —g^. In Chapters 10 and 11, we discuss methods that
alleviate this difficulty.

Another source of potential problems in Newton's method arises from the Hes-
sian matrix not being positive definite. In the next section, we describe a simple
modification to Newton's method to overcome this problem.

9.3 LEVENBERG-MARQUARDT MODIFICATION

If the Hessian matrix F(x^) is not positive definite, then the search direction
(rk' = —F(x(k))~lgW may not point in a descent direction. A simple technique
to ensure that the search direction is a descent direction is to introduce the so-called
Levenberg-Marquardt modification to Newton's algorithm:

where //* > 0.
The idea underlying the Levenberg-Marquardt modification is as follows. Con-

sider a symmetric matrix F, which may not be positive definite. Let AI , . . . , An

be the eigenvalues of F with corresponding eigenvectors vi,... ,vn. The eigen-
values AI , . . . , An are real, but may not all be positive. Next, consider the matrix
G = F + fj,I, where /z > 0. Note that the eigenvalues of G are AI + ^ / , . . . , An + /z.
Indeed,
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which shows that for alH = 1, . . . , n, Vi is also an eigenvector of G with eigenvalue
\i + IJL. Therefore, if p, is sufficiently large, then all the eigenvalues of G are positive,
and G is positive definite. Accordingly, if the parameter ^ in the Levenberg-
Marquardt modification of Newton's algorithm is sufficiently large, then the search
direction d^ = —(F(x^) + Hkl}~l9^ always points in a descent direction (in
the sense of Theorem 9.2). In this case, if we further introduce a step size o^ as
described in the previous section,

then we are guaranteed that the descent property holds.
The Levenberg-Marquardt modification of Newton's algorithm can be made to

approach the behavior of the pure Newton's method by letting //& -> 0. On the other
hand, by letting ̂  -* °o, the algorithm approaches a pure gradient method with
small step size. In practice, we may start with a small value of p,*., and then slowly
increase it until we find that the iteration is descent, that is, f(x^h+i^) < f(x^}.

9.4 NEWTON'S METHOD FOR NONLINEAR LEAST-SQUARES

We now examine a particular class of optimization problems and the use of Newton's
method for solving them. Consider the following problem:

where n : En —>• E, i = 1,..., m, are given functions. This particular problem is
called a nonlinear least-squares problem. The special case where the TI are linear is
discussed in Section 12.1.

Example 9.2 Suppose we are given m measurements of a process at m points in time,
as depicted in Figure 9.2 (here, m = 21). Let t\,..., tm denote the measurement
times, and yi,... ,ym the measurement values. Note that t\ — 0 while £21 = 10.
We wish to fit a sinusoid to the measurement data. The equation of the sinusoid is

with appropriate choices of the parameters A, ui, and 0. To formulate the data-fitting
problem, we construct the objective function
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Figure 9.2 Measurement data for Example 9.2.

representing the sum of the squared errors between the measurement values and the
function values at the corresponding points in time. Let x — [A, u, 4>]T represent the
vector of decision variables. We therefore obtain a nonlinear least-squares problem
with

Defining r — [r i , . . . ,rm]T, we write the objective function as f ( x ) =
r(x)Tr(x). To apply Newton's method, we need to compute the gradient and
the Hessian of /. The jth component of V/(x) is

Denote the Jacobian matrix of r by

Then, the gradient of / can be represented as
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Next, we compute the Hessian matrix of /. The (&, j)th component of the Hessian
is given by

Letting S(x) be the matrix whose (k, j)th component is

we write the Hessian matrix as

Therefore, Newton's method applied to the nonlinear least-squares problem is given
by

In some applications, the matrix S(x) involving the second derivatives of the
function r can be ignored because its components are negligibly small. In this case,
the above Newton's algorithm reduces to what is commonly called the Gauss-Newton
method:

Note that the Gauss-Newton method does not require calculation of the second
derivatives of r.

Example 9.3 Recall the data fitting problem in Example 9.2, with

The Jacobian matrix J(x) in this problem is a 21 x 3 matrix with elements given by:

Using the above expressions, we apply the Gauss-Newton algorithm to find the
sinusoid of best fit, given the data pairs ( i i ,y i ) , . . . , (£m,2/m)- Figure 9.3 shows
a plot of the sinusoid of best fit obtained from the Gauss-Newton algorithm. The
parameters of this sinusoid are: A = 2.01, uj = 0.992, and </> = 0.541.
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Figure 9.3 Sinusoid of best fit in Example 9.3.

A potential problem with the Gauss-Newton method is that the matrix J(x)T J(x)
may not be positive definite. As described before, this problem can be overcome
using a Levenberg-Marquardt modification:

The above is referred to in the literature as the Levenberg-Marquardt algorithm, be-
cause the original Levenberg-Marquardt modification was developed specifically for
the nonlinear least-squares problem. An alternative interpretation of the Levenberg-
Marquardt algorithm is to view the term pkl as an approximation to S(x) in Newton's
algorithm.

EXERCISES

9.1 Let / : M —•>• E. be given by f ( x ) — (x — x0)4, where XQ 6 M is a constant.
Suppose that we apply Newton's method to the problem of minimizing /.

a. Write down the update equation for Newton's method applied to the problem.

b. Let 7/fc) = \x^ — XQ\, where x^ is the fcth iterate in Newton's method. Show
that the sequence {y^} satisfies y(k+1) — |y(fc).

c. Show that x^ —> XQ for any initial guess a;^0'.
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d. Show that the order of convergence of the sequence {x^ } in part b is 1.

e. Theorem 9.1 states that under certain conditions, the order of convergence of
Newton's method is at least 2. Why does that theorem not hold in this particular
problem?

9.2 Consider the problem of minimizing f ( x ) — x* = (v/x)4, x e E. Note that 0
is the global minimizer of /.

a. Write down the algorithm for Newton's method applied to this problem.

b. Show that as long as the starting point is not 0, the algorithm in part a does not
converge to 0 (no matter how close to 0 we start).

9.3 Consider "Rosenbrock's Function": f ( x ) — 100(x2 — x2)2 + (1 — £i)2 , where
x — [xi,z2]T (known to be a "nasty" function—often used as a benchmark for
testing algorithms). This function is also known as the banana function because of
the shape of its level sets.

a. Prove that [1, l]T is the unique global minimizer of / over 1R2.

b. With a starting point of [0,0]T, apply two iterations of Newton's method. Hint:

c. Repeat part b using a gradient algorithm with a fixed step size of a.k = 0.05 at
each iteration.

9.4 Consider the modified Newton's algorithm

where a& = argminQ>0 f(x^ — aF(x^) lg^}- Suppose that we apply the
algorithm to a quadratic function f ( x ) — ^xTQx — xTb, where Q — QT > 0.
Recall that the standard Newton's method reaches the point x* such that V/(x*) = 0
in just one step starting from any initial point x^. Does the above modified Newton's
algorithm possess the same property? Justify your answer.



10
Conjugate Direction

Methods

10.1 INTRODUCTION

The class of conjugate direction methods can be viewed as being intermediate between
the method of steepest descent and Newton's method. The conjugate direction
methods have the following properties:

1. Solve quadratics of n variables in n steps;

2. The usual implementation, the conjugate gradient algorithm, requires no Hes-
sian matrix evaluations;

3. No matrix inversion and no storage of an n x n matrix required.

The conjugate direction methods typically perform better than the method of steepest
descent, but not as well as Newton's method. As we saw from the method of steepest
descent and Newton's method, the crucial factor in the efficiency of an iterative
search method is the direction of search at each iteration. For a quadratic function
of n variables f ( x ) = \xTQx - xTb, x e Mn, Q = QT > 0, the best direction
of search, as we shall see, is in the so-called Q-conjugate direction. Basically, two
directions d(1) and d(2) in En are said to be Q-conjugate if d(1)TQd(2) = 0. In
general, we have the following definition.

Definition 10.1 Let Q be a real symmetric n x n matrix. The directions
d(0), d(1), d ( 2 ) , . . . , d(w) are Q-conjugate if, for all i ^ j, we have d(i)TQd(j} = 0.
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Lemma 10.1 Let Q be a symmetric positive definite n x n matrix. If the directions
(TQ\(rl\ . . . , d>k' € Mn, k < n — 1, are nonzero and Q-conjugate, then they are
linearly independent.

Proof. Let ao5 • • • > «& be scalars such that

Premultiplying the above equality by d^TQ, 0 < j < k, yields

because all other terms d(j)TQd(i) = 0, i ^ j, by Q-conjugacy. But O = QT > 0
and d(j) ^ 0; hence a, = 0, j = 0,1,.. . , k. Therefore, d(0),/1},... ,d(fc),
A; < n — 1, are linearly independent.

Example 10.1 Let

Note that Q = QT > 0. The matrix Q is positive definite because all its leading
principal minors are positive:

Our goal is to construct a set of Q-conjugate vectors d^, d'1', d^2'.

LetdW = [l,0,0r, d(1) = [diMM1']1". <*(2) - [^2),42),42)]T. We
require d(0)TQd(1) = 0. We have

Letd^ = 1,41} = 0,4X) - -3. Then,d(1) = [1,0, -3]T, and thus d^TQd^ =
0.

To find the third vector dP\ which would be Q-conjugate with d^ and S-l\ we
require d(0)TQd(2) = 0 and d(1)TQd(2) = 0. We have

If we take d^2' = [1,4, —3]T, then the resulting set of vectors is mutually conjugate.

The above method of finding Q-conjugate vectors is inefficient. A systematic
procedure for finding Q-conjugate vectors can be devised using the idea underlying
the Gram-Schmidt process of transforming a given basis of En into an orthonormal
basis of En (see Exercise 10.1).
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10.2 THE CONJUGATE DIRECTION ALGORITHM

We now present the conjugate direction algorithm for minimizing the quadratic
function of n variables

where Q — QT > 0, x e Mn. Note that because Q > 0, the function / has a global
minimizer that can be found by solving Qx = b.

Basic Conjugate Direction Algorithm. Given a starting point x^°\ and Q-
conjugate directions d(0), d (1),..., d(n-1); for k > 0,

Theorem 10.1 For any starting point x^°\ the basic conjugate direction algorithm
converges to the unique x* (that solves Qx = b) in n steps; that is, x^ = x*.

Proof. Consider x* — x^ e En. Because the cP^ are linearly independent, there
exist constants &,i = 0 , . . . ,n — 1, such that

Now premultiply both sides of the above equation by d^k'TQ, 0 < k < n, to obtain

where the terms d^TQd^ = 0, k ̂  i, by the Q-conjugate property. Hence,

Now, we can write

Therefore,

So writing

and premultiplying the above by d^k'TQ we obtain
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because g^ = Qx^ - b and Qx* = b. Thus,

and x* = x(n\ which completes the proof.

Example 10.2 Find the minimizer of

using the conjugate direction method with the initial point x^ = [0,0]T, and Q-

conjugatedirections d(0) = [1,0]T and d(1) = [-|,|]T-
We have

and hence

Thus,

To find #(2), we compute

and

Therefore,

Because / is a quadratic function in two variables, x^ = x*.

For a quadratic function of n variables, the conjugate direction method reaches
the solution after n steps. As we shall see below, the method also possesses a certain
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desirable property in the intermediate steps. To see this, suppose that we start at x^
and search in the direction d^ to obtain

We claim that

To see this,

The equation g^Td^ = 0 implies that QQ has the property that a0 =
argmin0o(aO> where $0(0.) — f(x^ + ad^). To see this, apply the chain
rule to get

Evaluating the above at a = &Q, we get

Because 0o is a quadratic function of a, and the coefficient of the a2 term in </>o is
a^'TQa^' > 0, the above implies that QO = argmm

aeR 0o(oO-
Using a similar argument, we can show that for all k,

and hence

In fact, an even stronger condition holds, as given by the following lemma.

Lemma 10.2 In the conjugate direction algorithm,

for allk,Q<k<n-l,andQ<i<k.

Proof. Note that
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because gW = QxW - b. Thus,

We prove the lemma by induction. The result is true for A; = 0 because g^Td^ =
0, as shown before. We now show that if the result is true for k — I (i.e., g^Td^ = 0,
i < fc-l)thenitistrueforfc(i.e.,p(A:+1)Td(i) = 0,« < k). Fixfc > OandO < i < k.
By the induction hypothesis, g^Td^ = 0. Because

and d^k'TQd^1' = 0 by Q-conjugacy, we have

It remains to be shown that

Indeed,

because Qx^ - b = g^.
Therefore, by induction, for all 0 < k < n — 1 and 0 < i < k,

By the above lemma, we see that p(fc+1) is orthogonal to any vector from the
subspace spanned by d^°\d^\ ..., d^. Figure 10.1 illustrates this statement.

The above lemma can be used to show an interesting optimal property of the con-
jugate direction algorithm. Specifically, we now show that not only does f(x^k+l^)
satisfy f(x^k+1^) = mina f(x^ + ad^), as indicated before, but also,

In other words, f(x^k+1^) = minzevfc f ( x ) , where Vjt = a;(0) +
span[d(0), d ( 1 ) , . . . ,d ( f c )]. As k increases, the subspace span[d(0), d ( 1 ) , . . . ,d ( f c )]
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Figure 10.1 Illustration of Lemma 10.2

"expands," and will eventually fill the whole of En (provided the vectors
d'0', ds1',..., are linearly independent). Therefore, for some sufficiently large k, x*
will lie in Vk • For this reason, the above result is sometimes called the "expanding
subspace" theorem (see, e.g., [64, p. 241]).

To prove the expanding subspace theorem, define the matrix D^k' by

that is, d(i} is the zth column of D(k}. Note that x^ + U(D(k)} = V*. Also,

where a = [ao, • • • , <*fc]T- Hence,

Now, consider any vector x € Vk- There exists a vector a such that x = x^ +
£>(fc)a. Let </>fc(a) = /(ce(0) + D(fc)a). Note that (j)k is a quadratic function and has
a unique minimizer that satisfies the FONC (see Exercises 6.24 and 10.6). By the
chain rule,

Therefore,
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By Lemma 10.2, g(k+VTD(k) = 0. Therefore, a satisfies the FONC for the
quadratic function fik, and hence a is the minimizer of 0^; that is,

and the proof of our result is completed.
The conjugate direction algorithm is very effective. However, to use the algorithm,

we need to specify the Q-conjugate directions. Fortunately there is a way to generate
Q-conjugate directions as we perform iterations. In the next section, we discuss an
algorithm that incorporates the generation of Q-conjugate directions.

10.3 THE CONJUGATE GRADIENT ALGORITHM

The conjugate gradient algorithm does not use prespecified conjugate directions,
but instead computes the directions as the algorithm progresses. At each stage
of the algorithm, the direction is calculated as a linear combination of the previous
direction and the current gradient, in such a way that all the directions are mutually Q-
conjugate—hence the name conjugate gradient algorithm. This calculation exploits
the fact that for a quadratic function of n variables, we can locate the function
minimizer by performing n searches along mutually conjugate directions.

As before, we consider the quadratic function

where Q = QT > 0. Our first search direction from an initial point x^ is in the
direction of steepest descent; that is,

Thus,

where

In the next stage, we search in a direction d^1' that is Q-conjugate to d^°'. We choose
d^ as a linear combination of g^ and <r°'. In general, at the (k + l)st step, we
choose d^k+l^ to be a linear combination of g(k+1) anderfe '. Specifically, we choose

The coefficients/?£,& = 1,2,..., are chosen in such a way that d^k+l> is Q-conjugate
to d^, d^,..., d^. This is accomplished by choosing /?& to be
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The conjugate gradient algorithm is summarized below.

1. Set A; :— 0; select the initial point x^.

2. 0(°) = V/(x<°>). If0<°) = 0, stop, else set d(0) = -0(°>.

3 a, - a(k)Td(k)
J' ak ~ d(k)TQd(k)'

4. x(*+ 1)=zW+a f cd (*).

5. 0(fc+1) = V/(aj<*+1>). If0(fc+1) = O.stop.

_ g^*Qd(k)

°- P* - dWTQd(k} '

7. d<*+1) =-p(*+D+^dW.

8. Set A; := A; + 1; go to step 3.

Proposition 10.1 7n ?/ie conjugate gradient algorithm, the directions
d(0\d(l\ . . . , d(n~1} are Q-conjugate. D

Froo/ We use induction. We first show d^TQd^ = 0. To this end, we write

Substituting for

in the above equation, we see that d^°'TQd^1' = 0.
We now assume that d^, d^,..., d^k', k < n — 1, are Q-conjugate directions.

From Lemma 10.2, we have g(k+VTd(j) = 0, j = 0,1, . . . , k. Thus, 0(fe+1> is
orthogonal to each of the directions d^, d^\ ..., d^. We now show that

Fix .7 € {0, . . . , fc} . We have

Substituting this equation into the previous one yields

Because g(k+^Td(j~l} = 0, it follows that g(
k+VTgW =Q.

We are now ready to show that d(k+l)TQd(i) - 0, j - 0 , . . . , k. We have
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If j < k, then d^TQd^ = 0, by virtue of the induction hypothesis. Hence, we
have

ButtftH-1) = g(i) + ajQd(j). Because g(k+VTgW = 0, i = 0 , . . . , k,

Thus,

It remains to be shown that d(fc+1)TQd(fc) = 0. We have

Using the expression for fa, we get d^k+l^TQd^ = 0, which completes the proof.

Example 10.3 Consider the quadratic function

We find the minimizer using the conjugate gradient algorithm, using the starting point
jc(°) = [0,0,0]T.

We can represent / as

where

We have

Hence,

and
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The next stage yields

We can now compute

Hence,

and

To perform the third iteration, we compute

Hence,

and

Note that

as expected, because / is a quadratic function of three variables. Hence, x* = x^.

10.4 THE CONJUGATE GRADIENT ALGORITHM FOR
NON-QUADRATIC PROBLEMS

In the previous section, we showed that the conjugate gradient algorithm is a conjugate
direction method, and therefore minimizes a positive definite quadratic function of n
variables in n steps. The algorithm can be extended to general nonlinear functions by
interpreting f ( x ) = ^xTQx — xTb as a second-order Taylor series approximation
of the objective function. Near the solution such functions behave approximately as
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quadratics, as suggested by the Taylor series expansion. For a quadratic, the matrix Q,
the Hessian of the quadratic, is constant. However, for a general nonlinear function
the Hessian is a matrix that has to be reevaluated at each iteration of the algorithm.
This can be computationally very expensive. Thus, an efficient implementation of
the conjugate gradient algorithm that eliminates the Hessian evaluation at each step
is desirable.

Observe that Q appears only in the computation of the scalars o^ and /3k- Because

the closed form formula for a^ in the algorithm can be replaced by a numerical line
search procedure. Therefore, we only need to concern ourselves with the formula
for /3k • Fortunately, elimination of Q from the formula is possible and results in
algorithms that depend only on the function and gradient values at each iteration.
We now discuss modifications of the conjugate gradient algorithm for a quadratic
function for the case in which the Hessian is unknown but in which objective function
values and gradients are available. The modifications are all based on algebraically
manipulating the formula /?& in such a way that Q is eliminated. We discuss three
well-known modifications.

The Hestenes-Stiefel formula. Recall that

The Hestenes-Stiefel formula is based on replacing the term Qd^ by the term
(0(fc+!) _ g ( k ) ) / a k - The two terms are equal in the quadratic case, as we now show.
Now, x^+1) = x^ + akd^. Premultiplying both sides by Q, and recognizing
that gW = Qx(fe) - 6, we get </(fc+1) = gW + akQd^k\ which we can rewrite
as Qd^ — (g(k+1) - g^)/ak. Substituting this into the original equation for ̂
gives

which is called the Hestenes-Stiefel formula.
The Polak-Ribiere formula. Starting from the Hestenes-Stiefel formula, we mul-

tiply out the denominator to get

By Lemma 10.2, d(*):V*+1) = 0. Also, since d(k) = -gW + /3k^d(k~l\ and
premultiplying this by g^T, we get



THE CONJUGATE GRADIENT ALGORITHM FOR NON-QUADRATIC PROBLEMS 163

where once again we used Lemma 10.2. Hence, we get

This expression for /?& is known as the Polak-Ribiere formula.
The Fletcher-Reeves formula. Starting with the Polak-Ribiere formula, we multi-

ply out the numerator to get

We now use the fact that g(k+l)Tg(k) = 0, which we get by using the equation

and applying Lemma 10.2. This leads to

which is called the Fletcher-Reeves formula.

The above formulas give us conjugate gradient algorithms that do not require
explicit knowledge of the Hessian matrix Q. All we need are the objective function
and gradient values at each iteration. For the quadratic case, the three expressions for
/3k are exactly equal. However, this is not the case for a general nonlinear objective
function.

We need a few more slight modifications to apply the algorithm to general nonlinear
functions in practice. First, as mentioned in our discussion of the steepest descent
algorithm (Section 8.2), the termination criterion V/(x ( fc+1^) = 0 is not practical.
A suitable practical stopping criterion, such as those discussed in Section 8.2, needs
to be used.

For nonquadratic problems, the algorithm will not usually converge in n steps,
and as the algorithm progresses, the "Q-conjugacy" of the direction vectors will tend
to deteriorate. Thus, a common practice is to reinitialize the direction vector to the
negative gradient after every few iterations (e.g., n or n + 1), and continue until the
algorithm satisfies the stopping criterion.

A very important issue in minimization problems of nonquadratic functions is the
line search. The purpose of the line search is to minimize 0fc(a) = f(x^ + a<rk'}
with respect to a > 0. A typical approach is to bracket or box in the minimizer and
then estimate it. The accuracy of the line search is a critical factor in the performance
of the conjugate gradient algorithm. If the line search is known to be inaccurate, the
Hestenes-Stiefel formula for 0k is recommended [50].

In general, the choice of which formula for 0k to use depends on the objective
function. For example, the Polak-Ribiere formula is known to perform far better than
the Fletcher-Reeves formula in some cases but not in others. In fact, there are cases
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in which the g^, k = 1,2,..., are bounded away from zero when the Polak-Ribiere
formula is used (see [77]). In the study by Powell in [77], a global convergence
analysis suggests that the Fletcher-Reeves formula for j3k is superior. Powell further
suggests another formula for fik '•

For general results on the convergence of conjugate gradient methods, we refer
the reader to [98].

EXERCISES

10.1 (Adopted from [64, Exercise 8.8(1)]) Let Q be a real symmetric posi-
tive definite n x n matrix. Given an arbitrary set of linearly independent vectors
{p(°\... ,p^n-1^} in Rn, the Gram-Schmidt procedure generates a set of vectors
{d^,...,^""1*} as follows:

Show that the vectors d (0 ) , . . . , d(n x) are Q-conjugate.

10.2 Let / : Rn -> E be the quadratic function

where Q = QT > 0. Given a set of directions {d(0), d(1),...} C Mn, consider the
algorithm

where otk is the step size. Suppose that g(k+l)Td^ = 0 for all k = 0 , . . . , n - 1
and i = 0 , . . . , A;, where 0(fc+1> = V/(x(*+1)). Show that if g^Td(k) ^ 0 for all
k = 0 , . . . , n - 1, then d (0 ) , . . . , d(n~1} are Q-conjugate.

10.3 Let / : W1 -»• E be given by /(x) = |ajTQx - xT6, where 6 e Mn, and Q is
a real symmetric positive definite n x n matrix. Show that in the conjugate gradient
method for this /, d<*>TQd<*> - -d^TQg^.

10.4 Let Q be a real n x n symmetric matrix.

a. Show that there exists a Q-conjugate set {cr * ' , . . . , dsn>} such that each <r1'
(i = 1,..., n) is an eigenvector of Q.
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Hint: Use the fact that for any real symmetric n x n matrix, there exists a set
{ • U j , . . . ,vn} of its eigenvectors such that vjvj — 0 for all i,j = 1,.. . , n,

« ^ j-

b. Suppose that Q is positive definite. Show that if {d(1),... ,d(n)} is a Q-
conjugate set that is also orthogonal (i.e., d^Td^ = Qfora\\i,j = l , . . . , n ,
i ^ j), and ds1' ^ 0, i = 1 , . . . ,n , then each tr2', i = 1,... ,n, is an
eigenvector of Q.

10.5 Consider the following algorithm for minimizing a function /:

where afc = argmina f(x^ + ad^). Lelg^ = Vf(x^) (as usual).
Suppose / is quadratic with Hessian Q. We choose d^k+l^ ~ jk9^k+1^ + d^h\

and we wish the directions er ' and d^ +l' to be Q-conjugate. Find a formula for
7it in terms of d(k), g(k+l">, and Q.

10.6 Consider the quadratic function / : En -> E given by

where Q - QT > 0. Let D € IRnxr be of rank r, and x0 G Mn. Define the function
0 : Er -> E by

Show that 0 is a quadratic function with a positive definite quadratic term.

10.7 Let f ( x ) , x=[xi,x2]
T G E2, be given by

a. Express f ( x ) in the form of/(x) = ^xTQx — xTb.

b. Find the minimizer of / using the conjugate gradient algorithm. Use a starting
point of x<°) =[0,0]T.

c. Calculate the minimizer of / analytically from Q and b, and check it with your
answer in part b.

10.8 Write a MATLAB routine to implement the conjugate gradient algorithm
for general functions. Use the secant method for the line search (e.g., the MATLAB
function of Exercise 7.9). Test the different formulas for /?*. on Rosenbrock's function
(see Exercise 9.3), with an initial condition x^ — [—2,2]T. For this exercise,
reinitialize the update direction to the negative gradient every 6 iterations.
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11
Quasi-Newton Methods

11.1 INTRODUCTION

Newton's method is one of the more successful algorithms for optimization. If
it converges, it has a quadratic order of convergence. However, as pointed out
before, for a general nonlinear objective function, convergence to a solution cannot
be guaranteed from an arbitrary initial point x^. In general, if the initial point is
not sufficiently close to the solution, then the algorithm may not possess the descent
property (i.e., f(x^k+l^} •£ f(x^) for some k).

Recall that the idea behind Newton's method is to locally approximate the function
/ being minimized, at every iteration, by a quadratic function. The minimizer for
the quadratic approximation is used as the starting point for the next iteration. This
leads to Newton's recursive algorithm

We may try to guarantee that the algorithm has the descent property by modifying
the original algorithm as follows:

where a^ is chosen to ensure that

For example, we may choose ajt = argmina>0 f(x^ — aF(x^k^) l g ^ k ^ ) (see
Theorem 9.2). We can then determine an appropriate value of o^ by performing a line

167
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search in the direction —F(x^)~1g^. Note that although the line search is simply
the minimization of the real variable function 0fc(a) = f(x^ — aF(x^)"lg^),
it is not a trivial problem to solve.

A computational drawback of Newton's method is the need to evaluate
F(x^) and solve the equation F(x^)d^ = -g^ (i.e., compute Sk) =
—F(x^)~1g^). To avoid the computation of F(x^)~l, the quasi-Newton
methods use an approximation to F(x^)~l in place of the true inverse. This
approximation is updated at every stage so that it exhibits at least some properties
of F(x^)~1. To get some idea about the properties that an approximation to
F(x^)~1 should satisfy, consider the formula

where Hk is an n x n real matrix, and a is a positive search parameter. Expanding
/ about x^ yields

As a tends to zero, the second term on the right-hand side of the above equation
dominates the third. Thus, to guarantee a decrease in / for small a, we have to have

A simple way to ensure this is to require that H k be positive definite. We have
proved the following result.

Proposition 11.1 Let f e Cl, z<*> e Rn, 0<*> = V/(z<*>) ^ 0, andHk annxn
real symmetric positive definite matrix. Ifwesetx^k+l^ — x^ — akHkg^k\ where
ak = argmina>0 f(xW - aHkg

(k)), then ak > 0, and /(x<*+1>) < /(z(A;)). D

In constructing an approximation to the inverse of the Hessian matrix, we should
use only the objective function and gradient values. Thus, if we can find a suitable
method of choosing Hk, the iteration may be carried out without any evaluation of
the Hessian and without the solution of any set of linear equations.

11.2 APPROXIMATING THE INVERSE HESSIAN

Let HQ, HI, HZ, . . . be successive approximations of the inverse F(x^)~l of the
Hessian. We now derive a condition that the approximations should satisfy, which
forms the starting point for our subsequent discussion of quasi-Newton algorithms.
To begin, suppose first that the Hessian matrix F(x) of the objective function / is
constant and independent of x. In other words, the objective function is quadratic,
with Hessian F(x] = Q for all x, where Q = QT. Then,
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Let

and

Then, we may write

We start with a real symmetric positive definite matrix HQ. Note that given k, the
matrix Q~l satisfies

Therefore, we also impose the requirement that the approximation Hk+i of the
Hessian satisfy

If n steps are involved, then moving in n directions Ax^°\ Aar1), . . . , Aorn l>
yields

The above set of equations can be represented as

Note that Q satisfies

and

Therefore, if [A#(0), A0 (1 ) , . . . , A0(n x)] is nonsingular, then Q 1 is determined
uniquely after n steps, via

As a consequence, we conclude that if Hn satisfies the equations HnAg^ =
Ax(z), 0 < i < n - 1, then the algorithm a;(fc+1) = x^ - akHkgW, a* =
argmina>0 f(x^ — aH^g^}, is guaranteed to solve problems with quadratic
objective functions in n + 1 steps, because the update x(n+1) = x^ — anHng^
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is equivalent to Newton's algorithm. In fact, as we shall see below (Theorem 11.1),
such algorithms solve quadratic problems of n variables in at most n steps.

The above considerations illustrate the basic idea behind the quasi-Newton meth-
ods. Specifically, quasi-Newton algorithms have the form

where the matrices HQ, HI, . . . are symmetric. In the quadratic case, the above
matrices are required to satisfy

where Az(i) = x^+^ - x& = a{d
(i\ and A0(i) = 0<i+1) - g& = QAx(i). It

turns out that quasi-Newton methods are also conjugate direction methods, as stated
in the following.

Theorem 11.1 Consider a quasi-Newton algorithm applied to a quadratic function
with Hessian Q = QT, such that for 0 < k < n — 1,

where Hk+i = Hl+1. If a{ ^ 0, 0 < i < k + I, then d ( 0 ) , . . . ,d(*+1) are
Q-conjugate.

Proof. We proceed by induction. For k = 0, the result holds trivially.
Assume the result is true for k < n — I. We now prove the result for k + 1; that is,

that d(0\ ..., d(fc+1) are Q-conjugate. It suffices to show that d(k+l}TQd(i} = 0,
0 < i < k. To this end, note that because a:; ^ 0, we can write d^ = Ax^/o^.
So, given i, 0 < i < k, we have

Because d^,..., d^ are Q-conjugate by assumption, we conclude from
Lemma 10.2 thatg(*+1)Td(i) = 0. Hence, d(k+l)TQd^ = 0, which completes the
proof.
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By the above theorem, we conclude that a quasi-Newton algorithm solves a
quadratic of n variables in at most n steps.

Note that the equations that the matrices Hk are required to satisfy do not deter-
mine those matrices uniquely. Thus, we have some freedom in the way we compute
the Hk- In the methods we describe, we compute H^+i by adding a correction to
H k- In the following sections, we consider three specific updating formulas.

11.3 THE RANK ONE CORRECTION FORMULA

In the rank one correction formula, the correction term is symmetric, and has the
form akZ^z^T, where a* € R and z^ € Mn. Therefore, the update equation is

Hk+l=Hk+akz^z^T.

Note that

and hence the name "rank one" correction (it is also called the single-rank symmetric
(SRS) algorithm). The product z^z^T is sometimes referred to as the dyadic
product or outer product. Observe that if H k is symmetric, then so is Hk+i •

Our goal now is to determine ak and z^k\ given Hk, Ag \ Aar*', so that
the required relationship discussed in the previous section is satisfied, namely,
Hk+i&g^ = Ax^, i = 1,. . . , k. To begin, let us first consider the condition
Hjk+iA0(fe) = Ao3(fc). In other words, given Hk, A#(fc), and Ax(fc), we wish to
find dk and z^ to ensure that

First note that z(fc)TAg(fc) is a scalar. Thus,

and hence

We can now determine

Hence,
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The next step is to express the denominator of the second term on the right-hand side
of the above equation as a function of the given quantities H^, A</fc\ and Ax^. To
accomplish this, premultiply Ax(fc) -Hk&g(k> = (akz^TAgw)z^ by A0(*)T

to obtain

Observe that ak is a scalar and so is A#(*)7Vfc) = z(*)TA0w. Thus,

Taking the above relation into account yields

We summarize the above development in the following algorithm.

Rank One Algorithm

1. Set k := 0; select x^°\ and a real symmetric positive definite H0.

2. If0(*> = 0, stop; else dw = -HkgW.

3. Compute

4. Compute

5. Set k := k + 1; go to step 2.

The rank one algorithm is based on satisfying the equation

However, what we want is

It turns out that the above is, in fact, automatically true, as stated in the following
theorem.
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Theorem 11.2 For the rank one algorithm applied to the quadratic with Hessian
Q = QT, we have Hk+i&g(i) = Az(i), 0 < i < k.

Proof. We prove the result by induction. From the discussion before the theorem it
is clear that the claim is true for k = 0. Suppose now that the theorem is true for
A; - 1 > 0; that is, Hk&9^ = Aa;(t), i < k. We now show that the theorem is true
for k. Our construction of the correction term ensures that

So we only have to show

To this end, fix i < k. We have

By the induction hypothesis, Hk A</^ — Ax^. To complete the proof it is enough
to show that the second term on the right-hand side of the above equation is equal to
zero. For this to be true it is enough that

Indeed, since

by the induction hypothesis, and because Ag^ = QAa^fc\ we have

Hence,

which completes the proof.

Example 11.1 Let

Apply the rank one correction algorithm to minimize /. Use x^ = [1,2]T and
Ho = 12 (2 x 2 identity matrix).

We can represent / as
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Thus,

Because HQ = 12,

The objective function is quadratic, and hence

and thus

We then compute

Because

we obtain

Therefore,

and
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We now compute

Note that g^ — 0, and therefore x^ = x*. As expected, the algorithm solves the
problem in two steps.

Note that the directions d^°' and cr1' are Q-conjugate, in accordance with Theo-
rem 11.1.

The rank one correction algorithm works well for the case of constant Hessian ma-
trix; that is, the quadratic case. Our analysis was, in fact, done for this case. However,
ultimately we wish to apply the algorithm to general functions, not just quadratics.
Unfortunately, for the nonquadratic case, the rank one correction algorithm is not
very satisfactory for several reasons. For a nonquadratic objective function, H^+i
may not be positive definite (see Example 11.2 below) and thus d(-k+1' may not be a
descent direction. Furthermore, if

is close to zero, then there may be numerical problems in evaluating H^+i •

Example 11.2 Assume that Hk > 0. It turns out that if A#(/j)T(A:r(A;) -
Hkkg(k]] > 0, then Hk+i > 0 (see Exercise 11.3). However, if Ap(fc)T(Aa;(fc) -
Hk &-Q } < 0, then Hk+i may not be positive definite. As an example of what
might happen if Ap ( / j )T(Ax ( /c) - Hk&g^} < 0, consider applying the rank one
algorithm to the function

with an initial point

and initial matrix

Note that H0 > 0. We have

and

It is easy to check that Hi is not positive definite (it is indefinite, with eigenvalues
0.96901 and -1.3030).

Fortunately, alternative algorithms have been developed for updating Hk. In
particular, if we use a "rank two" update, then Hk is guaranteed to be positive
definite for all k, provided the line search is exact. We discuss this in the next section.
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11.4 THE DFP ALGORITHM

The rank two update was originally developed by Davidon in 1959 and was subse-
quently modified by Fletcher and Powell in 1963; hence the name DFP algorithm.
The DFP algorithm is also known as the variable metric algorithm. We summarize
the algorithm below.

DFP Algorithm

1. Set k := 0; select x(0\ and a real symmetric positive definite H0.

2. If 0<*) = 0, stop; else d(k} = -HkgW.

3. Compute

4. Compute

5. Set k := k + 1; go to step 2.

We now show that the DFP algorithm is a quasi-Newton method, in the sense that
when applied to quadratic problems, we have Hk+iAg^ — Ax^, 0 < i < k.

Theorem 11.3 In the DFP algorithm applied to the quadratic with Hessian Q = QT,
we have Hk+i&g(i) = Azw, 0 < i < k.

Proof. We use induction. For k = 0, we have

Assume the result is true for k - 1; that is, Hk&g^ = Az(t), 0 < i < k - 1.
We now show that Hk+i A</^ = Ax^, 0 < i < k. First, consider i — k. We have



THE DFP ALGORITHM 177

It remains to consider the case i < k. To this end,

Now,

by the induction hypothesis and Theorem 11.1. The same arguments yield
A0(*)TAa(i) = 0. Hence,

and the proof is completed.

By the above theorem and Theorem 11.1, we conclude that the DFP algorithm is
a conjugate direction algorithm.

Example 11.3 Locate the minimizer of

Use the initial point x<°) = [0,0]T and HQ = 72.
Note that in this case,

Hence,

Because / is a quadratic function,
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Therefore,

We then compute

and

Observe that

Thus,

and

Using the above, we now compute HI :

We now compute d(1) = -Jf iflr(1) = [0,1]T, and

Hence,

because / is a quadratic function of two variables.
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Note that we have d(0)TQd(1) = d(l)TQd(0) = 0; that is, d(0) and d{1) are
Q-conjugate directions.

We now show that in the DFP algorithm, Hk+i inherits positive definiteness from
Hk.

Theorem 11.4 Suppose that gW ^ 0. In the DFP algorithm, if Hk is positive
definite, then so is Hk+i-

Proof. We first write the following quadratic form

Define

where

Note that because Hk > 0, its square root is well defined; see Section 3.4 for more
information on this property of positive definite matrices. Using the definitions of a
and 6, we obtain

and

Hence,

We also have

since Ax(fe)T^(fc+1) = akd
(k)Tg^+^ = 0 by Lemma 10.2 (see also Exercise 11.1).

Because
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we have

The above yields

Both terms on the right-hand side of the above equation are nonnegative—the first
term is nonnegative because of the Cauchy-Schwarz inequality, and the second term
is nonnegative because Hk > 0 and ctk > 0 (by Proposition 11.1). Therefore, to
show that xTHk+ix > 0 for x ^ 0, we only need to demonstrate that these terms
do not both vanish simultaneously.

The first term vanishes only if a and b are proportional; that is, if a = /3b for
some scalar /3. Thus, to complete the proof it is enough to show that if a = /3b, then
(xT&x(k})2/(akgWTHkgW) > 0. Indeed, first observe that

Hence,

Using the above expression for x and the expression Aor^A*/*' =
—ctk9^THk9^k \ we obtain

Thus, for all x ± 0,

and the proof is completed.

The DFP algorithm is superior to the rank one algorithm in that it preserves
the positive definiteness of Hk. However, it turns out that in the case of larger
nonquadratic problems the algorithm has the tendency of sometimes getting "stuck."
This phenomenon is attributed to Hk becoming nearly singular [14]. In the next
section, we discuss an algorithm that alleviates this problem.

11.5 THE BFGS ALGORITHM

In 1970, an alternative update formula was suggested independently by Broyden,
Fletcher, Goldfarb, and Shanno. The method is now called the BFGS algorithm,
which we discuss in this section.

To derive the BFGS update, we use the concept of duality, or complementarity, as
presented in [29] and [64]. To discuss this concept, recall that the updating formulas
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for the approximation of the inverse of the Hessian matrix were based on satisfying
the equations

which were derived from A</^ = QAx^l\ 0 < i < k. We then formulated update
formulas for the approximations to the inverse of the Hessian matrix Q~l. An
alternative to approximating Q"1 is to approximate Q itself. To do this let Bk be
our estimate of Q at the kth step. We require Bk+i to satisfy

Notice that the above set of equations is similar to the previous set of equations for
Hk+i, the only difference being that the roles of Ax^ and A</^ are interchanged.
Thus, given any update formula for Hk, a corresponding update formula for B^ can
be found by interchanging the roles of Bk and Hk, and of A</^ and Aarfc). In
particular, the BFGS update for Bk corresponds to the DFP update for Hk. Formulas
related in this way are said to be dual or complementary [29].

Recall that the DFP update for the approximation H k of the inverse Hessian is

Using the complementarity concept, we can easily obtain an update equation for the
approximation Bk of the Hessian:

This is the BFGS update of Bk.
Now, to obtain the BFGS update for the approximation of the inverse Hessian, we

take the inverse of Bk+i to obtain

To compute H^^s by inverting the right-hand side of the above equation, we apply
the following formula for a matrix inverse, known as the Sherman-Morrison formula
(see [44, p. 123] or [37, p. 3]).

Lemma 11.1 Let Abe a nonsingular matrix. Let u and v be column vectors such
that 1 + VT A~lu 7^ 0. Then, A + UVT is nonsingular, and
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Proof. We can prove the result easily by verification.

From the above lemma it follows that if A"1 is known, then the inverse of the
matrix A augmented by a rank one matrix can be obtained by a modification of the
matrix A~l.

Applying the above lemma twice to Bk+i yields

The above represents the BFGS formula for updating Hk •
Recall that for the quadratic case, the DFP algorithm satisfies H%+-fAg^ =

Az(i), 0 < i < k. Therefore, the BFGS update for Bk satisfies Bk+i&x^ =
A#(i), 0 < i < k. By construction of the BFGS formula for HJ+f3, we conclude
that H%£fs&g(i) = Az(i), 0 < i < k. Hence, the BFGS algorithm enjoys all
the properties of quasi-Newton methods, including the conjugate directions property.
Moreover, the BFGS algorithm also inherits the positive definiteness property of the
DFP algorithm; that is, if gW ^ 0 and Hk > 0, then HJ+^S > 0.

The BFGS update is reasonably robust when the line searches are sloppy (see
[14]). This property allows us to save time in the line search part of the algorithm.
The BFGS formula is often far more efficient than the DFP formula (see [77] for
further discussion).

We conclude our discussion of the BFGS algorithm with the following numerical
example.

Example 11.4 Use the BFGS method to minimize

where

Take H0 = J2 and x<°> = [0,0]T. Verify that H2 = Q~l.
We have

The objective function is a quadratic, and hence we can use the following formula to
compute a0:

Therefore,
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To compute Hi = HfFGS, We need the following quantities:

Therefore,

Hence, we have

Therefore,

Because our objective function is a quadratic on M2, x^ is the minimizer. Notice
that the gradient at x(2) is 0; that is, 0(2) = 0.

To verify that H^ = Q~l, we compute:

Hence,
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Note that indeed H2Q = QH^ = Ii, and hence H? = Q~l.

For nonquadratic problems, quasi-Newton algorithms will not usually converge
in n steps. As in the case of the conjugate gradient methods, here too some mod-
ifications may be necessary to deal with nonquadratic problems. For example, we
may reinitialize the direction vector to the negative gradient after every few iterations
(e.g., n or n + 1), and continue until the algorithm satisfies the stopping criterion.

EXERCISES

11.1 Given / : En -»• R, / 6 Cl, consider the algorithm

where tr1', <r2 ' , . . . are vectors in En, and a>k > 0 is chosen to minimize f(x^ +
ad(fc));thatis,

Note that the above general algorithm encompasses almost all algorithms that we
discussed in this part, including the steepest descent, Newton, conjugate gradient,
and quasi-Newton algorithms.

Let0<*> = V/(x<*>), and assume that d(k}Tg^ < 0.

a. Show that d^ is a descent direction for /, in the sense that there exists a > 0
such that for all a 6 (0, a],

b. Show that ak > 0.

c. Show that d(fc) V*+1) = 0.

d. Show that the following algorithms all satisfy the condition d^k'Tg^ < 0, if
0<*> ? 0:

1. Steepest descent algorithm;

2. Newton's method, assuming the Hessian is positive definite;

3. Conjugate gradient algorithm;

4. Quasi-Newton algorithm, assuming H * > 0.

e. For the case where f ( x ) = ^xTQx — xTb, with Q = QT > 0, derive an
expression for ak in terms of Q, dsk', and gW.
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11.2 Consider the algorithm

where / : E2 -»> E, / 6 C1, Mk e E2x2 is given by

with a 6 E, and

Suppose at some iteration k we have Vf(x^) — [1,1]T. Find the largest range
of values of a that guarantees that ak > 0 for any /.

11.3 Consider the rank one algorithm. Assume that Hk > 0. Show that if
A0WT(Az(fc) - Hk&g(k)) > 0, then Hk+1 > 0.

11.4 Based on the rank one update equation, derive an update formula using com-
plementarity and the matrix inverse formula.

11.5 Consider the DFP algorithm applied to the quadratic function

where Q = QT > 0.

a. Write down a formula for ak in terms of Q, g^, and d^.

b. Show that if gW ^ 0, then ak > 0.

11.6 Assuming exact line search, show that if H0 = In (n x n identity matrix),
then the first two steps of the BFGS algorithm yield the same points x^ and x^ as
conjugate gradient algorithms with the Hestenes-Stiefel, the Polak-Ribiere, as well
as the Fletcher-Reeves formulas.

11.7 Given a function / : Rn -> E, consider an algorithm x^k+1^ = x^ -
akHkg

(k} for finding the minimizer of/, where g^ = Vf(x^} andHk € Enxn

is symmetric.
Suppose Hk = 0HfFP + (1 - 4>)H%FGS, where 0 € M, and JffFP and

Hk
FGS are matrices generated by the DFP and BFGS algorithms, respectively.

a. Show that the above algorithm is a quasi-Newton algorithm. Is the above
algorithm a conjugate direction algorithm?
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b. Suppose 0 < 0 < 1. Show that if HQFP > OandH^FGS > 0, then Hk > 0
for all k. What can you conclude from this about whether or not the algorithm
has the descent property?

11.8 Consider the following simple modification to the quasi-Newton family of
algorithms. In the quadratic case, instead of the usual quasi-Newton condition
Hk+i&g(i} = Ax ( i ) , 0 < i < k, suppose that we have Hk+i&g(l} - p;Az(i),
0 < i < k, where pi > 0. We refer to the set of algorithms that satisfy the above
condition as the symmetric Huang family.

Show that the symmetric Huang family algorithms are conjugate direction algo-
rithms.

11.9 Write a MATLAB routine to implement the quasi-Newton algorithm for general
functions. Use the secant method for the line search (e.g., the MATLAB function of
Exercise 7.9). Test the different update formulas for Hk on Rosenbrock's function
(see Exercise 9.3), with an initial condition x^ = [—2,2]T . For this exercise,
reinitialize the update direction to the negative gradient every 6 iterations.

11.10 Consider the function

a. Use MATLAB to plot the level sets of / at levels -0.72, -0.6, -0.2, 0.5, 2.
Locate the minimizers of / from the plots of the level sets.

b. Apply the DFP algorithm to minimize the above function with the following
starting initial conditions: (i) [0,0]T; (ii) [1.5,1]T. Use H0 = /2. Does the
algorithm converge to the same point for the two initial conditions? If not,
explain.
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Solving Ax = b

12.1 LEAST-SQUARES ANALYSIS

Consider a system of linear equations

Ax — 6,

where A e Rmxn , b e Mm, m > n, and rank A = n. Note that the number of
unknowns, n, is no larger than the number of equations, m. If 6 does not belong
to the range of A; that is, if b g 7£(A), then this system of equations is said to be
inconsistent or overdetermined. In this case, there is no solution to the above set of
equations. Our goal then is to find the vector (or vectors) x minimizing \\Ax — b\\2.
This problem is a special case of the nonlinear least-squares problem discussed in
Section 9.4.

Let x* be a vector that minimizes \\Ax — 6||2; that is, for all x € IRn,

We refer to the vector x* as a least-squares solution to Ax = b. In the case where
Ax = b has a solution, then the solution is a least-squares solution. Otherwise, a
least-squares solution minimizes the norm of the difference between the left- and
right-hand sides of the equation Ax = b. To characterize least-squares solutions, we
need the following lemma.

Lemma 12.1 Let A 6 Rmxn, m > n. Then, rank A = n if and only if
rank A A = n (i.e., the square matrix A A is nonsingular). D

187
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Proof. =$•: Suppose that rank A = n. To show rank ATA = n, it is equivalent
to show M(ATA] = {0}. To proceed, let x 6 N(ATA); that is, ATAx = 0.
Therefore,

which implies that Ax — 0. Because rank A = n, we have x = 0.
<=: Suppose that rank ATA = n; that is, J\f(ATA) = {0}. To show rank A =

n, it is equivalent to show that J\f(A) = {0}. To proceed, let x € N(A}\ that is,
Ax = 0. Then, ATAx = 0, and hence x = 0.

Recall that we assume throughout that rank A = n. By the above lemma,
we conclude that (ATA)~1 exists. The following theorem characterizes the least-
squares solution.

Theorem 12.1 The unique vector x* that minimizes \\Ax — b\\2 is given by the
solution to the equation A Ax = A b; that is, x* = (A A)"1 ATb.

Proof. Lets* = (ATA)~1ATb. First observe that

We now show that the last term in the above equation is zero. Indeed, substituting
the above expression for x*,

Hence,

If x -£ x*, then \\A(x - x*)\\2 > 0, because rank A = n. Thus, if x ^ x*, we
have

Thus, x* = (ATA) l ATb is the unique minimizer of \\Ax — 6||2.

We now give a geometric interpretation of the above theorem. First note that the
columns of A span the range 7£(A) of A, which is a n-dimensional subspace of
Rm. The equation Ax — b has a solution if and only if b lies in this n-dimensional
subspace K(A). Ifm = n, then b 6 7£(A) always, and the solution is x* = A"16.
Suppose now that m > n. Intuitively, we would expect the "likelihood" of b e 7?.(A)
to be small, because the subspace spanned by the columns of A is very "thin."
Therefore, let us suppose that b does not belong to 7£(A). We wish to find a point
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Figure 12.1 Orthogonal projection of 6 on the subspace H(A)

h G H(A) that is "closest" to 6. Geometrically, the point h should be such that the
vector e = h - b is orthogonal to the subspace K(A) (see Figure 12.1). Recall that
a vector e G Em is said to be orthogonal to the subspace 'R(A) if it is orthogonal
to every vector in this subspace. We call h the orthogonal projection of b onto the
subspace K(A). It turns out that h = Ax* = A(ATA)~1ATb. Hence, the vector
h G Tl(A) minimizing \\b — h\\ is exactly the orthogonal projection of b onto 'R.(A).
In other words, the vector x* minimizing || Ax — b\\ is exactly the vector that makes
Ax — b orthogonal to K(A).

To proceed further, we write A = [ai,..., an], where a\,..., an are the columns
of A. The vector e is orthogonal to 7£(A) if and only if it is orthogonal to each of
the columns a\,..., an of A, To see this, note that

if and only if for any set of scalars {x\, :r2,..., xn}, we also have

Any vector in K(A) has the form x\a\ H 1- xnan.

Proposition 12.1 Let h G 7£(A) be such that h — bis orthogonal to 7l(A). Then,
h = Ax* = A(ATA)~lATb.

Proof. Because h G 7£(A) = spanfai, . . . , an], it has the form h = xia\ -f • • • +
xnan, where xi,...,xn G E. To find z i , . . . ,x n , we use the assumption that
e = h — b is orthogonal to spanfai, • • • , an]; that is, for alH = 1,..., n, we have

or, equivalently,

Substituting h into the above equations, we obtain a set of n linear equations of the
form
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In matrix notation this system of n equations can be represented as

Note that we can write

We also note that

Because rank A = n, A A is nonsingular, and thus we conclude that

Notice that the matrix

plays an important role in the least-squares solution. This matrix is often called the
Gram matrix (or Grammian).

An alternative method of arriving at the least-squares solution is to proceed as
follows. First, we write

Therefore, / is a quadratic function. The quadratic term is positive definite because
rank A — n. Thus, the unique minimizer of / is obtained by solving the FONC (see
Exercise 6.24); that is,



LEAST-SQUARES ANALYSIS 191

Table 12.1 Experimental data for Example 12.1

i 0 1 2
ti 2 3 4
Vi 3 4 15

The only solution to the equation V f ( x ) = 0 is x* = (ATA)-1 AT6.
We now give an example in which least-squares analysis is used to fit measurements

by a straight line.

Example 12.1 Line Fitting. Suppose that a process has a single input t e E and a
single output?/ G E. Suppose that we perform an experiment on the process, resulting
in a number of measurements, as displayed in Table 12.1. The ith measurement results
in the input labeled t{ and the output labeled y{. We would like to find a straight line
given by

that fits the experimental data. In other words, we wish to find two numbers, m and
c, such that yi = mti + c,i = 0,1,2. However, it is apparent that there is no choice
of m and c that results in the above requirement; that is, there is no straight line that
passes through all three points simultaneously. Therefore, we would like to find the
values of m and c that "best fit" the data. A graphical illustration of our problem is
shown in Figure 12.2.

We can represent our problem as a system of three linear equations of the form:

We can write the above system of equations as

where

Note that since

the vector 6 does not belong to the range of A. Thus, as we have noted before, the
above system of equations is inconsistent.
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Figure 12.2 Fitting a straight line to experimental data

The straight line of "best fit" is the one that minimizes

Therefore, our problem lies in the class of least-squares problems. Note that the
above function of m and c is simply the total squared vertical distance (squared
error) between the straight line defined by m and c and the experimental points. The
solution to our least-squares problem is

Note that the error vector e = Ax* — b is orthogonal to each column of A.

Next, we give an example of the use of least-squares in wireless communications.

Example 12.2 Attenuation Estimation. A wireless transmitter sends a discrete-time
signal {SQ, «i, $2} (of duration 3) to a receiver, as shown in Figure 12.3. The real
number Si is the value of the signal at time i.

The transmitted signal takes two paths to the receiver: a direct path, with delay
10 and attenuation factor 01, and an indirect (reflected) path, with delay 12 and
attenuation factor 02- The received signal is the sum of the signals from these two
paths, with their respective delays and attenuation factors.
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Figure 12.3 Wireless transmission in Example 12.2

Suppose the received signal is measured from times 10 through 14 as
r i O j f i i j • • • 5 r i4» as shown in the figure. We wish to compute the least-squares
estimates of ai and a2, based on the following values:

so si s2 rw TII ri2 n3 ri4

1 2 1 4 7 8 6 3

The problem can be posed as a least-squares problem with

The least-squares estimate is given by

We now give a simple example where the least-squares method is used in digital
signal processing.
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Example 12.3 Discrete Fourier Series. Suppose that we are given a "discrete-time
signal," represented by the vector

We wish to approximate the above signal by a sum of sinusoids. Specifically, we
approximate 6 by the vector

where yo, y\,..., yn, z\,..., zn e E, and the vectors c^ and s^ are given by

We call the above sum of sinusoids a discrete Fourier series (although, strictly
speaking, it is not a series but a finite sum). We wish to find yo, y\,..., yn, z\,..., zn

such that

is minimized.
To proceed, we define

Our problem can be reformulated as minimizing

We assume that ra > In + 1. To find the solution, we first compute ATA. We make
use of the following trigonometric identities: for any nonzero integer k that is not an
integral multiple of m, we have
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With the aid of the above identities, we can verify that

Hence,

which is clearly nonsingular, with inverse

Therefore, the solution to our problem is

We represent the above solution as

We call the above discrete Fourier coefficients.

Finally, we show how least-squares analysis can be used to derive formulas for
orthogonal projectors.

Example 12.4 Orthogonal Projectors. Let V C Mn be a subspace. Given a vector
x 6 Mn, we write the orthogonal decomposition of x as

where x\? € V is the orthogonal projection of x onto V and xvs. 6 V1 is the
orthogonal projection of x onto V1- (see Section 3.3; also recall that V1- is the
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orthogonal complement of V.) We can write x\> — Px for some matrix P called
the orthogonal projector. In the following, we derive expressions for P for the case
where V = 7?.(A) and the case where V = A/^A).

Consider a matrix A € Emxn, m > n, and rank A = n. Let V = n(A)
be the range of A (note that any subspace can be written as the range of some
matrix). In this case, we can write an expression for P in terms of A, as follows. By
Proposition 12.1, we have xv = A(ATA)~1ATx, whence P = A(ATA)~1AT.
Note that by Proposition 12.1, we may also write

Next, consider a matrix A € Emxn, m < n, and rank A = m. Let V = M(A)
be the nullspace of A (note that any subspace can be written as the nullspace of
some matrix). To derive an expression for the orthogonal projector P in terms of A
for this case, we use the formula derived above and the identity M(A)-1 = K(AT)
(see Theorem 3.4). Indeed, if U = 7£(AT), then the orthogonal decomposition
with respect to U is x = xu + Xy±, where xy = AT(AAT)~lAx (using the
formula derived above). Because M(A)1- = K(AT), we deduce that xv± = xu =
AT(AAT}~lAx. Hence,

Thus, the orthogonal projector in this case is P = I — AT(AAT) l A.

12.2 RECURSIVE LEAST-SQUARES ALGORITHM

Consider again the example in the last section. We are given experimental points
(^o? 2/o)» (ti > 2/i )> and (^2? 2/2)> and we find the parameters m* and c* of the straight
line that best fits these data in the least-squares sense. Suppose that we are now given
an extra measurement point (£3, ?/3), so that we now have a set of four experimental
data points, (*o,2/o), (*i,yi)i (^2,2/2), and (£3,2/3)- We can similarly go through
the procedure for finding the parameters of the line of best fit for this set of four
points. However, as we shall see, there is a more efficient way: we can use previous
calculations of m* and c* for the three data points to calculate the parameters for
the four data points. In effect, we simply "update" our values of m* and c* to
accommodate the new data point. This procedure is called the recursive least-squares
(RLS) algorithm, which is the topic of this section.

To derive the RLS algorithm, first consider the problem of minimizing || AQX —
6(0)||2. We know that the solution to this is given by x(0) = G^A^b^, where
GO = AQ AQ. Suppose now that we are given more data, in the form of a matrix AI
and a vector b^1'. Consider now the problem of minimizing
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The solution is given by

where

Our goal is to write x^ as a function of a;(0), GO, and the new data AI and b^. To
this end, we first write GI as

Next, we write

To proceed further, we write A^V0^ as

Combining the above formulas, we see that we can write o^1) as

where G\ can be calculated using

We note that with the above formula, x^ can be computed using only x^Q\ A\,
b^1', and GO- Hence, we have a way of using our previous efforts in calculating x^
to compute x^, without having to directly compute x^ from scratch. The solution
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x^ is obtained from x^ by a simple update equation that adds to x^ a "correction
term" G?fl A^ (b^ — AIX^ J . Observe that if the new data are consistent with

the old data, that is, AIX^ = b^l\ then the correction term is 0, and the updated
solution x^ is equal to the previous solution x^.

We can generalize the above argument to write a recursive algorithm for updating
the least-squares solution as new data arrive. At the (A; + l)st iteration, we have

The vector b^k+l^ - Ak+iX^ is often called the innovation. As before, observe that
if the innovation is zero, then the updated solution x^k+l^ is equal to the previous
solution x^).

We can see from the above that, to compute x^k+1^ from x^k\ we need G^,
rather than Gk+i. It turns out that we can derive an update formula for G^ itself.
To do so, we need the following technical lemma, which is a generalization of the
Sherman-Morrison formula (Lemma 11.1), due to Woodbury (see [44, p. 124] or [37,
P- 3]).

Lemma 12.2 Let Abe a nonsingular matrix. Let U and V be matrices such that
I + VA~ U is nonsingular. Then, A + UV is nonsingular, and

Proof. We can prove the result easily by verification.

Using the above lemma, we get

For simplicity of notation, we rewrite Gk
 l as P&.

We summarize by writing the RLS algorithm using Pk:

In the special case where the new data at each step are such that Ak+i is a matrix
consisting of a single row, A^+i = o%+1, and 6^ +1^ is a scalar, 6' +1^ = 6^+1» we
get
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Example 12.5 Let

First compute the vector jc(°) minimizing \\AQX — b^°'\\2. Then, use the RLS
algorithm to find x^ minimizing

We have

Applying the RLS algorithm twice, we get:

We can easily check our solution by directly computing x^ using the formula
B<2> = (ATA)-1AT6,where

12.3 SOLUTION TO Ax = b MINIMIZING ||x||

Consider now a system of linear equations
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where A 6 Rmxn , b € Mm, m < n, and rank A = m. Note that the number of
equations is no larger than the number of unknowns. There may exist an infinite
number of solutions to this system of equations. However, as we shall see, there is
only one solution that is closest to the origin: the solution to Ax — b whose norm
\\x\\ is minimal. Let x* be this solution; that is, Ax* = b and \\x*\\ < \\x\\ for any
x such that Ax = 6. In other words, x* is the solution to the problem

In Part IV, we study problems of the above type in more detail.

Theorem 12.2 The unique solution x* to Ax = b that minimizes the norm \\x\\ is
given by

Proof. Let a* = AT(AAT)~1b. Note that

We now show that

Indeed,

Therefore,

Because \\x — x*\\2 > 0 for all x ^ x*, it follows that for all x ^ x*,

which implies

Example 12.6 Find the point closest to the origin of E3 on the line of intersection
of the two planes defined by the following two equations:
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Note that the above problem is equivalent to the problem

where

Thus, the solution to the problem is

In the next section, we discuss an iterative algorithm for solving Ax = b.

12.4 KACZMARZ'S ALGORITHM

As in the previous section, let A 6 Mmxn , b € Rm, m < n, and rank A = m.
We now discuss an iterative algorithm for solving Ax — b, originally analyzed by
Kaczmarzin 1937 [51]. The algorithm converges to the vectors* = AT(AAT)~1b
without having to explicitly invert the matrix A A . This is important from a practical
point of view, especially when A has many rows.

Let aj denote the jth row of A, and bj the jth component of b, and p, a positive
scalar, 0 < n < 2. With this notation, Kaczmarz's algorithm is:

1. Set i := 0, initial condition o;(0).

2. Forj = 1,... ,ra,
Set X(im+J) = x(im+j-l) + p Q. _ aTx(im+j-l) J

3. Set i := i + 1; go to step 2.

In words, Kaczmarz's algorithm works as follows. For the first m iterations (k =
0, . . . , m — 1), we have

where, in each iteration, we use rows of A and corresponding components of b
successively. For the (m + l)st iteration, we revert back to the first row of A and the
first component of b; that is,
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We continue with the (m + 2)nd iteration using the second row of A and second
component of b, and so on, repeating the cycle every m iteration. We can view the
scalar \i as the step size of the algorithm. The reason for requiring that ̂  be between
0 and 2 will become apparent from the convergence analysis.

We now prove the convergence of Kaczmarz's algorithm, using ideas from Kacz-
marz's original paper [51] and subsequent exposition by Parks [74].

Theorem 12.3 In Kaczmarz's algorithm, if x^ = 0, then x^ ->• x* =
AT(AAT)-1bask-^oo.

Proof. We may assume without loss of generality that ||a;|| = l,i = 1,..., m. For
if not, we simply replace each a* by aj/||a|| and each &i by &i/||a,||.

We first introduce the following notation. For each j = 0,1,2,... , let R( j) denote
the unique integer in {0,..., m — 1} satisfying j = Im + R(j) for some integer /;
that is, R(j) is the remainder that results if we divide j by ra.

Using the above notation, we can write Kaczmarz's algorithm as

Using the identity \\x + y\\2 = \\x\\2 + \\y\\2 + 2(x, y), we obtain

Substituting o,^k^+lx* = bR^+i into the above equation, we get

Because 0 < (j, < 2, the second term on the right-hand side is nonnegative, and hence

Therefore, {||aj^ — a?*||2} is a nonincreasing sequence that is bounded below,
because \\x^ — x*\\2 > 0 for all A;. Hence, {||x^^ — x*||2} converges (see
Theorem 5.3). Furthermore, we may write

Because {||x^^ — x*||2} converges, we conclude that
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which implies that

Observe that

and therefore ||z(fc+1) - zW||2 -» 0. Note also that because {||x<*> - z*||2}
converges, {x^ } is a bounded sequence (see Theorem 5.2).

Following Kaczmarz [51], we introduce the notation x^r^ = x^rm+s\ r =
0,1,2,.. . , s = 0 , . . . , m — 1. With this notation, we have, for each s = 0 , . . . , m — 1,

as r —>• oo. Consider now the sequence {x^r'°^ : r > 0). Because this sequence is
bounded, we conclude that it has a convergent subsequence—this follows from the
Bolzano-Weierstrass theorem (see [2, p. 70]; see also Section 5.1 for a discussion of
sequences and subsequences). Denote this convergent subsequence by {x^r'°^ : r €
8}, where £ is a subset of {0,1,...}. Let z* be the limit of {x^r'°^ : r 6 £}. Hence,

Next, note that because ||x^+1^ — x(fe)||2 -» 0 as k —> oo, we also have ||aj(r)1) —
x(r'°)||2 —>• Oasr -> oo. Therefore, the subsequence {x^r^ : r 6 8} also converges
to z*. Hence,

Repeating the argument, we conclude that for each i = 1,..., m,

In matrix notation, the above equations take the form

Now, x ( fc) € n(AT] for all k because x^ - 0 (see Exercise 12.19). Therefore,
z* € 7l(AT), because 7£(AT) is closed. Hence, there exists y* such that z* =
ATy*. Thus,

Because rank A = m, y* = (AAT) lb and hence z* = x*. Therefore, the
subsequence {||a;r'0—x* ||2 : r e £} converges to 0. Because {||a;r'0—ic*||2 : r € 8}
is a subsequence of the convergent sequence {||a;̂  — #*||2}, we conclude that the
sequence {||x^) — x*||2} converges to 0; that is, x^ —> x*.
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For the case where x^ ^ 0, Kaczmarz's algorithm converges to the unique point
on {x : Ax = b} minimizing the distance ||x — x(°)|| (see Exercise 12.20).

If we set n = 1, Kaczmarz's algorithm has the property that at each iteration k,
the "error" &R(fc)+1 — o/^,k^+lx^k+1^ satisfies

(see Exercise 12.22). Substituting 6fi(fc)+1 = o^^+1x*, we may write

Hence, the difference between x^k+l^ and the solution x* is orthogonal to aR(k)+i.
This property is illustrated in following example.

Example 12.7 Let

In this case, x* = [5,3]T. Figure 12.4 shows a few iterations of Kaczmarz's algorithm
with p = 1 and a?<0> = 0. We have a[ = [1, -1], a% = [0,1], 61 = 2, 62 = 3.
In Figure 12.4, the diagonal line passing through the point [2,0]T corresponds to
the set {x : a^x = 61}, and the horizontal line passing through the point [0,3]T

corresponds to the set {x : a%x = 62}- To illustrate the algorithm, we perform three
iterations:

As Figure 12.4 illustrates, the property

holds at every iteration. Note the convergence of the iterations of the algorithm to
the solution.

12.5 SOLVING Ax = b IN GENERAL

Consider the general problem of solving a system of linear equations
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Figure 12.4 Iterations of Kaczmarz's algorithm in Example 12.7

where A 6 Emxn, and rank A = r. Note that we always have r < min(m,n).
In the case where A e Enxn and rank A = n, the unique solution to the above
equation has the form x* = A~lb. Thus, to solve the problem in this case it is
enough to know the inverse A"1. In this section, we analyze a general approach to
solving Ax = b. The approach involves defining a pseudoinverse or generalized
inverse of a given matrix A 6 Emxn, which plays the role of A"1 when A does not
have an inverse (e.g., when A is not a square matrix). In particular, we discuss the
Moore-Penrose inverse of a given matrix A, denoted A .

In our discussion of the Moore-Penrose inverse, we use the fact that a nonzero
matrix of rank r can be expressed as the product of a matrix of full column rank
r and a matrix of full row rank r. Such a factorization is referred to as the full-
rank factorization. The term full-rank factorization in this context was proposed by
Gantmacher [30] and Ben-Israel and Greville [4]. We state and prove the above result
in the following lemma.

Lemma 12.3 Full-rank factorization. Let A e Emxn, rank A = r < min(m,n).
Then, there exist matrices B € Rmxr andC 6 Erxn such that

where

Proof. Because rank A = r, we can find r linearly independent columns of A.
Without loss of generality, let a\, 0 , % , . . . , ar be such columns, where a^ is the ith
column of A. The remaining columns of A can be expressed as linear combinations
of ai, 02 , . . . , ar. Thus, a possible choice for the full-rank matrices B and C are
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where the entries Cjj are such that for each j = r + 1,... , n, we have dj =
ci,jQ>i + 1- crjar. Thus, A = BC.

Note that if m < n and rank A = m, then we can take

where Im is the m x m identity matrix. If, on the other hand, m > n and rank A = n,
then we can take

Example 12.8 Let A be given by

Note that rank A = 2. We can write a full-rank factorization of A based on the proof
of Lemma 12.3:

We now introduce the Moore-Penrose inverse and discuss its existence and unique-
ness. For this, we first consider the matrix equation

where A G Emxn is a given matrix, and X e ^nxm js a matrix we wjsh to
determine. Observe that if A is a nonsingular square matrix, then the above equation
has the unique solution X = A~1. We now define the Moore-Penrose inverse, also
called the pseudoinverse or generalized inverse.

Definition 12.1 Given A 6 Rmxn , a matrix Af e Rnxm is called a pseudoinverse
of the matrix A if

and there exist matrices U G Mn x n , V 6 Rmxm such that
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The requirement A* — UAT = ATV can be interpreted as follows. Each row
of the pseudoinverse matrix A* of A is a linear combination of the rows of A , and

I rri

each column of AT is a linear combination of the columns of A .
For the case in which a matrix A € Mmxn with m > n and rank A = n, we can

easily check that the following is a oseudoinverse of A:

Indeed, A(ATA)~1ATA = A, and if we define U = (A^A)"1 and V =
A(ATA)-1(ATA)-1AT, then Af = UAT = ATV. Note that, in fact, we have
A* A = In. For this reason, (A A)"1 A is often called the left pseudoinverse of
A. This formula also appears in least-squares analysis (see Section 12.1).

For the case in which a matrix A € Mmxn with m < n and rank A = m, we can
easily check, as we did in the previous case, that the following is a pseudoinverse of
A:

Note that in this case, we have AA* = Im. For this reason, AT(AAT) l is often
called the right pseudoinverse of A. This formula also appears in the problem of
minimizing ||aj|| subject to Ax — b (see Section 12.3).

Theorem 12.4 Let A 6 Emxn. If a pseudoinverse A* of A exists, then it is unique.
n

Proof. Let A\ and A\ be pseudoinverses of A. We show that A\ = A\. By
definition,

and there are matrices C71? C/2 6 Enxn, Vi, V2 € Mmxm such that

Let

Then, we have

Therefore, using the above two equations, we have

which implies that
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On the other hand, because DA — 0, we have

which implies that

and hence

From the above theorem, we know that, if a pseudoinverse matrix exists, then it
is unique. Our goal now is to show that the pseudoinverse always exists. In fact, we
show that the pseudoinverse of any given matrix A is given by the formula

where B^ and C^ are the pseudoinverses of the matrices B and C that form a
full-rank factorization of A; that is, A = BC where B and C are of full rank (see
Lemma 12.3). Note that we already know how to compute B^ and C^, namely,

and

Theorem 12.5 Let a matrix A G Rmxn have a full-rank factorization A = BC,
with rank A = rankB = rankC = r, B € Wnxr, C € Erxn. Then,

Proof. We show that

satisfies the conditions of Definition 12.1 for a pseudoinverse. Indeed, first observe
that

Next, define

and

It is easy to verify that the matrices U and V above satisfy
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Hence,

is the pseudoinverse of A.

Example 12.9 Continued from Example 12.8. Recall that

We compute

and

Thus,

We emphasize that the formula A* = C^B^ does not necessarily hold if A = BC
is not a full-rank factorization. The following example, which is taken from [30],
illustrates this point.

Example 12.10 Let

Obviously, A' = A = A = [1]. Observe that A can be represented as

The above is not a full-rank factorization of A. Let us now compute B^ and C*. We
have

(Note that the formulas for B^ and C* here are different from those in Example 12.9
because of the dimensions of B and C in this example.) Thus,
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which is not equal to A*.

We can simplify the expression

to

The above expression is easily verified simply by substituting A = BC. This
explicit formula for A* is attributed to C. C. MacDuffee by Ben-Israel and Greville
[4]. Ben-Israel and Greville report that around 1959, MacDuffee was the first to
point out that a full-rank factorization of A leads to the above explicit formula.
However, they mention that MacDuffee did it in a private communication, so there is
no published work by MacDuffee that contains the result.

We now prove two important properties of A' in the context of solving a system
of linear equations Ax = b.

Theorem 12.6 Consider a system of linear equations Ax = b, A 6 Rmxn,
rank A = r. The vector x* — A^b minimizes \\Ax — 6||2 on W1. Further-
more, among all vectors in W1 that minimize \\Ax — b\\2, the vector x* — A'6 is
the unique vector with minimal norm. d

Proof. We first show that x* = A^b minimizes \\Ax — 6||2 over En. To this end,
observe that for any x e En,

We now show that

Indeed

However,

Hence,

Thus, we have
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Because

we obtain

and thus x* minimizes \\Ax — 6||2.
We now show that among all x that minimize \\Ax — 6||2, the vector x* = A^b is

the unique vector with minimum norm. So let x be a vector minimizing \\Ax — b\\2.
We have

Observe that

To see this, note that

where the superscript — T denotes the transpose of the inverse. Now, \\Ax — b\\2 =
\\B(Cx) — b\\2. Because x minimizes \\Ax — b\\2 and C is of full rank, then
y* — Cx minimizes \\By — 6||2 over W (see Exercise 12.23). Because B is of full
rank, by Theorem 12.1, we have Cx = y* - (BTB}~lBTb. Substituting this into
the above equation, we get x*T(x — x*) — 0.

Therefore, we have

For all x ^ x*, we have

and hence

or equivalently

Hence, among all vectors minimizing \\Ax — fe||2, the vector x* = A^b is the unique
vector with minimum norm.

The generalized inverse has the following useful properties (see Exercise 12.24):

a. (AT)t = (A^)T;
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b. (A*)t = A.

The above two properties are similar to those that are satisfied by the usual matrix
inverse. However, we point out that the property (AiA2^ = >^Aj does not hold
in general (see Exercise 12.26).

Finally, it is important to note that we can define the generalized inverse in
an alternative way, following the definition of Penrose. Specifically, the Penrose
definition of the generalized inverse of a matrix A € Rmxn is the unique matrix
A* € Enxm satisfying the following properties:

1. AA*A = A;

2. AfAAf = A f;

3. (AA*)T = AA*\

4. (A fA)T = A^A.

The Penrose definition above is equivalent to Definition 12.1 (see Exercise 12.25).
For more information on generalized inverses and their applications, we refer the
reader to the books by Ben-Israel and Greville [4], and Campbell and Meyer [18].

EXERCISES

12.1 A rock is accelerated to 3, 5, and 6 m/s2 by applying forces of 1, 2, and 3 N,
respectively. Assuming Newton's law F = ma, where F is the force and a is the
acceleration, estimate the mass m of the rock using the least squares method.

12.2 A spring is stretched to lengths L = 3,4, and 5 cm under applied forces F = 1,
2, and 4 N, respectively. Assuming Hooke's law L = a -f bF, estimate the normal
length a and spring constant b using the least squares approach.

12.3 Suppose that we perform an experiment to calculate the gravitational constant
g as follows. We drop a ball from a certain height, and measure its distance from the
original point at certain time instants. The results of the experiment are shown in the
following table.

Time (seconds) 1.00 2.00 3.00
Distance (meters) 5.00 19.5 44.0

The equation relating the distance s and the time t at which s is measured is given
by
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a. Find a least-squares estimate of g using the experimental results from the above
table.

b. Suppose that we take an additional measurement at time 4.00, and obtain a
distance of 78.5. Use the recursive least-squares algorithm to calculate an
updated least-squares estimate of g.

12.4 Suppose we wish to estimate the value of the resistance R of a resistor. Ohm's
Law states that if V is the voltage across the resistor, and / is the current through
the resistor, then V = IR. To estimate R, we apply a 1 amp current through the
resistor and measure the voltage across it. We perform the experiment on n voltage
measuring devices, and obtain measurements of Vi,..., Vn. Show that the least
squares estimate of R is simply the average of V\,..., Vn.

12.5 The table below shows the stock prices for three companies, X, Y, and Z,
tabulated over three days:

Day
1 2 3

X 6 4 5
Y 1 1 3
Z 2 1 2

Suppose an investment analyst proposes a model for the predicting the stock price of
X based on those of Y and Z:

where px, PY , and pz are the stock prices of X, Y, and Z, respectively, and a, b are
real-valued parameters. Calculate the least squares estimate of the parameters a and
b based on the data in the above table.

12.6 We are given two mixtures, A and B. Mixture A contains 30% gold, 40% silver,
and 30% platinum, whereas mixture B contains 10% gold, 20% silver, and 70%
platinum (all percentages of weight). We wish to determine the ratio of the weight
of mixture A to the weight of mixture B such that we have as close as possible to a
total of 5 ounces of gold, 3 ounces of silver, and 4 ounces of platinum. Formulate
and solve the problem using the linear least-squares method.

12.7 Background: If Ax + w = b, where w is a "white noise" vector, then define
the least-squares estimate of x given b to be the solution to the problem
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Application: Suppose a given speech signal {uk : k = 1,. . . , n} (with Uk G E)
is transmitted over a telephone cable with input-output behavior given by yk =
ayjc-i + buk + Vk, where, at each time k, yk € M. is the output, Uk G K is the input
(speech signal value), and Vk represents white noise. The parameters a and b are
fixed known constants, and the initial condition is yo = 0.

We can measure the signal {yk } at the output of the telephone cable, but we cannot
directly measure the desired signal {uk} or the noise signal {vk}. Derive a formula
for the linear least-squares estimate of the signal {uk ' k = 1,..., n} given the signal
{yk :k=l,...,n}.
Note: Even though the vector v = [vi,..., vn]

T is a white noise vector, the vector
Dv (where D is a matrix) is, in general, not.

12.8 Line Fitting. Let [x\, yi]T,..., [xp, yp]
T, p > 2, be points in R2. We wish to

find the straight line of best fit through these points ("best" in the sense that the total
squared error is minimized); that is, we wish to find a*, b* G M to minimize

Assume that the Xi, i = 1,... ,p, are not all equal. Show that there exist unique
parameters a* and b* for the line of best fit, and find the parameters in terms of the
following quantities:

12.9 Suppose that we take measurements of a sinusoidal signal y(t) = s'm(ut + 9}
at times t\,..., tp, and obtain values y\,..., yp, where — 7r/2 < uti + 9 < ?r/2,
i — l , . . . ,p, and the ti are not all equal. We wish to determine the values of the
frequency u; and phase 6.

a. Express the problem as a system of linear equations.
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b. Find the least-squares estimate of u; and 9 based on part a. Use the following
notation:

12.10 We are given a point [xo,yo]T e E2. Consider the straight line on the IR2

plane given by the equation y — mx. Using a least squares formulation, find the
point on the straight line that is closest to the given point [XQ, yo], where the measure
of closeness is in terms of the Euclidean norm on E2.
Hint: The given line can be expressed as the range of the matrix A = [1, m]T.

12.11 Consider the affine function / : W1 -4 E of the form f(x] = aTx + c, where
a e En and c € E.

a. We are given a set of p pairs (xi, y i ) , . . . , (xp, yp), where Xi 6 En, yi e E,
i = 1,... ,p. We wish to find the affine function of best fit to these points,
where "best" is in the sense of minimizing the total square error

Formulate the above as an optimization problem of the form: minimize || Az —
6||2 with respect to z. Specify the dimensions of A, z, and 6.

b. Suppose that the points satisfy

and

Find the affine function of best fit in this case, assuming it exists and is unique.

12.12 For the system shown in Figure 12.5, consider a set of input-output pairs
(u i , j / i ) , . . . , (u n ,y n ) , where uk € E, yk G E, k = 1,... ,n.
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Figure 12.5 Input-output system in Exercise 12.12

a. Suppose we wish to find the best linear estimate of the system based on the
above input-output data. In other words, we wish to find a 9n e R to fit the
model yk = OnUk, k = 1,. . . , n. Using the least squares approach, derive a
formula for Sn based on MI , . . . , un and y\,..., yn.

b. Suppose the data in part a is generated by

where 9 € E and Uk = 1 for all k. Show that the parameter On in part a
converges to 9 as n —> oo if and only if

12.13 Consider a discrete-time linear system Xk+i = axk + buk, where Uk is the
input at time k, Xk is the output at time k, and a, b € M are system parameters.
Suppose that we apply a constant input Uk = 1 for all k > 0, and measure the first 4
values of the output to be XQ — 0, xi = 1, x% = 2, x$ = 8. Find the least-squares
estimate of a and b based on the above data.

12.14 Consider a discrete-time linear system Xk+i = axk + buk, where Uk is the
input at time k, Xk is the output at time k, and a, b € E are system parameters.
Given the first n +1 values of the impulse response ho,..., hn, find the least squares
estimate of a and b. You may assume that at least one hk is nonzero.
Note: The impulse response is the output sequence resulting from an input of UQ — 1,
Uk = 0 for k 7^ 0, and zero initial condition XQ = 0.

12.15 Consider a discrete-time linear system Xk+i = axk + biik, where Uk is the
input at time k, Xk is the output at time k, and a, b e R are system parameters. Given
the first n + 1 values of the step response SQ, . . . , sn, where n > 1, find the least
squares estimate of a and b. You may assume that at least one Sk is nonzero.
Note: The step response is the output sequence resulting from an input of Uk = 1 for
k > 0, and zero initial condition ar0 = 0 (i.e., SQ = XQ = 0).

12.16 Let A e Emxn, b € Em, m < n, rank A = m, and XQ e Mn. Consider the
problem

minimize \\x — XQ\\

subject to Ax = b.
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Show that the above problem has a unique solution given by

12.17 Given A e Rmxn, m < n, rank A = m, and 61,..., bp e Mm, consider the
problem

Suppose that a;* is the solution to the problem

where i = 1,... ,p. Write the solution to (12.1) in terms of x j , . . . , x*.

12.18 Let A € Rmxn, b G Em, m < n, and rank A = m. Show that x* =
AT(AAT)-16 is the only vector in Tl(AT} satisfying Ax* = 6.

12.19 Show that in Kaczmarz's algorithm, if x(0) = 0, then x(fc) e ft(AT) for all
k.

12.20 Consider Kaczmarz's algorithm with x(°) ^ 0.

a. Show that there exists a unique point minimizing ||x — x(°) || subject to {x :
Ax = b}.

b. Show that Kaczmarz's algorithm converges to the point in part a.

12.21 Consider Kaczmarz's algorithm with x^ = 0, where m = 1; that is,
A = [aT] e R lxn and a ^ 0, and 0 < // < 2. Show that there exists 0 < 7 < 1
such that ||x(fc+1) - x*|| < 7||x<fc) - x*|| for all jfe > 0.

12.22 Show that in Kaczmarz's algorithm, if n = I,then6^(fc)+1—a^fcs+1x^i:+1) =
0 for each k.

12.23 Consider the problem of minimizing || Ax - b\\2 over En, where A 6 Rmxn,
b G Mm. Let x* be a solution. Suppose that A = BC is a full-rank factorization of
A; that is, rank A = rankB = rankC = r, and B G Rmxr, C e Erxn. Show
that the minimizer of \\By — b\\ over Er is Cx*.

12.24 Prove the following properties of generalized inverses:

a. (AT)t = (A*)T;

b. (A f)t = A.

12.25 Show that the Penrose definition of the generalized inverse is equivalent to
Definition 12.1.

12.26 Construct matrices A\ and A2 such that (A1A2)t ^ A^AJ.
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13
Unconstrained

Optimization and Neural
Networks

13.1 INTRODUCTION

In this chapter, we apply the techniques of the previous chapters to the training
of feedforward neural networks. Neural networks have found numerous practical
applications, ranging from telephone echo cancellation to aiding in the interpretation
of EEG data (see, e.g., [78] and [53]). The essence of neural networks lies in the
connection weights between neurons. The selection of these weights is referred
to as training or learning. For this reason, we often refer to the weights as the
learning parameters. A popular method for training a neural network is called the
backpropagation algorithm, based on an unconstrained optimization problem, and
an associated gradient algorithm applied to the problem. This chapter is devoted
to a description of neural networks and the use of techniques we have developed in
preceding chapters for the training of neural networks.

An artificial neural network is a circuit composed of interconnected simple circuit
elements called neurons. Each neuron represents a map, typically with multiple
inputs and a single output. Specifically, the output of the neuron is a function of
the sum of the inputs, as illustrated in Figure 13.1. The function at the output of
the neuron is called the activation function. We use the symbol given in Figure 13.2
to pictorially represent a single neuron. Note that the single output of the neuron
may be applied as inputs to several other neurons, and therefore the symbol for a
single neuron shows multiple arrows emanating from it. A neural network may
be implemented using an analog circuit. In this case, inputs and outputs may be
represented by currents and voltages.

219
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Figure 13.1 A single neuron

Figure 13.2 Symbol for a single neuron

Figure 13.3 Structure of a feedforward neural network

A neural network consists of interconnected neurons, where the inputs to each
neuron consists of weighted outputs of other neurons. The interconnections allow
exchange of data or information between neurons. In a feedforward neural network,
the neurons are interconnected in layers, so that the data flow only in one direction.
Thus, each neuron receives information only from neurons in the previous layer:
the inputs to each neuron are weighted outputs of neurons in the previous layer.
Figure 13.3 illustrates the structure of feedforward neural networks. The first layer
in the network is called the input layer, and the last layer is called the output layer.
The layers in between the input and output layers are called hidden layers.

We can view a neural network as simply a particular implementation of a map from
Mn to Em, where n is the number of inputs x\,..., xn, and m is the number of outputs
2/i, • • • , Vm • The map that is implemented by a neural network depends on the weights
of the interconnections in the network. Therefore, we can change the mapping that
is implemented by the network by adjusting the values of the weights in the network.
The information about the mapping is "stored" in the weights over all the neurons, and
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thus the neural network is a distributed representation of the mapping. Moreover, for
any given input, the computation of the corresponding output is achieved through the
collective effect of individual input-output characteristics of each neuron; therefore,
the neural network can be considered as a parallel computation device. We point
out that the ability to implement or approximate a map encompasses many important
practical applications. For example, pattern recognition and classification problems
can be viewed as function implementation or approximation problems.

Suppose that we are given a map F : W1 —>• Rm that we wish to implement
using a given neural network. Our task boils down to appropriately selecting the
interconnection weights in the network. As mentioned earlier, we refer to this task
as training of the neural network, or learning by the neural network. We use input-
output examples of the given map to train the neural network. Specifically, let
(xd,i, yd ) 1) , . . . , (xd,p, yd,p) £ ^n x ^m» where each ydi is the output of the map
F corresponding to the input Xd,i', that is, ydi — F(xd,i). We refer to the set
{(ajrf.i, J/d(i), • • • , (xd,P,2/d,p)} as me training set. We train the neural network by
adjusting the weights such that the map that is implemented by the network is close
to the desired map F. For this reason, we can think of neural networks as function
approximators.

The form of learning described above can be thought of as learning with a teacher.
The teacher supplies questions to the network in the form of Xd,i,... , X d , p , and
also tells the network the correct answers y d > 1 , . . . , yd)P. Training of the network
then comprises applying a training algorithm that adjusts weights based on the error
between the computed output and the desired output; that is, the difference between
ydi = F(xd,i} and the output of the neural network corresponding to Xd,i- Having
trained the neural network, our hope is that the network correctly "generalizes" the
examples used in the training set. By this we mean that the network should correctly
implement the mapping F and produce the correct output corresponding to any input,
include those that were not a part of the training set.

As we shall see in the remainder of this chapter, the training problem can be
formulated as an optimization problem. We can then use optimization techniques
and search methods (e.g., steepest descent, conjugate gradients [50], and quasi-
Newton) for selection of the weights. The training algorithms are based on such
optimization algorithms.

In the literature, the form of learning described above is referred to as supervised
learning, for obvious reasons. The term supervised learning suggests that there is also
a form of learning called unsupervised learning. Indeed, this is the case. However,
unsupervised learning does not fit into the framework described above. Therefore,
we do not discuss the idea of unsupervised learning any further. We refer the reader
interested in unsupervised learning to [41].

13.2 SINGLE-NEURON TRAINING

Consider a single neuron, as shown in Figure 13.4. For this particular neuron, the
activation function is simply the identity (linear function with unit slope). The neuron
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Figure 13.4 A single linear neuron

implements the following (linear) map from En to E:

where x = [xi,..., xn]
T € En is the vector of inputs, y 6 E is the output, and

w = [wi,..., wn]
T e En is the vector of weights. Suppose that we are given a

map F : En —» E We wish to find the value of the weights w\,..., wn such that
the neuron approximates the map F as closely as possible. To do this, we use a
training set consisting of p pairs {(xd,i, Vd,i), • • • , (xd,P,yd,P)}, where xdji € En

and yd,i € E, i = 1,... ,p. For each i, ya,i = F(xd,i) is the "desired" output
corresponding to the given input Xd,i- The training problem can then be formulated
as the following optimization problem:

where the minimization is taken over all to = [wi,... ,wn]
T e En. Note that

the objective function represents the sum of the squared errors between the desired
outputs yd,i and the corresponding outputs of the neuron x^{w. The factor of 1/2 is
added for notational convenience and does not change the minimizer.

The above objective function can be written in matrix form as follows. First define
the matrix Xd 6 Enxp and vector yd e W by

Then, the optimization problem becomes
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Figure 13.5 Adaline

There are two cases to consider in the above optimization problem: p < n and
p > n. We first consider the case where p < n, that is, where we have at most
as many training pairs as the number of weights. For convenience, we assume
that rankXj = p. In this case, there are an infinitely many points satisfying
yd = X^w. Hence, there are infinitely many solutions to the above optimization
problem, with the optimal objective function value of 0. Therefore, we have a choice
of which optimal solution to select. A possible criterion for this selection is that of
minimizing the solution norm. This is exactly the problem considered in Section 12.3.
Recall that the minimum norm solution is w* — Xd(X^Xd)~1y(i- An efficient
iterative algorithm for finding this solution is Kaczmarz's algorithm (discussed in
Section 12.4). Kaczmarz's algorithm in this setting takes the form

where w^ = 0, and

Recall that R(k) is the unique integer in {0,... ,p — 1} satisfying k = Ip + R(k)
for some integer /; that is, R(k) is the remainder that results if we divide k by p (see
Section 12.4 for further details on the algorithm).

The above algorithm was applied to the training of linear neurons by Widrow and
Hoff (see [95] for some historical remarks). The single neuron together with the
above training algorithm is illustrated in Figure 13.5, and is often called Adaline, an
acronym for "adaptive linear element."

We now consider the case where p > n. Here, we have more training points than
the number of weights. We assume that rankXj = n. In this case, the objective
function |||j/d — Xjiy||2is simply a strictly convex quadratic function of w, because
the matrix XjX^ is a positive definite matrix. To solve this optimization problem,
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we have at our disposal the whole slew of unconstrained optimization algorithms
considered in the previous chapters. For example, we can use a gradient algorithm,
which in this case takes the form

where eW =yd-X^w^.
The above discussion assumed that the activation function for the neuron is the

identity map. The derivation and analysis of the algorithms can be extended to the
case of a general differentiable activation function fa. Specifically, the output of the
neuron in this case is given by

The algorithm for the case of a single training pair (xj, yd) has the form

where the error is given by

For a convergence analysis of the above algorithm, see [45].

13.3 BACKPROPAGATION ALGORITHM

In the previous section, we considered the problem of training a single neuron. In
this section, we consider a neural network consisting of many layers. For simplicity
of presentation, we restrict our attention to networks with three layers, as depicted in
Figure 13.6. The three layers are referred to as the input, hidden, and output layers.
There are n inputs xi, where i = 1,..., n. We have m outputs ys, s = 1,..., m.
There are / neurons in the hidden layer. The outputs of the neurons in the hidden
layer are Zj, where j = 1, . . . , / . The inputs x\,..., xn are distributed to the neurons
in the hidden layer. We may think of the neurons in the input layer as single-input-
single-output linear elements, with each activation function being the identity map.
In Figure 13.6, we do not explicitly depict the neurons in the input layer; instead,
we illustrate the neurons as signal spliters. We denote the activation functions of the
neurons in the hidden layer by /j1, where j = 1, . . . , / , and the activation functions of
the neurons in the output layer by f°, where s = 1,..., m. Note that each activation
function is a function from E to R.

We denote the weights for inputs into the hidden layer by uA, i = 1,. . . , n,
j = 1,. . . , / . We denote the weights for inputs from the hidden layer into the output
layer by w°j,j = 1,..., /, s = 1,..., m. Given the weights w^ and w°^ the neural
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Figure 13.6 A three-layered neural network

network implements a map from W1 to Em. To find an explicit formula for this map,
let us denote the input to the jth neuron in the hidden layer by Vj, and the output of
the jth neuron in the hidden layer by Zj. Then, we have

The output from the sth neuron of the output layer is

Therefore, the relationship between the inputs #i, i = 1,..., n, and the sth output ys

is given by
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The overall mapping that the neural network implements is therefore given by

We now consider the problem of training the neural network. As for the single
neuron considered in the last section, we analyze the case where the training set
consists of a single pair ( x j , y<f), where xj € Mn and yd G Mm. In practice, the
training set consists of many such pairs, and training is typically performed with each
pair at a time (see, e.g., [46] or [83]). Our analysis is therefore also relevant to the
general training problem with multiple training pairs.

The training of the neural network involves adjusting the weights of the net-
work such that the output generated by the network for the given input xd =
[xdi,... ,Xdn]

T is as close to yd as possible. Formally, this can be formulated
as the following optimization problem:

where ys, s = 1,..., m, are the actual outputs of the neural network in response to
the inputs Xdi, • • • , £<*„, as given by

The above minimization is taken over all w^, w°j, i = 1,. . . , n, j = 1 , . . . , / ,
s = 1,. . . , m. For simplicity of notation, we use the symbol w for the vector

and the symbol E for the objective function to be minimized; that is,

To solve the above optimization problem, we use a gradient algorithm with fixed
step size. To formulate the algorithm, we need to compute the partial derivatives of
E with respect to each component of w. For this, let us first fix the indices i, j and s.
We first compute the partial derivative of E with respect to w°sj. For this, we write
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where, for each q = 1 , . . . , / ,

Using the chain rule, we obtain

where f° : E -> E is the derivative of f°. For simplicity of notation, we write

We can think of each Ss as a scaled output error, because it is the difference between
the actual output ys of the neural network and the desired output yds-, scaled by

fs \52q=i wsqzq)• Using the 6S notation, we have

We next compute the partial derivative of E with respect to w^. We start with the
equation

Using the chain rule once again, we get

where /j1' : M ->• E is the derivative of /j1. Simplifying the above yields

We are now ready to formulate the gradient algorithm for updating the weights of
the neural network. We write the update equations for the two sets of weights w°j
and w^ separately. We have
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where 77 is the (fixed) step size, and

The update equation for the weights w°j of the output layer neurons is illustrated
in Figure 13.7, whereas the update equation for the weights w^ of the hidden layer
neurons is illustrated in Figure 13.8.

The above update equations are referred to in the literature as the backpropagation
algorithm. The reason for the name "backpropagation" is that the output errors
6[ ,...,6m are propagated back from the output layer to the hidden layer, and are
used in the update equation for the hidden layer weights, as illustrated in Figure 13.8.
In the above discussion, we assumed only a single hidden layer. In general, we
may have multiple hidden layers—in this case, the update equations for the weights
will resemble the equations derived above. In the general case, the output errors are
propagated backward from layer to layer and are used to update the weights at each
layer.

We summarize the backpropagation algorithm qualitatively as follows. Using the
(k) ( k)inputs Xdi and the current set of weights, we first compute the quantities v\ , Zj ',

ys ' and 63 , in turn. This is called the forward pass of the algorithm, because
it involves propagating the input forward from the input layer to the output layer.
Next, we compute the updated weights using the quantities computed in the forward
pass. This is called the reverse pass of the algorithm, because it involves propagating
the computed output errors Sg backwards through the network. We illustrate the
backpropagation procedure numerically in the following example.

Example 13.1 Consider the simple feedforward neural network shown in Fig-
ure 13.9. The activation functions for all the neurons are given by f(v] =
l/(l + e~v). This particular activation function has the convenient property that
f ' ( v ) = f ( v ) ( l - f ( v ) ) . Therefore, using this property, we can write
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Figure 13.7 Illustration of the update equation for the output layer weights

Suppose that the initial weights are w;n = 0.1, w^ — 0.3, iu2i = 0.3,
w^0) = 0.4, w°(°] = 0.4, and wffi = 0.6. Let xd = [0.2,0.6]T and yd = 0.7.
Perform one iteration of the backpropagation algorithm to update the weights of the
network. Use a step size of 77 = 10.

To proceed, we first compute

Next, we compute
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Figure 13.8 Illustration of the update equation for the hidden layer weights

We then compute

which gives an output error of

This completes the forward pass.
To update the weights, we use
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Figure 13.9 Neural network for Example 13.1

and, using the fact that j'(vf}) = f ( v ( 0 ) ) ( l - /(vj-0))) = zf\l - ^0)), we get

Thus, we have completed one iteration of the backpropagation algorithm. We can
easily check that y [ l ) = 0.6588, and hence \yd - y [ l } \ < \yd - y(^\; that is, the
actual output of the neural network has become closer to the desired output as a result
of updating the weights.

After 15 iterations of the backpropagation algorithm, we get

The resulting value of the output corresponding to the input xj — [0.2,0.6]T is
y[l5) = 0.6997.

In the above example, we considered an activation function of the form



232 UNCONSTRAINED OPTIMIZATION AND NEURAL NETWORKS

Figure 13.10 The sigmoid function

The above function is called a sigmoid, and is a popular activation function used in
practice. The sigmoid function is illustrated in Figure 13.10. It is possible to use a
more general version of the sigmoid function, of the form

The parameters ft and 9 represent scale and shift parameters, respectively. The
parameter 9 is often interpreted as a threshold. If such an activation function is used
in a neural network, we would also want to adjust the values of the parameters ft and
9, which also affect the value of the objective function to be minimized. However, it
turns out that these parameters can be incorporated into the backpropagation algorithm
simply by treating them as additional weights in the network. Specifically, we can
represent a neuron with activation function g as one with activation function / with
the addition of two extra weights, as shown in Figure 13.11.

Example 13.2 Consider the same neural network as in Example 13.1. We introduce
shift parameters #1, #2* and 9% to the activation functions in the neurons. Using the
the configuration illustrated in Figure 13.11, we can incorporate the shift parameters
into the backpropagation algorithm. We have

where / is the sigmoid function:
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Figure 13.11 The above two configurations are equivalent

The components of the gradient of the objective function E with respect to the shift
parameters are:

In the next example, we apply the network discussed in Example 13.2 to solve the
celebrated Exclusive OR (XOR) problem (see [83]).

Example 13.3 Consider the neural network of Example 13.2. We wish to train
the neural network to approximate the Exclusive OR (XOR) function, defined in
Table 13.1. Note that the XOR function has two inputs and one output.

To train the neural network, we use the following training pairs:

We now apply the backpropagation algorithm to train the network using the above
training pairs. To do this, we apply the above pairs one per iteration, in a cyclic
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Table 13.1 Truth table for XOR function

Xi X2 F(xi,X2)

0 0 0
0 1 1
1 0 1
1 1 0

fashion. In other words, in the fcth iteration of the algorithm, we apply the pair
(xd,R(k),yd,R(k))> where, as in Kaczmarz's algorithm, R(k) is the unique integer in
{0,1,2,3} satisfying k = 41 + R(k] for some integer I; that is, R(k) is the remainder
that results if we divide k by 4 (see Section 12.4).

The experiment yields the following weights (see Exercise 13.5):

Table 13.2 shows the output of the neural network with the above weights corre-
sponding to the training input data. Figure 13.12 shows a plot of the function that is
implemented by this neural network.

For a more comprehensive treatment of neural networks, see [39], [40], or [100].
For applications of neural networks to optimization, signal processing, and control
problems, see [19] and [48].

EXERCISES

13.1 Consider a single linear neuron, with n inputs (see Figure 13.4). Suppose that
we are given Xd e Enxp and yd € W representing p training pairs, where p > n.
The objective function to be minimized in the training of the neuron is
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Table 13.2 Response of the trained network of Example 13.3

xi x-2 yi

0 0 0.007
0 1 0.99
1 0 0.99
1 1 0.009

Figure 13.12 Plot of the function implemented by the trained network of Example 13.3

a. Find the gradient of the objective function.

b. Write the conjugate gradient algorithm for training the neuron.

c. Suppose that we wish to approximate the function F : E2 ->• E given by

Use the conjugate gradient algorithm from part b to train the linear neuron,
using the following training points:

It may helpful to use the MATLAB routine from Exercise 10.8.

d. Plot the level sets of the objective function for the problem in part c, at levels
0.01, 0.1, 0.2, and 0.4. Check if the solution in part c agrees with the level
sets.
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e. Plot the error function e(x) = F(x) — w*Tx versus x\ and X2, where w* is
the optimal weight vector obtained in part c.

13.2 Consider the Adaline, depicted in Figure 13.5. Assume we have a single training
pair (XCL, yd), where Xd i=- 0. Suppose that we use the Widrow-Hoff algorithm to
adjust the weights:

where ek = yd — x^w^.

a. Write an expression for CK+I as a function of ek and //.

b. Find the largest range of values for/z for which efc —>• 0 (for any initial condition
w<°>).

13.3 As in Exercise 13.2, consider the Adaline. Consider the case in which there are
multiple pairs in the training set {(xd,i, 2/d,i), • • • , (&d,p, y<i,p)}, where p < n, and
rank Xd = p (the matrix Xd has Xd,i as its ith column). Suppose that we use the
following training algorithm:

where e^ = yd~ X^w^k\ and n is a given constant p x p matrix.

a. Find an expression for e(fc+1) as a function of e^ and p,.

b. Find a necessary and sufficient condition on p, for which e^ —>• 0 (for any
initial condition w^).

13.4 Consider the three-layered neural network described in Example 13.1 (see Fig-
ure 13.9). Implement the backpropagation algorithm for this network in MATLAB.
Test the algorithm for the training pair Xd = [0,1]T and yd = 1. Use a step size of
77 = 50 and initial weights as in the Example 13.1.

13.5 Consider the neural network of Example 13.3, with the training pairs for the
XOR problem. Use MATLAB to implement the training algorithm described in
Example 13.3, with a step size of 77 = 10.0. Tabulate the outputs of the trained
network corresponding to the training input data.
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Genetic Algorithms

14.1 BASIC DESCRIPTION

In this chapter, we discuss genetic algorithms and their application to solving opti-
mization problems. Genetic algorithms are radically different from the optimization
algorithms discussed in previous chapters. For example, genetic algorithms do not
use gradients or Hessians. Consequently, they are applicable to a much wider class
of optimization problems.

A genetic algorithm is a probabilistic search technique that has its roots in the
principles of genetics. The beginnings of genetic algorithms is credited to John
Holland, who developed the basic ideas in the late 1960s and early 1970s. Since
its conception, genetic algorithms have been used widely as a tool in computer
programming and artificial intelligence (e.g., [42], [58], and [68]), optimization (e.g.,
[24], [48], and [92]), neural network training (e.g., [59]), and many other areas.

Suppose that we wish to solve an optimization problem of the form

maximize /(#)

subject to x 6 fi.

The underlying idea of genetic algorithms applied to the above problem is as follows.
We start with an initial set of points in fi, denoted P(0). We call P(0) the initial
population. We then evaluate the objective function at points in P(0). Based on this
evaluation, we create a new set of points P(l). The creation of P(l) involves certain
operations on points in P(0), called crossover and mutation, to be discussed later.
We repeat the above procedure iteratively, generating populations P(2), P(3),...,
until an appropriate stopping criterion is reached. The purpose of the crossover and

237
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mutation operations is to create a new population with an average objective function
value that is higher than the previous population. To summarize, the genetic algorithm
iteratively performs the operations of crossover and mutation on each population to
produce a new population until a chosen termination criterion is met.

The terminology used in describing genetic algorithms is adopted from genetics.
To proceed with describing the details of the algorithm, we need the additional ideas
and terms described below.

14.1.1 Chromosomes and Representation Schemes

First, we point out that, in fact, genetic algorithms do not work directly with points in
the set O, but rather with an encoding of the points in O. Specifically, we need first to
map J7 onto a set consisting of strings of symbols, all of equal length. These strings
are called chromosomes. Each chromosome consists of elements from a chosen set
of symbols, called the alphabet. For example, a common alphabet is the set (0,1},
in which case the chromosomes are simply binary strings. We denote by L the length
of chromosomes (i.e., the number of symbols in the strings). To each chromosome
there corresponds a value of the objective function, referred to as the fitness of the
chromosome. For each chromosome x, we write f ( x ) for its fitness. Note that, for
convenience, we use / to denote both the original objective function as well as the
fitness measure on the set of chromosomes.

The choice of chromosome length, alphabet, and encoding (i.e., the mapping from
fj onto the set of chromosomes), is called the representation scheme for the problem.
Identification of an appropriate representation scheme is the first step in using genetic
algorithms to solve a given optimization problem.

Once a suitable representation scheme has been chosen, the next phase is to
initialize the first population P(0) of chromosomes. This is usually done by a
random selection of a set of chromosomes. After we form the initial population
of chromosomes, we then apply the operations of crossover and mutation on the
population. During each iteration k of the process, we evaluate the fitness f(x^) of
each member x^ of the population P(k). After the fitness of the whole population
has been evaluated, we then form a new population P(k + 1) in two stages.

14.1.2 Selection and Evolution

In the first stage, we apply an operation called selection, where we form a set M(fc)
with the same number of elements as P(k). This number is called the population
size, which we denote by N. The set M(k], called the mating pool, is formed from
P(k) using a random procedure as follows: each point m^ in M(k] is equal to
XW m P(k) with probability

where
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and the sum is taken over the whole of P(k). In other words, we select chromosomes
into the mating pool with probabilities proportional to their fitness.

The above selection scheme is also called the roulette-wheel scheme, for the
following reason. Imagine a roulette wheel in which each slot is assigned to a
chromosome in P(k); some chromosomes may be assigned multiple slots. The
number of slots associated with each chromosome is in proportion to its fitness. We
then spin the roulette wheel and select (for inclusion in M(k}) the chromosome on
whose slot the ball comes to rest. This procedure is repeated TV times, so that the
mating pool M(k) contains N chromosomes.

An alternative selection scheme is the tournament scheme, which proceeds as
follows. First, we select a pair of chromosomes at random from P(k}. We then
compare the fitness values of these two chromosomes, and place the fitter of the
two into M(k). We repeat this operation until the mating pool M(k] contains N
chromosomes.

The second stage is called evolution: in this stage, we apply the crossover and
mutation operations. The crossover operation takes a pair of chromosomes, called
the parents, and gives a pair of offspring chromosomes. The operation involves
exchanging substrings of the two parent chromosomes, described below. Pairs of
parents for crossover are chosen from the mating pool randomly, such that the
probability that a chromosome is chosen for crossover is pc. We assume that whether
a given chromosome is chosen or not is independent of whether or not any other
chromosome is chosen for crossover.

We can pick parents for crossover in several ways. For example, we may randomly
choose two chromosomes from the mating pool as parents. In this case, if N is the
number of chromosomes in the mating pool, then pc = 1/N. Similarly, if we
randomly pick Ik chromosomes from the mating pool (where k < N/2), forming
k pairs of parents, we have pc = 2k/N. In the above two examples, the number of
pairs of parents is fixed and the value of pc is dependent on this number. Yet another
way of choosing parents is as follows: given a value of pc, we pick a random number
of pairs of parents such that the average number of pairs is pcN/1.

Once the parents for crossover have been determined, we apply the crossover
operation to the parents. There are many types of possible crossover operations. The
simplest crossover operation is the one-point crossover. In this operation, we first
choose a number randomly between 1 and L — 1 according to a uniform distribution,
where L is the length of chromosomes. We refer to this number as the crossing
site. Crossover then involves exchanging substrings of the parents to the left of the
crossing site, as illustrated in Figure 14.1 and in the following example.

Example 14.1 Suppose that we have chromosomes of length L = 6 over the binary
alphabet {0,1}. Consider the pair of parents 000000 and 111111. Suppose that
the crossing site is 4. Then, the crossover operation applied to the above parent
chromosomes yields the two offspring 000011 and 111100.

We can also have crossover operations with multiple crossing sites, as illustrated
in Figure 14.2 and in the following example.
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Figure 14.2 Illustration of two-point crossover operation

Example 14.2 Consider two chromosomes, 000000000 and 111111111, of length
L = 9. Suppose that we have two crossing sites, at 3 and 7. Then, the crossover op-
eration applied to the above parent chromosomes yields the two offspring 000111100
and 111000011.

After the crossover operation, we replace the parents in the mating pool by their
offspring. The mating pool has therefore been modified, but still maintains the same
number of elements.

Next, we apply the mutation operation. The mutation operation takes each chro-
mosome from the mating pool and randomly changes each symbol of the chromosome
with a given probability pm- In the case of the binary alphabet, this change corre-
sponds to complementing the corresponding bits; that is, we replace each bit with
probability pm from 0 to 1, or vice versa. If the alphabet contains more than two
symbols, then the change involves randomly substituting the symbol with another
symbol from the alphabet. Typically, the value of pm is very small (e.g., 0.01), so
that only a few chromosomes will undergo a change due to mutation, and of those
that are affected, only a few of the symbols are modified. Therefore, the mutation
operation plays only a minor role in the genetic algorithm relative to the crossover
operation.

After applying the crossover and mutation operations to the mating pool M(k),
we obtain the new population P(k + 1). We then repeat the procedure of evaluation,
selection, and evolution, iteratively. We summarize the genetic algorithm as follows.
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Genetic Algorithm

1. Set k := 0; form initial population F(0);

2. Evaluate P(k);

3. If stopping criterion satisfied, then stop;

4. Select M(k) from P(fc);

5. Evolve M(fc) to form P(fc + 1);

6. Set A; := k + 1, go to step 2.

A flow chart illustrating the above algorithm is shown in Figure 14.3

Figure 14.3 Flow chart for the genetic algorithm

During the execution of the genetic algorithm, we keep track of the best-so-far
chromosome; that is, the chromosome with the highest fitness of all the chromosomes
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evaluated. After each iteration, the best-so-far chromosome serves as the candidate
for the solution to the original problem. Indeed, we may even copy the best-so-
far chromosome into each new population, a practice referred to as elitism. The
elitist strategy may result in domination of the population by "super chromosomes."
However, practical experience suggests that elitism often improves the performance
of the algorithm.

The stopping criterion can be implemented in a number of ways. For example, a
simple stopping criterion is to stop after a prespecified number of iterations. Another
possible criterion is to stop when the fitness for the best-so-far chromosome does not
change significantly from iteration to iteration.

The genetic algorithm differs from the algorithms discussed in previous chapters
in several respects:

1. It works with an encoding of the feasible set rather than the set itself;

2. It searches from a set of points rather than a single point at each iteration;

3. It does not use derivatives of the objective function;

4. It uses operations that are random within each iteration.

Application of the genetic algorithm to an optimization problem is illustrated in
the following example.

Example 14.3 Consider the MATLAB "peaks" function / : R2 ->• E given by

(see also [48, pp. 178-180] for an example involving the same function). We wish
to maximize / over the set fi = {[x,y]T 6 E2 : — 3 < x,y < 3}. A plot of
the objective function / over the feasible set S7 is shown in Figure 14.4. Using
the MATLAB function fminunc (from the Optimization Toolbox), we found the
optimal point to be [-0.0093,1.5814]T, with objective function value 8.1062.

To apply the genetic algorithm to solve the above optimization problem, we use a
simple binary representation scheme with length L = 32, where the first 16 bits of
each chromosome encode the x component, whereas the remaining 16 bits encode
the y component. Recall that x and y take values in the interval [—3,3]. We first map
the interval [—3,3] onto the interval [0,216 — 1], via a simple translation and scaling.
The integers in the interval [0,216 — 1] are then expressed as binary 16 bit strings.
This defines the encoding of each component x and y. The chromosome is obtained
by juxtaposing the two 8 bit strings. For example, the point [x, y]T = [—1,3]T is
encoded as (see Exercise 14.1 for a simple algorithm for converting from decimal
into binary)

Using a population size of 20, we apply 50 iterations of the genetic algorithm
on the above problem. We used parameter values of pc — 0.75 and pm = 0.0075.
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Figure 14.4 Plot of / for Example 14.3

Figure 14.5 shows plots of the best, average, and worst objective function values
in the population for every iteration (generation) of the algorithm. The best-so-far
solution obtained at the end of the 50 iterations is [0.0615,1.5827]T, with objective
function value 8.1013. Note that this solution and objective function value are very
close to those obtained using MATLAB.

14.2 ANALYSIS OF GENETIC ALGORITHMS

In this section, we use heuristic arguments to describe why genetic algorithms work.
As pointed out before, the genetic algorithm was motivated by ideas from natural
genetics [42]. Specifically, the notion of "survival of the fittest" plays a central
role. The mechanisms used in the genetic algorithm mimic this principle. We
start with a population of chromosomes, and selectively pick the fittest ones for
reproduction. From these selected chromosomes, we form the new generation by
combining information encoded in them. In this way, the goal is to ensure that the
fittest members of the population survive, and their information content is preserved
and combined to produce even better offspring.

To further analyze the genetic algorithm in a more quantitative fashion, we need
to define a few terms. For convenience, we only consider chromosomes over the
binary alphabet. We introduce the notion of a schema (plural: schemata) as a set
of chromosomes with certain common features. Specifically, a schema is a set of
chromosomes that contain Is and Os in particular locations. We represent a schema
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Figure 14.5 The best, average, and worst objective function values in the population for
every iteration (generation) of the genetic algorithm in Example 14.3

using a string notation over an extended alphabet {0,1,*}. For example, the notation
1*01 represents the schema

and the notation 0 * 101* represents the schema

In the schema notation, the numbers 0 and 1 denote the fixed binary values in the
chromosomes that belong to the schema. The symbol *, meaning "don't care",
matches either 0 or 1 at the positions it occupies. Thus, a schema describes a set of
chromosomes that have certain specified similarities. A chromosome belongs to a
particular schema if for all positions j = 1,..., L the symbol found in the j th position
of the chromosome matches the symbol found in the j th position of the schema, with
the understanding that any symbol matches *. Note that if a schema has r "don't
care" symbols, then it contains 2r chromosomes. Moreover, any chromosome of
length L belongs to 2L schemata.

Given a schema that represents good solutions to our optimization problem, we
would like the number of matching chromosomes in the population P(k) to grow
as k increases. This growth is affected by several factors, which we analyze in the
following discussion. We assume throughout that we are using the roulette-wheel
selection method.

The first key idea in explaining why the genetic algorithm works is the observation
that if a schema has chromosomes with better-than-average fitness, then the expected
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(mean) number of chromosomes matching this schema in the mating pool M(k)
is larger than the number of chromosomes matching this schema in the population
P(k). To quantify this assertion, we need some additional notation. Let H be a
given schema, and let e(H, k) be the number of chromosomes in P(k) that match
H; that is, e(H, k} is the number of elements in the set P(k) n H. Let f ( H , k) be
the average fitness of chromosomes in P(k) that match schema H. This means that
if H n P(k) = {xi,..., xe(H>k)}, then

Let N be the number of chromosomes in the population, and F(k) be the sum of
the fitness values of chromosomes in P(k), as before. Denote by F(k) the average
fitness of chromosomes in the population; that is,

Finally, let m(H, k} be the number of chromosomes in M(k] that match H, in other
words, the number of elements in the set M(k) C\ H.

Lemma 14.1 Let H be a given schema, and M (H, k) the expected value ofm(H, k)
given P(k). Then,

Proof. Let P(k) D H — {xi,..., xe(H,k)}' In me remainder of the proof, the
term "expected" should be taken to mean "expected, given P(k)." For each element
m(fc) £ M(k) and each i = 1, . . . , e(H, k), the probability that ra^ = Xi is given
by f ( x i } / F ( k } . Thus, the expected number of chromosomes in M(k] equal to x^ is

Hence, the expected number of chromosomes in P(k] n H that are selected into
M(k) is

Because any chromosome in M(k] is also a chromosome in P(k), the chromosomes
in M(k) n H are simply those in P(k) n H that are selected into M(k}. Hence,



246 GENETIC ALGORITHMS

The above lemma quantifies our assertion that if a schema H has chromosomes
with better than average fitness (i.e., f ( H , k ) / F ( k ) > 1), then the expected number
of chromosomes matching H in the mating pool M(k) is larger than the number of
chromosomes matching H in the population P(k).

We now analyze the effect of the evolution operations on the chromosomes in
the mating pool. For this, we need to introduce two parameters that are useful in
the characterization of a schema, namely, its order and length. The order o(S) of
a schema 5 is the number of fixed symbols (non-* symbols) in its representation
(the notation o(S) is standard in the literature on genetic algorithms, and should not
be confused with the "little-oh" symbol defined in Section 5.6). If the length of
chromosomes in 5 is L, then o(5) is L minus the number of * symbols in 5. For
example,

whereas

The length l(S) of a schema S is the distance between the first and last fixed symbols
(i.e., the difference between the positions of the rightmost fixed symbol and the
leftmost fixed symbol). For example,

whereas

Note that for a schema 5 with chromosomes of length L, the order o(S] is a number
between 0 and L, and the length l(S) is a number between 0 in L — 1. The order
of a schema with all * symbols is 0; its length is also 0. The order of a schema
containing only a single element (i.e., its representation has no * symbols) is L, e.g.,
o(1011) = 4 — 0 = 4. The length of a schema with fixed symbols in its first and last
positions is L — 1, e.g., /(O * *1) = 4 — 1 = 3.

We first consider the effect of the crossover operation on the mating pool. The
basic observation in the following lemma is that given a chromosome in M(k) n H,
the probability that it leaves H after crossover is bounded above by a quantity that is
proportional to pc and l(H).

Lemma 14.2 Given a chromosome in M(k) H H, the probability that it is chosen
for crossover and neither of its offspring is in H is bounded above by

Proof. Consider a given chromosome in M(k) fl H. The probability that it is chosen
for crossover is pc. If neither of its offspring is in H, then the crossover point must
be between the corresponding first and last fixed symbols of H. The probability of
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this is l(H)/(L — 1). Hence, the probability that the given chromosome is chosen
for crossover and neither of its offspring is in H is bounded above by

From the above lemma, we conclude that given a chromosome in M(k) n H, the
probability that either it is not selected for crossover, or at least one of its offspring is
in H after the crossover operation, is bounded below by

Note that if a chromosome in H is chosen for crossover, and the other parent chro-
mosome is also in H, then both offspring are automatically in H (see Exercise 14.2).
Hence, for each chromosome in M(k) n H, there is a certain probability that it will
result in an associated chromosome in H (either itself or one of its offspring) after
going through crossover (including selection for crossover), and that probability is
bounded below by the above expression.

We next consider the effect of the mutation operation on the mating pool M(k}.

Lemma 14.3 Given a chromosome in M(k) D H, the probability that it remains in
H after the mutation operation is given by

Proof. Given a chromosome in M(k) n H, it remains in H after the mutation
operation if and only if none of the symbols in this chromosome that correspond to
fixed symbols in H is changed by the mutation operation. The probability of this
event is (1 -pm)o(//).

Note that if pm is small, the expression (1 — pm)°^ above is approximately
equal to

The following theorem combines the results of the preceding lemmas.

Theorem 14.1 Let H be a given schema, and £(H, k + 1) the expected value of
e(H, k + l) given P(k). Then,
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Proof. Consider a given chromosome in M(k) r\H. If, after the evolution operations,
it has a resulting chromosome that is in H, then that chromosome is in P(k + l)nH.
By Lemmas 14.2 and 14.3, the probability of this event is bounded below by

Therefore, because each chromosome in M(k] fl H results in a chromosome in
P(k + 1) D H with a probability bounded below by the above expression, the
expected value of e(H, k + 1) given M(k] is bounded below by

Taking the expectation given P(k), we get

Finally, using Lemma 14.1, we arrive at the desired result.

The above theorem indicates how the number of chromosomes in a given schema
changes from one population to the next. Three factors influence this change, reflected
by the three terms on the right-hand side of inequality in the above theorem, namely,
1 - pcl(H)/(L - 1), (1 - pm}o(H\ and f ( H , k)/F(k). Note that the larger the
values of these terms, the higher the expected number of matches of the schema H
in the next population. The effect of each term is summarized as follows:

• The term f ( H , k)/F(k) reflects the role of average fitness of the given schema
H—the higher the average fitness, the higher the expected number of matches
in the next population.

• The term 1 — pcl(H)/(L — 1) reflects the effect of crossover—the smaller the
term pcl(H}/(L — 1), the higher the expected number of matches in the next
population.

• The term (1 — pm)°(H^ reflects the effect of mutation—the larger the term, the
higher the expected number of matches in the next population.

In summary, we see that a schema that is short, low order, and has above average fitness
will have on average an increasing number of its representatives in the population
from iteration to iteration. Observe that the encoding is relevant to the performance
of the algorithm. Specifically, a good encoding is one that results in high-fitness
schemata having small lengths and orders.

14.3 REAL-NUMBER GENETIC ALGORITHMS

The genetic algorithms described thus far operate on binary strings, representing
elements of the feasible set fi. Binary encodings allow us to use the schema theory,
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described in the previous section, to analyze genetic algorithms. However, there are
some disadvantages to operating on binary strings. To see this, let g : {0,1}L —> fi
represent the binary "decoding" function; that is, if x is a binary chromosome,
g(x) € fi is the point in the feasible set fi C W1 whose encoding is x. Therefore,
the objective function being maximized by the genetic algorithm is not / itself
but rather the composition of / and the decoding function g. In other words, the
optimization problem being solved by the genetic algorithm is

This optimization problem may be more complex than the original optimization
problem. For example, it may have extra maximizers, making the search for a global
maximizer more difficult.

The above motivates a consideration of genetic algorithms that operate directly on
the original optimization problem. In other words, we wish to implement a genetic
algorithm that operates directly on En. The steps of this algorithm will be the same
as before (see Figure 14.3), except that the elements of the population are points
in the feasible set fl, rather than binary strings. We will need to define appropriate
crossover and mutation operations for this case.

For crossover, we have several options. The simplest is to use averaging: for
a pair of parents x and y, the offspring is z = (x + j/)/2 (this type of crossover
operation is used, e.g., in [75]). This offspring can then replace one of the parents.
Alternatively, we may produce two offspring as follows: z\ = (x + y)/2 + Wi and
z2 — (x + y)/2 -I- io2, where w\ and w<2 are two randomly generated vectors (with
zero mean). If either offspring lies outside fi, we have to bring the offspring back into
fi, using for example a projection (see Section 22.2). A third option for crossover
is to take random convex combinations of the parents. Specifically, given a pair of
parents x and y, we generate a random number a G (0,1), and then produce two
offspring z\ = ax + (1 — a)y and z2 — (1 — oc)x + ay. This method of crossover
ensures that the offspring are always in the feasible set, provided the feasible set is
convex. A fourth option is to perturb the above two points by some random amount:
z\ = ax + (1 — a)y + w\ and zi — (\.— a)x + ay + w?, where w\ and w? are
two randomly generated vectors (with zero mean). In this case, we have to check for
feasibility of the offspring, and use projections if needed.

For mutation, a simple implementation is to add a random vector to the chromo-
some. Specifically, given a chromosome x, we produce its mutation as x' = x + w
where w is a random vector with zero mean. This mutation operation is also called a
"real number creep" (see, e.g., [75]). As before, we have to ensure that the mutated
chromosome is feasible. If not, we may use a projection. An alternative method for
mutation is to replace the chosen chromosome with a random convex combination
of the chromosome with a random point in the feasible set; that is, we generate a
random number a 6 (0,1) and a random point w € ft, and set x1 — ax + (1 — a)w.
Provided the feasible set is convex, the mutated chromosom will always be feasible.



250 GENETIC ALGORITHMS

Example 14.4 Consider again the function / : E2 -> R from Example 14.3. We
apply a real-number genetic algorithm to find a maximizer of /, using a crossover
operation of the fourth type described above, and a mutation operation of the second
type above. With a population size of 20, we apply 50 iterations of the genetic
algorithm. As before, we used parameter values of pc = 0.75 and pm = 0.0075.
Figure 14.6 shows plots of the best, average, and worst objective function values
in the population for every iteration (generation) of the algorithm. The best-so-far
solution obtained at the end of the 50 iterations is [—0.0096,1.5845]T, with objective
function value 8.1061, which is close with the result of Example 14.3.

Figure 14.6 The best, average, and worst objective function values in the population for
every iteration (generation) of the real-number genetic algorithm in Example 14.4

EXERCISES

14.1 This problem has four parts.

a. Let (/)io be the decimal representation for a given integer, and let
amam-i • • • ao be its binary representation; that is, each a^ is either 0 or
1, and

Verify that the following is true:
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b. The second expression in part a suggests a simple algorithm for converting from
decimal representation to equivalent binary representation, as follows. Divid-
ing both sides of the expression in part a by 2, the remainder is OQ. Subsequent
divisions by two yield the remaining bits 01 ,02 , . . . , am as remainders.

Use this algorithm to find the binary representation of the integer (/)io = 1995.

c. Let (-F)io be the decimal representation for a given number in [0,1], and let
O.a_io_2 • • • be its binary representation, that is,

If the above expression is multiplied by 2, the integer part of the product is
a_i. Subsequent multiplications yield the remaining bits a_2, a_3, — As
in part b, the above gives a simple algorithm for converting from a decimal
fraction to its binary representations.

Use this algorithm to find the binary representation of (-F)io = 0.7265625.

Note that we can combine the algorithms from parts b and c to convert an arbi-
trary positive decimal representation into its equivalent binary representation.
Specifically, we apply the algorithms in parts b and c separately to the integer
and fraction parts of the given decimal number, respectively.

d. The procedure in part c may yield an infinitely long binary representation. If
this is the case, we need to determine the number of bits required to keep at
least the same accuracy as the given decimal number. If we have a d-digit
decimal fraction, then the number of bits b in the binary representation must
satisfy 2~b < W~d, which yields b > 3.32d.

Convert 19.95 to its equivalent binary representation with at least the same
degree of accuracy (i.e., to two decimal places).

14.2 Given two chromosomes in a schema H, suppose that we swap some (or all) of
the symbols between them at corresponding positions. Show that the resulting two
chromosomes are also in H. From this fact, we conclude that given two chromosomes
in H, both offspring after the crossover operation are also in H. In other words, the
crossover operation preserves membership in H.

14.3 Consider a two-point crossover scheme (see Example 14.2), described as
follows. Given a pair of binary chromosomes of length L, we independently choose
two random numbers, uniform over 1,. . . , L — 1. We call the two numbers c\ and
c2, where c\ < c2. If GI = c2, we do not swap any symbols (i.e., leave the two given
parent chromosomes unchanged). If c\ < c2, we interchange the (c\ + l)st through
c2th bits in the given parent chromosomes.

Prove the analog of Lemma 14.2 for this case, given below.
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Lemma: Given a chromosome in M(k] D H, the probability that it is chosen for
crossover and neither of its offspring is in H is bounded above by

Hint: Note that the two-point crossover operation is equivalent to a composition of
two one-point crossover operations (i.e., doing two one-point crossover operations in
succession).

14.4 State and prove the analog of Lemma 14.2 for an n-point crossover operation.
Hint: See Exercise 14.3.

14.5 Implement the roulette-wheel selection scheme using MATLAB.
Hint: Use the MATLAB functions sum, cumsum, and find.

14.6 Implement the crossover operation (one-point) using the MATLAB, assuming
we are given two binary parent chromosomes.

14.7 Implement the mutation operation using the MATLAB function xor, assuming
that the chromosomes in the mating pool are binary vectors.

14.8 Write a MATLAB routine to implement a genetic algorithm using a binary
encoding. Test your implementation on the following functions:

a. /(z) = -15sm2(2z) - (z - 2)2 + 160, |z| < 10.

b. /(x,y)-3(l-x)2e- a ; 2-(y+1)2-10(f-x3-y5) e-«a-ya_.«- (^>a-»a,
N) \y\ < 3 (considered in Example 14.3).

14.9 Write a MATLAB routine to implement a real-number genetic algorithm. Test
your implementation on the function f ( x ) = x\ sin(xi) + x^ sin(5x2) with the
constraint set fJ = {x : 0 < xi < 10,4 < x-2 < 6}.
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15
Introduction to Linear

Programming

15.1 A BRIEF HISTORY OF LINEAR PROGRAMMING

The goal of linear programming is to determine the values of decision variables that
maximize or minimize a linear objective function, where the decision variables are
subject to linear constraints. A linear programming problem is a special case of
a general constrained optimization problem. In the general setting, the goal is to
find a point that minimizes the objective function and at the same time satisfies the
constraints. We refer to any point that satisfies the constraints as a feasible point. In
a linear programming problem, the objective function is linear, and the set of feasible
points is determined by a set of linear equations and/or inequalities.

In this part, we study methods for solving linear programming problems. Linear
programming methods provide a way of choosing the best feasible point among the
many possible feasible points. In general, the number of feasible points is infinitely
large. However, as we shall see, the solution to a linear programming problem can
be found by searching through a particular finite number of feasible points, known as
basic feasible solutions. Therefore, in principle, we can solve a linear programming
problem simply by comparing the finite number of basic feasible solutions and
finding one that minimizes or maximizes the objective function—we refer to this
approach as the "brute-force approach." For most practical decision problems, even
this finite number of basic feasible solutions is so large that the method of choosing
the best solution by comparing them to each other is impractical. To get a feel for
the amount of computation needed in a brute-force approach, consider the following
example. Suppose that we have a small factory with 20 different machines producing
20 different parts. Assume that any of the machines can produce any part. We

255
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also assume that the time for producing each part on each machine is known. The
problem then is to assign a part to each machine so that the overall production time is
minimized. We see that there are 20! (20 factorial) possible assignments. The brute-
force approach to solving this assignment problem would involve writing down all the
possible assignments and then choosing the best one by comparing them. Suppose
that we have at our disposal a computer that takes 1 ̂ isec (10~6 seconds) to determine
each assignment. Then, to find the best (optimal) assignment this computer would
need 77,147 years (working 24 hours a day, 365 days a year) to find the best solution.
An alternative approach to solving this problem is to use experienced planners to
optimize this assignment problem. Such an approach relies on heuristics. Heuristics
come close, but give suboptimal answers. Heuristics that do reasonably well, with
an error of, say, 10%, may still not be good enough. For example, in a business that
operates on large volumes and a small profit margin, a 10% error could mean the
difference between loss and profit.

Efficient methods for solving linear programming problems became available in
the late 1930s. In 1939, Kantorovich presented a number of solutions to some
problems related to production and transportation planning. During World War
II, Koopmans contributed significantly to the solution of transportation problems.
Kantorovich and Koopmans were awarded a Nobel Prize in economics in 1975
for their work on the theory of optimal allocation of resources. In 1947, Dantzig
developed a new method for solving linear programs, known today as the simplex
method (see [22] for Dantzig's own treatment of the algorithm). In the following
chapters, we discuss the simplex method in detail. The simplex method is efficient and
elegant. However, it has the undesirable property that, in the worst case, the number
of steps (and hence total time) required to find a solution grows exponentially with
the number of variables. Thus, the simplex method is said to have exponential
worst-case complexity. This led to an interest in devising algorithms for solving
linear programs that have polynomial complexity, that is, algorithms that find a
solution in an amount of time that is bounded by a polynomial in the number of
variables. Khachiyan, in 1979, was the first to devise such an algorithm. However, his
algorithm gained more theoretical than practical interest. Then, in 1984, Karmarkar
proposed a new linear programming algorithm that has polynomial complexity, and
appears to solve some complicated, real-world problems of scheduling, routing and
planning more efficiently than the simplex method. Karmarkar's work led to the
development of many other non-simplex methods commonly referred to as interior-
point methods. This approach is currently still an active research area. For more
details on Karmarkar's and related algorithms, see [28], [38], [52], [86], and [89].
Some basic ideas illustrating Khachiyan's and Karmarkar's algorithms are presented
in Chapter 18.
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15.2 SIMPLE EXAMPLES OF LINEAR PROGRAMS

Formally, a linear program is an optimization problem of the form:

where c 6 En, b € Rm, and A € Rmxn. The vector inequality x > 0 means that
each component of x is nonnegative. Several variations to the above problem are
possible; for example, instead of minimizing, we can maximize, or the constraints
may be in the form of inequalities, such as Ax > b, or Ax < b. We also refer to
these variations as linear programs. In fact, as we shall see later, these variations can
all be rewritten into the standard form shown above.

The purpose of this section is to give some simple examples of linear program-
ming problems illustrating the importance and the various applications of linear
programming methods.

Example 15.1 This example is adapted from [88]. A manufacturer produces four
different products Xi, Xi, X$, and X±. There are three inputs to this production
process: labor in man weeks, kilograms of raw material A, and boxes of raw mate-
rial B. Each product has different input requirements. In determining each week's
production schedule, the manufacturer cannot use more than the available amounts
of manpower and the two raw materials. The relevant information is presented in
Table 15.1. Every production decision must satisfy the restrictions on the availability
of inputs. These constraints can be written using the data in Table 15.1. In particular,
we have

Because negative production levels are not meaningful, we must impose the fol-
lowing nonnegativity constraints on the production levels:

Now, suppose that one unit of product X\ sells for $6, and X^ X^, and X± sell
for $4, $7, and $5, respectively. Then, the total revenue for any production decision
( X l , X 2 , X 3 , X 4 ) IS

The problem is then to maximize /, subject to the given constraints (the three
inequalities and four nonnegativity constraints). Note that the above problem can be
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Table 15.1 Data for Example 15.1

Products Input
Inputs Xi X-2 X3 X± Availabilities

m a n weeks 1 2 1 2 2 0
kilograms o f material A 6 5 3 2 1 0 0
boxes of material B 3 4 9 12 75
production levels x\ x2 x3 x4

written in the compact form:

where

I

subject to the nutritional constraints



SIMPLE EXAMPLES OF LINEAR PROGRAMS 259

Table 15.2 Data for Example 15.3

Production time (hours/unit) Available time
Machine X\ X^ (hours)

MI 1 1 8
M2 1 3 18
M3 2 1 14

Total 4 5

and the nonnegativity constraints

In the more compact vector notation, this problem becomes:

where x is an n-dimensional column vector, that is, x = [xi,x2,... ,xn]
T, CT is

an n-dimensional row vector, A is an m x n matrix, and b is an m-dimensional
column vector. We call the above problem the diet problem, and will return to it in
Chapter 17.

In the next example, we consider a linear programming problem that arises in
manufacturing.

Example 15.3 A manufacturer produces two different products X\ and X^ using
three machines MI, M2, and M3. Each machine can be used only for a limited
amount of time. Production times of each product on each machine are given in
Table 15.2. The objective is to maximize the combined time of utilization of all three
machines.

Every production decision must satisfy the constraints on the available time. These
restrictions can be written down using data from Table 15.2. In particular, we have
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where x\ and x2 denote the production levels. The combined production time of all
three machines is

Thus, the problem in compact notation has the form

where

In the following example, we discuss an application of linear programming in
transportation.

Example 15.4 A manufacturing company has plants in cities A, B, and C. The
company produces and distributes its product to dealers in various cities. On a
particular day, the company has 30 units of its product in A, 40 in B, and 30 in C. The
company plans to ship 20 units to D, 20 to E, 25 to F, and 35 to G, following orders
received from dealers. The transportation costs per unit of each product between the
cities are given in Table 15.3. In the table, the quantities supplied and demanded
appear at the right and along the bottom of the table. The quantities to be transported
from the plants to different destinations are represented by the decision variables.

This problem can be stated in the form:
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Table 15.3 Data for Example 15.4

To D E F G Supply
From

A $7 $10 $14 $8 30
B $7 $11 $12 $6 40
C $5 $8 $15 $9 30

Demand 20 20 25 35 100

and

In this problem, one of the constraint equations is redundant because it can be
derived from the rest of the constraint equations. The mathematical formulation of
the transportation problem is then in a linear programming form with twelve (3x4)
decision variables and six (3 + 4 — 1 ) linearly independent constraint equations.
Obviously, we also require nonnegativity of the decision variables, since a negative
shipment is impossible and does not have any valid interpretation.

Next, we give an example of a linear programming problem arising in electrical
engineering.

Example 15.5 This example is adapted from [72]. Figure 15.1 shows an electric
circuit that is designed to use a 30 V source to charge 10 V, 6 V, and 20 V batteries
connected in parallel. Physical constraints limit the currents I\, /2, Is, /4, and 1$ to a
maximum of 4 A, 3 A, 3 A, 2 A, and 2 A, respectively. In addition, the batteries must
not be discharged, that is, the currents I\, /2, /3, /4, and /5 must not be negative. We
wish to find the values of the currents I\,..., I§ such that the total power transferred
to the batteries is maximized.

The total power transferred to the batteries is the sum of the powers transferred to
each battery, and is given by 10/2 + 6/4 + 20/s W. From the circuit in Figure 15.1,
we observe that the currents satisfy the constraints I\ = I? + 1%, and /s = /4 + 1$.
Therefore, the problem can be posed as the following linear program:
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Figure 15.1 Battery charger circuit for Example 15.5

Figure 15.2 Wireless communication system in Example 15.6

Finally, we present an example from wireless communications.

Example 15.6 Consider a wireless communication system as shown in Figure 15.2.
There are n "mobile" users. For each i — 1,... , n, user i transmits a signal to the
base station with power pi and an attenuation factor of hi (i.e., the actual received
signal power at the base station from user i is hipi). When the base station is receiving
from user i, the total received power from all other users is considered "interference"
(i.e., the interference for user i is Z^i hjpj). For the communication with user i
to be reliable, the signal-to-interference ratio must exceed a threshold 7^, where the
"signal" is the received power for user i.

We are interested in minimizing the total power transmitted by all the users subject
to having reliable communications for all users. We can formulate the problem as a
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linear programming problem of the form

We proceed as follows. The total power transmitted is p\ + • • • + pn. The signal-to-
interference ratio for user i is

Hence, the problem can be written as

We can write the above as the linear programming problem

In matrix form, we have

For more examples of linear programming and their applications in a variety of
engineering problems, we refer the reader to [1], [22], [23], [32], and [79]. For
applications of linear programming to the design of control systems, see [21]. Linear
programming also provides the basis for theoretical applications, as, for example, in
matrix game theory (discussed in [13]).

15.3 TWO-DIMENSIONAL LINEAR PROGRAMS

Many fundamental concepts of linear programming are easily illustrated in two-
dimensional space. Therefore, we first consider linear problems in R2 before dis-
cussing general linear programming problems.
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Consider the following linear program (adapted from [88]):

where

First, we note that the set of equations {CTX = x\ + 5x2 = /, / G ^} specifies a
family of straight lines in 1R2. Each member of this family can be obtained by setting
/ equal to some real number. Thus, for example, x\ + 5x2 = —5, x\ + 5x2 = 0,
and xi + 5x2 = 3 are three parallel lines belonging to the family. Now, suppose
that we try to choose several values for xi and #2 and observe how large we can
make /, while still satisfying the constraints on x\ and x^. We first try x\ = 1 and
x2 = 3. This point satisfies the constraints. For this point, / = 16. If we now select
xi = 0 and x2 = 5 then / = 25, and this point yields a larger value for / than does
x = [1,3]T. There are infinitely many points [xi,X2JT satisfying the constraints.
Therefore, we need a better method than "trial-and-error" to solve the problem. In
the following sections, we develop a systematic approach that considerably simplifies
the process of solving linear programming problems.

In the case of the above example, we can easily solve the problem using geometric
arguments. First let us sketch the constraints in E2. The region of feasible points (the
set of points x satisfying the constraints Ax < b, x > 0) is depicted by the shaded
region in Figure 15.3.

Geometrically, maximizing CTX = x\ + 5x2 subject to the constraints can be
thought of as finding the straight line / = x\ 4- 5x2 that intersects the shaded region
and has the largest /. The coordinates of the point of intersection will then yield
a maximum value of CTX. In our example, the point [0,5]T is the solution (see
Figure 15.3). In some cases, there may be more than one point of intersection; all of
them will yield the same value for the objective function CTX, and therefore any one
of them is a solution.

15.4 CONVEX POLYHEDRA AND LINEAR PROGRAMMING

The goal of linear programming is to minimize (or maximize) a linear objective
function
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Figure 15.3 Geometric solution of a linear program in R2

subject to constraints that are represented by linear equalities and/or inequalities.
For the time being, let us only consider constraints of the form Ax < b, x > 0.
In this section, we discuss linear programs from a geometric point of view (for a
review of geometric concepts used in the section, see Chapter 4). The set of points
satisfying these constraints can be represented as the intersection of a finite number of
closed half-spaces. Thus, the constraints define a convex polytope. We assume, for
simplicity, that this polytope is nonempty and bounded. In other words, the equations
of constraints define a polyhedron M in W1. Let H be a hyperplane of support of this
polyhedron. If the dimension of M is less than n, then the set of all points common to
the hyperplane H and the polyhedron M coincides with M. If the dimension of M is
equal to n, then the set of all points common to the hyperplane H and the polyhedron
M is a face of the polyhedron. If this face is (n — 1)-dimensional, then there exists
only one hyperplane of support, namely, the carrier of this face. If the dimension
of the face is less than n — 1, then there exists an infinite number of hyperplanes of
support whose intersection with this polyhedron yields this face (see Figure 15.4).

The goal of our linear programming problem is to maximize a linear objective
function f ( x ] = CTX = c\x\ H h cnxn on the convex polyhedron M. Next, let
H be the hyperplane defined by the equation

Draw a hyperplane of support H to the polyhedron M, which is parallel to H and
positioned in such a way that the vector c points in the direction of the halfspace that
does not contain M (see Figure 15.5). The equation of the hyperplane H has the
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Figure 15.4 Hyperplanes of support at different boundary points of the polyhedron M

Figure 15.5 Maximization of a linear function on the polyhedron M

form

and for all a; 6 M, we have CTX < (3. Denote by M the convex polyhedron that
is the intersection of the hyperplane of support H with the polyhedron M. We now
show that / is constant on M and that M is the set of all points in M for which /
attains its maximum value. To this end, let y and z be two arbitrary points in M.
This implies that both y and z belong to H. Hence,

which means that / is constant on M.
Let y be a point of M, and let a; be a point of M \ M, that is, x is a point of M

that does not belong to M (see Figure 15.5). Then,

which implies that
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Figure 15.6 Unique maximum point of / on the polyhedron M

Thus, the values of / at the points of M that do not belong to M are smaller than the
values at points of M. Hence, / achieves its maximum on M at points in M.

It may happen that M contains only a single point, in which case / achieves its
maximum at a unique point. This occurs when the the hyperplane of support passes
through an extreme point of M (see Figure 15.6).

15.5 STANDARD FORM LINEAR PROGRAMS

We refer to a linear program of the form

as a linear program in standard form. Here A is an m x n matrix composed of real
entries, m < n, rank A — m. Without loss of generality, we assume b > 0. If a
component of 6 is negative, say the ith component, we multiply the zth constraint by
— 1 to obtain a positive right-hand side.

Theorems and solution techniques for linear programs are usually stated for prob-
lems in standard form. Other forms of linear programs can be converted to the
standard form, as we now show. If a linear program is in the form

then by introducing so-called surplus variables T/J, we can convert the original prob-
lem into the standard form
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In more compact notation, the above formulation can be represented as

where Im is the m x m identity matrix.
If, on the other hand, the constraints have the form

then we introduce slack variables T/J to convert the constraints into the form

where y is the vector of slack variables. Note that neither surplus nor slack variables
contribute to the objective function CTX.

At first glance, it may appear that the two problems

and

are different, in that the first problem refers to intersection of half-spaces in the
n-dimensional space, whereas the second problem refers to an intersection of half-
spaces and hyperplanes in the (n + m)-dimensional space. It turns out that both
formulations are algebraically equivalent in the sense that a solution to one of the
problems implies a solution to the other. To illustrate this equivalence, we consider
the following examples.
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Figure 15.7 Projection of the set C$ onto the x\-axis

Example 15.7 Suppose that we are given the inequality constraint

We convert this to an equality constraint by introducing a slack variable #2 > 0 to
obtain

Consider the sets C\ = {xi : x\ < 7} and C? = [x\ : x\ + x-2 — 7, x^ > 0}. Are
the sets C\ and C^ equal? It is clear that indeed they are; in this example, we give
a geometric interpretation for their equality. Consider a third set Cs — {[a;i,:r2]T :
xi + X2 — 7, #2 > 0}. From Figure 15.7, we can see that the set 63 consists of all
points on the line to the left and above the point of intersection of the line with the x\ -
axis. This set, being a subset of M2, is of course not the same set as the set C\ (a subset
of K). However, we can project the set 63 onto the Xi-axis (see Figure 15.7). We
can associate with each point x\ € C\ a point [a?i, 0]T on the orthogonal projection
of 63 onto the #1-axis, and vice versa. Note that €-2 = {x\ : [xi,X2]T G 63} = C\.

Example 15.8 Consider the inequality constraints

where ai, 02, and b are positive numbers. Again, we introduce a slack variable
£3 > 0 to get
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Figure 15.8 Projection of the set C$ onto the (x\, x2)-plane

Define the sets

We again see that €3 is not the same as C\. However, the orthogonal projection
of Cz onto the (xi,x2)-plane allows us to associate the resulting set with the set
C\. We associate the points [xi,x2,0]T resulting from the orthogonal projection
of 63 onto the (£1,3:2)-plane with the points in C\ (see Figure 15.8). Note that
C2 = {[xi,x2]

T : [xi,x2,x3]
T G C3} = Ci.

Example 15.9 Suppose that we wish to maximize

subject to the constraint

where, for simplicity, we assume that each ajj > 0 and &i, b2 > 0. The set of feasible
points is depicted in Figure 15.9. Let C\ C E2 be the set of points satisfying the
above constraints.
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Figure 15.9 The feasible set for Example 15.9

Introducing a slack variable, we convert the above constraints into standard form:

Let C<2 C M3 be the set of points satisfying the above constraints. As illustrated in
Figure 15.10, this set is a line segment (in E3). We now project €2 onto the (x\, £2)-
plane. The projected set consists of the points [xi, x%, 0]T, with [xi, Z2> %3]T £ Ci
for some xj, > 0. In Figure 15.10 this set is marked by a heavy line in the (xi,xz)-
plane. We can associate the points on the projection with the corresponding points
in the set C\.

The following is an example of converting an optimization problem into a standard
form linear programming problem.

Example 15.10 Consider the following optimization problem

To convert the problem into a standard form linear programming problem, we perform
the following steps:

1. Change objective function to: minimize x\ — x2.
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Figure 15.10 Projection of Cs onto the (xi, x2)-plane

2. Substitutex\ = —x(.

3. Write |x2| < 2 as x2 < 2 and -x2 < 2.

4. Introduce slack variables £3 and £4, and convert the above inequalities to
%2 + #3 = 2 and — £2 + x± = 1.

5. Write x^ = u — v, u, v > 0.

Hence, we obtain

15.6 BASIC SOLUTIONS

We have seen in Section 15.5 that any linear programming problem involving inequal-
ities can be converted to standard form, that is, a problem involving linear equations
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with nonnegative variables:

where c G Rn, A £ Emxn, b 6 Rm, m < n, rankA = m, and 6 > 0. In the
following discussion, we only consider linear programming problems in standard
form.

Consider the system of equalities

where rank A = m. In dealing with this system of equations, we frequently need to
consider a subset of columns of the matrix A. For convenience, we often reorder the
columns of A so that the columns we are interested in appear first. Specifically, let
B be a square matrix whose columns are m linearly independent columns of A. If
necessary, we reorder the columns of A so that the columns in B appear first: A has
the form A = [B, D], where D is an m x (n — m) matrix whose columns are the
remaining columns of A. The matrix B is nonsingular, and thus we can solve the
equation

for the m-vector XB • The solution is XB = B lb. Let x be the n-vector whose first
m components are equal to XB, and the remaining components are equal to zero, that
is, x — [x^, 0T]T. Then, a; is a solution to Ax = b.

Definition 15.1

We call [oTg, 0T]T a basic solution to Ax = b with respect to the basis B. We
refer to the components of the vector XB as basic variables, and the columns
of B as basic columns.

If some of the basic variables of a basic solution are zero, then the basic solution is
said to be a degenerate basic solution.

A vector x satisfying Ax = b, x > 0, is said to be a feasible solution.

A feasible solution that is also basic is called a basic feasible solution.

If the basic feasible solution is a degenerate basic solution, then it is called a
degenerate basic feasible solution.

Note that in any basic feasible solution, XB > 0.

Example 15.11 Consider the equation Ax = 6 with
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where Oj denotes the zth column of the matrix A.
Then, x = [6,2,0,0]T is a basic feasible solution with respect to the basis

B — [GI, 0,2], x = [0,0,0,2]T is a degenerate basic feasible solution with respect
to the basis B = [03,04] (as well as [01,04] and [02,04]), x = [3,1,0,1]T is a
feasible solution that is not basic, and x = [0,2, —6,0]T is a basic solution with
respect to the basis B = [o2,03], but is not feasible.

Example 15.12 As another example, consider the system of linear equations Ax =
b, where

We now find all solutions of this system. Note that every solution x of Ax = b has
the form x = v + h, where v is a particular solution of Ax = b and h is a solution
to Ax - 0.

We form the augmented matrix [A, b] of the system:

Using elementary row operations, we transform the above matrix into the form (see
the next chapter) given by

The corresponding system of equations is given by

Solving for the leading unknowns x\ and x2, we obtain

where #3 and x\ are arbitrary real numbers. If [#i, #2, £3, £4] is a solution, then
we have
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where we have substituted s and t for z3 and #4, respectively, to indicate that they
are arbitrary real numbers.

Using vector notation, we may write the above system of equations as

Note that we have infinitely many solutions, parameterized by s,t € R For the
choice s = t = 0 we obtain a particular solution to Ax = b, given by

Any other solution has the form v + h, where

The total number of possible basic solutions is at most

To find basic solutions that are feasible, we check each of the basic solutions for
feasibility.

Our first candidate for a basic feasible solution is obtained by setting x3 = x± = 0,
which corresponds to the basis B = [01,02]. Solving BXB = b, we obtain
XB = [14/5, —11/5] , and hence x — [14/5, —11/5,0,0] is a basic solution that
is not feasible.

For our second candidate basic feasible solution, we set x? = x± = 0. We have
the basis B = [ai,a3j. Solving BXB = b yields XB — [4/3,11/3] . Hence,

r-r\

x = [4/3,0,11/3,0] is a basic feasible solution.
A third candidate basic feasible solution is obtained by setting x% = x$ = 0.

However, the matrix

is singular. Therefore, B cannot be a basis, and we do not have a basic solution
corresponding to B — [ai, 04].

We get our fourth candidate for a basic feasible solution by setting x\ = £4 =0.
We have a basis B = [a-2, as], resulting in x = [0,2, 7,0]T, which is a basic feasible
solution.
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Our fifth candidate for a basic feasible solution corresponds to setting x\ — x3 =
0, with the basis B = [a2, a4]. This results in x = [0, -11/5,0, -28/5]T, which is
a basic solution that is not feasible.

Finally, the sixth candidate for a basic feasible solution is obtained by setting
Xl = x-2 - 0. This results in the basis B = [a3, a4], and x = [0,0,11/3, -8/3] ,
which is a basic solution but is not feasible.

15.7 PROPERTIES OF BASIC SOLUTIONS

In this section, we discuss the importance of basic feasible solutions in solving
linear programming (LP) problems. We first prove the fundamental theorem of LP,
which states that when solving an LP problem, we need only consider basic feasible
solutions. This is because the optimal value (if it exists) is always achieved at a basic
feasible solution. We need the following definitions.

Definition 15.2

Any vector x that yields the minimum value of the objective function CTX over
the set of vectors satisfying the constraints Ax = b, x > 0, is said to be an
optimal feasible solution.

An optimal feasible solution that is basic is said to be an optimal basic feasible
solution.

Theorem 15.1 Fundamental Theorem ofLP. Consider a linear program in standard
form.

1. If there exists a feasible solution, then there exists a basic feasible solution;

2. If there exists an optimal feasible solution, then there exists an optimal basic
feasible solution.

Proof. We first prove part 1. Suppose that x = [xi,..., xn]
T is a feasible solution,

and it has p positive components. Without loss of generality, we can assume that the
first p components are positive, whereas the remaining components are zero. Then,
in terms of the columns of A = [ai,.. . , ap , . . . , an] this solution satisfies

There are now two cases to consider.
Case 1: If ai, a?,..., ap are linearly independent, then p < m. If p = m, then

the solution x is basic and the proof is completed. If, on the other hand, p < m,
then, since rank A = m, we can find m—p columns of A from the remaining n — p
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columns so that the resulting set of m columns forms a basis. Hence, the solution x
is a (degenerate) basic feasible solution corresponding to the above basis.

Case 2: Assume that ai, 02, . . . , ap are linearly dependent. Then, there exist
numbers T/J, i = 1, . . . , /> , not all zero, such that

We can assume that there exists at least one yi that is positive, for if all the yi are
nonpositive, we can multiply the above equation by —1. Multiply the above equation
by a scalar e and subtract the resulting equation from x\a\ -f #202 H 1~ xpap = b
to obtain

Let

Then, for any e, we can write

Let e = min{xi/yi : i = 1, . . . , p, yi > 0}. Then, the first p components o f x — ey
are nonnegative, and at least one of these components is zero. We then have a feasible
solution with at most p — 1 positive components. We can repeat this process until we
get linearly independent columns of A, after which we are back to Case 1. Therefore,
part 1 is proved.

We now prove part 2. Suppose that x = [ x ± , . . . , xn]
T is an optimal feasible

solution, and only the first p variables are nonzero. Then, we have two cases to
consider. The first case (Case 1) is exactly the same as in part 1. The second
case (Case 2) follows the same arguments as in part 1, but in addition we must
show that x — ey is optimal for any e. We do this by showing that cTy = 0.
To this end, assume cTy ^ 0. Note that for E of sufficiently small magnitude
(\e\ < mm{\Xi/yi\ : i = 1,... ,p, yi ^ 0}), the vector x — ey is feasible. We
can choose e such that CTX > CTX — ecTy — CT(X — ey}. This contradicts the
optimality o f x . We can now use the procedure from part 1 to obtain an optimal basic
feasible solution from a given optimal feasible solution.

Example 15.13 Consider the system of equations given in the previous example
(Example 15.12). Find a nonbasic feasible solution to this system, and then use
the method in the proof of the fundamental theorem of LP to find a basic feasible
solution.

Recall that solutions for the system given in the previous example have the form
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where s, t e E. Note that if s = 4 and t = 0 then

is a nonbasic feasible solution.
There are constants y^, i = 1,2,3, such that

For example, let

Note that

where

lfe = 1/3, then

is a basic feasible solution.

Observe that the fundamental theorem of LP reduces the task of solving a linear
programming problem to that of searching over a finite number of basic feasible
solutions. That is, we need only check basic feasible solutions for optimality. As
mentioned before, the total number of basic solutions is at most

Although this number is finite, it may be quite large. For example, if m — 5 and
n — 50, then
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This is potentially the number of basic feasible solutions to be checked for optimality.
Therefore, a more efficient method of solving linear programs is needed. To this end,
in the next section, we analyze a geometric interpretation of the fundamental theorem
of LP. This leads us to the simplex method for solving linear programs, which we
discuss in the following chapter.

15.8 A GEOMETRIC VIEW OF LINEAR PROGRAMS

Recall that a set 0 C En is said to be convex if, for every z, y 6 0 and every real
number a, 0 < a < 1, the point ax + (1 — a)y € 0. In other words, a set is
convex if, given two points in the set, every point on the line segment joining these
two points is also a member of the set.

Note that the set of points satisfying the constraints

is convex. To see this, let x\ and x% satisfy the constraints, that is, Axi = b, X{ > 0,
i = 1,2. Then, for all a e (0,1), A(axi + (l-a)x2} = aAxi + (l-a}Ax2 = b.
Also, for a € (0,1), we have ax\ + (1 — a)x2 > 0.

Recall that a point x in a convex set 0 is said to be an extreme point of 0 if
there are no two distinct points x\ and x2 in 0 such that x — ax\ 4- (1 — a)x2 for
some a G (0,1). In other words, an extreme point is a point that does not lie strictly
within the line segment connecting two other points of the set. Therefore, if x is an
extreme point, and x = ax\ + (1 — a)x2 for some x\, x2 e 0 and a € (0,1), then
Xi = x<2. In the following theorem, we show that extreme points of the constraint
set are equivalent to basic feasible solutions.

Theorem 15.2 Let $1 be the convex set consisting of all feasible solutions, that is, all
n-vectors x satisfying

where A e Rmxn, m < n. Then, x is an extreme point ofQ, if and only if x is a
basic feasible solution to Ax = b, x > 0.

Proof. =>: Suppose that x satisfies Ax = 6, x > 0, and it hasp positive components.
As before, without loss of generality, we can assume that the first p components are
positive, and the remaining components are zero. We have

Let yi, i = 1,... ,p, be numbers such that

We show that each yi — 0. To begin, multiply this equation by e > 0, then add and
subtract the result from the equation x\a\ + x^a^ + (- xpap = b to get
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Because each Xi > 0, e > 0 can be chosen such that each X{ + eyi,Xi — eyi > 0
(e.g., £ = min{\Xi/yi\ : i = 1,... ,p, T/J ^ 0}). For such a choice of e, the vectors

belong to fJ. Observe that x — \z\ 4-\Zi- Because x is an extreme point, z\ = z%.
Hence, each yi — 0, which implies that the a,{ are linearly independent.

<=: Let x G fl be a basic feasible solution. Let ?/, 2 € fi be such that

for some a 6 (0,1). We show that y = z, and conclude that x is an extreme point.
Because y, z > 0, and the last ra — m components of x are zero, the last n — m
components of j/ and z are zero as well. Furthermore, since Ay = Az = b,

and

Combining the above two equations yields

Because the columns ai, . . . ,am are linearly independent, we have yi = Zi, i =
1,..., ra. Therefore, y = z, and hence x is an extreme point of fi.

From the above two theorems, it follows that the set of extreme points of the
constraint set fJ = {x : Ax — 6, x > 0} is equal to the set of basic feasible solutions
to Ax = b, x > 0. Combining the above observation with the fundamental theorem
of LP, we can see that in solving linear programming problems we need only examine
the extreme points of the constraint set.

Example 15.14 Consider the following LP problem:

We introduce slack variables £3, x±, x$ to convert the above LP problem into standard
form:



A GEOMETRIC VIEW OF LINEAR PROGRAMS 281

In the remainder of the example, we consider only the problem in standard form. We
can represent the above constraints as

that is, x\a\ + x^a^ + x^a^ + x^a^ + £505 = 6, x > 0. Note that

is a feasible solution. But, for this x, the value of the objective function is zero. We
already know that the minimum of the objective function (if it exists) is achieved
at an extreme point of the constraint set fi defined by the above constraints. The
point [0,0,40,20,12]T is an extreme point of the set of feasible solutions, but it turns
out that it does not minimize the objective function. Therefore, we need to seek the
solution among the other extreme points. To do this, we move from one extreme point
to an adjacent extreme point such that the value of the objective function decreases.
Here, we define two extreme points to be adjacent if the corresponding basic columns
differ by only one vector. We begin with x = [0,0,40,20,12]T. We have

To select an adjacent extreme point, let us choose to include a\ as a basic column in
the new basis. We need to remove either 03,04 or a$ from the old basis. We proceed
as follows. We first express ai as a linear combination of the old basic columns:

Multiplying both sides of this equation by e\ > 0, we get

We now add the above equation to the equation Oai + Oa2 + 40as+20a4 + I2a$ = b.
Collecting terms yields

We want to choose e\ in such a way that each of the above coefficients is nonnegative,
and at the same time one of the coefficients of either as, 04, or 0,5 becomes zero.
Clearly e\ = 10 does the job. The result is

The corresponding basic feasible solution (extreme point) is
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For this solution, the objective function value is —30, which is an improvement
relative to the objective function value at the old extreme point.

We now apply the same procedure as above to move to another adjacent extreme
point, which hopefully further decreases the value of the objective function. This
time, we choose a^ to enter the new basis. We have

and

Substituting £2 = 4, we obtain

The solution is [8,4,12,0,0]T and the corresponding value of the objective function
is -44, which is smaller than the value at the previous extreme point. To complete
the example, we repeat the procedure once more. This time, we select 0,4 and express
it as a combination of the vectors in the previous basis, ai, a-2, and 03:

and hence

The largest permissible value for £3 is 3. The corresponding basic feasible solution is
[5, 7,0,3,0]T, with an objective function value of -50. The solution [5, 7,0,3,0]T

turns out to be an optimal solution to our problem in standard form. Hence, the
solution to the original problem is [5, 7]T, which we can easily obtain graphically
(see Figure 15.11).

The technique used in the above example for moving from one extreme point
to an adjacent extreme point is also used in the simplex method for solving LP
problems. The simplex method is essentially a refined method of performing these
manipulations.

EXERCISES

15.1 Convert the following linear programming problem to standard form:
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Figure 15.11 A graphical solution to the LP problem in Example 15.14

15.2 Consider a discrete-time linear system Xk+\ = axk + buk, where Uk is the
input at time k, Xk is the output at time A;, and a, b 6 E are system parameters. Given
an initial condition x0 = 1, consider the problem of minimizing the output x<i at time
2 subject to the constraint that |u i |<l , i = 0,l.

Formulate the problem as a linear programming problem, and convert it into
standard form.

15.3 Consider the optimization problem

where Cj 7^ 0,i — 1 , . . . , n. Convert the above problem into an equivalent standard
form linear programming problem.
Hint: Given any x G E, we can find unique numbers x+, x~ G M, x+, x~ > 0, such
that x\= x+ + x~ and x = x+ — x~.

15.4 Does every linear programming problem in standard form have a nonempty
feasible set? If yes, prove. If no, give a specific example.

Does every linear programming problem in standard form (assuming a nonempty
feasible set) have an optimal solution? If yes, prove. If no, give a specific example.
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15.5 A cereal manufacturer wishes to produce 1000 pounds of a cereal that contains
exactly 10% fiber, 2% fat, and 5% sugar (by weight). The cereal is to be produced
by combining four items of raw food material in appropriate proportions. These four
items have certain combinations of fiber, fat, and sugar content, and are available at
various prices per pound, as shown below:

Item 1 2 3 4

% fiber 3 8 16 4
%fat 6 46 9 9
% sugar 20 5 4 0

Price/lb. 2 4 1 2

The manufacturer wishes to find the amounts of each of the above items to be used
to produce the cereal in the least expensive way. Formulate the problem as a linear
programming problem. What can you say about the existence of a solution to this
problem?

15.6 Suppose a wireless broadcast system has n transmitters. Transmitter j broad-
casts at a power of PJ > 0. There are m locations where the broadcast is to be
received. The "path gain" from transmitter j to location i is gij; that is, the power
of the signal transmitted from transmitter j received at location i is g i j p j . The
total received power at location i is the sum of the received powers from all the
transmitters.

Formulate the problem of finding the minimum sum of the transmit powers subject
to the requirement that the received power at each location is at least P.

15.7 Consider the system of equations:

Check if the system has basic solutions. If yes, find all basic solutions.

15.8 Solve the following linear program graphically:
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15.9 The optimization toolbox in MATLAB provides a function, linprog, for
solving linear programming problems. Use the function linprog to solve the
problem in Example 15.5. Use the initial condition 0.
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16
Simplex Method

16.1 SOLVING LINEAR EQUATIONS USING ROW OPERATIONS

The examples in the previous chapters illustrate that solving linear programs involves
the solution of systems of linear simultaneous algebraic equations. In this section, we
describe a method for solving a system of n linear equations in n unknowns, which
we use in subsequent sections. The method uses elementary row operations and
corresponding elementary matrices. For a discussion of numerical issues involved in
solving a system of simultaneous linear algebraic equations, we refer the reader to
[27] and [37].

An elementary row operation on a given matrix is an algebraic manipulation of
the matrix that corresponds to one of the following:

1. Interchanging any two rows of the matrix;

2. Multiplying one of its rows by a real nonzero number;

3. Adding a scalar multiple of one row to another row.

An elementary row operation on a matrix is equivalent to premultiplying the matrix
by a corresponding elementary matrix, which we define next.

Definition 16.1 We call E an elementary matrix of the first kind if E is obtained
from the identity matrix / by interchanging any two of its rows.

257
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An elementary matrix of the first kind formed from / by interchanging the z'th and
the jth rows has the form

Note that E is invertible and E = E l.

Definition 16.2 We call E an elementary matrix of the second kind if E is obtained
from the identity matrix I by multiplying one of its rows by a real number a ^ 0.

The elementary matrix of the second kind formed from J by multiplying the zth
row by a ^ 0 has the form

Note that E is invertible and

Definition 16.3 We call E an elementary matrix of the third kind if E is obtained
from the identity matrix / by adding f3 times one row to another row of /.
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An elementary matrix of the third kind obtained from / by adding ft times the j th
row to the ith row has the form

Observe that E is the identity matrix with an extra ft in the (z, j)th location. Note
that E is invertible and

Definition 16.4 An elementary row operation (of first, second, or third kind) on a
given matrix is a premultiplication of the given matrix by a corresponding elementary
matrix of the respective kind.

Because elementary matrices are invertible, we can define the corresponding
inverse elementary row operations.

Consider a system of n linear equations in n unknowns x\, z2, • • • > %n with right-
hand sides 61,62, • • • > bn. In matrix form, this system may be written as

where

If A is invertible then

Thus, the problem of solving the system of equations Ax — b, with A e Enxn

invertible is related to the problem of computing A~l. We now show that A~l can
be effectively computed using elementary row operations. In particular, we prove the
following theorem.
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Theorem 16.1 Let A € Enxn be a given matrix. Then, Aisnonsingular(invertible)
if and only if there exist elementary matrices Ei, i = ! , . . . ,£, such that

Proof. =$>: If A is nonsingular then its first column must have at least one nonzero
element, say o/i ^ 0. Premultiplying A by an elementary matrix of the first kind of
the form

brings the nonzero element 0,1 to the location (1,1). Hence, in the matrix EI A, the
element an ^ 0. Note that since EI is nonsingular, E\A is also nonsingular.

Next, we premultiply E\ A by an elementary matrix of the second kind of the
form

The result of this operation is the matrix E^E\A with unity in the location (1,1). We
next apply a sequence of elementary row operations of the third kind on the matrix
E<iE\A. Specifically, we premultiply EiE\A by n — 1 elementary matrices of the
form

where r = 2 + n — 1 = n + 1. The result of these operations is the nonsingular
matrix
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Because the matrix Er • • • E\ A is nonsingular, its submatrix

must be nonsingular too. The above implies that there is a nonzero element a^,
where 2 < j < n. Using an elementary operation of the first kind, we bring this
element to the location (2,2). Thus, in the matrix

the (2,2)th element is nonzero. Premultiplying the above matrix by an elementary
matrix of the second kind yields the matrix

in which the element in the location (2,2) is unity. As before, we premultiply this
matrix by n — 1 elementary row operations of the third kind, to get a matrix of the
form

where s = r + 2 + n— 1 — 2(n + 1). The above matrix is nonsingular. Hence, there
is a nonzero element 0^3, 3 < j < n. Proceeding in a similar fashion as before, we
obtain

where* = n(n 4- 1).
<=: If there exist elementary matrices E\,..., Et such that

then clearly A is invertible, with

The above theorem suggests the following procedure for finding A 1, if it exists.
We first form an augmented matrix

We then apply elementary row operations to [A, 7] so that A is transformed into /,
that is, we obtain
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It then follows that

Example 16.1 Let

Find A"1.
We form an augmented matrix

and perform row operations on this matrix. Applying row operations of the first and
third kinds yields

We then interchange the second and fourth rows and apply elementary row operations
of the second and third kinds to get

Now multiply the third row by 1/2 and then perform a sequence of the elementary
operations of the third kind to obtain

Hence,
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We now return to the general problem of solving the system of equations Ax — b,
A G Enxn. If A"1 exists then the solution is x = A"1 b. However, we do not need
an explicit expression for A"1 to find the solution. Indeed, let A"1 be expressed as
a product of elementary matrices

Thus,

and hence

The above discussion leads to the following procedure for solving the system Ax = b.
Form an augmented matrix

Then, perform a sequence of row elementary operations on this augmented matrix
until we obtain

From the above, we have that if a; is a solution to Ax = b, then it is also a solution
to EAx = Eb, where E = Et---Ei represents a sequence of elementary row
operations. Because EA — I, and Eb = b, it follows that x — b is the solution to
Ax = b, A G Rnxn invertible.

Suppose now that A G ]Rmxn where m < n, and rank A — m. Then, A is not
a square matrix. Clearly in this case the system of equations Ax = b has infinitely
many solutions. Without loss of generality, we can assume that the first m columns
of A are linearly independent. Then, if we perform a sequence of elementary row
operations on the augmented matrix [A, b] as before, we obtain

where D is an m x (n — m) matrix. Let x G Rn be a solution to Ax — b, and
write x = [xj, zJ]T, where XB € Em, XD € R(n~m). Then, [I, D]x = b, which
we can rewrite as XB + DXD = b, or XB = b — DXD- Note that for an arbitrary
XD G R(n~m), if XB = b — DXD, then the resulting vector x = [x'g, a^]T is a

— T
solution to Ax — b. In particular, [b ,0T]T is a solution to Ax — b. We often

T

refer to the basic solution [b , 0T]T as a particular solution to Ax = b. Note that
[— (Dxo)Ti ^I)]7 is a solution to Ax = 0. Any solution to Ax — b has the form

for some XD G R(n~m).
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16.2 THE CANONICAL AUGMENTED MATRIX

Consider the system of simultaneous linear equations Ax = b, rank A = m. Using
a sequence of elementary row operations, and reordering the variables if necessary,
we transform the system Ax = b into the following "canonical form":

The above can be represented in matrix notation as

Formally, we define the canonical form as follows.

Definition 16.5 A system Ax = b is said to be in canonical form if, among the
n variables, there are m variables with the property that each appears in only one
equation, and its coefficient in that equation is unity.

A system is in canonical form if by some reordering of the equations and the
variables it takes the form [/m, Vmjn_m]x = T/O. If a system of equations Ax = 6
is not in canonical form, we can transform the system into canonical form by a
sequence of elementary row operations. The system in canonical form has the same
solution as the original system Ax = b, and is called the canonical representation
of the system with respect to the basis ai , . . . , am. There are, in general, many
canonical representations of a given system, depending on which columns of A we
transform into the columns of Im (i.e., basic columns). We call the augmented matrix
[Jm, ym,n-m»2/o] °f the canonical representation of a given system the canonical
augmented matrix of the system with respect to the basis a i , . . . , am. Of course,
there may be many canonical augmented matrices of a given system, depending on
which columns of A are chosen as basic columns.

The variables corresponding to basic columns in a canonical representation of a
given system are the basic variables, whereas the other variables are the nonbasic
variables. In particular, in the canonical representation [7m, YmjTl_m]x = yQ of a
given system, the variables x\,..., xm are the basic variables, and the other variables
are the nonbasic variables. Note that in general the basic variables need not be the
first m variables. However, in the following discussion we assume, for convenience
and without loss of generality, that the basic variables are indeed the first m variables
in the system. Having done so, the corresponding basic solution is



UPDATING THE AUGMENTED MATRIX 295

that is,

Given a system of equations Ax = b, consider the associated canonical augmented
matrix

From the arguments above, we conclude that

In other words, the entries in the last column of the canonical augmented matrix
are the coordinates of the vector 6 with respect to the basis {ai , . . . , am}. The
entries of all the other columns of the canonical augmented matrix have a similar
interpretation. Specifically, the entries of the jth column of the canonical augmented
matrix, j = 1 , . . . , n, are the coordinates of a,j with respect to the basis {ai,..., am }.
To see this, note that the first m columns of the augmented matrix form a basis (the
standard basis). Every other vector in the augmented matrix can be expressed as
a linear combination of these basis vectors by reading the coefficients down the
corresponding column. Specifically, let a'^ i = 1, . . . , n + 1, be the ith column in the
above augmented matrix. Clearly, since a(,..., a'm form the standard basis, then
for m < j < n,

Let a,i, i = 1,... ,n be the ith column of A, and an+i = b. Now, a[ = Edi,
i — l , . . . , n + l, where E is a nonsingular matrix that represents the elementary
row operations needed to transform [A, b] into [Im,Ym>n-m,yo]- Therefore, for
m < j < n, we also have

16.3 UPDATING THE AUGMENTED MATRIX

To summarize the previous section, the canonical augmented matrix of a given system
Ax — b specifies the representations of the columns a,, m < j < n, in terms of the
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basic columns a\,..., am. Thus, the elements of the jth column of the canonical
augmented matrix are the coordinates of the vector dj with respect to the basis
a\,..., am. The coordinates of 6 are given in the last column.

Suppose that we are given the canonical representation of a system Ax = b. We
now consider the following question: If we replace a basic variable by a nonbasic
variable, what is the new canonical representation corresponding to the new set of
basic variables? Specifically, suppose that we wish to replace the basis vector ap,
1 < p < m, by the vector aq, m < q < n. Provided the first m vectors with ap

replaced by aq are linearly independent, these vectors constitute a basis and every
vector can be expressed as a linear combination of the new basic columns.

Let us now find the coordinates of the vectors a\,..., an with respect to the new
basis. These coordinates form the entries of the canonical augmented matrix of the
system with respect to the new basis. In terms of the old basis, we can express aq as

Note that the set of vectors {ai,... ,ap-i,aq,ap+i,... ,am} is linearly independent
if and only if ypq ^ 0. Solving the above equation for ap, we get

Recall that in terms of the old augmented matrix, any vector a,j,m < j < n, can be
expressed as

Combining the last two equations yields

Denoting the entries of the new augmented matrix by y'^, we obtain

Therefore, the entries of the new canonical augmented matrix can be obtained from
the entries of the old canonical augmented matrix via the above formulas. The above
equations are often called the pivot equations, and ypq the pivot element.

We refer to the operation on a given matrix by the above formulas as pivoting
about the (p, q)th element. Note that pivoting about the (p, q}th element results in
a matrix whose gth column has all zero entries, except the (p, g)th entry, which is
unity. The pivoting operation can be accomplished via a sequence of elementary row
operations, as was done in the proof of Theorem 16.1.
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16.4 THE SIMPLEX ALGORITHM

The essence of the simplex algorithm is to move from one basic feasible solution to
another until an optimal basic feasible solution is found. The canonical augmented
matrix discussed in the previous section plays a central role in the simplex algorithm.

Suppose that we are given the basic feasible solution

or equivalently

In the previous section, we saw how to update the canonical augmented matrix if we
wish to replace a basic column by a nonbasic column, that is, if we wish to change
from one basis to another by replacing a single basic column. The values of the
basic variables in a basic solution corresponding to a given basis are given in the
last column of the canonical augmented matrix with respect to that basis, that is,
X{ = yio, i = 1,... ,m. Basic solutions are not necessarily feasible, that is, the
values of the basic variables may be negative. In the simplex method, we want to
move from one basic feasible solution to another. This means that we want to change
basic columns in such a way that the last column of the canonical augmented matrix
remains nonnegative. In this section, we discuss a systematic method for doing this.

In the remainder of this chapter, we assume that every basic feasible solution of

is a nondegenerate basic feasible solution. We make this assumption primarily for
convenience—all arguments can be extended to include degeneracy.

Let us start with the basic columns ai,..., am, and assume that the corresponding
basic solution x = [yi0,. - . , ymo, 0 , . . . , 0]T is feasible, that is, the entries yw,
i = 1,..., m, in the last column of the canonical augmented matrix are positive.
Suppose that we now decide to make the vector aq, q > m, a basic column. We first
represent aq in terms of the current basis as

Multiplying the above by e > 0 yields

We combine the above equation with

to get
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Note that the vector

where e appears in the qth position, is a solution to Ax = b. If e = 0, then we obtain
the old basic feasible solution. As e is increased from zero, the qth component of
the above vector increases. All other entries of this vector will increase or decrease
linearly as e is increased, depending on whether the corresponding yiq is negative or
positive. For small enough e, we have a feasible but nonbasic solution. If any of the
components decreases as e increases, we choose e to be the smallest value where one
(or more) of the components vanishes. That is,

With the above choice of e, we have a new basic feasible solution, with the vector aq

replacing ap, where p corresponds to the minimizing index p — argmin^j/io/J/ig :

yiq > 0}- So, we now have a new basis a i , . . . , ap_i, ap+\,..., am,aq. As we
can see, ap was replaced by aq in the new basis. We say that aq enters the basis,
and ap leaves the basis. If the minimum in mmi{yio/yiq : yiq > 0} is achieved by
more than a single index, then the new solution is degenerate and any of the zero
components can be regarded as the component corresponding to the basic column
that leaves the basis. If none of the y^q are positive, then all components in the vector
[yio - zyiq, • • • 5 y-mo - £ymq, 0, . . . , £ , . . . , 0]T increase (or remain constant) as e is
increased, and no new basic feasible solution is obtained, no matter how large we
make e. In this case, there are feasible solutions having arbitrarily large components,
that is, the set fi of feasible solutions is unbounded.

So far, we have discussed how to change from one basis to another, while preserv-
ing feasibility of the corresponding basic solution, assuming that we have already
chosen a nonbasic column to enter the basis. To complete our development of the
simplex method, we need to consider two more issues. The first issue concerns the
choice of which nonbasic column should enter the basis. The second issue is to find
a stopping criterion, that is, a way to determine if a basic feasible solution is optimal
or not. To this end, suppose that we have found a basic feasible solution. The main
idea of the simplex method is to move from one basic feasible solution (extreme point
of the set £)) to another basic feasible solution at which the value of the objective
function is smaller. Because there is only a finite number of extreme points of the
feasible set, the optimal point will be reached after a finite number of steps.

We already know how to move from one extreme point of the set fi to a neighboring
one, by updating the canonical augmented matrix. To see which neighboring solution
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we should move to and when to stop moving, consider the following basic feasible
solution

together with the corresponding canonical augmented matrix, having an identity
matrix appearing in the first m columns. The value of the objective function for any
solution x is

For our basic solution, the value of the objective function is

where

To see how the value of the objective function changes when we move from one basic
feasible solution to another, suppose that we choose the gth column, m < q < n, to
enter the basis. To update the canonical augmented matrix, let p = a,rgmmi{yio/yiq :
yiq > 0}, and e = ypQ/ypq. The new basic feasible solution is

Note that the single e appears in the gth component, whereas the pth component is
zero. Observe that we could have arrived at the above basic feasible solution by
simply updating the canonical augmented matrix, using the pivot equations from the
previous section:

where the qth column enters the basis, and the pth column leaves (i.e., we pivot about
the (p, g)th element). The values of the basic variables are entries in the last column
of the updated canonical augmented matrix.

The cost for this new basic feasible solution is
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where z0 = ciyw -\ 1- cmym0. Let

Then,

Thus, if

then the objective function value at the new basic feasible solution above is smaller
than the objective function value at the original solution (i.e., z < ZQ). Therefore, if
cq — zq < 0, then the new basic feasible solution with aq entering the basis has a
lower objective function value.

On the other hand, if the given basic feasible solution is such that for all q =
m + 1,... ,n,

then we can show that this solution is in fact an optimal solution. To show this, recall
from Section 16.1 that any solution to Ax = 6 can be represented as

for some XD = [xm+i, • • • » x n ] T € K^n m). Using similar manipulations as the
above, we obtain

where Zi = c\yu -\ h cmymi, i = m + 1,..., n. For a feasible solution, we have
Xi > 0, i = 1,..., n. Therefore, if a — Zi > 0 for alH = m + 1,..., n, then any
feasible solution x will have objective function value CTX no smaller than ZQ.

Let Ti = 0 for i = 1,..., m, and r; = c^ — Zi for i = m + 1,..., n. We call r^
the zth reduced cost coefficient or relative cost coefficient. Note that the reduced cost
coefficients corresponding to basic variables are zero.

We summarize the above discussion with the following result.

Theorem 16.2 A basic feasible solution is optimal if and only if the corresponding
reduced cost coefficients are all nonnegative.

At this point, we have all the necessary steps for the simplex algorithm:

The Simplex Algorithm

1. Form a canonical augmented matrix corresponding to an initial basic feasible
solution.

2. Calculate the reduced cost coefficients corresponding to the nonbasic variables.
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3. If T J > 0 for all j, stop—the current basic feasible solution is optimal.

4. Select a q such that rq < 0.

5. If no yiq > 0, stop—the problem is unbounded; else, calculate p =
digmm^yio/yiq : yiq > 0}. (If more than one index i minimizes yio/yiq, we
let p be the smallest such index.)

6. Update the canonical augmented matrix by pivoting about the (p, q)th element.

7. Go to step 2.

We state the following result for the simplex algorithm, which we have already
proved in the foregoing discussion.

Theorem 16.3 Suppose that we have an LP problem in standard form that has an
optimal feasible solution. If the simplex method applied to this problem terminates,
and the reduced cost coefficients in the last step are all nonnegative, then the resulting
basic feasible solution is optimal. n

Example 16.2 Consider the following linear program (see also Exercise 15.8):

We solve this problem using the simplex method.
Introducing slack variables, we transform the problem into standard form

The starting canonical augmented matrix for this problem is

Observe that the columns forming the identity matrix in the above canonical aug-
mented matrix do not appear at the beginning. We could rearrange the augmented
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matrix so that the identity matrix would appear first. However, this is not essential
from the computational point of view.

The starting basic feasible solution to the problem in standard form is

The columns 03,0,4, and a5 corresponding to #3, £4, and x$ are basic, and they form
the identity matrix. The basis matrix is B — [03,0,4, a5] = J3.

The value of the objective function corresponding to this basic feasible solution is
z = 0. We next compute the reduced cost coefficients corresponding to the nonbasic
variables x\ and x^. They are

We would like now to move to an adjacent basic feasible solution for which the
objective function value is lower. Naturally, if there are more than one such solution,
it is desirable to move to the adjacent basic feasible solution with the lowest objective
value. A common practice is to select the most negative value of r,- and then to
bring the corresponding column into the basis (see Exercise 16.12 for an alternative
rule for choosing the column to bring into the basis). In our example, we bring a^
into the basis, that is, we choose a-z as the new basic column. We then compute
p = argmin{yio/2/i2 : yvi > 0} = 2. We now update the canonical augmented
matrix by pivoting about the (2,2)th entry using the pivot equations:

The resulting updated canonical augmented matrix is:

Note that a2 entered the basis, and 04 left the basis. The corresponding basic feasible
solution is x = [0 ,6,4,0,2]T . We now compute the reduced cost coefficients for the
nonbasic columns:

Because ri = — 2 < 0, the current solution is not optimal, and a lower objective
function value can be obtained by bringing a\ into the basis. Proceeding to update
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the canonical augmented matrix by pivoting about the (3, l)th element, we obtain:

The corresponding basic feasible solution is x = [2, 6, 2,0, 0]T. The reduced cost
coefficients are

Because no reduced cost coefficient is negative, the current basic feasible solution
x = [2,6,2,0,0]T is optimal. The solution to the original problem is therefore
#1 = 2, £2 — 6, and the objective function value is 34.

We can see from the above example that we can solve a linear programming
problem of any size using the simplex algorithm. To make the calculations in the
algorithm more efficient, we discuss the matrix form of the simplex method in the
next section.

16.5 MATRIX FORM OF THE SIMPLEX METHOD

Consider a linear programming problem in standard form

Let the first m columns of A be the basic columns. The columns form a square
m x m nonsingular matrix B. The nonbasic columns of A form an m x (n — ra)
matrix D. We correspondingly partition the cost vector as CT = [c^, c^\. Then, the
original linear program can be represented as follows:

If XD — 0, then the solution x — [x^,x^)]T = [x|j,0T]T is the basic feasible
solution corresponding to the basis B. It is clear that for this to be a solution, we
need XB = B~1b, that is, the basic feasible solution is
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The corresponding objective function value is

If, on the other hand, XD i=- 0, then the solution x = [x^, x^}T is not basic. In this
case, XB is given by

and the corresponding objective function value is

Defining

we obtain

The elements of the vector r^> are the reduced cost coefficients corresponding to the
nonbasic variables.

If I'D > 0> then the basic feasible solution corresponding to the basis B is optimal.
If, on the other hand, a component of TD is negative, then the value of the objective
function can be reduced by increasing a corresponding component of XD, that is, by
changing the basis.

We now use the above observations to develop a matrix form of the simplex
method. To this end, we first add the cost coefficient vector CT to the bottom of the
augmented matrix [A, b] as follows:

We refer to the above matrix as the tableau of the given LP problem. The tableau
contains all relevant information about the linear program.

Suppose that we now apply elementary row operations to the tableau such that the
top part of the tableau corresponding to the augmented matrix [A, b] is transformed
into canonical form. This corresponds to premultiplying the tableau by the matrix

The result of this operation is
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We now apply elementary row operations to the above tableau so that the entries
of the last row corresponding to the basic columns become zero. Specifically, this
corresponds to premultiplication of the above tableau by the matrix

The result is

We refer to the resulting tableau above as the canonical tableau corresponding to the
basis B. Note that the first m entries of the last column of the canonical tableau,
B~1b, are the values of the basic variables corresponding to the basis B. The entries
of CD — CpB~lD in the last row are the reduced cost coefficients. The last element
in the last row of the tableau, —CgB~lb, is the negative of the value of the objective
function corresponding to the basic feasible solution.

Given an LP problem, we can in general construct many different canonical
tableaus, depending on which columns are basic. Suppose that we have a canonical
tableau corresponding to a particular basis. Consider the task of computing the tableau
corresponding to another basis that differs from the previous basis by a single vector.
This can be accomplished by applying elementary row operations to the tableau in
a similar fashion as discussed above. We refer to this operation as updating the
canonical tableau. Note that updating of the tableau involves using exactly the same
update equations as we used before in updating the canonical augmented matrix,
namely, for i — 1,... , m 4- 1,

where y^ and y| are the (i, j)th entries of the original and updated canonical tableaus,
respectively.

Working with the tableau is a convenient way of implementing the simplex algo-
rithm, since updating the tableau immediately gives us both the values of the basic
variables and the reduced cost coefficients. In addition, the (negative of the) value of
the objective function can be found in the lower right-hand corner of the tableau. We
illustrate the use of the tableau in the following example.

Example 16.3 Consider the following linear programming problem:
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We first transform the problem into standard form so that the simplex method can
be applied. To do this, we change the maximization to minimization by multiplying
the objective function by —1. We then introduce two nonnegative slack variables, £3
and #4, and construct the tableau for the problem:

Notice that the above tableau is already in canonical form with respect to the basis
[03,04]. Hence, the last row contains the reduced cost coefficients, and the rightmost
column contains the values of the basic variables. Because r\ — —7 is the most
negative reduced cost coefficient, we bring ai into the basis. We then compute
the ratios j/io/yii = 3/2 and 2/20/1/21 = 4. Because yio/j/n < 2/20/2/21, we get
p — argmin^t/io/yii : yn > 0} = 1. We pivot about the (1, l)th element of the
tableau to obtain

In the second tableau above, only r^ is negative. Therefore, q = 2 (i.e., we bring 0.2
into the basis). Because

we have p = 2. We thus pivot about the (2,2)th element of the second tableau to
obtain the third tableau below:

Because the last row of the third tableau above has no negative elements, we conclude
that the basic feasible solution corresponding to the third tableau is optimal. Thus,
xi = 8/7, x-2 = 5/7, x3 — 0, £4 = 0 is the solution to our LP in standard form, and
the corresponding objective value is —86/7. The solution to the original problem is
simply x\ — 8/7, x% = 5/7, and the corresponding objective value is 86/7.

Degenerate basic feasible solutions may arise in the course of applying the simplex
algorithm. In such a situation, the minimum ratio yio/yiq is 0. Therefore, even
though the basis changes after we pivot about the (p, q)th element, the basic feasible
solution does not (and remains degenerate). It is possible that if we start with a basis
corresponding to a degenerate solution, several iterations of the simplex algorithm
will involve the same degenerate solution, and eventually the original basis will occur.
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The whole process will then repeat indefinitely, leading to what is called cycling. Such
a scenario, although rare in practice, is clearly undesirable. Fortunately, there is a
simple rule for choosing q and p, due to Bland, that eliminates the cycling problem
(see Exercise 16.12):

16.6 THE TWO-PHASE SIMPLEX METHOD

The simplex method requires starting with a tableau for the problem in canonical
form, that is, we need an initial basic feasible solution. A brute force approach to
finding a starting basic feasible solution is to arbitrarily choose m basic columns and
transform the tableau for the problem into canonical form. If the rightmost column
is positive, then we have a legitimate (initial) basic feasible solution. Otherwise, we
would have to pick another candidate basis. Potentially, this brute force procedure
requires (^) tries, and is therefore not practical.

Certain LP problems have obvious initial basic feasible solutions. For example, if
we have constraints of the form Ax < b and we add m slack variables z\,..., zm,
then the constraints in standard form become

where z — \z\,..., zm]T. The obvious initial basic feasible solution is

and the basic variables are the slack variables. This was the case in the example in
the previous section.

Suppose that we are given a linear program in standard form:

In general, an initial basic feasible solution is not always apparent. We therefore
need a systematic method for finding an initial basic feasible solution for general LP
problems, so that the simplex method can be initialized. For this purpose, suppose
that we are given an LP problem in standard form. Consider the following associated
artificial problem:
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where y = [yi,..., ym]T- We call y the vector of artificial variables. Note that the
artificial problem has an obvious initial basic feasible solution:

We can therefore solve this problem by the simplex method.

Proposition 16.1 The original LP problem has a basic feasible solution if and only
if the associated artificial problem has an optimal feasible solution with objective
Junction value zero.

Proof. =>: If the original problem has a basic feasible solution x, then the vector
[XT, 0T]T is a basic feasible solution to the artificial problem. Clearly, this solution
has an objective function value of zero. This solution is therefore optimal for the
artificial problem, since there can be no feasible solution with negative objective
function value.

<=: Suppose that the artificial problem has an optimal feasible solution with
objective function value zero. Then, this solution must have the form [XT, 0T]T,
where x > 0. Hence, we have Ax = b, and a; is a feasible solution to the original
problem. By the fundamental theorem of LP, there also exists a basic feasible solution.

Assume that the original LP problem has a basic feasible solution. Suppose that
the simplex method applied to the associated artificial problem has terminated with an
objective function value of zero. Then, as indicated in the proof above, the solution
to the artificial problem will have all yi = 0, i = 1,... ,m. Hence, assuming
nondegeneracy, the basic variables are in the first n components, that is, none of the
artificial variables are basic. Therefore, the first n components form a basic feasible
solution to the original problem. We can then use this basic feasible solution (resulting
from the artificial problem) as the initial basic feasible solution for the original LP
problem (after deleting the components corresponding to artificial variables). Thus,
using artificial variables, we can attack a general linear programming problem by
applying the two-phase simplex method. In phase I, we introduce artificial variables
and the artificial objective function, and find a basic feasible solution. In phase II, we
use the basic feasible solution resulting from phase I to initialize the simplex algorithm
to solve the original LP problem. The two-phase simplex method is illustrated in
Figure 16.1.

Example 16.4 Consider the following linear programming problem:
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Figure 16,1 Illustration of the two-phase simplex method

First, we express the problem in standard form by introducing surplus variables:

For the above LP problem, there is no obvious basic feasible solution that we can use
to initialize the simplex method. Therefore, we use the two-phase method.

Phase I. We introduce artificial variables £5, XQ > 0, and an artificial objective
function x5 + XQ. We form the corresponding tableau for the problem:

To initiate the simplex procedure, we must update the last row of the above tableau
to transform it into canonical form. We obtain
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The basic feasible solution corresponding to the above tableau is not optimal. There-
fore, we proceed with the simplex method to obtain the next tableau:

We still have not yet reached an optimal basic feasible solution. Performing another
iteration, we get

Both of the artificial variables have been driven out of the basis, and the current basic
feasible solution is optimal. We now proceed to phase II.

Phase II. We start by deleting the columns corresponding to the artificial variables
in the last tableau in phase I, and revert back to the original objective function. We
obtain

We transform the last row so that the zeros appear in the basis columns, that is, we
transform the above tableau into canonical form:

All the reduced cost coefficients are nonnegative. Hence, the optimal solution is

and the optimal cost is 54/7.

16.7 THE REVISED SIMPLEX METHOD

Consider an LP problem in standard form with the matrix A of size ra x n. Suppose
that we use the simplex method to solve the problem. Experience suggests that if
m is much smaller than n, then, in most instances, pivots will occur in only a small
fraction of the columns of the matrix A. The operation of pivoting involves updating
all the columns of the tableau. However, if a particular column of A never enters
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any basis during the whole simplex procedure, then computations performed on this
column are never used. Therefore, if m is much smaller than n, the effort expended
on performing operations on many of the columns of A may be wasted. The revised
simplex method reduces the amount of computation leading to an optimal solution
by eliminating operations on columns of A that do not enter the bases.

To be specific, suppose that we are at a particular iteration in the simplex algorithm.
Let B be the matrix composed of the columns of A forming the current basis, and
let D be the matrix composed of the remaining columns of A. The sequence
of elementary row operations on the tableau leading to this iteration (represented
by matrices E\,..., Ek) corresponds to premultiplying B, D, and b by B~l =
Ek • • • EI . In particular, the vector of current values of the basic variables is B"1 b.
Observe that computation of the current basic feasible solution does not require
computation of B"1 -D; all we need is the matrix B~l. In the revised simplex method,
we do not compute B~1D. Instead, we only keep track of the basic variables and
the revised tableau, which is the tableau [B"1, B~lb]. Note that this tableau is only
of size m x (m + 1) (compared to the tableau in the original simplex method, which
is ra x (n + 1)). To see how to update the revised tableau, suppose that we choose
the column aq to enter the basis. Leti/g = B~laq, yQ = [t/oi, • • • ,2/om]T = B~lb,
andp — aigmm^yio/yiq : yiq > 0} (as in the original simplex method). Then, to
update the revised tableau, we form the augmented revised tableau [B~l, y0, yq], and
pivot about the pth element of the last column. We claim that the first m + 1 columns
of the resulting matrix comprise the updated revised tableau (i.e., we simply remove
the last column of the updated augmented revised tableau to obtain the updated
revised tableau). To see this, write B~l as B~l = E^ • • • E\, and let the matrix
Ek+i represent the pivoting operation above (i.e., Ek+\yq — ep, the pth column of
the m x m identity matrix). The matrix Ek+i is given by

Then, the updated augmented tableau resulting from the above pivoting operation
is [Ek+iB~l, Ek+i1Jo> ep]. Let Bnew be the new basis. Then, we have B~*w =
Ek+i ---Ei. But notice that B~^w = Ek+iB~1, and the values of the basic
variables corresponding to Bnew are given by y0new — Ek+iy0. Hence, the updated
tableau is indeed [B~^y0nev] = [Ek+lB'\ Ek+ly0].

We summarize the above discussion in the following algorithm.
The Revised Simplex Method

1. Form a fevised tableau corresponding to an initial basic feasible solution
[B~\y0].

2. Calculate the current reduced cost coefficients vector via
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where

3. If TJ; > 0 for all j, stop—the current basic feasible solution is optimal.

4. Select a q such that rq < 0 (e.g., the q corresponding to the most negative rg),
and compute

5. If no yiq > 0, stop—the problem is unbounded; else, compute p =
argmmJT/io/2/ig : Viq > 0}.

6. Form the augmented revised tableau [B~l,y0,yq], and pivot about the pth
element of the last column. Form the updated revised tableau by taking the
first m + 1 columns of the resulting augmented revised tableau (i.e., remove
the last column).

7. Go to step 2.

The reason for computing TD in two steps as indicated in Step 2 is as follows.
We first note that TD = CD — c^B~lD. To compute c'gB~1D, we can either
do the multiplication in the order (cgB~l)D or Cg(B~lD). The former involves
two vector-matrix multiplications, whereas the latter involves a matrix-matrix mul-
tiplication followed by a vector-matrix multiplication. Clearly the former is more
efficient.

As in the original simplex method, we can use the two-phase method to solve a
given LP problem using the revised simplex method. In particular, we use the revised
tableau from the final step of phase I as the initial revised tableau in phase II. We
illustrate the method in the following example.

Example 16.5 Consider solving the following LP problem using the revised simplex
method:

First, we express the problem in standard form by introducing one slack and one
surplus variable, to obtain
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There is no obvious basic feasible solution to the above LP problem. Therefore, we
use the two-phase method.

Phase I. We introduce one artificial variable £5 and an artificial objective function
£5. The tableau for the artificial problem is

We start with an initial basic feasible solution and corresponding B 1 as shown in
the following revised tableau

We compute

Because ri is the most negative reduced cost coefficient, we bring ai into the basis.
To do this, we first compute yl = B~la\. In this case yl = a\. We get the
augmented revised tableau:

We then compute p = argmin^T/io/yig : Viq > 0} = 2, and pivot about the 2nd
element of the last column to get the updated revised tableau:

We next compute

The reduced cost coefficients are all nonnegative. Hence, the solution to the artificial
problem is [8/5,0,12/5,0,0]T. The initial basic feasible solution for phase II is
therefore [8/5,0,12/5,0]T.
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Phase II. The tableau for the original problem (in standard form) is:

As the initial revised tableau for phase II, we take the final revised tableau from phase
I. We then compute

We bring a? into the basis, and compute y2 = B 1 a^ to get:

In this case, we getp = 2. We update this tableau by pivoting about the 2nd element
of the last column to get

We compute

We now bring 04 into the basis:

We update the tableau to obtain:
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We compute

The reduced cost coefficients are all positive. Hence, [0,4,0,4]T is optimal. The
optimal solution to the original problem is [0,4]T.

EXERCISES

16.1 Consider the following standard form LP problem:

a. Write down the A, b, and c matrices/vectors for the problem.

b. Consider the basis consisting of the third and fourth columns of A, ordered
according to [04,03]. Compute the canonical tableau corresponding to this
basis.

c. Write down the basic feasible solution corresponding to the above basis, and
its objective function value.

d. Write down the values of the reduced cost coefficients (for all the variables)
corresponding to the above basis.

e. Is the basic feasible solution in part c an optimal feasible solution? If yes,
explain why. If not, determine which element of the canonical tableau to
pivot about so that the new basic feasible solution will have a lower objective
function value.

f. Suppose we apply the two-phase method to the problem, and at the end of
phase I, the tableau for the artificial problem is

Does the original problem have a basic feasible solution? Explain.
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g. From the final tableau for phase I in part f, find the initial canonical tableau for
phase II.

16.2 Use the simplex method to solve the following linear program:

16.3 Consider the linear program:

Convert the problem to standard form and solve it using the simplex method.

16.4 Consider a standard form linear programming problem (with the usual A, b,
and c). Suppose that it has the following canonical tableau:

a. Find the basic feasible solution corresponding to the above canonical tableau,
and the corresponding value of the objective function.

b. Find all the reduced cost coefficient values associated with the above canonical
tableau.

c. Does the given linear programming problem have feasible solutions with arbi-
trarily negative objective function values?

d. Suppose column 0,2 enters the basis. Find the canonical tableau for the new
basis.

e. Find a feasible solution with objective function value equal to —100.

f. Find a basis for the nullspace of A.
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16.5 Consider the problem:

a. Convert the problem into a standard form linear programming problem.

b. Use the two-phase simplex method to compute the solution to the above given
problem, and the value of the objective function at the optimal solution of the
given problem.

16.6 Consider the linear programming problem:

a. Write down the basic feasible solution for x\ as a basic variable.

b. Compute the canonical augmented matrix corresponding to the basis in part a.

c. If we apply the simplex algorithm to this problem, under what circumstance
does it terminate? (In other words, which stopping criterion in the simplex
algorithm is satisfied?)

d. Show that in this problem, the objective function can take arbitrarily negative
values over the constraint set.

16.7 Find the solution and the value of the optimal cost for the following problem
using the revised simplex method:

Hint: Start with x\ and #2 as basic variables.

16.8 Solve the following linear programs using the revised simplex method:

a. maximize — 4#i — 8x2 subject to
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b. maximize 6xi -f 4x^ + 7x$ + 5^4 subject to

16.9 Consider a standard form linear programming problem, with

Suppose that we are told that the reduced cost coefficient vector corresponding to
some basis is rT = [0,1,0,0].

a. Find an optimal feasible solution to the given problem.

b. Find an optimal feasible solution to the dual of the given problem.

c. Find c-2.

16.10 Consider the linear programming problem:

where c\, c^ G M. Suppose that the problem has an optimal feasible solution that is
not basic.

a. Find all basic feasible solutions.

b. Find all possible values of c\ and c%.

c. At each basic feasible solution, compute the reduced cost coefficients for all
nonbasic variables.

16.11 Suppose we apply the Simplex method to a given linear programming problem,
and obtain the following canonical tableau:
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For each of the following conditions, find the set of all parameter values a, /?, 7,6
that satisfy the given condition.

a. The problem has no solution because the objective function values are un-
bounded.

b. The current basic feasible solution is optimal, and the corresponding objective
function value is 7.

c. The current basic feasible solution is not optimal, and the objective function
value strictly decreases if we remove the first column of A from the basis.

16.12 Consider the following linear programming problem (attributed to Beale—see
[28, p. 43]):

a. Apply the simplex algorithm to the problem using the rule that q is the index
corresponding to the most negative rq. (As usual, if more than one index i
minimizes yio/yiq, letp be the smallest such index.) Start with x\, £2, and £3
as initial basic variables. Notice that cycling occurs.

b. Repeat part a using Bland's rule for choosing q and p:

Note that Eland's rule for choosing p corresponds to our usual rule that if more
than one index i minimizes yio/yiq, we let p be the smallest such index.

16.13 Write a simple MATLAB function that implements the simplex algorithm.
The inputs are c, A, b, and v, where v is the vector of indices of basic columns.
Assume that the augmented matrix [A, b] is already in canonical form, that is, the Vi\h
column of A is [0 , . . . , 1 , . . . , 0]T, where 1 occurs in the zth position. The function
should output the final solution and the vector of indices of basic columns. Test the
MATLAB function on the problem in Example 16.2.
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16.14 Write a MATLAB routine that implements the two-phase simplex method. It
may be useful to use the MATLAB function of Exercise 16.13. Test the routine on
the problem in Example 16.5.

16.15 Write a simple MATLAB function that implements the revised simplex algo-
rithm. The inputs are c, A, b, v, and B~l, where v is the vector of indices of basic
columns, that is, the z'th column of B is the vith column of A. The function should
output the final solution, the vector of indices of basic columns, and the final B~l.
Test the MATLAB function on the problem in Example 16.2.

16.16 Write a MATLAB routine that implements the two-phase revised simplex
method. It may be useful to use the MATLAB function of Exercise 16.15. Test the
routine on the problem in Example 16.5.



17
Duality

17.1 DUAL LINEAR PROGRAMS

Associated with every linear programming problem is a corresponding "dual" linear
programming problem. The dual problem is constructed from the cost and constraints
of the original, or "primal," problem. Being an LP problem, the dual can be solved
using the simplex method. However, as we shall see, the solution to the dual can also
be obtained from the solution of the primal problem, and vice versa. Solving an LP
problem via its dual may be simpler in certain cases, and also often provides further
insight into the nature of the problem. In this chapter, we study basic properties of
duality, and provide an interpretive example of duality. Duality can be used to improve
the performance of the simplex algorithm (leading to the so called "primal-dual"
algorithm), as well as to develop non-simplex algorithms for solving LP problems
(such as Khachiyan's algorithm and Karmarkar's algorithm). We do not discuss
this aspect of duality any further in this chapter. For an in-depth discussion of the
primal-dual method, as well as other aspects of duality, see, for example, [64]. For a
description of Khachiyan's algorithm and Karmarkar's algorithm, see Chapter 18.

Suppose that we are given a linear programming problem of the form

We refer to the above as the primal problem. We define the corresponding dual
problem as

327
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We refer to the variable A (E Mm as the dual vector. Note that the cost vector c in
the primal has moved to the constraints in the dual. The vector b on the right-hand
side of Ax > b becomes part of the cost in the dual. Thus, the roles of 6 and c are
reversed. The form of duality defined above is called the symmetric form of duality.

Note that the dual of the dual problem is the primal problem. To see this, we first
represent the dual problem in the form

Therefore, by the symmetric form of duality, the dual to the above is

Upon rewriting, we get the original primal problem.
Consider now an LP problem in standard form. This form has equality constraints,

Ax = b. To formulate the corresponding dual problem, we first convert the equality
constraints into equivalent inequality constraints. Specifically, observe that Ax = b
is equivalent to

Thus, the original problem with the equality constraints can be written in the form:

The above LP problem is in the form of the primal problem in the symmetric form
of duality. The corresponding dual is therefore
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Table 17.1 Symmetric Form of Duality

Primal Dual

minimize CTX maximize AT6
subject to Ax > b subject to AT A < CT

x>0 A > 0

Table 17.2 Asymmetric Form of Duality

Primal Dual

minimize CTX maximize AT6
subject to Ax = b subject to AT A < CT

x>0

After a simple manipulation the above dual can be represented as

Let A = u — v. Then, the dual problem becomes

Note that since A = u — v and u, v > 0, the dual vector A is not restricted to be
nonnegative. We have now derived the dual for a primal in standard form. The above
form of duality is referred to as the asymmetric form of duality.

We summarize the above forms of duality in Tables 17.1 and 17.2.
Note that in the asymmetric form of duality, the dual of the dual is also the primal.

We can show this by reversing the arguments we used to arrive at the asymmetric
form of duality, and using the symmetric form of duality.

Example 17.1 This example is adapted from [64]. Recall the diet problem (see
Example 15.2). We have n different types of food. Our goal is to create the
most economical diet and at the same time meet or exceed nutritional requirements.
Specifically, let ajj be the amount of the ith nutrient per unit of the jth food, bi the
amount of the ith nutrient required, 1 < i < m, Cj the cost per unit of the jth food,
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and Xi the number of units of food i in the diet. Then, the diet problem can be stated
as follows:

Now, consider a health food store that sells nutrient pills (all ra types of nutrients
are available). Let Aj be the price of a unit of the ith nutrient in the form of nutrient
pills. Suppose that we purchase nutrient pills from the health food store at the above
price such that we exactly meet our nutritional requirements. Then, \Tb is the
total revenue to the store. Note that since prices are nonnegative, we have A > 0.
Consider now the task of substituting nutrient pills for natural food. The cost of
buying pills to synthetically create the nutritional equivalent of the ith food is simply
Aiaii + h Amamj. Because C{ is the cost per unit of the ith food, if

then the cost of the unit of the ith food made synthetically from nutrient pills is less
than or equal to the market price of a unit of the real food. Therefore, for the health
food store to be competitive, the following must hold:

The problem facing the health food store is to choose the prices AI , . . . , Am such that
its revenue is maximized. This problem can be stated as:

Note that the above is simply the dual of the diet problem.

Example 17.2 Consider the following linear programming problem:
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Find the corresponding dual problem and solve it.
We first write the primal problem in standard form by introducing slack variables

#4, #5,ze• This primal problem in standard form is

where x = [x\,..., x6]
T, and

The corresponding dual problem (asymmetric form) is

Note that the constraints in the dual can be written as:

To solve the above dual problem, we use the simplex method. For this, we need to
express the problem in standard form. We substitute A by —A, and introduce surplus
variables to get:

There is no obvious basic feasible solution. Thus, we use the two-phase simplex
method to solve the problem.

Phase I. We introduce artificial variables Ay ,A8 ,A9 and the artificial objective
function AT + Ag + Ag. The tableau for the artificial problem is



326 DUALITY

We start with an initial feasible solution and corresponding B~l:

We compute

Because r3 is the most negative reduced cost coefficient, we bring the third column
into the basis. In this case y3 = [3,6,1]T. We have

By inspection, p = 1, so we pivot about the first element of the last column. The
updated tableau is:

We compute

We bring the second column into the basis to get:

We update the tableau to get
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We compute

We bring the fourth column into the basis:

The updated tableau becomes

We compute

Because all the reduced cost coefficients are nonnegative, we terminate phase I.
Phase II. We use the last tableau in phase I (where none of the artificial variables

are basic) as the initial tableau in phase II. Note that we now revert back to the original
cost of the dual problem in standard form. We compute

We bring the first column into the basis to obtain the augmented revised tableau

We update the tableau to get

We compute
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Because all the reduced cost coefficients are nonnegative, the current basic feasible
solution is optimal for the dual in standard form. Thus, an optimal solution to the
original dual problem is

17.2 PROPERTIES OF DUAL PROBLEMS

In this section, we present some basic results on dual linear programs. We begin with
the weak duality lemma.

Lemma 17.1 Weak Duality Lemma. Suppose that x and A are feasible solutions to
primal and dual LP problems, respectively (either in the symmetric or asymmetric
form). Then, CTX > \Tb.

Proof. We prove this lemma only for the asymmetric form of duality. The proof for
the symmetric form involves only a slight modification (see Exercise 17.1).

Because x and A are feasible, we have Ax = 6, x > 0, and ATA < CT.
Postmultiplying both sides of the inequality AT A < CT by x > 0 yields \T Ax <
CTX. But Ax = 6, hence \Tb < CTX.

The weak duality lemma states that a feasible solution to either problem yields a
bound on the optimal cost of the other problem. The cost in the dual is never above
the cost in the primal. In particular, the optimal cost of the dual is less than or equal
to the optimal cost of the primal, that is, "maximum<minimum." Hence, if the cost
of one of the problems is unbounded, then the other problem has no feasible solution.
In other words, if "minimum= — oo" or "maximum= +00", then the feasible set in
the other problem must be empty.

Theorem 17.1 Suppose that XQ and XQ are feasible solutions to the primal and dual,
respectively (either in symmetric or asymmetric form). IfcTXo = \£b, then XQ and
AQ are optimal solutions to their respective problems. D

Proof. Let x be an arbitrary feasible solution to the primal problem. Because AQ
is a feasible solution to the dual, by the weak duality lemma, CTX > A<^6. So, if
cTXo = A^b, then CTXQ = A<^6 < CTX. Hence, XQ is optimal for the primal.

On the other hand, let A be an arbitrary feasible solution to the dual problem.
Because XQ is a feasible solution to the primal, by the weak duality lemma, CTXO >
XTb. Therefore, if CTXQ = A^6, then \Tb < CTXO = \£b. Hence, A0 is optimal
for the dual.

We can interpret the above theorem as follows. The primal seeks to minimize its
cost, and the dual seeks to maximize its cost. Because the weak duality lemma states
that "maximum<minimum", each problem "seeks to reach the other." When their
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costs are equal for a pair of feasible solutions, both solutions are optimal, and we
have "maximum=minimurn."

It turns out that the converse to the above theorem is also true, that is,
"maximum=minimum" always holds. In fact, we can prove an even stronger re-
sult, known as the duality theorem.

Theorem 17.2 Duality Theorem. If the primal problem (either in symmetric or
asymmetric form) has an optimal solution, then so does the dual, and the optimal
values of their respective objective functions are equal.

Proof. We first prove the result for the asymmetric form of duality. Assume that the
primal has an optimal solution. Then, by the fundamental theorem of LP, there exists
an optimal basic feasible solution. As is our usual notation, let B be the matrix of
the corresponding m basic columns, D the matrix of the n — m nonbasic columns,
CB the vector of elements of c corresponding to basic variables, CD the vector of
elements of c corresponding to nonbasic variables, and r& the vector of reduced cost
coefficients. Then, by Theorem 16.2,

Hence,

Define

Then,

We claim that A is a feasible solution to the dual. To see this, assume for convenience
(and without loss of generality) that the basic columns are the first m columns of A.
Then,

Hence, XTA < CT and thus \T = c^B 1 is feasible.
We claim that A is also an optimal feasible solution to the dual. To see this, note

that

Thus, by Theorem 17.1, A is optimal.
We now prove the symmetric case. First, we convert the primal problem for the

symmetric form into the equivalent standard form by adding surplus variables:
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Note that x is optimal for the original primal problem if and only if [XT, (Ax — b}T]T

is optimal for the primal in standard form. The dual to the primal in standard form is
equivalent to the dual to the original primal in symmetric form. Therefore, the above
result for the asymmetric case applies to the symmetric case.

This completes the proof.

Example 17.3 Recall Example 17.1, where we formulated the dual of the diet prob-
lem. From the duality theorem, the maximum revenue for the health food store is the
same as the minimum cost of a diet that satisfies all of the nutritional requirements,
that is, CTX = \Tb.

Consider a primal-dual pair in asymmetric form. Suppose that we solve the primal
problem using the simplex method. The proof of the duality theorem suggests a way
of obtaining an optimal solution to the dual by using the last row of the final simplex
tableau for the primal. First, we write the tableau for the primal problem:

Suppose that the matrix B is the basis for an optimal basic feasible solution. Then,
the final simplex tableau is

where r^ = c^ — c^B l D. In the proof of the duality theorem, we have shown
that \T — c^B~l is an optimal solution to the dual. The vector A can be obtained
from the final tableau above. Specifically, if rank D — ra, then we can solve for A
using the vector r£>, via the equation

Of course, it may turn out that rank-D < m. In this case, as we now show, we
have additional linear equations that allow us to solve for A. To this end, recall that
\TB = Cg. Therefore, if we define rT = [0T,r^], then combining the equations
\TD = c?D-rT

D and \TB - CT
B yields

The vector A may be easy to obtain from the equation \TD = c^ — rT
D if D

takes certain special forms. In particular, this is the case if D has an m x m identity
matrix embedded in it, that is, by rearranging the positions of the columns of D, if
necessary, D has the form D = [Jm, G], where G is an m x (n — 2m) matrix. In
this case, we can write the equation \TD — c^ — r^ as
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Hence, A is given by

In other words, the solution to the dual is obtained by subtracting the reduced costs co-
efficients corresponding to the identity matrix in D from the corresponding elements
in the vector c (i.e., c/).

For example, if we have a problem where we introduced slack variables, and the
basic variables for the optimal basic feasible solution do not include any of the slack
variables, then the matrix D has an identity matrix embedded in it. In addition, in
this case we have c/ = 0. Therefore, A = — r/ is an optimal solution to the dual.

Example 17.4 In Example 17.2, the tableau for the primal in standard form is

If we now solve the problem using the simplex method, we get the following final
simplex tableau:

We can now find the solution of the dual from the above simplex tableau using the
equation \TD = c^ — r^:

Solving the above, we get

which agrees with our solution in Example 17.2.

We end this chapter by presenting the following theorem, which describes an
alternative form of the relationship between the optimal solutions to the primal and
dual problems.

Theorem 17.3 Complementary Slackness Condition. The feasible solutions x and
A to a dual pair of problems (either in symmetric or asymmetric form) are optimal if
and only if
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1. (cT - \TA)x = 0; and

2. \T(Ax - 6) = 0.

Proof. We first prove the result for the asymmetric case. Note that condition 2 holds
trivially for this case. Therefore, we only consider condition 1.

=£>: If the two solutions are optimal, then by Theorem 17.2, CTx = \Tb. Because
Ax = b, we also have (CT — XTA)x = 0.

«=: If (CT - \TA)x = 0, then CTX = XTAx = \Tb. Therefore, by Theo-
rem 17.1, x and A are optimal.

We now prove the result for the symmetric case.
=$>: We first show condition 1. If the two solutions are optimal, then by Theo-

rem 17.2, CTX = \Tb. Because Ax > b and A > 0, we have

On the other hand, since AT A < cTandx > 0, we have (CT — AT A)x > 0. Hence,
(CT — XTA}x = 0. To show condition 2, note that since Ax > b and A > 0, we
have XT(Ax - b) > 0. On the other hand, since \TA < CT and x > 0, we have
XT(Ax -b) = (\TA - CT)X < 0.

•4=: Combining conditions 1 and 2, we get CTX = XTAx = XTb. Hence, by
Theorem 17.1, x and A are optimal.

Note that if x and A are feasible solutions for the dual pair of problems, we can
write condition 1, that is, (CT — XTA)x = 0, as "xi > 0 implies ATa* = Q,
i = 1,..., n", that is, for any component of x that is positive, the corresponding
constraint for the dual must be an equality at A. Also, observe that the statement
"xi > 0 implies XTa,i = c" is equivalent to "ATaj < c^ implies xi = 0." A similar
representation can be written for condition 2.

Consider the asymmetric form of duality. Recall that for the case of an optimal
basic feasible solution x, rT = CT — XTA is the vector of reduced cost coefficients.
Therefore, in this case, the complementary slackness condition can be written as
rTx = 0.

Example 17.5 Suppose you have 26 dollars and you wish to purchase some gold.
You have a choice of four vendors, with prices (in dollars per ounce) of 1/2,1,1/7,
and 1/4, respectively. You wish to spend your entire 26 dollars by purchasing gold
from these four vendors, where x^ is the dollars you spend on vendor i,i = 1,2,3,4.

a. Formulate the linear programming problem (in standard form) that reflects
your desire to obtain the maximum weight in gold.

b. Write down the dual of the linear programming problem in part a, and find the
solution to the dual.

c. Use the complementary slackness condition together with part b to find the
optimal values of x\,..., x±.
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Solutions:

a. The corresponding linear programming problem is:

b. The dual problem is:

The solution is clearly A = — 7. (Note: It is equally valid to have a dual
problem with variable A' = —A.)

c. By the complementary slackness condition, we know that if we can find a vector
a; that is feasible in the primal and satisfies (—[2,1,7,4] — (—7)[1,1,1, l])a? =
0, then this x is optimal in the primal (original) problem. We can rewrite the
above conditions as

By x > 0 and [5,6,0,3]a; = 0, we conclude that x\ = x^ = £4 = 0, and by
[1,1,1, l]x = 26 we then conclude that x = [0,0,26,0]T.

EXERCISES

17.1 Prove the weak duality lemma for the symmetric form of duality.

17.2 Find the dual of the optimization problem in Exercise 15.6.

17.3 Consider the following linear program:
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a. Use the simplex method to solve the above problem.

b. Write down the dual of the above linear program, and solve the dual.

17.4 Consider the linear program

Write down the corresponding dual problem, and find the solution to the dual. (Com-
pare the above problem with the one in Exercise 16.8, part a.)

17.5 Consider the linear programming problem

a. Find the dual to the above problem.

b. Suppose b = 0, and there exists a vector y > 0 such that yTA + CT = QT.
Does the above given problem have an optimal feasible solution? If yes, find
it. If no, explain why not. Give complete explanations.

17.6 Consider the linear program

where 0 < ai < a2 < • • • < an.

a. Write down the dual to the above problem, and find a solution to the dual in
terms of ai , . . . ,an.

b. State the duality theorem, and use it to find a solution to the primal problem
above.

c. Suppose that we apply the simplex algorithm to the primal problem. Show
that if we start at a nonoptimal initial basic feasible solution, the algorithm
terminates in one step if and only if we use the rule where the next nonbasic
column to enter the basis is the one with the most negative reduced cost
coefficient.
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17.7 Consider the linear programming problem

where c = [1,1,..., 1]T. Assume that the problem has a solution.

a. Write down the dual of the above problem.

b. Find the solution to the above problem.

c. What can you say about the constraint set for the above problem?

17.8 Consider a given linear programming problem in standard form (written in the
usual notation).

a. Write down the associated artificial problem for the given problem (used in the
two-phase method).

b. Write down the dual to the artificial problem from part a.

c. Prove that if the given original linear programming problem has a feasible
solution, then the dual problem in part b has an optimal feasible solution.

17.9 Consider an LP problem in standard form. Suppose that x is a feasible solution
to the problem. Show that if there exist A and IA such that

then x is an optimal feasible solution to the LP problem, and A is an optimal
feasible solution to the dual. The above are called the Karush-Kuhn-Tucker optimality
conditions for LP, which are discussed in detail in Chapters 20 and 21.

17.10 Consider the linear program:

where c € En, b <E Ew, and A € Emxn. Use the symmetric form of duality
to derive the dual of this linear program, and show that the constraint in the dual
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involving A can be written as an equality constraint.
Hint: Write x — u — v, with u, v > 0.

17.11 Consider the linear program:

The solution to the problem is [1,1]T (see Exercise 16.7). Write down the dual to the
above problem, solve the dual, and verify that the duality theorem holds.

17.12 Consider the problem

For this problem we have the following theorem.
Theorem: A solution to the above problem exists if and only ifc>0. Moreover, if
a solution exists, 0 is a solution.

Use the duality theorem to prove the above theorem (see also Exercise 21.11).

17.13 Let A be a given matrix, and b a given vector. Show that there exists a vector
x such that Ax > b and x > 0 if and only if for any given vector y satisfying
ATy < 0 and y > 0, we have bTy < 0.

17.14 Let A be a given matrix, and b a given vector. Show that there exists a vector
x such that Ax = b and x > 0 if and only if for any given vector y satisfying
ATy < 0, we have 6 y < 0. This result is known as Parkas's transposition
theorem.

17.15 Let A be a given matrix, and 6 a given vector. Show that there exists a vector
x such that Ax < b if and only if for any given vector y satisfying ATy = 0 and
y > 0, we have b y > 0. This result is known as Gale's transposition theorem.

17.16 Let A be a given matrix, and b a given vector. Show that there exists a vector
x such that Ax < 0 if and only if for any given vector y satisfying ATy = 0 and
y > 0, we have y = 0 (i.e., y = 0 is the only vector satisfying ATy = 0 and
y > 0). This result is known as Gordan's transposition theorem.

17.17 Suppose you are presented with a "black box" that implements a function
/ defined as follows: given positive integers ra and n, a matrix A e Rmxn , and
a vector b € Mm, the value of /(m,n, A,b) is a vector x = f(m,n,A,b) that
satisfies Ax > b.
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Now, given A 6 Rmxn , b G Mm, and c € Mn, consider the linear programming
problem

Express a solution to this problem in terms of the function / given above. In other
words, show how we can use the "black box" above to solve this linear programming
problem.
Hint: Find the appropriate inputs to the black box such that the output immediately
gives a solution to the linear programming problem. You should use the black box
only once.

17.18 Consider the quadratic programming problem

where A € Rm x n, and b € Mm. Call the above problem the primal problem.
Consider the associated dual quadratic programming problem

Let /i and /2 be the objective functions of the primal and dual, respectively.

a. State and prove a "weak duality lemma" in this setting.

b. Show that if XQ and yQ are feasible points in the primal and dual, and
f i ( x o ) = /2(l/o)' men xo and y0 are optimal solutions to the primal and
dual, respectively.

Hint: The techniques used in the linear programming duality results are applicable
in this exercise.
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18
Non-Simplex Methods

18.1 INTRODUCTION

In the previous chapters, we studied the simplex method, and its variant, the revised
simplex method, for solving linear programming problems. The method remains
widely used in practice for solving LP problems. However, the amount of time
required to compute a solution using the simplex method grows rapidly as the number
of components n of the variable x G Mn increases. Specifically, it turns out that the
relationship between the required amount of time for the algorithm to find a solution
and the size n of x is exponential in the worst case. An example of an LP problem
for which this relationship is evident was devised by Klee and Minty in 1972 [55].
Below, we give a version of the Klee-Minty example, taken from [6]. Let n be given.
Let CT = [10"-1,10n~2,..., 101,1], 6 = [1,102,104,..., lO2^"1)]7, and

Consider the following LP problem:

339
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The simplex algorithm applied to the above LP problem requires 2n — 1 steps to find
the solution. Clearly in this example the relationship between the required amount
of time for the simplex algorithm to find a solution and the size n of the variable x
is exponential. This relationship is also called the complexity of the algorithm. The
simplex algorithm is therefore said to have exponential complexity. The complexity
of the simplex algorithm is also often written as O(2n — 1).

Naturally, we would expect that any algorithm that solves LP problems would have
the property that the time required to arrive at a solution increases with the size n of
the variable x. However, the issue at hand is the rate at which this increase occurs. As
we have seen above, the simplex algorithm has the property that this rate of increase is
exponential. For a number of years, computer scientists have distinguished between
exponential complexity and polynomial complexity. If an algorithm for solving LP
problems has polynomial complexity, then the time required to obtain the solution is
bounded by a polynomial in n. Obviously, polynomial complexity is more desirable
than exponential complexity. Therefore, the existence of an algorithm for solving LP
problems with polynomial complexity is an important issue. This issue was partially
resolved in 1979 by Khachiyan (also transliterated as Hacijan) [54], who proposed an
algorithm that has a complexity 0(n4L), where, roughly speaking, L represents the
number of bits used in the computations. The reason that we consider Khachiyan's
algorithm (also called the ellipsoid algorithm) as only a partial resolution of the above
issue is that the complexity depends on L, which implies that the time required to
solve a given LP problem increases with the required accuracy of the computations.
The existence of a method for solving LP problems with a polynomial complexity
bound based only on the size of the variable n (and possibly the number of constraints)
remains a difficult open problem [38]. In any case, computational experience with
Khachiyan's algorithm has shown that it is not a practical alternative to the simplex
method [10]. The theoretical complexity advantage of Khachiyan's method relative
to the simplex method remains to be demonstrated in practice.

Another non-simplex algorithm for solving LP problems was proposed in 1984
by Karmarkar [52]. Karmarkar's algorithm has a complexity of O(n3-5L), which is
lower than that of Khachiyan's algorithm. The algorithm is superior to the simplex
algorithm from a complexity viewpoint, but has its drawbacks. Improved methods
along similar lines, called interior-point methods, have received considerable interest
since Karmarkar's original paper. Well-implemented versions of these methods are
very efficient, especially when the problem involves a large number of variables [38].

This chapter is devoted to a discussion of non-simplex methods for solving LP
problems. In the next section, we discuss some ideas underlying Khachiyan's algo-
rithm. We then present Karmarkar's algorithm in the section to follow.

18.2 KHACHIYAN'S METHOD

Our description of the Khachiyan's algorithm is based on [5] and [6]. The method
relies on the concept of duality (see Chapter 17). Our exposition of Khachiyan's
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algorithm is geared toward a basic understanding of the method. For a detailed
rigorous treatment of the method, we refer the reader to [73].

Consider the (primal) linear programming problem:

We write the corresponding dual problem:

Recall that the above two LP problems constitute the symmetric form of duality. From
Theorem 17.1, if x and A are feasible solutions to the primal and dual problems,
respectively, and CTX = XTb, then x and A are optimal solutions to their respective
problems. Using this result, we see that to solve the primal problem it is enough to
find a vector [a;T, AT]T that satisfies the following set of relations:

Note that the equality CTX = b A is equivalent to the two inequalities

Taking this into account, we can represent the previous set of relations as

Therefore, we have reduced the problem of finding an optimal solution to the primal-
dual pair into one of finding a vector [XT, AT]T that satisfies the above system of
inequalities. In other words, if we can find a vector that satisfies the above system
of inequalities, then this vector gives an optimal solution to the primal-dual pair.
On the other hand, if there does not exist a vector satisfying the above system
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of inequalities, then the primal-dual pair has no optimal feasible solution. In the
subsequent discussion, we simply represent the system of inequalities as

where

In our discussion of Khachiyan's algorithm, we not be specifically using the above
forms of P, q, and z; we simply treat Pz < q as a generic matrix inequality, with
P, q, and z as generic entities. Let r and s be the sizes of q and z, respectively, that
is, P € E r x s ,z 6 R s , a n d q r e W.

Khachiyan's method solves the LP problem by first determining if there exists a
vector z that satisfies the above inequality Pz < q, that is, the algorithm decides if
the above system of linear inequalities is consistent. If the system of inequalities is
consistent, then the algorithm finds a vector z satisfying the system. In the following,
we refer to any vector satisfying the above system of inequalities as a solution to the
system. We assume that the entries in P and q are all rational numbers. This is
not a restriction in practice, since any representation of our LP problem on a digital
computer will involve only rational numbers. In fact, we further assume that the
entries in P and q are all integers. We can do this without loss of generality since
we can always multiply both sides of the inequality Pz < q by a sufficiently large
number to get only integer entries on both sides.

Before discussing Khachiyan's algorithm, we first introduce the idea of an "ellip-
soid." To this end, let z € Ms be a given vector, and let Q be an s x s nonsingular
matrix. Then, the ellipsoid associated with Q centered at z is defined as the set

The main idea underlying Khachiyan's algorithm is as follows. Khachiyan's
algorithm is an iterative procedure, where at each iteration we update a vector z^
and a matrix Qk. Associated with z^ and Qk is an ellipsoid EQk(z^}. At
each step of the algorithm, the associated ellipsoid contains a solution to the given
system of linear inequalities. The algorithm updates z^ and Qk in such a way
that the ellipsoid at the next step is "smaller" than that of the current step, but at
the same time is guaranteed to contain a solution to the given system of inequalities,
if one exists. If we find that the current point z^ satisfies Pz^ < g, then we
terminate the algorithm and conclude that z^ is a solution. Otherwise, we continue
to iterate. The algorithm has a fixed prespecified maximum number of iterations N
to be performed, where N is a number that depends on L and s. Note that we are not
free to choose N—it is computed using a formula that uses the values of L and s. The
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constant L is itself a quantity that we have to compute beforehand, using a formula
that involves P and q. When we have completed N iterations without finding a
solution in an earlier step, we terminate the algorithm. The associated ellipsoid will
then have shrunk to the extent that it is smaller than the precision of computation. At
this stage, we will either discover a solution inside the ellipsoid, if indeed a solution
exists, or we will find no solution inside the ellipsoid, in which case we conclude that
no solution exists.

As we can see from the above description, Khachiyan's approach is a radical
departure from the classical simplex method for solving LP problems. The method
has attracted a lot of attention, and many studies have been devoted to it. However, as
we pointed out earlier, the algorithm is of little practical value for solving real-world
LP problems. Therefore, we do not delve any further into the details of Khachiyan's
algorithm. We refer the interested reader to [73].

Despite its practical drawbacks, Khachiyan's method has inspired other re-
searchers to pursue the development of computationally efficient algorithms for
solving LP problems with polynomial complexity. One such algorithm is attributed
to Karmarkar, which we discuss in Section 18.4.

18.3 AFFINE SCALING METHOD

18.3.1 Basic Algorithm

In this section, we describe a simple algorithm, called the affine scaling method,
for solving linear programming problems. This description is to prepare the reader
for our discussion of Karmarkar's method in the next section. The affine scaling
method is a an interior-point method. Such methods differ fundamentally from the
classical simplex method in one main respect: an interior-point method starts inside
the feasible set and moves within it toward an optimal vertex. In contrast, the simplex
method jumps from vertex to vertex of the feasible set seeking an optimal vertex.

To begin our description of the affine scaling method, consider the LP problem

Note that the feasibility constraints have two parts: Ax — b and x > 0. Suppose
we have a feasible point x^ that is strictly interior (by strictly interior we mean that
all of the components of x^ are strictly positive). We wish to find a new point x^
by searching in a direction d^ that decreases the objective function. In other words,
we set

where CKQ is a step size. In the gradient method (Chapter 8), we used the negative
gradient of the objective function for the search direction. For the LP problem, the
negative gradient of the objective function is —c. However, if we set <r°' = —c, the
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point x^1) may not lie inside the feasible set. For a^1) to lie inside the feasible set,
it is necessary that d^0' be a vector in the nullspace of A. Indeed, because x^ is
feasible, we have Ax^ = b. We also require that Ax^ = b. Combining these
two equations yields

To choose a direction d^ that lies in the nullspace of A but is still "close" to
—c, we orthogonally project —c onto the nullspace of A and take the resulting
projection as d^. The orthogonal projection of any vector onto the nullspace of A
involves multiplication by the following matrix P, called the orthogonal projector
(see Section 3.3 and also Example 12.4):

We set d^ to be in the direction of the orthogonal projection of — c onto the nullspace
of A:

It is easy to check that APc = 0 and hence Ax^ = b. In summary, given a feasible
point x(°\ we find a new feasible point o^1) using

where the choice of the step size e*o is discussed later in this section. The above
choice of x^ can be viewed as one iteration of a projected gradient algorithm,
discussed in Section 22.3.

We now make the observation that the point x^ should be chosen close to the
center of the feasible set. Figure 18.1 illustrates this observation. Comparing the
center and non-center starting points in the figure, we can see that if we start at the
center of the feasible set, we can take a larger step in the search direction. This larger
step from the center point should yield a lower cost value for the new point compared
with the step originating from the non-center point.

Suppose we are given a point x^ that is feasible but is not a center point. We
can transform the point to the center by applying what is called an affine scaling. For
simplicity, suppose that A = [1,1,..., l]/n and b = [I]. It is easy to see that the
center of this feasible set is the point e[l,..., 1]T. To transform x^ to e, we use
the affine-scaling transformation

where JDo is a diagonal matrix whose diagonal entries are the components of the
vector x(°\ that is,
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Figure 18.1 Results of projected gradient step from center and non-center points

Note that DQ is invertible because we assumed that x^ is strictly interior. For
general A and 6 we will still use the same affine-scaling transformation as above. In
general, we may not precisely be at the center of the feasible set, but we hope that
the transformed point will be "close" to the center. At least the point e is equidistant
from the boundaries of the positive orthant {x : x > 0}.

Once the starting point is at (or close to) the center of the feasible set after
performing the affine-scaling transformation, we can proceed as described before.
Because we have transformed the original vector x^0) via pre-multiplication by D$l,
effectively changing the coordinate system, we also need to represent the original
LP problem in the new coordinates. Specifically, the LP problem in the transformed
coordinates takes the form

where

In the new (x) coordinate system, we construct the orthogonal projector

and set d to be in the direction of the orthogonal projection of — CQ onto the
nullspace of AQ :

Then, compute x^1) using



346 NON-SIMPLEX METHODS

where x^ = DQIX^ . To obtain a point in the original coordinates, we perform
the transformation

The above procedure takes a point x^ and generates a new point x^l\ This
procedure can be represented as

where

We repeat the procedure iteratively to generate a sequence of points {x^}, where

with

At each stage of the algorithm, we have to ensure that the point x^ is strictly interior.
Note that the condition Ax^ = b is automatically satisfied at each stage because
of the way we select cr '. However, we also need to guarantee that x\ > 0 for
i = 1,... ,n. This can be done through appropriate choice of the step size ctk,
discussed next.

The main criterion for choosing a^ is to make it as large as possible, but not so
large that some components of x^k+1^ become nonpositive. That is, we select o^ so
that xf+l} = x f } + akdf} > 0 for i = 1 , . . . , n. To proceed, first define

The number r^ represents the largest value of the step size ot-k such that all the
components of x^k+1^ are nonnegative. To ensure that x^k+1^ is strictly interior, we
use a step size of the form otk — otrk, where a 6 (0,1). Typical values of a for this
method are a - 0.9 or 0.99 (see [70, p. 572]).

Unlike the simplex method, the affine scaling method will not reach the optimal
solution in a finite number of steps. Therefore, we need a stopping criterion. For
this, we can use any of the stopping criteria discussed in Section 8.2. For example,
we can stop if

where e > 0 is a prespecified threshold (see also [70, p. 572] for a similar stopping
criterion, as well as an alternative criterion involving duality).
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18.3.2 Two-Phase Method

To implement the affine scaling method described above, we need an initial feasible
starting point that is strictly interior. We now describe a method to find such a starting
point. After the starting point is found, we can then proceed to search for an optimal
solution to the problem. This approach involves two phases: in phase I, we find an
initial strictly interior feasible point, and in phase II, we use the result of phase I to
initialize the affine scaling algorithm to find an optimal solution. This procedure is
analogous to the two-phase simplex algorithm described in Section 16.6.

We now describe phase I of the two-phase affine scaling method. Let u be an
arbitrary vector with positive components, and let

If v = 0, then it is a strictly interior feasible point. We can then set x^ = u and
proceed to phase II where we apply the affine scaling method as described before.
On the other hand, if v ^ 0, we construct the following associated artificial problem:

The above artificial problem has an obvious strictly interior feasible point:

Using the above point as the initial point, we can apply the affine scaling algorithm
to the artificial problem. Because the objective function in the artificial problem is
bounded below by 0, the affine scaling method will terminate with some optimal
solution.

Proposition 18.1 The original LP problem has a feasible solution if and only if the
associated artificial problem has an optimal feasible solution with objective function
value zero.

Proof. =>: If the original problem has a feasible solution x, then the vector [XT , 0]T

is a feasible solution to the artificial problem. Clearly, this solution has an objective
function value of zero. This solution is therefore optimal for the artificial problem,
since there can be no feasible solution with negative objective function value.

4=: Suppose that the artificial problem has an optimal feasible solution with
objective function value zero. Then, this solution must have the form [xT,0]T,
where x > 0. Hence, we have Ax — b, and x is a feasible solution to the original
problem.
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Suppose the original LP problem has a feasible solution. By the above proposition,
if we apply the affine scaling method to the artificial problem (with initial point
[UT, 1]T), the algorithm will terminate with objective function value zero. The
optimal solution will be of the form [XT, 0]T. We argue that x will in general be a
strictly interior feasible point. It is easy to see that x > 0. To convince ourselves
that each component of x will be positive in general, note that the subset of optimal
feasible solutions of the artificial problem in which one or more among the first n
components are zero is a very "small" or "thin" subset of the set of all optimal feasible
solutions. By "small" or "thin" we mean in the sense that a 2-dimensional plane in
E3 is small or thin. In particular, the "volume" of the 2-dimensional plane in E3 is
zero. Thus, it is very unlikely that the affine scaling algorithm will terminate with
an optimal feasible solution in which one or more among the first n components are
zero.

Having completed phase I as described above, we then use the first n components
of the terminal optimal feasible solution for the artificial problem as our initial
point for the affine scaling method applied to the original LP problem. This second
application of the affine scaling algorithm constitutes phase II.

In theory, phase I generates a feasible point to initiate phase II. However, because
of the finite precision of typical computer implementations, the solution obtained
from phase I may not, in fact, be feasible. Moreover, even if the initial point
in phase II is feasible, in practice the iterates may lose feasibility owing to finite
precision computations. Special procedures for dealing with such problems are
available. For a discussion of numerical implementation of affine scaling algorithms,
see [28, Section 7.1.2].

18.4 KARMARKAR'S METHOD

18.4.1 Basic Ideas

Like the affine scaling method, Karmarkar's method for solving LP problems dif-
fers fundamentally from the classical simplex method in various respects. First,
Karmarkar's method is an interior-point method. Another difference between Kar-
markar's method and the simplex method is that the latter stops when it finds an opti-
mal solution. On the other hand, Karmarkar's method stops when it finds a solution
that has an objective function value that is less than or equal to a prespecified fraction
of the original guess. A third difference between the two methods is that the sim-
plex method starts with LP problems in standard form, whereas Karmarkar's method
starts with LP problems in a special canonical form, which we call Karmarkar's
canonical form. We discuss this canonical form in the next subsection. While more
recent interior-point methods are recognized to be superior to Karmarkar's original
algorithm in efficiency and robustness, a study of Karmarkar's method provides an
informative introduction to the study of more advanced interior-point methods.
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18.4.2 Karmarkar's Canonical Form

To apply Karmarkar's algorithm to a given LP problem, we must first transform the
given problem into a particular form, which we refer to as Karmarkar's canonical
form. Karmarkar's canonical form is written as:

where x = [x\,..., xn]
T. As in our discussion of Khachiyan's method, we assume

without loss of generality that the entries of A and c are integers.
We now introduce some notation that allows convenient manipulation of the

canonical form. First, let e = [1,..., 1]T be the vector in En with each component
equal to 1. Let fi denote the nullspace of A, that is, the subspace

Define the simplex in En by

We denote the center of the simplex A by

Clearly ao G A. With the above notation, Karmarkar's canonical form can be
rewritten as

Note that the constraint set (or feasible set) fi n A can be represented as

Example 18.1 Consider the following LP problem, taken from [90]:
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Figure 18.2 The feasible set for Example 18.1

Clearly the above problem is already in Karmarkar's canonical form, with CT =
[5,4,8], and A = O. The feasible set for this example is illustrated in Figure 18.2.

Example 18.2 Consider the following LP problem, taken from [80]:

The above problem is in Karmarkar's canonical form, with CT = [3,3, —1], and
A = [2,—3,1]. The feasible set for this example is illustrated in Figure 18.3
(adapted from [80]).

Figure 18.3 The feasible set for Example 18.2

We show later that any LP problem can be converted into an equivalent problem
in Karmarkar's canonical form.
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18.4.3 Karmarkar's Restricted Problem

Karmarkar's algorithm solves LP problems in Karmarkar's canonical form, with the
following assumptions:

A. The center ao of the simplex A is a feasible point, that is, ao E fl;

B. The minimum value of the objective function over the feasible set is zero;

C. The (m + 1) x n matrix

has rank m + 1;

D. We are given a termination parameter q > 0, such that if we obtain a feasible
point x satisfying

then we consider the problem solved.

Any LP problem that is in Karmarkar's canonical form and that also satisfies the
above four assumptions is called a Karmarkar's restricted problem. In the following,
we discuss the above assumptions and their interpretations.

We begin by looking at assumption A. We point out that this assumption is not
restrictive, since any LP problem that has an optimal feasible solution can be converted
into a problem in Karmarkar's canonical form that satisfies assumption A. We discuss
this in the next subsection.

We next turn our attention to assumption B. Any LP problem in Karmarkar's
canonical form can be converted into one that satisfies assumption B, provided we
know beforehand the minimum value of its objective function over the feasible set.
Specifically, suppose that we are given an LP problem where the minimum value of
the objective function is M. As in [80], consider the function f ( x ) = CTX — M.
Then, using the property that eTx = 1 on the feasible set, we have that for any
feasible x,

where CT = CT — MeT. Notice that the above objective function has a minimum
value of zero, and is a linear function of x. We can replace the original objective
function with the new objective function above, without altering the solution.

Example 18.3 Recall the LP problem in Example 18.1:
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The problem satisfies assumption A (and assumption C), but not assumption B, since
the minimum value of the objective function over the feasible set is 4. To convert
the above into a problem that satisfies assumption B, we replace CT = [5,4,8] by
cT = [l,0,4].

Example 18.4 The reader can easily verify that the LP problem in Example 18.2
satisfies assumptions A, B, and C.

Assumption C is a technical assumption that is required in the implementation of
the algorithm. Its significance will be clear when we discuss the update equation in
Karmarkar's algorithm.

Assumption D is the basis for the stopping criterion of Karmarkar's algorithm. In
particular, we stop when we have found a feasible point satisfying CTX/CTO,Q < 2~q.
Such a stopping criterion is inherent in any algorithm that uses finite precision
arithmetic. Observe that the above stopping criterion depends on the value of CTOQ.
It will turn out that Karmarkar's algorithm uses ao as the starting point. Therefore,
we can see that the accuracy of the final solution in the algorithm is influenced by the
starting point.

18.4.4 From General Form to Karmarkar's Canonical Form

We now show how any LP problem can be coverted into an equivalent problem in
Karmarkar's canonical form. By "equivalent" we mean that the solution to one can
be used to determine the solution to the other, and vice versa. To this end, recall
that any LP problem can be transformed into an equivalent problem in standard
form. Therefore, it suffices to show that any LP problem in standard form can be
transformed into an equivalent problem in Karmarkar's canonical form. In fact, the
transformation given below (taken from [52]) will also guarantee that assumption A
of the previous subsection is satisfied.

To proceed, consider a given LP problem in standard form:

We first present a simple way to convert the above problem into Karmarkar's canonical
form, ignoring the requirement to satisfy assumption A. For this, define a new variable
z e Rn+1 by

Also define c' = [cT,0]T and A' = [A, —b]. Using this notation, we can now
rewrite the above LP problem as
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We need one more step to transform the problem into one that includes the constraint
that the decision variables sum to 1. For this, let y = [ j / i , . . . , yn, yn+i]T £ Rn+1,
where

This transformation from a; to y is called a projective transformation. It can be
shown that (see later):

Therefore, we have transformed the given LP problem in standard form into the
following problem, which is in Karmarkar's canonical form:

The above transformation technique can be modified slightly to ensure that as-
sumption A holds. We follow the treatment of [52]. We first assume that we
are given a point a = [a\,..., an] that is a strictly interior feasible point, that is,
Aa = b, and a > 0. We show later how this assumption can be enforced. Let
P+ denote the positive orthant of En, given by P+ = {x 6 En : x > 0}. Let
A = [x G Mn+1 : eTx = 1, x > 0} be the simplex in Rn+1. Define the map
T : P+ -+ A by

with

We call the map T a projective transformation of the positive orthant P+ into
the simplex A (for an introduction to projective transformations, see [49]). The
transformation T has several interesting properties (see Exercises 18.4, 18.5 and
18.6). In particular, we can find a vector c' G Mn+1 and a matrix A' e Rmx(n+1>
such that for each x 6 En,
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and

(see Exercise 18.5 and 18.6 for the forms of A' and c'). Note that for each x € Mn,
we have eTT(x) = 1, that is, T(x) e A. Furthermore, note that for each x 6 En,

Taking the above into account, consider the following LP problem (where y is the
decision variable):

Note that the above LP problem is in Karmarkar's canonical form. Furthermore, in
light of the definitions of c' and A', the above LP problem is equivalent to the original
LP problem in standard form. Hence, we have converted the LP problem in standard
form into an equivalent problem in Karmarkar's canonical form. In addition, because
a is a strictly interior feasible point, and ao — T(a) is the center of the simplex
A (see Exercise 18.4), the point OQ is a feasible point of the transformed problem.
Hence, assumption A of the previous subsection is satisfied for the above problem.

In the above, we started with the assumption that we are given a point a that is
a strictly interior feasible point of the original LP problem in standard form. To see
how this assumption can be made to hold, we now show that we can transform any
given LP problem into an equivalent problem in standard form where such a point a
is explicitly given. To this end, consider a given LP problem of the form:

Note that any LP problem can be converted into an equivalent problem of the above
form. To see this, recall that any LP problem can be transformed into an equivalent
problem in standard form. But, any problem in standard form can be represented as
above, since the constraint Ax = b can be written as Ax > b, —Ax > — b. We
next write the dual to the above problem:

As we did in our discussion of Khachiyan's algorithm, we now combine the primal
and dual problems to get:
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As we pointed out in the previous section on Khachiyan's algorithm, the original LP
problem is solved if and only if we can find a pair (x, A) that satisfies the above set of
relations. This follows from the Theorem 17.1. We now introduce slack and surplus
variables u and v to get the following equivalent set of relations:

Let x0 e Rn, A0 € Em, w0 € En, and v0 € Mm be points that satisfy XQ > 0,
AQ > 0, u0 > 0, and v0 > 0. For example, we could choose x0 = [1,.. . , 1]T, and
likewise with AQ, UQ, and VQ. Consider the LP problem

We refer to the above as the Karmarkar's artificial problem, which can be represented
in matrix notation as

where

(the subscripts above refer to the dimensions/sizes of the corresponding matri-
ces/vectors). Observe that the following point is a strictly interior feasible point
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for the above problem:

Furthermore, the minimum value of the objective function for Karmarkar's artificial
problem is zero if and only if the previous set of relations has a solution, that is, there
exists x, A, u and v satisfying

Therefore, Karmarkar's artificial LP problem is equivalent to the original LP problem:

Note that the main difference between the original LP problem above and Kar-
markar's artificial problem is that we have an explicit strictly interior feasible point
for Karmarkar's artificial problem, and hence we have satisfied the assumption that
we imposed at the beginning of this subsection.

18.4.5 The Algorithm

We are now ready to describe Karmarkar's algorithm. Keep in mind that the LP
problem we are solving is a Karmarkar's restricted problem, that is, a problem in
Karmarkar's canonical form and satisfies assumptions A, B, C, and D. For conve-
nience, we restate the problem:

where fi = {x G En : Ax = 0), and A = {x G Mn : eTx = I,x > 0}.
Karmarkar's algorithm is an iterative algorithm that, given an initial point x^ and
parameter q, generates a sequence x^\x^2\ . . . , x^. Karmarkar's algorithm is
described by the following steps:

1. Initialize: Set k := 0; z(0) = a0 = e/n;

2. Update: Set x^k+l^ = ^(x^), where $ is an update map described below;



KARMARKAR'S METHOD 357

3. Check stopping criterion: If the condition CTX^/CTX^ < 2~q is satisfied,
then stop;

4. Iterate: Set k := k + 1, go to 2.

We describe the update map \& as follows. First, consider the first step in the
algorithm: x^ = OQ. To compute x^1), we use the familiar update equation

where a is a step size and d^°' is an update direction. The step size a is chosen to be
a value in (0,1). Karrnarkar recommends a value of 1/4 in his original paper [52].
The update direction d^ is chosen as follows. First, note that the gradient of the
objective function is c. Therefore, the direction of maximum rate of decrease of the
objective function is — c. However, in general, we cannot simply update along this
direction, since x^ is required to lie in the constraint set

where B0 e R(™+1)*" js given by

Note that since x^ € ft n A, then for x^ = a?(°) + ad(0) to also lie in ft n A, the
vector er°' must be an element of the nullspace of BQ. Hence, we choose d'°' to be
in the direction of the orthogonal projection of —c onto the nullspace of BQ. This
projection is accomplished by the matrix PQ given by

Note that BQB^ is nonsingular by assumption C. Specifically, we choose S®' to be
the vector d(0) = -rc(0), where

and r = l/\/n(n — 1). The scalar r is incorporated into the update vector d^°'
for the following reason. First, observe that r is the radius of the largest sphere
inscribed in the simplex A (see Exercise 18.7). Therefore, the vector d^°' = rc^'
points in the direction of the projection c^ of c onto the nullspace of BQ, and
a^1) = x(°) + ad^ is guaranteed to lie in the constraint set ft n A. In fact, x^
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lies in the set 0 D A D {x : \\x — ao|| < r}. Finally, we note that x^ is a strictly
interior point of A.

The general update step x^k+1"> = ^f(x^) is performed as follows. We first
give a brief description of the basic idea, which is similar to the update from x^ to
x^ described above. However, note that x^ is, in general, not at the center of the
simplex. Therefore, let us first transform this point to the center. To do this, let Dk
be a diagonal matrix whose diagonal entries are the components of the vector x^k\
that is,

It turns out that because x^°> is a strictly interior point of A, ojW is a strictly interior
point of A for all k (see Exercise 18.10). Therefore, Dk is nonsingular, and

Consider the mapping E/fc : A —>• A given by Uk(x] = Dk
 lx/eT Dk

 lx. Note that
Uk(x^} = e/n = a,Q. We use Uk to change the variable from x to x = Uk(x).
We do this so that x^ is mapped into the center of the simplex, as indicated above.
Note that Uk is an invertible mapping, with x — U^l(x) = DkX/eTDkX. Letting
x(k) _ [7fc(aj(fc)) — ao> we can now apply the procedure that we described before
for getting a^1) fromx^0) = CLQ. Specifically, we update x^ to obtain o;(fc+1) using
the update formula x^k+l^ = x^ + ad^. To compute d^k\ we need to state the
original LP problem in the new variable x:

The reader can easily verify that the above LP problem in the new variable x is
equivalent to the original LP problem in the sense that x* is an optimal solution to
the original problem if and only if Uk (x*} is an optimal solution to the transformed
problem. To see this, simply note that x = Uk(x) — D^lx/eTD^lx, and rewrite
the objective function and constraints accordingly (see Exercise 18.8). As before, let

Wechoosed^ = — r&-k\ wherec^ is the normalized projection of — (CT Dk)T =
-DkC onto the nullspace of Bk, and r = l/^/n(n - 1) as before. To determine
c^, we define the projector matrix Pk by
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Note that BkB% is nonsingular (see Exercise 18.9). The vector c^ is therefore
given by

The direction vector <r ' is then

The updated vector x^k+l^ — x^ + ad^ is guaranteed to lie in the transformed fea-
sible set {x : AD/fX = 0} D A. The final step is to apply the inverse transformation
Ufr1 to obtain x(k+^:

Note that x^k+1^ lies in the set fJ fl A. Indeed, we have already seen that Uk and
U^1 map A into A. To see that Ax^k+1^ = 0, we simply premultiply the above
expression by A and use the fact that ADkX^k+l"> = 0.

We now summarize the update x^k+l^ = ^(x^} as:

1. Compute the matrices:

2. Compute the orthogonal projector onto the nullspace of B^:

3. Compute the normalized orthogonal projection of c onto the nullspace of Bk '•

4. Compute the direction vector:

where r = l/^/n(n — 1).

5. Compute x^k+l"> using:
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where a is the prespecified step size, a € (0,1).

6. Compute x^k+1^ by applying the inverse transformation U^1:

The matrix Pk in step 2 is needed solely for computing P'kDj-c in step 3. In fact,
the two steps can be combined in an efficient way without having to compute P&
explicitly, as follows. We first solve a set of linear equations BkB^y — BkDkC
(for the variable y), and then compute PkDkC using the expression PkDkC =
Dkc-Bly.

For more details on Karmarkar's algorithm, see [28], [38], [52], and [89]. For an
informal introduction to the algorithm, see [80]. For further reading on other non-
simplex methods in linear programming, see [28], [38], [70], and [86]. An interesting
three-article series on developments of the linear programming area before and after
1984 appeared in SI AM News, Vol. 22, No. 2, March 1989. The first article in this
journal issue contains an account by Wright on recent progress and a history of linear
programming from the early 1800s. The second article, by Anstreicher, focuses on
interior-point algorithms developed since 1984. Finally in the third article in the
series, Monma surveys computational implementations of interior-point methods.

EXERCISES

18.1 Write a simple MATLAB function to implement the affine scaling algorithm.
The inputs are c, A, b, and x^°\ where x^ is a strictly feasible initial point. Test
the function on the problem in Example 16.2; use x^ = [2,3,2,3,3]T.

18.2 Write a MATLAB routine that implements the two-phase affine scaling method.
It may be useful to use the MATLAB function of Exercise 18.1. Test the routine on
the problem in Example 16.5.

18.3 For a given linear programming problem of the form

the associated Karmarkar's artificial problem can be solved directly using the affine
scaling method. Write a simple MATLAB program to solve problems of the form
above by using the affine scaling algorithm applied to the associated Karmarkar's
artificial problem. It may be useful to use the MATLAB function of Exercise 18.1.
Test your program on the problem in Example 15.14.
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18.4 Let a € En, a > 0. Let T = [7\,..., Tn+i] be the projective transformation
of the positive orthant P+ of En into the simplex A in Rn+1, given by

Prove the following properties of T (see [52]):

1. T is a one-to-one mapping, that is, T(x) = T(y} implies that x — y;

2. T maps P+ onto A \ {x : xn+i = 0} = {x € A : zn+i > 0}, that is, for
each y € {x € A : xn+\ > 0}, there exists x £ P+ such that y = T(x}\

3. The inverse transformation of T exists on {x e A : zn+i > 0}, and is given
by T-1 = [Tf1,... ,T^]T, with T~l(y) = aiyi/yn+l;

4. T maps a to the center of the simplex A, that is, T(a) = e/(n + 1) =
[l/(n + l) , . . . , l /(n + l ) ]€K n + 1 ;

5. Suppose that x satisfies Ax = b, andy = T(x). Let a;' = [yiai , . . . , ynan]
T.

Then, Ax' = byn+i.

18.5 Let T be the projective transformation in Exercise 18.4, and A E Rmxn a
given matrix. Prove that there exists a matrix A' 6 Kmx(n+1) such that Ax = b if
and only if A'T(x) = 0.
Hint: Let the ith column of A' be given by Oj times the ith column of A, i = 1,..., n,
and the (n -I- l)st column of A' be given by —6.

18.6 Let T be the projective transformation in Exercise 18.4, and c € W1 a given
vector. Prove that there exists a vector c' € Mn+1 such that CTX — 0 if and only if
c'TT(x) = 0.
Hint: Use property 3 in Exercise 18.4, with the c' = [ c { , . . . ,c'n+1]

T given by
c'i = diCi, i = 1,..., n, and c'n+l = 0.

18.7 Let A = {x € Mn : eTx = l,x > 0} be the simplex in En, n > 1,
and let OQ = e/n be its center. A sphere of radius r centered at a0 is the set
{x € Mn : \\x — O,Q\\ < r}. The sphere is said to be inscribed in A if {a: 6
En : \\x — ao|| — r, eTx = 1} C A. Show that the largest such sphere has radius
r - 1/vXn ~ 1).

18.8 Consider the following Karmarkar's restricted problem:
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Let XQ e A be a strictly interior point of A, and D be a diagonal matrix whose
diagonal entries are the components of XQ. Define the map U : A -» A by
U(x) = D~1x/eTD~lx. Let x = U(x) represent a change of variable. Show
that the following transformed LP problem in the variable x

is equivalent to the original LP problem above, in the sense that a;* is an optimal
solution to the original problem if and only if x* = U(x*} is an optimal solution to
the transformed problem.

18.9 Let A G Emxn, m < n, and ft = {x : Ax = 0}. Suppose that A satisfies

Let XQ e A n fi be a strictly interior point of A C W1, and D be a diagonal matrix
whose diagonal entries are the components of XQ. Consider the matrix B defined by

Show that rank B = m + 1, and hence BBT is nonsingular.

18.10 Show that in Karmarkar's algorithm, x^ is a strictly interior point of A.
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19
Problems with Equality

Constraints

19.1 INTRODUCTION

In this part, we discuss methods for solving a class of nonlinear constrained opti-
mization problems that can be formulated as:

where x 6 Mn, / : En -> K, hi : En -» E, ^- : R71 -»• M, and m < n. In vector
notation, the problem above can be represented in the following standard form:

where h : En -> Rm, and g : ln ->• Ep. As usual, we adopt the following
terminology.

Definition 19.1 Any point satisfying the constraints is called a feasible point. The
set of all feasible points

is called the feasible set.

365
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Optimization problems of the above form are not new to us. Indeed, linear
programming problems of the form

which we studied in Part III, are of this type.
As we remarked in Part II, there is no loss of generality by considering only

minimization problems. For if we are confronted with a maximization problem, it
can be easily transformed into the minimization problem by observing that

We illustrate the problems we study in this part by considering the following
simple numerical example.

Example 19.1

This problem is already in the standard form given earlier, with /(xi, #2) — (x\ —
I)2 +X2 — 2, h ( x i , X 2 ) = X2 — xi — 1, and g(xi,x<z) = x\ -\-x-2 — 2. This problem
turns out to be simple enough to be solved graphically (see Figure 19.1). In the
figure the set of points that satisfy the constraints (the feasible set) is marked by the
heavy solid line. The inverted parabolas represent level sets of the objective function
/—the lower the level set, the smaller the objective function value. Therefore, the
solution can be obtained by finding the lowest level set that intersects the feasible set.
In this case, the minimizer lies on the level set with / — —1/4. The minimizer of

T
the objective function is x* = [1/2,3/2] .

In the remainder of this chapter, we discuss constrained optimization problems
with only equality constraints. The general constrained optimization problem is
discussed in the chapters to follow.

19.2 PROBLEM FORMULATION

The class of optimization problems we analyze in this chapter is

where x 6 En, / : Rn ->> E, h : W1 -> Rm, h = [hi,..., hm]T, and m < n. We
assume that the function h is continuously differentiable, that is, h e Cl.
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Figure 19.1 Graphical solution to the problem in Example 19.1

We introduce the following definition.

Definition 19.2 A point x* satisfying the constraints hi(x*} = 0 , . . . , hm(x*) =
0 is said to be a regular point of the constraints if the gradient vectors
Vhi(x*},..., Vhm(x*) are linearly independent.

Let Dh(x*} be the Jacobian matrix of h = [hi,..., hm]T at x*, given by

Then, x* is regular if and only if rank£)/i(x*) = ra, that is, the Jacobian matrix is
of full rank.

The set of equality constraints hi(x] = 0,...,hm(x) = 0, hi : Rn ->• M,
describes a surface

Assuming the points in S are regular, the dimension of the surface S is n — m.

Example 19.2 Let n — 3 and m = 1 (i.e., we are operating in E3). Assuming that
all points in 5 are regular, the set S is a two-dimensional surface. For example, let

Note that V/ii (x) = [0,1, -2z3]
T, and hence for any x e E3, Vhi (x} ^ 0. In this

case,
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See Figure 19.2 for a graphical illustration.

Figure 19.2 A two-dimensional surface in R3

Example 19.3 Let n — 3 and ra = 2. Assuming regularity, the feasible set 5 is a
one-dimensional object (i.e., a curve in E3). For example, let

In this case, Vhi(x) = [1,0,0]T, and Vh,2(x) = [0,1, —2x3JT. Hence, the vectors
V/ii(aj) and Vhzfa) are linearly independent in E3. Thus,

See Figure 19.3 for a graphical illustration.

Figure 19.3 A one-dimensional surface in R3

19.3 TANGENT AND NORMAL SPACES

In this section, we discuss the notion of a tangent space and normal space at a point
on a surface. We begin by defining a "curve" on a surface S.
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Definition 19.3 A curve C on a surface S is a set of points {x(t} E S : t G (a, &)},
continuously parameterized by t G (a, 6); that is, a; : (0,6) —>• 5 is a continuous
function.

A graphical illustration of the definition of a curve is given in Figure 19.4. The
definition of a curve implies that all the points on the curve satisfy the equation
describing the surface. The curve C passes through a point x* if there exists £* E
(a, 6) such that x(t*) = x*.

Figure 19.4 A curve on a surface

Intuitively, we can think of a curve C = {x(t) : t G (a, &)} as the path traversed
by a point x traveling on the surface 5. The position of the point at time t is given
byx(t).

Definition 19.4 The curve C = {x(t} : t e (a, &)} is differentiable if

exists for alH e (a, 6).
The curve C = {x(t) : t G (a, 6)} is twice differentiable if

exists for all t G (a, 6).

Note that both x(t) and x(t) are n-dimensional vectors. We can think of x(i)
and x(t) as the "velocity" and "acceleration," respectively, of a point traversing the
curve C with position x(t) at time £. The vector x(t) points in the direction of the
instantaneous motion of x(t). Therefore, the vector x(t*} is tangent to the curve C
at x* (see Figure 19.5).
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Figure 19.5 Geometric interpretation of the differentiability of a curve

We are now ready to introduce the notions of a tangent space. For this, recall the
set

where h e C1. We think of 5 as a surface in W1.

Definition 19.5 The tangent space at a point x* on the surface S — {x € Mn :
h(x] = 0} is the set

Note that the tangent space T(a;*) is the nullspace of the matrix Dh(x*}, that is,

The tangent space is therefore a subspace of W1.
Assuming x* is regular, the dimension of the tangent space is n — m, where ra is

the number of equality constraints hi(x*) = 0. Note that the tangent space passes
through the origin. However, it is often convenient to picture the tangent space as a
plane that passes through the point x*. For this, we define the tangent plane at x* to
be the set

Figure 19.6 illustrates the notion of a tangent plane. Figure 19.7 illustrates the
relationship between the tangent plane and the tangent space.

Example 19.4 Let

Then, 5 is the £3-axis in R3 (see Figure 19.8).
We have
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Figure 19.6 The tangent plane to the surface S at the point x*

Because V/ii and V/i2 are linearly independent when evaluated at any x € S, all the
points of S are regular. The tangent space at an arbitrary point of 5 is

In this example, the tangent space T(x) at any point x 6 5 is a one-dimensional
subspace of E3.

Intuitively, we would expect the definition of the tangent space at a point on a
surface to be the collection of all "tangent vectors" to the surface at that point. We
have seen that the derivative of a curve on a surface at a point is a tangent vector to
the curve, and hence to the surface. The above intuition agrees with our definition
whenever x* is regular, as stated in the theorem below.

Theorem 19.1 Suppose x* £ S is a regular point, and T(x*} is the tangent space
at x*. Then, y G T(x*) if and only if there exists a differentiable curve in S passing
through x* with derivative y at x*. d

Proof. <=: Suppose there exists a curve {x(t) : t e (a, &)} in S such that x(t*) = x*
and x(t*) = y for some t* e (a, b). Then,
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Figure 19.7 Tangent spaces and planes in R2 and R3

for all t 6 (a, 6). If we differentiate the function h(x(t)} with respect to t using the
chain rule, we obtain

for all t 6 (a, 6). Therefore, at t*, we get

and hence y € T(x*).
=$•: To prove this, we need to use the implicit function theorem. We refer the

reader to [64, p. 298].

We now introduce the notion of a normal space.
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Figure 19.8 The surface S = {x e M3 : x\ = 0, xi - x2 = 0}

Definition 19.6 The normal space N(x*) at a point x* on the surface S = {x 6
En :h(x} = 0} is the set

We can express the normal space N(x*) as

that is, the range of the matrix Dh(x*)T. Note that the normal space N(x*) is the
subspaceof Rn spanned by the vectors V/ii(x*),. . . , V/im(x*), that is,

Note that the normal space contains the zero vector. Assuming x* is regular, the
dimension of the normal space N(x*) is m. As in the case of the tangent space, it is
often convenient to picture the normal space N(x*) as passing through the point x*
(rather than through the origin of En). For this, we define the normal plane at x* as
the set

Figure 19.9 illustrates the normal space and plane in M3 (i.e., n = 3 and m = 1).
We now show that the tangent space and normal space are orthogonal complements

of each other (see Section 3.3).
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Figure 19.9 Normal space in R3

Lemma 19.1 We have T(x*) = N(x*}± and T(x*}L = N(x*}.

Proof. By definition of T(zc*), we may write

Hence, by definition of N(x*), we have T(x*) = N(x*}-L. By Exercise 3.6, we
also have T(x*)-L = N(x*).

By the above lemma, we can write En as the direct sum decomposition (see
Section 3.3):

that is, given any vectors G Mn, there are unique vectors w 6 N(x*)andy E T(x*}
such that

19.4 LAGRANGE CONDITION

In this section, we present a first-order necessary condition for extremum problems
with constraints. The result is the well-known Lagrange's theorem. To better
understand the idea underlying this theorem, we first consider functions of two
variables and only one equality constraint. Let h : E2 ->• E be the constraint
function. Recall that at each point x of the domain, the gradient vector Vh(x) is
orthogonal to the level set that passes through that point. Indeed, let us choose a
point x* = [zi,^2]T sucri mat h(x*} = 0, and assume Vh(x*) ^ 0. The level set
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through the point x* is the set {x : h(x] — 0}. We then parameterize this level set in
a neighborhood of x* by a curve {x(t}}, that is, a continuously differentiable vector
function x : E ->• E2 such that

We can now show that V/i(x*) is orthogonal to x(t*). Indeed, because h is constant
on the curve {x(i) : t € (a, 6)}, we have that for all t £ (a, 6),

Hence, for all t E (o, 6),

Applying the chain rule, we get

Therefore, Vh(x*} is orthogonal to x(t*}.
Now suppose that x* is a minimizer of / : R2 —>• E on the set {x : h(x) = 0}.

We claim that V/(x*) is orthogonal to x(f). To see this, it is enough to observe
that the composite function of t given by

achieves a minimum at t*. Consequently, the first-order necessary condition for the
unconstrained extremum problem implies

Applying the chain rule yields

Thus, V/(x*) is orthogonal to x(t*). The fact that x(t*) is tangent to the curve
{x(t)} at x* means that V/(x*) is orthogonal to the curve at x* (see Figure 19.10).

Recall that V/i(x*) is also orthogonal to x(i*). Therefore, the vectors V/i(x*)
and V/(x*) are "parallel", that is, V/(x*) is a scalar multiple of V/i(x*). The
above observations allow us now to formulate Lagrange 's theorem for functions of
two variables with one constraint.

Theorem 19.2 Lagrange's Theorem for n — 2, m = 1. Let the point x* be a
minimizer of j : E2 -» E subject to the constraint h(x) — 0, h : E2 -> M. Then,
V/(x*) andVh(x*) are parallel. That is, ifVh(x*) / 0, then there exists a scalar
A* such that
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Figure 19.10 The gradient V/(x*) is orthogonal to the curve {x(t}} at the point x* that
is a minimizer of / on the curve

In the above theorem, we refer to A* as the Lagrange multiplier. Note that the
theorem also holds for maximizers. Figure 19.11 gives an illustration of Lagrange's
theorem for the case where x* is a maximizer of / over the set {x : h(x] = 0}.

Lagrange's theorem provides a first-order necessary condition for a point to be a
local minimizer. We call this condition the Lagrange condition, which consists of
two equations:

Note that the Lagrange condition is only necessary but not sufficient. In Figure 19.12,
we illustrate a variety of points where the Lagrange condition is satisfied, including
a case where the point is not an extremizer (neither a maximizer nor a minimizer).

We now generalize Lagrange's theorem for the case when / : W1 —> R and
h: W1 -)-Em,m < n.

Theorem 19.3 Lagrange's Theorem. Let x* be a local minimizer (or maximizer)
o f f - . W 1 -> 1, subject to h(x) = 0, h : W1 -> Em, m < n. Assume that x* is a
regular point. Then, there exists A* 6 Rm such that

Proof. We need to prove that
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Figure 19.11 Illustration of Lagrange's theorem for n = 2, ra = 1

for some A* <E Mm, that is, V/(z*) € n(Dh(x*}T] = N(x*). But, by
Lemma 19.1, N(x*) = T(x*)±. Therefore, it remains to show that V/(x*) £
T(x*}^.

We proceed as follows. Suppose

Then, by Theorem 19.1, there exists a differentiable curve {x(t} : t € (a, 6)} such
that for alH 6 (a, 6),

and there exists t* G (a, b) satisfying

Consider now the composite function 4>(t] = f ( x ( t } } . Note that t* is a local
minimizer of this function. By the first-order necessary condition for unconstrained
local minimizers (see Theorem 6.1),

Applying the chain rule yields

So all y eT(x*) satisfy
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Figure 19.12 Four examples where the Lagrange condition is satisfied: (a) maximizer, (b)
minimizer, (c) minimizer, (d) not an extremizer (adapted from [87])

that is

This completes the proof.

Lagrange's theorem states that if x* is an extremizer, then the gradient of the
objective function / can be expressed as a linear combination of the gradients of
the constraints. We refer to the vector A* in the above theorem as the Lagrange
multiplier vector, and its components the Lagrange multipliers.

Observe that x* cannot be an extremizer if

This situation is illustrated in Figure 19.13
It is convenient to introduce the so-called Lagrangian function / : W1 x Em —» E,

given by
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Figure 19.13 An example where the Lagrange condition does not hold

The Lagrange condition for a local minimizer x* can be represented using the
Lagrangian function as

for some A*, where the derivative operation D is with respect to the entire argument
[XT, A ]T. In other words, the necessary condition in Lagrange's theorem is equiv-
alent to the first-order necessary condition for unconstrained optimization applied to
the Lagrangian function.

To see the above, denote the derivative of / with respect to x as Dxl, and the
derivative of / with respect to A as D\l. Then,

Note that Dxl(x,\) = Df(x) + \TDh(x) and Dxl(x,\) = h(x)T. Therefore,
the Lagrange's theorem for a local minimizer x* can be stated as

for some A*, which is equivalent to

In other words, the Lagrange condition can be expressed as Dl(x*, A*) = 0T.
The Lagrange condition is used to find possible extremizers. This entails solving

the equations:



380 PROBLEMS WITH EQUALITY CONSTRAINTS

The above represents n + m equations in n + m unknowns. Keep in mind that the
Lagrange condition is only necessary, but not sufficient; that is, a point x* satisfying
the above equations need not be an extremizer.

Example 19.5 Given a fixed area of cardboard, we wish to construct a closed card-
board box with maximum volume. We can formulate and solve this problem using
the Lagrange condition. Denote the dimensions of the box with maximum volume
by £1, £2, and £3, and let the given fixed area of cardboard be A. The problem then
can be formulated as

We denote f ( x ) = —x\x<2Xs, and h(x] = xix% + £2X3 + x%x\ — A/2. We
have V f ( x ) = -[x^x^.x^x^^xix^ and Vh(x} = [x% + £3,^1 + x3,xi + x2]

T.
Note that all feasible points are regular in this case. By the Lagrange condition, the
dimensions of the box with maximum volume satisfies

where A e R
We now solve the above equations. First, we show that that x\, x%, #3, and A are all

nonzero. Suppose x\ — 0. By the constraints, we have #2X3 = A/1. However, the
second and third equations in the Lagrange condition yield Ax2 = Axs = 0, which
together with the first equation implies £2X3 — 0- This contradicts the constraints.
A similar argument applies to £2 and £3.

Next, suppose A = 0. Then, the sum of the three Lagrange equations gives
£2X3 + xixz + £i£2 = 0, which contradicts the constraints.

We now solve for xi, £2, and £3 in the Lagrange equations. First, multiply the
first equation by x\ and the second by x?., and subtract one from the other. We arrive
at £3\(x\ — £2) — 0. Because neither £3 nor A can be zero (by part b), we conclude
that Xi = x-2- We similarly deduce that £2 = £3. From the constraint equation, we
obtain x\ = £2 = £3 = -\/A/6.

Notice that we have ignored the constraints that xi, x%, and £3 are positive so
that we can solve the problem using Lagrange's theorem. However, there is only
one solution to the Lagrange equations, and the solution is positive. Therefore, if
a solution exists for the problem with positivity constraints on the variables £1, £2,
and £3, then this solution must necessarily be equal to above solution obtained by
ignoring the positivity constraints.

Next we provide an example with a quadratic objective function and a quadratic
constraint.
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Example 19.6 Consider the problem of extremizing the objective function

on the ellipse

We have

Thus,

and

Setting Dxl(x,X} = 0T and D\l(x,\] = 0 we obtain three equations in three
unknowns

All feasible points in this problem are regular. From the first of the above equations,
we get either x± = Q or X = — 1. For the case where xi = 0, the second and third
equations imply that A = — 1/2 and x% = ±l/\/2. For the case where A = —1, the
second and third equations imply that x\ = ±1 and x^ — 0. Thus, the points that
satisfy the Lagrange condition for extrema are

Because

and

we conclude that if there are minimizers, then they are located at a^1) and x^, and if
there are maximizers, then they are located at x^ and x^. It turns out that, indeed,
x^ and x^> are minimizers and x^ and x^ are maximizers. This problem can
be solved graphically, as illustrated in Figure 19.14.

In the above example both the objective function / and the constraint function
h are quadratic functions. In the next example, we take a closer look at a class
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Figure 19.14 Graphical solution of the problem in Example 19.6

of problems where both the objective function / and the constraint h are quadratic
functions of n variables.

Example 19.7 Consider the following problem:

where Q — QT > 0, and P = PT > 0. Note that if a point x — [x\,..., xn]
T is a

solution to the problem, then so is any nonzero scalar multiple of it,

Indeed,

Therefore, to avoid the multiplicity of solutions, we further impose the constraint

The optimization problem becomes

Let us write
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Any feasible point for this problem is regular (see Exercise 19.9). We now apply
Lagrange's method. We first form the Lagrangian function

Applying the Lagrange condition yields

The first of the above equations can be represented as

or

This representation is possible because P — P and Q — Q . By assumption
P > 0, hence P"1 exists. Premultiplying (AP - Q}x = 0 by P"1, we obtain

or, equivalently,

Therefore, the solution, if it exists, is an eigenvector of P 1Q, and the Lagrange
multiplier is the corresponding eigenvalue. As usual, let x* and A* be the optimal
solution. Because x*TPx* — 1, and P~lQx* = X*x*, we have

Hence, A* is the maximum of the objective function, and therefore is, in fact, the
maximal eigenvalue of P~1Q.

In the above problems, we are able to find points that are candidates for extremizers
of the given objective function subject to equality constraints. These critical points
are the only candidates because they are the only points that satisfy the Lagrange
condition. To classify such critical points as minimizers, maximizers, or neither, we
need a stronger condition—possibly a necessary and sufficient condition. In the next
section, we discuss a second-order necessary condition and a second-order sufficient
condition for minimizers.

19.5 SECOND-ORDER CONDITIONS

We assume that / : En -> Eand/i : En ->• Em are twice continuously differentiable,
that is, /, h € C2. Let
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be the Lagrangian function. Let L(x, A) be the Hessian matrix of l(x, A) with
respect to x, that is,

where F(x) is the Hessian matrix of / at x, and Hk (x) is the Hessian matrix of hk
at x, k = 1,..., m, given by

We introduce the notation [\H(x)]:

Using the above notation, we can write

Theorem 19.4 Second-Order Necessary Conditions. Letx* be a local minimizer of
f : W1 -> E subject to h(x] = 0, h : W1 -» Mm, m < n, and f, h e C2. Suppose
x* is regular. Then, there exists A* £ W1 such that

1. D f ( x * ) + A*TD/i(z*) = 0T; and

2. for ally € T(x*\ \vehaveyT L(x* ,\*}y > 0.

Proof. The existence of A* e Rm such that Df(x*) + \*TDh(x*) = QT follows
from Lagrange's theorem. It remains to prove the second part of the result. Suppose
y e T(x*}, that is, y belongs to the tangent space to S = {x 6 En : h(x) = 0} at
x*. Because h 6 C2, following the argument of Theorem 19.1, there exists a twice
differentiate curve {x(t} :t£ (a, 6)} on S such that

for some t* € (a, 6). Observe that by assumption, t* is a local minimizer of the func-
tion (f>(t) = f ( x ( t ) ) . From the second-order necessary condition for unconstrained
minimization (see Theorem 6.2), we obtain

Using the following formula
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and applying the chain rule yields

Because h(x(t}} = 0 for all t € (a, 6), we have

Thus, for alH e (a, 6),

In particular, the above is true for t = t*, that is,

Adding the above equation to the inequality

yields

But, by Lagrange's theorem, D f ( x * ) + \*TDh(x*} = 0T. Therefore,

which proves the result.
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Observe that L(x, A) plays a similar role as the Hessian matrix F(x) of the
objective function / did in the unconstrained minimization case. However, we now
require that L(x*, A*) > 0 only on T(x*) rather than on Mn.

The above conditions are necessary, but not sufficient, for a point to be a local
minimizer. We now present, without a proof, sufficient conditions for a point to be a
strict local minimizer.

Theorem 19.5 Second-Order Sufficient Conditions. Suppose f , h € C2 and there
exist a point x* 6 W1 and A* 6 Rm such that

1. £>/(x*) + X*TDh(x*) = 0T; and

2. for ally € T(x*), y ^ 0, we have yT L(x*, \*}y > 0.

Then, x* is a strict local minimizer of f subject to h(x) = 0.

Proof. The interested reader can consult [64, p. 307] for a proof of this result.

The above theorem states that if an x* satisfies the Lagrange condition, and
L(x*, A*) is positive definite on T(x*), then x* is a strict local minimizer. A similar
result to Theorem 19.5 holds for a strict local maximizer, the only difference being
that L(x*,\*) be negative definite on T(x*). We illustrate this condition in the
following example.

Example 19.8 Consider the following problem:

where

As pointed out earlier, we can represent the above problem in the equivalent form

The Lagrangian function for the transformed problem is given by

The Lagrange condition yields

where
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There are only two values of A that satisfy (XI — P~lQ}x — 0, namely, the eigen-
values of P~1Q: \i = 2, \2 — 1. We recall from our previous discussion of this
problem that the Lagrange multiplier corresponding to the solution is the maximum
eigenvalue of P-1Q, namely, A* = AI = 2. The corresponding eigenvector is the
maximizer, that is, the solution to the problem. The eigenvector corresponding to the
eigenvalue A* = 2 satisfying the constraint xTPx = 1 is ±x*, where

At this point, all we have established is that the pairs (±z*,A*) satisfy the
Lagrange condition. We now show that the points ±x* are, in fact, strict local
maximizers. We do this for the point x*. A similar procedure applies to — x*. We
first compute the Hessian matrix of the Lagrangian function. We have

The tangent space T(x*) to {x : 1 — xTPx = 0} is

Note that for each y 6 T(x*), y ^ 0,

Hence, L(x*, A*) < 0 on T(x*), and thus x* = [l/\/2,0]T is a strict local maxi-
mizer. The same is true for the point — x*. Note that

which, as expected, is the value of the maximal eigenvalue of P 1Q. Finally, we
point out that any scalar multiple tx* of x*, t ^ 0, is a solution to the original
problem of maximizing xTQx/xTPx.

19.6 MINIMIZING QUADRATICS SUBJECT TO LINEAR CONSTRAINTS

Consider the problem
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where Q > 0, A E Rmxn, m < n, rank A = m. This problem is a special
case of what is called a quadratic programming problem (the general form of a
quadratic programming problem includes the constraint x > 0). Note that the
constraint set contains an infinite number of points (see Section 2.3). We now show,
using Lagrange's theorem, that there is a unique solution to the above optimization
problem. Following that, we provide an example illustrating the application of this
solution to an optimal control problem.

To solve the problem, we first form the Lagrangian function

The Lagrange condition yields

Rewriting, we get

Premultiplying both sides of the above by A gives

Using the fact that Ax* = 6, and noting that AQ 1AT is invertible because Q > 0
and rank A = m, we can solve for A* to obtain

Therefore, we obtain

The point x* is the only candidate for a minimizer. To establish that x* is indeed
a minimizer, we verify that x* satisfies the second-order sufficient conditions. For
this, we first find the Hessian matrix of the Lagrangian function at (x*, A*). We have

which is positive definite. Thus, the point x* is a strict local minimizer. We will see
in Chapter 21 that x* is, in fact, a global minimizer.

The special case where Q = In, the nxn identity matrix, reduces to the problem
considered in Section 12.3. Specifically, the problem in Section 12.3 is to minimize
the norm ||x|| subject to Ax = b. The objective function here is /(x) = ||x||, which
is not differentiable at x = 0. This precludes the use of Lagrange's theorem because
the theorem requires differentiability of the objective function. We can overcome
this difficulty by considering an equivalent optimization problem:
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The objective function ||x||2/2 has the same minimizer as the previous objective
function ||x||. Indeed, if x* is such that for all x e W1 satisfying Ax = b, \\x*\\ <
\\x\\, then ||x*||2/2 < ||a;||2/2. The same is true for the converse. Because the
problem of minimizing ||x||2/2 subject to Ax = bis simply the problem considered
above with Q = In, we easily deduce the solution to be x* = AT(AAT)~lb,
which agrees with the solution in Section 12.3.

Example 19.9 Consider the discrete-time linear system model

with initial condition XQ given. We can think of {x/t} as a discrete-time signal that
is controlled by an external input signal {uk}. In the control literature, Xk is called
the state at time k. For a given x0, our goal is to choose the control signal {uk} so
that the state remains "small," over a time interval [1, JV], but at the same time the
control signal is "not too large." To express the desire to keep the state {xk } small,
we choose the control sequence to minimize

On the other hand, maintaining a control signal that is not too large, we minimize

The above two objectives are conflicting in the sense that they cannot, in general,
be simultaneously achieved—minimizing the first may result in large control effort,
while minimizing the second may result in large states. This is clearly a problem that
requires compromise. One way to approach the problem is to minimize a weighted-
sum of the above two functions. Specifically, we can formulate the problem as:

where the parameters q and r reflect the relative importance of keeping the state small
versus keeping the control effort not too large. This problem is an instance of the
linear quadratic regulator (LQR) problem (see, e.g., [11], [15], [62], [63], or [71]).

To solve the above problem, we can rewrite it as a quadratic programming problem.
Define
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With these definitions, the problem reduces to the previously considered quadratic
programming problem

where Q is 2N x 2N, A is N x 2N, and b e RN. The solution is

The first N components of z* represent the optimal state signal in the interval [1, AT],
whereas the second N components represent the optimal control signal.

In practice, the computation of the matrix inverses in the above formula for z*
may be too costly. There are other ways to tackle the problem by exploiting its
special structure. This is the study of optimal control (see, e.g., [11], [15], [62], [63],
or [71]).

The following example illustrates an application of the above discussion.

Example 19.10 Credit-card holder dilemma. Suppose we currently have a credit-
card debt of $10,000. Credit-card debts are subject to a monthly interest rate of 2%,
and the account balance is increased by the interest amount every month. Each month,
we have the option of reducing the account balance by contributing a payment to the
account. Over the next 10 months, we plan to contribute a payment every month in
such a way as to minimize the overall debt level while at the same time minimize the
hardship of making monthly payments.

We solve our problem using the LQR framework as described in Example 19.9.
Let the current time be 0, Xk the account balance at the end of month k, and UK our
payment in month k. We have

that is, the account balance in a given month is equal to the account balance in the
previous month plus the monthly interest on that balance minus our payment that
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month. Our optimization problem is then

which is an instance of the LQR problem. The parameters q and r reflect our priority
in trading off between debt reduction and hardship in making payments. The more
anxious we are to reduce our debt, the larger the value of q relative to r. On the other
hand, the more reluctant we are to make payments, the larger the value of r relative
toq.

The solution to the above problem is given by the formula derived in Example 19.9.
In Figure 19.15, we plot the monthly account balances and payments over the next
10 months using q = 1 and r = 10. We can see here that our debt has been reduced
to less than $1,000 after 10 months, but with a first payment close to $3,000. If we
feel that a payment of $3,000 is too high, then we can try to reduce this amount by
increasing the value of r relative to q. However, going too far along these lines can
lead to trouble. Indeed, if we use q — 1 and r = 300 (see Figure 19.16), although the
monthly payments do not exceed $400, the account balance is never reduced by much
below $10,000. In this case, the interest on the account balance eats up a significant
portion of our monthly payments. In fact, our debt after 10 months will be higher
than $10,000.

EXERCISES

19.1 Find local extremizers for the following optimization problems:

a.

minimize x\ + 2xix^ + 3x% + 4x\ + 6x2 + 6x3

subject to x\ + 2x2 — 3

4xi + 5x3 = 6;

b.

maximize 4xi + x\

subject to x\ + x\ — 9;

c.

maximize £1X2

subject to x\ + 4^2 = 1.
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Figure 19.15 Plots for Example 19.10 with q = 1 and r = 10

Figure 19.16 Plots for Example 19.10 with q - 1 and r = 300
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19.2 Consider the problem

where / : E2 -> R, h : E2 ->• E, and V/(x) = [zi,zi + 4]T. Suppose that x* is
an optimal solution, and V/i(x*) = [1,4]T. Find V/(x*).

19.3 Consider the problem

where XQ = [1, \/3]T-

a. Find all points satisfying the Lagrange condition for the problem.

b. Using second-order conditions, determine whether or not each of the points in
part a are local minimizers.

19.4 We wish to construct a closed box with minimum surface area that encloses a
volume of V cubic feet, where V > 0.

a. Let a, b, and c denote the dimensions of the box with minimum surface area
(with volume V). Derive the Lagrange condition that must be satisfied by o,
b, and c.

b. What does it mean for a point x* to be a regular point in this problem? Is the
point x* = [a, b, c]T a regular point?

c. Find a, 6, and c.

d. Does the point x* = [a, b, c]T found in part c satisfy the second-order sufficient
condition?

19.5 Find local extremizers of

a. f ( x i , X 2 , x z ) = x\ + 3^2 4- £3 subject to x\ + x\ + x\ = 16;

b. /(xi, x2) = x\ + x\ subject to 3xf + 4xix2 + 6x| = 140.

19.6 Consider the problem
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a. Use Lagrange's theorem to find all possible local minimizers and maximizers.

b. Use the second-order sufficient conditions to specify which points are strict
local minimizers and which are strict local maximizers.

c. Are the points in part b global minimizers or maximizers? Explain.

19.7 Find all solutions to the problem

19.8 Consider a matrix A £ Mmxn . Define the induced 1-norm of A, denoted
||A||2, to be the number

where the norm || • || on the right-hand side above is the usual Euclidean norm.
Suppose the eigenvalues of AT A are \i,..., An (ordered from largest to smallest).

Use Lagrange's theorem to express ||A||2 in terms of the above eigenvalues (cf.
Theorem 3.8).

19.9 Let P = PT be a positive definite matrix. Show that any point x satisfying
1 — x1Px — 0 is a regular point.

19.10 Consider the problem:

where a, b € E. Show that if [1,1]T is a solution to the problem, then a = b.

19.11 Consider the problem:

a. Apply Lagrange's theorem directly to the problem to show that if a solution
exists, it must be either [1,1]T or [— 1,1]T.

b. Use the second-order necessary conditions to show that [—1,1]T cannot pos-
sibly be the solution.

c. Use the second-order sufficient conditions to show that [1,1]T is a strict local
minimizer.
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19.12 Let A € Rmxn, m < n, rank A = m, and x0 € Mn. Let x* be the point on
the nullspace of A that is closest to x0 (in the sense of Euclidean norm).

a. Show that x* is orthogonal to x* — XQ.

b. Find a formula for x* in terms of A and XQ.

19.13 Consider the quadratic programming problem

where Q = QT > 0, A € Rmxn , m < n, and rank A = m. Use the Lagrange
condition to derive a closed-form solution to the problem.

19.14 Let L be an n x n real symmetric matrix, and let M be a subspace of En

with dimension m < n. Let {61,..., bm} C Mn be a basis for M, and let B be the
n x m matrix with 6; as the ith column. Let LM be the m x m matrix defined by
L_M = BTLB. Show that L is positive semidefinite (definite) on M. if and only if
LM is positive semidefinite (definite).
Note: This result is useful for checking that the Hessian of the Lagrangian function
at a point is positive definite on the tangent space at that point.

19.15 Consider the sequence {xk}, or* € M, generated by the recursion

where UQ, u\, u^,... is a sequence of "control inputs," and the initial condition XQ ̂  0
is given. The above recursion is also called a discrete-time linear system. We wish
to find values of control inputs UQ and u\ such that x^ = 0, and the average input
energy (UQ + u\)/2 is minimized. Denote the optimal inputs by UQ and uj1.

a. Find expressions for UQ and u* in terms of a, b, and XQ.

b. Use the second-order sufficient conditions to show that the point u* =
[UQ, UI]T in part a is a strict local minimizer.

19.16 Consider the discrete-time linear system Xk = %Xk-i 4- Uk, k > 1, with
XQ = 1. Find the values of the control inputs u\ and u% to minimize
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20
Problems with Inequality

Constraints

20.1 KARUSH-KUHN-TUCKER CONDITION

In the previous chapter, we analyzed constrained optimization problems involving
only equality constraints. In this chapter, we discuss extremum problems that also
involve inequality constraints. The treatment in this chapter parallels that of the
previous chapter. In particular, as we shall see, problems with inequality constraints
can also be treated using Lagrange multipliers.

We consider the following problem:

where / : Rn -»• E, h : En -)• Em, m < n, and g : Mn -» Ep. For the above
general problem, we adopt the following definitions.

Definition20.1 An inequality constraint QJ(X) < 0 is said to be active at x* if
gj(x*) — 0. It is inactive at x* if gj(x*} < 0.

By convention, we consider an equality constraint hi(x) — 0 to be always active.

Definition 20.2 Let x* satisfy h(x*) = 0, g(x*) < 0, and let J(x*) be the index
set of active inequality constraints, that is,

397
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Then, we say that x* is a regular point if the vectors

are linearly independent.

We now prove a first-order necessary condition for a point to be a local minimizer.
We call this condition the Karush-Kuhn-Tucker (KKT) condition. In the literature,
this condition is sometimes also called the Kuhn-Tucker condition.

Theorem 20.1 Karush-Kuhn-Tucker (KKT) Theorem. Let f,h,g € Cl. Let x*
be a regular point and a local minimizer for the problem of minimizing f subject to
h(x] = 0, g(x) < 0. Then, there exist A* G Em and p,* e Kp such that

1. /x* > 0,

2. Df(x*) + \*TDh(x*) + n*TDg(x*) = 0T,

3. v*Tg(x*) = 0.

In the above theorem, we refer to A* as the Lagrange multiplier vector, and /x* as
the Karush-Kuhn-Tucker (KKT) multiplier vector. We refer to their components as
Lagrange multipliers and Karush-Kuhn-Tucker (KKT) multipliers, respectively.

Before proving this theorem let us first discuss its meaning. Observe that p,* > 0
(by condition 1) and gj(x*} < 0. Therefore, the condition

implies that if Qj(x*} < 0, then /u* = 0, that is, for all j $ J ( x * ) , we have pJ* = 0.
In other words, the KKT multipliers p.* corresponding to inactive constraints are
zero. The other KKT multipliers, p,*, i e J(x*), are nonnegative; they may or may
not be equal to zero.

Example 20.1 A graphical illustration of the Karush-Kuhn-Tucker (KKT) theorem
is given in Figure 20.1. In this two-dimensional example, we have only inequality
constraints gj(x) < 0, j = 1, 2,3. Note that the point x* in the figure is indeed a
minimizer. The constraint g s ( x ) < 0 is inactive, that is, #3(3:*) < 0; hence p,% = 0.
By the KKT theorem, we have

or, equivalently,

where ̂  > 0 and ̂  > 0- I t1 S easv to graphically interpret the KKT condition
above for this example. Specifically, we can see from the Figure 20.1 that V/(je*)
must be a linear combination of the vectors — Vg\(x*) and — V<?2(#*) with positive
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Figure 20.1 Illustration of the Karush-Kuhn-Tucker (KKT) theorem

coefficients. This is exactly reflected in the above equation, where the coefficients
Hi and //2 are the KKT multipliers.

We apply the KKT condition in the same way we apply any necessary condition.
Specifically, we search for points satisfying the KKT condition and treat these points
as candidate minimizers. To summarize, the KKT condition consists of five parts
(three equations and two inequalities):

1. A** > 0;

2. D f ( x * ) + X*TDh(x*) + p*TDg(x*} = 0T;

3. »*Tg(x*} = 0;

4. h(x*) = 0;

5. g(x*} < 0.

We now prove the KKT theorem.

Proof of Karush-Kuhn-Tucker Theorem. Let x* be a regular local minimizer of / on
the set {x : h(x] = Q,g(x) < 0}. Then, x* is also a regular local minimizer of /
on the set {x : h(x) = Q,QJ(X) = 0, j € J(x*)} (see Exercise 20.13). Note that the
latter constraint set involves only equality constraints. Therefore, from Lagrange's
theorem, it follows that there exist vectors A* € Mm and /x* 6 Ep such that
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where for all j £ J(x*), we have //!• = 0. To complete the proof it remains to show
that for all j € J(x*), we have /^ > 0 (and hence for all j = 1,... ,p, we have
fjLj > 0, i.e., //* > 0). We use a proof by contradiction. So suppose that there exists
j £ J(x*} such that ̂  < 0. Let 5 and T(x*) be the surface and tangent space
defined by all other active constraints at x*. Specifically,

and

We claim that, by the regularity of x*, there exists y 6 T(x*} such that

To see this, suppose that for all y £ T(x*), Vgj(x*}Ty — Dgj(x*}y = 0. This
implies that Vgj(x*) 6 T(x*}L. By Lemma 19.1, this, in turn, implies that

But this contradicts the fact that x* is a regular point, which proves our claim.
Without loss of generality, we assume that we have y such that Dgj(x*)y < 0.

Consider the Lagrange condition, rewritten as

If we postmultiply the above by y, and use the fact that y £ T(x*), we get

Because Dgj (x*)y < 0, and we have assumed that /z!- < 0, we have

Because y € T(x*}, by Theorem 19.1 we can find a differentiable curve {x(t) :
t e (a, b)} on 5 such that there exists t* 6 (a, b] with x(t*} = x* and x(t*} = y.
Now,

The above means that there is a 6 > 0 such that for all t G (t*, t* + 8], we have

On the other hand,
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Figure 20.2 Circuit in Example 20.2

and for some e > 0 and all t € [t*,t* + e], we have that gj(x(t}} < 0. Therefore,
for all t 6 (**,**+ min((J,e)], we have that gj(x(t}} < 0 and f ( x ( i ) ) < f ( x * } .
Because the points x(t), t 6 (t*, t* + min(<5,£•)], are in S, they are feasible points
with lower objective function values than x*. This contradicts the assumption that
a;* is a local minimizer, and hence the proof is completed.

Example 20.2 Consider the circuit in Figure 20.2. Formulate and solve the KKT
condition for the following problems.

a. Find the value of the resistor R > 0 such that the power absorbed by this
resistor is maximized.

b. Find the value of the resistor R > 0 such that the power delivered to the 10 (7
resistor is maximized.

Solutions:

a. The power absorbed by the resistor R is p — i2R, where i — 10
2^_R. The

optimization problem can be represented as

The derivative of the objective function is

Thus, the KKT condition is
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We consider two cases. In the first case, suppose // > 0. Then, R = 0. But
this contradicts the first condition above. Now suppose /z = 0. Then, by the
first condition, we have R = 10. Therefore, the only solution to the KKT
condition is R = 10, p. = 0.

b. The power absorbed by the 10 fl resistor is p = i210, where i = 20/(10 4- R).
The optimization problem can be represented as

The derivative of the objective function is

Thus, the KKT condition is

As before, we consider two cases. In the first case, suppose /z > 0. Then, R =
0, which is feasible. For the second case, suppose (JL = 0. But this contradicts
the first condition. Therefore, the only solution to the KKT condition is R = 0,
/i = 8.

In the case when the objective function is to be maximized, that is, when the
optimization problem has the form

the KKT condition can be written as

1. n* >0;

2. -Df(x*) + X*TDh(x*) + p,*TDg(x*) = 0T;

3. »*Tg(x*) = 0;

4. h(x*) = 0;
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5. 0(x*) < 0.

The above is easily derived by converting the maximization problem above into a
minimization problem, by multiplying the objective function by — 1. It can be further
rewritten as

1. /x* < 0;

2. D f ( x * } + X*TDh(x*) + n*TDg(x*} = 0T;

3. n*Tg(x*} = 0;

4. /i(x*) = 0;

5. g(x*) < 0.

The above form is obtained from the previous one by changing the signs of /x* and
A* and multiplying condition 2 by — 1.

We can similarly derive the KKT condition for the case when the inequality
constraint is of the form g(x) > 0. Specifically, consider the problem

We multiply the inequality constraint function function by — 1, to obtain —g(x) < 0.
Thus, the KKT condition for this case is

1. ^* >0;

2. £>/(x*) + A*TZ?fi(x*) - V*TDg(x*} = 0T;

3. n*Tg(x*} = 0;

4. fc(x*) = 0;

5. g(x*) > 0.

Changing the sign of /x* as before, we obtain

1. AI* <0;

2. D f ( x * ) + X*TDh(x*} + n*TDg(x*) = 0T;

3. »*Tg(x*) = 0;

4. /i(x") = 0;

5. g(x*) > 0.
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For the problem

the KKT condition is exactly the same as in Theorem 20.1.

Example 20.3 In Figure 20.3, the two points x\ and x^ are feasible points, that is,
Q(XI) > 0 and g(x<z) > 0, and they satisfy the KKT condition.

The point x\ is a maximizer. The KKT condition for this point (with KKT
multiplier//i) is:

1. pi > 0;

2. V/(zi) + fiiV0(si) = 0;

3. mg(xi) = 0;

4. g(xi) > 0.

The point #2 is a minimizer of /. The KKT condition for this point (with KKT
multiplier/^) is:

1. A*2 < 0;

2. V/(z2)+//2V£(z2) = 0;

3. H2g(x2} = 0;

4. 0(2:2) > 0.

Example 20.4 Consider the problem

where

The KKT condition for this problem is

1. H = [//i,//2]T < 0;

2. D f ( x ) + nT = 0T;

3. HTX = 0;



KARUSH-KUHN-TUCKER CONDITION 405

Figure 20.3 Points satisfying the KKT condition (xi is a maximizer and x-i is a minimizer)

4. x > 0.

We have

This gives

We now have four variables, three equations, and the inequality constraints on each
variable. To find a solution (x*, //*), we first try

which gives

The above satisfies all the KKT and feasibility conditions. In a similar fashion, we
can try

which gives

This point clearly violates the nonpositivity constraint on //£.
The feasible point above satisfying the KKT condition is only a candidate for

a minimizer. However, there is no guarantee that the point is indeed a minimizer,
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because the KKT condition is, in general, only necessary. A sufficient condition for
a point to be a minimizer is given in the next section.

The above example is a special case of a more general problem of the form

The KKT condition for this problem has the form

From the above, we can eliminate // to obtain

Some possible points in R2 that satisfy the above conditions are depicted in Fig-
ure 20.4.

For further results related to the KKT condition, we refer the reader to [67,
Chapter 7].

20.2 SECOND-ORDER CONDITIONS

As in the case of extremum problems with equality constraints, we can also give
second-order necessary and sufficient conditions for extremum problems involving
inequality constraints. For this, we need to define the following matrix:

where F(x) is the Hessian matrix of/ at x, and the notation [\H (x}] represents

as before. Similarly, the notation [fiG(x}] represents

where Gk (x) is the Hessian of <?* at x, given by
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Figure 20.4 Some possible points satisfying the KKT condition for problems with positive
constraints (adapted from [9])

In the following theorem, we use

that is, the tangent space to the surface defined by active constraints.

Theorem 20.2 Second-Order Necessary Conditions. Letx* be a local minimizer of
f : Rn R subject to h(x) = 0, g(x) < 0, h : Rn Rm, m < n, g : Rn Rp,
and f, h, g € C2. Suppose x* is regular. Then, there exist l* G Rm and m* e Rp

such that:

1. m* > 0, D f(x*) + l*TDh(x*) + m*TDg(x*) = 0T, m* T g(x*) = 0; and

2. For all y e T(x*) we have yTL(x*, l*, m**) y > 0.



408 PROBLEMS WITH INEQUALITY CONSTRAINTS

Proof. Part 1 is simply a result of the KKT theorem. To prove part 2, we note that
because the point x* is a local minimizer over {x : h(x) — 0, g ( x ] < 0), it is
also a local minimizer over {x : h(x) — 0, QJ(X] = 0, j € J(x*)}, that is, the
point x* is a local minimizer with active constraints taken as equality constraints
(see Exercise 20.13). Hence, the second-order necessary conditions for equality
constraints (Theorem 19.4) are applicable here, which completes the proof.

We now state the second-order sufficient conditions for extremum problems in-
volving inequality constraints. In the formulation of the result, we use the following
set:

where J(x*,^t*) = {i : gi(x*} = O,//* > 0}. Note that J(x*,p,*) is a subset of
J(x*), that is, J(x*, /i*) C J(x*). This, in turn, implies that T(x*) is a subset of
r(x*,/u*),thatis,T(x*) cT(x*,^*).

Theorem 20.3 Second-Order Sufficient Conditions. Suppose /,</,/! G C2 and
there exist a feasible point x* G Rn and vectors A* G Rm and 11* 6 Rp, such that:

1. M* > 0, £>/(x*) + A*T£>h(x*) + v*TDg(x*} = 0T, ^Tg(x*} = 0; and

2. Forallyef(x*,^),y^O,wehaveyTL(x^X\p,*)y > 0.

77iert, x* w a strict local minimizer of f subject to h(x) = 0, g(x) < 0. D

Prao/ For a proof of this theorem, we refer the reader to [64, p. 317].

A similar result to Theorem 20.3 holds for a strict local maximizer, the only
difference being that we need /x* < 0 and that L(x*, A*) be negative definite on
T(x*,M").

With the above result, we can now analytically solve the problem in Example 19.1,
which we previously solved graphically.

Example 20.5 We wish to minimize /(x) = (xi — I)2 + x2 — 2 subject to

For all x € M2, we have

Thus, Vh(x] and Vg(x) are linearly independent and hence all feasible points are
regular. We first write the KKT condition. Because D f ( x ) — [2xi — 2,1], we have
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To find points that satisfy the above conditions, we first try fj, > 0, which implies
xi + x-2 — 2 = 0. Thus, we are faced with a system of four linear equations

Solving the above system of equations we obtain

However, the above is not a legitimate solution to the KKT condition, because we
obtained p, = 0, which contradicts the assumption that p, > 0.

In the second try, we assume p, = 0. Thus, we have to solve the following system
of equations

and the solutions must satisfy

Solving the above equations, we obtain

rrt

Note that x* = [1/2,3/2] satisfies the constraint g(x*) < 0. The point x* satisfy-
ing the KKT necessary condition is therefore the candidate for being a minimizer.

We now verify if x* = [l/2,3/2]T, A* = -1, //* = 0, satisfy the second-order
sufficient conditions. For this, we form the matrix

We then find the subspace
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Note that, because p,* = 0, the active constraint g(x*} = 0 does not enter the
computation of f(x*, p*). Note also that in this case, T(x*) = {0}. We have

We then check for positive definiteness of L(x*, A*, //*) on f(x* ,//*). We have

Thus, L(x*, A*,//*) is positive definite on f(x*,n*}. Observe that L(x*, A*,/z*)
is, in fact, only positive semidefinite on E2.

By the second-order sufficient conditions, we conclude that x* = [1/2,3/2] is
a strict local minimizer.

EXERCISES

20.1 Find local extremizers for

a. x\ + x\ — 1x\ — 10x2 + 26 subject to |x2 — x\ < 0, 5xi + \x<i < 5;

b. x\ + x\ subject to x\ > 0, ̂ 2 > 0, x\ + x<i > 5;

c. x\ + Qxix2 ~ 4xi - 2x2 subject to x\ + 2ar2 < 1, 2xi — 2x2 < 1.

20.2 Find local minimizers for x\ + x\ subject to x\ + 2xiX2 -\-x\ = \,x\—x>i < 0.

20.3 Write down the Karush-Kuhn-Tucker condition for the optimization problem
in Exercise 15.6.

20.4 Consider the problem

where x\ and #2 are real variables. Answer each of the following questions, making
sure that you give complete reasoning for your answers.

a. Write down the KKT condition for the problem, and find all points that satisfy
the condition. Check whether or not each point is regular.

b. Determine whether or not the point(s) in part a satisfy the second-order neces-
sary condition.

c. Determine whether or not the point(s) in part b satisfy the second-order suffi-
cient condition.



EXERCISES 411

20.5 Consider the problem

a. Find all points satisfying the KKT condition for the problem.

b. For each point x* in part a, find T(x*), N(x*), and f(x*).

c. Find the subset of points from part a that satisfy the second-order necessary
condition.

20.6 Consider the optimization problem

where /(x) = x\x\, where x = [xi,X2\T, and 17 = {x 6 E2 : x\ = x%, xi > 0}.

a. Find all points satisfying the KKT condition.

b. Do each of the points found in part a satisfy the second-order necessary condi-
tion?

c. Do each of the points found in part a satisfy the second-order sufficient condi-
tion?

20.7 Consider the problem

a. Write down the KKT condition for the problem.

b. Define what it means for a feasible point x* to be regular in this particular given
problem. Are there any feasible points in this problem that are not regular? If
yes, find them. If not, explain why not.

20.8 Let g : En -> E and x0 € W1 be given, where g(x0) > 0. Consider the
problem
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Suppose x* is a solution to the problem, and g € Cl. Use the KKT theorem to decide
which of the following equations/inequalities hold:

i. g(x*) < 0

ii. g(x*} = 0

iii. (x* - x0)
TVg(x*) < 0

iv. (x* -x0)
TVg(x*)=Q

v. (x* - x0)
TVg(x*) > 0.

20.9 Consider a square room, with corners located at [0,0]T, [0,2]T, [2,0]T, and
[2,2]T (in E2). We wish to find the point in the room that is closest to the point
[3,4]r.

a. Guess which point in the room is the closest point in the room to the point
[3,4]r.

b. Use the second-order sufficient conditions to prove that the point you have
guessed is a strict local minimizer.

Hint: Minimizing the distance is the same as minimizing the square distance.

20.10 Consider the quadratic programming problem

where Q = QT > 0, A € Emxn, and 6 > 0. Find all points satisfying the KKT
condition.

20.11 Consider the problem

where A € Mroxn, m < n, is of full rank. Use the KKT theorem to show that if
there exists a solution, then the optimal objective function value is 0.

20.12 Consider a linear programming problem in standard form (see Chapter 15).

a. Write down the Karush-Kuhn-Tucker condition for the problem.

b. Use part a to show that if there exists an optimal feasible solution to the linear
program, then there exists a feasible solution to the corresponding dual problem
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that achieves an objective function value that is the same as the optimal value
of the primal (compare this with Theorem 17.1).

c. Use parts a and b to prove that if x* is an optimal feasible solutions of the primal,
then there exists a feasible solution A* to the dual such that (CT—A*T A)x* = 0
(compare this with Theorem 17.3).

20.13 Consider the constraint set 5 = {x : h(x] = Q,g(x) < 0}. Let x* 6 5 be
a regular local minimizer of / over 5, and J(x*) the index set of active inequality
constraints. Show that x* is also a regular local minimizer of / over the set S' =
{x : h(x] = Q,9j(x) = QJ € J(x*)}.

20.14 Solve the following optimization problem using the second-order sufficient
conditions:

See Figure 21.1 for a graphical illustration of the problem.

20.15 Solve the following optimization problem using the second-order sufficient
conditions:

See Figure 21.2 for a graphical illustration of the problem.

20.16 Consider the problem

Figure 21.3 gives a graphical illustration of the problem. Deduce from the figure
that the problem has two strict local minimizers, and use the second-order sufficient
conditions to verify the graphical solutions.

20.17 Consider the problem:
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where a 6 Mn, a > 0, and b e E, 6 > 0. Show that if a solution to the problem
exists, then it is unique, and find an expression for it in terms of a and b.

20.18 Consider the problem:

where a, b e E are given constants satisfying a2 -f b2 > 1.

a. Let x* = [x*,X2\T be a solution to the above problem. Use the first-order
necessary conditions for unconstrained optimization to show that (a^)2 +
(*2)2 = 1-

b. Use the KKT theorem to show that the solution x* = [x$, x^]T is unique, and
has the form x* = aa, x\ = ab, where a G R is a positive constant.

c. Find an expression for a (from part b) in terms of a and b.

20.19 Consider the problem:

(exp(x) = ex is the exponential of x). Let x* = [x^, x^]T be the solution to the
problem.

a. Write down the KKT condition that must be satisfied by x*.

b. Prove that x\ = exp(:r*).

c. Prove that -1 < x\ < 0.

20.20 Consider the problem

where c € En, c ^ 0. Suppose x* — ae is a solution to the problem, where a € M
and e = [1,..., 1]T, and the corresponding objective value is 4.

a. Show that ||x* ||2 = 2.

b. Find o; and c (they may depend on ri).
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20.21 Consider the problem with equality constraint:

We can convert the above into the equivalent optimization problem

Write down the KKT condition for the equivalent problem (with inequality con-
straint), and explain why the KKT theorem cannot be applied in this case.

20.22 Let A : En -* E and /2 : En ->• M, /i, /2 € C1. Consider the problem

Show that if x* is a local minimizer, then there exist //*, //£ € ^ sucri mat

and/z* = Oif / i (x*) < maxf/^x*),^^*)}.
Hint: Consider the problem: minimize z subject to z > f i ( x } , i = 1,2.
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27
Convex Optimization

Problems

21.1 INTRODUCTION

The optimization problems posed at the beginning of this part are, in general, very
difficult to solve. The source of these difficulties may be in the objective function
or the constraints. Even if the objective function is simple and "well behaved," the
nature of the constraints may make the problem difficult to solve. We illustrate some
of these difficulties in the following examples.

Example 21.1 Consider the optimization problem

The problem is depicted in Figure 21.1. As we can see in Figure 21.1, the con-
strained minimizer is the same as the unconstrained minimizer. At the minimizer,
all the constraints are inactive. If we had only known about this fact we could have
approached this problem as an unconstrained optimization problem using techniques
from Part II.

Example 21.2 Consider the optimization problem

417
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Figure 21.1 Situation where the constrained and the unconstrained minimizers are the same

Figure 21.2 Situation where only one constraint is active

The problem is depicted in Figure 21.2. At the solution, only one constraint is active.
If we had only known about this we could have handled this problem as a constrained
optimization problem using the Lagrange multiplier method.

Example 21.3 Consider the optimization problem
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Figure 21.3 Situation where the constraints introduce local minimizers

The problem is depicted in Figure 21.3. This example illustrates the situation where
the constraints introduce local minimizers, even though the objective function itself
has only one unconstrained global minimizer.

Some of the difficulties illustrated in the above examples can be eliminated if
we restrict our problems to convex feasible regions. Admittedly, some important
real-life problems do not fit into this framework. On the other hand, it is possible to
give results of a global nature for this class of optimization problems. In the next
section, we introduce the notion of a convex function, which plays an important role
in our subsequent treatment of such problems.

21.2 CONVEX FUNCTIONS

We begin with a definition of the graph of a real-valued function.

Definition 21.1 The graph of / : ft -»• E, ft C Mn, is the set of points in ft x R c
Mn+1 given by

We can visualize the graph of / as simply the set of points on a "plot" of f ( x )
versus x (see Figure 21.4). We next define the "epigraph" of a real-valued function.

Definition 21.2 The epigraph of a function / : ft ->• E, ft C Mn, denoted epi(/), is
the set of points in ft x E given by
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Figure 21.4 The graph and epigraph of a function / : R ->• R

The epigraph epi(/) of a function / is simply the set of points in ft x E on or
above the graph of / (see Figure 21.4). We can also think of epi(/) as a subset of
Rn+1.

Recall that a set ft C Mn is convex if for every xi, x^ G ft and a G (0,1),
axi + (1 — a)x2 E ft (see Section 4.3). We now introduce the notion of a "convex
function."

Definition 21.3 A function / : ft ->• E, ft C En, is convex on ft if its epigraph is a
convex set.

Theorem 21.1 If a function f : ft -> K, ft C W1, is convex on ft, then ft w a convex
set.

Proof. We prove this theorem by contraposition. Suppose that ft is not a convex set.
Then, there exist two points y1 and y2 such that for some a G (0,1),

Let

Then, the pairs

belong to the graph of /, and hence also the epigraph of /. Let

We have
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But note that w g epi(/), because z £ 0. Therefore, epi(/) is not convex, and
hence / is not a convex function.

The next theorem gives a very useful characterization of convex functions. This
characterization is often used as a definition for a convex function.

Theorem 21.2 A Junction f : fi -> E defined on a convex set 0 C En w convex if
and only if for allx,y G fi am/ a// a 6 (0,1), we /iave

Proof. <=: Assume that for all x, y € fi and a 6 (0,1),

Let [xT,a]T and [f/T,6]T be two points in epi(/), where a, b € E. From the
definition of epi(/) it follows that

Therefore, using the first inequality above, we have

Because £7 is convex, ax + (1 — a)y G fi. Hence,

which implies that epi(/) is a convex set, and hence / is a convex function.
=>: Assume that / : 0 —>• E is a convex function. Let x, y 6 fi and

Thus,

Because / is a convex function, its epigraph is a convex subset of En+1. Therefore,
for all a e (0,1), we have

The above implies that for all a € (0,1),



422 CONVEX OPTIMIZATION PROBLEMS

Figure 21.5 Geometric interpretation of Theorem 21.2

Thus, the proof is completed.

In the above theorem, the assumption that Q be open is not necessary, as long as
/ e Cl on some open set that contains 17 (e.g., / € C1 on Rn).

A geometric interpretation of the above theorem is given in Figure 21.5. The
theorem states that if / : 17 —>• E is a convex function over a convex set 17, then for
all x,y € 17, the points on the line segment in En+1 connecting [XT, f ( x ) ] T and
[yT, f ( y ) ] T must lie on or above the graph of /.

Definition 21.4 A function / : 17 —> E on a convex set 17 C Mn is strictly convex if
for all x, y G 17, x ^ y, and o; G (0,1), we have

From the above definition, we see that for a strictly convex function, all points on the
open line segment connecting the points [XT, f ( x ) ] T and [yT, f ( y } ] T lie (strictly)
above the graph of /.

Definition 21.5 A function / : £7 —>• K. on a convex set £7 C Mn is (strictly) concave
if — / is (strictly) convex.

Note that the graph of a strictly concave function always lies above the line segment
connecting any two points on its graph.

Example 21.4 Let f ( x ) = x\x^. Is / convex over fJ = {x : x\ > 0, £2 > 0}?
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The answer is no. Take, for example, x = [1,2]T e f) and y = [2,1]T e Q.
Then,

Hence,

and

If, for example, a = 1/2 6 (0,1), then

which shows that / is not convex over f).

The above numerical example is an illustration of the following general result.

Proposition 21.1 A quadratic form f : 0 -» IK, 17 C Rn, given by f ( x ) = xTQx,
Q € Enxn, Q = QT, is convex on ft if and only if for all x, y e ft, (x - y)TQ(x -
y ) > 0 .

fVoo/ The result follows from Theorem 21.2. Indeed, the function f ( x ) — xTQx
is convex if and only if for every a € (0,1), and every x, y € Mn we have

or equivalently

Substituting for / into the left-hand side of the above equation yields

Therefore, / is convex if and only if

which proves the result.

Example 21.5 In the previous example, f ( x ] = Xix2, which can be written as
f(x] = xTQx, where
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Let ft = {x : x > 0}, and x = [2,2]T etl,y = [1,3]T € ft. We have

and

Hence, by the above theorem, / is not convex on ft.

Differentiable convex functions can be characterized using the following theorem.

Theorem 21.3 Let f : ft ->• E, f € C1, be defined on an open convex set ft C Mn.
Then, f is convex on ft if and only if for all x, y 6 ft,

Proof. =>•: Suppose/ : ft —>• E is differentiate and convex. Then, by Theorem 21.2,
for any y, x € ft and a e (0,1) we have

Rearranging terms yields

Upon dividing both sides of the above inequality by a we get

If we now take the limit as o; —>• 0 and apply the definition of the directional derivative
of / at x in the direction y — x (see Section 6.2), we get

or

<=: Assume that ft is convex, / : ft —>• R is differentiable, and for all x, y € ft,

Let it, v € ft and a G (0,1). Because ft is convex,

We also have
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Figure 21.6 Geometric interpretation of Theorem 21.3

and

Multiplying the first of the above inequalities by a and the second by (1 — a), and
then adding them together yields

But

Hence,

Hence, by Theorem 21.2, / is a convex function.

A geometric interpretation of the above theorem is given in Figure 21.6. To explain
the interpretation, let XQ 6 fi. The function g(x) = /(xo) + Df(x0)(x — XQ) is
the linear approximation to / at XQ. The theorem says that the graph of / always lies
above its linear approximation at any point. In other words, the linear approximation
to a convex function / at any point of its domain lies below epi(/).

For functions that are twice continuously differentiable the following theorem
gives another possible characterization of convexity.

Theorem 21.4 Let f : 0 -> R, / 6 C2, be defined on an open convex set ft C W1.
Then, f is convex on ft if and only if for each x G fl, the Hessian F(x) of f at x is
a positive semidefinite matrix.
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Proof. <=: Let x,y e £). Because / G C2, by Taylor's theorem there exists
a € (0,1) such that

Because F(x + a(y — x)) is positive semidefinite,

Therefore, we have

which implies that / is convex, by Theorem 21.3.
=$>: We use contraposition. Assume that there exists x e S7 such that F(x) is not

positive semidefinite. Therefore, there exists d e W1 such that d7 F(x}d < 0. By
assumption, $7 is open; thus, the point x is an interior point. By the continuity of
the Hessian matrix, there exists a nonzero s G E such that x + sd G fi, and if we
write y — x + sd, then for all points z on the line segment joining x and y, we have
d7 F(z]d < 0. By Taylor's theorem there exists a € (0,1) such that

Because a e (0,1), the point x + asd is on the line segment joining x and y, and
therefore

Because s ^ 0, we have s2 > 0, and hence

Therefore, by Theorem 21.3, / is not a convex function.

The above theorem can be strengthened to include non-open sets by modifying the
condition to be (y - x)TF(x}(y - x) > 0 for all x, y 6 H (and assuming / e C2

on some open set that contains fi; for example, / € C2 on En). A similar proof as
the above can be used in this case.

Note that by definition of concavity, a function / : D —> E, / G C2, is concave
over the convex set 17 C En if and only if for all x 6 17, the Hessian F(x) of / is
negative semidefinite.

Example 21.6 Determine whether the following functions are convex, concave or
neither:

1. / : E -> E, f ( x ) = -8x2;

2. / : E3 ->• E, f ( x ) = 4xf + Sz2, + 5x§ + 6x12:2 + xix3 - 3a?i - 2x2 + 15;
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3. / : E2 -» E, f ( x ) - 2xix2 ~x\- x\.

Solutions:

1. We use Theorem 21.4. We first compute the Hessian, which in this case is just
the second derivative: (d?f/dx2)(x} = -16 < 0 for all x € E. Hence, / is
concave over E

2. The Hessian matrix of / is

The leading principal minors of F(x] are

Hence, F(x] is positive definite for all x e M.3. Therefore, / is a convex
function over E3.

3. The Hessian of / is

which is negative semidefinite for all x G E2. Hence, / is concave on E2.

21.3 CONVEX OPTIMIZATION PROBLEMS

In this section we consider optimization problems where the objective function is a
convex function, and the constraint set is a convex set. We refer to such problems as
convex optimization problems or convex programming problems. Optimization prob-
lems that can be classified as convex programming problems include linear programs,
and optimization problems with quadratic objective function and linear constraints.
Convex programming problems are interesting for several reasons. Specifically, as
we shall see, local minimizers are global for such problems. Furthermore, first-order
necessary conditions become sufficient conditions for minimization.

Our first theorem below states that in convex programming problems, local mini-
mizers are also global.

Theorem 21.5 Let f : ft -» E be a convex function defined on a convex set fl C En.
Then, a point is a global minimizer of f over $7 if and only if it is a local minimizer
off.
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Proof. =$•: This is obvious.
<=: We prove this by contraposition. Suppose that x* is not a global minimizer

of / over 1). Then, for some y G ft, we have f ( y ) < /(x*). By assumption, the
function / is convex, and hence for all a € (0,1),

Because f ( y ) < f ( x * } , we have

Thus, for all a e (0,1),

Hence, there exist points that are arbitrarily close to x* and have lower objective
function value. For example, the sequence {yn} of points given by

converges to x*, and f ( y n ) < f ( x * ) . Hence, x* is not a local minimizer, which
completes the proof.

We now show that the set of global optimizers is convex. For this, we need the
following lemma.

Lemma 21.1 Let g : fi —> E be a convex function defined on a convex set £) C Mn.
Then, for each c € ffi, the set

is a convex set.

Proof. Let x,y G Fc. Then, g(x) < c and g(y] < c. Because g is convex, for all
«G(0,1) ,

Hence, ax + (1 — a)y € Fc, which implies that Fc is convex.

Corollary 21.1 Let f : O —> E be a convex function defined on a convex set fi C Mn.
Then, the set of all global minimizers of f over ft is a convex set.

Proof. The result follows immediately from the previous lemma by setting
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We now show that if the objective function is continuously differentiable and
convex, then the first-order necessary condition (see Theorem 6.1) for a point to be a
minimizer is also sufficient. We use the following lemma.

Lemma 21.2 Let f : 17 —> R be a convex function defined on the convex set 17 C W1,
and f G Cl on an open convex set containing 17. Suppose the point x* G Ft is such
that for all x G 17, x ^ x*, we have

Then, x* is a global minimizer of f over 17.

Proof. Because the function / is convex, by Theorem 21.3, for all x G 17, we have

Hence, the condition D f ( x * ) ( x — x*) > 0 implies that f ( x ) > f ( x * ) .

Observe that for any x G 17, the vector x — x* can be interpreted as a feasible
direction at x* (see Definition 6.2). Using the above lemma, we have the following
theorem (cf. Theorem 6.1).

Theorem 21.6 Let f : 17 —> E be a convex function defined on the convex set
17 C Mn, and f G Cl on an open convex set containing $). Suppose the point x* G 17
is such that for any feasible direction dat x*, we have

Then, x* is a global minimizer of f over 17.

Proof. Let x G 17, x ^ x*. By convexity of f7,

for all a G (0,1). Hence, the vector d = x — x* is a feasible direction at x* (see
Definition 6.2). By assumption,

Hence, by Lemma 21.2, x* is a global minimizer of / over J7.

From the above theorem, we easily deduce the following corollary (compare this
with Corollary 6.1).

Corollary 21.2 Let / : fl -» ffi, / G C1, be a convex function defined on the convex
set (7 C Mn. Suppose the point x* G 17 is such that
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Then, x* is a global minimizer of f over fi.

We now consider the constrained optimization problem

We assume that the feasible set is convex. An example where this is the case is when

The following theorem states that provided the feasible set is convex, the Lagrange
condition is sufficient for a point to be a minimizer.

Theorem 21.7 Let / : Rn —>• K, / € Cl, be a convex function on the set of feasible
points

where h : W1 —>• Rm, h € Cl, and £) is convex. Suppose there exist x* € ft and
A* € Rm such that

Then, x* is a global minimizer of f over $1.

Proof. By Theorem 21.3, for all a; € 0, we have

Substituting Df(x*) = — \*TDh(x*} into the above inequality yields

Because fi is convex, (1 — a)x* + ax € fJ for all a e (0,1). Thus,

for all a G (0,1). Premultiplying by A*T, subtracting \*Th(x*} = 0, and dividing
by a, we get

for all a 6 (0,1). If we now take the limit as a —»• 0 and apply the definition of the
directional derivative of \*Th at x* in the direction x — x* (see Section 6.2), we get

Hence,

which implies that x* is a global minimizer of / over fi.
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Consider the general constrained optimization problem

As before, we assume that the feasible set is convex. This is the case if, for example,
the two sets {x : h(x) = 0} and {x : g(x) < 0} are convex, because the feasible
set is the intersection of these two sets (see also Theorem 4.1). We have already
seen an example where the set {x : h(x) = 0} is convex. On the other hand,
an example where the set {x : g(x) < 0} is convex is when the components of
g = [51,... ,9P]T are all convex functions. Indeed, the set {x : g(x) < 0} is the
intersection of the sets {x : gi(x] < 0},i = 1,... ,p. Because each of these sets is
convex (by Lemma 21.1), their intersection is also convex.

We now prove that the Karush-Kuhn-Tucker (KKT) condition is sufficient for a
point to be a minimizer to the above problem.

Theorem 21.8 Let f : W1 -> K, / 6 C1, be a convex function on the set of feasible
points

where h : W1 ->• Rm, g : En ->W,h,geCl, and ft is convex. Suppose there
exist x* e ft, A* € Rm, and n* 6 Rp, such that

1. n* > 0;

2. D f ( x * ) + A*T£>/i(z*) + n*TDg(x*} = 0T; and

3. n*Tg(x*) = 0.

Then, x* is a global minimizer off over ft.

Proof. Suppose x e ft. By convexity of / and Theorem 21.3,

Using condition 2, we get

As in the proof of Theorem 21.7, we can show that \*TDh(x*)(x — x*) = 0. We
now claim that/z*T-D<7(#*) (a;-#*) < 0. To see this, note that because ft is convex,
(1 - a)x* + ax € ft for all a € (0,1). Thus,

for all a G (0,1). Premultiplying by /x*T > 0T (by condition 1), subtracting
H*Tg(x*} = 0 (by condition 3), and dividing by a, we get
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We now take the limit as a ->• 0 to obtain n*TDg(x*}(x - a;*) < 0.
From the above, we have

for all x <E fi, and the proof is completed.

Example 21.7 A bank account starts out with 0 dollars. At the beginning of each
month, we deposit some money into the bank account. Denote by Xk the amount
deposited in the kth month, k = 1,2, Suppose the monthly interest rate is r > 0,
and the interest is paid into the account at the end of each month (and compounded).
We wish to maximize the total amount of money accumulated at the end of n months,
such that the total money deposited during the n months does not exceed D dollars
(where D > 0).

To solve this problem, we first show that the problem can be posed as a linear
program, and is therefore a convex optimization problem. Let yk be the total amount
in the bank at the end of the kth month. Then, yk = (1 + r}(yk-i + x^, k > 1, with
yo = 0. Therefore, we want to maximize yn subject to the constraint that Xk > 0,
k = 1,..., n, and x\ + • • • + xn < D. It is easy to deduce that

LetcT = [(l+rr,(l+r)»-1,...,(l+r)],e
T = [l, . . . , l] ,andx-[x1 , . . . ,xn]T .

Then, we can write the problem as

which is a linear program.
It is intuitively clear that the optimal strategy is to deposit D dollars in the first

month. To show that this strategy is indeed optimal, we use Theorem 21.8. Let
x* = [D, 0 , . . . , 0]T G En. Because the problem is a convex programming problem,
it suffices to show that x* satisfies the KKT condition (see Theorem 21.8). The KKT
condition for this problem is
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where At*1* e Eand/x(2) € En. Let^1) = (l+r)n andpW = (l+r)ne-c. Then,
it is clear that the KKT condition is satisfied. Therefore, x* is a global minimizer. I

For extensions of the theory of convex optimization, we refer the reader to [99,
Chapter 10]. The study of convex programming problems also serves as a prerequisite
to nondifferentiable optimization (see, e.g., [25]).

EXERCISES

21.1 Consider the function

where Q = Q1 > 0, and x,b e En. Define the function 4> : E -> E by
0(a) = f(x + ad), where x, d 6 En are fixed vectors, and d ^ 0. Show that <£(o:)
is a strictly convex quadratic function of a.

21.2 Show that f ( x ) = x\xi is a convex function on ft = {[a,ma]T : a 6 E},
where m is any given nonnegative constant.

21.3 Suppose the set ft = {x : h(x) = c} is convex, where h : En ->• E and c € E.
Show that h is convex and concave over ft.

21.4 Let ft C En be an open convex set. Show that a symmetric matrix Q € En

is positive semidefinite if and only if for each x, y € ft, (x — y)TQ(x — y) > 0.
Show that a similar result for positive definiteness holds if we replace the ">" by
">" in the above inequality.

21.5 Consider the problem

(see also Exercise 20.7). Is the problem a convex optimization problem? If yes, give
a complete proof. If no, explain why not, giving complete explanations.

21.6 Consider the optimization problem

where f ( x ] = x\x\, where x = [xi,X2\T, and ft = {x G E2 : x\ = X2, £i > 0}.
(See also Exercise 20.6.) Show that the problem is a convex optimization problem.
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21.7 Consider the convex optimization problem

Suppose the points y 6 fi and z e Q are local minimizers. Determine the largest
set of points G C fi for which you can be sure that every point in G is a global
minimizer.

21.8 Consider the optimization problem

where Q e Rnxn, Q = QT > 0, A <E Emxn, and rank A = m.

a. Find all points satisfying the Lagrange condition for the problem (in terms of
Q, A, and b).

b. Are the points (or point) global minimizers for the above problem?

21.9 Let / : W1 —>• M, / 6 C1, be a convex function on the set of feasible points

where a\,..., ap G W1, and 61, . . . , bp G M. Suppose there exist x* G S, and
/z* € Mp ,/x* < 0, such that

where J ( x * ) = {i : a?x* + 6j = 0}. Show that x* is a global minimizer of / over
a

21.10 Consider the problem: minimize \\x\\2 (x € Mn) subject to aTx > 6, where
a e W1 is a nonzero vector, and b € K, 6 > 0. Suppose x* is a solution to the
problem.

a. Show that the constraint set is convex.

b. Use the KKT theorem to show that aTx* = b.

c. Show that x* is unique, and find an expression for x* in terms of a and b.

21.11 Consider the problem
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For this problem we have the following theorem (see also Exercise 17.12).
Theorem: A solution to the above problem exists if and only ifc>0. Moreover, if
a solution exists, 0 is a solution.

a. Show that the above problem is a convex programming problem.

b. Use the first-order necessary condition (for set constraints) to prove the above
theorem.

c. Use the KKT condition to prove the above theorem.

21.12 Consider a linear programming problem in standard form.

a. Derive the KKT condition for the problem.

b. Explain precisely why the KKT condition are sufficient for optimality in this
case.

c. Write down the dual to the standard form primal problem (see Chapter 17).

d. Suppose x* and A* are feasible solutions to the primal and dual, respectively.
Use the KKT condition to prove that if the complementary slackness condition
(CT — \*TA)x* = 0 holds, then x* is an optimal solution to the primal
problem. Compare the above with Exercise 20.12.

21.13 Let a probability vector be any vector p € Mn satisfying^ > 0, i — 1,..., n,
andpi H \-pn = 1.

Let p € En and q £ Mn be two probability vectors. Define

where log is the natural logarithm function.

a. Let 17 be the set of all probability vectors (with fixed n). Show that fl is convex.

b. Show that, for each fixed p, the function / defined by f ( q ) = D(p,q) is
convex over fJ.

c. Show the following: D(p, q) > 0 for any probability vectors p and q. More-
over, D(p, q} = 0 if and only if p = q.

d. Describe an application of the result of part c.

21.14 This exercise is about linear matrix inequalities (see [ 12] for more information
on the topic).
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a. Show that if A G Rnxn and B € Mnxn are symmetric and A > 0, B > 0,
then for any a £ (0,1), we have aA + (1 - a)B > 0. The notation "> 0"
denotes positive semidefiniteness.

b. Consider the following optimization problem:

where x = [xi,... ,xn]
T 6 Rn is the decision variable, c e Rn, and

FO, FI, . . . , Fn e Rnxn are symmetric.

Show that the above problem is a convex optimization problem.

c. Consider the linear programming problem

where A e Emxn, b e Em, and the inequality Ax > b has the usual
elementwise interpretation. Show that this linear programming problem can
be converted to the problem in part b.
Hint: First consider diagonal Fj.

21.15 Let t/j : R -> R, t/i € C1, i = 1,... ,n, be a set of concave increasing
functions. Consider the optimization problem:

where C > 0 is a given constant.

a. Show that the above optimization problem is a convex optimization problem.

b. Show that x* = [x*,...,x£]T is an optimal solution to the above opti-
mization problem if and only if there exists a scalar n* > 0 such that
x* = argmaxx(C/i(x) — n*x). (The quantity Ui(x) has the interpretation
of the "utility" of ar, whereas p,* has the interpretation of a "price" per unit of
x.)

c. Show that £?=1 x| = C.
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21.16 Give an example of a function / : R2 -» E, a set O = {a; : g(x) < 0}, and a
regular point x* e f), such that the following all hold simultaneously:

1. x* satisfies the FONC for set constraint fi (Theorem 6.1);

2. x* satisfies the KKT condition for inequality constraint g(x] < 0 (Theo-
rem 20.1);

3. x* satisfies the SONC for set constraint fi (Theorem 6.2);

4. x* does not satisfy the SONC for inequality constraint #(0;) < 0 (Theo-
rem 20.2).

Be sure to show carefully that your choice of /, 0 = {x : g(x) < 0},andx* satisfies
all the conditions above simultaneously.
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22
Algorithms for Constrained

Optimization

22.1 INTRODUCTION

In Part II we discussed algorithms for solving unconstrained optimization problems.
This chapter is devoted to a treatment of some simple algorithms for solving special
constrained optimization problems. The methods here build on those of Part II.

We begin our presentation in the next section with a discussion of projected
methods, including a treatment of projected gradient methods for problems with linear
equality constraints. We then consider penalty methods. This chapter is intended
as an introduction to some basic ideas underlying methods for solving constrained
optimization problems. For an in-depth coverage of the subject, we refer the reader
to [8].

22.2 PROJECTIONS

The optimization algorithms considered in Part II have the general form

where d^ is typically a function of Vf(x^). The value of x^ is not constrained
to lie inside any particular set. Such an algorithm is not immediately applicable to
solving constrained optimization problems in which the decision variable is required
to lie within a prespecified constraint set.

Consider the optimization problem

439
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If we use the algorithm above to solve this constrained problem, the iterates x\k>
may not satisfy the constraints. Therefore, we need to modify the algorithms to
take into account the presence of the constraints. A simple modification involves the
introduction of a projection. The idea is as follows. If x^ + o^d^ is in 17, then
we set x(fc+1) = x^ + otkd^' as usual. If, on the other hand, x^ + o.kd^ is not
in fl, then we "project" it back into fi before setting x^k+l^.

To illustrate the projection method, consider the case where the constraint set
1) C W1 is given by

In this case, ft is a "box" in En. Given a point x € En, define y = H[x] e W1 by

The point II [x] is called the projection of x onto O. Note that II [x] is actually
the "closest" point in D to x. Using the projection operator II, we can modify the
previous unconstrained algorithm as follows:

Note that the iterates x^ now all lie inside 0. We call the above algorithm a
projected algorithm.

In the more general case, we can define the projection onto O:

In this case, II[x] is again the "closest" point in 17 to x. This projection operator
is well defined only for certain types of constraint sets—for example, closed convex
sets. For some sets 17, the "argmin" above is not well defined. If the projection II
is well defined, we can similarly apply the projected algorithm

In some cases, there is a formula for computing TL[x]. For example, if 17 is a
"box" constraint set as described above, then the formula given previously can be
used. Another example is where 17 is a linear variety (plane), which is discussed in the
next section. In general, even if the projection II is well defined, the computation of
H[x] given x may not be easy. Often, the projection H[x] may have to be computed
numerically. However, the numerical computation of II [x] itself entails solving an
optimization algorithm. Indeed, the computation of II [x] may be as difficult as the
original optimization problem, as is the case in the following example:
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Note that the solution to the problem in this case can be written as II [0]. Therefore, if
0 g fi, the computation of a projection is equivalent to solving the given optimization
problem.

22.3 PROJECTED GRADIENT METHODS

In this section, we consider optimization problems of the form

where / : Rn ->• R, A G Rmxn, m < n, rankA = m, 6 6 Em. We assume
throughout that / G Cl. In the above problem, the constraint set is f& = {x : Ax =
b}. The specific structure of the constraint set allows us to compute the projection
operator II using the orthogonal projector (see Section 3.3). Specifically, II[x] can
be defined using the orthogonal projector matrix P given by

(see Example 12.4). Two important properties of the orthogonal projector P that we
use in this section are (see Theorem 3.5):

1. P = PT;and

2. P2 = P.

Another property of the orthogonal projector that we need in our discussion is
given in the following lemma.

Lemma 22.1 Let v G Mn. Then, Pv = 0 if and only ifv€ n(AT}. In other
words, M(P) = n(AT}. Moreover, Av = 0 if and only if v G ft(-P), that is,
N(A) = U(P}. D

Proof. =$>: We have

If Pv = 0, then

and hence v € n(AT}.
<=: Suppose there exists u G MTO such that v = ATu. Then,
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Hence, we have proved that JV(P) = K(AT).
Using a similar argument as above, we can show that M(A) = 7£(P).

Recall that in unconstrained optimization, the first-order necessary condition for
a point x* to be a local minimizer is V/(aj*) = 0 (see Section 6.2). In optimization
problems with equality constraints, the Lagrange condition plays the role of the first-
order necessary condition (see Section 19.4). When the constraint set takes the form
{x : Ax = 6}, the Lagrange condition can be written as PV/(x*) = 0, as stated
in the following proposition.

Proposition 22.1 Letx* G W1 be a feasible point. Then, PVf(x*) = 0 ifand only
ifx* satisfies the Lagrange condition. D

Proof. By Lemma 22.1, PV/(x*) = 0 if and only if we have V/(x*) € U(AT).
This is equivalent to the condition that there exists A* € Em such that Vf(x*) +
AT\* = 0, which, together with the feasibility equation Ax — 6, constitutes the
Lagrange condition.

In the remainder of this section, we discuss the projection method applied specif-
ically to the gradient algorithm (see Chapter 8). Recall that the vector — V/(x)
points in the direction of maximum rate of decrease of / at x. This was the
basis for gradient methods for unconstrained optimization, which have the form
x(*+i) — x(k) _ Q^V/^W), where otk is the step size. The choice of the step
size Oik depends on the particular gradient algorithm. For example, recall that in the
steepest descent algorithm, a;*; = argmina>0 f(x^ - aVf(x^)).

The projected version of the gradient algorithm has the form

We refer to the above as the projected gradient algorithm. It turns out that we can
express the projection II in terms of the matrix P as follows:

assuming x^ £ fi. Although the above formula can be derived algebraically
(see Exercise 22.1), it is more insightful to derive the formula using a geometric
argument, as follows. In our constrained optimization problem, the vector — V/(x)
is not necessarily a feasible direction. In other words, if x^ is a feasible point
and we apply the algorithm x^k+l^ = x^ — akVf(x^), then x^k+1^ need not
be feasible. This problem can be overcome by replacing — Vf(x^) by a vector
that points in a feasible direction. Note that the set of feasible directions is simply
the nullspace Af(A) of the matrix A. Therefore, we should first project the vector
—V/(x) onto J\f(A). This projection is equivalent to multiplication by the matrix
P. In summary, in the projection gradient algorithm, we update x^ according to
the equation

The projected gradient algorithm has the following property.
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Proposition 22.2 In a projected gradient algorithm, if x^ is feasible, then each
x^ is feasible, that is, for each k > 0, Ax^ = b. D

Proof. We proceed by induction. The result holds for A; = 0 by assumption. Suppose
now that Ax^ = b. We now show that Ax^k+l^ = b. To show this, first observe
thatPV/(xW) 6 M(A). Therefore,

which completes the proof.

The projected gradient algorithm updates x^ in the direction of — PV/(x(fc)).
This vector points in the direction of maximum rate of decrease of / at x^ along
the surface defined by Ax = 6, as described in the following argument. Let x be
any feasible point and d a feasible direction such that \\d\\ = 1. The rate of increase
of / at x in the direction d is (V/(x), d}. Next, we note that because d is a feasible
direction, it lies in AT (A) and hence by Lemma 22.1, we have d € U(P) = U(PT}.
So, there exists v such that d = Pv. Hence,

By the Cauchy-Schwarz inequality,

with equality if and only if the direction of v is parallel with the direction of PV/(x).
Therefore, the vector —PV/(x) points in the direction of maximum rate of decrease
of / at x among all feasible directions.

Following the discussion in Chapter 8 for gradient methods in unconstrained
optimization, we suggest the following gradient method for our constrained problem.
Suppose we have a starting point x^, which we assume is feasible, that is, Ax^ =
b. Consider the point x = x^ — aPVf(x^), where a e R As usual, the scalar
a is called the step size. By the above discussion, x is also a feasible point. Using a
Taylor series expansion of / about x^, and the fact that P = P2 = PTP, we get

Thus, if PV/(x(°)) 7^ 0, that is, x^ does not satisfy the Lagrange condition,
then we can choose an a sufficiently small such that /(x) < /(x^), which means
that x = a;(0) — aPV/(x(°)) is an improvement over x^0). This is the basis for
the projected gradient algorithm x^k+1^ = x^ — afcPV/(x^), where the initial
point x(°) satisfies Ax^ = 6, and o^ is some step size. As for unconstrained
gradient methods, the choice of a.k determines the behavior of the algorithm. For
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small step sizes, the algorithm progresses slowly, while large step sizes may result in
a zig-zagging path. A well-known variant of the projected gradient algorithm is the
projected steepest descent algorithm, where ctk is given by

The following theorem states that the projected steepest descent algorithm is a
descent algorithm, in the sense that at each step the value of the objective function
decreases.

Theorem 22.1 If{x^} is the sequence of points generated by the projected steepest
descent algorithm and if PVf(xW) ^ 0, then f(x^k+^) < /(»<*>).

Proof. First, recall that

where ct^ > 0 is the minimizer of

over all a > 0. Thus, for a > 0, we have

By the chain rule,

Using the fact that P = P2 = PTP, we get

because P V f ( x ^ ) ^ 0 by assumption. Thus, there exists a > 0 such that
0fc(0) > 0fc(a) for all a € (0,a]. Hence,

and the proof of the theorem is completed.

In the above theorem we needed theassumptionthatPV/(a;(fc)) ^ Oto prove that
the algorithm possesses the descent property. If for some k, we have PVf(x^) =
0, then by Proposition 22.1 the point x^ satisfies the Lagrange condition. This
condition can be used as a stopping criterion for the algorithm. Note that in this
case, #(fc+1) = x^k\ For the case where / is a convex function, the condition
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PV/(x(fc)) = 0 is, in fact, equivalent to x^ being a global minimizer of / over
the constraint set {x : Ax = b}. We show this in the following proposition.

Proposition 22.3 The point x* e En is a global minimizer ofa convex function f
over {x : Ax = b} if and only ifPVf(x*) = 0.

Proof. We first write h(x) = Ax — b. Then, the constraints can be written as
h(x) — 0, and the problem is of the form considered in previous chapters. Note that
Dh(x] = A. Hence, x* 6 Rn is a global minimizer of / if and only if the Lagrange
condition holds (see Theorem 21.7). By Proposition 22.1, this is true if and only if
PV/(x*) = 0, and the proof is completed.

For an application of the projected steepest descent algorithm to minimum fuel
and minimum amplitude control problems in linear discrete systems, see [57].

22.4 PENALTY METHODS

In this section, we consider constrained optimization problems of the form

where / : En ->• K, #; : En ->• E, i = 1,... ,p. Considering only inequality
constraints is not restrictive, because an equality constraint of the form h(x) = 0 is
equivalent to the inequality constraint ||/j,(x)||2 < 0 (however, see Exercise 20.21 for
a caveat). We now discuss a method for solving the above constrained optimization
problem using techniques from unconstrained optimization. Specifically, we approx-
imate the constrained optimization problem above by an unconstrained optimization
problem

where 7 e R is a positive constant, and P : W1 -> E is a given function. We then
solve the associated unconstrained optimization problem, and use the solution as an
approximation to the minimizer of the original problem. The constant 7 is called the
penalty parameter, and the function P is called the penalty Junction. Formally, we
define a penalty function as follows.

Definition 22.1 A function P : En —>• E is called a penalty Junction for the above
constrained optimization problem if it satisfies the following three conditions:

1. P is continuous;
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2. P(x) > O f o r a l l z e R n ;

3. P(x) = 0 if and only if x is feasible, that is, g\ (x} < 0 , . . . , gp(x) < 0.

Clearly, for the above unconstrained problem to be a good approximation to the
original problem, the penalty function P must be appropriately chosen. The role of
the penalty function is to "penalize" points that are outside the feasible set. Therefore,
it is natural that the penalty function be defined in terms of the constraint functions
g\,..., gp. A possible choice for P is

where

^

We refer to the above penalty function as the absolute value penalty function, because
it is equal to ̂  \gi(x)\, where the summation is taken over all constraints that are
violated at x. We illustrate this penalty function in the following example.

Example 22.1 Let#i,#2 : R -> K be denned by gi (re) = x-2,g2(x) = -(x + 1)3.
The feasible set defined by {x € M : g\(x) < Q,g-2(x) < 0} is simply the interval
[—1,2]. In this example, we have

and

Figure 22.1 provides a graphical illustration of g+ for this example.

The absolute value penalty function may not be differentiable at points x where
gi(x) = 0, as is the case at the point x = 1 in Example 22.1 (notice, though, that in
Example 22.1, P is differentiable at x = —1). Therefore, in such cases we cannot
use techniques for optimization that involve derivatives. A form of the penalty
function that is guaranteed to be differentiable is the so-called Courant-Beltrami
penalty function, given by
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Figure 22.1 g+ for Example 22.1

In the following discussion, we do not assume any particular form of the penalty
function P. We only assume that P satisfies conditions 1-3 given in Definition 22.1.

The penalty function method for solving constrained optimization problems in-
volves constructing and solving an associated unconstrained optimization problem,
and using the solution to the unconstrained problem as the solution to the original
constrained problem. Of course, the solution to the unconstrained problem (the
approximated solution) may not be exactly equal to the solution to the constrained
problem (the true solution). Whether or not the solution to the unconstrained problem
is a good approximation to the true solution depends on the penalty parameter 7 and
the penalty function P. We would expect that the larger the value of the penalty
parameter 7, the closer the approximated solution will be to the true solution, be-
cause points that violate the constraints are penalized more heavily. Ideally, in the
limit as 7 -» oo, the penalty method should yield the true solution to the constrained
problem. In the remainder of this section, we analyze this property of the penalty
function method.

In our analysis of the penalty method, we adopt the following setting. Recall that
the original constrained optimization problem is:

Denote by x* a solution (global minimizer) to the above problem. Let P be a penalty
function for the problem. For each k = 1,2,. . . , let 7^ £ E be a given positive
constant. Define an associated function (7(7*, •) : En —>• M by
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For each k, we can write the following associated unconstrained optimization prob-
lem:

Denote by x^ a minimizer of q(jk,x). The following technical lemma describes
certain useful relationships between the constrained problem and the associated
unconstrained problems.

Lemma 22.2 Suppose J7fc} w a nondecreasing sequence, that is, for each k, we
have 7fc < 7^+1. Then, for each k we have

1. 9(7*+!,*<*+1>)>0(7*,s(*))

2. P(x(fc+1)) <P(xW)

3. /(x(*+1)) > /(xW)

4. /(**)> 9(7*,xw) >/(*<*>).

Proo/ We first prove part 1. From the definition of q and the fact that {7*} is an
increasing sequence, we have

Now, because x^ is a minimizer of q(jk > a?).

Combining the above, we get part 1.
We next prove part 2. Becausex^ andx(*+1) minimize q(jk,x) and 9(7^+1, x),

respectively, we can write

Adding the above inequalities yields

Rearranging, we get

We know by assumption that 7^+1 > 7*. If 7fc+i > 7*, then we get P(x(fc+1)) <
P(x^). If, on the other hand, 7^+1 = 7^, then clearly x^k+l^ = x^ and so
P(x(fc+1)) = P(x^). Therefore, in either case, we arrive at part 2.

We now prove part 3. Because x^ is a minimizer of 9(7^, x), we obtain
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Therefore,

From part 2, we have P(x^} - P(x(fc+1)) > 0, and 7^ > 0 by assumption;
therefore, we get

Finally, we now prove part 4. Because x^ is a minimizer of #(7*, x), we get

Because x* is a minimizer for the constrained optimization problem, we have
P(x*) = 0. Therefore,

Because P(x^) > 0 and jk > 0,

which completes the proof.

With the above lemma, we are now ready to prove the following theorem.

Theorem 22.2 Suppose the objective function f is continuous, and 7^ -> oo as
k —} oo. Then, the limit of any convergent subsequence of the sequence {x(fc)} is a
solution to the constrained optimization problem. D

Proof. Suppose {x(mfc)} is a convergent subsequence of the sequence {x^ }. (See
Section 5.1 for a discussion of sequences and subsequences.) Let x be the limit
of (x(mfe)}. By Lemma 22.2, the sequence {q(lk,x^}} is nondecreasing and
bounded above by /(x*). Therefore, the sequence {q(jk,x^)} has a limit q* =
limjfc_>.oo q(lk, x( fc)) such that q* < /(x*) (see Theorem 5.3). Because the function
/ is continuous, and /(x^mfc^) < /(x*) by Lemma 22.2, we have

Because the sequences {/(x(mfc))} and {q(lmk-lx^mk'>}} both converge, the se-
quence {7mfcP(a;(mfc))} = {?(7mfc,x

(mfc)) - /(x<mfc))} also converges, with

By Lemma 22.2, the sequence {P(x(*))} is nonincreasing and bounded from below
by 0. Therefore, {P(x^^)} converges (again see Theorem 5.3), and hence so does
{P(x(mfc))}. Because 7mfc -» oo, we conclude that
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By continuity of P, we have

and hence x is a feasible point. Because /(x*) > /(x) from above, we conclude
that x must be a solution to the constrained optimization problem.

If we perform an infinite number of minimization runs, with the penalty parameter
7fc —> oo, then the above theorem ensures that the limit of any convergent subse-
quence is a minimizer x* to the original constrained optimization problem. There
is clearly a practical limitation in applying this theorem. It is certainly desirable
to find a minimizer to the original constrained optimization problem using a sin-
gle minimization run for the unconstrained problem that approximates the original
problem using a penalty function. In other words, we desire an exact solution to
the original constrained problem by solving the associated unconstrained problem
(minimize f ( x ) + jP(x}) with a finite 7 > 0. It turns out that indeed this can be
accomplished, in which case we say that the penalty function is exact. However, it
is necessary that exact penalty functions be nondifferentiable, as shown in [7], and
illustrated in the following example.

Example 22.2 Consider the problem

where f ( x ) = 5 — 3x. Clearly, the solution is x* = 1.
Suppose we use the penalty method to solve the problem, with a penalty function

P that is differentiate at z* = 1. Then, P'(x*) = 0, because P(x) = 0 for all
x € [0,1]. Hence, if we letp = / + -yP, then g'(x*) = /'(re*) + jP'(x*) ^ 0 for
all finite 7 > 0. Hence, x* = 1 does not satisfy the first-order necessary condition
to be a local minimizer of g. Thus, P is not an exact penalty function.

Here, we prove a result on the necessity of nondifferentiability of exact penalty
functions for a special class of problems.

Proposition 22.4 Consider the problem

with ft CW1 convex. Suppose the minimizer x* lies on the boundary of ft, and there
exists a feasible direction d at x* such that d V/(x*) > 0. IfP is an exact penalty
function, then P is not differentiate atx*.

Proof. We use contraposition. Suppose P is differentiable at x*. Then,
dTVP(x*) = 0, because P(x) = 0 for all x € ft. Hence, if we let g = f + ^P,
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then dTVg(x*) > 0 for all finite 7 > 0, which implies that Vg(x*) ^ 0. Hence,
x* is not a local minimizer of g, and thus P is not an exact penalty function.

Note that the result of the above proposition does not hold if we remove the
assumption that d V/(x*) > 0. Indeed, consider a convex problem where
V/(x*) = 0. Choose P to be differentiable. Clearly, in this case we have
Vg(x*) = V/(x*) + 7VP(x*) - 0. The function P is therefore an exact penalty
function, although differentiable.

For further reading on the subject of optimization of nondifferentiable functions,
see, for example, [25]. The references [8] and [70] provide further discussions
on the penalty method, including nondifferentiable exact penalty functions. These
references also discuss exact penalty methods involving differentiable functions;
these methods go beyond the elementary type of penalty method introduced in this
chapter.

EXERCISES

22.1 Let A G Rmxn , m < n, rankA = m, and 6 G Mm. Define ft = {x : Ax =
b} and let x0 € ft. Show that for any y 6 En,

where P = I- AT(AAT)~1 A.
Hint: Use Exercise 6.4 and Example 12.4.

22.2 Let / : En ->• E be given by /(x) = \xTQx - XTC, where Q = QT > 0.
We wish to minimize / over {x : Ax — b}, where A & Rm x n , ra < n, and
rank A = m. Show that the projected steepest descent algorithm for this case takes
the form

where

and P = In- AT(AAT)-1A.

22.3 Consider the problem

where A e Emxn, m < n, and rankA = m. Show that if x(°) € {x : Ax - b},
then the projected steepest descent algorithm converges to the solution in one step.
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22.4 Show that in the projected steepest descent algorithm, we have that for each fc,

a. g(k+VTPg(V = 0; and

b. the vector x^k+1^ — x^ is orthogonal to the vector x(fc+2) — a;(fc+1).

22.5 Consider the simple optimization problem:

where a G R Suppose we use the penalty method to solve this problem, with penalty
function

(the Courant-Beltrami penalty function). Given a number e > 0, find the smallest
value of the penalty parameter 7 such that the solution obtained using the penalty
method is no further than e from the true solution to the given problem. (Think of e
as the desired accuracy.)

22.6 Consider the problem

where A e Rmxn, b e Em, m < n, and rank A = m. Let x* be the solution.
Suppose we solve the problem using the penalty method, with the penalty function

Let x* be the solution to the associated unconstrained problem with the penalty
parameter 7 > 0, that is, x* is the solution to

a. Suppose

Verify that x* converges to the solution x* of the original constrained problem
as 7 ->• oo.

b. Prove that x* —> x* as 7 -> oo holds in general.
Hint: Use the following result: There exist orthogonal matrices U 6 £mxm

and VT € Rnxn such that
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where

X /

is a diagonal matrix with diagonal elements that are the square-roots of the
eigenvalues of AAT.

The above result is called the singular value decomposition (see, e.g., [43,
p. 411]).
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Absolute value, 16
Absolute value penalty function, 446
Activation function, 219
Active constraint, 397
Adaline, 223,236
Adaptive linear element, 223
Additivity, 16
Affine function, 55, 56, 215
Affine scaling, 343, 344
Affine scaling method, 343-348

artificial problem, 347
stopping criterion, 346
strictly interior feasible point,

343
Algorithm

affine scaling, 343-348
backpropagation, 219, 224-234
BFGS, 180-184
Broyden-Fletcher-Goldfarb-

Shanno, see BFGS algo-
rithm

complexity of, 256, 340
conjugate gradient, see Conju-

gate gradient algorithm

convergence of, see Convergence
Davidon-Fletcher-Powell, see

DFP algorithm
DFP, 176-180
ellipsoid, see Khachiyan's

method
exponential complexity, 340
fixed step size, 127, 132,226
for constrained optimization,

439-451
genetic, 237-250
globally monotone, 137
gradient, 113-134
Gram-Schmidt, 152, 164
interior-point, 256, 340, 343,

348,360
iterative, 109, 138. See also

Search methods
Kaczmarz's, 201-204,223
Karmarkar's, see Karmarkar's

method
Khachiyan's, 256, 340-343, 355
polynomial complexity, 340
probabilistic, 237
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Algorithm (Continued)
projected, 440
projected gradient, 344,441-445
projected steepest descent, 444
quasi-Newton, see Quasi-

Newton methods
rank one, 171-175
rank two, 176
RLS, 196-201
secant method, 106-108
simplex, see Simplex method
single-rank symmetric, 171
SRS, 171
steepest descent, 115-122
symmetric Huang family, 186
variable metric, 176
Widrow-Hoff, 223, 236

Alphabet in genetic algorithm, 238
argmin, 74
Artificial neural networks, see Feed-

forward neural networks
Artificial problem

in affine scaling method, 347
in Karmarkar's method, 355

Artificial problem in simplex method,
307

Associative, 6,7
Asymmetric duality, 323
Augmented matrix, 274
Ax = b, see Linear equations

Backpropagation algorithm, 219,
224-234

as a gradient algorithm, 226
forward pass, 228
reverse pass, 228

Ball, 44
Banana (Rosenbrock's) function, 60,

138, 150, 165, 186
Basic columns, 273
Basic feasible solution, 255,273,276,

279, 297
Basic solutions, 272-276
Basic variables, 273, 294
Basis

definition of, 8
entering, 298
in linear equations, 273,294,296
leaving, 298
natural, 9
orthogonal, 25

Beltrami, 446
Best-so-far chromosome, 241
BFGS algorithm, 180-184
Big-oh notation, 65, 130
Eland's rule, 307, 319
Bolzano-Weierstrass theorem, 52,203
Boundary, 44
Boundary point, 44
Bounded above, 51
Bounded below, 51
Bounded sequence, 50, 51
Bounded set, 45
Broyden, 180
Broyden-Fletcher-Goldfarb-Shanno

algorithm, see BFGS
algorithm

Canonical augmented matrix, 294-
295

Canonical form, 294
Canonical representation, 294
Canonical tableau, 305
Carrier of polyhedron, 46
Cauchy-Schwarz inequality, 17, 113,

180,443
Chain rule, 59
Characteristic equation, 22
Characteristic polynomial, 22
Chromosome in genetic algorithm,

238
Circuit, 107,219,261,401
Citation style, 4
Closed set, 45
Column vector, 5
Commutative, 6
Compact set, 45
Compatible matrix norm, 32
Complementarity, 180
Complementary slackness, 331,435
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Complex inner product, 18
Complex vector space, 9
Complexity of algorithm, 256, 340

exponential, 340
polynomial, 340

Component of vector, 5
Composite function, 59,77, 80, 375
Concave function, 422. See also Con-

vex function
Condition number, 129
Conjugate direction methods, 151-

164
Conjugate gradient algorithm

Fletcher-Reeves formula, 163
Hestenes-Stiefel formula, 162
nonquadratic problems, 161-164
Polak-Ribiere formula, 162
Powell formula, 164
quadratic problems, 158-161
Stopping criterion, 163

Consistent linear inequalities, 342
Constrained optimization, 73, 255,

365
Constraint

active, 397
convex, 427
equality, 366,415
functional, 74
inactive, 397
inequality, 397,445
set, 74

Constraint set, 73. See also Feasible
set

Continuity, 18, 54,369,449
Continuous function, 18,54,369,449
Continuously differentiable function,

59, 366,424
Contradiction, proof, 2
Contraposition, proof, 2
Contrapositive, 2
Control system, 90, 388-390, 395,

445
Convergence

fixed step size gradient algo-
rithm, 127

globally convergent, 123
gradient algorithms, 125
Kaczmarz's algorithm, 202
linear (first-order), 130
locally convergent, 123
Newton's method, 143
of sequence of matrices, 52
order of, 129,131,133,134,136,

143
penalty method, 449
quadratic (second-order), 130
rate of, 123,130
ratio, 129
steepest descent algorithm, 127

Convergent sequence, 49
Convex combination, 42,249
Convex constraint, 427
Convex function, 419-427

definition of, 420
differentiable, 424
equivalent definition of, 421
minimizers of, 427
optimization of, 427-433
quadratic, 423
strict, 422
twice differentiable, 425

Convex optimization, 427-433
Convex programming, see Convex op-

timization
Convex set, 42-44

definition of, 42,279,420
extreme point, 279,280
extreme point of, 44,282
in definition of convex function,

420
polyhedron, 46,265
polytope, 46, 265
properties of, 43
supporting hyperplane, 45, 265

Coordinates, 9
Cost function, 73
Courant-Beltrami penalty function,

446,452
Cramer's rule, 29
Crossing site, 239
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Crossover in genetic algorithm, 239
crossing site, 239
multiple-point crossover, 239,

251
one-point crossover, 239

Curve, 369
Cycling in simplex method, 307, 319

Dantzig, 256
Davidon, 176
Davidon-Fletcher-Powell algorithm,

see DFP algorithm
Decision variable, 73,255,436
Decomposition

direct sum, 25,374
orthogonal, 25, 195

Decreasing sequence, 49
Degenerate basic feasible solution,

273,277, 306
DeMorgan's law, 1
Derivative, 56, 75

partial, 57
Derivative descent search, 134
Derivative matrix, 58
Descent property, 117, 123, 125,145,

146, 167,444
Determinant, 11
DFP algorithm, 176-180
Diagonal matrix, 23, 344, 358, 436,

453
Diet problem, 258, 323, 330
Differentiable curve, 369
Differentiable function, 56,57, 369
Dimension, 8, 367
Direct sum decomposition, 25, 374
Directional derivative, 75
Discrete Fourier series, 194
Discrete-time linear system, 90, 216,

389,395
Distributive, 7
Dual linear program, 321, 341
Dual quadratic program, 337
Duality

asymmetric, 323
dual problem, 321,341

dual quadratic program, 337
dual vector, 322
duality theorem, 329
in quasi-Newton methods, 180
Karush-Kuhn-Tucker (KKT)

conditions, 335
primal problem, 321, 341
primal quadratic program, 337
quadratic programming, 337
symmetric, 322, 341
weak duality lemma, 328

Duality theorem, 329
Dyadic product, 171

Edge of polyhedron, 46
Eigenvalue

definition of, 22
maximal, 126
minimal, 126
of symmetric matrix, 24, 30

Eigenvector
definition of, 22
of symmetric matrix, 24
orthogonal, 24
relation to Q-conjugacy, 165

Electric circuit, 261,401
Elementary matrix

elementary row operation, 289
first kind, 287
second kind, 288
third kind, 288

Elementary row operation, 289
Elitism in genetic algorithm, 242
Ellipsoid, 342
Ellipsoid algorithm, see Khachiyan's

method
Encoding in genetic algorithm, 238,

242,249
Epigraph, 419
Equality constraint, 366,415
Estimation, 107,192,212
Euclidean inner product, 16
Euclidean norm, 17
Evolution in genetic algorithm, 239
Exact penalty function, 450
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Exclusive OR, see XOR
Expanding subspace theorem, 157
Exponential complexity, 340
Extreme point, 44, 279, 280, 282
Extremizer, see Minimizer

Face of polyhedron, 46,265
Farkas's transposition theorem, 336
Feasible direction, 75,429,450
Feasible point, 255, 365
Feasible set, 73, 365
Feedforward neural networks, 219-

234
activation function, 219
Adaline, 223
backpropagation algorithm, 219,

224-234
function approximation, 221
hidden layer, 220
input layer, 220
learning, 219
neuron, 219
output layer, 220
single-neuron training, 221-224
supervised learning, 221
training, 219
training set, 221
unsupervised learning, 221
weights, 219,220

Fibonacci search, 95-103
Fibonacci sequence, 96
First-order necessary condition

equality constraint (Lagrange),
375,376

in convex optimization, 429
inequality constraint (KKT), 398
interior case, 77
set constraint, 76

Fitness in genetic algorithm, 238
Fitting straight line, 88,191,196,214,

215
Fixed step size, 127, 132,226
Fletcher, 163, 176, 180
Fletcher-Reeves formula, 163

FONC, see First-order necessary con-
dition

Fourier series, 194
Frobenius norm, 31
Full-rank factorization, 205
Function

affine,55,56,215
banana, 60, 138, 150, 165, 186
composite, 59,77, 80, 375
concave, 422. See also Convex

function
continuous, 18, 54, 369,449
continuously differentiable, 59,

366,424
convex, 419-427
cost, 73
derivative matrix of, 58
derivative of, 56,75
differentiable, 56,57, 369
directional derivative of, 75
gradient of, 58, 63, 75, 113
graph of, 63,419
Jacobian matrix of, 58
Lagrangian, 378, 384
linear, see Linear transformation
matrix-valued, 54
maximum rate of decrease, 114
maximum rate of increase, 62,

113
notation, 3
objective, 73
partial derivative of, 57
penalty, 445
Powell, 140
Rosenbrock's, 60,138,150,165,

186
sigmoid, 232
twice continuously differen-

tiable, 59,425
twice differentiable, 58, 369
uniformly continuous, 19
unimodal, 91
utility, 436

Function approximation, 221
Functional constraint, 74
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Fundamental theorem of algebra, 22
Fundamental theorem of linear alge-

bra, 35
Fundamental theorem of LP, 276

Gale's transposition theorem, 336
Gauss-Newton method, 148
Generalized inverse, 205, 206
Genetic algorithm, 237-250

alphabet, 238
analysis of, 243-248
best-so-far chromosome, 241
chromosome, 238
crossover, 239
elitism, 242
encoding, 238, 242, 249
evolution, 239
fitness, 238
initial population, 237
length of schema, 246
mating pool, 238
mutation, 240
offspring, 239
order of schema, 246
parents, 239
population size, 238
real-number, 248-250
representation scheme, 238
roulette-wheel scheme, 239
schema, 243
selection, 238
stopping criterion, 242
tournament scheme, 239

Global minimizer, 74, 84, 388, 427-
431,434,445

Globally convergent, 123
Globally monotone algorithm, 137
Golden Section, 93
Golden Section search, 91-95
Goldfarb, 180
Gordan's transposition theorem, 336
Gradient, 58, 63, 75, 113
Gradient descent algorithm, see Algo-

rithm, gradient
Gradient methods, 113-134

backpropagation algorithm, 219,
224-234

constrained optimization, see
Projected gradient methods

convergence of, 122-128
convergence rate of, 129-134
descent property, 117, 123, 125
fixed step size, 127
order of convergence, 133
projected, 441-445
stopping criterion, 117

Gram matrix, 190
Gram-Schmidt, 152, 164
Grammian, 190
Graph, 63,419
Greatest lower bound, 51

Hacijan, see Khachiyan
Half-space, 40, 265

negative, 41
positive, 41

Hessian, 59, 384, 425
Hessian matrix, 75
Hestenes-Stiefel formula, 162
Hidden layer in neural network, 220
Hoff, 223
Holland, John, 237
Homogeneity, 16, 18
Hyperplane

definition of, 39
supporting, 45, 265
tangent to graph, 63

Huang family, 186

Identity matrix, 13
Image of matrix, see Range of matrix
Implicit function theorem, 372
Impulse response, 216
Inactive constraint, 397
Inconsistent system of equations, 187
Increasing sequence, 49
Indefinite matrix, 30
Induced matrix norm, 32, 394
Induction, principle of, 3
Inequality constraint, 397, 445
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Infimum, see Greatest lower bound
Inner product

complex, 18
Euclidean, 16
properties of, 16

Innovation, 198
Input layer in neural network, 220
Interior, 44
Interior point, 44
Interior-point method, 256, 340, 343,

348, 360
Inverse

continuity of, 54
matrix, 13

Inverse Hessian, 168
Invertible matrix, see Nonsingular

matrix
Iterative algorithm, 109,138. See also

Search methods

Jacobian matrix, 58
Jordan form, 53

Kaczmarz's algorithm, 201-204, 223
Kantorovich, 256
Karmarkar, 256, 340
Karmarkar's method, 256, 340, 348-

360
artificial problem, 355
complexity, 340
Karmarkar's canonical form,

348-350, 352
Karmarkar's restricted problem,

351-352
projective transformation, 353,

361
simplex, 349
stopping criterion, 352, 357
strictly interior feasible point,

345,353
Karush-Kuhn-Tucker condition, see

KKT condition
Karush-Kuhn-Tucker multiplier, see

KKT multiplier
Karush-Kuhn-Tucker theorem, 398

Kernel of matrix, see Nullspace of ma-
trix

Khachiyan, 256, 340
Khachiyan's method, 256, 340-343,

355
KKT condition, 398, 399, 403, 431
KKT multiplier, 398, 404
KKT theorem, 398
Klee-Minty problem, 339
Koopmans, 256
Kuhn-Tucker condition, see KKT

condition

Lagrange condition, 376, 379, 430,
442

Lagrange multiplier, 376, 378
Lagrange's theorem, 375, 376
Lagrangian function, 378, 384
Leading principal minor, 27
Learning in neural network, 219
Least upper bound, 51
Least-squares, 187-196, 207

nonlinear, 146
Left pseudoinverse, 207
Level set, 60, 113, 116
Levenberg-Marquardt algorithm, 149
Levenberg-Marquardt modification,

145
Limit of sequence, 49
Line fitting, 88, 191, 196, 214, 215
Line search, 109, 115, 145, 162, 163,

168, 182
Line segment, 39, 42
Linear combination, 7
Linear convergence, 130
Linear dynamical system, see

Discrete-time linear system
Linear equations

augmented matrix, 274
basic solution, 273
basis, 273, 294, 296
canonical augmented matrix,

294
canonical form, 294
degenerate basic solutions, 273
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Linear equations (Continued)
existence of solution, 14
inconsistent, 187
Kaczmarz's algorithm, 201-204
least-squares solution, 187, 188,

190
minimum norm solution, 200,

210,223,388
overdetermined, 187
particular solution, 293
pivot, 296,299, 310
solving in general, 187-212
solving using row operations,

287-293
Linear function, see Linear transfor-

mation
Linear inequalities

consistent, 342
in linear programming, 255,257,

265
Linear least-squares, 187-196,207
Linear matrix inequalities, 435
Linear programming

affine scaling method, 343-348
artificial problem in affine scal-

ing method, 347
artificial problem in Karmarkar's

method, 355
artificial problem in simplex

method, 307
artificial variables in simplex

method, 308
as constrained problem, 366
asymmetric duality, 323
basic columns, 273
basic feasible solution, 255,273,

276,279, 297
basic solutions, 272-276
basic variables, 273,294
Eland's rule, 307, 319
brief history of LP, 255
canonical augmented matrix,

294
canonical tableau, 305

complementary slackness, 331,
435

cycling, 307, 319
degenerate basic feasible solu-

tion, 273,277, 306
dual problem, 321,341
duality, see Duality
duality theorem, 329
examples of, 88,257-263
extreme point, 279,280,282
feasible solution, 273
fundamental theorem of LP, 276
geometric view of, 279
interior-point method, 256, 340,

343, 348, 360
Karmarkar's method, see Kar-

markar's method
Karush-Kuhn-Tucker condition,

335,412
Khachiyan's method, 256, 340-

343,355
Klee-Minty problem, 339
optimal basic feasible solution,

276
optimal feasible solution, 276
primal problem, 321, 341
reduced cost coefficient, 300,

304, 305, 332
revised simplex method, 310-

315
simplex method, 256,287-315
slack variable, 268
standard form, 267,272
surplus variable, 267
symmetric duality, 322, 341
tableau, 304
two dimensional, 263
two-phase affine scaling method,

347
two-phase simplex method, 307-

310
weak duality lemma, 328

Linear quadratic regulator, 389
Linear regression, see Line fitting
Linear space, see Vector space
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Linear transformation, 21, 57
Linear variety, 41
Linearly dependent, 7
Linearly independent, 7, 152, 273,

367, 398
Little-oh notation, 66, 77
Local minimizer, 74-76, 80, 82, 376,

384, 386, 398, 407, 408,
427

Locally convergent, 123
Lower bound, 51
LP, see Linear programming
LQR, 389

MacDuffee,210
Mating pool in genetic algorithm, 238
MATLAB, xiii, 110, 111, 118, 120,

138, 165, 186, 236, 242,
243, 252, 285, 319, 320,
360

Matrix
compatible norm, 32
condition number, 129
continuous, 54
convergence of sequence, 52
definition of, 10
derivative, 58
determinant, 11
diagonal, 23, 344, 358,436,453
eigenvalue of, see Eigenvalue
eigenvector of, see Eigenvector
elementary, see Elementary ma-

trix
full-rank factorization, 205
function, matrix-valued, 54
game theory, 263
generalized inverse, 205, 206
Gram, 190
Hessian, 59, 75, 384, 425
identity, 13
image of, see Range of matrix
indefinite, 30
induced norm, 32, 394
inverse, 13

invertible, see Nonsingular ma-
trix

Jacobian, 58
Jordan form, 53
kernel of, see Nullspace of ma-

trix
leading principal minor of, 27
left pseudoinverse, 207
linear matrix inequalities, 435
minor of, 12
Moore-Penrose inverse, 205,206
negative definite, 30
negative semidefinite, 30
nonsingular, 13, 181, 187, 198,

273,290
notation, 10
nullspace of, 25, 35, 196, 316,

344, 370
orthogonal, 25, 452
orthogonal projector, 25, 26,

195,344,345,359,441
Penrose generalized inverse, 212
positive definite, 30
positive semidefinite, 30
principal minor of, 27
pseudoinverse, 205, 206
range of, 25, 35
rank of, 10-13
representation of linear transfor-

mation, 21
right pseudoinverse, 207
sequence of, 52
series of, 53
similar, 22
Sylvester's criterion, 27
symmetric, 13, 24, 30, 121
transformation, 21
transpose of, 13

Matrix norm, 31-35
Matrix-valued function, 54
Minimizer

description of, 73
global, 74, 84, 388, 427-431,

434,445
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Minimizer (Continued)
local, 74-76, 80, 376, 384, 398,

407,427
strict global, 74
strict local, 74, 82, 90, 386,408

Minor
definition of, 12
leading principal, 27
principal, 27

Minty, 339
Monotone sequence, 49, 51
Moore-Penrose inverse, 205, 206
Morrison, 181, 198
Mutation in genetic algorithm, 240

Natural basis, 9
Negative definite

matrix, 30
quadratic form, 27

Negative half-space, 41
Negative semidefinite

matrix, 30
quadratic form, 27

Neighborhood, 44
Neural networks, see Feedforward

neural networks
Neuron, 219
Newton's method

convergence of, 143
descent direction, 144
descent property, 145
for nonlinear least-squares, 146-

149
Gauss-Newton method, 148
general, 139-149
Levenberg-Marquardt modifica-

tion of, 145
modification of, 145
of tangents, 105
one dimensional, 103-105
order of convergence, 143

Newton-Raphson method, see New-
ton's method

Nondecreasing sequence, 49
Nondifferentiable optimization, 433

Nondifferentiable penalty function,
450

Nonincreasing sequence, 49
Nonlinear least-squares, 146
Nonsingular matrix, 13, 181, 187,

198,273,290
Norm

p-norm, 18
compatible, 32
Euclidean, 17
Frobenius, 31
general vector norm, 18
induced, 32, 394
matrix, 31-35
properties of, 17

Normal, 41,62
Normal plane, 373
Normal space, 373, 374
Notation, 3
Nullspace of matrix, 25, 35, 196, 316,

344, 370

Objective function, 73
Offspring in genetic algorithm, 239
One-dimensional search methods,

91-109
Open set, 45
Optimal basic feasible solution, 276
Optimal control, 388, 390, 395,445
Optimal feasible solution in LP, 276
Optimization

constrained, 73, 255, 365
convex, 427-433
linear, see Linear programming
nondifferentiable, 433
unconstrained, see Uncon-

strained optimization
with equality constraints, 365
with inequality constraints, 397

Optimization algorithm, see Search
methods

Order of convergence, 129, 131, 133,
134, 136, 143

Order symbol, 130
Order symbols, 65
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Orthant, 353
Orthogonal, 62
Orthogonal basis, 25
Orthogonal complement, 25,196,373
Orthogonal decomposition, 25, 195
Orthogonal matrix, 25,452
Orthogonal projection, 25, 189, 344,

345,359
Orthogonal projector, 25, 26, 195,

344,345,359,441
Orthogonal vectors, 17
Outer product, 171
Output layer in neural network, 220
Overdetermined system of equations,

187

Parents in genetic algorithm, 239
Partial derivative, 57
Particular solution, 293
Penalty function, 445
Penalty method, 445-451

absolute value penalty function,
446

convergence, 449
Courant-Beltrami penalty func-

tion, 446,452
exact penalty function, 450
nondifferentiable penalty func-

tion, 450
penalty function, 445
penalty parameter, 445

Penalty parameter, 445
Penrose, see Moore-Penrose inverse
Penrose generalized inverse, 212
Perp, see Orthogonal complement
Pivot, 296, 299, 310
Polak-Ribiere formula, 162
Polyhedron

carrier of, 46
definition of, 46
edge of, 46
face of, 46,265
in linear programming, 264-267
vertex of, 46

Polynomial complexity, 340

Polynomial, characteristic, 22
Polytope

definition of, 46
in linear programming, 265

Population in genetic algorithm, 237,
238

Positive definite
matrix, 30
quadratic form, 26
relation to eigenvalues, 30
Sylvester's criterion, 27

Positive half-space, 41
Positive orthant, 353
Positive semidefinite

matrix, 30
quadratic form, 26
relation to eigenvalues, 30
relation to principal minors, 30

Positivity, 16, 18
Powell, 140, 164, 176
Powell formula, 164
Powell function, 140
Primal linear program, 321, 341
Primal quadratic program, 337
Primal-dual method, 321
Principal minor, 27
Principle of induction, 3
Probabilistic search technique, 237
Product

dyadic, 171
inner, 16, 18
outer, 171

Product rule, 59
Projected algorithm, 440
Projected gradient method, 344
Projected gradient methods, 441-445

stopping criterion, 444
Projected steepest descent algorithm,

444
Projection, 249, 440. See also Or-

thogonal projection.
Projective transformation, 353, 361
Proof

contradiction (reductio ad absur-
dum), 2
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Proof (Continued)
contraposition, 2
direct method, 2
methods of, 1-3
principle of induction, 3

Pseudoinverse, 205,206
Pythagorean theorem, 18

Q-conjugate
definition of, 151
linear independence, 152
relation to eigenvectors, 165
relation to orthogonality, 165

Quadratic convergence, 130
Quadratic form

convex, 423
definition of, 26
maximizing, 383, 386
negative definite, 27
negative semidefinite, 27
positive definite, 26
positive semidefinite, 26,30
Sylvester's criterion, 27

Quadratic programming, 337, 388,
395,412

Quasi-Newton methods, 167-184
approximating inverse Hessian,

168
BFGS algorithm, 180-184
complementarity, 180
conjugate direction property, 170
descent property, 167
DFP algorithm, 176-180
duality, 180
rank one formula, 171-175
rank two update, 176
single-rank symmetric, 171
symmetric Huang family, 186
variable metric algorithm, 176

Range of matrix, 25, 35
Rank of matrix, 10-13
Rank one formula, 171-175
Rank two update, 176
Rate of convergence, 123, 130

Ratio of convergence, 129
Rayleigh's inequality, 34, 82, 126,

127, 133
Real vector space, 5
Recursive least-squares, see RLS al-

gorithm
Reduced cost coefficient, 300, 304,

305, 332
Reductio ad absurdum, 2
Reeves, 163
Regular point, 367, 371, 376, 398
Relative cost coefficient, see Reduced

cost coefficient
Representation scheme in genetic al-

gorithm, 238
Revised simplex method, 310-315
Revised tableau, 311
Ribiere, 162
Right pseudoinverse, 207
RLS algorithm, 196-201
Rosenbrock's function, 60, 138, 150,

165, 186
Roulette-wheel scheme, 239
Row operations, 287-293
Row vector, 5

Scalar, 7
Scale parameter, 232
Schema in genetic algorithm, 243

length of, 246
order of, 246

Schmidt, see Gram-Schmidt
Schwarz, see Cauchy-Schwarz in-

equality
Search methods

conjugate direction methods,
151-164

conjugate gradient algorithm,
158-164

constrained optimization, 439-
451

derivative descent search, 134
Fibonacci, 95-103
general algorithm, 184
genetic algorithm, 237-250
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Search methods (Continued)
Golden Section, 91-95
gradient methods, 113-134
Kaczmarz's algorithm, 201-204,

223
line search, 109, 115, 145, 162,

163, 168, 182
neural network training, 221
Newton's method, 103-105,

139-149
Newton-Raphson method, see

Newton's method
one-dimensional, 91-109
penalty method, 445-451
probabilistic, 237
projected, 440
projected gradient methods,

441-445
quasi-Newton methods, 167-184
secant method, 106-108
steepest descent method, 115-

122
Secant method, 106-108
Second-order necessary condition

equality constraints, 384
inequality constraints, 407
interior case, 81
set constraint, 80

Second-order sufficient condition
equality constraints, 386
inequality constraints, 408
interior case, 82
set constraint, 89

Selection in genetic algorithm, 238
Sequence

bounded, 50,51
bounded above, 51
bounded below, 51
convergent, 49
decreasing, 49
Fibonacci, 96
greatest lower bound, 51
increasing, 49
least upper bound, 51
limit, 49

lower bound, 51
monotone, 49, 51
nondecreasing, 49,448
nonincreasing, 49
of matrices, 52
of real numbers, 49
order of convergence, 129, 131,

133,134, 136, 143
subsequence of, 51
upper bound, 51

Set
boundary of, 44
bounded, 45
closed, 45
compact, 45
constraint, 73. See also Feasible

set
convex, see Convex set
feasible, 73, 365
interior of, 44
minus, 3
notation, 3
open, 45
simplex, 349
subset of, 3

Set constraint, 74
Shanno, 180
Sherman-Morrison formula, 181, 198
Shift parameter, 232
Sigmoid, 232
Signal-to-interference ratio, 79, 86
Similar matrices, 22
Simplex, 349
Simplex algorithm, see Simplex

method
Simplex method, 256,287-315

algorithm, 297-303
artificial problem, 307
artificial variables, 308
Bland's rule, 307, 319
canonical augmented matrix,

294-295
canonical tableau, 305
complexity, 340
cycling, 307, 319
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Simplex method (Continued)
exponential complexity, 340
matrix form, 303-307
reduced cost coefficient, 300,

304, 305, 332
revised simplex method, 310-

315
revised tableau, 311
row operations, 287-293
stopping criterion, 298, 317
tableau, 304
two-phase, 307-310
updating augmented matrix,

295-296
updating canonical tableau, 305

Simultaneous equations, see Linear
equations

Single-rank symmetric algorithm, 171
Singular value decomposition, 453
Slack variable, 268
SONC, see Second-order necessary

condition
SOSC, see Second-order sufficient

condition
Span, 8
Sphere, 361
SRS algorithm, 171
Standard form linear program, 267,

272
Statement

biconditional, 1
conditional, 1

Steepest ascent, 62
Steepest ascent method, see Steepest

descent method
Steepest descent

order of convergence, 133
Steepest descent method, 115-122

for constrained optimization,
444

for quadratic, 120
projected, 444

Step response, 216
Step size, 114, 127, 135, 146, 202,

226,442,443

Stiefel, 162
Stopping criterion

affine scaling method, 346
conjugate gradient method, 163
genetic algorithm, 242
gradient method, 117
Karmarkar's method, 352, 357
line search, 111
projected gradient method, 444
simplex method, 298, 317

Strictly interior feasible point, 343,
345,353

Subsequence, 51
Subset, 3
Subspace, 8
Supervised learning, 221
Supporting hyperplane, 45, 265
Supremum, see Least upper bound
Surface, 367, 370
Surplus variable, 267
SVD, see Singular value decomposi-

tion
Sylvester's criterion, 27
Symmetric duality, 322, 341
Symmetric Huang family, 186
Symmetric matrix, 13, 24, 30, 121
Symmetry, 16

Tableau in linear programming, 304
Tangent line, 62
Tangent plane, 62, 370
Tangent space, 370, 371, 374
Tangent vector, 58,62, 369, 371
Taylor series, 64-68, 139, 143, 443.

See also Taylor's theorem
Taylor's formula, 64, 66, 67. See also

Taylor's theorem
Taylor's theorem, 64, 77, 80, 82, 114,

426
Termination criterion, see Stopping

criterion
Threshold, 232
Tournament scheme, 239
Training of neural network, 219
Training set, 221
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Transformation
affine scaling, 344
linear, 21,57
matrix, 21
matrix representation of, 21
projective, 353, 361

Transportation problem, 256,260
Transpose

matrix, 13
vector, 5

Transposition theorems, 336
Triangle inequality, 18
Truth table, 1
Tucker, see KKT condition
Twice continuously differentiable

function, 59,425
Twice differentiable function, 58,369
Two-dimensional linear program, 263
Two-phase affine scaling method, 347
Two-phase simplex method, 307-310

Uncertainty range, 93
Unconstrained optimization

basics of, 73
conditions for, 75-83

Uniform continuity, 19
Uniformly continuous function, 19
Unimodal, 91
Unsupervised learning, 221
Upper bound, 51
Utility function, 436

Variable metric algorithm, 176
Variety, linear, 41
Vector

column, 5

complex, 9
component of, 5
convex combination, 42,249
definition of, 5
difference, 6
field, 58
linearly combination, 7
linearly dependent, 7
linearly independent, 7, 152,

273,367,398
normal, 41
orthogonal, 17
row, 5
tangent, 58, 62, 369, 371
transpose of, 5
zero vector, 6

Vector field, 58
Vector space

basis for, 8
complex, 9
definition of, 5
dimension of, 8
real, 5
subspace of, 8

Vertex of polyhedron, 46

Weak duality lemma, 328
Weierstrass theorem, 32,45
Weights in neural network, 219,220
Widrow, 223
Widrow-Hoff algorithm, 223,236

XOR, 233,236

Zero vector, 6




