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Preface 

This  book is the result of hundreds of emails  from all over the world  with questions on  theory 
and applications of error correcting coding  (ECC),  from  colleagues  from  both  academia and 
industry. Most of the questions have been  from  engineers and computer scientists needing to 
select, implement  or  simulate  a particular coding  scheme.  The  questions  were  sparked by an 
ECC web site that was initially set up at Imai  Laboratory at the Institute of Industrial Science, 
University of  Tokyo,  at the beginning of 1995. The  reader will notice the absence of theorems 
and proofs in this text. The  approach is to teach basic concepts by  using simple  examples. 
References to theoretical developments are made when needed.  This  book is intended to be a 
reference  guide to error correcting coding  techniques for graduate students and professionals 
interested in learning the basic techniques and applications of  ECC. Computer  programs 
that implement the basic encoding and decoding  algorithms of practical coding  schemes are 
available on a  companion web site at: 

http://the-art-of-ecc.com 

This site is referred to as the “ECC  web site” throughout the text. This  book is unique in that 
it introduces the basic concepts of error correcting codes  using  simple illustrative examples. 
Computer  programs, written in C  language  and available on the ECC web site, help to further 
illustrate the implementation of basic encoding and decoding  algorithms of important  coding 
schemes,  such as convolutional  codes,  Hamming  codes,  BCH  codes,  Reed-Solomon  codes 
and  turbo  codes,  and their application in coded  modulation  systems.  The material focuses  on 
basic algorithms  for  analyzing and implementing  ECC.  There is a rich theory  of ECC that will 
be touched  upon, by referring to the appropriate material. There are many good  books  dealing 
with the theory of ECC, e.g., references  [LC],  [MS], [PW], [Blah], [Bos], [Wic], just to cite a 
few. Readers may  wish  to consult  them before, during  or after going  through the material in 
this book.  Each  chapter describes, using simple and easy to follow  numerical  examples, the 
basic concepts of a particular coding  or  decoding  scheme, rather than going into the detail 
of the theory  behind it. Basic analysis tools are given throughout the book, to help in the 
assessment of the error performance of a particular ECC scheme, for some  basic channel 
models. With the companion  web site, this makes the book  unique. 

The  book deals with the art of error correcting coding, in the sense that it addresses the need 
for selecting, implementing  and  simulating  algorithms for encoding and decoding of codes for 
error correction and detection. The  book is organized as follows. In  the  first chapter, the basic 
concepts of error correction, and coding  and  decoding  techniques, are introduced. Chapter 2 
deals with important  and  simple to understand families of codes, such  as the Hamming, Golay 
and Reed-Muller  codes. In Chapter 3, cyclic codes and the important  family of  BCH codes 
are described. Finite field arithmetic is introduced and basic decoding  algorithms, such as 
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Berlekamp-Massey, Euclidean and PGZ, are described and easy to follow examples given 
to understand their operation. Chapter 4 deals with  Reed-Solomon codes and errors-and- 
erasures  decoding. A comprehensive treatment of the available algorithms is given, along with 
examples of their operation. In Chapter 5, binary convolutional codes are introduced. Focus 
in this chapter is on the understanding of the basic structure of these codes, along with a basic 
explanation of the  Viterbi algorithm with Hamming metrics. Important implementation issues 
are discussed. In Chapter 6, several techniques for modifying a single code  or combining 
several codes  are given and illustrated by simple examples. Chapter 7 deals with soft- 
decision decoding algorithms, some of  which  have not yet received attention in the literature, 
such  as a soft-output ordered statistics decoding algorithm. Moreover, Chapter 8 presents 
a unique treatment of turbo  codes, both parallel concatenated and serial concatenated, and 
block product  codes,  from a coding theoretical perspective. In the  same chapter, low-density 
parity check  codes  are  examined.  For all these classes of codes, basic decoding algorithms are 
described and simple  examples are given. Finally, Chapter 9 deals with powerful techniques 
that combine  error correcting coding with digital modulation, and several clever decoding 
techniques are described. A  comprehensive bibliography is included, for readers who  wish to 
learn more  about the beautiful theory that makes it all work. It is my hope that this  book 
will become a valuable and indispensable tool for both students and practitioners of this 
interesting, exciting and never-ending area of information theory. 

I would like to thank the following persons for influencing this work. Professor Francisco 
Garcia  Ugalde, Universidad Nacional Autonoma de MCxico, for introducing me to the 
exciting world of error correcting codes. Parts of  this book are based on  my  Bachelor’s 
thesis under  his direction. Professor Edward Bertram, University  of Hawaii, for teaching me 
the basics of abstract algebra. Professor David  Mufioz, Instituto Technologico y de Estudios 
Superiores  de Monterrey, MCxico, for  his kindness and support. Professors Tadao Kasami, 
Hiroshima City University,  Toru Fujiwara, University  of Osaka, and Hideki Imai, University 
of  Tokyo, for supporting my stays as a visiting academic researcher in Japan. Dan Luthi and 
Advait Mogre,  LSI  Logic Corporation, for many stimulating discussions and the opportunity 
to experience the process of putting ideas into silicon. Professor Marc P.C. Fossorier, 
University  of Hawaii, for  his help. My colleague Dr. Misa MihaljeviC,  Sony  Computer 
Science Laboratories, for pointing out  connections between decoding and cryptanalysis. I 
would also like to thank wholeheartedly Dr. Mario Tokoro, President of  Sony  Computer 
Science Laboratories, and Professor Ryuji Kohno,  Yokohama National University, for making 
it possible for me to have a fine environment in  which to write this book. In particular, I want 
to  express my eternal gratitude to Professor Shu Lin, now at the University  of California at 
Davis, who supported me when I was a graduate student in Hawaii, and encouraged me to 
continue my research in this fascinating topic. Last but not  least, I want to thank  the  many 
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Foreword 

In modem digital communication  and storage systems design, information  theory is becoming 
increasingly important.  The best example of this is the appearance  and  quick  adoption of turbo 
and block  product  codes in  many practical satellite and wireless  communication  systems. I 
am pleased to recommend this new book,  authored by  Dr. Robert  Morelos-Zaragoza, to those 
who are interested in error correcting codes  or have  to apply  them.  The book introduces key 
concepts of error correcting coding  (ECC) in a  manner that is easy to understand.  The material 
is logically well structured and  presented using simple illustrative examples. This, together 
with the computer  programs available on the web site, is a novel approach to teaching the 
basic techniques used  in the design and application of error correcting codes. 

One of the best features of the book is that it provides  a natural introduction to the principles 
and decoding  techniques of turbo  codes,  LDPC  codes, and product  codes,  from an algebraic 
channel  coding perspective. In this context, turbo  codes are viewed as punctured  product 
codes. With simple  examples, the underlying ideas and structures used  in the construction 
and iterative decoding of product  codes are presented in an unparalleled manner. The detailed 
treatment of various algebraic decoding  techniques for the correction of errors and erasures 
using Reed-Solomon  codes is also worth a mention. On  the applications of ECC in combined 
channel  coding  and digital modulation, or coded  modulation, the author  does  a  good job in 
introducing the basic principles that are used  in  the construction of  several important classes 
of coded  modulation  systems. 

I believe that practitioner engineers and computer scientists will find this book to  be  both a 
good  learning tool and  a  valuable reference. The  companion  ECC web site is a  unique feature 
that is not found  anywhere else. Incidentally, this web site was  born in  my laboratory at the 
University of  Tokyo in 1995,  where Dr. Morelos-Zaragoza worked  until June of 1997 and  did 
a very good job as my associate researcher, writing many high-quality papers. Robert is polite, 
modest  and  hard-working, and is always friendly. In summary, I strongly recommend The Art 
of Error Correcting Coding as an excellent introductory and reference  book  on the principles 
and applications of error correcting codes. 

Professor  Hideki  Imai 
The University  of  Tokyo 
Tokyo, Japan, April 2002 



The ECC web site 

The Art of Error  Correcting  Coding and its companion web site, the ECC web  site, offer 
a new and  unique  approach to teaching the fundamental  concepts of error correcting coding. 
The  book  explains in a clear and  easy to understand manner,  with simple illustrative examples, 
basic error correcting coding  (ECC)  techniques  along with their decoding algorithms. Many 
practical ECC  techniques are covered in the book, such as cyclic codes, BCH codes, RS codes, 
convolutional  codes,  turbo  codes,  product  codes and low-density  parity-check  (LDPC)  codes. 
In parallel with the tutorial treatment of the book, a companion web site provides  readers with 
computer  programs that implement  decoding  algorithms of the most important families of 
error correcting codes. 

This is a  novel hands-on method of teaching the art of ECC.  Moreover, many  of the 
computer  programs  on the  web site can be  used  to simulate  advanced  techniques of error 
correcting coding,  such as belief propagation  (BP)  decoding of LDPC  codes and iterative 
decoding of product  codes  based on maximum-a-posteriori  (MAP)  decoding of the component 
codes.  Also,  programs are available on the ECC  web site to simulate  combinations of codes 
and digital modulation  formats, and include trellis-coded modulation  (TCM), multilevel coded 
modulation  (MCM), bit-interleaved CM (BICM)  and  turbo TCM (T-TCM). 

Highlights of The Art of Error Correcting  Coding are the following: 

* Comprehensive  treatment  of  decoding  procedures  for BCH and RS codes 

* General  decoders  for RS codes 

Arbitrary shortening, arbitrary starting zero, errors-and-erasures decoding 
using the Berlekamp-Massey,  Euclidean  or Peterson-Gorenstein-Zierler (PGZ) 
algorithms. 

* Techniques for  modifying  and  combining  linear  codes 

Direct-sum,  product,  concatenation and generalized  concatenation  (GC). 

Reliability-based  decoding of  linear  block  codes 

Generalized  minimum distance (GMD)  decoding  algorithm for RS codes,  Chase 
algorithms  and ordered-statistics decoding  (OSD)  algorithm  for  binary linear 
block  codes. Viterbi decoding  using  a trellis. 

* Soft-input  soft-output (SISO) decoding  of  binary  linear  block  codes 
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This  includes  SO-Chase and SO-OSD algorithms, which  have  not  received 
attention in other  textbooks.  Optimal  MAP  decoding  and its approximations. 
Belief propagation  decoding. 

Combined  coding  and  modulation 

TCM, multilevel coding and unequal error protection (UEP), BICM  and turbo 
TCM. 

A  companion web site for the book The Art of Error Correcting  Coding has  been set up 
and is located  permanently at the following URL address: 

the-art-of-ecc.com 

The ECC  web site contains  computer  programs written in C  language to implement 
algorithms for encoding and decoding of important families of error correcting codes.  The 
web site is  maintained by  the author, to ensure that the domain name remains  unchanged. An 
important  advantage of having  a  companion web site is that it allows the author to post update 
notes, new computer  programs and simulation results relevant to the contents of the book.  The 
computer  programs in the ECG web site are organized in  two  ways: by topic  and by function. 

In the topical organization of the programs, the logical structure of the book is 
closely followed,  going  from  simple  syndrome-based  decoding of linear block codes to 
more  elaborate algebraic decoding  over finite fields of BCH and Reed-Solomon codes, 
passing  through Viterbi decoding of convolutional  codes and decoding of combinations and 
constructions of codes, to iterative decoding of turbo and product  codes,  belief-propagation 
decoding of low-density  parity-check  codes  and applications in coded  modulation techniques. 
The  index of programs by topic is summarized below. 

1. Linear  block  codes 
- Computing the weight distribution 

- Bounds on error performance over  AWGN,  flat Rayleigh  fading and  BSC 
channels 

2. Hamming,  Golay  and  Reed-Muller  codes 

- Hamming  codes  and  syndrome-based  decoding 

- Binary  Golay (23,12,7) code and look-up table decoding 
- Extended  Golay (24,12,8) code  and  syndrome-based  decoding 

3. Binary  cyclic  codes  and BCH codes 

- Error-trapping  decoding of binary cyclic codes 

- Berlekamp-Massey,  Euclidean  and  PGZ  algorithms 

- Chien  search and error correction 

- Errors-and-erasures  decoding 

- Error  performance  evaluation 

4. Reed-Solomon  codes 
- Berlekamp-Massey,  Euclidean and PGZ  algorithms 
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- Errors-and-erasures  decoding 

- Weight distributions and error performance  evaluation 
5. Binary  convolutional  codes 

- Weight enumeration  sequences  and error performance  evaluation 

- Viterbi algorithm with Hamming  metrics 
- Decoding of punctured  convolutional  codes 

6. Soft-decision  decoding 
- Viterbi algorithm  with  Euclidean  metrics 
- Decoding  binary linear block  codes with a trellis 

- Chase type-I1 algorithm 
- Ordered statistics decoding  (OSD) 

- GMD  decoding 

7. Soft-input  soft-output  (SISO)  algorithms 
- MAP  and  log-MAP 

- Max-log-MAP and SOVA 
- SO-OSD  and  SO-Chase 

8. Iteratively  decodable  codes 
- Parallel concatenation (turbo codes) 

- Serial concatenation  (product  codes) 
- Block  product  codes 

- LDPC  codes: iterative decoding (bit-flip and belief-propagation) 

9. Coded  modulation 
- Trellis coded  modulation  (TCM) and pragmatic TCM 

- Multilevel  coded  modulation  (MCM) and unequal-error-protection MCM 

- Bit-interleaved coded  modulation  (BICM) 
- Turbo TCM 

The functional organization of the programs in the ECC web site is intended for readers 
who  already know exactly what  they are looking for.  In particular, this classification of 
the programs is followed with respect to the decoding algorithms. The  organization of the 
programs  according to their functionality is  summarized below. 

1. Basic  performance  analysis  tools 

- Bounds  and  approximations  on the block and  bit error rate 

- Data files  with weight distributions of extended  binary BCH codes 
- Program to compute the weight distribution of a  code given  its generator  matrix 

2. Hard-decision  decoding 
- Syndrome  decoding of short linear block codes 
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- Berlekamp-Massey  algorithm-based  decoding of RS and BCH codes 

- Euclidean  algorithm-based  decoding of RS  and BCH codes 

- Peterson-Gorenstein-Zierler (PGZ)  algorithm-based  decoding of RS and BCH 
codes 

- Viterbi algorithm 

3.  Soft-decision  decoding 
- Viterbi algorithm for convolutional and linear block  codes 

- Chase type-I1 algorithm 
- GMD  algorithms 

- OSD  algorithm 

4. SISO decoding 
- Optimal  MAP  algorithm (also known as the BCJR’  algorithm)  and  log-MAP 

algorithm 

- Max-log-MAP  and soft-output Viterbi  (SOVA) algorithms 

- SO Chase  and  SO-OSD  algorithms for decoding linear block  codes 

5.  Iterative  decoding 
- Partial product (“parallel concatenation”)  codes 

- Full product (“serial concatenation”)  codes 

- Sum-product  or  BP  algorithm for LDPC codes 

6. Combination of ECC  and  modulation 
- MLD decoding of TCM and  two-stage  decoding of pragmatic TCM 

- Multistage  decoding of multilevel codes 

- Applications of multilevel codes in unequal error protection 

- BICM 

- Turbo  TCM 

BCJR stands for Bahl-Cocke-Jelinek-Raviv after the authors 
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Introduction 

The history of ECC started with the introduction of the Hamming  codes [Ham], at about 
the same  time as the seminal work of Shannon [Sha]. Shortly after, Golay  codes  were 
invented [Gol]. These first classes of codes are optimal, in a  sense to be  defined in a  subsequent 
section. 

Figure 1 shows the block  diagram of a  canonical digital communications/storage  system. 
This is the famous Figure 1 in most  books  on the theory of ECC.  The  information  source and 
destination will include any source  coding  scheme  matched to the nature of the information. 
The  ECC  encoder takes as input the information  symbols  from the source and adds  redundant 
symbols to it, so that  most  of the errors - introduced in the process of modulating  a signal, 
transmitting it over  a noisy medium  and  demodulating it - can be corrected. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
.._.._.._.._.... 

Figure 1 A canonical digital communications system. 

Usually, the channel is assumed to be  such that samples of an additive noise  process 
are added to the modulated  symbols (in their complex  baseband representation). The  noise 
samples are assumed to be independent  from the source  symbols.  This model is relatively 
easy to track and includes additive white  Gaussian  noise (AWGN) channels, flat Rayleigh 
fading  channels, and binary  symmetric  channels (BSc). At  the receiver end, the ECC  decoder 
utilizes the redundant  symbols to correct channel errors. In the case of error detection, the 
ECC  decoder  can be thought of as a  re-encoder of the received  message and a  check that the 
redundant  symbols  generated are the same as those received. 

In classical ECC theory, the combination of modulation, noisy medium and demodulation 
was modeled as a discrete memoryless channel with input V and  output F .  An example of 
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this is binary transmission over an AWGN channel, which is modeled as a binary symmetric 
channel (BSC) with a probability of channel  error p - or transition probability - equal to 
the probability of a bit error  for binary signalling over an AWGN, 

P = Q ( E ) :  

where 

is the  Gaussian  Q-function‘, and Eb/No is the signal-to-noise ratio (SNR) per bit. This case 
is treated later in  this chapter. 

In 1974, Massey  [Mas31 suggested considering ECC and modulation as a single entity, 
known  in  modern literature as coded modulation. This approach provides a higher efficiency 
and  coding  gain2 than the serial concatenation of ECC and modulation, by joint design of 
codes  and signal constellations. Several methods of combining coding and modulation are 
covered in this book, including: Trellis-coded modulation (TCM) [Ungl] and  multilevel coded 
modulation (MCM) [IH]. In a coded modulation system, the (soft-decision) channel outputs 
are processed directly by  the decoder. In contrast, in a classical ECC system, the hard decision 
bits from the demodulator are fed to a binary decoder. 

Codes can be combined in several ways. An example of serial concatenation (that is, 
concatenation in  the classical sense) is the following. For years, the most popular concatenated 
ECC  scheme  has been the combination of an outer Reed-Solomon code, through intermediate 
interleaving, and an inner binary convolutional code. This scheme  has been  used  in  numerous 
applications, ranging from space communications to digital broadcasting of high definition 
television. The basic idea is that the soft-decision decoder of  the convolutional code produces 
bursts of errors that can be broken into smaller pieces by  the deinterleaving process and 
handled effectively by the Reed-Solomon decoder. Reed-Solomon codes are non-binary codes 
that work  with symbols  composed of several bits, and can deal with multiple bursts  of errors. 
Serial concatenation  has the advantage that it requires two separate decoders, one for the inner 
code  and  one  for the outer  code, instead of a single but very  complex decoder for the overall 
code. 

This  book  examines these types of ECC systems. First, basic code constructions and 
their decoding algorithms, in  the  Hamming space (that is, dealing with  bits), are presented. 
Subsequently, the second part of the book introduces soft-decision decoding algorithms for 
binary transmission, that work over the Euclidean space and achieve a reduction in  the 
required transmitted power per bit of at least 2 dB, compared with  Hamming-space (hard- 
decision) decoders. Several kinds of soft-decision decoders are considered, with attention 
given to their algorithmic aspects (how  they  work) instead of their theoretical aspects (why 
they work). Finally, combinations of codes and interleaving for iterative decoding and 
combined  coding  and modulation are the topic of the last part of the book. 

Note that, in terms of the complementary error function, Q(z) = i e r f c ( z / f i ) .  
Coding gain is defined as the difference in signal-to-noise ratio between the coded system and an uncoded 
system with  the same rate. 
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1.1 Error correcting  coding:  Basic  concepts 

All error correcting codes are based  on the same basic principle: Redundancy is added 
to information in order to correct any errors that may occur in the process of storage or 
transmission. In a basic (and practical) form,  redundant  symbols are appended to information 
symbols to obtain  a  coded  sequence or codeword. For the purpose of illustration, a codeword 
obtained by encoding with a block  code is show  in Figure 2. Such  an  encoding is said  to  be 
systematic. This  means that the information  symbols  always  appear in the first IC positions of a 
codeword.  The  remaining n - IC symbols in a  codeword are some  function of the information 
symbols,  and  provide  redundancy that can be  used for error correctioddetection  purposes. 
The set of all code  sequences  is called an error  correcting  code, and  will  be denoted by C. 

f n symbols > 

information I r e d u n d a n c y 1  

c- ksymbols -K- n-ksymbols - 
Figure 2 Systematic block encoding for error correction. 

l .  I .  I Block codes and convolutional  codes 

According to the manner in  which redundancy  is  added to messages, ECC can be divided into 
two classes: block  and convolutional. Both types of coding  schemes have found practical 
applications. Historically, convolutional  codes have  been preferred, apparently  because of 
the availability of the soft-decision Viterbi decoding  algorithm and the belief for many 
years that block  codes  could not  be efficiently decoded with soft-decisions. However, recent 
developments in the theory  and  design of soft-decision decoding  algorithms for linear block 
codes have helped to dispel this belief. Moreover, the best ECC known  to date (beginning of 
the twenty-first century) are block  codes (irregular low-density  parity-check codes). 

Block  codes  process the information  on  a  block-by-block basis, treating each  block of 
information bits independently  from others. In other words,  block  coding is a  memoryless 
operation, in the sense that codewords are independent  from  each other. In contrast, the output 
of a  convolutional  encoder  depends  not  only on the current input information, but also on 
previous inputs or outputs, either on  a  block-by-block or  a bit-by-bit  basis. For simplicity of 
exposition, we  begin  with a  study of the structural properties of block codes. Many  of these 
properties are common to both types of codes. 

It should be  noted that block  codes have  in fact memory,  when encoding is thought of as 
a bit-by-bit process  and  within  a  codeword. Most recently the difference between  block and 
convolutional  codes  has  become less and less well defined, specially after recent  advances in 
the understanding of the trellis structure of block  codes and the tail-biting structure of  some 
convolutional  codes.  Indeed,  colleagues  working on convolutional  codes  sometimes refer to 
block  codes as “codes with time-varying trellis structure.” Similarly, researchers working  with 
block  codes may consider  convolutional  codes as “codes with a regular trellis structure.” 
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1.1.2 Hamming  distance,  Hamming spheres  and error correcting capability 

Consider an error correcting code C with binary  elements. As mentioned  above, block codes 
are considered  for simplicity of exposition. In order to achieve error correcting capabilities, 
not all the 2" possible  binary  vectors of length n are allowed to  be transmitted. Instead, C is 
a  subset of the n-dimensional  binary  vector  space V2 = (0, l}", such  that its elements are as 
far apart as possible. 

In the binary  space V,, distance is  defined as the number of entries in which  two vectors 
differ. Let el = ( x l , ~ ,  x l , l , .  . . , Z I , ~ - ~ )  and ZZ = ( 2 2 , 0 , 2 2 , 1 , .  . . , x,,"-l) be  two vectors in 
V2. Then the Hamming  distance between 3 1  and 2 2 ,  denoted d H ( Z 1 ,  Z Z ) ,  is defined as 

d H ( 5 1 7 Z 2 )  = I {i : Z l , i  # m , i ,  0 L i n} 1 ,  (1.3) 

where IAl denotes the number of elements in (or the cardinality of) a set A .  

Hamming  distance  among all possible distinct pairs of codewords in C, 
Given a  code C,  its minimum  Hamming  distance, d,i,, is defined as the  minimum 

dmin = - F i n  { d H ( a l , f i z ) l f i l  # V,}. (1.4) 
v1,vzEC 

Throughout the book, (n, IC, d,in) is used to denote the parameters of a  block  code of 
length n, that encodes  messages of length IC bits and has  a  minimum  Hamming distance dmin. 
The  assumption is made that the size of the code is (Cl = 2 k .  

Example 1 The  simplest error correcting code is a binary repetition code of length 3. It 
repeats each bit three times, so that a '0' is encoded  onto the vector (000) and a ' 1 '  onto 
the vector (1 1 1). Since the two codewords differ in all three positions, the Hamming distance 
between them is equal to three. Figure 3 is a pictorial representation of this code.  The 3- 
dimensional  binary  space  corresponds to the set of 23 = 8 vertices of the three-dimensional 
unit-volume  cube.  The  Hamming  distance  between  codewords (000) and (1 11) equals the 
number of edges in a  path  between  them.  This  is  equivalent to the number of coordinates that 
one  needs to change to convert (000) into (1 1 l), or vice versa. Thus d H  ((000), (111)) = 3. 
Since there are only two codewords in this case, dmin = 3.  

Figure 3 A (3,1,3) repetition  code in a 3-dimensional binary vector space. 

The  binary  vector  space V2 is also known as a Hamming  space. Let V denote  a codeword 
of  an error correcting code C. A Hamming sphere &(V), of  radius t and centered  around V, 
is the set of vectors in V, at a  distance less than or  equal to t from the center V ,  

St(.) = {Z E V 2 l d , y ( Z , U )  5 t }  . (1.5) 
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Note that the size of (or the number of codewords in) &(V) is given by the following 
expression 

Example 2 Figure 4 shows the Hamming  spheres of radius t = 1 around the codewords of 
the (3 ,1,3)  binary repetition code. 

Figure 4 Hamming spheres of radius t = 1 around the codewords of the (3,1,3) binary 
repetition code. 

Note that the Hamming  spheres  for this code are disjoint, that is, there is no vector  in V2 (or 
vertex in the unit-volume  three-dimensional  cube) that belongs to both S1 (000) and S1 (111). 
As a result, if there is a  change in  any one position of a  codeword V, then the resulting vector 
will still lie inside a  Hamming  sphere  centered at V. This  concept is the basis of understanding 
and defining the error correcting capability of a  code C. 

The error  correcting  capability, t ,  of a  code C is the largest radius of Hamming  spheres 
&(G) around all the codewords V E C, such that for all different pairs Gi, Vj E C, the 
corresponding  Hamming  spheres are disjoint, i.e., 

t = _max (elSt(vi) n St(vj) = 0, vi # vj}. (1.7) 
V i , U j € C  

In terms of the minimum  distance of C, dmin, an equivalent  and  more  common definition is 

t = l(dmin - 1)/21j (1.8) 

where 1x1 denotes the largest integer less than or  equal to x. 
Note that in order to compute the minimum  distance dmin of a  block  code C, in accordance 

with Equation (1.4), a total of (at most) 2 k ( 2 k  - 1) distances between distinct pairs of 
codewords are needed.  This is practically impossible even for  codes of relatively modest size, 
say, IC = 50. One of the advantages of linear block  codes is that the computation of dmin 
requires one  only to  know the Hamming weight of  all 2k - 1 nonzero  codewords. 

1.2 Linear block codes 

As mentioned  above, finding a  good  code  means finding a  subset of V2 with  elements as far 
apart as possible. This  is very difficult. In addition, even  when such  a set is found, there is still 
the problem of how to assign codewords to information messages. 
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Linear  codes are vector  subspaces of Vz. This  means that encoding  can be accomplished 
by matrix multiplications. In terms of digital circuitry, simple  encoders can  be  built  using 
exclusive OR’s, AND gates and D flip-flops. In  this chapter, the binary vector  space operations 
of sum and multiplication are meant to  be  the output of exclusive-OR  (modulo  2 addition) and 
AND gates, respectively. The tables of addition and multiplication for binary elements are: 

a b a + b  a . b  
0 0  0 0 
0 1  1 0 
1 0  1 0 
1 1  0 1 

which correspond, as mentioned previously, to the outputs of a  binary “X-OR’ logic gate and 
a  binary “AND” logic gate, respectively. 

I .2.1 Generator and parity-check  matrices 

Let C denote  a  binary linear (n,  k ,  dmin)  code.  Since C is a  k-dimensional vector subspace, 
it has a basis, say {VO, VI,. . . , iik-l}, such that  any  codeword V E C can  be represented as a 
linear combination of the elements in the basis: 

V = ZLG, (1.10) 

where 

Since C is a  k-dimensional  vector  space in V2, there is an (n  - k)-dimensional dual space 
CT, generated by the rows of a matrix H ,  called theparity-check matrix, such  that GHT = 0, 
where HT denotes the transpose of H .  In particular, note  that for any codeword tj E C, 

UHT = 0. (1.12) 

Equation ( 1.12) is of fundamental  importance in decoding of linear  codes, as will  be  shown 
in section 1.3.2. 

A linear code CL that is generated by H is a  binary linear (n, n - k ,  d k i n )  code, called 
the dual  code of C. 

1.2.2 The  weight is the distance 

As mentioned in section 1.1.2, a  nice feature of linear codes  is that computing the minimum 
distance of the code  amounts to computing the minimum  Hamming weight of its nonzero 
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codewords. In this section, this fact is  shown. First, define the Hamming weight, wtH(2),  of 
a  vector 5 E V, as the number of nonzero  elements in 2.  From the definition  of the Hamming 
distance, it is easy to see that &H(%) = d H ( % :  0). For a  binary linear code c, note  that  the 
distance 

d H ( V 1 ;  Vij2) d H ( e 1  + ‘u2; 8) = W t H ( v 1  + e2). (1.13) 

Finally, by linearity, V l  + Cij2 E C. As a  consequence, the minimum distance of C can be 
computed by  finding the minimum  Hamming  weight  among the 2k - 1 nonzero  codewords. 
This  is  simpler than the brute force search among  all pairs of codewords,  although still a 
considerable task  even for codes of modest size (or dimension k ) .  

1.3 Encoding  and  decoding of linear  block  codes 

1.3.1 Encoding with G and H 

Equation (1.10) gives an encoding rule for linear block  codes that can be implemented in a 
straightforward way.  If encoding  is to  be systematic, then the generator  matrix G of a linear 
block (n: k :  d m i n )  code C can be brought to a systematic form, Gsys, by elementary row 
operations  and/or  column  permutations. Gsys is composed of  two sub-matrices: The  k-by-k 
identity matrix, denoted I k ,  and a  k-by-(n - IC) parity sub-matrix P,  such that 

where 
/ Po,o P0,l . . . &,n-k-1 \ 

(1.15) 

Since G H T  = 0,  it follows that the systematic  form, Hsys, of the parity-check  matrix is 

H s y s  x ( P ’ - I l n - k  1. (1.16) 

Example 3 Consider  a binary linear (4: 2:  2 )  code with generator matrix 

To bring G into systematic  form,  permute  (exchange) the second  and fourth columns and 
obtain 

Thus the parity-check  sub-matrix is given by 

It  is interesting to note that in this case, the relation P = PT holds3. From  (1.16) it follows 

In this case, the code in question is referred to as a se[f-dual code. See also Section 2.2.3. 
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that the systematic  form of the parity-check  matrix  is 

In the following let 2L = (uo; u1 . . . u k - 1 )  denote an information  message to be encoded 
and V = (VO; v1 . . . ; ~ " - 1 )  the corresponding  codeword in C. 

If the parameters of C are such that k < (n - k), or equivalently the code rate k / n  < l / 2 ,  
then  encoding with the generator  matrix is the most economical.  The cost considered here is 
in terms of binary operations. In such  case 

V = iiGSys = ( U 7  up ) ;  (1.17) 

where U p  = 'L1P = ( w k  w k + l ;  . . . vn-l) represents the parity-check part of  the codeword. 
However, if k > (n - k ) ,  or k / n  > 1/2, then alternative encoding with  the parity- 

check matrix H requires less number of computations. In this case, we  have encoding 
based on Equation (1.12), (21; 'Up)HT = 0, such that the (n  - IC) parity-check positions 
'uk wk+ l  . . . w,-1 are obtained as follows: 

W; = uop0,j + u1p1,; + ' .  ' + uk-lPk-1,;; k I: j < n. (1.18) 

Stated in other terms, the systematic  form of a  parity-check  matrix of a linear code has  as 
entries of its rows the coefficients of the parity-check equations, from which the values  of  the 
redundant positions are obtained. This fact will be  used  when low-density  parity-check  codes 
are presented, in Section 8.3. 

Example 4 Consider the binary linear (4; 2; 2) code  from  Example 3. Let  messages and 
codewords be denoted by U = (210; u1) and V = ( W O ;  211 w2 w 3 ) ,  respectively. From  Equation 
(1.18), we  have  that 

The  correspondence  between the 2' = 4 two-bit  messages and codewords is  as follows: 

(00) l+ (0000) 
(01) e (0110) 
(10) H (1011) 
(11) H (1101) (1.19) 

1.3.2 Standard  array  decoding 

In this section, a  decoding  procedure is presented that finds  the closest codeword V to a 
received noisy  word F = fj + e. The error  vector E E (0; l}" is produced by a BSC,  as 
depicted in Figure 5. It  is assumed that the crossover probability (or BSC parameter) p is such 
thatp < 1/2. 

A standard  array [Sle] for  a  binary linear (n; I C ;  &in) code C is a table of all possible 
received  vectors F arranged in such a way that the closest codeword V to F can be read out. 
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Figure 5 A binary symmetric channel model. 

Table 1 The standard array of a binary linear block code. 
- - 

S Go = 0 G2 . . .  Gk- l  

0 V0 = 0 el . . .  V2.b-1 

S1 el e1 + V 1  . . .  el + V2k-1 

3 2   e 2   e 2  + v1 . . .  e 2  + '62k-1 

- 

The  standard  array  contains Z n P k  rows and 2k + 1 columns. The entries of the rightmost 2k 
columns of the array contain  all the vectors in V2 = (0 ,  l}n. 

In order  to  describe  the  decoding  procedure, the concept of syndrome is needed. The 
syndrome of a word  in V2 is defined from Equation (1.12) as 

S = THT, (1.20) 

where H is the  parity-check matrix of C. That S is indeed a  set of symptoms that indicate 
errors is shown as follows. Suppose that a codeword E C is transmitted over  a BSC and 
received as F = V + E .  The  syndrome of T is 

g FHT = (V + e)fp = (gp, (1.21) 

where to  obtain  the last equality  Equation  (1.12)  has been used. Therefore, the computation 
of the  syndrome  can be thought of as  a linear  transfonnation of an error vector. 

Standard  array  construction  procedure 

1. As the first row, in the  positions  corresponding  to the 2k rightmost columns,  enter all 
the codewords of C, beginning with the all-zero codeword in the leftmost position. 
In the position  corresponding  to the first column,  enter the all-zero  syndrome. Let 

2.  Let j = j + 1. Find the smallest Hamming weight word E j  in V2, not  in C ,  and 
not included in previous rows. The  corresponding syndrome Sj = ejHT is the first 
(rightmost)  entry of the  row. The 2k remaining  entries in that row are  obtained by 
adding E j  to all the entries in the first row (the codewords of C). 

3. Repeat the previous step until all vectors in V2 are  included in the array. 
Equivalently, let j = j + 1. If j < then repeat previous step, otherwise 
stop. 

j = 0. 
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Example 5 The  standard array of the binary linear (4,2,2) code is the following: 

S 00 01 10 11 
00 0000 0110 101 1 1101 
11 1000 1110 0011 0101 
10 0100 0010 1111 1001 
01 0001 0111 1010 1100 

Decoding  with the standard array proceeds as follows. Let F = V + E be the received  word. 
Find the word  in the array and  output as decoded  message ii the header of  the column in which 
F lies. Conceptually, this process requires storing the entire array and matching the received 
word to an entry in the array. 

However, a simplified decoding  procedure  can be found by noticing that every  row  in  the 
array has the same  syndrome.  Each row  of the array, denoted Rowi, for 0 5 i < 2 n - k ,  is a 
coset of C,  such that Row2 = { E2 + v12) E C} . The  vector ei is known as the coset leader. 

The  syndrome of the elements in the i-th row is given  by 

Si = (e2 + V ) H T  = EiHT,  (1.22) 

which is independent of the particular choice of V E C. The simplified decoding  procedure is: 
Compute the syndrome of the received word F = + V ,  

Si, = (eg + v) HT = Ei ,HT,  

and  find Sir in the leftmost  column of the standard array. Then read out the value  of ei,,  from 
the second  column, an  add it to the received word to obtain the closest codeword V’ E C to F .  
Therefore instead of n x 2” bits, standard array decoding  can be implemented with  an  array 
of n x 2n”.-k bits. 

Example 6 Consider  again the binary linear (4,2,2) code  from  Example 3. Suppose that  the 
codeword V = (0110) is transmitted  and that F = (0010) is received. Then the syndrome is 

From the standard array of the code, the corresponding  coset leader E’ = (0100) is found, and 
therefore the estimated  codeword is V‘ = F + E’ = (0010) + (0100) = (0110). One error 
has been corrected! This may sound strange, since the minimum  distance of  the code is only 
two  and  thus  according to (1 .S) single error correction is  impossible. However, this can be 
explained by looking  again at the standard array of this code  (Example 5 above). Note  that 
the third  row  of the array contains two distinct binary vectors of weight one. This means  that 
only three out of a total  of four single-error patterns can  be corrected. The error above is one 
of those correctable single-error patterns. 

It turns out that this (4,2,2) code is the simplest instance of a linear unequal error 
protection (LUEP)  code  [WV, Van]. This  LUEP  code  has  a separation vector S = (3, a),  
which means that the minimum  distance  between any  two codewords for which  the first 
message bit differs is  at least three and  that for the second message bit is at least two. 

If encoding is systematic, then  the above  procedure  gives the estimated  message U‘ in the 
first k positions of V’. This is a plausible reason for having  a  systematic  encoding. 
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1.3.3 Hamming spheres,  decoding regions and the standard array 

The  standard array is also a  convenient way of understanding the concept of Hamming  sphere 
and error correcting capability of a linear code C, introduced in Section 1.1.2. 

By construction, note that the 2k rightmost  columns of the standard array, denoted Colj,  for 
1 5 j 5 2 k ,  contain  a  codeword V j  E C and  a set of Z n P k  - 1 words at the smallest  Hamming 
distance  from Vj, that is, 

C01j = { V j  + ei(Ei E  ROW^: 0 5 i < 2 n - k } .  (1.23) 

The sets Colj are the decoding  regions, in the Hamming space, around  each  codeword B j  E C, 
for 0 5 j 5 2k - 1. This is to say that if codeword  VU^ E C is transmitted over a BSC and the 
received word F lies in  the set Colj, then it will  be successfully decoded into V j  . 

Hamming bound 

The set Colj and the error correcting capability t of code C are related by  the Hamming 
sphere St("): A  binary linear (n; k: &,in) code C has  decoding  regions Colj that properly 
contain  Hamming  spheres St(Bj), i.e., St(iij) Colj. 

By noticing that the size of Colj is 2n-k ,  and using Equation  (1.6), we obtain the celebrated 
Hamming bound 

(;) 5 2 n - k .  
i=O 

(1.24) 

The  Hamming  bound  has several combinatorial interpretations. One of them is: 

The number of syndromes, 2n-k,  must be greater than or equal to the 
number of correctable  error patterns, c:=:, ( y )  . 

Example 7 The  binary repetition (3; 1; 3) code has generator  matrix G = ( 1 1 1 ) and 
parity-check  matrix 

" = ( l  0 1) 
1 1 0  

Accordingly, its standard array is the following: 

S 0  l 
00 000 111 
11  100 011 
10 010 101 
01 001 110 

The  four  vectors in the second  column of the array (i.e., the coset leaders) are the elements of 
the Hamming  sphere SI (000) in Figure 4, which consists of all binary vectors of length three 
with Hamming  weight less that or  equal to one. Similarly, the entries of  the  third (rightmost) 
column of the array are the elements of S1 (1  11). For this code, the Hamming bound (l .24) 
holds with equality. 

Block codes satisfying the bound  (1.24) are said  to  be p e ~ e c t  codes. The only perfect 
nontrivial codes are the binary  Hamming (2- - 1; 2m - m - 1; 3) codes, the nonbinary 
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Hamming (m; B - m - 1; 3) codes, q > 2, the repetition (n; 1; n)  codes, the parity- 
check (n; n - 1:   2)  codes, the binary  Golay ( 2 3 ;   1 2 , 7 )  code and  the ternary Golay (11:  6: 5 )  
code.  The  extended  codes  (obtained by appending an overall parity-check bit) of the Hamming 
and  Golay  codes are also perfect. 

For  nonbinary linear codes, defined over  a field  of q elements, with q = p m  and p > 2 a 
prime  number, the Hamming  bound  becomes 

(1.25) 

1.4 Weight  distribution  and  error  performance 

When selecting a particular coding  scheme, it is  important to assess its error performance. 
There are several measures of the performance of  an ECC  scheme. In this section, expressions 
for linear codes are introduced, for three basic channel  models:  The BSC model, the additive 
white  Gaussian  noise (AWGN) channel  model and the flat Rayleigh  fading  channel  model. 

I .4. I Weight distribution and undetected  error probability  over a BSC 

The weight  distribution W ( C )  of  an error correcting code C, is defined as the set of n + 1 
integers W ( C )  = (Ai: 0 5 i 5 n}, such that there are Ai codewords of Hamming weight i 
in C, for i = 0; 1 : .  . . n. 

An expression for the probability of undetected error of a linear code over a BSC is derived 
next. First, note that the Hamming  weight of a word V ,  wtH(V)  equals the  Hamming distance 
to the all-zero word,  wtH(V) = d ~ ( u ,  0). Also, as noted before, the Hamming distance 
between any  two codewords 81 V2 in a linear code C equals the Hamming  weight of their 
difference, 

dH(V1; V 2 )  = dH(U'1 + U 2 :  0) = W t H ( V 1  + 8 2 )  = wtff(83); 

where, by linearity of C,  u3 E C. 

word differs from the transmitted  codeword but the syndrome  equals zero. That is, 
The probability of an undetected error, denoted P,(C), is the probability that the received 

s = ( v + E ) H ~ = E H ~ = o  W E E C .  

Therefore, the probability that the syndrome of the received word is zero  equals the probability 
that  an error vector is a  nonzero  codeword in C. 

With transmission over a BSc, the probability that the error vector E has  weight i equals 
the probability that i bits are in error and that the remaining n - i bits are correct. Let P(C; i) 
denote this probability. Then 

P(E; i )  = p i ( 1   - p ) - .  

For an undetected error to occur, the error vector E must  be a  nonzero  codeword.  There are Ai 
vectors of weight i in C. It follows that 

n n 

(1.26) 
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Equation (1.26) gives the exact value  of Pu(C). Unfortunately,  for most codes of practical 
interest the weight distribution W ( C )  is  unknown. In these cases, using the fact that  the 
number of codewords of weight i is less than or  equal to  the  total number of words of weight 
i in the binary  space V,, the following  upper bound is obtained: 

(1.27) 

Expressions ( l  .26) and (1.27) are useful  when  an ECC scheme is applied  for error detection 
only, such as in communication  systems with feedback and ARQ. When a  code  is  employed 
for error correction  purposes, the expressions  derived in the next sections are useful. 

Figure  6  shows  a plot of Pu(C) compared with  the upper bound  in the right-hand side (RHS) 
of (1.27). 

0.1 0.01 0.001  0.0001 1 e-05 

P 

Figure 6 Exact  value and  upper  bound on the  probability of undetected error for a binary 
linear (4,2,2) code over an BSc.  

1.4.2 Peflormance bounds over BSc, AWGN and fading channels 

The  purpose of  this section is to introduce basic channel  models that will  be considered in  the 
book, as well as the corresponding  expressions on  the error correction performance of linear 
codes.  Error correction for the BSC is  considered first. 
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The BSC model 

For  a  binary linear code C, as explained in the previous section, a  decoding  procedure using 
the standard array will decode  a  received  vector into the closest codeword. A decoding error 
will  be made  whenever the received vectors falls outside the correct decoding region. 

Let Li denote the number of coset leaders of weight i in  the standard array of a linear code 
C .  The probability of a  correct  decoding equals the probability that an error vector is a coset 
leader  and  given by 

e 
PC(C) = c Li $(l -p )n - i ;  (1.28) 

i=O 

where C is the largest Hamming  weight of a  coset leader E in  the standard array.  For perfect 
codes, C = t ,  and 

such that, from the Hamming  bound (1.24), 

e t c Li = c (;) = 2n-k .  
i = O  i=O 

For  binary  codes in general, Equation (1.28) becomes  a  lower bound  on PC(C), since there 
exist coset leaders of weight greater than t. 

The probability of incorrect  decoding, denoted by P, (C), also known as the probability 
ofa decoding error, is equal to the probability of the complement set of the event  of correct 
decoding, i.e., P, (C) = l - PC(C). From  Equation (l .28), it follows that 

e 
P,(C) = 1 - c Li pi(l - P Y .  

i=O 

(1.29) 

Finally, based  on the above  discussion for PC(C), the following  upper  bound is obtained, 

which can also be expressed as 

i=t+l 

(1.30) 

(1.31) 

with equality if, and only if, code C is perfect (satisfies the Hamming bound  with equality). 

Example 9 Figure 7 shows the values of P, (C) from (1.3 l), as a  function of  the crossover 
probability p of a BSc, for the binary repetition (3, l ,3) code. 
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Figure 7 Probability of a decoding  error  for  the  binary  repetition (3,1,3) code. 

The AWGN channel  model 

Perhaps the most important  channel  model in digital communications  is the additive white 
Gaussian  noise (AWGN) channel. In this section, expressions are given for the probability of 
a  decoding error and  of a bit error for linear block  codes  over AWGN channels.  Although 
similar expressions hold for  convolutional  codes, for clarity of exposition, they are introduced 
together with the discussion  on soft-decision decoding with the Viterbi algorithm  and  coded 
modulation in subsequent chapters. The  following results constitute valuable analysis tools 
for the error performance  evaluation of binary  coded  schemes  over AWGN channels. 

Consider  a  binary  transmission  system, with coded bits in the set (0 ,  l} mapped  onto 
real values {+l, -l}, respectively, as illustrated in Figure 8. In the following, vectors are 
n-dimensional  and the following  notation  is used to denote  a vector: 3 = (Q, 2 1 ,  . . . , ~ ~ - 1 ) .  

The  conditional probability density function  (pdf) of the channel  output  sequence y, given the 
input  sequence 5 is given by 

(1.32) 

where p R ( f i )  is the pdf  of n statistically independent and identically distributed (i.i.d.) noise 
samples,  each of  which is Gaussian distributed with mean ,un = 0 and variance gn = No/2, 
and NO is the one-sided  power spectral density of the noise. It is easy to  show that maximum- 
likelihood  decoding (MLD)  of  a linear code C over this channel selects a  sequence 2 that 
minimizes the squared Euclidean  distance between the received  sequence y and 2,  

n-l 

(1.33) 
i=O 

See,  e.g., [WJ],  [Will  and  [BM]. It should be  noted  that a  decoder  using  Equation (1.33) as 
a metric is referred to as a soft-decision decoder, independently of whether  or  not  MLD is 
performed. In Chapter 7, soft-decision decoding  methods are considered. 

The probability of a  decoding error with MLD, denoted Pe(C), is  equal to the probability 
that a  coded  sequence Z is transmitted  and the noise  vector f i  is such that the received  sequence 
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l '  l 

Figure 8 Binary coded transmission system over an AWGN channel. 

y = 2 + f i  is closer to a different coded  sequence i E C, x # 3. For  a linear code C, it can be 
assumed that the all-zero codeword is transmitted. Then P, ( C )  can be upper  bounded, based 
on the union bound [Cla] and the weight  distribution W(C), as follows: 

( l  .34) 

where R = k / n  is the code rate, &/No is the energy per bit-to-noise  ratio (or SNR per bit) 
and &(x) is given  by (1.2). 

Figure 9 shows the evaluation of expressions for hard-decision  decoding  (1.30) and soft- 
decision  decoding (1.34) for the binary  (3,1,3)  code. Hard-decision  decoding means using a 
decoder  for the BSC which is fed by the outputs  from  a  binary  demodulator.  The equivalent 
BSC has a  crossover probability equal to [Pro, WJ] 

Note that in this particular case, since the code is perfect and contains only  two codewords, 
both  expressions are exact, not  upper  bounds.  Figure 9 also serves to illustrate the fact that 
soft-decision decoding  performs better than hard-decision  decoding, in  the sense of requiring 
less transmitted  power to achieve the same P,((?). The difference (in dB) between  the 
corresponding  SNR  per bit is commonly referred to as coding  gain. 

In  [FLR], the authors show that for systematic binary linear codes with binary  transmission 
over an  AWGN channel, the probability of a  bit  error, denoted Pb(C), has the following  upper 
bound: 

(1.35) 

Interestingly, besides the fact that the above  bound  holds only for systematic  encoding, the 
results in [ E R ]  show that systematic  encoding  minimizes the probability of a  bit error. This 
means that systematic  encoding  is not only desirable, but actually optimal in the above sense. 

Example  10 Consider  a linear binary (6,3,3) code with generator and parity-check matrices 

(: 1 : : : : ) 7  ( 0 1 1 0 0 1  ) 
l 0 1 1 0 0  

G =  0 1 0 0 1 1  H =  1 1 0 0 1 0 ,  

respectively. The  weight distribution of this code  is W(C) = { 1,0,0,4,3,0,0}, which can 
be  verified  by direct computation of all the codewords C = ( U ,  U p ) :  
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Figure 9 Probability of a decoding error for hard-decision decoding (Pe(3,1,3)-HDD) and 
soft-decision (Pe(3,1,3)-SDD) decoding of a binary (3,1,3) code. Binary transmission over an 

AWGN channel. 
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In this particular case, MLD can be performed by simply  computing the squared  Euclidean 
distance, Equation (1.33), between the received  sequence and all of the eight candidate 
codewords.  The  decoded  codeword is selected as that with the smallest distance. In Chapter 7, 
efficient methods for MLD and near-MLD of linear block  codes are presented. Figure 10 
shows  simulations and  union bounds with hard-decision and soft-decision MLD  decoding 
with binary  transmission over  an  AWGN channel. 

The flat Rayleigh  fading  channel  model 

Another  important  channel  model  is that  of  flat Rayleigh fading. Fading  occurs in wireless 
communication  systems in the form of a  time-varying distortion of the transmitted signal. In 
this book, we consider the case of flat Rayleigh fading. The  term "flat" refers to the fact that 
the channel  is not frequency selective, so that its transfer function in  the frequency  domain is 
constant  [BM,  WJ, Pro]. 

As a result, a  (component-wise) multiplicative distortion is present in the channel, as shown 
in the model  depicted in Figure 11, where ct: is  a vector  with n component i.i.d. random 
variables ai, 0 5 i < n, each  having  a  Rayleigh pdf, 

P,; (ai) = Qie - 4 / 2  , Q2 2 0. (1.36) 
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Figure 10 Simulations and union bounds for the binary (6,3,3) code. Binary transmission 
over an AWGN channel. 

With this pdf, the average  SNR  per bit equals E,,/No (i.e., that  of the AWGN), since the 
second  moment of the fading  amplitudes is E{ a:} = 1. 

In evaluating the performance of a  binary linear code  over  a flat Rayleigh  fading  channel,  a 
conditional probability of a  decoding error, Pe(CI&), or of a bit error, Pb(C16), is computed. 
The  unconditional error probabilities are then obtained by integration over  a  product of ai, 
with  pdf given by Equation (1.36). 

- 
Information U Binary 

- Mapping 
0 - + l  

x 
1 +-l 

source  encoder 
L '  l 

destination 
Information Soft-decision 

decoder 

Figure 11 Binary coded transmission system over a flat Rayleigh fading channel. 

The conditional probabilities of error are identical to  those obtained for binary  transmission 
over an  AWGN channel.  The main difference is that the arguments in the Q(.) function, 
which correspond to the pairwise probability of a  decoding error, are now  weighted by the 
fading  amplitudes ai. Considering  a  coded  binary  transmission  system  without channel  state 
information (CSI), we  have that 

with 
W 

(1.37) 

A, = c ai. (1.38) 
i= l  
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Figure 12 Simulation  results  (SIM),  compared  with  the  Monte  Carlo  union  bound 
(Pe(3,1,3)_MC) and the  Chemoff  bound (Pe(3,1,3)EXP), for  the binary (3,1,3) code.  Binary 

transmission  over a flat  Rayleigh  fading  channel. 

Finally, the probability of a decoding error with binary  transmission  over  a flat Rayleigh  fading 
channel is obtained by taking the expectation with respect to A,, 

There are several methods to evaluate  or further upper  bound  expression (1.39). One is to 
evaluate  numerically (1.39) by Monte  Carlo  integration, with the approximation 

where A,(C) denotes the sum of the squares of W i.i.d. random variables with Rayleigh 
distribution, given by (1.38), generated in the C-th outcome of a  computer  program, and N 
is  a sufficiently large number that depends on the range of values of P, (C). A  good rule of 
thumb is that N should be at least 100  times larger than the inverse of P,(C). (See [Jer], pp. 

Another  method is to bound the Q-function by an exponential  function (see, e.g., [WJ], pp. 
82-84) and  to perform the integration, or to find a ChernofS bound. This  approach results in 
a  loose  bound that, however, yields a  closed  expression (see also [Will, p. 526, and [BM], p. 
7 18): 

500-503.) 

(1.41) 

The bound (1.41) is useful in cases  where  a first-order estimation of the code  performance is 
desired. 
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Figure 13 Simulation  results  (SIM-(6,3,3)),  compared  with  the  Monte  Carlo  union  bound 
(Pe(6,3,3)1MC) and the  Chernoff  bound (Pe(6,3,3)_EXP), for  the binary (6,3,3) code. Binary 

transmission  over a flat Rayleigh fading channel. 

Example 11 Figure  12  shows  computer  simulation results of the binary (3,1,3) code  over  a 
flat Rayleigh  fading  channel. Note  that the Monte  Carlo integration of the union  bound  gives 
exactly the actual error performance of the code, since there is only one  term in the bound. 
Also  note that the Chernoff bound is about  2 dB  away from the simulations, at a signal-to- 
noise ratio per bit E,/No > 18 dB. 

Example 12 Figure 13  shows the results of computer  simulations of decoding the  binary 
(6,3,3) code of Example 10, over  a flat Rayleigh  fading  channel. In  this case, the  union  bound 
is relatively loose at low  values  of Eb/No due to the presence of  more terms in the bound. 
Again, it can be seen that the Chernoff bound is loose by about  2 dB, at a signal-to-noise ratio 
per bit E,/No > 18 dB. 

1.5 General  structure of a  hard-decision  decoder of linear  codes 

In this section, the general structure of a  hard-decision  decoder  for linear codes is summarized. 
Figure 14 shows  a  simple  block  diagram of the decoding process. Note  that since hard 
decisions are assumed, bits at the output of a  demodulator are fed into a  decoder  designed 
for a BSc. 

Let V E C denote  a  transmitted  codeword.  The  decoder  has at its input a noisy  received 
vector F = V + E. A  two-step  decoding  procedure of a linear code is: 

0 Compute the syndrome S = FHT. Based on the code properties, the syndrome is a 
linear transformation of the error vector  introduced in the channel, 

S = EHT: ( 1.42) 

Based  on  the  syndrome S ,  estimate the most likely error vector 8 and subtract it 
(modulo  2  addition in  the binary case) from the received  vector. 
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Figure 14 General structure of a hard-decision decoder of a linear block code for the BSC 
model. 

Although  most practical decoders will not  perform the above  procedure as stated, it is 
nonetheless instructive to think of a  hard-decision  decoder as implementing  a  method of 
solving  equation (1.42). Note that any method of solving this equation constitutes a  decoding 
method.  For  example,  one  could  attempt to solve the key equation by  finding a  pseudo-inverse 
of HT, denoted (HT)+, such that HT(HT)+ = In, and the solution 

e = . (HT)+: (1.43) 

has the smallest Hamming weight  possible. As easy as this may sound, it is  a  formidable 
task. This issue will be visited again when discussing  decoding  methods  for  BCH and Reed- 
Solomon  codes. 



2 

Hamming, Golay and Reed-Muller 
codes 

In this chapter, important examples linear binary codes are introduced. They serve to introduce 
more ECC concepts as well as clever decoding algorithms. Hamming codes are perhaps the 
most widely  known class of block codes, with  the possible exception of Reed-Solomon codes. 
As mentioned in Chapter 1, Hamming codes are optimal in the sense that they require the 
smallest amount of redundancy, for  a given block length,  to correct any single error. The binary 
Golay code  is the only other nontrivial example of an optimal triple-error correcting code. 
(The only other binary optimal codes are repetition and single parity-check (SPC) codes.) 
Reed-Muller codes can be defined as codes with  an elegant combinatorial definition that are 
easy to decode. 

2.1 Hamming codes 

Recall from Chapter 1, Equation (1.12), that any  codeword tj in a linear (n, IC, dmin) block 
code C satisfies 

UHT = 0. (2.1) 

A useful interpretation of this equation is that the maximum number of linearly independent 
columns of the parity-check matrix H of C is equal to dmin - 1. 

In the binary case, for dmin = 3, the above equation translates into the sum of any  two 
columns of H not equal to the all-zero vector. Suppose that the columns of H are binary 
vectors of length m. There are up  to 2* - 1 possible nonzero distinct columns. Therefore, the 
length of a binary single-error correcting code is given by 

n < 2 m - 1 .  

This inequality is precisely the Hamming bound (1.24) for an error correcting code of length 
n, with n - IC = m and t = 1. Consequently, a code achieving this bound with equality is 
known as a Hamming code. 

Example 13 With m = 3, we obtain the Hamming (7 ,4 ,3)  code, with parity-check matrix 

1 1 1 0 1 0 0  

1 1 0 1 0 0 1  
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In  the rest of this section, an encoding and decoding algorithm is  given  that  is suitable 
for software implementation and for simulation purposes. Later in the book, effective soft- 
decision decoding algorithms are given, which can be  used over real-valued channels such as 
the AWGN channel and  the Rayleigh fading channel. 

As noted before, Hamming codes have the property that their parity-check matrix H has  all 
of its columns different. If a single error occurs, in position j ,  1 5 j 5 n, then  the syndrome 
of the received vector equals the column of H in the position in  which the error occurred. Let 
e denote the error vector added in the transmission of a codeword over a BSC channel, and 
assume that all of its components are equal to zero except for the j-th component, ej = 1. 
Then, the syndrome of the  received  word equals 

where h j  denotes the j-th column of H ,  and 1 5 j 5 n. 

2. I .  1 Encoding and decoding  procedures 

From Equation (2.2) above, it foliows that if it is possible to express the columns of H as the 
binary representation of integers, then the value of the syndrome directly gives the position 
of the error. This is the idea in the algorithms for encoding and decoding presented  below. 
The columns of the parity-check matrix H are expressed as binary representations of integer 
numbers i in the range [l, n] and in increasing order. Let the resulting matrix be denoted by 
H'.  Clearly, the code associated with H' is equivalent to the original Hamming code with 
parity-check matrix H ,  up  to a permutation (or exchange) of positions. 

Recall from Chapter 1 that the parity-check matrix in systematic form contains the 
(n - k) x (n  - k) identity matrix, I n - k ,  as in Equation (1.16). Clearly,  when expressing H' 
with columns equal to the binary representation of the (integer) column number, the identity 
matrix is contained in  those columns of H' that correspond to even  powers of 2, i.e., of the 
form 2e ,  0 5 l < m. This is illustrated in the example below. 

Example 14 Let m = 3. Then a systematic parity-check matrix is 

1 1 0 1 1 0 0  

0 1 1 1 0 0 1  

Matrix H' is given by the binary representation of integers 1 to 7 (in the following, the topmost 
part corresponds to the least-significant bit in the binary representation of  an integer): 

1 0 1 0 1 0 1  

0 0 0 1 1 1 1  

and matrix In-k  is contained in columns 1 ,  2 and 4. 

In general, for a (2m - l, 2m - 1 - m) Hamming code, the identity matrix is contained in 
column numbers 1 ,2 ,4 ,  . . . ,2"-l of H'. 
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Encoding 

Encoding proceeds as dictated by Equation (1.18) of Chapter 1. When computing the parity 
check bit p j ,  for 1 5 j 5 m, the column position numbers are examined and  those  which 
are not powers of two correspond to message positions and  the corresponding message bits 
are included in the computation. This encoding procedure is somewhat more complicated 
than that of a systematic Hamming code. In return, however, decoding is extremely simple. 
Depending on the application, this approach may  prove the most appropriate, since it is usually 
decoding that is required to  be  very fast. 

Decoding 

Once the codewords have  been computed in accordance to matrix H' ,  decoding is easy. 
The syndrome (2.2) equals the position number in which the error occurred! In a decoding 
procedure, after the computation of syndrome S, when regarded as an integer, the erroneous 
position is then corrected as 

v, = v, B 1: 

where @ denotes exclusive-or (i.e., 0 @ 0 = 0, 0 @ 1 = 1, 1 @ 0 = 1, and 1 @ 1 = 0). 

decoding procedures for binary Hamming codes. 
Program hamming. c in the ECC home page implements the above encoding and 

2.2 The  binary  Golay  code 

Golay [Gol] noticed that 

(?) = 211 
i=O 

This equality shows the possible existence of a perfect binary (23; 12,7) code, with t = 3, 
that is, capable of correcting all possible patterns of at  most three errors in 23 bit positions. In 
his paper, Golay gave a generator matrix of such a triple-error correcting binary code. 

Because of its relatively small length (23), dimension (12) and number of redundant bits 
(1 l), the binary (23; 12,7) Golay code can be encoded and decoded simply by using look-up 
tables. The program golay2 3 . c in the ECC home page uses a 16K x 23 bits encoding table 
and  an 8K x 23 bits decoding table. 

2.2.1 Encoding 

Encoding is based on a look-up table (LUT) that contains a list of all the 212 = 4096 
codewords, which are indexed directly by the data. Let U denote a 12-bit binary vector 
representing the data to  be encoded, and let V denote the corresponding 23-bit codeword. 
The encoder LUT is constructed by generating all 4096 12-bit vectors and computing the 
syndrome of a pattern for which  the 12 MSB equal to the information bits and the 11 LSB 
equal to zero. The 1 l-bit syndrome then becomes the LSB part of the codeword. 

The LUT  is  a one-to-one mapping from U onto V, which can be expressed as 

V = LUT(U) = (U;  get-syndrome(U: 0)). (2.3) 
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In the construction of the encoder LUT, advantage is taken from the cyclic nature of the 
Golay code. Its generator  polynomial’ is 

g(x) = El1 + d o  + + x5 + x4 + x2 + 1; 

which  in hexadecimal  notation equals C7 5. This polynomial is used  to generate the syndrome 
in the procedure “get-syndrome” indicated in Equation (2.3) above. 

2.2.2 Decoding 

Recall from Chapter l ,  Figure 14, that the decoder’s task is to estimate the most-likely (i.e., 
least Hamming weight) error vector e from the received vector F.  The decoder for the  Golay 
code is based on  an LUT that accepts as input the syndrome S of the received  vector F and 
outputs the error vector E .  
The procedure to construct the decoder LUT is as follows: 

1. Generate all possible error patterns e of Hamming weight less than or equal to three; 
2. For each error pattern, compute the corresponding syndrome S = get-syndrome(e); 
3.  Store at location S of the  LUT, the error vector E ,  

LUT(S) = e. 
With the decoder LUT,  upon reception of a corrupted received word F, correction of  up to 
three bit errors is accomplished by the following: 

6 = F CE LUT (get-syndrome(F)) 

where 6 denotes the corrected word. 

2.2.3 Arithmetic  decoding of the extended (24, 12, 8) Golay code. 

In this section, a decoding procedure for the extended (24: 12; 8) Golay code, C 2 4 ,  is presented 
based on an arithmetic decoding algorithm [Wic, VO]. The algorithm utilizes the  rows  and 
columns of the parity submatrix B in the parity-check matrix H = ( B  1 1 1 2 ~ 1 2  ) . Note  that 
an extended (24; 12,8) Golay code, Ci4, which is equivalent to C 2 4  up to a permutation in 
the bit positions, can be obtained by adding an overall parity-check bit at the  end of each 
codeword in the (23: 12,7) Golay code. 

In hexadecimal notation, the twelve rows of B, denoted rowi, l 5 i 5 12, are: 

Ox7ff, Oxee2, Oxdc5, Oxb8b, Oxf16, Oxe2d, 
Oxc5b, Ox8b7, Ox96e, Oxadc, Oxdb8, Oxb71. 

It is interesting to note that sub-matrix B of the parity-check matrix of C 2 4  satisfies B = BT. 
This means that code C 2 4  is a self-dual code. Details of self-dual codes are not covered in this 
book. Interested readers are referred to [MS, Wic]. 

In program golay24.  c, encoding is performed by recurrence with H ,  as indicated in 
Equation 1.18. As before, let WtH(x) denote the Hamming weight of a vector 3.  Decoding 
steps are as follows [Wic, VO]: 

The definition of a generator polynomial is given in Chapter 3. 
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1. 
2 .  
3. 

4. 
5 .  
6. 

7. 

8. 

Compute the syndrome S = T H T .  
If wtH(S) 5 3, then set E = ( S ,  0) and go to step 8. 
If wtH(S + rowi) 5 2, then set e = ( S  + rowi, %i), where %i is a 12-bit vector with 
only the i-th coordinate nonzero. 
Compute sB. 
If wtH(SB) 5 3, then set e = (0 ,  SB) and go to step 8. 
If wtH(d3 + rowi) 5 2, then set e = (Si, S.B + rowi), with Zi defined as above, 
and go to step 8. 
F is corrupted by an uncorrectable error pattern, set error failure flag.  End of 
decoding. 
Set = F + e. End  of decoding. 

2.3 Binary Reed-Muller  codes 

Binary Reed-Muller (M) codes constitute a family of error correcting codes that are easy 
to decode using majority-logic circuits. In addition, codes in  this family are known to have 
relatively simple and highly structured trellises [LKFF]. More on trellises of linear block 
codes is discussed in Chapter 7. 

An elegant definition of binary RM code is obtained with the use of binary polynomials (or 
Boolean functions). With this definition, RM codes become close relatives of BCH codes and 
RS codes, all members of the class of polynomial codes2. 

2.3.1 Boolean polynomials and RM codes 

This section closely follows the development of [MS]. Let f(xl,x2,. .. ,xm) denote a 
Boolean function on m binary-valued variables x1,x2, . . . , x,. It is well  known  that  such 
a function can be specified by a truth table. The truth table lists the value of f for all 
2m combinations of values of its arguments. All the usual Boolean operations (such as 
“AND”,“OR’) can be defined in a Boolean function. 

Example 15 Consider the function f(x1, x2) with the following truth table: 

x2 0 0 1 1  
x1 0 1 0 1  

f(X1,Xz) 0 1 1 0 

Then, 
f(z1, ~ 2 )  = (XI AND NOT(22)) OR (NOT(21) AND ~ 2 ) .  

Associated with each Boolean function f, let .f denote the binary vector of length 2, which 
is obtained from evaluating f at all possible 2, values  of the m variables XI, xz, . . . , x,. In 
the example above, .f = (OllO), where the convention taken for ordering the bit positions of 
f is in accordance to a binary representation of integers, with x1 being the least-significant bit 
(LSB) and x, the most-significant bit (MSB). 

Note also that a Boolean function can be written directly from its truth table to get the 
disjunctive noma1  form (DNF). Using the DNF, any Boolean function can be expressed as 

Polynomial codes are presented in Section 3.4. 
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the sum3 of 2, elementary functions: 1 , q ,  x2, . . . , x,, 21x2, . . . ,x1z2 . . . x,, such that 

f = 1 + + a2Z2 + . . . + urn%, + a123132 + . . . + ~ 1 2 . . . , 3 1 3 2  . . .%m, (2.4) 
- -  

where i is added to account for independent terms (degree 0). For Example 15, f = 31 + 32. 
A binary RM (2,, k ,  code, denoted RM,,,, is defined as the set of vectors 

associated with all Boolean functions of degree up to T in m variables. R M , ,  is also known 
as the r-th order RM code of length 2,. The dimension of RM,,, can easily by shown  to  be 
equal to 

k = i : ( T ) ,  i=O 

which corresponds to the number of ways polynomials of degree up to r can  be constructed 
with m variables. 

In  view of Equation (2.4), a generator matrix for RM,,, is formed by taking as rows  the 
vectors associated with the k Boolean functions which can be expressed as polynomials of 
degree up to r in m variables. 

Example 16 The first-order RM code of length 8, RM1,3, is an (8,4,4) binary code, and  can 
be constructed from Boolean functions of degree up  to 1 in 3 variables: { 1,x1, z2, Q}, so 
that 

- 
1 = 1 1 1 1 1 1 1 1  

z 1 = 0 0 0 0 1 1 1 1  
z 2 = 0 0 1 1 0 0 1 1  
3 3 = 0 1 0 1 0 1 0 1  

A generator matrix for RM1,3 is thus 
- 

1 1 1 1 1 1 1 1  

0 0 1 1 0 0 1 1  G =  (i) = ( 0 0 0 0 1 1 1 1  

0 1 0 1 0 1 0 1  ) 
Note that code RM1,s can be also obtained from a Hamming (7 ,4,3)  code by appending at the 
end of each codeword an overall parity-check bit. The only difference between the extended 
Hamming code and  RM1,3  will  be a possible permutation of bit (column) positions. 

Dual codes of RM codes  are also RM codes 

It can be  shown that RMrn-,-1,, is the dual code of RM,,. In other words,  the generator 
matrix of RMm-,-l,, can be used as a parity-check matrix of RM,,. 

2.3.2 Finite geometries and majority-logic decoding 

RM codes can be formulated in terms of ajinite geometry. An Euclidean geometry EG(m, 2) 
of dimension m over G F ( 2 )  consists of 2 ,  points, which are all the binary vectors of length 

“sum” means logical “XOR” and “multiplication” means logical “AND’ in thk context 
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m. Note that the columns of the matrix formed by the last three rows of the generator matrix 
of RM1,3, see Example 16 above, are the 8 points of EG(3,2). If the zero point is deleted, 
then a projective geometry PG(m - 1 , 2 )  is obtained. The reader is referred to [LC] for an 
excellent treatment of finite geometries and RM codes. Finite geometry codes are in fact a 
generalization of RM codes4. 

The connection between codes and finite geometries can be introduced as follows: Consider 
EG(m, 2 ) .  The columns of the matrix (ZTZ; .. are taken as the coordinates of 
points of the geometry EG(m, 2 ) .  Then, there is a one-to-one correspondence between the 
components of binary vectors of length 2 ,  and the points of EG(m, 2).  A given binary  vector 
of length 2 ,  is associated with a subset of points of EG(m, 2) .  In particular, a subset of 
EG(m, 2 )  can be associated with each binary vector I3 = (WI, w2, . . . , w p )  of length 2m,  
by interpreting it as selecting points whenever tui  = 1. Stated otherwise, I3 is an incidence 
vector. 

Binary Reed-Muller codes can then  be  defined as follows: The codewords of RM,,, are 
the incidence vectors of all subspaces (i.e., linear combinations of points) of dimension m - r 
in EG(m, 2) (Theorem 8 of [MS]). From this it follows that the number of minimum weight 
codewords of RM,,, is 

The code obtained by deleting (or puncturing) the coordinate corresponding to 
x 1 = x 2 = " ' =  x, = 0 from all the codewords of M,,, is the binary cyclic RM:,, code, 
which as 

minimum-weight codewords. 
In terms of decoding, it turns out that RM codes can be decoded with so-called majority- 

logic (ML) decoding. The idea is the following: The parity-check matrix induces Z n P k  parity- 
check equations. Designing an ML decoder is selecting a subset of the parity-check equations 
in such a way that a majority vote is taken on the value of a specific code position. As  an 
illustration, consider again the RM1,3 code of Example 16 above. 

Example 17 Let tj = uG = (VI ,  712, v3 , 714, v s ,  'u6,  w7, W g )  be a codeword in w 1 , 3 .  As 
mentioned before, in this case equation (2.5) is also a parity-check matrix, since r = 1 and 
m - r - 1 = 1, and the code is self-dual. All possible 15 nonzero combinations of parity-check 
equations (rows of H )  are the following: 
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v1 + v3 + v5 + v7 = 0 

v2 + v 4  + V 5  + v 7  = 0 
'U3 + v4 + 215 + 'U6 = 0 

v2 + 213 + ?& + 217 = 0 
v1 +v2 +v7 + v 8  = 0 
211 + 'U3 f 216 f ?k3 = 0 
v1 +v4 + v5 + v8 0 
v2 + v3 f v5 + v8 0 
211 f v4 + 716 + v7 = 0 (2.8) 

The reader is invited to verify that the sum vi + v ~ j  of every pair of code bits vi, vj, with 
i # j ,  appears in exactly four equations. Whenever a set of equations includes a term vi + vj, 
but  no other sum of pairs appears more than once, the parity-checks involved are said  to  be 
orthogonal on positions vi and vj. 

It is now  shown  how a single error can be corrected. Let 

T=Vijfe=(rl,r2,rQ,r4,r5,r6,r7,r8) 

denote a received vector after codeword V is transmitted over a BSc. Suppose that a single 
error is  to  be corrected in the fifth position, v5. A procedure to design an ML decoder for this 
case is as follows: 

TWO equations involving the term vi + v5 are selected, with i # 5, and another set of two 
equations with the term vj + v5, j # 5, with i # j. Select (arbitrarily, as long  as i # j and 
both different than 5), say, i = 3, j = 4. There are four parity checks orthogonal to  the  term 
w3 + 215. Select any  two of them. Do the same for the term v4 + v5. 

The syndromes associated with these equations are denoted S1 and S, for v3 + v5 and S3 
and S4 for v4 + 715, 

A 

A 

A 

A 

S1 = TI +r3 +r5 +r7 
S2 = r3 +r4 +r5 +r6 

S3 = 7-2 +r4 +r5 +r7 
S4 = TI + 1-4 + r5 + T8 

Because V is  a codeword in RM1,3, the set of equations (2.9) is equivalent to 

S1 = el +e3 +e5  +e7  
S 2  e3 +e4 +-e5 +e6  
S3 e2 + e 4 + e s  +e7  
S4 = el + e 4 + e 5 + e 8  

A 

A 

A 

A 
(2.10) 

Since SI, Sa, S3 and S4 are orthogonal on e3 + e5  and e4 + e5, a new pair of equations 
orthogonal on e5 can be formed as: 

Si = e; + e; 
Si = e: +e;  

A 

A 
(2.1 1) 
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where el, j = 3,4; 5, represents the ML estimate from (2.9). Equations (2.1 1) are orthogonal 
on e; and consequently the value of e; can be obtained by a majority vote, for example, setting 
it to the output of an “AND’ gate with inputs Si and Si. 

Suppose that the codeword V = (11110000) is transmitted and F = (11111000) is received. 
Then (2.10) gives: 

S1 = TI + r3 + r5 + 7-7 = 1 
SZ = r3 + ~4 + r5 + 7-6 = 1 
S3 = 7-2 + r4 + r5 + 7-7 = 1 
S4 = TI + r4 + r5 + T8 = 1 (2.12) 

Thus both e3 + e5  e4 + e5 are estimated as having value equal to ‘l’. From (2.1 l), it is 
concluded that e5 = 1, and the estimated error vector is e = (OOOOlOOO), from which  the 
estimated codeword is V = F + e = (11110000). This shows how  an error in the fifth position 
can be corrected with a two-step ML decoder. 

In the previous example, it was shown  how an error in a specific position of an  RM1,3 code 
can be corrected. A similar procedure can be applied to every position in the code. Therefore, 
a total  of eight ML estimates will  be obtained. 

In general, an R M , ,  code can be decoded with  an (T + 1)-step ML decoder capable of 
correcting any combination of up to  L(2m-2 - 1)/2J random errors [MS, LC]. 

In addition, a cyclic RM:,, code is simpler to decode. In a cyclic code5 C, if 
(v1 ; 212: . . . ; v,) is a codeword of C, then the cyclic shij? (W,; wl; . . . vn-l) also is a codeword 
of C. Therefore, once a position can be corrected via  ML decoding, the remaining positions 
can also be corrected with the same algorithm (or hardware circuit) by cyclically shifting 
received codewords, until all n positions have been tried. 

Example 18 In this example, a decoder for the cyclic code, a binary Hamming 
(7; 4; 3) code, is derived. To obtain the parity-check equations from those of the RM1,3 
code, remove the coordinate v1 for which x1 = x2 = . . . = 2, from all equations. 
Let the codewords of  RMT,, be indexed by re-labeling the codeword elements: 
(v2 ; v3 v4 v5 Vug: v7 v g  ) + (v1 ; v2 ~3 v4 v5 ; v6 : v7). As before, an  ML decoder for 
correcting an error in  an arbitrary position (say, thejifth position again) can  be derived. This 
can be  shown to result in the following seven nonzero (linearly independent) parity-check 
equations: 

(2.13) 

See Chapter 3 
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open at 
n=7 

V 

Figure 15 A majority-logic decoder for a cyclic RM* (1,3) code. 

In a manner similar to the previous example, the syndromes S1 and S2 below are orthogonal 
on v4 and 215, and S2 and S3 are orthogonal on 215 and 216: 

(2.14) 

Based on the estimates eh + e; and e; + e; two additional orthogonal equations on e5 can be 
formed to give  the  final estimate, 

(2.15) 

where e;, j = 4: 5; 6, represents the ML estimate from the previous step. This results in the 
circuit shown in the Figure 15. The circuit operates as follows. Initially the contents of the 
seven-bit register are set to zero. Suppose that a single error is contained in  the  received  word 
in position i ,  for 1 5 i 5 7. At each clock cycle, the contents of the register are cyclically 
shifted to  the right by one position. Time, in clock cycles, is denoted by the subindex n in the 
following. 

Consider first  the case i = 1. That is, there is an error in the first  codeword position. After 
three cycles, the error is contained in register 5 (vs). The output of the majority-logic circuit 
is set to e ,  = 1. Four cycles later (a total of seven cycles), the  first  received  bit  is output and 
the error corrected. Consider now  the case i = 7. After nine cycles, the error is detected and 
e ,  = 1. Again, four cycles later (total 13 cycles), the  bit  in the last position is output and  the 
error corrected. This decoder has a latency of 13 cycles. Every 13 cycles, the contents of the 
shift register are cleared and a new codeword can be  processed. 

In the next chapter, binary cyclic codes and the powerful family of  BCH codes are 
introduced. 
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Binary cyclic codes and BCH codes 

The aim of this chapter is to introduce a minimum set of concepts necessary for the 
understanding of binary cyclic codes and for the efficient implementation of their encoding 
and decoding procedures. Also in this chapter, the important family of binary BCH codes 
is introduced. BCH codes are a family of cyclic codes, which gives them an algebraic 
structure that is useful in simplifying their encoding and decoding procedures. Binary  BCH 
codes with minimum distance 3, better known  as Hamming codes, have  been a very popular 
choice in computer networks and in memories, due  to their simple and fast encoding and 
decoding. Also, a shortened (48; 36,5) BCH code is used in the U.S. cellular TDMA system 
specification, standard IS-54. 

3.1 Binary  cyclic  codes 

Cyclic codes are a class of error correcting codes that can be  efficiently encoded and decoded 
using simple shift-registers and combinatorial logic elements, based on their representation 
using polynomials. In this section, the fundamental concepts of cyclic codes are discussed. 

3.1.1 Generator  and  parity-check  polynomials 

Let c denote a linear (n: k) block code. Let ii and 6 denote a message and  the corresponding 
codeword in c, respectively. Cyclic codes are linear codes with properties that make them 
suitable for hardware implementation. To every codeword 6 a  polynomial v(z) is associated, 

6=(W~;w1;.'.;Wn-1)~~(s)=~~+Wlz+...Wn-1z n-l . 

The indeterminant z serves to indicate the relative position of  an element vi of .li as a term 

A linear block code C is cyclic if and only if every  cyclic shift of a  codeword is another 
wixi of a(z), 0 5 i < 71. 

codeword, 

v = (WO; 211;. . . ; wn-l) E c * = ( W n - l ;  W O ;  ' .  . ; W n - 2 )  E c. 
In the language of polynomials, a cyclic shift by one position, denoted dl)(x) ,  is 
accomplished by a multiplication by z modulo (x" - l), 

U(z) E C e v(')(%) = xU(x) mod (xn - l) E C. 

Shift-registers can be  used for this purpose, as illustrated in Figure 16. 
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Figure 16 A cyclic shift register 

Example 19 Consider the case of n = 7. Then, a cyclic shift by one position of the  vector 
V = (O1O1011) equals d l )  = (1010101). In terms ofpolynomials, a(x)  = x + 5 3  + 2 5  + 2 6  

and 

d l ) ( x )  = x~(z) = x' + x4 + x6 + x7 mod (x7 + l) 
= x 2 + x 4 + x 6 + x 7 + ( x 7 + 1 ) + 1  
= l + 2 2 + x 4 + x 6  

3. I .2 The generator  polynomial 

An important property of cyclic codes is  that  all code polynomials U(z) are multiples of 
a unique polynomial, g ( x ) ,  called the generator  polynomial of the code. This polynomial 
is specified by its roots, which are called the zeros of the code. It can be  shown  that  the 
generator polynomial g(z) divides (x" - 1). (As with integers, " a ( z )  divides b(x)" whenever 
b(z) = q(x)a(z ) . )  Therefore, to find a generator polynomial, the polynomial (x" - 1) must 
be factored into its irreduciblefuctors, 4j (x), j = 1; 2:.  . . : l ,  

(x" - 1) = 41 ( x ) 4 2  (x) . . . de(.). (3.1) 

Also, note that over the field  of  binary numbers, a - b and a + b (modulo 2) give  the  same 
result. In the remainder of the text, as all  the codes are defined  over  the  binary  field, or its 
extensions, no distinction is  made  between these operations. 

As a consequence of the above, the polynomial g(x )  is given by 

a x )  = &(x). 
j€Jc ( l , a , . . . , c }  

Example 20 With coefficients over Z2 = (0: l}, the polynomial x7 + 1 factors as 

x7 + I = (x + 1)(..3 + x + 1)(.3 + x 2  + 1). 

Some examples of cyclic codes of length 7 are: 

0 A binary cyclic Hamming (7: 4; 3) code is generated by the  polynomial 

g(x) = x3 + II: + 1. 

0 A binary cyclic parity-check (7: 6; 2) code is generated by 

= (.3 + x + 11(~3 + 22 + 1). 

0 A binary maximum-length-sequence (7: 3: 4) code is generated by 

g ( x )  = + 1)(x3 + x + 1). 
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3.1.3 Encoding and decoding of binary  cyclic  codes 

The dimension of a binary cyclic (n ,  k )  code is given by 

k = n - deg [g(x)], 

where deg [.] denotes the degree of the argument. Since a cyclic code C is also linear, any set 
of k linearly independent (LI) vectors can be selected as a generator matrix. In particular, the 
binary vectors associated with g(z), xg(z), . . ., xk-lij(x) are LI. These vectors can be used 
as rows of a generator matrix of C. In this case a non-systematic encoding rule is achieved. 
That is, the message bits do not appear explicitly in  any positions of the codewords. 

Example 21 Consider the cyclic Hamming (7 ,4,3)  code, with generator polynomial g(z) = 
x3 + x + 1 e g = (1101). A generator matrix for this code is 

G =  ( 1 1 0 1 0 0 0  
0 1 1 0 1 0 0  
0 0 1 1 0 1 0 '  
0 0 0 1 1 0 1  ) 

Alternatively, the parity sub-matrix of a generator matrix of a cyclic code can be constructed 
with the vectors associated with the following polynomials: 

xn-l mod g(x), 

xn-k+l mod 9(x), 
xn-' mod g ( x ) ,  

and a systematic encoding is obtained, as illustrated in the example below, 

Example 22 Let c be the cyclic Hamming (7 ,4 ,3 )  code. Then g(z) = z3 + x + 1, and 

z6 mod (x3 + x + 1) = x' + 1, 
z5 mod (x3 + x  + 1) = x' + x + 1, 
x4 mod (x3 + x + 1) = x' + x, 
z3 mod (x3 + x + 1) = z + 1. 

It follows that a systematic generator matrix of C is 

f 1 0 0 0 1 0 1  
0 1 0 0 1 1 1  G =  

\ 0 0 0 1 0 1 1 /  

Let U(x) be associated with a message to  be encoded. Encoding of codewords of a binary 
cyclic code can be either non-systematic or systematic, depending on the way that the message 
is processed: 

Non-systematic encoding 

v(2)  = U(z)g(x) 
Systematic encoding 

(3.3) 

U(x) = zn-"u(z) + [z"-'fi(x) mod g(.)]. (3.4) 
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3.1.4 The parity-check polynomial 

Another polynomial, h(z) ,  called the parity-check polynomial, can be associated with the 
parity-check matrix. The generator polynomial and the parity-check polynomial are related 
by 

g(z)h(z)  = 2" + 1. (3.5) 

The parity-check polynomial can be computed from the generator polynomial as 
&(x) = (zn + l)/g(z) = h0 + hlz + . . . + hkxk.  Then, a parity-check matrix for C is given 
by using as rows the binary vectors associated with the first n - k - 1 nonzero cyclic shifts 
h(j)(z) = zjh(z) mod (xn - l), j = 0,1, .  . . , n - k - 1. 

H =  

Example 23 The parity-check polynomial for the cyclic Hamming (7,4,3) code, with gener- 
ator polynomial g(z) = z3 + z + 1, is h(z)  = (x7 + + z + 1) = z4 + x' + z + 1. 
A parity-check matrix for this code is 

( 0 0 1 1 1 0 1  1 1 1 1 0 1 0 0  
H =  0 1 1 1 0 1 0 .  

In the same manner as with linear codes, systematic encoding can  be also performed by a 
recursion with h(z)  using 

u(z)h(z)  = 0 mod (5" + 1). 

Systematic encoding can  be performed as follows [PW, LC]. Suppose first  that  the code rate 
k / n  5 0.5. Let G(%) = uo + u1z + . . . + Uk-1  denote a polynomial of degree k - 1, whose 
coefficients ut, e = 0, l, . . . , k - 1, are the message bits to  be encoded. Let 'u(z) denote the 
code polynomial polynomial in C corresponding to the information polynomial 21(z). In  the 
first step, v! = ut, for k = 0, l , .  . . , k - 1. 

From the cyclic structure of the code, it follows that the redundant bits v!, 
e = k ,  k + 1, . . . , n - 1, are obtained recursively via the parity-check relations 

e-1 

ve = cUjh( ! -k ) , j ,  l? = k , k +  l , . . . , n  - 1 (3.7) 
j = O  

where h ( t - k ) , j  denotes the j-th entry in the ( k  - k)-th row  of matrix (3.6). 
In the case of high-rate cyclic (n, k )  codes, say k / n  > 0.5, encoding by division of 

z"-'G(z) by g(z) is more efficient. Either way,  by recursion with h(z)  or by division by g(z), 
the coefficients of the code polynomials are in systematic form, so that the first k coefficients 
are the message bits,  and the remaining n - k coefficients constitute the redundant bits. 

Figure 17 shows the block diagram of an encoder for a binary cyclic code with generator 
polynomial g(z). Initially, the switch (lower right portion of the figure) is in position 1, and the 
message bits are both transmitted through the channel and simultaneously fed  to a sequential 
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circuit that multiplies by xn-k and divides by i j (z).  After k cycles, the shift register contains 
the remainder of the division, the switch moves to position 2 and the contents of the register 
are sent through the channel. 

Figure 17 Circuit for systematic  encoding:  Division by i j (z).  

Duals of cyclic  codes  and  maximum-length-sequence  codes 

By analogy with linear codes, the dual  code of a cyclic code C with generator polynomial 
g(%) is the cyclic code CL generated by the polynomial h(z) .  The important class of 
maximum-length-sequence (MLS) cyclic codes [PW] has as members the duals of the cyclic 
Hamming codes. An MLS cyclic (2m - 1, m, 2m-1) code is generated by the polynomial 
g(z) = (xn + l) /p(x),  wherep(z) is aprimitivepolynomial'. 

3.1.5 Shortened  cyclic  codes and CRC  codes 

There are many practical applications in  which  an error correcting code with simple encoding 
and decoding procedures is desired, but existing constructions do not give the desired length, 
dimension and minimum distance. 

The following is an example from an email recently sent to the author: We plan  to use 
a  simple FEC/ECC scheme to  detectkorrect single-bit  errors in a  64-bit  data block. The 
objective is to find or choose an ECC scheme to correct  single-bit  errors  with up to 8 bits of 
overhead,  giving  a maximum of 72 bits ( 64  data  bits  plus 8 redundant bits) in total. 

Naturally, since 72 is not of the form 2m - 1, none of the cyclic codes studied so far can be 
applied directly. One possible solution is to use a cyclic Hamming (127,120,3) code and to 
shorten it until a dimension k = 64 is reached. This yields a shortened Hamming (71,64,3) 
code2. 

Shortening is accomplished by not using  all the information bits of a code. Let S 

For a definition of primitive polynomial, see page 41. 
This is an example to introduce the concept of shortening. A (72,64,4) single-error-correctingldouble-error- 
detecting (SECIDED) code, based on a shortened Hamming code, and adding an overall parity-check bit, 
was proposed for the IBM model 360 mainframe ([Hsia] and Chapter 16  of [LC]). 
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denote the number of information bits not used, referred to  as  the shortening depth. Let 
C denote a cyclic (n, k ,  d )  code. A shortened message is obtained by fixing S (arbitrary) 
message positions to zero. This leaves k - S positions available for the message bits. 
Without loss of generality, let the highest positions in a message be set to zero. Then 
U ( % )  = uo + u1z + . . . + ~k-1-~z'-'-~. The output of a systematic  encoder, when the 
input is  the message polynomial U(z),  produces the code polynomial V(z) = z"-'ii(z) + 
[zn-'U(z) mod g(.)], of degree up  to n - l - S .  This shows that the resulting shortened 
code C, is a linear (n - S, k - S ,  d,) code with d, 2 d. In general, the shortened code C, is 
no longer cyclic. 

Example 24 Let C denote the cyclic Hamming (7 ,4 ,3)  code with generator polynomial 
g(z) = 1 + z + z3. A new code is derived from C by sending 2 leading zeros followed by 
two information bits and the same three redundant bits computed by  an encoder in C. This 
process gives a set of codewords that forms a shortened linear ( 5 , 2 , 3 )  code. 

The fundamental property of a shortened code C, obtained from a cyclic code is that, 
although the code is generally no longer cyclic, the same encoder and decoder can  be  used, 
after the leading zeros are properly taken into account. In computer simulations, it is easy 
to simply pad the codewords with zeros followed by the codeword in C, and  use  the  same 
encoding and decoding algorithms discussed in the book. This method is widely  used in 
hardware implementations of Reed-Solomon decoders. Alternatively, the leading zeros in a 
message do not need to  be included in the codeword. Instead, the decoder circuit is modified 
to multiply the incoming received polynomial f ( z )  by xn-'+, modulo g(z), instead of zn-' 
modulo g(z) in the conventional decoder. More details on the modified encoder and decoder 
structures for shortened cyclic code can be found in [PW, LC, Wic], among other references. 

Another possible solution is to try  to construct other classes of cyclic codes with  the desired 
parameters. Interesting classes of cyclic codes not covered in the text are the non-primitive 
BCH codes [PW] and the Euclidean geometry (EG) and projective geometry (PG) codes [LC]. 
Yet another possibility is to  use a non-binary cyclic code, such as a Reed-Solomon code 
discussed in the next chapter, and to express it in terms of bits. This binary image of a RS code 
will have the additional feature of being able to correct many bursts of errors. See Chapter 4 
for more information. 

CRC codes 

One of the most popular forms of ECC are the cyclic redundancy  check codes, or CRC 
codes. These cyclic codes are used  to detect errors in blocks of data. CRC codes are cyclic 
codes of length n 5 2m - 1. Typically,  CRC codes have generator polynomials of the form 
(1 + z)g(z), where g(z) is the generator polynomial of a cyclic Hamming code. Common 
values  of m are 12, 16 and 32.  The choice of the generator polynomials is dictated by the 
undetected  error  probability, which depends on the weight distribution of the code. The 
computation of the undetected error probability of a cyclic code is tantamount to determining 
its weight distribution. This has remained an elusive task, even after 50 years of coding theory, 
with some progress reported in [FKKL, Kaz]  and references therein. Below is a list of the most 
popular generator polynomials of CRC codes, or CRCpolynomials: 
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Code a x )  m 
CRC-12 %l2 + d 1  + zJ + x2 + z + 1 12 
CRC-16 

x16 + 2 1 2  + 2 5  + 1 16 CRC-CCITT 
Zl6 + d 5  + x2 + 1 16 

CRC-32 z32 + zZ6 + + z2’ + 216 + 2 1 2  + 211 32 
+ d o  + 2* + x7 + +z5 + 2 4  f 2 2  + z + 1 

39 

3.2 General  decoding of cyclic  codes 

Let T(z) = V(z) + $x), where e(x) is the error  polynomial associated with  an error vector 
produced after transmission over a BSC channel. Then the syndrome polynomial is defined  as 

Figure 18 shows the general architecture of a decoder for cyclic codes. The syndrome 
polynomial .$(x) is used to determine the error polynomial e(z). Since a cyclic code is  first 
of all a linear code, this architecture can be thought of as a “standard array approach” to  the 
decoding of cyclic codes. 

?(x) = $x) + S(x) 

. . . . . . . .  ..........  ......... . . . . . . . . . .  . ,  W 
v 

Division by g(x) 7 -1 D- 
S(x) = ?(x) mod g(x) 

Figure 18 General  architecture of a decoder for cyclic  codes. 

The decoding problem amounts to finding the (unknown) error polynomial E(z) from the 
(known) syndrome polynomial S(z). These two polynomials are related by equation (3.Q 
which  is the basis  of a syndrome decoder (also referred to as a Meggit decoder [Meg]) for 
cyclic codes. A related decoder is the error-trapping decoder [Kasm], which checks if the 
error polynomial e(x) is contained (“trapped”) in the syndrome polynomial S(z). Only a 
limited number of classes of codes have relatively simple decoders, e.g., cyclic Hamming and 
Golay codes. As the error correcting capability t = L(dmin - 1)/2] increases, however,  the 
complexity of an architecture based only on (combinatorial) detection of errors becomes too 
large. 

Suppose that an error in the position corresponding to zn-’ (the first  received 
bit) occurs. In other words, e(z) = xn-l. The corresponding syndrome polynomial is 
S(z) = x”-lrnodij(z). The code is cyclic, and thus if  an error pattern affecting a given 
position is detected, any other error can  be detected as well, by cyclically shifting the contents 
of the syndrome polynomial and the error polynomial. The syndrome decoder checks the 
syndrome for each received position and, if the pattern zn-lmodg(z) is detected, that position 
is corrected. 

Example 25 In this example, the decoding of a cyclic (7: 4; 3) Hamming code is illustrated. 
For this code, ij(x) = z3 + z + 1. The syndrome decoding circuit is shown  in Figure 19. The 
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received bits are stored  in  a shift register and at the same time  fed  to  a divide-by-g(z) circuit. 
After all the  seven bits have  been  received,  the shift register contents are  shifted one at a  time, 
and  a combinatorial gate checks if  the syndrome polynomial z6mod(l + z + z3) = 1 + x2, 
or (101) in  binary  vector  notation, is present  in  the shift register  when  the  output  of  the  gate is 
equal to one, the error is at the  position z6 and  is  corrected. At the same time,  the  error  is fed 
back to the divide-by-g(z)  circuit to  bring  the contents of  the  register  equal  to  all  zeros,  upon 
successful  completion of decoding. This  also  allows  detection  of  any  anomalies at the  end  of 
the decoding process,  by checking that  the contents of  the shift register  are  not all equal to 
zero. 

x3 

Figure 19 Syndrome decoder for a binary cyclic Hamming (7,4) code. 

Attention  is  now focused on  cyclic codes with  large error correcting  capabilities, for which 
the decoding problem can be treated as that  of  solving sets of  equations.  Because  of  this,  the 
notion  of  a jield, a  set  in  which one can  multiply, add and  find  inverses, is required.  Cyclic 
codes have  a  rich  algebraic  structure. It will  be  shown later that  powerful  decoding  algorithms 
can be  implemented  efficiently  when  the  roots  of  the generator polynomial  are  invoked  and 
arithmetic over ajinitejield used. 

Recall  that  the generator polynomial  is  the  product  of  binary  irreducible  polynomials: 

g(z) = n &(X). 

j € J C { l , Z , . . . , l }  

The algebraic  structure of a  cyclic codes enables one to  find  the  factors  (roots)  of  each 4j (x) 
in  a splitting jield (also  known as extension  field).  In  the case of interest, that  is,  when  the 
underlying symbols are  bits,  the  splitting  field  becomes  a Guloisjield3. Some authors  refer 
to Galois  fields as jni te  j e ld s .  The standard  notation  that  will be used  in  the  text  is GF(g) ,  
where q = 2m. (Although,  in general, q can be the  power  of  any  prime  number.) 

Example  26 In this example, the reader is reminded  that  the concept of splitting  field is 
very  familiar. Consider the  field  of  real  numbers. Over this field,  it  is  well  known  that  the 

~~ 

After the famous French mathematician Evariste Galois (18 1 1 -  1832). 
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polynomial z2 + 1 is irreducible. However, over the  compZexfield, it splits into (z + i) (z - i), 
where i = a. Thus the complex field is the splitting field of the real field! 

3.2.1 GF(2") arithmetic 

It can be shown, with basic abstract algebra [PW, LC] concepts, that, in the field of binary 
numbers, any polynomial of degree m can be split over GF(2m). For the purposes of this 
book, it is sufficient to learn basic computational aspects of finite  fields. Serious readers are 
urged  to study a good textbook on abstract algebra4. 

Decoding with GF(2") arithmetic allows replacement of complex combinatorial circuits 
with practical processor architectures that can solve Equation (3.8) as a set of linear equations. 
In the following, the necessary tools to solve equations involved in decoding of cyclic codes 
are introduced. 

Important  properties of GF(2") 

The field GF(2") is isomorphic (with respect to "+") to the linear space (0, l}". In other 
words, for every element /3 E GF(2"), there exists a unique m-dimensional binary  vector 

There is aprimitive element a E GF(2m), such that every nonzero element ,B in GF(2") 
can be expressed as p = d ,  0 5 j 5 2" - 2. This element a is the root of an irreducible 
polynomial, called a primitive polynomial, p ( z )  over (0, l}, i.e., p ( a )  = 0. A primitive 
element a of the field GF(2m) satisfies the equation a2m-1 = 1, and n = 2" - 1 is the 
smallest positive integer such that an = 1. 

Example 27 Let p ( z )  = z3 + z + 1, a primitive polynomial of GF(23).  Let (Y be a primitive 
element such thatp(a) = a3 + Q + 1 = 0 and a7 = 1. The table  below  shows three different 
ways to express, or representations of, elements in GF(23).  

up E { O , l } m .  

i 
Power 

a3 

a4 
f f 5  

a6 

+ Polynomial Vector 

1 
CY 

Q2 

l + f f  
a +a2 

1+ff+ff2 
1 +a2 

00 l 
010 
100 
01 1 
110 
111 
101 

When adding elements in GF(2m), the vector representation is the  most useful, because 
a simple exclusive-or operation is needed. However,  when elements are to  be multiplied, the 
power representation is the most efficient. Using the power representation, a multiplication 
becomes simply an addition modulo 2m - 1. The polynomial representation may  be 
appropriate when making operations modulo a polynomial. An example of the need of this 
polynomial representation was seen  in the discussion of shortened cyclic codes, where the 
value  of zn-' mod g(z) was required. 

The author likes [Her]. 
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In the power representation, because a2m-1 - - 1 h olds, note that a2" = aa2m-1 - - a, 
- a2, and so on. This is to  say  that the powers of a are to  be  computed 

modulo 2m - 1. Applying the same argument shows that a-' = =  CY^"-^. For 
Example 27 above, a-' = = a6. In general, the  inverse p-' = ak of  an element 
p = ae is found by determining the integer IC, 0 5 IC < 2m - l such that ~ y ~ + ~  = 1, which 
can be expressed as t? + IC = 0 mod (2m - 1). Therefore, C = 2m - 1 - IC. Also, in the 
polynomial representation, the equation p ( a )  = 0 is used  in order to reduce the expressions. 
In Example 27, a3 = a3 + 0 = a3 + (a3 + a + 1) = a + 1. 

a 2 m + l  = a2Cy2m-1 - 

Log  and anti-log tables 

A convenient way to perform both multiplications and additions in GF(2m) is to  use  two 
look-up tables, with different interpretations of the address. This allows one to change between 
polynomial (vector) representation and  power representations of an element of GF(2m). 

The anti-log table A( i )  is useful  when performing additions. The table  gives the value of 
a binary vector, represented as an integer in natural representation, A(i ) ,  that corresponds to 
the element ai. The log table L(i)  is used  when performing multiplications. This table  gives 
the value of a power of alpha, that corresponds to the binary vector represented by the 
integer i. The following equality holds: 

a L ( i )  = A ( '). 
The best way  to understand how to use the tables in  the computation of arithmetic operations 
in GF(2m)  is through an example. 

Example 28 Consider with p ( @ )  = a3 + a + 1, and a7 = 1. The log  and anti-log 
tables are the following: 

Address 
i 
0 
1 
2 
3 
4 
5 
6 
7 

GF(2m)-to-vector 
Anti-log table, A(i )  

1 
2 
4 
3 
6 
7 
5 
0 

Ve~tor- to-GF(2~) 
Log table, L(i)  

-1 
0 
1 
3 
2 
6 
4 
5 

Consider the computation of an element y = a(a3 + a5)3 in vector form. Using the 
properties of GF(23), y can be computed as follows: a3 + a5 = 110 111 = 001 = a2. 
Thus, y = ( ~ ( a ~ ) ~  = = cy7(= 1). 

On the other hand, using the log and anti-log tables, the computation of y proceeds as 
follows: y = A(L(A(3)  CB A(5))  * 3 + 1) = A(L(3 CB 7 )  * 3 + 1) = A(L(4)  * 3 + l) = 
A(2 * 3 + 1) = A(7) = (A(0)  = 1). In the last step, use  was  made  of  the fact that a7 = 1. 

Anti-log and log tables are used  in performing addition and multiplication over GF(2"). 
Computer programs are available on the ECC  web site for simulating encoding and decoding 
algorithms of BCH and Reed-Solomon codes, with arithmetic in GF(2m). These algorithms 
are described in subsequent sections. 
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More  properties of GF(2m) 

The minimal  polynomial &(x) of an element ai is the smallest degree polynomial that has 
ai as a root. The following properties regarding minimal polynomials can be  shown. The 
minimal polynomial 4i(x) has binary coefficients and is irreducible over GF(2) = (0; l}. 
Moreover, q5i(x) has roots ai, . . ., a 2 " - l i  , where K divides m. These elements are known 
as the conjugate  elements of ai in GF(2m). The powers of the conjugate elements form a 
cyclotomic  coset (see [MS], p. 104, and [GG], p. 391): 

A .  ci = { a ;  2i: 4 ; .  . . 2"-li}. 

Cyclotomic cosets (also called cycle sets in [PW], p. 209) have the property that they partition 
the set Z2m -1 of integers modulo 2m - 1. That is, cyclotomic cosets are disjoint, that is, their 
intersection is the empty set Ci n Cj = 8, i # j ,  and and the union of all cyclotomic cosets 
Ui Ci = &m-1.  

Example 29 The cyclotomic sets modulo 7 are: 

CO = (0) 
c1 = {1;2;4} 
C, = {3,6,5} 

The primitive element Q of GF(2m) satisfies the equation = 1, and all elements can 
be expressed as powers of Q. From this it follows that the polynomial + 1) factors 
over the binary field as 

M 

(x2m-1 + 1) = + e j  (x); 
j=O 

and splits completely over GF(2m) as 

2m-2 

(x2m-1 + 1) = n (x + aj ) .  
j=O 

(3.9) 

The order ni of an element ,!? = ai of GF(2m) is the smallest positive integer such  that 
pni = 1. The order ni of every element in GF(2m) divides 2m - 1. 

Importantly, the degree of a minimal polynomial q!~i(x) is equal to  the cardinality (number 
of elements) of the cyclotomic coset Ci, 

deg [4i(Z)l = ICil. 

This suggests the following method of finding  all factors of (z2m-1 + 1): 

1. Generate the cyclotomic cosets modulo 2m - 1. 
2.  For each cyclotomic coset C,, compute the minimal polynomial +,(x) as the 

product of linear factors (x - a i s ) ,  where is E C,, 

$,(x) = n (x + ai.). (3.10) 
i, CC, 

This method can be used in computing the generator polynomial of any cyclic code of length 
n = 2m - 1. It  is  used  in the computer simulation programs for BCH codes available on the 
ECC web site, to compute the generator polynomial given the zeros of the code. 
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Example 30 Consider with p ( z )  = z3 + z + 1. The roots of each of the factors of 
the polynomial x7 + 1 are shown  in the following table. The reader is invited to  verify  that in 
fact the products of the linear factors in (3.10) give the resulting binary polynomials. 

C S  Minimal polynomial, 4s (x) Conjugate elements 
CO = (0) #o(x) = z + 1 l 

C1 {1:2:4) 
43(x) = 2 3  + x 2  + 1 a3,a6,a5 C3 = (3; 6: 5 )  
41(z) = 2 3 + 2 + 1  a,a2,a4 

3.3 Binary  BCH  codes 

BCH codes are cyclic codes that are constructed by specifying their zeros, i.e., the roots of 
their generator polynomials: 

A BCH code of dmin 2 2td + 1 is a  cyclic  code whose generator 
polynomialg(x) has 2 td  consecutive roots ab, ab, ab+', a b + 2 t d - 1 .  

Therefore, a binary BCH (n; k: &in) code has a generator polynomial 

g ( % )  = LCM{4b(x): dbfl (x): ". : 4 b + 2 t d - l ( Z ) } :  

length n = LCM{nb;  nb+l;. . . nb+2td-1}, and dimension k = n - deg [g(.)]. A binary 
BCH code has a designed minimum distance equal to 2 t d  + 1. However, it should be noted 
that its true minimum distance may  be larger. 

Example 31 With G F p 3 ) ,  p(x) = x3 + x + 1, t d  = 1 and b = 1, the polynomial 

g(z) = LCM{41(z):42(2))  = x3 + x + 1: 

generates a binary BCH (7,4,3) code. (This is actually a binary cyclic Hamming code!) Note 
that the Hamming weight of g(.) is equal to 3, so that - in this case, but  not  always - the 
designed distance is equal to the true minimum distance of the code. 

Example 32 Consider GF(24), p ( z )  = x4 + z + l, with t d  = 2 and b = 1. Then 

generates a double-error-correcting binary BCH (15,7,5) code. 

Example 33 With GF(24), p(z)  = x4 + x + 1, t d  = 3 and b = 1, the polynomial 

s(z) = -=M{41 (.l ; 4 3  b l 4 5  (x)) 
= (x4 + + q z 4  + x3 + 22  + + 1) 

- d o  + z8 + z5 + x4 + x2 + z + 1 
( x 2  + z + 1) 

- 

generates a triple-error-correcting binary BCH ( l  5,5,7) code. 
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The lower bound on the minimum distance of a BCH code, known as the BCH bound, 
is derived next. This is useful not only to estimate the error correcting capabilities of cyclic 
codes in general, but also serves to point out particular features of BCH codes. Note that the 
elements a b :  . . . a b + 2 t d - 1  are roots of the generator polynomial tj(x), and  that  every 
codeword ij in the BCH code is associated with a polynomial B(x) which  is a multiple of tj(x). 
It follows that 

ij(z) E C U ij(ai) = 0; b 5 i b + 2 t d .  (3.1 1) 

Codeword V then satisfies the following set of 2 t d  equations, expressed in matrix form, based 
on (3.1 1): 

v , - ~  ) = 0. (3.12) 

Consequently, a parity-check matrix of a binary cyclic BCH code is given by 

1 ab ... 
1 Q b + l  

(3.13) 

1 Q b + 2 t d - 1   ( Q b + 2 t d - 1  2 ) . . . ( & 2 t d - 1  
1 ) -  

This matrix H has the characteristic that  every 2 t d  x 2 t d  submatrix (formed by an arbitrary 
set of 2 t d  columns of H )  is a Vandermonde  matrix (see, e.g, [GG], p. 95). Therefore (see 
Section 2.1), any 2 t d  columns of H are linearly independent, from which it follows that the 
minimum distance of the code is d 2 2 t d  + 1. ([PW] p. 270, [MS] p. 201, and [LC] p. 149.) 
Another interpretation of the results above is the following: 

(BCH bound.) If the generator polynomial g ( x )  of a cyclic (n; k: d )  code has t consecutive 
roots, say ab , ,  . . . . then d 2 2 t  + 1. 

3.4 Polynomial  codes 

The important class of cyclic polynomial codes includes cyclic RM codes, BCH and Reed- 
Solomon codes, and finite-geometry codes [KLP, PW, LC]. Polynomial codes are also 
specified by setting conditions on their zeros: 

Let Q be a  primitive element of GF(2mS). Let S be a  positive integer, and b a  divisor of 
2s - 1. Then ah is  a root of the generator  polynomial g(x )  of a p-th order  polynomial  code 
if and only if b divides h and 

min Wz. ( h 2 ' )  = j b :  with 0 < j < [:] - p: 

where for  an integer i, i = Cki' i e 2 s e ,  W,= ( i )  is dejned  as the  2'-ary weight of integer i, 
m-l 

i=O 
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According to this definition, both  BCH  and Reed-Solomon codes are polynomial codes 
with b = m = 1. Reed-Muller codes are subcodes of polynomial codes with S = 1. Finite- 
geometry codes ([LC], Chapter 8) occur as dual  codes of polynomial  codes [PW]. Below, 
following [LC], the specifications of the zeros of finite-geometry codes are presented. 

Euclidean  geometry  (EG)  codes 

Let Q be  a  primitive element of GF(2mS). Let h be a nonnegative integer less that 2"' - 1. 
Then ah is  a root of the  generatorpolynomial g(x) of a (p;  s)-order EG code of length 2mS - 1 
if and only if 

0 < max Wp(hce)) 5 (m - p - 1)(2' - 1); ose<s 

where h(e) = 2eh modulo 2ms - 1. 

For S = 1, EG codes become cyclic M*,,@ codes, and therefore EG codes are regarded  as 
generalized RM codes. 

Projective  geometry  (PG)  codes 

Let a be a  primitive element of GF(2(m+1)S). Let h be a nonnegative integer less that 
2(m+1'" - 1. Then ah is a root of the  generatorpolynomial g(x) of a (p:  s)-order PG code of 
length n = (2ms - l)/(2' - 1) ifand only $h is divisible by 2' - 1 and 

where h(') = 2eh modulo 2mS - l, and 0 5 j 5 m - U .  

3.5 Decoding of binary BCH codes 

The main idea in decoding binary BCH codes is to  use the elements p E GF(2m) to number 
the positions of a codeword (or, equivalently, the order of the coefficients of the associated 
polynomial). This numbering illustrated in Figure 20 for a vector F = ( ro r1 . . . rnP1 ) 
with corresponding F(x). 

positions 1 a a n-l 

Figure 20 Codeword  position  numbering using elements of GF(2"). 

Using GF(2m) arithmetic, the positions of the errors can be found, by solving a set of 
equations. These equations can be obtained from the error polynomial E(x) and the zeros of 
the code, aj ,  for b 5 j 5 b + 2td - 1, as shown  in the following. 

Let F(z) = G(z) + e(x)  represent the polynomial associated with a received codeword, 
where the error polynomial is defined as 

~ ( z )  = ej, xj1 + ej, xjz + . . . + ej,  xju (3.14) 
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Let the error  locatorpolynomial be defined as 

Y 

A .(x) = n(1+ aj+) = 1 + .1x + 02x2 + . . . + c7,zY, (3.15) 
e= 1 

with roots equal to the inverses of the error  locutions. Then  the following relation between 
the coefficients of .(x) and the syndromes holds (see, e.g., [Pet], [LC] p. 154, [PW] p. 284): 

Solving the key equation given by (3.16) constitutes the most computationally intensive 
operation in decoding BCH codes. Common methods to solve the key equation are: 

Berlekamp-Mussey  algorithm (BMA) 
The BMA  was invented by Berlekamp [Berl] and Massey [Mas2]. This is a 
computationally efficient method to solve the key equation, in terms of the number 
of operations in GF(2"). The BMA is a popular choice to simulate or implement 
BCH and RS decoders in software. 
Euclidean  algorithm (EA) 
This method to solve the key equation, in polynomial form, was introduced 
in [SKHN] and further studied in [Man]. Due to its regular structure, the EA is 
widely  used  in hardware implementations of BCH  and  RS decoders. 
Direct solution 
Proposed first  by Peterson [Pet], this method directly finds the coefficients of ~ ( z ) ,  
by solving (3.16) as a set of linear equations. The term PGZ (Peterson-Gorenstein- 
Zierler)  decoder is often used in the literature. This is because in [GZ] Peterson's 
method is applied in decoding nonbinary BCH codes, or RS codes. Naturally, as 
the complexity of inverting a matrix grows with the cube of the error-correcting 
capability, the direct solution method  works only for small  values of t d .  Solutions to 
(3.16) up  to t d  5 6 are given in [ML], sec. 5.3. 

~~ 

It will be  seen  later that for Reed-Solomon codes e j  E GF(2m) .  
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3.5. I General  decoding  algorithm for BCH codes 

Figure 21 shows the block diagram of a decoder for BCH codes (both binary and non-binary). 
The decoder consists of digital circuits and processing elements to accomplish the following 
tasks: 

Find the coefficients of the error  locator polynomial .(x) 
0 Find the inverses ofthe roots ofo(z), i.e., the locations of the errors, a31, . . ., aJ' 

Find the values of the errors ej l ,  . . e, ej ,  . (Not needed for binary codes.) 
0 Correct the received  word with the error locations and values found. 

POWER  SUMS  EA, BMA CHIEN  SEARCH  ALGORITHM 
FORNEY 

0 )  Compute Find  error  values - Find  positions 

I 

Delay  RAM 
c(x) 

Figure 21 Architecture of a BCH decoder  with GF(2") arithmetic. 

One of the advantages gained in introducing GF(2m) arithmetic is that  the decoding 
operations can  be implemented with relatively simple circuitry and processing elements. As 
an example, Figure 22 shows  how the computation of a syndrome Sj can be implemented 
in hardware. The multiplier is over GF(2m),  and can be constructed with  relatively simple 
combinatorial logic. Some details on the hardware design of processing elements over 
GF(2m) can be found, for example, in [PW], and Chapters 5 and 10 of [WB]. 

b+j- 1 
I 

Figure 22 Example of a circuit for computing a syndrome. 
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3.5.2 The Berlekamp-Mussey algorithm (BMA) 

The BMA is best understood as an iterative procedure to construct a minimum linear feedback 
shift-register (LFSR) structure, like the one shown  in Figure 23, that reproduces the known 
syndrome sequence S1 , S2 , . . . , S2td. 

j = v+l,  v+2, ..., 2v 

Figure 23 LFSR with taps cn, 02, ... U” and output SI, s2, ..., S2,. 

The goal of the BMA is to find a (connection) polynomial dif1)(x) of minimal degree that 
satisfies the following equations, derived from (3.16): 

c S k - j f f j i f l )  = 0, e2 < IC < i + 1. (3.18) 
j=O 

This is equivalent to requiring that d Z + l )  (x) = 1 + o$~+’)z  + . . . + o ~ ~ ~ l l ) x f i + l  be the 
LFSR connection polynomial that produces the partial sequence of syndromes. 

The discrepancy at iteration i defined as 

measures how  well the LFSR reproduces the syndrome sequence, and constitutes a correction 
term used  in computing the value of  in the next iteration. There are two cases to 
consider in the algorithm [Pet]’: 

0 If di = 0, then the equations (3.18) are satisfied for 

a(Z+l) (x)  = oi(x), e,+l = ei. (3.19) 

If di # 0: Let d m )  (x) be the solution at iteration m, such that -1 5 m i, dm # 0, 
and (m - e,) is maximal. Then 

There is a variation of the BMA, inspired by [Mas2], that is used in some references. This variation will 
be described in the next chapter. Of course, both versions of the BMA will give the same result! 
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With  an initial value of i = 0, the computation of dZ+')(x) continues until either 
i 2 ti+, + t d  - 1 or i = 2td - 1, or both conditions, are satisfied. 

The initial conditions of the algorithm are: 

@)(x) = 1, e-, = 0, d-1 = 1, 
(J(O)(z) = 1, eo = 0, do = S,. (3.21) 

Also note that the BMA has control flow instructions (if-else). For this reason, it is not favored 
in hardware implementations. However, in terms of number of GF(2") operations, it is very 
efficient. This version of the algorithm is implemented in  most of the C programs to simulate 
BCH codes that can be found on the ECC  web site. 

Example 34 Let C be the triple-error correcting BCH (15,5,7) code of Example 33. As 
a reference, to check the numerical computations, the power  and vector representations of 
GF(24),  with primitive polynomial p ( z )  = 1 + x + x4, are listed below: 

Table of elements of G F p 4 ) ,  p ( z )  = x4 + z + l 
Power Vector 

0 0000 
1 000 1 
a 0010 
a2 0100 
a3 1000 
a4 0011 
a5 0110 
cy6 1100 
cy7 1011 
cy8 0101 
a9 1010 
a10 0111 
cy11 1110 
Q12 1111 
a13 1101 
QI4 1001 

A generator polynomial for C is g(x )  = d o  + x8 + x5 + x4 + x2 + z + 1. Suppose that  the 
information polynomial is U(x) = x + x2 + x4. Then the corresponding code polynomial is 
given by V ( x )  = x + x2 + x3 + x4 + x8 + x" + + d 4 .  

Let T(z) = 1 + x + x2 + x3 + x4 + x6 + x8 + 2'' + be  the polynomial associated 
with a vector F = V + E received after transmission of codeword V over a BSC channel. 
(Vector E corresponds to the error polynomial e(z) = 1 + x6 + d 2 .  Obviously,  the decoder 
does not know this. However,  in computing the syndromes below, this knowledge is used  to 
simplify expressions.) 

The syndromes are: 

S,  = r (a)  = 1 + Q6 + a12 = Q 

S2 = S; = a2 
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S3 = r(a3) = 1 + a3 + a6 = a8 
S, = S; = CY4 

S5 = F ( a 5 ) = 1 + 1 + 1 = 1  
S6 = S: = a 

m Iteration 4: i = 3, d3 = 0, 

a(4)(x) = a(3)(x) = 1 + ax + a12x2; 
e4 = e3; 
C 4 f 3 - 1 5 3  ? N O :  
d4 = S5 + S4a14) + S3aa4) = 1 + a4(a) + a8a1' = 1. 

0 Iteration 5: i = 4, d4 = 1 # 0, m = 2 maximizes (2 - 1) = 1 for d2 # 0. 

~ ( ~ ) ( x )  = + d4dz1x(4-2)a(2)(~)  
= (I + + + (1)(a13)-1z2(1 + 
= 1 + ax + a7x2 + a3x3: 

e5 = max(C4; e, + 4 - 2} = 3; 
e 5 + 3 - 1 g  ? N O :  

d5 = S6 i- S5a15) + S4ap) + S3aF) = a + 1 . a + a4(a7) + a8(a3) = 0. 

0 Iteration 6: i = 5, ds = 0, 

@)(x) = a(5)(x) = 1 + ax + a7x2 + a3z3; 
e, = e 5  = 3; 

+ 3 - 1 5 3 ? Yes : End. 
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Therefore a(z )  = 1 + az + a7z2 + a3z3. 

That the odd numbered iterations always gave di = 0 in the previous example is no 
accident. For binary BCH codes this is always the case. The iterations can proceed  with  only 
even values of i, with the same results. The only difference is that the stopping criterion needs 
to  be changed to 

i 2 t?i+a + t d  - 2. 

As a result, decoding complexity is reduced. The reader is  invited  to solve a(.) for the 
previous example, using only three iterations. 

3.5.3 PGZ decoder 

This decoding algorithm was first considered by [Pet]. A solution to the key equation (3.16) is 
to  be found using standard techniques for solving a set of linear equations. This solution gives 
the coefficients of .(x). The decoding problem is that the number of actual errors is unknown. 
Therefore, a guess has  to  be  made as to the actual number of errors, v, in  the  received  word. 
Assume that not all the syndromes, Si,  1 5 i 5 2t,  are equal to zero. (If  all syndromes are 
zero, then the received word is a codeword and decoding finishes!) 

The decoder assumes that the maximum number of errors has occurred, v,,, = t d ,  and 
checks if the determinant Ai, for i  = v,,, = i d ,  

(3.22) 

is equal to zero. If it is,  then a smaller number of errors must  have occurred. The value of i 
is decreased by one, and Ai tested again, repeating the procedure if necessary,  until i = 1. 
Otherwise, if Ai # 0, the inverse of the syndrome matrix is computed and the values of 
a1; a’; . . . are found, where U = i. In the event that Ai = 0: i = 1; 2; . . . ~ t d  , decoding is 
unsuccessful and an uncorrectable error pattern has been detected. 

Example 35 In this example, the error locator polynomial for the  BCH (15; 5 ;  7) code in 
Example 34 is found by the PGZ decoding algorithm. First, assume that i = t d  = 3 errors 
occurred. Then the determinant A3 is computed (using cofactors) as follows: 

A3 = det (S z: :) = a(a8 + a 8 )  +a2(a2 +a1’) + a 8 ( a 6   + a )  
a8 a 4  

- - a2+7 + a8+11 - 14 - a  . 

Therefore A3 # 0 and three errors are assumed to  have occurred. Substituting the syndromes 
found in Example 34 into the key equation (3.16), 

(3.23) 
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Note  that A;' = a-14 = a. The solution to (3.23) is found to be: 

a4 a2 a8 

a a4 l 
a a4 a8 

= a(a7 + a 1 2 )  = a3; 

= a(a +a> = a ; 

= a ( a l 5  + a 1 5  + a 1 5 )  = a. 

11 7 

It follows that .(x) = 1 + ax + a7x2 + @'x3, which  is  the same result as that obtained by 
the BMA in example 34. 

3.5.4 Euclidean Algorithm (EA) 

This  algorithm is a well-known  recursive procedure to find  the greatest common  divisor 
(GCD)  between two polynomials (or integers). Its application to BCH decoding is described 
next. 

Let an error  evaluator  polynomial be  defined as A(.) = a(z)S(x) ;  with a syndrome 
polynomial 

S ( x )  = 1 + S l Z  + . . . + S 2 t d 5 2 ?  (3.24) 

From  Equation (3.16), it follows that 

A(x) = a ( x ) S ( x )  mod x2td+1.  (3.25) 

The  decoding  problem can  be translated into finding  the polynomial A(x) satisfying (3.25). 
This  can  be achieved  by applying the extended EA to the polynomials ro(z) = x 2 t d f 1  and 
r1 (x) = S ( x ) ,  such  that if at the j-th step 

r j ( x )  = a j ( x ) x 2 t d + l +  b j ( Z ) S ( Z ) ;  

with deg [r j (x )]  5 t d ,  then A(x) = r j ( x )  and oi(x) = bj(x) .  (Note that  there  is  no interest, 
from the decoding viewpoint,  in polynomial ai (x) .) 

The  extended Euclidean algorithm for computing the GCD of two polynomials is: 
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Stop at iteration j las t  when deg [rj,,,, (x)] = 0. 

Then GCD(r0 (x); r1 (x)) = rk (x), with IC the  largest nonzero integer  such  that T k  (x) # 0 
and IC < j l a s t .  

Example 36 In this example, the error locator  polynomial .(x) for the  BCH (15;  5; 7) code 
in Example 34 is computed  using  the EA. 

Initial conditions 

T O ( Z )  = 2 7 :  
T1(Z) = S ( x )  = 1 + ax + a2x2 + a8x3 + a4x4 + x5 +ax6; 
bO(5) = 0; 
b1(x) = 1. 

0 j = a :  

x7 = (l+a~+a~x~+a~x~+a~x~+x~+ax~)(a~~x+a~~)+a~x~+a~~x~+a~~x~+a~~. 

?-2(x) = a8x5 + a12x4 + a11x3 + 0 1 3 :  

b2(x) = bo(.) + q2(x)b1(x) = a145 + a13. 

S(Z) = (a8x5+a12x4+a11x3+a13)(a~x+a2) +a14x4+a323+a2x2+a112. 

q2(x) = a14x +a13; and 

0 j = 3 :  

T 3 ( Z )  = d 4 x 4  + a3x3 + a2x2 + a112; 

b3(x) = b1(x) + q3(x)b2(2) = a7x2 + allz. 

a8x5+a12x4+a11x3+a13 = (a14x4+a3x3+a2x2+a115)(a9x)+a5x+a13. 

q 3 ( x )  = a8x + a 2 ;  and 

0 j=4: 

T 4 ( Z )  = a5x + a 1 3 ;  

b4(Z) = b z ( x )  + q4(x)b3(x) = ax3 + a5x2 + a14x + Ql3.  

q4(x) = a9x, and 

Because deg[r4(x)] = 1 5 3, the  algorithm  stops. 
It  follows  that .(x) = b 4 ( 5 )  = d3( l  + ax + a7x2 + a3x3) ,  which  has  the  same  roots as 

the polynomial obtained  by  the  BMA and PGZ decoder (see example 37 below),  and  differs 
only by a constant factor8. 

As the example above  illustrates,  generally the error-locator  polynomial  obtained  with  the 
EA will differ from that  obtained  by  BMA or PGZ decoding by a constant  factor.  In  decoding, 
however,  interest  is  in  the roots of  these  polynomials  and  not  their  coefficients,  and  thus  any 
of  the  three  methods  discussed so far can be used to determine .(x). 

The normalized polynomial unorm(z) = a;la(x)  is identical to the one obtained in the BMA and PGZ 
procedures. 
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3.5.5 Chien  search  and  error  correction 

To  find the roots of .(x), a simple trial-and-error procedure - called Chien search - is 
performed. All nonzero elements p of GF(2m) are generated in sequence 1, a, a2, ... and 
the condition .(p-’) = 0 tested. This process is easy to implement in hardware. Moreover, 
finding roots (factoring) of polynomials over GF(2m) is  a challenging mathematical problem 
that remains to be solved. 

For binary BCH codes, once the error locations j , ,  ..., j ,  are known, the corresponding bits 
in the received word are complemented 

and the estimated codeword G(.) generated. 

Example 37 Continuing with Example 34, the roots of .(x) are 1, a’ = a-6 and a3 = 
a-12. Stated in a different way, c(.) factors as 

.(x) = (1 + 2) (1+  a62)(1 +a122). 

Consequently, the estimated error polynomial is C(.) = 1 + x6 + .l2, and 

Three errors have been corrected. 

3.5.6 Errors-and-erasures  decoding 

There are many situations in  which a decision on a received symbol is not considered 
reliable. An example is binary transmission over an  AWGN channel, with bits mapped to 
real amplitudes, e.g., BPSK  with 0 e +l and 1 e -1. If the received values are too close to 
zero, then it may  be more advantageous, from the viewpoint of minimizing the probability of 
a decoding error, to declare a “no-decision”. In such a case, the received symbol is “erased” 
and it is called an erasure9. Declaring erasures is the simplest form of soft-decision, which 
will  be  the focus of attention in Chapter 7. 

Introduction of erasures has the advantage, with respect to errors-only decoding, that the 
positions are  known to the decoder. Let d be the minimum distance of a code, v be the number 
of errors and p be the number of erasures contained in a received word. Then, the minimum 
Hamming distance between codewords is reduced to at least d - p in the non-erased positions. 
It follows that the error-correcting capability is L(d - p - 1)/2J and the following relation 
holds 

d > 2v + p .  (3.26) 

The above inequality is intuitively satisfying: For a fixed minimum distance, it is twice as 
difficult to correct an error than to correct an erasure, because the erased positions are already 
known. 

For binary linear codes, including binary BCH codes, erasures can be corrected with the 
following method: 

In information  theoretical  terms,  the BSC channel becomes a  two-input  three-output binary erasure 
channel (BEC) [COT]. 
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1. Place zeros in all erased positions and decode to a codeword 60 (x). 
2. Place ones in all erased positions and decode to a codeword 61 (x). 
3. Chose as decoded word the closest 6j (x) to the received  word F(x) in  the non-erased 

positions, j = 0 , l .  (Alternatively, the codeword that required the smallest number 
of error corrections [ML].) 

As a result, erasures can be corrected with two rounds of errors-only decoding. 

Example 38 Consider a cyclic Hamming (7 ,4 ,3)  code with g(x) = 1 + x + x3, 
and GF(23) with a primitive element a such that p ( a )  = 1 + a + a3 = 0. Suppose that 
V(x )  = x + x2 + x4 is transmitted and that p = 2 erasures are introduced at the receiver. 
Since d = 3 > p, these erasures can be corrected. Let F(x) = f + x + x2 + fx3  + x4 be 
polynomial associated with the received  vector,  where f denotes an erasure. 

First decoding (f = 0): PO(.) = x + x2 + x4. The syndromes are S1 = Fo(a) = 0, and 
S, = Sf = 0. Therefore, CO(.) = Fo(x) = x + x2 + x4. 

Second decoding (f = 1): F1 (x) = 1 + x + x' + x3 + x4, S1 = a and S2 = a'. 
Equation (3.16) in  this case is: a01 = a2. Therefore .(x) = 1 +ax, E(x)  = x and 
Cl (x) = Fl (x) + E(x) = 1 + x' + x3 + x4, which differs from F(x) in one of the non-erased 
positions. As a result, GO(.) is selected as the decoded word. Two erasures have  been 
corrected. 

3.6 Weight  distribution  and  performance  bounds 

In general, the weight distribution of a binary linear (n,  k) code C can  be obtained by 
enumerating all 2k code vectors V and computing their Hamming weight. Obviously, for large 
values of IC, this is a formidable task. Let A, denote the number of codewords of Hamming 
weight W. The MacWilliams  identity relates the weight distribution sequence (WDS) of a 
linear code, A(%) = A0 + Alx + 22x2 + . . . + A,z", with the WDS of its dual l o  (n,  n - k) 
code C l ,  B ( x )  = Bo + Blx + xzx' + . ' .  + &x", by 

A 

A 

A ( x )  = 2-"+'(1 + x)"B - [:I:]' 
which can also be expressed as 

(3.27) 

(3.28) 

Therefore, for high-rate codes, it is simpler to compute the  WDS B ( x )  of the dual code and 
then  use (3.27) to compute A(z) .  Alternatively, the WDS of a low-rate code is easy  to compute 
and the WDS of the dual code can be obtained using (3.28). 

For some classes of codes, the trellis structure can  be used". In [DFK2], a trellis-based 
method for computing the weight distribution of extended BCH codes of length 128 is given. 

lo Recall that the dual code CL has generator matrix H ,  where H is the parity-check matrix of C 
More on trellises can be found in Chapter 7. 
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For shorter lengths, the weight distributions are not  difficult  to compute using MacWilliams 
identity. The definition of extended  cyclic  code is introduced next. A binary extended cyclic 
code is obtained from a binary cyclic code by appending, at the start of each code vector, an 
overallparity-check  bit. The extended code of a cyclic code is no longer cyclic. Let H denotes 
the parity-check of the cyclic code, then the parity-check matrix of the extended code, denoted 
Hext is given by 

1 1 ... 

Hext = (n H l ) .  (3.29) 

Appendix A lists the weight distributions of all extended binary BCH codes of length up to 
128. These data files are available on the ECC  web site. The appendix lists only those terms 
of Hamming weight up to (n + 1)/2, for n = 2m - 1. In the case of extended BCH codes, it 
holds that = A?). The data is useful in finding the weight distribution of the binary 
cyclic BCH codes of length up to 127. This can be done by application of the following result 
(which is obtained as a special case of Theorems 8.14 and 8.15 in [PW]): 

Let C be  a  binary  cyclic BCH (n: IC) code  with WDS A(z), obtained  by  eliminating the overall 
parity-check bit in a  binary  extended BCH (n + 1; IC) code Cext, with WDS A(ext)(z). Then, 
for W even, 

(3.30) 

Example 39 Consider the binary extended Hamming (8: 4; 4) code. This code has parity- 
check matrix (see also Example 23), 

1 1 1 1 1 1 1 1  
0 1 1 1 0 1 0 0  

0 0 0 1 1 1 0 1  

H =  ( 
It can be easily verified  that A(ext) (x) = 1 + 14z4 + z8. To compute the WDS of the binary 
cyclic Hamming (7; 4; 3), use (3.30) to obtain 

8A3 = 4 A y )  + A3 7; 
4A4 = (8-4)A3 + A4 1 7 ;  

8A7 = 8 A F )  + A7 = 1. 

3.6.1 Error  performance  evaluation 

With knowledge of the WDS of a code C, the error performance can be estimated, as 
discussed in Chapter l. The WDS and the  union  bound (1.34) give good estimates of the 
error performance of code C with binary transmission over an AWGN channel. 

As an example, the union bound was evaluated using Appendix A for extended BCH codes 
of length 8 to 64. The results are shown  in Figures 24 to 27. Using the WDS from the appendix 
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and  the  union bound for flat  Rayleigh  fading channels (1.40), with  Monte  Carlo  integration 
and  the term A, replaced by wA,/n to account for bit errors, Figure 28 shows  union  bounds 
on  the  bit error rate for extended  BCH codes of length 8. Bound for other codes  can be 
computed in the same way. 

The main  point  of  this  section  is  that,  before choosing a particular  soft-decision  decoding 
algorithm (see Chapter 7), the  weight  distribution  and  the  union  bound  can  give an estimate 
of the  performance  that is achievable  over a certain  channel.  For  the AWGN channel  and  the 
flat  Rayleigh fading channel, the  union  bounds are tight  at  bit error rates  below 10W4. 

Union  bounds  on  bit  error  rate for extended  BCH  codes of length 8 
1 e+OO 

1 e-02 

X 

- 5 - 4   - 3 - 2 - 1  0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  
Es/No (dB) 

Figure 24 Union bounds on the  BER  for  extended  BCH  code of length 8. Binary  transmission 
over  an AWGN channel. 
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Union  bounds  on  bit  error  rate  for extended BCH codes of length 16 

Figure 25 Union  bounds  on  the  BER  for  extended  BCH  code of length 16. Binary 
transmission  over  an AWGN channel. 

Union  bounds  on  bit  error  rate  for  extended BCH codes of length 32 

U 
W m 

1 e+OO 

1 e-02 

1 e-04 

1 e-06 

1 e-08 

1 e-l 0 

le-12 

EdNo (dB) 

Figure 26 Union  bounds  on  the BER for  extended  BCH  code of length 32. Binary 
transmission  over  an AWGN channel. 
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Union  bounds  on  bit  error rate for extended BCH codes of length 64 

Figure 27 Union  bounds on the  BER for extended  BCH  code of length 64. Binary 
transmission  over  an AWGN channel. 

Union  bounds  for extended BCH codes of length 8 over a flat  Rayleigh  channel 

"ber.ray.8.7.2" -i- - 
"ber.ray.8.4.4 - - - x - - -~  - 
"ber.ray.8.1 8 ' '  

a: 
W 0.001 - m 
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Figure 28 Union  bounds on the  BER  for  extended  BCH  code of length 8. Binary  transmission 
over  a flat Rayleigh  fading  channel. 
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Figure 28 Union  bounds on the  BER  for  extended  BCH  code of length 8. Binary  transmission 
over  a flat Rayleigh  fading  channel. 



Non-binary BCH codes: 
Reed-Solomon codes 

In this chapter the most celebrated class of ECC schemes is introduced and their encoding 
and decoding algorithms explained. Reed-Solomon (RS) codes have found numerous 
applications in digital storage and communication systems. Examples include the famous RS 
(255,223,33) code for NASA space communications, shortened RS codes over G F ( 2 8 )  for 
CD-ROM, DVD and Terrestrial Digital HDTV transmission applications, an extended RS 
(128,122,7) code over G F ( 2 7 )  for cable modems, among many others. 

4.1 RS codes as polynomial codes 

Similar to Reed-Muller codes, RS codes can be defined as codewords with components equal 
to the evaluation of a certain polynomial. As a matter of fact, this was the way that RS codes 
were originally defined by Reed  and Solomon in  [RS]. RM codes, finite-geometry codes [LC] 
and RS codes are all members of a large class of codes: PoZynomial codes [PW], which are 
closely related to algebraic-geometry (AG) codes [Pre]. Let 

u(x) = 210 + U12 + .  . . + Uk-IZk-1 (4.1) 

be an information polynomial, with ui E GF(2") ,  1 5 i < IC. Clearly, there are 2mk such 
polynomials. By evaluating (4.1) over the nonzero elements of GF(2") ,  a codeword  in an 
RS (2" - 1, IC, d )  code of length 2" is obtained, 

v = (u(1)  u(a)  U(Q2) . . . u(Q2m-2) ) . (4.2) 

4.2 From  binary BCH to RS codes 

RS codes can also be interpreted as nonbinary BCH codes. That is, RS codes are BCH codes 
in which the values of the code coefficient are taken from GF(2") .  In particular, for a td-error 
correcting RS code, the zeros of the code are 2td consecutive powers of Q. Moreover, because 
over GF(2")  minimal polynomials are of the form &(x) = (x - a'), 0 5 i < 2" - 1, see 
Equation (3.9), the factors of the generator polynomial are now linear, and 
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where b is an integer, usually b = 0 or b = 1. 
It follows from (4.3), and the BCH bound on page 45, that the minimum distance of a Reed- 

Solomon (n, IC, d )  code C over GF(2") is d > n - k + 1. On the other hand, the Singleton 
bound [Sin] d 5 n - IC + 1 implies that d = n - k + 1. A code that satisfies this  equality 
is known as a maximum  distance separable (MDS) code [Sin]. Therefore RS codes are  MDS 
codes. This gives RS codes useful properties. Among them, shortened RS codes are also MDS 
codes. 

Using the isomorphism between GF(2") and (0, l}", for every m-bit vector 30 there is 
a corresponding element /3 E GF(2"), 

m-bits U /3j E GF(2"), 0 5 j < 2" - 1. 

In other words, m information bits can be grouped to form symbols in GF(2"). Conversely, 
if the elements of GF(2") are expressed as vectors of m bits, then a binary linear code of 
length and dimension n = m(2" - l)  and k = m(2" - 1 - 2td), respectively, is obtained. 
The minimum distance of this code is at least 2td + 1. This binary image code can correct, 
in addition to  up to t d  random errors, many random bursts of errors. For example, any single 
burst of up to m ( t d  - 1) + 1 bits can be corrected. This follows from the fact that a burst 
of errors of length up to m(q - 1) + 1 bits is contained in  at  most Q symbols of GF(2"). 
Therefore, there are many combinations of random errors and bursts of errors that an  RS code 
can correct. To a great extent, this is the reason why  RS codes are so popular in practical 
systems. 

Example 40 Let m = 3, and GF(23) be generated by a primitive element Q with 
p(a)  = a3 + cy + 1 = 0. Let b = 0 and t d  = 2. Then there is an RS(7,3,5) code C with 
generator polynomial 

g(.) = (. + l)(. +CY)(. + cy2)(. + cy3) 
= z4 + Q2Z3 + Q5.2 + CY5. + Q6.  

By mapping the symbols of GF(23) into binary vectors of length 3, code C becomes a binary 
(21,9,5) code that is capable of correcting up  to 2 random errors as well as any single burst 
of up  to 4 bits. 

4.3 Decoding RS codes 

The core of the decoding algorithms of  RS codes is similar to  that of binary BCH codes. The 
only difference is that the error values, ej , ,  1 5 t 5 v, for v 5 t d ,  have to  be computed. In 
general, this is done using the Forney algorithm [For2]. The expression below holds for RS 
codes with  an arbitrary set of  2td consecutive zeros {ab ,  &l, . . . a b f Z t d - '  1 7  

where g'(.) represents the formal derivative of a(%) with respect to z. (A similar expression 
can be found in [RC], p. 276.) The polynomial A(.) in (4.4) is  an error evaluatorpolynomial, 
which is defined as 

A(z) = o(z)S(x) mod z2td+1. (4.5) 
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Before introducing the first example of RS decoding, an alternative version of the BMA 
is presented, referred to as the Massey algorithm (or MA). The algorithm was  invented by 
Massey  in [Mas2], and is also described in [ML, Wic]. 

Massey  algorithm to synthesize an LFSR 

1. Initialize the algorithm with U ( % )  = 1 (the LFSR connection polynomial), p(z)  = z 
(the correction term), i = l (syndrome sequence counter), C = 0 (register 
length). 

2. Get a new syndrome and compute discrepancy: 

e 

3. Test discrepancy: d = O? Yes: Go to 8. 

4. Modify connection polynomial: 

5. Test register length: 21 2 i? Yes: Go to 7. 

6. Change register length and update correction term: Let C = i - C and p(z) = g(z) /d  

7. Update connection polynomial: U ( % )  = gneW(x). 

8. Update correction term: p(z)  = zp(z). 

9. Update syndrome sequence counter: i = i + 1. 

10. Stopping condition: If i < d go to  2. Else, stop. 

Example 41 Let C be the same RS(7,3; 5 )  code as in Example 40. Suppose that 

F(z) = ax2 + a5z4 
is the received polynomial. Then S1 = F ( 1 )  = Q + a5 = a6,  S, = F(a) = a3 + a2 = cy5, 
s - - 2 - 5  3 - ~((1: ) - a + a6 = a and S, = F(a3) = 1 + a3 = a. Equation (3.16) gives: 

(:: un") (2) = (:) 
Three methods of finding U(.) are shown  below. 

Direct  solution (PGZ algorithm) 

Assume two errors. Then A2 = a7 + d o  = 1 + a3 = a # 0. Therefore two errors must 
have occurred and 
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from which it follows that 

a(.) = 1 + a2 + a6z2 = (1 + a2.)(1 + a 4 z ) .  

Massey  algorithm 

S1 = a6: S2 = a 5 ; S3 = CY; S 4  = CY. 

p(.) = .p(.) = ax2.  

0 i = 5 > d. Stop. 

Euclidean  algorithm 

0 Initial conditions: 
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z5 = ( 1  + 211: + a5z2 + a x 3  + a24)(a62 + a6) + a 5 2 3  + 2 2  + a2 + Q6 

? - 2 ( 2 )  = a5z3 + 2 + a2 + a6; 

q2(z) = a 6 2 + Q 6 :  
b 2 ( 2 )  = 0 + (a62 + a6)(1)  = 2 2  + 2 .  

? - 3 ( 2 )  = a6z2 +az+a3: 
q 3 ( z )  = a s + a  : 
b 3 ( 2 )  = l + (a32 + a”(a62 + 2 )  = a3 + a42 + a2x2. 

3 2 

Algorithm stops, as  deg [73(2)] = 2 = t d .  

It follows that a(.) = a3 + a42 + a2x2 = Q3(1 + ax + a6x2) .  

In all the above algorithms, the following error locator polynomial is found, up to a constant 
term: 

a(2) = 1 + Q2 + a 6 2  = ( 1  + &%)(l+ a42). 

Therefore, the error positions are jl = 2 and j 2  = 4. In a computer program or a hardware 
implementation, Chien search yields these two  values as the (inverse) roots of .(x). Also note 
that a’(z) = a. (Because, in GF(2m), 2a = a + a = 0.) 

To compute the error values, using either the Berlekamp-Massey algorithm (BMA or MA 
versions) or the PGZ algorithm, the error evaluator polynomial (4.5) is needed, 

A = (1 + as + a 6 z 2 ) ( 1  + a6z + a5s2 + a x 3  + as4) mod x5 
= ( 1  + a52 + a 3 2 )  mod x5;  

It  is important to note that the Euclidean algorithm computes simultaneously .(x) and 
R(%),  as a(.) = bj,ast (x) and A(z) = rjlast (x). To verify this note that 

~3(z )  = a3 + az + a6z2 = a3(l  + a52 + a 3 x 2 )  = a3h(s). 

With the error locations determined, the error values from Equation (4.4) are 

e2 = (a2)’(1 + a5ap2 + ( ~ ~ a - ~ ) a - ’  = Q: 

e4 = (a4)2(i + a5ap4 + ( ~ ~ a - * ) a - ~  = a5,  

Therefore, E(z) = ax2 + a5z4 and the decoded word is 

e ( 2 )  = F ( % )  + e(2) = 0. 

The two errors have been corrected. 
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Note that the constant p is the same for both polynomials found by application of the 
extended Euclidean algorithm. The EA  finds p . a ( z )  and p .A(z), for some nonzero constant 
p E GF(2m). Nevertheless, both error locator and error evaluator polynomials have the same 
roots as those obtained by the PGZ or BMA algorithms, and thus the error values obtained are 
the same. 

In most of the computer programs to simulate encoding and decoding procedures of  RS 
codes on the ECC web site, the following equivalent method of finding the error values is 
used [LC]. Let 

Then the error value is computed as [Berl] 

if! 
i = l  

where 1 5 e 5 v. 
Yet another alternative to  Forney algorithm, for small values of td, is to determine the error 

values directly as follows. For l 5 e 5 v, the error values ej, are related to the syndromes Si 
by the set of linear equations: 

v si = , qQb+i - l  1 = C e .  Q(b+i--l).ir 
3r (4.8) 

e=1 

where 1 5 i 5 2td. 

Each v X v submatrix formed by the (known) terms a(b+i-l)jf forms a Vandermonde 
matrix. After all the v error locations j e  are known, any set of v equations of the form (4.8) 
can be  used  to  find  the error values.  In particular, choosing the first v syndromes: 

is a system of linear equations that can  be solved using GF(2m) arithmetic. 

Example 42 Consider the same RS code and received polynomial in Examples 40 and 41. 
Then (4.9) gives: 

The determinant of the 2 x 2 matrix is A = cy4 + a2 = a. From this it follows that 

e2 = a-’det (E: (t14) = a6((r3 + c y 5 )  = cy6 . a2 = cy, 
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and 

which are the same error values as those obtained with  Forney algorithm. Again, it is 
emphasized that this can only be done efficiently (and practically) for relatively small  values 
of the error correcting capability, t d ,  of the RS code. 

4.3.1 Remarks on decoding  algorithms 

Unlike the BMA,  in the EA all the syndromes are used in the first computation step. However, 
in terms of the number of GF(2m)  operations, the  BMA is generally more efficient than 
the EA. On the other hand, all the steps in the EA are identical, which translates into a 
more efficient hardware implementation. Also, the three decoding methods discussed here 
for (binary and nonbinary) BCH codes are examples of incomplete - or bounded distance - 
decoding. That is, they are able to detect situations in  which the number of errors exceeds the 
capability of the code. 

There are other approaches to decoding BCH codes, the most notable being the use of 
a discrete Fourier transform over GF(2m). This is covered extensively in [Blah], where the 
reader is referred to for details. Recently,  Sudan [Sud] has introduced an algorithm that allows 
correction of errors beyond the minimum distance of the code. It applies to RS codes and 
more generally to AG codes. This algorithm produces a list of codewords (it is a list-decoding 
algorithm) and is based on interpolation and factorization of polynomials over GF(2m) and 
its extensions. Sudan algorithm was improved in [Gur]. 

4.3.2 Errors-and-erasures  decoding 

For the correction of erasures, the main change to the RS decoding procedures described 
above is that an erasure locator  polynomial .(x) needs to  be introduced, defined as 

e= 1 

where yie = aZL, for 1 5 Q 5 p ,  denotes the position of  an erasure. 
By definition, the positions of the erasures are known. Therefore, only the  erasure values 

need to be found. This can be done, as before, in the Forney algorithm step. In computing the 
syndromes of the received polynomial, it can be  shown that any values of the erasures can be 
replaced, without any difference in the decoded word. 

The decoding procedure is similar to the errors-only RS decoder, with the following 
exceptions. A modified syndrome polynomial, or modified Fomey  syndrome, is formed, 

T ( x )  = S ( x ) ~ ( x )  + 1 mod x Z t d f 1 .  (4.10) 

The BMA algorithm can be applied to  find .(x) with the following modifications: 

1. The discrepancy is now defined as 

(4.1 1) 
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with do = Tp+l. 

2. The algorithm finishes when  the following stopping condition is met: 

i 2 li+l + t d  - 1 - p/2.  

After a(.) is obtained, a modiJed errors-and-erasure  evaluator, or errata evaluator, is 
computed as W(.), 

W(.) = [l + T ( z ) ]  .(x) mod z2td+1. (4.12) 
In addition, the following errata  locatorpolynomial is computed, 

4(x) = .(.)d.). (4.13) 
The resulting errata evaluation, or modiJed  Fomey  algorithm, is  given by 

1 1. l 5 v, for the error values, and 

(4.14) 

(4.15) 

1 5 l! 5 p, for the erasure values. 
For errors-and-erasures decoding, the Euclidean algorithm can also be applied to  the 

modified syndrome polynomial T ( z ) ,  using 1 + T ( z )  instead of S(%) as in errors-only 
decoding. That is, the inital conditions are TO(.) = z2td+1 and q ( z )  = 1 + T ( z ) .  The 
algorithm stops when deg[rj(z)] 5 L(d - 1 + p) /2J ,  with W(.) = r j ( z )  and .(x) = bj(x) .  

Example 43 Let C be an RS (15,9,7) code over GF(24) with zeros {a,   a2, .  . . ) a6) ,  where 
a is a primitive element satisfying p ( a )  = a4 + a3 + 1 = 0. As a reference for this example, 
a table of elements of GF(2*)  as powers of a primitive element a, with a4 + a3 + 1 = 0, is 
shown  below. 

Table of elements of G F p 4 ) ,  p(.) = x4 + x3 + 1. 

Power Vector 
0 0000 
1 000 1 
a 0010 
a2 0100 
a 3  1000 
a4 1001 
a5 1011 
a6 1111 
a7 0111 
a8 1110 
a9 0101 
a10 1010 
a11 1101 
Ql2 0011 
a13 0110 
a14 1100 
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The  generator  polynomial of C is 

6 

g ( 2 )  = n(2 + ai) = IC6 + al2z5 + x4 + a2x3 + a7x2 + all2 +a6.  
i=l 

Suppose that  the polynomial associated with a codeword V is 

Let the received polynomial  be 

F ( 2 )  = a7 + a32 + a13z2 + a14x3 + a7x4 + ax5 + ax6 + a4z7 + a6x8 
+a3z10 + a5211 + a11212 + a13513 + a10214. 

Assume that, aided by side information  from the  receiver, it is determined that  the  values in 
positions ao and a5 are unreliable, and  thus declared as erasures. 

Note  that E(z) = + a8z3 + a5z5 + ad2 is the  polynomial  associated  with  the errata.' 

After reception, besides F(z), the decoder knows  that p = 2 erasures have  occurred  in 
positions a' and a5. Therefore, it  computes the erasure locator polynomial 

.(x) = (1 + z)(l + a54 = 1 + a102 + a5z2. (4.16) 

The  syndromes of F(x) are computed as: S1 = F ( & )  = all ,  S2 = F(a2) = a5, S3 = F(a3) = a2, 
S - -  4 - 2 S - -  4 - ~ ( a  ) - a , 5 - ~ ( a ~ )  = 1 and S6 = F(a6) = Accordingly, 

S ( 2 )  = 1 + all2 + a5x2 + a2z3 + a2x4 + d5 + a14z6. 

The Forney syndrome  polynomial (4.10) becomes 

T ( z )  = S(z ) r ( z )  + 1 mod 22td+1 

= (1 + a'lz + a5x2 + a2x3 + a2z4)(l + al0z + a5z2)  + 1 mod x7 
= a72 + a6z2 + a7x3 + a1lz4 + a9z5 + 2 6 ,  

The decoder  obviously  does  not  know  this,  except for the  positions of the  erasures.  This  polynomial is used 
as a  reference  against  which  the  correctness of the  decoding  results  can  be  verified. 
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Iteration 2: i = 2, m = 0 maximizes (0 - 0) = 0 for do # 0. 

= + d 2 d i 1 c d 0 ) ( 2 )  = 1 + a42 + a10z2. 
t 3  = max{l,O + 2 - O} = 2, 

0 Iteration 3: i = 3, m = 2 maximizes (2 - 1) = 1 for d2 # 0. 

a(4) (2) = a(3) (x) + d & W  (x) = 1 + a5x  + x2 .  
4 = max{2,1+ 3 - 2) = 2, 
i 2 2 Yes : Algorithm ends. 

Therefore, .(x) = 1 + a52 + x2 = (1 + a32)(l + For the last equality, recall that 
the inverses of the error positions are found, via Chien search, by evaluating a(x) at all the 
nonzero elements of GF(24). This gives a(a12) = 0 and a(a3)  = 0. As a result, the error 
positions are a-12 = a3 and aP3 = a12. 

From Equation (4.12), the modified errors-and-erasures evaluator is 

W(.) = [l + T ( x ) ]  a(.) mod x2 td+1  
= (1 + a72 + a6z2 + a7x3 + al1x4 + a9x5 + x6)(1 + a52 + x 2 )  mod x7 
= 1 + a142 + al1z2 + a11x3 + 24, (4.18) 

and the errata locator polynomial 

from which it follows that $'(x) = 1. 

The values of the errors and erasures are found from (4.14) and (4.15), respectively, 

e3 = a3(1 + all + a5 + a2 + a3)  = a3a5 = a8,  
e12 = a (I + a2 + a2 + a5 + a12) = a12a4 = a,  
fo = (1 + +all + all + 1) = a14, 

f 5  = a5(1  + + a + + a l o )  = a5,  

12 

from which it follows that the errata polynomial is 

The  decodedpolynomial C(%) = F ( % )  + t?(x) is identical to u(x). Two errors and  two erasures 
have  been corrected. 



NON-BINARY BCH CODES: REED-SOLOMON CODES 71 

Direct solution of errata  values 

For small values of the minimum distance of an  RS code, the erasure values  may  be obtained 
by solving a set of linear equations. Let C(z) be the error polynomial associated with  an error 
pattern resulting from the presence of v errors and p erasures, 

v 

(4.19) 
e=1 &'=O 

Then, the following set of linear equations, similar to (4.8), hold between the syndromes 
and the values of the errors and positions: 

V U 

(4.20) 
e= 1 ['=l 

where 1 5 i 5 2td. As before, any set of v + p 5 t d  equations can be  used  to solve the values 
of the errors and erasures. 

Example 44 Direct solution of the errata values for the code in the previous example: 
After the Berlekamp-Massey algorithm and Chien search, the decoder knows that the error 
polynomial is of the form 

The errata values can be found by solving the set of linear equations given  by (4.20), which 
can be put in the following matrix form, 

(4.21) 

It can be  verified  that fo = a14, e3 = a8, f5 = a5 and e12 = a are the solutions to (4.21). 
These are the same errata values as those computed before with the modified  Forney 
algorithm. 

4.4 Weight distribution 

As mentioned before, RS codes are also MDS codes. The weight distribution of  MDS codes 
can be computed exactly with a closed form expression [MS, LC]: 

The number of codewords of weight i in an (n; IC, d )  MDS code  over G F ( q )  is 

(4.22) 

For error performance evaluation of an RS (n; IC, d )  code over GF(2"),  the following upper 
bound  on the probability of a bit error Pb(C) for an RS decoder2 is simple to compute and 

It  should be noted  that  the  bound is tight  only for bounded distance decoders,  such as those  based  on BMA, 
EA or PGZ. 
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relatively good, 

(4.23) 

where P, denotes the probability of a symbol error at the input of the RS decoder, 

PS = 1 - (1   -p)" ,  

and p denotes the probability of a bit error at the input of the RS decoder. The probability of 
a word error can be upper bounded by (1.3 l), 

(4.24) 



5 

Binary convolutional  codes 

First introduced by Elias [Eli2], binary convolutional codes are perhaps the most popular 
form of binary error correcting codes and  have found numerous applications: Wireless 
communications (IMT-2000, GSM, IS-95), digital terrestrial and satellite communication 
and broadcasting systems, and space communication systems, just to cite a few.  They  were 
referred to in  [Eli21 as convolutionalparity-check symbols codes. Their most popular decoding 
method to date, the Viterbi algorithm [Vitl], also finds applications in combinatorially 
equivalent problems such as maximum likelihood sequence detection (e.g., equalization) and 
partial-response signaling (e.g., magnetic recording). Most recently, it has been  shown that 
convolutional codes, when combined with interleaving in a concatenated scheme, can perform 
very close to the Shannon limit [BGT]. In this chapter, the basic properties and decoding 
procedures for binary convolutional codes are described. 

5.1 Basic  structure 

A convolutional code is an error correcting code that processes information serially, or 
continuously, in short block lengths. A convolutional encoder has memory, in the sense that 
the output symbols depend not only on the input symbols, but also on previous inputs andlor 
outputs. In other words, the encoder is a sequential circuit or a finite state machine. The 
state of the encoder is defined as the contents of the memory. In the computer programs that 
implement the  Viterbi algorithm and other decoding procedures that  involve a trellis, found 
on the ECC web site, a state transition table, indicating the relation between the input, the 
previous and current state, and the current output, is employed. 

A convolutional code consists of the set of all binary sequences produced by a convolutional 
encoder. In theory, these sequences have  infinite duration. In practice, the state of the 
convolutional code is periodically forced to a known state and code sequences produced in 
a block-wise manner. 

Example 45 Consider the convolutional encoder depicted in Figure 29. For analysis and 
decoding purposes, this encoder can be described by Table  2. 

Note that the coding rate of the convolutional encoder is equal to 1/2, because two output 
coded bits are produced for every input information bit. 

In general, a rate-k/n convolutional encoder has k shift registers, one per input information 
bit, and n output coded bits which are given  by linear combinations (over the binary field,  i.e., 
with exclusive-or gates) of the contents of the registers and the input information bits. 
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Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
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Figure 29 An encoder of a rate-1/2 memory-2  convolutional  encoder. 

Table 2 Input  bits,  state  transitions and output bits. 

Initial state Information Final state outputs 

00 0 00 00 
00 1 10 1 1  
01 0 00 11 
01 1 10 00 
10 0 01 10 
10 1 1 1  01 
11 0 01 01 
11 1 11 10 

SO[i]Sl [il [il S& + l ]S l [ i  + l] d o )  [i]w(l)  [i] 

For simplicity of exposition, and for practical purposes, only rate-l/n binary convolutional 
codes are considered in the remainder of the chapter. One reason for doing this is that these 
are the binary codes most  widely used. A technique known as puncturing can  be  applied  that 
results in convolutional encoders of higher rate. Puncturing is discussed in Section 5.5. 

The total length of the shift registers in  the encoder is referred to as the memory. For the 
discussion in this chapter, states  labels are integers I associated with  the  binary representation 
of the memory contents, as I = C,";' s j  [i]2m-1-j. 

The constraint  length, which for  rate-1/2 encoders equals K = m + l, is  defined as the 
numberof inputs (u [ i ] ,  u[i-l],  ..., u[i-m]) that affect the outputs (W(') [i], ..., ~ ( " - ~ ) [ i ] )  at  time 
i .  For the encoder in Figure 29, K = 3. An encoder with m memory elements will  be referred 
to as a memory-m encoder. A memory-m  rate-l/n convolutional encoder can be represented 
by a state  diagram. There are 2m states in the diagram. Because there is only one  information 
bit, two branches enter and leave each state and are labeled by u[i]/do)[i] . . . ~ ( ~ - l ) [ i ] .  

Example 46 A state diagram of the memory-2 rate-1/2 convolutional code of example 45 is 
shown in Figure 30. 

The encoder of a memory-m rate-l/n binary convolutional code can also be considered a 
discrete linear  time-invariant' system. Therefore, the impulse response, i.e., the output of the 
encoder when the input is an  "impulse" ii = (l000 ... 00 ...), completely specifies  the code. 

Convention: In writing a sequence, the leftmost symbol is  meant  to  be  the  first symbol that 
goes into the channel. 

Note, however, that time-varying convolutional codes can be defined and are studied in [Joh] 
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Figure 30 State  diagram of a memory-2 rate-l/2 convolutional  encoder. 

There are n impulse responses of a convolutional encoder of rate l / n ,  one for each output 
for j = 0; 1: . . . n - 1. As the impulse goes across the memory elements of the encoder, 

it “picks up” the connections between the memory elements and the outputs. Evidently, this 
is a finite-impulse-response (FIR) system. 

Let go, .... g,-l denote the impulse responses of a rate-l/n convolutional encoder. These 
are also called the generator sequences - or generators - of the code, based on the 
observation above, and indicate the actual physical connections of the encoder. 

Example 47 Continuing with  the memory-2 rate-1/2 convolutional code of Example 45, the 
encoder in Figure 29 produces g o  = (1 1; 1) and 31 = (1 0: l ) ,  as shown in Figure 3 1. 

U 

1000000 ... 

10100000 ... 

Figure 31 Generator  sequences of a memory-2  rate-1/2  convolutional  encoder. 

Note that the generator sequences are equal to zero after K bits. Therefore, it suffices  to 
consider vectors of this length. To stress the dynamic nature of the encoder, the indeterminate 
D (for “delay”) is employed and the generators written as polynomials in D, go(D), .... 
Bn- 1 (D). 
Example 48 For the encoder in Figure 29, 

go(D) = 1 + D + D2 and g1(D) = 1 + D2. 
In general, when refemng to a convolutional code, the generators are expressed as 

(go; .  . . gn-l)  and written in octal form. For the encoder of Example 48 the generators are 
(7; 5). The most  widely  used convolutional encoder to date is a memory-6 rate-1/2 encoder 
with generators (171; 133). This is the so-called NASA standard code, as it was  first  used  in 
the Voyager space missions. It is also used in many digital communications standards, as well 
as in the CCSD standard. 
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As a result of the dynamical structure of a convolutional encoder, the state diagram can  be 
represented as it evolves in time with a trellis diagram. A trellis diagram is constructed by 
placing the state diagram of the code at each time interval with branches connecting states 
between time i and time i + 1, in correspondence with  the encoder table. The branches of the 
trellis are labeled in the same way as the state diagram. 

Convention: When there is no dichotomy, the input information bit does not need  to appear 
explicitly in  the branch label. For FIR encoders, the information bit u can be inferred directly 
from the state transition2: 

(SOS1 . . . sm-l)  --f (usg. . . sm-2). 

It should be emphasized that,  in the case of a recursive systematic convolutional (IIR) encoder, 
this is not generally the case, as is shown in Section 5.1.1. 

Example 49 For the example rate-l/:! memory-2 convolutional encoder, the trellis structure 
is shown in Figure 32. Note  that state transitions (branches) form a state s[i] to a (possibly 
different) state s ’ [ i  + l], that caused by the input bit u[ i ]  = 0, are the upper branches. 

t=O t= 1 t=2 t=3 t=4 t=5 t=6 

Figure 32 Six sections of the  trellis of a  memory-2 rate-1/2 convolutional  encoder. 

Example 50 Consider the encoder in Figure 29 and the input sequence U = (110100). Then, 
the corresponding output sequence can be obtained either directly from the encoder table, 
Table  2, or as a path in the trellis, as shown in Figure 33.  It follows that  the corresponding 
coded sequence is V = (11; 01; 01;OO; 10; 11). 

A convolutional encoder is a linear time-invariant system, with impulse responses given by 
the code generators, go(D), (D);. . . &(D), where 

$ ( D )  = g j [ 0 ] + g j [ 1 ] D f g j [ 2 ] D 2 + - . + g j [ m ] D r n ;  (5.1) 

for 0 5 j n. In terms of the generators of a code, the output sequences can be expressed as 
m 

.(j) [ i ]  = c u[i - e]gj[e] ;  
e=o 

This  simple observation is the basis of using a trucebuck memory in a Viterbi decoder, to recover the 
information bits from the decoded sequence. 
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11 01 01 00 10 11 

Figure 33 A path in the  trellis of a memory-2 rate-1/2  convolutional  encoder. 

0 5 j < n. The output sequences ( D ) ,  0 5 j < n, as expected, are equal to the discrete 
convolution between the input sequence u ( D )  and the code generators go(D), g1 ( D ) ; .  . . 
gn-l ( D ) .  From this fact comes the name - “convolutional”- of the encoder [Eli2]. 

Observe now that Equation (5.2) above can be  written as a matrix multiplication 

,ij = uG; (5.3) 

where G is a generator  matrix of the convolutional code. In particular, for  a  rate-1/2 memory- 
m convolutional code, 

where the blank entries represent zeros. Generalization to any  rate 1 /n  encoder is straight- 
forward. 

Example 51 For the memory-2 rate-1/2 encoder in Figure 29, 

11 10 11 

G =  [ 11 10 11 
11 10 11 

11 10 11 

... ..l. 
Let 21 = (110100). Then it follows from (5.3) that V = aG = (11: 01; 01; 00; 10; l l ) ,  which 
is the same output as in Example 50. 

Let V ( D )  = d 0 ) ( D )  + D d 1 ) ( D )  + .  .. + Dn-’dn-’)(D). Then the relationship be- 
tween input and output sequences can be written as 

V(D)  = u(D)G(D) ;  (5.5) 

where generators of a rate-l/n convolutional code are arranged in a matrix, referred to as a 
polynomial  generator  matrix, 

G ( D )  ( Go(D) g1(D) . . . gn-l(D) ) . (5.6) 
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5. I .  1 Recursive systematic convolutional codes 

With  the use of (5.6), a memory-m rate-l/n recursive systematic convolutional code, or RSC 
code, has a generator matrix of the form 

As a short notation  of this generator matrix, the generators (1; g1 /go . . . gn- /go)  can be 
specified. Division and multiplication of the right-hand side of (5.5) by go(D) give, together 
with (5.6), 

v ( D )  = d ( D ) G ’ ( D ) ,  (5.8)  

where .ci’(D) = go(D)U(D). This shows that both the nonsystematic encoder and  the 
systematic encoder produce the  same  coded sequences, but that the corresponding information 
sequences are scrambled by go ( D )  in the RSC code. 

A systematic encoder is also an  example  of a discrete-time linear  time-invariant system. 
Because the generator matrix contains rational functions, the encoder is  an injinite-impulse- 
response (IIR) linear system, as opposed  to a non-systematic encoder which is ajinite impulse 
response (FIR) linear system. The preferred form  of expressing the encoder circuit is the 
controller canonical form [For4].  An encoder for an  RSC code, consists of a shift  registers, a 
circuit3 for dividing by go(D) and n - 1 circuits for multiplying by 81 ( D ) ;  . . . gn-l (D) .  

Example 52 A rate-1/2 memory-2  binary  RSC encoder with generators (1; 5/7) is  shown 
in Figure 34. The trellis structure of this code is the  same as the nonsystematic code with 
generators (7; 5). However the inputloutput bits per transition are different.  The  state diagram 
of  this code is  shown  in Figure 35. Compare  with Figure 30 on page 75. Among other things, 
this difference in inputlouput mapping  means  that the all-zero sequence may  not  necessarily 
bring the state back to sosl = 00. This is evident from Figure 35. In particular,  the  impulse 
response of this encoder is (11,Ol; 01; 00; 01; 01; 00; 01: 01; 00;. . .). 

Figure 34 Encoder of a memory-2  rate-1/2  recursive  systematic  convolutional  encoder. 

The  general  structure  of  circuits  that  multiply  and  divide  by two polynomials  can be found,  among  others, 
in [PW], Figure 7.8, or [LC], Sec. 4.7. 
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Figure 35 State  diagram of a memory-2 rate-1/2  recursive  systematic  convolutional  encoder. 

5.1.2 Free distance 

The free distance df of a convolutional code is the smallest distance between any  two distinct 
code sequences. The length of the sequences has to be  sufficiently large, much larger than 
the constraint length of the code. The free distance of a convolutional code can be obtained 
from its weight enumerator polynomial, as described in Section 5.3. There are other distances 
associated with a convolutional code, when  the length of the sequence is of the order of the 
constraint length, but these are not relevant for the discussion in  this book. More details on 
the structure of a general rate-lc/n convolutional encoder can be found in references [LC] 
and [Joh]. 

5.2 Connections with block  codes 

There is a connection between convolutional codes and block codes, as it  is evident from 
the above description of convolutional encoders. As indicated previously, it is customary for 
the information sequences input to a convolutional encoder to  be  broken into blocks offinite 
length (e.g.  a few thousands of bits). Generally, a fixed sequence of length m is appended at 
the end of each information sequence. This sequence is typically a unique word that serves to 
synchronize the receiver and forces the convolutional encoder to  return  to a known state. 

In the following, for simplicity of exposition, let C be a nonsystematic (FIR) convolutional 
code C with free distance df ,  obtained from a memory-m rate-l/n convolutional encoder. 
Similar arguments apply to RSC codes. 

5.2.1 Zero-tail construction 

By appending a “tail” of m zeros to an information vector .U of length ( K  - m), all paths in 
the trellis corresponding to 2K-m codewords merge at the all-zero state. The result is a linear 
block (nK,  ( K  - m),  dZT) code, denoted by C ~ T .  If K is large enough, then  the  rate of CZT 
approaches the rate of C. As long as K > m holds, with K sufficiently large, even though 
the code sequences are restricted to end at the all-zero state, the minimum distance of CZT 
satisfies dZT = df . 
Example 53 Let C be the convolutional code obtained from the rate-1/2 memory-2 encoder 
in Figure 29,  of free distance4 df = 5. Assume that message vectors of length K = 3 bits are 
encoded, each followed by m = 2 zeros. Then the zero-tail construction results in a binary 

That this is the value of d f  will be shown in Section 5.3. 
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linear block (10,3,5) code CZT with generator matrix, 

( 
11 10 11 00 00 

G = 00 l1 10 11 00 
00 00 11 10 11 

The weight distribution sequence of this code is A(z)  = 1 + 3z5 + 3z6 + z7, and dZT = 5 .  
The code rate of CZT is 0.3 which is less than the rate k / n  = 1/2 of C. 

5.2.2 Direct-truncation construction 

In this method, the codewords of a linear block (nK,  K ,  dDT) code CDT associated with a 
rate-k/n convolutional encoder are all code sequences associated with paths in the trellis that 
start in the all-zero state and, after K bits are fed into the encoder, can end  at  any state. The 
rate of CDT is the same as that of the convolutional encoder. However,  the minimum distance 
of the resulting block code is reduced and dDT < df . 

Example 54 Consider the rate-l/2 memory-2 encoder in Figure 29. Information vectors of 
length K = 3 information bits are encoded. Then the direct truncation construction gives a 
binary linear block (6,3, dDT) code with generator matrix, 

G = 00 11 10 . (b:, :: ::) 
The weight distribution sequence of this code is A(z )  = 1 + x’ + 3z3 + 2x4 + z5, and 
dDT 1 2  < df .  

5.2.3 Tail-biting  construction 

The codewords of the tail-biting block code CTB are those code sequences associated with 
paths in the trellis that start from a state equal to the last m bits of  an information vector of 
K data bits. This ensures that  all codewords in CTB begin  and end at the same state. The rate 
of the resulting block (2K, K ,  dTB) code is the same as that of the convolutional encoder. 
However, unless K > m and K is sufficiently large, the minimum distance dTB 5 df .  

Example 55 Consider the rate-l/2 memory-2 encoder in Figure 29. Assume that a block 
of K = 5 information bits is encoded. Then the tail-biting construction gives a binary linear 
block (10,5, dTB) code with generator matrix, 

11 10 11 00 00 
00 11 10 11 00 

11 00 00 11 10 
10 11 00 00 l1 

The weight distribution sequence5 is A(z )  = 1 + 5z3 + 5z4 + 6x5 + 10z6 + 5x7, and 
dTB = 3 < df .  

This WDS was obtained with a program from the ECC web site that computes the weight distribution of a 
binary linear code from its generator matrix. 
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5.2.4 Weight distributions 

In this section, a method is described to obtain the weight distribution of linear block codes 
derived from binary rate-l/n convolutional codes by any of the constructions in the previous 
sections [WV]. Let R(x) be a Z m  X Zm state  transition matrix with entries of the form 

Rij (2 )  = & j Z h i J ,  (5.9) 

where 6ij = 1, if and only if there is a transition from state i to state j ,  and Si j  = 0 otherwise; 
and hij is the Hamming weight of the corresponding output vector (of length n). 

Example 56 For the convolutional encoder with the state diagram shown  in Figure 30, the 
state transition matrix O(x)  is given by 

1 0 x2 

0 x 0 5 '  
o x o x  

n(x) = ( :) 
The weight distribution sequence of a binary linear block (n,  k )  code constructed from any of 
the previous methods can be obtained by symbolically raising matrix n ( x )  to the C-th power, 
denoted @(x), and combining different terms. 

The term n&(z) gives the weight distribution of trellis paths that start in state i and  end 
at state j after C time intervals. For the ZT construction, the value C = k + m is used, while 
for both DT and TB constructions, C = k. The weight distribution sequences for each of the 
construction methods presented above can be computed as follows. 

0 ZT construction: 

A(s)  = Rk,f"(x). 
0 DT construction: 

0 TB construction: 

A(z )  = C Rtj(x). 
j=O 

Example 57 Consider again the memory-2 rate-l/:! convolutional encoder. Then 

( x3 + 54 x2 + 5 3  x5 +x2 x2 +x3 1 1 + x 5  5 3 + x 4  5 2 + x 3  x 3 + 5 4  

fl3(x) = x 2 + x 3  x 5 + 2  x 4 + x  x 5 + 2  
5 3 + 2 4  x2+23 5 5 + 2  2 + x 3  . 

The weight distribution sequence of the code from the DT construction in Example 54 is 
obtained by adding the terms in  the  first  row of R3 (x). 

References on other methods of computing the weight distribution sequence of a linear 
block code derived from a convolutional code are [KC], [CK] and [DFKl]. 
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X 

X 

Figure 36 The  modified  state diagram of a memory-2 rate-1/2 convolutional  code. 

5.3 Weight  enumeration  and  performance  bounds 

The performance of convolutional codes over memoryless channels can be estimated by using 
union bounds, such as those presented in Chapter 1 for block codes. It was  Viterbi  [Vit2] that 
first considered the performance of convolutional codes. See also [ViOm]. For a convolutional 
code, the weight enumerating sequence (WES) is defined as 

T ( x )  = T1x + T~x’ + . . . + T , X ~  + . . . , (5.10) 

where the coefficient T, in T ( z )  denotes the number of code sequences of weight W. Note 
that, in principle, the inputs to a convolutional code are infinite sequences. As a result, in 
general, the WES has an  infinite number of terms. It is possible, however,  to obtain closed- 
form expressions for the WES of convolutional codes, as shown  below. 

Notation: A state ( S O S ]  . . . s m - l )  of the encoder will  be denoted by S(’), where 
1 1  CZi’ si277--l--i. 

A modiJied state diagram enables us to compute the WES. This diagram has  the all-zero 
state split into an initial state S/:)t and a final state The branches of the diagram are 
labeled by terms P ,  where W is the Hamming weight of the output sequence. 

Example 58 Let C be  the memory-2 rate-1/2 convolutional code with generators (7,5) that 
has been used throughout this chapter. Figure 36 shows the  modified state diagram of C. 

There are basically two methods to compute T ( z ) .  In the first method, the  modified state 
diagram is considered a signal flow graph. Then  Mason’s rule is applied to find T ( z ) .  This 
is the method covered in most textbooks on error correcting codes. For details, the reader is 
referred to [LC]. 

Another method, originally developed by Viterbi  [Vit2], consists of assigning intermediate 
variables p~ j ( z )  to each state S ( j ) ,  j = 1 ,2 , .  . . , 2m - 1. Each pj (x) can be expressed as a 
linear combination of weighted variables associated with states connected to S ( j ) ,  

(5.1 1) 
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for all k E { 1; 2; . . . 2m - l}, k # j ,  and where 6ij and h k j  are defined as in (5.9). The initial 
state S/:)t is assigned a variable with  value 1, while the WES T ( x )  is assigned as a variable 
to the final state .Sfinal, (0) 

This yields a system of linear equations that can be solved to find p1 (x), from which, with 
the adopted notation to designate states, 

T ( x )  = p1(x)x% (5.12) 

Example 59 Consider the modified state diagram in Figure 36. The following set of equations 
is obtained 

(5.13) 

and T ( x )  = p1 (.)x2. Equations (5.13) can be written in matrix form as 

(;l -;" -0" ) ( P 2 ( x ) )  P1 (x) = ( 2 )  ; (5.14) 
-x 1 - 2 p3(2) 

and solving for 1-11 (x) gives 
x3 

1 - 2x Pl(2) = -. 

T ( x )  = - = x5 + 2x6 + 4x7 + 8x8 + . . . 
It follows that 

x5 

1 - 22 
(5.15) 

This shows that the minimum free distance is d f  = 5 for the binary 4-state rate-1/2 
convolutional code with generators (7 ,5) .  

More detailed information about the structure of a convolutional code is obtained by 
labeling the modified state diagram with terms of the form xwyezm, where W is the Hamming 
weight of the coded outputs, e is the Hamming weight of the input vector (of length equal to 
k in general for  a  rate-k/n convolutional code), and m is the number of branches differing 
from the all-zero sequence. (See [LC], p.  302.) This results in a complete weight enumerator 
sequence (CWES), T ( z :  yi z )  which can be  used  to derive various bounds on the error 
performance of convolutional codes [Vit2], [LC], [Joh]. A weight enumerating sequence 
similar to the CWES was  used to estimate the performance of turbo codes in  [BM]. 

Example 60 Continuing with the example 4-state rate-1/2 convolutional code, a modified 
state diagram for the computation of the CWES is shown  in Figure 37. 

The equations are 

i -9.2 1 -0"" ) (;$I) = [x;z) 
1 -xz 

0 -xyz 1 - xyz p3(x) 

with T ( z ;  y; z )  = x2zp1(x). The solution is: 
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Figure 37 The modified  state  diagram of a  memory-2 rate-1/2 convolutional  code. 

Bounds on the bit error probability of a binary convolutional code of rate k / n  can  be obtained 
with the aid of the CWES. For transmission over a BSC channel and  binary  transmission  over 
an AWGN channel [ViOm], and maximum-likelihood decoding (MLD)6, the following upper 
bounds hold, respectively, 

(5.16) 

(5.17) 

Union bounds may  be  used  to estimate the bit-error rate (BER) performance of a 
convolutional code. The reader should be aware, however, that the bounds (5.16) and (5.17) 
are quite loose. Fortunately, tighter (close to the actual BER performance) bounds exist at 
relatively mild channel conditions, i.e., low  values of p for the BSC channel and  high  values 
of E,/Na for the AWGN channel, and are given by the following [Joh]: 

Example 61 The union bound (5.18) on the probability of a bit error for the 4-state rate- 
1/2 convolutional code of example 60, with transmission over a BSC channel with crossover 
probability p and MLD, is plotted in Figure 38. 

5.4 Decoding:  Viterbi  algorithm  with  Hamming  metrics 

The trellis of convolutional codes has a regular structure. Advantage can  be  taken from 
the repetitive pattern of the trellis in decoding. However, for linear block codes obtained 

An example of MLD is the Viterbi decoder, explained in the next section. 
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0.1 0.01 

P 

0.001 

Figure 38 Union  bound (5.18) on  the BER of a  memory-2 rate-1/2 convolutional  code  with 
d f  = 5. Transmission  over BSC with  crossover  probability p and MLD. 

from terminating convolutional codes, and long information sequences, maximum-likelihood 
decoding is simply too complex and inefficient to implement. 

An efficient solution to the decoding problem is a dynamic programming algorithm known 
as the viterbi  algorithm, also known as the viterbi  decoder (VD). The VD is a maximum 
likelihood decoder, in the following sense. The VD  finds the closest coded sequence V to the 
received sequence by processing the sequences on  an information bit-by-bit (branches of the 
trellis) basis. Instead of keeping a score of each possible coded sequence, the Viterbi decoder 
tracks the states of the  trellis. 

5.4.1 Maximum  likelihood  decoding  and metria 

The likelihood of a received sequence F after transmission over a noisy channel, given  that a 
coded sequence V is sent, is given by the conditional probability 

n-l 

P(T1V) = n P(rilvi); 
i=O 

It is easy to show that for a BSC channel with parameter p ,  

(5.20) 

(5.21) 

with d ~ ( r i ;  vi) = 1, if ri # vi, and d ~ ( r i ;  vi) = 0, if ri = vi. That is, d ~ ( r i :  vi) = 1 is the 
Hamming  distance between bits ri and vi. For an  AWGN channel, the likelihood is given by 

(5.22) 
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where m(.) denotes a binary modulated signal. Here, m is defined as a one-to-one mapping 
between bits (0: l} and real numbers { -a7 +G}. 

A maximum-likelihood decoder (MLD) selects a coded sequence V’ that maximizes (5.20). 
By taking the logarithm (any base) of (5.20), the following can be  shown.  For  the  BSC 
channel, an MLD is equivalent to choosing the code sequence that minimizes the Hamming 
distance 

(5.23) 
i=O 

Similarly, for the AWGN channel, it is the squared Euclidean  distance 

n-l 

d E ( F ; V )  = c ( F  - m(v))  ; 
2 (5.24) 

i=O 

that is minimized by the coded sequence selected by the MLD.  In this section, a BSC channel 
with crossover error probability p is considered. The AWGN channel is covered in Chapter 7. 

5.4.2 The Viterbi  algorithm 

Let Sjk)  denote a state in  the trellis at stage i .  Each state Sjk)  in the trellis is assigned a 
state metric, or simply a metric, M ( S i  ( k )  ), and apath in the trellis, g ( k ) .  A key observation in 
applying the Viterbi algorithm is: 

At time i, the  most likely paths  per state yik) (the  ones  closest  to the 
received  sequence) will  eventually  coincide  at  some  time i - e. 

In  his paper, Viterbi [Vitl] indicated that the value of e for memory-m rate-1/2 binary 
convolutional codes should be C > 5m. The VD operates within a range of L received n- 
tuples (output bits per state transition) known as the decoding  depth. The value of L must  be 
such that L > C. 

In the following, the Viterbi algorithm applied to a memory-m rate-l/n binary convolu- 
tional code is described, and  its operation illustrated via a simple example. Some additional 
notation is needed: Let G [ i ]  = (vo[i]vl [i] . . . vn-l [ i ] )  denote the coded bits in a branch (state 
transition), and let F [ i ]  = (ro[i]rl [i] . . . rn-l [i]) denote the output of the channel. 

Basic  decoding  steps 

Initialization 

Set i = 0. Set metrics and paths 

The specific way  in which the initialization of the paths is performed is irrelevant, as  shown 
later. For the sake of clarity of presentation of the algorithm, it is assumed that  the paths are 
represented as lists that are initialized to  the empty list. 

1 .  Branch  metric  computation 
At stage i ,  compute the partial branch  metrics 
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BMjb)  = d H ( F [ i ] ,  G [ i ] ) ,  (5.25) 

b 2 C:Ii t1e[i]2~-'-', associated with the n outputs G [ i ]  of every branch (or state 
transition) and the n received bits F[i] .  

2 .  Add,  compare  and  select  (ACS) 
For each state k = 0 ,1 , .  . . , 2m - 1, and corresponding pair of incoming 
branches, from two precursor states S&) and $22, compare M(SjF2)  + 
and M($??) + BMib2) ,  where bj = C::; ve[i]2"-'-', i = 1 , 2 .  Select awinning 
branch giving the smallest path metric and update, 

M ( s ~ ~ ) )  = min{M(SjF>) + BM,!~ ' ) ,  M ( s , ! ~ ) )  + B M : ~ ~ ) } .  (5 .26)  

3. Path  memory  update 
For each state Sik) ,  IC = 0,1, .  . . , 2m - 1, update the suwivorpaths g ( k )  as follows, 
with the output of the winning branch ckj, j E { 1,2}. 

Yi - (Yz-1 , W k j ) ,  
- ( k )  - ( k , )  - (5 .27)  

4. Decode  symbols 
If i > L, then output as the estimated coded sequence yiyi, where IC' is the index of 
the state S(") with the smallest metric. Set i = i + 1 and go to decoding step 1. 

It should be stressed that this is not the only way to implement the Viterbi algorithm. 
The above procedure can be considered a classical algorithm. There are alternative 
implementations that, depending on the particular structure of the underlying convolutional 
encoder, may offer advantages (see, e.g., [FL2]). In addition, in the last step of the algorithm, 
symbol decoding can be applied to information bits directly. This is the form usually employed 
in the software implementations of Viterbi decoders available on the ECC web site. In 
hardware implementations, a method based on a trucebuck memory is favored  that estimates 
the original information sequence, indirectly, based on state transitions. This technique is 
discussed later in the chapter. 

BMG  ACS  Traceback  RAM 

7 - Branch 
Metric 

Add,  Compare Update  paths 
I u 

and  Select ' and  metrics 
> 

Generator 

Figure 39 Block  diagram of a Viterbi  decoder. 

Example 62 Consider again the memory-2 rate-1/2 convolutional encoder with generators 
(7,5). Note  that d f  = 5 for this code. This example shows how a single error can be corrected. 
Suppose that G = (11,01,01,00,10,11) is transmitted over a binary symmetric channel 
(BSc), and  that P = (10,01,01,00,10,11) is received (one error in the second position.) 
The operation of the Viterbi decoder is illustrated in Figures 40 to 45. The evolution of the 
metric values  with respect to the decoding stages is shown  in  the following table: 
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Statelstage i = O  i = l  i = 2  i = 3  i = 4  i = 5  i = 6  

SjO) 0 1 1 1 1 2 1 

Sp 0 0 0 l 2 1 3 

$2) 0 1 l l 1 2 2 

$3) 0 0 l l 2 2 2 

After processing six stages of the trellis ( i  = S), the state with the smallest metric is S, ( 0 )  

with associated (survivor) path = V. One error has been corrected. 

Transmitted 1 1  01 01 00 10 11 

Received 10 01 01 00 IO 11 

t = 0: 

Figure 40 VD operation  for  Example 62, at i = 0 and i = 1. 

5.4.3 Implementation issues 

In this section, some of the implementation issues related to  Viterbi decoders are discussed. 
The techniques below apply equally to  any  Viterbi decoder that operates over channels with 
additive metrics, such as the BSc, AWGN and flat Rayleigh fading channels. 

Path  metric  initialization 

The Viterbi decoder can operate in the  same mode from the start ( i  = 0). The survivor paths 
can  have arbitrary values, without affecting the decoder's performance. The first L decoded 
bits are therefore random and give no information. For this reason, the value of L contributes 
to the decoding delay, and is also known as the decoding depth. Moreover, provided that L 
is large enough ( L  >> e, where t? > 5m for rate-1/2 binary codes), the decoded bit  can  be 
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10 01 

t = 2 :  

10 01 

Figure 41 VD operation  for  Example 62, at i = 2. 

output either from the path with the lowest metric or always output from the zero state path 
(g'')). The latter method is easier to implement and does not result in loss of performance. 
The programs on the ECC web site that implement MLD using the Viterbi algorithm work  in 
this fashion. 

Also note that in Example 62 the branch labels (output) were stored in  the survivor 
paths. This was done in order to facilitate understanding of the algorithm. In a practical 
implementation, however, it is the corresponding information bits that are stored. This is 
discussed below,  in connection with path memory management. 

Synchronization 

Branch symbols must  be properly aligned with the received symbols. Any misalignment can 
be detected by monitoring the value of a random variable associated with the Viterbi decoder. 
Two commonly used synchronization  variables are: ( I )  Path metric growth, and (2) channel 
BER estimates. The statistics of these variables give an indication of abnormal decoding 
behavior. 

Assume that the received sequence is not properly received, i.e., the n-bit branch labels V [ i ]  
in the decoder are not properly aligned, or synchronized, with the received sequence F [ i ] .  

Example 63 Figure 46 shows an example for a rate-l/2 in  which the received sequence F is 
not synchronized with the reference coded sequence V. 

In other words, not all the bits in the received subsequence F [ i ]  belong to the same trellis 
stage in the decoder. In this case, two events that may occur are: (1) The path metrics are close 
to each other and grow  rapidly, and (2) the estimated channel BER approaches 1/2. Figure 47 
shows the block diagram of a Viterbi decoder and a BER  monitor. 
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10 01 01 

1 = 3 :  

10 01 01 
(0) 

y 3=(10,01,11) 

y 3=(11,01,01) 

y 3 =  (10,01,00) 

y 3=(10,00.01) 

(11 

( 2 )  

(31 

Figure 42 VD operation for Example 62, at i = 3. 

A synchronization stage needs to  be added, external to the decoder itself, whose function 
is to advance the reference sequence V in the decoder until the statistics return  to normal. 
This can be done by skipping received symbols (a maximum of n - l times) until  the 
synchronization variables indicate normal decoding behavior. This is indicated in Figure 46 
of Example 63 for the case of a rate-1/2 convolutional code. 

Metric  normalization 

As the Viterbi decoder operates continuously, the  path metrics will  grow proportionally with 
the length on the received sequence. To avoid  overflow or saturation (depending on the number 
representation used), the metrics need  to  be normalized. There are basically two methods of 
doing this. Both  rely  on  the following two properties of the Viterbi algorithm: 

1. The MLD path selection depends only  on the metric  differences. 
2. The metric differences are bounded. 

m Threshold  method 
To normalize the metrics, at each decoding stage, the  value of the smallest metric 

is compared to a threshold T.1f Mmin > T then T is subtracted from all the metrics. 
Clearly, this does not affect the selection process, because the metric differences 
remain the same. This is a method  that can be easily implemented in software on a 
generic processor. 

The metrics are computed modulo N ,  so that  they lie within  the range [O: N - l], 
where N = 2An,,,, and Amax is the maximum difference in survivor path  metrics. 

m Modular  arithmetic  method 
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10 01 01 00 

91 

t = 4  

IO 01 01 00 

Figure 43 VD operation  for  Example 62, at i = 4. 

Obviously, A,,, depends on the range of values received from the channel. From 
the two properties of the Viterbi algorithm, it can be shown  that  the same MLD 
path is selected by the Viterbi decoder when computing path metrics with modular 
arithmetic. In particular, it is possible to use two's complement arithmetic7, in such a 
way that overflow can occur but it does not affect the selection process. For details, 
see [HEK, OCC]. This method is favored in hardware implementations of Viterbi 
decoders. 

Path  memory  management 

In a Viterbi decoder, survivor paths and their metrics need to be stored and updated. In a 
continuous operation mode, while updating the survivor paths at stage i, earlier portions of 
the survivor paths merge with high probability at stage i - L, where L is the decoding depth. 
The estimated information bits are taken from the (single) portion of the merged paths at stage 
i - L. There are different techniques to extract the information bits. Two  of the  most  common 
are: (1) Register exchange and (2) Traceback memory. 

0 Register exchange 
This method is the easiest to implement in software. All the survivor paths are 
updated at each iteration of the Viterbi algorithm. Therefore, the information bits can 
be read directly from the survivor paths. However, if this technique is implemented 
in hardware, the decoding speed would  be  low, due to an excessive number of times 
at which the path memory is read and written. To simplify control flow instructions, 
a circular pointer of length L can be  used.  With a circular pointer, at decoding stage 
i, position (i - L )  in  memory (to output the decoded bit) is equal to position (i + 1) 

' Arithmetic using the additive group { - Z r n - I ,  1 - 2rn-' ,  . . . , Z m - l  - l} of m-bit integers [HEK]. 
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10 01 01 00 10 

t = 5 :  

IO  01 01 00 10 

y 5=(10,01,11,00,00) 

y 5=(11,01,01,00,10) 

y 5=(10,01,11,00,11) 

y 5 =  (10,00,01,10,10) 

(0) 

( 1 )  

(2) 

(3) 

Figure 44 VD operation for Example 62, at i = 5 .  

modulo L. 
Traceback 
This technique is favored in implementations in hardware. The survivor paths are 
composed of decision values, which indicate state transitions in order to trace back 
the survivor paths and reconstruct a sequences ofstates in reverse order. 

The traceback memory  can  be organized as a rectangular array, with  rows  indexed 
by k ,  for all the trellis states k = 0,1,  . . . , 2m - 1. At decoding stage i ,  for each 
trellis state S,('), 0 5 j 5 2m - 1, the traceback  memory (or TB  RAM)  is  written 
with the rightmost bit of the previous state S!::, l E { 1,2}, associated with the 
winning branch. 

The traceback method trades off  memory for decoding speed, since it writes only 
one bit per state per decoding stage, instead of L bits per state per decoding as in the 
register exchange method. The information bits are decoded by reading in reverse 
order the state transitions with  an encoder replica (or looking up a state transition 
table). More memory (number of columns if organized in a rectangular array) is 
required for continuous operation because, at the same time as information bits are 
being read out (decoded), new decision values are being written. 

Example 64 Continuing with Example 62, using the traceback technique, at the end of the 
i = 6 received pair of bits from the channel, the traceback memory  would  have  the contents 
shown in  Table 3. 

The traceback memory is read starting from the last bit (e.g., use a LIFO), i = 6 (in general 
T = L). The row address is given by the state with the best metric. This is state S(') in 
the example. Read the transition bit b6 (in general, b ~ ) .  The row address (ROW) at i = 5 
(i = L - l), to read the next transition bit bg, is obtained by shifting the address IC at i = 6 
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10  01 01 00 10 11 

93 

t = 6: 

10 01  01 00 10 11 

y (11,01,01,00,10,11) 
(0) 

y (1) ,=(10,00,01,10,10,01) 

y (2) 6=(10,01,11,00,w,ll) 

y (3) 6=(10,00,01,10,10,10) 

Figure 45 VD operation for Example 62, at i = 6. 

SKIP 

1- A’ A‘ 

Synchronized ...  ... rl[i+2j ro[i+2] rl[ i+l]  r,[i] ro[i] 

Reference ... vo[i] ... vl[i+2] vo[i+2] vl[i+l] vo[i+l]  v,[i] 

Figure 46 Example of branch  misalignment in a Viterbi  decoder. 

( i  = L )  and appending the previous decision bit b6 ( b ~ ) .  This can be stated in the following 
C language instruction: 

ROW[j] = ((ROW[j+l] << 1) && MASK) TB-RAM[ROW[j+l]] [j+l]; 

(where MASK = 2m - 1.) 
Continuing in this way, the following state sequence is obtained: 

From this sequence, the corresponding information sequence can be recovered, by reversing 
the state transitions: 6 = ( l 1 0 l 0 0 ). 

For high-speed continuous VD operation with the traceback method, the traceback memory 
must be partitioned into several blocks. In this way, while one block is being written  with 
decisions at the current stage i ,  another block is read (decoded) at a time i - L, L > C, 
and another (possibly more than one) block for intermediate stages is used for performing 
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Viterbi 
decoder 

estimator 
Delay 

Figure 47 Channel  error  rate  estimation  for a BSC  channel. 

Table 3 Tracing  back  the path that ended in state S(’). 
i = l  i = 2  i = 3  i = 4  i = 5  i = 6  

0 0  1 1 0 0 1 
1 0  1 1 0 0 1 
2 0  1  1 1 0 0 
3 1  0 0 1 1 1 

traceback tracing. This memory partitioning improves speed but increases the latency (or 
decoding delay) of the decoder [Col, BABSZ]. 

ACS 

For memory-m rate-l/n binary convolutional codes codes, the basic trellis element is a 
butterfly, as shown  in Figure 48. The add-compare-select (ACS) operation is implemented 
using this structure over 2m-1 pairs, i.e., j = 0 , 1 , 2 , .  . . , 2m-1 - 1. Therefore, the ACS 
operation can be done either serially (a loop on j in software) or in parallel, with 2m-1 ACS 
units, one per butterfly. If the code is antipodal then the generators of the code have a one 
in the first and last positions. In  this case, the labels of the branches incident to a state S(2j) 
are the same as those incident to state S(’j+l) in a butterfly. Moreover, the label of a branch 
incident to a state S(’j) is equal to the complement of the label of the other branch’. Using 
these facts, a clever technique [K21 based  on branch metric differences was proposed. For 
rate-l/n codes, the result is a Viterbi decoder with a compare-add-select (CAS) architecture, 
and lower complexity of implementation than the conventional ACS approach. 

5.5 Punctured  convolutional  codes 

Punctured convolutional codes were introduced in [Cla]. Puncturing is the process of 
systematically deleting, or not sending, some output bits of a low-rate encoder’. Since the 
trellis structure of the low-rate encoder remains the same, the number of information bits per 
sequence does not change. As a result, the output sequences belong to a higher-rate punctured 
convolutional (PC)  code. The following discussion focuses on codes obtained from a binary 

The complement of a bit a is 1 + a mod 2. 
Sometimes referred to as the mother code. 
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Figure 48 Trellis  butterfly of a memory-m  rate-l/n binary  convolutional  code. 

memory-m rate-l/n convolutional code. 

rate- lln matrix 
encoder 

Framing 

Figure 49 Encoder of a  punctured code based  on a rate-l/n code. 

A puncturing  matrix P specifies the rules of deletion of output bits. P is  a k x np 
binary matrix, with binary symbols pij that indicate whether the corresponding output bit 
is transmitted = 1) or not (pij = 0). Generally, the puncturing rule is periodic. A rate- 
k / n ,  PC encoder based on a rate-l/n encoder, has a puncturing matrix P that contains l! zero 
entries, where np = kn - l!, 0 5 l! kn. 

Example 65 A rate-2/3 memory-2 convolutional code can be constructed by puncturing the 
output bits of the encoder of Figure 29, according to the puncturing matrix 

P =  (; ;). 

The corresponding encoder is depicted in Figure 50. A coded sequence 

6 = (... 

of the rate-1/2 encoder is transformed into code sequence 

up = (. 

i.e., every other bit of the second output is not transmitted. 

One of the goals of puncturing is that the same decoder can be  used for a variety of high-rate 
codes. One way  to achieve decoding of a PC code using the Viterbi decoder of the low-rate 
code, is by  the insertion of “deleted” symbols in the positions that  were not sent. This process 
is known as depuncturing. The “deleted” symbols are marked by a special flag. This can be 
done, for example, using  an additional bit and setting it to 1 in the position of an erased bit. If 
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10001 1 

U 

110100 
6 input bits 

111001 lXlX0X 

v = ( l l ,O l ,O l ,OO, lO , l1 )  12 output bits - rate-1/2 

9 output bits - rate-2/3 v = (11,0,01,0,10,1) P 

a position  is  flagged,  then  the  corresponding  received  symbol  is  not  taken  into  account  in  the 
branch  metric  computation’0. 

In a software implementation, an  alternative method is for the decoder  to  check  the  entries 
pm,j  of  matrix P in  the  transmission  order, m = 0; 1;. . . n - 1, j = i; i + 1;. . . i + k - 1. 
If pm,j  = 0, then  the current received  symbol  is  not  used to update  the  branch  metric.  The 
decoder advances a pointer to  the  next  branch  symbol  in  the  trellis  and  repeats  the  test  on 
p,j. Otherwise, pm,j = 1 and the  received  symbol are used  to  update  the  branch  metric. 
Every  time  the  branch  pointer is advanced, a check  is  made  to determine if all  the  symbols 
in  that  branch  have  been  processed. If they  have,  then  the ACS operation  is  performed. This 
method  is  used in some of the programs that  implement  Viterbi  decoding  of PC codes  on  the 
ECC  web  site. 

Table 4 shows puncturing  matrices employed with the de-facto standard  memory-6  rate- 
1 /2  convolutional code with generators (go;  91) = (171; 133). In  the  table, v:) indicates  the 
output, at  time m, associated  with  generator si, i = 0; 1. Other puncturing  matrices  can  be 
found in [YKH]. 

~~ 

lo Some authors write “the branch metric is zero” as an equivalent statement. 
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Example 66 (Continuation of Example 65.) Let U be the same as  in Example 62, and 
suppose transmission over a BSC introduces an error in  the second position. Coded symbols 
dl)[i]; i = 0; 2: 4; .. ., are not transmitted. The decoder knows this and inserts deleted 
symbols, denoted by E. When computing branch distances, the E symbols are ignored. The 
operation of a Viterbi decoder with deleted symbols is depicted in Figures 5 1 and 52 for i = 1 
and i = 2, respectively. It is left as an exercise to finish the example. 

Transmitted 1 1  0 01 0 10 1 

Received 10 m 01 m 10 1E 

i = O  t t f 

i =  1: 

10 Branch metric computation: 
(0) 

BM1 =d(00, 1 0 ) = 1  BM1 =d(01,  10) ,2  

BMI = d ( 1 0 , 1 0 ) = 0  B M I   = d ( l l , 1 0 ) = 1  

(0)  (0) (0) (1) (3) 

(1) 

(2) (3) 

M(S ) = min [ M(S O)+BM M(S O)+BM ] 

= 1, select (flip a coin) branch from  state 0 

(0) 
Update  metric M(S ) = 1 Update  path y = ( 0 0 )  

(0) 

Figure 51 VD operation for a rate-213 memory-2 PCC, i = 1. 

5.5.1 Implementation  issues  related to punctured  convolutional codes 

For a system that employs punctured convolutional codes, the re-synchronization process will 
take longer, as the output symbols are spread over  several trellis branches. Moreover, practical 
systems use a multiplicity of puncturing patterns of different lengths. The decoder therefore 
may  have to make a guess as to  the specific rate and puncturing pattern being received. Other 
points to consider when implementing PC codes are: 

1. The decoding  depth L must be  increased as more output bits are punctured. This 
is because high-rate codes (e.g., rate 7/8)  have  low minimum Hamming distance 
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Transmitted 11 0 01 0 IO 1 

Received 10 OE 01 OE IO IE 

i = 2 :  
10 OE 

Figure 52 VD operation for a rate-2/3 memory-2 PCC, i = 2. 

between coded sequences (e.g., dmin = 3) and therefore the survivor paths take 
longer to converge. 

2. An additional level of synchronization with the received sequence is needed, to align 
the puncturing pattern. 

The fact that the puncturing patterns have different lengths for different rates may  be  solved 
by employing the same puncturing period. This is one of the features of rate-compatible PC 
codes, or RCPC codes. 

5.5.2 RCPC codes 

RCPC codes were introduced by Hagenauer [Hag]. These codes are constructed from a low- 
rate code by periodic puncturing. Let M denote the puncturing period. Then, as before, the 
puncturing matrices are n x M binary matrices. However,  in general, M > kn - l. 

To construct a family of RCPC codes, it is required that the branch outputs of a high-rate 
PC code are used  by  the lower rates PC codes. This is achieved as follows. Let P ( H )  and 
P(L)  denote matrices of a high-rate code CH and a low-rate code CL, respectively,  both 
derived from the same lowest-rate code C. Then codes CH and CL are rate-compatible if the 
following condition holds: 

pi;’ 1 + = 1. 

z 0 +p!?) = 0. 
An equivalent condition is 

23 
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Example 67 Let C be a rate-1/2 convolutional code. Let M = 4. Then matrices P(l) 
through P(4) below generate RCPC codes of rates 4/5,4/6,4/7 and 4/8(=1/2), respectively. 

RCPC codes  [Hag] find applications in automatic repeat request (ARQ) systems, due to 
their incremental redundancy nature, as well  as  in constructing variable-rate or unequal error 
protection codes. 



Modifying and combining codes 

In this chapter, several techniques are presented that  allow  modification of an existing code, 
or the combination of several codes, in order to achieve  flexibility  in  the  design of error 
correcting codes. Many of the best codes known to date have  been obtained not from members 
of a known family of codes, but from modifying  and combining  codes [Bro]. 

6.1 Modifying  codes 

In  the following, let C denote a linear block (n, k, d )  code  over GF(q) with generator matrix 
G and parity-check matrix H .  

6.1. I Shortening 

Shortened cyclic codes were described in Section 3.1.5. Let S be  an integer, 0 5 S < k .  In 
general, a linear shortened (n - S, k - S ,  d,) code C, has distance d, 2 d. A generator matrix 
of C, can  be obtained  from the generator matrix G of  the original code C as follows. Assume 
that G is in systematic form, that is, 

Then a ( k  - S )  x (n - S) generator matrix G, of the shortened  code C, is obtained by 
removing S columns of the  identity  matrix Ik and  the S rows  that correspond to  where  the 
selected columns  elements are nonzero.  This is  best illustrated by  an example. 

Example 68 Consider the Hamming (7,4,3) code,  presented in Example 13, page 23, of 
Chapter 2. This  code has 

1 0 0 0 1 0 1  
0 1 0 0 1 1 1  

0 0 0 1 0 1 1  

G =  ( 
(Compare with the H matrix in Example  13.) 

To construct a shortened (5 ,2,3)  code, any  two  among  the four leftmost columns of G can 
be  removed. Suppose that the  first  and second  columns of G are  removed,  and  that  the  first 
and second rows, corresponding to the nonzero  elements of the columns, are removed. These 
rows  and columns are indicated by boldface types in (6.2). The remaining entries of G form 

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)



102 THE ART OF ERROR CORRECTING CODING 

the matrix 

It  is instructive to examine the standard array of the shortened (5,2,3) code of Example 68, 
to understand the enhancement in  the error correcting capability of a shortened code, with 
respect to the original code. 

Example 69 The standard array for the shortened (5 ,2 ,3 )  code of Example 68 is  given in 
Table 5 .  

Table 5 
- 
S 

000 
110 
01  1 
l00 
010 
00 1 
101 
111 

Standard  array for a  shortened ( 5 , 2 , 3 )  code. 

u = o o  u=10 u = o 1  U = l l  
00000 10110 01011 11101 
10000 00110 11011 01101 
01000 111 10 00011 10101 
00100 10010 01111 11001 
00010 10100 01001 11111 
00001 10111 01010 11100 
11000 01 110 10011 00101 
01100 11010 001 11 10001 

From the standard array, it follows that, although the minimum distance of the code is 
d, = 3, there are two error patterns of Hamming weight two, namely 11000 and 01100, that 
can be corrected. 

Note that shortening a code reduces the length and dimension of the code, while at the  same 
time maintains the same redundancy, so that more error patterns can be corrected. This can 
be explained from the Hamming bound for a t-error-correcting linear block (n,  k ,  d )  code, 
inequality (1.24) which is repeated here for convenience, 

2n-k 2 2 (;). t 

With respect to the original (n, IC, d )  code, the shortened (n  - S ,  k - S ,  d,) has  the same 
redundancy. Therefore, the left-hand side of (6.3) has the same value. In other words, the 
number of cosets  does not change. On the other hand, for S > 0, the right-hand side becomes 
smaller. In other words, the number of error patterns of Humming weight up to t decreases. 

If the original code does not meet the Hamming bound (6.3) with equality (in the  binary 
case, only the Hamming codes, the Golay code, the single parity-check codes and  the 
repetition codes do), then the quantity 2n-k - cl=, (:) represents the additional patterns 
of weight greater than t that the original code can correct. The number of additional error 
patterns of Hamming weight greater than t that the shortened code can correct is given  by 

A, = 2n-k - 5 (" e ') - In-' - 5 (i)] = 2 [ (i) - (" ')] , (6.4) 
t 

!=O t=0 

which is equal to the difference in the volume of Hamming spheres of radius t when going 
from n to n - S coordinates (or dimensions). 
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6. I .2 Extending 

In general, extending a code C means adding E parity-check symbols. The extended 
(n + E, k ,  dext) code Cext has minimum distance dext 2 d. In terms of the parity-check matrix 
H of the code C, E rows and columns are added to it, to obtain an (n - k + E )  x (n + E )  

extended parity-check matrix, 

. . .  

... 

H 

h n - - k t t , t  

The most common way  of extending a code is by adding an overall parity-check symbol. In 
this case, the following parity-check matrix is obtained, 

The resulting code Cext is an (n  + 1; k ,  dext )  code. If the minimum distance of the original 
code is odd, then dext = d + 1. 

Example 70 Let C be the Hamming (7,4,3) code. Then the extended (8,4,4) code Cext has 
parity-check matrix 

/ 1 1 1 1 . 1 1 1 1 \  
0 1 1 1 0 1 0 0  
0 0 1 1 1 0 1 0  H e x t  = 

0 1 1 0 1 0 0 1  J 
After permutation of columns, this is also the generator matrix of the RM1,3 code of 
Example 16, which is a self-dual code'. 

6.1.3 Puncturing 

A puncturing technique was discussed in Section 5.5, in connection with convolutional codes. 
More generally, puncturing of linear block codes consists of the removal of parity check 
symbols, to obtain a linear block (n - p ,  IC, d,) code C, with minimum distance d,  5 d. The 
rate of the code increases, since the dimension does not change, and redundancy (number of 
parity-check symbols) is reduced. 

Puncturing is achieved by removing certain columns of the parity-check matrix H of the 
original code, to obtain matrix H p  of C,. This technique is similar to shortening of the dual 
code. If 

H =  ( P O  172 ... P k - l l I n - k )  7 

See page 7. 



104 THE ART OF ERROR  CORRECTING  CODING 

denotes the parity-check matrix of C, then removing any p columns among the n - IC rightmost 
columns from H ,  and p rows corresponding to  the nonzero values of the selected columns, 
results in  an (n - IC - p )  x (n  - p )  matrix 

where Ij denotes a column of weight equal to one, and p> denotes a column after the  removal 
of the p rows described above. 

Example 71 Consider the ( 5 ;  2 ;  3) code C, from Example 68. Its parity-check matrix is equal 
to 

H , = l l O l O .  (: 1 :: 1) 
Deleting the third column and the top row of H,  gives the parity-check matrix H p  of a 
punctured (4: 2;  2) code C,, 

which is the same LUEP code as in Examples 3 and 6, up to a permutation of the  first  and 
second code positions. 

6.1.4 Augmenting and expurgating 

There are two additional techniques to  modify an existing linear code that  in general may 
produce nonlinear codes. These techniques are augmenting and expurgating and are very 
useful in analyzing families of linear block codes, such as the Reed-Muller and  BCH codes. 

Augmenting a code means adding more codewords to it. An obvious way to do this and 
still get a linear code is to add more (linearly independent) rows  to the generator matrix. This 
is equivalent to forming a supercode by taking the union of cosets of code C. The resulting 
code C,,,, has dimension (n; IC + 6;  d,,,), where 6 is the number of rows  added to G. The 
minimum distance of Caug is daug 5 d. Let G = (3: . . . ) be a generator matrix 
of C, where gj denotes a vector of length n, 0 5 j < n, and x' denotes the transpose of a 
vector 3. Then a generator matrix of an augmented code is given by 

T 

Augmenting techniques are closely related to coset  decomposition [For61 of codes. This is 
discussed below in connection with the direct-sum of codes and  the lulu + v]-construction 
and related techniques. A common method to augment a linear block (n; k ;  d) code C is to 
add  the all-one codeword to it (if it is not already in the code.) Alternatively, if the all-one 
codeword belongs to C, then 

c = c. U{i + co), 
for an (n; IC - 1; do) subcode CO C C, where do = d - 1. 



MODIFYING AND COMBINING CODES 

Table 6 Basic  techniques for modifying a code. 

Technique Action 
( n - C , k - l , d ,  > d )  Removing information symbols Shortening 

Code parameters 

(n,  - e,  dexp 2 d )  Removing codewords (cosets) Expurgating 
(n, IC + e, daug 5 4 Adding codewords (cosets) Augmenting 
(. - e, k, d p  5 4 Removing parity-check symbols Puncturing 

(n  + e,  IC, dext 2 4 Adding parity-check symbols Extending 
(n  + C, IC + l ,  d, 5 d )  Adding information/parity-check symbols Lengthening 
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Expurgating is the process of removing codewords from a code. In general, this will 
produce a nonlinear code. One way to get a linear code is to remove rows from the generator 
matrix G of the original code. This results in  an (n, IC - C, de,,) code Cexp with dexp 2 d. It is 
interesting to note that if the code is systematic, then expurgating is equivalent to shortening. 

Example 72 Consider the Hamming (7,4,3) code, with 

1 0 0 0 1 0 1  
0 1 0 0 1 1 1  

0 0 0 1 0 1 1  

G =  ( 
Removing the first  row results in a (7,3,3) code, for which  the  first bit is always zero. In other 
words, the code  is equivalent to a (6,3,3) code. 

It is important to note that when expurgating a code, the choice of the generator matrix, 
or the basis of the original code, is important in order to obtain codes with  high minimum 
distance. This is illustrated in the following example. 

Example 73 As  shown  in Example 39, the Hamming (7,4,3) code contains seven codewords 
of weight 3 and seven codewords of weight 4. Selecting four linearly independent codewords, 
three of weight 4 and one of weight 3 ,  the following generator matrix is obtained, 

1 0 0 0 1 0 1  
1 1 0 0 1 1 0  

0 1 1 0 0 1 1  

G’= ( (6.10) 

Matrix G’ generates the same Hamming (7,4,3) of the previous example. However, if the 
top row  of G’ is removed, the generator matrix of a maximum-length-sequence (or simplex) 
(7,3,4) code is obtained. 

The code lengthening technique is performed by adding e columns and e rows to the 
generator matrix, and C additional parity-check symbols, so that C additional information 
symbols are introduced. In particular, one way to lengthen a code is to  add one information 
symbol and one overall parity-check symbol [MS]. 

Table 6 summarizes the techniques presented in this section. 
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6.2 Combining codes 

In this section, several methods of combining codes are presented. Code combining techniques 
are very powerful, as evidenced by the appearance in 1993 of turbo  codes [BGT]. In the 
following, unless otherwise specified, let Ci denote a linear block (ni, ICi, d i )  code, i = 1,2. 

6.2. l Time-sharing of codes 

Consider two codes C1 and C2. Then the time-sharing of C1 and C2 consists of transmitting 
a codeword C1 E Cl followed by a codeword c2 E CZ,  

IC,lC,l = {(c1,c2) : ci E cz, i = 1,2}. (6.11) 

The result of time-sharing of m linear block (ni, k i ,  d i )  codes, i = 1,2,  . . . , m, is  an (n,  IC, d )  
code, with parameters 

m m 
n =  E n , ,  IC = c k i ,  and d =  min { d i } .  

i=l 
lsilm 

i=l 

(6.12) 

Let Gi denote the generator matrix of component  code Ci, for i = 1,2,  . . . , m. Then the 
generator matrix of the code obtained from time-sharing is 

(6.13) 

where the blank entries represent zeros. 
Time-sharing is sometimes referred to as “direct-sum’’ [MS] or “concatenation” [Rob]. In 

this book, however, concatenation of codes has a different interpretation, and is discussed in 
Section 6.2.4. 

Example 74 Let C1 be a repetition (4,1,4) code and C2 be a Hamming (7 ,4,3)  code. Then 
time-sharing of C1 and C2 results in a linear block (11,5,3) code with generator matrix 

1 1 1 1 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 1 0 1  
0 0 0 0 0 1 0 0 1 1 1  
0 0 0 0 0 0 1 0 1 1 0  
0 0 0 0 0 0 0 1 0 1 1  

GTS = 0 G2 

The time-sharing technique has been  widely  used in communication systems that require 
a variable amount of error protection, or unequal  error protection, using  the  RCPC codes of 
Section 5.5.2. See [Hag]. Also note  that time sharing m times the same code is equivalent 
to repeating the transmission of a codeword m times. More on this when product codes are 
discussed, in Section 6.2.3. 
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6.2.2 Direct-sums of codes 

Let Ci denote a linear block (n; ki ,  d i )  code, 1 5 i 5 m. A direct-sum code CDS is defined 
as 

CDS = {fila = fil + fil + ' ' '  + V,; fii E ci, i 1 1; 2 , .  . . ; m }  . 
This technique may increase dimension. However, it generally reduces the distance. Let Gi 
denote the generator matrix of component code Ci, for i = l; 2; . . . : m. Then the generator 
matrix of the code CDS, obtained from the direct-sum of these component codes, denoted 
CDS = Cl + C2 + ... + C,, is 

GDS = (6.14) 

Code CDS is a linear block (n: k7 d )  code with k 5 IC1 + k2 + . . . + IC, and d 5 mini{&}. 

Example 75 Let Cl be the repetition (4; 1: 4) code and CZ be  a linear block (4; 2;  2) code 
with generator matrix 

(This code consists of codewords formed by sending twice a 2-bit message.) Then code 
CDS = C1 + C, is a single parity-check (4: 3; 2) code, with generator matrix, 

1 1 1 1  

0 1 0 1  
GDS= (1 0 1 0 ) .  

The direct-sum technique can be used not only to combine codes of smaller dimension, but 
also to decompose a code into a union of subcodes Ci C C,  such that C can be expressed as 
the direct sum of the component subcodes. More on this is discussed in Section 6.2.4. 

Trivially,  every linear block (n; k ,  d )  code C with generator matrix G can be decomposed 
into k linear block (n; 1, d i )  subcodes Ci, 1 5 ,i 5 k .  Each subcode has a generator matrix 
equal to a row g i ,  of G, 0 5 i < k .  However, there are known construction techniques 
that allow decomposition of codes into subcodes of larger dimension and  known minimum 
distances. This is the topic of the next section. 

The ) U ~ U  + v)-construction and  related  techniques 

Combining time-sharing and direct-sum gives interesting construction methods. The first  one 
is the 1u1u + vl-construction [Plo], defined as follows. Based  on  two codes, C1 and CZ, of 
lengthn = nl = n2,the Iulu+vl-constructiongivesacode*C = IC1IC1+C2I withgenerator A 

matrix 
(6.15) 

~ 

If the lengths are not equal, say, 7~1 > 712, then append T L Z  - nl zeros to the end of codewords of code 
c2. 
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The parameters of C are (2n; IC1 + kz d) .  That the minimum distance of C is 
d = min(2dl dz} can be  proven by noticing that for two  binary vectors 5 and 1, 
wt(5  + y) 5 wt(5) - wt(y). 

The lulu + v(-construction allows to express RM codes in a convenient way: 

Reed-Muller  codes 

RM(r + l ; m  + 1) = IRM(r + l;rn)lRM(r + 1;rn) + RM(r;m)l. (6.16) 

This interpretation of RM codes has  been  used  to develop efficient soft-decision decoding 
methods taking advantage of the “recursive” structure of this class of codes (see [For6, SB] 
and references therein). In Section 6.2.4, this construction will  be  shown  to  be a particular 
case of a more powerful combining technique. The IuIu + v)-construction is also  called  the 
squaring  construction in  [For6]. 

Example 76 Let C1 be RM(1; 2), an SPC (4,3,2) code, and C2 be RM(0; a), the repetition 
(4; 1:4) code. Then C = IC1JC1 + CZ) is RM(1;3), an extended Hamming (8:4:4) code 
with generator matrix 

1 0 0 1 1 0 0 1  
0 1 0 1 0 1 0 1  

0 0 0 0 1 1 1 1  

G =  ( 
Construction X 

This is a generalization of the lulu + v)-construction [Slo]. Let Ci denote a linear block 
(ni; ki, d i )  code, for i = 1; 2: 3. Assume that C3 is a subcode of C2, so that 723 = nz, IC3 5 kz 
and d3 2 dz . Assume also that  the dimension of Cl is ICl = kz - IC3. Let ( G; G$ ) and 
G3 be the generator matrices of code CZ 3 C, and subcode C3, respectively.  Note  that G2 is 
a set of coset  representatives of C3 in C2 [For6]. Then the code CX with generator matrix 

(6.17) 

is a linear block (nl + 122; kl + IC2; d x )  code with d, = min(d3; dl + 4 ) .  

Example 77 Let C1 be  a single-parity check (SPC) (3; 2; 2) code, and CZ be an SPC (4; 3; 2) 
code whose subcode is C3, a repetition (4: l; 4) code. Then 

1 0 1  1 0 0 1  
1 (::)=(o 1 1 1 1  1 0 l ) ;  

and G3 = ( 1 1 1 l ). Construction X results in code CX = 1 Cl JCz + C, 1 with generator 
matrix 

l 0 1 1 0 0 1  

0 0 0 1 1 1 1  
and is a maximum-length-sequence (7; 3: 4) code. This code is equivalent to  the code obtained 
from the Hamming (7; 4: 3) code by expurgating one message symbol, as in Example 73. 
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Construction X3 

Extending further the idea of using coset representatives of subcodes in a code, this 
method combines three codes, one of them with  two levels of coset  decomposition 
into subcodes, as follows [Slo]. Let C3 be a linear block (n1 k3; d3) code, where 
k3 = k2 + a23 = kl + a12 + ~ 2 3 .  C3 is the union of 2a23 disjoint cosets of a linear block 
(nl , k2, d2) code, C2, with k:! = kl + u12. In turn, C2 is the union of 2a12 disjoint cosets of a 
linear block (nl ,  kl d l )  code, C l .  Then each codeword in C3 can be  written  as 5i+jji+V, with 
V E Cl,  where Zi is a coset representative of C2 in C3 and y i  is  a coset representative of Cl 
in C,. Let C4 and C5 be  two linear block (n4; u33, d4) and (n5 u12, d5) codes, respectively. 
The linear block (nl + n4 + 725, k3, d ~ 3 )  code Cx3 is defined  as 

and has a minimum distance dx3 = min {d l  d2 + d4, d3 + d5) . A generator matrix of (3x3 

is 

where ( G1 ), ( G: G: )T and ( G: G$  G: )T are the generator matrices of codes Cl, 
C, and C,, respectively. 

Example 78 Let Cl,  C2 and C3 be (64,30,14),  (64,36,  12) and (64,39; 10) extended BCH 
codes, respectively, and let C4 and C5 be (7;  6.2) and (7;  3,4) SPC and maximum-length 
codes, respectively. Construction X3 results in a  (78:  39, 14) code. This code has higher rate 
(four more information bits) than a shortened (78: 35,14) code obtained from the extended 
BCH (128,85,14) code. 

Generalizations of constructions X and X3 and good families of codes are presented 
in [Slo, MS, Kasl, Sug, FL31. The application of these techniques to construct LUEP codes 
was considered in [Van, MH]. 

6.2.3 Products of codes 

In this section, the important method of code combination known as product, is presented. 
The simplest method to combine codes is serially. That is, the output of a first encoder is 
taken as the input of a second encoder, and so on. This is illustrated for two encoders, in 
Figure 53. This is a straightforward method to form of a product code. Although simple, this 
direct  product method produces very good codes. Very low-rate convolutional codes can  be 
constructed by taking products of binary convolutional codes and block repetition codes. 

Example 79 Consider the standard memory-6 rate- 1/2 convolutional encoder with generators 
(171, 133) and minimum distance d f  = 10, connected in series with time-sharing of repetition 
(2: 1: 2) and (3: 1, 3) codes, namely 1(2: 1, 2)\(2; 1; 2)1 and l(3; 1, 3)1(3, 1; 3)l. In other words, 
every coded bit is repeated two or three times, respectively. 

These schemes produce a memory-6 rate-114 code and a memory-6 rate-1/6 code, with 
generators (171; 171,133,133) and (171; 171: 171;  133,133,133),  anddf = 20anddf = 30, 
respectively. These codes are optimal [Dho] in the sense that  they  have the largest free distance 



110 THE ART OF ERROR  CORRECTING  CODING 

Figure 53 Block  diagram of an encoder of a product  code. 

0 1 2  k , - l  n ,  -1 

0 
1 
2 

horizontal  checks 
B vertical  checks 
m checks-on-checks 

Figure 54 Codeword of a two-dimensional  product  code. 

for a  given number of states. This seems  to be the  first  time  that  they  have  been  expressed  in 
terms of these  generators. 

However,  except for the  case  of  two encoders where  the  second encoder is  the  time-sharing 
of  repetition  codes,  important questions arise  when  considering  a serial connection3  between 
two  encoders:  How should the output of the  first encoder be fed  into  the second encoder? In 
what follows,  let C1 denote the outer  code and C2 denote the inner  code. Either C1 or C2 

or both can be  convolutional or block  codes.  If G1 and G2 are  the  generator  matrices  of  the 
component codes, then  the  generator  matrix of the  product code is the  Kronecker  product, 

In 1954, Elias [Elil] introduced product or iterated  codes. The main  idea is as  follows. 
Assume that  both C1 and C2 are  systematic. The codewords of  the  inner code C1 are  arranged 
as rows of  a  rectangular  array  with 721 columns, one per code symbol  in  a  codeword  of 
C,. After k2 rows  have  been  filled,  the  remaining 722 - IC2 rows  are  filled  with  redundant 
symbols produced, on a column-by-column basis,  by  the outer code C,. The resulting 722 x n1 

rectangular  array is a  codeword  of  the product  code Cp = C1 @ C,. Figure 54 depicts  the 
structure of a  codeword  of  a  two-dimensional product code. Extension to higher  dimensions 
is straightforward. 

G = G1 @ G2. 

A 

This is also known as serial concatenation. However, in this chapter the term concarenafion is  used with a 
different  meaning. 
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interleaver 
Block 

~~ ~ ... .~ 

n 0 Encoder C, 
n2 codewords 
of length n l 

k, codewords n I messages 
of length n l of length k, 

Figure 55 A two-dimensional  product  encoder  with a block interleaver. 

j=O j=1 j=2 j=3 j=4 

i=o 

i= 1 

Figure 56 A 2-by-5  block  interleaver. 

The array codewords are transmitted on a column-by-column basis. With reference to the 
initial description of a product code, Figure 53, Elias two-dimensional product codes can be 
interpreted as connecting the two encoders serially, with  an interleaver in between. This is 
shown schematically in Figure 55. 

As defined by Ramsey  [Ram],  an interleaver is a device that rearranges the ordering 
of a sequence of symbols in some one-to-one deterministic manner. For the product of 
linear block codes, naturally, the device is known as a block interleaver. The interleaver 
describes a mapping mb(i,j) between the elements ai,j in a IC2 x n1 array, formed by 
placing IC2 codewords of C1 as rows, and the elements u ~ ~ ( ~ , ~ )  of  an information vector 

The one-to-one and onto mapping induced by a m1 x 7132 block interleaver can also be 
expressed as apermutation Il : i e ~ ( i ) ,  acting on the set of integers modulo 71317722. Writing 
the array as a one-dimensional vector, ii, by time-sharing of (in that order) the  first  to  the ml- 
th  row of the array, 

U. = ( U 0  U1 . . .  un*nz-l ). 

U = ( U O  UI . . .  u m 1 m z - 1 ) ,  

the output of the block interleaver is read, via H, as 

where 
i 

m1 
~ ( i )  = m2(i mod ml) + 1--J (6.19) 

Example 80 Let Cl and C, be linear block SPC (5,4,2) and (3,2,2) codes, respectively. 
This results in a (15,8,4) product code with the block interleaver shown  in Figure 56. The 
permutation is given by 

~ ( i )  = 5(i  mod 2) + 1-1, 
and the vector ii = ( U O ,  211, u2, us,. . . , u g )  is mapped onto 

i 
2 
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0 1 2 3 4  

5 6 7 8 9  

10 1 2 3 4 ' 5  6 7 8 91 

1 0 5 1 6 2 7 3 8 4 9 1  

Figure  58 Mapping mb(i, j )  of a  3-by-5 block interleaver. 

This is illustrated in Figure 57. The sub-vectors U i  = (21&+5 ), 0 5 i < 5, constitute 
information vectors to be encoded by Cl. Traditionally, codewords are interpreted as two- 
dimensional arrays, 

where the rows (at,-,  at,^ . . . ae,4 ) E Cl, for C = 0,1,2,  and the columns 
( ao,! a1,t ~ 2 , e  ) E Cz! for C = 0,1, . . .4.  The underlying ordering is depicted in Figure 58. 
The one-dimensional notation gives the same vector, 

Example 81 Let Cl and C2 be  two binary SPC (3 ,2,2)  codes. Then Cp is a (9 ,4,4)  code. 
Although this code has one more redundant bit  than  an extended Hamming code (or the 
RM( 1,3) code), it can correct errors very easily by simply checking the overall parity of the 
received  rows and columns. Let the all-zero codeword  be transmitted over a BSC channel and 
suppose that the received codeword is 

F =  1 0 0 .  (1 1) 
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i=O 

10  1. 7 ; ' l3  4. i=l 

0 .  6 12 3 ,, 9 

': 5 11 2 8 14 i=2 
'\ .. '\ \ 

Figure 59 Cyclic  mapping m, for n1 = 5 , 7 2 2  = 3. 

Recall that the syndrome of a binary SPC (n,  n - 1 , 2 )  code is simply the sum of the n bits. 
The second row and the first column will  have nonzero syndromes, indicating the presence of 
an odd number of errors. Moreover, since the other columns and  rows  have syndromes equal 
to zero, it is concluded correctly that a single error must  have occurred in the first bit of the 
second row (or the second bit  of the first column). Decoding finishes upon complementing the 
bit  in the located error position. 

The code in Example 81 above is  a member of a family of codes known as array  codes 
(see, e.g., [Kas2, BL]). Being product codes, array codes are able to correct bursts of errors, 
in addition to single errors. Array codes have  nice trellis structures [HMI, and are related  to 
generalized  concatenated (GC) codes [HMF], which are the topic of Section 6.2.4. 

Let Ci be a linear block (ni, ki, d i )  code, i = 1,2. Then the product Cp = C1 63 C2 is a 
linear block (nl n2, ICl IQ, d p )  code, where d p  = dl d2. In addition, Cp can correct all bursts 
of errors of length up  to b = max(nlt2, nztl}, where ti = L(di - 1)/2], for i = 1,2. The 
parameter b is called the burst error  correcting crzpability. 

Example 82 Let Cl and C2 be  two Hamming (7 ,4,3)  codes. Then Cp is a (49,16,9) code 
that is capable of correcting up  to 4 random errors and bursts of up  to 7 errors. 

If the component codes are cyclic, then the product code is cyclic [BW]. More precisely, 
let Ci be a cyclic (ni, Ici, d i )  code with generator polynomial si(.), i = 1,2. Then the code 
Cp = C1 63 C2 is cyclic if the following conditions are satisfied: 

1. The lengths of the codes Ci are relatively prime, i.e., an1 + bn2 = 1, for two integers 
a and b; 

2. The cyclic  mapping mc(i, j )  that relates the element a i j  in  the rectangular array of 
Figure 54 with a coefficient t ~ ~ ~ ( ~ , ~ )  of a code polynomial 'U(.) = ZIO + 01 + . . . + 
tIn,,,-1.n1n2--l E Cp, is such that 

mc(i, j)  = [ ( j  - i) . bnl + i] mod n l n ~ ,  (6.20) 

form,(i , j)  = 0,1r . . . ,n ln2 - 1. 
When these two conditions are satisfied, the generator polynomial of the cyclic code 
Cp is given by 

g(.) = GCD ( g l ( ~ ~ ~ ~ ) g ~ ( 5 ~ ~ ~ ) , 2 ~ ~ ~ ~  + 1 ) .  (6.21) 
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Figure 60 Codeword of an block interleaved  code of degree I = nz. 

Example 83 An example of the cyclic mapping for n1 = 5 and 722 = 3 is shown in Figure 59. 
In this case, (-1)5 + (2)3 = 1, so that a = -1 and b = 2. Consequently, the mapping is given 

mc(i, j)  = (6 j  - 5i)  mod 15. 

As a check, if i = l and j = 2,  then mc( l ,  2 )  = (12 - 5)  mod 15 = 7;  if i = 2 and j = 1, 
then mc(2, 1) = (6 - 10)  mod 15 = -4 mod 15 = 11. 

by 

The mapping mc(i , j )  indicates the order in which the digits of the array are 
transmitted [BW]. This is not the same as the column-by-column order of the block interleaver 
for  a conventional product code. The mapping described by (6.20) is referred to  as a cyclic 
interleaver. Other classes of interleavers are discussed in Section 6.2.4. 

With the appearance of turbo codes [BGT] in 1993, there has  been intense research  activity 
in novel interleaver structures that perform a pseudo-random arrangement of the codewords of 
Cl ,  prior to encoding with C,. In the next section, interleaved codes are presented. Chapter 8 
discusses classes of interleaver structures that are useful in iterative decoding techniques of 
product codes. 

Block  interleaved  codes 

A special case of product code is obtained when  the  second encoder is the  trivial (n2,122,1) 

code. In this case, codewords of C1 are arranged as rows of an na-by-nl rectangular array  and 
transmitted column-wise, just as in a conventional product code. The value I = 722 is known 
as the interleaving  degree [LC] or interleaving depth. 

The resulting block interleaved code, henceforth denoted as can  be decoded using 
the same decoding algorithm of Cl, after reassembling a received word, column-by-column 
and decoding it row-by-row. Figure 60 shows the schematic of a codeword of  an interleaved 
code, where ( W ~ , O  W ~ , J  . . . ) E Cl, for  0 5 i < 722. 

If the error correcting capability of C1 is tl = L(dl - 1)/2], then can correct any 
single error burst of length up  to b = tln2. This is illustrated in Figure 61. Recall  that  the 
transmission order is column by column. If a burst occurs, but  it does not affect more  than 
bl  positions per row,  then  it can be corrected by Cl. The maximum length of such a burst of 
errors is 712 times b l  . Moreover, if code C1 can already correct (or detect) any single burst of 
length up to b l ,  then C$nz) can correct (or detect) any single burst of length up  to bln2. 

If C1 is a cyclic code, then it follows from (6.21) that is a cyclic code with generator 
polynomial gl(znz)  [PW, LC]. This applies to shortened cyclic codes as well, and  the 
following result holds ([PW], p. 358): 
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Figure 61 A correctable  error  burst in a  block  interleaved  codeword. 

Interleaving  a  shortened  cyclic (n: IC) code  to  degree e produces  a 
shortened (ne, ke) code  whose  burst  error  correcting  capability is e times 
that of the original code. 

Finally, note that the error correcting capability of a product code, t p  = L(dld2 - 1)/2], 
can only be achieved if a carefully designed decoding method is applied. 

Most of the decoding methods for product codes use a two-stage  decoding approach. In 
the first stage, an errors-only algebraic decoder for the row code C1 is used. Then reliability 
weights are assigned to the decoded symbols, based on the number of errors corrected. The 
more errors are corrected, the less reliable the corresponding estimated codeword 61 E C1 is. 

In the second stage, an errors-and-erasures algebraic decoder for the column code C, is 
used, with an increasing number of erasures declared in the least reliable positions (those 
positions for which the reliability weights are the smallest), until a sufficient condition on the 
number of corrected errors is satisfied. This is the approach originally proposed in [RR, Well. 
The second decoding stage is usually implemented with the GMD algorithm, which is 
discussed in Section 1.6. More on decoding of product codes can be found in Chapter 8. 

6.2.4 Concatenated  codes 

In 1966, Forney [Forl] introduced a clever method of combining two codes, called 
concatenation. The scheme is illustrated in Figure 62. Concatenated codes4 that are based 
on outer Reed-Solomon codes and inner convolutional codes have been to date’ perhaps the 
most popular choice of ECC schemes for digital communications. In general, the outer code, 
denoted Cl, is a nonbinary linear block ( N ,  K:  D) code over GF(2’). The codewords of 
C1 are stored in  an interleaver memory. The output bytes read from the interleaver are then 
passed through an encoder for an inner code, C2. The inner code C2 can be either a block 
code or  a convolutional code. When block codes are considered, and C2 is a binary linear 
block (n: IC, d )  code, the encoder structure is shown  in Figure 62. Let C = C1 * C2 denote 
the concatenated code with C1 as the outer code and C2 as the inner code. Then C is a binary 
linear block ( N n ,  Klc, Dd) code. 

The purpose of the interleaver between the outer and the inner code is two-fold. First, it 
serves to convert the bytes of size IC into vectors of the same dimension (number of information 
bits) as the inner code, be it binary or nonbinary, a linear block (n; IC’: d )  code or  a rate- 

Also referred to by some authors as cascaded codes. 
Before the arrival of turbo codes and LDPC codes. 
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Figure 62 An encoder of a  concatenated  code. 
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Figure 63 A  convolutional  interleaver. 

k'ln convolutional code, for which in general k' # k. On the other hand, as discussed in 
the previous section, interleaving allows breaking of bursts of errors. This is useful  when 
concatenated schemes with inner convolutional codes are considered, because the Viterbi 
decoder tends to produce bursts of errors [CY, Mor]. There are several types of interleavers 
that are used in practice. The most popular appears to  be  the convolutional interleaver [ForS], 
which is  a special case of a Ramsey interleaver [Ram]. The basic structure of a convolutional 
interleaver is shown in Figure 63. The deinterleaver structure is identical, with  the exception 
that the switches are initially in position M and rotate in the opposite direction. 

An important advantage of concatenated codes (and product codes) is that decoding can 
be based on  the decoding of each component code. This results in a dramatic reduction in 
complexity, compared to a decoder for the entire code. 

Example 84 Let Cl be a (7: 5 :  3) RS code6 with zeros (1; a} ,  where a is a primitive 
element of G17(2~), and cy3 + a + 1 = 0. Let C2 be  the maximum-length-sequence (7: 3: 4) 
code of Example 77. Then C = C1 * C2 is  a binary linear block (49: 15,12) code. 
This code has six information bits less than a shortened (49: 21,12) code obtained 
from the extended BCH (64,36;  12) code. However, it is simpler to decode. Let 
V ( x )  = (x4 + a4)9(x)  = a5 + x + a4x2 + ax4 + a3x5 + x6 be a codeword in the  RS 
(7: 5:  3) code, where g(x) = x2 + a3x + a. 

RS codes are the topic of Chapter 4. 
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a5 1 a4 0 a a3 1 

1 0 1 0 0 0 0  

1 0 1 0 1 1 0  

1 1 0 0 0 1 1  

0 1 1 0 0 1 1  

0 1 1 0 1 0 1  

0 0 0 0 1 1 0  

1 1 0 0 1 0 1  

Figure 64 A codeword in the  concatenated  code C1 * C2, with C1 the RS(7,5,3) code  over 
GF(L?~)  and C2 a  binary  cyclic (7,3,4) code. 

Using the table on page 41, the elements of GF(23) can be expressed as vectors of 3 
bits. A 3-by-7 array whose columns are the binary vector representations of the coefficients 
of the code polynomial a(z) is obtained. Then encoding by the generator polynomial of C, 
is applied to the columns to produce 4 additional rows of the codeword array. For clarity, 
the following systematic form of  the generator matrix  of C2 is used,  which is obtained after 
exchanging the third and sixth columns of G in Example 77, 

1 0 0 1 0 1 1  

( 0 0 1 1 1 0 1  1 G’=  0 1 0 0 1 1 1 .  

Figure 64 shows the codeword array corresponding to V E Cl. 

6.2.5 Generalized  concatenated  codes 

In 1974, B l o b  and Zyablov [BZ] and  Zinov’ev [Zin] introduced the powerful class of 
generalized concatenated (GC) codes. This is a family of error correcting codes that  can 
correct both random errors and random bursts of errors. As the name implies, GC codes 
generalize Forney’s concept of concatenated codes, by the introduction of a subcode hierarchy 
(or subcode partition) of the inner code Cl and several outer codes, one for each partition 
level. The GC construction combines the concepts of direct-sum, or coset decomposition, and 
concatenation. Before defining the codes, some notation is needed. 

A linear block (n; IC, d)  code C is said to be decomposable with respect to its linear block 
(n; ki;  d i )  subcodes Ci, 1 5 i 5 M ,  if the following conditions are satisfied: 

( S ~ ~ ) C = C ~ + C Z + - . . + C , ~ ~ ;  

( D ) F o r . E i i E C i , l I i I M , v l + V 2 + . . . + V ~ = O i f a n d o n l y i f 4 = V 2 = . . . =  - 

a,q4 = 0. 

For 1 5 i 5 M ,  let C I ~  be a linear block ( n ~  ICli) code over GF(q)  such that 

( D I ) f o r 2 1 i E C l i w i t h l I i < M , 2 1 l + 2 1 2 + . . . + 2 1 l M = O , i f a n d o n l y i f 2 1 i = O  
f o r l < i < M .  



118 THE ART OF ERROR  CORRECTING  CODING 

Let Si denote the minimum Hamming distance of the direct-sum code C I ~ + C I ~ + ~ + .  . .+CIM. 
Let Coi be a linear block (no; koi: doi) code over GF(q"'") and let C: = Coi * CIi. The 
generalized concatenated code C is defined as the direct-sum 

A C=Cy-+C,*+. . .+C& . (6.22) 

Then, the condition (D) on C follows from the condition (DI). The minimum Hamming 
distance d of C is lower bounded [TYFKL] as 

(6.23) 

As  with (single level) concatenated codes, a main advantage of  GC codes is that  multi- 
stage decoding up to the distance given by the right-hand side of (6.23) is possible [TYFKL, 
MFKL] . 

Unequal  error  protection 
Another advantage of this class of codes is that  it  is relatively easy to coordinate the distances 
of the outer and inner codes to obtain linear block or convolutional codes with unequal error 
protection (UEP) capabilities. If the direct-sum conditions above are satisfied, and  in addition 
the products of the minimum distances satisfy the following inequalities, 

&dol 2 S2d02 2 . . .  2 S M d o M ;  (6.24) 

then codewords in correspondence with k o i k ~ i  symbols over GF(q)  will  have  an error 
correcting capability, [(Sidoi - 1)/2], that decreases with the level i ,  for 1 5 i 5 M .  As 
a result, the messages encoded in the top (low  values of i )  partition levels will  have enhanced 
error correcting capabilities, compared to those associated with the lowest  partition levels. 
Constructions of this type are reported in [DYS,  MH]. 

A construction 
Let a linear block (721, k1, d l )  code C1 over GF(q) be partitioned into a chain of M 
( n I ,  k i ,  d i )  subcodes Ci, i = 2; 3; . . . M + 1, such  that 

Cl 3 c2 3 . . .  3 CM+1; 

where, for convenience, C M + ~  = {O}, and dM+l = m. 
Let C I ~  = [Ci/Ci+l] denote a linear block ( n ~ ;  k ~ i ;  S i )  subcode of Ci, which is a set of 

coset  representatives of Ci+1 in Ci, of dimension k ~ i  = ki - ki+l and minimum Hamming 
distance Si 2 di .  Then C1 has the following coset  decomposition [For61 

A A 

Cl = Cl1 + Cl2 + . ' . + CIM. (6 .25)  

Let Coi denote a linear block (no, koi dei) code Coi over GF(qk1< ), where 
k ~ i  = dim(Ci/Ci+l) = ki - ki+l, i = 1; 2 ; .  . . M .  Then the direct sum of concatenated 
codes 

c=CO,*CI l+Co2*CI2+" ' fCOM*CIM.  

is an   non^; k i d )  linear block code of dimension and  minimum Hamming distance, 
respectively [BZ], 

M 

k = c k ~ i k o i ;  and d 2 min {S idoi} .  (6.26) 
l<i<M i=l 
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Figure 65 Encoder  structure of a generalized  concatenated  code with M partition  levels. 

Note that equality holds in (6.26) when Cri, 1 5 i 5 M ,  contains the all-zero codeword. 
As for the choice of component codes. Note  that, since in general the dimensions of the 

coset representatives are distinct, the outer codes can be selected as RS codes or shortened RS 
codes. 

Binary RM codes are good candidates as inner codes, because they  have the following 
subcode property, 

RM(r, m) C RM(r + 1,  m), 

for 0 5 T < m, and m > 2. 

Example 85 Consider the r-th order RM codes of length 8, RM(r, 3). Then 

RM(3,3) 3 RM(2,3) 3 RM(1,3) 3 RM(O,3) 3 {O}, 

and it follows from (6.25) that 

This decomposition can  be also appreciated from the generator matrix of RM(3,3), expressed 
as 

0 

0 
0 
0 

0 
0 
0 

- - 

1 \ l  

0 

0 
0 
0 

0 
0 
1 

1 

0 0  

0 0  
0 0  
0 1  

0 0  
l 1  
0 1  

1 1  

0 

0 
0 
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1 
0 
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0 
1 
0 

1 
0 
1 

1 

0 

l 
0 
0 

1 
l 
0 

1 

1 

1 
1 
1 

1 
l 
1 

> 

1 1  

where Gi has been  defined as the generator matrix  of  the set of coset representatives of 
RM(3 - i, 3) in RM(3 - i + 1,3),  or [RM(3 - i + 1,  m)/RM(3 - i, m)], for i = 1,2,3,  
and where G4 is the generator matrix of RM(0,3). 
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According to this partition of RM(3,3), a GC code can be designed with up to four levels. 
Note that the outer codes should be over GF(2),  for the first  and fourth partition levels, and 
over GF(23) for the second and  third partition levels. 

Also, some of the subcodes of RM(3,3) themselves can  be  used as inner codes to  obtain a 
GC code with a reduced number of levels. If RM(2,3) is used  as the inner code of a GC code, 
then the number of partition levels is three, as the generator matrix of RM(2,3) is obtained 
from that of RM(3,3) by removing G1 (the top row). 

Let RM(2,3) be selected as the inner code, and  an  RS (8,1,8) code Col over G F p 3 ) ,  an 
RS (8,5,4) code C02 over GF(23), and a binary linear SPC (8,7,2) code C03 be  selected  as 
outer codes. This gives a binary linear GC (64,25,16) code which  has one more information 
bit  than  the binary extended BCH (64,24,16) code. 

It is now  shown  how Reed-Muller codes can be expressed as GC codes. Recall from 
Section 6.2.2, Equation (6.16) on page 108, that the (T + l)-th order RM code of length 2m+1 
can be expressed as RM(T + 1 , m  + 1) = IRM(T + l ,m)JRM(T + 1, m) + RM(r, m)[.  Let 
G(T, m) denote the generator matrix of RM(r, m). Then 

G(. + 1,m + l) = (G(.  +Ol,m)  G(T + 1,m)  
G(r,  m) 

= G ( r + l , m )  (i 2) + G ( T , ~ )  (,, (6.27) 
0 0  

Encoder 
1 - 1 1  

- 
RM(r,m) 

0 - 00 
L 

- i -  
Encoder 

1-01 
- 

M ( r +  1 ,m) 
0 - 00 

Figure 66 An  encoder  for  the binary R M ( r  + 1, m + 1) code  when  viewed as a two-level 
GC code. 

This expression holds for each r-th order RM code, with r 2 l and m > 1, so that a 
recursion is obtained. From (6.27) it follows that RM(T + 1, m + 1) is a GC code with inner 
codes the (2,2,1) code and its partition into cosets of the repetition (2 ,1 ,2 )  code, and outer 
codes RM(T, m) and RM(T + 1, m), respectively. An encoder for RM(T + 1, m + 1) is shown 
in Figure 66. This recursive structure of RM codes is advantageous when designing soft- 
decision decoding algorithms for RM codes7, which  can  be  based  on simple repetition  and 
parity-check codes. This is precisely what  was done in [SB]. 

~~ 

Soft-decision  decoding is presented  in  Chapter 7. 
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Soft-decision decoding 

In this chapter, decoding with soft information from the channel is considered. For simplicity 
of exposition, binary transmission over an AWGN channel is assumed. In Chapter 9, the 
general case of multilevel transmission is discussed. To provide a motivation for the use 
of soft decision decoding, it can be argued that the noise environment in data retrieval or 
signal reception is continuous in nature, not discrete. This means that  the  received symbols 
are (quantized) real numbers (voltages, currents, etc.), and not binary or GF(2m) symbols. 

When making hard decisions on the received symbols, on a symbol-by-symbol basis, errors 
may be introduced. This is illustrated in Figure 67. 

Binary 
sequence 

Real 
sequence 

Binary 
sequence 

Figure 67 Example of an  error  introduced by hard-decision  decoding. 

Basically, there are two methods of decoding an error correcting code, based on a received 
real-valued sequence: 

Hard-decision decoding (HDD): 
When  hard decisions are made on the channel values, errors are introduced. The 
goal of HDD is to correct binary errors induced in the hard-decision process. The 
first part of the book was devoted to different techniques of HDD for linear block 
codes, cyclic codes and convolutional codes. 
Soft-decision  decoding (SDD): 
In this case, received values from the channel are directly processed by the decoder 
in order to estimate a code sequence. A special case of SDD is maximum-likelihood 
decoding (MLD), in which case the most-likely code sequence is output by the 
decoder. An important point to keep in mind here is that SDD needs to know the 
statistics of the channel noise. 

In general, SSD is computationally more intensive than HDD. There are two  main reasons 
for this. One is that SDD needs to operate on real numbers. In a practical application, these 
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Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
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numbers will be quantized to a finite number of bits. In  some binary transmission systems over 
an AWGN channel, it is  known  that 8 quantization levels, or 3 bits, are adequate to achieve 
practically the same performance as with unquantized channel values [Mas3, OCC]. 

The second reason for the increased complexity in SDD is that the a-posteriori statistics of 
the coded symbols, given the received values, need to be computed. However,  in  return for the 
increase in implementation cost there is potentially much better performance to  be attained. 
As  shown in Chapter 1,  with binary transmission over an  AWGN channel, to get the same 
error performance, SDD requires 2 to 3 dB less signal-to-noise power ratio than  HDD. This 
is to  say that, with SDD, the transmitted power can be 50% to 63% lower compared to  HDD 
which translates into smaller transmit antennas or, alternatively, smaller receive antennas for 
the same transmission power. 

7.1 Binary transmission over AWGN channels 

For AWGN channels, the a-posteriori probability of the  received  values, ri, given  that code 
symbols wi are sent, is given by 

As  shown in Chapters 1 and 5, the MLD metrics become the squared Euclidean distances, 
D2 (r i?m(vi))  = ( ~ i  - m ( ~ i ) ) ~ .  Let E denote the energy of a transmitted symbol. The 
mapping rule or modulation employed is BPSK', 

which can be expressed as m(vi) = (-l)'% G. With  BPSK transmission over an  AWGN 
channel, decoding metrics for binary transmission can be  simplified by noticing that if vi = 1 
is transmitted then 

Taking the natural logarithm and removing constant terms, it follows that the log-likelihood 
metric -(r+l)' is proportional to - r .  If vi = 0 then  the metric is proportional to T .  Therefore, 
the following is important to note: 

With  binary  transmission  over an AWGN channel,  metric  computation is reduced to changing 
the signs of the received values. 

7.2 Viterbi algorithm with  Euclidean  metric 

The VD can be  used  to decode convolutionally coded binary data, BPSK modulated, and 
transmitted over an AWGN channel. With respect to the hard-decision VD algorithm, studied 
in Section 5.4, two changes are required: 

Binary phase-shift keying. 
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1. Branch-metric generator (BMG) stage 
For an AWGN channel, as shown  in the previous section, the metric is proportional 
to the correlation between the received and the candidate code sequence. Therefore, 
instead of Euclidean distances, correlation metrics can be used. 

Instead of minimizing the distance, the VD seeks to maximize the correlation metric. 
2. Add-compare-select (ACS) stage: 

Example  86 Consider a memory-2 rate-1/2 convolutional encoder with generators (7,5). 
Suppose that the information sequence is ti = (110100). The corresponding path is shown in 
Figure 68. 

11  01 01 00 10 11 

Figure 68 A path in the trellis  corresponding to U. = (110100). 

The transmitted sequence (normalized with respect to a) is 

t(v) = (-1, -1,1, -1, l, -1,1,1, -1,1, -1, -1). 

Let the received sequence, after transmission over an  AWGN channel and quantization to 3 
bits, be: 

r = (-4, -1,  -1, -3, +2, -3, +3, +3, -3, +3, -3, + l ) .  

Ff€ = (11,~1,01,00,10,  m), 
Note that the hard-decision received sequence (given  by the sign bits) is: 

so that the hard-decision detection process introduces two bit errors. The operation of the 
Viterbi decoder is illustrated in Figures 69 to 74. The evolution of the metric values  with 
respect to the decoding stages is shown in the following table: 

State/Stage i = O  i = l  i = 2  i = 3  i = 4  i = 5  i = 6  

SjO’ 0 +5 +7 +6 +l2  +l4 +26 

S p  0 +3 +5 +l2 +l4  +24 +l8 

$1 0 +5 +9 +8 +l8 +l4  +22 

$3) 0 +3 +7 +l4 +l4  +20 +24 

The decoded information sequence is ii = ( 1 l 0 1 0 0 ), and  two errors have  been 
corrected. 

All the implementation issues related to  Viterbi decoding, discussed in Sections 5.4.3 
and 5.5.1, apply in the case of soft-decision. In particular, metric normalization must  be 
carefully taken into account. 
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Transmitted - I  - l  + I   - I  + l  -1  +l  + I  -1  + l  -1 - l  

Received -4 - I  -1  -3 +2 -3 +3 c3 -3 +3 -3 + I  

i = O  

i =  1: 1 = change sign 

Branch metric computation: 
IO) 

B M ,  =d(00 ,4 -1  ) = - 5  BM,  =d(01,-4-1 ) = - 3  
121 

BMI =d(10;4-1 ) = + 3  BMI  =d(11;4-1 ) = + 5  
13) 

(01 

Compare 
= +5. select branch from state I Select 

Update metric M(S I ) = +5 Update  path y - ( 1  1) 
(01 (0, 

Figure 69 Soft-decision  Viterbi  decoder  operation  at i = 1. 

Transmitted -1 -1 +l -1  + l  - 1  + l  + l  - 1  +l -1   -1  

Received 4 - 1  -1 -3 +2 -3 +3  +3 -3 +3 -3 + l  

i = 2: 

Figure 70 Soft-decision  Viterbi  decoder  operation  at i = 2. 
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Transmitted -1   -1  + l  -1 + l  -1  +l +l -1 + l  -1  -1 

Received -4 -1 -1 -3 +2 -3 +3 +3 -3 +3 -3 +l 

i = 3: 

-4 -1  -1  -3 +7 +2-3 

Figure 71 Soft-decision  Viterbi  decoder  operation  at i = 3. 

Transmitted -1  -1  +l -1  +l -1  +l +l -1 +l -1 -1  

Received 4 -1 -1 -3 +2 -3 +3 +3 -3 +3 -3 +l 

i = 4 :  

-4 -1  -1 -3 +2-3 +6 +3+3 

y 4= (10.1 1,00,00) 

y 4=( l l , l l ,o l ,o l )  

y 4 =  (11,01,01.00) 

y ~ = ~ l l , l l , o l , l o )  

(0) 

(1) 

(2) 

(3) 

Figure 72 Soft-decision  Viterbi  decoder  operation  at i = 4. 
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Transmitted -1  -1 + l  -1 + l  -1 + l  +l -1 + l  -1 - 1  

Received -4 -1 -1 -3 +2 -3 +3 +3 -3 +3 -3 + l  

i = 5 :  

-4 -1 -1 -3 +2 -3 +3 +3 r,, -3  +3 

y5=(11,11,01,01,11) 

y ,=(ll,Ol,Ol,00,lO) 

y  5=(11,11,01,01,00) 

y5=(11,11,O1,10,1O) 

(0) 

(1)  

(2) 

(3) 

Figure 73 Soft-decision  Viterbi  decoder  operation at i = 5 .  
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Transmitted -1  -1 + l  -1 +l -1 + l  + I  -1 + I  - I  - I  

Received -4 -1 -1 -3 +2 -3 +3 +3 -3 +3 -3 +l  

i = 6 :  

-4 -1 - I  -3 +2 -3 +3  +3 -3+3 +,4 - 3 + 1  

y ,=(11,01,01,00,10,1 

y 6=(11,11,01,01,00,11 

y ,= (11,01,01,00,10,oc 

y6=(11,11,01,10,10,1~ 

(0) 

(1) 

(2) 

(3) 

Figure 74 Soft-decision  Viterbi  decoder  operation at i = 6. 
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7.3 Decoding  binary  linear  block codes with a trellis 

The Viterbi  algorithm can also be applied to linear  block codes. A syndrome trellis for a binary 
linear ( N ;  K )  block code C can be constructed  from its parity-check  matrix as follows  [Wol]. 
Let (v1 v2 . . . ~ UN) denote a codeword  of C. At  time i, 1 5 i 5 N ,  states  in  the  trellis  are 
specified  by  the partial  syndromes: 

i 

j=1 

where  the sum is over GF(2) ,  hj is  the j-th column  of H ,  and 3; 2 (0 0 . . . 0). The 
maximum number of  states  in  the  syndrome  trellis  is min { 2 K ,  2 N - K } .  The  syndrome  trellis 
has the  property  that  it  has  the  smallest  possible number of  states. A trellis  satisfying  this 
condition  is  said  to be a minimal trellis. 

Example 87 Consider a binary  cyclic  Hamming (7; 4; 3) code  with g(z) = z3 + z + 1. Then 
h(z)  = 1 + z + x2 + z4, and a parity-check  matrix for C is 

1 1 1 0 1 0 0  i 0 0 1 1 1 0 1  1 H = 0 1 1 1 0 1 0 .  

To label a state = (so s1 s2) an  integer Ij is  assigned,  such  that 

Ij = so + 51 x 2 + S2 x 22. 

The trellis has maximum  of 8 states  (since 2n-k = 23) at  times i = 3 and i = 4, and  is  shown 
in Figure 75. 

Figure 75 Trellis-structure of a Hamming (7 ,4 ,3)  code. 

It is  interesting  to  note  that  with a syndrome trellis  there  is no need  to  label  the  branches 
with  the  coded bits. A transition  between two states  with the same  label  corresponds  to  coded 
bit 0, as seen from Equation (7.3): If  the  coded  bit  is 0, then  the sum does not  change. 
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Some observations about the trellis structure of linear block codes are the following: 
In general, the trellis of a binary cyclic code has an irregular structure. As a result, 
implementation of the Viterbi algorithm will be more intricate than  in the case of 
convolutional codes. 

For some classes of codes, such as extended2 BCH codes and Reed-Muller codes, the trellis 
can be divided into sections. This results in a more regular and symmetric trellis structure with 
many parallel subtrellises, which  may  be  used to build  very high-speed Viterbi decoders for 
block codes [LKFF, HMI. 

7.4 The  Chase algorithm 

The Chase algorithm [Cha] is a suboptimal decoding procedure that uses a set or list of most 
likely  error patterns. These error patterns are selected based on the reliability of the received 
symbols. Each error pattern is added to the hard-decision received  word  and decoded using a 
hard-decision  decoder. Each decoded codeword is scored by computing its metric with respect 
to the received (soft-decision) sequence. The codeword with the best  metric is selected as  the 
most  likely. 

Let C be a binary linear ( N ;  K ;  d )  block code, capable of correcting any combination of 
t = [ ( d  - 1)/2] or less random bit errors. Let F = (TI  7-2;. . . , T N )  be the received  word 
from the output of the channel, ri = + wi, where wi is a zero-mean Gaussian random 
variable with variance N0/2,  i = 1; 2, . . . N .  The sign bits of the received values represent 
the hard-decision received word, 

where 

sgn(x) = 0; if x 2 0; 
1; otherwise. 

The reliabilities of the received channel values, for binary transmission over an  AWGN 
channel, are the amplitudes Iril. The received symbol reliabilities are ordered with a sorting 
algorithm (e.g., quick sort). The output of the algorithm is a list of indexes I j ,  j = 1; 2; . . . ; N ,  
such that 

IT11 I I 1% I L . . . 5 ITIN I. 
In the first  round of decoding, the hard-decision received word ZO is fed into a hard-decision 
decoder. Let V0 denote the decoded codeword. Then 
received word F 

N 

the metric of V0 with respect to the 

rj i (7.5) 
j=1 

is computed and its value stored as the maximum. 
Chase classified his algorithm into three types, according to the error pattern generation. 

0 npe-I  
Test all error patterns within radius (d  - 1) from the received word. 

Extending  codes is covered in Chapter 6. 



130 THE ART OF ERROR CORRECTING CODING 

0 Type-I1 
Test the error patterns with at most [ ( d  - 1)/2] errors located outside the bits  having 
the Ld/2] lowest reliabilities. Compared to  Type-I, the performance of Chase Type- 
I1 algorithm is only slightly inferior, while at the same time having  significantly 
reduced number of test patterns. 

Test those error patterns with i ones in the i least reliable bit positions, with i odd and 
1 5 i 5 d - 1. It should be  noted that this algorithm is closely related  to the GMD 
decoding algorithm (see also [ML], p. 168). GMD decoding of RS codes is the  topic 
of Section 7.6. 

0 Type-I11 

Because of its reduced complexity and good performance, among the three types above, Chase 
algorithm Type-I1 is the most popular and described next. A flow diagram of Chase algorithm 
is shown in Figure 16. 

Chase type-I1  algorithm 

For i = 1; 2; ...: 2t - 1, an error pattern ei is added to the hard-decision received 

0 The error patterns are generated among the t least reliable positions. That is, 

0 Each Zi is input to a hard-decision decoder, producing a codeword V i ,  

0 The metric is computed according to Equation (7.5) and if maximum, codeword 6i 

word: Zi = ei 8 Zo. 

positions { I l ;  Iz: . . . I t } ,  for which reliabilities (amplitudes) are the smallest. 

i = 1; 2; ...: 2t - 1. 

stored as the most  likely. 

r Identify  the T Generate an error pattern 

least  reliable  positions =- C -  . .   . .  - . .  . e i  in the T least  reliable 
postitions 

I I I 

Stare r 
j Repeat 2' 

times 

Find  a  codeword Tiusing 
hard-decision  decoding 

Compute  the  metric 
. . . . .  - output v 

Figure 76 Flow diagram of Chase type-I1 decoding  algorithm. 

If desired, the algorithm can output a list of codewords. This is a useful feature in producing 
soft-outputs for use of the Chase algorithm in iterative decoding of block turbo codes, see 
Section 8.2.3. 
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7.5 Ordered statistics decoding 

The ordered statistics decoding (OSD) algorithm [ E l ]  is similar to the Chase algorithm 
in the sense of creating a list of error patterns and  using hard-decision decoding. However, 
unlike the algorithm in the previous section, which deals with least  reliable code  positions, 
OSD considers a list of codewords drawn from a set of (permuted) most reliable information 
positions. 

Assume that an ( N ,  K )  linear block code C, with generator matrix G and minimum 
distance d H  2 2 t  + 1, is used  with binary transmission over an AWGN channel. Let 
I? = ( c l ,  ea, . . . , C N )  denote a codeword of C, and let F = ( T I ,  T Z ,  . . . , T N )  be the received 
sequence. 

As  in the Chase algorithm above, the decoding process begins by reordering the 
components of the received sequence in decreasing order of reliability value. Let 

( ? h , y 2 > ' . . , ! / N )  

denote the resulting sequence, where Iy1 I 2 1yzl 2 . . . 2 1 1 ~ ~ 1 .  This reordering defines a 
permutation  mapping X 1  such that y = X 1  [ F ]  . 

The next step is to permute the columns of G using X 1  : 

where g; denotes the j-th column of G'. 
A most  reliable  basis is obtained in the next step of the algorithm as follows: 
Starting from the first column of G', find the first K linearly independent (LI) columns 

with the largest associated reliability values. Then, these K L1 columns are used as the first 
K columns of a new matrix G ,  maintaining their reliability order. The remaining ( N  - K )  
columns of G" are also arranged in decreasing reliability order. This process defines a second 
permutation mapping X2, such that 

G" = X2 [G'] = X2 [ X ,  [ G ] ] .  

Applying the map X2 to 9, results in the reordered received sequence: 

2 = X2 [g] = (Zl,Z2,.",Zk,Zkfl,.'.,ZN), 

with 1211 2 1221 2 . . .  2 1 ~ ~ 1 ,  and I Z k + l )  2 . . .  2 1 ~ ~ 1 .  By performing elementary row 
operations on G ' ,  a systematic form G1 can  be obtained: 

( 0 0 . ' .  1 p k , l  ..' .. p k , N - K  1. 1 0 . . .  0 p1,1 ... P 1 , N - K  
0 1 . . .  0 p 2 , J  . . .  P 2 , N - K  

G 1 = ( I k  p ) =  . . . . .  . . . .  . .  . .  

It is easy to see that the code generated by G1 is equivalent to G, in the sense that the same 
codewords are generated, with permuted code bit positions. 

The next step is to perform hard-decision  decoding based on the IC most reliable (MR) 
values of the permuted received sequence 2 .  Let Ga = (211 ,  u2, . . . , U K )  denote the result. 
Then, the corresponding codeword in C1 can be computed as 

v = CaG1 = (V0 V 1  ' . .  V K - 1  V K  . . '  UN). 
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The estimated codeword G H D  in C can be obtained from G, via the inverse  mapping 
x,'x;', as 

v H D  = X,' [X;' [G]] . (7.6) 

Based on the hard-decision-decoded codeword G, the algorithm proceeds to re-process it until 
either practically  optimum or  a predefined desired error performance is achieved. 

Order-Q  re-processing is defined as follows: 
For 1 5 i 5 l, make all possible changes of i of the k MR bits of G. 
For each change, find the corresponding codeword G' in C1 and map it onto a binary  real 

sequence z', via the mapping (0, l} e {+l, -l}. 
For each candidate codeword generated, compute the squared Euclidean distance, 

Equation (1.33) of Chapter 1, between the generated sequence 2' and the reordered received 
sequence Z .  After all the C&, (:) codewords have been generated and their distances 
compared, the algorithm outputs the codeword V* which is closest to Z. 

From G*, using the inverse map (7.6), the most likely code sequence ahL is computed. 
Re-processing can be done in a systematic manner to minimize the number of 

computations. In particular, as mentioned in Section 7.1, with binary transmission over an 
AWGN channel, there is no need to compute the Euclidean distance but rather the correlation 
between the generated codewords and the reordered received sequence. Thus the computation 
of the binary real sequence 2' is not needed. Only additions of the permuted received  values 
zi, with sign changes given  by the generated V*, are required. 

7.6 Generalized minimum distance  decoding 

In 1966, Forney [For31 introduced generalized minimum distance (GMD) decoding. The basic 
idea was  to extend the  notion of an erasure, by dividing the  received  values into reliability 
classes. The decoding strategy is similar to the Chase algorithm Type-111, with  the  use  of 
erasure  patterns. The GMD decoder works by declaring an increasing number of erasures 
within the d - 1 least reliable symbols, and testing a suficient condition for the optimality of 
the decoded word, until  the condition is satisfied or a maximum number of erasures have  been 
considered. 

Let C be a linear block ( N ,  K ,  d )  code. Assume that there is  an errors-and-erasures 
decoder that is capable of decoding any combination of e errors and S erasures within the 
capability of the code, i.e., 2e + S 5 d - 1. Such decoders were presented in Section 3.5.6 
for BCH codes and in Section 4.3.2 for RS codes. 

Let F = ( T I ,  r2, . . . , r ~ )  be the received  word from the output of the channel, 
ri = + wi, where wi is  a zero-mean Gaussian random variable with  variance N0/2,  
i = 1,2,  . . . , N .  It is assumed that F has been normalized (clipped) so that  its components 
lie in  the range [- 1, +l]. As before, the sign bits of the received values represent the hard- 
decision received word. 

As  with Chase algorithms and the OSD algorithm, the reliabilities of the received channel 
values are sorted, producing a list of indexes I j ,  j = 1 , 2 ,  . . . , N ,  such that 
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In the first round of decoding, the hard-decision received word E is fed into an errors-only 
algebraic decoder. Let 6 denote the resulting estimated codeword. The correlation metric of 6 
with respect to the received  word F 

N 

v = Z(-l)fij x T j ,  

j=1 
(7.7) 

is computed. If the following sufficient condition is satisfied 

then 6 is accepted as the most likely codeword and decoding stops. 
Otherwise, a new round of decoding is performed. This is accomplished by setting S = 2 

erasures, in positions I1 and I2, and decoding the resulting word  with  an errors-and-erasures 
decoder. The correlation metric between F and the estimated codeword 6 is computed, as in 
(7.7), and then the sufficient condition (7.8) tested. 

This GMD decoding process continues, if necessary,  every round increasing the number of 
erasures by  two, S = S + 2, until the maximum number of erasures (smax = d - 1) in  the least 
reliable positions are tried. If at the end of GMD decoding no codeword is found, the output 
can be either an indication of a decoding failure or the hard-decision decoded codeword 60 
obtained with S = 0. 

7.6.1 Suficient conditions for optimality 

The condition used  in GMD decoding can be improved and applied to other decoding 
algorithms that output lists of codewords, such as Chase and OSD. These algorithms are 
instances of list decoding algorithms. The acceptance criteria (7.8) is too restrictive, resulting 
in  many codewords rejected, possibly including the most likely (i.e., selected by true 
MLD) codeword. Improved sufficient conditions on the optimality of a codeword have been 
proposed. Without proofs, two  such conditions are listed below. Before their description, some 
definitions are needed. 

Let f represent a BPSK modulated codeword, f = m ( 6 ) ,  where 6 E C and zi = (-l)ui, 
for 1 5 i 5 N .  See also (7.2). Let S,  = {i : sgn(zi) # sgn(ri)} be the set of error positions, 
U = { I j ,  j = 1,2 ,  . . . , d }  the set of least reliable positions, and T = {i : sgn(zi) = 
sgn(ri), i E U } .  Then the extended distance or correlation  discrepancy between a codeword 
6 and a received word F is defined as [TP], 

I E S .  

Improved criteria for finding an optimum codeword are based on upper bounds on (7.9) and 
by increasing the cardinality of the sets of positions tested. Two improvements to Fomey’s 
conditions are: 

0 Taipale-Pursley [TP] There exists an optimal codeword such that 

(ET 

(7.10) 
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0 Kasami  et al. [KKTFL] There exists an optimal codeword ZOpt such  that 

d e ( G p t ,  < c Irzl, 
&TK 

(7.1 1) 

whereTK = { i  : sgn(zi) # sgn(ri), i E U } .  

Good references to GMD decoding, its extensions, and combinations with Chase algorithms 
are [KNIH],[Kam],[TKK],[FL4] and [TLFL]. 

7.7 List  decoding 

List decoding was introduced by Elias and  Wozencraft (see [Eli3]). Most recently, list 
decoding of polynomial codes has received considerable attention, mainly caused by  the 
papers written by Sudan and colleagues [Sud, Gur] on decoding RS codes beyond their error 
correcting capabilities. The techniques used, referred to as Sudan  algorithms, use interpolation 
and factorization of bi-variate polynomials over extension fields. Sudan algorithms can be 
considered extensions of the Welch-Berlekamp algorithm [Bed]. These techniques have  been 
applied to soft-decision decoding of RS codes in [KV]. 

7.8 Soft-output algorithms 

The previous sections of this chapter have  been  devoted  to decoding algorithms that output the 
most likely coded sequence or codeword (or list of codewords). However, since the appearance 
of the revolutionary paper on turbo codes in 1993 [BGT], there is a need for decoding 
algorithms that output not only the most  likely codeword (or list of codewords), but also 
an estimate of the bit  reliabilities for further processing. In the field of error correcting codes, 
soft-output algorithms were introduced as early as 1962, when Gallager [Gal] published his 
work on low-density parity-check (LDPC) codes3, and later by Bahl et al. [BCJR]. In  both 
cases, the algorithms perform a forward-backward recursion to compute the reliabilities of 
the code symbols. In the next section, basic soft-output decoding algorithms are described. 
Programs to simulate these decoding algorithms can be found on the ECC  web site. 

In the following sections, and for simplicity of exposition, it is assumed that a linear 
block code, constructed by terminating a binary memory-m rate-l/n convolutional code, 
is employed for binary transmission over  an AWGN channel. It is also assumed that  the 
convolutional encoder starts at the all-zero state Sf) and, after N trellis stages, ends at  the 
all-zero state S:"' 

7.8. I Soft-output  Viterbi  algorithm 

In 1989, the Viterbi algorithm was  modified to output bit reliability information [HH]. 
The soft-output  viterbi  algorithm (SOVA) computes the reliability, or soft-output, of the 
information bits as a log-likelihood  ratio (LLR), 

(7.12) 

LDPC codes  are  covered in Chapter 8. 
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where F denotes the received sequence. 
The operation of a SOVA decoder can be divided into two parts. In the first part, decoding 

proceeds as with the conventional VA, selecting the most likely coded sequence, 6, in 
correspondence with the path in the trellis with the maximum (correlation) metric, at stage 
n. (See Section 5.4.) In addition, the path metrics need to be stored at each decoding stage, 
and for each state. These metrics are needed in  the last part of the algorithm, to compute the 
soj? outputs. In the second part of  SOVA decoding, the Viterbi algorithm transverses the trellis 
backwards, and computes metrics and paths, starting at i = N and ending at i = 0. It should 
be noted that, in this stage of the SOVA algorithm, there is  no need  to store the surviving 
paths, but only the metrics for each trellis state. Finally for each trellis stage i ,  1 5 i 5 N ,  
the soft outputs are computed. 

Let M,,, denote the (correlation) metric of the most likely sequence 6 found by the 
Viterbi algorithm. The probability of the associated information sequence ii given the received 
sequence, or a-posteriori  probability (APP), is proportional to Mmax, since 

Pr{ClF} = Pr{GlF} - e M m * x .  (7.13) 

Without loss of generality, the APP of information bit ui can be written as 

Pr{ui = I~F} eM;(’);  

where Mi(1) = Alma. Let Mi(0)  denote the maximum metric of paths associated with  the 
complement of information symbol zli. Then it is easy to  show that 

A 

Therefore, at time i ,  the soft output can be obtained from the difference between the maximum 
metric of paths in the trellis with fii = l and the maximum metric of paths with fii = 0. 

In the soft-output stage of the SOVA algorithm, at stage i, the most likely information 
symbol ui = a,  a E (0; l}, is determined and the corresponding maximum metric (found 
in the forward pass of the VA) set equal to Mi(ui).  The path metric of the best competitor, 
Mi(ui @ l), can be computed as [VUC], 

(7.15) 

where ICl, IC2 E (0; 1: 2;. . . 2m - l}, 

- Mf(Sj??) is the path metric of the forward survivor at time i - 1 and state S(k1 ) ,  
- BM,!bl)(ui @ 1) is the branch metric at time i for the complement information 

- Mb(Sjk2) )  is the backward survivor path metric  at time i and state S(”). 
associated with a transition from state E d k 1 )  to S ( k 2 ) ,  and 

Finally, the soft output is computed as 

R ( u ~ )  Mi(1) - Mi(0) .  (7.16) 

Example 88 Let C be a zero-tail (12: 4) code obtained from a memory-2 rate- 1/2 
convolutional code with generators (7; 5 ) .  The basic structure of the trellis diagram of this 
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Transmitted -I:l +I ; I  +l;l +1,+1 -l,+l -1;l 

Received 4 - 1  - 1  .-3 +2:3 +3,+3 -3,+3 +3,+1 

Figure 77 Trellis  diagram  used in SOVA decoding for Example 88. 

code is the same as in Example 86. Suppose that the information sequence (including the 
tail bits) is .21 = (110100), and  that the received sequence, after binary transmission over  an 
AWGN channel, is 

= (-4, -1,  -1, -3: +2, -3, +3,  +3,  -3, +3, -3, +l). 

Figure 77 shows the trellis diagram for this code. For i = 0, l, . . . , 6, each state has a label on 
top of it of the form 

Mf(S,'"') 
Mb(S{"') ' 

The branches are labeled with the branch metrics S M i .  The soft outputs A(ui), for 
i = 1, 2 , .  . . , 6 are -34, -16, +22, -16, +24, +24, respectively. 

Implementation  issues 

In a SOVA decoder, the Viterbi algorithm needs to  be executed twice. The forward processing 
is just as in conventional VD,  with the exception that  path metrics at each decoding stage 
need  to  be stored. The backward processing uses the VA, but does not  need  to store the 
surviving paths, only the metrics at each decoding state. Note that both  backward processing 
and soft-decision computation can  be done simultaneously. The backward processing stage 
does not need to store path survivors. In addition, the soft outputs need  to  be computed, after 
both the forward and backward recursions finish. Particular attention should be  paid  to  the 
normalization of metrics at each decoding stage, in both directions. Other implementation 
issues are the same as in a Viterbi decoder, discussed in Sections 5.4.3 and 5.5.1. 

The SOVA decoder can also be implemented as a sliding window decoder, like  the 
conventional Viterbi decoder. By increasing the computation time, the decoder operates 
continuously, not  on a block-by-block basis, without forcing the state of the encoder to 
return to the all-zero state periodically. The idea is the same as that  used  in  the  VD  with 
traceback memory, as discussed in Section 5.4.3, where forward recursion, traceback and 
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backward recursion, and soft-output computations are implemented in several memory blocks 
(see also [ViU]). 

7.8.2 Maximum-a-posteriori (MAP) algorithm 

The BCJR algorithm [BCJR] is an optimal symbol-by-symbol MAP decoding method for 
linear block codes that minimizes the probability of a symbol error. The goal of this MAP 
decoder is to examine the received sequence F and to compute the a-posteriori probabilities 
of the input information bits, as in (7.12). The MAP algorithm is described next, following 
closely the arguments in [BCJR]. 

The state transitions (or branches) in the trellis have probabilities 

and for the output symbols Vi,  

where z = f l ,  and zi = m(vi) = (-l)"%, 0 i 5 N .  

transition probabilities 
The sequence P  is transmitted over an AWGN channel and  received as a sequence F ,  with 

N N n-l 

(7.19) 

where p(ri,jIzi,j) is given by (7.1). 

information bit ui = j ,  with j E (0, l}. Then 
Let B!') be  the set of branches connecting state S!:;) to state S/m) such that  the associated 

Pr  {ui = j l ~ }  = c Pr  {Si?;', S!.'),?} e c c~i(m',m). (7.20) 
(rn',rn)€Bjj) (m',m)&) 

The value of oi(m', m) in (7.20) is equal to 

cJz(m', m) = ai-l(m') . #)(m' ,  m) . /?i(rn), 

where the joint probability ai(m) = Pr {S!"', F P }  is given recursively by A 

(7.21) 

and is referred to  as the forward  metric. 
The conditional probability ~j ' ) (m' ,  m) = Pr { si"), FlSi?;)} is given by A 

(7.22) 
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where pi(mlm’) = P r  { Sirn)1Si~~)}, which for the AWGN channel can be  put in the form 

where 15ij(m, m’) = l if {m‘, m} E B:’), and &(m, m‘) = 0 otherwise. #)(m’,  m) is 
referred to as the brunch metric. 

The conditional probability pi(m) 2 P r  { F f  IS!m)} is  given by 

(7.25) 
m’ j=O 

and referred to as the backward metric. 

bit ui is given by 
Combining (7.25), (7.24), (7.22) , (7.21) and (7.12), the soft output (LLR) of information 

with the hard-decision output is given  by Qi = sgn(h(ui)) and the reliability of the  bit 
ui is IA(ui)l. The above equations can be interpreted as follows. A bi-directional Viterbi- 
like algorithm can be applied, just as in SOVA decoding (previous section). In the forward 
recursion, given the probability of a state transition at time i ,  the joint probability of the 
received sequence up to time i and  the state at time i is evaluated. In the  backward recursion, 
the probability of the received sequence from time i + 1 to time N ,  given  the state at time i is 
computed. Then the soft output depends on the joint probability of the state transition and  the 
received symbol at time i. 

0 Initialization 
The MAP algorithm can be summarized as follows. 

For m = 0 ,1 , .  . . ,2”  - 1, 

ao(0) = 1, ~ o ( m )  = 0,m # 0, 

Form’ = 0 , 1 , . . . , 2 m  - l, 

P N ( 0 )  = 1, PlV(m’) = 0,m’ # 0, 

0 Forward  recursion 
Fori = 1 , 2 , . . . , N ,  
1. For j = 0 ,  l, compute and store the branch metrics 7:’’ (m‘, m) as in (7.24). 
2. For m = 0,1,  ..., 2m - l, compute and store the forward metrics q ( m )  as in 

(7.22). 
0 Backward recursion 

F o r i = N - l , N - 2 ; . . , 0 ,  
1.  Compute the backward metrics Pi(m) as  in (7.25), using  the  branch  metric 

2. Compute the log-likelihood ratio A(ui) as in (7.26). 
computed in the forward recursion. 
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Implementation  issues 

The implementation of a  MAP decoder is similar to that of a SOVA decoder, as both decoders 
perform forward and backward recursions. All the issues mentioned in the previous section 
apply to a  MAP decoder. In addition, note that branch metrics depend on the noise power 
density NO, which should be estimated to keep optimality. To avoid  numerical instabilities, 
the probabilities ai(m) and /3i(m) need to be scaled at  every decoding stage, such that cm (.dm) = cm Pi(m) = 1. 

7.8.3 Log-MAP  algorithm 

To reduce the computational complexity of the MAP algorithm, the logarithms of the metrics 
may  be used. This results in the so-called log-MAP algorithm. 

From (7.22) and (7.25) [RVH], 

m’ j = O  

1 

m’ j = O  

Taking the logarithm of ~ y ) ( m ‘ :  m) in (7.24), 

By defining &(m) = logai(m), pi(m) = logPi(m) and Ty)(m‘:m) = logyi ( A  (m’:m), 
(7.26) can be written as 

and an algorithm that works in the log-domain is obtained. 

The following expression, known  as the Jacobian logarithm [RVH],  is  used to avoid the 
sum of exponential terms, 

The function log (1 + e-161-621) can be stored in a small look-up table (LUT), as only a few 
values (eight reported in  [RVH]) are required to achieve practically the same performance 
as the MAP algorithm. Therefore, instead of several calls to  slow (or hardware expensive) 
exp(z) functions, simple LUT accesses give practically the same result. 
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7.8.4 Max-Log-MAP  algorithm 

A more computationally efficient, albeit suboptimal derivative of the MAP algorithm is the 
Max-Log-MAP  algorithm. It is obtained as before, by taking the logarithms of the  MAP 
metrics, and  using the approximation [RVH] 

log (e61 + 2 2 )  x max (dl 62) ; (7.3 1) 

which is equal to the first term on the right-hand side of (7.30). As a result, the log-likelihood 
ratio of information bit zli is given by 

The forward and backward computations can now  be expressed as 

For binary codes based on rate-lln convolutional encoders, in terms of decoding complexity 
(measured in number of additions and multiplications), the SOVA algorithm requires the 
least amount, about half of that of the max-log-MAP algorithm. The log-MAP algorithm 
is approximately twice  more complex compared to  the max-log-MAP algorithm. In terms of 
performance, it has been shown [FBLH] that the max-log-MAP algorithm is  equivalent  to 
a modified SOVA algorithm. The log-MAP and MAP algorithms have  the same best error 
performance. 

7.8.5 Sofr-output OSD algorithm 

The OSD algorithm of Section 7.5 can be  modified  to output the symbol reliabilities [%S]. 
This modification is referred to  as the soft-output OSD, or SO-OSD. The SO-OSD algorithm 
is a two-stage order-i re-processing. The first stage is the same as conventional OSD, 
determining the most likely codeword 2.”~ up to order-i re-processing. To describe the second 
stage, the following definitions are required. 

For each most reliable position j ,  1 5 j 5 K, define the  codeword f i ~ ~ ( j )  is obtained by 
complementing position j in B M L ,  

f i ~ ~ ( j )  = BML CB E(j); 

where E ( j )  is the set of all length-K vectors of Hamming weight one. The vector E ( j )  is 
the coset  representative of the partition of code C1 (equivalent to the original code after 
reordering, as in OSD, see Section 7.5) into two sets of codewords, having the j-th position 
equal to zero or one in codewords of C. These sets, after removing position j ,  become 
punctured subcodes of Cl, and are denoted C(0) and C(1). Let C(j) = C(0).  

The SO-OSD algorithm consists of the following steps: 

1. Determine the most likely codeword BMI ,  covered by order-i re-processing. 
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2. For  each  subcode C ( j ) ,  1 5 j 5 K ,  
(a) Initialize all soft output values of the least reliable positions (LW) based  on U M L  

and U M L  ( j ) .  That is, compute 

where rn(vi) = (- 

processing. 
(b) Determine the  most  likely  codeword U ( j )  E C ( j )  covered by order4 re- 

(c) Evaluate Lj (7.34) based  on GML and f j ( j ) .  
(d) Update soft output values of L W  in  the  positions of GML @ @ ( j )  with Lj.  

3. For K + 1 5 j 5 N ,  choose the smallest output value  associated  with each LRPj.  

The  performance of SO-OSD is  the same as max-log-MAP  decoding for many  binary linear 
block  codes of length  up to 128 and high-rate codes [FL5]. In addition, scaling down  the 
extrinsic values (7.34) improves the performance by a few  tenths of a dB. 



Iteratively  decodable  codes 

Iterative decoding may  be defined as  a technique employing a soft-output decoding algorithm 
that is iterated several times to improve the error performance of a coding scheme, with  the 
aim of approaching true maximum-likelihood decoding (MLD), with less complexity. When 
the underlying error correcting code is well designed, increasing the number of iterations 
results in an improvement of the error performance. 

Iterative decoding techniques date back to 1954 with the work of Elias [Elil] on iterated 
codes. Later, in the 1960s, Gallager [Gal] and  Massey [Masl] made important contributions. 
Iterative decoding was then referred to as probabilistic  decoding. The main concept was then, 
as it is today, to maximize the a-posteriori  probability of a symbol being sent given a noisy 
version of the coded sequence. 

In this chapter, code constructions that  can  be iteratively decoded are presented. Elsewhere 
in the literature, these coding schemes have  been  named turbo-like codes. In terms of the 
application of iterative decoding algorithms, and for the purpose of this chapter, ECC schemes 
can be broadly classified into two classes: 

Product  codes 
Examples of codes in this class include parallel  concatenated codes, or turbo 
codes, and serially  concatenated codes. Members of this class are also block 
product codes, presented in Section 6.2.3. 

Low-density  parity-check (LDPC) codes 
These are linear codes with the property that their parity-check matrix has a small 
ratio of number of nonzero elements to the total number of elements. 

In  both of the above classes of codes, the component codes can be either convolutional or 
block codes, with systematic or nonsystematic encoding, or any combination thereof. To 
provide a motivation for the study of iterative decoding techniques, the fundamental structure 
of turbo codes is discussed next. 

Turbo codes 

Over the past eight years, there has been an enormous amount of research effort dedicated 
to the analysis of iterative decoding algorithms and  the construction of iteratively  decodable 
codes or “turbo-like codes” that approach the Shannon limit’. Turbo codes were introduced in 

The  Shannon  limit  refers  to  the  capacity of a discrete-input  continuous  output  channel 
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1993 [BGT]. The results reported there sent a shock wave throughout the  research community. 

With binary transmission over an AWGN channel, a rate-1/2 coding scheme, based on 
a combination of two rate-1/2 16-state RSC codes, connected with an interleaver of size 
256 x 256, achieved BER rates of at an signal-to-noise (SNR) ratio per bit, or &,/NO, 
of 0.7 dB, closer than ever before to the Shannon limit (0.2 dB). See Figure 78. 

Figure 78 Performance of a rate-1/2 parallel concatenated (turbo) code with memory-4 
rate-1/2 RSC  codes, 90 = 21 and 91 = 37. Block interleaver size 256 x 256 = 65536. 

From [BG2]. Reproduced by permission of IEEE. (01996 IEEE) 

The basic elements in the turbo coding scheme proposed in [BGT] are the following: 

Coding structure 

A product code (referred to in the original paper [BGT] as parallel concatenated 
code) structure, with constituent recursive systematic convolutional encoders. 
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Reliability-based 
Employ sop-input  sop-output (SZSO) maximum-a-posteriori (MAP) decoders for 
the component codes, in order to generate log-likelihood  ratios. 

Iterative  decoding 
The use  of feedback of part of the symbol reliabilities, in the form of extrinsic 
information, from an outer (column) decoder to an inner (row) decoder, and vice 
versa. 

Random  permutation 
A long random  interleaver applied between the two encoders. Its main function 
is to ensure that, at each iteration, the component MAP decoders get independent 
estimates on the information symbols. 

These four elements have  been extensively studied over the years. [VUC, ISTC1, ISTC2, 
JSAC l, JSAC2, Hew] are a good sample of the research efforts. 

8.1 Iterative  decoding 

The purpose of this section is to introduce basic concepts behind iterative decoding. Consider 
the a-posteriori log-likelihood ratio (LLR)2 of  an information symbol, Equation (7.12) on 
page 134, repeated here for convenience, 

Let Ci(0) and Ci(1) denote the set of modulated coded sequences 3 = m(U) E m(C)  such 
that the i-th position in U E C is equal to zero and one, respectively. Recall that modulation 
was a one-to-one and onto mapping from v E (0, l} to z E {+l, -l}, as in Equation (7.2). 
Then the symbol LLR (8.1) can be written as, 

from which it follows that the LLR of  an information symbol can be expressed as 

The LLR is also referred to as "L-value" by some authors. 
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A(w) = + A a ( ~ i )  + 
where Aci is known as the channel  LLR and given by 

(8.3) 

( log (5) , for  a BSC channel with parameter p ;  

for an  AWGN channel (0: = N 0 / 2 ) ;  and (8.4) 

for  a flat Rayleigh fading channel, 
4 

the quantity 

Aa(ui) = log 
Pr{q  = -l}) - log (Pr{ui = l}) 
Pr{zi = +l} Pr{ui = 0} 

- 

is the a-priori LLR of the information symbol, and 

f N 

is the extrinsic LLR, which is specified by the constraints imposed by the code on  the other 
information  symbols. 

Assume that binary transmission is performed over an AWGN channel and  that  binary rate- 
l /n  RSC encoders are used as components. In an iterative decoding procedure, the extrinsic 
information provided by Ai,,(C) can  be  fed  back to the decoder as a-priori probability for 
a second round of decoding. In terms of forward-backward decoding using a trellis (see 
Section 7.8.2), the extrinsic LLR can be  written as 

where ai(m) and Pi(rn) are given by (7.22) and (7.25), respectively. 
A modified branch  metric is needed to compute the extrinsic LLR, 

where, as before, 
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This extrinsic LLR, for an information position i, does not contain any  variable directly related 
to ui, for i = 1; 2; . . . N .  Because  it is assumed  that encoding is systematic, notice that  the 
branch labels in  the trellis are of the  form (ui; v ~ ;  . . . q n - l ) ,  and therefore the  sum  in  the 
modified branch  metric (8.8) starts at q = l.3 

In  the  more general  case of a  two-dimensional  product  coding  scheme, the  first (e.g., row) 
decoder  produces h{:i(C) which  is  given to the  second (e.g., column)  decoder as a-priori 
probability Ri2)(ui) to be  used  in  the computation of  the LLR of information symbol ui. In 
other words,  the extrinsic information  provides  a soft output that  involves  only  soft inputs 
(reliabilities) that are not directly related to the information  symbol ui. Iterative decoding of 
product  codes is  the  topic of the  next section. 

8.2 Product  codes 

In  this section, coding  schemes based  on products of codes with interleaving are presented. 
These  schemes allow  the  use of simple  decoders for the component codes. With  iterative 
decoding,  symbol-by-symbol MAP decoders of the component  codes can exchange extrinsic 
LLR values, generally improving the reliability of the estimated  information bits,  with 
increasing number of iterations. 

8.2.1 Parallel  concatenation:  turbo  codes 

Figure 79 shows the  block diagram of  an encoder of a parallel  concatenated code, better 
known as a turbo code. Two encoders are used, each delivering as output only  redundant 
symbols.  For instance, if rate-1/2 RSC codes are  used, the encoders represent the  term 
g1 (D) /go(D)  in the polynomial  generator matrix G(D). The inputs to the encoders are U 
and I I G ,  where II denotes  a permutation  matrix4 associated  with  the  interleaver. The  output 
corresponding to  an input symbol ui is ( ui vp1,i  vp2,i ), with wp1,i and vp2,i representing 
the redundant  symbols, for i = 1; 2: . . . N ,  where N is the  block length. 

Figure 79 Encoder structure of a parallel concatenated (turbo) code. 

Compare this with the expression of the branch metric y p ) ( m ’ ,  m) in (7.24). 
A permutation matrix is a binary matrix with only one nonzero entry per row and per column, if ~ i , ~  = 1 
then a symbol in position i at the input is sent to position j at the output. 
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The original turbo code scheme used  RSC encoders. However,  to examine this coding 
scheme, assume that the component codes are two binary systematic linear block (ni; k i )  
codes, i = 1; 2. The rate of the overall code is (see Figure 80) 

where Ri = ki/ni, i = 1; 2. Let Gi = ( Iil Pi ) denote the generator matrix of code Ci, 
i = 1; 2. Then the generator matrix of the parallel concatenated code Cpc can be put in the 
following form, 

A 

GPC = ( Ik1kz ( p1 p1 . * .  p l )  II ( p2 p2 . , .  p 2 ) )  

where II is the permutation matrix associated with the interleaver, and Pi is the  parity 
submatrix of code Ci, i = 1; 2. The number of times  that P1 appears in the middle part 
Pi of Gpc is kz ,  while the number of times that P2 appears in  the leftmost portion Pi of GPC 
is kl . All other entries in Pi and Pi are zero. It follows that codewords of Cpc are of the form 
( a  I GP; I GP; ). 

Example 89 Let C1 be a binary repetition ( 2 , l ;  2) code and C2 be  an  binary SPC (3; 2;  2) 
code. Then klk2 = 2. There is only one possible permutation matrix II in this case. The parity 
submatrices and permutation matrix are 

respectively. From (8.10) it follows that the generator matrix of the parallel concatenated (5; 2) 
code Cpc is 

Note that the minimum distance is dpc = 3, which is less than that of the product of C1 and 
( 7 2 .  

One way to interpret a parallel concatenated (turbo) code, from the point of view  of linear 
block codes, is as a punctured product code, in  which the redundant symbols corresponding 
with the checks-on-checks are deleted. This interpretation is shown in Figure 80. The only 
essential difference between a turbo code and a block product code, is that  the interleaver 
is not simply a row-by-row column-by-column interleaver, but one that introduces sufficient 
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"1 - 

n2 symbols d 3 

- k ,  - 
Figure 80 A parallel  concatenated  code  interpreted  as a punctured  product code. 

disorder in the information sequence, so that iterative decoding works.  When interpreted as 
a linear block code, a turbo code can be further interpreted as  a generalized  concatenated 
code5, after replacing the puncturing operation with  an equivalent multiplication by a binary 
matrix and a direct-sum. Let MI be a 1 x N matrix with nlkz  successive ones followed by 
N - nlkz zeros. Let M2 be another 1 x N matrix with N - (nz - k2)kl zeros followed by 
(nz - kz)kl  ones. Then a turbo encoder can be visualized as an encoder of a GC code, as 
shown  in Figure 8 1. 

Figure  81 A turbo  encoder  as an encoder of a generalized  concatenated code. 

Iterative  decoding of parallel  concatenated  codes 

The basic structure of an iterative decoder for a parallel concatenated coding scheme with  two 
component codes is shown in Figure 82. Each iteration consists of two phases, one decoding 
phase per component decoder, as follows. 

First  phase 

In the first decoding iteration, first phase, the soft-in soft-out (SISO) decoder for the first 
component code computes the a-posteriori LLR (8.7) assuming equally likely symbols, i.e., 
A,(u) = 0. This decoder computes the extrinsic information for each information symbol, 
Ael (G), based on the part of the received sequence that corresponds to the parity symbols, 
Ppl ,  and sends the result to the second SISO decoder. 

See Section 6.2.5 
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Figure 82 Block  diagram of an iterative  decoder for a parallel  concatenated  code. 

Second  phase 

In the second phase of  first decoding iteration, the permuted (or interleaved) extrinsic 
information from the first decoder is used as a-priori LLR, A,(C) = HA,1 (U). Extrinsic 
information he2 (G) is computed, based on the part of the received sequence that corresponds 
to the parity symbols of the second component code, F p 2 ,  thus terminating the first decoding 
iteration. At this point, a decision can be  made  on an information symbol, based  on  its a- 
posteriori LLR h(~ ) .  

In subsequent iterations, the  first decoder uses the deinterleaved extrinsic information from 
the second decoder, DI-lhe2 (C), as a-priori LLR for the computation of the soft output (the 
a-posteriori LLR), A(U). This procedure can be repeated until either a stopping criterion 
is met [HOP, SLF], or a maximum number of iterations is performed. Note  that  making 
decisions on the information symbols after the first (row) decoder saves one deinterleaver. 

As  in Section 7.8.4, the iterative MAP decoding algorithm described above can be 
simplified by using the approximation of the “log” by the “max” as in (7.3  1). Also, there is  an 
iterative version of the SOVA algorithm presented in  Section 7.8.1, that essentially computes 
the a-posteriori LLR A(C) directly and then, subtracting the channel LLR A, and  the extrinsic 
LLR Aej(C) from the other decoder, produces the extrinsic LLR [FV]. 

Example 90 Consider the turbo ( 5 :  2:  3) code of Example 89. A codeword is arranged in a 
3 x 2 array with the lower right comer deleted. Suppose that the following codeword V 

U 1  = 0 W11 = 0 
U 2  = l 2112 = 1 
W21 = 1 m 

(where “X’  denotes that the position is deleted or ignored), is (BPSK) modulated  and 
transmitted over an AWGN channel and  received as (this is the channel LLR A c  ): 

For the computations below, we use the fact that, for two  binary variables x1 and x2, the 
LLR of their sum x1 + x2 is [HOP] 
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First  iteration 
In the first decoding phase, the row decoder for the repetition code, computes 

Ael(u1) = A(rl1) = f2 .5,  
Ae1(u2) A(r12) = +1.0. 

In the second decoding phase, the extrinsic information from the  row decoder is  used as a- 
priori LLR for the column decoder for the parity-check code. The updated LLRs are E l  
In the second phase of the first iteration, the column decoder computes the extrinsic LLRs, 

At the end of the first decoding iteration, the a-posteriori LLR are 

A(u1) = Ac1 + Ael(u1) + Aea(u1) = +1.58 
h(u2) = Acz + Ael(u2) + A e z ( ~ 2 )  = -2.13 

The iterative decoder could make a decision at this point, based on the sign of the a-posteriori 
LLR, and deliver the (correct) estimates Q1 = 0 and Q 2  = 1. Increasing the number of 
iterations improves the soft outputs associated with the information bits. 

Second  iteration 
Row decoder: 

Ael(u1) = A(r11) + A e 2 ( ~ 1 )  = +2.5 - 0.42 = +1.08, 
Ael(u2) = A(rl2) + A e 2 ( ~ 2 )  = +1.0 + 0.38 = +1.38. 

Column decoder: 

A-posteriori LLR: 

A(u1) = Acl  + Ael(u1) + AeZ(u1) = +0.41, 
A ( u ~ )  = A C Z  + Ael(u2) + Ae2(~2) = -1.96. 

After the second iteration, based on the signs of the LLRs, the decoder delivers the same 
(correct) hard decisions. Moreover, note that the soft outputs changed because of the influence 
of the extrinsic LLR computed in the first iteration. In particular, the reliability of the first bit 
(the amplitude of the LLR) decreases from lA(ul)l = +1.58 to IA(u1)l = +0.41. 
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Error  performance 

With reference to Figure 78, page 144, it is clear that, as the number of iterations grows, the 
error performance improves. Typical of turbo coding schemes is the fact that increasing the 
number of iterations results in a monotonically decreasing improvement in coding gain. From 
Figure 78, increasing the number of iterations from 2 to 6 gives an improvement in  SNR of 
1.7 dB, whereas going from 6 to 18 iterations yields only a 0.3 dB improvement in coding 
gain. 

Since the appearance of turbo codes, advances have  taken place in understanding the BER 
behavior of turbo codes. At the time of this writing, there appears to  be a consensus among 
researchers on the reasons why turbo codes offer such an excellent error performance: 

0 Turbo codes have a weight distribution that approaches, for long interleavers, that of 

0 Recursive convolutional encoders and proper interleaving map most of the  low- 

0 Systematic encoders allow the effective use of iterative techniques utilizing MAP 

random codes. 

weight information sequences into higher weight coded sequences. 

decoders. Information symbol estimates are available directly from the channel. 

In addition, most recently (end of 2001), a number of interesting semi-analytical tools 
have appeared, based on density evolution [RU], Gaussian approximation [EH] and  mutual 
information [tBr2] or SNR transfer [DDP] characteristics, to study the convergence properties 
of iterative decoding algorithms. 

The art of interleaving 

A critical component in achieving good performance with iterative decoding of a turbo code 
is the interleaver. In turbo codes, the interleaver serves three main purposes: (1) Build  very 
long codes with weight distributions that approach those of random codes; and (2) help  in  the 
iterative decoding process by decorrelating the input LLRs  to  the SISO decoders as much as 
possible; and (3) proper termination of the trellis in a known state, after the transmission 
of short to medium length frames, to  avoid edge effects that increase the multiplicity of 
low weight paths in the trellises of the component codes. To emphasize, the specific  type 
of interleaver becomes an important factor to consider as the frame lengths (or interleaver 
lengths) become relatively small, say,  up to one thousand symbols. There is already a wealth 
of publications devoted to interleaver design for turbo codes. In this section, a brief description 
of the basic interleaver types and pointers to the literature are given. 

In 1970, several types of optimum interleavers were introduced [Ram]. In particular, an 
( n 1 ,   n 2 )  interleaver was  defined there as a device that “reorders  a  sequence so that no 
contiguous  sequence of 722 symbols in  the reordered  sequence  contains  any symbols that were 
separated by fewer than n 1  symbols in  the original  ordering.” 

Let . . , a t l ,  at,, at3, . . . denote the output sequence from an ( n 1 ,   n 2 )  interleaver,  where 
l,, e,, . . . are the positions of these symbols in  the input sequence. Then  the  definition in the 
previous paragraph translates into the following condition: 

whenever 
li - j l  < 712. 
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It can be  shown  that the deinterleaver of  an (nl , n 2 )  interleaver is itself an (nl: 122)  interleaver. 
The delay of the interleaver and deinterleaver are both equal to the delay introduced by the 
overall interleaving-deinterleaving operation. Another important parameter of an interleaver is 
the amount of storage or memory required. Ramsey  showed four types of (nl n2) interleavers 
that are optimum in the sense of minimizing the delay and memory required to implement 
them. These interleavers are known as Ramsey interleavers. At about the same time, 
Forney  [For51 proposed an interleaver with the same basic structure of  an (n1: n2) Ramsey 
interleaver, known as a convolutional interleaver. Convolutional interleavers were discussed 
in Section 6.2.3 and have been applied to the design of good turbo coding schemes [Haw]. 

There are several  novel approaches to the analysis and design of interleavers: One is based 
on a random interleaver with a spreading property. Such a structure was  first proposed 
in [DP], together with a simple algorithm to construct S-random interleavers: Generate 
random integers in the range [l: NI, and use a constraint on the interleaving distance. This 
constraint is seen to be equivalent to the definition of a Ramsey (S2: S1 + 1) interleaver (this 
is noted in [VUC], pp. 211-213). Then additional constraints (e.g., based on the empirical 
correlation between successive extrinsic LLR values) are imposed to direct the selection of 
the positions of the permuted symbols at the output of the interleaver [HEM, SSSN]. A second 
approach to the design of interleavers is to consider the overall turbo encoder structure and 
to compute its minimum distance and error coefficient (the number of coded sequences at 
minimum distance) [GPB, BH]. This gives an accurate estimation of the error floor  in  the 
medium to high SNR region. Other important contributions to the design of short interleavers 
for turbo codes are [TC, BP]. 

8.2.2 Serial concatenation 

Serial concatenation of codes was introduced in [BDMPl].  A block diagram of  an encoder of 
a serial concatenation of two linear codes is shown  in Figure 83. Based  on the results from 
Section 6.2.3, and in particular comparing Figure 83 with Figure 55, the serial concatenation 
of two linear codes is easily recognized as a product code. Note that, as opposed to a turbo 
code, in a serially concatenated coding system there is no puncturing of redundant symbols. 

- - - 
U v1  n i l  

* r I  
v 2  

D - Encoder C * Encoder C ,  

Figure 83 Block diagram of the  encoder of a serially  concatenated  code. 

The encoder of a serial concatenation of codes has the same structure as that of a product 
code. Following closely the notation in the original paper [BDMPl], the outer (p: k ,  d l )  code 
Cl has a rate R1 = k / p  and the inner (n,p, d 2 )  code C2 has a rate R2 = p / n .  The codes 
are connected in the same manner as a block product code, with a block interleaver of length 
L = m p .  This is achieved, as before, by writing m codewords of length p into the interleaver, 
and reading in a different order according to the permutation matrix II .  The sequence of L 
bits at the output of the interleaver is sent in blocks of p bits to the outer encoder. The rate of 
the overall ( N :  K ;  d l d 2 )  code CSC is Rsc = k / n ,  where N = nm and K = k m .  

The generator matrix of CSC can be expressed as the product of the generator matrix of 
Cl, the kz X nl permutation matrix II of the interleaver, and the generator matrix of C,, as 
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follows 

where Gi is the generator matrix of code Ci, i = l; 2. The number of times  that G1 appears 
in  the  first factor G: of Gsc in (8.12) is IC?, and  the number of times  that G2 appears  in  the 
third  factor  G;  of Gsc is n1. All other entries  in G: and G; are zero. 

Example 91 Let C1 and C2 be  the same codes as in Example 89, that is, binary  repetition 
(2: l; 2) and SPC (3; 2; 2) codes,  respectively. Then the serial concatenation, or product, of 
C1 and C2, CSC is a  binary linear block (6; 2 ,4 )  code. Note  that  the  minimum  distance  of 
CSC is larger  than  that  of Cpc in Example 89. The generator  matrices  are  G1 = ( 1 1 ) and 

G2 = ( :) . Assuming  that  a  conventional  product code is employed, the  permutation 

matrix,  associated  with  a  row-by-row  and  column-by-column  interleaver, is 

Therefore, the generator matrix of CSC is 

1 0 0 0  

Gsc = ( (h121) (1/)121)) (: : ; :) ( O ol, (1 0 l ) )  

( 1) 0 2 3  

0 0 0 1  0 1 1  

= (  ( 0  l 1)  ( 0  1 1 )  1 (1  0 1) ( l  0 1) 

where Oi j  denotes the i x j all-zero  matrix. 
The result  can be verified  by  noticing  that  the last equality contains the  generator  matrix 

of the  the SPC (3; 2; 2) code mo times, because of the repetition (2; 1; 2 )  code. It is also 
interesting  to  note  that  this is the  smallest  member  of  the  family  of repeat-and-accumulate 
codes [DJM]. 
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Note that the main difference between the serial concatenated coding scheme and product 
coding discussed in Section 6.2.3, is that there the interleaver was either a row-by-row column- 
by-column interleaver or  a cyclic interleaver (if the component codes were cyclic). In contrast, 
as with turbo codes, the good performance of serial concatenation schemes generally depends 
on an interleaver that is chosen as “random” as possible. 

Contrary to turbo codes, serially concatenated codes do not exhibit “interleaver gain 
saturation” (i.e., there is no error floor). Using a random argument for interleavers of length N ,  
it can be shown that the error probability for a product code contains a factor N-L(dof+1)/21,  
where dof denotes the minimum distance of the outer code, as opposed to a factor N - l  for 
parallel concatenated codes [BDMPl]. 

As a result, product codes outperform turbo codes in the SNR  region where the error 
floor appears. At  low  SNR values, however, the better weight distribution properties of turbo 
codes [PSC] leads to better performance than product codes. 

The following design rules were derived for the selection of component codes in a serially 
concatenated coding scheme6 for component convolutional codes: 

0 The inner code must  be an RSC code. 
0 The outer code should have large and, if possible, odd  value of minimum distance. 
0 The outer code may  be a nonrecursive (FIR) nonsystematic convolutional encoder. 

The last design criterion is needed in order to minimize the number of codewords of minimum 
weight (also known as the error  exponent) and the weight input sequences resulting in 
minimum weight codewords. 

Iterative  decoding of serially Concatenated  codes 

With reference to Figure 84, note that if the outer code is a nonsystematic convolutional, 
then it is not possible to obtain the extrinsic information from the SISO decoder [BDMPI]. 
Therefore, different from the iterative decoding algorithm for turbo codes, in  which  only 
the LLR of the information symbols are updated, here the LLR of both information and 
code symbols are updated. The operation of the SISO decoder for the inner code remains 
unchanged. However, for the outer SISO decoder, the a-priori LLR is always set to zero, and 
the LLR of both information and parity symbols is computed and delivered, after interleaving, 
to the SISO decoder for the inner code as a-priori LLR for the next iteration. As  with iterative 
decoding of turbo codes, there is a max-log-MAP based iterative decoding algorithm, as 
well as a version of  SOVA that can be  modified to become an approximated MAP decoding 
algorithm for iterative decoding of product codes [FV]. 

8.2.3 Block product  codes 

Although turbo codes and serial concatenations of  RSC codes seem to  have dominated the 
landscape of coding schemes where iterative decoding algorithms are applied, block product 
codes may also be used, as is evident from the foregoing discussion. In 1993, at the same 
conference where Berrou and colleagues introduced turbo codes, a paper was presented 
on iterative decoding of product and concatenated codes [LYHH].  In particular, a three- 

It should be noted that these criteria were obtained based on union bounds on the probability of a bit error. 
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Figure 84 Block diagram of an  iterative  decoder for a serially  concatenated  code. 

dimensional product (4096,1331,64) code, based on the extended Hamming (16,11,4) code, 
with iterative MAP decoding was considered and  shown  to achieve impressive performance. 

One year later, near-optimum turbo-like decoding of product codes was introduced 
in [PGPJ] (see also [Pyn]). There the product of linear block codes of relatively high 
rate, single- and double-error correcting extended BCH codes, was considered. An iterative 
decoding scheme was proposed where the component decoders use the Chase  type-I1 
algorithm7. After a list of candidate codewords is found, LLR  values are computed. This 
iterative decoding algorithm and its improvements are described in the next section. 

Iterative  decoding  using Chase algorithm 

In [PGPJ, Pyn], the Chase type-I1 decoding algorithm is employed to generate a list of 
candidate codewords which are close to the received word. Extrinsic LLR  values are 
computed based on the best  two candidate codewords. If only one codeword is found, then  an 
approximated LLR  value is output by the decoder. Let C be a binary linear ( N ,  K ,  d )  block 
code, capable of correcting any combination o f t  = [ (d  - l)/2] or less random  bit errors. Let 
F = ( T I ,  r2, . . . , T N )  be the received word from the output of the channel, ~i = ( -l)wi + wi, 
v E C, where wi is a zero-mean Gaussian random variable with  variance N0/2 .  Chase  type-I1 
algorithm is executed based on the received word F ,  as described on page 130. 

Three possible events can happen at the end of the Chase type-I1 algorithm: 

1. Two or more codewords, (61,. . . , e l } ,  l 2 2, are found; 
2.  One codeword 61 is found; or 
3. No codeword is found. 

In the last event, the decoder may raise an uncorrectable error flag  and output the  received 
sequence as is. Alternatively, the number of error patterns to  be  tested  can  be increased until 
a codeword is found, as suggested in [Pyn]. 

Let X j ( l )  denote the set of modulated codewords of C, found by Chase algorithm, for 
which  the j-th component xj = l ,  l E { -1, +l}, for 1 5 j 5 N .  Denote by Zj(l), yj(l) E 
X j ( l )  the closest and  next closest modulated codewords to  the  received  word F ,  in the 
Euclidean distance sense, respectively. 

By using the log-max approximation log(e" + eb)  x max(a, b) ,  the symbol LLR  value 
(8.2) can be expressed as [Pyn, FL5] 

(8.13) 

Chase algorithms are discussed in Section 7.4. 
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from which, after normalization and redefining x, = x m ( + l )  and y, = y,(-l), the soft 
output is 

N N 

A’(uj) = rj + c rmxm = x j  c rmx,. 

The term 

(8.14) 

(8.15) 

is interpreted as a correction  term to the soft-input r j ,  which depends on the two modulated 
codewords closest to F ,  and plays the same role as the extrinsic LLR. For 1 5 j 5 N ,  and each 
position j ,  the value wj  is sent to the next decoder as extrinsic LLR, with a scaling factor Q,, 

so that 
ri = rj + aCwj ,  (8.16) 

is computed as the soft input at the next decoder. The factor ac is used to compensate for the 
difference in the variances of the Gaussian random variables ri and r i .  A block diagram of 
the procedure for the generation of soft input values and extrinsic LLR  values is shown  in 
Figure 85. 

If for a given j-th position, 1 5 j 5 N ,  no pair of sequences Z j  (+l) and yj (-1) can be 
found by Chase algorithm, in [Pyn] it has  been suggested the use of the following symbol 
LLR, 

A’&) = P&, (8.17) 

where Pc is a correction  facror to compensate for the approximation in the extrinsic 
information, and  was estimated by simulations as 

P c  = 11% ( Pr{wj correct} 
Pr{wj incorrect} 

(8.18) 

that is, the magnitude of the LLR of the simulated symbol error rate. In [PP, MT], it is shown 
how the correction factors a! and P can  be computed aduptively based on the statistics of the 
processed codewords. It should also be  noted that the soft-output algorithm proposed in [FL5], 
and described in Section 7.5, can also be applied. Adaptive weights are also needed in this 
case, to scale down the extrinsic LLR values. 

Extrinsic 
values 

W [I1 Soft-output W [I+1] 
Chase decoder 

Channel 
LLR values i Delay 

Figure 85 Block diagram of a soft-output Chase decoder, 
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Summarizing, the iterative decoding method  with soft-outputs based on a set of codewords 
produced by a Chase type-I1 algorithm is as follows: 

Step 0: Initialization 

Set iteration counter I = 0. Let f[0] = f (the received channel values). 

Step 1: Soft  inputs 

F o r j  = 1 , 2 , . . . , N ,  

7-j [ I  + l] = rj [O] + Q, [I] wj [I]. 

Step 2: Chase  algorithm 

Execute Chase type-I1 algorithm, using F[I + l]. Let n, denote the number of 
codewords found. If possible, save the closest two modulated codewords, 52 and 
jj to the received sequence. 

Step 3: Extrinsic  information 

F o r j  = 1 , 2 , . . . , N ,  

N 

wj [I + 11 = xj c T[I + lImxm, 

m=l,m#j  
= m # y m  

Step 4: Soft  output 

Let I = I + 1. If I < Imax (the maximum number of iterations) or a stopping 
criterion is not satisfied  then go to Step 1. 

Else compute the soft output, 

F o r j  = 1 , 2 , . . . , N ,  

and stop. 

For BPSK modulation, the values of Q, and pc were computed for up  to four iterations (eight 
values  in total, two  values for the first and second decoders), as [Pyn] 

CL, = (0.0 0.2  0.3  0.5 0.7 0.9 1.0 1.0),  

p, = (0.2 0.4 0.6 0.8 1.0 1.0 1.0 1.0).  
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8.3 Low-density  parity-check  codes 

In 1962, Gallager in [Gal] introduced a class of linear codes, known as low-density parity- 
check (LDPC) codes, and presented two iterative probabilistic decoding algorithms. Later, 
Tanner [Tan] extended Gallager’s probabilistic decoding algorithm to the more general case 
where the parity-checks are defined by subcodes, instead of simple single parity-check 
equations. Earlier, it was shown that LDPC codes have a minimum distance that grows linearly 
with the code length and that errors up  to the minimum distance could be corrected with a 
decoding algorithm with almost linear complexity [ZP]. 

In [MN, Mac] it is shown that LDPC codes can get as close to the Shannon limit as 
turbo codes. Later in [RSU], irregular LDPC codes were shown  to outperform turbo codes 
of approximately the same length and rate, when the block length is large. At the time of 
writing, the best rate-1/2 binary code, with a block length of 10,000,000, is an LDPC code 
that achieved a record 0.0045 dB away  from  the Shannon limit for binary transmission over 
an AWGN channel [CFRU]. 

A regular LDPC code is  a linear ( N ;  K )  code with parity-check matrix H having the 
Hamming weight of the columns and rows of H is equal to J and K ,  respectively,  with 
both J and K much smaller than the code length N .  As a result, an LDPC code has a 
very sparse parity-check matrix. If the Hamming weights of the columns and  rows of H 
are chosen in accordance to some nonuniform distribution, then irregular LDPC codes are 
obtained [RSU]. MacKay has proposed several methods to construct LDPC matrices by 
computer search [Mac]. 

8.3. l Tanner graphs 

For every linear ( N ;  K )  code C, there exists a bipartite graph with incidence matrix H .  This 
graph is known as a Tanner graph [Tan, SS], named after its  inventor. By introducing state 
nodes, Tanner graphs have been generalized to factor graphs [For7, KFL]. The nodes of the 
Tanner graph of a code are associated with  two kinds of variables, and their LLR values. 

The Tanner graph of a linear ( N ;  K )  code C has N variable  nodes or code  nodes, x!, 
associated with code symbols, and at least N - K parity  nodes, z,, associated with the 
parity-check equations. For a regular LDPC code, the degrees of  the code nodes are all equal 
to J and the degrees of the parity nodes equal to K .  

Figure 86 Tanner graph of a Hamming (7 ,4,3)  code. 

Example 92 To illustrate the Tanner graph of a code, consider the Hamming (7: 4; 3) code. 
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Its parity-check matrix iss 

( l 1 0 1 0 0 1  1 l 1 1 0 1 0 0  
H =  0 1 1 1 0 1 0 .  

The corresponding Tanner graph is shown in Figure 86. The way code nodes connect to check 
nodes is dictated by the rows of the parity-check matrix. 

The first  row  gives the parity-check equation, u1 + 212 + 213 + 215 = 0. As indicated 
before, variables xe and z ,  are assigned to each code symbol  and each panty-check equation, 
respectively. Therefore, the following parity-check equations are obtained, 

21 = x1 +x2 +x3 +x5; 

23 = x1 + x2 + x4 + 27. 
From the topmost equation, code nodes x1 xZi x3 and x5 are connected to check node 21. 
Similarly, the columns of H ,  when interpreted as incidence vectors, indicate in which parity- 
check equations code symbols appear, or participate in. The leftmost column of H above, 
( 1 0 1 )T, indicates that z1 is connected to check nodes 2 1  and 23. 

Example 93 The parity-check matrix in Gallager's paper [Gal], 

2 2  = x2 + x 3  +x4 + x 6 ;  

H =  

11110000000000000000~ 
00001111000000000000 
00000000111100000000 
00000000000011110000 
00000000000000001111 

10001000100010000000 
01000100010000001000 
00100010000001000100 
00010000001000100010 
00000001000100010001 

10000100000100000100 
01000010001000010000 
00100001000010000010 
00010000100001001000 
00001000010000100001. 

is that of  an LDPC (20; 5) code with J = 3 and K = 4. Its Tanner graph is shown in Figure 87. 
Note that every code node is connected to exactly three parity-check nodes. In other words, 
the degree of the code nodes is equal to J = 3. Similarly, the degree of the parity  nodes  is 
equal to K = 4. 

Tanner graphs can be  used to estimate codewords of an LDPC code C with  iterative 
probabilistic decoding algorithms, based on either hard  or soft decisions. In the following, 
the two  basic iterative decoding algorithms introduced by Gallager are presented. 

See Example 13 on page 23. 
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Figure 87 Tanner graph of Gallager's (20,5) code. 

8.3.2 Iterative  hard-decision decoding: The b i t f ip  algorithm 

In his 1962 paper, Gallager gave  the following algorithm [Gall9. 

The decoder computes  all the parity checks and then changes any digit that 
is contained in more than some fuced number of unsatis$ed parity-check 
equations. Using these new values, the parity-checks are recomputed, and 
the process is repeated until the parity checks are all satis$ed. 

The input of the algorithm is the vector Th = (sgn(rl), sgn(r-2); .. . sgn(rN)), where 
r '  2 -  - (-l)'i + wi, V E C, wi denotes a zero-mean Gaussian random variable with variance 
No/2, i = 1; 2:. . . N ,  and sgn(z) = 1, if z < 0, and sgn(z) = 0 otherwise. 

Let T denote a threshold such that, if the number of  unsatisfied parity-check equations 
where a code symbol ~ l i  participates exceeds T ,  then symbol is "flipped", wi = 2ri @ 1. 

Figures 88 and 89 show simulation results for Gallager's (20; 5) code CG and  the Hamming 
(7;  4; 3) code CH,  respectively, with  binary transmission over an AWGN channel. The 
maximum number of iterations was set to 4 for CG and 2  for CH.  In both figures, the threshold 
was set to T = 1; 2: 3. For the Hamming code, in Figure 89, also shown are single-error hard- 
decision decoding (HD), soft-decision MLD decoding (SD) and the union  bound (1.35). 

In Figures 90 to 92, the error performance of the Berlekamp-Massey (BM) algorithm 
and Gallager bit-flip (BF) algorithm is compared for the BCH (31;26,3),  (31,21,5) and 
(31,16; 7) codes, respectively. It is evident that, as the error correcting capability of the code 
increases, the performance of the BF algorithm is inferior to that of the BM algorithm. On the 
other hand, in terms of computational complexity, the Gallager BF algorithm requires simple 
exclusive-or gates and comparisons, as opposed to GF(2") arithmetic processors in the case 
of the BM algorithm. This suggests that, for some high-rate codes, such as single- and double- 
error correcting BCH codes, the bit-flip algorithm might be considered an alternative to the 
BM algorithm. 

An additional feature of the BF algorithm, as well as the iterative probabilistic decoding 
algorithm presented below, is that its complexity depends only on the degrees of the nodes  in 
the  Tanner graph. In other words, for fixed  values  of J and K ,  the decoding complexity grows 
linearly with the code length. 

This algorithm is also known as Gallager's algorithm A. 
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Figure 88 Performance of Gallager’s (20,5) code with bit-flip  decoding. Four iterations with 
different  threshold  values 

8.3.3 Iterative probabilistic decoding: belief propagation 

In this section, an iterative belief-propagation (IBP) decoding algorithm is presented. This 
algorithm is also known as Pearl’s algorithm [Prl], and sum-product  algorithm [Wib, KFL, 
For7]. Wiberg in his  Ph.D. thesis [Wib]  has  shown that the forward-backward, turbo and 
Gallager algorithm (described below) are all special cases of the sum-product algorithm. 
Furthermore, it was demonstrated [MMC] that iterative decoding algorithms for turbo codes 
and product codes are particular cases of IBP decoding. The description below follows 
closely [Prl, Mac] for binary LDPC codes. The following notation is convenient in describing 
the algorithm. Let hi,j denote the entry of W in the i-th row  and j-th column. Let 

C(m) = {e : hm,e = l}; (8.20) 

denote the set of code  positions that participate in the m-th parity-check equation, and let 

M(!)  = { m  : hm,e l}; (8.21) 

denote the set of check positions in which code position l participates. 
The algorithm iteratively computes two types of conditional probabilities: 

qgc The probability that  the l-th bit of e has the value z, given the information 
obtained via the check nodes other than check node m. 

rge The probability lo  that a check node m is satisfied  when  bit ! is fixed  to a value z 
and the other bits are independent with probabilities qmp , l’ E C ( m )  \ ! 

lo Note: This is an abuse of notation, because T %  denotes the i-th component of the received vector.  However, 
it helps to keep the same notation as most of the literature in the topic. 
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Figure  89 Performance of a Hamming (7 ,4 ,3)  code with bit-flip decoding. Two iterations 
with different threshold values. 

As noted in [Prl, Mac], the following IBP decoding algorithm would produce the exact a- 
posteriori probabilities after some number of iterations, if the Tanner graph of the code 
containedno  cycles. In the following, binary transmission over an AWGN channel is assumed. 
As before, the modulated symbols m(vi) are transmitted over an AWGN channel and  received 
as ri = m(vi) + wi, where wi is a Gaussian distributed random variable with zero mean  and 
variance No/2, l 5 i 5 N .  

Initialization 

For C E { 1,2,  . ’ . , N } ,  initialize the a-priori probabilities of the code nodes, 

1 
- I + exp(re*-’ 

1 -  

and p! = 1 - p i .  For every (C, m) such that h,,! = 1, 

0 0 I 1 
%,e = Pe , %,e = Pe . 

Message  passing 

Step I :  Bottom-up  (horizontal): 

For each e ,  m, compute 

(8.22) 

(8.23) 

(8.24) 
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Figure 90 Performance of Berlekamp-Massey and Gallager bit-flip algorithms for the binary 
BCH (31,26,3)  code. 

Step 2: Top-down (vertical): 

For each e, m, compute 

m'€M(e)\m  m'cM(e)\m 

For each e, compute the a-posteriori probabilities 

and normalize, with a = l/($ + Q ; ) ,  

(8.25) 

(8.26) 

(8.27) 

(8.28) 

(8.29) 
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Figure 91 Performance of Berlekamp-Massey and Gallager bit-flip algorithms for the  binary 
BCH (31,21,5) code. 

Decoding  and soft-outputs 

For i = 1 ,2 ,  . . . N ,  compute 
6i = sgn(q9) (8.30) 

If 6HT = 0, then 6 is the estimated codeword and the soft outputs are 

A(Q) = lOg(4.t) - log(qp), 1 5 i 5 N .  (8.31) 

The algorithm stops. 
Otherwise, return to Step 2. If the number of iterations exceeds a predetermined threshold, 

a decoding failure is declared. Output received values as they are. The algorithm stops. 
Figure 93 shows the performance of IBP decoding for the binary cyclic PG (273,191,17) 

code. This code is a small member of the family of binary finite geometry LDPC codes 
recently introduced in [KLF]. Also shown in the plot is the performance of the BF algorithm 
with a threshold equal to 8. 

Notes 

As proposed in [Gal], the IBP decoding algorithm can be modified  in a straightforward way to 
use log-likelihood ratios instead of probabilities. This has the advantage that no normalization 
is required in the second step of message passing. In this case, the function 

A e z + l  1 F ( z )  = - - 
e" - 1 tanh(z/2)' 

- (8.32) 

or its inverse, is needed in Step 1 of message passing. A program implementing this log-IBP 
decoder is available on the ECC web site. 
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Figure 92 Performance of Berlekamp-Massey and Gallager bit-flip algorithms  for  the  binary 
BCH (31,16,7) code. 

Note  that F ( z )  can be implemented as a look-up table. Numerical results suggest that 
quantization of F ( z )  to eight levels results in practically no performance loss compared with 
a floating point version. In [FMH], several reduced-complexity versions of the IBP algorithm 
are presented that favorably trade off decoding complexity and error performance. Other 
interesting applications of iterative decoding algorithms include fast-correlation attacks in 
cryptanalysis [MG, Glc]. 

It  is notable that LDPC codes can always detect whenever decoding errors occur, whereas 
turbo codes and product codes based on convolutional codes cannot detect many errors [Mac]. 
As it is evident from the foregoing presentation, LDPC codes have  very low complexity 
compared with iterative decoding using component MAP decoders. This is true  when 
complexity is measured in terms of the number of real additions and multiplications per block 
per iteration. 

However, it should be pointed out that IBP decoding gives  the MLD codeword only if 
the Tanner graph contains IZO cycles. Because for most practical codes the  Tanner  graph  has 
relative short cycles (lengths 4 and 6), convergence of the IBP decoding algorithm is either not 
guaranteed or slow [RSU, KFL, For71. As a result, in general, IBP decoding algorithms for 
LDPC codes may require much more iterations than iterative decoding algorithms for product 
codes with MAP component decoders. 

In terms of implementation of IBP decoding, two architectures are the following. A fast 
parallel architecture can be realized with N X-processors for code nodes and M Z-processors 
for check nodes, with connections between them specified by multiple address computation 
units (ACU). This architecture is shown in Figure 94. In the figure, X and 7r are LLR  values 
associated with the conditional probabilities used in the IBP algorithm. Alternatively,  only 
one X-processor and one Z-processor can  be  used and shared between nodes, whose metrics 
are stored in  two memories, a 7r-memory and a X-memory, as shown  in Figure 95. These 
architectures represent the extremes in the spacehime tradeoff to find the best architecture. 
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Figure 93 Performance of iterative decoding of a binary (273,191) cyclic  code. 

The number of computations in the IBP decoding algorithm can be reduced by making 
preliminary hard decisions based upon the amplitudes of the log-likelihood ratio values 
(reliabilities) of the channel symbols. This idea appears in [FK] and  in [Prl] as a method 
of dealing with short cycles in Bayesian networks (Tanner graphs). A set of highly reliable 
positions (HRP) can be selected by comparing the channel LLR  values to a threshold T .  If 
the reliability of a channel symbol exceeds T ,  then  that code node is fixed  to a hard decision 
(HD) value. As a result, the X-processor is not utilized in the decoding process. Instead, this 
processor always gives as an output either the maximum probability (LLR) or a flag indicating 
that this position is highly reliable. Consequently, the 2-processor to where the HD value is 
sent performs a smaller number of computations, because this input is  highly reliable and not 
taken into account in the probability or LLR computations. 
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REG 1 

Figure 94 Parallel architecture of an IBP decoder. 

1 ' 1  ! 
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Figure 95 Serial architecture of an IBP decoder. 



Combining codes and digital 
modulation 

In discussing soft-decision decoding, attention was focused on binary transmission, i.e.,  using 
two possible  transmitted  symbols { -1, +l}. Let the Nyquist bandwidth of a  transmission 
(or storage) signal be  the rate R, at which symbols are transmitted (or stored). For  binary 
transmission, the two values of a bit, 0 and 1, are assigned to  two  values  of the transmitted 
symbol, +l and -1, respectively. Therefore, R, bitdsecond require a  Nyquist  bandwidth of 
R, Hz. The spectral eficiency p of a  binary  transmission system equals 1 bit/sec/Hz (or 
1 bit/symbol). Coded  modulation is the joint  design of error correcting codes and digital 
modulation  formats to increase the bandwidth efficiency  of a digital communication  system. 

9.1 Motivation 

Suppose that an error correcting coding  scheme is required to increase the reliability of the 
binary  transmission  (or storage) system. Let R, = k / n  denote the rate of the code.  Then the 
spectral efficiency is p = R, bps/Hz. Thus  for  a  coded binary transmission system a spectral 
efficiency p 5 1 bps/Hz is achieved.  This translates into a faster signalling rate or larger 
bandwidth for the same bit rate. Equivalently, the bit rate has to be reduced, by a factor of 
l/R,, so as to keep the transmitted  symbol rate or  bandwidth constant. 

Example 94 Assume that 56 kbps are desired to be transmitted  over  a  channel.  The  required 
Nyquist  bandwidth of an uncoded  binary  transmission  system is 56  kHz.  Suppose a rate- 
1/2 convolutional  code is used. Then, with binary transmission, the spectral efficiency of the 
coded  system is p = 0.5 bps/Hz.  The effect of p in data rate  and signalling rate is illustrated 
in Figure 96. 

Increasing the bandwidth of the signal, as in Figure 96  (a) is not a practical solution, since 
typically the channel bandwidth is expensive (or limited, as in a  telephone line). Decreasing 
data rate (Figure 96 (b)) is a  possible solution, but places  a limit on the number of services 
or applications offered. In addition, the increased transmission delay may  not  be acceptable 
(e.g., voice or video). 

The  fundamental  question then is the following: How  to increase the data rate without 
increasing the bandwidth (or symbol rate)? The answer, as given  by Ungerboeck [Ungl] and 
Imai and Hirakawa [IH], is to use an expanded signal set (e.g., 2”-ary PSK or QAM digital 
modulation)  and then  to apply error correcting coding to increase the Euclidean distance 
between  coded  sequences. 

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)
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Figure 96 Effect of coding  in binary  transmission of information. 

9.1. l Examples of signal  sets 

Several signal sets used  in digital communication  systems are shown  in Figure 97. The I and 
Q axis represent orthogonal  signals that are used  in transmission.' In digital communication 
systems,  generally 

I = cos(2.rrfct), Q = sin(2.rrfct), (9.1) 

where I stands  for in-phase and  Q for quadrature. If a point in the IQ-plane has coordinates 
(x, y), then the transmitted signal is 

~ ( t )  = R c o s ( ~ T ~ , ~  + 4), ( k  - l)T 5 t < kT, (9.2) 

where R = d m ,  (p = tan-l(y/z), and T is the symbol duration. In other  systems 
(e.g., storage), orthogonal  pulses may  be  used,  such as those illustrated in Figure 98. The set 
of signal symbols in the two-dimensional  IQ-plane is called a constellation, and symbols are 
called signal  points. 

From the viewpoint of digital signal processing, modulation is a mapping. That is, the 
process of assigning an v-dimensional  binary  vector 6 to a signal point (x($), y(6)) in the 

For simplicity of exposition, let I = I ( t )  and Q = Q(t) .  A A 
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Figure 97 Examples of M-PSK and M-QAM signal  constellations. 

constellation. In  previous chapters, only BPSK was considered, in  which case U = 1. For 
U > 1, there are many possible  assignments of bits to signal points. That is, many  ways  to 
label the signal points. Figure 99 shows  an example of a  QPSK constellation (U = 2) with 
two different (non-equivalent)  mappings. 

Moving  from binary modulation to 2v-ary modulation  has the advantage that the number 
of bits per  symbol is increased by a factor of U, thus increasing the spectral  eficiency of the 
system. On the other  hand, the required  average  energy of the signal increases (QAM), or 
the distance  between  modulation  symbols  decreases (PSK). In practice, transmitted power is 
limited to a  maximum value. This  implies that the signal  points  become  closer to each other. 
Recall that the probability of error in  an  AWGN channel  between two signal points separated 
by  an Euclidean  distance  equal to D, is [Hay, Pro] 

where &(x) is given  by (1.2). As a result, a higher  probability of error is experienced at the 
receiver end. In this sense, the function of error correcting coding is to reduce the probability 
of error P T ( € )  and  to improve the quality of the system. 
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Figure 98 An example of two orthogonal  pulses. 

1 1  01 10 01 

(a) GRAY MAP (b) NATURAL MAP 

Figure 99 Two different  mappings of a QPSK constellation. 

9.1.2 Coded modulation 

In 1974, Massey introduced the key concept of treating coding and modulation as a joint signal 
processing entity [Mas3], see  Figure 100. That is,  the coordinated  design of error correcting 
coding and modulation schemes. 

Source  Encoder  Modulator 
I 

\ (Massey, 1974) 
Combine coding 
and modulation 

Figure 100 The  idea of joint  coding  and  modulation 

Two fundamental  questions on combining  coding  and modulation arise: 

1. How to construct the bits-to-symbols mapping? 
2.  How to assign coded bit  sequences to  coded symbol sequences? 
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Two basic approaches  were  proposed in the 1970s to design  coded  modulation  systems: 

1. Trellis Coded Modulation (TCM) [Ungl]  
Apply  a natural mapping of bits to signals, through set partitioning. Given  an 
underlying finite-state machine, assign symbol  sequences to trellis paths. Perform 
Viterbi decoding at the receiver. 

2. Multilevel Coded Modulation (MCM) [IH] 
Apply  a  mapping of codewords to bit positions, through a binary partition. For 2”- 
ary  modulation, use v error correcting codes,  one  per label bit. Perform multistage 
decoding at the receiver. 

In  both TCM and MCM, the basic idea is to expand the constellation in order to obtain 
the redundancy needed  for error correcting  coding, and  then  to  use coding to increase the 
minimum Euclidean distance between  sequences of modulated signals. 

9.1.3 Distance  considerations 

To illustrate how error correcting codes and digital modulation  can be combined, and the 
consequent  increase in the minimum distance between signal sequences  from an expanded 
signal constellation, consider the following. 

Example 95 A  block  coded QPSK modulation  scheme is shown  in Figure 101. Codewords 
of the extended  Hamming (8; 4,4) code are divided in four pairs of symbols and  mapped 
to QPSK signal points with Gray  mapping.  A nice feature of Gray labeling of QPSK 
points is that the squared  Euclidean distance between points is  equal to twice the Hamming 
distance  between their labels. As a result, a  block  coded  modulation  scheme with p = 1 
bits/symbol  and  a minimum squared Euclidean distance, or MSED, DLi,, = 8 is obtained. An 
uncoded  system with the same spectral efficiency is  BPSK, which has  an MSED DE,, = 4. 
Consequently, the asymptotic  coding gain of  this scheme is 

G = 1Ologl0 (2) = 3 dB. (9.4) 

Over an  AWGN channel, this coded  QPSK  modulation requires half the power of uncoded 
BPSK  modulation, to achieve the same probability of error P(€) .  Figure  102  shows  simulation 
results of  this scheme. 

I I 

4 bits Extended  Hamming 

Figure 101 Block coded QPSK modulation  using an extended  Hamming (8,4,4) code. 
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Figure 102 Simulation  results of a  block  coded QPSK modulation  using  an  extended 
Hamming (8,4,4) code. AWGN channel. 

Therefore,  while the use  of  an expanded  2”-ary  modulation  causes the distance between 
signal point to decrease, a  properly selected error correcting code can  make sequences of 
signal points at a  minimum  distance larger than that of an uncoded  system, with  the  same 
spectral efficiency. 

9.2 Trellis-coded  modulation (TCM) 

Proposed by Ungerboeck in 1976, the  main idea in TCM is  to perform mapping by set 
partitioning. A basic trellis structure, associated with the state transitions of a Jinite-state 
machine, is selected and signal subsets mapped  to trellis branches.  For  systems that require 
high spectral efficiency, uncoded bits may  be assigned to parallel branches in the trellis. 

9.2.1 Set  partitioning  and trellis mapping 

Bit labels assigned to the signal points are determined  from  a partition of the constellation. A 
2”-ary  modulation signal set S is partitioned in v levels. For 1 5 i 5 v, at the i-th partition 
level, the signal set is  divided into two subsets Si (0) and Si (l), such that the intra-set  distance, 
S:, is maximized. A label bit bi E (0, l} is associated with the subset choice, Si (b i ) ,  at the 
i-th partition level. This partitioning process results in a labeling of  the  signal points. Each 
signal point in the set has a  unique v-bit label blbz . . . b,, and is denoted by s ( b l ~  b2: . . . b y ) .  
With  this standard (Ungerboeck)  partitioning of a  2”-ary  modulation signal constellation, the 
intra-set distances are in nondecreasing  order 6: 5 62 5 . . . 5 6:. This strategy corresponds 
to  a natural  labeling for M-PSK modulations, i.e., binary representations of integers, whose 
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value increases clockwise (or counter-wise). Figure 103 shows  a natural mapping of bits to 
signals for the case of 8-PSK  modulation, with S: = 0.586, 6; = 2, and Si = 4. 

Ungerboeck  regarded the encoder “simply as a$nite-state machine with a given number of 
states  and  specijied  state transitions”. He gave a set of pragmatic rules to map signal subsets 
and points to branches in a trellis. These rules can  be summarized as follows: 

Rule 1: 
All subsets should  occur in the trellis with equal  frequency. 

Rule 2: 
State transitions that begin  and end in the same state should  be  assigned subsets 
separated by the largest Euclidean distance. 

Rule 3: 

Parallel transitions are assigned signal points separated by the largest Euclidean 
distance (the highest partition levels). 

The  general structure of a TCM encoder is shown  in Figure 104. In the general  case of a 
rate (v - l ) / v  TCM  system, the trellis structure is inherited from  a k / ( k  + 1) convolutional 
encoder.  The  uncoded bits introduce parallel branches in the trellis. 

Example 96 In this example,  a 4-state rate-2/3 TCM system is considered.  A constellation 
for 8-PSK  modulation  is shown  in Figure 103. The spectral efficiency is p = 2 bits/symbol. 
A  block  diagram of the encoder  is shown  in Figure 105. The  binary  convolutional  code is 
the same  memory-2 rate-1/2 code that was  used  in Chapter 5. Note from  Figure 106 that the 
trellis structure is the same as that of  the binary  convolutional  code, with the exception that 
every  branch in the original diagram is replaced by  two parallel branches,  associated with the 
uncoded bit u1. 

9.2.2 Muximum-likelihood decoding 

The Viterbi algorithm2  can be applied to decode the most likely TCM sequences, provided 
that the branch  metric  generator is modified  to include parallel branches.  Also, the selection 
of the winning  branch  and  surviving  uncoded bits should be changed.  The  survivor  path (or 
trace-back)  memory  should  include the (v - 1 - IC) uncoded bits, as opposed to just one 
bit for  rate-l/n binary  convolutional  codes. It is also important to note that in 2”-ary PSK 
or  QAM  modulation, the correlation metria for two-dimensional symbols are of the form 
xPxT + ypy,., where (xp, yp) is  a  reference signal point in the constellation and ( x T ,  y,.) is the 
received signal point. All  other  implementation issues discussed in Sections 5.4 and 7.2 apply 
to TCM  decoders. 

9.2.3 Distance  considerations  and  error pelfomance 

The error performance of TCM can be analysed in the same way as for convolutional  codes. 
That is, a  weight  enumerating  sequence  can be obtained  from the state diagram of the TCM 

~~ ~~ 

The Viterbi algorithm is  discussed  in  Sections 5.4 and 7.2. 
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Figure 103 Natural  mapping of an 8PSK constellation. 

encoder, as in Section 5.3. The only difference is that the powers are not integers (Hamming 
distances) but  real numbers  (Euclidean distances). Care  needs to  be  taken of the fact that  the 
state transitions contain parallel branches.  This  means that the labels of the  modified state 
diagram  contain two terms. See [BDMS]. 

Example 97 Figure 107 shows the modified state diagram for the 4-state TC  8-PSM 
modulation of Example 96. The  branches in the trellis have  been labeled with integers 
corresponding to the eight phases of the modulation signals. To compute the  weight 
enumerating  sequence T ( z ) ,  the same  procedure as in Section 5.3 is applied. Alternatively, by 
directly analysing the trellis structure in Figure 108, it can be deduced that  the MSED between 
coded  sequences is 

D; = min{Di,,, D&} = 3.172, 
which, when compared to an uncoded  QPSK  modulation  system with the same spectral 
efficiency of 2 bits/symbol, gives  an asymptotic  coding gain  of 2 dB. 

9.2.4 Pragmatic TCM and two-stage decoding 

For practical considerations, it was suggested in  [Vit4, ZW] that the 2U-ary  modulation signal 
constellations be partitioned in  such a way that the cosets at the top two  partition  levels are 
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Figure  104 General  encoder of rate-(v - l ) / v  trellis-coded  modulation. 

Figure 105 Encoder of a 4-state  rate-2/3  trellis coded 8-PSK modulation. 

associated with the outputs of the standard  memory-6 rate-l/:! convolutional  encoder.  This 
mapping leads to a pragmatic TCM system. With respect to the general  encoder structure in 
Figure 104, the value of k = 1 is fixed, as shown in Figure 109. As a result, the trellis structure 
of pragmatic  TCM  remains the same, as opposed to Ungerboeck-type  TCM, for all values of 
v > 2. The difference is that the number of parallel branches v - 2 increases with the number 
of bits per  symbol.  This  suggests  a  two-stage  decoding method  in which, at the first stage, the 
parallel branches in the trellis “collapse” into a single branch, and a  conventional off-the-shelf 
Viterbi decoder  used to estimate the coded bits associated with the two  top partition levels. In 
a  second  decoding stage, based on the estimated  coded bits and the positions of the received 
symbols, the uncoded bits are estimated. Figure  110 is a  block  diagram of a  two-stage  decoder 
of pragmatic  TCM. 

In [MM],  a  symbol  transformation is applied to the incoming  symbols that enables  use 
of a Viterbi decoder  without  changes in the branch  metric  computation stage. The  decoding 
procedure is similar to that presented in  [CRKO, PS], with the exception that, with symbol 
transformation, the Viterbi algorithm  can be applied as if the signals were BPSK (or QPSK) 
modulated.  This method is  described below for M-PSK modulation. 

Specifically, let (x, y)  denote the I  and  Q  coordinates of a  received  M-PSK  symbol with 
amplitude T = d m  and phase 4 = tan-’ (y/z). Based on 4, a  transformation  is 
applied  such that the M-PSK points are mapped into “coset” points labeled by the outputs of 
a rate- 1/2 64-state convolutional  encoder. 
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Figure 106 Trellis  structure of a  rate-2/3  trellis  coded 8-PSK modulation  based  on  the 
encoder of Figure 105. 

For  TCM with M-ary PSK modulation, M = 2’, v > 2, let 5 denote the number of coded 
bits per symbol3, where 5 = 1: 2. Then the following rotational transformation is applied to 
each received symbol, (x, y), to obtain an input symbol (2’; y’) to the VD, 

where is a constant  phase rotation of the constellation that affects all points equally. Under 
the transformation (9.5), a 2”-C-PSK coset in  the original 2”-PSK constellation “collapses” 
into a coset  point in a 2c-PSK coset constellation in the 2’ - y’ plane. 

Example 98 A rate-2/3 trellis-coded 8-PSK modulation with 2 coded bits per symbol 
is considered. Two information bits (u1; u2) are encoded to produce three  coded  bits 
(u2; v2; wl), which are mapped onto an 8-PSK signal point, where (v2; VI) are the outputs 
of the standard rate-l/2 64-state convolutional encoder4.  The signal points are labeled by 
bits (u2; v2; V I ) ,  and the pair ( v ~ ;  V I )  is the index of a coset of a BPSK subset in  the  8-PSK 
constellation, as shown at the top of Figure 1 l 1. 

In this  case $‘ = 24  and,  under the rotational transformation, a BPSK subset in the original 
8-PSK constellation collapses to a coset point of the QPSK coset constellation in  the 5’ - y’ 
plane, as shown  in Figure 1 1 1 .  Note that both points of a given  BPSK coset have the same 
value of 4’. This is because their phases are given  by $ and 4 + 7r. 

The case < = 2 corresponds to conventional  TCM  with  8-PSK  modulation. The case = 1 is  used  in 
TCM  with  coded  bits distributed over two 8-PSK signals, such  as  the  rate-5/6  8-PSK  modulation  scheme 
proposed in the DVB-DSNG specification [DVBl. 
v1 and v2 are the  outputs  from  generators 171 and 133, in octal,  respectively. 
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Figure 107 The  modified  state  diagram of a 4-state TC 8-PSK modulation  scheme. 

The  output of the VD is an estimate of the coded information bit, ul .  In order to estimate 
the uncoded information bit, u2, it is  necessary to re-encode u1 to determine the most  likely 
coset index. This  index and a sector in which the received  8-PSK  symbol lies can be  used 
to decode u2. For a given coset, each sector S gives the closest point  (indexed by u2) in the 
BPSK pair to the received  8-PSK  symbol.  For  example, if the decoded coset is (1,1) and the 
received  symbol lies within sector 3,  then u2 = 0, as can be  verified from  Figure  1  1 1. 

Figure  1  12  shows  simulation results of MLD  (denoted with the legend  “TC8PSK-23-SSD”) 
and  two-stage  decoding of pragmatic  TC-8PSK  (legend  “TC8PSK23-TSD”). With two-stage 
decoding,  a loss in performance of only 0.2 dB is observed  compared with MLD. 

A similar transformation  can be applied in the case of M-QAM, the difference is that the 
transformation is based solely on the I-channel and Q-channel  symbols.  That is, there is no 
need to compute the phase. An example is shown  in Figure  113  for  TC  16-QAM with 6 = 2 
coded bits per  symbol.  The  coded bits are now the indexes of cosets of QPSK subsets. The 
transformation of  16-QAM modulation (5  = 2) is given by a kind  of “modulo 4” operation: 

Finally, it is interesting to note that a pragmatic TCM system  with a  turbo  code as 
component  code was recently proposed in [WMI. 
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Figure 109 Block  diagram of an encoder of pragmatic TCM. 

9.3 Multilevel  coded  modulation  (MCM) 

In the Imai-Hirakawa multilevel coding scheme [IH], the  2V-ary modulation  signal set is 
binary partitioned in v levels. The components of codewords of v binary component codes 
Ci, 1 5 i 5 v, are used to index the  cosets  at  each partition level. One of  the advantages of 
MCM  is  the flexibility of designing coded modulation schemes by coordinating the  intra-set 
Euclidean distances, d:, i = 1; 2;.  . . ~ v, at each level  of set partitioning,  and  the minimum 
Hamming distances of the component codes. Wachsmann et al. [WFH] have proposed  several 
design rules  that  are based on capacity (by applying the chain rule  of  mutual  information) 
arguments. Moreover, multilevel codes with long binary component codes, such as turbo 
codes  or LDPC codes, were shown to achieve capacity [WFH, For81. 

It also worthwhile noting that, while generally binary codes are chosen as component codes, 
i.e., the  partition is  binary,  in general the component codes can be chosen from any  finite  field 
GF(q)  matching the partition  of the signal set. Another important advantage of  multilevel 
coding  is that (binary) decoding can be performed separately at each level. This multistage 
decoding results in  greatly reduced complexity, compared with MLD for the overall code. 
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Figure 110 Block diagram of a  two-stage  decoder of pragmatic TCM. 

9.3.1 Constructions and multi-stage  decoding 

For 1 5 i _< v, let Ci denote  a  binary linear block (n ,  ki, di) code.  Let Vi  = (vil,  vi2, .... uin) 
be a  codeword in Ci, 1 5 i 5 U. Consider apermuted time-sharing code .rr(lC1 IC2 I . . .  IC,[), 
with codewords 

v = (ZIllW21 . . .  w,1 21122122 . . .  v,2 . . .  211n212,. .. Uvn) . 

Each v-bit component in V is the label of a signal in a 2"-ary modulation signal set S. Then 

421) = ( S ( ~ 1 1 w 2 1 ~ ' ~ 0 u 1 ) , S ( 2 1 1 2 w 2 2 ~ ~ ~ 2 1 u 2 ) , ~ ~ ~ , S ( w l n w 2 n . ~ ~ ~ w v n )  

is a  sequence of signal points in S. 
The  following collection of signal sequences over S,  

Ab { ~ ( v )  : V E .rr(lCllC~l...lC,I)}, 

forms a u-level modulation  code over the signal set S,  or a v-level coded 2"-ary modulation. 
The  same definition can be applied to convolutional  component  codes. 

The rate, or spectral efficiency, of this coded  modulation  system, in bitshymbol,  is 
R = ( k l  + k2 + . . .  + k,)/n.  The MSED of this system,  denoted by D;(A) ,  is given by [IH] 

- l<?,<, 
A > min {did:}. (9.6) 

Example 99 In this example,  a three-level block  coded  8-PSK  modulation  system is 
considered.  The  encoder structure is  depicted in Figure  114.  Assuming a unit-energy 8-PSK 
signal set, and with  reference to Figure 103, note that the MSED at each partition level are 
6f = 0.586,s; = 2  and 6: = 4. 

The  MSED of this coded  8-PSK  modulation system is: 

D&(A) = min{dld?,  d&, dsd;} = min{8 x 0.586,2 x 2, l x 4) = 4, 

and the coding  gain is 3  dB  with respect to uncoded QPSK The trellises of the component 
codes  are shown in Figure 115. The overall trellis is shown in Figure 116. 
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Figure 111 Partitioning of an 8-PSK constellation ( E  = 2) and coset points. 

As mentioned before, one of the advantages of  multilevel coding is that multistage 
decoding  can be applied. Figures 117 (a) and (h) show  the  basic structures used  in encoding 
and decoding of multilevel codes.  Multistage  decoding results in reduced  complexity (e.g., 
measured as number of branches in trellis decoding),  compared to MLD decoding (e.g., using 
the Viterbi algorithm and the overall trellis.) However,  in multistage  decoding, the decoders 
at early levels regard the later levels as uncoded.  This results in more  codewords at  minimum 
distance, i.e., an increase in error  multiplicity or number of nearest  neighbors. The value of 
this loss depends  on the choice of the component  codes and the bits-to-signal mapping, and 
for BER lo-’ 10W5 can  be  in the order of several dB. 

Example 100 In this example,  multistage  decoding of three-level coded 8-PSK modulation 
is considered.  The  decoder in  the  first stage uses  the trellis of the first component  code 
Cl. Branch  metrics are the distances (correlations) from the subsets selected at the  first 
partitioning level to  the received signal sequence, as illustrated in Figure 1 18. 

Once a decision is made  in the first stage, it is passed on to the second stage. The  decoder in 
the second stage uses the trellis of the second  component  code with information from the first 
stage. For 8-PSK modulation, if  the decoded bit in the first  stage is bl = 0, then the received 
signal sequence is unchanged. If the decoded bit is bl = l, then the received  signal is rotated 
by 45”. Again,  branch  metrics are distances (correlations) from the subsets selected at  the 
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Figure 112 Simulation  results of MLD versus  two-stage  decoding  for  pragmatic 8-PSK 
modulation. 

second partitioning stage - given the decision at the first decoding stage - to the receive 
signal sequence. 

Finally, based on the decisions in  the  first  two decoding stages, the decoder of the third 
component  is used. The  branch  metrics are the same as for BPSK modulation.  There are 
four rotated versions of the BPSK constellation, in accordance with the decisions in the first 
two decoding stages. Therefore  one  approach is to rotate the received  signal according to 
the decisions  on blba and  use the same  reference BPSK constellation. This is illustrated in 
Figure 119. 

For  medium to large code lengths, hybrid  approaches may  be the way  to go  for ultimate 
MCM performance, with powerful  turbo  codes used  in the top partition levels and binary 
codes with hard-decision  decoding  assigned to lower partition levels. These  combinations can 
achieve excellent performance  [WFH]. 

9.3.2 Unequal-error-protection  with MCM 

Because of  its flexibility in designing the minimum  Euclidean distances between coded 
sequences at each partition level, MCM is an attractive scheme to achieve unequal error 
protection (UEP). However, great care has  to  be exercised in choosing the bits-to-signal 
mapping, so that the desired  UEP capabilities are not  destroyed.  This issue was investigated 
in [MFLI,  IFMLI],  where several partitioning approaches  were  introduced that constitute 
generalizations of the block [WFH] and Ungerboeck [Ungl] partitioning rules. 

In these hybrid  partitioning approaches,  some partition levels are nonstandard  while at 
other levels partitioning is performed using Ungerboeck's rules [Ungl]. In this manner,  a 
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Figure 114 Example of MCM with 8-PSK modulation. 

good tradeoff is  obtained  between error coefficients and intra-level Euclidean distances. To 
achieve  UEP capabilities, the Euclidean distances at each partition level are chosen  such that 

dlS; 2 d2S; 2 . . .  2 d,S;. (9.7) 

For 1 5 i 5 v, let i&(iii) be the codeword of Ci in correspondence to a Ici-bit message 
vector iii, and let S = S ( G )  and S’ = S(G‘) denote  coded  2”-ary  modulation signal 
sequences  corresponding to message vectors U = ( G I ,  U 2 ,  . . .  , Gv) and ii‘ = (G;,  G;, ... , G:),  
respectively. The Euclidean  separations [YI] between  coded  sequences at the i-th partition 
level, for i = 1, . . .  , v, are defined as 

si  = min{d(S,S’) : ~i # G ! , , U ~  = G S , ~  < i ] ,  (9.8) 

with SI = dl&:, s2 = d262, .. ., S ,  = d,SE. For  transmission over  an AWGN channel, the set 
of inequalities (9.7) results in message vectors with decreasing error protection levels. 

A 

It is known from  [WFH] that Ungerboeck’s partitioning rules [Ungl] are inappropriate for 
multistage  decoding of multilevel coded  modulations, at low to medium signal-to-noise ratios, 
because of the large number of nearest neighbor  sequences (NN) in the first decoding stages. 

Example 101 Figure 120 shows  simulation results of the performance of a three-level coded 
8-PSK modulation with  the (64,18,22),  (64,57,4) and (64,63,2) extended BCH codes (ex- 
BCH codes) as component  codes Ci, i = 1,2,3,  respectively. The  Euclidean separations are 
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Figure 115 Trellises of component  codes of an example MCM with 8-PSK modulation. 

SI = 12.9, s2 = s3 = 8, for  18  and  120  information bits, respectively (asymptotic  coding 
gains of 8.1  dB  and 6 dB, respectively). The  adverse effects of the number of  NN (or error 
coefficient) in the first decoding stage are such that the coding  gains are greatly reduced. 

In the following,  a  UEP  scheme  based on nonstandard partitioning is presented. The 
reader  is referred to [WFH, MFLI,  IFMLI] for details on multilevel coding  design for both 
conventional  (equal error protection) and  UEP  schemes. 

Nonstandard  partitioning 

The  block partitioning [ W H ]  shown in Figure  121  (a) is used to construct three-level coded 
8-PSK  modulation  schemes with UEP. In the figure, the color  black is used  to represent signal 
points whose label is of the form Obzb3, with b z ,  b3 E (0, l}. Similarly, the color  white is 
used for points with labels l b z b 3 .  A circle indicates that the label is of the form b lobs ,  
bl , b3 E (0, l}, while  a  square is used  to represent signal points with labels bl l b 3 .  

It can  be  seen  from  Figure  121  (b) that in order to determine the value of the first label 
bit, b l ,  only the X-coordinate is sufficient. If a signal point is on the left-hand half plane 
( X  < 0) then it corresponds to bl = 0, otherwise it corresponds to bl = 1. In the same way, 
the Y-coordinate suffices to determine the value  of the second label bit bz.  If a signal point 
lies in the upper half plane (Y > 0), then b2 = 0, otherwise bz = 1. This  property of block 
partitioning allows the first and  second levels to be decoded independently or in parallel. A 
similar observation led to the development of parallel  decoding (PD) for multilevel codes 
with Gray  mapping in [Schr]. 

Multistage  decoding 

In the first and  second  decoding stages, the decision variable is just the projection of the 
received signal sequence  onto the X or Y axis, respectively. Figure  121  (c) shows a  block 
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Figure 116 Overall trellis of an example MCM with 8-PSK modulation. 

diagram of a  multistage  decoder for a three-level coded 8-PSK modulation with block 
partitioning. The  decoders  for the  first  and second stages operate  independently on  the in- 
phase  and  quadrature  component of the received signal sequences, F, and F y ,  respectively. 
Once  decisions are made  as to the estimates of the corresponding  codewords, 61 and 62, they 
are passed on to the third decoding stage. 

Let 6i = (6i1, 6i2, . . . , 6in) E Ci be the decoded codeword at the i-th stage, i = l, 2 .  
Before the third-stage decoding,  each  two-dimensional  coordinate ( r z j ,  rv j )  of  the  received 
signal F = (Fz, Fy ) is projected  onto  a  one  dimensional  coordinate r&, 1 5 j 5 n. The values 
rkj are the decision variables used by the decoder of C,. The projection depends  on the 
decoded  quadrant, which is indexed  by the pair (Cl,, S,,), 1 5 j 5 n, as  shown in the  table 
below. 

This is a scaled rotation of F by 7r/4, so that the rotated  sequence F' = (rL1, rkz, . . . , rkn) 
can be decoded using a soft-decision procedure for component  code C,. Note that, unlike 
Ungerboeck partitioning, the independence between  the  first  and second levels in block 
partitioning results in no error  propagation from the  first decoding stage to the second. 

For i = 1 ,2 ,  . . . , v, let A;) denote the number of codewords in Ci of weight W .  Assuming 
systematic  encoding,  a union  bound  on the bit error probability of the first decoding stage can 
be  written  as [MFLI, IFMLI] 

where d$( i )  = $ [iA, + (W - i)A,I2. The probability of a bit error in the second decoding 
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Figure 117 Basic  structures of an encoder  and a decoder of multi-level  coded  modulation 
systems. 

stage upper is also bounded by (9.9) using the same  arguments  above. 

strategy: 
The  bound (9.9) can be compared with a similar one for the Ungerboeck's partitioning (UG) 

(9.10) 

From (9.9) and (9.10), it is observed that,  while Ungerboeck's partitioning increases 
exponentially the effect of nearest neighbor  sequences, by a factor of 2 w ,  the block partitioning 
has  for d2,(w) = wA: an error coefficient term, 2 - w ,  that decreases exponentially with the 
distances of the first-level component  code. As a result, for practical values  of &/No ,  the 
block partitioning may yield, at the first stage, a real coding gain even greater than the 
asymptotic coding gain. This is a very desirable feature of a  coded  modulation with  UEP. 

For  nonstandard partitioning (NS), the second level is generally  designed to  have a larger 
coding  gain  than the third  level. Under this assumption,  a  good  approximation is obtained by 
assuming that decoding  decisions in the first  and  the  second decoding stages are correct, 

(9.11) 
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Figure 118 Trellis  and  symbols  used  in  metric  computations  in  the  first  decoding  stage. 

1 OR  ROTATE THE RECEIVED 
SIGNAL POINT 

,..- ..,, x b, b2= 00 (0 deg) .... 

t * x b,b2= 01 (-45 deg) 
. .  ...- X . x b, b,= l :  (-90 deg) 
b,b2= 11 (-135 deg) 

Figure 119 Trellis  and  symbols  used  in  metric  computations  in the third  decoding  stage. 

Example 102 Consider a three-level 8-PSK modulation for  UEP with extended BCH 
(64,18,22),  (64,45,8) and (64,63,2) codes  as  the first-, second- and third-level codes, 
respectively. This coding scheme has rate  equal  to 1.97 bits per symbol and can be compared 
with uncoded QPSK modulation, which has approximately the same rate  (a difference of 
only 0.06 dB). Simulation results are shown in Figure 122. S l (n ,  k )  and UB(n, k )  denote 
simulations and upper bounds. An large coding gain of 8.5 dB  is achieved at the BER  of lop5 
for 18 most important bits (14.3%) encoded  in  the first level. In the second and third  stages, 
the corresponding values  of coding gain are 2.5  dB and -4.0 dB, respectively5. 

Note that at this BER, the  simulated  coding  gain  at the first  decoding stage is  even  greater  than the 
asymptotic  coding  gain (8.1 dB),  because  of  the  reduced error coefficients. 
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Figure 120 Simulation  results of a three-level  coded 8-PSK modulation with Ungerboeck 
mapping. 

9.4 Bit-interleaved coded  modulation (BICPVI) 

In [CTBl, CTB21, the ultimate approach to pragmatic coded modulation is presented. The 
system consists of  binary encoding followed by a pseudo-random bit  interleaver. The output 
of the interleaver is grouped in  blocks  of U bits  which are assigned, via a Gray  mapping, 
to points in a 2"-ary modulation constellation. The capacity of  this bit-interleaved  coded 
modulation (BICM) scheme has been shown to be surprisingly close to the capacity  of 
TCM, when Gray mapping is employed. Moreover, over flat Rayleigh fading channels, BICM 
outperforms a CM with symbol interleaving [CTB2]. A block diagram of a BICM system is 
shown  in Figure 123. 

Let X denote a 2"-ary signal constellation with minimum distance &in. For i = 
1; 2: . . . U ,  let li(s) be the  i-th bit of the label of a signal point x,  and let Xi C X the 
subset of signal points with labels such that the  i-th bit has a value b E (0: l}. 

9.4. I Gray  mapping 

A one-to-one and onto binary map m from { 0; l}" to X is a Gray mapping  if, for all 
i = l; 2; .  . . ;v, and b E (0: l}, each 5 E X: has  at most one nearest neighbor y E Xi, at 
distance Dmin, where b' = b 1. Gray  mapping is  the key component of a BICM system. Its 
main function is - ideally - to produce an equivalent channel that has v parallel, independent 
and memoryless, binary channels. Each channel corresponds to a position  in the label  of a 
signal x E X .  For each codeword at  the output of the binary encoder, the interleaver assigns 
at random a position  in the label of the signals t o  transmit the coded bits. 
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Figure 121 An 8-PSK constellation  with block partitioning:  (a)  labeling; (b) X coordinate 
projections;  (c)  decoder  structure. (Ci  denote  estimated  codewords  in C;, i = l, 2 ,3 . )  

9.4.2 Metric  generation:  De-mapping 

Before the description of  how metrics for an MLD decoder are generated,  some notation  is 
needed.  Let T denote the channel  output after transmission of z. Assuming uniform  input 
distribution, the conditional probability of r given ti(z) = b is 

p ( ~ l @ ( z )  = b )  = C p ( ~ / ~ ) p ( ~ l t ~ ( ~ )  = b )  = 2-(”-1) C ~ ( T I z ) .  (9.12) 
X E X  X E X ;  

Let i denote the position of the coded bit ‘uj in the  label of zcT(j). At each  time j ,  let uj be a 
code  symbol  and the interleaved signal point, received as rcT(j)  after transmission  over 
a  noisy  channel. 

The receiver then produces bit  metrics 

(9.13) 

for b = 0; l and i = 1; 2,. . . ~ v. 

decisions  based on the rule 
An MLD  algorithm,  such as the  Viterbi algorithm, uses the above  metrics and  makes 
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Figure 122 Simulation  results of a  three-level  coded 8-PSK modulation  with UEP capability. 
BCH  component  codes  and  block  partitioning. 
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Figure 123 A bit-interleaved  coded  modulation system. 

(9.14) 

As before, a max-log approximation of  (9.13) is possible, resulting  in the approximated bit 
metric, 

% h ( j ) ;  b) = max  logP(5T(j) I.). (9.15) 
Z€Xb' 

9.4.3 Interleaving 

With transmission over an AWGN channel, a short interleaver  will  suffice. The main purpose 
is  to break the  correlation introduced by the 2"-ary modulation signal set, which carries U bits 
per  signal. Therefore, an interleaver  of length equal to a  few  times Y is enough to approach 
best performance [CTB2]. Note  that this  interleaver has nothing to do with  the  interleaver that 
a turbo code  or a block product code would  use. 
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9.5 Turbo trellis-coded modulation (TTCM) 

Conceptually, there are various approaches to the combination of turbo codes, or product 
codes with interleaving, and digital modulation: Pragmatic coded modulation [LGB], turbo 
TCM with symbol  interleaving [RWl, RW2]  and turbo TCM with bit  interleaving [BDMP2]. 

9.5.1 Pragmatic  turbo TCM 

Motivated by the extraordinary performance of turbo coding schemes, in 1994 [LGB], 
another pragmatic coded modulation scheme was introduced. Its block diagram is shown  in 
Figure 124. The main feature is,  as in pragmatic TCM, the  use  of the turbo encoder and 
decoder operating as in  binary  transmission mode. This requires careful computation of the 
bit  metrics. as in the case of BICM. 

Store  and i - Y mapping - X 

Turbo n’ Bits-to-signal - 
+ 

V -  k k 

Figure 124 Combination of a  turbo  encoder  and  digital  modulation [LGB] 

9.5.2 Turbo  TCM  with  symbol  interleaving 

In 1995, Robertson and Worz proposed the use  of  recursive systematic convolutional 
encoders, such as those proposed by Ungerboeck [Ungl], as components in an  overall  coding 
system similar to that of turbo codes. A block diagram of  this scheme is shown  in Figure 125. 
As can be seen from the diagram, interleaving operates on symbols of v bits, instead of on bits 
for binary turbo codes.  There  is a need  to puncture redundant  symbols, due to the two paths 
of modulated signal points. A careful component code  (no parallel transitions) and  interleaver 
design (even positions to even positions, odd-to-odd; or even-odd  and odd-even) are required. 
In terms of  iterative decoding, note that  the systematic component cannot be separated from 
the extrinsic one since they are transmitted together in one symbol. However, the LLR  can  be 
separated into an a-priori and a systematic-and-extrinsic part. Care must be taken so that the 
information is  not  used more than once in  the component decoders. This is the reason  why 
redundant symbol puncturing, in  the form of a selector, is needed at  the output of the encoder 
[RW2]. Figure 126  shows a block diagram of  an  iterative decoder for turbo TCM. 

9.5.3 Turbo  TCM  with  bit  interleaving 

In 1996, Benedetto et al. [BDMP2] proposed symbol puncturing rules such  that  the outputs 
of the encoder contain the information bits  only once. Moreover, as opposed  to symbol 
interleaving and puncturing of redundant symbols, multiple bit interleavers were proposed. A 
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Figure 125 The  encoder  structure of a turbo  TCM  scheme with symbol  interleaving. 

Decoder 1 I 

Figure 126 An iterative  decoder  for turbo TCM with symboi  interleaving. 

block  diagram of the encoder structure is shown  in Figure 127, for the case of  two component 
codes. 

MAP decoding  and  bit  metrics 

The  decoder structure for  turbo TCM with  bit interleaving is similar to that  of binary  turbo 
codes.  The main difference is that conversion of LLRs  from bits to symbols, and from  symbols 
to bits, needs to be performed  between  decoders  [BDMP2,  VUC].  For  decoding of turbo TCM 
with bit interleaving, the LLRs that are computed  per bit need to  be converted to a  symbol 
level a-priori probability. Also, the a priori probabilities per  symbol need  to  be converted to a 
bit level extrinsic LLR’s. 

This  is  done in the following way. Let X denote the 2”-ary modulation signal set. For 
a  symbol z(6) E X with label 6 = (b l ,  b2, ’ .  , b”) ,  the extrinsic information of  bit bi, 
i = 1 , 2 ,  . . . , v, is computed as 

(9.16) 
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Figure 127 Encoder for turbo TCM with  bit  interleaving. 

Similarly, the a-priori symbol probability can  be computed  from the extrinsic LLR at the bit 
level through the expression, 

(9.17) 
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Appendix A 

Weight distributions of extended 
BCH codes 

In this appendix, the weight distributions of all extended BCH codes of length up to 128 are 

presented. The first  row of a table indicates the parameters of the code "n,k,d" (this is also 

the name of a file containing the weight distribution in the ECC web site.) Subsequent rows 

of a table list the weight W and the number of codewords of this weight A,. These codes are 

symmetric, in the sense that the relation A ,  = A,-,, for 0 5 W 5 n/2, holds. Consequently, 

only half of the distribution is listed. 

A.l Length 8 
wd.8.1.8 
8 1  

wd.8.4.4 
4 14 
8 1  

wd.8.7.2 
2 28 
4 70 

A.2 Length 16 
wd.16.05.08 
8 30 

wd.16.07.06 
6 48 
8 30 

wd.16.11.04 
4 140 
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206 

6  448 
8 870 

wd.16.15.02 
2  120 
4  1820 
6  8008 
8  12870 

A.3 Length 32 

wd.32.06.16 
16 62 

wd.32.11.12 
12 496 
16 1054 

wd.32.16.08 
8 620 
12  13888 
16  36518 

wd.32.21.06 
6  992 
8  10540 
10 60512 
12  228160 
14  446400 
16  603942 

wd.32.26.04 
4  1240 
6  27776 
8  330460 
10  2011776 
12 7063784 
14  14721280 
16  18796230 

wd.32.31.02 
2 496 
4 35960 
6  906192 
8  10518300 
10  64512240 
12  225792840 
14  471435600 
16  601080390 
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A.4 Length 64 

wd.64.07.32 
32  126 

wd.64.10.28 
28  448 
32  126 

wd.64.16.24 
24 5040 
28  12544 
32  30366 

wd.64.18.22 
22  4224 
24 5040 
26  24192 
28  12544 
30  69888 
32  30366 

wd.64.24.16 
16 2604 
18  10752 
22  216576 
24 291648 
26  1645056 
28  888832 
30  4419072 
32  1828134 

wd.64.30.14 
14  8064 
16  30828 
18 631680 
20  1128960 
22  14022144 
24  14629440 
26  105057792 
28  65046016 
30  282933504 
32  106764966 

wd.64.36.12 
12  30240 
14  354816 
16  3583020 
18  27105792 
20  145061280 
22  603113472 

207 



208 

24  1853011776 
26  4517259264 
28  8269968448 
30  12166253568 
32  13547993382 

wd.64.39.10 
10  13888 
12  172704 
14  2874816 
16  29210412 
18  214597824 
20 1168181280 
22  4794749760 
24  14924626752 
26  35889146496 
28  66620912960 
30  96671788416 
32  109123263270 

wd.64.45.08 
8  27288 
10  501760 
12  12738432 
14  182458368 
16  1862977116 
18  13739292672 
20  74852604288 
22  306460084224 
24  956270217000 
26  2294484111360 
28  4268285380352 
30  6180152832000 
32  6991765639110 

wd.64.51.06 
6  20160 
8 1067544 
10 37051840 
12  801494400 
14  11684617344 
16  119266575708 
18  879321948288 
20 4789977429888 
22  19616032446528 
24  61193769988008 
26  146864398476096 
28  273137809339136 
30  395577405119232 
32  447418802536902 
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wd.64.57.04 
4  10416 
6  1166592 
8  69194232 
10 2366570752 
12  51316746768 
14  747741998592 
16  7633243745820 
18  56276359749120 
20  306558278858160 
22  1255428754917120 
24 3916392495228360 
26  9399341113166592 
28  17480786291963792 
30  25316999607653376 
32  28634752793916486 

wd.64.63.02 
2 2016 
4  635376 
6  74974368 
8  4426165368 
10  151473214816 
12  3284214703056 
14 47855699958816 
16  488526937079580 
18  3601688791018080 
20  19619725782651116 
22  80347448443237936 
24  250649105469666110 
26  601557853127198720 
28  1118770292985240200 
30  1620288010530347000 
32  1832624140942591500 

A S  Length 128 

wd.128.008.064 
64  254 

wd.128.015.056 
56  8128 
64 16510 

wd.128.022.048 
48 42672 
56  877824 
64 2353310 

209 

wd.128.029.044 



210 

44 373888 
48 2546096 
52  16044672 
56  56408320 
60 116750592 
64 152623774 

wd.128.036.032 
32  10668 
36  16256 
40 2048256 
44 35551872 
48 353494848 
52  2028114816 
56  7216135936 
60 14981968512 
64 19484794406 

wd.128.043.032 
32  124460 
36  8810752 
40 263542272 
44 4521151232 
48 44899876672 
52  262118734080 
56  915924097536 
60  1931974003456 
64 2476672341286 

wd.128.050.028 
28  186944 
32  19412204 
36  113839296 
40 33723852288 
44 579267441920 
48 5744521082944 
52  33558415333632 
56  117224663972352 
60  247312085243776 
64  31699236111910 

wd.128.057.024 
24  597408 
28  24579072 
32  2437776684 
36  141621881856 
40  4315318568736 
44 74150180302848 
48 73528925007168 
52  4295496356229120 
56  15004724612905792 
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60   31655991621445632 
64   4574965317267238 

w d . 1 2 8 . 0 6 4 . 0 2 2  
22   243840 
24   6855968  
26   107988608  
28   1479751168  
30   16581217536  
32   161471882796  
34   1292241296640  
36   9106516329984 
38   53383279307904 
40   278420690161824 
42   1218666847725184  
44   4782630191822848 
46   15858705600596992 
48   47425684161326912 
50   120442185147493376  
52   277061634654099456 
54   543244862505775360 
56   967799721857135168 
58   1473287478189735168  
60   2041819511308530688 
62  2421550630907043328 
64   2617075886216910118 

w d . 1 2 8 . 0 7 1 . 0 2 0  
20   2674112 
22  37486336 
24   839699616  
26   13825045248  
28   188001347136  
30   2140095182336 
32   20510697927468 
34   166689980438016  
36   1156658661471040  
38   6886497209935616 
40   35363776220195360 
42   157207798773129984  
44   607468163067994304 
46   2045773679068686336 
48   6023796954778012480 
50   15537040516548126720  
52   35191124114633006464 
54   70078589269156969984 
56   122925566952088660288  
58   190054082758956107264 
60   259342737902840355456 
62   312380032198035579904 
64   332409207867786543910 
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wd.128.078.016 
16  387096 
18  5462016 
20  213018624 
22  539859840 
24  107350803840 
26  1766071867392 
28  24074650400768 
30  273932927993856 
32  2625267567169884 
34  2133648518951040 
36  14805286631892608 
38  881470039149213696 
40 4526561735332554624 
42  20122606565844068352 
44 77755925658495682560 
46  261859003134276581376 
48 771046023044966543784 
50  1988741249124011372544 
52  4504463828911859699712 
54  8970059328813665832960 
56  15734472710169831412480 
58  24326922690137187741696 
60 3319587221944924483584 
62  39984644079892337086464 
64  42548378876302513514950 

wd.128.085.014 
14  341376 
16  22121368 
18  856967552 
20  27230880768 
22  680417833472 
24 13721772977024 
26  226128254847488 
28  3081454360189952 
30  35064826913355520 
32  336014520825141340 
34  2731238665152128768 
36  1894961228051341184 
38  112834993226032103936 
40 579364846705294996864 
42  2575849616631486204416 
44 9952155728071153882112 
46  33519982404512223401600 
48  98687914666573428364840 
50  254574296248800159922816 
52  576536456040619165149184 
54  1148237129819878789497856 
56  213890548891825020657408 
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58  3114034684742715393815552 
60   4248814088020530790422528 
62   511834440874949289841152 
64   5445862703373444517825478 

w d . 1 2 8 . 0 9 2 . 0 1 2  
1 2   1 1 9 4 8 1 6  
14   45646848  
16   2751682584  
18 110071456768  
2 0  3484410778688 
22  8709939355008 
24   1756359917165952 
26   28944450656120832 
28   394426389988237184 
30   4488297727663171584 
32   43009842715896693084 
34   349598717578587531264 
36   2425549189872597678976 
38   14442886028067639783424 
40   7415866532060415580416 
42   329708906635048784769024 
44   12738753386272545590976 
46   4290559778009132197764096 
48   12632047099619818751639976 
50   32585525337307036591291392 
52   7379663146924327761511104 
54   146974422148866514243084288 
56   25777786830680023693247232 
58   39859662823272583189523712 
60   543847945961233393472654592 
62   655148393268075658872238080 
64   69770096246413149145713094 

w d . 1 2 8 . 0 9 9 . 0 1 0  
1 0   7 9 6 5 4 4  
12   90180160  
14   6463889536  
16   347764539928  
18 14127559573120  
20   44575475469248 
22   11149685265467776 
24   224811690627712384 
26   370489537782191104 
28   50486556173121673600 
30   574502176730571255552 
32   5505259786944679990620 
34   44748635720273383143168 
36   31047029627999439297536 
38   1848689417301349247899904 
40   9492309123731911851566976 
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42  42202740212894624045103744 
44 16356041742389991882232512 
46  549191653602919908961484160 
48 1616902022803263350264149928 
50  4170947258582865019960480640 
52  9445968792041391795950926784 
54  1881272610465984668145312896 
56  3299556702053516278222434304 
58  5102036860227828704471599232 
60 6961253682581943211726121216 
62  83858994648317780352552315392 
64  89224971989631194512677986758 

wd.128.106.008 
8  774192 
10  105598976 
12  11361676032 
14  828626841600 
16  44515013174520 
18  1808265733435392 
20  57056968214853376 
22  1427159096213901312 
24  28775892186952836240 
26  474226642406696116224 
28  6462279071735110418944 
30  73536278816433772929024 
32  704673252880779235687452 
34  5727825370458099461038080 
36  39740197928028063063904768 
38  236632245414203838081949696 
40 1215015567801313175697152304 
42  5401950747433627456981266432 
44 20871173342366872859566014720 
46  70296531663247684816378728448 
48 206963458912891026277198168776 
50  533881249113840797115223461888 
52  1209084005346591905941683436800 
54  2408028941464856710061855682560 
56  4223432578506218555128558121488 
58  6530607181280659655017851666432 
60 8910404713446325250255943109632 
62  10733951315294301174491841282048 
64 11420796414343588424136158689350 

wd.128.113.006 
6 341376 
8  87288624 
10  13842455424 
12  1448180487936 
14  106141978256640 
16  5697211389035256 



WEIGHT DISTRIBUTIONS OF EXTENDED BCH CODES 215 

18  231462916338818304 
20  7303265469631124224 
23  182676478544670888576 
24  3683313800412335283600 
26  60701011366229993420928 
28 827171718544587565763072 
30  9412643693444880033139200 
32  90198176361260636112668700 
34  733161647428265153721100800 
36  5086745334774298795535505920 
38  30288927413044862466125137280 
40  155521992678499175905941507120 
42  691449695671693087458634462080 
44 2671510187822394963671294035200 
46  8997956052897506127123622265600 
48 26491322740844548554720461440200 
50  68336799886586511592317937195776 
52  154762752684328935230921657151744 
54  308227704507572032682000507510400 
56  540599370048672363242473684364048 
58  835917719204114526888908154932352 
60  1140531803320872201314876100099072 
62  1373945768357978846215074177297408 
64 1461861941035652013200273232486470 

wd.128.120.004 
4  85344 
6  42330624 
8  11170182384 
10  1772228014592 
12  185359804775712 
14  13586256544975872 
16  729242357526446712 
18 29627257927486958592 
20  934817955092922629344 
22  23382589365749366429184 
24 471464166034059302122704 
26  7769729456174562056216064 
28  105877979970476869275385504 
30  1204818392766796825789470720 
32  11545366574237052418777217820 
34  93844690870798540052434360320 
36  651103402851220082586931517920 
38  3876982708869397190103809681920 
40 19906815062848699462140058602480 
42  88505561045975275152200314606080 
44 341953304041268345847846829061280 
46  1151738374770880217441839661716480 
48 3390889310828097487679807613566280 
50 8747110385483091255323050018747392 
52  19809632343594061105640384790579552 
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54  39453146176969302060067713110615552 
56  69196719366229927819863672056678992 
58  106997468058126854441956301420662272 
60  145988070825071389633119654266397216 
62  175865058349821585715411392357912576 
64 187118328452563149209991044344449600 

wd.128.127.002 
2 8128 
4 10668000 
6  5423611200 
8  1429702652400 
10 226846154180800 
12  23726045489546400 
14  1739040916651367936 
16  93343021201262198784 
18  3792289018215984005120 
20  119656698232656988471296 
22  2992971438910354793431040 
24  60347413251942500075044864 
26  994525370392012056264966144 
28  13552381436214964486037045248 
30  154216754274170157987417554944 
32  1477806921502279921677734248448 
34  12012120431462387730048509542400 
36  83341235564955678220181980577792 
38  496253786735284008587127926292480 
40 2548072328044630786408938247028736 
42  11328711813884834832046711017308160 
44 43770022917282358845017689455329280 
46  147422511970672750843485296833593344 
48 434033831785996763487994252512722944 
50  1119630129341835894935101449793699840 
52  2535632939980039741724790850645393408 
54  5050002710652071717329822398986321920 
56  8857180078877432500571052147864502272 
58  13695675911440237013532474696584396800 
60 18686473065609143965712255676040871936 
62  22510727468777167143671172081479843840 
64  23951146041928103937688710428982509568 
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Augmented code, 104 
Automatic  repeat request, 99 
AWGN channel, 15, 122 

greater than, with block partitioning, 187 
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reliability, 129 
equivalence to changing sign, 122 

BCH Bound, 45 
BCH code, 44 

extended, 57 
general decoder, 48 
how to compute weight distribution, 57 
performance AWGN channel, 57 
specified by zeros, 45 

Berlekamp-Massey algorithm, 47 
Euclidean algorithm, 47 
general, 48 
Massey algorithm, 63 
PGZ algorithm, 47 

BCJR algorithm, 137 
BEC channel, 55 
Belief propagation decoding, 162 
Berlekamp-Massey algorithm, 47,49-52 

BCH decoder 

discrepancy, 49 
errors-and-erasures 

errata evaluator, 68 
errata locator, 68 
modified discrepancy, 68 
modified Forney algorithm, 68 
modified Forney syndrome, 67 

Bit error probability 

Block code concept, 3 
Boolean function, 27 
Bound 

AWGN, 2 

BCH, 45 
bit error probability, AWGN channel, 57 

Chernoff, 19 
Hamming, l I 

RS decoder, 72 
union 

nonbinary case, 12 

AWGN channel, 16 
convolutional code, 84 
multilevel modulation code for UEP, 186 

Burst error correcting capability, 113 

Chase algorithm, 129 
soft output, 156 

correction factor, 157 
scaling factor, 157 

Chien search, 55 
Code 

self-dual, 7 ,29 
Coded modulation 

bit-interleaved (BICM), 189 
main idea, 2 
MCM, 2,173, 180 

multistage decoding, 182 
parallel decoding, 185 
unequal error protection, 183 

symbol transformation, 177 
two-stage decoding, 176 

example modified state diagram, 176 
MLD decoding, 175 

turbo trellis(TTCM), 192 
Coding gain, 2, 16 

asymptotic, 173, 187 
Complementary error function (erfc), 2 
Concatenated code, 115 
Concatenated coding, 2 
Conjugate elements, 43 
Constellation, 170 
Construction X3, 109 
Convolutional code, 2 

Pragmatic TCM 

TCM, 2, 173, 174 

block code obtained from, 79 
complete weight enumerator sequence, 83 
constraint length, 74 
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defined, 3 
direct-truncation, 80 
finite-state machine, 73 
generator sequences, 75 
polynomial generator matrix, 77 
recursive systematic (RSC code), 78 
RSC code,  144 
state diagram, 74 
tail-biting, 80 
union bound over BSC  and AWGN channels, 

84 
weight distribution block codes from, 8 1-84 
weight enumerating sequence, 82 
zero-tail code, 79 

Correlation discrepancy, 133 
Coset, 104 

decomposition, 104, 109, 118 
leader, 10 
representative, 118, 140 

CRC  code, 37 
popular polynomials, 38 

Cycle set, 43 
Cyclic  code 

defined, 33 
encoding by division by B(x), 36 
extended, 57 
general decoder, 39 
MLS code, 37 
RM code,  29 
shortened, 37 
syndrome decoding, error-trapping, 39 
zeros of, 34 

Cyclic shift, 33 
Cyclotomic coset, 43 

Decoding 
BCH codes general, 48 
BCJR algorithm, 137 
Belief propagation, 162 
Berlekamp-Massey algorithm, 47,49-52 
Chase algorithm, 129 

soft output, 156 
Chien search, 55 
Depth, 88 
Euclidean algorithm, 47,53-54 
Forney algorithm for RS codes, 62 
GMD algorithm, 132 
Log-MAP algorithm, 139 
look-up table, 10 
MAP algorithm, 137 
Massey algorithm, 63 
Max-Log-MAP algorithm, 140 
MLD,  86, 175 

Modified Forney algorithm, 68 
ordered statistics algorithm, 131 

Parallel for multilevel codes, 185 
PGZ algorithm, 47,52-53 
SOVA algorithm, 134 
Sudan algorithm, 67,  134 
SW-SOVA algorithm, 136 
two-stage, 115, 176 
Viterbi algorithm, 85-94 
with standard array, 8 

Decomposable code, 107, 117 
Direct-truncation code, 80 
Discrepancy Berlelamp-Massey algorithm, 49 
Disjunctive normal form, 27 
Distance 

designed of BCH code, 44 
free, 79 
Hamming, 4 
minimum Hamming, 4 
minimum squared Euclidean, 173 
squared Euclidean, 15 

Dual code, 6 
example, 7 
of cyclic code, 37 
of RM code, 28 

soft-output, 140 

Encoding 
non-systematic, 35 
recursive with parity-check matrix, 36 
systematic, 16, 35 
with generator matrix, 8 
with parity-check matrix, 8 

Erasure, 55 
value, 67 

Erasure correction for binary linear codes, 55 
Erasure locator polynomial, 67 
Error 

positions, 47 
values, 47 

Error bursts, 2 
Error correcting capability, 5 
Error correcting code 

as subset, 4 
defined, 3 
minimum Hamming distance, 4 

Error evaluator polynomial, 62 
Error locator polynomial, 47 
Error polynomial, 46 
Error propagation, 186 
Euclidean algorithm, 47, 53-54 

Euclidean geometry (EG) code, 45 
polynomials same up  to a constant, 66 
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Extended code. 103 

Factoring polynomials in GF(2m) is hard, 55 
Field, 40 

Galois, 40 
arithmetic, 41 
element order, 43 
representations, 41 

Finding factors of z2m - + 1,43  
Finite geometry, 28 
Flat Rayleigh fading channel 

bound, 18 
model, 17 

Fomey algorithm, 62 
Fourier transform 

Free distance, 79 
BCH decoding with, 67 

Gallager code, 160 
Galois field, 40 
Generalized concatenated code, 117 

array codes, 113 
Generator matrix, 6 
Generator polynomial, 34 

of BCH  code, 44 
of RS code, 62 

GMD decoding, 132 
Golay code, 25 
Greatest common divisor (GCD), 53 

Hamming code, 23 
shortened (71,64,3) code, 37 

Hamming space 
defined, 4 
distance, 4 
sphere, 5 

general structure, 20 
Hard-decision decoding, 16 

Incidence vector, 29 
Inner code, 1 10 
Interleaver, 152 

block, 111 
convolutional, 116 
cyclic, 114 
Ramsey, 111, 116, 152 
random, 152 
S-random, 152 

Irreducible factors, 34 
Irregular LDPC  code 

Iterative belief propagation algorithm 

Iterative belief propagation decoding, 162 

record performance, 3 

message passing, 163 

Iterative bit-flip decoding, 161 
Iterative decoding convergence, 152 

Key equation, 41 

LDPC  code, 159 

Likelihood, 85 
Linear code 

Linear feedback shift-register (LFSR), 49 
List decoding, 134 
Log and antilog tables, 42 
Log-likelihood metric, 122 
Log-likelihood ratio (LLR), 145 

Log-MAP algorithm, 139 
Low-density panty-check code, 159 

MacWilliams identity, 56 
MAP algorithm, 137 
Massey algorithm, 63 
Matrix 

error detection capability, 166 

as vector subspace, 6 

extrinsic, 146 

generator and parity-check, 6 
Vandermonde, 45 

Max-Log-MAP algorithm, 140 
Maximum-a-posteriori probability, 137 
Maximum-distance-separable (MDS) code, 62 

Maximum-length sequence (MLS) code, 37 
Meggit decoder, 39 
Message passing, 163 
Metric 

log-likelihood, 122 
Metric normalization, 90 
Minimal polynomial, 43 
Minimum Hamming distance, 4 
Minimum squared Euclidean distance, 173 
MLD decoding, 175 

weight distribution, 71 

defined, 15 
Viterbi algorithm, 86 

Modified Fomey syndrome, 67 
Modified syndrome polynomial, 67 
Modulation as mapping, 170 
Monte Carlo integration, 19 
MSED,  173 
Multilevel coding, 180 
Multilevel modulation code 

Multistage decoding, 182 
definition, 18 1 

Natural labeling, 174 
Non-primitive BCH codes, 38 
Non-systematic cyclic code, 35 
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Nyquist bandwidth, 169 

Order of an  element  in GF(2m) ,  43 
Ordered statistics decoding, 13 1 
Orthogonal checks, 30 
Outer code. 1 IO 

Parallel concatenated code, 147 
Parallel decoding of multilevel codes, 185 
Parity-check matrix, 6 

of BCH code, 45 
of cyclic code, 36 

Parity node, 159 
Parity sub-matrix, 7 
Partition level, 1 17-1 18 
Path memory, 87,88 
Pearl’s algorithm, 162 
Perfect code 

definition, 1 1  
Permutation, 11 1 
Permutation matrix, 147 
PGZ algorithm, 47, 52-53 
Polynomial 

associated with vector, 33 
erasure locator, 67 
errata locator, 68 
error, 46 
error evaluator, 62 
error locator, 47 
generator, 34 
minimal, 43 
modified syndrome, 67 
parity-check, 36 
primitive, 41 
syndrome, 39 

Polynomial code, 27,45 
Primitive 

element, 41 
polynomial, 41 

a-posteriori, 135 
AWGN, Q-function, 2 
bit error, 16 
bit error, BPSK over AWGN, 2 
correct  decoding, 14 
incorrect decoding, 14 
undetected error, 13 

Product code, 109 
decoding, 1 15 

Projective geometry (PG) code, 45 
Punctured code, 103 
Punctured convolutional codes, 94 
Puncturing 

as shortening the dual code, 103 

Probability 

Q-function, 2 

RCPC codes, 98 
Reed-Muller (RM) code, 27,45, 119 

decoder for cyclic code, 32 
majority-logic decoding, 31 
number of minimum weight codewords, 29 

Reed-Solomon (RS) code, 2 
as polynomial code, 61 
binary image of, 62 
encoding as a polynomial evaluation, 61 
generator polynomial, 62 
weight distribution, 7 1 

Reliability AWGN channel, 129 
Repeat-and-accumulate code, 154 
Repetition code 

example, 4, 5,  11 
probability decoding error, 14 

bound bit error probability, 72 
bound word error probability, 72 
error evaluator polynomial, 62 
errors-and-erasures, 67 

direct solution, 71 
errata evaluator, 68 
errata locator, 68 
modified discrepancy, 68 
modified Forney algorithm, 68 
modified Forney syndrome, 67 

RS decoder 

Forney algorithm, 62 
Massey algorithm, 63 

Self-dual code, 103 
Set partitioning, 174 

block for unequal error protection, 185 
hybrid, 183 

Shannon limit, 73 
Shortened code, IO 1 

Shortening depth, 38 
Signal point, 170 
Sliding window SOVA algorithm, 136 
Soft decision decoding, 15 
Soft-output Chase algorithm, 156 
Soft-output ordered statistics algorithm, 140 
SOVA algorithm, 134 
Spectral efficiency, 169 
Squaring construction, 108 
Standard array 

additional correctable error patterns, 102 

as look-up table, 10 
construction, 9 
decoding, 8 

State diagram 
convolutional code, 74 
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for  computing weight distribution, 81 
for computing weight enumerating sequence, 

82, 176 
Subcode property, 119 
Sudan algorithm, 134 
Sum-product algorithm, 162 
Supercode, 104 
Syndrome 

as evaluation of zeros of code, 47 
as vector, 9 
circuit for computing, 48 

Syndrome polynomial, 39 
Syndrome trellis, 128 
Systematic cyclic code, 35 
Systematic encoding, 3 

Tail-biting code, 80 
Tanner graph, 159 
Time-sharing code, 106 
Trellis diagram,  76 
Trellis structure 

example 3-level coded 8-PSK modulation, 181 
of array codes, 113 
of block and convolutional codes, 3 
Ungerboeck mapping, 174 

as a punctured product code, 148 
Turbocode, 106, 143, 147 

component RSC code, 144 
Two-dimensional code, 110 
Two-stage decoding, 115, 176 
Two-step majority-logic decoding, 31 

Unequal error protection 

Unequal error protection code, 99, 109, 118 
multilevel modulation code, 183 

example, I O  

Vandermonde matrix, 45 
Variable node, 159 
Viterbi algorithm, 86-94 

ACS, 94 
branch synchronization, 89 
traceback, 92 
traceback memory, 76 

Viterbi decoder 
off-the-shelf, 177 

Weight distribution 
convolutional codes, 81-84 
defined, 12 
extended BCH codes, 57 

Weight enumerating sequence, 82 

Zero-tail code, 79 
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