
The Art of
Error
Correcting
Coding

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

The Art of
brror
Correcting
Coding
Robert H. Morelos-Zaragoza
SONY Computer Science Laboratories, Inc. JAPAN

JOHN WILEY & SONS, LTD

Copyright Q 2002 by John Wiley & Sons, Ltd
Baffins Lane, Chichester,
West Sussex, P019 lUD, England

National 01243 779777
International (+44) 1243 779777

e-mail (for orders and customer service enquiries): cs-books@viley.co.uk
Visit our Home Page on http://www.wileyeurope.com or http://www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
under the t e rm of the Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency,
90 Tottenham Court Road, London, W1P 9HE, UK, without the permission in writing of the Publisher, with the
exception of any material supplied specifically for the purpose of being entered and executed on a computer sys-
tem, for exdusive use by the purchaser of the publication.

Neither the author(s) nor John Wiley & Sons, Ltd accept any responsibility or liability for loss or damage occa-
sioned to any person or property through using the material, instructions, methods or ideas contained herein, or
acting or refraining from acting as a result of such use. The author(s) and Publisher expressly disclaim all implied
warranties, including merchantability of fitness for any particular purpose. There will be no duty on the author(s)
or Publisher to correct any errors or defects in the software.

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances
where John Wiley & Sons, Ltd is aware of a daim, the product names appear in initial capital or capital letters.
Readers, however, should contact the appropriate companies for more complete information regarding trade-
marks and registration.

Other W h y Editorial Ofices

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

WILEY-VCH Verlag GmbH
Pappelallee 3, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton,
Queensland 4064, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road
Rexdale, Ontario, M9W 1L1, Canada

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01,
Jin Xing Distripark, Singapore 129809

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0471 49581 6

Produced from LaTeX files supplied by the author.
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire.
This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in which at least two
trees are planted for each one used for paper production.

Contents

Preface . ix

Foreword . xi

...
The ECC web site . x111

1 Introduction .

1.1.1 Block codes and convolutional codes
1.1.2 Hamming distance, Hamming spheres and error correcting capability

l . 2 Linear block codes .

1.2.2 The weight is the distance .

1 . 1 Error correcting coding: Basic concepts .

1.2.1 Generator and parity-check matrices

1.3 Encoding and decoding of linear block codes
1.3.1 Encoding with G and H .
1.3.2 Standard array decoding .

1.4 Weight distribution and error performance
1.3.3 Hamming spheres, decoding regions and the standard array

1.4.1 Weight distribution and undetected error probability over a BSC . . .
1.4.2 Performance bounds over BSC . AWGN and fading channels

1.5 General structure of a hard-decision decoder of linear codes

1
3
3
4
5
6
6
7
7
8

11
12
12
13
19

2 Hamming. Golay and Reed-Muller codes . 23
2.1 Hammingcodes . 23

2.1.1 Encoding and decoding procedures 24
2.2 The binary Golay code . 25

2.2.1 Encoding . 25
2.2.2 Decoding . 26
2.2.3 Arithmetic decoding of the extended (24. 12. 8) Golay code 26

2.3 Binary Reed-Muller codes . 27
2.3.1 Boolean polynomials and RM codes 27
2.3.2 Finite geometries and majority-logic decoding 28

3 Binary cyclic codes and BCH codes . 33
3.1 Binary cyclic codes . 33

3 . l . 1 Generator and parity-check polynomials 33

vi CONTENTS

3.1.2 The generator polynomial .
3.1.3 Encoding and decoding of binary cyclic codes
3.1.4 The parity-check polynomial .
3.1.5 Shortened cyclic codes and CRC codes

3.2 General decoding of cyclic codes .
3.2.1 GF(2m) arithmetic .

3.3 Binary BCH codes .
3.4 Polynomial codes .
3.5 Decoding of binary BCH codes .

3.5.1 General decoding algorithm for BCH codes
3.5.2 The Berlekamp-Massey algorithm (BMA)
3.5.3 PGZ decoder .
3.5.4 Euclidean Algorithm (EA) .
3.5.5 Chien search and error correction
3.5.6 Errors-and-erasures decoding .

3.6 Weight distribution and performance bounds
3.6.1 Error performance evaluation .

4 Non-binary BCH codes: Reed-Solomon codes
4.1 RS codes as polynomial codes .
4.2 From binary BCH to RS codes .
4.3 Decoding RS codes .

4.3.1 Remarks on decoding algorithms .
4.3.2 Errors-and-erasures decoding .

4.4 Weight distribution .

5 Binary convolutional codes .

5.1.1 Recursive systematic convolutional codes
5.1 Basic structure .

5.1.2 Free distance .
5.2 Connections with block codes .

5.2.1 Zero-tail construction .
5.2.2 Direct-truncation construction .
5.2.3 Tail-biting construction .
5.2.4 Weight distributions .

5.3 Weight enumeration and performance bounds
5.4 Decoding: Viterbi algorithm with Hamming metrics

5.4.1 Maximum likelihood decoding and metrics
5.4.2 The Viterbi algorithm .
5.4.3 Implementation issues .

5.5 Punctured convolutional codes .
5.5.1 Implementation issues related to punctured convolutional codes . . .
5.5.2 RCPC codes .

6 Modifying and combining codes .
6.1 Modifying codes .

6.1.1 Shortening .

34
35
36
37
39
41
44
45
46
48
49
52
53
55
55
56
57

63
63
63
64
69
69
73

75
75
80
81
81
81
82
82
83
84
86
87
88
90
96
99

100

103
103
103

CONTENTS vii

6.1.2 Extending . 105
6.1.3 Puncturing . 105
6.1.4 Augmenting and expurgating . 106

6.2 Combining codes . 108
6.2.1 Time-sharing of codes . 108
6.2.2 Direct-sums of codes . 109
6.2.3 Products of codes . 111
6.2.4 Concatenated codes . 117
6.2.5 Generalized concatenated codes . 119

7 Soft-decision decoding . 123
7.1 Binary transmission over AWGN channels 124
7.2 Viterbi algorithm with Euclidean metric . 124
7.3 Decoding binary linear block codes with a trellis 130
7.4 The Chase algorithm . 131
7.5 Ordered statistics decoding . 133
7.6 Generalized minimum distance decoding . 134

7.6.1 Sufficient conditions for optimality 135
7.7 List decoding . 136
7.8 Soft-output algorithms . 136

7.8.1 Soft-output Viterbi algorithm . 136
7.8.2 Maximum-a-posteriori (MAP) algorithm 139
7.8.3 Log-MAP algorithm . 141
7.8.4 Max-Log-MAP algorithm . 142
7.8.5 Soft-output OSD algorithm . 142

8 Iteratively decodable codes . 145
8.1 Iterative decoding . 147
8.2 Product codes . 149

8.2.1 Parallel concatenation: turbo codes 149
8.2.2 Serial concatenation . 155
8.2.3 Block product codes . 157

8.3 Low-density parity-check codes . 161
8.3.1 Tanner graphs . 161

8.3.3 Iterative probabilistic decoding: belief propagation 164

9 Combining codes and digital modulation . 171
9.1 Motivation . 171

9.1 . 1 Examples of signal sets . 172

9.1.3 Distance considerations . 175
9.2 Trellis-coded modulation (TCM) . 176

9.2.1 Set partitioning and trellis mapping 176
9.2.2 Maximum-likelihood decoding . 177
9.2.3 Distance considerations and error performance 177
9.2.4 Pragmatic TCM and two-stage decoding 178

8.3.2 Iterative hard-decision decoding: The bit-flip algorithm 163

. 9 . l . 2 Coded modulation 174

... v111 CONTENTS

9.3 Multilevel coded modulation (MCM) . 182
9.3.1 Constructions and multi-stage decoding 183
9.3.2 Unequal-error-protection with MCM 185

9.4 Bit-interleaved coded modulation (BICM) 191
9.4.1 Gray mapping . 191
9.4.2 Metric generation: De-mapping . 192
9.4.3 Interleaving . 193

9.5 Turbo trellis-coded modulation (TTCM) . 194
9.5.1 Pragmatic turbo TCM . 194
9.5.2 Turbo TCM with symbol interleaving 194
9.5.3 Turbo TCM with bit interleaving . 194

References . 197

Appendix A Weight distributions of extended BCH codes 207
A.l Length8 . 207
A.2 Length 16 . 207
A.3 Length 32 . 208
A.4 Length 64 . 209
A.5 Length128 . 211

Index . 219

Preface

This book is the result of hundreds of emails from all over the world with questions on theory
and applications of error correcting coding (ECC), from colleagues from both academia and
industry. Most of the questions have been from engineers and computer scientists needing to
select, implement or simulate a particular coding scheme. The questions were sparked by an
ECC web site that was initially set up at Imai Laboratory at the Institute of Industrial Science,
University of Tokyo, at the beginning of 1995. The reader will notice the absence of theorems
and proofs in this text. The approach is to teach basic concepts by using simple examples.
References to theoretical developments are made when needed. This book is intended to be a
reference guide to error correcting coding techniques for graduate students and professionals
interested in learning the basic techniques and applications of ECC. Computer programs
that implement the basic encoding and decoding algorithms of practical coding schemes are
available on a companion web site at:

http://the-art-of-ecc.com

This site is referred to as the “ECC web site” throughout the text. This book is unique in that
it introduces the basic concepts of error correcting codes using simple illustrative examples.
Computer programs, written in C language and available on the ECC web site, help to further
illustrate the implementation of basic encoding and decoding algorithms of important coding
schemes, such as convolutional codes, Hamming codes, BCH codes, Reed-Solomon codes
and turbo codes, and their application in coded modulation systems. The material focuses on
basic algorithms for analyzing and implementing ECC. There is a rich theory of ECC that will
be touched upon, by referring to the appropriate material. There are many good books dealing
with the theory of ECC, e.g., references [LC], [MS], [PW], [Blah], [Bos], [Wic], just to cite a
few. Readers may wish to consult them before, during or after going through the material in
this book. Each chapter describes, using simple and easy to follow numerical examples, the
basic concepts of a particular coding or decoding scheme, rather than going into the detail
of the theory behind it. Basic analysis tools are given throughout the book, to help in the
assessment of the error performance of a particular ECC scheme, for some basic channel
models. With the companion web site, this makes the book unique.

The book deals with the art of error correcting coding, in the sense that it addresses the need
for selecting, implementing and simulating algorithms for encoding and decoding of codes for
error correction and detection. The book is organized as follows. In the first chapter, the basic
concepts of error correction, and coding and decoding techniques, are introduced. Chapter 2
deals with important and simple to understand families of codes, such as the Hamming, Golay
and Reed-Muller codes. In Chapter 3, cyclic codes and the important family of BCH codes
are described. Finite field arithmetic is introduced and basic decoding algorithms, such as

X THE ART OF ERROR CORRECTING CODING

Berlekamp-Massey, Euclidean and PGZ, are described and easy to follow examples given
to understand their operation. Chapter 4 deals with Reed-Solomon codes and errors-and-
erasures decoding. A comprehensive treatment of the available algorithms is given, along with
examples of their operation. In Chapter 5, binary convolutional codes are introduced. Focus
in this chapter is on the understanding of the basic structure of these codes, along with a basic
explanation of the Viterbi algorithm with Hamming metrics. Important implementation issues
are discussed. In Chapter 6, several techniques for modifying a single code or combining
several codes are given and illustrated by simple examples. Chapter 7 deals with soft-
decision decoding algorithms, some of which have not yet received attention in the literature,
such as a soft-output ordered statistics decoding algorithm. Moreover, Chapter 8 presents
a unique treatment of turbo codes, both parallel concatenated and serial concatenated, and
block product codes, from a coding theoretical perspective. In the same chapter, low-density
parity check codes are examined. For all these classes of codes, basic decoding algorithms are
described and simple examples are given. Finally, Chapter 9 deals with powerful techniques
that combine error correcting coding with digital modulation, and several clever decoding
techniques are described. A comprehensive bibliography is included, for readers who wish to
learn more about the beautiful theory that makes it all work. It is my hope that this book
will become a valuable and indispensable tool for both students and practitioners of this
interesting, exciting and never-ending area of information theory.

I would like to thank the following persons for influencing this work. Professor Francisco
Garcia Ugalde, Universidad Nacional Autonoma de MCxico, for introducing me to the
exciting world of error correcting codes. Parts of this book are based on my Bachelor’s
thesis under his direction. Professor Edward Bertram, University of Hawaii, for teaching me
the basics of abstract algebra. Professor David Mufioz, Instituto Technologico y de Estudios
Superiores de Monterrey, MCxico, for his kindness and support. Professors Tadao Kasami,
Hiroshima City University, Toru Fujiwara, University of Osaka, and Hideki Imai, University
of Tokyo, for supporting my stays as a visiting academic researcher in Japan. Dan Luthi and
Advait Mogre, LSI Logic Corporation, for many stimulating discussions and the opportunity
to experience the process of putting ideas into silicon. Professor Marc P.C. Fossorier,
University of Hawaii, for his help. My colleague Dr. Misa MihaljeviC, Sony Computer
Science Laboratories, for pointing out connections between decoding and cryptanalysis. I
would also like to thank wholeheartedly Dr. Mario Tokoro, President of Sony Computer
Science Laboratories, and Professor Ryuji Kohno, Yokohama National University, for making
it possible for me to have a fine environment in which to write this book. In particular, I want
to express my eternal gratitude to Professor Shu Lin, now at the University of California at
Davis, who supported me when I was a graduate student in Hawaii, and encouraged me to
continue my research in this fascinating topic. Last but not least, I want to thank the many
students and colleagues who throughout the years listened to my lectures in Mexico, Japan
and the U.S.A.

I dedicate this book to the memory of Richard W. Hamming, Claude Shannon and Gustave
Solomon, three extraordinary gentlemen who greatly impacted the way people live and work
today.

Robert H. Morelos-Zaragoza
Tokyo, Japan, April 2002.

Foreword

In modem digital communication and storage systems design, information theory is becoming
increasingly important. The best example of this is the appearance and quick adoption of turbo
and block product codes in many practical satellite and wireless communication systems. I
am pleased to recommend this new book, authored by Dr. Robert Morelos-Zaragoza, to those
who are interested in error correcting codes or have to apply them. The book introduces key
concepts of error correcting coding (ECC) in a manner that is easy to understand. The material
is logically well structured and presented using simple illustrative examples. This, together
with the computer programs available on the web site, is a novel approach to teaching the
basic techniques used in the design and application of error correcting codes.

One of the best features of the book is that it provides a natural introduction to the principles
and decoding techniques of turbo codes, LDPC codes, and product codes, from an algebraic
channel coding perspective. In this context, turbo codes are viewed as punctured product
codes. With simple examples, the underlying ideas and structures used in the construction
and iterative decoding of product codes are presented in an unparalleled manner. The detailed
treatment of various algebraic decoding techniques for the correction of errors and erasures
using Reed-Solomon codes is also worth a mention. On the applications of ECC in combined
channel coding and digital modulation, or coded modulation, the author does a good job in
introducing the basic principles that are used in the construction of several important classes
of coded modulation systems.

I believe that practitioner engineers and computer scientists will find this book to be both a
good learning tool and a valuable reference. The companion ECC web site is a unique feature
that is not found anywhere else. Incidentally, this web site was born in my laboratory at the
University of Tokyo in 1995, where Dr. Morelos-Zaragoza worked until June of 1997 and did
a very good job as my associate researcher, writing many high-quality papers. Robert is polite,
modest and hard-working, and is always friendly. In summary, I strongly recommend The Art
of Error Correcting Coding as an excellent introductory and reference book on the principles
and applications of error correcting codes.

Professor Hideki Imai
The University of Tokyo
Tokyo, Japan, April 2002

The ECC web site

The Art of Error Correcting Coding and its companion web site, the ECC web site, offer
a new and unique approach to teaching the fundamental concepts of error correcting coding.
The book explains in a clear and easy to understand manner, with simple illustrative examples,
basic error correcting coding (ECC) techniques along with their decoding algorithms. Many
practical ECC techniques are covered in the book, such as cyclic codes, BCH codes, RS codes,
convolutional codes, turbo codes, product codes and low-density parity-check (LDPC) codes.
In parallel with the tutorial treatment of the book, a companion web site provides readers with
computer programs that implement decoding algorithms of the most important families of
error correcting codes.

This is a novel hands-on method of teaching the art of ECC. Moreover, many of the
computer programs on the web site can be used to simulate advanced techniques of error
correcting coding, such as belief propagation (BP) decoding of LDPC codes and iterative
decoding of product codes based on maximum-a-posteriori (MAP) decoding of the component
codes. Also, programs are available on the ECC web site to simulate combinations of codes
and digital modulation formats, and include trellis-coded modulation (TCM), multilevel coded
modulation (MCM), bit-interleaved CM (BICM) and turbo TCM (T-TCM).

Highlights of The Art of Error Correcting Coding are the following:

* Comprehensive treatment of decoding procedures for BCH and RS codes

* General decoders for RS codes

Arbitrary shortening, arbitrary starting zero, errors-and-erasures decoding
using the Berlekamp-Massey, Euclidean or Peterson-Gorenstein-Zierler (PGZ)
algorithms.

* Techniques for modifying and combining linear codes

Direct-sum, product, concatenation and generalized concatenation (GC).

Reliability-based decoding of linear block codes

Generalized minimum distance (GMD) decoding algorithm for RS codes, Chase
algorithms and ordered-statistics decoding (OSD) algorithm for binary linear
block codes. Viterbi decoding using a trellis.

* Soft-input soft-output (SISO) decoding of binary linear block codes

xiv THE ART OF ERROR CORRECTING CODING

This includes SO-Chase and SO-OSD algorithms, which have not received
attention in other textbooks. Optimal MAP decoding and its approximations.
Belief propagation decoding.

Combined coding and modulation

TCM, multilevel coding and unequal error protection (UEP), BICM and turbo
TCM.

A companion web site for the book The Art of Error Correcting Coding has been set up
and is located permanently at the following URL address:

the-art-of-ecc.com

The ECC web site contains computer programs written in C language to implement
algorithms for encoding and decoding of important families of error correcting codes. The
web site is maintained by the author, to ensure that the domain name remains unchanged. An
important advantage of having a companion web site is that it allows the author to post update
notes, new computer programs and simulation results relevant to the contents of the book. The
computer programs in the ECG web site are organized in two ways: by topic and by function.

In the topical organization of the programs, the logical structure of the book is
closely followed, going from simple syndrome-based decoding of linear block codes to
more elaborate algebraic decoding over finite fields of BCH and Reed-Solomon codes,
passing through Viterbi decoding of convolutional codes and decoding of combinations and
constructions of codes, to iterative decoding of turbo and product codes, belief-propagation
decoding of low-density parity-check codes and applications in coded modulation techniques.
The index of programs by topic is summarized below.

1. Linear block codes
- Computing the weight distribution

- Bounds on error performance over AWGN, flat Rayleigh fading and BSC
channels

2. Hamming, Golay and Reed-Muller codes

- Hamming codes and syndrome-based decoding

- Binary Golay (23,12,7) code and look-up table decoding
- Extended Golay (24,12,8) code and syndrome-based decoding

3. Binary cyclic codes and BCH codes

- Error-trapping decoding of binary cyclic codes

- Berlekamp-Massey, Euclidean and PGZ algorithms

- Chien search and error correction

- Errors-and-erasures decoding

- Error performance evaluation

4. Reed-Solomon codes
- Berlekamp-Massey, Euclidean and PGZ algorithms

THE ECC WEB SITE xv

- Errors-and-erasures decoding

- Weight distributions and error performance evaluation
5. Binary convolutional codes

- Weight enumeration sequences and error performance evaluation

- Viterbi algorithm with Hamming metrics
- Decoding of punctured convolutional codes

6. Soft-decision decoding
- Viterbi algorithm with Euclidean metrics
- Decoding binary linear block codes with a trellis

- Chase type-I1 algorithm
- Ordered statistics decoding (OSD)

- GMD decoding

7. Soft-input soft-output (SISO) algorithms
- MAP and log-MAP

- Max-log-MAP and SOVA
- SO-OSD and SO-Chase

8. Iteratively decodable codes
- Parallel concatenation (turbo codes)

- Serial concatenation (product codes)
- Block product codes

- LDPC codes: iterative decoding (bit-flip and belief-propagation)

9. Coded modulation
- Trellis coded modulation (TCM) and pragmatic TCM

- Multilevel coded modulation (MCM) and unequal-error-protection MCM

- Bit-interleaved coded modulation (BICM)
- Turbo TCM

The functional organization of the programs in the ECC web site is intended for readers
who already know exactly what they are looking for. In particular, this classification of
the programs is followed with respect to the decoding algorithms. The organization of the
programs according to their functionality is summarized below.

1. Basic performance analysis tools

- Bounds and approximations on the block and bit error rate

- Data files with weight distributions of extended binary BCH codes
- Program to compute the weight distribution of a code given its generator matrix

2. Hard-decision decoding
- Syndrome decoding of short linear block codes

xvi THE ART OF ERROR CORRECTING CODING

- Berlekamp-Massey algorithm-based decoding of RS and BCH codes

- Euclidean algorithm-based decoding of RS and BCH codes

- Peterson-Gorenstein-Zierler (PGZ) algorithm-based decoding of RS and BCH
codes

- Viterbi algorithm

3. Soft-decision decoding
- Viterbi algorithm for convolutional and linear block codes

- Chase type-I1 algorithm
- GMD algorithms

- OSD algorithm

4. SISO decoding
- Optimal MAP algorithm (also known as the BCJR’ algorithm) and log-MAP

algorithm

- Max-log-MAP and soft-output Viterbi (SOVA) algorithms

- SO Chase and SO-OSD algorithms for decoding linear block codes

5. Iterative decoding
- Partial product (“parallel concatenation”) codes

- Full product (“serial concatenation”) codes

- Sum-product or BP algorithm for LDPC codes

6. Combination of ECC and modulation
- MLD decoding of TCM and two-stage decoding of pragmatic TCM

- Multistage decoding of multilevel codes

- Applications of multilevel codes in unequal error protection

- BICM

- Turbo TCM

BCJR stands for Bahl-Cocke-Jelinek-Raviv after the authors

1

Introduction

The history of ECC started with the introduction of the Hamming codes [Ham], at about
the same time as the seminal work of Shannon [Sha]. Shortly after, Golay codes were
invented [Gol]. These first classes of codes are optimal, in a sense to be defined in a subsequent
section.

Figure 1 shows the block diagram of a canonical digital communications/storage system.
This is the famous Figure 1 in most books on the theory of ECC. The information source and
destination will include any source coding scheme matched to the nature of the information.
The ECC encoder takes as input the information symbols from the source and adds redundant
symbols to it, so that most of the errors - introduced in the process of modulating a signal,
transmitting it over a noisy medium and demodulating it - can be corrected.

.
.._.._.._.._....

Figure 1 A canonical digital communications system.

Usually, the channel is assumed to be such that samples of an additive noise process
are added to the modulated symbols (in their complex baseband representation). The noise
samples are assumed to be independent from the source symbols. This model is relatively
easy to track and includes additive white Gaussian noise (AWGN) channels, flat Rayleigh
fading channels, and binary symmetric channels (BSc). At the receiver end, the ECC decoder
utilizes the redundant symbols to correct channel errors. In the case of error detection, the
ECC decoder can be thought of as a re-encoder of the received message and a check that the
redundant symbols generated are the same as those received.

In classical ECC theory, the combination of modulation, noisy medium and demodulation
was modeled as a discrete memoryless channel with input V and output F . An example of

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

2 THE ART OF ERROR CORRECTING CODING

this is binary transmission over an AWGN channel, which is modeled as a binary symmetric
channel (BSC) with a probability of channel error p - or transition probability - equal to
the probability of a bit error for binary signalling over an AWGN,

P = Q (E) :

where

is the Gaussian Q-function‘, and Eb/No is the signal-to-noise ratio (SNR) per bit. This case
is treated later in this chapter.

In 1974, Massey [Mas31 suggested considering ECC and modulation as a single entity,
known in modern literature as coded modulation. This approach provides a higher efficiency
and coding gain2 than the serial concatenation of ECC and modulation, by joint design of
codes and signal constellations. Several methods of combining coding and modulation are
covered in this book, including: Trellis-coded modulation (TCM) [Ungl] and multilevel coded
modulation (MCM) [IH]. In a coded modulation system, the (soft-decision) channel outputs
are processed directly by the decoder. In contrast, in a classical ECC system, the hard decision
bits from the demodulator are fed to a binary decoder.

Codes can be combined in several ways. An example of serial concatenation (that is,
concatenation in the classical sense) is the following. For years, the most popular concatenated
ECC scheme has been the combination of an outer Reed-Solomon code, through intermediate
interleaving, and an inner binary convolutional code. This scheme has been used in numerous
applications, ranging from space communications to digital broadcasting of high definition
television. The basic idea is that the soft-decision decoder of the convolutional code produces
bursts of errors that can be broken into smaller pieces by the deinterleaving process and
handled effectively by the Reed-Solomon decoder. Reed-Solomon codes are non-binary codes
that work with symbols composed of several bits, and can deal with multiple bursts of errors.
Serial concatenation has the advantage that it requires two separate decoders, one for the inner
code and one for the outer code, instead of a single but very complex decoder for the overall
code.

This book examines these types of ECC systems. First, basic code constructions and
their decoding algorithms, in the Hamming space (that is, dealing with bits), are presented.
Subsequently, the second part of the book introduces soft-decision decoding algorithms for
binary transmission, that work over the Euclidean space and achieve a reduction in the
required transmitted power per bit of at least 2 dB, compared with Hamming-space (hard-
decision) decoders. Several kinds of soft-decision decoders are considered, with attention
given to their algorithmic aspects (how they work) instead of their theoretical aspects (why
they work). Finally, combinations of codes and interleaving for iterative decoding and
combined coding and modulation are the topic of the last part of the book.

Note that, in terms of the complementary error function, Q(z) = i e r f c (z / f i) .
Coding gain is defined as the difference in signal-to-noise ratio between the coded system and an uncoded
system with the same rate.

INTRODUCTION 3

1.1 Error correcting coding: Basic concepts

All error correcting codes are based on the same basic principle: Redundancy is added
to information in order to correct any errors that may occur in the process of storage or
transmission. In a basic (and practical) form, redundant symbols are appended to information
symbols to obtain a coded sequence or codeword. For the purpose of illustration, a codeword
obtained by encoding with a block code is show in Figure 2. Such an encoding is said to be
systematic. This means that the information symbols always appear in the first IC positions of a
codeword. The remaining n - IC symbols in a codeword are some function of the information
symbols, and provide redundancy that can be used for error correctioddetection purposes.
The set of all code sequences is called an error correcting code, and will be denoted by C.

f n symbols >

information I r e d u n d a n c y 1

c- ksymbols -K- n-ksymbols -
Figure 2 Systematic block encoding for error correction.

l . I . I Block codes and convolutional codes

According to the manner in which redundancy is added to messages, ECC can be divided into
two classes: block and convolutional. Both types of coding schemes have found practical
applications. Historically, convolutional codes have been preferred, apparently because of
the availability of the soft-decision Viterbi decoding algorithm and the belief for many
years that block codes could not be efficiently decoded with soft-decisions. However, recent
developments in the theory and design of soft-decision decoding algorithms for linear block
codes have helped to dispel this belief. Moreover, the best ECC known to date (beginning of
the twenty-first century) are block codes (irregular low-density parity-check codes).

Block codes process the information on a block-by-block basis, treating each block of
information bits independently from others. In other words, block coding is a memoryless
operation, in the sense that codewords are independent from each other. In contrast, the output
of a convolutional encoder depends not only on the current input information, but also on
previous inputs or outputs, either on a block-by-block or a bit-by-bit basis. For simplicity of
exposition, we begin with a study of the structural properties of block codes. Many of these
properties are common to both types of codes.

It should be noted that block codes have in fact memory, when encoding is thought of as
a bit-by-bit process and within a codeword. Most recently the difference between block and
convolutional codes has become less and less well defined, specially after recent advances in
the understanding of the trellis structure of block codes and the tail-biting structure of some
convolutional codes. Indeed, colleagues working on convolutional codes sometimes refer to
block codes as “codes with time-varying trellis structure.” Similarly, researchers working with
block codes may consider convolutional codes as “codes with a regular trellis structure.”

4 THE ART OF ERROR CORRECTING CODING

1.1.2 Hamming distance, Hamming spheres and error correcting capability

Consider an error correcting code C with binary elements. As mentioned above, block codes
are considered for simplicity of exposition. In order to achieve error correcting capabilities,
not all the 2" possible binary vectors of length n are allowed to be transmitted. Instead, C is
a subset of the n-dimensional binary vector space V2 = (0, l}", such that its elements are as
far apart as possible.

In the binary space V,, distance is defined as the number of entries in which two vectors
differ. Let el = (x l , ~ , x l , l , . . . , Z I , ~ - ~) and ZZ = (2 2 , 0 , 2 2 , 1 , . . . , x,,"-l) be two vectors in
V2. Then the Hamming distance between 3 1 and 2 2 , denoted d H (Z 1 , Z Z) , is defined as

d H (5 1 7 Z 2) = I {i : Z l , i # m , i , 0 L i n} 1 , (1.3)

where IAl denotes the number of elements in (or the cardinality of) a set A .

Hamming distance among all possible distinct pairs of codewords in C,
Given a code C, its minimum Hamming distance, d,i,, is defined as the minimum

dmin = - F i n { d H (a l , f i z) l f i l # V,}. (1.4)
v1,vzEC

Throughout the book, (n, IC, d,in) is used to denote the parameters of a block code of
length n, that encodes messages of length IC bits and has a minimum Hamming distance dmin.
The assumption is made that the size of the code is (Cl = 2 k .

Example 1 The simplest error correcting code is a binary repetition code of length 3. It
repeats each bit three times, so that a '0' is encoded onto the vector (000) and a ' 1 ' onto
the vector (1 1 1). Since the two codewords differ in all three positions, the Hamming distance
between them is equal to three. Figure 3 is a pictorial representation of this code. The 3-
dimensional binary space corresponds to the set of 23 = 8 vertices of the three-dimensional
unit-volume cube. The Hamming distance between codewords (000) and (1 11) equals the
number of edges in a path between them. This is equivalent to the number of coordinates that
one needs to change to convert (000) into (1 1 l), or vice versa. Thus d H ((000), (111)) = 3.
Since there are only two codewords in this case, dmin = 3.

Figure 3 A (3,1,3) repetition code in a 3-dimensional binary vector space.

The binary vector space V2 is also known as a Hamming space. Let V denote a codeword
of an error correcting code C. A Hamming sphere &(V), of radius t and centered around V,
is the set of vectors in V, at a distance less than or equal to t from the center V ,

St(.) = {Z E V 2 l d , y (Z , U) 5 t } . (1.5)

INTRODUCTION 5

Note that the size of (or the number of codewords in) &(V) is given by the following
expression

Example 2 Figure 4 shows the Hamming spheres of radius t = 1 around the codewords of
the (3 ,1,3) binary repetition code.

Figure 4 Hamming spheres of radius t = 1 around the codewords of the (3,1,3) binary
repetition code.

Note that the Hamming spheres for this code are disjoint, that is, there is no vector in V2 (or
vertex in the unit-volume three-dimensional cube) that belongs to both S1 (000) and S1 (111).
As a result, if there is a change in any one position of a codeword V, then the resulting vector
will still lie inside a Hamming sphere centered at V. This concept is the basis of understanding
and defining the error correcting capability of a code C.

The error correcting capability, t , of a code C is the largest radius of Hamming spheres
&(G) around all the codewords V E C, such that for all different pairs Gi, Vj E C, the
corresponding Hamming spheres are disjoint, i.e.,

t = _max (elSt(vi) n St(vj) = 0, vi # vj}. (1.7)
V i , U j € C

In terms of the minimum distance of C, dmin, an equivalent and more common definition is

t = l(dmin - 1)/21j (1.8)

where 1x1 denotes the largest integer less than or equal to x.
Note that in order to compute the minimum distance dmin of a block code C, in accordance

with Equation (1.4), a total of (at most) 2 k (2 k - 1) distances between distinct pairs of
codewords are needed. This is practically impossible even for codes of relatively modest size,
say, IC = 50. One of the advantages of linear block codes is that the computation of dmin
requires one only to know the Hamming weight of all 2k - 1 nonzero codewords.

1.2 Linear block codes

As mentioned above, finding a good code means finding a subset of V2 with elements as far
apart as possible. This is very difficult. In addition, even when such a set is found, there is still
the problem of how to assign codewords to information messages.

6 THE ART OF ERROR CORRECTING CODING

Linear codes are vector subspaces of Vz. This means that encoding can be accomplished
by matrix multiplications. In terms of digital circuitry, simple encoders can be built using
exclusive OR’s, AND gates and D flip-flops. In this chapter, the binary vector space operations
of sum and multiplication are meant to be the output of exclusive-OR (modulo 2 addition) and
AND gates, respectively. The tables of addition and multiplication for binary elements are:

a b a + b a . b
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

which correspond, as mentioned previously, to the outputs of a binary “X-OR’ logic gate and
a binary “AND” logic gate, respectively.

I .2.1 Generator and parity-check matrices

Let C denote a binary linear (n, k , dmin) code. Since C is a k-dimensional vector subspace,
it has a basis, say {VO, VI,. . . , iik-l}, such that any codeword V E C can be represented as a
linear combination of the elements in the basis:

V = ZLG, (1.10)

where

Since C is a k-dimensional vector space in V2, there is an (n - k)-dimensional dual space
CT, generated by the rows of a matrix H , called theparity-check matrix, such that GHT = 0,
where HT denotes the transpose of H . In particular, note that for any codeword tj E C,

UHT = 0. (1.12)

Equation (1.12) is of fundamental importance in decoding of linear codes, as will be shown
in section 1.3.2.

A linear code CL that is generated by H is a binary linear (n, n - k , d k i n) code, called
the dual code of C.

1.2.2 The weight is the distance

As mentioned in section 1.1.2, a nice feature of linear codes is that computing the minimum
distance of the code amounts to computing the minimum Hamming weight of its nonzero

INTRODUCTION 7

codewords. In this section, this fact is shown. First, define the Hamming weight, wtH(2), of
a vector 5 E V, as the number of nonzero elements in 2. From the definition of the Hamming
distance, it is easy to see that &H(%) = d H (% : 0). For a binary linear code c, note that the
distance

d H (V 1 ; Vij2) d H (e 1 + ‘u2; 8) = W t H (v 1 + e2). (1.13)

Finally, by linearity, V l + Cij2 E C. As a consequence, the minimum distance of C can be
computed by finding the minimum Hamming weight among the 2k - 1 nonzero codewords.
This is simpler than the brute force search among all pairs of codewords, although still a
considerable task even for codes of modest size (or dimension k) .

1.3 Encoding and decoding of linear block codes

1.3.1 Encoding with G and H

Equation (1.10) gives an encoding rule for linear block codes that can be implemented in a
straightforward way. If encoding is to be systematic, then the generator matrix G of a linear
block (n: k : d m i n) code C can be brought to a systematic form, Gsys, by elementary row
operations and/or column permutations. Gsys is composed of two sub-matrices: The k-by-k
identity matrix, denoted I k , and a k-by-(n - IC) parity sub-matrix P, such that

where
/ Po,o P0,l . . . &,n-k-1 \

(1.15)

Since G H T = 0, it follows that the systematic form, Hsys, of the parity-check matrix is

H s y s x (P ’ - I l n - k 1. (1.16)

Example 3 Consider a binary linear (4: 2: 2) code with generator matrix

To bring G into systematic form, permute (exchange) the second and fourth columns and
obtain

Thus the parity-check sub-matrix is given by

It is interesting to note that in this case, the relation P = PT holds3. From (1.16) it follows

In this case, the code in question is referred to as a se[f-dual code. See also Section 2.2.3.

8 THE ART OF ERROR CORRECTING CODING

that the systematic form of the parity-check matrix is

In the following let 2L = (uo; u1 . . . u k - 1) denote an information message to be encoded
and V = (VO; v1 . . . ; ~ " - 1) the corresponding codeword in C.

If the parameters of C are such that k < (n - k), or equivalently the code rate k / n < l / 2 ,
then encoding with the generator matrix is the most economical. The cost considered here is
in terms of binary operations. In such case

V = iiGSys = (U 7 up) ; (1.17)

where U p = 'L1P = (w k w k + l ; . . . vn-l) represents the parity-check part of the codeword.
However, if k > (n - k) , or k / n > 1/2, then alternative encoding with the parity-

check matrix H requires less number of computations. In this case, we have encoding
based on Equation (1.12), (21; 'Up)HT = 0, such that the (n - IC) parity-check positions
'uk wk+ l . . . w,-1 are obtained as follows:

W; = uop0,j + u1p1,; + ' . ' + uk-lPk-1,;; k I: j < n. (1.18)

Stated in other terms, the systematic form of a parity-check matrix of a linear code has as
entries of its rows the coefficients of the parity-check equations, from which the values of the
redundant positions are obtained. This fact will be used when low-density parity-check codes
are presented, in Section 8.3.

Example 4 Consider the binary linear (4; 2; 2) code from Example 3. Let messages and
codewords be denoted by U = (210; u1) and V = (W O ; 211 w2 w 3) , respectively. From Equation
(1.18), we have that

The correspondence between the 2' = 4 two-bit messages and codewords is as follows:

(00) l+ (0000)
(01) e (0110)
(10) H (1011)
(11) H (1101) (1.19)

1.3.2 Standard array decoding

In this section, a decoding procedure is presented that finds the closest codeword V to a
received noisy word F = fj + e. The error vector E E (0; l}" is produced by a BSC, as
depicted in Figure 5. It is assumed that the crossover probability (or BSC parameter) p is such
thatp < 1/2.

A standard array [Sle] for a binary linear (n; I C ; &in) code C is a table of all possible
received vectors F arranged in such a way that the closest codeword V to F can be read out.

INTRODUCTION

sent received

9

Figure 5 A binary symmetric channel model.

Table 1 The standard array of a binary linear block code.
- -

S Go = 0 G2 . . . Gk- l

0 V0 = 0 el . . . V2.b-1

S1 el e1 + V 1 . . . el + V2k-1

3 2 e 2 e 2 + v1 . . . e 2 + '62k-1

-

The standard array contains Z n P k rows and 2k + 1 columns. The entries of the rightmost 2k
columns of the array contain all the vectors in V2 = (0 , l}n.

In order to describe the decoding procedure, the concept of syndrome is needed. The
syndrome of a word in V2 is defined from Equation (1.12) as

S = THT, (1.20)

where H is the parity-check matrix of C. That S is indeed a set of symptoms that indicate
errors is shown as follows. Suppose that a codeword E C is transmitted over a BSC and
received as F = V + E . The syndrome of T is

g FHT = (V + e)fp = (gp, (1.21)

where to obtain the last equality Equation (1.12) has been used. Therefore, the computation
of the syndrome can be thought of as a linear transfonnation of an error vector.

Standard array construction procedure

1. As the first row, in the positions corresponding to the 2k rightmost columns, enter all
the codewords of C, beginning with the all-zero codeword in the leftmost position.
In the position corresponding to the first column, enter the all-zero syndrome. Let

2. Let j = j + 1. Find the smallest Hamming weight word E j in V2, not in C , and
not included in previous rows. The corresponding syndrome Sj = ejHT is the first
(rightmost) entry of the row. The 2k remaining entries in that row are obtained by
adding E j to all the entries in the first row (the codewords of C).

3. Repeat the previous step until all vectors in V2 are included in the array.
Equivalently, let j = j + 1. If j < then repeat previous step, otherwise
stop.

j = 0.

10 THE ART OF ERROR CORRECTING CODING

Example 5 The standard array of the binary linear (4,2,2) code is the following:

S 00 01 10 11
00 0000 0110 101 1 1101
11 1000 1110 0011 0101
10 0100 0010 1111 1001
01 0001 0111 1010 1100

Decoding with the standard array proceeds as follows. Let F = V + E be the received word.
Find the word in the array and output as decoded message ii the header of the column in which
F lies. Conceptually, this process requires storing the entire array and matching the received
word to an entry in the array.

However, a simplified decoding procedure can be found by noticing that every row in the
array has the same syndrome. Each row of the array, denoted Rowi, for 0 5 i < 2 n - k , is a
coset of C, such that Row2 = { E2 + v12) E C} . The vector ei is known as the coset leader.

The syndrome of the elements in the i-th row is given by

Si = (e2 + V) H T = EiHT, (1.22)

which is independent of the particular choice of V E C. The simplified decoding procedure is:
Compute the syndrome of the received word F = + V ,

Si, = (eg + v) HT = Ei ,HT,

and find Sir in the leftmost column of the standard array. Then read out the value of ei,, from
the second column, an add it to the received word to obtain the closest codeword V’ E C to F .
Therefore instead of n x 2” bits, standard array decoding can be implemented with an array
of n x 2n”.-k bits.

Example 6 Consider again the binary linear (4,2,2) code from Example 3. Suppose that the
codeword V = (0110) is transmitted and that F = (0010) is received. Then the syndrome is

From the standard array of the code, the corresponding coset leader E’ = (0100) is found, and
therefore the estimated codeword is V‘ = F + E’ = (0010) + (0100) = (0110). One error
has been corrected! This may sound strange, since the minimum distance of the code is only
two and thus according to (1 .S) single error correction is impossible. However, this can be
explained by looking again at the standard array of this code (Example 5 above). Note that
the third row of the array contains two distinct binary vectors of weight one. This means that
only three out of a total of four single-error patterns can be corrected. The error above is one
of those correctable single-error patterns.

It turns out that this (4,2,2) code is the simplest instance of a linear unequal error
protection (LUEP) code [WV, Van]. This LUEP code has a separation vector S = (3, a),
which means that the minimum distance between any two codewords for which the first
message bit differs is at least three and that for the second message bit is at least two.

If encoding is systematic, then the above procedure gives the estimated message U‘ in the
first k positions of V’. This is a plausible reason for having a systematic encoding.

INTRODUCTION 11

1.3.3 Hamming spheres, decoding regions and the standard array

The standard array is also a convenient way of understanding the concept of Hamming sphere
and error correcting capability of a linear code C, introduced in Section 1.1.2.

By construction, note that the 2k rightmost columns of the standard array, denoted Colj, for
1 5 j 5 2 k , contain a codeword V j E C and a set of Z n P k - 1 words at the smallest Hamming
distance from Vj, that is,

C01j = { V j + ei(Ei E ROW^: 0 5 i < 2 n - k } . (1.23)

The sets Colj are the decoding regions, in the Hamming space, around each codeword B j E C,
for 0 5 j 5 2k - 1. This is to say that if codeword VU^ E C is transmitted over a BSC and the
received word F lies in the set Colj, then it will be successfully decoded into V j .

Hamming bound

The set Colj and the error correcting capability t of code C are related by the Hamming
sphere St("): A binary linear (n; k: &,in) code C has decoding regions Colj that properly
contain Hamming spheres St(Bj), i.e., St(iij) Colj.

By noticing that the size of Colj is 2n-k , and using Equation (1.6), we obtain the celebrated
Hamming bound

(;) 5 2 n - k .
i=O

(1.24)

The Hamming bound has several combinatorial interpretations. One of them is:

The number of syndromes, 2n-k, must be greater than or equal to the
number of correctable error patterns, c:=:, (y) .

Example 7 The binary repetition (3; 1; 3) code has generator matrix G = (1 1 1) and
parity-check matrix

" = (l 0 1)
1 1 0

Accordingly, its standard array is the following:

S 0 l
00 000 111
11 100 011
10 010 101
01 001 110

The four vectors in the second column of the array (i.e., the coset leaders) are the elements of
the Hamming sphere SI (000) in Figure 4, which consists of all binary vectors of length three
with Hamming weight less that or equal to one. Similarly, the entries of the third (rightmost)
column of the array are the elements of S1 (1 11). For this code, the Hamming bound (l .24)
holds with equality.

Block codes satisfying the bound (1.24) are said to be p e ~ e c t codes. The only perfect
nontrivial codes are the binary Hamming (2- - 1; 2m - m - 1; 3) codes, the nonbinary

12 THE ART OF ERROR CORRECTING CODING

Hamming (m; B - m - 1; 3) codes, q > 2, the repetition (n; 1; n) codes, the parity-
check (n; n - 1: 2) codes, the binary Golay (2 3 ; 1 2 , 7) code and the ternary Golay (11: 6: 5)
code. The extended codes (obtained by appending an overall parity-check bit) of the Hamming
and Golay codes are also perfect.

For nonbinary linear codes, defined over a field of q elements, with q = p m and p > 2 a
prime number, the Hamming bound becomes

(1.25)

1.4 Weight distribution and error performance

When selecting a particular coding scheme, it is important to assess its error performance.
There are several measures of the performance of an ECC scheme. In this section, expressions
for linear codes are introduced, for three basic channel models: The BSC model, the additive
white Gaussian noise (AWGN) channel model and the flat Rayleigh fading channel model.

I .4. I Weight distribution and undetected error probability over a BSC

The weight distribution W (C) of an error correcting code C, is defined as the set of n + 1
integers W (C) = (Ai: 0 5 i 5 n}, such that there are Ai codewords of Hamming weight i
in C, for i = 0; 1 : . . . n.

An expression for the probability of undetected error of a linear code over a BSC is derived
next. First, note that the Hamming weight of a word V , wtH(V) equals the Hamming distance
to the all-zero word, wtH(V) = d ~ (u , 0). Also, as noted before, the Hamming distance
between any two codewords 81 V2 in a linear code C equals the Hamming weight of their
difference,

dH(V1; V 2) = dH(U'1 + U 2 : 0) = W t H (V 1 + 8 2) = wtff(83);

where, by linearity of C, u3 E C.

word differs from the transmitted codeword but the syndrome equals zero. That is,
The probability of an undetected error, denoted P,(C), is the probability that the received

s = (v + E) H ~ = E H ~ = o W E E C .

Therefore, the probability that the syndrome of the received word is zero equals the probability
that an error vector is a nonzero codeword in C.

With transmission over a BSc, the probability that the error vector E has weight i equals
the probability that i bits are in error and that the remaining n - i bits are correct. Let P(C; i)
denote this probability. Then

P(E; i) = p i (1 - p) - .

For an undetected error to occur, the error vector E must be a nonzero codeword. There are Ai
vectors of weight i in C. It follows that

n n

(1.26)

INTRODUCTION 13

Equation (1.26) gives the exact value of Pu(C). Unfortunately, for most codes of practical
interest the weight distribution W (C) is unknown. In these cases, using the fact that the
number of codewords of weight i is less than or equal to the total number of words of weight
i in the binary space V,, the following upper bound is obtained:

(1.27)

Expressions (l .26) and (1.27) are useful when an ECC scheme is applied for error detection
only, such as in communication systems with feedback and ARQ. When a code is employed
for error correction purposes, the expressions derived in the next sections are useful.

Figure 6 shows a plot of Pu(C) compared with the upper bound in the right-hand side (RHS)
of (1.27).

0.1 0.01 0.001 0.0001 1 e-05

P

Figure 6 Exact value and upper bound on the probability of undetected error for a binary
linear (4,2,2) code over an BSc.

1.4.2 Peflormance bounds over BSc, AWGN and fading channels

The purpose of this section is to introduce basic channel models that will be considered in the
book, as well as the corresponding expressions on the error correction performance of linear
codes. Error correction for the BSC is considered first.

14 THE ART OF ERROR CORRECTING CODING

The BSC model

For a binary linear code C, as explained in the previous section, a decoding procedure using
the standard array will decode a received vector into the closest codeword. A decoding error
will be made whenever the received vectors falls outside the correct decoding region.

Let Li denote the number of coset leaders of weight i in the standard array of a linear code
C . The probability of a correct decoding equals the probability that an error vector is a coset
leader and given by

e
PC(C) = c Li $(l -p)n - i ; (1.28)

i=O

where C is the largest Hamming weight of a coset leader E in the standard array. For perfect
codes, C = t , and

such that, from the Hamming bound (1.24),

e t c Li = c (;) = 2n-k .
i = O i=O

For binary codes in general, Equation (1.28) becomes a lower bound on PC(C), since there
exist coset leaders of weight greater than t.

The probability of incorrect decoding, denoted by P, (C), also known as the probability
ofa decoding error, is equal to the probability of the complement set of the event of correct
decoding, i.e., P, (C) = l - PC(C). From Equation (l .28), it follows that

e
P,(C) = 1 - c Li pi(l - P Y .

i=O

(1.29)

Finally, based on the above discussion for PC(C), the following upper bound is obtained,

which can also be expressed as

i=t+l

(1.30)

(1.31)

with equality if, and only if, code C is perfect (satisfies the Hamming bound with equality).

Example 9 Figure 7 shows the values of P, (C) from (1.3 l), as a function of the crossover
probability p of a BSc, for the binary repetition (3, l ,3) code.

INTRODUCTION

1

0.1

0.01

0.001

0.0001

15

Figure 7 Probability of a decoding error for the binary repetition (3,1,3) code.

The AWGN channel model

Perhaps the most important channel model in digital communications is the additive white
Gaussian noise (AWGN) channel. In this section, expressions are given for the probability of
a decoding error and of a bit error for linear block codes over AWGN channels. Although
similar expressions hold for convolutional codes, for clarity of exposition, they are introduced
together with the discussion on soft-decision decoding with the Viterbi algorithm and coded
modulation in subsequent chapters. The following results constitute valuable analysis tools
for the error performance evaluation of binary coded schemes over AWGN channels.

Consider a binary transmission system, with coded bits in the set (0 , l} mapped onto
real values {+l, -l}, respectively, as illustrated in Figure 8. In the following, vectors are
n-dimensional and the following notation is used to denote a vector: 3 = (Q, 2 1 , . . . , ~ ~ - 1) .

The conditional probability density function (pdf) of the channel output sequence y, given the
input sequence 5 is given by

(1.32)

where p R (f i) is the pdf of n statistically independent and identically distributed (i.i.d.) noise
samples, each of which is Gaussian distributed with mean ,un = 0 and variance gn = No/2,
and NO is the one-sided power spectral density of the noise. It is easy to show that maximum-
likelihood decoding (MLD) of a linear code C over this channel selects a sequence 2 that
minimizes the squared Euclidean distance between the received sequence y and 2,

n-l

(1.33)
i=O

See, e.g., [WJ], [Will and [BM]. It should be noted that a decoder using Equation (1.33) as
a metric is referred to as a soft-decision decoder, independently of whether or not MLD is
performed. In Chapter 7, soft-decision decoding methods are considered.

The probability of a decoding error with MLD, denoted Pe(C), is equal to the probability
that a coded sequence Z is transmitted and the noise vector f i is such that the received sequence

16 THE ART OF ERROR CORRECTING CODING

l ' l

Figure 8 Binary coded transmission system over an AWGN channel.

y = 2 + f i is closer to a different coded sequence i E C, x # 3. For a linear code C, it can be
assumed that the all-zero codeword is transmitted. Then P, (C) can be upper bounded, based
on the union bound [Cla] and the weight distribution W(C), as follows:

(l .34)

where R = k / n is the code rate, &/No is the energy per bit-to-noise ratio (or SNR per bit)
and &(x) is given by (1.2).

Figure 9 shows the evaluation of expressions for hard-decision decoding (1.30) and soft-
decision decoding (1.34) for the binary (3,1,3) code. Hard-decision decoding means using a
decoder for the BSC which is fed by the outputs from a binary demodulator. The equivalent
BSC has a crossover probability equal to [Pro, WJ]

Note that in this particular case, since the code is perfect and contains only two codewords,
both expressions are exact, not upper bounds. Figure 9 also serves to illustrate the fact that
soft-decision decoding performs better than hard-decision decoding, in the sense of requiring
less transmitted power to achieve the same P,((?). The difference (in dB) between the
corresponding SNR per bit is commonly referred to as coding gain.

In [FLR], the authors show that for systematic binary linear codes with binary transmission
over an AWGN channel, the probability of a bit error, denoted Pb(C), has the following upper
bound:

(1.35)

Interestingly, besides the fact that the above bound holds only for systematic encoding, the
results in [E R] show that systematic encoding minimizes the probability of a bit error. This
means that systematic encoding is not only desirable, but actually optimal in the above sense.

Example 10 Consider a linear binary (6,3,3) code with generator and parity-check matrices

(: 1 : : : :) 7 (0 1 1 0 0 1)
l 0 1 1 0 0

G = 0 1 0 0 1 1 H = 1 1 0 0 1 0 ,

respectively. The weight distribution of this code is W(C) = { 1,0,0,4,3,0,0}, which can
be verified by direct computation of all the codewords C = (U , U p) :

INTRODUCTION 17

0.01

0.0001

1 e-06

1 e-l 2 l
le- l4 I , 1 # ' 1 , \ l

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7
Eb/No (dB)

Figure 9 Probability of a decoding error for hard-decision decoding (Pe(3,1,3)-HDD) and
soft-decision (Pe(3,1,3)-SDD) decoding of a binary (3,1,3) code. Binary transmission over an

AWGN channel.

l3 i jp
000 000
001 101
010 011
011 110
100 110
101 011
110 101
111 000

In this particular case, MLD can be performed by simply computing the squared Euclidean
distance, Equation (1.33), between the received sequence and all of the eight candidate
codewords. The decoded codeword is selected as that with the smallest distance. In Chapter 7,
efficient methods for MLD and near-MLD of linear block codes are presented. Figure 10
shows simulations and union bounds with hard-decision and soft-decision MLD decoding
with binary transmission over an AWGN channel.

The flat Rayleigh fading channel model

Another important channel model is that of flat Rayleigh fading. Fading occurs in wireless
communication systems in the form of a time-varying distortion of the transmitted signal. In
this book, we consider the case of flat Rayleigh fading. The term "flat" refers to the fact that
the channel is not frequency selective, so that its transfer function in the frequency domain is
constant [BM, WJ, Pro].

As a result, a (component-wise) multiplicative distortion is present in the channel, as shown
in the model depicted in Figure 11, where ct: is a vector with n component i.i.d. random
variables ai, 0 5 i < n, each having a Rayleigh pdf,

P,; (ai) = Qie - 4 / 2 , Q2 2 0. (1.36)

18 THE ART OF ERROR CORRECTING CODING

U
a

0.1

0.01 r

0.001 :

0.0001 i
1 e-05

0 1 2 3 4 5 6 7 6 9 1 0
Eb/No (dB)

Figure 10 Simulations and union bounds for the binary (6,3,3) code. Binary transmission
over an AWGN channel.

With this pdf, the average SNR per bit equals E,,/No (i.e., that of the AWGN), since the
second moment of the fading amplitudes is E{ a:} = 1.

In evaluating the performance of a binary linear code over a flat Rayleigh fading channel, a
conditional probability of a decoding error, Pe(CI&), or of a bit error, Pb(C16), is computed.
The unconditional error probabilities are then obtained by integration over a product of ai,
with pdf given by Equation (1.36).

-
Information U Binary

- Mapping
0 - + l

x
1 +-l

source encoder
L ' l

destination
Information Soft-decision

decoder

Figure 11 Binary coded transmission system over a flat Rayleigh fading channel.

The conditional probabilities of error are identical to those obtained for binary transmission
over an AWGN channel. The main difference is that the arguments in the Q(.) function,
which correspond to the pairwise probability of a decoding error, are now weighted by the
fading amplitudes ai. Considering a coded binary transmission system without channel state
information (CSI), we have that

with
W

(1.37)

A, = c ai. (1.38)
i= l

INTRODUCTION 19

le-05
5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20

Eb/No (dB)

Figure 12 Simulation results (SIM), compared with the Monte Carlo union bound
(Pe(3,1,3)_MC) and the Chemoff bound (Pe(3,1,3)EXP), for the binary (3,1,3) code. Binary

transmission over a flat Rayleigh fading channel.

Finally, the probability of a decoding error with binary transmission over a flat Rayleigh fading
channel is obtained by taking the expectation with respect to A,,

There are several methods to evaluate or further upper bound expression (1.39). One is to
evaluate numerically (1.39) by Monte Carlo integration, with the approximation

where A,(C) denotes the sum of the squares of W i.i.d. random variables with Rayleigh
distribution, given by (1.38), generated in the C-th outcome of a computer program, and N
is a sufficiently large number that depends on the range of values of P, (C). A good rule of
thumb is that N should be at least 100 times larger than the inverse of P,(C). (See [Jer], pp.

Another method is to bound the Q-function by an exponential function (see, e.g., [WJ], pp.
82-84) and to perform the integration, or to find a ChernofS bound. This approach results in
a loose bound that, however, yields a closed expression (see also [Will, p. 526, and [BM], p.
7 18):

500-503.)

(1.41)

The bound (1.41) is useful in cases where a first-order estimation of the code performance is
desired.

20 THE ART OF ERROR CORRECTING CODING

-

.EXP" *

L
h

0
a m 0.001 :

0.0001

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Eb/No (dB)

Figure 13 Simulation results (SIM-(6,3,3)), compared with the Monte Carlo union bound
(Pe(6,3,3)1MC) and the Chernoff bound (Pe(6,3,3)_EXP), for the binary (6,3,3) code. Binary

transmission over a flat Rayleigh fading channel.

Example 11 Figure 12 shows computer simulation results of the binary (3,1,3) code over a
flat Rayleigh fading channel. Note that the Monte Carlo integration of the union bound gives
exactly the actual error performance of the code, since there is only one term in the bound.
Also note that the Chernoff bound is about 2 dB away from the simulations, at a signal-to-
noise ratio per bit E,/No > 18 dB.

Example 12 Figure 13 shows the results of computer simulations of decoding the binary
(6,3,3) code of Example 10, over a flat Rayleigh fading channel. In this case, the union bound
is relatively loose at low values of Eb/No due to the presence of more terms in the bound.
Again, it can be seen that the Chernoff bound is loose by about 2 dB, at a signal-to-noise ratio
per bit E,/No > 18 dB.

1.5 General structure of a hard-decision decoder of linear codes

In this section, the general structure of a hard-decision decoder for linear codes is summarized.
Figure 14 shows a simple block diagram of the decoding process. Note that since hard
decisions are assumed, bits at the output of a demodulator are fed into a decoder designed
for a BSc.

Let V E C denote a transmitted codeword. The decoder has at its input a noisy received
vector F = V + E. A two-step decoding procedure of a linear code is:

0 Compute the syndrome S = FHT. Based on the code properties, the syndrome is a
linear transformation of the error vector introduced in the channel,

S = EHT: (1.42)

Based on the syndrome S , estimate the most likely error vector 8 and subtract it
(modulo 2 addition in the binary case) from the received vector.

INTRODUCTION 21

- -
r Find error Compute

syndrome vector

Buffer received vector

Figure 14 General structure of a hard-decision decoder of a linear block code for the BSC
model.

Although most practical decoders will not perform the above procedure as stated, it is
nonetheless instructive to think of a hard-decision decoder as implementing a method of
solving equation (1.42). Note that any method of solving this equation constitutes a decoding
method. For example, one could attempt to solve the key equation by finding a pseudo-inverse
of HT, denoted (HT)+, such that HT(HT)+ = In, and the solution

e = . (HT)+: (1.43)

has the smallest Hamming weight possible. As easy as this may sound, it is a formidable
task. This issue will be visited again when discussing decoding methods for BCH and Reed-
Solomon codes.

2

Hamming, Golay and Reed-Muller
codes

In this chapter, important examples linear binary codes are introduced. They serve to introduce
more ECC concepts as well as clever decoding algorithms. Hamming codes are perhaps the
most widely known class of block codes, with the possible exception of Reed-Solomon codes.
As mentioned in Chapter 1, Hamming codes are optimal in the sense that they require the
smallest amount of redundancy, for a given block length, to correct any single error. The binary
Golay code is the only other nontrivial example of an optimal triple-error correcting code.
(The only other binary optimal codes are repetition and single parity-check (SPC) codes.)
Reed-Muller codes can be defined as codes with an elegant combinatorial definition that are
easy to decode.

2.1 Hamming codes

Recall from Chapter 1, Equation (1.12), that any codeword tj in a linear (n, IC, dmin) block
code C satisfies

UHT = 0. (2.1)

A useful interpretation of this equation is that the maximum number of linearly independent
columns of the parity-check matrix H of C is equal to dmin - 1.

In the binary case, for dmin = 3, the above equation translates into the sum of any two
columns of H not equal to the all-zero vector. Suppose that the columns of H are binary
vectors of length m. There are up to 2* - 1 possible nonzero distinct columns. Therefore, the
length of a binary single-error correcting code is given by

n < 2 m - 1 .

This inequality is precisely the Hamming bound (1.24) for an error correcting code of length
n, with n - IC = m and t = 1. Consequently, a code achieving this bound with equality is
known as a Hamming code.

Example 13 With m = 3, we obtain the Hamming (7 ,4 ,3) code, with parity-check matrix

1 1 1 0 1 0 0

1 1 0 1 0 0 1

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

24 THE ART OF ERROR CORRECTING CODING

In the rest of this section, an encoding and decoding algorithm is given that is suitable
for software implementation and for simulation purposes. Later in the book, effective soft-
decision decoding algorithms are given, which can be used over real-valued channels such as
the AWGN channel and the Rayleigh fading channel.

As noted before, Hamming codes have the property that their parity-check matrix H has all
of its columns different. If a single error occurs, in position j , 1 5 j 5 n, then the syndrome
of the received vector equals the column of H in the position in which the error occurred. Let
e denote the error vector added in the transmission of a codeword over a BSC channel, and
assume that all of its components are equal to zero except for the j-th component, ej = 1.
Then, the syndrome of the received word equals

where h j denotes the j-th column of H , and 1 5 j 5 n.

2. I . 1 Encoding and decoding procedures

From Equation (2.2) above, it foliows that if it is possible to express the columns of H as the
binary representation of integers, then the value of the syndrome directly gives the position
of the error. This is the idea in the algorithms for encoding and decoding presented below.
The columns of the parity-check matrix H are expressed as binary representations of integer
numbers i in the range [l, n] and in increasing order. Let the resulting matrix be denoted by
H'. Clearly, the code associated with H' is equivalent to the original Hamming code with
parity-check matrix H , up to a permutation (or exchange) of positions.

Recall from Chapter 1 that the parity-check matrix in systematic form contains the
(n - k) x (n - k) identity matrix, I n - k , as in Equation (1.16). Clearly, when expressing H'
with columns equal to the binary representation of the (integer) column number, the identity
matrix is contained in those columns of H' that correspond to even powers of 2, i.e., of the
form 2e , 0 5 l < m. This is illustrated in the example below.

Example 14 Let m = 3. Then a systematic parity-check matrix is

1 1 0 1 1 0 0

0 1 1 1 0 0 1

Matrix H' is given by the binary representation of integers 1 to 7 (in the following, the topmost
part corresponds to the least-significant bit in the binary representation of an integer):

1 0 1 0 1 0 1

0 0 0 1 1 1 1

and matrix In-k is contained in columns 1 , 2 and 4.

In general, for a (2m - l, 2m - 1 - m) Hamming code, the identity matrix is contained in
column numbers 1 ,2 ,4 , . . . ,2"-l of H'.

HAMMING, GOLAY AND REED-MULLER CODES 25

Encoding

Encoding proceeds as dictated by Equation (1.18) of Chapter 1. When computing the parity
check bit p j , for 1 5 j 5 m, the column position numbers are examined and those which
are not powers of two correspond to message positions and the corresponding message bits
are included in the computation. This encoding procedure is somewhat more complicated
than that of a systematic Hamming code. In return, however, decoding is extremely simple.
Depending on the application, this approach may prove the most appropriate, since it is usually
decoding that is required to be very fast.

Decoding

Once the codewords have been computed in accordance to matrix H' , decoding is easy.
The syndrome (2.2) equals the position number in which the error occurred! In a decoding
procedure, after the computation of syndrome S, when regarded as an integer, the erroneous
position is then corrected as

v, = v, B 1:

where @ denotes exclusive-or (i.e., 0 @ 0 = 0, 0 @ 1 = 1, 1 @ 0 = 1, and 1 @ 1 = 0).

decoding procedures for binary Hamming codes.
Program hamming. c in the ECC home page implements the above encoding and

2.2 The binary Golay code

Golay [Gol] noticed that

(?) = 211
i=O

This equality shows the possible existence of a perfect binary (23; 12,7) code, with t = 3,
that is, capable of correcting all possible patterns of at most three errors in 23 bit positions. In
his paper, Golay gave a generator matrix of such a triple-error correcting binary code.

Because of its relatively small length (23), dimension (12) and number of redundant bits
(1 l), the binary (23; 12,7) Golay code can be encoded and decoded simply by using look-up
tables. The program golay2 3 . c in the ECC home page uses a 16K x 23 bits encoding table
and an 8K x 23 bits decoding table.

2.2.1 Encoding

Encoding is based on a look-up table (LUT) that contains a list of all the 212 = 4096
codewords, which are indexed directly by the data. Let U denote a 12-bit binary vector
representing the data to be encoded, and let V denote the corresponding 23-bit codeword.
The encoder LUT is constructed by generating all 4096 12-bit vectors and computing the
syndrome of a pattern for which the 12 MSB equal to the information bits and the 11 LSB
equal to zero. The 1 l-bit syndrome then becomes the LSB part of the codeword.

The LUT is a one-to-one mapping from U onto V, which can be expressed as

V = LUT(U) = (U; get-syndrome(U: 0)). (2.3)

26 THE ART OF ERROR CORRECTING CODING

In the construction of the encoder LUT, advantage is taken from the cyclic nature of the
Golay code. Its generator polynomial’ is

g(x) = El1 + d o + + x5 + x4 + x2 + 1;

which in hexadecimal notation equals C7 5. This polynomial is used to generate the syndrome
in the procedure “get-syndrome” indicated in Equation (2.3) above.

2.2.2 Decoding

Recall from Chapter l , Figure 14, that the decoder’s task is to estimate the most-likely (i.e.,
least Hamming weight) error vector e from the received vector F. The decoder for the Golay
code is based on an LUT that accepts as input the syndrome S of the received vector F and
outputs the error vector E .
The procedure to construct the decoder LUT is as follows:

1. Generate all possible error patterns e of Hamming weight less than or equal to three;
2. For each error pattern, compute the corresponding syndrome S = get-syndrome(e);
3. Store at location S of the LUT, the error vector E ,

LUT(S) = e.
With the decoder LUT, upon reception of a corrupted received word F, correction of up to
three bit errors is accomplished by the following:

6 = F CE LUT (get-syndrome(F))

where 6 denotes the corrected word.

2.2.3 Arithmetic decoding of the extended (24, 12, 8) Golay code.

In this section, a decoding procedure for the extended (24: 12; 8) Golay code, C 2 4 , is presented
based on an arithmetic decoding algorithm [Wic, VO]. The algorithm utilizes the rows and
columns of the parity submatrix B in the parity-check matrix H = (B 1 1 1 2 ~ 1 2) . Note that
an extended (24; 12,8) Golay code, Ci4, which is equivalent to C 2 4 up to a permutation in
the bit positions, can be obtained by adding an overall parity-check bit at the end of each
codeword in the (23: 12,7) Golay code.

In hexadecimal notation, the twelve rows of B, denoted rowi, l 5 i 5 12, are:

Ox7ff, Oxee2, Oxdc5, Oxb8b, Oxf16, Oxe2d,
Oxc5b, Ox8b7, Ox96e, Oxadc, Oxdb8, Oxb71.

It is interesting to note that sub-matrix B of the parity-check matrix of C 2 4 satisfies B = BT.
This means that code C 2 4 is a self-dual code. Details of self-dual codes are not covered in this
book. Interested readers are referred to [MS, Wic].

In program golay24. c, encoding is performed by recurrence with H , as indicated in
Equation 1.18. As before, let WtH(x) denote the Hamming weight of a vector 3. Decoding
steps are as follows [Wic, VO]:

The definition of a generator polynomial is given in Chapter 3.

HAMMING, GOLAY AND REED-MULLER CODES 27

1.
2 .
3.

4.
5 .
6.

7.

8.

Compute the syndrome S = T H T .
If wtH(S) 5 3, then set E = (S , 0) and go to step 8.
If wtH(S + rowi) 5 2, then set e = (S + rowi, %i), where %i is a 12-bit vector with
only the i-th coordinate nonzero.
Compute sB.
If wtH(SB) 5 3, then set e = (0 , SB) and go to step 8.
If wtH(d3 + rowi) 5 2, then set e = (Si, S.B + rowi), with Zi defined as above,
and go to step 8.
F is corrupted by an uncorrectable error pattern, set error failure flag. End of
decoding.
Set = F + e. End of decoding.

2.3 Binary Reed-Muller codes

Binary Reed-Muller (M) codes constitute a family of error correcting codes that are easy
to decode using majority-logic circuits. In addition, codes in this family are known to have
relatively simple and highly structured trellises [LKFF]. More on trellises of linear block
codes is discussed in Chapter 7.

An elegant definition of binary RM code is obtained with the use of binary polynomials (or
Boolean functions). With this definition, RM codes become close relatives of BCH codes and
RS codes, all members of the class of polynomial codes2.

2.3.1 Boolean polynomials and RM codes

This section closely follows the development of [MS]. Let f(xl,x2,. .. ,xm) denote a
Boolean function on m binary-valued variables x1,x2, . . . , x,. It is well known that such
a function can be specified by a truth table. The truth table lists the value of f for all
2m combinations of values of its arguments. All the usual Boolean operations (such as
“AND”,“OR’) can be defined in a Boolean function.

Example 15 Consider the function f(x1, x2) with the following truth table:

x2 0 0 1 1
x1 0 1 0 1

f(X1,Xz) 0 1 1 0

Then,
f(z1, ~ 2) = (XI AND NOT(22)) OR (NOT(21) AND ~ 2) .

Associated with each Boolean function f, let .f denote the binary vector of length 2, which
is obtained from evaluating f at all possible 2, values of the m variables XI, xz, . . . , x,. In
the example above, .f = (OllO), where the convention taken for ordering the bit positions of
f is in accordance to a binary representation of integers, with x1 being the least-significant bit
(LSB) and x, the most-significant bit (MSB).

Note also that a Boolean function can be written directly from its truth table to get the
disjunctive noma1 form (DNF). Using the DNF, any Boolean function can be expressed as

Polynomial codes are presented in Section 3.4.

28 THE ART OF ERROR CORRECTING CODING

the sum3 of 2, elementary functions: 1 , q , x2, . . . , x,, 21x2, . . . ,x1z2 . . . x,, such that

f = 1 + + a2Z2 + . . . + urn%, + a123132 + . . . + ~ 1 2 . . . , 3 1 3 2 . . .%m, (2.4)
- -

where i is added to account for independent terms (degree 0). For Example 15, f = 31 + 32.
A binary RM (2,, k , code, denoted RM,,,, is defined as the set of vectors

associated with all Boolean functions of degree up to T in m variables. R M , , is also known
as the r-th order RM code of length 2,. The dimension of RM,,, can easily by shown to be
equal to

k = i : (T) , i=O

which corresponds to the number of ways polynomials of degree up to r can be constructed
with m variables.

In view of Equation (2.4), a generator matrix for RM,,, is formed by taking as rows the
vectors associated with the k Boolean functions which can be expressed as polynomials of
degree up to r in m variables.

Example 16 The first-order RM code of length 8, RM1,3, is an (8,4,4) binary code, and can
be constructed from Boolean functions of degree up to 1 in 3 variables: { 1,x1, z2, Q}, so
that

-
1 = 1 1 1 1 1 1 1 1

z 1 = 0 0 0 0 1 1 1 1
z 2 = 0 0 1 1 0 0 1 1
3 3 = 0 1 0 1 0 1 0 1

A generator matrix for RM1,3 is thus
-

1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1 G = (i) = (0 0 0 0 1 1 1 1

0 1 0 1 0 1 0 1)
Note that code RM1,s can be also obtained from a Hamming (7 ,4,3) code by appending at the
end of each codeword an overall parity-check bit. The only difference between the extended
Hamming code and RM1,3 will be a possible permutation of bit (column) positions.

Dual codes of RM codes are also RM codes

It can be shown that RMrn-,-1,, is the dual code of RM,,. In other words, the generator
matrix of RMm-,-l,, can be used as a parity-check matrix of RM,,.

2.3.2 Finite geometries and majority-logic decoding

RM codes can be formulated in terms of ajinite geometry. An Euclidean geometry EG(m, 2)
of dimension m over G F (2) consists of 2 , points, which are all the binary vectors of length

“sum” means logical “XOR” and “multiplication” means logical “AND’ in thk context

HAMMING, GOLAY AND REED-MULLER CODES 29

m. Note that the columns of the matrix formed by the last three rows of the generator matrix
of RM1,3, see Example 16 above, are the 8 points of EG(3,2). If the zero point is deleted,
then a projective geometry PG(m - 1 , 2) is obtained. The reader is referred to [LC] for an
excellent treatment of finite geometries and RM codes. Finite geometry codes are in fact a
generalization of RM codes4.

The connection between codes and finite geometries can be introduced as follows: Consider
EG(m, 2) . The columns of the matrix (ZTZ; .. are taken as the coordinates of
points of the geometry EG(m, 2) . Then, there is a one-to-one correspondence between the
components of binary vectors of length 2 , and the points of EG(m, 2). A given binary vector
of length 2 , is associated with a subset of points of EG(m, 2) . In particular, a subset of
EG(m, 2) can be associated with each binary vector I3 = (WI, w2, . . . , w p) of length 2m,
by interpreting it as selecting points whenever tui = 1. Stated otherwise, I3 is an incidence
vector.

Binary Reed-Muller codes can then be defined as follows: The codewords of RM,,, are
the incidence vectors of all subspaces (i.e., linear combinations of points) of dimension m - r
in EG(m, 2) (Theorem 8 of [MS]). From this it follows that the number of minimum weight
codewords of RM,,, is

The code obtained by deleting (or puncturing) the coordinate corresponding to
x 1 = x 2 = " ' = x, = 0 from all the codewords of M,,, is the binary cyclic RM:,, code,
which as

minimum-weight codewords.
In terms of decoding, it turns out that RM codes can be decoded with so-called majority-

logic (ML) decoding. The idea is the following: The parity-check matrix induces Z n P k parity-
check equations. Designing an ML decoder is selecting a subset of the parity-check equations
in such a way that a majority vote is taken on the value of a specific code position. As an
illustration, consider again the RM1,3 code of Example 16 above.

Example 17 Let tj = uG = (VI , 712, v3 , 714, v s , 'u6, w7, W g) be a codeword in w 1 , 3 . As
mentioned before, in this case equation (2.5) is also a parity-check matrix, since r = 1 and
m - r - 1 = 1, and the code is self-dual. All possible 15 nonzero combinations of parity-check
equations (rows of H) are the following:

30 THE ART OF ERROR CORRECTING CODING

v1 + v3 + v5 + v7 = 0

v2 + v 4 + V 5 + v 7 = 0
'U3 + v4 + 215 + 'U6 = 0

v2 + 213 + ?& + 217 = 0
v1 +v2 +v7 + v 8 = 0
211 + 'U3 f 216 f ?k3 = 0
v1 +v4 + v5 + v8 0
v2 + v3 f v5 + v8 0
211 f v4 + 716 + v7 = 0 (2.8)

The reader is invited to verify that the sum vi + v ~ j of every pair of code bits vi, vj, with
i # j , appears in exactly four equations. Whenever a set of equations includes a term vi + vj,
but no other sum of pairs appears more than once, the parity-checks involved are said to be
orthogonal on positions vi and vj.

It is now shown how a single error can be corrected. Let

T=Vijfe=(rl,r2,rQ,r4,r5,r6,r7,r8)

denote a received vector after codeword V is transmitted over a BSc. Suppose that a single
error is to be corrected in the fifth position, v5. A procedure to design an ML decoder for this
case is as follows:

TWO equations involving the term vi + v5 are selected, with i # 5, and another set of two
equations with the term vj + v5, j # 5, with i # j. Select (arbitrarily, as long as i # j and
both different than 5), say, i = 3, j = 4. There are four parity checks orthogonal to the term
w3 + 215. Select any two of them. Do the same for the term v4 + v5.

The syndromes associated with these equations are denoted S1 and S, for v3 + v5 and S3
and S4 for v4 + 715,

A

A

A

A

S1 = TI +r3 +r5 +r7
S2 = r3 +r4 +r5 +r6

S3 = 7-2 +r4 +r5 +r7
S4 = TI + 1-4 + r5 + T8

Because V is a codeword in RM1,3, the set of equations (2.9) is equivalent to

S1 = el +e3 +e5 +e7
S 2 e3 +e4 +-e5 +e6
S3 e2 + e 4 + e s +e7
S4 = el + e 4 + e 5 + e 8

A

A

A

A
(2.10)

Since SI, Sa, S3 and S4 are orthogonal on e3 + e5 and e4 + e5, a new pair of equations
orthogonal on e5 can be formed as:

Si = e; + e;
Si = e: +e;

A

A
(2.1 1)

HAMMING, GOLAY AND REED-MULLER CODES 31

where el, j = 3,4; 5, represents the ML estimate from (2.9). Equations (2.1 1) are orthogonal
on e; and consequently the value of e; can be obtained by a majority vote, for example, setting
it to the output of an “AND’ gate with inputs Si and Si.

Suppose that the codeword V = (11110000) is transmitted and F = (11111000) is received.
Then (2.10) gives:

S1 = TI + r3 + r5 + 7-7 = 1
SZ = r3 + ~4 + r5 + 7-6 = 1
S3 = 7-2 + r4 + r5 + 7-7 = 1
S4 = TI + r4 + r5 + T8 = 1 (2.12)

Thus both e3 + e5 e4 + e5 are estimated as having value equal to ‘l’. From (2.1 l), it is
concluded that e5 = 1, and the estimated error vector is e = (OOOOlOOO), from which the
estimated codeword is V = F + e = (11110000). This shows how an error in the fifth position
can be corrected with a two-step ML decoder.

In the previous example, it was shown how an error in a specific position of an RM1,3 code
can be corrected. A similar procedure can be applied to every position in the code. Therefore,
a total of eight ML estimates will be obtained.

In general, an R M , , code can be decoded with an (T + 1)-step ML decoder capable of
correcting any combination of up to L(2m-2 - 1)/2J random errors [MS, LC].

In addition, a cyclic RM:,, code is simpler to decode. In a cyclic code5 C, if
(v1 ; 212: . . . ; v,) is a codeword of C, then the cyclic shij? (W,; wl; . . . vn-l) also is a codeword
of C. Therefore, once a position can be corrected via ML decoding, the remaining positions
can also be corrected with the same algorithm (or hardware circuit) by cyclically shifting
received codewords, until all n positions have been tried.

Example 18 In this example, a decoder for the cyclic code, a binary Hamming
(7; 4; 3) code, is derived. To obtain the parity-check equations from those of the RM1,3
code, remove the coordinate v1 for which x1 = x2 = . . . = 2, from all equations.
Let the codewords of RMT,, be indexed by re-labeling the codeword elements:
(v2 ; v3 v4 v5 Vug: v7 v g) + (v1 ; v2 ~3 v4 v5 ; v6 : v7). As before, an ML decoder for
correcting an error in an arbitrary position (say, thejifth position again) can be derived. This
can be shown to result in the following seven nonzero (linearly independent) parity-check
equations:

(2.13)

See Chapter 3

32 THE ART OF ERROR CORRECTING CODING

open at
n=7

V

Figure 15 A majority-logic decoder for a cyclic RM* (1,3) code.

In a manner similar to the previous example, the syndromes S1 and S2 below are orthogonal
on v4 and 215, and S2 and S3 are orthogonal on 215 and 216:

(2.14)

Based on the estimates eh + e; and e; + e; two additional orthogonal equations on e5 can be
formed to give the final estimate,

(2.15)

where e;, j = 4: 5; 6, represents the ML estimate from the previous step. This results in the
circuit shown in the Figure 15. The circuit operates as follows. Initially the contents of the
seven-bit register are set to zero. Suppose that a single error is contained in the received word
in position i , for 1 5 i 5 7. At each clock cycle, the contents of the register are cyclically
shifted to the right by one position. Time, in clock cycles, is denoted by the subindex n in the
following.

Consider first the case i = 1. That is, there is an error in the first codeword position. After
three cycles, the error is contained in register 5 (vs). The output of the majority-logic circuit
is set to e , = 1. Four cycles later (a total of seven cycles), the first received bit is output and
the error corrected. Consider now the case i = 7. After nine cycles, the error is detected and
e , = 1. Again, four cycles later (total 13 cycles), the bit in the last position is output and the
error corrected. This decoder has a latency of 13 cycles. Every 13 cycles, the contents of the
shift register are cleared and a new codeword can be processed.

In the next chapter, binary cyclic codes and the powerful family of BCH codes are
introduced.

3

Binary cyclic codes and BCH codes

The aim of this chapter is to introduce a minimum set of concepts necessary for the
understanding of binary cyclic codes and for the efficient implementation of their encoding
and decoding procedures. Also in this chapter, the important family of binary BCH codes
is introduced. BCH codes are a family of cyclic codes, which gives them an algebraic
structure that is useful in simplifying their encoding and decoding procedures. Binary BCH
codes with minimum distance 3, better known as Hamming codes, have been a very popular
choice in computer networks and in memories, due to their simple and fast encoding and
decoding. Also, a shortened (48; 36,5) BCH code is used in the U.S. cellular TDMA system
specification, standard IS-54.

3.1 Binary cyclic codes

Cyclic codes are a class of error correcting codes that can be efficiently encoded and decoded
using simple shift-registers and combinatorial logic elements, based on their representation
using polynomials. In this section, the fundamental concepts of cyclic codes are discussed.

3.1.1 Generator and parity-check polynomials

Let c denote a linear (n: k) block code. Let ii and 6 denote a message and the corresponding
codeword in c, respectively. Cyclic codes are linear codes with properties that make them
suitable for hardware implementation. To every codeword 6 a polynomial v(z) is associated,

6=(W~;w1;.'.;Wn-1)~~(s)=~~+Wlz+...Wn-1z n-l .

The indeterminant z serves to indicate the relative position of an element vi of .li as a term

A linear block code C is cyclic if and only if every cyclic shift of a codeword is another
wixi of a(z), 0 5 i < 71.

codeword,

v = (WO; 211;. . . ; wn-l) E c * = (W n - l ; W O ; ' . . ; W n - 2) E c.
In the language of polynomials, a cyclic shift by one position, denoted dl)(x) , is
accomplished by a multiplication by z modulo (x" - l),

U(z) E C e v(')(%) = xU(x) mod (xn - l) E C.

Shift-registers can be used for this purpose, as illustrated in Figure 16.

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

34 THE ART OF ERROR CORRECTING CODING

Figure 16 A cyclic shift register

Example 19 Consider the case of n = 7. Then, a cyclic shift by one position of the vector
V = (O1O1011) equals d l) = (1010101). In terms ofpolynomials, a(x) = x + 5 3 + 2 5 + 2 6

and

d l) (x) = x~(z) = x' + x4 + x6 + x7 mod (x7 + l)
= x 2 + x 4 + x 6 + x 7 + (x 7 + 1) + 1
= l + 2 2 + x 4 + x 6

3. I .2 The generator polynomial

An important property of cyclic codes is that all code polynomials U(z) are multiples of
a unique polynomial, g (x) , called the generator polynomial of the code. This polynomial
is specified by its roots, which are called the zeros of the code. It can be shown that the
generator polynomial g(z) divides (x" - 1). (As with integers, " a (z) divides b(x)" whenever
b(z) = q(x)a(z) .) Therefore, to find a generator polynomial, the polynomial (x" - 1) must
be factored into its irreduciblefuctors, 4j (x), j = 1; 2:. . . : l ,

(x" - 1) = 41 (x) 4 2 (x) . . . de(.). (3.1)

Also, note that over the field of binary numbers, a - b and a + b (modulo 2) give the same
result. In the remainder of the text, as all the codes are defined over the binary field, or its
extensions, no distinction is made between these operations.

As a consequence of the above, the polynomial g(x) is given by

a x) = &(x).
j€Jc (l , a , . . . , c }

Example 20 With coefficients over Z2 = (0: l}, the polynomial x7 + 1 factors as

x7 + I = (x + 1)(..3 + x + 1)(.3 + x 2 + 1).

Some examples of cyclic codes of length 7 are:

0 A binary cyclic Hamming (7: 4; 3) code is generated by the polynomial

g(x) = x3 + II: + 1.

0 A binary cyclic parity-check (7: 6; 2) code is generated by

= (.3 + x + 11(~3 + 22 + 1).

0 A binary maximum-length-sequence (7: 3: 4) code is generated by

g (x) = + 1)(x3 + x + 1).

BINARY CYCLIC CODES AND BCH CODES 35

3.1.3 Encoding and decoding of binary cyclic codes

The dimension of a binary cyclic (n , k) code is given by

k = n - deg [g(x)],

where deg [.] denotes the degree of the argument. Since a cyclic code C is also linear, any set
of k linearly independent (LI) vectors can be selected as a generator matrix. In particular, the
binary vectors associated with g(z), xg(z), . . ., xk-lij(x) are LI. These vectors can be used
as rows of a generator matrix of C. In this case a non-systematic encoding rule is achieved.
That is, the message bits do not appear explicitly in any positions of the codewords.

Example 21 Consider the cyclic Hamming (7 ,4,3) code, with generator polynomial g(z) =
x3 + x + 1 e g = (1101). A generator matrix for this code is

G = (1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0 '
0 0 0 1 1 0 1)

Alternatively, the parity sub-matrix of a generator matrix of a cyclic code can be constructed
with the vectors associated with the following polynomials:

xn-l mod g(x),

xn-k+l mod 9(x),
xn-' mod g (x) ,

and a systematic encoding is obtained, as illustrated in the example below,

Example 22 Let c be the cyclic Hamming (7 ,4 ,3) code. Then g(z) = z3 + x + 1, and

z6 mod (x3 + x + 1) = x' + 1,
z5 mod (x3 + x + 1) = x' + x + 1,
x4 mod (x3 + x + 1) = x' + x,
z3 mod (x3 + x + 1) = z + 1.

It follows that a systematic generator matrix of C is

f 1 0 0 0 1 0 1
0 1 0 0 1 1 1 G =

\ 0 0 0 1 0 1 1 /

Let U(x) be associated with a message to be encoded. Encoding of codewords of a binary
cyclic code can be either non-systematic or systematic, depending on the way that the message
is processed:

Non-systematic encoding

v(2) = U(z)g(x)
Systematic encoding

(3.3)

U(x) = zn-"u(z) + [z"-'fi(x) mod g(.)]. (3.4)

36 THE ART OF ERROR CORRECTING CODING

3.1.4 The parity-check polynomial

Another polynomial, h(z) , called the parity-check polynomial, can be associated with the
parity-check matrix. The generator polynomial and the parity-check polynomial are related
by

g(z)h(z) = 2" + 1. (3.5)

The parity-check polynomial can be computed from the generator polynomial as
&(x) = (zn + l)/g(z) = h0 + hlz + . . . + hkxk. Then, a parity-check matrix for C is given
by using as rows the binary vectors associated with the first n - k - 1 nonzero cyclic shifts
h(j)(z) = zjh(z) mod (xn - l), j = 0,1, . . . , n - k - 1.

H =

Example 23 The parity-check polynomial for the cyclic Hamming (7,4,3) code, with gener-
ator polynomial g(z) = z3 + z + 1, is h(z) = (x7 + + z + 1) = z4 + x' + z + 1.
A parity-check matrix for this code is

(0 0 1 1 1 0 1 1 1 1 1 0 1 0 0
H = 0 1 1 1 0 1 0 .

In the same manner as with linear codes, systematic encoding can be also performed by a
recursion with h(z) using

u(z)h(z) = 0 mod (5" + 1).

Systematic encoding can be performed as follows [PW, LC]. Suppose first that the code rate
k / n 5 0.5. Let G(%) = uo + u1z + . . . + Uk-1 denote a polynomial of degree k - 1, whose
coefficients ut, e = 0, l, . . . , k - 1, are the message bits to be encoded. Let 'u(z) denote the
code polynomial polynomial in C corresponding to the information polynomial 21(z). In the
first step, v! = ut, for k = 0, l , . . . , k - 1.

From the cyclic structure of the code, it follows that the redundant bits v!,
e = k , k + 1, . . . , n - 1, are obtained recursively via the parity-check relations

e-1

ve = cUjh(! -k) , j , l? = k , k + l , . . . , n - 1 (3.7)
j = O

where h (t - k) , j denotes the j-th entry in the (k - k)-th row of matrix (3.6).
In the case of high-rate cyclic (n, k) codes, say k / n > 0.5, encoding by division of

z"-'G(z) by g(z) is more efficient. Either way, by recursion with h(z) or by division by g(z),
the coefficients of the code polynomials are in systematic form, so that the first k coefficients
are the message bits, and the remaining n - k coefficients constitute the redundant bits.

Figure 17 shows the block diagram of an encoder for a binary cyclic code with generator
polynomial g(z). Initially, the switch (lower right portion of the figure) is in position 1, and the
message bits are both transmitted through the channel and simultaneously fed to a sequential

BINARY CYCLIC CODES AND BCH CODES 37

circuit that multiplies by xn-k and divides by i j (z). After k cycles, the shift register contains
the remainder of the division, the switch moves to position 2 and the contents of the register
are sent through the channel.

Figure 17 Circuit for systematic encoding: Division by i j (z).

Duals of cyclic codes and maximum-length-sequence codes

By analogy with linear codes, the dual code of a cyclic code C with generator polynomial
g(%) is the cyclic code CL generated by the polynomial h(z) . The important class of
maximum-length-sequence (MLS) cyclic codes [PW] has as members the duals of the cyclic
Hamming codes. An MLS cyclic (2m - 1, m, 2m-1) code is generated by the polynomial
g(z) = (xn + l) /p(x), wherep(z) is aprimitivepolynomial'.

3.1.5 Shortened cyclic codes and CRC codes

There are many practical applications in which an error correcting code with simple encoding
and decoding procedures is desired, but existing constructions do not give the desired length,
dimension and minimum distance.

The following is an example from an email recently sent to the author: We plan to use
a simple FEC/ECC scheme to detectkorrect single-bit errors in a 64-bit data block. The
objective is to find or choose an ECC scheme to correct single-bit errors with up to 8 bits of
overhead, giving a maximum of 72 bits (64 data bits plus 8 redundant bits) in total.

Naturally, since 72 is not of the form 2m - 1, none of the cyclic codes studied so far can be
applied directly. One possible solution is to use a cyclic Hamming (127,120,3) code and to
shorten it until a dimension k = 64 is reached. This yields a shortened Hamming (71,64,3)
code2.

Shortening is accomplished by not using all the information bits of a code. Let S

For a definition of primitive polynomial, see page 41.
This is an example to introduce the concept of shortening. A (72,64,4) single-error-correctingldouble-error-
detecting (SECIDED) code, based on a shortened Hamming code, and adding an overall parity-check bit,
was proposed for the IBM model 360 mainframe ([Hsia] and Chapter 16 of [LC]).

38 THE ART OF ERROR CORRECTING CODING

denote the number of information bits not used, referred to as the shortening depth. Let
C denote a cyclic (n, k , d) code. A shortened message is obtained by fixing S (arbitrary)
message positions to zero. This leaves k - S positions available for the message bits.
Without loss of generality, let the highest positions in a message be set to zero. Then
U (%) = uo + u1z + . . . + ~k-1-~z'-'-~. The output of a systematic encoder, when the
input is the message polynomial U(z), produces the code polynomial V(z) = z"-'ii(z) +
[zn-'U(z) mod g(.)], of degree up to n - l - S . This shows that the resulting shortened
code C, is a linear (n - S, k - S , d,) code with d, 2 d. In general, the shortened code C, is
no longer cyclic.

Example 24 Let C denote the cyclic Hamming (7 ,4 ,3) code with generator polynomial
g(z) = 1 + z + z3. A new code is derived from C by sending 2 leading zeros followed by
two information bits and the same three redundant bits computed by an encoder in C. This
process gives a set of codewords that forms a shortened linear (5 , 2 , 3) code.

The fundamental property of a shortened code C, obtained from a cyclic code is that,
although the code is generally no longer cyclic, the same encoder and decoder can be used,
after the leading zeros are properly taken into account. In computer simulations, it is easy
to simply pad the codewords with zeros followed by the codeword in C, and use the same
encoding and decoding algorithms discussed in the book. This method is widely used in
hardware implementations of Reed-Solomon decoders. Alternatively, the leading zeros in a
message do not need to be included in the codeword. Instead, the decoder circuit is modified
to multiply the incoming received polynomial f (z) by xn-'+, modulo g(z), instead of zn-'
modulo g(z) in the conventional decoder. More details on the modified encoder and decoder
structures for shortened cyclic code can be found in [PW, LC, Wic], among other references.

Another possible solution is to try to construct other classes of cyclic codes with the desired
parameters. Interesting classes of cyclic codes not covered in the text are the non-primitive
BCH codes [PW] and the Euclidean geometry (EG) and projective geometry (PG) codes [LC].
Yet another possibility is to use a non-binary cyclic code, such as a Reed-Solomon code
discussed in the next chapter, and to express it in terms of bits. This binary image of a RS code
will have the additional feature of being able to correct many bursts of errors. See Chapter 4
for more information.

CRC codes

One of the most popular forms of ECC are the cyclic redundancy check codes, or CRC
codes. These cyclic codes are used to detect errors in blocks of data. CRC codes are cyclic
codes of length n 5 2m - 1. Typically, CRC codes have generator polynomials of the form
(1 + z)g(z), where g(z) is the generator polynomial of a cyclic Hamming code. Common
values of m are 12, 16 and 32. The choice of the generator polynomials is dictated by the
undetected error probability, which depends on the weight distribution of the code. The
computation of the undetected error probability of a cyclic code is tantamount to determining
its weight distribution. This has remained an elusive task, even after 50 years of coding theory,
with some progress reported in [FKKL, Kaz] and references therein. Below is a list of the most
popular generator polynomials of CRC codes, or CRCpolynomials:

BINARY CYCLIC CODES AND BCH CODES

Code a x) m
CRC-12 %l2 + d 1 + zJ + x2 + z + 1 12
CRC-16

x16 + 2 1 2 + 2 5 + 1 16 CRC-CCITT
Zl6 + d 5 + x2 + 1 16

CRC-32 z32 + zZ6 + + z2’ + 216 + 2 1 2 + 211 32
+ d o + 2* + x7 + +z5 + 2 4 f 2 2 + z + 1

39

3.2 General decoding of cyclic codes

Let T(z) = V(z) + $x), where e(x) is the error polynomial associated with an error vector
produced after transmission over a BSC channel. Then the syndrome polynomial is defined as

Figure 18 shows the general architecture of a decoder for cyclic codes. The syndrome
polynomial .$(x) is used to determine the error polynomial e(z). Since a cyclic code is first
of all a linear code, this architecture can be thought of as a “standard array approach” to the
decoding of cyclic codes.

?(x) = $x) + S(x)

. , W
v

Division by g(x) 7 -1 D-
S(x) = ?(x) mod g(x)

Figure 18 General architecture of a decoder for cyclic codes.

The decoding problem amounts to finding the (unknown) error polynomial E(z) from the
(known) syndrome polynomial S(z). These two polynomials are related by equation (3.Q
which is the basis of a syndrome decoder (also referred to as a Meggit decoder [Meg]) for
cyclic codes. A related decoder is the error-trapping decoder [Kasm], which checks if the
error polynomial e(x) is contained (“trapped”) in the syndrome polynomial S(z). Only a
limited number of classes of codes have relatively simple decoders, e.g., cyclic Hamming and
Golay codes. As the error correcting capability t = L(dmin - 1)/2] increases, however, the
complexity of an architecture based only on (combinatorial) detection of errors becomes too
large.

Suppose that an error in the position corresponding to zn-’ (the first received
bit) occurs. In other words, e(z) = xn-l. The corresponding syndrome polynomial is
S(z) = x”-lrnodij(z). The code is cyclic, and thus if an error pattern affecting a given
position is detected, any other error can be detected as well, by cyclically shifting the contents
of the syndrome polynomial and the error polynomial. The syndrome decoder checks the
syndrome for each received position and, if the pattern zn-lmodg(z) is detected, that position
is corrected.

Example 25 In this example, the decoding of a cyclic (7: 4; 3) Hamming code is illustrated.
For this code, ij(x) = z3 + z + 1. The syndrome decoding circuit is shown in Figure 19. The

40 THE ART OF ERROR CORRECTING CODING

received bits are stored in a shift register and at the same time fed to a divide-by-g(z) circuit.
After all the seven bits have been received, the shift register contents are shifted one at a time,
and a combinatorial gate checks if the syndrome polynomial z6mod(l + z + z3) = 1 + x2,
or (101) in binary vector notation, is present in the shift register when the output of the gate is
equal to one, the error is at the position z6 and is corrected. At the same time, the error is fed
back to the divide-by-g(z) circuit to bring the contents of the register equal to all zeros, upon
successful completion of decoding. This also allows detection of any anomalies at the end of
the decoding process, by checking that the contents of the shift register are not all equal to
zero.

x3

Figure 19 Syndrome decoder for a binary cyclic Hamming (7,4) code.

Attention is now focused on cyclic codes with large error correcting capabilities, for which
the decoding problem can be treated as that of solving sets of equations. Because of this, the
notion of a jield, a set in which one can multiply, add and find inverses, is required. Cyclic
codes have a rich algebraic structure. It will be shown later that powerful decoding algorithms
can be implemented efficiently when the roots of the generator polynomial are invoked and
arithmetic over ajinitejield used.

Recall that the generator polynomial is the product of binary irreducible polynomials:

g(z) = n &(X).

j € J C { l , Z , . . . , l }

The algebraic structure of a cyclic codes enables one to find the factors (roots) of each 4j (x)
in a splitting jield (also known as extension field). In the case of interest, that is, when the
underlying symbols are bits, the splitting field becomes a Guloisjield3. Some authors refer
to Galois fields as jni te j e ld s . The standard notation that will be used in the text is GF(g) ,
where q = 2m. (Although, in general, q can be the power of any prime number.)

Example 26 In this example, the reader is reminded that the concept of splitting field is
very familiar. Consider the field of real numbers. Over this field, it is well known that the

~~

After the famous French mathematician Evariste Galois (18 1 1 - 1832).

BINARY CYCLIC CODES AND BCH CODES 41

polynomial z2 + 1 is irreducible. However, over the compZexfield, it splits into (z + i) (z - i),
where i = a. Thus the complex field is the splitting field of the real field!

3.2.1 GF(2") arithmetic

It can be shown, with basic abstract algebra [PW, LC] concepts, that, in the field of binary
numbers, any polynomial of degree m can be split over GF(2m). For the purposes of this
book, it is sufficient to learn basic computational aspects of finite fields. Serious readers are
urged to study a good textbook on abstract algebra4.

Decoding with GF(2") arithmetic allows replacement of complex combinatorial circuits
with practical processor architectures that can solve Equation (3.8) as a set of linear equations.
In the following, the necessary tools to solve equations involved in decoding of cyclic codes
are introduced.

Important properties of GF(2")

The field GF(2") is isomorphic (with respect to "+") to the linear space (0, l}". In other
words, for every element /3 E GF(2"), there exists a unique m-dimensional binary vector

There is aprimitive element a E GF(2m), such that every nonzero element ,B in GF(2")
can be expressed as p = d , 0 5 j 5 2" - 2. This element a is the root of an irreducible
polynomial, called a primitive polynomial, p (z) over (0, l}, i.e., p (a) = 0. A primitive
element a of the field GF(2m) satisfies the equation a2m-1 = 1, and n = 2" - 1 is the
smallest positive integer such that an = 1.

Example 27 Let p (z) = z3 + z + 1, a primitive polynomial of GF(23). Let (Y be a primitive
element such thatp(a) = a3 + Q + 1 = 0 and a7 = 1. The table below shows three different
ways to express, or representations of, elements in GF(23).

up E { O , l } m .

i
Power

a3

a4
f f 5

a6

+ Polynomial Vector

1
CY

Q2

l + f f
a +a2

1+ff+ff2
1 +a2

00 l
010
100
01 1
110
111
101

When adding elements in GF(2m), the vector representation is the most useful, because
a simple exclusive-or operation is needed. However, when elements are to be multiplied, the
power representation is the most efficient. Using the power representation, a multiplication
becomes simply an addition modulo 2m - 1. The polynomial representation may be
appropriate when making operations modulo a polynomial. An example of the need of this
polynomial representation was seen in the discussion of shortened cyclic codes, where the
value of zn-' mod g(z) was required.

The author likes [Her].

42 THE ART OF ERROR CORRECTING CODING

In the power representation, because a2m-1 - - 1 h olds, note that a2" = aa2m-1 - - a,
- a2, and so on. This is to say that the powers of a are to be computed

modulo 2m - 1. Applying the same argument shows that a-' = = CY^"-^. For
Example 27 above, a-' = = a6. In general, the inverse p-' = ak of an element
p = ae is found by determining the integer IC, 0 5 IC < 2m - l such that ~ y ~ + ~ = 1, which
can be expressed as t? + IC = 0 mod (2m - 1). Therefore, C = 2m - 1 - IC. Also, in the
polynomial representation, the equation p (a) = 0 is used in order to reduce the expressions.
In Example 27, a3 = a3 + 0 = a3 + (a3 + a + 1) = a + 1.

a 2 m + l = a2Cy2m-1 -

Log and anti-log tables

A convenient way to perform both multiplications and additions in GF(2m) is to use two
look-up tables, with different interpretations of the address. This allows one to change between
polynomial (vector) representation and power representations of an element of GF(2m).

The anti-log table A(i) is useful when performing additions. The table gives the value of
a binary vector, represented as an integer in natural representation, A(i) , that corresponds to
the element ai. The log table L(i) is used when performing multiplications. This table gives
the value of a power of alpha, that corresponds to the binary vector represented by the
integer i. The following equality holds:

a L (i) = A (').
The best way to understand how to use the tables in the computation of arithmetic operations
in GF(2m) is through an example.

Example 28 Consider with p (@) = a3 + a + 1, and a7 = 1. The log and anti-log
tables are the following:

Address
i
0
1
2
3
4
5
6
7

GF(2m)-to-vector
Anti-log table, A(i)

1
2
4
3
6
7
5
0

Ve~tor- to-GF(2~)
Log table, L(i)

-1
0
1
3
2
6
4
5

Consider the computation of an element y = a(a3 + a5)3 in vector form. Using the
properties of GF(23), y can be computed as follows: a3 + a5 = 110 111 = 001 = a2.
Thus, y = (~ (a ~) ~ = = cy7(= 1).

On the other hand, using the log and anti-log tables, the computation of y proceeds as
follows: y = A(L(A(3) CB A(5)) * 3 + 1) = A(L(3 CB 7) * 3 + 1) = A(L(4) * 3 + l) =
A(2 * 3 + 1) = A(7) = (A(0) = 1). In the last step, use was made of the fact that a7 = 1.

Anti-log and log tables are used in performing addition and multiplication over GF(2").
Computer programs are available on the ECC web site for simulating encoding and decoding
algorithms of BCH and Reed-Solomon codes, with arithmetic in GF(2m). These algorithms
are described in subsequent sections.

BINARY CYCLIC CODES AND BCH CODES 43

More properties of GF(2m)

The minimal polynomial &(x) of an element ai is the smallest degree polynomial that has
ai as a root. The following properties regarding minimal polynomials can be shown. The
minimal polynomial 4i(x) has binary coefficients and is irreducible over GF(2) = (0; l}.
Moreover, q5i(x) has roots ai, . . ., a 2 " - l i , where K divides m. These elements are known
as the conjugate elements of ai in GF(2m). The powers of the conjugate elements form a
cyclotomic coset (see [MS], p. 104, and [GG], p. 391):

A . ci = { a ; 2i: 4 ; . . . 2"-li}.

Cyclotomic cosets (also called cycle sets in [PW], p. 209) have the property that they partition
the set Z2m -1 of integers modulo 2m - 1. That is, cyclotomic cosets are disjoint, that is, their
intersection is the empty set Ci n Cj = 8, i # j , and and the union of all cyclotomic cosets
Ui Ci = &m-1.

Example 29 The cyclotomic sets modulo 7 are:

CO = (0)
c1 = {1;2;4}
C, = {3,6,5}

The primitive element Q of GF(2m) satisfies the equation = 1, and all elements can
be expressed as powers of Q. From this it follows that the polynomial + 1) factors
over the binary field as

M

(x2m-1 + 1) = + e j (x);
j=O

and splits completely over GF(2m) as

2m-2

(x2m-1 + 1) = n (x + aj) .
j=O

(3.9)

The order ni of an element ,!? = ai of GF(2m) is the smallest positive integer such that
pni = 1. The order ni of every element in GF(2m) divides 2m - 1.

Importantly, the degree of a minimal polynomial q!~i(x) is equal to the cardinality (number
of elements) of the cyclotomic coset Ci,

deg [4i(Z)l = ICil.

This suggests the following method of finding all factors of (z2m-1 + 1):

1. Generate the cyclotomic cosets modulo 2m - 1.
2. For each cyclotomic coset C,, compute the minimal polynomial +,(x) as the

product of linear factors (x - a i s) , where is E C,,

$,(x) = n (x + ai.). (3.10)
i, CC,

This method can be used in computing the generator polynomial of any cyclic code of length
n = 2m - 1. It is used in the computer simulation programs for BCH codes available on the
ECC web site, to compute the generator polynomial given the zeros of the code.

44 THE ART OF ERROR CORRECTING CODING

Example 30 Consider with p (z) = z3 + z + 1. The roots of each of the factors of
the polynomial x7 + 1 are shown in the following table. The reader is invited to verify that in
fact the products of the linear factors in (3.10) give the resulting binary polynomials.

C S Minimal polynomial, 4s (x) Conjugate elements
CO = (0) #o(x) = z + 1 l

C1 {1:2:4)
43(x) = 2 3 + x 2 + 1 a3,a6,a5 C3 = (3; 6: 5)
41(z) = 2 3 + 2 + 1 a,a2,a4

3.3 Binary BCH codes

BCH codes are cyclic codes that are constructed by specifying their zeros, i.e., the roots of
their generator polynomials:

A BCH code of dmin 2 2td + 1 is a cyclic code whose generator
polynomialg(x) has 2 td consecutive roots ab, ab, ab+', a b + 2 t d - 1 .

Therefore, a binary BCH (n; k: &in) code has a generator polynomial

g (%) = LCM{4b(x): dbfl (x): ". : 4 b + 2 t d - l (Z) } :

length n = LCM{nb; nb+l;. . . nb+2td-1}, and dimension k = n - deg [g(.)]. A binary
BCH code has a designed minimum distance equal to 2 t d + 1. However, it should be noted
that its true minimum distance may be larger.

Example 31 With G F p 3) , p(x) = x3 + x + 1, t d = 1 and b = 1, the polynomial

g(z) = LCM{41(z):42(2)) = x3 + x + 1:

generates a binary BCH (7,4,3) code. (This is actually a binary cyclic Hamming code!) Note
that the Hamming weight of g(.) is equal to 3, so that - in this case, but not always - the
designed distance is equal to the true minimum distance of the code.

Example 32 Consider GF(24), p (z) = x4 + z + l, with t d = 2 and b = 1. Then

generates a double-error-correcting binary BCH (15,7,5) code.

Example 33 With GF(24), p(z) = x4 + x + 1, t d = 3 and b = 1, the polynomial

s(z) = -=M{41 (.l ; 4 3 b l 4 5 (x))
= (x4 + + q z 4 + x3 + 22 + + 1)

- d o + z8 + z5 + x4 + x2 + z + 1
(x 2 + z + 1)

-

generates a triple-error-correcting binary BCH (l 5,5,7) code.

BINARY CYCLIC CODES AND BCH CODES 45

The lower bound on the minimum distance of a BCH code, known as the BCH bound,
is derived next. This is useful not only to estimate the error correcting capabilities of cyclic
codes in general, but also serves to point out particular features of BCH codes. Note that the
elements a b : . . . a b + 2 t d - 1 are roots of the generator polynomial tj(x), and that every
codeword ij in the BCH code is associated with a polynomial B(x) which is a multiple of tj(x).
It follows that

ij(z) E C U ij(ai) = 0; b 5 i b + 2 t d . (3.1 1)

Codeword V then satisfies the following set of 2 t d equations, expressed in matrix form, based
on (3.1 1):

v , - ~) = 0. (3.12)

Consequently, a parity-check matrix of a binary cyclic BCH code is given by

1 ab ...
1 Q b + l

(3.13)

1 Q b + 2 t d - 1 (Q b + 2 t d - 1 2) . . . (& 2 t d - 1
1) -

This matrix H has the characteristic that every 2 t d x 2 t d submatrix (formed by an arbitrary
set of 2 t d columns of H) is a Vandermonde matrix (see, e.g, [GG], p. 95). Therefore (see
Section 2.1), any 2 t d columns of H are linearly independent, from which it follows that the
minimum distance of the code is d 2 2 t d + 1. ([PW] p. 270, [MS] p. 201, and [LC] p. 149.)
Another interpretation of the results above is the following:

(BCH bound.) If the generator polynomial g (x) of a cyclic (n; k: d) code has t consecutive
roots, say ab , , then d 2 2 t + 1.

3.4 Polynomial codes

The important class of cyclic polynomial codes includes cyclic RM codes, BCH and Reed-
Solomon codes, and finite-geometry codes [KLP, PW, LC]. Polynomial codes are also
specified by setting conditions on their zeros:

Let Q be a primitive element of GF(2mS). Let S be a positive integer, and b a divisor of
2s - 1. Then ah is a root of the generator polynomial g(x) of a p-th order polynomial code
if and only if b divides h and

min Wz. (h 2 ') = j b : with 0 < j < [:] - p:

where for an integer i, i = Cki' i e 2 s e , W,= (i) is dejned as the 2'-ary weight of integer i,
m-l

i=O

46 THE ART OF ERROR CORRECTING CODING

According to this definition, both BCH and Reed-Solomon codes are polynomial codes
with b = m = 1. Reed-Muller codes are subcodes of polynomial codes with S = 1. Finite-
geometry codes ([LC], Chapter 8) occur as dual codes of polynomial codes [PW]. Below,
following [LC], the specifications of the zeros of finite-geometry codes are presented.

Euclidean geometry (EG) codes

Let Q be a primitive element of GF(2mS). Let h be a nonnegative integer less that 2"' - 1.
Then ah is a root of the generatorpolynomial g(x) of a (p; s)-order EG code of length 2mS - 1
if and only if

0 < max Wp(hce)) 5 (m - p - 1)(2' - 1); ose<s

where h(e) = 2eh modulo 2ms - 1.

For S = 1, EG codes become cyclic M*,,@ codes, and therefore EG codes are regarded as
generalized RM codes.

Projective geometry (PG) codes

Let a be a primitive element of GF(2(m+1)S). Let h be a nonnegative integer less that
2(m+1'" - 1. Then ah is a root of the generatorpolynomial g(x) of a (p: s)-order PG code of
length n = (2ms - l)/(2' - 1) ifand only $h is divisible by 2' - 1 and

where h(') = 2eh modulo 2mS - l, and 0 5 j 5 m - U .

3.5 Decoding of binary BCH codes

The main idea in decoding binary BCH codes is to use the elements p E GF(2m) to number
the positions of a codeword (or, equivalently, the order of the coefficients of the associated
polynomial). This numbering illustrated in Figure 20 for a vector F = (ro r1 . . . rnP1)
with corresponding F(x).

positions 1 a a n-l

Figure 20 Codeword position numbering using elements of GF(2").

Using GF(2m) arithmetic, the positions of the errors can be found, by solving a set of
equations. These equations can be obtained from the error polynomial E(x) and the zeros of
the code, aj , for b 5 j 5 b + 2td - 1, as shown in the following.

Let F(z) = G(z) + e(x) represent the polynomial associated with a received codeword,
where the error polynomial is defined as

~ (z) = ej, xj1 + ej, xjz + . . . + ej, xju (3.14)

BINARY CYCLIC CODES AND BCH CODES 47

Let the error locatorpolynomial be defined as

Y

A .(x) = n(1+ aj+) = 1 + .1x + 02x2 + . . . + c7,zY, (3.15)
e= 1

with roots equal to the inverses of the error locutions. Then the following relation between
the coefficients of .(x) and the syndromes holds (see, e.g., [Pet], [LC] p. 154, [PW] p. 284):

Solving the key equation given by (3.16) constitutes the most computationally intensive
operation in decoding BCH codes. Common methods to solve the key equation are:

Berlekamp-Mussey algorithm (BMA)
The BMA was invented by Berlekamp [Berl] and Massey [Mas2]. This is a
computationally efficient method to solve the key equation, in terms of the number
of operations in GF(2"). The BMA is a popular choice to simulate or implement
BCH and RS decoders in software.
Euclidean algorithm (EA)
This method to solve the key equation, in polynomial form, was introduced
in [SKHN] and further studied in [Man]. Due to its regular structure, the EA is
widely used in hardware implementations of BCH and RS decoders.
Direct solution
Proposed first by Peterson [Pet], this method directly finds the coefficients of ~ (z) ,
by solving (3.16) as a set of linear equations. The term PGZ (Peterson-Gorenstein-
Zierler) decoder is often used in the literature. This is because in [GZ] Peterson's
method is applied in decoding nonbinary BCH codes, or RS codes. Naturally, as
the complexity of inverting a matrix grows with the cube of the error-correcting
capability, the direct solution method works only for small values of t d . Solutions to
(3.16) up to t d 5 6 are given in [ML], sec. 5.3.

~~

It will be seen later that for Reed-Solomon codes e j E GF(2m) .

48 THE ART OF ERROR CORRECTING CODING

3.5. I General decoding algorithm for BCH codes

Figure 21 shows the block diagram of a decoder for BCH codes (both binary and non-binary).
The decoder consists of digital circuits and processing elements to accomplish the following
tasks:

Find the coefficients of the error locator polynomial .(x)
0 Find the inverses ofthe roots ofo(z), i.e., the locations of the errors, a31, . . ., aJ'

Find the values of the errors ej l , . . e, ej , . (Not needed for binary codes.)
0 Correct the received word with the error locations and values found.

POWER SUMS EA, BMA CHIEN SEARCH ALGORITHM
FORNEY

0) Compute Find error values - Find positions

I

Delay RAM
c(x)

Figure 21 Architecture of a BCH decoder with GF(2") arithmetic.

One of the advantages gained in introducing GF(2m) arithmetic is that the decoding
operations can be implemented with relatively simple circuitry and processing elements. As
an example, Figure 22 shows how the computation of a syndrome Sj can be implemented
in hardware. The multiplier is over GF(2m), and can be constructed with relatively simple
combinatorial logic. Some details on the hardware design of processing elements over
GF(2m) can be found, for example, in [PW], and Chapters 5 and 10 of [WB].

b+j- 1
I

Figure 22 Example of a circuit for computing a syndrome.

BINARY CYCLIC CODES AND BCH CODES 49

3.5.2 The Berlekamp-Mussey algorithm (BMA)

The BMA is best understood as an iterative procedure to construct a minimum linear feedback
shift-register (LFSR) structure, like the one shown in Figure 23, that reproduces the known
syndrome sequence S1 , S2 , . . . , S2td.

j = v+l, v+2, ..., 2v

Figure 23 LFSR with taps cn, 02, ... U” and output SI, s2, ..., S2,.

The goal of the BMA is to find a (connection) polynomial dif1)(x) of minimal degree that
satisfies the following equations, derived from (3.16):

c S k - j f f j i f l) = 0, e2 < IC < i + 1. (3.18)
j=O

This is equivalent to requiring that d Z + l) (x) = 1 + o$~+’)z + . . . + o ~ ~ ~ l l) x f i + l be the
LFSR connection polynomial that produces the partial sequence of syndromes.

The discrepancy at iteration i defined as

measures how well the LFSR reproduces the syndrome sequence, and constitutes a correction
term used in computing the value of in the next iteration. There are two cases to
consider in the algorithm [Pet]’:

0 If di = 0, then the equations (3.18) are satisfied for

a(Z+l) (x) = oi(x), e,+l = ei. (3.19)

If di # 0: Let d m) (x) be the solution at iteration m, such that -1 5 m i, dm # 0,
and (m - e,) is maximal. Then

There is a variation of the BMA, inspired by [Mas2], that is used in some references. This variation will
be described in the next chapter. Of course, both versions of the BMA will give the same result!

50 THE ART OF ERROR CORRECTING CODING

With an initial value of i = 0, the computation of dZ+')(x) continues until either
i 2 ti+, + t d - 1 or i = 2td - 1, or both conditions, are satisfied.

The initial conditions of the algorithm are:

@)(x) = 1, e-, = 0, d-1 = 1,
(J(O)(z) = 1, eo = 0, do = S,. (3.21)

Also note that the BMA has control flow instructions (if-else). For this reason, it is not favored
in hardware implementations. However, in terms of number of GF(2") operations, it is very
efficient. This version of the algorithm is implemented in most of the C programs to simulate
BCH codes that can be found on the ECC web site.

Example 34 Let C be the triple-error correcting BCH (15,5,7) code of Example 33. As
a reference, to check the numerical computations, the power and vector representations of
GF(24), with primitive polynomial p (z) = 1 + x + x4, are listed below:

Table of elements of G F p 4) , p (z) = x4 + z + l
Power Vector

0 0000
1 000 1
a 0010
a2 0100
a3 1000
a4 0011
a5 0110
cy6 1100
cy7 1011
cy8 0101
a9 1010
a10 0111
cy11 1110
Q12 1111
a13 1101
QI4 1001

A generator polynomial for C is g(x) = d o + x8 + x5 + x4 + x2 + z + 1. Suppose that the
information polynomial is U(x) = x + x2 + x4. Then the corresponding code polynomial is
given by V (x) = x + x2 + x3 + x4 + x8 + x" + + d 4 .

Let T(z) = 1 + x + x2 + x3 + x4 + x6 + x8 + 2'' + be the polynomial associated
with a vector F = V + E received after transmission of codeword V over a BSC channel.
(Vector E corresponds to the error polynomial e(z) = 1 + x6 + d 2 . Obviously, the decoder
does not know this. However, in computing the syndromes below, this knowledge is used to
simplify expressions.)

The syndromes are:

S, = r (a) = 1 + Q6 + a12 = Q

S2 = S; = a2

BINARY CYCLIC CODES AND BCH CODES 51

S3 = r(a3) = 1 + a3 + a6 = a8
S, = S; = CY4

S5 = F (a 5) = 1 + 1 + 1 = 1
S6 = S: = a

m Iteration 4: i = 3, d3 = 0,

a(4)(x) = a(3)(x) = 1 + ax + a12x2;
e4 = e3;
C 4 f 3 - 1 5 3 ? N O :
d4 = S5 + S4a14) + S3aa4) = 1 + a4(a) + a8a1' = 1.

0 Iteration 5: i = 4, d4 = 1 # 0, m = 2 maximizes (2 - 1) = 1 for d2 # 0.

~ (~) (x) = + d4dz1x(4-2)a(2)(~)
= (I + + + (1)(a13)-1z2(1 +
= 1 + ax + a7x2 + a3x3:

e5 = max(C4; e, + 4 - 2} = 3;
e 5 + 3 - 1 g ? N O :

d5 = S6 i- S5a15) + S4ap) + S3aF) = a + 1 . a + a4(a7) + a8(a3) = 0.

0 Iteration 6: i = 5, ds = 0,

@)(x) = a(5)(x) = 1 + ax + a7x2 + a3z3;
e, = e 5 = 3;

+ 3 - 1 5 3 ? Yes : End.

52 THE ART OF ERROR CORRECTING CODING

Therefore a(z) = 1 + az + a7z2 + a3z3.

That the odd numbered iterations always gave di = 0 in the previous example is no
accident. For binary BCH codes this is always the case. The iterations can proceed with only
even values of i, with the same results. The only difference is that the stopping criterion needs
to be changed to

i 2 t?i+a + t d - 2.

As a result, decoding complexity is reduced. The reader is invited to solve a(.) for the
previous example, using only three iterations.

3.5.3 PGZ decoder

This decoding algorithm was first considered by [Pet]. A solution to the key equation (3.16) is
to be found using standard techniques for solving a set of linear equations. This solution gives
the coefficients of .(x). The decoding problem is that the number of actual errors is unknown.
Therefore, a guess has to be made as to the actual number of errors, v, in the received word.
Assume that not all the syndromes, Si, 1 5 i 5 2t, are equal to zero. (If all syndromes are
zero, then the received word is a codeword and decoding finishes!)

The decoder assumes that the maximum number of errors has occurred, v,,, = t d , and
checks if the determinant Ai, for i = v,,, = i d ,

(3.22)

is equal to zero. If it is, then a smaller number of errors must have occurred. The value of i
is decreased by one, and Ai tested again, repeating the procedure if necessary, until i = 1.
Otherwise, if Ai # 0, the inverse of the syndrome matrix is computed and the values of
a1; a’; . . . are found, where U = i. In the event that Ai = 0: i = 1; 2; . . . ~ t d , decoding is
unsuccessful and an uncorrectable error pattern has been detected.

Example 35 In this example, the error locator polynomial for the BCH (15; 5 ; 7) code in
Example 34 is found by the PGZ decoding algorithm. First, assume that i = t d = 3 errors
occurred. Then the determinant A3 is computed (using cofactors) as follows:

A3 = det (S z: :) = a(a8 + a 8) +a2(a2 +a1’) + a 8 (a 6 + a)
a8 a 4

- - a2+7 + a8+11 - 14 - a .

Therefore A3 # 0 and three errors are assumed to have occurred. Substituting the syndromes
found in Example 34 into the key equation (3.16),

(3.23)

BINARY CYCLIC CODES AND BCH CODES 53

Note that A;' = a-14 = a. The solution to (3.23) is found to be:

a4 a2 a8

a a4 l
a a4 a8

= a(a7 + a 1 2) = a3;

= a(a +a> = a ;

= a (a l 5 + a 1 5 + a 1 5) = a.

11 7

It follows that .(x) = 1 + ax + a7x2 + @'x3, which is the same result as that obtained by
the BMA in example 34.

3.5.4 Euclidean Algorithm (EA)

This algorithm is a well-known recursive procedure to find the greatest common divisor
(GCD) between two polynomials (or integers). Its application to BCH decoding is described
next.

Let an error evaluator polynomial be defined as A(.) = a(z)S(x) ; with a syndrome
polynomial

S (x) = 1 + S l Z + . . . + S 2 t d 5 2 ? (3.24)

From Equation (3.16), it follows that

A(x) = a (x) S (x) mod x2td+1. (3.25)

The decoding problem can be translated into finding the polynomial A(x) satisfying (3.25).
This can be achieved by applying the extended EA to the polynomials ro(z) = x 2 t d f 1 and
r1 (x) = S (x) , such that if at the j-th step

r j (x) = a j (x) x 2 t d + l + b j (Z) S (Z) ;

with deg [r j (x)] 5 t d , then A(x) = r j (x) and oi(x) = bj(x) . (Note that there is no interest,
from the decoding viewpoint, in polynomial ai (x) .)

The extended Euclidean algorithm for computing the GCD of two polynomials is:

54 THE ART OF ERROR CORRECTING CODING

Stop at iteration j las t when deg [rj,,,, (x)] = 0.

Then GCD(r0 (x); r1 (x)) = rk (x), with IC the largest nonzero integer such that T k (x) # 0
and IC < j l a s t .

Example 36 In this example, the error locator polynomial .(x) for the BCH (15; 5; 7) code
in Example 34 is computed using the EA.

Initial conditions

T O (Z) = 2 7 :
T1(Z) = S (x) = 1 + ax + a2x2 + a8x3 + a4x4 + x5 +ax6;
bO(5) = 0;
b1(x) = 1.

0 j = a :

x7 = (l+a~+a~x~+a~x~+a~x~+x~+ax~)(a~~x+a~~)+a~x~+a~~x~+a~~x~+a~~.

?-2(x) = a8x5 + a12x4 + a11x3 + 0 1 3 :

b2(x) = bo(.) + q2(x)b1(x) = a145 + a13.

S(Z) = (a8x5+a12x4+a11x3+a13)(a~x+a2) +a14x4+a323+a2x2+a112.

q2(x) = a14x +a13; and

0 j = 3 :

T 3 (Z) = d 4 x 4 + a3x3 + a2x2 + a112;

b3(x) = b1(x) + q3(x)b2(2) = a7x2 + allz.

a8x5+a12x4+a11x3+a13 = (a14x4+a3x3+a2x2+a115)(a9x)+a5x+a13.

q 3 (x) = a8x + a 2 ; and

0 j=4:

T 4 (Z) = a5x + a 1 3 ;

b4(Z) = b z (x) + q4(x)b3(x) = ax3 + a5x2 + a14x + Ql3.

q4(x) = a9x, and

Because deg[r4(x)] = 1 5 3, the algorithm stops.
It follows that .(x) = b 4 (5) = d3(l + ax + a7x2 + a3x3) , which has the same roots as

the polynomial obtained by the BMA and PGZ decoder (see example 37 below), and differs
only by a constant factor8.

As the example above illustrates, generally the error-locator polynomial obtained with the
EA will differ from that obtained by BMA or PGZ decoding by a constant factor. In decoding,
however, interest is in the roots of these polynomials and not their coefficients, and thus any
of the three methods discussed so far can be used to determine .(x).

The normalized polynomial unorm(z) = a;la(x) is identical to the one obtained in the BMA and PGZ
procedures.

BINARY CYCLIC CODES AND BCH CODES 55

3.5.5 Chien search and error correction

To find the roots of .(x), a simple trial-and-error procedure - called Chien search - is
performed. All nonzero elements p of GF(2m) are generated in sequence 1, a, a2, ... and
the condition .(p-’) = 0 tested. This process is easy to implement in hardware. Moreover,
finding roots (factoring) of polynomials over GF(2m) is a challenging mathematical problem
that remains to be solved.

For binary BCH codes, once the error locations j , , ..., j , are known, the corresponding bits
in the received word are complemented

and the estimated codeword G(.) generated.

Example 37 Continuing with Example 34, the roots of .(x) are 1, a’ = a-6 and a3 =
a-12. Stated in a different way, c(.) factors as

.(x) = (1 + 2) (1+ a62)(1 +a122).

Consequently, the estimated error polynomial is C(.) = 1 + x6 + .l2, and

Three errors have been corrected.

3.5.6 Errors-and-erasures decoding

There are many situations in which a decision on a received symbol is not considered
reliable. An example is binary transmission over an AWGN channel, with bits mapped to
real amplitudes, e.g., BPSK with 0 e +l and 1 e -1. If the received values are too close to
zero, then it may be more advantageous, from the viewpoint of minimizing the probability of
a decoding error, to declare a “no-decision”. In such a case, the received symbol is “erased”
and it is called an erasure9. Declaring erasures is the simplest form of soft-decision, which
will be the focus of attention in Chapter 7.

Introduction of erasures has the advantage, with respect to errors-only decoding, that the
positions are known to the decoder. Let d be the minimum distance of a code, v be the number
of errors and p be the number of erasures contained in a received word. Then, the minimum
Hamming distance between codewords is reduced to at least d - p in the non-erased positions.
It follows that the error-correcting capability is L(d - p - 1)/2J and the following relation
holds

d > 2v + p . (3.26)

The above inequality is intuitively satisfying: For a fixed minimum distance, it is twice as
difficult to correct an error than to correct an erasure, because the erased positions are already
known.

For binary linear codes, including binary BCH codes, erasures can be corrected with the
following method:

In information theoretical terms, the BSC channel becomes a two-input three-output binary erasure
channel (BEC) [COT].

56 THE ART OF ERROR CORRECTING CODING

1. Place zeros in all erased positions and decode to a codeword 60 (x).
2. Place ones in all erased positions and decode to a codeword 61 (x).
3. Chose as decoded word the closest 6j (x) to the received word F(x) in the non-erased

positions, j = 0 , l . (Alternatively, the codeword that required the smallest number
of error corrections [ML].)

As a result, erasures can be corrected with two rounds of errors-only decoding.

Example 38 Consider a cyclic Hamming (7 ,4 ,3) code with g(x) = 1 + x + x3,
and GF(23) with a primitive element a such that p (a) = 1 + a + a3 = 0. Suppose that
V(x) = x + x2 + x4 is transmitted and that p = 2 erasures are introduced at the receiver.
Since d = 3 > p, these erasures can be corrected. Let F(x) = f + x + x2 + fx3 + x4 be
polynomial associated with the received vector, where f denotes an erasure.

First decoding (f = 0): PO(.) = x + x2 + x4. The syndromes are S1 = Fo(a) = 0, and
S, = Sf = 0. Therefore, CO(.) = Fo(x) = x + x2 + x4.

Second decoding (f = 1): F1 (x) = 1 + x + x' + x3 + x4, S1 = a and S2 = a'.
Equation (3.16) in this case is: a01 = a2. Therefore .(x) = 1 +ax, E(x) = x and
Cl (x) = Fl (x) + E(x) = 1 + x' + x3 + x4, which differs from F(x) in one of the non-erased
positions. As a result, GO(.) is selected as the decoded word. Two erasures have been
corrected.

3.6 Weight distribution and performance bounds

In general, the weight distribution of a binary linear (n, k) code C can be obtained by
enumerating all 2k code vectors V and computing their Hamming weight. Obviously, for large
values of IC, this is a formidable task. Let A, denote the number of codewords of Hamming
weight W. The MacWilliams identity relates the weight distribution sequence (WDS) of a
linear code, A(%) = A0 + Alx + 22x2 + . . . + A,z", with the WDS of its dual l o (n, n - k)
code C l , B (x) = Bo + Blx + xzx' + . ' . + &x", by

A

A

A (x) = 2-"+'(1 + x)"B - [:I:]'
which can also be expressed as

(3.27)

(3.28)

Therefore, for high-rate codes, it is simpler to compute the WDS B (x) of the dual code and
then use (3.27) to compute A(z) . Alternatively, the WDS of a low-rate code is easy to compute
and the WDS of the dual code can be obtained using (3.28).

For some classes of codes, the trellis structure can be used". In [DFK2], a trellis-based
method for computing the weight distribution of extended BCH codes of length 128 is given.

lo Recall that the dual code CL has generator matrix H , where H is the parity-check matrix of C
More on trellises can be found in Chapter 7.

BINARY CYCLIC CODES AND BCH CODES 57

For shorter lengths, the weight distributions are not difficult to compute using MacWilliams
identity. The definition of extended cyclic code is introduced next. A binary extended cyclic
code is obtained from a binary cyclic code by appending, at the start of each code vector, an
overallparity-check bit. The extended code of a cyclic code is no longer cyclic. Let H denotes
the parity-check of the cyclic code, then the parity-check matrix of the extended code, denoted
Hext is given by

1 1 ...

Hext = (n H l) . (3.29)

Appendix A lists the weight distributions of all extended binary BCH codes of length up to
128. These data files are available on the ECC web site. The appendix lists only those terms
of Hamming weight up to (n + 1)/2, for n = 2m - 1. In the case of extended BCH codes, it
holds that = A?). The data is useful in finding the weight distribution of the binary
cyclic BCH codes of length up to 127. This can be done by application of the following result
(which is obtained as a special case of Theorems 8.14 and 8.15 in [PW]):

Let C be a binary cyclic BCH (n: IC) code with WDS A(z), obtained by eliminating the overall
parity-check bit in a binary extended BCH (n + 1; IC) code Cext, with WDS A(ext)(z). Then,
for W even,

(3.30)

Example 39 Consider the binary extended Hamming (8: 4; 4) code. This code has parity-
check matrix (see also Example 23),

1 1 1 1 1 1 1 1
0 1 1 1 0 1 0 0

0 0 0 1 1 1 0 1

H = (
It can be easily verified that A(ext) (x) = 1 + 14z4 + z8. To compute the WDS of the binary
cyclic Hamming (7; 4; 3), use (3.30) to obtain

8A3 = 4 A y) + A3 7;
4A4 = (8-4)A3 + A4 1 7 ;

8A7 = 8 A F) + A7 = 1.

3.6.1 Error performance evaluation

With knowledge of the WDS of a code C, the error performance can be estimated, as
discussed in Chapter l. The WDS and the union bound (1.34) give good estimates of the
error performance of code C with binary transmission over an AWGN channel.

As an example, the union bound was evaluated using Appendix A for extended BCH codes
of length 8 to 64. The results are shown in Figures 24 to 27. Using the WDS from the appendix

58 THE ART OF ERROR CORRECTING CODING

and the union bound for flat Rayleigh fading channels (1.40), with Monte Carlo integration
and the term A, replaced by wA,/n to account for bit errors, Figure 28 shows union bounds
on the bit error rate for extended BCH codes of length 8. Bound for other codes can be
computed in the same way.

The main point of this section is that, before choosing a particular soft-decision decoding
algorithm (see Chapter 7), the weight distribution and the union bound can give an estimate
of the performance that is achievable over a certain channel. For the AWGN channel and the
flat Rayleigh fading channel, the union bounds are tight at bit error rates below 10W4.

Union bounds on bit error rate for extended BCH codes of length 8
1 e+OO

1 e-02

X

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Es/No (dB)

Figure 24 Union bounds on the BER for extended BCH code of length 8. Binary transmission
over an AWGN channel.

BINARY CYCLIC CODES AND BCH CODES 59

Union bounds on bit error rate for extended BCH codes of length 16

Figure 25 Union bounds on the BER for extended BCH code of length 16. Binary
transmission over an AWGN channel.

Union bounds on bit error rate for extended BCH codes of length 32

U
W m

1 e+OO

1 e-02

1 e-04

1 e-06

1 e-08

1 e-l 0

le-12

EdNo (dB)

Figure 26 Union bounds on the BER for extended BCH code of length 32. Binary
transmission over an AWGN channel.

60 THE ART OF ERROR CORRECTING CODING

Union bounds on bit error rate for extended BCH codes of length 64

Figure 27 Union bounds on the BER for extended BCH code of length 64. Binary
transmission over an AWGN channel.

Union bounds for extended BCH codes of length 8 over a flat Rayleigh channel

"ber.ray.8.7.2" -i- -
"ber.ray.8.4.4 - - - x - - -~ -
"ber.ray.8.1 8 ' '

a:
W 0.001 - m

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
W N o (dB)

Figure 28 Union bounds on the BER for extended BCH code of length 8. Binary transmission
over a flat Rayleigh fading channel.

a:
W
m

0.1

0.01

0.001

0.0001

1 e-05
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

W N o (dB)

Figure 28 Union bounds on the BER for extended BCH code of length 8. Binary transmission
over a flat Rayleigh fading channel.

Non-binary BCH codes:
Reed-Solomon codes

In this chapter the most celebrated class of ECC schemes is introduced and their encoding
and decoding algorithms explained. Reed-Solomon (RS) codes have found numerous
applications in digital storage and communication systems. Examples include the famous RS
(255,223,33) code for NASA space communications, shortened RS codes over G F (2 8) for
CD-ROM, DVD and Terrestrial Digital HDTV transmission applications, an extended RS
(128,122,7) code over G F (2 7) for cable modems, among many others.

4.1 RS codes as polynomial codes

Similar to Reed-Muller codes, RS codes can be defined as codewords with components equal
to the evaluation of a certain polynomial. As a matter of fact, this was the way that RS codes
were originally defined by Reed and Solomon in [RS]. RM codes, finite-geometry codes [LC]
and RS codes are all members of a large class of codes: PoZynomial codes [PW], which are
closely related to algebraic-geometry (AG) codes [Pre]. Let

u(x) = 210 + U12 + . . . + Uk-IZk-1 (4.1)

be an information polynomial, with ui E GF(2") , 1 5 i < IC. Clearly, there are 2mk such
polynomials. By evaluating (4.1) over the nonzero elements of GF(2") , a codeword in an
RS (2" - 1, IC, d) code of length 2" is obtained,

v = (u(1) u(a) U(Q2) . . . u(Q2m-2)) . (4.2)

4.2 From binary BCH to RS codes

RS codes can also be interpreted as nonbinary BCH codes. That is, RS codes are BCH codes
in which the values of the code coefficient are taken from GF(2") . In particular, for a td-error
correcting RS code, the zeros of the code are 2td consecutive powers of Q. Moreover, because
over GF(2") minimal polynomials are of the form &(x) = (x - a'), 0 5 i < 2" - 1, see
Equation (3.9), the factors of the generator polynomial are now linear, and

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

62 THE ART OF ERROR CORRECTING CODING

where b is an integer, usually b = 0 or b = 1.
It follows from (4.3), and the BCH bound on page 45, that the minimum distance of a Reed-

Solomon (n, IC, d) code C over GF(2") is d > n - k + 1. On the other hand, the Singleton
bound [Sin] d 5 n - IC + 1 implies that d = n - k + 1. A code that satisfies this equality
is known as a maximum distance separable (MDS) code [Sin]. Therefore RS codes are MDS
codes. This gives RS codes useful properties. Among them, shortened RS codes are also MDS
codes.

Using the isomorphism between GF(2") and (0, l}", for every m-bit vector 30 there is
a corresponding element /3 E GF(2"),

m-bits U /3j E GF(2"), 0 5 j < 2" - 1.

In other words, m information bits can be grouped to form symbols in GF(2"). Conversely,
if the elements of GF(2") are expressed as vectors of m bits, then a binary linear code of
length and dimension n = m(2" - l) and k = m(2" - 1 - 2td), respectively, is obtained.
The minimum distance of this code is at least 2td + 1. This binary image code can correct,
in addition to up to t d random errors, many random bursts of errors. For example, any single
burst of up to m (t d - 1) + 1 bits can be corrected. This follows from the fact that a burst
of errors of length up to m(q - 1) + 1 bits is contained in at most Q symbols of GF(2").
Therefore, there are many combinations of random errors and bursts of errors that an RS code
can correct. To a great extent, this is the reason why RS codes are so popular in practical
systems.

Example 40 Let m = 3, and GF(23) be generated by a primitive element Q with
p(a) = a3 + cy + 1 = 0. Let b = 0 and t d = 2. Then there is an RS(7,3,5) code C with
generator polynomial

g(.) = (. + l)(. +CY)(. + cy2)(. + cy3)
= z4 + Q2Z3 + Q5.2 + CY5. + Q6.

By mapping the symbols of GF(23) into binary vectors of length 3, code C becomes a binary
(21,9,5) code that is capable of correcting up to 2 random errors as well as any single burst
of up to 4 bits.

4.3 Decoding RS codes

The core of the decoding algorithms of RS codes is similar to that of binary BCH codes. The
only difference is that the error values, ej , , 1 5 t 5 v, for v 5 t d , have to be computed. In
general, this is done using the Forney algorithm [For2]. The expression below holds for RS
codes with an arbitrary set of 2td consecutive zeros {ab , &l, . . . a b f Z t d - ' 1 7

where g'(.) represents the formal derivative of a(%) with respect to z. (A similar expression
can be found in [RC], p. 276.) The polynomial A(.) in (4.4) is an error evaluatorpolynomial,
which is defined as

A(z) = o(z)S(x) mod z2td+1. (4.5)

NON-BINARY BCH CODES: REED-SOLOMON CODES 63

Before introducing the first example of RS decoding, an alternative version of the BMA
is presented, referred to as the Massey algorithm (or MA). The algorithm was invented by
Massey in [Mas2], and is also described in [ML, Wic].

Massey algorithm to synthesize an LFSR

1. Initialize the algorithm with U (%) = 1 (the LFSR connection polynomial), p(z) = z
(the correction term), i = l (syndrome sequence counter), C = 0 (register
length).

2. Get a new syndrome and compute discrepancy:

e

3. Test discrepancy: d = O? Yes: Go to 8.

4. Modify connection polynomial:

5. Test register length: 21 2 i? Yes: Go to 7.

6. Change register length and update correction term: Let C = i - C and p(z) = g(z) /d

7. Update connection polynomial: U (%) = gneW(x).

8. Update correction term: p(z) = zp(z).

9. Update syndrome sequence counter: i = i + 1.

10. Stopping condition: If i < d go to 2. Else, stop.

Example 41 Let C be the same RS(7,3; 5) code as in Example 40. Suppose that

F(z) = ax2 + a5z4
is the received polynomial. Then S1 = F (1) = Q + a5 = a6, S, = F(a) = a3 + a2 = cy5,
s - - 2 - 5 3 - ~((1:) - a + a6 = a and S, = F(a3) = 1 + a3 = a. Equation (3.16) gives:

(:: un") (2) = (:)
Three methods of finding U(.) are shown below.

Direct solution (PGZ algorithm)

Assume two errors. Then A2 = a7 + d o = 1 + a3 = a # 0. Therefore two errors must
have occurred and

64 THE ART OF ERROR CORRECTING CODING

from which it follows that

a(.) = 1 + a2 + a6z2 = (1 + a2.)(1 + a 4 z) .

Massey algorithm

S1 = a6: S2 = a 5 ; S3 = CY; S 4 = CY.

p(.) = .p(.) = ax2.

0 i = 5 > d. Stop.

Euclidean algorithm

0 Initial conditions:

NON-BINARY BCH CODES: REED-SOLOMON CODES 65

z5 = (1 + 211: + a5z2 + a x 3 + a24)(a62 + a6) + a 5 2 3 + 2 2 + a2 + Q6

? - 2 (2) = a5z3 + 2 + a2 + a6;

q2(z) = a 6 2 + Q 6 :
b 2 (2) = 0 + (a62 + a6)(1) = 2 2 + 2 .

? - 3 (2) = a6z2 +az+a3:
q 3 (z) = a s + a :
b 3 (2) = l + (a32 + a”(a62 + 2) = a3 + a42 + a2x2.

3 2

Algorithm stops, as deg [73(2)] = 2 = t d .

It follows that a(.) = a3 + a42 + a2x2 = Q3(1 + ax + a6x2) .

In all the above algorithms, the following error locator polynomial is found, up to a constant
term:

a(2) = 1 + Q2 + a 6 2 = (1 + &%)(l+ a42).

Therefore, the error positions are jl = 2 and j 2 = 4. In a computer program or a hardware
implementation, Chien search yields these two values as the (inverse) roots of .(x). Also note
that a’(z) = a. (Because, in GF(2m), 2a = a + a = 0.)

To compute the error values, using either the Berlekamp-Massey algorithm (BMA or MA
versions) or the PGZ algorithm, the error evaluator polynomial (4.5) is needed,

A = (1 + as + a 6 z 2) (1 + a6z + a5s2 + a x 3 + as4) mod x5
= (1 + a52 + a 3 2) mod x5;

It is important to note that the Euclidean algorithm computes simultaneously .(x) and
R(%), as a(.) = bj,ast (x) and A(z) = rjlast (x). To verify this note that

~3(z) = a3 + az + a6z2 = a3(l + a52 + a 3 x 2) = a3h(s).

With the error locations determined, the error values from Equation (4.4) are

e2 = (a2)’(1 + a5ap2 + (~ ~ a - ~) a - ’ = Q:

e4 = (a4)2(i + a5ap4 + (~ ~ a - *) a - ~ = a5,

Therefore, E(z) = ax2 + a5z4 and the decoded word is

e (2) = F (%) + e(2) = 0.

The two errors have been corrected.

66 THE ART OF ERROR CORRECTING CODING

Note that the constant p is the same for both polynomials found by application of the
extended Euclidean algorithm. The EA finds p . a (z) and p .A(z), for some nonzero constant
p E GF(2m). Nevertheless, both error locator and error evaluator polynomials have the same
roots as those obtained by the PGZ or BMA algorithms, and thus the error values obtained are
the same.

In most of the computer programs to simulate encoding and decoding procedures of RS
codes on the ECC web site, the following equivalent method of finding the error values is
used [LC]. Let

Then the error value is computed as [Berl]

if!
i = l

where 1 5 e 5 v.
Yet another alternative to Forney algorithm, for small values of td, is to determine the error

values directly as follows. For l 5 e 5 v, the error values ej, are related to the syndromes Si
by the set of linear equations:

v si = , qQb+i - l 1 = C e . Q(b+i--l).ir
3r (4.8)

e=1

where 1 5 i 5 2td.

Each v X v submatrix formed by the (known) terms a(b+i-l)jf forms a Vandermonde
matrix. After all the v error locations j e are known, any set of v equations of the form (4.8)
can be used to find the error values. In particular, choosing the first v syndromes:

is a system of linear equations that can be solved using GF(2m) arithmetic.

Example 42 Consider the same RS code and received polynomial in Examples 40 and 41.
Then (4.9) gives:

The determinant of the 2 x 2 matrix is A = cy4 + a2 = a. From this it follows that

e2 = a-’det (E: (t14) = a6((r3 + c y 5) = cy6 . a2 = cy,

NON-BINARY BCH CODES: REED-SOLOMON CODES 67

and

which are the same error values as those obtained with Forney algorithm. Again, it is
emphasized that this can only be done efficiently (and practically) for relatively small values
of the error correcting capability, t d , of the RS code.

4.3.1 Remarks on decoding algorithms

Unlike the BMA, in the EA all the syndromes are used in the first computation step. However,
in terms of the number of GF(2m) operations, the BMA is generally more efficient than
the EA. On the other hand, all the steps in the EA are identical, which translates into a
more efficient hardware implementation. Also, the three decoding methods discussed here
for (binary and nonbinary) BCH codes are examples of incomplete - or bounded distance -
decoding. That is, they are able to detect situations in which the number of errors exceeds the
capability of the code.

There are other approaches to decoding BCH codes, the most notable being the use of
a discrete Fourier transform over GF(2m). This is covered extensively in [Blah], where the
reader is referred to for details. Recently, Sudan [Sud] has introduced an algorithm that allows
correction of errors beyond the minimum distance of the code. It applies to RS codes and
more generally to AG codes. This algorithm produces a list of codewords (it is a list-decoding
algorithm) and is based on interpolation and factorization of polynomials over GF(2m) and
its extensions. Sudan algorithm was improved in [Gur].

4.3.2 Errors-and-erasures decoding

For the correction of erasures, the main change to the RS decoding procedures described
above is that an erasure locator polynomial .(x) needs to be introduced, defined as

e= 1

where yie = aZL, for 1 5 Q 5 p , denotes the position of an erasure.
By definition, the positions of the erasures are known. Therefore, only the erasure values

need to be found. This can be done, as before, in the Forney algorithm step. In computing the
syndromes of the received polynomial, it can be shown that any values of the erasures can be
replaced, without any difference in the decoded word.

The decoding procedure is similar to the errors-only RS decoder, with the following
exceptions. A modified syndrome polynomial, or modified Fomey syndrome, is formed,

T (x) = S (x) ~ (x) + 1 mod x Z t d f 1 . (4.10)

The BMA algorithm can be applied to find .(x) with the following modifications:

1. The discrepancy is now defined as

(4.1 1)

68 THE ART OF ERROR CORRECTING CODING

with do = Tp+l.

2. The algorithm finishes when the following stopping condition is met:

i 2 li+l + t d - 1 - p/2.

After a(.) is obtained, a modiJed errors-and-erasure evaluator, or errata evaluator, is
computed as W(.),

W(.) = [l + T (z)] .(x) mod z2td+1. (4.12)
In addition, the following errata locatorpolynomial is computed,

4(x) = .(.)d.). (4.13)
The resulting errata evaluation, or modiJed Fomey algorithm, is given by

1 1. l 5 v, for the error values, and

(4.14)

(4.15)

1 5 l! 5 p, for the erasure values.
For errors-and-erasures decoding, the Euclidean algorithm can also be applied to the

modified syndrome polynomial T (z) , using 1 + T (z) instead of S(%) as in errors-only
decoding. That is, the inital conditions are TO(.) = z2td+1 and q (z) = 1 + T (z) . The
algorithm stops when deg[rj(z)] 5 L(d - 1 + p) /2J , with W(.) = r j (z) and .(x) = bj(x) .

Example 43 Let C be an RS (15,9,7) code over GF(24) with zeros {a, a2, . . .) a6) , where
a is a primitive element satisfying p (a) = a4 + a3 + 1 = 0. As a reference for this example,
a table of elements of GF(2*) as powers of a primitive element a, with a4 + a3 + 1 = 0, is
shown below.

Table of elements of G F p 4) , p(.) = x4 + x3 + 1.

Power Vector
0 0000
1 000 1
a 0010
a2 0100
a 3 1000
a4 1001
a5 1011
a6 1111
a7 0111
a8 1110
a9 0101
a10 1010
a11 1101
Ql2 0011
a13 0110
a14 1100

NON-BINARY BCH CODES: REED-SOLOMON CODES 69

The generator polynomial of C is

6

g (2) = n(2 + ai) = IC6 + al2z5 + x4 + a2x3 + a7x2 + all2 +a6.
i=l

Suppose that the polynomial associated with a codeword V is

Let the received polynomial be

F (2) = a7 + a32 + a13z2 + a14x3 + a7x4 + ax5 + ax6 + a4z7 + a6x8
+a3z10 + a5211 + a11212 + a13513 + a10214.

Assume that, aided by side information from the receiver, it is determined that the values in
positions ao and a5 are unreliable, and thus declared as erasures.

Note that E(z) = + a8z3 + a5z5 + ad2 is the polynomial associated with the errata.'

After reception, besides F(z), the decoder knows that p = 2 erasures have occurred in
positions a' and a5. Therefore, it computes the erasure locator polynomial

.(x) = (1 + z)(l + a54 = 1 + a102 + a5z2. (4.16)

The syndromes of F(x) are computed as: S1 = F (&) = all , S2 = F(a2) = a5, S3 = F(a3) = a2,
S - - 4 - 2 S - - 4 - ~ (a) - a , 5 - ~ (a ~) = 1 and S6 = F(a6) = Accordingly,

S (2) = 1 + all2 + a5x2 + a2z3 + a2x4 + d5 + a14z6.

The Forney syndrome polynomial (4.10) becomes

T (z) = S(z) r (z) + 1 mod 22td+1

= (1 + a'lz + a5x2 + a2x3 + a2z4)(l + al0z + a5z2) + 1 mod x7
= a72 + a6z2 + a7x3 + a1lz4 + a9z5 + 2 6 ,

The decoder obviously does not know this, except for the positions of the erasures. This polynomial is used
as a reference against which the correctness of the decoding results can be verified.

70 THE ART OF ERROR CORRECTING CODING

Iteration 2: i = 2, m = 0 maximizes (0 - 0) = 0 for do # 0.

= + d 2 d i 1 c d 0) (2) = 1 + a42 + a10z2.
t 3 = max{l,O + 2 - O} = 2,

0 Iteration 3: i = 3, m = 2 maximizes (2 - 1) = 1 for d2 # 0.

a(4) (2) = a(3) (x) + d & W (x) = 1 + a5x + x2 .
4 = max{2,1+ 3 - 2) = 2,
i 2 2 Yes : Algorithm ends.

Therefore, .(x) = 1 + a52 + x2 = (1 + a32)(l + For the last equality, recall that
the inverses of the error positions are found, via Chien search, by evaluating a(x) at all the
nonzero elements of GF(24). This gives a(a12) = 0 and a(a3) = 0. As a result, the error
positions are a-12 = a3 and aP3 = a12.

From Equation (4.12), the modified errors-and-erasures evaluator is

W(.) = [l + T (x)] a(.) mod x2 td+1
= (1 + a72 + a6z2 + a7x3 + al1x4 + a9x5 + x6)(1 + a52 + x 2) mod x7
= 1 + a142 + al1z2 + a11x3 + 24, (4.18)

and the errata locator polynomial

from which it follows that $'(x) = 1.

The values of the errors and erasures are found from (4.14) and (4.15), respectively,

e3 = a3(1 + all + a5 + a2 + a3) = a3a5 = a8,
e12 = a (I + a2 + a2 + a5 + a12) = a12a4 = a,
fo = (1 + +all + all + 1) = a14,

f 5 = a5(1 + + a + + a l o) = a5,

12

from which it follows that the errata polynomial is

The decodedpolynomial C(%) = F (%) + t?(x) is identical to u(x). Two errors and two erasures
have been corrected.

NON-BINARY BCH CODES: REED-SOLOMON CODES 71

Direct solution of errata values

For small values of the minimum distance of an RS code, the erasure values may be obtained
by solving a set of linear equations. Let C(z) be the error polynomial associated with an error
pattern resulting from the presence of v errors and p erasures,

v

(4.19)
e=1 &'=O

Then, the following set of linear equations, similar to (4.8), hold between the syndromes
and the values of the errors and positions:

V U

(4.20)
e= 1 ['=l

where 1 5 i 5 2td. As before, any set of v + p 5 t d equations can be used to solve the values
of the errors and erasures.

Example 44 Direct solution of the errata values for the code in the previous example:
After the Berlekamp-Massey algorithm and Chien search, the decoder knows that the error
polynomial is of the form

The errata values can be found by solving the set of linear equations given by (4.20), which
can be put in the following matrix form,

(4.21)

It can be verified that fo = a14, e3 = a8, f5 = a5 and e12 = a are the solutions to (4.21).
These are the same errata values as those computed before with the modified Forney
algorithm.

4.4 Weight distribution

As mentioned before, RS codes are also MDS codes. The weight distribution of MDS codes
can be computed exactly with a closed form expression [MS, LC]:

The number of codewords of weight i in an (n; IC, d) MDS code over G F (q) is

(4.22)

For error performance evaluation of an RS (n; IC, d) code over GF(2"), the following upper
bound on the probability of a bit error Pb(C) for an RS decoder2 is simple to compute and

It should be noted that the bound is tight only for bounded distance decoders, such as those based on BMA,
EA or PGZ.

72 THE ART OF ERROR CORRECTING CODING

relatively good,

(4.23)

where P, denotes the probability of a symbol error at the input of the RS decoder,

PS = 1 - (1 -p)" ,

and p denotes the probability of a bit error at the input of the RS decoder. The probability of
a word error can be upper bounded by (1.3 l),

(4.24)

5

Binary convolutional codes

First introduced by Elias [Eli2], binary convolutional codes are perhaps the most popular
form of binary error correcting codes and have found numerous applications: Wireless
communications (IMT-2000, GSM, IS-95), digital terrestrial and satellite communication
and broadcasting systems, and space communication systems, just to cite a few. They were
referred to in [Eli21 as convolutionalparity-check symbols codes. Their most popular decoding
method to date, the Viterbi algorithm [Vitl], also finds applications in combinatorially
equivalent problems such as maximum likelihood sequence detection (e.g., equalization) and
partial-response signaling (e.g., magnetic recording). Most recently, it has been shown that
convolutional codes, when combined with interleaving in a concatenated scheme, can perform
very close to the Shannon limit [BGT]. In this chapter, the basic properties and decoding
procedures for binary convolutional codes are described.

5.1 Basic structure

A convolutional code is an error correcting code that processes information serially, or
continuously, in short block lengths. A convolutional encoder has memory, in the sense that
the output symbols depend not only on the input symbols, but also on previous inputs andlor
outputs. In other words, the encoder is a sequential circuit or a finite state machine. The
state of the encoder is defined as the contents of the memory. In the computer programs that
implement the Viterbi algorithm and other decoding procedures that involve a trellis, found
on the ECC web site, a state transition table, indicating the relation between the input, the
previous and current state, and the current output, is employed.

A convolutional code consists of the set of all binary sequences produced by a convolutional
encoder. In theory, these sequences have infinite duration. In practice, the state of the
convolutional code is periodically forced to a known state and code sequences produced in
a block-wise manner.

Example 45 Consider the convolutional encoder depicted in Figure 29. For analysis and
decoding purposes, this encoder can be described by Table 2.

Note that the coding rate of the convolutional encoder is equal to 1/2, because two output
coded bits are produced for every input information bit.

In general, a rate-k/n convolutional encoder has k shift registers, one per input information
bit, and n output coded bits which are given by linear combinations (over the binary field, i.e.,
with exclusive-or gates) of the contents of the registers and the input information bits.

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

74 THE ART OF ERROR CORRECTING CODING

Figure 29 An encoder of a rate-1/2 memory-2 convolutional encoder.

Table 2 Input bits, state transitions and output bits.

Initial state Information Final state outputs

00 0 00 00
00 1 10 1 1
01 0 00 11
01 1 10 00
10 0 01 10
10 1 1 1 01
11 0 01 01
11 1 11 10

SO[i]Sl [il [il S& + l]S l [i + l] d o) [i]w(l) [i]

For simplicity of exposition, and for practical purposes, only rate-l/n binary convolutional
codes are considered in the remainder of the chapter. One reason for doing this is that these
are the binary codes most widely used. A technique known as puncturing can be applied that
results in convolutional encoders of higher rate. Puncturing is discussed in Section 5.5.

The total length of the shift registers in the encoder is referred to as the memory. For the
discussion in this chapter, states labels are integers I associated with the binary representation
of the memory contents, as I = C,";' s j [i]2m-1-j.

The constraint length, which for rate-1/2 encoders equals K = m + l, is defined as the
numberof inputs (u [i] , u[i-l], ..., u[i-m]) that affect the outputs (W(') [i], ..., ~ (" - ~) [i]) at time
i . For the encoder in Figure 29, K = 3. An encoder with m memory elements will be referred
to as a memory-m encoder. A memory-m rate-l/n convolutional encoder can be represented
by a state diagram. There are 2m states in the diagram. Because there is only one information
bit, two branches enter and leave each state and are labeled by u[i]/do)[i] . . . ~ (~ - l) [i] .

Example 46 A state diagram of the memory-2 rate-1/2 convolutional code of example 45 is
shown in Figure 30.

The encoder of a memory-m rate-l/n binary convolutional code can also be considered a
discrete linear time-invariant' system. Therefore, the impulse response, i.e., the output of the
encoder when the input is an "impulse" ii = (l000 ... 00 ...), completely specifies the code.

Convention: In writing a sequence, the leftmost symbol is meant to be the first symbol that
goes into the channel.

Note, however, that time-varying convolutional codes can be defined and are studied in [Joh]

BINARY CONVOLUTIONAL CODES 75

Figure 30 State diagram of a memory-2 rate-l/2 convolutional encoder.

There are n impulse responses of a convolutional encoder of rate l / n , one for each output
for j = 0; 1: . . . n - 1. As the impulse goes across the memory elements of the encoder,

it “picks up” the connections between the memory elements and the outputs. Evidently, this
is a finite-impulse-response (FIR) system.

Let go, g,-l denote the impulse responses of a rate-l/n convolutional encoder. These
are also called the generator sequences - or generators - of the code, based on the
observation above, and indicate the actual physical connections of the encoder.

Example 47 Continuing with the memory-2 rate-1/2 convolutional code of Example 45, the
encoder in Figure 29 produces g o = (1 1; 1) and 31 = (1 0: l) , as shown in Figure 3 1.

U

1000000 ...

10100000 ...

Figure 31 Generator sequences of a memory-2 rate-1/2 convolutional encoder.

Note that the generator sequences are equal to zero after K bits. Therefore, it suffices to
consider vectors of this length. To stress the dynamic nature of the encoder, the indeterminate
D (for “delay”) is employed and the generators written as polynomials in D, go(D),
Bn- 1 (D).
Example 48 For the encoder in Figure 29,

go(D) = 1 + D + D2 and g1(D) = 1 + D2.
In general, when refemng to a convolutional code, the generators are expressed as

(go; . . . gn-l) and written in octal form. For the encoder of Example 48 the generators are
(7; 5). The most widely used convolutional encoder to date is a memory-6 rate-1/2 encoder
with generators (171; 133). This is the so-called NASA standard code, as it was first used in
the Voyager space missions. It is also used in many digital communications standards, as well
as in the CCSD standard.

76 THE ART OF ERROR CORRECTING CODING

As a result of the dynamical structure of a convolutional encoder, the state diagram can be
represented as it evolves in time with a trellis diagram. A trellis diagram is constructed by
placing the state diagram of the code at each time interval with branches connecting states
between time i and time i + 1, in correspondence with the encoder table. The branches of the
trellis are labeled in the same way as the state diagram.

Convention: When there is no dichotomy, the input information bit does not need to appear
explicitly in the branch label. For FIR encoders, the information bit u can be inferred directly
from the state transition2:

(SOS1 . . . sm-l) --f (usg. . . sm-2).

It should be emphasized that, in the case of a recursive systematic convolutional (IIR) encoder,
this is not generally the case, as is shown in Section 5.1.1.

Example 49 For the example rate-l/:! memory-2 convolutional encoder, the trellis structure
is shown in Figure 32. Note that state transitions (branches) form a state s[i] to a (possibly
different) state s ’ [i + l], that caused by the input bit u[i] = 0, are the upper branches.

t=O t= 1 t=2 t=3 t=4 t=5 t=6

Figure 32 Six sections of the trellis of a memory-2 rate-1/2 convolutional encoder.

Example 50 Consider the encoder in Figure 29 and the input sequence U = (110100). Then,
the corresponding output sequence can be obtained either directly from the encoder table,
Table 2, or as a path in the trellis, as shown in Figure 33. It follows that the corresponding
coded sequence is V = (11; 01; 01;OO; 10; 11).

A convolutional encoder is a linear time-invariant system, with impulse responses given by
the code generators, go(D), (D);. . . &(D), where

$ (D) = g j [0] + g j [1] D f g j [2] D 2 + - . + g j [m] D r n ; (5.1)

for 0 5 j n. In terms of the generators of a code, the output sequences can be expressed as
m

.(j) [i] = c u[i - e]gj[e] ;
e=o

This simple observation is the basis of using a trucebuck memory in a Viterbi decoder, to recover the
information bits from the decoded sequence.

BINARY CONVOLUTIONAL CODES 77

11 01 01 00 10 11

Figure 33 A path in the trellis of a memory-2 rate-1/2 convolutional encoder.

0 5 j < n. The output sequences (D) , 0 5 j < n, as expected, are equal to the discrete
convolution between the input sequence u (D) and the code generators go(D), g1 (D) ; . . .
gn-l (D) . From this fact comes the name - “convolutional”- of the encoder [Eli2].

Observe now that Equation (5.2) above can be written as a matrix multiplication

,ij = uG; (5.3)

where G is a generator matrix of the convolutional code. In particular, for a rate-1/2 memory-
m convolutional code,

where the blank entries represent zeros. Generalization to any rate 1 /n encoder is straight-
forward.

Example 51 For the memory-2 rate-1/2 encoder in Figure 29,

11 10 11

G = [11 10 11
11 10 11

11 10 11

... ..l.
Let 21 = (110100). Then it follows from (5.3) that V = aG = (11: 01; 01; 00; 10; l l) , which
is the same output as in Example 50.

Let V (D) = d 0) (D) + D d 1) (D) + . .. + Dn-’dn-’)(D). Then the relationship be-
tween input and output sequences can be written as

V(D) = u(D)G(D) ; (5.5)

where generators of a rate-l/n convolutional code are arranged in a matrix, referred to as a
polynomial generator matrix,

G (D) (Go(D) g1(D) . . . gn-l(D)) . (5.6)

78 THE ART OF ERROR CORRECTING CODING

5. I . 1 Recursive systematic convolutional codes

With the use of (5.6), a memory-m rate-l/n recursive systematic convolutional code, or RSC
code, has a generator matrix of the form

As a short notation of this generator matrix, the generators (1; g1 /go . . . gn- /go) can be
specified. Division and multiplication of the right-hand side of (5.5) by go(D) give, together
with (5.6),

v (D) = d (D) G ’ (D) , (5.8)

where .ci’(D) = go(D)U(D). This shows that both the nonsystematic encoder and the
systematic encoder produce the same coded sequences, but that the corresponding information
sequences are scrambled by go (D) in the RSC code.

A systematic encoder is also an example of a discrete-time linear time-invariant system.
Because the generator matrix contains rational functions, the encoder is an injinite-impulse-
response (IIR) linear system, as opposed to a non-systematic encoder which is ajinite impulse
response (FIR) linear system. The preferred form of expressing the encoder circuit is the
controller canonical form [For4]. An encoder for an RSC code, consists of a shift registers, a
circuit3 for dividing by go(D) and n - 1 circuits for multiplying by 81 (D) ; . . . gn-l (D) .

Example 52 A rate-1/2 memory-2 binary RSC encoder with generators (1; 5/7) is shown
in Figure 34. The trellis structure of this code is the same as the nonsystematic code with
generators (7; 5). However the inputloutput bits per transition are different. The state diagram
of this code is shown in Figure 35. Compare with Figure 30 on page 75. Among other things,
this difference in inputlouput mapping means that the all-zero sequence may not necessarily
bring the state back to sosl = 00. This is evident from Figure 35. In particular, the impulse
response of this encoder is (11,Ol; 01; 00; 01; 01; 00; 01: 01; 00;. . .).

Figure 34 Encoder of a memory-2 rate-1/2 recursive systematic convolutional encoder.

The general structure of circuits that multiply and divide by two polynomials can be found, among others,
in [PW], Figure 7.8, or [LC], Sec. 4.7.

BINARY CONVOLUTIONAL CODES 79

Figure 35 State diagram of a memory-2 rate-1/2 recursive systematic convolutional encoder.

5.1.2 Free distance

The free distance df of a convolutional code is the smallest distance between any two distinct
code sequences. The length of the sequences has to be sufficiently large, much larger than
the constraint length of the code. The free distance of a convolutional code can be obtained
from its weight enumerator polynomial, as described in Section 5.3. There are other distances
associated with a convolutional code, when the length of the sequence is of the order of the
constraint length, but these are not relevant for the discussion in this book. More details on
the structure of a general rate-lc/n convolutional encoder can be found in references [LC]
and [Joh].

5.2 Connections with block codes

There is a connection between convolutional codes and block codes, as it is evident from
the above description of convolutional encoders. As indicated previously, it is customary for
the information sequences input to a convolutional encoder to be broken into blocks offinite
length (e.g. a few thousands of bits). Generally, a fixed sequence of length m is appended at
the end of each information sequence. This sequence is typically a unique word that serves to
synchronize the receiver and forces the convolutional encoder to return to a known state.

In the following, for simplicity of exposition, let C be a nonsystematic (FIR) convolutional
code C with free distance df , obtained from a memory-m rate-l/n convolutional encoder.
Similar arguments apply to RSC codes.

5.2.1 Zero-tail construction

By appending a “tail” of m zeros to an information vector .U of length (K - m), all paths in
the trellis corresponding to 2K-m codewords merge at the all-zero state. The result is a linear
block (nK, (K - m), dZT) code, denoted by C ~ T . If K is large enough, then the rate of CZT
approaches the rate of C. As long as K > m holds, with K sufficiently large, even though
the code sequences are restricted to end at the all-zero state, the minimum distance of CZT
satisfies dZT = df .
Example 53 Let C be the convolutional code obtained from the rate-1/2 memory-2 encoder
in Figure 29, of free distance4 df = 5. Assume that message vectors of length K = 3 bits are
encoded, each followed by m = 2 zeros. Then the zero-tail construction results in a binary

That this is the value of d f will be shown in Section 5.3.

80 THE ART OF ERROR CORRECTING CODING

linear block (10,3,5) code CZT with generator matrix,

(
11 10 11 00 00

G = 00 l1 10 11 00
00 00 11 10 11

The weight distribution sequence of this code is A(z) = 1 + 3z5 + 3z6 + z7, and dZT = 5 .
The code rate of CZT is 0.3 which is less than the rate k / n = 1/2 of C.

5.2.2 Direct-truncation construction

In this method, the codewords of a linear block (nK, K , dDT) code CDT associated with a
rate-k/n convolutional encoder are all code sequences associated with paths in the trellis that
start in the all-zero state and, after K bits are fed into the encoder, can end at any state. The
rate of CDT is the same as that of the convolutional encoder. However, the minimum distance
of the resulting block code is reduced and dDT < df .

Example 54 Consider the rate-l/2 memory-2 encoder in Figure 29. Information vectors of
length K = 3 information bits are encoded. Then the direct truncation construction gives a
binary linear block (6,3, dDT) code with generator matrix,

G = 00 11 10 . (b:, :: ::)
The weight distribution sequence of this code is A(z) = 1 + x’ + 3z3 + 2x4 + z5, and
dDT 1 2 < df .

5.2.3 Tail-biting construction

The codewords of the tail-biting block code CTB are those code sequences associated with
paths in the trellis that start from a state equal to the last m bits of an information vector of
K data bits. This ensures that all codewords in CTB begin and end at the same state. The rate
of the resulting block (2K, K , dTB) code is the same as that of the convolutional encoder.
However, unless K > m and K is sufficiently large, the minimum distance dTB 5 df .

Example 55 Consider the rate-l/2 memory-2 encoder in Figure 29. Assume that a block
of K = 5 information bits is encoded. Then the tail-biting construction gives a binary linear
block (10,5, dTB) code with generator matrix,

11 10 11 00 00
00 11 10 11 00

11 00 00 11 10
10 11 00 00 l1

The weight distribution sequence5 is A(z) = 1 + 5z3 + 5z4 + 6x5 + 10z6 + 5x7, and
dTB = 3 < df .

This WDS was obtained with a program from the ECC web site that computes the weight distribution of a
binary linear code from its generator matrix.

BINARY CONVOLUTIONAL CODES 81

5.2.4 Weight distributions

In this section, a method is described to obtain the weight distribution of linear block codes
derived from binary rate-l/n convolutional codes by any of the constructions in the previous
sections [WV]. Let R(x) be a Z m X Zm state transition matrix with entries of the form

Rij (2) = & j Z h i J , (5.9)

where 6ij = 1, if and only if there is a transition from state i to state j , and Si j = 0 otherwise;
and hij is the Hamming weight of the corresponding output vector (of length n).

Example 56 For the convolutional encoder with the state diagram shown in Figure 30, the
state transition matrix O(x) is given by

1 0 x2

0 x 0 5 '
o x o x

n(x) = (:)
The weight distribution sequence of a binary linear block (n, k) code constructed from any of
the previous methods can be obtained by symbolically raising matrix n (x) to the C-th power,
denoted @(x), and combining different terms.

The term n&(z) gives the weight distribution of trellis paths that start in state i and end
at state j after C time intervals. For the ZT construction, the value C = k + m is used, while
for both DT and TB constructions, C = k. The weight distribution sequences for each of the
construction methods presented above can be computed as follows.

0 ZT construction:

A(s) = Rk,f"(x).
0 DT construction:

0 TB construction:

A(z) = C Rtj(x).
j=O

Example 57 Consider again the memory-2 rate-l/:! convolutional encoder. Then

(x3 + 54 x2 + 5 3 x5 +x2 x2 +x3 1 1 + x 5 5 3 + x 4 5 2 + x 3 x 3 + 5 4

fl3(x) = x 2 + x 3 x 5 + 2 x 4 + x x 5 + 2
5 3 + 2 4 x2+23 5 5 + 2 2 + x 3 .

The weight distribution sequence of the code from the DT construction in Example 54 is
obtained by adding the terms in the first row of R3 (x).

References on other methods of computing the weight distribution sequence of a linear
block code derived from a convolutional code are [KC], [CK] and [DFKl].

82 THE ART OF ERROR CORRECTING CODING
X

X

Figure 36 The modified state diagram of a memory-2 rate-1/2 convolutional code.

5.3 Weight enumeration and performance bounds

The performance of convolutional codes over memoryless channels can be estimated by using
union bounds, such as those presented in Chapter 1 for block codes. It was Viterbi [Vit2] that
first considered the performance of convolutional codes. See also [ViOm]. For a convolutional
code, the weight enumerating sequence (WES) is defined as

T (x) = T1x + T~x’ + . . . + T , X ~ + . . . , (5.10)

where the coefficient T, in T (z) denotes the number of code sequences of weight W. Note
that, in principle, the inputs to a convolutional code are infinite sequences. As a result, in
general, the WES has an infinite number of terms. It is possible, however, to obtain closed-
form expressions for the WES of convolutional codes, as shown below.

Notation: A state (S O S] . . . s m - l) of the encoder will be denoted by S(’), where
1 1 CZi’ si277--l--i.

A modiJied state diagram enables us to compute the WES. This diagram has the all-zero
state split into an initial state S/:)t and a final state The branches of the diagram are
labeled by terms P , where W is the Hamming weight of the output sequence.

Example 58 Let C be the memory-2 rate-1/2 convolutional code with generators (7,5) that
has been used throughout this chapter. Figure 36 shows the modified state diagram of C.

There are basically two methods to compute T (z) . In the first method, the modified state
diagram is considered a signal flow graph. Then Mason’s rule is applied to find T (z) . This
is the method covered in most textbooks on error correcting codes. For details, the reader is
referred to [LC].

Another method, originally developed by Viterbi [Vit2], consists of assigning intermediate
variables p~ j (z) to each state S (j) , j = 1 ,2 , . . . , 2m - 1. Each pj (x) can be expressed as a
linear combination of weighted variables associated with states connected to S (j) ,

(5.1 1)

BINARY CONVOLUTIONAL CODES 83

for all k E { 1; 2; . . . 2m - l}, k # j , and where 6ij and h k j are defined as in (5.9). The initial
state S/:)t is assigned a variable with value 1, while the WES T (x) is assigned as a variable
to the final state .Sfinal, (0)

This yields a system of linear equations that can be solved to find p1 (x), from which, with
the adopted notation to designate states,

T (x) = p1(x)x% (5.12)

Example 59 Consider the modified state diagram in Figure 36. The following set of equations
is obtained

(5.13)

and T (x) = p1 (.)x2. Equations (5.13) can be written in matrix form as

(;l -;" -0") (P 2 (x)) P1 (x) = (2) ; (5.14)
-x 1 - 2 p3(2)

and solving for 1-11 (x) gives
x3

1 - 2x Pl(2) = -.

T (x) = - = x5 + 2x6 + 4x7 + 8x8 + . . .
It follows that

x5

1 - 22
(5.15)

This shows that the minimum free distance is d f = 5 for the binary 4-state rate-1/2
convolutional code with generators (7 ,5) .

More detailed information about the structure of a convolutional code is obtained by
labeling the modified state diagram with terms of the form xwyezm, where W is the Hamming
weight of the coded outputs, e is the Hamming weight of the input vector (of length equal to
k in general for a rate-k/n convolutional code), and m is the number of branches differing
from the all-zero sequence. (See [LC], p. 302.) This results in a complete weight enumerator
sequence (CWES), T (z : yi z) which can be used to derive various bounds on the error
performance of convolutional codes [Vit2], [LC], [Joh]. A weight enumerating sequence
similar to the CWES was used to estimate the performance of turbo codes in [BM].

Example 60 Continuing with the example 4-state rate-1/2 convolutional code, a modified
state diagram for the computation of the CWES is shown in Figure 37.

The equations are

i -9.2 1 -0"") (;$I) = [x;z)
1 -xz

0 -xyz 1 - xyz p3(x)

with T (z ; y; z) = x2zp1(x). The solution is:

84 THE ART OF ERROR CORRECTING CODING

Figure 37 The modified state diagram of a memory-2 rate-1/2 convolutional code.

Bounds on the bit error probability of a binary convolutional code of rate k / n can be obtained
with the aid of the CWES. For transmission over a BSC channel and binary transmission over
an AWGN channel [ViOm], and maximum-likelihood decoding (MLD)6, the following upper
bounds hold, respectively,

(5.16)

(5.17)

Union bounds may be used to estimate the bit-error rate (BER) performance of a
convolutional code. The reader should be aware, however, that the bounds (5.16) and (5.17)
are quite loose. Fortunately, tighter (close to the actual BER performance) bounds exist at
relatively mild channel conditions, i.e., low values of p for the BSC channel and high values
of E,/Na for the AWGN channel, and are given by the following [Joh]:

Example 61 The union bound (5.18) on the probability of a bit error for the 4-state rate-
1/2 convolutional code of example 60, with transmission over a BSC channel with crossover
probability p and MLD, is plotted in Figure 38.

5.4 Decoding: Viterbi algorithm with Hamming metrics

The trellis of convolutional codes has a regular structure. Advantage can be taken from
the repetitive pattern of the trellis in decoding. However, for linear block codes obtained

An example of MLD is the Viterbi decoder, explained in the next section.

BINARY CONVOLUTIONAL CODES 85

0.1 0.01

P

0.001

Figure 38 Union bound (5.18) on the BER of a memory-2 rate-1/2 convolutional code with
d f = 5. Transmission over BSC with crossover probability p and MLD.

from terminating convolutional codes, and long information sequences, maximum-likelihood
decoding is simply too complex and inefficient to implement.

An efficient solution to the decoding problem is a dynamic programming algorithm known
as the viterbi algorithm, also known as the viterbi decoder (VD). The VD is a maximum
likelihood decoder, in the following sense. The VD finds the closest coded sequence V to the
received sequence by processing the sequences on an information bit-by-bit (branches of the
trellis) basis. Instead of keeping a score of each possible coded sequence, the Viterbi decoder
tracks the states of the trellis.

5.4.1 Maximum likelihood decoding and metria

The likelihood of a received sequence F after transmission over a noisy channel, given that a
coded sequence V is sent, is given by the conditional probability

n-l

P(T1V) = n P(rilvi);
i=O

It is easy to show that for a BSC channel with parameter p ,

(5.20)

(5.21)

with d ~ (r i ; vi) = 1, if ri # vi, and d ~ (r i ; vi) = 0, if ri = vi. That is, d ~ (r i : vi) = 1 is the
Hamming distance between bits ri and vi. For an AWGN channel, the likelihood is given by

(5.22)

86 THE ART OF ERROR CORRECTING CODING

where m(.) denotes a binary modulated signal. Here, m is defined as a one-to-one mapping
between bits (0: l} and real numbers { -a7 +G}.

A maximum-likelihood decoder (MLD) selects a coded sequence V’ that maximizes (5.20).
By taking the logarithm (any base) of (5.20), the following can be shown. For the BSC
channel, an MLD is equivalent to choosing the code sequence that minimizes the Hamming
distance

(5.23)
i=O

Similarly, for the AWGN channel, it is the squared Euclidean distance

n-l

d E (F ; V) = c (F - m(v)) ;
2 (5.24)

i=O

that is minimized by the coded sequence selected by the MLD. In this section, a BSC channel
with crossover error probability p is considered. The AWGN channel is covered in Chapter 7.

5.4.2 The Viterbi algorithm

Let Sjk) denote a state in the trellis at stage i . Each state Sjk) in the trellis is assigned a
state metric, or simply a metric, M (S i (k)), and apath in the trellis, g (k) . A key observation in
applying the Viterbi algorithm is:

At time i, the most likely paths per state yik) (the ones closest to the
received sequence) will eventually coincide at some time i - e.

In his paper, Viterbi [Vitl] indicated that the value of e for memory-m rate-1/2 binary
convolutional codes should be C > 5m. The VD operates within a range of L received n-
tuples (output bits per state transition) known as the decoding depth. The value of L must be
such that L > C.

In the following, the Viterbi algorithm applied to a memory-m rate-l/n binary convolu-
tional code is described, and its operation illustrated via a simple example. Some additional
notation is needed: Let G [i] = (vo[i]vl [i] . . . vn-l [i]) denote the coded bits in a branch (state
transition), and let F [i] = (ro[i]rl [i] . . . rn-l [i]) denote the output of the channel.

Basic decoding steps

Initialization

Set i = 0. Set metrics and paths

The specific way in which the initialization of the paths is performed is irrelevant, as shown
later. For the sake of clarity of presentation of the algorithm, it is assumed that the paths are
represented as lists that are initialized to the empty list.

1 . Branch metric computation
At stage i , compute the partial branch metrics

BINARY CONVOLUTIONAL CODES 87

BMjb) = d H (F [i] , G [i]) , (5.25)

b 2 C:Ii t1e[i]2~-'-', associated with the n outputs G [i] of every branch (or state
transition) and the n received bits F[i] .

2 . Add, compare and select (ACS)
For each state k = 0 ,1 , . . . , 2m - 1, and corresponding pair of incoming
branches, from two precursor states S&) and $22, compare M(SjF2) +
and M($??) + BMib2) , where bj = C::; ve[i]2"-'-', i = 1 , 2 . Select awinning
branch giving the smallest path metric and update,

M (s ~ ~)) = min{M(SjF>) + BM,!~ ') , M (s , ! ~)) + B M : ~ ~) } . (5 .26)

3. Path memory update
For each state Sik) , IC = 0,1, . . . , 2m - 1, update the suwivorpaths g (k) as follows,
with the output of the winning branch ckj, j E { 1,2}.

Yi - (Yz-1 , W k j) ,
- (k) - (k ,) - (5 .27)

4. Decode symbols
If i > L, then output as the estimated coded sequence yiyi, where IC' is the index of
the state S(") with the smallest metric. Set i = i + 1 and go to decoding step 1.

It should be stressed that this is not the only way to implement the Viterbi algorithm.
The above procedure can be considered a classical algorithm. There are alternative
implementations that, depending on the particular structure of the underlying convolutional
encoder, may offer advantages (see, e.g., [FL2]). In addition, in the last step of the algorithm,
symbol decoding can be applied to information bits directly. This is the form usually employed
in the software implementations of Viterbi decoders available on the ECC web site. In
hardware implementations, a method based on a trucebuck memory is favored that estimates
the original information sequence, indirectly, based on state transitions. This technique is
discussed later in the chapter.

BMG ACS Traceback RAM

7 - Branch
Metric

Add, Compare Update paths
I u

and Select ' and metrics
>

Generator

Figure 39 Block diagram of a Viterbi decoder.

Example 62 Consider again the memory-2 rate-1/2 convolutional encoder with generators
(7,5). Note that d f = 5 for this code. This example shows how a single error can be corrected.
Suppose that G = (11,01,01,00,10,11) is transmitted over a binary symmetric channel
(BSc), and that P = (10,01,01,00,10,11) is received (one error in the second position.)
The operation of the Viterbi decoder is illustrated in Figures 40 to 45. The evolution of the
metric values with respect to the decoding stages is shown in the following table:

88 THE ART OF ERROR CORRECTING CODING

Statelstage i = O i = l i = 2 i = 3 i = 4 i = 5 i = 6

SjO) 0 1 1 1 1 2 1

Sp 0 0 0 l 2 1 3

$2) 0 1 l l 1 2 2

$3) 0 0 l l 2 2 2

After processing six stages of the trellis (i = S), the state with the smallest metric is S, (0)

with associated (survivor) path = V. One error has been corrected.

Transmitted 1 1 01 01 00 10 11

Received 10 01 01 00 IO 11

t = 0:

Figure 40 VD operation for Example 62, at i = 0 and i = 1.

5.4.3 Implementation issues

In this section, some of the implementation issues related to Viterbi decoders are discussed.
The techniques below apply equally to any Viterbi decoder that operates over channels with
additive metrics, such as the BSc, AWGN and flat Rayleigh fading channels.

Path metric initialization

The Viterbi decoder can operate in the same mode from the start (i = 0). The survivor paths
can have arbitrary values, without affecting the decoder's performance. The first L decoded
bits are therefore random and give no information. For this reason, the value of L contributes
to the decoding delay, and is also known as the decoding depth. Moreover, provided that L
is large enough (L >> e, where t? > 5m for rate-1/2 binary codes), the decoded bit can be

BINARY CONVOLUTIONAL CODES 89

10 01

t = 2 :

10 01

Figure 41 VD operation for Example 62, at i = 2.

output either from the path with the lowest metric or always output from the zero state path
(g'')). The latter method is easier to implement and does not result in loss of performance.
The programs on the ECC web site that implement MLD using the Viterbi algorithm work in
this fashion.

Also note that in Example 62 the branch labels (output) were stored in the survivor
paths. This was done in order to facilitate understanding of the algorithm. In a practical
implementation, however, it is the corresponding information bits that are stored. This is
discussed below, in connection with path memory management.

Synchronization

Branch symbols must be properly aligned with the received symbols. Any misalignment can
be detected by monitoring the value of a random variable associated with the Viterbi decoder.
Two commonly used synchronization variables are: (I) Path metric growth, and (2) channel
BER estimates. The statistics of these variables give an indication of abnormal decoding
behavior.

Assume that the received sequence is not properly received, i.e., the n-bit branch labels V [i]
in the decoder are not properly aligned, or synchronized, with the received sequence F [i] .

Example 63 Figure 46 shows an example for a rate-l/2 in which the received sequence F is
not synchronized with the reference coded sequence V.

In other words, not all the bits in the received subsequence F [i] belong to the same trellis
stage in the decoder. In this case, two events that may occur are: (1) The path metrics are close
to each other and grow rapidly, and (2) the estimated channel BER approaches 1/2. Figure 47
shows the block diagram of a Viterbi decoder and a BER monitor.

90 THE ART OF ERROR CORRECTING CODING

10 01 01

1 = 3 :

10 01 01
(0)

y 3=(10,01,11)

y 3=(11,01,01)

y 3 = (10,01,00)

y 3=(10,00.01)

(11

(2)

(31

Figure 42 VD operation for Example 62, at i = 3.

A synchronization stage needs to be added, external to the decoder itself, whose function
is to advance the reference sequence V in the decoder until the statistics return to normal.
This can be done by skipping received symbols (a maximum of n - l times) until the
synchronization variables indicate normal decoding behavior. This is indicated in Figure 46
of Example 63 for the case of a rate-1/2 convolutional code.

Metric normalization

As the Viterbi decoder operates continuously, the path metrics will grow proportionally with
the length on the received sequence. To avoid overflow or saturation (depending on the number
representation used), the metrics need to be normalized. There are basically two methods of
doing this. Both rely on the following two properties of the Viterbi algorithm:

1. The MLD path selection depends only on the metric differences.
2. The metric differences are bounded.

m Threshold method
To normalize the metrics, at each decoding stage, the value of the smallest metric

is compared to a threshold T.1f Mmin > T then T is subtracted from all the metrics.
Clearly, this does not affect the selection process, because the metric differences
remain the same. This is a method that can be easily implemented in software on a
generic processor.

The metrics are computed modulo N , so that they lie within the range [O: N - l],
where N = 2An,,,, and Amax is the maximum difference in survivor path metrics.

m Modular arithmetic method

BINARY CONVOLUTIONAL CODES

10 01 01 00

91

t = 4

IO 01 01 00

Figure 43 VD operation for Example 62, at i = 4.

Obviously, A,,, depends on the range of values received from the channel. From
the two properties of the Viterbi algorithm, it can be shown that the same MLD
path is selected by the Viterbi decoder when computing path metrics with modular
arithmetic. In particular, it is possible to use two's complement arithmetic7, in such a
way that overflow can occur but it does not affect the selection process. For details,
see [HEK, OCC]. This method is favored in hardware implementations of Viterbi
decoders.

Path memory management

In a Viterbi decoder, survivor paths and their metrics need to be stored and updated. In a
continuous operation mode, while updating the survivor paths at stage i, earlier portions of
the survivor paths merge with high probability at stage i - L, where L is the decoding depth.
The estimated information bits are taken from the (single) portion of the merged paths at stage
i - L. There are different techniques to extract the information bits. Two of the most common
are: (1) Register exchange and (2) Traceback memory.

0 Register exchange
This method is the easiest to implement in software. All the survivor paths are
updated at each iteration of the Viterbi algorithm. Therefore, the information bits can
be read directly from the survivor paths. However, if this technique is implemented
in hardware, the decoding speed would be low, due to an excessive number of times
at which the path memory is read and written. To simplify control flow instructions,
a circular pointer of length L can be used. With a circular pointer, at decoding stage
i, position (i - L) in memory (to output the decoded bit) is equal to position (i + 1)

' Arithmetic using the additive group { - Z r n - I , 1 - 2rn-' , . . . , Z m - l - l} of m-bit integers [HEK].

92 THE ART OF ERROR CORRECTING CODING

10 01 01 00 10

t = 5 :

IO 01 01 00 10

y 5=(10,01,11,00,00)

y 5=(11,01,01,00,10)

y 5=(10,01,11,00,11)

y 5 = (10,00,01,10,10)

(0)

(1)

(2)

(3)

Figure 44 VD operation for Example 62, at i = 5 .

modulo L.
Traceback
This technique is favored in implementations in hardware. The survivor paths are
composed of decision values, which indicate state transitions in order to trace back
the survivor paths and reconstruct a sequences ofstates in reverse order.

The traceback memory can be organized as a rectangular array, with rows indexed
by k , for all the trellis states k = 0,1, . . . , 2m - 1. At decoding stage i , for each
trellis state S,('), 0 5 j 5 2m - 1, the traceback memory (or TB RAM) is written
with the rightmost bit of the previous state S!::, l E { 1,2}, associated with the
winning branch.

The traceback method trades off memory for decoding speed, since it writes only
one bit per state per decoding stage, instead of L bits per state per decoding as in the
register exchange method. The information bits are decoded by reading in reverse
order the state transitions with an encoder replica (or looking up a state transition
table). More memory (number of columns if organized in a rectangular array) is
required for continuous operation because, at the same time as information bits are
being read out (decoded), new decision values are being written.

Example 64 Continuing with Example 62, using the traceback technique, at the end of the
i = 6 received pair of bits from the channel, the traceback memory would have the contents
shown in Table 3.

The traceback memory is read starting from the last bit (e.g., use a LIFO), i = 6 (in general
T = L). The row address is given by the state with the best metric. This is state S(') in
the example. Read the transition bit b6 (in general, b ~) . The row address (ROW) at i = 5
(i = L - l), to read the next transition bit bg, is obtained by shifting the address IC at i = 6

BINARY CONVOLUTIONAL CODES

10 01 01 00 10 11

93

t = 6:

10 01 01 00 10 11

y (11,01,01,00,10,11)
(0)

y (1) ,=(10,00,01,10,10,01)

y (2) 6=(10,01,11,00,w,ll)

y (3) 6=(10,00,01,10,10,10)

Figure 45 VD operation for Example 62, at i = 6.

SKIP

1- A’ A‘

Synchronized rl[i+2j ro[i+2] rl[i+l] r,[i] ro[i]

Reference ... vo[i] ... vl[i+2] vo[i+2] vl[i+l] vo[i+l] v,[i]

Figure 46 Example of branch misalignment in a Viterbi decoder.

(i = L) and appending the previous decision bit b6 (b ~) . This can be stated in the following
C language instruction:

ROW[j] = ((ROW[j+l] << 1) && MASK) TB-RAM[ROW[j+l]] [j+l];

(where MASK = 2m - 1.)
Continuing in this way, the following state sequence is obtained:

From this sequence, the corresponding information sequence can be recovered, by reversing
the state transitions: 6 = (l 1 0 l 0 0).

For high-speed continuous VD operation with the traceback method, the traceback memory
must be partitioned into several blocks. In this way, while one block is being written with
decisions at the current stage i , another block is read (decoded) at a time i - L, L > C,
and another (possibly more than one) block for intermediate stages is used for performing

94 THE ART OF ERROR CORRECTING CODING

Viterbi
decoder

estimator
Delay

Figure 47 Channel error rate estimation for a BSC channel.

Table 3 Tracing back the path that ended in state S(’).
i = l i = 2 i = 3 i = 4 i = 5 i = 6

0 0 1 1 0 0 1
1 0 1 1 0 0 1
2 0 1 1 1 0 0
3 1 0 0 1 1 1

traceback tracing. This memory partitioning improves speed but increases the latency (or
decoding delay) of the decoder [Col, BABSZ].

ACS

For memory-m rate-l/n binary convolutional codes codes, the basic trellis element is a
butterfly, as shown in Figure 48. The add-compare-select (ACS) operation is implemented
using this structure over 2m-1 pairs, i.e., j = 0 , 1 , 2 , . . . , 2m-1 - 1. Therefore, the ACS
operation can be done either serially (a loop on j in software) or in parallel, with 2m-1 ACS
units, one per butterfly. If the code is antipodal then the generators of the code have a one
in the first and last positions. In this case, the labels of the branches incident to a state S(2j)
are the same as those incident to state S(’j+l) in a butterfly. Moreover, the label of a branch
incident to a state S(’j) is equal to the complement of the label of the other branch’. Using
these facts, a clever technique [K21 based on branch metric differences was proposed. For
rate-l/n codes, the result is a Viterbi decoder with a compare-add-select (CAS) architecture,
and lower complexity of implementation than the conventional ACS approach.

5.5 Punctured convolutional codes

Punctured convolutional codes were introduced in [Cla]. Puncturing is the process of
systematically deleting, or not sending, some output bits of a low-rate encoder’. Since the
trellis structure of the low-rate encoder remains the same, the number of information bits per
sequence does not change. As a result, the output sequences belong to a higher-rate punctured
convolutional (PC) code. The following discussion focuses on codes obtained from a binary

The complement of a bit a is 1 + a mod 2.
Sometimes referred to as the mother code.

BINARY CONVOLUTIONAL CODES 95

Figure 48 Trellis butterfly of a memory-m rate-l/n binary convolutional code.

memory-m rate-l/n convolutional code.

rate- lln matrix
encoder

Framing

Figure 49 Encoder of a punctured code based on a rate-l/n code.

A puncturing matrix P specifies the rules of deletion of output bits. P is a k x np
binary matrix, with binary symbols pij that indicate whether the corresponding output bit
is transmitted = 1) or not (pij = 0). Generally, the puncturing rule is periodic. A rate-
k / n , PC encoder based on a rate-l/n encoder, has a puncturing matrix P that contains l! zero
entries, where np = kn - l!, 0 5 l! kn.

Example 65 A rate-2/3 memory-2 convolutional code can be constructed by puncturing the
output bits of the encoder of Figure 29, according to the puncturing matrix

P = (; ;).

The corresponding encoder is depicted in Figure 50. A coded sequence

6 = (...

of the rate-1/2 encoder is transformed into code sequence

up = (.

i.e., every other bit of the second output is not transmitted.

One of the goals of puncturing is that the same decoder can be used for a variety of high-rate
codes. One way to achieve decoding of a PC code using the Viterbi decoder of the low-rate
code, is by the insertion of “deleted” symbols in the positions that were not sent. This process
is known as depuncturing. The “deleted” symbols are marked by a special flag. This can be
done, for example, using an additional bit and setting it to 1 in the position of an erased bit. If

96 THE ART OF ERROR CORRECTING CODING

10001 1

U

110100
6 input bits

111001 lXlX0X

v = (l l ,O l ,O l ,OO, lO , l1) 12 output bits - rate-1/2

9 output bits - rate-2/3 v = (11,0,01,0,10,1) P

a position is flagged, then the corresponding received symbol is not taken into account in the
branch metric computation’0.

In a software implementation, an alternative method is for the decoder to check the entries
pm,j of matrix P in the transmission order, m = 0; 1;. . . n - 1, j = i; i + 1;. . . i + k - 1.
If pm,j = 0, then the current received symbol is not used to update the branch metric. The
decoder advances a pointer to the next branch symbol in the trellis and repeats the test on
p,j. Otherwise, pm,j = 1 and the received symbol are used to update the branch metric.
Every time the branch pointer is advanced, a check is made to determine if all the symbols
in that branch have been processed. If they have, then the ACS operation is performed. This
method is used in some of the programs that implement Viterbi decoding of PC codes on the
ECC web site.

Table 4 shows puncturing matrices employed with the de-facto standard memory-6 rate-
1 /2 convolutional code with generators (go; 91) = (171; 133). In the table, v:) indicates the
output, at time m, associated with generator si, i = 0; 1. Other puncturing matrices can be
found in [YKH].

~~

lo Some authors write “the branch metric is zero” as an equivalent statement.

BINARY CONVOLUTIONAL CODES 97

Example 66 (Continuation of Example 65.) Let U be the same as in Example 62, and
suppose transmission over a BSC introduces an error in the second position. Coded symbols
dl)[i]; i = 0; 2: 4; .. ., are not transmitted. The decoder knows this and inserts deleted
symbols, denoted by E. When computing branch distances, the E symbols are ignored. The
operation of a Viterbi decoder with deleted symbols is depicted in Figures 5 1 and 52 for i = 1
and i = 2, respectively. It is left as an exercise to finish the example.

Transmitted 1 1 0 01 0 10 1

Received 10 m 01 m 10 1E

i = O t t f

i = 1:

10 Branch metric computation:
(0)

BM1 =d(00, 1 0) = 1 BM1 =d(01, 10) ,2

BMI = d (1 0 , 1 0) = 0 B M I = d (l l , 1 0) = 1

(0) (0) (0) (1) (3)

(1)

(2) (3)

M(S) = min [M(S O)+BM M(S O)+BM]

= 1, select (flip a coin) branch from state 0

(0)
Update metric M(S) = 1 Update path y = (0 0)

(0)

Figure 51 VD operation for a rate-213 memory-2 PCC, i = 1.

5.5.1 Implementation issues related to punctured convolutional codes

For a system that employs punctured convolutional codes, the re-synchronization process will
take longer, as the output symbols are spread over several trellis branches. Moreover, practical
systems use a multiplicity of puncturing patterns of different lengths. The decoder therefore
may have to make a guess as to the specific rate and puncturing pattern being received. Other
points to consider when implementing PC codes are:

1. The decoding depth L must be increased as more output bits are punctured. This
is because high-rate codes (e.g., rate 7/8) have low minimum Hamming distance

98 THE ART OF ERROR CORRECTING CODING

Transmitted 11 0 01 0 IO 1

Received 10 OE 01 OE IO IE

i = 2 :
10 OE

Figure 52 VD operation for a rate-2/3 memory-2 PCC, i = 2.

between coded sequences (e.g., dmin = 3) and therefore the survivor paths take
longer to converge.

2. An additional level of synchronization with the received sequence is needed, to align
the puncturing pattern.

The fact that the puncturing patterns have different lengths for different rates may be solved
by employing the same puncturing period. This is one of the features of rate-compatible PC
codes, or RCPC codes.

5.5.2 RCPC codes

RCPC codes were introduced by Hagenauer [Hag]. These codes are constructed from a low-
rate code by periodic puncturing. Let M denote the puncturing period. Then, as before, the
puncturing matrices are n x M binary matrices. However, in general, M > kn - l.

To construct a family of RCPC codes, it is required that the branch outputs of a high-rate
PC code are used by the lower rates PC codes. This is achieved as follows. Let P (H) and
P(L) denote matrices of a high-rate code CH and a low-rate code CL, respectively, both
derived from the same lowest-rate code C. Then codes CH and CL are rate-compatible if the
following condition holds:

pi;’ 1 + = 1.

z 0 +p!?) = 0.
An equivalent condition is

23

BINARY CONVOLUTIONAL CODES 99

Example 67 Let C be a rate-1/2 convolutional code. Let M = 4. Then matrices P(l)
through P(4) below generate RCPC codes of rates 4/5,4/6,4/7 and 4/8(=1/2), respectively.

RCPC codes [Hag] find applications in automatic repeat request (ARQ) systems, due to
their incremental redundancy nature, as well as in constructing variable-rate or unequal error
protection codes.

Modifying and combining codes

In this chapter, several techniques are presented that allow modification of an existing code,
or the combination of several codes, in order to achieve flexibility in the design of error
correcting codes. Many of the best codes known to date have been obtained not from members
of a known family of codes, but from modifying and combining codes [Bro].

6.1 Modifying codes

In the following, let C denote a linear block (n, k, d) code over GF(q) with generator matrix
G and parity-check matrix H .

6.1. I Shortening

Shortened cyclic codes were described in Section 3.1.5. Let S be an integer, 0 5 S < k . In
general, a linear shortened (n - S, k - S , d,) code C, has distance d, 2 d. A generator matrix
of C, can be obtained from the generator matrix G of the original code C as follows. Assume
that G is in systematic form, that is,

Then a (k - S) x (n - S) generator matrix G, of the shortened code C, is obtained by
removing S columns of the identity matrix Ik and the S rows that correspond to where the
selected columns elements are nonzero. This is best illustrated by an example.

Example 68 Consider the Hamming (7,4,3) code, presented in Example 13, page 23, of
Chapter 2. This code has

1 0 0 0 1 0 1
0 1 0 0 1 1 1

0 0 0 1 0 1 1

G = (
(Compare with the H matrix in Example 13.)

To construct a shortened (5 ,2,3) code, any two among the four leftmost columns of G can
be removed. Suppose that the first and second columns of G are removed, and that the first
and second rows, corresponding to the nonzero elements of the columns, are removed. These
rows and columns are indicated by boldface types in (6.2). The remaining entries of G form

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

102 THE ART OF ERROR CORRECTING CODING

the matrix

It is instructive to examine the standard array of the shortened (5,2,3) code of Example 68,
to understand the enhancement in the error correcting capability of a shortened code, with
respect to the original code.

Example 69 The standard array for the shortened (5 ,2 ,3) code of Example 68 is given in
Table 5 .

Table 5
-
S

000
110
01 1
l00
010
00 1
101
111

Standard array for a shortened (5 , 2 , 3) code.

u = o o u=10 u = o 1 U = l l
00000 10110 01011 11101
10000 00110 11011 01101
01000 111 10 00011 10101
00100 10010 01111 11001
00010 10100 01001 11111
00001 10111 01010 11100
11000 01 110 10011 00101
01100 11010 001 11 10001

From the standard array, it follows that, although the minimum distance of the code is
d, = 3, there are two error patterns of Hamming weight two, namely 11000 and 01100, that
can be corrected.

Note that shortening a code reduces the length and dimension of the code, while at the same
time maintains the same redundancy, so that more error patterns can be corrected. This can
be explained from the Hamming bound for a t-error-correcting linear block (n, k , d) code,
inequality (1.24) which is repeated here for convenience,

2n-k 2 2 (;). t

With respect to the original (n, IC, d) code, the shortened (n - S , k - S , d,) has the same
redundancy. Therefore, the left-hand side of (6.3) has the same value. In other words, the
number of cosets does not change. On the other hand, for S > 0, the right-hand side becomes
smaller. In other words, the number of error patterns of Humming weight up to t decreases.

If the original code does not meet the Hamming bound (6.3) with equality (in the binary
case, only the Hamming codes, the Golay code, the single parity-check codes and the
repetition codes do), then the quantity 2n-k - cl=, (:) represents the additional patterns
of weight greater than t that the original code can correct. The number of additional error
patterns of Hamming weight greater than t that the shortened code can correct is given by

A, = 2n-k - 5 (" e ') - In-' - 5 (i)] = 2 [(i) - (" ')] , (6.4)
t

!=O t=0

which is equal to the difference in the volume of Hamming spheres of radius t when going
from n to n - S coordinates (or dimensions).

MODIFYING AND COMBINING CODES 103

6. I .2 Extending

In general, extending a code C means adding E parity-check symbols. The extended
(n + E, k , dext) code Cext has minimum distance dext 2 d. In terms of the parity-check matrix
H of the code C, E rows and columns are added to it, to obtain an (n - k + E) x (n + E)

extended parity-check matrix,

. . .

...

H

h n - - k t t , t

The most common way of extending a code is by adding an overall parity-check symbol. In
this case, the following parity-check matrix is obtained,

The resulting code Cext is an (n + 1; k , dext) code. If the minimum distance of the original
code is odd, then dext = d + 1.

Example 70 Let C be the Hamming (7,4,3) code. Then the extended (8,4,4) code Cext has
parity-check matrix

/ 1 1 1 1 . 1 1 1 1 \
0 1 1 1 0 1 0 0
0 0 1 1 1 0 1 0 H e x t =

0 1 1 0 1 0 0 1 J
After permutation of columns, this is also the generator matrix of the RM1,3 code of
Example 16, which is a self-dual code'.

6.1.3 Puncturing

A puncturing technique was discussed in Section 5.5, in connection with convolutional codes.
More generally, puncturing of linear block codes consists of the removal of parity check
symbols, to obtain a linear block (n - p , IC, d,) code C, with minimum distance d, 5 d. The
rate of the code increases, since the dimension does not change, and redundancy (number of
parity-check symbols) is reduced.

Puncturing is achieved by removing certain columns of the parity-check matrix H of the
original code, to obtain matrix H p of C,. This technique is similar to shortening of the dual
code. If

H = (P O 172 ... P k - l l I n - k) 7

See page 7.

104 THE ART OF ERROR CORRECTING CODING

denotes the parity-check matrix of C, then removing any p columns among the n - IC rightmost
columns from H , and p rows corresponding to the nonzero values of the selected columns,
results in an (n - IC - p) x (n - p) matrix

where Ij denotes a column of weight equal to one, and p> denotes a column after the removal
of the p rows described above.

Example 71 Consider the (5 ; 2 ; 3) code C, from Example 68. Its parity-check matrix is equal
to

H , = l l O l O . (: 1 :: 1)
Deleting the third column and the top row of H, gives the parity-check matrix H p of a
punctured (4: 2; 2) code C,,

which is the same LUEP code as in Examples 3 and 6, up to a permutation of the first and
second code positions.

6.1.4 Augmenting and expurgating

There are two additional techniques to modify an existing linear code that in general may
produce nonlinear codes. These techniques are augmenting and expurgating and are very
useful in analyzing families of linear block codes, such as the Reed-Muller and BCH codes.

Augmenting a code means adding more codewords to it. An obvious way to do this and
still get a linear code is to add more (linearly independent) rows to the generator matrix. This
is equivalent to forming a supercode by taking the union of cosets of code C. The resulting
code C,,,, has dimension (n; IC + 6; d,,,), where 6 is the number of rows added to G. The
minimum distance of Caug is daug 5 d. Let G = (3: . . .) be a generator matrix
of C, where gj denotes a vector of length n, 0 5 j < n, and x' denotes the transpose of a
vector 3. Then a generator matrix of an augmented code is given by

T

Augmenting techniques are closely related to coset decomposition [For61 of codes. This is
discussed below in connection with the direct-sum of codes and the lulu + v]-construction
and related techniques. A common method to augment a linear block (n; k ; d) code C is to
add the all-one codeword to it (if it is not already in the code.) Alternatively, if the all-one
codeword belongs to C, then

c = c. U{i + co),
for an (n; IC - 1; do) subcode CO C C, where do = d - 1.

MODIFYING AND COMBINING CODES

Table 6 Basic techniques for modifying a code.

Technique Action
(n - C , k - l , d , > d) Removing information symbols Shortening

Code parameters

(n, - e, dexp 2 d) Removing codewords (cosets) Expurgating
(n, IC + e, daug 5 4 Adding codewords (cosets) Augmenting
(. - e, k, d p 5 4 Removing parity-check symbols Puncturing

(n + e, IC, dext 2 4 Adding parity-check symbols Extending
(n + C, IC + l , d, 5 d) Adding information/parity-check symbols Lengthening

105

Expurgating is the process of removing codewords from a code. In general, this will
produce a nonlinear code. One way to get a linear code is to remove rows from the generator
matrix G of the original code. This results in an (n, IC - C, de,,) code Cexp with dexp 2 d. It is
interesting to note that if the code is systematic, then expurgating is equivalent to shortening.

Example 72 Consider the Hamming (7,4,3) code, with

1 0 0 0 1 0 1
0 1 0 0 1 1 1

0 0 0 1 0 1 1

G = (
Removing the first row results in a (7,3,3) code, for which the first bit is always zero. In other
words, the code is equivalent to a (6,3,3) code.

It is important to note that when expurgating a code, the choice of the generator matrix,
or the basis of the original code, is important in order to obtain codes with high minimum
distance. This is illustrated in the following example.

Example 73 As shown in Example 39, the Hamming (7,4,3) code contains seven codewords
of weight 3 and seven codewords of weight 4. Selecting four linearly independent codewords,
three of weight 4 and one of weight 3 , the following generator matrix is obtained,

1 0 0 0 1 0 1
1 1 0 0 1 1 0

0 1 1 0 0 1 1

G’= ((6.10)

Matrix G’ generates the same Hamming (7,4,3) of the previous example. However, if the
top row of G’ is removed, the generator matrix of a maximum-length-sequence (or simplex)
(7,3,4) code is obtained.

The code lengthening technique is performed by adding e columns and e rows to the
generator matrix, and C additional parity-check symbols, so that C additional information
symbols are introduced. In particular, one way to lengthen a code is to add one information
symbol and one overall parity-check symbol [MS].

Table 6 summarizes the techniques presented in this section.

106 THE ART OF ERROR CORRECTING CODING

6.2 Combining codes

In this section, several methods of combining codes are presented. Code combining techniques
are very powerful, as evidenced by the appearance in 1993 of turbo codes [BGT]. In the
following, unless otherwise specified, let Ci denote a linear block (ni, ICi, d i) code, i = 1,2.

6.2. l Time-sharing of codes

Consider two codes C1 and C2. Then the time-sharing of C1 and C2 consists of transmitting
a codeword C1 E Cl followed by a codeword c2 E CZ,

IC,lC,l = {(c1,c2) : ci E cz, i = 1,2}. (6.11)

The result of time-sharing of m linear block (ni, k i , d i) codes, i = 1,2, . . . , m, is an (n, IC, d)
code, with parameters

m m
n = E n , , IC = c k i , and d = min { d i } .

i=l
lsilm

i=l

(6.12)

Let Gi denote the generator matrix of component code Ci, for i = 1,2, . . . , m. Then the
generator matrix of the code obtained from time-sharing is

(6.13)

where the blank entries represent zeros.
Time-sharing is sometimes referred to as “direct-sum’’ [MS] or “concatenation” [Rob]. In

this book, however, concatenation of codes has a different interpretation, and is discussed in
Section 6.2.4.

Example 74 Let C1 be a repetition (4,1,4) code and C2 be a Hamming (7 ,4,3) code. Then
time-sharing of C1 and C2 results in a linear block (11,5,3) code with generator matrix

1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 1
0 0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 0 1 1

GTS = 0 G2

The time-sharing technique has been widely used in communication systems that require
a variable amount of error protection, or unequal error protection, using the RCPC codes of
Section 5.5.2. See [Hag]. Also note that time sharing m times the same code is equivalent
to repeating the transmission of a codeword m times. More on this when product codes are
discussed, in Section 6.2.3.

MODIFYING AND COMBINING CODES 1 07

6.2.2 Direct-sums of codes

Let Ci denote a linear block (n; ki , d i) code, 1 5 i 5 m. A direct-sum code CDS is defined
as

CDS = {fila = fil + fil + ' ' ' + V,; fii E ci, i 1 1; 2 , . . . ; m } .
This technique may increase dimension. However, it generally reduces the distance. Let Gi
denote the generator matrix of component code Ci, for i = l; 2; . . . : m. Then the generator
matrix of the code CDS, obtained from the direct-sum of these component codes, denoted
CDS = Cl + C2 + ... + C,, is

GDS = (6.14)

Code CDS is a linear block (n: k7 d) code with k 5 IC1 + k2 + . . . + IC, and d 5 mini{&}.

Example 75 Let Cl be the repetition (4; 1: 4) code and CZ be a linear block (4; 2; 2) code
with generator matrix

(This code consists of codewords formed by sending twice a 2-bit message.) Then code
CDS = C1 + C, is a single parity-check (4: 3; 2) code, with generator matrix,

1 1 1 1

0 1 0 1
GDS= (1 0 1 0) .

The direct-sum technique can be used not only to combine codes of smaller dimension, but
also to decompose a code into a union of subcodes Ci C C, such that C can be expressed as
the direct sum of the component subcodes. More on this is discussed in Section 6.2.4.

Trivially, every linear block (n; k , d) code C with generator matrix G can be decomposed
into k linear block (n; 1, d i) subcodes Ci, 1 5 ,i 5 k . Each subcode has a generator matrix
equal to a row g i , of G, 0 5 i < k . However, there are known construction techniques
that allow decomposition of codes into subcodes of larger dimension and known minimum
distances. This is the topic of the next section.

The) U ~ U + v)-construction and related techniques

Combining time-sharing and direct-sum gives interesting construction methods. The first one
is the 1u1u + vl-construction [Plo], defined as follows. Based on two codes, C1 and CZ, of
lengthn = nl = n2,the Iulu+vl-constructiongivesacode*C = IC1IC1+C2I withgenerator A

matrix
(6.15)

~

If the lengths are not equal, say, 7~1 > 712, then append T L Z - nl zeros to the end of codewords of code
c2.

108 THE ART OF ERROR CORRECTING CODING

The parameters of C are (2n; IC1 + kz d) . That the minimum distance of C is
d = min(2dl dz} can be proven by noticing that for two binary vectors 5 and 1,
wt(5 + y) 5 wt(5) - wt(y).

The lulu + v(-construction allows to express RM codes in a convenient way:

Reed-Muller codes

RM(r + l ; m + 1) = IRM(r + l;rn)lRM(r + 1;rn) + RM(r;m)l. (6.16)

This interpretation of RM codes has been used to develop efficient soft-decision decoding
methods taking advantage of the “recursive” structure of this class of codes (see [For6, SB]
and references therein). In Section 6.2.4, this construction will be shown to be a particular
case of a more powerful combining technique. The IuIu + v)-construction is also called the
squaring construction in [For6].

Example 76 Let C1 be RM(1; 2), an SPC (4,3,2) code, and C2 be RM(0; a), the repetition
(4; 1:4) code. Then C = IC1JC1 + CZ) is RM(1;3), an extended Hamming (8:4:4) code
with generator matrix

1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1

0 0 0 0 1 1 1 1

G = (
Construction X

This is a generalization of the lulu + v)-construction [Slo]. Let Ci denote a linear block
(ni; ki, d i) code, for i = 1; 2: 3. Assume that C3 is a subcode of C2, so that 723 = nz, IC3 5 kz
and d3 2 dz . Assume also that the dimension of Cl is ICl = kz - IC3. Let (G; G$) and
G3 be the generator matrices of code CZ 3 C, and subcode C3, respectively. Note that G2 is
a set of coset representatives of C3 in C2 [For6]. Then the code CX with generator matrix

(6.17)

is a linear block (nl + 122; kl + IC2; d x) code with d, = min(d3; dl + 4) .

Example 77 Let C1 be a single-parity check (SPC) (3; 2; 2) code, and CZ be an SPC (4; 3; 2)
code whose subcode is C3, a repetition (4: l; 4) code. Then

1 0 1 1 0 0 1
1 (::)=(o 1 1 1 1 1 0 l) ;

and G3 = (1 1 1 l). Construction X results in code CX = 1 Cl JCz + C, 1 with generator
matrix

l 0 1 1 0 0 1

0 0 0 1 1 1 1
and is a maximum-length-sequence (7; 3: 4) code. This code is equivalent to the code obtained
from the Hamming (7; 4: 3) code by expurgating one message symbol, as in Example 73.

MODIFYING AND COMBINING CODES 109

Construction X3

Extending further the idea of using coset representatives of subcodes in a code, this
method combines three codes, one of them with two levels of coset decomposition
into subcodes, as follows [Slo]. Let C3 be a linear block (n1 k3; d3) code, where
k3 = k2 + a23 = kl + a12 + ~ 2 3 . C3 is the union of 2a23 disjoint cosets of a linear block
(nl , k2, d2) code, C2, with k:! = kl + u12. In turn, C2 is the union of 2a12 disjoint cosets of a
linear block (nl , kl d l) code, C l . Then each codeword in C3 can be written as 5i+jji+V, with
V E Cl, where Zi is a coset representative of C2 in C3 and y i is a coset representative of Cl
in C,. Let C4 and C5 be two linear block (n4; u33, d4) and (n5 u12, d5) codes, respectively.
The linear block (nl + n4 + 725, k3, d ~ 3) code Cx3 is defined as

and has a minimum distance dx3 = min {d l d2 + d4, d3 + d5) . A generator matrix of (3x3

is

where (G1), (G: G:)T and (G: G$ G:)T are the generator matrices of codes Cl,
C, and C,, respectively.

Example 78 Let Cl, C2 and C3 be (64,30,14), (64,36, 12) and (64,39; 10) extended BCH
codes, respectively, and let C4 and C5 be (7; 6.2) and (7; 3,4) SPC and maximum-length
codes, respectively. Construction X3 results in a (78: 39, 14) code. This code has higher rate
(four more information bits) than a shortened (78: 35,14) code obtained from the extended
BCH (128,85,14) code.

Generalizations of constructions X and X3 and good families of codes are presented
in [Slo, MS, Kasl, Sug, FL31. The application of these techniques to construct LUEP codes
was considered in [Van, MH].

6.2.3 Products of codes

In this section, the important method of code combination known as product, is presented.
The simplest method to combine codes is serially. That is, the output of a first encoder is
taken as the input of a second encoder, and so on. This is illustrated for two encoders, in
Figure 53. This is a straightforward method to form of a product code. Although simple, this
direct product method produces very good codes. Very low-rate convolutional codes can be
constructed by taking products of binary convolutional codes and block repetition codes.

Example 79 Consider the standard memory-6 rate- 1/2 convolutional encoder with generators
(171, 133) and minimum distance d f = 10, connected in series with time-sharing of repetition
(2: 1: 2) and (3: 1, 3) codes, namely 1(2: 1, 2)\(2; 1; 2)1 and l(3; 1, 3)1(3, 1; 3)l. In other words,
every coded bit is repeated two or three times, respectively.

These schemes produce a memory-6 rate-114 code and a memory-6 rate-1/6 code, with
generators (171; 171,133,133) and (171; 171: 171; 133,133,133), anddf = 20anddf = 30,
respectively. These codes are optimal [Dho] in the sense that they have the largest free distance

110 THE ART OF ERROR CORRECTING CODING

Figure 53 Block diagram of an encoder of a product code.

0 1 2 k , - l n , -1

0
1
2

horizontal checks
B vertical checks
m checks-on-checks

Figure 54 Codeword of a two-dimensional product code.

for a given number of states. This seems to be the first time that they have been expressed in
terms of these generators.

However, except for the case of two encoders where the second encoder is the time-sharing
of repetition codes, important questions arise when considering a serial connection3 between
two encoders: How should the output of the first encoder be fed into the second encoder? In
what follows, let C1 denote the outer code and C2 denote the inner code. Either C1 or C2

or both can be convolutional or block codes. If G1 and G2 are the generator matrices of the
component codes, then the generator matrix of the product code is the Kronecker product,

In 1954, Elias [Elil] introduced product or iterated codes. The main idea is as follows.
Assume that both C1 and C2 are systematic. The codewords of the inner code C1 are arranged
as rows of a rectangular array with 721 columns, one per code symbol in a codeword of
C,. After k2 rows have been filled, the remaining 722 - IC2 rows are filled with redundant
symbols produced, on a column-by-column basis, by the outer code C,. The resulting 722 x n1

rectangular array is a codeword of the product code Cp = C1 @ C,. Figure 54 depicts the
structure of a codeword of a two-dimensional product code. Extension to higher dimensions
is straightforward.

G = G1 @ G2.

A

This is also known as serial concatenation. However, in this chapter the term concarenafion is used with a
different meaning.

MODIFYING AND COMBINING CODES 111

interleaver
Block

~~ ~~

n 0 Encoder C,
n2 codewords
of length n l

k, codewords n I messages
of length n l of length k,

Figure 55 A two-dimensional product encoder with a block interleaver.

j=O j=1 j=2 j=3 j=4

i=o

i= 1

Figure 56 A 2-by-5 block interleaver.

The array codewords are transmitted on a column-by-column basis. With reference to the
initial description of a product code, Figure 53, Elias two-dimensional product codes can be
interpreted as connecting the two encoders serially, with an interleaver in between. This is
shown schematically in Figure 55.

As defined by Ramsey [Ram], an interleaver is a device that rearranges the ordering
of a sequence of symbols in some one-to-one deterministic manner. For the product of
linear block codes, naturally, the device is known as a block interleaver. The interleaver
describes a mapping mb(i,j) between the elements ai,j in a IC2 x n1 array, formed by
placing IC2 codewords of C1 as rows, and the elements u ~ ~ (~ , ~) of an information vector

The one-to-one and onto mapping induced by a m1 x 7132 block interleaver can also be
expressed as apermutation Il : i e ~ (i) , acting on the set of integers modulo 71317722. Writing
the array as a one-dimensional vector, ii, by time-sharing of (in that order) the first to the ml-
th row of the array,

U. = (U 0 U1 . . . un*nz-l).

U = (U O UI . . . u m 1 m z - 1) ,

the output of the block interleaver is read, via H, as

where
i

m1
~ (i) = m2(i mod ml) + 1--J (6.19)

Example 80 Let Cl and C, be linear block SPC (5,4,2) and (3,2,2) codes, respectively.
This results in a (15,8,4) product code with the block interleaver shown in Figure 56. The
permutation is given by

~ (i) = 5(i mod 2) + 1-1,
and the vector ii = (U O , 211, u2, us,. . . , u g) is mapped onto

i
2

112 THE ART OF ERROR CORRECTING CODING

0 1 2 3 4

5 6 7 8 9

10 1 2 3 4 ' 5 6 7 8 91

1 0 5 1 6 2 7 3 8 4 9 1

Figure 58 Mapping mb(i, j) of a 3-by-5 block interleaver.

This is illustrated in Figure 57. The sub-vectors U i = (21&+5), 0 5 i < 5, constitute
information vectors to be encoded by Cl. Traditionally, codewords are interpreted as two-
dimensional arrays,

where the rows (at,-, at,^ . . . ae,4) E Cl, for C = 0,1,2, and the columns
(ao,! a1,t ~ 2 , e) E Cz! for C = 0,1, . . .4. The underlying ordering is depicted in Figure 58.
The one-dimensional notation gives the same vector,

Example 81 Let Cl and C2 be two binary SPC (3 ,2,2) codes. Then Cp is a (9 ,4,4) code.
Although this code has one more redundant bit than an extended Hamming code (or the
RM(1,3) code), it can correct errors very easily by simply checking the overall parity of the
received rows and columns. Let the all-zero codeword be transmitted over a BSC channel and
suppose that the received codeword is

F = 1 0 0 . (1 1)

MODIFYING AND COMBINING CODES 113

i=O

10 1. 7 ; ' l3 4. i=l

0 . 6 12 3 ,, 9

': 5 11 2 8 14 i=2
'\ .. '\ \

Figure 59 Cyclic mapping m, for n1 = 5 , 7 2 2 = 3.

Recall that the syndrome of a binary SPC (n, n - 1 , 2) code is simply the sum of the n bits.
The second row and the first column will have nonzero syndromes, indicating the presence of
an odd number of errors. Moreover, since the other columns and rows have syndromes equal
to zero, it is concluded correctly that a single error must have occurred in the first bit of the
second row (or the second bit of the first column). Decoding finishes upon complementing the
bit in the located error position.

The code in Example 81 above is a member of a family of codes known as array codes
(see, e.g., [Kas2, BL]). Being product codes, array codes are able to correct bursts of errors,
in addition to single errors. Array codes have nice trellis structures [HMI, and are related to
generalized concatenated (GC) codes [HMF], which are the topic of Section 6.2.4.

Let Ci be a linear block (ni, ki, d i) code, i = 1,2. Then the product Cp = C1 63 C2 is a
linear block (nl n2, ICl IQ, d p) code, where d p = dl d2. In addition, Cp can correct all bursts
of errors of length up to b = max(nlt2, nztl}, where ti = L(di - 1)/2], for i = 1,2. The
parameter b is called the burst error correcting crzpability.

Example 82 Let Cl and C2 be two Hamming (7 ,4,3) codes. Then Cp is a (49,16,9) code
that is capable of correcting up to 4 random errors and bursts of up to 7 errors.

If the component codes are cyclic, then the product code is cyclic [BW]. More precisely,
let Ci be a cyclic (ni, Ici, d i) code with generator polynomial si(.), i = 1,2. Then the code
Cp = C1 63 C2 is cyclic if the following conditions are satisfied:

1. The lengths of the codes Ci are relatively prime, i.e., an1 + bn2 = 1, for two integers
a and b;

2. The cyclic mapping mc(i, j) that relates the element a i j in the rectangular array of
Figure 54 with a coefficient t ~ ~ ~ (~ , ~) of a code polynomial 'U(.) = ZIO + 01 + . . . +
tIn,,,-1.n1n2--l E Cp, is such that

mc(i, j) = [(j - i) . bnl + i] mod n l n ~ , (6.20)

form,(i , j) = 0,1r . . . ,n ln2 - 1.
When these two conditions are satisfied, the generator polynomial of the cyclic code
Cp is given by

g(.) = GCD (g l (~ ~ ~ ~) g ~ (5 ~ ~ ~) , 2 ~ ~ ~ ~ + 1) . (6.21)

114 THE ART OF ERROR CORRECTING CODING

Figure 60 Codeword of an block interleaved code of degree I = nz.

Example 83 An example of the cyclic mapping for n1 = 5 and 722 = 3 is shown in Figure 59.
In this case, (-1)5 + (2)3 = 1, so that a = -1 and b = 2. Consequently, the mapping is given

mc(i, j) = (6 j - 5i) mod 15.

As a check, if i = l and j = 2, then mc(l , 2) = (12 - 5) mod 15 = 7; if i = 2 and j = 1,
then mc(2, 1) = (6 - 10) mod 15 = -4 mod 15 = 11.

by

The mapping mc(i , j) indicates the order in which the digits of the array are
transmitted [BW]. This is not the same as the column-by-column order of the block interleaver
for a conventional product code. The mapping described by (6.20) is referred to as a cyclic
interleaver. Other classes of interleavers are discussed in Section 6.2.4.

With the appearance of turbo codes [BGT] in 1993, there has been intense research activity
in novel interleaver structures that perform a pseudo-random arrangement of the codewords of
Cl , prior to encoding with C,. In the next section, interleaved codes are presented. Chapter 8
discusses classes of interleaver structures that are useful in iterative decoding techniques of
product codes.

Block interleaved codes

A special case of product code is obtained when the second encoder is the trivial (n2,122,1)

code. In this case, codewords of C1 are arranged as rows of an na-by-nl rectangular array and
transmitted column-wise, just as in a conventional product code. The value I = 722 is known
as the interleaving degree [LC] or interleaving depth.

The resulting block interleaved code, henceforth denoted as can be decoded using
the same decoding algorithm of Cl, after reassembling a received word, column-by-column
and decoding it row-by-row. Figure 60 shows the schematic of a codeword of an interleaved
code, where (W ~ , O W ~ , J . . .) E Cl, for 0 5 i < 722.

If the error correcting capability of C1 is tl = L(dl - 1)/2], then can correct any
single error burst of length up to b = tln2. This is illustrated in Figure 61. Recall that the
transmission order is column by column. If a burst occurs, but it does not affect more than
bl positions per row, then it can be corrected by Cl. The maximum length of such a burst of
errors is 712 times b l . Moreover, if code C1 can already correct (or detect) any single burst of
length up to b l , then C$nz) can correct (or detect) any single burst of length up to bln2.

If C1 is a cyclic code, then it follows from (6.21) that is a cyclic code with generator
polynomial gl(znz) [PW, LC]. This applies to shortened cyclic codes as well, and the
following result holds ([PW], p. 358):

MODIFYING AND COMBINING CODES 115

Figure 61 A correctable error burst in a block interleaved codeword.

Interleaving a shortened cyclic (n: IC) code to degree e produces a
shortened (ne, ke) code whose burst error correcting capability is e times
that of the original code.

Finally, note that the error correcting capability of a product code, t p = L(dld2 - 1)/2],
can only be achieved if a carefully designed decoding method is applied.

Most of the decoding methods for product codes use a two-stage decoding approach. In
the first stage, an errors-only algebraic decoder for the row code C1 is used. Then reliability
weights are assigned to the decoded symbols, based on the number of errors corrected. The
more errors are corrected, the less reliable the corresponding estimated codeword 61 E C1 is.

In the second stage, an errors-and-erasures algebraic decoder for the column code C, is
used, with an increasing number of erasures declared in the least reliable positions (those
positions for which the reliability weights are the smallest), until a sufficient condition on the
number of corrected errors is satisfied. This is the approach originally proposed in [RR, Well.
The second decoding stage is usually implemented with the GMD algorithm, which is
discussed in Section 1.6. More on decoding of product codes can be found in Chapter 8.

6.2.4 Concatenated codes

In 1966, Forney [Forl] introduced a clever method of combining two codes, called
concatenation. The scheme is illustrated in Figure 62. Concatenated codes4 that are based
on outer Reed-Solomon codes and inner convolutional codes have been to date’ perhaps the
most popular choice of ECC schemes for digital communications. In general, the outer code,
denoted Cl, is a nonbinary linear block (N , K: D) code over GF(2’). The codewords of
C1 are stored in an interleaver memory. The output bytes read from the interleaver are then
passed through an encoder for an inner code, C2. The inner code C2 can be either a block
code or a convolutional code. When block codes are considered, and C2 is a binary linear
block (n: IC, d) code, the encoder structure is shown in Figure 62. Let C = C1 * C2 denote
the concatenated code with C1 as the outer code and C2 as the inner code. Then C is a binary
linear block (N n , Klc, Dd) code.

The purpose of the interleaver between the outer and the inner code is two-fold. First, it
serves to convert the bytes of size IC into vectors of the same dimension (number of information
bits) as the inner code, be it binary or nonbinary, a linear block (n; IC’: d) code or a rate-

Also referred to by some authors as cascaded codes.
Before the arrival of turbo codes and LDPC codes.

116 THE ART OF ERROR CORRECTING CODING

encoder
Outer

encoder
Inner

K messagesL
of length k

N codewords
C 2 (n,k,d) -- n - C, (N,K,D)

G W k 1 W 2) I I
of length n

bits I I ' bits

1 byte k bits

I I
I I

Figure 62 An encoder of a concatenated code.

I

/ O2

D
2a \

3
D D

3

4
D D D 40

Figure 63 A convolutional interleaver.

k'ln convolutional code, for which in general k' # k. On the other hand, as discussed in
the previous section, interleaving allows breaking of bursts of errors. This is useful when
concatenated schemes with inner convolutional codes are considered, because the Viterbi
decoder tends to produce bursts of errors [CY, Mor]. There are several types of interleavers
that are used in practice. The most popular appears to be the convolutional interleaver [ForS],
which is a special case of a Ramsey interleaver [Ram]. The basic structure of a convolutional
interleaver is shown in Figure 63. The deinterleaver structure is identical, with the exception
that the switches are initially in position M and rotate in the opposite direction.

An important advantage of concatenated codes (and product codes) is that decoding can
be based on the decoding of each component code. This results in a dramatic reduction in
complexity, compared to a decoder for the entire code.

Example 84 Let Cl be a (7: 5 : 3) RS code6 with zeros (1; a} , where a is a primitive
element of G17(2~), and cy3 + a + 1 = 0. Let C2 be the maximum-length-sequence (7: 3: 4)
code of Example 77. Then C = C1 * C2 is a binary linear block (49: 15,12) code.
This code has six information bits less than a shortened (49: 21,12) code obtained
from the extended BCH (64,36; 12) code. However, it is simpler to decode. Let
V (x) = (x4 + a4)9(x) = a5 + x + a4x2 + ax4 + a3x5 + x6 be a codeword in the RS
(7: 5: 3) code, where g(x) = x2 + a3x + a.

RS codes are the topic of Chapter 4.

MODIFYING AND COMBINING CODES 117

a5 1 a4 0 a a3 1

1 0 1 0 0 0 0

1 0 1 0 1 1 0

1 1 0 0 0 1 1

0 1 1 0 0 1 1

0 1 1 0 1 0 1

0 0 0 0 1 1 0

1 1 0 0 1 0 1

Figure 64 A codeword in the concatenated code C1 * C2, with C1 the RS(7,5,3) code over
GF(L?~) and C2 a binary cyclic (7,3,4) code.

Using the table on page 41, the elements of GF(23) can be expressed as vectors of 3
bits. A 3-by-7 array whose columns are the binary vector representations of the coefficients
of the code polynomial a(z) is obtained. Then encoding by the generator polynomial of C,
is applied to the columns to produce 4 additional rows of the codeword array. For clarity,
the following systematic form of the generator matrix of C2 is used, which is obtained after
exchanging the third and sixth columns of G in Example 77,

1 0 0 1 0 1 1

(0 0 1 1 1 0 1 1 G’= 0 1 0 0 1 1 1 .

Figure 64 shows the codeword array corresponding to V E Cl.

6.2.5 Generalized concatenated codes

In 1974, B l o b and Zyablov [BZ] and Zinov’ev [Zin] introduced the powerful class of
generalized concatenated (GC) codes. This is a family of error correcting codes that can
correct both random errors and random bursts of errors. As the name implies, GC codes
generalize Forney’s concept of concatenated codes, by the introduction of a subcode hierarchy
(or subcode partition) of the inner code Cl and several outer codes, one for each partition
level. The GC construction combines the concepts of direct-sum, or coset decomposition, and
concatenation. Before defining the codes, some notation is needed.

A linear block (n; IC, d) code C is said to be decomposable with respect to its linear block
(n; ki; d i) subcodes Ci, 1 5 i 5 M , if the following conditions are satisfied:

(S ~ ~) C = C ~ + C Z + - . . + C , ~ ~ ;

(D) F o r . E i i E C i , l I i I M , v l + V 2 + . . . + V ~ = O i f a n d o n l y i f 4 = V 2 = . . . = -

a,q4 = 0.

For 1 5 i 5 M , let C I ~ be a linear block (n ~ ICli) code over GF(q) such that

(D I) f o r 2 1 i E C l i w i t h l I i < M , 2 1 l + 2 1 2 + . . . + 2 1 l M = O , i f a n d o n l y i f 2 1 i = O
f o r l < i < M .

118 THE ART OF ERROR CORRECTING CODING

Let Si denote the minimum Hamming distance of the direct-sum code C I ~ + C I ~ + ~ + . . .+CIM.
Let Coi be a linear block (no; koi: doi) code over GF(q"'") and let C: = Coi * CIi. The
generalized concatenated code C is defined as the direct-sum

A C=Cy-+C,*+. . .+C& . (6.22)

Then, the condition (D) on C follows from the condition (DI). The minimum Hamming
distance d of C is lower bounded [TYFKL] as

(6.23)

As with (single level) concatenated codes, a main advantage of GC codes is that multi-
stage decoding up to the distance given by the right-hand side of (6.23) is possible [TYFKL,
MFKL] .

Unequal error protection
Another advantage of this class of codes is that it is relatively easy to coordinate the distances
of the outer and inner codes to obtain linear block or convolutional codes with unequal error
protection (UEP) capabilities. If the direct-sum conditions above are satisfied, and in addition
the products of the minimum distances satisfy the following inequalities,

&dol 2 S2d02 2 . . . 2 S M d o M ; (6.24)

then codewords in correspondence with k o i k ~ i symbols over GF(q) will have an error
correcting capability, [(Sidoi - 1)/2], that decreases with the level i , for 1 5 i 5 M . As
a result, the messages encoded in the top (low values of i) partition levels will have enhanced
error correcting capabilities, compared to those associated with the lowest partition levels.
Constructions of this type are reported in [DYS, MH].

A construction
Let a linear block (721, k1, d l) code C1 over GF(q) be partitioned into a chain of M
(n I , k i , d i) subcodes Ci, i = 2; 3; . . . M + 1, such that

Cl 3 c2 3 . . . 3 CM+1;

where, for convenience, C M + ~ = {O}, and dM+l = m.
Let C I ~ = [Ci/Ci+l] denote a linear block (n ~ ; k ~ i ; S i) subcode of Ci, which is a set of

coset representatives of Ci+1 in Ci, of dimension k ~ i = ki - ki+l and minimum Hamming
distance Si 2 di . Then C1 has the following coset decomposition [For61

A A

Cl = Cl1 + Cl2 + . ' . + CIM. (6 .25)

Let Coi denote a linear block (no, koi dei) code Coi over GF(qk1<), where
k ~ i = dim(Ci/Ci+l) = ki - ki+l, i = 1; 2 ; . . . M . Then the direct sum of concatenated
codes

c=CO,*CI l+Co2*CI2+" ' fCOM*CIM.

is an non^; k i d) linear block code of dimension and minimum Hamming distance,
respectively [BZ],

M

k = c k ~ i k o i ; and d 2 min {S idoi} . (6.26)
l<i<M i=l

MODIEYING AND COMBINING CODES 119

Figure 65 Encoder structure of a generalized concatenated code with M partition levels.

Note that equality holds in (6.26) when Cri, 1 5 i 5 M , contains the all-zero codeword.
As for the choice of component codes. Note that, since in general the dimensions of the

coset representatives are distinct, the outer codes can be selected as RS codes or shortened RS
codes.

Binary RM codes are good candidates as inner codes, because they have the following
subcode property,

RM(r, m) C RM(r + 1, m),

for 0 5 T < m, and m > 2.

Example 85 Consider the r-th order RM codes of length 8, RM(r, 3). Then

RM(3,3) 3 RM(2,3) 3 RM(1,3) 3 RM(O,3) 3 {O},

and it follows from (6.25) that

This decomposition can be also appreciated from the generator matrix of RM(3,3), expressed
as

0

0
0
0

0
0
0

- -

1 \ l

0

0
0
0

0
0
1

1

0 0

0 0
0 0
0 1

0 0
l 1
0 1

1 1

0

0
0
0

1
0
0

1

0

0
1
0

1
0
1

1

0

l
0
0

1
l
0

1

1

1
1
1

1
l
1

>

1 1

where Gi has been defined as the generator matrix of the set of coset representatives of
RM(3 - i, 3) in RM(3 - i + 1,3), or [RM(3 - i + 1, m)/RM(3 - i, m)], for i = 1,2,3,
and where G4 is the generator matrix of RM(0,3).

120 THE ART OF ERROR CORRECTING CODING

According to this partition of RM(3,3), a GC code can be designed with up to four levels.
Note that the outer codes should be over GF(2), for the first and fourth partition levels, and
over GF(23) for the second and third partition levels.

Also, some of the subcodes of RM(3,3) themselves can be used as inner codes to obtain a
GC code with a reduced number of levels. If RM(2,3) is used as the inner code of a GC code,
then the number of partition levels is three, as the generator matrix of RM(2,3) is obtained
from that of RM(3,3) by removing G1 (the top row).

Let RM(2,3) be selected as the inner code, and an RS (8,1,8) code Col over G F p 3) , an
RS (8,5,4) code C02 over GF(23), and a binary linear SPC (8,7,2) code C03 be selected as
outer codes. This gives a binary linear GC (64,25,16) code which has one more information
bit than the binary extended BCH (64,24,16) code.

It is now shown how Reed-Muller codes can be expressed as GC codes. Recall from
Section 6.2.2, Equation (6.16) on page 108, that the (T + l)-th order RM code of length 2m+1
can be expressed as RM(T + 1 , m + 1) = IRM(T + l ,m)JRM(T + 1, m) + RM(r, m)[. Let
G(T, m) denote the generator matrix of RM(r, m). Then

G(. + 1,m + l) = (G(. +Ol,m) G(T + 1,m)
G(r, m)

= G (r + l , m) (i 2) + G (T , ~) (,, (6.27)
0 0

Encoder
1 - 1 1

-
RM(r,m)

0 - 00
L

- i -
Encoder

1-01
-

M (r + 1 ,m)
0 - 00

Figure 66 An encoder for the binary R M (r + 1, m + 1) code when viewed as a two-level
GC code.

This expression holds for each r-th order RM code, with r 2 l and m > 1, so that a
recursion is obtained. From (6.27) it follows that RM(T + 1, m + 1) is a GC code with inner
codes the (2,2,1) code and its partition into cosets of the repetition (2 ,1 ,2) code, and outer
codes RM(T, m) and RM(T + 1, m), respectively. An encoder for RM(T + 1, m + 1) is shown
in Figure 66. This recursive structure of RM codes is advantageous when designing soft-
decision decoding algorithms for RM codes7, which can be based on simple repetition and
parity-check codes. This is precisely what was done in [SB].

~~

Soft-decision decoding is presented in Chapter 7.

7

Soft-decision decoding

In this chapter, decoding with soft information from the channel is considered. For simplicity
of exposition, binary transmission over an AWGN channel is assumed. In Chapter 9, the
general case of multilevel transmission is discussed. To provide a motivation for the use
of soft decision decoding, it can be argued that the noise environment in data retrieval or
signal reception is continuous in nature, not discrete. This means that the received symbols
are (quantized) real numbers (voltages, currents, etc.), and not binary or GF(2m) symbols.

When making hard decisions on the received symbols, on a symbol-by-symbol basis, errors
may be introduced. This is illustrated in Figure 67.

Binary
sequence

Real
sequence

Binary
sequence

Figure 67 Example of an error introduced by hard-decision decoding.

Basically, there are two methods of decoding an error correcting code, based on a received
real-valued sequence:

Hard-decision decoding (HDD):
When hard decisions are made on the channel values, errors are introduced. The
goal of HDD is to correct binary errors induced in the hard-decision process. The
first part of the book was devoted to different techniques of HDD for linear block
codes, cyclic codes and convolutional codes.
Soft-decision decoding (SDD):
In this case, received values from the channel are directly processed by the decoder
in order to estimate a code sequence. A special case of SDD is maximum-likelihood
decoding (MLD), in which case the most-likely code sequence is output by the
decoder. An important point to keep in mind here is that SDD needs to know the
statistics of the channel noise.

In general, SSD is computationally more intensive than HDD. There are two main reasons
for this. One is that SDD needs to operate on real numbers. In a practical application, these

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

122 THE ART OF ERROR CORRECTING CODING

numbers will be quantized to a finite number of bits. In some binary transmission systems over
an AWGN channel, it is known that 8 quantization levels, or 3 bits, are adequate to achieve
practically the same performance as with unquantized channel values [Mas3, OCC].

The second reason for the increased complexity in SDD is that the a-posteriori statistics of
the coded symbols, given the received values, need to be computed. However, in return for the
increase in implementation cost there is potentially much better performance to be attained.
As shown in Chapter 1, with binary transmission over an AWGN channel, to get the same
error performance, SDD requires 2 to 3 dB less signal-to-noise power ratio than HDD. This
is to say that, with SDD, the transmitted power can be 50% to 63% lower compared to HDD
which translates into smaller transmit antennas or, alternatively, smaller receive antennas for
the same transmission power.

7.1 Binary transmission over AWGN channels

For AWGN channels, the a-posteriori probability of the received values, ri, given that code
symbols wi are sent, is given by

As shown in Chapters 1 and 5, the MLD metrics become the squared Euclidean distances,
D2 (r i?m(vi)) = (~ i - m (~ i)) ~ . Let E denote the energy of a transmitted symbol. The
mapping rule or modulation employed is BPSK',

which can be expressed as m(vi) = (-l)'% G. With BPSK transmission over an AWGN
channel, decoding metrics for binary transmission can be simplified by noticing that if vi = 1
is transmitted then

Taking the natural logarithm and removing constant terms, it follows that the log-likelihood
metric -(r+l)' is proportional to - r . If vi = 0 then the metric is proportional to T . Therefore,
the following is important to note:

With binary transmission over an AWGN channel, metric computation is reduced to changing
the signs of the received values.

7.2 Viterbi algorithm with Euclidean metric

The VD can be used to decode convolutionally coded binary data, BPSK modulated, and
transmitted over an AWGN channel. With respect to the hard-decision VD algorithm, studied
in Section 5.4, two changes are required:

Binary phase-shift keying.

SOFT-DECISION DECODING 123

1. Branch-metric generator (BMG) stage
For an AWGN channel, as shown in the previous section, the metric is proportional
to the correlation between the received and the candidate code sequence. Therefore,
instead of Euclidean distances, correlation metrics can be used.

Instead of minimizing the distance, the VD seeks to maximize the correlation metric.
2. Add-compare-select (ACS) stage:

Example 86 Consider a memory-2 rate-1/2 convolutional encoder with generators (7,5).
Suppose that the information sequence is ti = (110100). The corresponding path is shown in
Figure 68.

11 01 01 00 10 11

Figure 68 A path in the trellis corresponding to U. = (110100).

The transmitted sequence (normalized with respect to a) is

t(v) = (-1, -1,1, -1, l, -1,1,1, -1,1, -1, -1).

Let the received sequence, after transmission over an AWGN channel and quantization to 3
bits, be:

r = (-4, -1, -1, -3, +2, -3, +3, +3, -3, +3, -3, + l) .

Ff€ = (11,~1,01,00,10, m),
Note that the hard-decision received sequence (given by the sign bits) is:

so that the hard-decision detection process introduces two bit errors. The operation of the
Viterbi decoder is illustrated in Figures 69 to 74. The evolution of the metric values with
respect to the decoding stages is shown in the following table:

State/Stage i = O i = l i = 2 i = 3 i = 4 i = 5 i = 6

SjO’ 0 +5 +7 +6 +l2 +l4 +26

S p 0 +3 +5 +l2 +l4 +24 +l8

$1 0 +5 +9 +8 +l8 +l4 +22

$3) 0 +3 +7 +l4 +l4 +20 +24

The decoded information sequence is ii = (1 l 0 1 0 0), and two errors have been
corrected.

All the implementation issues related to Viterbi decoding, discussed in Sections 5.4.3
and 5.5.1, apply in the case of soft-decision. In particular, metric normalization must be
carefully taken into account.

124 THE ART OF ERROR CORRECTING CODING

Transmitted - I - l + I - I + l -1 +l + I -1 + l -1 - l

Received -4 - I -1 -3 +2 -3 +3 c3 -3 +3 -3 + I

i = O

i = 1: 1 = change sign

Branch metric computation:
IO)

B M , =d(00 ,4 -1) = - 5 BM, =d(01,-4-1) = - 3
121

BMI =d(10;4-1) = + 3 BMI =d(11;4-1) = + 5
13)

(01

Compare
= +5. select branch from state I Select

Update metric M(S I) = +5 Update path y - (1 1)
(01 (0,

Figure 69 Soft-decision Viterbi decoder operation at i = 1.

Transmitted -1 -1 +l -1 + l - 1 + l + l - 1 +l -1 -1

Received 4 - 1 -1 -3 +2 -3 +3 +3 -3 +3 -3 + l

i = 2:

Figure 70 Soft-decision Viterbi decoder operation at i = 2.

SOFT-DECISION DECODING 125

Transmitted -1 -1 + l -1 + l -1 +l +l -1 + l -1 -1

Received -4 -1 -1 -3 +2 -3 +3 +3 -3 +3 -3 +l

i = 3:

-4 -1 -1 -3 +7 +2-3

Figure 71 Soft-decision Viterbi decoder operation at i = 3.

Transmitted -1 -1 +l -1 +l -1 +l +l -1 +l -1 -1

Received 4 -1 -1 -3 +2 -3 +3 +3 -3 +3 -3 +l

i = 4 :

-4 -1 -1 -3 +2-3 +6 +3+3

y 4= (10.1 1,00,00)

y 4=(l l , l l ,o l ,o l)

y 4 = (11,01,01.00)

y ~ = ~ l l , l l , o l , l o)

(0)

(1)

(2)

(3)

Figure 72 Soft-decision Viterbi decoder operation at i = 4.

I26 THE ART OF ERROR CORRECTING CODING

Transmitted -1 -1 + l -1 + l -1 + l +l -1 + l -1 - 1

Received -4 -1 -1 -3 +2 -3 +3 +3 -3 +3 -3 + l

i = 5 :

-4 -1 -1 -3 +2 -3 +3 +3 r,, -3 +3

y5=(11,11,01,01,11)

y ,=(ll,Ol,Ol,00,lO)

y 5=(11,11,01,01,00)

y5=(11,11,O1,10,1O)

(0)

(1)

(2)

(3)

Figure 73 Soft-decision Viterbi decoder operation at i = 5 .

SOJT-DECISION DECODING 127

Transmitted -1 -1 + l -1 +l -1 + l + I -1 + I - I - I

Received -4 -1 -1 -3 +2 -3 +3 +3 -3 +3 -3 +l

i = 6 :

-4 -1 - I -3 +2 -3 +3 +3 -3+3 +,4 - 3 + 1

y ,=(11,01,01,00,10,1

y 6=(11,11,01,01,00,11

y ,= (11,01,01,00,10,oc

y6=(11,11,01,10,10,1~

(0)

(1)

(2)

(3)

Figure 74 Soft-decision Viterbi decoder operation at i = 6.

128 THE ART OF ERROR CORRECTING CODING

7.3 Decoding binary linear block codes with a trellis

The Viterbi algorithm can also be applied to linear block codes. A syndrome trellis for a binary
linear (N ; K) block code C can be constructed from its parity-check matrix as follows [Wol].
Let (v1 v2 . . . ~ UN) denote a codeword of C. At time i, 1 5 i 5 N , states in the trellis are
specified by the partial syndromes:

i

j=1

where the sum is over GF(2) , hj is the j-th column of H , and 3; 2 (0 0 . . . 0). The
maximum number of states in the syndrome trellis is min { 2 K , 2 N - K } . The syndrome trellis
has the property that it has the smallest possible number of states. A trellis satisfying this
condition is said to be a minimal trellis.

Example 87 Consider a binary cyclic Hamming (7; 4; 3) code with g(z) = z3 + z + 1. Then
h(z) = 1 + z + x2 + z4, and a parity-check matrix for C is

1 1 1 0 1 0 0 i 0 0 1 1 1 0 1 1 H = 0 1 1 1 0 1 0 .

To label a state = (so s1 s2) an integer Ij is assigned, such that

Ij = so + 51 x 2 + S2 x 22.

The trellis has maximum of 8 states (since 2n-k = 23) at times i = 3 and i = 4, and is shown
in Figure 75.

Figure 75 Trellis-structure of a Hamming (7 ,4 ,3) code.

It is interesting to note that with a syndrome trellis there is no need to label the branches
with the coded bits. A transition between two states with the same label corresponds to coded
bit 0, as seen from Equation (7.3): If the coded bit is 0, then the sum does not change.

SOFT-DECISION DECODING 129

Some observations about the trellis structure of linear block codes are the following:
In general, the trellis of a binary cyclic code has an irregular structure. As a result,
implementation of the Viterbi algorithm will be more intricate than in the case of
convolutional codes.

For some classes of codes, such as extended2 BCH codes and Reed-Muller codes, the trellis
can be divided into sections. This results in a more regular and symmetric trellis structure with
many parallel subtrellises, which may be used to build very high-speed Viterbi decoders for
block codes [LKFF, HMI.

7.4 The Chase algorithm

The Chase algorithm [Cha] is a suboptimal decoding procedure that uses a set or list of most
likely error patterns. These error patterns are selected based on the reliability of the received
symbols. Each error pattern is added to the hard-decision received word and decoded using a
hard-decision decoder. Each decoded codeword is scored by computing its metric with respect
to the received (soft-decision) sequence. The codeword with the best metric is selected as the
most likely.

Let C be a binary linear (N ; K ; d) block code, capable of correcting any combination of
t = [(d - 1)/2] or less random bit errors. Let F = (TI 7-2;. . . , T N) be the received word
from the output of the channel, ri = + wi, where wi is a zero-mean Gaussian random
variable with variance N0/2, i = 1; 2, . . . N . The sign bits of the received values represent
the hard-decision received word,

where

sgn(x) = 0; if x 2 0;
1; otherwise.

The reliabilities of the received channel values, for binary transmission over an AWGN
channel, are the amplitudes Iril. The received symbol reliabilities are ordered with a sorting
algorithm (e.g., quick sort). The output of the algorithm is a list of indexes I j , j = 1; 2; . . . ; N ,
such that

IT11 I I 1% I L . . . 5 ITIN I.
In the first round of decoding, the hard-decision received word ZO is fed into a hard-decision
decoder. Let V0 denote the decoded codeword. Then
received word F

N

the metric of V0 with respect to the

rj i (7.5)
j=1

is computed and its value stored as the maximum.
Chase classified his algorithm into three types, according to the error pattern generation.

0 npe-I
Test all error patterns within radius (d - 1) from the received word.

Extending codes is covered in Chapter 6.

130 THE ART OF ERROR CORRECTING CODING

0 Type-I1
Test the error patterns with at most [(d - 1)/2] errors located outside the bits having
the Ld/2] lowest reliabilities. Compared to Type-I, the performance of Chase Type-
I1 algorithm is only slightly inferior, while at the same time having significantly
reduced number of test patterns.

Test those error patterns with i ones in the i least reliable bit positions, with i odd and
1 5 i 5 d - 1. It should be noted that this algorithm is closely related to the GMD
decoding algorithm (see also [ML], p. 168). GMD decoding of RS codes is the topic
of Section 7.6.

0 Type-I11

Because of its reduced complexity and good performance, among the three types above, Chase
algorithm Type-I1 is the most popular and described next. A flow diagram of Chase algorithm
is shown in Figure 16.

Chase type-I1 algorithm

For i = 1; 2; ...: 2t - 1, an error pattern ei is added to the hard-decision received

0 The error patterns are generated among the t least reliable positions. That is,

0 Each Zi is input to a hard-decision decoder, producing a codeword V i ,

0 The metric is computed according to Equation (7.5) and if maximum, codeword 6i

word: Zi = ei 8 Zo.

positions { I l ; Iz: . . . I t } , for which reliabilities (amplitudes) are the smallest.

i = 1; 2; ...: 2t - 1.

stored as the most likely.

r Identify the T Generate an error pattern

least reliable positions =- C - - . . . e i in the T least reliable
postitions

I I I

Stare r
j Repeat 2'

times

Find a codeword Tiusing
hard-decision decoding

Compute the metric
. - output v

Figure 76 Flow diagram of Chase type-I1 decoding algorithm.

If desired, the algorithm can output a list of codewords. This is a useful feature in producing
soft-outputs for use of the Chase algorithm in iterative decoding of block turbo codes, see
Section 8.2.3.

SOFT-DECISION DECODING 131

7.5 Ordered statistics decoding

The ordered statistics decoding (OSD) algorithm [E l] is similar to the Chase algorithm
in the sense of creating a list of error patterns and using hard-decision decoding. However,
unlike the algorithm in the previous section, which deals with least reliable code positions,
OSD considers a list of codewords drawn from a set of (permuted) most reliable information
positions.

Assume that an (N , K) linear block code C, with generator matrix G and minimum
distance d H 2 2 t + 1, is used with binary transmission over an AWGN channel. Let
I? = (c l , ea, . . . , C N) denote a codeword of C, and let F = (T I , T Z , . . . , T N) be the received
sequence.

As in the Chase algorithm above, the decoding process begins by reordering the
components of the received sequence in decreasing order of reliability value. Let

(? h , y 2 > ' . . , ! / N)

denote the resulting sequence, where Iy1 I 2 1yzl 2 . . . 2 1 1 ~ ~ 1 . This reordering defines a
permutation mapping X 1 such that y = X 1 [F] .

The next step is to permute the columns of G using X 1 :

where g; denotes the j-th column of G'.
A most reliable basis is obtained in the next step of the algorithm as follows:
Starting from the first column of G', find the first K linearly independent (LI) columns

with the largest associated reliability values. Then, these K L1 columns are used as the first
K columns of a new matrix G , maintaining their reliability order. The remaining (N - K)
columns of G" are also arranged in decreasing reliability order. This process defines a second
permutation mapping X2, such that

G" = X2 [G'] = X2 [X , [G]] .

Applying the map X2 to 9, results in the reordered received sequence:

2 = X2 [g] = (Zl,Z2,.",Zk,Zkfl,.'.,ZN),

with 1211 2 1221 2 . . . 2 1 ~ ~ 1 , and I Z k + l) 2 . . . 2 1 ~ ~ 1 . By performing elementary row
operations on G ' , a systematic form G1 can be obtained:

(0 0 . ' . 1 p k , l ..' .. p k , N - K 1. 1 0 . . . 0 p1,1 ... P 1 , N - K
0 1 . . . 0 p 2 , J . . . P 2 , N - K

G 1 = (I k p) =

It is easy to see that the code generated by G1 is equivalent to G, in the sense that the same
codewords are generated, with permuted code bit positions.

The next step is to perform hard-decision decoding based on the IC most reliable (MR)
values of the permuted received sequence 2 . Let Ga = (211 , u2, . . . , U K) denote the result.
Then, the corresponding codeword in C1 can be computed as

v = CaG1 = (V0 V 1 ' . . V K - 1 V K . . ' UN).

132 THE ART OF ERROR CORRECTING CODING

The estimated codeword G H D in C can be obtained from G, via the inverse mapping
x,'x;', as

v H D = X,' [X;' [G]] . (7.6)

Based on the hard-decision-decoded codeword G, the algorithm proceeds to re-process it until
either practically optimum or a predefined desired error performance is achieved.

Order-Q re-processing is defined as follows:
For 1 5 i 5 l, make all possible changes of i of the k MR bits of G.
For each change, find the corresponding codeword G' in C1 and map it onto a binary real

sequence z', via the mapping (0, l} e {+l, -l}.
For each candidate codeword generated, compute the squared Euclidean distance,

Equation (1.33) of Chapter 1, between the generated sequence 2' and the reordered received
sequence Z . After all the C&, (:) codewords have been generated and their distances
compared, the algorithm outputs the codeword V* which is closest to Z.

From G*, using the inverse map (7.6), the most likely code sequence ahL is computed.
Re-processing can be done in a systematic manner to minimize the number of

computations. In particular, as mentioned in Section 7.1, with binary transmission over an
AWGN channel, there is no need to compute the Euclidean distance but rather the correlation
between the generated codewords and the reordered received sequence. Thus the computation
of the binary real sequence 2' is not needed. Only additions of the permuted received values
zi, with sign changes given by the generated V*, are required.

7.6 Generalized minimum distance decoding

In 1966, Forney [For31 introduced generalized minimum distance (GMD) decoding. The basic
idea was to extend the notion of an erasure, by dividing the received values into reliability
classes. The decoding strategy is similar to the Chase algorithm Type-111, with the use of
erasure patterns. The GMD decoder works by declaring an increasing number of erasures
within the d - 1 least reliable symbols, and testing a suficient condition for the optimality of
the decoded word, until the condition is satisfied or a maximum number of erasures have been
considered.

Let C be a linear block (N , K , d) code. Assume that there is an errors-and-erasures
decoder that is capable of decoding any combination of e errors and S erasures within the
capability of the code, i.e., 2e + S 5 d - 1. Such decoders were presented in Section 3.5.6
for BCH codes and in Section 4.3.2 for RS codes.

Let F = (T I , r2, . . . , r ~) be the received word from the output of the channel,
ri = + wi, where wi is a zero-mean Gaussian random variable with variance N0/2,
i = 1,2, . . . , N . It is assumed that F has been normalized (clipped) so that its components
lie in the range [- 1, +l]. As before, the sign bits of the received values represent the hard-
decision received word.

As with Chase algorithms and the OSD algorithm, the reliabilities of the received channel
values are sorted, producing a list of indexes I j , j = 1 , 2 , . . . , N , such that

SOFT-DECISION DECODING 133

In the first round of decoding, the hard-decision received word E is fed into an errors-only
algebraic decoder. Let 6 denote the resulting estimated codeword. The correlation metric of 6
with respect to the received word F

N

v = Z(-l)fij x T j ,

j=1
(7.7)

is computed. If the following sufficient condition is satisfied

then 6 is accepted as the most likely codeword and decoding stops.
Otherwise, a new round of decoding is performed. This is accomplished by setting S = 2

erasures, in positions I1 and I2, and decoding the resulting word with an errors-and-erasures
decoder. The correlation metric between F and the estimated codeword 6 is computed, as in
(7.7), and then the sufficient condition (7.8) tested.

This GMD decoding process continues, if necessary, every round increasing the number of
erasures by two, S = S + 2, until the maximum number of erasures (smax = d - 1) in the least
reliable positions are tried. If at the end of GMD decoding no codeword is found, the output
can be either an indication of a decoding failure or the hard-decision decoded codeword 60
obtained with S = 0.

7.6.1 Suficient conditions for optimality

The condition used in GMD decoding can be improved and applied to other decoding
algorithms that output lists of codewords, such as Chase and OSD. These algorithms are
instances of list decoding algorithms. The acceptance criteria (7.8) is too restrictive, resulting
in many codewords rejected, possibly including the most likely (i.e., selected by true
MLD) codeword. Improved sufficient conditions on the optimality of a codeword have been
proposed. Without proofs, two such conditions are listed below. Before their description, some
definitions are needed.

Let f represent a BPSK modulated codeword, f = m (6) , where 6 E C and zi = (-l)ui,
for 1 5 i 5 N . See also (7.2). Let S, = {i : sgn(zi) # sgn(ri)} be the set of error positions,
U = { I j , j = 1,2 , . . . , d } the set of least reliable positions, and T = {i : sgn(zi) =
sgn(ri), i E U } . Then the extended distance or correlation discrepancy between a codeword
6 and a received word F is defined as [TP],

I E S .

Improved criteria for finding an optimum codeword are based on upper bounds on (7.9) and
by increasing the cardinality of the sets of positions tested. Two improvements to Fomey’s
conditions are:

0 Taipale-Pursley [TP] There exists an optimal codeword such that

(ET

(7.10)

134 THE ART OF ERROR CORRECTING CODING

0 Kasami et al. [KKTFL] There exists an optimal codeword ZOpt such that

d e (G p t , < c Irzl,
&TK

(7.1 1)

whereTK = { i : sgn(zi) # sgn(ri), i E U } .

Good references to GMD decoding, its extensions, and combinations with Chase algorithms
are [KNIH],[Kam],[TKK],[FL4] and [TLFL].

7.7 List decoding

List decoding was introduced by Elias and Wozencraft (see [Eli3]). Most recently, list
decoding of polynomial codes has received considerable attention, mainly caused by the
papers written by Sudan and colleagues [Sud, Gur] on decoding RS codes beyond their error
correcting capabilities. The techniques used, referred to as Sudan algorithms, use interpolation
and factorization of bi-variate polynomials over extension fields. Sudan algorithms can be
considered extensions of the Welch-Berlekamp algorithm [Bed]. These techniques have been
applied to soft-decision decoding of RS codes in [KV].

7.8 Soft-output algorithms

The previous sections of this chapter have been devoted to decoding algorithms that output the
most likely coded sequence or codeword (or list of codewords). However, since the appearance
of the revolutionary paper on turbo codes in 1993 [BGT], there is a need for decoding
algorithms that output not only the most likely codeword (or list of codewords), but also
an estimate of the bit reliabilities for further processing. In the field of error correcting codes,
soft-output algorithms were introduced as early as 1962, when Gallager [Gal] published his
work on low-density parity-check (LDPC) codes3, and later by Bahl et al. [BCJR]. In both
cases, the algorithms perform a forward-backward recursion to compute the reliabilities of
the code symbols. In the next section, basic soft-output decoding algorithms are described.
Programs to simulate these decoding algorithms can be found on the ECC web site.

In the following sections, and for simplicity of exposition, it is assumed that a linear
block code, constructed by terminating a binary memory-m rate-l/n convolutional code,
is employed for binary transmission over an AWGN channel. It is also assumed that the
convolutional encoder starts at the all-zero state Sf) and, after N trellis stages, ends at the
all-zero state S:"'

7.8. I Soft-output Viterbi algorithm

In 1989, the Viterbi algorithm was modified to output bit reliability information [HH].
The soft-output viterbi algorithm (SOVA) computes the reliability, or soft-output, of the
information bits as a log-likelihood ratio (LLR),

(7.12)

LDPC codes are covered in Chapter 8.

SOFT-DECISION DECODING 135

where F denotes the received sequence.
The operation of a SOVA decoder can be divided into two parts. In the first part, decoding

proceeds as with the conventional VA, selecting the most likely coded sequence, 6, in
correspondence with the path in the trellis with the maximum (correlation) metric, at stage
n. (See Section 5.4.) In addition, the path metrics need to be stored at each decoding stage,
and for each state. These metrics are needed in the last part of the algorithm, to compute the
soj? outputs. In the second part of SOVA decoding, the Viterbi algorithm transverses the trellis
backwards, and computes metrics and paths, starting at i = N and ending at i = 0. It should
be noted that, in this stage of the SOVA algorithm, there is no need to store the surviving
paths, but only the metrics for each trellis state. Finally for each trellis stage i , 1 5 i 5 N ,
the soft outputs are computed.

Let M,,, denote the (correlation) metric of the most likely sequence 6 found by the
Viterbi algorithm. The probability of the associated information sequence ii given the received
sequence, or a-posteriori probability (APP), is proportional to Mmax, since

Pr{ClF} = Pr{GlF} - e M m * x . (7.13)

Without loss of generality, the APP of information bit ui can be written as

Pr{ui = I~F} eM;(’);

where Mi(1) = Alma. Let Mi(0) denote the maximum metric of paths associated with the
complement of information symbol zli. Then it is easy to show that

A

Therefore, at time i , the soft output can be obtained from the difference between the maximum
metric of paths in the trellis with fii = l and the maximum metric of paths with fii = 0.

In the soft-output stage of the SOVA algorithm, at stage i, the most likely information
symbol ui = a, a E (0; l}, is determined and the corresponding maximum metric (found
in the forward pass of the VA) set equal to Mi(ui). The path metric of the best competitor,
Mi(ui @ l), can be computed as [VUC],

(7.15)

where ICl, IC2 E (0; 1: 2;. . . 2m - l},

- Mf(Sj??) is the path metric of the forward survivor at time i - 1 and state S(k1) ,
- BM,!bl)(ui @ 1) is the branch metric at time i for the complement information

- Mb(Sjk2)) is the backward survivor path metric at time i and state S(”).
associated with a transition from state E d k 1) to S (k 2) , and

Finally, the soft output is computed as

R (u ~) Mi(1) - Mi(0) . (7.16)

Example 88 Let C be a zero-tail (12: 4) code obtained from a memory-2 rate- 1/2
convolutional code with generators (7; 5) . The basic structure of the trellis diagram of this

136 THE ART OF ERROR CORRECTING CODING

Transmitted -I:l +I ; I +l;l +1,+1 -l,+l -1;l

Received 4 - 1 - 1 .-3 +2:3 +3,+3 -3,+3 +3,+1

Figure 77 Trellis diagram used in SOVA decoding for Example 88.

code is the same as in Example 86. Suppose that the information sequence (including the
tail bits) is .21 = (110100), and that the received sequence, after binary transmission over an
AWGN channel, is

= (-4, -1, -1, -3: +2, -3, +3, +3, -3, +3, -3, +l).

Figure 77 shows the trellis diagram for this code. For i = 0, l, . . . , 6, each state has a label on
top of it of the form

Mf(S,'"')
Mb(S{"') '

The branches are labeled with the branch metrics S M i . The soft outputs A(ui), for
i = 1, 2 , . . . , 6 are -34, -16, +22, -16, +24, +24, respectively.

Implementation issues

In a SOVA decoder, the Viterbi algorithm needs to be executed twice. The forward processing
is just as in conventional VD, with the exception that path metrics at each decoding stage
need to be stored. The backward processing uses the VA, but does not need to store the
surviving paths, only the metrics at each decoding state. Note that both backward processing
and soft-decision computation can be done simultaneously. The backward processing stage
does not need to store path survivors. In addition, the soft outputs need to be computed, after
both the forward and backward recursions finish. Particular attention should be paid to the
normalization of metrics at each decoding stage, in both directions. Other implementation
issues are the same as in a Viterbi decoder, discussed in Sections 5.4.3 and 5.5.1.

The SOVA decoder can also be implemented as a sliding window decoder, like the
conventional Viterbi decoder. By increasing the computation time, the decoder operates
continuously, not on a block-by-block basis, without forcing the state of the encoder to
return to the all-zero state periodically. The idea is the same as that used in the VD with
traceback memory, as discussed in Section 5.4.3, where forward recursion, traceback and

SOFT-DECISION DECODING 137

backward recursion, and soft-output computations are implemented in several memory blocks
(see also [ViU]).

7.8.2 Maximum-a-posteriori (MAP) algorithm

The BCJR algorithm [BCJR] is an optimal symbol-by-symbol MAP decoding method for
linear block codes that minimizes the probability of a symbol error. The goal of this MAP
decoder is to examine the received sequence F and to compute the a-posteriori probabilities
of the input information bits, as in (7.12). The MAP algorithm is described next, following
closely the arguments in [BCJR].

The state transitions (or branches) in the trellis have probabilities

and for the output symbols Vi,

where z = f l , and zi = m(vi) = (-l)"%, 0 i 5 N .

transition probabilities
The sequence P is transmitted over an AWGN channel and received as a sequence F , with

N N n-l

(7.19)

where p(ri,jIzi,j) is given by (7.1).

information bit ui = j , with j E (0, l}. Then
Let B!') be the set of branches connecting state S!:;) to state S/m) such that the associated

Pr {ui = j l ~ } = c Pr {Si?;', S!.'),?} e c c~i(m',m). (7.20)
(rn',rn)€Bjj) (m',m)&)

The value of oi(m', m) in (7.20) is equal to

cJz(m', m) = ai-l(m') . #)(m' , m) . /?i(rn),

where the joint probability ai(m) = Pr {S!"', F P } is given recursively by A

(7.21)

and is referred to as the forward metric.
The conditional probability ~j ') (m' , m) = Pr { si"), FlSi?;)} is given by A

(7.22)

138 THE ART OF ERROR CORRECTING CODING

where pi(mlm’) = P r { Sirn)1Si~~)}, which for the AWGN channel can be put in the form

where 15ij(m, m’) = l if {m‘, m} E B:’), and &(m, m‘) = 0 otherwise. #)(m’, m) is
referred to as the brunch metric.

The conditional probability pi(m) 2 P r { F f IS!m)} is given by

(7.25)
m’ j=O

and referred to as the backward metric.

bit ui is given by
Combining (7.25), (7.24), (7.22) , (7.21) and (7.12), the soft output (LLR) of information

with the hard-decision output is given by Qi = sgn(h(ui)) and the reliability of the bit
ui is IA(ui)l. The above equations can be interpreted as follows. A bi-directional Viterbi-
like algorithm can be applied, just as in SOVA decoding (previous section). In the forward
recursion, given the probability of a state transition at time i , the joint probability of the
received sequence up to time i and the state at time i is evaluated. In the backward recursion,
the probability of the received sequence from time i + 1 to time N , given the state at time i is
computed. Then the soft output depends on the joint probability of the state transition and the
received symbol at time i.

0 Initialization
The MAP algorithm can be summarized as follows.

For m = 0 ,1 , . . . ,2” - 1,

ao(0) = 1, ~ o (m) = 0,m # 0,

Form’ = 0 , 1 , . . . , 2 m - l,

P N (0) = 1, PlV(m’) = 0,m’ # 0,

0 Forward recursion
Fori = 1 , 2 , . . . , N ,
1. For j = 0 , l, compute and store the branch metrics 7:’’ (m‘, m) as in (7.24).
2. For m = 0,1, ..., 2m - l, compute and store the forward metrics q (m) as in

(7.22).
0 Backward recursion

F o r i = N - l , N - 2 ; . . , 0 ,
1. Compute the backward metrics Pi(m) as in (7.25), using the branch metric

2. Compute the log-likelihood ratio A(ui) as in (7.26).
computed in the forward recursion.

SOFT-DECISION DECODING 139

Implementation issues

The implementation of a MAP decoder is similar to that of a SOVA decoder, as both decoders
perform forward and backward recursions. All the issues mentioned in the previous section
apply to a MAP decoder. In addition, note that branch metrics depend on the noise power
density NO, which should be estimated to keep optimality. To avoid numerical instabilities,
the probabilities ai(m) and /3i(m) need to be scaled at every decoding stage, such that cm (.dm) = cm Pi(m) = 1.

7.8.3 Log-MAP algorithm

To reduce the computational complexity of the MAP algorithm, the logarithms of the metrics
may be used. This results in the so-called log-MAP algorithm.

From (7.22) and (7.25) [RVH],

m’ j = O

1

m’ j = O

Taking the logarithm of ~ y) (m ‘ : m) in (7.24),

By defining &(m) = logai(m), pi(m) = logPi(m) and Ty)(m‘:m) = logyi (A (m’:m),
(7.26) can be written as

and an algorithm that works in the log-domain is obtained.

The following expression, known as the Jacobian logarithm [RVH], is used to avoid the
sum of exponential terms,

The function log (1 + e-161-621) can be stored in a small look-up table (LUT), as only a few
values (eight reported in [RVH]) are required to achieve practically the same performance
as the MAP algorithm. Therefore, instead of several calls to slow (or hardware expensive)
exp(z) functions, simple LUT accesses give practically the same result.

I40 THE ART OF ERROR CORRECTING CODING

7.8.4 Max-Log-MAP algorithm

A more computationally efficient, albeit suboptimal derivative of the MAP algorithm is the
Max-Log-MAP algorithm. It is obtained as before, by taking the logarithms of the MAP
metrics, and using the approximation [RVH]

log (e61 + 2 2) x max (dl 62) ; (7.3 1)

which is equal to the first term on the right-hand side of (7.30). As a result, the log-likelihood
ratio of information bit zli is given by

The forward and backward computations can now be expressed as

For binary codes based on rate-lln convolutional encoders, in terms of decoding complexity
(measured in number of additions and multiplications), the SOVA algorithm requires the
least amount, about half of that of the max-log-MAP algorithm. The log-MAP algorithm
is approximately twice more complex compared to the max-log-MAP algorithm. In terms of
performance, it has been shown [FBLH] that the max-log-MAP algorithm is equivalent to
a modified SOVA algorithm. The log-MAP and MAP algorithms have the same best error
performance.

7.8.5 Sofr-output OSD algorithm

The OSD algorithm of Section 7.5 can be modified to output the symbol reliabilities [%S].
This modification is referred to as the soft-output OSD, or SO-OSD. The SO-OSD algorithm
is a two-stage order-i re-processing. The first stage is the same as conventional OSD,
determining the most likely codeword 2.”~ up to order-i re-processing. To describe the second
stage, the following definitions are required.

For each most reliable position j , 1 5 j 5 K, define the codeword f i ~ ~ (j) is obtained by
complementing position j in B M L ,

f i ~ ~ (j) = BML CB E(j);

where E (j) is the set of all length-K vectors of Hamming weight one. The vector E (j) is
the coset representative of the partition of code C1 (equivalent to the original code after
reordering, as in OSD, see Section 7.5) into two sets of codewords, having the j-th position
equal to zero or one in codewords of C. These sets, after removing position j , become
punctured subcodes of Cl, and are denoted C(0) and C(1). Let C(j) = C(0).

The SO-OSD algorithm consists of the following steps:

1. Determine the most likely codeword BMI , covered by order-i re-processing.

SOFT-DECISION DECODING 141

2. For each subcode C (j) , 1 5 j 5 K ,
(a) Initialize all soft output values of the least reliable positions (LW) based on U M L

and U M L (j) . That is, compute

where rn(vi) = (-

processing.
(b) Determine the most likely codeword U (j) E C (j) covered by order4 re-

(c) Evaluate Lj (7.34) based on GML and f j (j) .
(d) Update soft output values of L W in the positions of GML @ @ (j) with Lj.

3. For K + 1 5 j 5 N , choose the smallest output value associated with each LRPj.

The performance of SO-OSD is the same as max-log-MAP decoding for many binary linear
block codes of length up to 128 and high-rate codes [FL5]. In addition, scaling down the
extrinsic values (7.34) improves the performance by a few tenths of a dB.

Iteratively decodable codes

Iterative decoding may be defined as a technique employing a soft-output decoding algorithm
that is iterated several times to improve the error performance of a coding scheme, with the
aim of approaching true maximum-likelihood decoding (MLD), with less complexity. When
the underlying error correcting code is well designed, increasing the number of iterations
results in an improvement of the error performance.

Iterative decoding techniques date back to 1954 with the work of Elias [Elil] on iterated
codes. Later, in the 1960s, Gallager [Gal] and Massey [Masl] made important contributions.
Iterative decoding was then referred to as probabilistic decoding. The main concept was then,
as it is today, to maximize the a-posteriori probability of a symbol being sent given a noisy
version of the coded sequence.

In this chapter, code constructions that can be iteratively decoded are presented. Elsewhere
in the literature, these coding schemes have been named turbo-like codes. In terms of the
application of iterative decoding algorithms, and for the purpose of this chapter, ECC schemes
can be broadly classified into two classes:

Product codes
Examples of codes in this class include parallel concatenated codes, or turbo
codes, and serially concatenated codes. Members of this class are also block
product codes, presented in Section 6.2.3.

Low-density parity-check (LDPC) codes
These are linear codes with the property that their parity-check matrix has a small
ratio of number of nonzero elements to the total number of elements.

In both of the above classes of codes, the component codes can be either convolutional or
block codes, with systematic or nonsystematic encoding, or any combination thereof. To
provide a motivation for the study of iterative decoding techniques, the fundamental structure
of turbo codes is discussed next.

Turbo codes

Over the past eight years, there has been an enormous amount of research effort dedicated
to the analysis of iterative decoding algorithms and the construction of iteratively decodable
codes or “turbo-like codes” that approach the Shannon limit’. Turbo codes were introduced in

The Shannon limit refers to the capacity of a discrete-input continuous output channel

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

144 THE ART OF ERROR CORRECTING CODING

1993 [BGT]. The results reported there sent a shock wave throughout the research community.

With binary transmission over an AWGN channel, a rate-1/2 coding scheme, based on
a combination of two rate-1/2 16-state RSC codes, connected with an interleaver of size
256 x 256, achieved BER rates of at an signal-to-noise (SNR) ratio per bit, or &,/NO,
of 0.7 dB, closer than ever before to the Shannon limit (0.2 dB). See Figure 78.

Figure 78 Performance of a rate-1/2 parallel concatenated (turbo) code with memory-4
rate-1/2 RSC codes, 90 = 21 and 91 = 37. Block interleaver size 256 x 256 = 65536.

From [BG2]. Reproduced by permission of IEEE. (01996 IEEE)

The basic elements in the turbo coding scheme proposed in [BGT] are the following:

Coding structure

A product code (referred to in the original paper [BGT] as parallel concatenated
code) structure, with constituent recursive systematic convolutional encoders.

ITERATIVELY DECODABLE CODES 145

Reliability-based
Employ sop-input sop-output (SZSO) maximum-a-posteriori (MAP) decoders for
the component codes, in order to generate log-likelihood ratios.

Iterative decoding
The use of feedback of part of the symbol reliabilities, in the form of extrinsic
information, from an outer (column) decoder to an inner (row) decoder, and vice
versa.

Random permutation
A long random interleaver applied between the two encoders. Its main function
is to ensure that, at each iteration, the component MAP decoders get independent
estimates on the information symbols.

These four elements have been extensively studied over the years. [VUC, ISTC1, ISTC2,
JSAC l, JSAC2, Hew] are a good sample of the research efforts.

8.1 Iterative decoding

The purpose of this section is to introduce basic concepts behind iterative decoding. Consider
the a-posteriori log-likelihood ratio (LLR)2 of an information symbol, Equation (7.12) on
page 134, repeated here for convenience,

Let Ci(0) and Ci(1) denote the set of modulated coded sequences 3 = m(U) E m(C) such
that the i-th position in U E C is equal to zero and one, respectively. Recall that modulation
was a one-to-one and onto mapping from v E (0, l} to z E {+l, -l}, as in Equation (7.2).
Then the symbol LLR (8.1) can be written as,

from which it follows that the LLR of an information symbol can be expressed as

The LLR is also referred to as "L-value" by some authors.

146 THE ART OF ERROR CORRECTING CODING

A(w) = + A a (~ i) +
where Aci is known as the channel LLR and given by

(8.3)

(log (5) , for a BSC channel with parameter p ;

for an AWGN channel (0: = N 0 / 2) ; and (8.4)

for a flat Rayleigh fading channel,
4

the quantity

Aa(ui) = log
Pr{q = -l}) - log (Pr{ui = l})
Pr{zi = +l} Pr{ui = 0}

-

is the a-priori LLR of the information symbol, and

f N

is the extrinsic LLR, which is specified by the constraints imposed by the code on the other
information symbols.

Assume that binary transmission is performed over an AWGN channel and that binary rate-
l /n RSC encoders are used as components. In an iterative decoding procedure, the extrinsic
information provided by Ai,,(C) can be fed back to the decoder as a-priori probability for
a second round of decoding. In terms of forward-backward decoding using a trellis (see
Section 7.8.2), the extrinsic LLR can be written as

where ai(m) and Pi(rn) are given by (7.22) and (7.25), respectively.
A modified branch metric is needed to compute the extrinsic LLR,

where, as before,

ITERATIVELY DECODABLE CODES 147

This extrinsic LLR, for an information position i, does not contain any variable directly related
to ui, for i = 1; 2; . . . N . Because it is assumed that encoding is systematic, notice that the
branch labels in the trellis are of the form (ui; v ~ ; . . . q n - l) , and therefore the sum in the
modified branch metric (8.8) starts at q = l.3

In the more general case of a two-dimensional product coding scheme, the first (e.g., row)
decoder produces h{:i(C) which is given to the second (e.g., column) decoder as a-priori
probability Ri2)(ui) to be used in the computation of the LLR of information symbol ui. In
other words, the extrinsic information provides a soft output that involves only soft inputs
(reliabilities) that are not directly related to the information symbol ui. Iterative decoding of
product codes is the topic of the next section.

8.2 Product codes

In this section, coding schemes based on products of codes with interleaving are presented.
These schemes allow the use of simple decoders for the component codes. With iterative
decoding, symbol-by-symbol MAP decoders of the component codes can exchange extrinsic
LLR values, generally improving the reliability of the estimated information bits, with
increasing number of iterations.

8.2.1 Parallel concatenation: turbo codes

Figure 79 shows the block diagram of an encoder of a parallel concatenated code, better
known as a turbo code. Two encoders are used, each delivering as output only redundant
symbols. For instance, if rate-1/2 RSC codes are used, the encoders represent the term
g1 (D) /go(D) in the polynomial generator matrix G(D). The inputs to the encoders are U
and I I G , where II denotes a permutation matrix4 associated with the interleaver. The output
corresponding to an input symbol ui is (ui vp1,i vp2,i), with wp1,i and vp2,i representing
the redundant symbols, for i = 1; 2: . . . N , where N is the block length.

Figure 79 Encoder structure of a parallel concatenated (turbo) code.

Compare this with the expression of the branch metric y p) (m ’ , m) in (7.24).
A permutation matrix is a binary matrix with only one nonzero entry per row and per column, if ~ i , ~ = 1
then a symbol in position i at the input is sent to position j at the output.

148 THE ART OF ERROR CORRECTING CODING

The original turbo code scheme used RSC encoders. However, to examine this coding
scheme, assume that the component codes are two binary systematic linear block (ni; k i)
codes, i = 1; 2. The rate of the overall code is (see Figure 80)

where Ri = ki/ni, i = 1; 2. Let Gi = (Iil Pi) denote the generator matrix of code Ci,
i = 1; 2. Then the generator matrix of the parallel concatenated code Cpc can be put in the
following form,

A

GPC = (Ik1kz (p1 p1 . * . p l) II (p2 p2 . , . p 2))

where II is the permutation matrix associated with the interleaver, and Pi is the parity
submatrix of code Ci, i = 1; 2. The number of times that P1 appears in the middle part
Pi of Gpc is kz , while the number of times that P2 appears in the leftmost portion Pi of GPC
is kl . All other entries in Pi and Pi are zero. It follows that codewords of Cpc are of the form
(a I GP; I GP;).

Example 89 Let C1 be a binary repetition (2 , l ; 2) code and C2 be an binary SPC (3; 2; 2)
code. Then klk2 = 2. There is only one possible permutation matrix II in this case. The parity
submatrices and permutation matrix are

respectively. From (8.10) it follows that the generator matrix of the parallel concatenated (5; 2)
code Cpc is

Note that the minimum distance is dpc = 3, which is less than that of the product of C1 and
(7 2 .

One way to interpret a parallel concatenated (turbo) code, from the point of view of linear
block codes, is as a punctured product code, in which the redundant symbols corresponding
with the checks-on-checks are deleted. This interpretation is shown in Figure 80. The only
essential difference between a turbo code and a block product code, is that the interleaver
is not simply a row-by-row column-by-column interleaver, but one that introduces sufficient

ITERATIVELY DECODABLE CODES 149

"1 -

n2 symbols d 3

- k , -
Figure 80 A parallel concatenated code interpreted as a punctured product code.

disorder in the information sequence, so that iterative decoding works. When interpreted as
a linear block code, a turbo code can be further interpreted as a generalized concatenated
code5, after replacing the puncturing operation with an equivalent multiplication by a binary
matrix and a direct-sum. Let MI be a 1 x N matrix with nlkz successive ones followed by
N - nlkz zeros. Let M2 be another 1 x N matrix with N - (nz - k2)kl zeros followed by
(nz - kz)kl ones. Then a turbo encoder can be visualized as an encoder of a GC code, as
shown in Figure 8 1.

Figure 81 A turbo encoder as an encoder of a generalized concatenated code.

Iterative decoding of parallel concatenated codes

The basic structure of an iterative decoder for a parallel concatenated coding scheme with two
component codes is shown in Figure 82. Each iteration consists of two phases, one decoding
phase per component decoder, as follows.

First phase

In the first decoding iteration, first phase, the soft-in soft-out (SISO) decoder for the first
component code computes the a-posteriori LLR (8.7) assuming equally likely symbols, i.e.,
A,(u) = 0. This decoder computes the extrinsic information for each information symbol,
Ael (G), based on the part of the received sequence that corresponds to the parity symbols,
Ppl , and sends the result to the second SISO decoder.

See Section 6.2.5

150 THE ART OF ERROR CORRECTING CODING

Figure 82 Block diagram of an iterative decoder for a parallel concatenated code.

Second phase

In the second phase of first decoding iteration, the permuted (or interleaved) extrinsic
information from the first decoder is used as a-priori LLR, A,(C) = HA,1 (U). Extrinsic
information he2 (G) is computed, based on the part of the received sequence that corresponds
to the parity symbols of the second component code, F p 2 , thus terminating the first decoding
iteration. At this point, a decision can be made on an information symbol, based on its a-
posteriori LLR h(~) .

In subsequent iterations, the first decoder uses the deinterleaved extrinsic information from
the second decoder, DI-lhe2 (C), as a-priori LLR for the computation of the soft output (the
a-posteriori LLR), A(U). This procedure can be repeated until either a stopping criterion
is met [HOP, SLF], or a maximum number of iterations is performed. Note that making
decisions on the information symbols after the first (row) decoder saves one deinterleaver.

As in Section 7.8.4, the iterative MAP decoding algorithm described above can be
simplified by using the approximation of the “log” by the “max” as in (7.3 1). Also, there is an
iterative version of the SOVA algorithm presented in Section 7.8.1, that essentially computes
the a-posteriori LLR A(C) directly and then, subtracting the channel LLR A, and the extrinsic
LLR Aej(C) from the other decoder, produces the extrinsic LLR [FV].

Example 90 Consider the turbo (5 : 2: 3) code of Example 89. A codeword is arranged in a
3 x 2 array with the lower right comer deleted. Suppose that the following codeword V

U 1 = 0 W11 = 0
U 2 = l 2112 = 1
W21 = 1 m

(where “X’ denotes that the position is deleted or ignored), is (BPSK) modulated and
transmitted over an AWGN channel and received as (this is the channel LLR A c):

For the computations below, we use the fact that, for two binary variables x1 and x2, the
LLR of their sum x1 + x2 is [HOP]

ITERATIVELY DECODABLE CODES 151

First iteration
In the first decoding phase, the row decoder for the repetition code, computes

Ael(u1) = A(rl1) = f2 .5,
Ae1(u2) A(r12) = +1.0.

In the second decoding phase, the extrinsic information from the row decoder is used as a-
priori LLR for the column decoder for the parity-check code. The updated LLRs are E l
In the second phase of the first iteration, the column decoder computes the extrinsic LLRs,

At the end of the first decoding iteration, the a-posteriori LLR are

A(u1) = Ac1 + Ael(u1) + Aea(u1) = +1.58
h(u2) = Acz + Ael(u2) + A e z (~ 2) = -2.13

The iterative decoder could make a decision at this point, based on the sign of the a-posteriori
LLR, and deliver the (correct) estimates Q1 = 0 and Q 2 = 1. Increasing the number of
iterations improves the soft outputs associated with the information bits.

Second iteration
Row decoder:

Ael(u1) = A(r11) + A e 2 (~ 1) = +2.5 - 0.42 = +1.08,
Ael(u2) = A(rl2) + A e 2 (~ 2) = +1.0 + 0.38 = +1.38.

Column decoder:

A-posteriori LLR:

A(u1) = Acl + Ael(u1) + AeZ(u1) = +0.41,
A (u ~) = A C Z + Ael(u2) + Ae2(~2) = -1.96.

After the second iteration, based on the signs of the LLRs, the decoder delivers the same
(correct) hard decisions. Moreover, note that the soft outputs changed because of the influence
of the extrinsic LLR computed in the first iteration. In particular, the reliability of the first bit
(the amplitude of the LLR) decreases from lA(ul)l = +1.58 to IA(u1)l = +0.41.

152 THE ART OF ERROR CORRECTING CODING

Error performance

With reference to Figure 78, page 144, it is clear that, as the number of iterations grows, the
error performance improves. Typical of turbo coding schemes is the fact that increasing the
number of iterations results in a monotonically decreasing improvement in coding gain. From
Figure 78, increasing the number of iterations from 2 to 6 gives an improvement in SNR of
1.7 dB, whereas going from 6 to 18 iterations yields only a 0.3 dB improvement in coding
gain.

Since the appearance of turbo codes, advances have taken place in understanding the BER
behavior of turbo codes. At the time of this writing, there appears to be a consensus among
researchers on the reasons why turbo codes offer such an excellent error performance:

0 Turbo codes have a weight distribution that approaches, for long interleavers, that of

0 Recursive convolutional encoders and proper interleaving map most of the low-

0 Systematic encoders allow the effective use of iterative techniques utilizing MAP

random codes.

weight information sequences into higher weight coded sequences.

decoders. Information symbol estimates are available directly from the channel.

In addition, most recently (end of 2001), a number of interesting semi-analytical tools
have appeared, based on density evolution [RU], Gaussian approximation [EH] and mutual
information [tBr2] or SNR transfer [DDP] characteristics, to study the convergence properties
of iterative decoding algorithms.

The art of interleaving

A critical component in achieving good performance with iterative decoding of a turbo code
is the interleaver. In turbo codes, the interleaver serves three main purposes: (1) Build very
long codes with weight distributions that approach those of random codes; and (2) help in the
iterative decoding process by decorrelating the input LLRs to the SISO decoders as much as
possible; and (3) proper termination of the trellis in a known state, after the transmission
of short to medium length frames, to avoid edge effects that increase the multiplicity of
low weight paths in the trellises of the component codes. To emphasize, the specific type
of interleaver becomes an important factor to consider as the frame lengths (or interleaver
lengths) become relatively small, say, up to one thousand symbols. There is already a wealth
of publications devoted to interleaver design for turbo codes. In this section, a brief description
of the basic interleaver types and pointers to the literature are given.

In 1970, several types of optimum interleavers were introduced [Ram]. In particular, an
(n 1 , n 2) interleaver was defined there as a device that “reorders a sequence so that no
contiguous sequence of 722 symbols in the reordered sequence contains any symbols that were
separated by fewer than n 1 symbols in the original ordering.”

Let . . , a t l , at,, at3, . . . denote the output sequence from an (n 1 , n 2) interleaver, where
l,, e,, . . . are the positions of these symbols in the input sequence. Then the definition in the
previous paragraph translates into the following condition:

whenever
li - j l < 712.

ITERATIVELY DECODABLE CODES 153

It can be shown that the deinterleaver of an (nl , n 2) interleaver is itself an (nl: 122) interleaver.
The delay of the interleaver and deinterleaver are both equal to the delay introduced by the
overall interleaving-deinterleaving operation. Another important parameter of an interleaver is
the amount of storage or memory required. Ramsey showed four types of (nl n2) interleavers
that are optimum in the sense of minimizing the delay and memory required to implement
them. These interleavers are known as Ramsey interleavers. At about the same time,
Forney [For51 proposed an interleaver with the same basic structure of an (n1: n2) Ramsey
interleaver, known as a convolutional interleaver. Convolutional interleavers were discussed
in Section 6.2.3 and have been applied to the design of good turbo coding schemes [Haw].

There are several novel approaches to the analysis and design of interleavers: One is based
on a random interleaver with a spreading property. Such a structure was first proposed
in [DP], together with a simple algorithm to construct S-random interleavers: Generate
random integers in the range [l: NI, and use a constraint on the interleaving distance. This
constraint is seen to be equivalent to the definition of a Ramsey (S2: S1 + 1) interleaver (this
is noted in [VUC], pp. 211-213). Then additional constraints (e.g., based on the empirical
correlation between successive extrinsic LLR values) are imposed to direct the selection of
the positions of the permuted symbols at the output of the interleaver [HEM, SSSN]. A second
approach to the design of interleavers is to consider the overall turbo encoder structure and
to compute its minimum distance and error coefficient (the number of coded sequences at
minimum distance) [GPB, BH]. This gives an accurate estimation of the error floor in the
medium to high SNR region. Other important contributions to the design of short interleavers
for turbo codes are [TC, BP].

8.2.2 Serial concatenation

Serial concatenation of codes was introduced in [BDMPl]. A block diagram of an encoder of
a serial concatenation of two linear codes is shown in Figure 83. Based on the results from
Section 6.2.3, and in particular comparing Figure 83 with Figure 55, the serial concatenation
of two linear codes is easily recognized as a product code. Note that, as opposed to a turbo
code, in a serially concatenated coding system there is no puncturing of redundant symbols.

- - -
U v1 n i l

* r I
v 2

D - Encoder C * Encoder C ,

Figure 83 Block diagram of the encoder of a serially concatenated code.

The encoder of a serial concatenation of codes has the same structure as that of a product
code. Following closely the notation in the original paper [BDMPl], the outer (p: k , d l) code
Cl has a rate R1 = k / p and the inner (n,p, d 2) code C2 has a rate R2 = p / n . The codes
are connected in the same manner as a block product code, with a block interleaver of length
L = m p . This is achieved, as before, by writing m codewords of length p into the interleaver,
and reading in a different order according to the permutation matrix II . The sequence of L
bits at the output of the interleaver is sent in blocks of p bits to the outer encoder. The rate of
the overall (N : K ; d l d 2) code CSC is Rsc = k / n , where N = nm and K = k m .

The generator matrix of CSC can be expressed as the product of the generator matrix of
Cl, the kz X nl permutation matrix II of the interleaver, and the generator matrix of C,, as

154 THE ART OF ERROR CORRECTING CODING

follows

where Gi is the generator matrix of code Ci, i = l; 2. The number of times that G1 appears
in the first factor G: of Gsc in (8.12) is IC?, and the number of times that G2 appears in the
third factor G; of Gsc is n1. All other entries in G: and G; are zero.

Example 91 Let C1 and C2 be the same codes as in Example 89, that is, binary repetition
(2: l; 2) and SPC (3; 2; 2) codes, respectively. Then the serial concatenation, or product, of
C1 and C2, CSC is a binary linear block (6; 2 ,4) code. Note that the minimum distance of
CSC is larger than that of Cpc in Example 89. The generator matrices are G1 = (1 1) and

G2 = (:) . Assuming that a conventional product code is employed, the permutation

matrix, associated with a row-by-row and column-by-column interleaver, is

Therefore, the generator matrix of CSC is

1 0 0 0

Gsc = ((h121) (1/)121)) (: : ; :) (O ol, (1 0 l))

(1) 0 2 3

0 0 0 1 0 1 1

= ((0 l 1) (0 1 1) 1 (1 0 1) (l 0 1)

where Oi j denotes the i x j all-zero matrix.
The result can be verified by noticing that the last equality contains the generator matrix

of the the SPC (3; 2; 2) code mo times, because of the repetition (2; 1; 2) code. It is also
interesting to note that this is the smallest member of the family of repeat-and-accumulate
codes [DJM].

ITERATIVELY DECODABLE CODES 155

Note that the main difference between the serial concatenated coding scheme and product
coding discussed in Section 6.2.3, is that there the interleaver was either a row-by-row column-
by-column interleaver or a cyclic interleaver (if the component codes were cyclic). In contrast,
as with turbo codes, the good performance of serial concatenation schemes generally depends
on an interleaver that is chosen as “random” as possible.

Contrary to turbo codes, serially concatenated codes do not exhibit “interleaver gain
saturation” (i.e., there is no error floor). Using a random argument for interleavers of length N ,
it can be shown that the error probability for a product code contains a factor N-L(dof+1)/21,
where dof denotes the minimum distance of the outer code, as opposed to a factor N - l for
parallel concatenated codes [BDMPl].

As a result, product codes outperform turbo codes in the SNR region where the error
floor appears. At low SNR values, however, the better weight distribution properties of turbo
codes [PSC] leads to better performance than product codes.

The following design rules were derived for the selection of component codes in a serially
concatenated coding scheme6 for component convolutional codes:

0 The inner code must be an RSC code.
0 The outer code should have large and, if possible, odd value of minimum distance.
0 The outer code may be a nonrecursive (FIR) nonsystematic convolutional encoder.

The last design criterion is needed in order to minimize the number of codewords of minimum
weight (also known as the error exponent) and the weight input sequences resulting in
minimum weight codewords.

Iterative decoding of serially Concatenated codes

With reference to Figure 84, note that if the outer code is a nonsystematic convolutional,
then it is not possible to obtain the extrinsic information from the SISO decoder [BDMPI].
Therefore, different from the iterative decoding algorithm for turbo codes, in which only
the LLR of the information symbols are updated, here the LLR of both information and
code symbols are updated. The operation of the SISO decoder for the inner code remains
unchanged. However, for the outer SISO decoder, the a-priori LLR is always set to zero, and
the LLR of both information and parity symbols is computed and delivered, after interleaving,
to the SISO decoder for the inner code as a-priori LLR for the next iteration. As with iterative
decoding of turbo codes, there is a max-log-MAP based iterative decoding algorithm, as
well as a version of SOVA that can be modified to become an approximated MAP decoding
algorithm for iterative decoding of product codes [FV].

8.2.3 Block product codes

Although turbo codes and serial concatenations of RSC codes seem to have dominated the
landscape of coding schemes where iterative decoding algorithms are applied, block product
codes may also be used, as is evident from the foregoing discussion. In 1993, at the same
conference where Berrou and colleagues introduced turbo codes, a paper was presented
on iterative decoding of product and concatenated codes [LYHH]. In particular, a three-

It should be noted that these criteria were obtained based on union bounds on the probability of a bit error.

156 THE ART OF ERROR CORRECTING CODING

n

.... n d...

. ..
I ..

* SISO 2
(COLUMN) 4 (ROW) '('I

n-1 F

h
-U

Figure 84 Block diagram of an iterative decoder for a serially concatenated code.

dimensional product (4096,1331,64) code, based on the extended Hamming (16,11,4) code,
with iterative MAP decoding was considered and shown to achieve impressive performance.

One year later, near-optimum turbo-like decoding of product codes was introduced
in [PGPJ] (see also [Pyn]). There the product of linear block codes of relatively high
rate, single- and double-error correcting extended BCH codes, was considered. An iterative
decoding scheme was proposed where the component decoders use the Chase type-I1
algorithm7. After a list of candidate codewords is found, LLR values are computed. This
iterative decoding algorithm and its improvements are described in the next section.

Iterative decoding using Chase algorithm

In [PGPJ, Pyn], the Chase type-I1 decoding algorithm is employed to generate a list of
candidate codewords which are close to the received word. Extrinsic LLR values are
computed based on the best two candidate codewords. If only one codeword is found, then an
approximated LLR value is output by the decoder. Let C be a binary linear (N , K , d) block
code, capable of correcting any combination o f t = [(d - l)/2] or less random bit errors. Let
F = (T I , r2, . . . , T N) be the received word from the output of the channel, ~i = (-l)wi + wi,
v E C, where wi is a zero-mean Gaussian random variable with variance N0/2 . Chase type-I1
algorithm is executed based on the received word F , as described on page 130.

Three possible events can happen at the end of the Chase type-I1 algorithm:

1. Two or more codewords, (61,. . . , e l } , l 2 2, are found;
2. One codeword 61 is found; or
3. No codeword is found.

In the last event, the decoder may raise an uncorrectable error flag and output the received
sequence as is. Alternatively, the number of error patterns to be tested can be increased until
a codeword is found, as suggested in [Pyn].

Let X j (l) denote the set of modulated codewords of C, found by Chase algorithm, for
which the j-th component xj = l , l E { -1, +l}, for 1 5 j 5 N . Denote by Zj(l), yj(l) E
X j (l) the closest and next closest modulated codewords to the received word F , in the
Euclidean distance sense, respectively.

By using the log-max approximation log(e" + eb) x max(a, b) , the symbol LLR value
(8.2) can be expressed as [Pyn, FL5]

(8.13)

Chase algorithms are discussed in Section 7.4.

ITERATIVELY DECODABLE CODES 157

from which, after normalization and redefining x, = x m (+ l) and y, = y,(-l), the soft
output is

N N

A’(uj) = rj + c rmxm = x j c rmx,.

The term

(8.14)

(8.15)

is interpreted as a correction term to the soft-input r j , which depends on the two modulated
codewords closest to F , and plays the same role as the extrinsic LLR. For 1 5 j 5 N , and each
position j , the value wj is sent to the next decoder as extrinsic LLR, with a scaling factor Q,,

so that
ri = rj + aCwj , (8.16)

is computed as the soft input at the next decoder. The factor ac is used to compensate for the
difference in the variances of the Gaussian random variables ri and r i . A block diagram of
the procedure for the generation of soft input values and extrinsic LLR values is shown in
Figure 85.

If for a given j-th position, 1 5 j 5 N , no pair of sequences Z j (+l) and yj (-1) can be
found by Chase algorithm, in [Pyn] it has been suggested the use of the following symbol
LLR,

A’&) = P&, (8.17)

where Pc is a correction facror to compensate for the approximation in the extrinsic
information, and was estimated by simulations as

P c = 11% (Pr{wj correct}
Pr{wj incorrect}

(8.18)

that is, the magnitude of the LLR of the simulated symbol error rate. In [PP, MT], it is shown
how the correction factors a! and P can be computed aduptively based on the statistics of the
processed codewords. It should also be noted that the soft-output algorithm proposed in [FL5],
and described in Section 7.5, can also be applied. Adaptive weights are also needed in this
case, to scale down the extrinsic LLR values.

Extrinsic
values

W [I1 Soft-output W [I+1]
Chase decoder

Channel
LLR values i Delay

Figure 85 Block diagram of a soft-output Chase decoder,

158 THE ART OF ERROR CORRECTING CODING

Summarizing, the iterative decoding method with soft-outputs based on a set of codewords
produced by a Chase type-I1 algorithm is as follows:

Step 0: Initialization

Set iteration counter I = 0. Let f[0] = f (the received channel values).

Step 1: Soft inputs

F o r j = 1 , 2 , . . . , N ,

7-j [I + l] = rj [O] + Q, [I] wj [I].

Step 2: Chase algorithm

Execute Chase type-I1 algorithm, using F[I + l]. Let n, denote the number of
codewords found. If possible, save the closest two modulated codewords, 52 and
jj to the received sequence.

Step 3: Extrinsic information

F o r j = 1 , 2 , . . . , N ,

N

wj [I + 11 = xj c T[I + lImxm,

m=l,m#j
= m # y m

Step 4: Soft output

Let I = I + 1. If I < Imax (the maximum number of iterations) or a stopping
criterion is not satisfied then go to Step 1.

Else compute the soft output,

F o r j = 1 , 2 , . . . , N ,

and stop.

For BPSK modulation, the values of Q, and pc were computed for up to four iterations (eight
values in total, two values for the first and second decoders), as [Pyn]

CL, = (0.0 0.2 0.3 0.5 0.7 0.9 1.0 1.0),

p, = (0.2 0.4 0.6 0.8 1.0 1.0 1.0 1.0).

ITERATIVELY DECODABLE CODES 159

8.3 Low-density parity-check codes

In 1962, Gallager in [Gal] introduced a class of linear codes, known as low-density parity-
check (LDPC) codes, and presented two iterative probabilistic decoding algorithms. Later,
Tanner [Tan] extended Gallager’s probabilistic decoding algorithm to the more general case
where the parity-checks are defined by subcodes, instead of simple single parity-check
equations. Earlier, it was shown that LDPC codes have a minimum distance that grows linearly
with the code length and that errors up to the minimum distance could be corrected with a
decoding algorithm with almost linear complexity [ZP].

In [MN, Mac] it is shown that LDPC codes can get as close to the Shannon limit as
turbo codes. Later in [RSU], irregular LDPC codes were shown to outperform turbo codes
of approximately the same length and rate, when the block length is large. At the time of
writing, the best rate-1/2 binary code, with a block length of 10,000,000, is an LDPC code
that achieved a record 0.0045 dB away from the Shannon limit for binary transmission over
an AWGN channel [CFRU].

A regular LDPC code is a linear (N ; K) code with parity-check matrix H having the
Hamming weight of the columns and rows of H is equal to J and K , respectively, with
both J and K much smaller than the code length N . As a result, an LDPC code has a
very sparse parity-check matrix. If the Hamming weights of the columns and rows of H
are chosen in accordance to some nonuniform distribution, then irregular LDPC codes are
obtained [RSU]. MacKay has proposed several methods to construct LDPC matrices by
computer search [Mac].

8.3. l Tanner graphs

For every linear (N ; K) code C, there exists a bipartite graph with incidence matrix H . This
graph is known as a Tanner graph [Tan, SS], named after its inventor. By introducing state
nodes, Tanner graphs have been generalized to factor graphs [For7, KFL]. The nodes of the
Tanner graph of a code are associated with two kinds of variables, and their LLR values.

The Tanner graph of a linear (N ; K) code C has N variable nodes or code nodes, x!,
associated with code symbols, and at least N - K parity nodes, z,, associated with the
parity-check equations. For a regular LDPC code, the degrees of the code nodes are all equal
to J and the degrees of the parity nodes equal to K .

Figure 86 Tanner graph of a Hamming (7 ,4,3) code.

Example 92 To illustrate the Tanner graph of a code, consider the Hamming (7: 4; 3) code.

1 60 THE ART OF ERROR CORRECTING CODING

Its parity-check matrix iss

(l 1 0 1 0 0 1 1 l 1 1 0 1 0 0
H = 0 1 1 1 0 1 0 .

The corresponding Tanner graph is shown in Figure 86. The way code nodes connect to check
nodes is dictated by the rows of the parity-check matrix.

The first row gives the parity-check equation, u1 + 212 + 213 + 215 = 0. As indicated
before, variables xe and z , are assigned to each code symbol and each panty-check equation,
respectively. Therefore, the following parity-check equations are obtained,

21 = x1 +x2 +x3 +x5;

23 = x1 + x2 + x4 + 27.
From the topmost equation, code nodes x1 xZi x3 and x5 are connected to check node 21.
Similarly, the columns of H , when interpreted as incidence vectors, indicate in which parity-
check equations code symbols appear, or participate in. The leftmost column of H above,
(1 0 1)T, indicates that z1 is connected to check nodes 2 1 and 23.

Example 93 The parity-check matrix in Gallager's paper [Gal],

2 2 = x2 + x 3 +x4 + x 6 ;

H =

11110000000000000000~
00001111000000000000
00000000111100000000
00000000000011110000
00000000000000001111

10001000100010000000
01000100010000001000
00100010000001000100
00010000001000100010
00000001000100010001

10000100000100000100
01000010001000010000
00100001000010000010
00010000100001001000
00001000010000100001.

is that of an LDPC (20; 5) code with J = 3 and K = 4. Its Tanner graph is shown in Figure 87.
Note that every code node is connected to exactly three parity-check nodes. In other words,
the degree of the code nodes is equal to J = 3. Similarly, the degree of the parity nodes is
equal to K = 4.

Tanner graphs can be used to estimate codewords of an LDPC code C with iterative
probabilistic decoding algorithms, based on either hard or soft decisions. In the following,
the two basic iterative decoding algorithms introduced by Gallager are presented.

See Example 13 on page 23.

ITERATIVELY DECODABLE CODES 161

Figure 87 Tanner graph of Gallager's (20,5) code.

8.3.2 Iterative hard-decision decoding: The b i t f ip algorithm

In his 1962 paper, Gallager gave the following algorithm [Gall9.

The decoder computes all the parity checks and then changes any digit that
is contained in more than some fuced number of unsatis$ed parity-check
equations. Using these new values, the parity-checks are recomputed, and
the process is repeated until the parity checks are all satis$ed.

The input of the algorithm is the vector Th = (sgn(rl), sgn(r-2); .. . sgn(rN)), where
r ' 2 - - (-l)'i + wi, V E C, wi denotes a zero-mean Gaussian random variable with variance
No/2, i = 1; 2:. . . N , and sgn(z) = 1, if z < 0, and sgn(z) = 0 otherwise.

Let T denote a threshold such that, if the number of unsatisfied parity-check equations
where a code symbol ~ l i participates exceeds T , then symbol is "flipped", wi = 2ri @ 1.

Figures 88 and 89 show simulation results for Gallager's (20; 5) code CG and the Hamming
(7; 4; 3) code CH, respectively, with binary transmission over an AWGN channel. The
maximum number of iterations was set to 4 for CG and 2 for CH. In both figures, the threshold
was set to T = 1; 2: 3. For the Hamming code, in Figure 89, also shown are single-error hard-
decision decoding (HD), soft-decision MLD decoding (SD) and the union bound (1.35).

In Figures 90 to 92, the error performance of the Berlekamp-Massey (BM) algorithm
and Gallager bit-flip (BF) algorithm is compared for the BCH (31;26,3), (31,21,5) and
(31,16; 7) codes, respectively. It is evident that, as the error correcting capability of the code
increases, the performance of the BF algorithm is inferior to that of the BM algorithm. On the
other hand, in terms of computational complexity, the Gallager BF algorithm requires simple
exclusive-or gates and comparisons, as opposed to GF(2") arithmetic processors in the case
of the BM algorithm. This suggests that, for some high-rate codes, such as single- and double-
error correcting BCH codes, the bit-flip algorithm might be considered an alternative to the
BM algorithm.

An additional feature of the BF algorithm, as well as the iterative probabilistic decoding
algorithm presented below, is that its complexity depends only on the degrees of the nodes in
the Tanner graph. In other words, for fixed values of J and K , the decoding complexity grows
linearly with the code length.

This algorithm is also known as Gallager's algorithm A.

162 THE ART OF ERROR CORRECTING CODING

4 5 6 7 8 9 10 1 1 12 13 14 15

Eb/No (dB)

Figure 88 Performance of Gallager’s (20,5) code with bit-flip decoding. Four iterations with
different threshold values

8.3.3 Iterative probabilistic decoding: belief propagation

In this section, an iterative belief-propagation (IBP) decoding algorithm is presented. This
algorithm is also known as Pearl’s algorithm [Prl], and sum-product algorithm [Wib, KFL,
For7]. Wiberg in his Ph.D. thesis [Wib] has shown that the forward-backward, turbo and
Gallager algorithm (described below) are all special cases of the sum-product algorithm.
Furthermore, it was demonstrated [MMC] that iterative decoding algorithms for turbo codes
and product codes are particular cases of IBP decoding. The description below follows
closely [Prl, Mac] for binary LDPC codes. The following notation is convenient in describing
the algorithm. Let hi,j denote the entry of W in the i-th row and j-th column. Let

C(m) = {e : hm,e = l}; (8.20)

denote the set of code positions that participate in the m-th parity-check equation, and let

M(!) = { m : hm,e l}; (8.21)

denote the set of check positions in which code position l participates.
The algorithm iteratively computes two types of conditional probabilities:

qgc The probability that the l-th bit of e has the value z, given the information
obtained via the check nodes other than check node m.

rge The probability lo that a check node m is satisfied when bit ! is fixed to a value z
and the other bits are independent with probabilities qmp , l’ E C (m) \ !

lo Note: This is an abuse of notation, because T % denotes the i-th component of the received vector. However,
it helps to keep the same notation as most of the literature in the topic.

ITERATIVELY DECODABLE CODES 163

3 4 5 6 7 8 9 10 11 12
Eb/No (dB)

Figure 89 Performance of a Hamming (7 ,4 ,3) code with bit-flip decoding. Two iterations
with different threshold values.

As noted in [Prl, Mac], the following IBP decoding algorithm would produce the exact a-
posteriori probabilities after some number of iterations, if the Tanner graph of the code
containedno cycles. In the following, binary transmission over an AWGN channel is assumed.
As before, the modulated symbols m(vi) are transmitted over an AWGN channel and received
as ri = m(vi) + wi, where wi is a Gaussian distributed random variable with zero mean and
variance No/2, l 5 i 5 N .

Initialization

For C E { 1,2, . ’ . , N } , initialize the a-priori probabilities of the code nodes,

1
- I + exp(re*-’

1 -

and p! = 1 - p i . For every (C, m) such that h,,! = 1,

0 0 I 1
%,e = Pe , %,e = Pe .

Message passing

Step I : Bottom-up (horizontal):

For each e , m, compute

(8.22)

(8.23)

(8.24)

1 64 THE ART OF ERROR CORRECTING CODING

1 e-01

1 e-02

K
W le-03 m

1 e-04

1 e-05
0 1 2 3 4 5 6 7 8 9 1 0

Es/No (dB)

Figure 90 Performance of Berlekamp-Massey and Gallager bit-flip algorithms for the binary
BCH (31,26,3) code.

Step 2: Top-down (vertical):

For each e, m, compute

m'€M(e)\m m'cM(e)\m

For each e, compute the a-posteriori probabilities

and normalize, with a = l/($ + Q ;) ,

(8.25)

(8.26)

(8.27)

(8.28)

(8.29)

ITERATIVELY DECODABLE CODES 165

Es/No (dB)

Figure 91 Performance of Berlekamp-Massey and Gallager bit-flip algorithms for the binary
BCH (31,21,5) code.

Decoding and soft-outputs

For i = 1 ,2 , . . . N , compute
6i = sgn(q9) (8.30)

If 6HT = 0, then 6 is the estimated codeword and the soft outputs are

A(Q) = lOg(4.t) - log(qp), 1 5 i 5 N . (8.31)

The algorithm stops.
Otherwise, return to Step 2. If the number of iterations exceeds a predetermined threshold,

a decoding failure is declared. Output received values as they are. The algorithm stops.
Figure 93 shows the performance of IBP decoding for the binary cyclic PG (273,191,17)

code. This code is a small member of the family of binary finite geometry LDPC codes
recently introduced in [KLF]. Also shown in the plot is the performance of the BF algorithm
with a threshold equal to 8.

Notes

As proposed in [Gal], the IBP decoding algorithm can be modified in a straightforward way to
use log-likelihood ratios instead of probabilities. This has the advantage that no normalization
is required in the second step of message passing. In this case, the function

A e z + l 1 F (z) = - -
e" - 1 tanh(z/2)'

- (8.32)

or its inverse, is needed in Step 1 of message passing. A program implementing this log-IBP
decoder is available on the ECC web site.

166 THE ART OF ERROR CORRECTING CODING

0 1 2 3 4 5 6 7 8 9 1 0
EslNo (dB)

Figure 92 Performance of Berlekamp-Massey and Gallager bit-flip algorithms for the binary
BCH (31,16,7) code.

Note that F (z) can be implemented as a look-up table. Numerical results suggest that
quantization of F (z) to eight levels results in practically no performance loss compared with
a floating point version. In [FMH], several reduced-complexity versions of the IBP algorithm
are presented that favorably trade off decoding complexity and error performance. Other
interesting applications of iterative decoding algorithms include fast-correlation attacks in
cryptanalysis [MG, Glc].

It is notable that LDPC codes can always detect whenever decoding errors occur, whereas
turbo codes and product codes based on convolutional codes cannot detect many errors [Mac].
As it is evident from the foregoing presentation, LDPC codes have very low complexity
compared with iterative decoding using component MAP decoders. This is true when
complexity is measured in terms of the number of real additions and multiplications per block
per iteration.

However, it should be pointed out that IBP decoding gives the MLD codeword only if
the Tanner graph contains IZO cycles. Because for most practical codes the Tanner graph has
relative short cycles (lengths 4 and 6), convergence of the IBP decoding algorithm is either not
guaranteed or slow [RSU, KFL, For71. As a result, in general, IBP decoding algorithms for
LDPC codes may require much more iterations than iterative decoding algorithms for product
codes with MAP component decoders.

In terms of implementation of IBP decoding, two architectures are the following. A fast
parallel architecture can be realized with N X-processors for code nodes and M Z-processors
for check nodes, with connections between them specified by multiple address computation
units (ACU). This architecture is shown in Figure 94. In the figure, X and 7r are LLR values
associated with the conditional probabilities used in the IBP algorithm. Alternatively, only
one X-processor and one Z-processor can be used and shared between nodes, whose metrics
are stored in two memories, a 7r-memory and a X-memory, as shown in Figure 95. These
architectures represent the extremes in the spacehime tradeoff to find the best architecture.

ITERATIVELY DECODABLE CODES 167

K
W m

1 e-01

1 e-02

1 e-03

1 e-04

1 e-05
0 1 2 3 4 5 6 7 8 9 10

Eb/No (dB)

Figure 93 Performance of iterative decoding of a binary (273,191) cyclic code.

The number of computations in the IBP decoding algorithm can be reduced by making
preliminary hard decisions based upon the amplitudes of the log-likelihood ratio values
(reliabilities) of the channel symbols. This idea appears in [FK] and in [Prl] as a method
of dealing with short cycles in Bayesian networks (Tanner graphs). A set of highly reliable
positions (HRP) can be selected by comparing the channel LLR values to a threshold T . If
the reliability of a channel symbol exceeds T , then that code node is fixed to a hard decision
(HD) value. As a result, the X-processor is not utilized in the decoding process. Instead, this
processor always gives as an output either the maximum probability (LLR) or a flag indicating
that this position is highly reliable. Consequently, the 2-processor to where the HD value is
sent performs a smaller number of computations, because this input is highly reliable and not
taken into account in the probability or LLR computations.

168 THE ART OF ERROR CORRECTING CODING

REG 1

Figure 94 Parallel architecture of an IBP decoder.

1 ' 1 !

BOTTOM-UP
MESSAGE
PASSING 7- K- 1 RAM

Figure 95 Serial architecture of an IBP decoder.

Combining codes and digital
modulation

In discussing soft-decision decoding, attention was focused on binary transmission, i.e., using
two possible transmitted symbols { -1, +l}. Let the Nyquist bandwidth of a transmission
(or storage) signal be the rate R, at which symbols are transmitted (or stored). For binary
transmission, the two values of a bit, 0 and 1, are assigned to two values of the transmitted
symbol, +l and -1, respectively. Therefore, R, bitdsecond require a Nyquist bandwidth of
R, Hz. The spectral eficiency p of a binary transmission system equals 1 bit/sec/Hz (or
1 bit/symbol). Coded modulation is the joint design of error correcting codes and digital
modulation formats to increase the bandwidth efficiency of a digital communication system.

9.1 Motivation

Suppose that an error correcting coding scheme is required to increase the reliability of the
binary transmission (or storage) system. Let R, = k / n denote the rate of the code. Then the
spectral efficiency is p = R, bps/Hz. Thus for a coded binary transmission system a spectral
efficiency p 5 1 bps/Hz is achieved. This translates into a faster signalling rate or larger
bandwidth for the same bit rate. Equivalently, the bit rate has to be reduced, by a factor of
l/R,, so as to keep the transmitted symbol rate or bandwidth constant.

Example 94 Assume that 56 kbps are desired to be transmitted over a channel. The required
Nyquist bandwidth of an uncoded binary transmission system is 56 kHz. Suppose a rate-
1/2 convolutional code is used. Then, with binary transmission, the spectral efficiency of the
coded system is p = 0.5 bps/Hz. The effect of p in data rate and signalling rate is illustrated
in Figure 96.

Increasing the bandwidth of the signal, as in Figure 96 (a) is not a practical solution, since
typically the channel bandwidth is expensive (or limited, as in a telephone line). Decreasing
data rate (Figure 96 (b)) is a possible solution, but places a limit on the number of services
or applications offered. In addition, the increased transmission delay may not be acceptable
(e.g., voice or video).

The fundamental question then is the following: How to increase the data rate without
increasing the bandwidth (or symbol rate)? The answer, as given by Ungerboeck [Ungl] and
Imai and Hirakawa [IH], is to use an expanded signal set (e.g., 2”-ary PSK or QAM digital
modulation) and then to apply error correcting coding to increase the Euclidean distance
between coded sequences.

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

170 THE ART OF ERROR CORRECTING CODING

S6 kbps 112 kbps -
Rate- 1/2

modulator encoder
Binary

I

f--+ Channel

56 kbps 112 kbps i
Decoder Demodulator

l o

(a) Keeping bit rate constant

28 kbps S6 kbps __ I 0 I 4 Rate-IR 1 4 Binary
encoder modulator

28 kbps 56 kbps

(b) Keeping symbol rate constant

Figure 96 Effect of coding in binary transmission of information.

9.1. l Examples of signal sets

Several signal sets used in digital communication systems are shown in Figure 97. The I and
Q axis represent orthogonal signals that are used in transmission.' In digital communication
systems, generally

I = cos(2.rrfct), Q = sin(2.rrfct), (9.1)

where I stands for in-phase and Q for quadrature. If a point in the IQ-plane has coordinates
(x, y), then the transmitted signal is

~ (t) = R c o s (~ T ~ , ~ + 4), (k - l)T 5 t < kT, (9.2)

where R = d m , (p = tan-l(y/z), and T is the symbol duration. In other systems
(e.g., storage), orthogonal pulses may be used, such as those illustrated in Figure 98. The set
of signal symbols in the two-dimensional IQ-plane is called a constellation, and symbols are
called signal points.

From the viewpoint of digital signal processing, modulation is a mapping. That is, the
process of assigning an v-dimensional binary vector 6 to a signal point (x($), y(6)) in the

For simplicity of exposition, let I = I (t) and Q = Q(t) . A A

COMBINING CODES AND DIGITAL MODULATION 171

1 bit/symbol 2 bitslsymbol

BPSK

4 bitdsymbol

. . . . r
QPSK

5 bits/symbol

3 bitslsymbol

l

8PSK

6 bitslsymbol

t"

16-QAM 32-QAM 64-QAM

Figure 97 Examples of M-PSK and M-QAM signal constellations.

constellation. In previous chapters, only BPSK was considered, in which case U = 1. For
U > 1, there are many possible assignments of bits to signal points. That is, many ways to
label the signal points. Figure 99 shows an example of a QPSK constellation (U = 2) with
two different (non-equivalent) mappings.

Moving from binary modulation to 2v-ary modulation has the advantage that the number
of bits per symbol is increased by a factor of U, thus increasing the spectral eficiency of the
system. On the other hand, the required average energy of the signal increases (QAM), or
the distance between modulation symbols decreases (PSK). In practice, transmitted power is
limited to a maximum value. This implies that the signal points become closer to each other.
Recall that the probability of error in an AWGN channel between two signal points separated
by an Euclidean distance equal to D, is [Hay, Pro]

where &(x) is given by (1.2). As a result, a higher probability of error is experienced at the
receiver end. In this sense, the function of error correcting coding is to reduce the probability
of error P T (€) and to improve the quality of the system.

172 THE ART OF ERROR CORRECTING CODING

Figure 98 An example of two orthogonal pulses.

1 1 01 10 01

(a) GRAY MAP (b) NATURAL MAP

Figure 99 Two different mappings of a QPSK constellation.

9.1.2 Coded modulation

In 1974, Massey introduced the key concept of treating coding and modulation as a joint signal
processing entity [Mas3], see Figure 100. That is, the coordinated design of error correcting
coding and modulation schemes.

Source Encoder Modulator
I

\ (Massey, 1974)
Combine coding
and modulation

Figure 100 The idea of joint coding and modulation

Two fundamental questions on combining coding and modulation arise:

1. How to construct the bits-to-symbols mapping?
2. How to assign coded bit sequences to coded symbol sequences?

COMBINING CODES AND DIGITAL MODULATION 173

Two basic approaches were proposed in the 1970s to design coded modulation systems:

1. Trellis Coded Modulation (TCM) [Ungl]
Apply a natural mapping of bits to signals, through set partitioning. Given an
underlying finite-state machine, assign symbol sequences to trellis paths. Perform
Viterbi decoding at the receiver.

2. Multilevel Coded Modulation (MCM) [IH]
Apply a mapping of codewords to bit positions, through a binary partition. For 2”-
ary modulation, use v error correcting codes, one per label bit. Perform multistage
decoding at the receiver.

In both TCM and MCM, the basic idea is to expand the constellation in order to obtain
the redundancy needed for error correcting coding, and then to use coding to increase the
minimum Euclidean distance between sequences of modulated signals.

9.1.3 Distance considerations

To illustrate how error correcting codes and digital modulation can be combined, and the
consequent increase in the minimum distance between signal sequences from an expanded
signal constellation, consider the following.

Example 95 A block coded QPSK modulation scheme is shown in Figure 101. Codewords
of the extended Hamming (8; 4,4) code are divided in four pairs of symbols and mapped
to QPSK signal points with Gray mapping. A nice feature of Gray labeling of QPSK
points is that the squared Euclidean distance between points is equal to twice the Hamming
distance between their labels. As a result, a block coded modulation scheme with p = 1
bits/symbol and a minimum squared Euclidean distance, or MSED, DLi,, = 8 is obtained. An
uncoded system with the same spectral efficiency is BPSK, which has an MSED DE,, = 4.
Consequently, the asymptotic coding gain of this scheme is

G = 1Ologl0 (2) = 3 dB. (9.4)

Over an AWGN channel, this coded QPSK modulation requires half the power of uncoded
BPSK modulation, to achieve the same probability of error P(€) . Figure 102 shows simulation
results of this scheme.

I I

4 bits Extended Hamming

Figure 101 Block coded QPSK modulation using an extended Hamming (8,4,4) code.

174 THE ART OF ERROR CORRECTING CODING

1 e-01

1 e-02

U
W le-03 m

1 e-04

1 e-05
0 1 2 3 4 5 6 7 a 9 10

Eb/No (dB)

Figure 102 Simulation results of a block coded QPSK modulation using an extended
Hamming (8,4,4) code. AWGN channel.

Therefore, while the use of an expanded 2”-ary modulation causes the distance between
signal point to decrease, a properly selected error correcting code can make sequences of
signal points at a minimum distance larger than that of an uncoded system, with the same
spectral efficiency.

9.2 Trellis-coded modulation (TCM)

Proposed by Ungerboeck in 1976, the main idea in TCM is to perform mapping by set
partitioning. A basic trellis structure, associated with the state transitions of a Jinite-state
machine, is selected and signal subsets mapped to trellis branches. For systems that require
high spectral efficiency, uncoded bits may be assigned to parallel branches in the trellis.

9.2.1 Set partitioning and trellis mapping

Bit labels assigned to the signal points are determined from a partition of the constellation. A
2”-ary modulation signal set S is partitioned in v levels. For 1 5 i 5 v, at the i-th partition
level, the signal set is divided into two subsets Si (0) and Si (l), such that the intra-set distance,
S:, is maximized. A label bit bi E (0, l} is associated with the subset choice, Si (b i) , at the
i-th partition level. This partitioning process results in a labeling of the signal points. Each
signal point in the set has a unique v-bit label blbz . . . b,, and is denoted by s (b l ~ b2: . . . b y) .
With this standard (Ungerboeck) partitioning of a 2”-ary modulation signal constellation, the
intra-set distances are in nondecreasing order 6: 5 62 5 . . . 5 6:. This strategy corresponds
to a natural labeling for M-PSK modulations, i.e., binary representations of integers, whose

COMBINING CODES AND DIGITAL MODULATION 175

value increases clockwise (or counter-wise). Figure 103 shows a natural mapping of bits to
signals for the case of 8-PSK modulation, with S: = 0.586, 6; = 2, and Si = 4.

Ungerboeck regarded the encoder “simply as a$nite-state machine with a given number of
states and specijied state transitions”. He gave a set of pragmatic rules to map signal subsets
and points to branches in a trellis. These rules can be summarized as follows:

Rule 1:
All subsets should occur in the trellis with equal frequency.

Rule 2:
State transitions that begin and end in the same state should be assigned subsets
separated by the largest Euclidean distance.

Rule 3:

Parallel transitions are assigned signal points separated by the largest Euclidean
distance (the highest partition levels).

The general structure of a TCM encoder is shown in Figure 104. In the general case of a
rate (v - l) / v TCM system, the trellis structure is inherited from a k / (k + 1) convolutional
encoder. The uncoded bits introduce parallel branches in the trellis.

Example 96 In this example, a 4-state rate-2/3 TCM system is considered. A constellation
for 8-PSK modulation is shown in Figure 103. The spectral efficiency is p = 2 bits/symbol.
A block diagram of the encoder is shown in Figure 105. The binary convolutional code is
the same memory-2 rate-1/2 code that was used in Chapter 5. Note from Figure 106 that the
trellis structure is the same as that of the binary convolutional code, with the exception that
every branch in the original diagram is replaced by two parallel branches, associated with the
uncoded bit u1.

9.2.2 Muximum-likelihood decoding

The Viterbi algorithm2 can be applied to decode the most likely TCM sequences, provided
that the branch metric generator is modified to include parallel branches. Also, the selection
of the winning branch and surviving uncoded bits should be changed. The survivor path (or
trace-back) memory should include the (v - 1 - IC) uncoded bits, as opposed to just one
bit for rate-l/n binary convolutional codes. It is also important to note that in 2”-ary PSK
or QAM modulation, the correlation metria for two-dimensional symbols are of the form
xPxT + ypy,., where (xp, yp) is a reference signal point in the constellation and (x T , y,.) is the
received signal point. All other implementation issues discussed in Sections 5.4 and 7.2 apply
to TCM decoders.

9.2.3 Distance considerations and error pelfomance

The error performance of TCM can be analysed in the same way as for convolutional codes.
That is, a weight enumerating sequence can be obtained from the state diagram of the TCM

~~ ~~

The Viterbi algorithm is discussed in Sections 5.4 and 7.2.

176 THE ART OF ERROR CORRECTING CODING

b3 b2b, = 100 olo/o

101

b2 = 0

0 b3= 1 b 3 = 0

b3= 0

b3= 1

b3 = 0

Figure 103 Natural mapping of an 8PSK constellation.

encoder, as in Section 5.3. The only difference is that the powers are not integers (Hamming
distances) but real numbers (Euclidean distances). Care needs to be taken of the fact that the
state transitions contain parallel branches. This means that the labels of the modified state
diagram contain two terms. See [BDMS].

Example 97 Figure 107 shows the modified state diagram for the 4-state TC 8-PSM
modulation of Example 96. The branches in the trellis have been labeled with integers
corresponding to the eight phases of the modulation signals. To compute the weight
enumerating sequence T (z) , the same procedure as in Section 5.3 is applied. Alternatively, by
directly analysing the trellis structure in Figure 108, it can be deduced that the MSED between
coded sequences is

D; = min{Di,,, D&} = 3.172,
which, when compared to an uncoded QPSK modulation system with the same spectral
efficiency of 2 bits/symbol, gives an asymptotic coding gain of 2 dB.

9.2.4 Pragmatic TCM and two-stage decoding

For practical considerations, it was suggested in [Vit4, ZW] that the 2U-ary modulation signal
constellations be partitioned in such a way that the cosets at the top two partition levels are

COMBINING CODES AND DIGITAL MODULATION 177

2’-ary modulation
.

k bits

(coded)

Selection of I Rate-W(k+l) ’ j signal subset 7 convolutional
encoder (b .. b 2 , b,,,) j

I
v -1 -k bits

(uncoded)

Selection of point (x,y)
> =- . in thesubset

(b k+2, b v 1 .
.

Figure 104 General encoder of rate-(v - l) / v trellis-coded modulation.

Figure 105 Encoder of a 4-state rate-2/3 trellis coded 8-PSK modulation.

associated with the outputs of the standard memory-6 rate-l/:! convolutional encoder. This
mapping leads to a pragmatic TCM system. With respect to the general encoder structure in
Figure 104, the value of k = 1 is fixed, as shown in Figure 109. As a result, the trellis structure
of pragmatic TCM remains the same, as opposed to Ungerboeck-type TCM, for all values of
v > 2. The difference is that the number of parallel branches v - 2 increases with the number
of bits per symbol. This suggests a two-stage decoding method in which, at the first stage, the
parallel branches in the trellis “collapse” into a single branch, and a conventional off-the-shelf
Viterbi decoder used to estimate the coded bits associated with the two top partition levels. In
a second decoding stage, based on the estimated coded bits and the positions of the received
symbols, the uncoded bits are estimated. Figure 110 is a block diagram of a two-stage decoder
of pragmatic TCM.

In [MM], a symbol transformation is applied to the incoming symbols that enables use
of a Viterbi decoder without changes in the branch metric computation stage. The decoding
procedure is similar to that presented in [CRKO, PS], with the exception that, with symbol
transformation, the Viterbi algorithm can be applied as if the signals were BPSK (or QPSK)
modulated. This method is described below for M-PSK modulation.

Specifically, let (x, y) denote the I and Q coordinates of a received M-PSK symbol with
amplitude T = d m and phase 4 = tan-’ (y/z). Based on 4, a transformation is
applied such that the M-PSK points are mapped into “coset” points labeled by the outputs of
a rate- 1/2 64-state convolutional encoder.

178 THE ART OF ERROR CORRECTING CODING

Figure 106 Trellis structure of a rate-2/3 trellis coded 8-PSK modulation based on the
encoder of Figure 105.

For TCM with M-ary PSK modulation, M = 2’, v > 2, let 5 denote the number of coded
bits per symbol3, where 5 = 1: 2. Then the following rotational transformation is applied to
each received symbol, (x, y), to obtain an input symbol (2’; y’) to the VD,

where is a constant phase rotation of the constellation that affects all points equally. Under
the transformation (9.5), a 2”-C-PSK coset in the original 2”-PSK constellation “collapses”
into a coset point in a 2c-PSK coset constellation in the 2’ - y’ plane.

Example 98 A rate-2/3 trellis-coded 8-PSK modulation with 2 coded bits per symbol
is considered. Two information bits (u1; u2) are encoded to produce three coded bits
(u2; v2; wl), which are mapped onto an 8-PSK signal point, where (v2; VI) are the outputs
of the standard rate-l/2 64-state convolutional encoder4. The signal points are labeled by
bits (u2; v2; V I) , and the pair (v ~ ; V I) is the index of a coset of a BPSK subset in the 8-PSK
constellation, as shown at the top of Figure 1 l 1.

In this case $‘ = 24 and, under the rotational transformation, a BPSK subset in the original
8-PSK constellation collapses to a coset point of the QPSK coset constellation in the 5’ - y’
plane, as shown in Figure 1 1 1 . Note that both points of a given BPSK coset have the same
value of 4’. This is because their phases are given by $ and 4 + 7r.

The case < = 2 corresponds to conventional TCM with 8-PSK modulation. The case = 1 is used in
TCM with coded bits distributed over two 8-PSK signals, such as the rate-5/6 8-PSK modulation scheme
proposed in the DVB-DSNG specification [DVBl.
v1 and v2 are the outputs from generators 171 and 133, in octal, respectively.

COMBINING CODES AND DIGITAL MODULATION 179

4 8

a = d(0,4) = 2
b = d(0.1) = 0.765
c = d(0,2) = 1.414
d = d(0.3) = 1.848

Figure 107 The modified state diagram of a 4-state TC 8-PSK modulation scheme.

The output of the VD is an estimate of the coded information bit, ul . In order to estimate
the uncoded information bit, u2, it is necessary to re-encode u1 to determine the most likely
coset index. This index and a sector in which the received 8-PSK symbol lies can be used
to decode u2. For a given coset, each sector S gives the closest point (indexed by u2) in the
BPSK pair to the received 8-PSK symbol. For example, if the decoded coset is (1,1) and the
received symbol lies within sector 3, then u2 = 0, as can be verified from Figure 1 1 1.

Figure 1 12 shows simulation results of MLD (denoted with the legend “TC8PSK-23-SSD”)
and two-stage decoding of pragmatic TC-8PSK (legend “TC8PSK23-TSD”). With two-stage
decoding, a loss in performance of only 0.2 dB is observed compared with MLD.

A similar transformation can be applied in the case of M-QAM, the difference is that the
transformation is based solely on the I-channel and Q-channel symbols. That is, there is no
need to compute the phase. An example is shown in Figure 113 for TC 16-QAM with 6 = 2
coded bits per symbol. The coded bits are now the indexes of cosets of QPSK subsets. The
transformation of 16-QAM modulation (5 = 2) is given by a kind of “modulo 4” operation:

Finally, it is interesting to note that a pragmatic TCM system with a turbo code as
component code was recently proposed in [WMI.

I80 THE ART OF ERROR CORRECTING CODING

,586 = 3. I72

V

Figure 108 Two paths at minimum squared Euclidean distance in the trellis of Example 96.

Memory-6 Rate-112

UI go=(11110O1)

g,=(1011011) 1
v - 2 bits

U2
t

bits-to-signal
mapping for

2' -ary
modulation

Figure 109 Block diagram of an encoder of pragmatic TCM.

9.3 Multilevel coded modulation (MCM)

In the Imai-Hirakawa multilevel coding scheme [IH], the 2V-ary modulation signal set is
binary partitioned in v levels. The components of codewords of v binary component codes
Ci, 1 5 i 5 v, are used to index the cosets at each partition level. One of the advantages of
MCM is the flexibility of designing coded modulation schemes by coordinating the intra-set
Euclidean distances, d:, i = 1; 2;. . . ~ v, at each level of set partitioning, and the minimum
Hamming distances of the component codes. Wachsmann et al. [WFH] have proposed several
design rules that are based on capacity (by applying the chain rule of mutual information)
arguments. Moreover, multilevel codes with long binary component codes, such as turbo
codes or LDPC codes, were shown to achieve capacity [WFH, For81.

It also worthwhile noting that, while generally binary codes are chosen as component codes,
i.e., the partition is binary, in general the component codes can be chosen from any finite field
GF(q) matching the partition of the signal set. Another important advantage of multilevel
coding is that (binary) decoding can be performed separately at each level. This multistage
decoding results in greatly reduced complexity, compared with MLD for the overall code.

COMBINING CODES AND DIGITAL MODULATION 181
.

LUT I

X X'
c

RATE- 112
COSET

: MAPPING
I VITERBl .) " I

Y' D
DECODER

Y *
RATE-112
ENCODER

I COSET
INDEX -

SECTOR SECTOR I SECTOR
INTRA-COSET

SELECT
MAPPING D -----c

DELAY - (L W
t u 2

.......

Figure 110 Block diagram of a two-stage decoder of pragmatic TCM.

9.3.1 Constructions and multi-stage decoding

For 1 5 i _< v, let Ci denote a binary linear block (n , ki, di) code. Let Vi = (vil, vi2, uin)
be a codeword in Ci, 1 5 i 5 U. Consider apermuted time-sharing code .rr(lC1 IC2 I . . . IC,[),
with codewords

v = (ZIllW21 . . . w,1 21122122 . . . v,2 . . . 211n212,. .. Uvn) .

Each v-bit component in V is the label of a signal in a 2"-ary modulation signal set S. Then

421) = (S (~ 1 1 w 2 1 ~ ' ~ 0 u 1) , S (2 1 1 2 w 2 2 ~ ~ ~ 2 1 u 2) , ~ ~ ~ , S (w l n w 2 n . ~ ~ ~ w v n)

is a sequence of signal points in S.
The following collection of signal sequences over S,

Ab { ~ (v) : V E .rr(lCllC~l...lC,I)},

forms a u-level modulation code over the signal set S, or a v-level coded 2"-ary modulation.
The same definition can be applied to convolutional component codes.

The rate, or spectral efficiency, of this coded modulation system, in bitshymbol, is
R = (k l + k2 + . . . + k,)/n. The MSED of this system, denoted by D;(A) , is given by [IH]

- l<?,<,
A > min {did:}. (9.6)

Example 99 In this example, a three-level block coded 8-PSK modulation system is
considered. The encoder structure is depicted in Figure 114. Assuming a unit-energy 8-PSK
signal set, and with reference to Figure 103, note that the MSED at each partition level are
6f = 0.586,s; = 2 and 6: = 4.

The MSED of this coded 8-PSK modulation system is:

D&(A) = min{dld?, d&, dsd;} = min{8 x 0.586,2 x 2, l x 4) = 4,

and the coding gain is 3 dB with respect to uncoded QPSK The trellises of the component
codes are shown in Figure 115. The overall trellis is shown in Figure 116.

182 THE ART OF ERROR CORRECTING CODING

COSET 00

t y

COSET 01 COSET l 1

I ’ + y

COSET 10

t ’

Figure 111 Partitioning of an 8-PSK constellation (E = 2) and coset points.

As mentioned before, one of the advantages of multilevel coding is that multistage
decoding can be applied. Figures 117 (a) and (h) show the basic structures used in encoding
and decoding of multilevel codes. Multistage decoding results in reduced complexity (e.g.,
measured as number of branches in trellis decoding), compared to MLD decoding (e.g., using
the Viterbi algorithm and the overall trellis.) However, in multistage decoding, the decoders
at early levels regard the later levels as uncoded. This results in more codewords at minimum
distance, i.e., an increase in error multiplicity or number of nearest neighbors. The value of
this loss depends on the choice of the component codes and the bits-to-signal mapping, and
for BER lo-’ 10W5 can be in the order of several dB.

Example 100 In this example, multistage decoding of three-level coded 8-PSK modulation
is considered. The decoder in the first stage uses the trellis of the first component code
Cl. Branch metrics are the distances (correlations) from the subsets selected at the first
partitioning level to the received signal sequence, as illustrated in Figure 1 18.

Once a decision is made in the first stage, it is passed on to the second stage. The decoder in
the second stage uses the trellis of the second component code with information from the first
stage. For 8-PSK modulation, if the decoded bit in the first stage is bl = 0, then the received
signal sequence is unchanged. If the decoded bit is bl = l, then the received signal is rotated
by 45”. Again, branch metrics are distances (correlations) from the subsets selected at the

COMBINING CODES AND DIGITAL MODULATION 183

a:
W
m

le-05 I I I I I I I I I I I I I I ' . - ..

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
EslNo (dB)

Figure 112 Simulation results of MLD versus two-stage decoding for pragmatic 8-PSK
modulation.

second partitioning stage - given the decision at the first decoding stage - to the receive
signal sequence.

Finally, based on the decisions in the first two decoding stages, the decoder of the third
component is used. The branch metrics are the same as for BPSK modulation. There are
four rotated versions of the BPSK constellation, in accordance with the decisions in the first
two decoding stages. Therefore one approach is to rotate the received signal according to
the decisions on blba and use the same reference BPSK constellation. This is illustrated in
Figure 119.

For medium to large code lengths, hybrid approaches may be the way to go for ultimate
MCM performance, with powerful turbo codes used in the top partition levels and binary
codes with hard-decision decoding assigned to lower partition levels. These combinations can
achieve excellent performance [WFH].

9.3.2 Unequal-error-protection with MCM

Because of its flexibility in designing the minimum Euclidean distances between coded
sequences at each partition level, MCM is an attractive scheme to achieve unequal error
protection (UEP). However, great care has to be exercised in choosing the bits-to-signal
mapping, so that the desired UEP capabilities are not destroyed. This issue was investigated
in [MFLI, IFMLI], where several partitioning approaches were introduced that constitute
generalizations of the block [WFH] and Ungerboeck [Ungl] partitioning rules.

In these hybrid partitioning approaches, some partition levels are nonstandard while at
other levels partitioning is performed using Ungerboeck's rules [Ungl]. In this manner, a

184 THE ART OF ERROR CORRECTING CODING

Y
A ,

0110 o b 1 3 d l 0 0011
c2 - - 8

s=2 j S::l j , s=o

......

-3 s=5 -1 : S =4 i l s=3 3
l b X

1110 @)e.. 1011

S=6

0 : -3

Figure 113 16-QAM constellation for pragmatic TCM with two-stage decoding.

7 bits 4F- I encoder b, Natural
mapping 8 signal-point

sequence
8 bits (8,8,1)

encoder b3

Figure 114 Example of MCM with 8-PSK modulation.

good tradeoff is obtained between error coefficients and intra-level Euclidean distances. To
achieve UEP capabilities, the Euclidean distances at each partition level are chosen such that

dlS; 2 d2S; 2 . . . 2 d,S;. (9.7)

For 1 5 i 5 v, let i&(iii) be the codeword of Ci in correspondence to a Ici-bit message
vector iii, and let S = S (G) and S’ = S(G‘) denote coded 2”-ary modulation signal
sequences corresponding to message vectors U = (G I , U 2 , . . . , Gv) and ii‘ = (G;, G;, ... , G:),
respectively. The Euclidean separations [YI] between coded sequences at the i-th partition
level, for i = 1, . . . , v, are defined as

si = min{d(S,S’) : ~i # G ! , , U ~ = G S , ~ < i] , (9.8)

with SI = dl&:, s2 = d262, .. ., S , = d,SE. For transmission over an AWGN channel, the set
of inequalities (9.7) results in message vectors with decreasing error protection levels.

A

It is known from [WFH] that Ungerboeck’s partitioning rules [Ungl] are inappropriate for
multistage decoding of multilevel coded modulations, at low to medium signal-to-noise ratios,
because of the large number of nearest neighbor sequences (NN) in the first decoding stages.

Example 101 Figure 120 shows simulation results of the performance of a three-level coded
8-PSK modulation with the (64,18,22), (64,57,4) and (64,63,2) extended BCH codes (ex-
BCH codes) as component codes Ci, i = 1,2,3, respectively. The Euclidean separations are

COMBINING CODES AND DIGITAL MODULATION

- 0
1

. . --....

.....

185

Figure 115 Trellises of component codes of an example MCM with 8-PSK modulation.

SI = 12.9, s2 = s3 = 8, for 18 and 120 information bits, respectively (asymptotic coding
gains of 8.1 dB and 6 dB, respectively). The adverse effects of the number of NN (or error
coefficient) in the first decoding stage are such that the coding gains are greatly reduced.

In the following, a UEP scheme based on nonstandard partitioning is presented. The
reader is referred to [WFH, MFLI, IFMLI] for details on multilevel coding design for both
conventional (equal error protection) and UEP schemes.

Nonstandard partitioning

The block partitioning [W H] shown in Figure 121 (a) is used to construct three-level coded
8-PSK modulation schemes with UEP. In the figure, the color black is used to represent signal
points whose label is of the form Obzb3, with b z , b3 E (0, l}. Similarly, the color white is
used for points with labels l b z b 3 . A circle indicates that the label is of the form b lobs ,
bl , b3 E (0, l}, while a square is used to represent signal points with labels bl l b 3 .

It can be seen from Figure 121 (b) that in order to determine the value of the first label
bit, b l , only the X-coordinate is sufficient. If a signal point is on the left-hand half plane
(X < 0) then it corresponds to bl = 0, otherwise it corresponds to bl = 1. In the same way,
the Y-coordinate suffices to determine the value of the second label bit bz. If a signal point
lies in the upper half plane (Y > 0), then b2 = 0, otherwise bz = 1. This property of block
partitioning allows the first and second levels to be decoded independently or in parallel. A
similar observation led to the development of parallel decoding (PD) for multilevel codes
with Gray mapping in [Schr].

Multistage decoding

In the first and second decoding stages, the decision variable is just the projection of the
received signal sequence onto the X or Y axis, respectively. Figure 121 (c) shows a block

186 THE ART OF ERROR CORRECTING CODING

Figure 116 Overall trellis of an example MCM with 8-PSK modulation.

diagram of a multistage decoder for a three-level coded 8-PSK modulation with block
partitioning. The decoders for the first and second stages operate independently on the in-
phase and quadrature component of the received signal sequences, F, and F y , respectively.
Once decisions are made as to the estimates of the corresponding codewords, 61 and 62, they
are passed on to the third decoding stage.

Let 6i = (6i1, 6i2, . . . , 6in) E Ci be the decoded codeword at the i-th stage, i = l, 2 .
Before the third-stage decoding, each two-dimensional coordinate (r z j , rv j) of the received
signal F = (Fz, Fy) is projected onto a one dimensional coordinate r&, 1 5 j 5 n. The values
rkj are the decision variables used by the decoder of C,. The projection depends on the
decoded quadrant, which is indexed by the pair (Cl,, S,,), 1 5 j 5 n, as shown in the table
below.

This is a scaled rotation of F by 7r/4, so that the rotated sequence F' = (rL1, rkz, . . . , rkn)
can be decoded using a soft-decision procedure for component code C,. Note that, unlike
Ungerboeck partitioning, the independence between the first and second levels in block
partitioning results in no error propagation from the first decoding stage to the second.

For i = 1 ,2 , . . . , v, let A;) denote the number of codewords in Ci of weight W . Assuming
systematic encoding, a union bound on the bit error probability of the first decoding stage can
be written as [MFLI, IFMLI]

where d$(i) = $ [iA, + (W - i)A,I2. The probability of a bit error in the second decoding

COMBINING CODES AND DIGITAL MODULATION 187

2' -my modulation

Bits-to-signal
mapping

(a) Multilevel Encoder

.
-
r h

Decoder 1 - Delay T
t U 1

-

Delay D, Delay T2

qp-d Delay Dv-l Decoder v 'v

(b) Multistage Decoder

Figure 117 Basic structures of an encoder and a decoder of multi-level coded modulation
systems.

stage upper is also bounded by (9.9) using the same arguments above.

strategy:
The bound (9.9) can be compared with a similar one for the Ungerboeck's partitioning (UG)

(9.10)

From (9.9) and (9.10), it is observed that, while Ungerboeck's partitioning increases
exponentially the effect of nearest neighbor sequences, by a factor of 2 w , the block partitioning
has for d2,(w) = wA: an error coefficient term, 2 - w , that decreases exponentially with the
distances of the first-level component code. As a result, for practical values of &/No , the
block partitioning may yield, at the first stage, a real coding gain even greater than the
asymptotic coding gain. This is a very desirable feature of a coded modulation with UEP.

For nonstandard partitioning (NS), the second level is generally designed to have a larger
coding gain than the third level. Under this assumption, a good approximation is obtained by
assuming that decoding decisions in the first and the second decoding stages are correct,

(9.11)

188 THE ART OF ERROR CORRECTING CODING

Figure 118 Trellis and symbols used in metric computations in the first decoding stage.

1 OR ROTATE THE RECEIVED
SIGNAL POINT

,..- ..,, x b, b2= 00 (0 deg)

t * x b,b2= 01 (-45 deg)
.- X . x b, b,= l : (-90 deg)
b,b2= 11 (-135 deg)

Figure 119 Trellis and symbols used in metric computations in the third decoding stage.

Example 102 Consider a three-level 8-PSK modulation for UEP with extended BCH
(64,18,22), (64,45,8) and (64,63,2) codes as the first-, second- and third-level codes,
respectively. This coding scheme has rate equal to 1.97 bits per symbol and can be compared
with uncoded QPSK modulation, which has approximately the same rate (a difference of
only 0.06 dB). Simulation results are shown in Figure 122. S l (n , k) and UB(n, k) denote
simulations and upper bounds. An large coding gain of 8.5 dB is achieved at the BER of lop5
for 18 most important bits (14.3%) encoded in the first level. In the second and third stages,
the corresponding values of coding gain are 2.5 dB and -4.0 dB, respectively5.

Note that at this BER, the simulated coding gain at the first decoding stage is even greater than the
asymptotic coding gain (8.1 dB), because of the reduced error coefficients.

COMBINING CODES AND DIGITAL MODULATION 189

0

-1

-2
h

U:
W m
z v -3

I
rs)
0 -

-4

-5

-6

-
c

[I-

>:

"Sirn(64,18)" +

"Sirn(64,57)" -----
"Sirn(64,63)" 0

"QPSK x

L X

0 2 4 6 8 10 12
Eb/No (dB)

Figure 120 Simulation results of a three-level coded 8-PSK modulation with Ungerboeck
mapping.

9.4 Bit-interleaved coded modulation (BICPVI)

In [CTBl, CTB21, the ultimate approach to pragmatic coded modulation is presented. The
system consists of binary encoding followed by a pseudo-random bit interleaver. The output
of the interleaver is grouped in blocks of U bits which are assigned, via a Gray mapping,
to points in a 2"-ary modulation constellation. The capacity of this bit-interleaved coded
modulation (BICM) scheme has been shown to be surprisingly close to the capacity of
TCM, when Gray mapping is employed. Moreover, over flat Rayleigh fading channels, BICM
outperforms a CM with symbol interleaving [CTB2]. A block diagram of a BICM system is
shown in Figure 123.

Let X denote a 2"-ary signal constellation with minimum distance &in. For i =
1; 2: . . . U , let li(s) be the i-th bit of the label of a signal point x, and let Xi C X the
subset of signal points with labels such that the i-th bit has a value b E (0: l}.

9.4. I Gray mapping

A one-to-one and onto binary map m from { 0; l}" to X is a Gray mapping if, for all
i = l; 2; . . . ;v, and b E (0: l}, each 5 E X: has at most one nearest neighbor y E Xi, at
distance Dmin, where b' = b 1. Gray mapping is the key component of a BICM system. Its
main function is - ideally - to produce an equivalent channel that has v parallel, independent
and memoryless, binary channels. Each channel corresponds to a position in the label of a
signal x E X . For each codeword at the output of the binary encoder, the interleaver assigns
at random a position in the label of the signals t o transmit the coded bits.

190 THE ART OF ERROR CORRECTlNG CODING

Y

OOO. I O1O0

-x
-A2-A, A, A2

(b)

-
r

X -
Decoder 1

-
r

Y -

c 2

-
+ c 3

Figure 121 An 8-PSK constellation with block partitioning: (a) labeling; (b) X coordinate
projections; (c) decoder structure. (Ci denote estimated codewords in C;, i = l, 2 ,3 .)

9.4.2 Metric generation: De-mapping

Before the description of how metrics for an MLD decoder are generated, some notation is
needed. Let T denote the channel output after transmission of z. Assuming uniform input
distribution, the conditional probability of r given ti(z) = b is

p (~ l @ (z) = b) = C p (~ / ~) p (~ l t ~ (~) = b) = 2-(”-1) C ~ (T I z) . (9.12)
X E X X E X ;

Let i denote the position of the coded bit ‘uj in the label of zcT(j). At each time j , let uj be a
code symbol and the interleaved signal point, received as rcT(j) after transmission over
a noisy channel.

The receiver then produces bit metrics

(9.13)

for b = 0; l and i = 1; 2,. . . ~ v.

decisions based on the rule
An MLD algorithm, such as the Viterbi algorithm, uses the above metrics and makes

191

l o +

l
-l0 t

i,

i,

?
i

i

X

X

i "SI (64,18)"
t, "UB(64,I 8)"

0.
0.. 'W "UB/64.45Y

-5 0 5 10 15 20
Eb/No (dB)

Figure 122 Simulation results of a three-level coded 8-PSK modulation with UEP capability.
BCH component codes and block partitioning.

Encoder Modulator - Mapping - K -
j.

Channel

Decoder * Demodulator *

Figure 123 A bit-interleaved coded modulation system.

(9.14)

As before, a max-log approximation of (9.13) is possible, resulting in the approximated bit
metric,

% h (j) ; b) = max logP(5T(j) I.). (9.15)
Z€Xb'

9.4.3 Interleaving

With transmission over an AWGN channel, a short interleaver will suffice. The main purpose
is to break the correlation introduced by the 2"-ary modulation signal set, which carries U bits
per signal. Therefore, an interleaver of length equal to a few times Y is enough to approach
best performance [CTB2]. Note that this interleaver has nothing to do with the interleaver that
a turbo code or a block product code would use.

192 THE ART OF ERROR CORRECTING CODING

9.5 Turbo trellis-coded modulation (TTCM)

Conceptually, there are various approaches to the combination of turbo codes, or product
codes with interleaving, and digital modulation: Pragmatic coded modulation [LGB], turbo
TCM with symbol interleaving [RWl, RW2] and turbo TCM with bit interleaving [BDMP2].

9.5.1 Pragmatic turbo TCM

Motivated by the extraordinary performance of turbo coding schemes, in 1994 [LGB],
another pragmatic coded modulation scheme was introduced. Its block diagram is shown in
Figure 124. The main feature is, as in pragmatic TCM, the use of the turbo encoder and
decoder operating as in binary transmission mode. This requires careful computation of the
bit metrics. as in the case of BICM.

Store and i - Y mapping - X

Turbo n’ Bits-to-signal -
+

V - k k

Figure 124 Combination of a turbo encoder and digital modulation [LGB]

9.5.2 Turbo TCM with symbol interleaving

In 1995, Robertson and Worz proposed the use of recursive systematic convolutional
encoders, such as those proposed by Ungerboeck [Ungl], as components in an overall coding
system similar to that of turbo codes. A block diagram of this scheme is shown in Figure 125.
As can be seen from the diagram, interleaving operates on symbols of v bits, instead of on bits
for binary turbo codes. There is a need to puncture redundant symbols, due to the two paths
of modulated signal points. A careful component code (no parallel transitions) and interleaver
design (even positions to even positions, odd-to-odd; or even-odd and odd-even) are required.
In terms of iterative decoding, note that the systematic component cannot be separated from
the extrinsic one since they are transmitted together in one symbol. However, the LLR can be
separated into an a-priori and a systematic-and-extrinsic part. Care must be taken so that the
information is not used more than once in the component decoders. This is the reason why
redundant symbol puncturing, in the form of a selector, is needed at the output of the encoder
[RW2]. Figure 126 shows a block diagram of an iterative decoder for turbo TCM.

9.5.3 Turbo TCM with bit interleaving

In 1996, Benedetto et al. [BDMP2] proposed symbol puncturing rules such that the outputs
of the encoder contain the information bits only once. Moreover, as opposed to symbol
interleaving and puncturing of redundant symbols, multiple bit interleavers were proposed. A

COMBINING CODES AND DIGITAL MODULATION 193

v - l - k *
Mapping

k I ”+
RSC 1 M

even-to-even ns odd-to-odd

*
Mapping T

RSC 2

Figure 125 The encoder structure of a turbo TCM scheme with symbol interleaving.

Decoder 1 I

Figure 126 An iterative decoder for turbo TCM with symboi interleaving.

block diagram of the encoder structure is shown in Figure 127, for the case of two component
codes.

MAP decoding and bit metrics

The decoder structure for turbo TCM with bit interleaving is similar to that of binary turbo
codes. The main difference is that conversion of LLRs from bits to symbols, and from symbols
to bits, needs to be performed between decoders [BDMP2, VUC]. For decoding of turbo TCM
with bit interleaving, the LLRs that are computed per bit need to be converted to a symbol
level a-priori probability. Also, the a priori probabilities per symbol need to be converted to a
bit level extrinsic LLR’s.

This is done in the following way. Let X denote the 2”-ary modulation signal set. For
a symbol z(6) E X with label 6 = (b l , b2, ’ . , b”) , the extrinsic information of bit bi,
i = 1 , 2 , . . . , v, is computed as

(9.16)

194 THE ART OF ERROR CORRECTING CODING

(v - 1 - k)/2
bits

(v - 1 - k)/2
bits i Mapping

Figure 127 Encoder for turbo TCM with bit interleaving.

Similarly, the a-priori symbol probability can be computed from the extrinsic LLR at the bit
level through the expression,

(9.17)

References

[BCJR] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal Decoding of Linear Codes for
Minimizing Symbol Error Rate,” IEEE Trans. Infix Theory, vol. IT-20, pp. 284-287, Mar.
1974.

[BP] A. S. Barbulescu and S. S. Pietrobon, “Interleaver Design for Turbo Codes,” Elect. Letters,

[Bat] G. Battail, “A Conceptual Framework for Understanding Turbo Codes,” IEEE J. Sel. Areas

[BB] S. Benedetto and E. Biglieri, Principles of Digital Transmission, Kluwer Academ-

[BM] S. Benedetto and G. Montorsi, “Unveiling Turbo Codes: Some Results on Parallel
Concatenated Coding Schenes,” IEEE Trans. Info. Theory, ~01.42, no. 2, pp. 409-428, March
1996.

[BDMPI] S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara, “Serial Concatenation of
Interleaved Codes: Performance Analysis, Design, and Iterative Decoding,” IEEE Trans. Info.
Theory, vol. 44, no. 3, pp. 909-926, May 1998.

[BDMP2] S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara, “Parallel Concatenated Trellis
Coded Modulation,” Proc. 1996 IEEE Int. Con$ Comm. (ICC’96), pp. 974-978, 1996.

[Berl] E. R. Berlekamp, Algebraic Coding Theory, rev. ed., Aegean Park Press, 1984.
[Bed] E. R. Berlekamp, “Bounded Distance + 1 Soft-Decision Reed-Solomon Decoding,” IEEE

Trans. Info. Theory, vol. 42, no. 3, pp. 704-720, May 1996.
[BGI] C. Berrou and A. Glavieux, “Reflections on the Prize Paper: ‘Near Optimum Error-

Correcting Coding and Decoding: Turbo Codes’,’’ IEEE Info. Theory Soc. News., vol. 48,
no. 2, June 1998.

[BG2] C. Berrou and A. Glavieux, “Near Optimum Error Correcting Coding and Decoding,”
IEEE Trans. Comm., vol. 44, no. 10, pp. 1261-1271, Oct. 1996.

[BGT] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon Limit Error-Correcting
Coding and Decoding: Turbo-Codes,” Proc. 1993 IEEE Int. Con$ Comm. (ICC’93), pp. 1064-
1070, Geneve, Switzerland, May 1993.

[BDMS] E. Biglieri, D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications, Macmillan Publishing, 1991.

[Blah] R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, 1984.
[BL] M. Blaum, “A Family of Efficient Burst-Correcting Array Codes,” IEEE Trans. Info.

Theory, vol. 36, no. 3, pp. 671-675, May 1990.
[BZ] E.L. Blokh and V.V. Zyablov, “Coding of Generalized Concatenated Codes,” Probl. Pered.

Informatsii, vol.lO, no.1, pp. 45-50, 1974.
[BABSZ] M. Boo, F. Arguello, J. D. Bruguera, R. Doallo and E. L. Zapata, “High-Performance

VLSI Architecture for the Viterbi Algorihtm,” IEEE Trans. Comm., vol. 45, no. 2, pp. 168-176,
Feb. 1997.

vol. 30, no. 25, pp. 2107-2108, Dec. 1994.

in Comm., vol. 16, no. 2, pp. 245-254, Feb. 1998.

iclPlenum Publishers, 1999.

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

196 REFERENCES

[Bos] M. Bossert, Channel Coding for Telecommunications, John Wiley & Sons, 1999.
[BH] M. Breiling and J. B. Huber, “Combinatorial Analysis of the Minimum Distance of Turbo

Codes,” IEEE Trans. Info. Theory, vol. 47, no. 7, pp. 2737-2750, Nov. 2001.
[Bro] A. E. Brouwer and T. Verhoeff, “An Updated Table of Minimum-Distance Bounds for

Binary Linear Codes,” IEEE Trans. Info. Theory, vol. 39, no. 2, pp. 662-677, Mar. 1993.
[BW] H. 0. Burton and E. J. Weldon, Jr., “Cyclic Product Codes,” IEEE Trans. Info. Theory,

vol. IT-l 1, no. 3, pp. 433-439, July 1965.
[CCG] J. B. Cain, G. C Clark and J. M. Geist, “Punctured Convolutional Codes of Rate (n-l)/n

and Simplified Maximum Likelihood Decoding,” IEEE Trans. Info. Theory, vol. IT-25, pp. 97-
100, Jan. 1979.

[CTBI] G. Caire, G. Taricco and E. Biglieri, “Capacity of Bit-Interleaved Channels,” Elect.
Letters, vol. 32, pp. 1060-1061, June 1996.

[CTB2] G. Caire, G. Taricco and E. Biglieri, “Bit-Interleaver Coded Modulation,” IEEE Trans.
Info. Theory, vol. 44, no. 3, pp. 927-946, May 1998.

[CRKO] F. Carden, M.D. Ross, B.T. Kopp and W.P. Osborn, “Fast TCM Decoding: Phase
Quantization and Integer Weighting,” IEEE Trans. Comm., vol. 42, no. 4, pp. 808-812, Apr.
1994.

[CY] C.-C. Chao and Y.-L. Yao, “Hidden Markov Models for the Burst Error Statistics of Viterbi
Decoding,” IEEE Trans. Comm., vol. 44, no. 12, pp. 1620-1622, Dec. 1996.

Information,” IEEE Trans. Info. Theory, vol. IT-18, pp. 170-182, 1972.
[Cha] D. Chase, “A Class of Algorithms for Decoding Block Codes with Channel Measurement

[CK] P. Chaudhari and A. K. Khandani, “Using the Fourier Transform to Compute the Weight
Distribution of a Binary Linear Block Code,” IEEE Comm. Let., vol. 5 , no. I , pp. 22-24, Jan.
2001.

[CFRU] S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson and R. Urbanke, “On the Design of
Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit,” IEEE Comm. Let.,
vol. 5, no. 2, pp. 58-60, Feb. 2001.

[Cla] G. Clark and J. Cain, Error-Correction Coding for Digital Communications, Plenum Press,
1981.

[Col] 0. M. Collins, “The Subtleties and Intricacies of Building a Constraint Length 15
Convolutional Decoder,” IEEE Trans. Comm., vol. 40, no. 12, pp. 18 10-1 819, Nov. 1992.

[COT] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons,
1991.

[DFKI] Y. Desaki, T. Fujiwara and T. Kasami, “A Method for Computing the Weight
Distribution of a Block Code by Using Its Trellis Diagram,” IEICE Tran. Fundamentals, vol.

[DFK2] Y. Desaki, T. Fujiwara and T. Kasami, “The Weight Distribution of Extended Binary
Primitive BCH Codes of Length 128,” IEEE Trans. Info. Theory, vol. 43, no. 4, pp. 1364-
1371, July 1997.

[DYS] U. Dettmar, G. Yan and U. K. Sorger, “Modified Generalized Concatenated Codes and
Their Application to the Construction and Decoding of LUEP Codes,” IEEE Trans. Info.
Theory, ~01.41, no. 5 , pp. 1499-1503, Sept. 1995.

E77-A, pp. 1230-1237, Aug. 1994.

[Dho] A. Dholakia, Introduction to Convolutional Codes With Applications, Kluwer, 1994.
[DDP] D. Divsalar, S. Dolinar and F. Pollara, “Iterative Turbo Decoder Analysis Based on

Density Evolution,” IEEE J. Sel. Areas in Comm., vol. 19, no. 5, pp. 891-907, May 2001.
[DJM] D. Divsalar, H. Jin and R. J. McEliece, “Coding Theorems for Turbo-Like Codes,”

Proc. 1998 Allerton Con$ on Commurz., Control, and Computing, pp. 210-219, Univ. Illinois;
Urbana-Champaign, 1998.

[Div] D. Divsalar and F. Pollara, “Turbo Codes for Deep-Space Communications,” JPL TDA

REFERENCES 197

Progress Report 42-120, pp. 29-39, Feb. 1995.
[DP] D. Divsalar and F. Pollara, “Turbo Codes for PCS Applications,” Proc. 1993 IEEE Int.

Con$ Comm. (ICC’93), pp. 1064-1070, Geneva, Switzerland, May 1993.
[DVB] EN 310 210, ETSI, “Digital Video Broadcasting (DVB): Framing Structure, Channel

Coding and Modulation for Digital Satellite News Gathering (DSNG) and Other Contribution
Applications by Satellite,” Mar. 1997.

[EH] H. El Gama1 and A. R. Hammons, Jr., “Analyzing the Turbo Decoder Using the Gaussian
Approximation,” IEEE Trans. Info. Theory, vol. 47, no. 2, pp. 671-686, Feb. 2001.

[Elil] P. Elias, “Error-Free Coding,” IRE Trans., vol. PGIT-4, pp. 29-37, 1954.
[Eli21 P. Elias, “Coding for Noisy Channels,” IRE Conv. Rec., vol. 3, pt. 4, pp. 37-46, 1955. Also

in E.R. Berlekamp, ed., Key Papers in the Development of Coding Theory, pp. 48-55, IEEE
Press, 1974.

[Eli31 P. Elias, “Error-Correcting Codes for List Decoding,” IEEE Trans. Info. Theory, vol. 37,
no. 1, pp. 5-12, Jan. 1991.

[W] W. Feng and B. Vucetic, “A List Bidirectional Soft Output Decoder of Turbo Codes,” Proc.
Int. Symp. Turbo Codes and Rel. Top., pp. 288-292, Brest, France, Sept. 3-5, 1997.

[Forl] G. D. Forney, Jr., Concatenated Codes, MIT Press Reseach Monograph 37, 1966.
[For21 G,D, Forney, Jr., “On Decoding BCH Codes,” IEEE Trans. Info. Theory, vol. IT-l 1 , pp.

393-403, Oct. 1965. Also in E.R. Berlekamp, ed., Key Papers in the Development of Coding
Theory, pp. 149-155, IEEE Press, 1974.

[For31 G. D. Forney, “Generalized Minimum Distance Decoding,” IEEE Trans. Info. Theory,

[For41 G. D. Forney, “Convolutional Codes I: Algebraic Structure,” IEEE Trans. Info. Theory,
vol. IT-16, no. 6, pp. 720-738, Nov. 1970.

[Fors] G. D. Forney, Jr., “Burst Correcting Codes for the Classic Bursty Channel,” IEEE Trans.
Comm. Tech., vol. COM-19, pp. 772-281, 1971.

[For61 G. D. Forney, Jr., “Coset Codes 11: Binary Lattices and Related Codes,” IEEE Trans. Info.
Theory, vol. 24, no. 5, pp. 1152-1187, Sept. 1988.

[For71 G. D. Forney, “Codes on Graphs: Normal Realizations,” IEEE Trans. Info. Theory, vol.
47, no. 2, pp. 520-548, Feb. 2001.

[Fors] G. D. Forney and G. Ungerboeck, “Modulation and Coding for Linear Gaussian
Channels,” IEEE Trans. Info. Theory, Special Commemorative Issue, vol. 44, no. 6, pp. 2384-
2415, Oct. 1998.

[FBLH] M. P. C. Fossorier, F. Burkert, S. Lin and J. Hagenauer, “On the Equivalence Between

vol. IT-12, pp. 125-131, April 1966.

SOVA and Max-Log-MAP Decodings,” IEEE Comm. Letters, vol. 2, no. 5, pp. 137-139, May
1998.

[FLC] M. P. C. Fossorier, S. Lin and D. J. Costello, Jr., “On the Weight Distribution of
Terminated Convolutional Codes,” IEEE Trans. Injo. Theory, vol. 45, no. 5, pp. 1646-1648,
July 1999.

[FLI] M. P. C. Fossorier and S. Lin, “Soft-Decision Decoding on Linear Block Codes Based on
Ordered Statistics,”IEEE Trans. Info. Theory, vol. 41, no. 5, pp. 1379-1396, Sept. 1995.

[E 2 1 M. P. C. Fossorier and S. Lin, “Differential Trellis Decoding of Convolutional Codes,”
IEEE Trans. Info. Theory, vol. 46, no. 3, pp. 10461053, May 2000.

[FL3] M. P. C. Fossorier and S. Lin, “Some Decomposable Codes: The la + zlb + zla + b + z1
Construction,” IEEE Trans. Info. Theory, vol. 43, no. 5, pp. 1663-1667, Sept. 1997.

[FL4] M. P. C. Fossorier and S. Lin, “Complementary Reliability-Based Soft-Decision Decoding
of Linear Block Codes Based on Ordered Statistics,” IEEE Trans. Info. Theory, vol. 42, no. 5,
pp. 1667-1672, Sep. 1997.

[FL5] M. P. C. Fossorier and S. Lin, “Soft-Input Soft-Output Decoding of Linear Block Codes

198 REFERENCES

Based on Ordered Statistics,” Proc. 1998 IEEE Global Telecomm. Con$ (GLOBECOM’YS)),
pp. 2828-2833, Sydney, Australia, Nov. 1998.

[FLR] M. P. C. Fossorier, S. Lin and D. Rhee, “Bit-Error Probability for Maximum-Likelihood
Decoding of Linear Block Codes and Related Soft-Decision Decoding Methods,” IEEE Trans.
Info. Theory, vol. 44, no. 7, pp. 3083-3090, Nov. 1998.

[FMH] M. P. C. Fossorier, M. MihaljeviC and H. Imai, “Reduced Complexity Iterative Decoding
of Low-Density Parity Check Codes Based on Belief Propagation,” IEEE Trans. Comm., vol.
47, no. 5, pp. 673-680, May 1999.

[FK] B. J. Frey and F. R. Kschischang, “Early Detection and Trellis Splicing: Reduced-
Complexity Iterative Decoding,” IEEE J. Sel. Areas in Comm., vol. 16, no. 2, pp. 153-159,
Feb. 1998.

[FKKL] T. Fujiwara, T. Kasami, A. Kitai and S. Lin, “On the Undetected Error Probability of
Shortened Hamming Codes,” IEEE Trans. Comm., vol. COM-33, pp. 570-574, June 1985.

[Gal] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Info. Theory, vol. 8, no. I ,
pp. 21-28, Jan. 1962.

[GPB] R. Garello, P. Perleoni and S. Benedetto, “Computing the Free Distance of Turbo Codes
and Serially Concatenated Codes with Interleavers: Algorithms and Applications,” IEEE J.
Sel. Areas in Comm., vol. 19, no. 5, pp. 800-812, May 2001.

[GC] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University Press,
1999.

[Col] M. J. E. Golay, “Notes on Digital Coding” Proc. IRE., vol. 37, p. 657, June 1949. Also in
Key Papers in the Development of Coding Theory, E. R. Berlekamp, ed., p. 13, IEEE Press,
1974.

[Glc] J. D. GoliC, “Iterative Optimum Symbol-by-Symbol Decoding and Fast Correlation
Attacks,” IEEE Trans. Info. Theory, vol. 47, no. 7, pp. 3040-3049, Nov. 2001.

[GZ] D. Gorenstein and N. Zierler, “A Class of Error Correcting Codes in p m Symbols,” J.
SIAM, vol. 9, pp. 207-214, June 1961.

[Cur] V. Guruswami and M. Sudan, “Improved Decoding of Reed-Solomon and Algebraic-
Geometry Codes,” IEEE Trans. Info. Theory, vol. 45, no. 6, pp. 1757-1767, Sep. 1999.

[Hag] J. Hagenauer, “Rate-Compatible Punctured Convolutional Codes (RCPC Codes) and their
Applications,” IEEE Trans. Comm., vol. 36, no. 4, pp. 389-400, April 1988.

[HH] J. Hagenauer and P. Hoher, “A Viterbi Algorithm with Soft-Decision Outputs and Its
Applications,” Proc. 1989 IEEE Global Telecomm. Con$ (GLOBECOM’89), pp. 47.1.1-
47.1.7, Dallas, Texas, 1989.

[HOP] J. Hagenauer, E. Offer and L. Papke, “Iterative Decoding of Binary Block and
Convolutional Codes,” IEEE Truns. Info. Theory, vol. 42, no. 2, pp. 429-445, Mar. 1996.

[Haw] E. K. Hall and S. G. Wilson, “Stream-Oriented Turbo Codes,” IEEE Trans. Info. Theory,
vol. 47, no. 5, pp. 1813-1831, July 2001.

[Ham] R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell Syst. Tech. J.,
vol. 29, pp. 147-160, 1950. Also in Key Papers in the Development of Coding Theory, E. R.
Berlekamp, ed., pp. 9-12, IEEE Press, 1974.

[Hay] S. Haykin, Digital Communications, John Wiley and Sons, 1988.
[Hew] C. Heegard and S. B. Wicker, Turbo Coding, Kluwer Academic Press, 1999.
[HEK] A. P. Hekstra, “An Alternative to Metric Rescaling in Viterbi Decoder,” IEEE Trans.

[Her] I. N. Herstein, Topics in Algebra, 2nd ed., John Wiley and Sons, 1975.
[HEM] J. Hokfelt, 0. Edfors and T. Maseng, “A Turbo Code Interleaver Design Criterion Based

on the Performance of Iterative Decoding,” IEEE Comm. Let., vol. 5, no. 2, pp. 52-54, Feb.
200 1.

Comm., vol. 37, no. 11, pp. 1220-1222, Nov. 1989.

199 REFERENCES

[HMI B. Honay and G.S. Markarian, Trellis Decoding of Block Codes: A Practical Approach,
Kluwer, 1996.

[HMF] B. Honary, G.S. Markarian and P. G. Farell, “Generalised Array Codes and Their Trellis
Structure,” Elect. Letters, vol. 28, no. 6, pp. 541-542, Mar. 1993.

[Hsia] M.Y. Hsiao, “A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes,” IBM
J. Res. and Dev., vol. 14, July 1970.

[IH] H. Imai and S. Hirakawa, “A New Multilevel Coding Method Using Error-Correcting
Codes,” IEEE Trans. Info. Theory, vol. IT-23, no. 3, pp. 371-377, May 1977.

[IFMLI] M. Isaka, M. P. C. Fossorier, R. H. Morelos-Zaragoza, S. Lin and H. Imai,
“Multilevel Coded Modulation for Unequal Error Protection and Multistage Decoding. Part
11: Asymmetric Constellations,” IEEE Trans. Comm., vol. 48, no. 5, pp. 774-784, May 2000.

[ISTCl] Proceedings of the International Symposium on Turbo Codes and Related Topics, Brest,
France, September 3-5, 1997.

[ISTC2] Proceedings of the Second International Symposium on Turbo Codes and Related
Topics, Brest, France, September 4-7, 2000.

[ITCG] Special Issue on Codes and Graphs and Iterative Decoding Algorithms, IEEE Trans.
Info. Theory, vol. 47, no. 2, Feb. 2001.

[Jer] M. C. Jeruchim, P. Balaban and K. S. Shanmugan, Simulation of Communication Systems,
Plenum Press, 1992.

[Joh] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Coding, IEEE Press,

[JSACl] Special Issue on the turbo principle: from theory to practice. Part I, IEEE J. Sel. Areas
in Comm., vol. 19, no. 5, May 2001.

[JSAC2] Special Issue on the turbo principle: from theory to practice. Part 11, IEEE J. Sel. Areas
in Comm., vol. 19, no. 9, Sept. 2001.

[Kam] N. Kamiya, “On Algebraic Soft-Decision Decoding Algorithms for BCH Codes,” IEEE
Trans. Info. Theory, vol. 47, no. l , pp. 45-58, Jan. 2001.

[KNIH] T. Kaneko, T. Nishijima, H. Inazumi and S. Hirasawa, “An Efficient Maximum-
Likelihood Decoding Algorithm for Linear Block Codes with Algebraic Decoder,” IEEE
Trans. Info. Theory, vol. 40, no. 2, pp. 320-327, Mar. 1994.

[Kasl] M. Kasahara, Y. Sugiyama, S. Hirasawa and T. Namekawa, “A New Class of Binary
Codes Constructed on the Basis of BCH Codes,” IEEE Trans. Info. Theory, vol. IT-21, pp.

[Kas2] M. Kasahara, Y. Sugiyama, S. Hirasawa and T. Namekawa, “New Classes of Binary
Codes Constructed on the Basis of Concatenated and Product Codes,” IEEE Trans. Info.
Theory, vol. IT-22, no. 4, pp. 462-468, July 1976.

[Kasm] T. Kasami, “A Decoding Procedure for Multiple-Error-Correcting Cyclic Codes,” IEEE
Trans. Info. Theory, vol. IT-10, pp. 134-138, 1964.

[U P] T. Kasami, S. Lin and W. W. Peterson, “Polynomial Codes,” IEEE Trans. Info. Theory,
vol. IT-14, no. 6, pp. 807-814, Nov. 1968.

[KKTFL] T. Kasami, T. Koumoto, T. Takata, T. Fujiwara and S. Lin, “The Least Stringent
Sufficient Condition on the Optimality of Suboptimally Decoded Codewords,” Proc. 1995
IEEE Int. Symp. Info. Theory (ISIT’95), p. 470, Whistler, Canada, 1995.

[Kaz] P. Kazakov, “Fast Calculation of the Number of Minimum-Weight Words of CRC Codes,”
IEEE Trans. Info. Theory, vol. 47, no. 3, pp. 1190-1195, March 2001.

[KLF] Y. Kuo, S. Lin and M. P. C. Fossorier, “Low-Density Parity-Check Codes Based on Finite
Geometries: A Rediscovery and New Results,” IEEE Trans. Info. Theory, vol. 47, no. 7, pp.

[KFL] R. R. Kschischang, B. J. Frey and H.-A. Loeliger, “Factor Graphs and the Sum-Product

1999.

582-585, 1975.

271 1-2736, NOV. 2001.

REFERENCES

Algorithm,” IEEE Trans. Info. Theory, vol. 47, no. 2, pp. 498-519, Feb. 2001.
[KV] R. Koetter and A. Vardy, “Algebraic Soft-Decision Decoding of Reed-Somon Codes,”

Proc. 2000 IEEE Int. Symp. Info. Theory (ISIT’OO), p. 61, Sorrento, Italy, June 25-30, 2000.
[Lee] L. H. C. Lee, Convolutional Coding: Fundamentals and Applications, Artech House,

1997.
[LGB] S. Le Goff, A. Glavieux and C. Berrou, “Turbo-Codes and High-Spectral Efficiency

[LC] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications,

[LKFF] S. Lin, T. Kasami, T. Fujiwara and M. Fossorier, Trellises and Trellis-Based Decoding
Algorithms for Linear Block Codes, Kluwer Academic Press, 1998.

[LYHH] J. Lodge, R. Young, P. Hoeher and J. Hagenauer, “Separable MAP ‘Filters’ for the
Decoding of Product and Concatenated Codes,” Proc. 1993 IEEE Int. Con$ Comm. (ICC’93),
pp. 1740-1745, May 1993.

[Mac] D. J. C. MacKay, “Good Error-Correcting Codes Based on Very Sparse Matrices,” IEEE
Trans. Info. Theory, vol. 45, no. 2, pp. 399-432, Mar. 1999.

[MN] D. J. C. MacKay and R. M. Neal, “Near Shannon Limit Performance of Low Density
Parity Check Codes,” Electronics Letters, vol. 32, pp. 1645-1646, 1996.

[MS] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North-
Holland, 1977.

[Man] D. Mandelbaum, “Decoding Beyond the Designed Distance of Certain Algebraic Codes,”
Info. and Control, vol. 35, pp. 209-228, 1977.

[MT] P. A. Martin and D. P. Taylor, “On Adaptive Reduced-Complexity Iterative Decoding,”
Proc. 2000 IEEE Global Telecomm. Con$ (GLOBECOM’OO), pp. 772 -776,2000.

[Masl] J. L. Massey, Threshold Decoding, MIT Press, 1963.
[Mas21 J.L. Massey, “Shift Register Synthesis and BCH Decoding,” IEEE Trans. Info. Theory,

[Mas31 J. L. Massey, “Coding and Modulation in Digital Communications,” Proc. Int. Zurich

[Mas41 J. L. Massey, “The How and Why of Channel Coding,” Proc. Int. Zurich Seminar on

[MW] B. Masnick and J. Wolf, “On Linear Unequal Error Protection Codes,” IEEE Trans. Info.

[McE] R. J. McEliece, The Theory oflnformation and Coding, Addison-Wesley, 1977.
[MMC] R. J. McEliece, D. J. C. MacKay and J.-F. Cheng, “Turbo Decoding as an Instance of

Pearls’ ‘Belief Propagation’ Algorithm,” IEEE J. Sel. Areas in Comm., vol. 16, no. 2, pp.
140-152, Feb. 1998.

[Meg] J.E. Meggit, “Error Correcting Codes for Correcting Bursts of Errors,” IBM J. Research
Develop., no. 4, pp. 329-334, 1960.

[ML] A.M. Michelson and A.H. Levesque, Error-Control Techniques for Digital Communica-
tions, John Wiley and Sons, 1985.

[MG] M. J. MihaljeviC and J. D. GoliC, “A Comparison of Cryptoanalitic Principles Based on
Iterative Error Correction,” Advances in Cryptology - EUROCRYPT’91 (Lecture Note in
Computer Science), vol. 547, pp. 527-531, Springer-Verlag, 1991.

[MFKL] R. H. Morelos-Zaragoza, T. Fujiwara, T. Kasami and S. Lin, “Constructions of
Generalized Concatenated Codes and Their Trellis-Based Decoding Complexity,” IEEE Trans.
Info. Theory, vol. 45, no. 2, pp. 125-731, Mar. 1999.

[MI] R. H. Morelos-Zaragoza and H. Imai, “Binary Multilevel Convolutional Codes with
Unequal Error Protection Capabilities,” IEEE Trans. Comm., vol. 46, no. 7, pp. 850-853, July

Modulation,” Proc. 1994 IEEE Int. Con$ Comm. (ICC’94), pp. 645-649, 1994.

Prentice-Hall, 1983.

vol. IT-15, no. 1, pp. 122-127, Jan. 1969.

Seminar on Dig. Comm., pp. E2(I)-E2(4), Zurich, Switzerland, 1974.

Dig. Comm., pp. 67-73, Zurich, Switzerland, 1984.

Theory, vol. IT-13, no. 4, pp. 600-607, July 1967.

REFERENCES 20 1

1998.
[MM] R. H. Morelos-Zaragoza and A. Mogre, “A Two-Stage Decoder for Pragmatic Trellis-

Coded M-PSK Modulation Using a Symbol Transformation,” IEEE Trans. Comm., vol. 49,
no. 9, pp. 1501-1505, Sept. 2001.

[MFLI] R. H. Morelos-Zaragoza, M. P. C. Fossorier, S. Lin and H. Imai, “Multilevel Coded
Modulation for Unequal Error Protection and Multistage Decoding. Part I: Symmetric
Constellations,” IEEE Trans. Comm., vol. 48, no. 2, pp. 204-213, Feb. 2000.

[Mor] J. M. Morris, “Burst Error Statistics of Simulated Viterbi Decoded BPSK on Fading and
Scintillating Channels,” IEEE Trans. Comm., vol. 40, no. 1, pp. 34-41, Jan. 1992.

[OCC] I. M. Onyszchuk, K.-M. Cheung and 0. Collins, “Quantization Loss in Convolutional
Decoding,” IEEE Trans. Comm., vol. 41, no. 2, pp. 261-265, Feb. 1993.

[Prl] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
Morgan Kaufmann, 1988.

[PSC] L. C. Perez, J. Seghers and D. J. Costello, Jr., “A Distance Spectrum Interpretation of
Turbo Codes,” IEEE Trans. Info. Theory, vol. 42, no. 6, pp. 1698-1709, Nov. 1996.

[PW] W. W. Peterson and E. J. Weldon, Jr., Error Correcting Codes, 2nd ed., MIT Press, 1972.
[Pet] W.W. Peterson, “Encoding and Error-Correction Procedures for the Bode-Chaudhuri

Codes,” IRE Trans. Info. Theory, vol. IT-6, pp. 459-470, Sept. 1960. Also in E.R. Berlekamp,
ed., Key Papers in the Development of Coding Theory, pp. 109-120, IEEE Press, 1974.

[PP] A. Picart and R. M. Pyndiah, “Adapted Iterative Decoding of Product Codes,” Proc. 1995
IEEE Global Telecomm. Con$ (GLOBECOM’YS), pp. 2357-2362, 1995.

[Plo] M. Plotkin, “Binary Codes with Specified Minimum Distances,” IEEE Trans. Info. Theory,

[Pre] 0. Pretzel, Codes and Algebraic Curves, Oxford Lecture Series in Mathematics and Its

[Pro] J. G. Proakis, Digital Communications, 3rd ed., McGraw-Hill, 1995.
[PS] M.B. Pursley and J.M. Shea, “Bit-by-Bit Soft-Decision Decoding of Trellis-Coded M -

DPSK Modulation,” IEEE Comm. Letters, vol. I , no. 5, pp. 133-135, Sept. 1997.
[Pyn] R. M. Pyndiah, “Near-Optimum Decoding of Product Codes: Block Turbo Codes,” IEEE

Trans. Comm., vol. 46, no. 8, pp. 1003-1010, Aug. 1998.
[PGPJ] R. M. Pyndiah, A. Glavieux, A. Picart and S. Jacq, “Near Optimum Decoding of Product

Codes,” Proc. 1994 IEEE Global Telecornm. Con$ (GLOBECOM’94), vol. 1, pp. 339-343, San
Francisco, CA, Dec. 1994.

[Ram] J. L. Ramsey, “Realization of Optimum Interleavers,” IEEE Trans. Info. Theory, vol. IT-
16, no. 3, pp. 338-345, May 1970.

[RR] S. M. Reddy and J. P. Robinson, “Random Error and Burst Correction by Iterated Codes,”
IEEE Trans. Info. Theory, vol. IT-18, no. 1, pp. 182-185, Jan. 1972.

[RC] I. S. Reed and X. Chen, Error-Control Coding for Data Networks, Kluwer Academic Press,
1999.

[RS] I. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,” SIAM J. Appl.
Math., Vol. 8, pp. 300-304, 1960. Also in E.R. Berlekamp, ed., Key Papers in the Development
of Coding Theory, pp. 70-71, IEEE Press, 1974.

[RSU] T. J. Richardson, M. A. Shokrollahi and R. L. Urbanke, “Design of Capacity-
Approaching Irregular Low-Density Parity-Check Codes,” IEEE Trans. Info. Theory, vol. 47,
no. 2, pp. 619-637, Fe. 2001.

[RU] T. J. Richardson and R. L. Urbanke, “The Capacity of Low-Density Parity-Check Codes
Under Message-Passing Decoding,” IEEE Trans. Info. Theory, vol. 47, no. 2, pp. 599-618,
Feb. 2001.

[Rob] P. Robertson, “Improving Decoder and Code Structure of Parallel Concatenated Recursive

vol. IT-6, pp. 445-450, 1960.

Applications, 8, 1998.

202 REFERENCES

Systematic (Turbo) Codes,” Proc. IEEE Int. Con$ Univ. Per: Comm. (ICUPC’94), pp. 183- 187,
1994.

[RVH] P. Robertson, E. Villebmn and P. Hoeher, “A Comparison of Optimal and Sub-optimal
MAP Decoding Algorithms Operating in the Log Domain,” Proc. 1995 IEEE Int. Con$ Comm.

[RWl] P. Robertson and T. Worz, “Coded Modulation Scheme Employing Turbo Codes,”

[RW2] P. Robertson and T. Worz, “Bandwidth-Efficient Turbo Trellis-Coded Modulation Using
Punctured Component Codes,” IEEE J. Sel. Areas in Comm., vol. 16, no. 2, pp. 206-218, Feb.
1998.

[SSSN] H. R. Sdajadpour, N. J. A. Sloane, M. Salehi and G. Nebe, “Interleaver Design for Turbo
Codes,” IEEE J. Sel. Areas in Comm., vol. 19, no. 5, pp. 831-837, May 2001.

[SB] G. Schnabl and M. Bossert, “Soft-Decision Decoding of Reed-Muller Codes as
Generalized Multiple Concatenated Codes,” IEEE Trans. Info. Theory, vol. 41, no. 1 , pp. 304-
308, Jan. 1995.

[Schr] P. Schramm, “Multilevel Coding with Independent Decoding on Levels for Efficient
Communication on Static and Interleaved Fading Channels,” Proc. IEEE 1997 Int. Symp. Per:,
Ind. and Mob. Radio Comm. (PIMRC’97), pp. 1196-1200, 1997.

[Sha] C. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech. J., vol. 27, pp.
379-423 and 623-656, 1948. Also in Key Papers in the Development of Information Theory,
D. Slepian, ed., pp. 5-29, IEEE Press, 1974.

[SLF] R. Shao, S. Lin and M. P. C. Fossorier, “Two Simple Stopping Criteria for Turbo
Decoding,” IEEE Trans. Comm., vol. 47, no. 8, pp. 11 17-1 120, Aug. 1999.

[Sin] R.C. Singleton, “Maximum Distance q-nary Codes,” IEEE Trans. Info. Theory, vol. IT-IO,

[SS] M. Sipser and D. A. Spielman, “Expander Codes,” IEEE Trans. Info. Theory, vol. 42, no.

[Sle] D. Slepian, “A Class of Binary Signaling Alphabets,” Bell. Sys. Tech. J . , vol. 35, pp. 203-

[Slo] N. J. A. Sloane, S. M. Reddy and C.-L. Chen, “New Binary Codes,” IEEE Trans. Info.
Theory, vol. IT-18, no. 4, pp. 503-510, July 1972.

[Sud] M. Sudan, “Decoding of Reed-Solomon Codes Beyond the Error-Correction Bound,” J.
Complexi@, vol. 12, pp. 180-193, Dec. 1997.

[SKHN] Y. Sugiyama, Y. Kasahara, S. Hirasawa and T. Namekawa, “A Method for Solving Key
Equation for Goppa Codes,” Info. and Control, vol. 27, pp. 87-99, 1975.

[Sug] Y. Sugiyama, M. Kasahara, S. Hirasawa and T. Namekawa, “Further Results on Goppa
Codes and Their Applications to Constructing Efficient Binary Codes,” IEEE Trans. Info.
Theory, vol. IT-22, pp. 518-526, 1978.

[TP] D. J. Taipale and M. B. Pursley, “An Improvement to Generalized Minimum Distance
Decoding,” IEEE Trans. Info. Theory, vol. 37, no. 1, pp. 167-172, Jan. 1991.

[TYFKL] T. Takata, Y. Yamashita, T. Fujiwara, T. Kasami and S. Lin, “On a suboptimum
decoding of decomposable block codes,” IEEE Trans. Info. Theory, vol. 40, no. 5, pp. 1392-
1406, Sept. 1994.

[TC] 0. Y. Takeshita and D. J. Costello, Jr., “New Deterministic Interleaver Designs for Turbo
Codes,” IEEE Trans. Info. Theory, vol. 46, no. 6, pp. 1988-2006, Sept. 2000.

[TLFL] H. Tang, Y. Liu, M. P. C. Fossorier and S. Lin, “On Combining Chase-2 and GMD
Decoding Algorithms for Nonbinary Block Codes,” IEEE Cornm. Letters, vol. 5, no. 5, pp.
209-2 1 1, May 200 1.

[Tan] R. M. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Trans. Info.

(ICC’95), pp. 1009-1013, 1995.

Electronics Letters, vol. 31, pp. 1546-1547, Aug. 1995.

pp. 116-118, 1964.

6, pp. 1710-1722, NOV. 1996.

234, Jan. 1956.

REFERENCES 203

Theory, vol. IT-27, no. 5, pp. 533-547, Sept. 1981.

808, May 1999.

Codes,” submitted to IEEE Trans. Comm., Mar. 2000.

[tBrl] S. ten Brink, “Convergence of iterative decoding,” Electronics Letters, vol. 35, pp. 806-

[tBr2] S. ten Brink , “Convergence Behaviour of Iteratively Decoded Parallel Concatenated

[TKK] H. Tokushige, T. Koumoto and T. Kasami, “An Improvement to GMD-like Decoding
Algorithms,” Proc. 2000 IEEE Int. Symp. Info. Theory (ISIT’OO), p. 396, Sorrento, Italy, 2000.

[Ungl] G. Ungerboeck, “Channel Coding with MultilevelPhase Signals,” IEEE Trans. Info.
Theory, vol. IT-28, no. 1 , pp. 55-67, Jan. 1982.

[Ung2] G. Ungerboeck, “Trellis-Coded Modulation with Redundant Signal Sets I: Introduction,”
IEEE Cornm. Mag., vol. 25, no. 2, pp. 5-1 1, Feb. 1987.

[Ung3] G. Ungerboeck, “Trellis-Coded Modulation with Redundant Signal Sets 11: State of the
Art,” IEEE Comm. Mag., vol. 25, no. 2, pp. 12-21, Feb. 1987.

[Van] W.J. van Gils, “Two Topics on Linear Unequal Error Protection Codes: Bounds on Their
Length and Cyclic Code Classes,” IEEE Trans. Info. Theory, vol. IT-29, no. 6, pp. 866-876,
Nov. 1983.

[VO] S. A. Vanstone and P. C. van Oorschot, An Introduction to Error Correcting Codes with
Applications, Kluwer Academic Publishers, 1989.

[Vitl] A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm,” IEEE Truns. Info. Theoly, vol. IT-13, pp. 260-269, April 1967.

[Vit2] A. J. Viterbi, “Convolutional Codes and Their Performance in Communication Systems,”
IEEE Trans. Comm., vol. COM-19, no. 4, pp. 751-772, 1971.

[Vid] A. J. Viterbi, “An Intuitive Justification and a Simplified Implementation of the MAP
Decoder for Convolutional Codes,” IEEE J. Sel. Areas in Cornm., vol. 16, no. 2, pp. 260-264,
Feb. 1998.

[Vit4] A.J. Viterbi, J.K. Wolf, E. Zehavi and R. Padovani, “A Pragmatic Approach to Trellis-

[ViOm] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding,

[VUC] B. Vucetic and J. Yuan, Turbo Codes: Principles and Applications, Kluwer Academic,

[WFH] U. Wachsmann, R. F. H. Fischer and J. B. Huber, “Multilevel Codes: Theoretical
Concepts and Practical Design Rules,” IEEE Trans. Info. Theory, vol. 45, no. 5 , pp. 1361-
1391, July 1999.

[W] B. E. Wahlen and C. Y. Mai, “Turbo Coding Applied to Pragamtic Trellis-Coded
Modulation,” IEEE Comm. Letters, vol. 4, no. 2, pp. 65-67, Feb. 2000.

[Well E. J. Weldon, Jr., “Decoding Binary Block Codes on Q-ary Output Channels,” IEEE Trans.
Info. Theory, vol. IT-17, no. 6, pp. 713-718, Nov. 1971.

[Wib] N. Wiberg, “Codes and Decoding on General Graphs,” Ph.D. dissertation, Dept. Elect.
Eng., Linkoping Univ., 1996.

[Wic] S. B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice-
Hall, 1995.

[WB] S.B. Wicker and V.K. Bhargava, Reed-Solomon Codes and Their Applications, IEEE
Press, 1994.

[Will S. G. Wilson, Digital Modulation and Coding, Prentice-Hall, 1996.
[Wol] J. K. Wolf, “Efficient Maximum-Likelihood Decoding of Linear Block Codes Using a

Trellis,” IEEE Trans. Info. Theory, vol. IT-24, no. 1, pp. 76-80, Jan. 1978.
[WV] J.K. Wolf and A. J. Viterbi, “On the Weight Distribution of Linear Block Codes formed

From Convolutional Codes,” IEEE Trans. Comm., vol. 44, no. 9, pp. 1049-1051, Sep. 1996.

Coded Modulation,” IEEE Comm. Mag., pp. 11-19, July 1989.

McGraw-Hill, 1979.

2000.

204 REFERENCES

[WJ] J. M. Wozencraft and 1. M. Jacobs, Principles of Communication Engineering, John Wiley

[YI] K. Yamaguchi and H. Imai, “A New Block Coded Modulation Scheme and Its Soft Decision
Decoding,” Proc. 1993 IEEE Intel: Symp. Info. Theory (ISIT’93), p. 6 4 , 1993.

[YKH] Y. Yasuda, K. Kashiki and Y. Hirata, “High-Rate Punctured Convolutional Codes for Soft
Decision Viterbi Decoding,” IEEE Trans. Comm., vol. COM-32, no. 3, pp. 325-328, March
1984.

[ZW] E. Zehavi and J.K. Wolf, “P2 Codes: Pragmatic Trellis Codes Utilizing Punctured

[ZP] V. V. Zyablov and M. S. Pinsker, “Estimation of the Error-Correction Complexity for

[Zin] V. A. Zinov’ev, “Generalized Cascade Codes,” Probl. Pered. Infonnatsii, vol. 12, no. 1, pp.

and Sons, 1965.

Convolutional Codes,” IEEE Communications Magazine, pp. 94-99, Feb. 1995.

Gallager Low-Density Codes,” Prob. Pered. Inform., vol. 11, no. 1, pp. 26-36, 1975.

5-15, 1976.

Appendix A

Weight distributions of extended
BCH codes

In this appendix, the weight distributions of all extended BCH codes of length up to 128 are

presented. The first row of a table indicates the parameters of the code "n,k,d" (this is also

the name of a file containing the weight distribution in the ECC web site.) Subsequent rows

of a table list the weight W and the number of codewords of this weight A,. These codes are

symmetric, in the sense that the relation A , = A,-,, for 0 5 W 5 n/2, holds. Consequently,

only half of the distribution is listed.

A.l Length 8
wd.8.1.8
8 1

wd.8.4.4
4 14
8 1

wd.8.7.2
2 28
4 70

A.2 Length 16
wd.16.05.08
8 30

wd.16.07.06
6 48
8 30

wd.16.11.04
4 140

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

206

6 448
8 870

wd.16.15.02
2 120
4 1820
6 8008
8 12870

A.3 Length 32

wd.32.06.16
16 62

wd.32.11.12
12 496
16 1054

wd.32.16.08
8 620
12 13888
16 36518

wd.32.21.06
6 992
8 10540
10 60512
12 228160
14 446400
16 603942

wd.32.26.04
4 1240
6 27776
8 330460
10 2011776
12 7063784
14 14721280
16 18796230

wd.32.31.02
2 496
4 35960
6 906192
8 10518300
10 64512240
12 225792840
14 471435600
16 601080390

THE ART OF ERROR CORRECTING CODING

WEIGHT DISTRIBUTIONS OF EXTENDED BCH CODES

A.4 Length 64

wd.64.07.32
32 126

wd.64.10.28
28 448
32 126

wd.64.16.24
24 5040
28 12544
32 30366

wd.64.18.22
22 4224
24 5040
26 24192
28 12544
30 69888
32 30366

wd.64.24.16
16 2604
18 10752
22 216576
24 291648
26 1645056
28 888832
30 4419072
32 1828134

wd.64.30.14
14 8064
16 30828
18 631680
20 1128960
22 14022144
24 14629440
26 105057792
28 65046016
30 282933504
32 106764966

wd.64.36.12
12 30240
14 354816
16 3583020
18 27105792
20 145061280
22 603113472

207

208

24 1853011776
26 4517259264
28 8269968448
30 12166253568
32 13547993382

wd.64.39.10
10 13888
12 172704
14 2874816
16 29210412
18 214597824
20 1168181280
22 4794749760
24 14924626752
26 35889146496
28 66620912960
30 96671788416
32 109123263270

wd.64.45.08
8 27288
10 501760
12 12738432
14 182458368
16 1862977116
18 13739292672
20 74852604288
22 306460084224
24 956270217000
26 2294484111360
28 4268285380352
30 6180152832000
32 6991765639110

wd.64.51.06
6 20160
8 1067544
10 37051840
12 801494400
14 11684617344
16 119266575708
18 879321948288
20 4789977429888
22 19616032446528
24 61193769988008
26 146864398476096
28 273137809339136
30 395577405119232
32 447418802536902

THE ART OF ERROR CORRECTING CODING

WEIGHT DISTRIBUTIONS OF EXTENDED BCH CODES

wd.64.57.04
4 10416
6 1166592
8 69194232
10 2366570752
12 51316746768
14 747741998592
16 7633243745820
18 56276359749120
20 306558278858160
22 1255428754917120
24 3916392495228360
26 9399341113166592
28 17480786291963792
30 25316999607653376
32 28634752793916486

wd.64.63.02
2 2016
4 635376
6 74974368
8 4426165368
10 151473214816
12 3284214703056
14 47855699958816
16 488526937079580
18 3601688791018080
20 19619725782651116
22 80347448443237936
24 250649105469666110
26 601557853127198720
28 1118770292985240200
30 1620288010530347000
32 1832624140942591500

A S Length 128

wd.128.008.064
64 254

wd.128.015.056
56 8128
64 16510

wd.128.022.048
48 42672
56 877824
64 2353310

209

wd.128.029.044

210

44 373888
48 2546096
52 16044672
56 56408320
60 116750592
64 152623774

wd.128.036.032
32 10668
36 16256
40 2048256
44 35551872
48 353494848
52 2028114816
56 7216135936
60 14981968512
64 19484794406

wd.128.043.032
32 124460
36 8810752
40 263542272
44 4521151232
48 44899876672
52 262118734080
56 915924097536
60 1931974003456
64 2476672341286

wd.128.050.028
28 186944
32 19412204
36 113839296
40 33723852288
44 579267441920
48 5744521082944
52 33558415333632
56 117224663972352
60 247312085243776
64 31699236111910

wd.128.057.024
24 597408
28 24579072
32 2437776684
36 141621881856
40 4315318568736
44 74150180302848
48 73528925007168
52 4295496356229120
56 15004724612905792

THE ART OF ERROR CORRECTING CODING

WEIGHT DISTRIBUTIONS OF EXTENDED BCH CODES 21 1

60 31655991621445632
64 4574965317267238

w d . 1 2 8 . 0 6 4 . 0 2 2
22 243840
24 6855968
26 107988608
28 1479751168
30 16581217536
32 161471882796
34 1292241296640
36 9106516329984
38 53383279307904
40 278420690161824
42 1218666847725184
44 4782630191822848
46 15858705600596992
48 47425684161326912
50 120442185147493376
52 277061634654099456
54 543244862505775360
56 967799721857135168
58 1473287478189735168
60 2041819511308530688
62 2421550630907043328
64 2617075886216910118

w d . 1 2 8 . 0 7 1 . 0 2 0
20 2674112
22 37486336
24 839699616
26 13825045248
28 188001347136
30 2140095182336
32 20510697927468
34 166689980438016
36 1156658661471040
38 6886497209935616
40 35363776220195360
42 157207798773129984
44 607468163067994304
46 2045773679068686336
48 6023796954778012480
50 15537040516548126720
52 35191124114633006464
54 70078589269156969984
56 122925566952088660288
58 190054082758956107264
60 259342737902840355456
62 312380032198035579904
64 332409207867786543910

212 THE ART OF ERROR CORRECTING CODING

wd.128.078.016
16 387096
18 5462016
20 213018624
22 539859840
24 107350803840
26 1766071867392
28 24074650400768
30 273932927993856
32 2625267567169884
34 2133648518951040
36 14805286631892608
38 881470039149213696
40 4526561735332554624
42 20122606565844068352
44 77755925658495682560
46 261859003134276581376
48 771046023044966543784
50 1988741249124011372544
52 4504463828911859699712
54 8970059328813665832960
56 15734472710169831412480
58 24326922690137187741696
60 3319587221944924483584
62 39984644079892337086464
64 42548378876302513514950

wd.128.085.014
14 341376
16 22121368
18 856967552
20 27230880768
22 680417833472
24 13721772977024
26 226128254847488
28 3081454360189952
30 35064826913355520
32 336014520825141340
34 2731238665152128768
36 1894961228051341184
38 112834993226032103936
40 579364846705294996864
42 2575849616631486204416
44 9952155728071153882112
46 33519982404512223401600
48 98687914666573428364840
50 254574296248800159922816
52 576536456040619165149184
54 1148237129819878789497856
56 213890548891825020657408

WEIGHT DISTRIBUTIONS OF EXTENDED BCH CODES 213

58 3114034684742715393815552
60 4248814088020530790422528
62 511834440874949289841152
64 5445862703373444517825478

w d . 1 2 8 . 0 9 2 . 0 1 2
1 2 1 1 9 4 8 1 6
14 45646848
16 2751682584
18 110071456768
2 0 3484410778688
22 8709939355008
24 1756359917165952
26 28944450656120832
28 394426389988237184
30 4488297727663171584
32 43009842715896693084
34 349598717578587531264
36 2425549189872597678976
38 14442886028067639783424
40 7415866532060415580416
42 329708906635048784769024
44 12738753386272545590976
46 4290559778009132197764096
48 12632047099619818751639976
50 32585525337307036591291392
52 7379663146924327761511104
54 146974422148866514243084288
56 25777786830680023693247232
58 39859662823272583189523712
60 543847945961233393472654592
62 655148393268075658872238080
64 69770096246413149145713094

w d . 1 2 8 . 0 9 9 . 0 1 0
1 0 7 9 6 5 4 4
12 90180160
14 6463889536
16 347764539928
18 14127559573120
20 44575475469248
22 11149685265467776
24 224811690627712384
26 370489537782191104
28 50486556173121673600
30 574502176730571255552
32 5505259786944679990620
34 44748635720273383143168
36 31047029627999439297536
38 1848689417301349247899904
40 9492309123731911851566976

214 THE ART OF ERROR CORRECTING CODING

42 42202740212894624045103744
44 16356041742389991882232512
46 549191653602919908961484160
48 1616902022803263350264149928
50 4170947258582865019960480640
52 9445968792041391795950926784
54 1881272610465984668145312896
56 3299556702053516278222434304
58 5102036860227828704471599232
60 6961253682581943211726121216
62 83858994648317780352552315392
64 89224971989631194512677986758

wd.128.106.008
8 774192
10 105598976
12 11361676032
14 828626841600
16 44515013174520
18 1808265733435392
20 57056968214853376
22 1427159096213901312
24 28775892186952836240
26 474226642406696116224
28 6462279071735110418944
30 73536278816433772929024
32 704673252880779235687452
34 5727825370458099461038080
36 39740197928028063063904768
38 236632245414203838081949696
40 1215015567801313175697152304
42 5401950747433627456981266432
44 20871173342366872859566014720
46 70296531663247684816378728448
48 206963458912891026277198168776
50 533881249113840797115223461888
52 1209084005346591905941683436800
54 2408028941464856710061855682560
56 4223432578506218555128558121488
58 6530607181280659655017851666432
60 8910404713446325250255943109632
62 10733951315294301174491841282048
64 11420796414343588424136158689350

wd.128.113.006
6 341376
8 87288624
10 13842455424
12 1448180487936
14 106141978256640
16 5697211389035256

WEIGHT DISTRIBUTIONS OF EXTENDED BCH CODES 215

18 231462916338818304
20 7303265469631124224
23 182676478544670888576
24 3683313800412335283600
26 60701011366229993420928
28 827171718544587565763072
30 9412643693444880033139200
32 90198176361260636112668700
34 733161647428265153721100800
36 5086745334774298795535505920
38 30288927413044862466125137280
40 155521992678499175905941507120
42 691449695671693087458634462080
44 2671510187822394963671294035200
46 8997956052897506127123622265600
48 26491322740844548554720461440200
50 68336799886586511592317937195776
52 154762752684328935230921657151744
54 308227704507572032682000507510400
56 540599370048672363242473684364048
58 835917719204114526888908154932352
60 1140531803320872201314876100099072
62 1373945768357978846215074177297408
64 1461861941035652013200273232486470

wd.128.120.004
4 85344
6 42330624
8 11170182384
10 1772228014592
12 185359804775712
14 13586256544975872
16 729242357526446712
18 29627257927486958592
20 934817955092922629344
22 23382589365749366429184
24 471464166034059302122704
26 7769729456174562056216064
28 105877979970476869275385504
30 1204818392766796825789470720
32 11545366574237052418777217820
34 93844690870798540052434360320
36 651103402851220082586931517920
38 3876982708869397190103809681920
40 19906815062848699462140058602480
42 88505561045975275152200314606080
44 341953304041268345847846829061280
46 1151738374770880217441839661716480
48 3390889310828097487679807613566280
50 8747110385483091255323050018747392
52 19809632343594061105640384790579552

216 THE ART OF ERROR CORRECTING CODING

54 39453146176969302060067713110615552
56 69196719366229927819863672056678992
58 106997468058126854441956301420662272
60 145988070825071389633119654266397216
62 175865058349821585715411392357912576
64 187118328452563149209991044344449600

wd.128.127.002
2 8128
4 10668000
6 5423611200
8 1429702652400
10 226846154180800
12 23726045489546400
14 1739040916651367936
16 93343021201262198784
18 3792289018215984005120
20 119656698232656988471296
22 2992971438910354793431040
24 60347413251942500075044864
26 994525370392012056264966144
28 13552381436214964486037045248
30 154216754274170157987417554944
32 1477806921502279921677734248448
34 12012120431462387730048509542400
36 83341235564955678220181980577792
38 496253786735284008587127926292480
40 2548072328044630786408938247028736
42 11328711813884834832046711017308160
44 43770022917282358845017689455329280
46 147422511970672750843485296833593344
48 434033831785996763487994252512722944
50 1119630129341835894935101449793699840
52 2535632939980039741724790850645393408
54 5050002710652071717329822398986321920
56 8857180078877432500571052147864502272
58 13695675911440237013532474696584396800
60 18686473065609143965712255676040871936
62 22510727468777167143671172081479843840
64 23951146041928103937688710428982509568

Index
2" -ary weight of an integer, 46

Algebraic geometry codes, 61
A-posteriori probability (APP), 122, 135
ARQ, 99
Array code, 1 13
Asymptotic coding gain, 173, 187

Augmented code, 104
Automatic repeat request, 99
AWGN channel, 15, 122

greater than, with block partitioning, 187

metric

reliability, 129
equivalence to changing sign, 122

BCH Bound, 45
BCH code, 44

extended, 57
general decoder, 48
how to compute weight distribution, 57
performance AWGN channel, 57
specified by zeros, 45

Berlekamp-Massey algorithm, 47
Euclidean algorithm, 47
general, 48
Massey algorithm, 63
PGZ algorithm, 47

BCJR algorithm, 137
BEC channel, 55
Belief propagation decoding, 162
Berlekamp-Massey algorithm, 47,49-52

BCH decoder

discrepancy, 49
errors-and-erasures

errata evaluator, 68
errata locator, 68
modified discrepancy, 68
modified Forney algorithm, 68
modified Forney syndrome, 67

Bit error probability

Block code concept, 3
Boolean function, 27
Bound

AWGN, 2

BCH, 45
bit error probability, AWGN channel, 57

Chernoff, 19
Hamming, l I

RS decoder, 72
union

nonbinary case, 12

AWGN channel, 16
convolutional code, 84
multilevel modulation code for UEP, 186

Burst error correcting capability, 113

Chase algorithm, 129
soft output, 156

correction factor, 157
scaling factor, 157

Chien search, 55
Code

self-dual, 7 ,29
Coded modulation

bit-interleaved (BICM), 189
main idea, 2
MCM, 2,173, 180

multistage decoding, 182
parallel decoding, 185
unequal error protection, 183

symbol transformation, 177
two-stage decoding, 176

example modified state diagram, 176
MLD decoding, 175

turbo trellis(TTCM), 192
Coding gain, 2, 16

asymptotic, 173, 187
Complementary error function (erfc), 2
Concatenated code, 115
Concatenated coding, 2
Conjugate elements, 43
Constellation, 170
Construction X3, 109
Convolutional code, 2

Pragmatic TCM

TCM, 2, 173, 174

block code obtained from, 79
complete weight enumerator sequence, 83
constraint length, 74

The Art of Error Correcting Coding
Robert H. Morelos-Zaragoza

Copyright © 2002 John Wiley & Sons Ltd
ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)

218 THE ART OF ERROR CORRECTING CODING

defined, 3
direct-truncation, 80
finite-state machine, 73
generator sequences, 75
polynomial generator matrix, 77
recursive systematic (RSC code), 78
RSC code, 144
state diagram, 74
tail-biting, 80
union bound over BSC and AWGN channels,

84
weight distribution block codes from, 8 1-84
weight enumerating sequence, 82
zero-tail code, 79

Correlation discrepancy, 133
Coset, 104

decomposition, 104, 109, 118
leader, 10
representative, 118, 140

CRC code, 37
popular polynomials, 38

Cycle set, 43
Cyclic code

defined, 33
encoding by division by B(x), 36
extended, 57
general decoder, 39
MLS code, 37
RM code, 29
shortened, 37
syndrome decoding, error-trapping, 39
zeros of, 34

Cyclic shift, 33
Cyclotomic coset, 43

Decoding
BCH codes general, 48
BCJR algorithm, 137
Belief propagation, 162
Berlekamp-Massey algorithm, 47,49-52
Chase algorithm, 129

soft output, 156
Chien search, 55
Depth, 88
Euclidean algorithm, 47,53-54
Forney algorithm for RS codes, 62
GMD algorithm, 132
Log-MAP algorithm, 139
look-up table, 10
MAP algorithm, 137
Massey algorithm, 63
Max-Log-MAP algorithm, 140
MLD, 86, 175

Modified Forney algorithm, 68
ordered statistics algorithm, 131

Parallel for multilevel codes, 185
PGZ algorithm, 47,52-53
SOVA algorithm, 134
Sudan algorithm, 67, 134
SW-SOVA algorithm, 136
two-stage, 115, 176
Viterbi algorithm, 85-94
with standard array, 8

Decomposable code, 107, 117
Direct-truncation code, 80
Discrepancy Berlelamp-Massey algorithm, 49
Disjunctive normal form, 27
Distance

designed of BCH code, 44
free, 79
Hamming, 4
minimum Hamming, 4
minimum squared Euclidean, 173
squared Euclidean, 15

Dual code, 6
example, 7
of cyclic code, 37
of RM code, 28

soft-output, 140

Encoding
non-systematic, 35
recursive with parity-check matrix, 36
systematic, 16, 35
with generator matrix, 8
with parity-check matrix, 8

Erasure, 55
value, 67

Erasure correction for binary linear codes, 55
Erasure locator polynomial, 67
Error

positions, 47
values, 47

Error bursts, 2
Error correcting capability, 5
Error correcting code

as subset, 4
defined, 3
minimum Hamming distance, 4

Error evaluator polynomial, 62
Error locator polynomial, 47
Error polynomial, 46
Error propagation, 186
Euclidean algorithm, 47, 53-54

Euclidean geometry (EG) code, 45
polynomials same up to a constant, 66

INDEX 219

Extended code. 103

Factoring polynomials in GF(2m) is hard, 55
Field, 40

Galois, 40
arithmetic, 41
element order, 43
representations, 41

Finding factors of z2m - + 1,43
Finite geometry, 28
Flat Rayleigh fading channel

bound, 18
model, 17

Fomey algorithm, 62
Fourier transform

Free distance, 79
BCH decoding with, 67

Gallager code, 160
Galois field, 40
Generalized concatenated code, 117

array codes, 113
Generator matrix, 6
Generator polynomial, 34

of BCH code, 44
of RS code, 62

GMD decoding, 132
Golay code, 25
Greatest common divisor (GCD), 53

Hamming code, 23
shortened (71,64,3) code, 37

Hamming space
defined, 4
distance, 4
sphere, 5

general structure, 20
Hard-decision decoding, 16

Incidence vector, 29
Inner code, 1 10
Interleaver, 152

block, 111
convolutional, 116
cyclic, 114
Ramsey, 111, 116, 152
random, 152
S-random, 152

Irreducible factors, 34
Irregular LDPC code

Iterative belief propagation algorithm

Iterative belief propagation decoding, 162

record performance, 3

message passing, 163

Iterative bit-flip decoding, 161
Iterative decoding convergence, 152

Key equation, 41

LDPC code, 159

Likelihood, 85
Linear code

Linear feedback shift-register (LFSR), 49
List decoding, 134
Log and antilog tables, 42
Log-likelihood metric, 122
Log-likelihood ratio (LLR), 145

Log-MAP algorithm, 139
Low-density panty-check code, 159

MacWilliams identity, 56
MAP algorithm, 137
Massey algorithm, 63
Matrix

error detection capability, 166

as vector subspace, 6

extrinsic, 146

generator and parity-check, 6
Vandermonde, 45

Max-Log-MAP algorithm, 140
Maximum-a-posteriori probability, 137
Maximum-distance-separable (MDS) code, 62

Maximum-length sequence (MLS) code, 37
Meggit decoder, 39
Message passing, 163
Metric

log-likelihood, 122
Metric normalization, 90
Minimal polynomial, 43
Minimum Hamming distance, 4
Minimum squared Euclidean distance, 173
MLD decoding, 175

weight distribution, 71

defined, 15
Viterbi algorithm, 86

Modified Fomey syndrome, 67
Modified syndrome polynomial, 67
Modulation as mapping, 170
Monte Carlo integration, 19
MSED, 173
Multilevel coding, 180
Multilevel modulation code

Multistage decoding, 182
definition, 18 1

Natural labeling, 174
Non-primitive BCH codes, 38
Non-systematic cyclic code, 35

220 THE ART OF ERROR CORRECTING CODING

Nyquist bandwidth, 169

Order of an element in GF(2m) , 43
Ordered statistics decoding, 13 1
Orthogonal checks, 30
Outer code. 1 IO

Parallel concatenated code, 147
Parallel decoding of multilevel codes, 185
Parity-check matrix, 6

of BCH code, 45
of cyclic code, 36

Parity node, 159
Parity sub-matrix, 7
Partition level, 1 17-1 18
Path memory, 87,88
Pearl’s algorithm, 162
Perfect code

definition, 1 1
Permutation, 11 1
Permutation matrix, 147
PGZ algorithm, 47, 52-53
Polynomial

associated with vector, 33
erasure locator, 67
errata locator, 68
error, 46
error evaluator, 62
error locator, 47
generator, 34
minimal, 43
modified syndrome, 67
parity-check, 36
primitive, 41
syndrome, 39

Polynomial code, 27,45
Primitive

element, 41
polynomial, 41

a-posteriori, 135
AWGN, Q-function, 2
bit error, 16
bit error, BPSK over AWGN, 2
correct decoding, 14
incorrect decoding, 14
undetected error, 13

Product code, 109
decoding, 1 15

Projective geometry (PG) code, 45
Punctured code, 103
Punctured convolutional codes, 94
Puncturing

as shortening the dual code, 103

Probability

Q-function, 2

RCPC codes, 98
Reed-Muller (RM) code, 27,45, 119

decoder for cyclic code, 32
majority-logic decoding, 31
number of minimum weight codewords, 29

Reed-Solomon (RS) code, 2
as polynomial code, 61
binary image of, 62
encoding as a polynomial evaluation, 61
generator polynomial, 62
weight distribution, 7 1

Reliability AWGN channel, 129
Repeat-and-accumulate code, 154
Repetition code

example, 4, 5, 11
probability decoding error, 14

bound bit error probability, 72
bound word error probability, 72
error evaluator polynomial, 62
errors-and-erasures, 67

direct solution, 71
errata evaluator, 68
errata locator, 68
modified discrepancy, 68
modified Forney algorithm, 68
modified Forney syndrome, 67

RS decoder

Forney algorithm, 62
Massey algorithm, 63

Self-dual code, 103
Set partitioning, 174

block for unequal error protection, 185
hybrid, 183

Shannon limit, 73
Shortened code, IO 1

Shortening depth, 38
Signal point, 170
Sliding window SOVA algorithm, 136
Soft decision decoding, 15
Soft-output Chase algorithm, 156
Soft-output ordered statistics algorithm, 140
SOVA algorithm, 134
Spectral efficiency, 169
Squaring construction, 108
Standard array

additional correctable error patterns, 102

as look-up table, 10
construction, 9
decoding, 8

State diagram
convolutional code, 74

INDEX

for computing weight distribution, 81
for computing weight enumerating sequence,

82, 176
Subcode property, 119
Sudan algorithm, 134
Sum-product algorithm, 162
Supercode, 104
Syndrome

as evaluation of zeros of code, 47
as vector, 9
circuit for computing, 48

Syndrome polynomial, 39
Syndrome trellis, 128
Systematic cyclic code, 35
Systematic encoding, 3

Tail-biting code, 80
Tanner graph, 159
Time-sharing code, 106
Trellis diagram, 76
Trellis structure

example 3-level coded 8-PSK modulation, 181
of array codes, 113
of block and convolutional codes, 3
Ungerboeck mapping, 174

as a punctured product code, 148
Turbocode, 106, 143, 147

component RSC code, 144
Two-dimensional code, 110
Two-stage decoding, 115, 176
Two-step majority-logic decoding, 31

Unequal error protection

Unequal error protection code, 99, 109, 118
multilevel modulation code, 183

example, I O

Vandermonde matrix, 45
Variable node, 159
Viterbi algorithm, 86-94

ACS, 94
branch synchronization, 89
traceback, 92
traceback memory, 76

Viterbi decoder
off-the-shelf, 177

Weight distribution
convolutional codes, 81-84
defined, 12
extended BCH codes, 57

Weight enumerating sequence, 82

Zero-tail code, 79

	The Art of Error Correcting Coding
	Contents
	Preface
	Foreward
	The ECC web site
	1. Introduction
	2. Hamming, Golay and Reed-Muller codes
	3. Binary cyclic codes and BCH codes
	4. Non-binary BCH codes: Reed-Solomon codes
	5. Binary convolutional codes
	6. Modifying and combining codes
	7. Soft-decision decoding
	8. Iteratively decodable codes
	9. Combining codes and digital modulation
	Reference
	A. Weight distributions of extended BCH codes
	Index

