

01_588079 ffirs.qxd 11/29/05 4:55 PM Page i

Wrox’s ASP.NET 2.0

Visual Web Developer™ 2005

Express Edition Starter Kit

David Sussman and Alex Homer

01_588079 ffirs.qxd 11/29/05 4:55 PM Page i

Wrox’s ASP.NET 2.0

Visual Web Developer™ 2005

Express Edition Starter Kit

David Sussman and Alex Homer

01_588079 ffirs.qxd 11/29/05 4:55 PM Page ii

Wrox’s ASP.NET 2.0 Visual Web Developer™ 2005
Express Edition Starter Kit
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

ISBN-13: 978-0-7645-8807-5
ISBN-10: 0-7645-8807-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/SR/RS/QV/IN

Library of Congress Control Number is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE­
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITA­
TION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE
MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. Visual Web Developer is a
trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

"Microsoft" is a registered trademark of Microsoft Corporation in the United States and/or other countries
and is used by Wiley Publishing, Inc. under license from owner. Wrox® ASP.NET 2.0 Visual Web Developer™
2005 Express Edition Starter Kit is an independent publication not affiliated with Microsoft Corporation.

www.wiley.com

01_588079 ffirs.qxd 11/29/05 4:55 PM Page iii

Credits

Senior Acquisitions Editor Vice President & Executive Group Publisher
Jim Minatel Richard Swadley

Development Editor Vice President and Publisher
Kevin Shafer Joseph B. Wikert

Technical Editors Project Coordinator
Dan Mahary Michael Kruzil
Richard Purchas

Graphics and Production Specialists
Production Editor Lauren Goddard
Pamela Hanley Denny Hager

Barbara Moore
Copy Editor Alicia B. South
Foxxe Editorial Services

Quality Control Technicians
Editorial Manager Laura Albert
Mary Beth Wakefield Leeann Harney

Jessica Kramer
Production Manager
Tim Tate Proofreading and Indexing

TECHBOOKS Production Services

About the Authors
David Sussman is a hacker in the traditional sense of the word. That’s someone who likes playing with
code and working out how things work, which is why he spends much of his life working with beta
software. Luckily, this coincides with writing about new technologies, giving him an output for his
poor English and grammar. He lives in a small village in the Oxfordshire countryside. Like many
programmers everywhere, he has an expensive hi-fi, a big TV, and no life. You can contact Dave through
his own company, ipona Limited: davids@ipona.co.uk.

Alex Homer is a computer geek and Web developer with a passion for ASP.NET. Although he has to
spend some time doing real work (a bit of consultancy and training, and the occasional conference
session), most of his days are absorbed in playing with the latest Microsoft Web technology and then
writing about it. Living in the picturesque wilderness of the Derbyshire Dales in England, he is well
away from the demands of the real world—with only an Internet connection to maintain some distant
representation of normality. But, hey, what else could you want from life? You can contact Alex through
his own software company, Stonebroom Limited: alex@stonebroom.com.

01_588079 ffirs.qxd 11/29/05 4:55 PM Page iv

02_588079 ftoc.qxd 11/29/05 3:45 PM Page v

Contents

Acknowledgments ix

Introduction xi

Chapter 1: Getting Started 1

About the Example Application 2

Installing Visual Web Developer 3

Step by Step — Using the Setup Wizard 3

Step by Step — Installing the PPQ Example Files 7

Viewing the PPQ Example Database 10

Step by Step — Viewing the PPQ Database 10

Reading and Displaying Data with ASP.NET 20

Summary 30

Chapter 2: Designing a Web Site 31

Designing a Web Site 31

Making Web Sites Accessible 32

Multilingual Web Sites and Globalization 32

Designing the Appearance of the Site 33

Templates and Master Pages 34

Navigation and Menus 35

Text Styles and Style Sheets 35

Designing the Underlying Workings of the Site 36

Data Access 36

Building a Master Page and Content Page 37

Creating the Page Structure as a Master Page 37

Choosing the Correct Element and Control Type 48

Adding the Navigation Links 48

Building Your First Content Page 55

Converting an Existing Page to a Content Page 60

Checking for Accessibility 63

Summary 65

02_588079 ftoc.qxd 11/29/05 3:45 PM Page vi

Contents

Chapter 3: Building the PPQ Database 67

Designing the PPQ Database 68

Storing the Menu Items Data 68

Applying the Rules of Normalization 69

Applying the Remaining Normalization Rules 70

Storing the Orders Data 72

The OrderItems Table 73

The Final Database Design 74

Creating and Modifying Databases in VWD 76

The Table Designer Window 78

The Query Window 80

Creating a New Database 81

Creating the PPQ OrderItems Table 82

Defining Relationships between Tables 88

Defining Relationships in the Table Designer 88

Defining Relationships with a Database Diagram 90

Extracting and Displaying the Menu Items 94

Extracting Data with a Custom SQL Statement 94

Creating a Stored Procedure 101

Using a View Instead of a Table or Stored Procedure 104

Summary 105

Chapter 4: Accessing and Displaying Data 107

Data Source and Data Display Controls 108

The Object-Oriented and Event-Driven Architecture 109

About the GridView Control 110

Using Different Column Types in a GridView 111

Using Data Display Control Templates 117

The DetailsView and FormView Controls 123

Using a DetailsView and FormView Control 123

Summary 127

Chapter 5: Displaying Nested and XML Data 129

Building Nested Data Displays 130

Creating Nested Data Displays Declaratively 131

Writing Code to Access and Display Nested Data 143

The DataReader and DataSet Objects 144

Using a DataReader with a Data Source Control 144

Generating a Single DataSet with Relationships 145

How the Code in the ShowMenu.aspx Page Works 153

vi

02_588079 ftoc.qxd 11/29/05 3:45 PM Page vii

Contents

User Controls and Binding to XML Data
Building the Delivery Costs Page
Building the Text Links User Control

Converting the XML with an XSLT Style Sheet
Creating the User Control
Converting Parts of a Page into a User Control

Summary

157

158

162

163

164

170

170

Chapter 6: Managing and Editing Data

Data Source Controls

Adding New Rows

Summary

173

173

186

193

Chapter 7: Placing an Order

The Order Process
Understanding Classes
Creating the Shopping Cart

The Shopping Cart Classes
The Shopping Cart Data Layer

The ObjectDataSource Control
The Data Layer Classes

Creating the Order Page
The Shopping Cart Page
Summary

195

196

197

198

198

212

212

213

219

225

234

Chapter 8: The Checkout Process

Paying for the Order
Collecting the Delivery Address
Collecting the Payment Details
Confirming the Order
Completing the Order
Understanding Exception Handling
Understanding Transactions
Summary

235

235

239

245

248

253

260

262

263

Chapter 9: Security and Deployment 265

Configuring Security 265

Modifying the Menu 273

vii

02_588079 ftoc.qxd 11/29/05 3:45 PM Page viii

Contents

Publishing a Site 276
Summary 278

Index 281

viii

03_588079 flast.qxd 11/29/05 3:45 PM Page ix

Acknowledgments

Producing a book like this is a huge development effort that involves a lot of people—many of whom
work behind the scenes and never get the public recognition they deserve. In an attempt to recognize
this, we would like to thank everyone at the publishers, John Wiley & Sons, who worked so hard to turn
our manuscripts into a book.

However, none of this would have been possible without the help of the ASP.NET team at Microsoft. In
particular, Scott Guthrie—who’s unique vision for ASP.NET as a development environment, and willing­
ness to share his visions and provide support for the community as a whole—made our task so much
easier. Thanks guys, and keep on building great Web programming tools!

03_588079 flast.qxd 11/29/05 3:45 PM Page x

03_588079 flast.qxd 11/29/05 3:45 PM Page xi

Introduction

This book shows you just how powerful, and yet easy to use, the new Web development environment
from Microsoft really is. Visual Web Developer 2005 Express Edition, along with the relational database SQL
Server 2005 Express Edition, allows you to build great Web sites using drag-and-drop techniques, wizards,
and a huge range of developer-friendly tools and controls. The book demonstrates this by leading you
through the creation of a fully featured and highly interactive e-commerce Web application, like those
you are used to seeing on the Internet today.

Visual Web Developer is an environment based on the latest release of the Microsoft .NET Framework,
version 2.0, which includes the Web programming and runtime features that make up ASP.NET 2.0.
ASP.NET has evolved over the previous several years from the original Microsoft Active Server pages
(ASP) scripting platform that pioneered many of the current techniques in Web programming.

However, ASP.NET leaves the scripting world behind. It offers a development environment that
generates compiled code, includes a full range of tools that enable implementation of even the most
complex feature quickly and easily, and provides plenty of resource-based help and code creation
assistance. On top of all this, the execution efficiency of the .NET platform means that your Web sites
and applications run more quickly and reliably than ever before.

This is not a reference book. You will not find listings of the objects, classes, properties, and methods
of each feature in ASP.NET. Instead, this book is task-focused to provide you with the experience of
working in Visual Web Developer, quickly getting to grips with the environment and ASP.NET,
and learning how to achieve the kinds of requirements you will meet every day as you build your
applications. For example, after a brief section on installing Visual Web Developer and an introduction
to the development environment, Chapter 1 gets you building pages that display and allow you to edit
the data in a database.

As you progress through the book, you will learn about the following:

❑ Designing the structure of your Web site

❑ Implementing the database

❑ Displaying and editing data

❑ Building a shopping cart

❑ Publishing your finished site

All of the tools and examples you need are on the CD-ROM provided with this book, and you can run
the finished example on your own machine—or even on our Web site at www.daveandal.net/
books/8079.

So, what are you waiting for? Power up your machine, install Visual Web Developer, and get started
building your next great Web site!

03_588079 flast.qxd 11/29/05 3:45 PM Page xii

Introduction

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Try It Out
The Try It Out is an exercise you should work through, following the text in the book.

1. They usually consist of a set of steps.

2. Each step has a number.

3. Follow the steps through with your copy of the database.

How It Works
After each Try It Out, the code you’ve typed will be explained in detail.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl-A.

❑ We show filenames, URLs, and code within the text like this: persistence.properties.

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists), and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

xii

03_588079 flast.qxd 11/29/05 3:45 PM Page xiii

Introduction

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox.com, and locate the title using the Search box or one
of the title lists. Then, on the book’s details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book but also as you develop your own applications. To join the forums, just follow these
steps:

1.	 Go to p2p.wrox.com and click the Register link.

2.	 Read the terms of use and click Agree.

3.	 Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4.	 You will receive an e-mail with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xiii

03_588079 flast.qxd 11/29/05 3:45 PM Page xiv

04_588079 ch01.qxd 11/29/05 3:47 PM Page 1

1

Getting Started

Developing sites and applications for the Web finally comes of age with the release of Microsoft
Visual Web Developer (VWD 2005 Express Edition) and version 2.0 of the .NET Framework. VWD
is one of the “Express” products that Microsoft provides as an expansion of the Visual Studio
product line. These are lightweight, easy-to-use, and easy-to-learn tools aimed at hobbyists,
students, and novice developers.

VWD is a lightweight tool for building dynamic Web sites and Web services. While there have
been other tools and technologies around for a long time, the great new features in VWD and
.NET 2.0 make it even easier to build, test, deploy, manage, and extend your Web sites and Web
applications. This chapter starts the process of demonstrating the capabilities of VWD, and
showing you how easy it is to build attractive, high-performance Web sites with ASP.NET 2.0.

In this chapter, you will:

❑ See the completed example application

❑ Install and set up Visual Web Developer 2005 and SQL Server 2005 Express Editions

❑ Install the example application files for this book

❑ View the example database and execute a test query

❑ Generate a simple page that uses the example database

The last two items in this list perform two tasks. They confirm that the database is properly
installed and accessible, thus avoiding any problems that may arise later on. They also let you see
just how powerful (and yet easy to use) VWD and ASP.NET 2.0 actually are. You will be amazed at
how quickly and easily you can create a page that includes many features that previously would
have required a great deal of code and development work.

04_588079 ch01.qxd 11/29/05 3:47 PM Page 2

Chapter 1

About the Example Application
In this book, you will be building a Web site that displays and sells products — a common scenario
for many Web developers today. It is not a complicated site in comparison to many “out there” but is
extensive enough to demonstrate most of the features of ASP.NET 2.0 and VWD, as well as showing you
the prime techniques and approaches that are used as the foundations for almost all Web sites built
using version 2.0 of .NET. The product you will see in the demonstration site is not complicated either.
The site is a fictional online pizza parlor that sells and delivers pizzas and drinks to customers.

Figure 1-1 shows the page in the example application that lists the items available from “Pizza Pretty
Quick,” or as you will see it described throughout the book, “PPQ.” The page header and the menu you
see at the left are part of a master page. This makes is easy to achieve a consistent look and feel for the
whole site, and saves a lot of work both when creating new pages and when updating the site design.
Data for the list of available items comes from a database table stored in a local copy of SQL Server 2005
Express Edition running on the same machine as VWD.

Figure 1-1: The completed site, showing the list of items you can order

The installation routine for VWD allows you to install SQL Server Express as part of the main program
installation. Alternatively, if required, you can access data stored in SQL Server 2000 or SQL Server
2005 on another machine. The set of examples you can download for this book contains the SQL Server
database.

2

04_588079 ch01.qxd 11/29/05 3:47 PM Page 3

Getting Started

Installing Visual Web Developer
Visual Web Developer 2005 Express Edition is available along with SQL Server 2005 Express Edition on
the CD-ROM included with this book. Both are also available for download (along with other “Express”
products) from Microsoft at http://msdn.microsoft.com/express. You can install it on Windows 98,
Windows 2000 Professional or Server, Windows XP with Service Pack 2, or Windows Server 2003. In this
book, you will see it running on both Windows XP and Windows Server 2003. Installation is easy, as you
will see in the following step-by-step guide, and there is no other configuration required after installation.

Step by Step — Using the Setup Wizard
Follow these steps to use the Setup Wizard:

1.	 If you are installing from the book’s CD-ROM and the installer doesn’t automatically begin
when you insert the CD, double click on setup.exe to start the Setup Wizard. If you downloaded
the software, double-click on the downloaded program file to start the Setup Wizard. In the
Setup Wizard, step through the screens that concern providing feedback and accepting the
license agreement. You may also have to install other updates, such as XP Service Pack 2 or the
latest Windows Installer, during this process, and these may require a reboot during the
installation.

2.	 Continue to click Next until you reach the Installation Options page that shows the list of prod­
ucts for installation (Figure 1-2). Make sure that SQL Server 2005 Express Edition is included,
and it is also a good idea to install the MSDN Express Library as well. You will see references to
help topics in these pages in various places within this book.

Figure 1-2: Installation Options page

If you would like to read more about the installation and any issues it may have, then you can click the
Readme link on the installation options screen (Figure 1-2).

3

04_588079 ch01.qxd 11/29/05 3:47 PM Page 4

Chapter 1

3.	 Click Next. In the Destination Folder page (see Figure 1-3), confirm the path where VWD will be
installed. It is recommended that you leave it set to the default. This page shows a summary of
the products for installation, and the disk space requirements.

Figure 1-3: Destination Folder page

4.	 Click Install to start the installation. After it completes, you will find entries in the Programs
section of your Start menu for Visual Web Developer and SQL Server. The SQL Server section
includes a tool that you can use to set the configuration options for SQL Server if you want to
change the services or protocols it uses. This may be necessary if you want to be able to access
SQL Server from another machine, but no changes are required when accessing it from the local
machine (as you will see in this book).

5.	 Start up VWD to confirm that it has been successfully installed. You will see the Start Page and
some empty docked windows, as shown in Figure 1-4.

4

04_588079 ch01.qxd 11/29/05 3:47 PM Page 5

Getting Started

Figure 1-4: Start Page

6.	 VWD is extremely configurable, so you can change many features to suit your preferences.
Click Options on the Tools menu to open the Options dialog (see Figure 1-5). Here you see a
simplified view of the options you can set. These include general options, the fonts and colors
used in the various windows within the IDE, the formatting options for the text and code you
type, and the target browser or HyperText Markup Language (HTML) standard that you want
to be used for validating your page content.

5

04_588079 ch01.qxd 11/29/05 3:47 PM Page 6

Chapter 1

Figure 1-5: Options dialog box

7.	 You can also exert a lot more control over a wider range of settings by ticking the “Show all
settings” checkbox at the bottom left of the Options dialog (see Figure 1-6). This displays a tree
with literally hundreds of settings available in more than 75 pages of options. Some of these of
these are not applicable to the kinds of files you will create in VWD, or when writing code using
Visual Basic 2005. However, the General pages in sections such as Environment, Help, Projects
and Solutions, Text Editor, and HTML Designer are worth a visit as you get used to using the
tool (and you now know where to look for these settings!).

Figure 1-6: Selecting the “Show all settings” checkbox

6

04_588079 ch01.qxd 11/29/05 3:47 PM Page 7

Getting Started

After installing the Visual Web Developer tool, you should install the example files for the Pizza Pretty
Quick application described in the book. To download the examples (or to see the application running
online), go to www.daveandal.net/books/8079. You can also download the examples from the Wrox
Books Web site at http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0764588079.html.

The examples download file contains two versions of the PPQ application. One is a skeleton site contain­
ing the database, the images, and other resources used in the application, but without the ASP.NET pages
that you will create by working through the chapters in this book. The other is a completed version of the
application that you can run to see what it looks like, how it works, and modify or experiment with as you
wish — without having to build the pages yourself first.

The next section describes the process for installing the samples, setting up the file permissions that are
required, and testing the application to make sure that it is working properly on your machine.

Step by Step — Installing the PPQ Example Files
Follow these steps for installing the PPQ example files:

1.	 Download the example files from one of the locations detailed earlier. The download file is a
ZIP file, and you must extract the files from it into a folder on your machine, making sure that
you retain the folder structure within the examples ZIP file. Extract the examples into a new
folder named C:/Websites/PPQ/, or into a folder of the same name on another drive. You will
see the two subfolders named skeleton and complete within the PPQ folder (see Figure 1-7).

Figure 1-7: Subfolders inside the PPQ folder

7

04_588079 ch01.qxd 11/29/05 3:47 PM Page 8

Chapter 1

2.	 If you are running Windows XP and you have Internet Information Services (IIS) installed,
you must now grant the accounts named ASPNET and NETWORK SERVICE (under which
ASP.NET executes, depending on whether you installed SP2) the required permissions to access
the database provided with the example files. (This and the remaining steps are not required
in Windows Server 2003, or if you do not have IIS installed.) In Windows Explorer, right-click
on the subfolder named App_Data within the skeleton folder and select Properties. In the
App_Data Properties dialog, select the Security tab and click the Add button to open the “Select
Users or Groups” dialog, as shown in Figure 1-8. Click the Locations button, and select the
name of your machine (not the domain it is part of) and click OK; then enter the account name
ASPNET in the text box and click the Check Names button. The full account name, including
the machine name, is underlined to indicate that is was located.

Figure 1-8: Select Users or Groups dialog

3.	 Click OK to return to the Select Users or Groups dialog, ensure the new entry ASPNET is selected
in the upper list, and select the Write option in the lower list box (see Figure 1-9); then click OK.

8

04_588079 ch01.qxd 11/29/05 3:47 PM Page 9

Getting Started

Figure 1-9: Selecting the Write option

If you cannot see a Security tab in the App_Data Properties dialog, you have Simple File Sharing

enabled. Select Folder Options from the Tools menu, and select the View tab. At the bottom of the list,

uncheck the option named Use Simple File Sharing. This option does not appear in Windows Server

2003 because this operating system does not support simple file sharing.

However, the Use Simple File Sharing option does not appear in Windows XP Home Edition either,

because this operating system uses only simple file sharing. In this case, you must restart your machine

and hold down the F8 key as it starts, and then select Safe Mode. Log in as Administrator after Windows

starts up in safe mode, and navigate to the C:\WebSites\PPQ folder in Windows Explorer. When you

right-click on the App_Data folder and select Properties, you will see that the Security tab has now

appeared.

4.	 Now, repeat the process from step 2 to give Write permission to the NETWORK SERVICE
account for the App_Data folder within the skeleton folder of the examples.

If you have not yet installed Service Pack 2 for Windows XP, you will not have an account named

NETWORK SERVICE, and so you can skip step 3.

5.	 Repeat the process again from step 2 to give Write permission to the ASPNET and NETWORK
SERVICE accounts for the App_Data folder within the completed folder of the examples.

The application, including the database, is now installed and ready to use.

9

04_588079 ch01.qxd 11/29/05 3:47 PM Page 10

Chapter 1

Viewing the PPQ Example Database
With Visual Web Developer up and running, you can now look at the example database used for the
PPQ application. This demonstrates the database access features that VWD provides and will give you a
feeling for the way that the sample data is organized and used within the application.

Step by Step — Viewing the PPQ Database
Follow these steps to view the PPQ database:

1.	 In VWD, select Open Web Site from the File menu and ensure that the File System option is
selected in the left-hand side of the dialog (see Figure 1-10). Select the folder named complete
within the examples, and click Open.

Figure 1-10: File System option

10

04_588079 ch01.qxd 11/29/05 3:47 PM Page 11

Getting Started

2.	 The Web site is loaded into VWD, and the files that make up the application can be seen in the
Solution Explorer window. (If the Solution Explorer window is not visible, open it by selecting
Solution Explorer from the View menu.) As shown in Figure 1-11, notice that the database in the
App_Data folder is also visible.

Figure 1-11: Solution Explorer window

3.	 In fact, VWD has automatically attached the database to SQL Server Express. Select Database
Explorer from the View menu to open the Database Explorer window (see Figure 1-12). If
you are prompted to give yourself “dbo” permission at his point, select “yes.” The Database
Explorer window shows the data connections set up for VWD to use. You will see the database
shown there as well, and you can expand the tree-view list to see the categories of objects for
the database. (If, when you select the Database Diagrams entry, you are prompted to create the
items necessary to support diagramming click Yes.) As you select each item in the list, you see
details of this item appear in the Properties window, such as the connection string and provider
details that VWD is using to connect to SQL Server Express.

11

04_588079 ch01.qxd 11/29/05 3:47 PM Page 12

Chapter 1

Figure 1-12: Database Explorer window

The Solution Explorer and Database Explorer windows dock at the right-hand side of the main VWD

window by default, but you can drag any of the windows to a docked or floating position using their

title bars. As you drag, small arrow indicators become visible allowing you drop the window into

another one, or dock it at the side of the main VWD window. Use the drop-down menu (the “down­

arrow” icon) in the title bar or the Auto-Hide feature (the pin-shaped icon) to set up the window

positions you require. If you cannot reorganize windows in the way you want to, you can go back to

the original window layout using the Reset Window Layout command on the main Window menu.

4.	 Now that the database is available in VWD, you can test that it is working properly, and see the
kinds of data it contains. Right-click on the data connection name and select New Query from
the pop-up menu that appears (see Figure 1-13).

12

04_588079 ch01.qxd 11/29/05 3:47 PM Page 13

Getting Started

Figure 1-13: Selecting New Query

5.	 This opens the Query Editor in the main central section of the VWD window. (You can close or
auto-hide the Toolbar window to make more room as shown in the screenshot.) The Add Table
dialog also appears automatically, showing a list of tables in the database that you can use in your
new query, as shown Figure 1-14.

Figure 1-14: Add Table dialog

13

04_588079 ch01.qxd 11/29/05 3:48 PM Page 14

Chapter 1

6.	 Select the table named MenuItems, and click Add to add this table to the Diagram pane at
the top of the Query Editor window. Then click Close. In the list of columns that appears in
the Diagram pane, select the columns named MenuItemType, ItemName, ItemSize, and
ItemPrice. You can either tick the checkboxes to add them to the grid, or drag and drop them
there. Notice how VWD creates the equivalent SQL statement in the section below the grid, as
shown in Figure 1-15.

Figure 1-15: Equivalent SQL statement

The Query Editor provides a range of ways to create and edit a database query. You can add tables to the
top section of the window, and then drag the columns you want to show into the Criteria grid in the
center of the window — where you also specify any filtering or sorting you want to apply to the rows.
Alternatively, you can, type (or copy and paste) a SQL statement directly into the lower section of
the Query Editor. This section, below the Criteria grid, shows the equivalent Transact-SQL (T-SQL)
commands used by VWD to fetch or update data when you execute the query. Below the SQL window,
right at the bottom of the central window, is another grid that displays the results of executing the
query or any error messages generated by the query.

14

04_588079 ch01.qxd 11/29/05 3:48 PM Page 15

Getting Started

7.	 The Criteria grid section specifies not only the columns for the query, but also any sorting or
filtering you require. As a simple example, use the drop-down lists in the Sort Type column
of the grid to set the sort order for the rows as Ascending by ItemName, then Descending by
ItemPrice, as shown in Figure 1-16. Select the columns named MenuItemType, ItemName,
PizzaToppings, and GraphicFileName. Again, you will see the equivalent SQL statement
appear in the SQL pane below the grid.

Figure 1-16: Sorting by ascending and descending order

8.	 Click the Execute button (the button in the toolbar with a red exclamation mark) and the results
of executing this query appear in the bottom pane of the Query Editor window (see Figure 1-17).

15

04_588079 ch01.qxd 11/29/05 3:48 PM Page 16

Chapter 1

Figure 1-17: Results of query execution

You can also use VWD to work with data that is located in a remote SQL Server or other database,
as well as with local data (as we do in this book). Right-click on the root entry named Data Connections
at the top of the Database Explorer window, and select Add Connection. . . . This opens the Add
Connection dialog where you specify details of the database server to which you want to connect. At
the top of this dialog is the Data source (type), and the default is Microsoft SQL Sever (SqlClient). This
is the most efficient way to access a SQL Server database, because it uses the built-in high-speed inter­
face called Tabular Data Stream (TDS) that is native and exclusive to SQL Server.

However, you can click the Change button (see Figure 1-18) and select a different data source type if
required. For example, you can connect to an Access database file, any database system that has an open
database connectivity (ODBC) provider available, direct to a persisted SQL Server (MDF) file, or to an
Oracle database. You can even specify, using the checkbox at the bottom of the window, if this should be
the default data source (type) to use in the future.

16

04_588079 ch01.qxd 11/29/05 3:48 PM Page 17

Getting Started

Figure 1-18: Adding a connection to a database server other than SQL Server

After specifying the data source type, you can use the drop-down Server name list to see all the
databases of the type you selected that advertise their presence and are available. You can also type an
instance name directly. For the default instance, you just need to enter the machine name, or you can
access a named instance (such as a remote Microsoft Data Engine (MSDE) or SQL Server Express
instance) by appending the instance name to the machine name separated by a backslash. Figure 1-19
shows a connection to the default instance of SQL Server running on a remote machine named DELBOY,
and to the Northwind database on that machine.

17

04_588079 ch01.qxd 11/29/05 3:48 PM Page 18

Chapter 1

Figure 1-19: Connecting to the Northwind database on a remote machine
named DELBOY

Figure 1-19, you must specify details of a suitable account within SQL Server. If, for any reason, you
cannot install SQL Server Express or want to experiment with a different database, you can use the
process just described to connect to a suitable database. You can confirm that the connection to the target
database is working by clicking the Test Connection button before you close the Add Connection dialog.

18

04_588079 ch01.qxd 11/29/05 3:48 PM Page 19

Getting Started

Figure 1-19 is the option to connect to a SQL Server (MDF) database file. In this case, you specify the file
location using the Browse button near the bottom of the Add Connection dialog. As before, you must
specify the database server name to which the file will be attached and the authentication type you
want to use.

Another feature is the ability to specify the fine details of the connection. Click the Advanced button
near the bottom of the Add Connection dialog to open the Advanced Properties dialog. For example,
you can turn on or off features such as Multiple Active Results Sets and Asynchronous Processing,
which saves resources and increases efficiency, if you do not require these features. Figure 1-20 shows a
connection to a database file, and some of the many options available in the Advanced Properties dialog.

Figure 1-20: Connecting to a database MDF file and setting the Advanced Properties of
the connection

19

04_588079 ch01.qxd 11/29/05 3:48 PM Page 20

Chapter 1

Reading and Displaying Data with ASP.NET
Now that you have set up VWD and SQL Server Express, and have seen some of the features that allow
you to access data, this chapter concludes by showing you just how quickly and easily you can build an
ASP.NET page that uses the values stored in a database. The task is to create a list of the types of pizza
and drinks available from Pizza Pretty Quick (PPQ), by extracting and displaying values from the
MenuItems table in the database.

1.	 Start VWD so that the Start Page is displayed (see Figure 1-21), and click the link to Open a Web
Site. Alternatively, you can select Open Web Site from the File menu.

Figure 1-21: Start Page

20

04_588079 ch01.qxd 11/29/05 3:48 PM Page 21

Getting Started

2.	 In the Open Web Site dialog, ensure that File System is selected in the top left of the dialog, and
navigate to the skeleton folder within the C:\Websites\PPQ folder where you installed the
example files (see Figure 1-22).

Figure 1-22: Navigating to the skeleton folder

3.	 Click OK, and you then see the files that make up the site in the Solution Explorer window.
Switch to the Database Explorer window, and you see the database that is in the App_Data
folder of the site. VWD automatically attaches any MDF file it finds in the folder named
App_Data when it opens a site, and this is what has happened here. You can expand the tree to
see the contents of the database, as shown in Figure 1-23.

21

04_588079 ch01.qxd 11/29/05 3:48 PM Page 22

Chapter 1

Figure 1-23: Expanding the tree to see the contents of the database

If you cannot see the Solution Explorer or Database Explorer windows, use the options on the View

menu to make them visible. Alternatively, select Reset Window Layout from the Window menu. You

can also close the Start Page now.

4.	 Switch back to Solution Explorer and right-click on the top-level entry (C:\...\skeleton\)
in the Solution Explorer window and select Add New Item, or select Add New Item from the
Website menu, to open the Add New Item dialog (see Figure 1-24). Select Web Form, change the
Name to TestMenu.aspx, and leave the Language set to Visual Basic. Also leave the other two
checkboxes unticked.

Figure 1-24: Add New Item dialog

22

04_588079 ch01.qxd 11/29/05 3:48 PM Page 23

Getting Started

5.	 Click Add and the new page is added to the site (it appears in the Solution Explorer window)
and is displayed in the main VWD window. At the same time, the Toolbox is populated with a
list of all the available ASP.NET controls. At the moment, you are in Source view (as shown by
the indicator just below the main editor window shown in Figure 1-25), so the HTML and an
empty code section (delimited by <script> tags) is visible.

Figure 1-25: Source view

6.	 Click on the Design button at the bottom of the main window (just below the Editor pane and
next to the Source button that is currently highlighted) to switch the Design view. Then go to
the Database Explorer window, and make sure that the list of Tables in the PPQ database is
displayed. Click on the table named MenuItems and drag it onto the page in the main Editor
pane, as shown in Figure 1-26.

23

04_588079 ch01.qxd 11/29/05 3:48 PM Page 24

Chapter 1

Figure 1-26: Dragging MenuItems onto the main editor pane

7.	 Now the magic begins. You will see that VWD creates a grid in the page using the new ASP.NET
GridView control, with columns that match those in the source data table (such as MenuItemID,
MenuItemType, and ItemName). It also adds a control named SqlDataSource to the page, just
below the grid. In addition, to the right of the grid, a Task pane with the title GridView Tasks
appears (see Figure 1-27).

Figure 1-27: GridView Tasks pane

Note: If you previously experimented with the free tool named WebMatrix for versions 1.0 and 1.1 of
ASP.NET, you will probably be feeling a strange sense of familiarity creep over you looking at the
results shown here. WebMatrix was, in many ways, a test platform for the ASP.NET 2.0 concept of
using data source controls and intelligent grid controls to display data. The Web Matrix MXDataGrid
control was the forerunner to the new ASP.NET 2.0 GridView control, and the Web Matrix
MXSqlDataSource control was the forerunner to the SqlDataSource (and other data source) con­
trols in ASP.NET 2.0.

24

04_588079 ch01.qxd 11/29/05 3:48 PM Page 25

Getting Started

8.	 The list of checkboxes on the GridView Tasks pop-up is just too tempting to ignore, so go ahead
and tick them all to enable paging, sorting, editing, deleting, and selection. At each stage, you’ll
see the grid in the page change to reflect the features you specify — such as adding the paging
controls below the grid, turning the header text for each column into a hyperlink, and adding
the Edit, Delete, and Select links to each row (as shown in Figure 1-28). Then click the Auto
Format link at the top of the GridView Tasks pop-up.

Figure 1-28: Adding links

The pop-up task panes like the GridView Tasks pane shown in Figure 1-28 can be displayed and hidden
by clicking on the small square icon that contains a left- or right-facing arrow. This icon appears at the
top right of any control that provides a task pane when you move the mouse over that control.

9.	 The Auto Format dialog that opens from the Auto Format link shows a list of preconfigured
styles that you can apply to the GridView control. Select one (see Figure 1-29), and click OK.

Figure 1-29: Selecting a preconfigured style

25

04_588079 ch01.qxd 11/29/05 3:48 PM Page 26

Chapter 1

10.	 You will see the grid change to reflect the new style. However, before you run the page, there are
a few other changes you can make to produce a nicer result. Two of the columns in the grid dis­
play information that is not really relevant in this page. The first column, named MenuItemID,
contains the ID value for each menu item, while the column named GraphicFileName contains
the file name of an image for each item. So, in the GridView Tasks pane, click the Edit Columns
link to open the Fields dialog (see Figure 1-30). In the Fields dialog, locate the MenuItemID col­
umn in the Selected fields list, and remove it by clicking the button marked with a cross next to
the list. Then repeat this process to remove the GraphicFileName column from the grid.

Figure 1-30: Fields dialog

11.	 Click OK to close the dialog, and you will see the updated GridView control in the page. You
can see that it now only contains four columns from the source data table (see Figure 1-31).

26

04_588079 ch01.qxd 11/29/05 3:48 PM Page 27

Getting Started

Figure 1-31: Updated GridView

12.	 Now you can run the page to see the results. Click the Start Debugging button in the Toolbar
above the main editing window, or just press the F5 key. Alternatively, you can select Start
Debugging from the Debug menu. At this point, the Debugging Not Enabled dialog appears
(see Figure 1-32) because there is no web.config file in the application folders. VWD needs a
web.config to be able to “turn on” debugging (by setting a value in this file). The best course
of action is to select the first option, whereupon VWD will create a default web.config file and
set the appropriate values. This also means that you will not see this dialog every time you run
a page, and VWD will be able to provide more information on any errors that it encounters.

Figure 1-32: Debugging Not Enabled dialog

27

04_588079 ch01.qxd 11/29/05 3:48 PM Page 28

Chapter 1

Figure 1-32

13.	 Now a browser window opens, and you will see your new ASP.NET page appear. You
can select a row simply by clicking the link in the left-hand column, and that row is high­
lighted automatically (see Figure 1-33).

Figure 1-33: Automatically highlighting a row

28

04_588079 ch01.qxd 11/29/05 3:48 PM Page 29

Getting Started

14.	 You can also sort the rows in a different order by clicking on the links in the title bar, and if there
were more than 10 rows in the table you would be able to change to a different page of results.
In this case, paging controls would appear at the bottom of the grid, as you’ll see in later exam­
ples (see Figure 1-34).

Figure 1-34: Selecting a different page of results

15.	 You can even edit the values in the rows (see Figure 1-35), and save these values back to the
database by clicking the Update link that appears when a row is in “edit mode.” And all of this
without writing any code at all!

Figure 1-35: Editing row values

29

04_588079 ch01.qxd 11/29/05 3:48 PM Page 30

Chapter 1

Notice that the URL in the address bar, and the icon for VWD’s built-in Web server that appears in the
notification area of the Windows taskbar, indicate that the page is running on your local machine
(localhost), but using a nonstandard port number (usually port 80 is used for a Web server). You will
see a different port number because VWD chooses one at run time. This means that you can run VWD
on a machine without a Web server installed to develop your site. And you can also run it on a machine
that does have a Web server such as Internet Information Server (IIS) installed without interfering with
the operation of that Web server.

Summary
In this first chapter, you have seen how easy Visual Web Developer (VWD) 2005 Express Edition is to
install, configure, and use to create powerful and attractive Web pages — quickly and with very little
effort. Because the standard installation also includes SQL Server 2005 Express Edition, you don’t even
have to have a database server available to be able to build data-driven pages (although, as you saw, you
can use any database server or file-based database such as Microsoft Access if you prefer).

VWD is a remarkable tool for building a whole range of Web sites, Web applications, and Web Services,
as you will discover throughout the remainder of this book. You will also see and learn about the
amazing new features and capabilities of ASP.NET version 2.0, which make building high-performance
Web applications and Web sites so much quicker and easier than ever before.

In this chapter, you installed VWD and used it to access a database through SQL Server Express. You
also saw some of the features of the VWD interface and its capabilities. The discussion skipped over
much of the detailed working of these features so that you could quickly get a feel for how it works and
what it can do. You will, of course, see a lot more detail in later chapters of this book.

In summary, this chapter covered:

❑ A preview of the completed example application

❑ Installation and set up of Visual Web Developer 2005 and SQL Server 2005 Express Editions

❑ Installation of the example application files for this book

❑ Viewing the example database and executing a test query

❑ Generating a simple page that uses the example database

In Chapter 2, you will begin a more detailed journey through the features of VWD and ASP.NET 2.0 by
looking at the design of the PPQ Web site, how master pages can make things so much easier, and how
you can plan and implement navigation between the pages of your site.

30

05_588079 ch02.qxd 11/29/05 3:50 PM Page 31

2

Designing a Web Site

In Chapter 1, you saw how easy Visual Web Developer (VWD) 2005 Express Edition is to install
and use. You also saw how it includes the SQL Server 2005 Express Edition database server, which
you can use to power your Web sites and Web applications. In this chapter, you will move on to
start designing and building a simple (but effective) Web site that demonstrates the power of both
VWD and ASP.NET 2.0.

The site, Pizza Pretty Quick (PPQ), sells pizzas and drinks online, taking the data about the menu
items from a database and storing orders placed by customers in the same database. The design
and implementation of the site shows the way that VWD makes working with ASP.NET 2.0 easy
and highly productive, without getting too involved in complex issues regarding application
architecture.

The topics you will see in this chapter are:

❑ Designing a Web site

❑ Building and using a Master Page and Content Page

❑ Converting an existing page to a Content Page

❑ Checking for accessibility

This chapter begins with an overview of the issues you must consider when you start to design
and build a Web site like PPQ.

Designing a Web Site
If you are blessed with artistic and graphical-design capabilities, you will probably be able to
design your Web site so that it looks good — and perhaps even stands out from the crowd. For the
rest of us, the process of designing the appearance and “look and feel” for a professional result
usually involves consulting a qualified graphical designer. However, for this example, the site
follows a tried-and-trusted layout that mimics the great majority of sites already out on the Web,
with no pretense of being anything more than a demonstration of the development techniques.

05_588079 ch02.qxd 11/29/05 3:50 PM Page 32

Chapter 2

However, that does not mean you can just throw the pages together with no thought about the
layout. You should consider several issues before you start to build any pages. Increasingly, legislation
requires Web sites be accessible to all users, including those with sight and movement impairments. You
should also think about whether one language is sufficient, or if you may have to translate the site into
other languages now or in the future. Moreover, you must decide how data will be stored and accessed
in your application.

Making Web Sites Accessible
It is very easy to build a Web site, test it in your favorite browser, and then deploy it without considering
how other users might perceive the site. In most countries of the world, governments are implementing
legislation that requires commercial and state-sponsored Web sites to provide acceptable access to all users,
irrespective of their special requirements. Blind, partially sighted, and color-blind users must be able to
access and understand the content, and navigate around the site. Users with movement difficulties (for
example those that cannot use a mouse or even a conventional keyboard) should be able to do likewise.

Special browsers (or “user agents,” to give them the correct name) are available that look or work in a
completely different way from normal Web browsers such as Internet Explorer, Netscape, or Firefox.
They may be page readers that provide only an audible rendering of the page content. Alternatively, the
user agents may be character-based, displaying only text and with no images or “active” content. They
may even generate Braille or other output through a special console.

To support all these kinds of user agents is not easy, but several things can be done to make it much easier
for users, without requiring huge extra development effort. For example, you can implement a standard
page structure across the site that makes it easier for unsighted users to appreciate the layout of each page.
You can include special links that ease navigation and save time when viewing the page. Moreover, you
can provide alternative content and links that make it easier for all nongraphical user agents to impart
useful information to the user. You will see many of these techniques used in the example application.

Microsoft provides a series of guides and tutorials for building accessible applications at www.microsoft
.com/enable. The World Wide Web Consortium (W3C) publishes guidelines and recommendations of
the Web Accessibility Initiative (WAI) at www.w3.org/WAI/about.html.

Multilingual Web Sites and Globalization
Many Web sites are available in only one language, which is fine if you can be sure that all your
prospective visitors can understand that language. However, if you are building a Web site or application
that provides a public service, especially if connected with a government-sponsored or regulated activity,
you may have to provide the content in more than one language. This involves not only direct translation
of the content, but also issues such as the text direction (right to left rather than left to right). You may also
need alternative images to meet the requirements of the demographic target group, or just to fit in with
the text direction. In addition, there are, of course, things such as date, number, and currency formats to
consider.

ASP.NET 2.0 contains several features designed to assist the development of multilingual sites and
applications. A set of classes in the System.Globalization namespace assists you when working with
dates and other types of culture-specific information, and a set of classes in the System.Resources
namespace allows manipulation of text strings and other types of resources. For simplicity, however, the
PPQ example site implements only one language (U.S. English) and uses U.S. date, currency, and number
formats.

32

05_588079 ch02.qxd 11/29/05 3:50 PM Page 33

Designing a Web Site

For more details of globalization and multilingual support within the .NET Framework, search the SDK
index for “globalization,” “localization,” and “culture.” Also check out the examples at http://beta
.asp.net/QUICKSTARTV20/aspnet/doc/localization/localization.aspx.

Designing the Appearance of the Site
The PPQ example Web site follows a conventional design (see Figure 2-1). It contains a banner image at
the top, a navigation bar to the left, and the content of the page to the right. At the bottom of every page
is a set of text links to other pages, and there is a “bread-crumb trail” displayed in each page that allows
users to see where they are in the site’s hierarchy, and navigate back to a specific section.

Figure 2-1: The Pizza Pretty Quick Web site

Providing a list of text links to the other main pages at the bottom of every page is an accepted way to
assist blind or partially sighted users. Specialist user agents usually “read out” the page contents from
top to bottom, and so placing links at the bottom of the page makes it easier for such users to navigate
through the site.

All of the pages follow this simple design, with only the right-hand “content” section differing. This
allows the use of a template or “Master Page” to ensure that each page follows the correct structure and
contains the required standard content. It also means that updates to the overall structure or appearance
of the site are possible simply by changing the Master Page.

33

05_588079 ch02.qxd 11/29/05 3:50 PM Page 34

Chapter 2

Templates and Master Pages
Web developers have found various ways to implement standard sections of content that are common
across multiple pages in a site. However, many of these approaches (such as separate text files and user
controls in ASP.NET 1.x) cannot really be classed as Master Pages. They are just ways of inserting standard
content into multiple pages. Other techniques involve creating a special code class based on the ASP.NET
Page class, and then using this to implement a template-style solution.

ASP.NET 2.0 supports a new feature called Master Pages, which automatically provides all the features
you need to create multiple pages based on the same underlying template. VWD also supports the
Master Pages approach, and provides a great environment for building such pages and their content.

Figure 2-2 shows how you can see exactly what the result will be, even though the final page is created
from two sections (the Master Page and a Content Page).

Figure 2-2: A Master Page in Design view

34

05_588079 ch02.qxd 11/29/05 3:50 PM Page 35

Designing a Web Site

Navigation and Menus
The left-hand navigation bar or “menu” is ubiquitous in Web sites today, simply because it is the
obvious place to locate links to other pages. Irrespective of the browser window size, the links are visible
when the page first displays and provide a useful conceptual map of the whole site — which users often
glance over before moving to the page content.

The use of the word “menu” on a site that sells fast food is somewhat confusing but difficult to avoid. In
this book, the term navigation bar means the left-hand “menu” of page links, while the display of items
available for sale is the “pizza menu” page. However, as you will see, Microsoft refers to the main
ASP.NET navigation control as a Menu control!

ASP.NET 2.0 provides a series of controls that generate both the navigation bar links and the “bread­
crumb” links. They use either an XML-formatted text file or a collection of items that lists the pages on
the site. However, the text links at the bottom of the page are not generated automatically in this way.
Instead, you will use a custom user control to generate these links from an XML file, demonstrating an
alternative technique (see Figure 2-3).

Figure 2-3: The text links at the bottom of the pages

Text Styles and Style Sheets
The PPQ site uses the common sans-serif face for the display, as is the case in many Web sites. Microsoft
designed certain fonts for use on the Web in a browser, optimized to give an easy-to-read display of
small text. Examples are Verdana and Tahoma, as used in the PPQ site. However, for headings and large
bold text, Arial provides a better appearance. The example site uses a Cascading Style Sheet (CSS) to
specify these styles for all pages, meaning users only download it once — and subsequently reload it
from their browser cache. If the user agent does not provide graphical output, it can ignore and not
download the style sheet.

However, not all visitors will be using Windows, and so they may not have the specified fonts installed.
Therefore, the style sheet must also specify other suitable fonts, and the common technique is to use the
standard CSS face style names, such as “sans-serif”. In addition, to allow users to resize the text
displayed in their browser window, the font sizes are specified using the standard size names, such as
“x-small,” “small,” and “large” (see Figure 2-4).

35

05_588079 ch02.qxd 11/29/05 3:50 PM Page 36

Chapter 2

Figure 2-4: Changing the displayed text size in the browser

Designing the Underlying Workings of the Site
So far, the topics discussed have concentrated on what the site will look like. However, now it is time
to consider the underlying “working parts.” Web site and application design, despite much vocal com­
plaint from bodies such as the U.S. Architecture Guilds and the U.K. Royal Institute of British Architects, is
generally now referred to as “software architecture.” The software architect takes into account all the
requirements of the application, balances it against factors such as the technologies available and the cost,
and comes up with a design for the working parts of that application. The primary “working parts” in
most applications involve data access.

Data Access
It may seem strange to leave the topic of data access to last, when it is probably the most important
aspect of getting the site working. This means that it is also likely to be the place you start your
development. While there is nothing wrong with this, it is easy to get involved in data retrieval, storage,
and display issues without considering the other design issues mentioned earlier. This is why data-access
considerations reside here.

36

05_588079 ch02.qxd 11/29/05 3:50 PM Page 37

Designing a Web Site

Today, the move in software is toward distributed, multitier, and service-oriented architectures. All these
place features such as data access in separate “layers” or “tiers,” so that the code can be reused and the
physical layout of the application (such as the number and distribution of servers) can be changed
without requiring rewriting of the code. At the extreme, the service-oriented architecture (SOA) model
makes each component of the process a separate service, which exposes interfaces that other components
and services can use irrespective of location, platform, and operating system.

The SOA model is beyond the requirements of the simple PPQ site, and the coverage of this book.
However, to demonstrate the possibilities, the example site uses several different data-access approaches.
To extract and display data in the pizza menu pages, the controls on the page talk directly to the database.
This may be with a parameterized SQL statement or through a stored procedure in the database.

However, to store the data entered by the user when placing an order, the site uses a separate data-access
layer that exposes and handles the data as a series of objects. This means that adapting the application to
work with other databases (or to integrate with other applications) requires only that the data-access layer
be adapted as required. Moreover, the separate data-access layer can be located on separate, and even
multiple servers, to provide increased availability and throughput as PPQ becomes a worldwide supplier
of high-quality fast food to the public.

Building a Master Page and Content Page
It is now time to start creating some pages, and the obvious place to start is with the Master Page that
defines the structure of all the other pages in the site. You will see in this section how you can create a
Master Page using VWD, and in it define the common layout structure for the pages of your site. Then,
after the Master Page is complete, you will see how to build Content Pages that “plug into” the Master
Page to create the final rendered output.

Creating the Page Structure as a Master Page
This section demonstrates how you can create the Master Page for the PPQ site, laying out the content
sections and including features that make it easier for all users to access and navigate through the pages
and the site.

1. Start VWD and select the skeleton project from the Start Page (see Figure 2-5), or select Open
Web Site from the File menu and navigate to and select the C:\Websites\PPQ\ folder.

37

05_588079 ch02.qxd 11/29/05 3:50 PM Page 38

Chapter 2

Figure 2-5: Start page

2.	 You will see the folders and files in the skeleton solution appear in the Solution Explorer
window. Close the Start Page, then either right-click on the top entry in the Solution Explorer
window (C:\...\skeleton\) and select Add New Item, or select New File... from the File
menu. Both actions open the Add New Item dialog. Select Master Page, change the name to
PPQ.master, and click Add (see Figure 2-6).

38

05_588079 ch02.qxd 11/29/05 3:50 PM Page 39

Designing a Web Site

Figure 2-6: Add New Item page

For this example, we are using the “code inline” model, where the page itself contains the HTML con­

tent, the ASP.NET server controls, and the server-side code in a <script runat=”server”> sec­

tion. You can change to the “code behind” model by setting the checkbox next to the Language

drop-down list. In this case, VWD will place the server-side code into a separate file and use the new

partial classes feature of .NET version 2.0 to combine the code with the ASP.NET page and its con­

stituent controls when the page is compiled and runs for the first time.

3.	 The new Master Page opens in the main window. You can click the “pin” icons in the title bar of
the Solution Explorer and Properties windows (and any other windows you have open) to view
more of your new Master Page. You can see that it contains the usual <head> and <body>
sections — in fact, it looks just like an ordinary Web page. The one main difference is that it
contains an ASP.NET ContentPlaceHolder control within the <div> element on the <form>
(see Figure 2-7).

39

05_588079 ch02.qxd 11/29/05 3:50 PM Page 40

Chapter 2

Figure 2-7: Viewing the Master Page

Notice that the first line of the file indicates that this is a Master Page file using the @Master page direc­
tive. Normal ASP.NET pages contain the @Page directive. In a Master Page, the ContentPlaceholder
control defines the areas where the content will come from a separate file (a Content Page). However,
before looking at that, the next step is to populate the Master Page with the other controls required for the
PPQ site. These include the outline table that will hold the ContentPlaceHolder controls, and the
images for the top banner and for navigation assistance for nonsighted users.

4.	 You are looking at the page in Source view at present, so the HTML and control definitions are
visible. This is fine, because there is no visible content in the page. You can edit a page in either
Source or Design view, and the changes are visible in both views as you switch between them.
However, some things are easier to achieve in Source view, such as setting the properties of the
main <body> element, as you will do now. Click on the <body> element in the code and open or
view the Properties window. This allows you to add the attributes you want to the element by
setting the properties. To ensure that the banner you will place at the top of the page goes right
to the edge of the browser window, set the LeftMargin and TopMargin properties to zero. You
will see the corresponding attributes appear in the code in the main window (see Figure 2-8).
You can also change the content of the <title> element from Untitled Page to Pizza Pretty
Quick. Notice how this is not a property of the <title> element but just a part of the page
content.

40

05_588079 ch02.qxd 11/29/05 3:50 PM Page 41

Designing a Web Site

Figure 2-8: Changing the <body> content

In the future, when you see instructions to set the properties of a control or element, you should do so in
the same way as here by using the Properties window. You can add or edit the attributes themselves,
directly within the Code Editor window. The Properties window then reflects the changes. However, it
is generally better to use the Properties window to ensure that you get the correct attribute name and
format — for example, if the value you enter contains double quotation marks, VWD automatically
wraps the value in single quotation marks to maintain the correct syntax and well formedness.

5.	 Now it is time to create the layout structure of the Master Page. This example uses an HTML
table for laying out the various parts of the content, though you could use CSS if you prefer.
HTML tables are generally easier to work with unless you are very familiar with CSS, and they
are correctly supported on almost all browsers and specialist user agents. Go to the Toolbox
(open it from the View menu or press Ctrl-Alt-X if it is not visible) and scroll down to the HTML
section, open it, and click on the Table control. Then drag it onto the editor window, placing it
at the end of the opening <form> tag, as shown in Figure 2-9.

41

05_588079 ch02.qxd 11/29/05 3:50 PM Page 42

Chapter 2

Figure 2-9: Dragging the Table control

6.	 This inserts the HTML to generate a three-row, three-column table. Now you can drag and drop,
or cut and paste, the controls in the page to match the layout you need. The code in Listing 2-1
shows what is required — notice that there is a <div> control in the second row of the table that
will display the navigation links. To add a control to the page, simply drag it from the Toolbox
and drop it into the appropriate place in the editor window (in either Source or Design view).
VWD automatically generates different values for the ID of each control. Remember to set the
ColSpan properties of the first and last <td> elements. You can also add some “dummy”
content to the table so that you can see what it looks like in Design view and can make it easier
to drag and drop other controls into the table cells later on.

Listing 2-1: Layout Controls

...
<form id=”form1” runat=”server”>

<table>
<tr>

<td colspan=”2”>
Header goes here

</td>
</tr>
<tr>

<td>

42

05_588079 ch02.qxd 11/29/05 3:50 PM Page 43

Designing a Web Site

<div>
Links
Links
Links
Links
Links

</div>
</td>
<td>

<asp:contentplaceholder id=”ContentPlaceHolder1” runat=”server”>
Content
Content
Content
Content
Content

</asp:contentplaceholder>
</td>

</tr>
<tr>

<td colspan=”2”>
Footer and text links go here

</td> </tr>
</table>

</form>
...

7.	 Now you can switch VWD to Design view using the button below the main Editor window and
see the results so far. Okay, so it does not look like much — but at least the main structural
layout of the page is complete (see Figure 2-10).

Figure 2-10: Structural layout

8.	 To complete this section of the chapter, you will populate the top row of the table with the heading
banner. In fact, there are three images to go into this section — the first two are “Skip To” links that
make it easier for users of page readers and text-based user agents to navigate the site, and the
third is the heading banner image. The first two links are images embedded in hyperlink elements,
which point to the relevant sections of the page so that users can follow the link and skip directly
to that section. So, delete the text from the header row of the table, and drag three Image controls
from the HTML section of the Toolbox into it (see Figure 2-11).

43

05_588079 ch02.qxd 11/29/05 3:50 PM Page 44

Chapter 2

Do not use the Image control in the Standard controls section of the Toolbox.

Figure 2-11: Populating the heading banner

The W3C Web Accessibility Initiative guidelines suggest the use of “Skip To” links where pages con­

tain more than just minimal content that is repeated at the top of every page; for example, a series of

hyperlinks (such as a list of other branches of your corporation) or multiple images. An alternative

approach is to use CSS absolute positioning to place this content later in the flow of the page source but

still have it rendered at the top of the page in a normal Web browser. For more details on CSS, see

www.w3.org/Style/CSS.

9.	 Now you can set the properties of these Image controls. The first two will be the “Skip To” links,
so in the Properties window for each of these, set the values of the properties shown in Table 2-1.
If you have trouble selecting the image controls on the page in Design view after resizing them,
try using the left and right arrow keys to move through the controls on the page. Alternatively,
you can switch back to Source view and select them there to set the property values.

Property

TabIndex 0 for the first Image Image

Height 1

Width 1

Alt Skip to Navigation Links for the first Image
Content for the second Image

Border 0

HSpace 0

Title Skip to Navigation Links for the first Image
Content for the second Image

VSpace 0

Table 2-1: “Skip To” Properties
Value

control, and 1 for the second control.

control, and Skip to Page
control.

control, and Skip to Page
control.

44

05_588079 ch02.qxd 11/29/05 3:50 PM Page 45

Designing a Web Site

10.	 There are some other properties to be set as well. For the “Skip To” link images, go to the
Properties window, select the Src property, and click the “...” button to open the Select Project
Item dialog. Select the images subfolder of the example files, select the image named
blank.gif (a 1-pixel square, transparent GIF image), and then click OK.

Figure 2-12 shows the dialog for selecting the image file.

Figure 2-12: Select Project Item dialog

The idea is that the “Skip To” links will not be visible in a graphical Web browser, but other page

readers and text-based browsers will read them and allow the user to follow the links. Using small

transparent images helps to hide them.

11.	 There is still not much to show for all the work you have done, so select the remaining Image
control, and set the Src property to the file named page-header.gif in the images subfolder.
Then set the Alt and Title property values to Pizza Pretty Quick Logo, and the HSpace and
VSpace property values to zero. Notice how VWD automatically detects the size of the image
(though it does not add these attributes to the element). Figure 2-13 shows the result.

45

05_588079 ch02.qxd 11/29/05 3:50 PM Page 46

Chapter 2

Figure 2-13: Adding the logo

Setting both the Alt and Title properties adds extra attributes to the element rendered into the page
at run time. This gives the best chance that nonstandard user agents will read and display or use these
attribute values.

12.	 So far, you have inserted only image controls into the page. Now you must turn the first two,
which implement the “Skip To” links, into hyperlinks that target the correct parts of the page. You
cannot use the ASP.NET Hyperlink control for this, because you need to set specific properties of
the Image itself — something that is not possible in VWD for a Hyperlink control. So, switch to
Source view and type in the HTML that is required to implement the two hyperlinks and their
target anchors, as shown highlighted in Listing 2-2.

Listing 2-2: HTML for hyperlinking target anchors

...

<table>

<tr>

<td colspan=”2”>

<img src=”images/blank.gif” alt=”Skip to Navigation Links” border=”0”

height=”1” width=”1” title=”Skip to Navigation Links” tabindex=”0” />

46

05_588079 ch02.qxd 11/29/05 3:50 PM Page 47

Designing a Web Site

<img src=”images/blank.gif” alt=”Skip to Page Content” border=”0”

height=”1” width=”1” title=”Skip to Page Content” tabindex=”1 />

<img src=”images/page-header.gif” alt=”Pizza Pretty Quick Logo”

title=”Pizza Pretty Quick Logo” />
</td>

</tr>

<tr>

<td>

<div>

Links
Links
Links
Links
Links
</div>

</td>

<td>

<asp:contentplaceholder id=”ContentPlaceHolder1” runat=”server”>

Content
Content
Content
Content
Content
</asp:contentplaceholder>

</td>

</tr>

...

This just shows how flexible VWD actually is. It can work with existing pages, HTML content, ASP.NET
controls, and code, as well as create new pages, HTML content, ASP.NET controls, and code. In addition,
as you have just seen, VWD allows you to mix your development approach as you go along to suit the
requirements of your site or application.

13.	 Unfortunately, the neat layout, including line breaks, as shown in Listing 2-2 causes problems
with the final display of the page because this extraneous “white space” (content that is not
actually part of the output) adds a space between each image element. Therefore, you need to
edit it in Source view to remove this extra white space, as shown in Listing 2-3. It makes it
harder to see what the content actually is, but placing the end “/>” of each “Skip To” image
element on a new line means that you can more easily find where each element ends and the
next one starts. You do not need to worry about the white space at the end of the third image
control that displays the banner. If you now switch to Design view, you will see that the banner
starts much closer to the left-hand edge of the page.

Listing 2-3: Removing White Space

...
<tr>

<td colspan=”2”><img src=”images/blank.gif”
alt=”Skip to Navigation Links” border=”0” tabindex=”0”
height=”1” width=”1” title=”Skip to Navigation Links”
/><img src=”images/blank.gif”
alt=”Skip to Page Content” border=”0”
height=”1” width=”1” title=”Skip to Page Content” tabindex=”1”
/><img src=”images/page-header.gif”
alt=”Pizza Pretty Quick Logo” title=”Pizza Pretty Quick Logo” />

</td>
</tr>
...

47

05_588079 ch02.qxd 11/29/05 3:50 PM Page 48

Chapter 2

It has taken a while to fully describe each step of the process of starting to build a Master Page.
However, this example should give you a feel for the way that the editing features of VWD work, how
to create new items, and how to work with the Properties and other windows. You have seen how you
can edit a page in a range of ways and while in different views (Source view or Design view). In later
sections of this book, you will see somewhat less detail for each step of the examples because you are
now familiar with the basics of working with VWD.

Choosing the Correct Element and Control Type
One point to notice is that the content of the page is a mixture of item types. It contains “normal” HTML

elements, such as the <body> element and the various <table>, <tr>, and <td> elements you added to

generate the page layout structure. Because your ASP.NET code will not manipulate or reference any of

these elements, there is no reason for them to be anything other than simple HTML.

Elements that ASP.NET code will manipulate or reference must be declared as server controls.

In other words, they must contain the attribute runat=”server” in their declaration — as the

ContentPlaceHolder control in the example does. You will use predominantly server controls

throughout the pages you build in ASP.NET. However, server controls do exert much more load on the

server when generating the page, compared to just declarative HTML and other content. Therefore,

where they are not required, they should be avoided and the standard HTML controls used instead.

This is what happened when you used the Image control from the HTML section of the Toolbox for the

images in the Master Page. The Image control in the Standard section of the Toolbox is a server control,

yet server-side access is not a requirement for these images in the page.

The Master Page you are building cannot be viewed directly. If you try to open it in a Web browser, you

will see a message stating that “This type of page is not served.” Later, you will build a Content Page

that uses this Master Page, at which point you will be able to see what it looks like in a browser. Before

then, however, you will add the navigation controls to the Master Page.

Adding the Navigation Links
The left-hand section of the Master Page will contain a navigation bar that provides links to other pages
in the PPQ site. You will add this navigation bar and other navigation features next. ASP.NET can
automatically generate sets of navigation links in a range of visual formats. This section of the chapter
shows you how.

1.	 With the skeleton project open in VWD, locate the Menu control within the Navigation section
of the Toolbox and drag and drop it onto the editor window directly after the opening <div>
tag, as shown in Figure 2-14.

48

05_588079 ch02.qxd 11/29/05 3:50 PM Page 49

Designing a Web Site

Figure 2-14: Dragging and dropping the Menu control

2.	 Switch to Design view, and you will see the new Menu control (you can delete the text “Links”
from this section of the page now). Click on the small arrow that appears at the top right of the
control when you move the mouse pointer over it. This opens the Menu Tasks pane, where you
will see the Edit Menu Items. . . option (see Figure 2-15).

49

05_588079 ch02.qxd 11/29/05 3:50 PM Page 50

Chapter 2

Figure 2-15: Menu tasks

This option opens a useful Menu Item Editor dialog that allows you to create a list or collection
of links for use when ASP.NET generates the menu at run time. You can also open this dialog by
selecting the Items property in the Properties windows when the Menu control is selected
within the editor window.

Figure 2-16 shows some of the properties of one of the links in a menu you could create for the PPQ site.
However, the problem with using this approach is that the list of page links created this way is only
available to the Menu control. Instead, you will use an XML-formatted file that defines the links to the
pages within the PPQ site, which other controls can access as well.

Figure 2-16: An example of a menu created with the Menu Item Editor

50

05_588079 ch02.qxd 11/29/05 3:50 PM Page 51

Designing a Web Site

3.	 In the example application, you will be using an XML sitemap file to define the links for the
navigation controls in the page. This means that you also need a SiteMapDataSource control,
which interfaces the Menu— and any other navigation controls — to the XML sitemap file. You can
drag a SiteMapDataSource control from the Data section of the Toolbox onto the editor window,
but an easier way to add this control is to use the Menu Tasks pane you saw earlier in step 2. Click
on the small arrow that appears at the top right of the Menu control when you move the mouse
pointer over it to open the Menu Tasks pane. In the Menu Tasks pane, open the drop-down list for
Choose Data Source and select the <New Data Source. . .> option (see Figure 2-17).

Figure 2-17: Choose Data Source drop-down list

4.	 This opens the Data Source Configuration Wizard. For a SiteMapDataSource control, this
Wizard offers two options: Site Map or XML File. In fact, these are very similar options — both
are XML files containing a list of links for the site. However, the option you need is the first. As
you can see from the text in the dialog, this option assumes that the data for the control will
come from a file located in the root folder of the application (see Figure 2-18). The name of this
file must be Web.sitemap.

51

05_588079 ch02.qxd 11/29/05 3:50 PM Page 52

Chapter 2

Figure 2-18: Data Source Configuration Wizard

The examples include a Web.sitemap file containing the links used in the PPQ site. If you want to try

creating your own Web.sitemap file, select New File from the File menu, and select the Site Map

option in the Add New Item dialog that appears. This creates a template XML file that you can extend

and populate to match your requirements. Open the Web.sitemap file provided with the examples to

see the way that it defines the navigation links.

5.	 By default, when using a SiteMapDataSource control with a sitemap file, the Menu control
only displays a single link — the one defined as the root of the sitemap file. In the examples, this
is the “Home” link. Instead, you want the menu to show the next level of links as well, so that
the “Our Menu,” “Order,” “Delivery,” “Links,” and “Contact” links are always visible. To
achieve this, select the menu control in the page and go to the Properties window. Change the
value of the StaticDisplayLevels property from the default of 1 to 2 so that the second level
of links also becomes static content (see Figure 2-19).

52

05_588079 ch02.qxd 11/29/05 3:50 PM Page 53

Designing a Web Site

Figure 2-19: Enabling the second level of links

Notice that the DataSourceID property for the Menu control indicates where the data to populate the
control comes from. It is set to SiteMapDataSource1, which is the ID of the SiteMapDataSource
control that the Data Source Configuration Wizard added to the page. You can switch to Source view
any time to see what the various configuration dialogs, Properties windows, and wizards are actually
doing — which helps you to understand how ASP.NET works and how common combinations of con­
trols (such as a data source control and a data display control) are interlinked. You saw this interaction
in Chapter 1 with the GridView control and a SqlDataSource control, and you will see it again
many times throughout this book.

53

05_588079 ch02.qxd 11/29/05 3:50 PM Page 54

Chapter 2

6. Now open the Menu Tasks pane for the Menu control again, and select Auto Format. In the Auto
Format dialog, choose a scheme for the menu control formatting, as shown in Figure 2-20.

Figure 2-20: Auto Format dialog

7.	 Finally, go back to the Navigation section of the Toolbox and drag a SiteMapPath control
onto the page, dropping it into the table cell at the right-hand side of the page below the
ContentPlaceHolder control. Click on the small arrow button to open the SiteMapPath Tasks
pane, and select Auto Format. . . (see Figure 2-21). In the Auto Format dialog, select the same
scheme as you did for the Menu control. The SiteMapPath control implements the “bread­
crumb trail” navigation control, taking its data from the Web.sitemap file in the root folder of
the application.

54

05_588079 ch02.qxd 11/29/05 3:50 PM Page 55

Designing a Web Site

Figure 2-21: SiteMapPath Tasks pane

That wraps up the task of creating the navigation links for now. You will come back to this throughout
the book as you build more pages and implement new features. However, the Master Page as it stands
now will be sufficient for the tasks of starting to create some Content Pages. Remember that the whole
idea of using a Master Page is that you can change it over time to update your site, and all the Content
Pages will automatically reflect these changes.

Building Your First Content Page
In this section of the chapter, you will build your first Content Page. This will also allow you to see just
what the Master Page you have created looks like at run time. The Content Page you will build is simple,
in that it contains only the “welcome” message and details about the Pizza Pretty Quick Corporation.
Users see this page when they first open the site, and so it is stored with the filename default.aspx.

55

05_588079 ch02.qxd 11/29/05 3:50 PM Page 56

Chapter 2

1. With the Master Page in Design view, right-click on the ContentPlaceHolder control and
select Add Content Page from the shortcut menu (see Figure 2-22).

Figure 2-22: Selecting Add Content Page

2.	 This automatically creates a new Content Page, names it Default.aspx (providing that the
project does not already contain a page with this name), and opens this new Content Page in
Source view. Listing 2-4 shows the entire contents of the new page.

Listing 2-4: Contents of new page

<%@ Page Language=”VB” MasterPageFile=”~/PPQ.master” Title=”Untitled Page” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”

Runat=”Server”>
</asp:Content>

The attribute MasterPageFile=”~/PPQ.master” in the @Page directive shows that this is a

Content Page, which will be embedded as a section of output inside a ContentPlaceHolder control

in the specified Master Page. The tilde (~) before the path and name of the Master Page is a shortcut

way of saying, “starting from the root folder of the application.” All that a Content Page can contain is

one or more Content controls, as shown in Listing 2-4. Each Content control must include the

ContentPlaceHolderID attribute that indicates which ContentPlaceHolder control in the

Master Page it will inhabit. In this case, there is only one and it has the ID value

“ContentPlaceHolder1.”

3.	 To see the real magic of VWD, however, switch the new Content Page (Default.aspx) to
Design view. Now the content of the Master Page is grayed and cannot be edited, while the
Content control that is actually located in the Default.aspx page shows, and can be edited
and populated with the required HTML, text, controls, and other content (see Figure 2-23).

56

05_588079 ch02.qxd 11/29/05 3:50 PM Page 57

Designing a Web Site

Figure 2-23: Design view of Master Page

4.	 All you need to do now is create the content for the Default.aspx page. However, to save you
time, we have provided this in a file named default.aspx.txt, stored in the page-content
folder of the examples. Open this file in VWD, select all the content, and copy and paste it inside
the Content control in the Default.aspx page (see Figure 2-24).

Figure 2-24: Content for page

57

05_588079 ch02.qxd 11/29/05 3:50 PM Page 58

Chapter 2

5.	 Before you run the page, there are a few other “tidying up” tasks to complete. Right-click
outside the Content control, and select Edit Master from the shortcut menu. Add the following
reference to the CSS style sheet for the application to the page, inside the <head> element and
after the <title> element:

<link href=”style.css” rel=”stylesheet” type=”text/css” />

Notice how the pop-up IntelliSense features help you to complete the element by suggesting the
available attributes and their values as you type.

6.	 Switch the Master Page to Design view, and click near to the Menu control. The bottom of the
main window (below the editing area) shows the hierarchy of elements that are currently “in
scope,” in other words, the containers of the currently selected element (which is the <div>
surrounding the Menu control). Select the <td> element that contains the <div> and Menu control.
As you move your mouse over the “<td>, a “drop-down” arrow button appears. (see Figure 2-25).

Figure 2-25: Hovering over the <td> to reveal a shortcut menu

7.	 Click drop-down” arrow button, and then click Select Tag on the shortcut menu that opens. In
the Properties window, set the VAlign property to top so that the content will appear at the top
of this table cell. Then click the Style property entry and use the (...) button to open the Style
Builder dialog. Select Edges in the left-hand section of the dialog, and enter the values 3, 3, 3,
and 5 for the Top, Bottom, Left, and Right Padding selectors, as shown in Figure 2-26. Then click
OK to close the dialog.

Figure 2-26: Assigning values to the edges

58

05_588079 ch02.qxd 11/29/05 3:50 PM Page 59

Designing a Web Site

8.	 Select the Content control in the right-hand side of the Master Page window, and then repeat
the process by selecting this <td> tag and setting the VAlign property to top. Set the Style prop­
erty values in the Edges section of the Style Builder dialog to the values 3, 3, 5 (not 3), and 5 for
the Top, Bottom, Left, and Right selectors. This creates some white space between the Menu con­
trol and the content in the right-hand side of the page.

9.	 Finally, go to the Standard section of the Toolbox and drag an Image control onto the page,
dropping it at the left-hand end of the last row of the table, just in front of the text “Footer and text
links go here.” Add a carriage return to the page after the Image control, so that the text wraps to
the next line below the Image control. With the Image control selected, go to the Properties win­
dow and set the ImageUrl property to the file named page-rule.gif in the images subfolder of
the examples, and set the GenerateEmptyAltText property to True (see Figure 2-27).

Figure 2-27: Setting the GenerateEmptyAltText property to True

The reason for using an ASP.NET Image control for the page-rule.gif file is that it is not part of the
informational content of the page, and so the attributes on the rendered control should indicate this to
specialist page readers. The accepted way is to include the attribute alt=”” (an empty string), but the
ASP.NET controls do not generate this attribute automatically — even when you do not provide a value
for the Alt property. However, certain ASP.NET controls in version 2.0 (such as the Image control) do
provide the GenerateEmptyAltText property, which adds this attribute when set to True.

59

05_588079 ch02.qxd 11/29/05 3:50 PM Page 60

Chapter 2

10.	 Save and close the Master Page (PPQ.master) and go back to the Default.aspx Content Page.
Select View in Browser from the File menu, or click the Start Debugging (green arrow) button on
the toolbar. Your first page is now part of the PPQ Web site! Figure 2-28 shows the result.

Figure 2-28: First PPQ page

Converting an Existing Page
to a Content Page

In Chapter 1, you created a page named TestMenu.aspx that extracts values from the PPQ database in
SQL Server 2005 Express Edition and displays these values in a GridView control (see Figure 2-29). In
this section of the chapter, you will convert this into a Content Page and use it in the Master Page you
have just created.

60

05_588079 ch02.qxd 11/29/05 3:50 PM Page 61

Designing a Web Site

Figure 2-29: The pizza menu page from Chapter 1

1.	 Open the page TestMenu.aspx, and switch to Source view. The first task is to tell ASP.NET that
this will now be a Content Page. Place the input cursor after the end of the Language attribute
in the @Page directive, and press the Spacebar (see Figure 2-30).

Figure 2-30: Telling ASP.NET this will now be a Content Page

2.	 Select the MasterPageFile attribute name from the drop-down list, type an “equals” sign (=)
and a double quotation mark (“), and VWD offers a list of Master Pages in the current project
from which you can choose. Select PPQ.master (see Figure 2-31).

61

05_588079 ch02.qxd 11/29/05 3:50 PM Page 62

Chapter 2

Figure 2-31: Selecting PPQ.master

3.	 Now the syntax checking in VWD indicates that a lot of the page is invalid. Delete everything
except the @Page directive, the <asp:GridView>, control and the <asp:SqlDataSource> control
declarations — but including the opening and closing <html>, <head>, <body>, and other HTML
elements. Now you can insert the only type of control that is valid at the root level of a Content
Page, namely an ASP.NET Content control. As soon as you start typing, a drop-down list displays
the valid options and you can select for the asp:Content control entry (see Figure 2-32).

Figure 2-32: Valid asp:Content control options

62

05_588079 ch02.qxd 11/29/05 3:50 PM Page 63

Designing a Web Site

4.	 The IntelliSense feature helps you add the appropriate attributes to the Content control decla­
ration, and you should end up with this:

<asp:Content runat=”server” ContentPlaceHolderID=”ContentPlaceHolder1”>

A closing </asp:Content> tag is also inserted, and you must move this to the end of the page,
after the GridView and SqlDataSource control declarations. Then, save the page, and view it
in the browser to see the results (shown in Figure 2-33). As you can see, our original page now
fits in well with the new PPQ site.

Figure 2-33: Revised PPQ page

Checking for Accessibility
You have built a Master Page and two Content Pages in this chapter, and they look okay when viewed
in Internet Explorer. The next step is to ensure that they work properly in other browsers as well.
Unfortunately, it is not easy to test your page with other browsers when using the VWD built-in Web
server because it responds to local requests only. However, you can set up alternative browsers by selecting
Browse With. . . from the File menu in VWD and adding your favorite Web browser to the list. You can
even make it the default browser for viewing pages. Unfortunately, this does not work with some text-
based user agents that cannot provide the correct authentication information when accessing the VWD
Web server.

63

05_588079 ch02.qxd 11/29/05 3:50 PM Page 64

Chapter 2

The other solution is to deploy the application, as it now stands, to another server that has IIS and SQL
Server available — and that can be accessed from any location and by any browser or page reader for
testing. The database files, PPQ_Data.MDF and PPQ_Data_Log.MDF, can be attached to a SQL Server
2000 or 2005 database server, and the connection string in the Web.Config file changed to point to this
server.

As an example, after installing the application as it now stands on a separate server and accessing it
with the IBM Home Page Reader (HPR), you can see the effects of the accessibility additions to the pages
(see Figure 2-34). The “Skip To” links you added to the top of the Master Page are seen as hyperlinks
(underlined) in the middle window. This window shows the text that HPR is currently reading aloud to
the user. Therefore, if the user is browsing the site and has already grasped the layout of the pages, he or
she can skip directly to the navigation bar or to the page content from the top of every page as it loads.

Figure 2-34: Viewing the Example Pages in the IBM Home Page Reader

Notice also that the Menu control implements a “Skip To” link of its own automatically (“Skip
Navigation Links”), as well as providing the option to expand an item in the static section of the
menu if it contains links on other nonvisible (“fly-out menu”) levels. Typically, the ASP.NET 2.0 server
controls will provide the basic level of accessibility, as you can see in Figure 2-34.

You can download an evaluation version of the IBM Home Page Reader (and buy a copy) at
www-306.ibm.com/able/solution_offerings/hpr.html.

64

05_588079 ch02.qxd 11/29/05 3:50 PM Page 65

Designing a Web Site

Summary
This chapter has taken the first steps in designing and building the Pizza Pretty Quick (PPQ) Web site. You
saw some of the issues for consideration, such as providing accessibility for all users, managing globaliza­
tion, and multilingual requirements. You also discovered some of the core design/implementation issues
such as planning your strategy for navigation between the site pages, and provision for access to the data
that drives the site.

Then the chapter moved on to topics that are more practical by demonstrating how to create a Master
Page in ASPNET 2.0. This section helped you to get used to the VWD interface and editing features, as
well as showing just how powerful and yet user-friendly it really is. The Master Page you created con­
tains extra accessibility features, a range of different categories of controls (both HTML elements and
server controls), and several images. You saw how the Properties window, task panes, and wizards make
it easy to configure the page content and fine-tune the appearance.

Then you saw how easy it is to create Content Pages that take advantage of the Master Page, and just
how quickly and simply you can convert an existing ASP.NET Web Form page into a Content Page as
well. By the end of the chapter, you had two pages working on the new PPQ Web site.

In summary, the topics covered in this chapter were:

❑ Designing a Web site

❑ Building and using a Master Page and Content Page

❑ Converting an existing page to a Content Page

❑ Checking for accessibility

In Chapter 3, you will look in more detail at the design of the database for the PPQ Web site, and some
other ways that you can extract and display data from the database.

65

05_588079 ch02.qxd 11/29/05 3:50 PM Page 66

06_588079 ch03.qxd 11/29/05 3:52 PM Page 67

3

Building the PPQ Database

You saw in Chapter 1 how Visual Web Developer (VWD) makes it easy to display and update data
stored in a database. You simply dragged a table from the database onto a page, and VWD created
all the controls and code required to make this work. In Chapter 2, you used this page as a Content
Page within the Master Page you created. However, it is now time to look in more detail at how to
design, build, and use a database to drive your Web site or Web application.

In this chapter, you will see the design decisions taken when creating the database for the Pizza
Pretty Quick (PPQ) site. These decisions follow an approach that is reasonably standard, common
wherever you work with a relational database, and can easily be adapted and extended to suit
your own particular situation. Once the design is complete, the tools within VWD allow you to
create this database.

The example shown in this book uses SQL Server 2005 Express Edition, although the database
tools in VWD will work with any other relational database for which .NET drivers or providers
are available. This includes SQL Server, Oracle, or any OLE-DB- or ODBC-enabled database
that provides managed code drivers.

In this chapter, you will:

❑ See the design of the PPQ database

❑ Use VWD to create and modify a database

❑ Build a page to extract data from related tables

By the end of this chapter, you will understand how to create a database suitable for your own
Web sites, and be able to extract and display data it contains.

06_588079 ch03.qxd 11/29/05 3:52 PM Page 68

Chapter 3

Designing the PPQ Database
Database design is both an art and a science, although the science part is generally the most relevant.
There are rules that govern the process of design, including a series of steps called normalization that
ensure you have the optimum structure for the tables in your database. However, you must also balance
this process with the way that you intend to use the data. In some cases, the normalization rules can
divide your data across more tables than is strictly necessary when taking into account the data content
and the way you will use it.

The example application stores data about only two “things.” These are the items that are for sale
(pizzas and drinks) and the orders placed by customers. In database design terms, these “things” may
be referred to as entities. Therefore, the design process starts with two entities: a menu and an order.
Obviously, each order consists of one or more items, each being an item from the menu, and so you can
reflect this in a diagram (see Figure 3-1).

Figure 3-1: The entities for which the database will hold data

Now you can think about the individual items of data that you want to store for each entity. For a menu
item, these will probably be the type of item (pizza or drink), the name, some description, the size, and
the price. For an order, you will probably need to store the customer’s name and address, and the items
he or she ordered.

Storing the Menu Items Data
Looking first at the menu items, a simple approach to the table design for holding data about pizzas
might look like this:

Small Medium Large

ItemName Description Price Price Price

Pizza The basic pizza 6.50 7.50 9.50

Pizza Hawaiian Ham, Pineapple 6.75 7.75 9.75

Drink Cola [no value] Crisp and tasty 2.25 3.25 3.75

ItemType Toppings

Margherita Cheese, Tomato

Tropical taste

68

06_588079 ch03.qxd 11/29/05 3:52 PM Page 69

Building the PPQ Database

This table could also hold data about other menu items, such as drinks, by leaving the Toppings column
empty. Moreover, there could be many more “size-price” columns, depending on the number of differ­
ent sizes available for all the menu items. However, there are fundamental issues here with regard to
normalization. Any change to the range of sizes means changing the table structure, while several of the
columns in each row might be empty.

Applying the Rules of Normalization
This is where the rules of normalization come into play. The first rule states that a row must not contain
repeating groups. You must convert this design into first normal form by removing the repeated informa­
tion. Therefore, the table should instead contain a row for each size of each menu item, like this:

ItemName Description Size Price

Pizza The basic pizza 9.50

Pizza The basic pizza Medium 7.70

Pizza The basic pizza Small 6.50

ItemType Toppings

Margherita Cheese, Tomato Large

Margherita Cheese, Tomato

Margherita Cheese, Tomato

However, each pizza or drink will be available in more than one size, so there will be a row in the table
for each one. This means repeating any data that is the same for each type of pizza or drink, such as
the name, toppings (if any), and description. After all, a Hawaiian pizza still has ham and pineapple
toppings whether it is a small, medium, or large size. The second rule of normalization states that you
must remove data repeated in multiple rows and place it in a separate linked table.

Converting the design to second normal form, therefore, means moving the repeated columns into a new
table and then linking them to the corresponding rows in the existing table. A numeric key column
implements this link. The existing table stores a primary key for each row (the values in the MenuItemID
column of Table 3-1), and the new table also contains this key. The value in each row of the new table,
SizeAndPrice (see Table 3-2), is set to the value of the corresponding row in the MenuItems table (see
Table 3-1) to link the new table rows with the original table rows.

MenultemID ItemName Description

1 Pizza The basic pizza

2 Pizza Hawaiian Ham, Pineapple

3 Drink Cola [no value] Crisp and tasty

Table 3-1: MenuItems Table
MenuItemType Toppings

Margherita Cheese, Tomato

Tropical taste

69

06_588079 ch03.qxd 11/29/05 3:52 PM Page 70

Chapter 3

fkMenultemID ItemSize ItemPrice

1 9.50

1 Medium 7.70

1 Small 6.50

2 9.75

2 Medium 7.75

2 Small 6.75

3 16 fl.oz. 2.25

3 32 fl.oz. 3.75

Table 3-2: SizeAndPrice Table

Large

Large

Specifying that a column is the primary key of a table also ensures that duplicate rows cannot be
inserted that have the same value for this key. However, there can be more than one row in the child
table with the same value for the foreign key, because this is how the parent (primary key) row links to
multiple child (foreign key) rows.

MenuItemID is the primary key for the MenuItems table (shown as shaded), and is, therefore, unique for
each item. There will be only one row in this table for each item (each pizza or drink), irrespective of the
size. The SizeAndPrice table will contain a row for each size for each item in the MenuItems table, and
the column named fkMenuItemID (the prefix “fk” indicates to the developer that it is a foreign key
column) will contain the value of the primary key (MenuItemID) from the row it pertains to in the
MenuItems table.

Because there will potentially be more that one row for each value of fkMenuItemID, this column alone
cannot be the primary key for the SizeAndPrice table. However, the combination of fkMenuItemID
and ItemSize will be unique for each row, and so these two columns together will form the primary
key for this table (shown as shaded). Setting the primary key prevents the insertion of more than one
row into the table with the same primary key value(s), and so helps to maintain integrity of the data.

Applying the Remaining Normalization Rules
The third rule of normalization states that data in the row should not depend on anything other than the
primary key of the table. In the example, the values for the ItemType column of the MenuItems table (in
the example, these are “Pizza” and “Drink”) may be the same for several rows. However, it may be that
there are several other types of item available as well. Placing them into the MenuItems table makes it
hard if you just want to fetch a list of these types, and it also causes data to be repeated. If you wanted to
change the description from “Pizza” to something else, you would have to change every row.

70

06_588079 ch03.qxd 11/29/05 3:52 PM Page 71

Building the PPQ Database

In third normal form, the ItemType column would contain a key value that linked to a separate table. This

MenultemID ItemName Description

1 1 The basic pizza

2 1 Hawaiian Ham, Pineapple

3 2 Cola [no value] Crisp and tasty

fkMenultemID ItemSize Item Price

1 9.50

1 Medium 7.70

1 Small 6.50

2 9.75

2 Medium 7.75

2 Small 6.75

3 16 fl.oz. 2.25

3 32 fl.oz. 3.75

fkMenultem Description

1 Pizza

2 Drink

separate table would contain one row for each item type, with the key value and the description. While
this is the ideal, however, it makes it more difficult to extract the type description of each item (for
example, if you wanted to include “Pizza” or “Drink” in the output). With a limited number of types as in
this example, you may choose to ignore third normal form, as is the case with the example in this book.

MenultemType Toppings

Margherita Cheese, Tomato

Tropical taste

Large

Large

There are actually five rules of normalization. The final two help to optimize the data structure and
produce the most ideal data format, but at the expense of extra complexity that you will probably not
require in your application. Generally, you will apply only the first three rules as described here.

71

06_588079 ch03.qxd 11/29/05 3:52 PM Page 72

Chapter 3

The rules for normalization are the work of E. F. (Ted) Codd working at IBM in the early 1970s,
and there are many articles and resources on the Web that explore these rules in depth. Microsoft
publishes two at http://support.microsoft.com/kb/164172/EN-US/ and http://
support.microsoft.com/kb/100139/EN-US/. Search the Web for “Codd normalization rules”
to see more.

Storing the Orders Data
The second entity that the database must store is order information. The database stores each order
placed by a customer. In a real application, you will probably include data on registered customers and
parts of the order process. However, in this simple example, you will store only the details of each order
as a customer places it.

As with the menu items data, the first approach to the design of the table might be:

Name Address Zip Code Date Itemi Qty1 Item2 Qty2 ...

J.Smith 3 High St. 123-456 3/7/2005 2 1 3 2 ...

C.Sing NE 4th, 219 222-345 4/5/2005 1 1 3 1 ...

However, this obviously suffers the same problem as you saw with the MenuItems table. It contains
repeated groups of columns (item and price), which not only limit the number of different items on each
order to some specific preset amount (the number of item/quantity column pairs in each row) but also
results in a lot of empty columns in row where the customer orders only one or two items.

In first normal form, the table contains multiple rows for each order, with an OrderID identifying the order
that the item belongs to, and the fkItemID, Size, and Qty columns indicating details of this item on the
order. The fkItemID column relates the ordered item to the rows in the MenuItems table (it contains
the value of the key from the MenuItems row that describes the item). The Size column contains the size
that the customer selected, as listed in the SizeAndPrice table. There will potentially be multiple rows for
each order, with the same OrderID, and so this column cannot be used as a primary key:

OrderlD Name Address ZipCode Date fkltemID Size Qty

10 J.Smith 3 High St. 123-456 3/7/2005 2 3 1

C.Sing NE 4th, 219 222-345 4/5/2005 1 1 1

C.Sing NE 4th, 219 222-345 4/5/2005 3 1 2

11

11

Again, there are issues here in that there may be multiple rows where there is more than one item on an
order, but the Name, Address, ZipCode, and Date are the same (i.e., are repeated) for all the rows on the
same order.

72

06_588079 ch03.qxd 11/29/05 3:52 PM Page 73

Building the PPQ Database

In second normal form, there is only one row for each order in the Orders table (see Table 3-3), and the
OrderID column becomes the primary key for the table. Each row contains data related only to this
order (such as the customer, delivery details, and date), and not data about the individual items (the
order lines) for this order.

OrderlD Name Address ZipCode OrderDate DeliveryCharge

10 J. Smith 3 High St. 123-456 3/7/2005 3.50 15.50

C.Sing NE 4th, 219 222-345 4/5/2005 5.00 24.25

Table 3-3: Orders Table
TotalValue

11

Notice that this table includes a column for the total cost of the order, even though you can calculate this at
any time by adding the individual order item row totals and the delivery charge. This actually contravenes
the third rule of normalization, but makes it considerably easier to display order data when required.

If the customer data were stored in other tables, you would instead use a key value in the Orders table
that links the order to the appropriate customer. This would remove the repeated name and address
details from each order row where the same customer places more than one order.

The OrderItems Table
The details of each item on a specific order are stored in the OrderItems table. In theory, this table needs
only to contain the links (the key values) to relate the ordered item to the appropriate rows in the Orders
and MenuItems tables, the size selected by the customer, and the quantity they ordered. However, again it
makes it much easier when working with the data to be able to display the item name without having to
look it up in the MenuItems table.

Therefore, although it contravenes the third rule of normalization, the final design for the OrderItems table
(see Table 3-4) contains links through the key values to the Orders (see Table 3-3) and MenuItems table (see
Table 3-1), the item size and name as text, the quantity ordered, and the value for just this item on the
order. Notice how the first three columns are now required for the primary key (the OrderID column). No
combination of fewer columns can provide a unique value for this row — for example, the customer could
order both a small and a large Hawaiian pizza.

OrderlD fkMenultemID ItemSize ItemName Quantity

10 2 3 Hawaiian 1 9.75

10 3 1 Cola 1 2.25

1 2 1 7.50

3 3 2 9.50

3 1 Cola 2 2.25

Table 3-4: OrderItems Table
LineValue

11 Margherita

11 Margherita

11

73

06_588079 ch03.qxd 11/29/05 3:52 PM Page 74

Chapter 3

This table structure reduces the repeated content seen in the original design for storing the order data,
but still allows easy display of the order details. For example, you can see that by displaying the
contents of the appropriate Orders table row, followed by the linked rows in the OrderItems table,
you could easily build a page such as that shown in Figure 3-2, which shows the completed order details
page in the example application.

Figure 3-2: The completed order details page in the example application

The Final Database Design
Having learned about the design for the database in the example PPQ application, you will see how to
build it in the next section of this chapter. However, before then, it is worth briefly summarizing the
final design.

Figure 3-3 shows the tables as they appear in a database diagram (generated by the Database Explorer in
VWD). You will see how to create and view diagrams like this later in this chapter. Notice that there is an
extra column named GraphicFileName in the MenuItems table. This is used to store the name of the
image (.gif) file for that item.

74

06_588079 ch03.qxd 11/29/05 3:52 PM Page 75

Building the PPQ Database

Figure 3-3: The final database design for the PPQ application

You can see in Figure 3-3 relationships drawn between the columns that link each table, with a “key” at
one end and an “infinity” symbol at the other end. These indicate that the column in each row at the
“key” end is the primary key of that table, and so the values in that column will be unique. The column
at the “infinity” end of the relationship can contain more than one row with the matching key value —
this is a one-to-many relationship. This is what supports application of the normalization rules by allow­
ing removal of repeated data from one table and placement in a linked table.

Figure 3-4 shows an example of the kinds of values stored in the tables. It also shows how the key values
link the tables together to maintain the required data model (not all links are shown as arrows). The
shaded columns are the primary keys for each table. You can see that, for example, C. Sing living on NE
4th Street has ordered both a Medium and a Large Margherita pizza, and a 16 fl.oz. Cola. The
total value of the order, including the 5.00 delivery charge, is 24.25.

75

06_588079 ch03.qxd 11/29/05 3:52 PM Page 76

Chapter 3

Figure 3-4: An example of row values for the database tables

This data model simplifies the data-storage requirements of the example application, while providing
plenty of opportunity to demonstrate data access and storage techniques. It does not follow all the rules
for ideal data normalization, but it does provides a reasonable balance between data-storage efficiency
and ease of display. While the rules of normalization provide the science of database design, this
achievement of balance is where the art comes into play. In your own applications, you will find that
achieving this balance becomes easier as you get familiar with the way that ASP.NET works, and how
the ways that the data is used affect design decisions.

Creating and Modifying Databases in VWD
Visual Web Developer (VWD) contains several features that make it easy to work with a database,
including the Database Explorer window that you first saw in Chapter 1. When you open the example
PPQ site in VWD, it attaches the database provided in the examples to SQL Server Express Edition and
displays the contents of this database in the Database Explorer window. If the Database Explorer
window is not visible, open it from the View menu, or press Ctrl-Alt-S.

76

06_588079 ch03.qxd 11/29/05 3:52 PM Page 77

Building the PPQ Database

If you are following the examples in these chapters, and working with the skeleton version of the
application, you will see three tables in the Database Explorer window (the version of the application in
the complete folder contains more tables that you will build yourself in this chapter).

Figure 3-5 shows the three tables expanded to display the names of the columns they contain.

Figure 3-5: The Database Explorer window

If you right-click on a table in the Database Explorer window, you will see a context menu that provides
several options for managing the database and the table (see Figure 3-6). This includes adding a new
table, trigger, or query, viewing the definition of the selected table, viewing the table’s data content, and
copying or deleting the table. You can also refresh the display if the database has changed, and display
the properties of the table.

77

06_588079 ch03.qxd 11/29/05 3:52 PM Page 78

Chapter 3

Figure 3-6: Some of the actions available
in the Database Explorer window

The Table Designer Window
When you select the Open Table Definition option from the context menu or from the Data menu on the
main toolbar, VWD displays the Table Designer. This is where you create and modify the structure of
the tables in the database, set the primary key(s), and specify the properties for each column.

Figure 3-7 shows two copies of the Table Designer open, one each for the MenuItems table on the left
and the Orders table on the right. You can see how you specify the data type (varchar(25), for
example, simply means a 25-character string value), and whether the column can contain NULL values,
for each column in the tables.

78

06_588079 ch03.qxd 11/29/05 3:52 PM Page 79

Building the PPQ Database

Figure 3-7: The Table Designer showing the MenuItems and Orders tables

The first column, named MenuItemID, is selected in the MenuItems table and the properties for this
column are shown in the lower section of this window. This is the primary key of the table, as indicated
by the key symbol in the column name grid at the top of the window. It is also an Identity (auto-number)
column, and so the Identity Specification property value is Yes. The Identity Increment and
Identity Seed properties, which you find by expanding the Identity Specification entry, are set
to 1 (the default values), which means that as a row is added to this table the MenuItemID will be set
automatically to the next available positive number.

The Orders table displayed in the right-hand window also shows the data types for each column, and
indicates that the OrderID column is in the primary key. In this table, there is a column named OrderDate
that is specified as of type datetime, and two columns — DeliveryCharge and TotalValue— that will
contain money (currency) values.

79

06_588079 ch03.qxd 11/29/05 3:52 PM Page 80

Chapter 3

These last three columns also have a default value set, which is inserted into the row if the user does not
provide a value when creating a new row. The OrderDate column (selected in Figure 3-7) has the value
(getdate()) for the Default Value or Binding property. This means that the SQL Server function
named getdate will insert the current date into the column for a new row. The DeliveryCharge and
TotalValue columns have a default value of zero set.

The Query Window
If you select Show Table Data from the context menu in the Database Explorer window (or select this
option from the Data menu when a table is selected in the Database Explorer window), VWD opens the
Query window and displays the contents of all the rows in that table. When building pages that display
data, this is a good way to see what a table actually contains (see Figure 3-8).

Figure 3-8: Viewing the data in a table from the Database Explorer window

In fact, this is the same window as you saw in Chapter 1 when you experimented with creating a query
to extract data from a database table. The three buttons at the top left of the main window switch the
display so that it shows the Diagram pane (the tables from which the data is extracted), the Criteria pane
(where the columns included in the query are specified and any filtering is applied), and the SQL
pane (which displays the SQL statement used to extract the data). Try opening all these panes to see how
VWD is able to display the contents of a database table (see Figure 3-9).

80

06_588079 ch03.qxd 11/29/05 3:52 PM Page 81

Building the PPQ Database

Figure 3-9: The Query window with all the “panes” turned on and displayed

Creating a New Database
In the next section, you will build the remaining table required for the PPQ Web site, and then construct
the relationships between this and the other tables already provided in the example database. If you
were starting completely from scratch, you would first have to create a new database. For this, you
would right-click the top-level entry in the Solution Explorer window (not the Database Explorer win­
dow!) that shows the path to your Web site and select Add New Item... from the context menu. In the
Add new Item dialog that appears, select SQL Database and specify the name, then click Add. This
opens the Database Explorer window for the new database, where you can add the tables and other
objects you require.

81

06_588079 ch03.qxd 11/29/05 3:52 PM Page 82

Chapter 3

Figure 3-10: Creating a new database in SQL Server Express Edition

Creating the PPQ OrderItems Table
This chapter devoted considerable space to discussing database design issues. It has also looked at how
VWD supports database development. In this section, you will create the remaining table required by
the PPQ Web site. The MenuItems, SizeAndPrice, and Orders tables are provided in the example
database. The one missing table is the OrderItems table.

1.	 Open the Database Explorer window (press Ctrl-Alt-S if it is not visible) and right-click on the
Tables entry. Select Add New Table from the context menu that appears (see Figure 3-11).

Figure 3-11: Database Explorer window

2.	 This opens the Table Designer window (see Figure 3-12), ready for you to specify the columns
for the new table. Type in the column name fkOrderID, and select the int data type from the
drop-down list. Make sure that you clear the Allow Nulls checkbox as well.

82

06_588079 ch03.qxd 11/29/05 3:52 PM Page 83

Building the PPQ Database

Figure 3-12: Table Designer window

The prefix fk is the accepted way to indicate that this column contains a foreign key. When the rows
in two tables are related through key values within specific columns of the tables, the value of the pri­
mary key in the parent table row is used in the child table rows that match that parent row. These values
in the child table are the foreign keys, and so the column is generally referred to as a foreign key column.

3.	 Now continue by defining the remaining columns for the OrderItems table. These are:

Column Name Allow Nulls

fkMenuItemID int no

ItemSize varchar(50) no

ItemName varchar(50) yes

Quantity int no

LineValue money no

Data Type

You should see the result shown in Figure 3-13.

Figure 3 -13: OrderItems data

4.	 Now you can set the specific properties of the columns in the new table. Select the Quantity
column, and in the Column Properties section at the bottom of the Table Designer window find
the entry for Default Value or Binding. This is the value for this column in new rows where
no specific value is provided when the row is created. Type the value 1 for this property, as
shown in Figure 3-14. Then select the LineValue column, and set the Default Value or
Binding property value to zero.

83

06_588079 ch03.qxd 11/29/05 3:52 PM Page 84

Chapter 3

Figure 3-14: Default Value or Binding property

5.	 The next step is to specify the primary key for the new table. You will recall from the earlier
discussion of the database design that this table requires the first three columns to produce a
unique value suitable for the primary key. Click on the square gray row selector button at the
extreme left of the first column, (fkOrderID) and hold the Shift key down while clicking on the
row selector for the third column (ItemSize) so that the top three columns in the list are selected.
Then click the Set Primary Key button on the toolbar (as shown in Figure 3-15), or right-click and
select Set Primary Key from the context menu. Alternatively, you can select the Set Primary Key
option from the main Table Designer menu. Whichever method you choose, a key symbol
appears on the rows to indicate that, together, they form the primary key for this table.

84

06_588079 ch03.qxd 11/29/05 3:52 PM Page 85

Building the PPQ Database

Figure 3-15: Selecting the Set Primary Key button

6.	 The primary key will automatically ensure that rows will appear in the order of the values in
the three columns that form the primary key, unless you specify otherwise in a query. However,
sometimes it is useful to create indexes on other columns to speed up processing of queries.
For example, if you intend to execute many queries against this table that use the value in the
ItemName column, you might want to create an index on it. To do this, right-click anywhere
inside the Table Designer window and select Indexes/Keys from the context menu (as shown in
Figure 3-16), or select Indexes/Keys from the main Table Designer menu.

Figure 3-16: Selecting Indexes/Keys from the context menu

85

06_588079 ch03.qxd 11/29/05 3:52 PM Page 86

Chapter 3

7.	 This opens the Indexes/Keys dialog, which shows the index named PK_Table1 that was cre­
ated automatically when the primary key was set on the table. Click the Add button at the bot­
tom of the Indexes/Keys dialog to create a new index named IX_Table1. Make sure that this
new index is selected and go to the Columns property in the right-hand window. The first col­
umn in the table is selected by default, so click the “three dots” (...) button to open the Index
Columns dialog and select the ItemName column. The default sort order is Ascending, as
shown in Figure 3-17, which is what you want. You can change this if you want items indexed
in reverse order (for example, with a column containing dates or monetary values).

Figure 3-17: Ascending sort order

8.	 Click OK to close the Index Columns dialog and go back to the Indexes/Keys dialog (see Fig­
ure 3-18). Notice the Is Unique property of the new index. Because multiple rows in the table
can contain the same value for ItemName (the name of the item ordered), and can also contain
NULL values (because you did not turn this off in the column designer window), the values will
not be unique, and so the index cannot be unique either. The Is Unique property must be No.
For a primary key column, however, or any other column where you specify only unique values
can exist, you could create a unique index.

86

06_588079 ch03.qxd 11/29/05 3:52 PM Page 87

Building the PPQ Database

Figure 3-18: Indexes/Keys dialog

An index can be created over multiple columns if required. In the Index Columns dialog, you just add

more columns to the grid in the same way as you add columns to the table in the Table Designer win­

dow. Click in the empty row below the last Column Name and another drop-down list appears allowing

you to select the other columns that will be part of the index. If you go to the Indexes/Keys dialog and

select the PK_OrderItems index, you will see the three columns that form this index in the Columns

property of the index. You can create as many indexes as you like on a table, but each one has an effect

on performance when you add or remove rows in the table. Therefore, you should only create indexes

that you will use regularly in queries or when extracting data.

9.	 Now you can save the new table definition by clicking the Save button on the main toolbar, or
by selecting Save Table1 or Save All from the File menu. A dialog appears asking for the name
of the new table. Enter OrderItems and click OK. The new table appears in the Data Explorer
window (see Figure 3-19).

Figure 3-19: New table in Data Explorer window

87

06_588079 ch03.qxd 11/29/05 3:52 PM Page 88

Chapter 3

Defining Relationships between Tables
You have now completed the tables for the PPQ database, but there is still the task of defining the
constraints that implement the relationships between these tables. Just because you created a primary
key and a foreign key column in your tables does not mean that SQL Server will respect this. It will
freely allow you to add rows to the child table where the foreign key value does not match any parent
row primary key, and remove parent rows where there are existing matching child rows.

Both of these situations will cause the data to be inconsistent, because orphan rows (that is, child rows
with no matching parent row) will exist. Constraints prevent this happening by checking for the
presence of matching primary key and foreign key values in the rows before allowing new child rows to
be added or parent rows to be deleted. In doing so, they help to maintain referential integrity of the data.
In VWD, you create constraints by specifying the relationships between tables — using either the Table
Designer or a database diagram. The easier way is to use a database diagram, but before exploring this
in more detail, the following section shows briefly how it is done in the Table Designer.

Defining Relationships in the Table Designer
With a table open in the Table Designer, you can right-click on the Designer window and select
Relationships to open the Foreign Key Relationships dialog. This shows any constraints and relation­
ships defined for the selected table. Click Add to a new relationship then select the Tables and Columns
Specification property in the right-hand window of this dialog and click the three dots (...) button
to open the Tables and Columns dialog (see Figure 3-20).

Figure 3-20: Setting the Tables and Columns Specification for a table relationship

88

06_588079 ch03.qxd 11/29/05 3:52 PM Page 89

Building the PPQ Database

In the Tables and Columns dialog, you specify the primary key table, and select the column in that table
that contains the primary key for this relationship. Then you select the column in the current table that
contains the foreign key. After clicking OK, the Foreign Key Relationships dialog shows the properties of
the new relationship. Notice how the Tables and Columns Specification indicates a relationship
between the Orders and OrderItems tables (see Figure 3-21), using the OrderID primary key and the
fkOrderID foreign key columns.

Figure 3-21: Viewing the Tables and Columns Specification for a table
relationship

Relationships also control how the database will react to changes to the rows in the parent table. This
includes deletion of existing parent rows, and (although it is not good practice to do so) changes to the
primary key values in the parent table rows. The three options for the Delete Rule and Update Rule (see
Figure 3-22) are:

Rule Action Deleted Parent Row Updated Primary Key in Parent Row

Cascade

primary key value.

Set Null

column contains NULL.
the column contains NULL.

Set Default

value for that column if one is specified, or
value for that column if one is NULL otherwise.
specified, or NULL otherwise.

Any related rows in the The value in the foreign key column of any
child table are deleted. related child rows is updated to the new

The value in the foreign The value in the foreign key column of any
key column of any related related child rows is deleted so that the
child rows is deleted so that

The value in the foreign key The value in the foreign key column of any
column of any related child related child rows is replaced by the default
rows is replaced by the default

89

06_588079 ch03.qxd 11/29/05 3:52 PM Page 90

Chapter 3

Figure 3-22: The Delete Rule and Update Rule Actions

In general, you should avoid ever changing the value of a primary key in any existing row, and handle
deletes to a parent table in your code so that you correctly manage the deletion of linked child rows.
Doing this means that you can leave the Delete Rule and Update Rule set to No Action. However, the
other actions can prove useful in maintaining data integrity in cases where you do not directly manage
updates and deletes in your code, for example when using a database row editor or client database tool
such as Microsoft Access. The rules will allow you to edit and delete rows, while still maintaining
database integrity.

Defining Relationships with a Database Diagram
Having seen the principles of relationships between tables in a database, you will now add the two
relationships required for the PPQ database. You created a new table named OrderItems earlier in this
chapter, and this table must be related to the existing tables to force referential integrity to be maintained
when orders are added, updated, or deleted. You will create these relationships using a database diagram,
and you will see that this makes the process much easier than using the Table Designer discussed in the
previous section.

1.	 In the Database Explorer window, right-click on the database diagrams entry and select Add
New Diagram (see Figure 3-23).

Figure 3-23: Selecting database diagrams in the Database
Explorer

90

06_588079 ch03.qxd 11/29/05 3:52 PM Page 91

Building the PPQ Database

2.	 The Database Diagram window opens, together with the Add Table dialog. Click on MenuItems,
hold down the Shift key, and click on SizeAndPrice to select all four tables. Then click Add (see
Figure 3-24).

Figure 3-24: Add Table window

3.	 You will see the four tables appear in the Database Diagram window. You will probably have
to drag them around to get a tidy layout like that shown in Figure 3-25. Notice that there is an
existing relationship between the SizeAndPrice table and the MenuItems table. This is already
present in the example database. You can click on the joining line that represents the relationship
and drag it around to get a neat display — it is a good idea to position it so that it points to the
appropriate columns in the table as in Figure 3-25. The Database Designer does not do this
automatically.

Figure 3-25: Joining line

91

06_588079 ch03.qxd 11/29/05 3:52 PM Page 92

Chapter 3

4.	 To create a relationship between tables, you drag the primary key column from one table
onto the foreign key column in the other table. You need to create a relationship between the
MenuItems table and the OrderItems table, so click on the gray “row selector” button at the
left-hand end of the MenuItemID column in the MenuItems table, and then drag it onto the row
selector in the fkMenuItemID column in the OrderItems table. This opens both the Foreign
Key Relationship and the Tables and Columns dialogs (see Figure 3-26).

Figure 3-26: Foreign Key Relationship and Tables and Columns dialogs

5.	 Notice that VWD automatically selects the correct tables and columns in this dialog (see
Figure 3-26) — it does not do this when you open the Foreign Key Relationship dialog from
the Table Designer. All you need do is confirm that it has selected the correct tables and columns
in the Tables and Columns dialogs (if you dragged the correct columns in the diagram window,
it will have done so), and click OK. Then, in the Foreign Key Relationship dialog, click OK to
create the new relationship (see Figure 3-27).

92

06_588079 ch03.qxd 11/29/05 3:52 PM Page 93

Building the PPQ Database

Figure 3-27: Automatically selecting the correct tables and columns

6.	 Now repeat the process to create a relationship between the Orders and OrderItems tables.
Drag the OrderID column in the Orders table onto the fkOrderID column in the OrderItems
table, and click OK in the Tables and Columns and Foreign Key Relationship dialogs. The result
will be a diagram like that shown in Figure 3-28.

Figure 3-28: Table relationships

93

06_588079 ch03.qxd 11/29/05 3:52 PM Page 94

Chapter 3

7.	 Now close the Database Diagram window. You will be prompted to save the diagram (you
can accept the default name). The Database Diagram window then adds the constraints that
implement the new relationships to the MenuItems, OrderItems, and Orders tables, and
prompts you to save these changes to the tables.

You now have all the tables you require for the PPQ Web site, and the next step is to add a page that
displays the menu data from the MenuItems and SizeAndPrice tables. However, this is not as straight­
forward as the technique you saw in Chapter 1 of just dragging the table onto a page, because the data
must come from two related tables. To finish this chapter, you will see how to create a page that accesses
data in more than one table.

Extracting and Displaying the Menu Items
In this final section of the chapter, you will create a simple page that extracts all the data from the
MenuItems and SizeAndPrice tables, and displays it in a grid. Because the data is in two tables, you
will need to join the tables together to get the rows you need. There are a few ways of doing this, all
based on a SQL statement that implements a table join. You will see three possibilities in the remainder
of this chapter:

❑ Using a custom SQL statement

❑ Using a stored procedure

❑ Using a database view

The first of these naturally leads to the other two, as you will see later in the chapter.

Extracting Data with a Custom SQL Statement
In this example, you will create a page that displays all the items available from the PPQ site, using the
two tables MenuItems and SizeAndPrice. These contain all the data about the PPQ menu, but as it is
divided over two tables, you must create and configure a data source control to access and combine this
data into the correct format.

1.	 Open the skeleton project and add a new Web Form to it using the New File . . . option on the
File menu. Specify the name TestMenu2.aspx for the new Web Form in the Add New Item dialog,
and click Add to add it to your project. Then switch to Design view in the main editing window,
and drag a SqlDataSource control from the Toolbox onto the page. In the pop-up SqlDataSource
Tasks pane, select Configure Data Source (see Figure 3-29).

Figure 3-29: Selecting Configure Data Source

94

06_588079 ch03.qxd 11/29/05 3:52 PM Page 95

Building the PPQ Database

2.	 This starts the Configure Data Source Wizard. In the first page, select the existing connection
string (see Figure 3-30). This connection string was automatically created and added to the
project when you carried out the examples in Chapter 1. It is actually stored in the Web
.config file for the application.

Figure 3-30: Selecting an existing connection string

3.	 The next page in the wizard allows you to select the object in the database that will provide the
data for the SqlDataSource control. However, you can select only one table (as shown in the
left-hand side of Figure 3-31). You need to include data from two tables, so select the option to
specify a custom SQL statement or stored procedure, and click Next.

Figure 3-31: Selecting one table

4.	 The next page in the wizard allows you to type in or create the SQL statement you need. The
easiest way to build a SQL statement if you are not familiar with SQL is through the Query
Builder. Click the Query Builder . . . button in the wizard (see Figure 3-32).

95

06_588079 ch03.qxd 11/29/05 3:52 PM Page 96

Chapter 3

Figure 3-32: Using the Query Builder

5.	 The Query Builder window opens, followed by the Add Table dialog. Select the two tables you
require for the query — MenuItems and SizeAndPrice. Hold down the Ctrl key while clicking
to select more than one item in the Add Table dialog (see Figure 3-33).

Figure 3-33: Add Table dialog

96

06_588079 ch03.qxd 11/29/05 3:52 PM Page 97

Building the PPQ Database

6.	 The two tables now appear in the top section of the Query Builder window. However, the
relationship between them is not enforced. This allows you to create a relationship for this query
that differs from the one in the database that is there to maintain referential integrity. To create the
relationship you need for this query, click on the MenuItemID column in the MenuItems table, and
drag it onto the fkMenuItems column in the SizeAndPrice table (see Figure 3-34).

Figure 3-34: Dragging the MenuItemID column

7.	 You will see the relationship between the two tables appear in the Query Builder window.
Select all the columns in the two tables except for the two “* (All Columns)” entries and the
fkMenuItemID foreign key column (see Figure 3-35). You can either tick the boxes in the tables,
or drag the columns onto the Criteria grid below them.

Figure 3-35: Relationship between two tables

Right-clicking the diamond-shaped “icon” on the link opens a context menu where you can change the
properties of the relationship. The default for a relationship is an INNER JOIN on the tables, which means
that a row will be included in the results only if there is both a parent row and a child row with the same
value for the columns that provide the relationship. In this example, a row will be present in the results
only if there is a row in the SizeAndPrice table with the same key value in the fkMenuItemID column
as it exists in the MenuItemID column of a row in the MenuItems table.

97

06_588079 ch03.qxd 11/29/05 3:52 PM Page 98

Chapter 3

However, you can specify that the query will retrieve all the rows from one of the tables (irrespective of

whether there is a matching row in the related table), and leave the columns empty where there is no

matching row in the other table. This kind of relationship is a LEFT JOIN or a RIGHT JOIN, depending

on which table provides all of its rows. The context menu options allow you to specify “Select All Rows

from MenuItems” or “Select All Rows from SizeAndPrice.” However, you need the default INNER

JOIN in this example, so you do not need to change any of the properties.

8.	 Now you can specify the sort order for the results. In the SortType column of the Criteria grid,
select Descending for the MenuItemType column, Ascending for ItemName, and Ascending
for ItemPrice. The Query Builder automatically sets the SortOrder column as you specify the
sort type, but you can change the order if you wish. In this case, the results will be sorted first
by descending item type (“Pizza” then “Drink”), then by name, then by ascending price (see
Figure 3-36).

Figure 3-36: Sorting by descending item type

9.	 As you build the query, the equivalent SQL statement that will be executed to extract the data is
shown in the SQL pane below the Criteria grid. You can see in Figure 3-37 the columns that are
included in the result (in the SELECT clause), the tables that provide the data (in the FROM
clause, including the INNER JOIN), and the ordering of the resulting rows (in the ORDER BY
clause). Click the Execute Query button at the bottom of the Query Builder window to see the
results. You have succeeded in creating a list of all the items on the menu of the PPQ Web site,
even though they are stored in two separate tables!

98

06_588079 ch03.qxd 11/29/05 3:52 PM Page 99

Building the PPQ Database

Figure 3-37: SQL statement execution

10.	 Click OK in the Query Builder window to go back to the Configure Data Source Wizard. You
will see that it now contains the SQL statement you just created, so you can click Next to
continue (see Figure 3-38).

Figure 3-38: Resulting SQL statement

99

06_588079 ch03.qxd 11/29/05 3:52 PM Page 100

Chapter 3

11.	 In the next page of the Configure Data Source Wizard, you can test the query you entered (see
Figure 3-39). In fact, you already tested it in the Query Builder window, but this page is useful
because you can test the query if you created it by selecting a table, or typed the SQL statement
you want directly into the “SQL statement:” text box in the previous page of the wizard.

Figure 3-39: Testing a query

12.	 Click Finish in the Configure Data Source Wizard, and you are back in the editing window in
VWD. The next stage is to add a control to display the data that the SqlDataSource will return,
so drag a GridView control from the Toolbox onto the page. In the GridView Tasks pane that
appears, choose SqlDataSource1— the SqlDataSource control you just configured (see
Figure 3-40). You can also use the Auto Format . . . option to change the appearance of the
GridView control.

Figure 3-40: GridView Tasks pane

100

06_588079 ch03.qxd 11/29/05 3:52 PM Page 101

Building the PPQ Database

13.	 Now press the F5 key, or click the Run icon on the main VWD toolbar, and you will see the rows
that are returned by the custom SQL statement you created displayed in the GridView control
(see Figure 3-41). This proves that it is possible to reassemble the data from separate tables at
any time to get the set of rows you want. The rules of normalization that you followed in the
design of the database give the benefits of improved storage efficiency within the database and
simplified data updates (you can clearly see the repeated data in Figure 3-41). Yet you can still
extract data in the format and structure you need using a custom SQL statement.

Figure 3-41: Rows returned by the custom SQL statement

Creating a Stored Procedure
The previous example used a SQL statement to extract the data required for the GridView control.
However, this is not generally the best technique for a production application. If you switch to Source
view, you will see that the SQL statement is stored in the page as the value of the SelectCommand
attribute of the SqlDataSource control.

Instead, you can use a stored procedure to extract the data you want. A stored procedure is, as the name
suggests, a query stored within the database that returns the results required to create the output you
want. This approach hides the structure of the database and tables from the user, as they just execute the
stored procedure and get back a rowset (a series of rows of data) or whatever result the stored procedure
is designed to generate. It is also more efficient because the database server can precompile the stored
procedure, and reuse the compiled code. In addition, in enterprise-level databases, the administrator can
set access permissions on the tables so that users can only run a stored procedure, and not access the
data in the tables directly.

101

06_588079 ch03.qxd 11/29/05 3:52 PM Page 102

Chapter 3

There are also benefits from separating the user interface code (the Web Form) from the data access code
when using a stored procedure. Providing that the stored procedure returns the same results, the actual
structure of the underlying tables can change as required — without requiring any changes to the pages
that access the data.

A stored procedure that returns a rowset is, effectively, just a query. The code in the stored procedure is
one or more SQL statements or other commands (called Transact SQL or T-SQL). You can use the same
SQL statement you generated with the Query Builder in the Configure Data Source Wizard to create a
stored procedure for the example page you saw in the previous section.

1.	 Start the Configure Data Source Wizard from the Configure Data Source link in the
SqlDataSource Tasks pane (opened from the arrow icon that appears when you mouse over
the SqlDataSource control in Design view). Click Next until you get to the “Define Custom
Statements or Stored Procedures” page, and copy the custom SQL statement you created with
the Query Builder to the clipboard by highlighting it and pressing Ctrl-C (see Figure 3-42).

Figure 3-42: Copying the custom SQL statement to the clipboard

2.	 Now click Cancel to close the Configure Data Source Wizard, go to the Database Explorer
window, right-click the Stored Procedures entry, and select Add New Stored Procedure from
the context menu that appears (see Figure 3-43).

102

06_588079 ch03.qxd 11/29/05 3:52 PM Page 103

Building the PPQ Database

Figure 3-43: Selecting Add New Stored Procedures

3.	 This opens the stored procedure editor in the main window, and you can paste the SQL
statement into the procedure outline that is provided. The text in green is just comments or
placeholders (the characters “/*” and “*/” are comment delimiters in a stored procedure) and
can be ignored for now. Make sure you change the name of the stored procedure in the first line
to dbo.usp_GetAllMenuItems, as shown in Figure 3-44.

Figure 3-44: Changing the name of the stored procedure

The prefix dbo for the stored procedure name indicates that the owner of the stored procedure (within
the database) is the built-in default system user. The actual name you use to refer to the procedure later
will generally not include this prefix. The characters “usp” at the start of the name is a convention that
indicates this is a “user” stored procedure (as opposed to a “system” stored procedure). System stored
procedures start with “sp” or “xp” and so using a different prefix makes it easier to see which stored
procedures are yours and which were created by VWD or the database itself.

103

06_588079 ch03.qxd 11/29/05 3:52 PM Page 104

Chapter 3

4. Save the new stored procedure and close the stored procedure window. Then, in the Configure
Data Source Wizard, change the settings in the “Define Custom Statements or Stored
Procedures” page to specify “Stored procedure:” as the source of the data, and select the new
stored procedure in the drop-down list (see Figure 3-45).

Figure 3-45: Selecting the new stored procedure

5.	 Now click Next and then Finish to complete the Configure Data Source Wizard and go back to
the TestMenu2.aspx page in VWD. You will see that the page looks the same, and you can run
it to prove that you get exactly the same results. However, if you now switch to Source view,
you will see that the SelectCommand attribute of the SqlDataSource control just specifies the
name of the stored procedure.

Using a View Instead of a Table or Stored Procedure
Another approach to exposing data from more than one table as a single rowset for display using the
controls in VWD and ASP.NET 2.0 is through a database view. You create a view in much the same way
as you do a stored procedure. Right-click the entry named Views in the Database Explorer window and
select Add New View from the context menu that appears.

This opens a Query Builder window, where you add the tables and specify the columns and sorting
order just as you did when creating a custom SQL statement. Alternatively, you can just copy the custom
SQL statement from the Configure Data Source Wizard (as in the previous example) and paste it into the
SQL pane of the Query Builder. Then save the new view as AllMenuData.

104

06_588079 ch03.qxd 11/29/05 3:52 PM Page 105

Building the PPQ Database

Now, if you work through the Configure Data Source Wizard again in the page you used for the previ­
ous example, you can specify that the data will come from a table or a view, and select the new view you
just created (see Figure 3-46). This displays all the columns in the view, and you can select the ones you
want. For the purpose of this example, you should select all of them.

Figure 3-46: Specifying a view as the data source

Now, when you go back to the TestMenu2.aspx page, it looks just the same. You can run the page, and
again there is no difference from what you saw using a custom SQL statement or a stored procedure.
However, now the data is coming from a view, and if you switch to Source view you will see that the
SelectCommand attribute of the SqlDataSource control specifies the SQL statement SELECT * FROM
[AllMenuData]. This means that SQL Server executes the SQL statement you specified to create the
view, and then returns all the columns. The structure of the database is hidden from the user, and SQL
Server can even cache the results of executing the SQL statement that creates the view.

Summary
In this chapter, you have seen the process of designing a simple database to support an application such
as the Pizza Pretty Quick (PPQ) example Web site. You saw how the principles of normalization can be
applied to a table structure that, at first, appears to be obvious, so that storage and processing efficiency
are optimized. It also means that there is no need to perform multiple updates when one item of data
changes, as redundant and unnecessary repeated data is removed from the tables.

105

06_588079 ch03.qxd 11/29/05 3:52 PM Page 106

Chapter 3

After settling on a final design for the PPQ example database tables, you saw how you can use the tools
provided in VWD to build tables, set the properties, and create relationships between them. These are
the fundamental tasks for working with a database, and VWD is a great environment for accomplishing
them all.

With the database complete, you then saw how you can take the data split over multiple tables and
reassemble it into rowsets with the structure and content required to power the pages of the site. In this
chapter, you saw only a simple example — a list of all the menu items complete with description, size,
and price. In the next and subsequent chapters, you will see other ways of extracting the data,
assembling it into rowsets, and using it to create more attractive and useful pages.

The chapter ended with a discussion of the different ways you can expose data from a database. The
three fundamental techniques are through custom SQL statements, stored procedures, and database
views. You saw how to create each of these, and how they are used in VWD to power your Web pages.

In summary, the topics of this chapter were:

❑ Designing the PPQ database

❑ Using VWD to create and modify a database

❑ Building a page to extract data from related tables

In Chapter 4, you will see a lot more ways to display data using the controls available in VWD and
ASP.NET 2.0. You will also see how to create nested data output, and how other types of data display
controls and templates can be used to build more attractive and useful data-driven pages.

106

07_588079 ch04.qxd 11/29/05 3:53 PM Page 107

4

Accessing and

Displaying Data

In the previous chapters, you have glimpsed some of the power of Visual Web Developer (VWD)
and ASP.NET 2.0. Using just drag-and-drop techniques, and the VWD wizards, you have built the
initial parts of the example PPQ Web site without writing any code, and without having to know
anything other than the basics of HTML and Web page design. Yet, the pages contain interactive
content such as fly-out menus, and data extracted from a database — that you can even edit within
the page!

This demonstrates just how productive the combination of VWD and ASP.NET is. However, while
you can build quite complex pages, and even whole Web sites, without ever having to look at the
code that VWD creates, it is still a good idea to understand at least the basics of what is happening
when you build pages like this. It helps you to adapt the code that VWD produces to maximize
performance and to extend the capabilities of the pages.

In this and the next chapter, you will explore just one area where an appreciation of the workings
of ASP.NET can help you build better pages. In this chapter, you will see:

❑ How the data source and data display controls in ASP.NET work

❑ How templates can improve the display of data

❑ How you can use other types of data display controls

To start the chapter, you will see how you can improve the output generated by the test pages
you created at the end of Chapter 3, which display the pizzas and drinks available from the PPQ
Web site.

07_588079 ch04.qxd 11/29/05 3:53 PM Page 108

Chapter 4

Data Source and Data Display Controls
In Chapter 1, you saw how VWD and ASP.NET can automatically create a page that displays rows from
a database, and allow you to select, edit, and delete the rows in the database table.

Figure 4-1 shows this page as you last saw it at the end of Chapter 2. You created it simply by dragging
a table from the Database Explorer in VWD onto the page and then setting some properties using the
GridView Tasks pane, such as enabling paging, selection, editing, and deleting of rows.

Figure 4-1: The page for displaying and editing rows in the MenuItems table

In Chapter 3, you saw how you can join two tables in the database together, then extract and display the
data from these two tables. In this case, you used the Configure Data Source Wizard to set the properties
of the data source control to which the GridView control is bound. The GridView control automatically
extracts the rows from the data source control and displays them in the resulting page (see Figure 4-2).

108

07_588079 ch04.qxd 11/29/05 3:53 PM Page 109

Accessing and Displaying Data

Figure 4-2: The page from Chapter 3 that joins the MenuItems and SizeAndPrice tables

It is obvious that the combination of a data source control and a GridView control is responsible for
connecting to the database, extracting the data, and displaying it. In this section of the chapter, you
will explore this relationship in a little more depth, so that you can take advantage of the extended
capabilities it offers for improving the appearance and efficiency of the process.

The Object-Oriented and Event-Driven Architecture
ASP.NET is an object-oriented and event-driven programming environment. In fact, the whole .NET
Framework is built up of code classes that, when instantiated, create the objects you use in your pages.
These objects include the ASP.NET Page itself, and the various controls (such as Image, Hyperlink,
Menu, DataGrid, and SqlDataSource) that you have used so far in the example PPQ site. Each of these
objects was instantiated by a declaration visible in the ASP.NET page in Source view, for example:

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
ConnectionString=”<%$ ConnectionStrings:PPQ_DataConnectionString1 %>”
SelectCommand=”SELECT * FROM [AllMenuData]”>

</asp:SqlDataSource>

109

07_588079 ch04.qxd 11/29/05 3:53 PM Page 110

Chapter 4

As objects, each one can expose properties, methods, and events. The SqlDataSource declared in this
code exposes properties such as ID, ConnectionString, and SelectCommand, and these can be set (as
you can see in the preceding code) simply by declaring them as attributes on the element in the page.
Methods that the objects expose allow you to execute specific functionality. For example, you can force a
data display control to bind to and display its source data by calling the DataBind method of that control.

The event-driven nature of ASP.NET simply means that the objects that make up the ASP.NET platform
expose events when specific actions occur. Effectively, they send a message to any other objects that are
listening for that event, and these objects can then react to the event by executing the appropriate code. As
an example, a Button control on a Web page will raise a Click event when clicked and the page is sub­
mitted to the server. Code in the page can register to receive this event, and react to it by, for example,
displaying a message in the page.

The pages you have created so far (which include a data source control such as the SqlDataSource, and
a data display control such as the GridView) depend on the event-driven architecture of ASP.NET 2.0.
When the client requests a page, a series of events occurs within the page framework. Any data source
controls on the page handle (react to) this event by fetching the data specified by the properties of the
control, and then call a method of the data display control to create the output you see on the page.

In Chapter 5, you will see how you can react to events exposed by the GridView control, and even other
types of objects such as the ASP.NET Page itself. In later chapters, you will see how you can create your
own classes that plug into, and work with, the classes in the .NET Framework.

About the GridView Control
The examples you have seen so far that use a GridView control all depend on this control automatically
generating the output structure as a series of columns, one for each column in the original data source that
you want to display in the page. In fact, this is a simplification of the situation because VWD generates a
design-time declaration for the columns you see in the output.

The GridView control has a property named AutoGenerateColumns, which is True by default. If you
have a SqlDataSource in the page that has its ID property set to MySqlDataSource, you can display
all the columns it contains automatically by simply declaring a GridView control in the source of the
page like this:

<asp:GridView ID=”MyGrid” runat=”server” DataSourceID=”MySqlDataSource” / >

The GridView control will create a BoundField control for each column in the data source. This column
displays the contents of the column as text, irrespective of the data type in the underlying data source.
For example, the number 12, which could represent the size of a pizza in inches or the price in dollars,
is displayed as the text string “12”. The one exception is where the source column is a SQL bit type,
which can hold only the values True or False. In this case, the GridView control displays the column
contents as a checkbox.

110

07_588079 ch04.qxd 11/29/05 3:53 PM Page 111

Accessing and Displaying Data

When editing is enabled in a GridView control, as you saw in the example at the end of Chapter 1 (see
Figure 4-1 earlier in this chapter), the control displays links that change the selected row into edit mode
where the BoundField columns display the content in a text box. You can edit this value, and then save
this new value back to the database. The GridView and SqlDataSource controls work together to
enable this behavior automatically. For a bit column, you can change the setting of the checkbox, and
save the new setting back to the database.

There are also other data display controls you can use to display and edit data. These include the
DetailsView and FormView controls that are new in ASP.NET version 2.0, and the DataList and
Repeater control originally introduced in version 1.0. You will see examples of these controls later in
this chapter and in subsequent chapters.

Using Different Column Types in a GridView
When you add a GridView control to the page in VWD, it turns off the AutoGenerateColumns feature,
and instead creates the code to implement the columns in the original data source. This allows you to
change the column types used for each column in the data source to produce a display that is more in line
with your requirements. You will explore this feature now to see some of the things that are possible.

1.	 Open the page TestMenu2.aspx that you built in Chapter 3. Mouse over the GridView control.
Then open the GridView Tasks pane, and click the Edit Columns . . . link (see Figure 4-3).

Figure 4-3: Clicking Edit Columns . . . in the GridView Tasks pane

2.	 This opens the Fields dialog for the GridView control. In the top left is a list of the available
field types, with the existing fields that contain values from the database shown as being of
the BoundField type. Under this list is the “Selected fields” list, which shows the fields in the
source data for which there are columns in the GridView control. As you select each field in
this list, notice the properties that appear in the right-hand list. The ItemName field is selected
in Figure 4-4, and you can see that the DataField property indicates that it is bound to the
ItemName column within the source data. Also notice that VWD automatically turns off the
“Auto-generate fields” option (which corresponds to the AutoGenerateColumns property of
the GridView control), and declares the fields you can see in this dialog.

111

07_588079 ch04.qxd 11/29/05 3:53 PM Page 112

Chapter 4

Figure 4-4: Viewing properties for the ItemName field

3.	 Select the GraphicFileName column in the “Selected fields” list, and click the button next to the
list to remove this column (see Figure 4-5). Then repeat this to delete the MenuItemID column.

Figure 4-5: Removing the GraphicFileName column

4.	 Select the ImageField type in the “Available fields” list, and click the Add button. You will see a
new ImageField appear in the “Selected fields” list, with its properties shown in the right-hand
list (see Figure 4-6).

112

07_588079 ch04.qxd 11/29/05 3:53 PM Page 113

Accessing and Displaying Data

Figure 4-6: Viewing the properties of the ImageField type

5.	 Now you can set the properties of the new ImageField column. This column type will gener­
ate an ASP.NET Image control in each row. In the Data section of the list of properties, set the
DataAlternateTextField property to the name of the column that will provide the data to
set the AlternateText property of the Image control (used to create the alt attribute when
the page is displayed). Use the ItemName column for this. Then set the DataImageUrlField
property to the name of the column that will provide the data to set the ImageUrl property of
the Image control (the path to the image file to be displayed). Use the GraphicFileName
column for this, which contains the names of the .gif image files (see Figure 4-7).

Figure 4-7: Selecting GraphicFileName

113

07_588079 ch04.qxd 11/29/05 3:53 PM Page 114

Chapter 4

6.	 The MenuItems table contains just the filename of the images for the menu page, and not the
full path. The images are, in fact, in a subfolder named images. To get the correct path in the
ImageUrl property of each Image control, you must also set the DataImageUrlFormatString
property of the new ImageField column to the format string images/{0} (see Figure 4-8). This
format string will cause the column value to be set to the text in the string, but with the place­
holder {0} replaced by the value from the column that you specified for the DataImageUrlField
property. Therefore, you will get — for example — images/pizza2.gif as the value of the
ImageUrl property for the second pizza row.

Figure 4-8: Setting the DataImageUrlFormatString property

7.	 There are some more properties you should set for the new ImageField column. Set the
NullImageUrl property by selecting it and clicking the three dots (...) button that appears.
Select the image file blank.gif from the images folder. This is the image that will be displayed
if there is no value in the column that normally provides the value for the ImageUrl property
and prevents the user seeing a “broken image” in the page in this case. Notice that VWD
precedes the file you select with the tilde (~) character. This signifies the root folder of the site
and makes sure that the correct path to the image is used, even if you move the page to a
subfolder afterwards. Set the ShowHeader property to False, so there is no header displayed
for this column. Finally, set the AccessibleHeadertext property to Picture of item. This text
will be used as an abbr attribute of the column when the page is displayed, making it possible
for users of specialist nonvisual user agents to more easily tell what the column contains.

8.	 Now go to the “Selected fields” list and use the up arrow button to move the new column to the
top of the list so that it is displayed as the first column of the grid (see Figure 4-9).

Figure 4-9: Moving the new column to the top of the list

9.	 That completes the new ImageField column, so go back to the “Available fields” list and select
the HyperlinkField type. Click Add so that a new field of this type is added to the end of the
Selected fields” list (see Figure 4-10).

114

07_588079 ch04.qxd 11/29/05 3:53 PM Page 115

Accessing and Displaying Data

Figure 4-10: Adding a new field

10.	 In the properties for the new HyperlinkField, set the Text property to Search. This is the text to
display in this column for every row. If you want the text of a hyperlink to be different in each row,
and reflect the data in the underlying data source, you set the DataTextField property to name
of the column containing the text for the hyperlink, and optionally the DataTextFormatString
property. These properties work in the same way as the DataImageUrlField and
DataImageUrlFormatString properties you set for the ImageField column in step 6. Set the
Target property to the value blank (from the drop-down list) to force the page that opens from
the hyperlink to appear in a new browser window.

11.	 Set the DataNavigateUrlFields property to the value MenuItemType,ItemName. You can
click this property entry and open the String Collection Editor dialog using the three dots (...)
button that appears, or simply type the value directly. This property holds a list of the
columns in the source data that will be referenced when building the URL of the hyperlink to be
displayed in this column. Then set the DataNavigateUrlFormatString property to the value
www.google.com/search?q={0} {1} (see Figure 4-11). This URL will allow users to search the
Google Web site for more information about the items on the PPQ menu. The two placeholders
in the string are replaced for each row by the values from the two columns specified as the
DataNavigateUrlFields property.

Figure 4-11: Setting the value of the
DataNavigateUrlFormatString property

115

07_588079 ch04.qxd 11/29/05 3:53 PM Page 116

Chapter 4

12.	 The final change to the columns in the GridView control is to specify the formatting of the
ItemPrice column. At present, this just displays as a number, such as 12.9500 (as you saw in
Figure 4-2 earlier in this chapter). You can specify a format string for the DataFormatString
property of the column to change this, and the obvious choice is currency format using the for­
mat string {0:c}, as shown at the bottom of the Fields dialog in Figure 4-12. However, this
depends on the regional settings of the server, and you may prefer to be more precise about the
actual currency symbol to display by using the format string $ {0:F2}, as shown in Figure 4-12.

Figure 4-12: Changing the DataFormatString property

Chances are that the prices stored in your database are in a specific currency, such as U.S. dollars. In

this case, using the {0:c} format string means that the currency symbol and number format depends

on the regional settings of the server, whereas the value in the table is always U.S. dollars. Therefore, it

is always wise to consider using format strings that specify the currency symbol, and format the

remainder of the numeric value with a fixed number of decimal places. The format string $ {0:F2}

forces a U.S. dollar currency symbol to appear, with the value formatted to two decimal places.

13.	 Now you can click OK to close the fields dialog, and run the page to see the results. Figure 4-13
shows that the first column now contains an image of the item in the menu, and the final col­
umn contains a Search link. If you hover over this link, you will see the target URL appear in the
status bar of the browser, in this case http://www.google.com/search?q=Pizza Hawaiian.
Also notice the formatting of the values in the ItemSize column.

116

07_588079 ch04.qxd 11/29/05 3:53 PM Page 117

Accessing and Displaying Data

Figure 4-13: Image inserted into first column and hyperlink in final column

There are plenty of other properties for the columns that you can set to experiment with changing the
appearance of the GridView output. For example, you can set or change the header text (or use an
image), or apply specific formatting to the contents. However, there are other ways that you can exert
even more control over the appearance, as you will see next.

Using Data Display Control Templates
The previous section showed how you can change the way the GridView control displays the data
exposed by a data source control. You replaced the standard BoundField control for some of the
columns with an ImageField and a HyperlinkField, so that the output contains images and links to
other pages. You also changed the format of the text in the result, so that the price displays with the
appropriate currency symbol.

However, these are not the only ways to generate custom output in a GridView or other data display
controls. You can, instead, replace the BoundField with a TemplateField and generate the entire
output you require yourself. A TemplateField allows you to specify the entire content for a column,
using other controls and text to create the appearance you require.

117

07_588079 ch04.qxd 11/29/05 3:53 PM Page 118

Chapter 4

1.	 With the page TestMenu2.aspx still open from the previous example, open the GridView
Tasks pane, and click the Edit Columns . . . link to open the Fields dialog. Remove all the
columns in the “Selected fields” list except for the GraphicFileName, Description, and
Search columns. Then select the Description column and click the link at the bottom right
of the Fields dialog to convert this column into a TemplateField (see Figure 4-14).

Figure 4-14: Converting the Description column

2.	 Click OK to close the Fields dialog, and go back to the GridView Tasks pane. Click the Edit
Templates link, as shown in Figure 4-15.

Figure 4-15: Clicking the edit Templates link

118

07_588079 ch04.qxd 11/29/05 3:53 PM Page 119

Accessing and Displaying Data

3.	 This changes the GridView Tasks pane into template editing mode. The pane now shows a list
of the templates that are available for the control, listed by column name. There is only one
TemplateField column in your GridView control — the column named Description at index 1
(the second column in the control because the index starts at zero), as shown in Figure 4-16. Select
the ItemTemplate, and the control displays an editing panel that contains a Label control.

Figure 4-16: Selecting ItemTemplate

The Template Editing Mode pane opens showing the ItemTemplate by default. Normally the edit area

is empty, but there is a Label here in this case because you converted the existing Description

column (which used a Label control to display the contents) into a TemplateField. If you select the

EditItemTemplate from the drop-down list, you will see that there is a TextBox in this template.

Again, this is because you converted the existing Description column into a TemplateField.

Data display controls display the contents of the appropriate template depending on which mode they

are in, and so the TextBox displays only in the row that is in edit mode. The remaining rows display

the Label control.

4.	 Close the GridView Tasks pane, and select the Label control. Open the Label Tasks pane using
the small arrow icon that appears and click the Edit DataBindings . . . link (see Figure 4-17).

Figure 4-17: Clicking the Edit DataBindings. . . link

5.	 This opens the Label1 DataBindings dialog. The column itself is not bound to any specific column
in the source data, but this dialog allows you to bind the controls you place in the templates for
this TemplateField to the columns in the source data. The Label control in the ItemTemplate
for this column has its Text property bound to the Description column in the source data, as
you can see in Figure 4-18. There is no Format provided, but this feature allows you to specify a
format string just like those you used in the previous example to change the way the value is
displayed. You can even specify your own custom binding statement for this column if you prefer.

119

07_588079 ch04.qxd 11/29/05 3:53 PM Page 120

Chapter 4

Figure 4-18: Text property bound to the Description column

Usually, you will bind the Text property of a control to the column in the underlying data source.

However, you can bind other properties, such as the NavigateUrl of a Hyperlink control, or the

AlternateText property of an Image control. Notice that you can display all the properties of a control

by setting the checkbox below the “Bindable properties” list.

6.	 The binding of the Label control’s Text property to the source data, in this example, is a two-way
binding (because you converted the BoundColumn to a TemplateColumn). The code expression is
Bind(“column-name”). This means that any changes to the value in the control (for example
if it were a TextBox) will be pushed back into the database automatically. As you are just dis­
playing data in this page, you can untick the checkbox in the Field binding section of the
dialog to specify one-way binding.

7.	 Click OK to close the Label1 DataBinding dialog, and close the Label Tasks pane. Now you
will add more controls to the ItemTemplate section to specify how the source data will display
in this column. Drag a Label control from the Toolbox into the ItemTemplate editing area, and
use the Edit DataBindings . . . link on the Label Tasks pane to open the DataBindings dialog
for this control. Select the ItemName column in the “Bound to” drop-down list. Notice that, by
default, this is not a two-way binding, and so the code expression is Eval(“column-name”),
as shown in Figure 4-19.

120

07_588079 ch04.qxd 11/29/05 3:53 PM Page 121

Accessing and Displaying Data

Figure 4-19: Binding for ItemName column

8.	 Drag another Label control from the Toolbox onto the ItemTemplate editing area. Bind this
control (Label3) to the PizzaToppings column, but this time add a format string by typing
the text generously topped with {0} into the Format section of the DataBindings dialog (see
Figure 4-20).

Figure 4-20: Entering text into the Format section

121

07_588079 ch04.qxd 11/29/05 3:53 PM Page 122

Chapter 4

9.	 Continue by adding two more Label controls to the ItemTemplate. Bind one (Label4) to the
ItemSize column. Bind the other (Label5) to the ItemPrice column, and type $ {0:F2} into the
Format box to ensure that the price is displayed with a dollar symbol and two decimal places
(as in the previous example). Then, rearrange the Label controls by dragging them into position
in the ItemTemplate, and typing text and carriage returns between them to get the layout
shown in Figure 4-21 — you can drag the border of the control to give yourself more room
inside the template editing area. Then change the text size, and the color and style, using the
controls on the VWD Formatting toolbar if you wish.

Figure 4-21: Arranging Label controls

10.	 Now, click the End Template Editing link in the GridView Tasks pane, and open the Properties
window for the GridView control (right-click on it and select Properties from the context
menu). Change the GridLines property to Vertical and the ShowHeader property to False.
Then run your page to see the results. As you can see in Figure 4-22, the output is no longer just
a table of values, but a page where you have exerted complete control over how the values
extracted from the source data appear.

Figure 4-22: Resulting page

122

07_588079 ch04.qxd 11/29/05 3:53 PM Page 123

Accessing and Displaying Data

Look at the list of drinks toward the end of the page, and you will see why we specified a format string for
the PizzaToppings column, but typed the other text that you see directly into the ItemTemplate
section. Where there is no value (NULL) for a column, the format cannot be applied and the bound control
displays nothing. This means that for drinks (which have NULL for the PizzaToppings column), the
text “generously topped with . . .” does not appear at all.

The DetailsView and FormView Controls
All of the examples you have seen so far use the GridView control. This is, however, just one of the
controls available for displaying the data exposed by a data source control. The GridView control, as you
have seen, displays a grid of rows and columns, giving you a view of the data that corresponds directly to
the original data table. You can change this by using different column types, or with templates, but the
underlying structure of the output is still rows and columns, with one row for each row in the source data.

Two of the other new data display controls in ASP.NET 2.0 display the data one row at a time, with the
individual columns laid out like a “form.” They provide links that allow you to move from one page or
row to the next one, the previous one, the first one, or the last one. This form-based view of the data
often makes it easier to see what a row that has a large number of columns contains. The individual
values can be displayed with separate labels for each one, laid out vertically as fields from one row
rather than as a series of horizontally arranged columns.

The two controls that provide this type of output are the DetailsView and FormView. The difference
between them is that the DetailsView control, like the GridView control, can automatically generate
the fields and display the content from the associated data source control. The FormView control, on the
other hand, provides no automatic display support other than the navigation between rows, and you
must create the entire content of the display form using templates. However, these templates work in
just the same way as you saw for the GridView control in the previous section.

Other display controls for rowset data are the DataList and Repeater. The DataList and Repeater
controls do not support automatic row selection, editing, paging, or sorting. The DataList control
generates an HTML table with one row containing a single cell for each row in the source data. You pro­
vide details of the data items from the source data, and how they are to be displayed, for each row. The
Repeater control is even simpler. It generates repeated output using a template that you create, without
providing any other support for formatting or layout. All it does is output to the browser the contents of
the template once for each row in the data source.

Using a DetailsView and FormView Control
You will see most of the data source controls used in the PPQ example site. However, to help you
become familiar with the different types, this example demonstrates the use of the DetailsView and
FormView controls.

123

07_588079 ch04.qxd 11/29/05 3:53 PM Page 124

Chapter 4

1.	 In the TestMenu2.aspx page you used in the previous example, click on the GridView control
and press the Delete key to remove it from the page. Then drag a DetailsView control from the
Data section of the Toolbox and drop it onto the page just below the existing SqlDataSource
control. In the DetailsView Tasks pane, select the existing data source (named SqlDataSource1)
in the Choose Data Source drop-down list (see Figure 4-23).

Figure 4-23: Selecting the existing data source

2.	 Now click the Auto Format link in the DetailsView Tasks pane, and select one of the formats
that are available from the list in the Auto Format dialog that appears. Then, back in the
DetailsView Tasks pane, tick Enable Paging and you will see the navigation links appear below
the control (see Figure 4-24).

Figure 4-24: Selecting Enable Paging

124

07_588079 ch04.qxd 11/29/05 3:53 PM Page 125

Accessing and Displaying Data

3.	 Now drag a FormView control from the Data section of the Toolbox onto the page, placing it below
the DetailsView control. Repeat the preceding steps to specify the existing SqlDataSource as
the data source for the FormView control (you can bind more than one control to a single data
source), apply an auto-format to it, and enable paging. The FormView control looks quite different
from the DetailsView control (see Figure 4-25).

Figure 4-25: FormView control

In fact, VWD has added a lot of content to the FormView control for you. This allows it to be used

straight away, without requiring you to edit and populate the templates. If you switch to Source

view, you will see that the DetailsView contains a series of BoundField controls, just as you saw

used with the GridView control. For the FormView control, VWD has created an ItemTemplate,

EditItemTemplate, and InsertItemTemplate section, and populated these with controls to display all the

columns, and even allow editing of all the columns (with the exception of the primary key column) in

the source data.

4.	 Run the page, and again you see the differences between the two controls. The DetailsView
control at the top displays the contents using an HTML table to lay out the captions and values,
and adds row-level formatting. The FormView control simply contains the text generated by the
default templates that VWD created (see Figure 4-26).

125

07_588079 ch04.qxd 11/29/05 3:53 PM Page 126

Chapter 4

Figure 4-26: DetailsView control and FormView control with text generated by the default
templates

5.	 Back in Design view, open the DetailsView Tasks pane, and click the Edit Fields link. You see
the same Fields dialog as you did with the GridView control. You can add, remove, format, and
change the types of the columns in the DetailsView control in just the same way as you saw
earlier in this chapter with the GridView control. However, there is no Edit Fields link in the
FormView Tasks pane, because it does not support the field controls. Instead, you must switch
to template editing mode where you add, remove, change, and format the controls in each of the
templates, just as you did in the previous example with a TemplateField (see Figure 4-27). The
only difference is that, in the FormView control, the templates make up the entire content of the
output, whereas a TemplateField in a GridView control just specifies the appearance for that
column.

126

07_588079 ch04.qxd 11/29/05 3:53 PM Page 127

Accessing and Displaying Data

Figure 4-27: Switching to template editing mode

The DetailsView and FormView controls in this example do not support editing or inserting new rows
because they are bound to a query that does not allow updates to be pushed back into the database.
Recall that the query used by the SqlDataSource control in this page joins two tables and returns rows
from both. If you use a query that returns rows from a single table, or from an updateable database view,
the Tasks panes for the DetailsView and FormView controls will allow you to turn on the editing and
inserting of new rows, and will automatically handle the whole process for you just like the GridView
control does.

Summary
This chapter has concentrated on the techniques available within VWD for creating pages that display
data from a relational database. It is often important to know a little more about how a technology
works to be able to get the best from it, and ASP.NET and VWD are certainly no exception. This chapter
explored the basics of the ASP.NET event-driven architecture, and the way that this provides the ability
to react to events in your own pages and code.

Equally important, for developers working with relational or XML data (which includes the vast majority
of developers at some time or another), is a basic grasp of what the data source controls in ASP.NET
actually do. You saw some details in this chapter, and you will see more in subsequent chapters.

However, the bulk of the chapter was concerned with the use of templates in the data display controls
such as the GridView. You tend to discover, surprisingly quickly, that the standard output generated
by the data display controls in ASP.NET often does not give you exactly what you want. Instead, you
will find yourself increasingly using templates to achieve exactly the required results, and this chapter
showed just how powerful this feature is.

Toward the end of the chapter, you saw some of the other data display controls — including the
DetailsView and FormView controls that are new in version 2.0 of ASP.NET. These controls provide
a view of data that was not easily obtainable in previous versions, allowing users to scroll easily
through a set of rows, and even update the data, if you decide to expose this feature.

Chapter 5 continues this theme of accessing and displaying data, extending it to include nested data
display and working with XML data. It also looks at creating reusable content as user controls.

127

07_588079 ch04.qxd 11/29/05 3:53 PM Page 128

08_588079 ch05.qxd 11/29/05 3:55 PM Page 129

5

Displaying Nested

and XML Data

In Chapter 4, you looked in detail at how VWD provides support for building data-driven pages
and Web sites through the new data source controls and data display controls. You saw how easy
it is to connect to a database, extract and display data, and even perform updates to that data.

In this chapter, you will see some more ways that you can use data in your Web pages. The first
main topic is the creation of pages that more closely represent the requirements of many every­
day situations, such as displaying details of orders or (as in this case) the items on a menu. This
generally involves working with more than one table of data and, as a result, the best way to
display this data by using a “nested” approach to the layout.

However, data does not always come from a database. Increasingly, applications are using XML
to pass data from one place to another, and store it as a disk file. ASP.NET contains controls that
make displaying this kind of data easy, as you will see in this chapter.

The third and final topic in this chapter is an approach you can use to create reusable content for
your Web applications and Web sites. ASP.NET provides a feature called user controls that allows
you to generate independent sections of pages or code, which are easy to insert into other pages.

So, the topics for this chapter are:

❑ How you can build nested displays of data from multiple tables

❑ How you can display XML data, rather than data from a relational database

❑ How you can create reusable sections of a page as user controls

To start the chapter, you will continue your investigation of displaying relational data by discovering
techniques for creating nested displays using data binding.

08_588079 ch05.qxd 11/29/05 3:55 PM Page 130

Chapter 5

Building Nested Data Displays
Chapter 4 discussed the various ways that data exposed by a data source control can be bound to a
range of data display controls, such as the GridView, DetailsView, and FormView. Each control
displays all of the source data rows — either all at once in a “grid,” or one row at a time in a “form.”
This approach is fine if the data source you use contains all the columns required for the output, and
the result requires only these columns. However, what happens when you want to display data that
comes from separate tables, yet you do not want to repeat the output for every row in both tables?

To make it easier to see what the issue here is, consider the situation with the rowset containing the pizza
menu items that you have been working with so far. To get the sizes and prices into each row, you use a
stored procedure, database view, or custom SQL statement to join the MenuItems and SizeAndPrice
tables together. The result is a rowset containing a row for each of the rows in the SizeAndPrice table,
with the columns from the MenuItems table added to it and populated with the appropriate values from
the linked rows in the MenuItems table (see Figure 5-1).

Figure 5-1: The pizza type, name, and description repeat in every row of the pizza menu page

A more natural way to display this type of information is by repeating just the items that are different in
each row.

130

08_588079 ch05.qxd 11/29/05 3:55 PM Page 131

Displaying Nested and XML Data

This could be as simple as removing the repeated data from the rows and leaving them empty. However,
a much more common requirement, and the one you will implement here, is to use nesting to create a
list of the nonrepeated items within a list of the repeated items. In other words, the main list will only
contain the items that are unique in the MenuItems table. Within each of these rows, however, will be
another nested list of the sizes and prices for that particular menu item (see Figure 5-2).

Figure 5-2: A nested display of the items from the pizza menu

This is a much more natural way of displaying data from two related tables, where the child tables
contain multiple linked rows for each row in the parent table. It applies to many situations other than a
menu, for example when displaying an order that contains more than one “order line” (more than one
item). The parent table contains the details of the order (such as the address and delivery charge), while
each related child row contains details of one item on that order.

Creating Nested Data Displays Declaratively
In this example, you will build the page you have just seen in Figure 5-2, using mainly drag-and-drop
techniques and with only a few lines of code. You will create it using the code-behind approach, where
the executable code for the page resides in a separate file that — along with the .aspx page that imple­
ments the interface — uses the partial classes feature in .NET version 2.0 that allows a single class to be
divided across separate files. This makes it easier for one or more people to work independently on
either the code or the interface section of the page.

131

08_588079 ch05.qxd 11/29/05 3:55 PM Page 132

Chapter 5

1.	 Select New File . . . from the File menu, or right-click on the root entry in the Solution Explorer
window and select Add New Item . . . to open the Add New Item dialog. Select Web Form, and
change the filename to TestMenu3.aspx. Be sure to tick the “Place code in separate file” check-
box near the bottom of the dialog, and then click Add (see Figure 5-3).

Figure 5-3: Clicking the checkbox, and then clicking Add

2.	 VWD creates two new files, and adds them to the project. If you look in the Solution Explorer
window (see Figure 5-4), you will see these two files. TestMenu3.aspx contains the interface
code, and automatically opens in the main editing window. TestMenu3.aspx.vb contains the
executable code for the page, which you will examine later in this example.

Figure 5-4: Two new files appearing in
the Solution Explorer window

132

08_588079 ch05.qxd 11/29/05 3:55 PM Page 133

Displaying Nested and XML Data

3.	 Switch to Design view, and drag a SqlDataSource control from the Toolbox onto the page
(TestMenu3.aspx) that is open in the Editing window. Select Configure Data Source in
the SqlDataSource Tasks pane to start the Configure Data Source Wizard. Select the entry
PPQ_DataConnectionString1 for the connection string in the first page of the wizard,
and click Next. In the Configure the Select Statement page, select “Specify columns from a
table or view,” and select the MenuItems table. In the Columns: list, select the MenuItemID,
MenuItemType, and ItemName columns (see Figure 5-5).

Figure 5-5: Selecting columns in the Columns: list

4.	 Click Next. Test the query if you wish, and click Finish to close the Configure Data Source Wizard.
Then drag a GridView control from the Toolbox onto the page. In the GridView Tasks pane, select
SqlDataSource1 in the Choose Data Source: list, and apply an Auto Format of your choice. Now,
click the Add New Column . . . link in the GridView Tasks pane, as shown in Figure 5-6.

Figure 5-6: Selecting Add New Column . . .

133

08_588079 ch05.qxd 11/29/05 3:55 PM Page 134

Chapter 5

5. This opens the Add Field dialog. Choose a TemplateField in the list at the top of the dialog,
and enter Size and Price as the Header Text (see Figure 5-7).

Figure 5-7: Add Field dialog

6.	 This adds a new TemplateField as the last column of the GridView control. Click OK to close
the Add Field dialog, and click the Edit Templates link at the bottom of the GridView Tasks
pane to switch this pane into Template Editing Mode. You will see the new column named Size
and Price and the templates that are available for it. Select the ItemTemplate, as shown in
Figure 5-8.

Figure 5-8: Template Editing Mode pane

7.	 Whatever you place in this template will appear in this column of every row in the GridView
control at run time. Therefore, you need to add controls into this template that will fetch the
rows from the SizeAndPrice table that match the MenuItemID value in the current row of the
GridView. Drag a SqlDataSource from the Toolbox into the template-editing area, and select
Configure Data Source in the SqlDataSource Tasks pane to start the Configure Data Source
Wizard. Select the entry PPQ_DataConnectionString1 for the connection string in the first
page of the wizard, and click Next. In the Configure the Select Statement page, select “Specify
columns from a table or view,” but this time select the SizeAndPrice table. In the Columns:
list, select the ItemSize and ItemPrice columns, as shown in Figure 5-9. Then click the
WHERE . . . button to open the Add WHERE Clause dialog.

134

08_588079 ch05.qxd 11/29/05 3:55 PM Page 135

Displaying Nested and XML Data

Figure 5-9: Selecting columns from the Columns: list

You must add a WHERE clause (a criteria) to the SQL statement so that only the rows matching the

current menu item are returned. The data source controls allow you to add parameters to the SQL

statement, and these can even be populated with the appropriate value dynamically at run time. For

example, you can use a ControlParameter automatically populated with the value from, say, a

DropDownList so that the rows returned by the query match the currently selected value in this list.

However, things are not that simple with a GridView control, as you will see in the next step.

8.	 The Add WHERE Clause dialog (shown in Figure 5-10) allows you to select a Column in the
source data that the query generates, an Operator (such as equals), and a Source for the value to
compare to the specified column contents. The Source specifies the type of parameter to create
and there are several types available. You can take the value from another control on the page,
a value in the query string, a posted form value, a value from a cookie, or a value from the

user’s session or profile. In the example you are building now, it would be tempting to add a
parameter that takes its value from the current row in the GridView control, as shown in
Figure 5-10.

135

08_588079 ch05.qxd 11/29/05 3:55 PM Page 136

Chapter 5

Figure 5-10: Add WHERE Clause dialog

9.	 Unfortunately, this will not produce the required result. If you look at the Value: that the wizard
proposes, you can see that it will come from the SelectedValue property of the GridView
control. The problem is that, when simply displaying data, the rows in the GridView control are
not actually “selected.” Only one row can be in “selected mode” in a GridView, as you may
recall from the example in Chapter 1 that demonstrates selection and editing in a GridView
control. Instead, you must add a “normal” parameter (one that is not automatically popu­
lated) to the SQL statement, and then set the value of this parameter using code at run time.
Confusingly, to create a parameter of this type, you select None in the Source: list of the Add
WHERE Clause dialog, as shown in Figure 5-11. You should also leave the Value: (in the
“Parameter properties” section of the dialog) empty. After setting these values in the Add
WHERE Clause dialog, click the Add button. You will see them appear in the SQL Expression
and Value section at the bottom of the list (you can add multiple criteria in this dialog). Then
click OK to close the dialog and return to the Configure Data Source Wizard.

136

08_588079 ch05.qxd 11/29/05 3:55 PM Page 137

Displaying Nested and XML Data

Figure 5-11: Selecting None in the Source: list

10.	 Back in the Configure Data Source Wizard, you can now specify the sorting of the rows by
adding an ORDER BY clause to the SQL statement. Click the ORDER BY . . . button to open the
Add ORDER BY Clause dialog. Select the ItemPrice column, and check that the order is set to
Ascending. You can see the final SQL statement at the bottom of this dialog, with the WHERE
and ORDER BY clauses you have just created (see Figure 5-12).

Figure 5-12: Add ORDER BY Clause dialog

137

08_588079 ch05.qxd 11/29/05 3:55 PM Page 138

Chapter 5

Notice that the WHERE clause specifies that the fkMenuItemID column (in the SizeAndPrice table)
must be equal to a parameter named @fkMenuItemID. This is the default naming convention. When
using SQL Server, parameter names should always start with the @ character.

11.	 Click OK to close the Add ORDER BY Clause dialog, and click Next in the main Configure
Data Source Wizard window. Now you can test your query. Click the Test Query button, and —
because there is a parameter in the SQL statement — the Parameter Values Editor dialog opens
showing the name and type of each parameter that is required by the query. Enter a value
between 1 and 7, and click OK (see Figure 5-13).

Figure 5-13: Parameter Values Editor dialog

12.	 You will see that the result contains only the rows that have the value you entered in their
fkMenuItemID column (see Figure 5-14). After viewing the results, click Finish to complete the
Configure Data Source Wizard.

138

08_588079 ch05.qxd 11/29/05 3:55 PM Page 139

Displaying Nested and XML Data

Figure 5-14: SELECT statement results

13.	 Back in the main VWD editing window, you can now add the list control that you will bind to
the SqlDataSource control you just configured. Only a line break is required between each
item in the list, and so the obvious choice is the lightweight and simple Repeater control. Drag
a Repeater control from the Toolbox and drop it into the ItemTemplate editing area. In the
Repeater Tasks pane, select the new SqlDataSource (named SqlDataSource2) in the Choose
Data Source list (see Figure 5-15).

Figure 5-15: Choose Data Source drop-down list

139

08_588079 ch05.qxd 11/29/05 3:55 PM Page 140

Chapter 5

14.	 The Repeater control depends on templates to provide all of its content and yet is one of the
few controls that does not provide a design-time interface for editing its templates. As you can
see in Figure 5-15, you must switch to Source view and manually enter the templates and
content. Find the <asp:Repeater> control declaration, and insert the following ItemTemplate
declaration (as shown highlighted in Figure 5-16):

<ItemTemplate>
<%#Eval(“ItemSize”)%>: <%#Eval(“ItemPrice”, “$ {0:F2}”)%>

</ItemTemplate>

The Repeater control generates a copy of the ItemTemplate contents at run time for each row
in the source data rowset. The content you just added consists of two Eval statements, which
display the values from the specified columns of the current row, and some literal text (the “:”
and a space) plus an HTML line break. Notice that the second Eval statement also specifies a
format string (like that you saw in previous examples), so the value will appear with a dollar
sign and two decimal places.

Looking at the source of the page (in Figure 5-16), you can see the declaration of the second
SqlDataSource control (with ID=”SqlDataSource2”) within the ItemTemplate of the GridView
control. Nested inside the SqlDataSource is a SelectParameters section that contains the parameter
you added to the SQL statement in the Configure Data Source Wizard.

Figure 5-16: Source code for page

140

08_588079 ch05.qxd 11/29/05 3:55 PM Page 141

Displaying Nested and XML Data

15.	 If you run the page now, you will see nothing in the Size and Price column. This is because
the SqlDataSource in the ItemTemplate of the GridView control cannot match any rows in the
SizeAndPrice table — the value of the @fkMenuItemID parameter is empty. To set the value,
you need to write some code that will execute as each row of the GridView is bound to its data
source (a row from the MenuItems table). Recalling how you learned in the previous chapter
that ASP.NET controls raise events, you will not be surprised to discover an event that provides
just the opportunity you need. The GridView control raises a RowDataBound event after it has
collected the data from the data source for each row, and is ready to create the output. Go to the
Solution Explorer window and open the code-behind page named Testmenu3.aspx.vb. In the
two drop-down lists at the top of the main VWD editing window, select the GridView control
(GridView1), and the RowDataBound event, as shown in Figure 5-17.

Figure 5-17: Selecting the RowDataBound even

16.	 An outline of the event handler routine appears in the page (see Figure 5-17), to which you can
then add your own code (see Figure 5-18). The code you require is:

If e.Row.RowType = DataControlRowType.DataRow Then

Dim ds As SqlDataSource = CType(e.Row.FindControl(“SqlDataSource2”),
SqlDataSource)

ds.SelectParameters(“fkMenuItemID”).DefaultValue =
GridView1.DataKeys(e.Row.RowIndex).Value

End If

141

08_588079 ch05.qxd 11/29/05 3:55 PM Page 142

Chapter 5

Figure 5-18: Outline of event handler routine

The code used here looks complicated, but has a simple task to accomplish. It first checks what type of
row this is by looking at the RowType property of the row — referenced through the arguments passed
to the event handler (it might be a data row, a header row, or a footer row). If it is a data row, it will
contain the SqlDataSource and Repeater controls. The code uses a method of the Row object named
FindControl to get a reference to the SqlDataSource control in this row. Then it extracts the value
of the MenuItemID column for the current row from the DataKeys collection (VWD automatically
sets the DataKeyNames property of the GridView control to the primary key column(s) in the source
rowset, which populates the DataKeys collection). The value of the parameter named fkMenuItemID
in the SelectParameters collection of the SqlDataSource control in this row is then set to the
MenuItemID value for this row, causing it to extract the matching rows from the SizeAndPrice table.

17.	 Click Save to save the two files, and then run your page to see the results. As you can see in
Figure 5-19, the Repeater control now generates a list of values from the SizesAndPrices
table for each row in the MenuItems table.

142

08_588079 ch05.qxd 11/29/05 3:55 PM Page 143

Displaying Nested and XML Data

Figure 5-19: Results of Repeater control generating a list of values

Writing Code to Access and Display Nested Data
The example you have just seen works but is not particularly efficient. There are two reasons for this, one
of which can benefit many of your other data access pages, and one that pertains directly to the display of
nested data. To understand both of these issues, you need to know a little about how data access works in
.NET. This includes the way that ASP.NET accesses data through the data source controls, and the way
that the data is stored in memory and used to populate the data display controls.

This leads on to the concept of writing your own data access code that builds up the data structures
required to bind to the data display controls. This also allows you to take control of the data in specific sit­
uations that require it and thereby create much more efficient pages for your Web sites. In later chapters,
where you look at the process of extracting and updating data in the database as users place orders, you
will see that writing your own data access code is the only option.

143

08_588079 ch05.qxd 11/29/05 3:55 PM Page 144

Chapter 5

Yes, you can still take advantage of data source controls in most cases and then simply extend the
capabilities when required for many other cases (as you saw in the previous example in the “Creating
Nested Data Displays Declaratively” section). However, there will always be that case where writing
custom data access code is the only way, or by far the most efficient way, to achieve the desired result.

The DataReader and DataSet Objects
The fundamentals to understanding data access in .NET are the two objects DataSet and DataReader.
The DataSet is the default storage approach used by the data source controls in ASP.NET. A DataSet is
an in-memory store than can contain one or more tables (rowsets) of data, and optionally the relationships
between the tables. The DataSet uses an object called a DataAdapter to connect to the database and
extract the rows, and the DataAdapter can push changes made to the data within the DataSet back into
the database tables.

The alternative approach involves fetching the data using a DataReader. A DataReader is more like
a “pipe” that connects the database server to the consumer of the data. The database server executes
the SQL statement or stored procedure to generate the results rowset, and the DataReader streams
this rowset to the control in your ASP.NET page in read-only, forward-only fashion. Reopening the
DataReader and reexecuting the query is the only way to reread the data. Changes to the data cannot
be stored or pushed back into the database.

Using a DataReader with a Data Source Control
By default, when a SqlDataReader fetches its data from the database, it stores this data in memory in a
DataSet (i.e., SqlDataSource not SqlDataReader). This allows the control to do clever tricks such as
caching the data to reduce server loading (you configure this through the properties of the control), and
supporting features such as paging,selection, and editing.

However, creating a DataSet and storing it in memory is less efficient than simply streaming the data
from the database and using it to populate the data display control. If the page is only displaying the
data, and does not allow caching, paging, selection, or editing, you can improve performance by
changing the data source control to use a DataReader rather than a DataSet. This simply involves
setting the DataSourceMode property of the data source control, as shown in Figure 5-20. To show the
Properties dialog, you can right-click on the data source control and select Properties from the context
menu that appears.

Figure 5-20: Setting a data source
control to use a DataReader instead
of a DataSet

As an example, the previous example in the section “Creating Nested Data Displays Declaratively”
uses several data source controls. As the page executes, the GridView control binds to the DataSet
exposed by the first SqlDataSource control on the page and generates a grid row for each row in the

144

08_588079 ch05.qxd 11/29/05 3:55 PM Page 145

Displaying Nested and XML Data

MenuItems table. Each of these rows also contains a SqlDataSource control, which you placed in
the ItemTemplate of the TemplateField of the GridView control. As each row is bound to its source
row, the SqlDataSource control in that row fetches a DataSet containing the child rows from the
SizeAndPrice table that match the current parent row in the MenuItems table.

This proliferation of DataSet instances, even though they are all quite small (having only a few rows
each), means multiple calls to the database server, and multiple objects instantiated. Simply by changing
the properties of the SqlDataSource controls to use a DataReader instead of a DataSet will help to
reduce the processing overhead, even though it cannot prevent the multiple data access operations. Just
set the DataSourceMode property of the two SqlDataSource controls in the example page to
DataReader instead of DataSet.

Generating a Single DataSet with Relationships
You can take an even better approach to data access for nested data binding. It depends on the ability
of a DataSet to hold multiple tables and the relationships between them. The idea is to populate the
DataSet with all of the rows you want to display from both the MenuItems and SizeAndPrice tables,
so that only one data access operation is required to create the entire nested display. The process of creat­
ing the DataSet requires more server resources than using a DataReader, but there is only one request
to the database. If the database is on a separate server, as is usually the case in enterprise-level applica­
tions, this alone can provide a big performance boost.

After fetching the data, you then create a relationship within the DataSet that corresponds to the
relationship between the MenuItems and SizeAndPrice tables within the database. Relationships
(implemented as DataRelation object instances) expose the CreateChildView method that allows on
demand extraction from the DataSet of sets of SizeAndPrice rows that match a specific MenuItems
parent row. These child rows then populate the nested Repeater control.

1.	 Open the page PPQ.master from the Solution Explorer window and switch to Design view.
Right-click within the ContentPlaceHolder control at the right of the main section of the page,
and select Add Content Page from the context menu that appears (see Figure 5-21).

Figure 5-21: Selecting Add Content Page

145

08_588079 ch05.qxd 11/29/05 3:55 PM Page 146

Chapter 5

2.	 Switch to Design view, drag a DataList control from the Toolbox, and drop it into the Content
section of the new page. Click the Property Builder . . . link in the DataList Tasks pane that
appears to open the DataList1 Properties dialog. Check that you have the same settings for your
DataList control as those shown in Figure 5-22.

Figure 5-22: DataList1 Properties pane

Notice that the DataList can lay out its contents (the repeated items) in columns and fill these

columns either vertically or horizontally. This particular feature makes the DataList control ideal for

pages where you need multicolumn lists. Meanwhile, on another note, it might seem confusing having

two different Properties windows — a dialog that opens from the Property Builder link and a normal

window that lives at the edge of the screen. In fact, they just offer two different ways to set the proper­

ties of the control. The Property Builder dialog you see here makes it easier to specify the format for the

templates within a list control such as the DataList.

3.	 The Format page of this Properties dialog makes it easy to specify the style for the templates in
a list control. Enter or select the value for the Header of your DataList control as shown in
Figure 5-23. Then set the following properties for the other templates:

❑ Footer: Horizontal Alignment = Center

❑ Normal Items: Fore color = #284775, Back color = White

❑ Separators: Horizontal Alignment = Center

146

08_588079 ch05.qxd 11/29/05 3:55 PM Page 147

Displaying Nested and XML Data

Figure 5-23: Format page of Properties dialog

4.	 Click OK to close the Properties dialog and select Edit Templates from the DataList Tasks
pane. Select Header Template, type in the header text Our Stone-Baked Menu and press
Return. Then, drag an Image control from the Standard section of the Toolbox into the template
editing area below this text. Right-click on the Image control and select Properties to open the
Properties window. Set the GenerateEmptyAlternateText property to True, and then select
the ImageUrl property entry. Use the three dots (...) button to open the Select Image dialog,
and select the image named menu-spacer.gif from the images subfolder. Your Header
Template should now resemble Figure 5-24.

Figure 5-24: Header template

147

08_588079 ch05.qxd 11/29/05 3:55 PM Page 148

Chapter 5

5.	 Now, select Footer Template in the DataList Tasks pane, and add an Image control to this
template as you did in the previous step, setting the same properties. You do not need to add
any text to this template because it will just appear at the end of the list of menu items. Then
select Separator Template in the DataList Tasks pane and add another Image control there, with
the same properties.

6.	 The final task for the DataList control is to create the content for the ItemTemplate section.
This contains an Image control to display a picture of the menu item, some Label controls to
display details of the item, and a Repeater control to display the sizes and prices available
for that item (as shown in Figure 5-25). This is similar to the ItemTemplate you created in the
previous example, and so — rather than working through each step — you can use the section
of code provided in the file Menu.aspx.txt in the page-content subfolder of the examples.

Figure 5-25: ItemTemplate section

7.	 Switch to Design view, use the Edit Templates link in the DataList Tasks pane to show the list
of templates, and select the ItemTemplate. You should have an ItemTemplate, as shown in
Figure 5-26.

148

08_588079 ch05.qxd 11/29/05 3:55 PM Page 149

Displaying Nested and XML Data

Figure 5-26: Copying declarations into <ItemTemplate> section

8.	 One other addition to the code is required. At the top of the page, directly after the Page directive,
add Import directives to import the classes in the System.Data and System.Data.SqlClient
namespaces. As shown in Figure 5-27, add the lines:

<% @Import Namespace=”System.Data” %>
<% @Import Namespace=”System.Data.SqlClient” %>

Figure 5-27: Adding lines to the code

149

08_588079 ch05.qxd 11/29/05 3:55 PM Page 150

Chapter 5

9.	 Now go back to Design view, drag a Label control from the Toolbox, and drop it into the
Content control just below the DataList control. This Label will only be used to show any
errors that occur in the data access code you will write, so set the Text property of this Label
control to an empty string so that it is not visible when there is no error. You should now have a
Content section in your page that looks like Figure 5-28.

Figure 5-28: Content section in page

10.	 Before going any further, you can rename the page. When you create a Content Page directly from
a Master Page (by right-clicking within the ContentPlaceHolder control and selecting Add
Content Page as you did in this example), the page name appears as Default2.aspx or something
similar. Save and close your new page and, in the Solution Explorer window, right-click the page
name and select Rename from the context menu. Name the page ShowMenu.aspx, as shown in
Figure 5-29.

150

08_588079 ch05.qxd 11/29/05 3:55 PM Page 151

Displaying Nested and XML Data

Figure 5-29: Renaming the page

11.	 The next step is to add the code that accesses the database, extracts the data, and binds it to the
DataList and Repeater controls to create the menu page. The Content Page you are creating
uses the code inline approach by default (if you want to use code-behind, you must create a
new Web Form and then add the <asp:content> elements and convert it into a Content
Page as you did with the TestMenu.aspx page in Chapter 2). Double-click on the new page
ShowMenu.aspx in Solution Explorer to open it in the editor again in Source view. At the top of
the main editing window, select the Page object and the Load event in the two drop-down lists,
as shown in Figure 5-30. VWD adds a <script> section to the page, and inserts into it the
outline of a Page_Load event handler like this:

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

End Sub
</script>

151

08_588079 ch05.qxd 11/29/05 3:55 PM Page 152

Chapter 5

Figure 5-30: Selecting from the drop-down lists

12.	 Open the file ShowMenu.aspx.vb.txt from the page-content subfolder, and copy the con­
tents into this event handler. This saves you a lot of typing, though you might like to type in at
least a few of the lines of code yourself to see the way that VWD provides pop-up tooltips and
auto-complete for object properties and method names. Figure 5-31 shows the result.

Figure 5-31: Results of copying code into the event handler

152

08_588079 ch05.qxd 11/29/05 3:55 PM Page 153

Displaying Nested and XML Data

13.	 Now, run the page to see what you have created, as shown in Figure 5-32. Because you have not
provided a value for the item type in the query string, the menu shows — by default — all of the
items in the MenuItems table. However, if you use the links on the fly-out menu on the left of
the page (Our Menu | Pizzas or Our Menu | Drinks), you will see that the page displays only
the items that match that selection for the MenuItemType. You will see how all this works when
you examine the code in the new page in the next section of this chapter.

Figure 5-32: Seeing the completed page

How the Code in the ShowMenu.aspx Page Works
Quite a lot of the detailed workings of the page you just built were omitted when you copied the control
declarations and code provided as separate files into your page. To understand how the example works,
this section describes the code and the way that the nested data binding is implemented. The code in the
Page_Load event handler runs when the page loads each time, and fills a DataSet with two tables from
the database.

Note that we have added some line breaks into the following listings. In VB.NET, you can break a line of
code over two lines by adding a space and an underscore to the end of the first line.

153

08_588079 ch05.qxd 11/29/05 3:55 PM Page 154

Chapter 5

The first steps are to create an empty DataSet object instance and then declare the SQL statements that
extract the data. You can build these statements using the Query Builder in VWD. They include a WHERE
clause that specifies a value for the MenuItemType (which can be “Pizza” or “Drink” in this example),
and they sort the rows as required for display in the page. Notice that the second SQL statement has to
join the two tables together to be able to include a WHERE clause that specifies the MenuItemType column:

‘ declare a DataSet to hold the rows from the database
Dim ds As New DataSet()

‘ specify the two SQL statements to select the rows, first one for the columns
‘ required from the MenuItem table, including a WHERE clause for MenuItemType
Dim sGetMenuItems As String = “SELECT MenuItemID, MenuItemType, ItemName, “ _

& “ PizzaToppings, Description, GraphicFileName FROM MenuItems “ _
& “WHERE MenuItemType LIKE @MenuItemType “ _
& “ORDER BY MenuItemType DESC, ItemName”

‘ second SQL statement gets the columns required from the SizeAndPrice table, but
‘ need to limit the rows to those specified by the MenuItemType value passed to
‘ this page. This column is not in the SizeAndPrice table, so have to join it to
‘ the MenuItems table to be able to select on the MenuItemType column in that table
Dim sGetSizesAndPrices As String = “SELECT fkMenuItemID, ItemSize, ItemPrice “ _

& “FROM SizeAndPrice JOIN MenuItems “ _
& “ON MenuItems.MenuItemID = SizeAndPrice.fkMenuItemID “ _
& “WHERE MenuItemType LIKE @MenuItemType “ _
& “ORDER BY ItemPrice”

...

Next, the connection string can be extracted from the Web.config file. This is the same connection
string as used in all the previous examples:

...
‘ get conection string from Web.config file
Dim sConnect As String = ConfigurationManager.ConnectionStrings(_

“PPQ_DataConnectionString1”).ConnectionString
...

To populate a DataSet with rows from a database, you need a SqlDataAdapter. This object uses a
SqlConnection to connect to the database, and so the code next creates a new SqlConnection instance
using the connection string. A SqlDataAdapter is then created using the SqlConnection and the first
of the SQL statements declared earlier:

...
‘ create a connection to the database using the connection string
‘ the Using statement ensures that the connection is closed and
‘ disposed automatically after use
Using con As New SqlConnection(sConnect)

‘ create a SqlDataAdapter using the SqlConnection object
‘ and the first SQL SELECT statement declared earlier
Dim da As New SqlDataAdapter(sGetMenuItems, con)
...

154

08_588079 ch05.qxd 11/29/05 3:55 PM Page 155

Displaying Nested and XML Data

Specifying the ItemType for the Query
The page must be able to show all of the menu items, or just a subset of pizzas or drinks. When the page
is opened, a query string may be added to the URL — for example: ShowMenu.aspx?type=pizza. This
means that a parameter is required to pass the specified value to the SqlDataAdapter, so that it can pass
it to the database when executing the SQL statement. The code creates this parameter next, specifying that
it will hold a String value of length up to 10 characters. The value from the query string is then extracted
(using the ASP.NET QueryString collection), and the wildcard character “%” added to the end. If there is
no value in the query string, just the “%” character — when sent to the database — will ensure that all rows
are returned:

...
‘ create a SqlParameter to hold the type of menu items to show
Dim param As New SqlParameter(“@MenuItemType”, SqlDbType.VarChar, 10)

‘ get the item type specified when the page was opened from the query string
‘ it will force the SelectCommand to select only the required rows, or all
‘ of the rows if there is no value in the query string (% means match anything)
param.Value = Request.QueryString(“type”) & “%”

‘ add the parameter to the SelectCommand used by the SqlDataAdapter
da.SelectCommand.Parameters.Add(param)
...

Fetching the Rows from the Database
The next section of code fetches the rows from the database and creates two new tables in the DataSet,
by calling the Fill method of the SqlDataAdapter and specifying the target DataSet and the name of
the table. After fetching the first rowset from the MenuItems table, it changes the SQL statement and
fetches the rows from the SizeAndPrice table. The same parameter, used both times, selects only the
appropriate rows that match the item type from the query string:

...
Try

‘ fetch the MenuItems rows into the DataSet as a new table
da.Fill(ds, “MenuItems”)

‘ change the SQL statement in the SelectCommand of the
‘ SqlDataAdapter to the one that selects the SizeAndPrice rows
da.SelectCommand.CommandText = sGetSizesAndPrices

‘ fetch the SizeAndPrice rows into the DataSet as another new table
da.Fill(ds, “SizeAndPrice”)

Catch ex As Exception

‘ if there is an error, display the message and stop execution here
Label1.Text = “ERROR: “ & ex.Message
Exit Sub

End Try

End Using
...

155

08_588079 ch05.qxd 11/29/05 3:55 PM Page 156

Chapter 5

Notice how a Try..Catch construct traps any error that may occur and displays the error message from
the resulting Exception instance in the Label control you placed below the DataList control in the page.

Creating the Relationship in the DataSet
Now the code can create the relationship between the two tables in the DataSet. It creates a reference
to the primary key column (MenuItemID in the MenuItems table) and the foreign key column
(fkMenuItemID in the SizeAndPrice table), and then creates a new DataRelation instance named
MenuLink using these two column references. This relationship is then added to the DataSet:

...
‘ create a relationship between the two tables in the DataSet
‘ first get references to the primary key in the MenuItems table
‘ and the foreign key in the SizeAndPrice table
Dim pkcol As DataColumn = ds.Tables(“MenuItems”).Columns(“MenuItemID”)
Dim fkcol As DataColumn = ds.Tables(“SizeAndPrice”).Columns(“fkMenuItemID”)

‘ now create the relationship within the DataSet
Dim dr As New DataRelation(“MenuLink”, pkcol, fkcol)

‘ add this relationship to the Relations collection of the DataSet
ds.Relations.Add(dr)
...

Binding the List Controls to the DataSet
The final step is to bind the DataList in the page to the table named MenuItems in the DataSet. This is
achieved by setting the DataSource and DataMember properties of the DataList control and calling its
DataBind method. In fact, this is just what the SqlDataSource control you saw in earlier examples
does behind the scenes when you use it to populate a data display control:

...
‘ bind the MenuItems table to the DataList control to display the rows
DataList1.DataSource = ds
DataList1.DataMember = “MenuItems”
DataList1.DataBind()

This process populates the DataList control, causing it to display the menu items in the Image and
Label controls you placed in the various templates of this control. However, it does not explain how the
nested Repeater control in each row of the DataList obtains its values. To understand this part of the
process, you need to look at the declaration of the Repeater control. This is the declaration you used:

<asp:Repeater ID=”Repeater1” runat=”server”

DataSource=’<%# CType(Container.DataItem,
DataRowView).CreateChildView(“MenuLink”) %>’>

<ItemTemplate>

<%# Eval(“ItemSize”) %>: <%#Eval(“ItemPrice”, “${0:F2}”)%>
</ItemTemplate>

</asp:Repeater>

156

08_588079 ch05.qxd 11/29/05 3:55 PM Page 157

Displaying Nested and XML Data

Notice the DataSource attribute. The code you see in the data binding statement gets a reference to the
Container, which is the data-binding context for the current row in the DataList. The DataItem
property of the Container returns a reference to the DataRow within the DataSet table that provides the
data for this row in the DataList. This DataRow is converted (cast) into an instance of the DataRowView
class, which exposes a method named CreateChildView. This method takes the name of a DataRelation
within the DataSet, and returns only the rows that match the primary key in the current row.

This “child view” set of rows is, of course, just what you want to bind to the nested Repeater. Inside
the ItemTemplate of the Repeater, the data binding statements extract the ItemSize and ItemPrice
values from each row in the child view and display them separated by a nonbreaking space character,
and with the price preceded by a dollar sign and formatted to two decimal places (see Figure 5-33).

Figure 5-33: The Result of the nested binding in the ShowMenu.aspx page

You have now seen two different approaches to creating a Web page using nested data binding. One
approach uses the data source controls, while the second and more efficient approach means that you
have to write code yourself to populate a DataSet and bind it to the data display controls in the page.
Even though VWD provides a great drag-and-drop environment for building ASP.NET pages without
writing any code (or even needing to know about code at all), you can see that there are situations where
knowledge of how ASP.NET works, and how to get better performance by writing code yourself, brings
benefits. You will see this again in subsequent chapters.

User Controls and Binding to XML Data
To complete this chapter, you will see two more examples that use data source controls and data display
controls. This time, however, the data comes not from a relational database, but from XML disk files.
The first example takes the data from the delivery.xml file, which contains details of the delivery
areas and delivery costs for the PPQ Web site. You will see how this data can be exposed through an
XmlDataSource control, and bound to a GridView control for display in the page.

The second example uses the Web.sitemap file that you met in Chapter 2. The Menu and SiteMapPath
controls in the Master Page for the PPQ site use this file — which contains a list of the pages in the site,
their URL, and a description of each one. The example you will see here creates a series of text links from
this file, for display at the foot of every page in the site to provide better accessibility for specialist user
agents (as discussed in Chapter 2 in the section “Building and Using a Master Page and Content Page”).
In addition, to demonstrate another useful feature of ASP.NET, you will build this page as a User
Control, which you can reuse in other pages within the site or in other Web sites that you build.

157

08_588079 ch05.qxd 11/29/05 3:55 PM Page 158

Chapter 5

Building the Delivery Costs Page
The page that displays the delivery costs is relatively simple. However, it takes its data not from a relational
database (as you have seen so far), but from an XML disk file named delivery.xml, stored in the XML-
Data subfolder of the PPQ site. The good news is that you can use a data source control to access this data,
and then bind a data display control to this data source control to display the data — in much the same way
as you did with a SqlDataSource control and the GridView control in previous examples.

The file delivery.xml looks like this:

<?xml version=”1.0” encoding=”utf-8” ?>
<ppq-delivery-areas>

<delivery-area id=”1” name=”Uptown” delivery-cost=”2.5” />
<delivery-area id=”2” name=”Downtown” delivery-cost=”3.5” />
<delivery-area id=”3” name=”Middletown” delivery-cost=”3” />
<delivery-area id=”4” name=”Out of town” delivery-cost=”5.5” />
<delivery-area id=”5” name=”Wrong side of the tracks” delivery-cost=”7.5” />
<delivery-area id=”6” name=”Out of State” delivery-cost=”15” />

</ppq-delivery-areas>

An XmlDataSource control can read this file and expose it as a rowset to which a GridView control
(and other list controls) can be data-bound. However, life is not always as simple as this, as you will see
in this example.

1.	 Open the PPQ.master page in Design view, right-click on the ContentPlaceHolder control, and
select Add Content Page. Switch the new page to Design view, and save it as Delivery.aspx
using the Save Default2.aspx As . . . option on the File menu. Now drag an XmlDataSource
control from the Data section of the Toolbox onto the page, and select Configure Data Source from
the XmlDataSource Tasks pane. Click the Browse... button next to the “Data file:” text box, and
select the file delivery.xml from the XML-Data subfolder (see Figure 5-34).

Figure 5-34: Selecting the delivery.xml file

158

08_588079 ch05.qxd 11/29/05 3:55 PM Page 159

Displaying Nested and XML Data

2.	 Click OK, and then drag a GridView control from the Toolbox onto the page. In the GridView
Tasks pane, select XmlDataSource1 in the Choose Data Source drop-down list, and the
GridView shows the values of the attributes in each of the <delivery-area> elements. Apply
an Auto Format of your choice, and then select Edit Columns . . . in the GridView Tasks pane
(see Figure 5-35).

Figure 5-35: Selecting Edit Columns . . . in the GridView Tasks pane

3.	 Remove the first column (named id) by clicking on it in the Selected fields: list and clicking the
button next to this list. Select the name column and change the HeaderText property to Delivery
Area. Then select the delivery-cost column and change the HeaderText property to just
Cost. This final column contains a value for the delivery cost and should be displayed as a cur­
rency amount, so enter the format string $ {0:F2} you used in previous examples for the
DataFormatString property (see Figure 5-36).

Figure 5-36: Entering the format string

159

08_588079 ch05.qxd 11/29/05 3:55 PM Page 160

Chapter 5

4.	 Now, run the page to see the results. You have values in the GridView control, but the Cost
column is not formatted correctly (see Figure 5-37). This is because the values in the attributes of
the XML file are text strings and not numeric types, as they are when you extract data from a
database.

Figure 5-37: Improperly formatted
Cost column

5.	 Go back to Design view, select the GridView control, and open the GridView Tasks pane. Select
Edit Columns . . . and, in the Fields dialog, select the Cost column in the Selected fields: list.
Click the link to “Convert this field into a TemplateField” (see Figure 5-38), and then click OK.

Figure 5-38: Clicking the link

160

08_588079 ch05.qxd 11/29/05 3:55 PM Page 161

Displaying Nested and XML Data

6.	 Now switch to Source view and look at the code that VWD has created, shown in the following
listing. As expected, it has added a TemplateField to the declaration of the GridView control,
replacing the BoundField for the Cost column. It uses the Bind statement to bind the values in
the XML attributes to the Label and TextBox controls (even though you cannot switch to edit
mode against an XmlDataSource control). The format string you specified is there but has no
effect on the string data in the attribute.

<asp:TemplateField HeaderText=”Cost” SortExpression=”delivery-cost”>
<ItemTemplate>

<asp:Label ID=”Label1” runat=”server”
Text=’<%# Bind(“delivery-cost”, “$ {0:F2}”) %>’>

</asp:Label>
</ItemTemplate>
<EditItemTemplate>

<asp:TextBox ID=”TextBox1” runat=”server”
Text=’<%# Bind(“delivery-cost”) %>’>

</asp:TextBox>
</EditItemTemplate>

</asp:TemplateField>

7.	 The only solution is to change the binding statement to one that does provide the output format
you need. If you write a custom function in code (you will see more on this topic in subsequent
chapters) that creates and returns the value you want to display, you can call this function from
here using the following:

Text=’<%# MyFunction(XPath(“@delivery-cost”)) %>’>

This simply collects the value from the attribute that would have been bound to the Label
control (using the XPath statement and specifying the attribute named delivery-cost) and
passes this value to your custom function. Whatever the function returns is displayed in the
page. However, here is an even easier solution — you can include a single code statement that
creates the value directly within the data-binding section (within the <%# and %> delimiters).
The following statement creates the required result by specifying a dollar currency symbol and
then applying the Format method of the String class to the result of parsing the value of the
attribute into a number of type Double:

“$ “ & String.Format(“{0:F2}”, Double.Parse(XPath(“@delivery-cost”)))

In your page (see Figure 5-39), delete the <EditTemplate> section and modify the

<ItemTemplate> section so that it looks like this:

<asp:TemplateField HeaderText=”Cost” SortExpression=”delivery-cost”>
<ItemTemplate>

<asp:Label ID=”Label1” runat=”server”

Text=’<%# “$ “ & String.Format(“{0:F2}”,
Double.Parse(XPath(“@delivery-cost”))) %>’>

</asp:Label>
</ItemTemplate>

</asp:TemplateField>

161

08_588079 ch05.qxd 11/29/05 3:55 PM Page 162

Chapter 5

Figure 5-39: Deleting a section and modifying a section

8.	 Now click “run” on the main toolbar, or press F5, to see the results. As you can see in Figure
5-40, the delivery costs are now properly displayed in currency format. This is yet another
example of why it is often useful to understand and be able to use custom code when building
your pages — and leaving it to VWD to do the hard work of generating the rest of the page!

Figure 5-40: Delivery costs displaying
in the proper format

Building the Text Links User Control
In Chapter 2, you saw the Web.sitemap file that provides the data from the Menu and SiteMapPath
controls in the Master Page of the PPQ example site. At the end of that chapter, you had a working page —
but with only a placeholder for the footer and page text links at the bottom (see Figure 5-41).

162

08_588079 ch05.qxd 11/29/05 3:55 PM Page 163

Displaying Nested and XML Data

Figure 5-41: The placeholder for the footer and text links

The task here, then, is to create a section of content that automatically displays the links from the main
navigation bar, but simply as text links suitable for users of all types of specialist browser. These links
will be created dynamically from the Web.sitemap file, so that changes to the layout of the site in this
file are reflected in the page footer links. However, the navigation menu is hierarchical, and you proba­
bly want to display only the main pages (those at the top level of the menu and not those on the fly-out
sections); otherwise, there will be too many links to assimilate easily.

Converting the XML with an XSLT Style Sheet
The main problem is that the Web.sitemap file has an unusual structure — one that makes it impossible
to bind directly to an XmlDataSource control. Some of the nodes have been removed from the following
listing, but you can clearly see that there is a single “Home” node (Default.aspx) within the root node.
Within the “Home” node are several other nodes that are displayed at the top level of the menu, but are
child nodes of the “Home” node. Each of these nodes can also have child nodes, which represent the
items on the “fly-out” sections of the menu.

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >

<siteMapNode url=”Default.aspx” title=”Home” description=”Home Page”>
<siteMapNode url=”ShowMenu.aspx” title=”Our Menu”

description=”View our menu”>
<siteMapNode url=”ShowMenu.aspx?type=pizza” title=”Pizzas”

description=”View our pizza range” />
<siteMapNode url=”ShowMenu.aspx?type=drink” title=”Drinks”

description=”View our range of drinks” />
</siteMapNode>
<siteMapNode url=”Order.aspx” title=”Order” description=”Place an order”>

... more nodes here ...
</siteMapNode>
... more nodes here ...

</siteMapNode>
</siteMap>

To use an XmlDataSource control, the Extensible Markup Language (XML) must provide a structure
where all the nodes that are to be treated as a set or collection are at the same level of the hierarchy. In
other words, you need a document that looks like this:

<?xml version=”1.0” encoding=”utf-8” ?>
<footerLinks>

<siteMapNode url=”Default.aspx” title=”Home” description=”Home Page” />
<siteMapNode url=”ShowMenu.aspx” title=”Our Menu”

description=”View our menu” />
<siteMapNode url=”Order.aspx” title=”Order” description=”Place an order” />

... more nodes here ...
</footerLinks>

163

08_588079 ch05.qxd 11/29/05 3:55 PM Page 164

Chapter 5

An Extensible Style Language Translation (XSLT) style sheet can perform this conversion. There is not
enough room in this book to provide a tutorial for XSLT, but the next listing shows the style sheet so that
you can see what it is trying to achieve. XSLT works by processing templates, which can execute other
templates in turn for each node in the current context. This style sheet selects the root <sitemap>
element in the original Web.sitemap file and then processes it. This processing involves selecting first
the “Home” <siteMapNode> element, and then all of its child <siteMapNode> elements (but not any
other descendant <siteMapNode> elements). For each element it processes, it simply copies that element
to the output.

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:wsm=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0”>

<xsl:template match=”/”>
<footerLinks>

<xsl:apply-templates select=”//wsm:siteMap” />
</footerLinks>

</xsl:template>

<xsl:template match=”wsm:siteMap”>
<xsl:apply-templates select=”./wsm:siteMapNode” />
<xsl:apply-templates select=”./wsm:siteMapNode/wsm:siteMapNode” />

</xsl:template>

<xsl:template match=”wsm:siteMapNode”>
<xsl:copy-of select=”.” />

</xsl:template>

</xsl:stylesheet>

This process does not remove the descendant child nodes within each of the nodes it processes, but they
have no effect on the operation of the XmlDataSource control. The important point is that all of the nodes
required for the links in the footer are now at the top level of the XML document. The style sheet you have
just seen, named FooterLinksTransform.xsl, is in the user-controls folder of the examples.

Creating the User Control
This section describes the steps for creating the user control that implements the text links and footer
section for the pages in the PPQ site.

1.	 Go to the Solution Explorer window, and select the folder named user-controls. Right-click,
and select Add New Item . . . to open the Add New Item dialog (doing this from a folder in
the Solution Explorer window means that the new item will be created within the selected
folder, rather that at the root of the Web site). Select Web User Control, change the filename to
FooterLinks.ascx, and click Add (see Figure 5-42).

164

08_588079 ch05.qxd 11/29/05 3:55 PM Page 165

Displaying Nested and XML Data

Figure 5-42: Add New Item dialog

2.	 Switch to Design view, and drag an XmlDataSource control from the Data section of the
Toolbox onto the page. Click Configure Data Source in the XmlDataSource Tasks pane that
appears to open the Configure Data Source dialog. Click the Browse . . . button next to the “Data
file” text box to open the Select XML File dialog, change the “Files of type” list at the bottom to
All Files (*.*). Then select Web.sitemap and click OK (see Figure 5-43). Notice that VWD adds
the tilde character (~) to the start of the filename to indicate that it is in the root folder of the
Web site’s ASP.NET application.

Figure 5-43: Tilde character (~) at beginning of filename

165

08_588079 ch05.qxd 11/29/05 3:55 PM Page 166

Chapter 5

3.	 Click the Browse . . . button next to the “Transform file” text box to open the Select XML
Transform File dialog. Select FooterLinksTransform.xsl from the user-controls subfolder
(see Figure 5-44), and click OK. Then click OK again to close the Configure Data Source dialog.

Figure 5-44: Filling in the Transform File dialog

4.	 Drag a Div control from the HTML section of the Toolbox onto the page, and then drag a
Repeater control from Data section of the Toolbox and drop it into the Div control. Select
XmlDataSource1 in the Choose Data Source drop-down list of the Repeater Tasks pane (see
Figure 5-45).

Figure 5-45: Repeater Tasks pane

5.	 Drag another Div control from the HTML section of the Toolbox onto the page, placing it below
the Repeater control. Then drag a Hyperlink control from Standard section of the Toolbox and
drop it into the Div control (see Figure 5-46).

166

08_588079 ch05.qxd 11/29/05 3:55 PM Page 167

Displaying Nested and XML Data

Figure 5-46: Adding a Hyperlink
control

6.	 Switch to Source view, click on the first opening <div> element, and go to the Properties dia­
log. Select the Style property, and click the three dots (...) button to open the Style Builder
dialog. In the Font page, go to the Size section in the middle of the dialog and select Specific;
then enter 0.8 and select em. Then go to the Text page and select Centered for Alignment,
Horizontal. Finally, go to the Edges page, enter 5, select px for the Padding, Top setting (see
Figure 5-47), and click OK to close the Style Builder dialog. Now, click on the second <div>
element and apply the same settings. Together, they will center the text links on the page and
use a slightly smaller than standard font.

Figure 5-47: Style Builder dialog

167

08_588079 ch05.qxd 11/29/05 3:55 PM Page 168

Chapter 5

7.	 Click on the opening <asp:Hyperlink> tag, and open the Properties dialog. Set the Text prop­
erty to the Webmaster address you want to use for your site, set the Tooltip property to Email
the Webmaster, and set the NavigateUrl property mailto:your-email-address. Remove
any content (such as “Hyperlink”) that VWD has inserted into the <asp:Hyperlink> element
between the opening and closing tags. Also remove the width and height selectors that VWD
adds to style attributes as the two <div> elements. Your code should now look something like
Figure 5-48 (you can tidy up the layout and add line breaks to make it easier to read and
assimilate).

Figure 5-48: Resulting code

8.	 Now you can add the data binding statements that will pull the data from the XmlDataSource
and display it in the page. To bind to the nodes in an XML file, you use the XPath statement
(rather than Eval or Bind that you saw in earlier examples with a SqlDataSource control).
The following listing shows the completed repeater control declaration, with the data binding
statements highlighted. The statement XPath(“@url”) extracts the value of the attribute
named url from the current element as the Repeater control is binding to each node in the
XML document in turn. This sets the href attribute of a normal HTML anchor <a> element.
Similarly, the values of the description and title attributes of the current element set the
title attribute (the pop-up tooltip) and the text within the <a> and tags that is displayed
in the page.

<asp:Repeater ID=”Repeater1” runat=”server” DataSourceID=”XmlDataSource1”>
<ItemTemplate>

<a href=’<%#XPath(“@url”)%>’
title=’<%#XPath(“@description”)%>’><%#XPath(“@title”)%>

</ItemTemplate>
<SeparatorTemplate> | </SeparatorTemplate>

</asp:Repeater>

To save you having to type this and to avoid errors, you can copy this code from the file named
FooterLinks.ascx.txt in the page-content folder of the examples. Figure 5-49 shows what
it should look like when complete.

168

08_588079 ch05.qxd 11/29/05 3:55 PM Page 169

Displaying Nested and XML Data

Figure 5-49: Result of adding data-binding statements

9.	 The final task now is to insert the new user control into the Master Page of the site where the
placeholder is currently located. The easiest way to insert a user control into another page is to
drag it from the Solution Explorer window into the target page. Open the page PPQ.master in
Design view, and drag the file FooterLinks.ascx from the user-controls subfolder in the
Solution Explorer window onto the PPQ.master page. Drop it into the bottom section of the
page, next to the existing text placeholder (“Footer and text links go here”). Then delete the text
placeholder. You will see the contents of your user control in the page (see Figure 5-50).

Figure 5-50: Contents of user control

10.	 Switch to Source view to see what VWD has done. At the top of the page, it added a Register
directive that provides the link between the prefix and name of the element (tag) that will be
used to insert the user control into the page, and the file containing the declaration of the user
control:

<%@ Register Src=”user-controls/FooterLinks.ascx”
TagName=”FooterLinks” TagPrefix=”uc1” %>

Then, at the position where the control will appear on the page, it added the appropriate element:

<uc1:FooterLinks ID=”FooterLinks1” runat=”server” />

169

08_588079 ch05.qxd 11/29/05 3:55 PM Page 170

Chapter 5

You can, of course, add these elements yourself rather than using the drag-and-drop method.
To see the result, click the “run” button on the toolbar, or press F5. VWD executes the
Default.aspx page, and the text links and footer can be seen at the bottom of the section of
the page that is generated by the Master Page (see Figure 5-51).

Figure 5-51: Master Page text links and footer

Converting Parts of a Page into a User Control
Instead of creating a user control directly, as you did in the previous section, you can convert existing
sections of a page into a user control quite easily. Any page content that is repeated across your pages
(even if repeated only on a single page), or that would be useful in other sites you build, can be
converted into a user control.

You simply copy any HTML, control declarations, or code that you want to place in the user control into
a separate file. You can create this file by selecting Web User Control in the Add New Item dialog (select
New File . . . from the File menu), or you can do it by removing any unwanted content from an existing
Web Form (.aspx) page. Then change the @Page directive to @Control and save the file with the .ascx
extension. To insert this file as a user control, just drag it from the Solution Explorer window into your
target Web Form page.

Note that a user control should not contain the <html>, <head>, or <body> tags, or a server-side
<form> (a <form> element with the runat=”server” attribute). Only one instance of these
elements is permitted in a page, and the parent page that contains the user control should declare these
elements instead. That way, you can use multiple copies of the user control in the same page if you wish.

You can only use a user control from within the same ASP.NET application, but you can copy your user
control (complete with any images or other resources it uses) into another application and use it there.
You will come across another example of a user control later in this book, when you see how the process
of placing an order in the PPQ Web site is implemented.

Summar y
In this chapter, you have investigated three topic areas. The first was a detailed look into how ASP.NET
can create nested data-bound output from a relational database, both by using the data source controls
and through custom code that you write yourself. The display of data in nested format might seem an
esoteric topic but, in fact, it finds its way into many common scenarios. Examples range from the pizza
menu you saw in this chapter to displaying details of customer orders, and even to areas such as stock
location in a warehouse.

170

08_588079 ch05.qxd 11/29/05 3:55 PM Page 171

Displaying Nested and XML Data

Getting the most from any programming environment generally means learning more about the tools
and the underlying frameworks and languages it supports. To achieve some of the tasks in this chapter,
you need to learn more about the programming techniques available within the .NET Framework — but
this is no bad thing. In this chapter, you discovered more about how data access works in ADO.NET and
how custom code can improve the performance of your pages.

The second topic area covered in this chapter is the way that you can handle XML data using a data source
control and the same data display controls as you used earlier with relational data from a database. XML
data is becoming increasingly common, and ASP.NET provides plenty of techniques for managing it. As
with ADO.NET, there are plenty of classes available within the System.Xml namespace you can use to
write your own custom XML data-handling routines.

Finally, this chapter showed how you can create reusable content for your Web sites as user controls.
These are simply sections of HTML, code, server controls, or other content that are stored as separate
files and then dropped into the target page in VWD. They provide many advantages for situations
where you have repeated similar content (for example, you can edit the user control and these changes
automatically appear in all the pages that use it).

In Chapter 6, you continue your exploration of the PPQ Web site, and the techniques used to build it, by
moving on to the process of taking an order from a customer.

171

08_588079 ch05.qxd 11/29/05 3:55 PM Page 172

09_588079 ch06.qxd 11/29/05 3:56 PM Page 173

6

Managing and Editing Data

In the previous two chapters, we have looked at various ways of displaying data, using the data
source controls and grids supplied with ASP.NET. While displaying data is a core requirement of
many Web sites, there are times when you also need to allow editing, and you can use the same
controls as for displaying data. In the PPQ application, users have no need to update data, but the
site administrators might — to update the menu and prices.

In this chapter, we are going to see how the administrator of a site can perform edits on the data.
In particular, we’ll be looking at:

❑ How to modify the SqlDataSource control to allow data editing

❑ How to configure the GridView to allow data editing.

Both of these topics extend techniques you’ve already used, so you will find this a natural progres­
sion into your exploration of data controls.

Data Source Controls
In Chapter 4, you saw how the SqlDataControl was used to fetch data from a database by
specifying a SQL command in the SelectCommand property. When the page is loaded, the
SqlDataSource object opens a connection to the database and runs this command to fetch the
data. The SqlDataControl also has properties that allow you to define the command to be run to
modify data, which are the InsertCommand, UpdateCommand, and DeleteCommand properties.
You’ve already seen these in action, even if you didn’t realize it, when you used the test menu
pages in Chapter 4 (the grid had editing capabilities).

The properties of the SqlDataSource control allow you to specify different SQL commands for
different types of operation. So, we have the following properties:

09_588079 ch06.qxd 11/29/05 3:56 PM Page 174

Chapter 6

❑ SelectCommand, which you use to fetch data from the database

❑ InsertCommand, which you use to insert data into the database

❑ UpdateCommand, which you use to update data in the database

❑ DeleteCommand, which you use to delete data from the database

When you drag a table from the Database Explorer and drop it onto a page, these properties are
automatically set for you. But it’s worth learning how to configure data sources manually.

Try It Out Configuring the SqlDatSource Control for Editing
1.	 Create a new ASP.NET Web Form called Admin.aspx, making sure to select the “Place code in a

separate file” option, and switch the page to Design view.

2.	 From the Data section of the Toolbox, drag a SqlDataSource control and drop it onto the page.

3.	 From the SqlDataSource Tasks, select “Configure Data source . . .”

4.	 On the first page of the configuration window, select PPQ_DataConnectionString1 from the
data connections (see Figure 6-1), and click Next.

Figure 6-1: Setting the connection string for the SqlDataSource control

5.	 To configure the Select Statement, select MenuItems from the Name list, and tick the * option
(see Figure 6-2).

174

09_588079 ch06.qxd 11/29/05 3:56 PM Page 175

Managing and Editing Data

Figure 6-2: Configuring the Select Statement on a SqlDataSource control

6.	 Click the Advanced button. On the advanced options window, tick “Generate INSERT,
UPDATE, and DELETE statements” (see Figure 6-3). Click the OK button to close this window.

Figure 6-3: Enabling generation of the insert, update, and delete statements

7. Back on the data source configuration window, click Next and then Finish to close the window.

175

09_588079 ch06.qxd 11/29/05 3:56 PM Page 176

Chapter 6

How It Works
Although we haven’t seen this in action yet, it’s worth looking at the code to see what the Configuration
Wizard has done. This way, you’ll understand what properties have been configured and how they
relate to the wizard. If you switch the page to Source view, you will see the following code.

On the first page of the wizard, you set the connection string, detailing the database to connect to, which
sets the ConnectionString property:

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”

ConnectionString=”<%$ ConnectionStrings:PPQ_DataConnectionString1 %>”

On the next page of the wizard, you set the table and columns for the Select command, which is what
defines the data to be shown (in this case, all columns from the MenuItems table), and this sets the
SelectCommand property:

SelectCommand=”SELECT * FROM [MenuItems]”

Selecting the advanced options and ticking the box to automatically generate the other commands sets
the DeleteCommand, InsertCommand, and UpdateCommand properties:

DeleteCommand=”DELETE FROM [MenuItems] WHERE [MenuItemID] = @MenuItemID”

InsertCommand=”INSERT INTO [MenuItems] ([MenuItemType], [ItemName],
[PizzaToppings], [Description], [GraphicFileName]) VALUES (@MenuItemType,
@ItemName, @PizzaToppings, @Description, @GraphicFileName)”

UpdateCommand=”UPDATE [MenuItems] SET [MenuItemType] = @MenuItemType, [ItemName] =
@ItemName, [PizzaToppings] = @PizzaToppings, [Description] = @Description,
[GraphicFileName] = @GraphicFileName WHERE [MenuItemID] = @MenuItemID”>

These define the SQL statements that will be run to delete, insert, or update data, and we’ll be coming back
to these in a little while. For each command that modifies data, there is also a section for the parameters:

<DeleteParameters>
<asp:Parameter Name=”MenuItemID” Type=”Int32” />

</DeleteParameters>

<UpdateParameters>

<asp:Parameter Name=”MenuItemType” Type=”String” />
<asp:Parameter Name=”ItemName” Type=”String” />
<asp:Parameter Name=”PizzaToppings” Type=”String” />
<asp:Parameter Name=”Description” Type=”String” />

176

09_588079 ch06.qxd 11/29/05 3:56 PM Page 177

Managing and Editing Data

<asp:Parameter Name=”GraphicFileName” Type=”String” />
<asp:Parameter Name=”MenuItemID” Type=”Int32” />

</UpdateParameters>

<InsertParameters>

<asp:Parameter Name=”MenuItemType” Type=”String” />
<asp:Parameter Name=”ItemName” Type=”String” />
<asp:Parameter Name=”PizzaToppings” Type=”String” />
<asp:Parameter Name=”Description” Type=”String” />
<asp:Parameter Name=”GraphicFileName” Type=”String” />

</InsertParameters>

</asp:SqlDataSource>

To understand how all of this works, you must consider the commands and parameters together, so let’s
start with deleting rows.

You will be deleting only a single row at a time. Each row is unique. It contains a single menu item, iden­
tified by the ID field, which is MenuItemID (this was explained in Chapter 3). So, to delete a row, we
want to run the Delete command only when the MenuItemID field matches a certain value — the ID of
the row being deleted, which will be passed into the SQL statement by the SqlDataSource control. To
pass a value in, we use parameters — this is a general programming term used to denote the passing of
values to another routine. For SQL statements, the parameters are preceded by an @ sign, so
@MenuItemID is the only parameter for the DeleteCommand property.

DeleteCommand=”DELETE FROM [MenuItems] WHERE [MenuItemID] = @MenuItemID”

To get the value into the SQL statement, there is a <DeleteParameters> section, identifying the Name
and Type of the property:

<DeleteParameters>
<asp:Parameter Name=”MenuItemID” Type=”Int32” />

</DeleteParameters>

Figure 6-4 shows how the parameters are matched between the SQL statements and the parameter sections.

The commands and associated parameters are used only if that particular command is executed. Binding
a GridView control to this SqlDataSource control, but not allowing any updates, would mean that the
commands shown in Figure 6-4 would never get used. If you don’t need editing for a grid, then you
don’t need to generate these commands (see Figure 6-3).

177

09_588079 ch06.qxd 11/29/05 3:56 PM Page 178

Figure 6-4: How the parameters are mapped to the SQL statements

D
E
L
E
T
E

F
R
O
M

[
M
e
n
u
I
t
e
m
s
]

W
H
E
R
E

[
M
e
n
u
I
t
e
m
I
D
]

=

@
M
e
n
u
I
t
e
m
I
D

<
D
e
l
e
t
e
P
a
r
a
m
e
t
e
r
s
>

<
a
s
p
:
P
a
r
a
m
e
t
e
r

N
a
m
e
=
”
M
e
n
u
I
t
e
m
I
D
”

T
y
p
e
=
”
I
n
t
3
2
”

/
>

<
/
D
e
l
e
t
e
P
a
r
a
m
e
t
e
r
s
>

<
U
p
d
a
t
e
P
a
r
a
m
e
t
e
r
s
>

<
a
s
p
:
P
a
r
a
m
e
t
e
r

N
a
m
e
=
”
M
e
n
u
I
t
e
m
T
y
p
e
”

T
y
p
e
=
”
S
t
r
i
n
g
”

/
>

<
a
s
p
:
P
a
r
a
m
e
t
e
r

N
a
m
e
=
”
I
t
e
m
N
a
m
e
”

T
y
p
e
=
”
S
t
r
i
n
g
”

/
>

<
a
s
p
:
P
a
r
a
m
e
t
e
r

N
a
m
e
=
”
P
i
z
z
a
T
o
p
p
i
n
g
s
”

T
y
p
e
=
”
S
t
r
i
n
g
”

/
>

<
a
s
p
:
P
a
r
a
m
e
t
e
r

N
a
m
e
=
”
D
e
s
c
r
i
p
t
i
o
n
”

T
y
p
e
=
”
S
t
r
i
n
g
”

/
>

<
a
s
p
:
P
a
r
a
m
e
t
e
r

N
a
m
e
=
”
G
r
a
p
h
i
c
F
i
l
e
N
a
m
e
”

T
y
p
e
=
”
S
t
r
i
n
g
”

/
>

<
a
s
p
:
P
a
r
a
m
e
t
e
r

N
a
m
e
=
”
M
e
n
u
I
t
e
m
I
D
”

T
y
p
e
=
”
I
n
t
3
2
”

/
>

<
/
U
p
d
a
t
e
P
a
r
a
m
e
t
e
r
s
>

D
el

et
eC

om
m

an
d

U
P
D
A
T
E

[
M
e
n
u
I
t
e
m
s
]

S
E
T

[
M
e
n
u
I
t
e
m
T
y
p
e
]

=

@
M
e
n
u
I
t
e
m
T
y
p
e
,

[
I
t
e
m
N
a
m
e
]

=

@
I
t
e
m
N
a
m
e
,

[
P
i
z
z
a
T
o
p
p
i
n
g
s
]

=

@
P
i
z
z
a
T
o
p
p
i
n
g
s
,

[
D
e
s
c
r
i
p
t
i
o
n
]

=

@
D
e
s
c
r
i
p
t
i
o
n
,

[
G
r
a
p
h
i
c
F
i
l
e
N
a
m
e
]

=

@
G
r
a
p
h
i
c
F
i
l
e
N
a
m
e

W
H
E
R
E

[
M
e
n
u
I
t
e
m
I
D
]

=

@
M
e
n
u
I
t
e
m
I
D

U
pd

at
eC

om
m

an
d

I
N
S
E
R
T

I
N
F
O

[
M
e
n
u
I
t
e
m
s
]

{
[
M
e
n
u
I
t
e
m
T
y
p
e
]
,

[
I
t
e
m
N
a
m
e
]
,

[
P
i
z
z
a
T
o
p
p
i
n
g
s
]
,

[
D
e
s
c
r
i
p
t
i
o
n
]
,

[
G
r
a
p
h
i
c
F
i
l
e
N
a
m
e
]
}

V
A
L
U
E
S

(
@
M
e
n
u
I
t
e
m
T
y
p
e
,

@
I
t
e
m
N
a
m
e
,

@
P
i
z
z
a
T
o
p
p
i
n
g
s
,

@
D
e
s
c
r
i
p
t
i
o
n
,

@
G
r
a
p
h
i
c
F
i
l
e
N
a
m
e
,

In
se

r t
C
om

m
an

d

<
I
n
s
e
r
t
P
a
r
a
m
e
t
e
r
s
>

<
/
I
n
s
e
r
t
P
a
r
a
m
e
t
e
r
s
>

<
a
s
p
:
P
a
r
a
m
e
t
e
r

N
a
m
e
=
”
M
e
n
u
I
t
e
m
T
y
p
e
”

T
y
p
e
=
”
S
t
r
i
n
g
”

/
>

<
a
s
p
:
P
a
r
a
m
e
t
e
r

N
a
m
e
=
”
I
t
e
m
N
a
m
e
”

T
y
p
e
=
”
S
t
r
i
n
g
”

/
>

<
a
s
p
:
P
a
r
a
m
e
t
e
r

N
a
m
e
=
”
P
i
z
z
a
T
o
p
p
i
n
g
s
”

T
y
p
e
=
”
S
t
r
i
n
g
”

/
>

<
a
s
p
:
P
a
r
a
m
e
t
e
r

N
a
m
e
=
”
D
e
s
c
r
i
p
t
i
o
n
”

T
y
p
e
=
”
S
t
r
i
n
g
”

/
>

<
a
s
p
:
P
a
r
a
m
e
t
e
r

N
a
m
e
=
”
G
r
a
p
h
i
c
F
i
l
e
N
a
m
e
”

T
y
p
e
=
”
S
t
r
i
n
g
”

/
>

178

09_588079 ch06.qxd 11/29/05 3:56 PM Page 179

Managing and Editing Data

Let’s now add a grid so that you can see the editing in practice.

Try It Out Editing with the GridView Control
1. Ensure that the Admin page is in Design view.

2. From the Data section of the Toolbox, drag a GridView onto the page.

3. On the GridView Tasks, choose the Data Source SqlDataSource1 from the list (see Figure 6-5).

Figure 6-5: Setting the data source for a GridView control

4. Tick the Enable Editing and Enable Deleting selections (see Figure 6-6).

Figure 6-6: Enabling editing and deleting on a GridView control

5. Close the GridView Tasks, and save the file.

179

09_588079 ch06.qxd 11/29/05 3:56 PM Page 180

Chapter 6

6.	 Right-click anywhere on the page background, and select View in Browser (this page isn’t
available from the PPQ menu).

7.	 On the running page, click Edit on the first pizza. Notice how some columns turn from just
displaying data into text areas that allow editing, and that the links no longer say “Edit” and
“Delete,” but rather “Update” and “Cancel” (see Figure 6-7).

Figure 6-7: A GridView row in edit mode

8.	 Edit the PizzaToppings column, adding “and garlic” to the end of the toppings.

9.	 Click Update to save the changes. See how the row is now read-only.

10. Click Edit again, and change the toppings back to what they were.

11. Close the browser window.

Let’s now take a look at what code is generated for the GridView and how it works in conjunction with
the SqlDataSource control.

How It Works
If you switch to Source view, you’ll see the code that has been added by configuring the grid to use the
data source control. Apart from the ID and runat properties, three properties are configured on the
GridView control itself:

<asp:GridView ID=”GridView1” runat=”server”

AutoGenerateColumns=”False” DataKeyNames=”MenuItemID”

DataSourceID=”SqlDataSource1”>

The first of these properties, AutoGenerateColumns, indicates whether the grid automatically generates
the columns when fetching data. When you configure the data source for a grid, VWD will query the
database for the columns, and add these explicitly. So, AutogenerateColumns is set to False.
DataKeyNames, which indicates the columns that uniquely identify the row — in this case it is just
MenuItemID, but it could be a comma-separated list of column names. DataSourceID is set to the ID
property of the SqlDataSource control.

As VWD explicitly added the columns, there is a <columns> element, which contains the columns
to show:

<Columns>

180

09_588079 ch06.qxd 11/29/05 3:56 PM Page 181

Managing and Editing Data

The first column is a CommandField, which details the commands to be shown. The ShowDeleteButton
is set to True to ensure that the Delete button is visible, and ShowEditButton is True to show the Edit
button.

<asp:CommandField ShowDeleteButton=”True” ShowEditButton=”True” />

Notice that there is nothing set for the Update and Cancel buttons, which ASP.NET shows when you edit
a row. This is because ASP.NET generates these automatically when you edit the row. The CommandField
is intelligent and changes what it displays depending upon the current state of the row. So, for a row
that is being displayed, “Edit” and “Delete” are shown, but for the row you are editing, “Update” and
“Cancel” are shown.

After the CommandField come the individual fields, each represented by a BoundField. We looked at
fields in detail in Chapter 4, in the “About the GridView Control” section, although there we were only
concerned with viewing data. The important point to note here is the ReadOnly property on the first
field, for MenuItemID. This property is set to True, indicating that when you edit a row, this field isn’t
editable. Instead of becoming a text box like other text entry fields, this field remains a display label.

<asp:BoundField DataField=”MenuItemID” HeaderText=”MenuItemID”

InsertVisible=”False” ReadOnly=”True” SortExpression=”MenuItemID” />

<asp:BoundField DataField=”MenuItemType” HeaderText=”MenuItemType”

SortExpression=”MenuItemType” />

<asp:BoundField DataField=”ItemName” HeaderText=”ItemName”

SortExpression=”ItemName” />

<asp:BoundField DataField=”PizzaToppings” HeaderText=”PizzaToppings”

SortExpression=”PizzaToppings” />

<asp:BoundField DataField=”Description” HeaderText=”Description”

SortExpression=”Description” />

<asp:BoundField DataField=”GraphicFileName” HeaderText=”GraphicFileName”

SortExpression=”GraphicFileName” />

</Columns>

</asp:GridView>

At its simplest, that’s all there is to editing data with a GridView control, but as with much of
ASP.NET, you can dig a bit deeper. For example, instead of explicitly adding editing capabilities
with the CommandField, you can let ASP.NET generate this. The GridView control has two properties
to do this for you: AutoGenerateEditButton (which when set to True displays the Edit button) and
AutoGenerateDeleteButton (which when set to True displays the Delete button).

You saw that the AutoGenerateColumns property was set to False, so that you had define the columns
yourself, rather than letting the GridView do it for you. The advantage of explicitly defining columns
is that you can edit the column headings, set the column order, and control the contents of the various
templates. We looked at templates in the “Using Data Display Control Templates” section in Chapter 4,
so let’s extend that knowledge by looking at the template used for editing.

181

09_588079 ch06.qxd 11/29/05 3:56 PM Page 182

Chapter 6

Try It Out Using Edit Templates
1.	 Switch the Admin page to Design view, and select the GridView control.

2.	 From the GridView Tasks, select Edit Columns (see Figure 6-8).

Figure 6-8: How to edit the columns of a GridView control

3.	 In the “Selected fields” select MenuItemID, and in the “BoundField properties” set the Visible
property to False (see Figure 6-9).

Figure 6-9: Hiding a BoundField

182

09_588079 ch06.qxd 11/29/05 3:56 PM Page 183

Managing and Editing Data

4.	 In the “Selected fields” select MenuItemType and click the “Convert this field into a
TemplateField” link, at the bottom of the window, on the right.

5.	 Click the OK button.

6.	 On the GridView Tasks, select Edit Templates, and from the Display list select
EditItemTemplate (see Figure 6-10).

Figure 6-10: Editing the EditItemTemplate

7.	 Select the text box within the template and delete it.

8.	 From the Standard section of the Toolbox, drag a DropDownList into the EditItemTemplate.

9.	 From the DropDownList Tasks, select Edit DataBindings (see Figure 6-11).

Figure 6-11: Editing the data bindings for a DropDownList

10.	 On the DropDownList1 DataBindings window, ensure that SelectedValue in the “Bindable
properties” is selected, and pick MenuItemType from the “Binding for SelectedValue” (see
Figure 6-12).

183

09_588079 ch06.qxd 11/29/05 3:56 PM Page 184

Chapter 6

Figure 6-12: Binding the SelectedValue to a field

11.	 Click the OK button to close the window.

12.	 On the DropDownList Tasks, select Edit Items

13.	 On the ListItem Collection Editor, click Add to add a new member. Set the Text and Value
properties to Pizza. Click Add again, and for the new member set the Text and Value
properties to Drink.

14.	 Click OK to close the editor.

15.	 Select End Template Editing from the GridView Tasks.

16.	 Save the file. Right-click on the file background, and select View in Browser.

17.	 Select the Margherita pizza, and click the Edit link. Notice how the MenuItemType has a
drop-down list displayed.

18.	 From this list, select Drink (well, Margherita is a drink, too), and click the Update button.
Notice that back in view mode, the list isn’t shown. Change the type back to Pizza, and close
the browser.

Let’s see how this works.

How It Works
The first thing you did was to hide the MenuItemID column by setting its Visible property to False.
Although this is set to read-only, you don’t need to see this column, and we deleted it to show that
updates work even though you don’t have the key field visible.

Next, you converted the MenuItemType into a TemplateColumn, so instead of a BoundField, you have
a TemplateField:

<asp:TemplateField HeaderText=”MenuItemType” SortExpression=”MenuItemType”>

184

09_588079 ch06.qxd 11/29/05 3:56 PM Page 185

Managing and Editing Data

The TemplateField has the HeaderText property set to display text in the header, and the
SortExpression to the name of the column (we haven’t enabled sorting on this grid).

Within the TemplateField there are two templates:

❑	 The EditItemTemplate is used when the row is in Edit mode (that is, when a user clicks the
Edit link). When that happens, ASP.NET automatically displays the contents of the
EditItemTemplate.

❑	 The ItemTemplate is used when the row is in View mode.

Therefore, the templates contain the controls to be displayed when that template is active.

<EditItemTemplate>

For the EditItemTemplate you added a DropDownList, which gives the user a choice of values, so,
instead of typing in the text (and possibly getting it wrong), the list limits users to the correct choices.

<asp:DropDownList ID=”DropDownList1” runat=”server”
SelectedValue=’<%# Bind(“MenuItemType”) %>’>

<asp:ListItem Selected=”True” Value=”Pizza”>Pizza</asp:ListItem>
<asp:ListItem>Drink</asp:ListItem>

</asp:DropDownList>

</EditItemTemplate>

The list automatically displays the value held in the MenuItemType column because you set the data
bindings, setting the SelectedValue property to the MenuItemType. This manifests itself in a data
binding expression, which is:

<%# Bind(“MenuItemType”) %>

This simply indicates that the value for the property should be bound to the MenuItemType column.

The ItemTemplate shows fields only when in View mode, so it simply contains a Label control. The
Text property of the label is set to the same binding expression as used by the DropDownList— it
simply displays the value of the MenuItemType field.

<ItemTemplate>

<asp:Label ID=”Label1” runat=”server”

Text=’<%# Bind(“MenuItemType”) %>’></asp:Label>

</ItemTemplate>

</asp:TemplateField>

Using edit templates is useful for a number of reasons. For a start, it gives you control over exactly
what is displayed, allowing you to show content other than just the column. Also, it allows you to add
validation, ensuring that the data entered by the user is correct.

One key area to understand is how the data being edited gets back into the database. You saw how the
SqlDataSource control has commands that define the SQL statements to be run for inserts, updates,
and deletes. There are also parameters that define the names and data types of the columns, and it is

185

09_588079 ch06.qxd 11/29/05 3:56 PM Page 186

Chapter 6

these parameters that are significant because they match up to the fields used. So, a BoundField with a
DataField property of ItemName will match to a parameter named ItemName— the BoundField is
two-way, so it both displays data from the SqlDataSource, and sends the value back when editing. The
same applies to the MenuItemType, where a BoundField wasn’t used, but a TemplateField was used
instead. Within the TemplateField, though, the Bind statement has the name of the column. Because
Bind provides two-way binding, we have the same functionality as with a BoundField.

Adding New Rows
One of disadvantages of the GridView is that it doesn’t support adding rows. There are Edit and Delete
buttons, but no Add button. You can modify the CommandField to show a new link by setting the
ShowInsertButton property to True, but the GridView itself doesn’t support the idea of new rows.

In fact, you might also think that using the Grid for editing isn’t the best solution, especially if you have
fields that contain large amounts of text — the description field for example, is displayed in a short text
field, so not all of it can be seen.

One way around these problems is to use the DetailsView control, so let’s modify the page to use a
DetailsView for both adding rows and editing. There are a lot of steps in this exercise, but it’s really
very simple.

Try It Out Using the DetailsView Control
1.	 Close the running browser, and in Design view, select the GridView. For the CommandField, set

the ShowDeleteButton and ShowEditButton properties to False, and the
ShowSelectButton to True.

2.	 Drag a SqlDataSource control onto the page, and drop it underneath the GridView.

3.	 From the SqlDataSource Tasks, select Configure Data Source

4.	 Select PPQ_DataConnectionString1 for the data connection, and click the Next button.

5.	 To configure the data source, select the MenuItems table, and select the * item from the Fields.

6.	 Click Next and then Finish to close the configuration.

7.	 Select the GridView and open the GridView Tasks. In Choose Data Source, select
SqlDataSource2, and you will see a warning dialog asking if you wish to refresh the fields
(see Figure 6-13). Select Yes.

Figure 6-13: Refreshing keys and fields

186

09_588079 ch06.qxd 11/29/05 3:56 PM Page 187

Managing and Editing Data

8.	 On the GridView Tasks, tick the Enable Selection option.

9.	 Select the first data source, SqlDataSource1, and from SqlDataSource Tasks, select Configure
Data Source

10.	 Click Next (because the data connection is OK), and, on the configuration page, click the
WHERE . . . button.

11.	 On the Add WHERE Clause window (see Figure 6-14), set the Column to MenuItemID, the
Operator to =, and the Source to Control. In the Parameter properties area, select GridView1,
and click the Add button.

Figure 6-14: Adding a WHERE clause to a SqlDataSource control

12.	 Click the OK button to return to the SqlDataSource Configuration Wizard. Click Next and then
Finish.

13.	 Drag a DetailsView control onto the form, dropping it underneath SqlDataSource2.

14.	 On the DetailsViewTasks, select SqlDataSource1 from the Choose Data Source list.

15.	 Tick the Enable Inserting, Enable Editing, and Enable Deleting options.

16.	 On the DetailsViewTasks, click Edit Fields

17.	 Select MenuItemType from the Selected fields, and click “Convert this field into a TemplateField”.

18.	 Click OK to close the field editor.

19.	 Click the Edit Templates link, and from the Template Editing Mode, select EditItemTemplate.

20.	 Select the text box in the template and delete it.

21.	 From the Standard section of the Toolbox, drag a DropDownList into the EditItemTemplate.

187

09_588079 ch06.qxd 11/29/05 3:56 PM Page 188

Chapter 6

22. From the DropDownList Tasks, select Edit DataBindings (see Figure 6-15).

Figure 6-15: Editing the data bindings for a DropDownList

23.	 On the DropDownList1 DataBindings window, ensure that SelectedValue from the “Bindable
properties” is selected, and pick MenuItemType from the “Binding for SelectedValue” (see
Figure 6-16).

Figure 6-16: Binding the SelectedValue to a field

24.	 Click the OK button to close the window.

25.	 On the DropDownList Tasks, select Edit Items

26.	 On the ListItem Collection Editor, click Add to add a new member. Set the Text and
Value properties to Pizza. Click Add again, and for the new member, set the Text and Value
properties to Drink.

27.	 Click OK to close the editor.

28.	 Repeat steps 20 to 27 for the InsertItemTemplate, deleting the existing text box, and adding
and configuring a DropDownList control.

29.	 Select End Template Editing from the GridView Tasks.

30.	 Save the file. Right-click on the file background, and select View in Browser.

188

09_588079 ch06.qxd 11/29/05 3:56 PM Page 189

Managing and Editing Data

31.	 Click the Select link on the Margherita item.

32.	 On the DetailsView click the Edit button, change the MenuItemType to Drink, and click the
Update button. Notice that the GridView hasn’t changed.

33.	 Click the New button, and enter the following for the new, empty item:

❑ MenuItemType— Drink

❑ ItemName— Margarita

❑ Pizza Toppings— Leave empty

❑ Description— Tequila, Cointreau, Lime juice

❑ GraphicFileName— Leave empty

34.	 Click the Insert link to insert the new item. Notice that the new item doesn’t appear in the
GridView.

35.	 Close the browser window.

36.	 Select SqlDataSource1, and select the Events in the properties window (the button that looks
like a fork of lightning).

37.	 Double-click next to the Updated property, to have the event procedure created for you.

38.	 Between the Protected Sub and End Sub, add the following:

GridView1.DataBind()

39.	 From the list at the top of the code page, select SqlDataSource1, and from the list on the right,
select Inserted (see Figure 6-17).

Figure 6-17: Selecting Inserted

40.	 Between the Protected Sub and End Sub, add the following:

GridView1.DataBind()

41.	 From the list at the top of the code page select SqlDataSource1. From the list on the right,
select Deleted (see Figure 6-17).

189

09_588079 ch06.qxd 11/29/05 3:56 PM Page 190

Chapter 6

42.	 Between the Protected Sub and End Sub, add the following:

GridView1.DataBind()

43.	 Save both files, and view the page in the browser (you’ll need to be on the Admin.aspx page to
do this).

44.	 Select the Margherita pizza, and edit it, changing the item type from Drink to Pizza. Click the
Update link in the DetailsView, and notice that the grid updates this time.

45.	 Click the New link, and add a new item, using the following:

❑ MenuItemType— Pizza

❑ ItemName— Pepperoni Special

❑ Pizza Toppings— Sliced meat

❑ Description— Several inches of pepperoni.

❑ GraphicFileName— Leave empty

46.	 Click the Insert button to insert the new item, and notice that the new item shows up on the grid.

47.	 Select this new item, and click the Delete link.

There’s a lot here, so let’s see how all of this works.

How It Works
In this exercise, you used the GridView for selection of rows, and you used a second SqlDataSource
control for this. The reason is that you already had a SqlDataSource control configured for updates
(SqlDataSource1), and rather than change that to remove the modify commands and parameters, it
made sense to use it for the DetailsView, which does require updates. You modified this to add a
WHERE clause, setting the MenuItemID column to match the SelectedValue of GridView1. This works
because the key field for the grid is MenuItemID, as set in the DataKeyFields property. This means that
whenever a row is selected in the grid, the query for the second data source control is rerun, using the
newly selected ID. This way, the DetailsView will be refreshed with the details of the selected row.

The DetailsView is similar in working to the GridView, and this is deliberate. Many of the controls
work in similar ways, which means that once you’ve learned how one works, it’s easy to learn how the
others work. You can see this clearly by the initial declaration of the DetailsView, which has properties
AutoGenerateRows, DataKeyNames, and DataSourceID, which work in the same way as the
GridView control.

<asp:DetailsView ID=”DetailsView1” runat=”server”

AutoGenerateRows=”False” DataKeyNames=”MenuItemID”

DataSourceID=”SqlDataSource1” Height=”50px” Width=”125px”>

The DetailsView uses a <Fields> element to identify the fields to show, and these, too, should be
familiar.

<Fields>

190

09_588079 ch06.qxd 11/29/05 3:56 PM Page 191

Managing and Editing Data

The first field is a BoundField for the MenuItemID, with the ReadOnly property set to True, so that it
cannot be edited.

<asp:BoundField DataField=”MenuItemID” HeaderText=”MenuItemID”
InsertVisible=”False” ReadOnly=”True” SortExpression=”MenuItemID” />

Next is a TemplateField, for the MenuItemType.

<asp:TemplateField HeaderText=”MenuItemType” SortExpression=”MenuItemType”>

The TemplateField contains three templates: one for editing, one for inserting, and one for displaying.
Having separate templates allows you to have different functionality — for example, you might not want
to allow editing of the MenuItemType once it has been set, so you could have a different template. For
our template, the content of the EditItemTemplate and the InsertItem template is the same — a
DropDownList whose SelectedValue property is bound to MenuItemType. The ItemTemplate is a
Label control, which simply displays the item type when the DetailsView is not being edited or
inserting data.

<EditItemTemplate>

<asp:DropDownList ID=”DropDownList1” runat=”server”

SelectedValue=’<%# Bind(“MenuItemType”) %>’>

<asp:ListItem>Pizza</asp:ListItem>

<asp:ListItem>Drink</asp:ListItem>

</asp:DropDownList>

</EditItemTemplate>

<InsertItemTemplate>

<asp:DropDownList ID=”DropDownList2” runat=”server”
SelectedValue=’<%# Bind(“MenuItemType”) %>’>

<asp:ListItem Selected=”True”>Pizza</asp:ListItem>
<asp:ListItem>Drink</asp:ListItem>

</asp:DropDownList>

</InsertItemTemplate>

<ItemTemplate>

<asp:Label ID=”Label1” runat=”server”

Text=’<%# Bind(“MenuItemType”) %>’></asp:Label>

</ItemTemplate>

</asp:TemplateField>

The next four fields are all BoundField controls. So, display data in View mode, and show a text box
when in Edit or Insert mode.

<asp:BoundField DataField=”ItemName” HeaderText=”ItemName”
SortExpression=”ItemName” />

<asp:BoundField DataField=”PizzaToppings” HeaderText=”PizzaToppings”
SortExpression=”PizzaToppings” />

<asp:BoundField DataField=”Description” HeaderText=”Description”
SortExpression=”Description” />

<asp:BoundField DataField=”GraphicFileName” HeaderText=”GraphicFileName”
SortExpression=”GraphicFileName” />

191

09_588079 ch06.qxd 11/29/05 3:56 PM Page 192

Chapter 6

The final field is a CommandField, where the Delete, Edit, and Insert buttons are visible.

<asp:CommandField ShowDeleteButton=”True” ShowEditButton=”True”

ShowInsertButton=”True” />

</Fields>

</asp:DetailsView>

You can see that the DetailsView control behaves in a similar way to the GridView, with columns and
commands that react in different modes. Clicking the Update button places the control in update mode,
so the EditItemTemplate is shown for TemplateField controls, and for BoundField controls a text
box is shown. Clicking Insert displays the InsertItemTemplate for TemplateField controls, and a
text box for BoundField controls. Actually, saving the data runs the appropriate SQL command to
update the database.

The first time you ran the page, you could edit data in the DetailsView, but the changes weren’t
reflected in the GridView. This is because the grid and data source control don’t know that the data has
changed. To get around this, you have to resort to code and you used three events for this: the Deleted,
Inserted, and Updated events (we’ve wrapped the code to make it clearer to read, but in your code,
the event procedure declaration will be on a single line).

Protected Sub SqlDataSource1_Deleted(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.SqlDataSourceStatusEventArgs)
Handles SqlDataSource1.Deleted

GridView1.DataBind()

End Sub

Protected Sub SqlDataSource1_Inserted(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.SqlDataSourceStatusEventArgs)
Handles SqlDataSource1.Inserted

GridView1.DataBind()

End Sub

Protected Sub SqlDataSource1_Updated(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.SqlDataSourceStatusEventArgs)
Handles SqlDataSource1.Updated

GridView1.DataBind()

End Sub

The data source control raises these events after it has sent the changes back to the database, and in the
event procedure for these, the grid is simply re-bound to the data using the DataBind method. This tells
the data source to fetch a new copy of the data.

There is also another control, the FormView, which works like the DetailsView control to provide dis­
play and editing of a single row. The difference is that the DetailsView automatically displays the row
in a table, with the field names on the left, and the fields on the right. The FormView has no automatic
display — you have to provide the layout yourself. We’re not going to cover it here, but it works in the
same way, and allows you to lay out the fields however you want, rather than sticking to the table
design of the DetailsView.

192

09_588079 ch06.qxd 11/29/05 3:56 PM Page 193

Managing and Editing Data

Summary
In this chapter, we have looked at how to edit data from the database, using three controls. The
SqlDataSource control provides the link between the database and the display of data, and has
properties allowing you to set different SQL commands for different types of changes — inserts, deletes,
and updates.

The GridView not only displays data, but also allows editing, simply by setting a few properties —
AutoGenerateEditButton and AutoGenerateDeleteButton. These add a link to the grid allowing
editing — no code is required.

The DetailsView provides the same features, but a different view of the data, showing only a single
row at a time. This is much more useful for editing data because it shows the data in a formlike way,
which is much more intuitive.

The one trouble with this page is that anyone can access it and update the details. In Chapter 9, we will
look at how to protect this page from users, allowing access to it only when one is logged into the site.
For now though, let’s continue our exploration of editing data and look at the ordering process, seeing
how users can order menu items online.

193

09_588079 ch06.qxd 11/29/05 3:56 PM Page 194

10_588079 ch07.qxd 11/29/05 3:57 PM Page 195

7

Placing an Order

You saw in the Chapters 4 and 5 how to display data (as you created the pizza menu pages using data
source controls and grids), and in Chapter 6 you saw how to use the GridView and DetailsView
controls to edit data. In this chapter, you will be reusing some of those techniques from Chapters 4 and
5 as we build a page to allow customers to order pizzas.

There are several stages to the order process, starting with an order page, which allows customers
to add pizzas and drinks to a shopping cart. Once customers have selected their order items, they
can then proceed to the checkout, where the delivery address and credit card details need to be
collected. Finally, you create the order in the database, and the trusty delivery boy hops on his
skateboard to head out with lots of cheesy goodness.

The checkout and creation of the order in the database is discussed in Chapter 8, so in this chapter,
you will:

❑ Learn how to create custom classes

❑ See how to use the Session object to store the shopping cart

❑ Learn about the ObjectDataSource control

There is much more code in this chapter than the previous one, but don’t worry because we’ll
explain it all carefully. You don’t necessarily have to understand all of the code at this stage — after
all, the book is primarily focused on getting you used to using VWD and ASP.NET. Knowing what
it does and how it is structured is more important at this stage in your learning, and once you feel
comfortable with ASP.NET and data handling, you can revisit the code later on. We felt it was more
important to have a real-life situation that included code, rather than a gratuitous example that
wasn’t practical. Even if you don’t understand all of the code yet, you’ll gain an understanding of
the techniques involved, and the things you need to think about in the future.

10_588079 ch07.qxd 11/29/05 3:57 PM Page 196

Chapter 7

The Order Process

Before building the order pages, you must work out the process of ordering items. This will give you an
indication of exactly what you will need. Following are the things you will need:

❑	 An order page, where you can select the menu items.

❑	 A shopping cart, to store the selected menu items.

❑	 A page to collect the delivery details and credit card payment. We’ll be looking at this in

Chapter 8, but it’s still part of the overall order process.

Each of these pages needs some thought, with the process of ordering and storing data worked out in
advance. For example, you must decide whether to have an order page that is separate from the menu
page. Keeping them the same would mean that you can simply add a button alongside the menu item
size — this would add the item to the shopping cart. Alternatively, you could have a text area allowing
the user to enter the number of items to be added. This makes the page a little harder to code, and
changes the look — rather than a great-looking menu page, it would now have a text box on it.

For this sample, the menu page has been duplicated as the order page and a simple button added to
allow ordering of a single item. The button can be clicked many times if more than one of an item is
required. The reason for having two pages is simply so that you can keep the two parts distinct as you
are working through the book — the menu page is the page built in Chapters 4 and 5 and doesn’t
change. The ordering page is the one built in this chapter — they are essentially the same, with only
small changes to the design, plus some code. In real life, there would probably be only a single page.
Figure 7-1 shows how you can add a button and link to add the item to the shopping cart.

Figure 7-1: The “Add item to order” button

Once you’ve decided on the way orders will be performed, you can decide where to store them before
the order is confirmed — the shopping cart. There are places to store shopping carts:

❑	 In a database — As the user adds items to the cart, the items could be added to a table in the
database. When the order is confirmed, the entries could be copied into the OrderItems table.
One problem with this approach is that if the user leaves the site without confirming the order,
then the shopping cart table will have unused data in it, which will need to be removed.

❑	 In the Profile — The Profile is a feature of ASP.NET 2.0 that allows storage of data against a user.
We won’t be using the Profile in this book, but one problem with using the Profile for storing
the shopping cart is that the Profile is meant for long-lived data — data that persists across user
sessions. Some sites allow shopping carts to keep their data for when you come back to the site,
but for the PPQ site that doesn’t really make sense.

196

10_588079 ch07.qxd 11/29/05 3:57 PM Page 197

Placing an Order

❑	 In the Session — The Session contains data about the active session. It starts when you first
access the site and ends when you exit the site (plus a timeout value). Any data stored in the
session will be held only while you are browsing the site.

For the PPQ site, the Session will be used for the storage of the shopping cart, but there are still the
decisions of what it will store, and how it will store the data. The cart obviously needs details of the item
(the name, the price, the quantity, and so on), so one option is to use a DataTable— this is one of the
data handling objects and is used by DataSets for storing tabular data. This would seem ideal for
storing the cart items, since the DataTable automatically handles rows and columns, but the cart could
be so much more. For example, it would be good if the cart could automatically give us a total price of
the items, including delivery and sales tax. The DataTable wouldn’t accomplish this because it is
designed to store rows of the same information — multiple order items in this case. What the cart needs
are properties for the total, sales tax, delivery charge, plus a collection of items. To give this flexibility,
you will use custom classes for the shopping cart.

Finally, you must decide on the payment. You’ll need to collect the delivery address, as well as take the
credit card details and show all of the items in the cart, including the totals. Then, once the user confirms
the order, the items in the cart can be used to create an order in the Orders and OrderItems tables in
the database.

Understanding Classes
Before you start coding, you must have an understanding of classes, and some of the terms used when
dealing with them. Let’s start with the basics of what a class is — it is simply a template for an object to
wrap some functionality. Classes are held within Class Files— a separate file in the App_Code folder
underneath the Web site, and you will be creating this in an exercise soon. Think of a class as a cookie
cutter; it’s not a cookie but defines what the cookie will look like.

You’ve already seen classes in action, even if you didn’t realize it. All the ASP.NET server controls are
created as classes, which provide the functionality required for that control. The grid controls, for
example, can fetch data from a data source and format it for display — all done within the class.

So, what does a “class being a template” mean? Well classes are used as the basis for objects. An object
(or class instance, as it is sometimes called) is the running version of a class — it’s the cookie that is cut
from the cookie cutter. You create an object by using the New statement in Visual Basic, as you saw when
building the ShowMenu.aspx page in the Chapter 5:

Dim da As New SqlDataAdapter(sGetMenuItems, con)

This creates a new SqlDataAdapter instance. The SqlDataAdapter class defines the functionality of
what the object can do once the object is created.

You implement the functionality of a class in one of three ways:

❑	 Properties — These define the behavior of the object. For example, the following line of code sets
the CommandText of the SelectCommand to the value contained within the variable
sGetSizesAndPrices:

da.SelectCommand.CommandText = sGetSizesAndPrices

197

10_588079 ch07.qxd 11/29/05 3:57 PM Page 198

Chapter 7

❑	 Methods — These define the actions the object can perform. For example, the following line of
code uses the Fill method to fill the DataSet (ds) with data from a database:

da.Fill(ds, “MenuItems”)

❑	 Events — These allow the object to inform the code using the object that something has
happened. For example, in Chapter 5, step 15 in the section, “Creating Nested Data Displays
Declaratively,” shows how the RowDataBound event of the GridView is used. The GridView
raises this event whenever a row of data is bound from the underlying database. The grid is
telling you that something is happening, and you use the event procedure to run your own
code. The “Object-Oriented and Event-Driven Architecture” section at the beginning of Chapter
4 briefly describes this process.

For the custom classes in PPQ, there will not be any events, but there will be properties and methods, as
well as a way of declaring how new objects can be created. So, let’s build the shopping cart classes.

Creating the Shopping Cart
The shopping cart itself will be pure code — it’s just a storage mechanism. Later you’ll see how to
display the cart, but to start, you need to create the classes, and these live in a special directory called
App_Code. This directory contains just code files, and ASP.NET will automatically compile them, so all
you have to do is create your file — ASP.NET takes care of everything else.

The Shopping Cart Classes
The shopping cart consists of two classes: one for the items within the cart and one for the cart itself. The
cart itself has a class so that it can store the delivery charge, and calculate the subtotal and total.

You can use a single file for this, because you don’t have to create a file for each class — the classes
can share the same physical file. The two classes will be called CartItem and ShoppingCart. The
ShoppingCart will have a collection of CartItem objects to store the items being ordered.

There is a lot of code in these classes, and it would mean a lot of typing, so this exercise will show the
basics of what classes contain and how you lay them out. To save you typing in all of the code, you can
find the entire class in the ShoppingCart.vb.txt file in the page-content directory, allowing you to
copy and paste as much as you like. The code in the template file is also commented, making it easy to
understand.

Try It Out Creating the Shopping Cart Classes
1.	 In the Solution Explorer in VWD, select the solution directory (C:\Websites\PPQ) and

right-click the mouse. From the Add ASP.NET Folder menu item, select App_Code to create the
directory (see Figure 7-2).

198

10_588079 ch07.qxd 11/29/05 3:57 PM Page 199

Placing an Order

Figure 7-2: Creating the App_Code directory

2.	 Click on the newly added App_Code directory, and select the Add New Item . . . menu item.
From the Add New Item window, select Class, and change the Name to ShoppingCart.vb (see
Figure 7-3).

Figure 7-3: Adding a new class

199

10_588079 ch07.qxd 11/29/05 3:57 PM Page 200

Chapter 7

3. The new class will look like Figure 7-4.

Figure 7-4: An empty class

4.	 Below the existing Imports statement, add the following:

Imports System.Collections.Generic

Public Class CartItem

End Class

5. Within the class, underneath the Public Class CartItem declaration, add the following:

Private _menuItemID As Integer
Private _itemName As String
Private _itemSize As String
Private _quantity As Integer
Private _itemPrice As Decimal

6. Underneath that, add the following:

Public Sub New()
End Sub

Public Sub New(ByVal MenuItemID As Integer, ByVal ItemName As String, _
ByVal ItemSize As String, ByVal Quantity As Integer, _
ByVal ItemPrice As Decimal)

_menuItemID = MenuItemID
_itemName = ItemName
_itemSize = ItemSize
_quantity = Quantity
_itemPrice = ItemPrice

End Sub

7. Next, add properties for the menu ID and item name:

Public Property MenuItemID() As Integer
Get

Return _menuItemID
End Get
Set(ByVal value As Integer)

_menuItemID = value

200

10_588079 ch07.qxd 11/29/05 3:57 PM Page 201

Placing an Order

End Set
End Property

Public Property ItemName() As String
Get

Return _itemName
End Get
Set(ByVal value As String)

_itemName = value
End Set

End Property

8.	 To save more typing, copy the remaining properties from the template ShoppingCart.vb.txt
file. You will need the following properties: ItemSize, Quantity, ItemPrice, and LineValue.

9.	 Now to edit the ShoppingCart. Move the cursor to the end of the class file, to the class declaration
that was visible when you created the file:

Public Class ShoppingCart

End Class

10. Within that class, add the following:

Private _salesTaxPercent As Decimal
Private _items As List(Of CartItem)

Public Sub New()

If _items Is Nothing Then
_items = New List(Of CartItem)

End If

_salesTaxPercent = _
Convert.ToDecimal(ConfigurationManager.AppSettings(“SalesTax”))

End Sub

Public ReadOnly Property Items() As List(Of CartItem)
Get

Return _items
End Get

End Property

Public ReadOnly Property SubTotal() As Decimal
Get

Dim tot As Decimal
For Each item As CartItem In _items

tot += item.LineValue
Next
Return tot

End Get
End Property

201

10_588079 ch07.qxd 11/29/05 3:57 PM Page 202

Chapter 7

11.	 To save more typing, copy the remaining properties from the template ShoppingCart.vb.txt
file. You will need the following properties: DeliveryCharge, SalesTaxpercent, SalesTax,
and Total.

12.	 Now you can add the methods that allow the cart items to be modified.

Public Sub Insert(ByVal MenuItemID As Integer, ByVal ItemSize As String, _
ByVal itemName As String, ByVal ItemPrice As Decimal, _
ByVal Quantity As Integer)

Dim idx As Integer = ItemIndex(MenuItemID, ItemSize)

If idx = -1 Then
‘ create a new cart item
Dim NewItem As New CartItem()

NewItem.MenuItemID = MenuItemID
NewItem.ItemSize = ItemSize
NewItem.ItemName = itemName
NewItem.Quantity = Quantity
NewItem.ItemPrice = ItemPrice

_items.Add(NewItem)
Else

_items(idx).Quantity += 1
End If

End Sub

Public Sub Update(ByVal MenuItemID As Integer, ByVal ItemSize As String, _
ByVal Quantity As Integer)

Dim idx As Integer = ItemIndex(MenuItemID, ItemSize)

If idx <> -1 Then
_items(idx).Quantity = Quantity

End If

End Sub

Public Sub Delete(ByVal MenuItemID As Integer, ByVal ItemSize As String)

Dim idx As Integer = ItemIndex(MenuItemID, ItemSize)

If idx <> -1 Then
_items.RemoveAt(idx)

End If

End Sub

Private Function ItemIndex(ByVal MenuItemID As Integer, _
ByVal ItemSize As String) As Integer

Dim index As Integer

For Each item As CartItem In _items

202

10_588079 ch07.qxd 11/29/05 3:57 PM Page 203

Placing an Order

If item.MenuItemID = MenuItemID AndAlso item.ItemSize = ItemSize Then
Return index

End If
index += 1

Next

Return -1

End Function

13.	 Save the file. You’re not going to be able to use this yet, because we need to create more code
and pages, but let’s see how the code works.

How It Works
The first thing we did was to add an Imports statement:

Imports System.Collections.Generic

This tells the compiler where to find some of the classes our new class will use. We’ll explain what those
are later, but all of the classes are divided into namespaces, which is a way to logically separate the classes,
making them easy to find. For example, all of the classes relating to SQL Server are in the System.Data
.SqlClient namespace. Learning about namespaces and the classes within them is useful when you
start to use code because there are a large number of supplied classes that can make your life as a
programmer much easier.

At the start of the chapter, we mentioned that classes are templates that provide properties, methods,
and events, and that’s exactly what this code does. It defines a class with properties and methods —
there are no events in this one, because they aren’t needed. You define a class with the Class statement:

Public Class CartItem

End Class

The Public Class and End Class keywords define the start and end of the class, while CartItem is the
name given to the class. This class will store a single item within the shopping cart.

Within the class, we defined some variables:

Private _menuItemID As Integer
Private _itemName As String
Private _itemSize As String
Private _quantity As Integer
Private _itemPrice As Decimal

These are used to hold the values of a cart item. Following are the parts of these variable declarations:

❑	 Private, which means that the variable cannot be seen outside of the class, and we’ll explain
why this is a good thing when we look at the declaration of the properties.

❑	 Variable name (for example, _menuItemID).

❑	 As Data Type (for example, As Integer).

203

10_588079 ch07.qxd 11/29/05 3:57 PM Page 204

Chapter 7

All variables have a data type, and following are the ones we are using:

❑ Integer, which holds whole numbers.

❑ String, which holds text.

❑ Decimal, which holds decimal values, such as prices.

There are other data types, such as DateTime for date and time values, but we don’t need these for this
class.

Once the variables are declared, the constructors are defined. Constructors are run when the class is cre­
ated, so remember when we talked about creating an object (or a class instance, as it is sometimes called),
like this:

Dim da As New SqlDataAdapter(sGetMenuItems, con)

When the New keyword is used, the constructor of the class is run. The constructors are called New, and
the first is declared like this:

Public Sub New()
End Sub

There is no code within the constructor, but having it there allows you to create the class like this:

Dim MyCartItem As New CartItem()

Also required is a way to create a cart item with the details of the item, the name, price, and so on. To do
that, you create another constructor, with the same name, but different parameters:

Public Sub New(ByVal MenuItemID As Integer, ByVal ItemName As String, _

ByVal ItemSize As String, ByVal Quantity As Integer, _

ByVal ItemPrice As Decimal)

_menuItemID = MenuItemID
_itemName = ItemName
_itemSize = ItemSize
_quantity = Quantity
_itemPrice = ItemPrice

End Sub

The parameters are variable declarations within the parenthesis and define how you can create the class.
So, with this constructor, you can also create the class like this:

Dim MyCartItem As New CartItem(1, “Three Cheeses”, “Large”, 1, 10.95)

This allows you to define the values that the cart item has when you create the item. Within the
constructor, the parameters are assigned to the variables declared at the top of the class. Those variables
were Private and so couldn’t be seen outside of the class. So, next we defined properties, and the
syntax is as follows:

204

10_588079 ch07.qxd 11/29/05 3:57 PM Page 205

Placing an Order

Public Property PropertyName As DataType
Get

‘ this is the code that returns a value, run when a value is read
End Get
Set(ByVal value As DataType)

‘ this is the code that sets a value, run when the value is assigned
End Set

End Property

Our first property is:

Public Property MenuItemID() As Integer

Get

Return _menuItemID

End Get

Set(ByVal value As Integer)

_menuItemID = value

End Set

End Property

MenuItemID is the name of the property, and it stores an Integer value — a whole number. The Get
part returns the variable declared at the top of the class, while the Set part, sets the value of that vari­
able. To make this a little clearer, let’s take a look at what happens when classes are created, and proper­
ties read from and written to, starting with creating the class object:

Dim MyCartItem As New CartItem(1, “Three Cheeses”, “Large”, 1, 10.95)

Figure 7-5 shows what happens when the class object is created. The constructor is run and the values
passed into the constructor are placed into the variables.

CartItem

 ByVal ItemSize As String,
 ByVal Quantity As Integer,

nuItemID As Integer,
mName As String,

mPrice As Decimal)

New(ByVal Me
 ByVal Ite

 ByVal Ite

Variable Value

_menuItemID 1

_itemName Three Cheeses

_itemSize Large

_quantity 1

_itemPrice 10.95

Figure 7-5: Creating a class object

To access a property, you place the property name after the class object name. For example, to read the
ItemName property into a new variable you would use the following code:

Dim MyItemName As String
MyItemName = MyCartItem.ItemName

205

10_588079 ch07.qxd 11/29/05 3:57 PM Page 206

Chapter 7

As Figure 7-6 shows, this calls the property Get and returns the value of the variable.

CartItem

Public Property ItemName() As String
 Get

 Return _itemName
 End Get

 Set(ByVal value As String)
 _itemName = value

 End Set
End Property

Variable Value

_menuItemID 1

_itemName Three Cheeses

_itemSize Large

_quantity 1

_itemPrice 10.95

Figure 7-6: Reading a property value

The value of the variable _itemName is returned, so MyItemName would contain Three Cheeses. To set
the value of a property you use the following:

MyCartItem.ItemName = “Hawaiian”

Figure 7-7 shows what happens when a property is written to. The Set part of the Property runs, which
assigns the value passed in to the variable _itemName.

CartItem
Public Property ItemName() As String
 Get

 Return _itemName
 End Get

 Set(ByVal value As String)
 _itemName = value

 End Set
End Property

Variable Value

_menuItemID 1

_itemName Hawaiian

_itemSize Large

_quantity 1

_itemPrice 10.95

Figure 7-7: Writing a property value

The reason for using properties is that it is a feature of object-oriented programming (which is what you are
doing, even if you didn’t realize it), and it’s called abstraction. What abstraction does is hide the inner
workings of the class from those programs that use the class, which don’t need to know how it works,
just that it does. For example, you set the value of a property like this:

MyCartItem.ItemName = “Hawaiian”

You don’t need to know how the MyCartItem object actually stores the contents of the property, just that
it does.

206

10_588079 ch07.qxd 11/29/05 3:57 PM Page 207

Placing an Order

All of the properties of the CartItem class follow the same syntax, and that’s all that the CartItem
consists of, the constructors and the properties.

Let’s now look at the ShoppingCart class, the definition of which is similar to the CartItem class:

Public Class ShoppingCart
End Class

This class needs to store the items, so you need some form of storage for multiple copies of the
CartItem class. For this we use a List, but a special one — a generic List. There are different types of
lists — some that allow storing of any type of data, and some that can be restricted to store only a certain
data type. A generic list is one of the latter, and when you declare the list, you determine what data it can
hold. This helps to alleviate any potential coding errors, reduces the amount of code you have to write,
and makes the code faster than if you used a normal list.

Using a generic list is why we added the Imports statement at the top of the file, referencing the
System.Collections.Generic namespace because that’s where the generic List resides. You don’t
really need to know about this List in detail, except that it is useful for storing collections of custom
classes. The syntax for creating a list of this type is:

Private VariableName As List(Of DataType)

The DataType defines the type of object that will be stored, which in this case is a CartItem object. So,
our variable is declared as follows:

Private _items As List(Of CartItem)

This line only declares the variable and what it contains but doesn’t initialize it. The next line is another
variable declaration:

Private _salesTaxPercent As Decimal

This will be used to store the percentage of sales tax, which is stored in the Web configuration file.

Neither of the previous two variables has values so we add a constructor to the class to do that:

Public Sub New()

If _items Is Nothing Then

_items = New List(Of CartItem)

End If

_salesTaxPercent = _

Convert.ToDecimal(ConfigurationManager.AppSettings(“SalesTax”))

End Sub

Within the constructor a new List object is created but only if it already hasn’t been created. When
the class is first created, the _items variable will be Nothing, a special value indicating that the object
variable doesn’t contain anything. Therefore, if the variable is Nothing, we need to create a new List
object.

207

10_588079 ch07.qxd 11/29/05 3:57 PM Page 208

Chapter 7

The salesTaxPercent variable is set to the value stored in the Web configuration file and shows an
important point, one of storing configuration details. The order must include sales tax, but including an
explicit figure in code means that the code must be changed if the sales tax ever changes. To avoid this
problem, the information is stored in the Web configuration file, web.config, which contains a section
called <appSettings/>, used for application settings:

<configuration>
<appSettings>

<add key=”SalesTax” value=”0.08” />
</appSettings>

To add a setting, you use the add element, with the key providing a unique identifier, and value
providing the value of the setting. If the sales tax ever changes, all that’s required is a simple change to
this configuration file — you don’t have to change any code.

Within the property, the configuration value can be read using the AppSettings property of the
ConfigurationManager class. You use the key to identity a value from the <appSettings /> section:

ConfigurationManager.AppSettings(“SalesTax”)

The value returned from this line of code needs converting to a Decimal type, so we use the ToDecimal
method of the Convert class.

The sales tax value is read in the class constructor because the constructor happens only once, when the
class is instantiated.

Since the _items variable is private, it needs to be exposed to programs using the shopping cart, so a
property is created:

Public ReadOnly Property Items() As List(Of CartItem)

Get

Return _items

End Get

End Property

This shows a different form of creating properties, ones that are read-only. The declaration has the
addition of a ReadOnly keyword in it, and the body of the property includes only the Get section, which
simply returns the list of items. You can also create write-only properties by using the WriteOnly
keyword and including only the Set section.

Next, there is a property for the subtotal of the items in the cart, which is also read-only since you can
never directly set the value of the subtotal.

Public ReadOnly Property SubTotal() As Decimal
Get

Dim tot As Decimal
For Each item As CartItem In _items

tot += item.LineValue
Next
Return tot

End Get

End Property

208

10_588079 ch07.qxd 11/29/05 3:57 PM Page 209

Placing an Order

The subtotal is calculated by adding up the line value of each item in the cart — this is exposed through
the LineValue property of the CartItem. So, the SubTotal property simply loops through each item,
adding to a total, which is then returned. This code shows that properties do not simply have to return
the value of a variable; they can also have more complex code. One good thing about having the subtotal
in a property such as this is that it will always be correct. If we had stored the subtotal as a separate
variable, then every time there was a change to the items in the cart, we would have to update the
subtotal. This way the total is always calculated based upon the items within the cart.

Other properties that the cart has (and that you copied from the template code) are for the percentage of
sales tax, the amount of sales tax, and the total. The percentage of sales tax simply returns the variable
that was set in the class constructor — this way the value is read from the Web configuration file once,
and the variable used every time the property is read.

Public ReadOnly Property SalesTaxPercent() As Decimal
Get

Return _salesTaxPercent.
End Get

End Property

The next property is for the sales tax:

Public ReadOnly Property SalesTax() As Decimal
Get

Return (SubTotal + DeliveryCharge) * SalesTaxPercent
End Get

End Property

The sales tax is calculated from the subtotal, the delivery charge, and the percentage sales tax, so this
property simply returns the calculated amount. Notice that the values used for the calculation are them­
selves properties. The same technique is used for the order Total:

Public ReadOnly Property Total() As Decimal
Get

Return SubTotal + DeliveryCharge + SalesTax
End Get

End Property

With the properties defined, we then moved on to the methods — the actions that the shopping cart can
perform. The first method allows you to insert an item into the cart, and takes the same parameters as a
CartItem object constructor:

Public Sub Insert(ByVal MenuItemID As Integer, ByVal ItemSize As String, _
ByVal itemName As String, ByVal ItemPrice As Decimal, _
ByVal Quantity As Integer)

The first thing the Insert method does is to find the index of the item in the cart, by calling the
ItemIndex method (which we’ll look at shortly). Remember that the items are stored in a List object,
and we don’t want to add the same item more that once, so we look up the index to see if it already
exists:

Dim idx As Integer = ItemIndex(MenuItemID, ItemSize)

209

10_588079 ch07.qxd 11/29/05 3:57 PM Page 210

Chapter 7

If the index is -1, then it doesn’t already exist, so a new CartItem is created and the properties are used
to set the values for the item. We could have passed these values into the constructor, but this shows
another way of creating objects and setting property values.

If idx = -1 Then
‘ create a new cart item
Dim NewItem As New CartItem()

NewItem.MenuItemID = MenuItemID
NewItem.ItemSize = ItemSize
NewItem.ItemName = itemName
NewItem.Quantity = Quantity
NewItem.ItemPrice = ItemPrice

Once the new item is set, it is added to the _items list.

_items.Add(NewItem)

If the index returned from ItemIndex is a value other than -1, then the item already exists in the cart, so
there’s no point adding it again. In this situation, we can simply update the Quantity, adding 1 to it.

Else
_items(idx).Quantity += 1

End If

End Sub

The Update method is even easier because only the Quantity can be updated.

Public Sub Update(ByVal MenuItemID As Integer, ByVal ItemSize As String, _
ByVal Quantity As Integer)

First, the index of the item is fetched, and if the item exists, the index will not be -1, so the Quantity is
updated.

Dim idx As Integer = ItemIndex(MenuItemID, ItemSize)

If idx <> -1 Then
_items(idx).Quantity = Quantity

End If

End Sub

The method to delete items follows a similar form. First, the index is returned, and if the item exists, the
RemoveAt method of the _items list is called to remove the item.

Public Sub Delete(ByVal MenuItemID As Integer, ByVal ItemSize As String)

Dim idx As Integer = ItemIndex(MenuItemID, ItemSize)

If idx <> -1 Then
_items.RemoveAt(idx)

210

10_588079 ch07.qxd 11/29/05 3:57 PM Page 211

Placing an Order

End If

End Sub

The final method is one used only by the other methods, which is why the Private keyword is used,
which means the method cannot be used outside of the class. Private methods are a great way to break
functionality into small units without making them visible to users of the class. This method accepts two
parameters: the ID of the item and the size. These uniquely identify an item in the list.

Private Function ItemIndex(ByVal MenuItemID As Integer, _
ByVal ItemSize As String) As Integer

Dim index As Integer

To find the index number, we loop through the items in the list, comparing the ID and size to those
passed in as parameters. If a match is found, then the position in the list is returned.

For Each item As CartItem In _items
If item.MenuItemID = MenuItemID AndAlso item.ItemSize = ItemSize Then

Return index
End If
index += 1

Next

If no match is found, then -1 is returned.

Return -1

End Function

There’s a lot of code here, but what it means is that we have a class called ShoppingCart with the
following properties:

❑ Items — A collection of CartItem objects

❑ SubTotal — The total of the CartItem objects

❑ DeliveryCharge — The fee charged for delivery (which will be user-selectable)

❑ SalesTaxPercent — The percentage of sales tax

❑ SalesTax — The amount added to the order for sales tax

❑ Total — The total cost of the order

The methods are:

❑ Insert — To insert a new item

❑ Update — To update the quantity of an existing item

❑ Delete — To delete an item

211

10_588079 ch07.qxd 11/29/05 3:57 PM Page 212

Chapter 7

At this stage, we simply have a way of storing the items for a shopping cart but don’t have anywhere to
store it, and for that we need a data layer.

The Shopping Cart Data Layer
At the beginning of the chapter, we stated that the storage for the cart was going to be the Session. The
Session is an intrinsic object (that is, it is provided automatically by ASP.NET and can be used to store
information for the duration of a user’s session on a site or after a specific time period). The timeout
defaults to 20 minutes, so as long as you stay active on a site, the session remains active. If you request a
page and leave the browser for 20 minutes, then the session times out, and all data stored in the session
is lost. For some shopping carts this would be a problem, but for PPQ the timeout is acceptable —
ordering pizzas is a quick business.

To store something in the session, you use the following code:

Session(“MyKey”) = “MyValue”

This stores the string MyValue in the session, using MyKey as the key. To read the value you use:

Dim MyString As String
MyString = Session(“MyKey”)

The session can store objects as well as strings, so we’ll use it to store the shopping cart.

The ObjectDataSource Control
At the moment, our shopping cart exists as just a class. It doesn’t actually store the data anywhere, so
we need some more classes to store the cart in the session. Why do we need more classes? Well, we are
going to use the ObjectDataSource control on our pages to provide the interface between the controls
that will display the data and the storage of the data. The ObjectDataSource control works in much
the same way as a SqlDataSource control, except that instead of dealing with a database it deals with a
class. It has the same idea of commands to read and update data that we saw in Chapter 6, but they
point to methods of a class, rather than SQL statements.

The properties of the ObjectDataSource control we will use are:

❑ TypeName — The name of the class providing the data

❑ DeleteMethod — The method called when an item is to be deleted

❑ InsertMethod — The method called when an item is to be inserted

❑ SelectMethod — The method called to read the items

❑ UpdateMethod — The method called to update an item

In all other respects, the ObjectDataSource control provides the same features as the SqlDataSource
control.

212

10_588079 ch07.qxd 11/29/05 3:57 PM Page 213

Placing an Order

The Data Layer Classes
The data layer will consist of a single class, called StoredShoppingCart, with six public methods:

❑ Read— To return the shopping cart

❑ Update — To update the delivery charge

❑ ReadItems — To read the items in the cart

❑ DeleteItem — To delete an item from the cart

❑ InsertItem — To insert a new item into the cart

❑ UpdateItems — To update an item in the cart

These will be linked to two ObjectDataSource controls: one for the cart itself (totals, etc.), and one for
the cart items, as shown in Figure 7-8.

SelectMethod
UpdateMethod
DeleteMethod
InsertMethod

ObjectDataSource

SelectMethod
UpdateMethod

ObjectDataSource

StoredShoppingCart
Session

ReadItems
UpdateItem
DeleteItem
InsertItem

Read
Update

ShoppingCart

Figure 7-8: TheObjectDataSource control and the data layer

Here you can see that the methods of the ObjectDataSource control map to the methods in the
StoredShoppongCart object, which interacts with the ShoppingCart object stored in the session.

The StoredShoppingCart class is much simpler than the ShoppingCart and CartItem classes, so let’s
go ahead and build it.

213

10_588079 ch07.qxd 11/29/05 3:57 PM Page 214

Chapter 7

Try It Out The Shopping Cart Data Layer
1.	 In VWD, click on the App_Code directory, and select the Add New Item . . . menu item. From the

Add New Item window select Class, and change the Name to StoredShoppingCart.vb (see
Figure 7-9).

Figure 7-9: Adding a new class

2. The new class will look like Figure 7-10.

Figure 7-10: The new StoredShoppingCart class

3.	 Below the existing Imports statement, add the following:

Imports System.Collections.Generic

Public Class StoredShoppingCart

End Class

4.	 Within the class, underneath the Public Class StoredShoppingCart declaration, add the
following methods for the shopping cart:

214

10_588079 ch07.qxd 11/29/05 3:57 PM Page 215

Placing an Order

Public Shared Function Read() As ShoppingCart

Return FetchCart()

End Function

Public Shared Function Update(ByVal DeliveryCharge As Decimal) As Integer

Dim cart As ShoppingCart = FetchCart()

cart.DeliveryCharge = DeliveryCharge

End Function

5. Next, add the following methods for the items:

Public Shared Function ReadItems() As List(Of CartItem)

Dim cart As ShoppingCart = StoredShoppingCart.FetchCart()

Return cart.Items

End Function

Public Shared Function UpdateItem(ByVal MenuItemID As Integer, _
ByVal ItemSize As String, ByVal Quantity As Integer) As Integer

Dim cart As ShoppingCart = StoredShoppingCart.FetchCart()

cart.Update(MenuItemID, ItemSize, Quantity)

End Function

Public Shared Function DeleteItem(ByVal MenuItemID As Integer, _
ByVal ItemSize As String) As Integer

Dim cart As ShoppingCart = StoredShoppingCart.FetchCart()

cart.Delete(MenuItemID, ItemSize)

End Function

Public Shared Function InsertItem(ByVal MenuItemID As Integer, _
ByVal ItemName As String, ByVal ItemSize As String, _
ByVal Quantity As Integer, ByVal ItemPrice As Decimal) As Integer

Dim cart As ShoppingCart = StoredShoppingCart.FetchCart()

cart.Insert(MenuItemID, ItemSize, ItemName, ItemPrice, Quantity)

End Function

215

10_588079 ch07.qxd 11/29/05 3:57 PM Page 216

Chapter 7

6. private

Private Shared Function FetchCart() As ShoppingCart

Dim cart As ShoppingCart = _
DirectCast(HttpContext.Current.Session(“Cart”), ShoppingCart)

If cart Is Nothing Then
cart = New ShoppingCart()
HttpContext.Current.Session(“Cart”) = cart

End If

Return cart

End Function

Finally, add the method to fetch the cart from the session:

7. Save the file.

How It Works
Like the ShoppingCart class, the first thing we did was to add a reference to the System.Collections
.Generic namespace, so that ASP.NET knows where to find the generic List class:

Imports System.Collections.Generic

Then there were two methods for the shopping cart. The first, Read, simply returns the stored cart,
which it fetches by calling FetchCart, a private method we’ll examine shortly.

Public Shared Function Read() As ShoppingCart

Return FetchCart()

End Function

One important thing to note is the use of the keyword Shared in the method declaration. Shared means
that you don’t have to create an instance of a class. Normally, a class must be created with the New
keyword, such as the following:

Dim NewItem As New CartItem()

This creates a new class instance, with properties and methods, and private variables. Some classes,
however, are only wrappers for methods — they don’t have any properties or private variables, and each
method stands alone, not relying on anything else in the class. The StoredShoppingCart class is one of
those and exists only because you can’t have methods outside of a class. If the methods weren’t shared,
to use them you would have to use the following code:

Dim ssc As New StoredShoppingCart()
Dim cart As ShoppingCart = ssc.Read()

With a Shared method, however, you don’t have to instantiate the class. So, you can have the following:

Dim cart As ShoppingCart = StoredShoppingCart.StoredShoppingCart.Read()

216

10_588079 ch07.qxd 11/29/05 3:57 PM Page 217

Placing an Order

In this code, instead of using a class instance variable ssc, we simply use the class name. Using Shared
methods reduces the overhead that ASP.NET has when managing variables, so not only does it make the
code shorter and easier to read, but it also helps with performance.

The second method of the StoredShoppingCart class, Update, fetches the cart, and updates the delivery
charge. This will be used on the checkout page where the user will select the delivery area.

Public Shared Function Update(ByVal DeliveryCharge As Decimal) As Integer

Dim cart As ShoppingCart = FetchCart()

cart.DeliveryCharge = DeliveryCharge

End Function

Next are the methods for the items, starting with ReadItems:

Public Shared Function ReadItems() As List(Of CartItem)

Dim cart As ShoppingCart = StoredShoppingCart.FetchCart()

Return cart.Items

End Function

This fetches the cart and returns the Items collection. This will be used to display a list of the items in
the cart.

Then there are the methods to update, delete, and insert items in the cart. These simply fetch the cart and
call the appropriate method on the cart itself. For example, the UpdateItem method calls the Update
method on the cart.

Public Shared Function UpdateItem(ByVal MenuItemID As Integer, _

ByVal ItemSize As String, ByVal Quantity As Integer) As Integer

Dim cart As ShoppingCart = StoredShoppingCart.FetchCart()

cart.Update(MenuItemID, ItemSize, Quantity)

End Function

Public Shared Function DeleteItem(ByVal MenuItemID As Integer, _

ByVal ItemSize As String) As Integer

Dim cart As ShoppingCart = StoredShoppingCart.FetchCart()

cart.Delete(MenuItemID, ItemSize)

End Function

Public Shared Function InsertItem(ByVal MenuItemID As Integer, _

ByVal ItemName As String, ByVal ItemSize As String, _

217

10_588079 ch07.qxd 11/29/05 3:57 PM Page 218

Chapter 7

ByVal Quantity As Integer, ByVal ItemPrice As Decimal) As Integer

Dim cart As ShoppingCart = StoredShoppingCart.FetchCart()

cart.Insert(MenuItemID, ItemSize, ItemName, ItemPrice, Quantity)

End Function

These methods show that the StoredShoppingCart class is just a wrapper around the actual cart; it
knows where the cart is stored and has equivalent methods to the cart.

The FetchCart method is only used internally by the StoredShoppingCart class, and it returns a
ShoppingCart object — the cart stored in the session.

Private Shared Function FetchCart() As ShoppingCart

Fetching the cart from the session is the first thing this method does:

Dim cart As ShoppingCart = _
DirectCast(HttpContext.Current.Session(“Cart”), ShoppingCart)

This requires a little explanation. Earlier in the chapter, we showed how to store items in, and fetch them
from, the session, and this is just an extension of that. The first thing to know is that the Session object
is part of the ASP.NET page, and this is a class, so we don’t automatically have access to the Session
object. For that reason, we have to access it indirectly — don’t worry about what the HttpContext
.Current means; it’s just how we access the Session object from within a class.

The second thing to consider is that, when fetching items from the Session object, these items are
returned as an Object type (Object is a distinct type, just like String and Integer). We know that the
cart isn’t an Object, but a ShoppingCart class, so we have to cast the type. Casting is a way of telling
ASP.NET that an object of one type should be treated as a different type, and we use DirectCast for
that, the syntax of which is as follows:

DirectCast(object, DataType)

This converts the object into the DataType. So, our code is converting an object into a ShoppingCart.
Another way of casting, or converting types, is to use CType, the syntax of which is:

CType(object, DataType)

The difference between CType and DirectCast is that DirectCast will raise an exception if the object
is not of the correct DataType. We know that we’ve stored a ShoppingCart object into the Session, so
either conversion method could be used, but DirectCast was picked for an added degree of protection.
If something did go wrong with the Session storage, then the error would occur during the conversion,
and not later on in the code. At this stage, we have a variable called cart, which contains the cart from
the session. However, if this is the first time this code has been run, the cart will not have been placed into
the session, so the cart variable might be Nothing (remember, Nothing tells us that the variable doesn’t
contain anything). If cart is Nothing, then we need to create a new cart object and place it into the session:

218

10_588079 ch07.qxd 11/29/05 3:57 PM Page 219

Placing an Order

If cart Is Nothing Then
cart = New ShoppingCart()
HttpContext.Current.Session(“Cart”) = cart

End If

Return cart

End Function

The reason we used the FetchCart method is because it contains code that is needed in all of the other
methods — they need to fetch the cart from the session. But because the cart might not exist and might
have to be created, all of this code would be needed in every method. Instead of repeating the code, it is
better to create a separate method with the repeated code and just call that method from the others.

The reason for creating the StoredShoppingCart class is that it keeps the storage of the cart separate
from the cart itself. This means that the internals of the cart could be completely changed without
affecting the rest of the application, since the application uses the StoredShoppingCart to access it. As
long as the public methods remain the same, the application will still work. Likewise, the storage of the
cart could be change without affecting the cart class itself. For example, if we wanted to store the cart in
a database instead of the session, then only the StoredShoppingCart class would need to be changed.

Now that the guts of the cart have been done, let’s look at how to use this code by creating an order page.

Creating the Order Page
The order page is created as a separate page purely to keep it separate from the book perspective. The
order page is actually based upon the menu page, and in reality there would probably be only one page
on the real Web site, but we’ve made it a different page so that you can keep the two pages separate.

The difference to the look of the page is small, adding a link and image, which when clicked adds the
item to the shopping cart. Let’s build this page.

Try It Out Creating the Order Page
1.	 Open Order.aspx— this is the order page completed in Chapter 5, but without any code.

2.	 Currently the ItemTemplate of the Repeater contains the following:

<%# Eval(“ItemSize”) %>: <%#Eval(“ItemPrice”, “${0:F2}”)%>

3.	 This just displays the item size and price, and we need to have a button that adds the item to the
shopping cart. Change the code within the ItemTemplate to the following:

<asp:LinkButton ID=”OrderItem” runat=”server” ToolTip=”Add item to order”

style=”text-decoration:none;”
CommandName=’<%# Eval(“ItemSize”) %>’
CommandArgument=’<%# Eval(“ItemPrice”) %>’>

<asp:Image ID=”Image1” runat=”server”

219

10_588079 ch07.qxd 11/29/05 3:57 PM Page 220

Chapter 7

ImageUrl=”~/images/cartIcon.gif”
AlternateText=”Add item to order button” />

<%# Eval(“ItemSize”) %>: <%#Eval(“ItemPrice”, “${0:F2}”)%>
</asp:LinkButton>

4.	 Save the file.

5.	 Switch to Design view and double-click anywhere on the gray background, which will open the
code-behind file and create an empty Page_Load event for you.

6.	 Open Order.aspx.vb.txt from the page-content directory, and copy all of the code into the
Page_Load event in Order.aspx.vb.

7.	 Next, you need to create an event for the ItemDataBound event of the DataList, so switch to
Order.aspx in Design view. Select the DataList and view the events by clicking the events
icon (see Figure 7-11) in the Properties area.

Figure 7-11: Viewing the events for a control

8.	 Double-click into the space next to the ItemDataBound event to have the empty event proce­
dure created for you.

9.	 Within the event procedure, add the following code:

If e.Item.ItemType = ListItemType.Item OrElse _
e.Item.ItemType = ListItemType.AlternatingItem Then

Dim rpt As Repeater = DirectCast(e.Item.FindControl(“Repeater1”), Repeater)

Dim ItemID As HiddenField = New HiddenField
Dim ItemName As HiddenField = New HiddenField

ItemID.ID = “ItemID”
ItemName.ID = “ItemName”

ItemID.Value = e.Item.DataItem(“MenuItemID”)
ItemName.Value = e.Item.DataItem(“ItemName”)

rpt.Controls.Add(ItemID)
rpt.Controls.Add(ItemName)

End If

220

10_588079 ch07.qxd 11/29/05 3:57 PM Page 221

Placing an Order

10.	 Next, you need to create an event handler for the ItemCommand of the Repeater, so switch back
to Order.aspx in Design view. Select the DataList, and from the DataList Tasks select Edit
Templates (see Figure 7-12).

Figure 7-12: Editing the DataList templates

11.	 Select the Repeater and, from the Properties area, click the events icon (the one that looks like a
lightning bolt, as seen in Figure 7-11).

12.	 Double-click in the blank area to the right of the ItemCommand event. This will switch to the
code-behind file and create an empty event procedure for you.

13.	 Within the event procedure, add the following code:

Dim rpt As Repeater = DirectCast(source, Repeater)

Dim IDControl As HiddenField = _
DirectCast(rpt.FindControl(“ItemID”), HiddenField)

Dim NameControl As HiddenField = _
DirectCast(rpt.FindControl(“ItemName”), HiddenField)

Dim ItemID As Integer = Convert.ToInt32(IDControl.Value)
Dim ItemName As String = NameControl.Value
Dim ItemSize As String = e.CommandName.ToString()
Dim ItemPrice As Decimal = Convert.ToDecimal(e.CommandArgument)

StoredShoppingCart.InsertItem(ItemID, ItemName, ItemSize, 1, ItemPrice)

Label1.Text = String.Format(“{0} ({1}) added to the shopping cart”, _
ItemName, ItemSize)

14. Save both files, run the application, and pick Select Pizza from the Order menu. Notice how the
size and price are clickable, as is the shopping cart item (see Figure 7-13).

Figure 7-13: Adding an item to the shopping cart

221

10_588079 ch07.qxd 11/29/05 3:57 PM Page 222

Chapter 7

You can click this link, or the same link on any of the items, and at the top of the page you will see
a label telling you that the selected item has been added to the cart. We haven’t built the page that
displays the cart yet, but the item has definitely been added. Let’s see how this code works.

How It Works
We’ll start by looking at the changes to the ItemTemplate of the Repeater. Within the span (which
hasn’t changed), we first create a LinkButton:

<asp:LinkButton ID=”OrderItem” runat=”server” ToolTip=”Add item to order”

style=”text-decoration:none;”
CommandName=’<%# Eval(“ItemSize”) %>’
CommandArgument=’<%# Eval(“ItemPrice”) %>’>

A LinkButton is a control that acts like a button but that looks like a link. We’ve used one here because it
looks nicer than a normal button. The ToolTip is the text shown when you hover the cursor over the but­
ton, and the style sets how the text looks — in this case, the text has no decoration, so appears normally
(the default is to have the text underlined, like a hyperlink). The CommandName property is set to the size
of the item displayed (the ItemSize column from the database), and the CommandArgument property is
set to the price of the item (the ItemPrice from the database). These values are set using the same Eval
method of data binding as shown in earlier chapters. The CommandName and CommandArgument proper­
ties are used to pass the size and price of the item to the event procedure when the button is clicked —
you’ll see how that’s used a little later.

Next, we include an image, a small shopping cart icon, just to make the page look a little nicer.

<asp:Image ID=”Image1” runat=”server”

ImageUrl=”~/images/cartIcon.gif”

AlternateText=”Add item to order button” />

Next, there is the display of the item size and price, and this is the same display as used in the menu page.

<%# Eval(“ItemSize”) %>: <%#Eval(“ItemPrice”, “${0:F2}”)%>

Finally the LinkButton and span elements are closed.

</asp:LinkButton>

An important point to note here is that the LinkButton encloses the image and the text for the size and
price, which means that these controls become part of the link. This technique allows users to click either
the image or the text to add the item to the cart.

Now, onto the code, and we will ignore the Page_Load event because that contains exactly the same code
as for the menu page, and you looked at that in Chapter 5. Before we dive into the code added to the page
though, we need some theory first. Remember that this page is using master-detail type data binding,
with the pizza and drink types being the master, and the sizes and prices being the details. We want to
allow the user to click one of the detail items, at which point the item will be added to the cart. Since we

222

10_588079 ch07.qxd 11/29/05 3:57 PM Page 223

Placing an Order

are clicking a detail item, we can easily get access to the size and price, but the ID and Name of the pizza
or drink is more problematic because they are contained within the master record, rather than the child
record. This means that we have to find some way of making the ID and Name available, and the way we
do it is by adding the ID and Name as HiddenControls within the repeater. But we do this within code.
(There are ways to get around code if using different data bound controls, but those different controls
don’t provide the features that we need.)

So, let’s now look at the code for the ItemDataBound event of the DataList. Remember that the
DataList displays the item types — the pizzas and drinks, and the ItemDataBound event will be raised
by ASP.NET every time a pizza or drink is bound. It will also be raised when other rows are bound, such as
the header and footer rows. So, the first thing our code does is to check to see which type of row is being
bound. This is easy because one of the parameters to this event is of type DataListItemEventArgs:

Protected Sub DataList1_ItemDataBound(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.DataListItemEventArgs) _

Handles DataList1.ItemDataBound

The parameter e contains information about the item being bound and has an Item property, which
represents the row being bound. The Item property has a property of its own, ItemType, which defines
the template type being bound, and we want to run our code only for items or alternating items — that’s
each and every other row.

If e.Item.ItemType = ListItemType.Item OrElse _

e.Item.ItemType = ListItemType.AlternatingItem Then

For rows and alternating rows, we want to find the Repeater contained within the template because
this will show the item sizes and prices. When using templates, controls aren’t directly accessible,
because ASP.NET generates them dynamically, so we use the FindControl method to find the
Repeater. We know the repeater is within the row of the DataList, and that row is represented by
e.Item. FindControl returns a variable of type Object, so we use DirectCast to convert it to a
Repeater.

Dim rpt As Repeater = DirectCast(e.Item.FindControl(“Repeater1”), Repeater)

Next, we create two HiddenField controls, one for the ID of the item, and one for the Name, and the ID
properties of these are set to ItemID and ItemName, respectively. Different names are used because the
ID of a control has to be unique.

Dim ItemID As HiddenField = New HiddenField
Dim ItemName As HiddenField = New HiddenField
ItemID.ID = “ItemID”
ItemName.ID = “ItemName”

Now, we need to set the Value property of these HiddenField controls to the ID and name of the menu
item. Once again, we use e.Item, which represents the row being bound, this time using the DataItem
property. The DataItem property gives us access to the underlying data — the data from the database —
so we can look up the values by using the column names — MenuItemID and ItemName.

ItemID.Value = e.Item.DataItem(“MenuItemID”)

ItemName.Value = e.Item.DataItem(“ItemName”)

223

10_588079 ch07.qxd 11/29/05 3:57 PM Page 224

Chapter 7

Finally, we add these two new HiddenField controls to the Repeater, which has a collection called
Controls. This is a collection of all child controls, so we just add our new controls to this collection.
This means that when the repeater is displayed, it will contain two additional values — the ID and Name
of the menu item. But because they are HiddenField controls, they won’t actually be seen by the user.

rpt.Controls.Add(ItemID)

rpt.Controls.Add(ItemName)

End If

End Sub

All of the previous code is the code that runs during the creation of the page. So, the only code left is
used to add the item to the cart. For this, we are using the ItemCommand of the Repeater, which the
Repeater raises when a button is clicked within it. Similarly to the ItemDataBound event of the
DataList, the ItemCommand has parameters. The first, source, is the source of the command, which is
the Repeater, and the second, e, contains details of the command.

Protected Sub Repeater1_ItemCommand(ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.RepeaterCommandEventArgs)

Like the ItemDataBound event of the DataList, we need access to the Repeater, but since the
Repeater raises the event, we can use the source parameter. We still need to convert it to a Repeater
type though, because the parameter is an Object type.

Dim rpt As Repeater = DirectCast(source, Repeater)

Next, we need to get the values for the ID and Name of the item. Remember that we stored these in
HiddenField controls, so we use the same FindControl technique to find these controls, and
DirectCast to convert them to the correct type.

Dim IDControl As HiddenField = _
DirectCast(rpt.FindControl(“ItemID”), HiddenField)

Dim NameControl As HiddenField = _
DirectCast(rpt.FindControl(“ItemName”), HiddenField)

Once we have the HiddenField controls, we can extract the values. The Value property of the
HiddenField is a string type, so for the ItemID, this is converted to an Integer (Int32 is the .NET
Framework type that represents an Integer — there isn’t a ToInteger method on the Convert class).
The ItemName is a string type, so no conversion is needed.

Dim ItemID As Integer = Convert.ToInt32(IDControl.Value)
Dim ItemName As String = NameControl.Value

Now that we have the ID and Name of the item, we need the size and price. Remember how these were
set using data binding, using the CommandName property to store the size, and CommandArgument to
store the price. Both of these properties are available through the e parameter passed into the event
procedure, and both are Object types. So, the ItemSize is set by converting the CommandName to a
string using the ToString method of the property, and the ItemPrice is set by using the ToDecimal
method of the Convert class.

Dim ItemSize As String = e.CommandName.ToString()

Dim ItemPrice As Decimal = Convert.ToDecimal(e.CommandArgument)

224

10_588079 ch07.qxd 11/29/05 3:57 PM Page 225

Placing an Order

We now have all of the information we need to add the item to the shopping cart, so we can use the
StoredShoppingCart class created earlier. We use the InsertItem method, passing in the ID and
Name of the item, and the size and price. The 1 represents the quantity — this is part of the Insert
method because it adds flexibility — you could for example, have a text entry area allowing users to
enter the number of items they would like. We’ve decided to make it simpler by just adding a single
item to the cart when the user clicks on the item.

StoredShoppingCart.InsertItem(ItemID, ItemName, ItemSize, 1, ItemPrice)

Finally, we display a note to the users, telling them that their items have been added to the cart.

Label1.Text = String.Format(“{0} ({1}) added to the shopping cart”, _

ItemName, ItemSize)

End Sub

The Format method of the String object is useful for building strings that contain variables. It’s quite
simple — the first argument is the fixed string, but it contains placeholders enclosed in curly braces. The
placeholders are simply a number and indicate the area to be replaced by a parameter. For example, in
the previous code, the {0} placeholder would be replaced by the value of the ItemName variable, and
{1} would be replaced by the ItemSize value. So, if ItemName was Hawaiian, and ItemSize was
Large, the string would be:

Hawaiian (Large) added to the shopping cart

That’s all there is to creating the order page and adding items to the cart. You can see that the ordering
system is quite simple, around 20 lines of code. The shopping cart and storage are longer but are still
relatively simple.

There are two stages left in the ordering process. First, we need a page to show the shopping cart, so
users can see what they’ve ordered so far, and second, we need a checkout page, where the delivery
address and payment can be collected. The checkout page will be covered in Chapter 8, so let’s start with
the shopping cart page.

The Shopping Cart Page
The cart page is going to be extremely simple because we’re actually going to put some of the functionality
into a user control. We do this because we want to show a grid of cart items in two places: on the
“Shopping Cart” page and on the “Checkout” page. Placing the cart grid into a user control allows us to
reuse the same functionality without any extra work. This is another key object oriented concept — code
reuse. Reusing code and components allows you to not only save time but also to reduce potential
errors, because once a component has been tested, you don’t have to worry about errors in it.

Let’s create this.

Try It Out The Shopping Cart User Control
1.	 In the Solution Explorer, select the user-controls directory, and from the right-mouse menu

select Add New Item.

225

10_588079 ch07.qxd 11/29/05 3:57 PM Page 226

Chapter 7

2. From the Add New Item dialog, pick Web User Control (see Figure 7-14), and change the name to
Cart.ascx. It doesn’t matter if you place the code in a separate file because there will be no code.

Figure 7-14: Adding a Web user control

3.	 When the control is created, switch to Design view.

4.	 From the Data section of the Toolbox, drag an ObjectDataSource control onto the page.

5.	 From the ObjectDataSource Tasks, select Configure Data Source (see Figure 7-15).

Figure 7-15: Configuring an ObjectDataSource

6.	 On the first screen of the Configure Data Source Wizard, select the StoredShoppingCart class
from the list (see Figure 7-16) and click the Next button.

226

10_588079 ch07.qxd 11/29/05 3:57 PM Page 227

Placing an Order

Figure 7-16: Selecting the business object

7. Next, you need to set the methods that will fetch and change data (see Figure 7-17).

Figure 7-17: Defining the data methods

227

10_588079 ch07.qxd 11/29/05 3:57 PM Page 228

Chapter 7

8. To define the data methods, you need to match the method on the tabs on the window with the
methods in the class, as shown in the following table:

Class Method

SELECT ReadItems(), returns List<CartItem>

, StringItemSize, Int32
Quantity), returns Int32

Int32

DELETE , returns
Int32

Tab

UPDATE UpdateItem(Int32 MenuItemID

INSERT InsertItem(Int32 MenuItemID, String ItemName, String
ItemSize, Int32 Quantity, Decimal ItemPrice), returns

DeleteItem(Int32 MenuItemID, StringItemSize)

Don’t worry about the odd looking format of the methods, as the wizard always shows these in
C# format.

9. When you’ve matched the methods, click the Finish button.

10.	 From the Data section of the Toolbox, drag a GridView onto the page, dropping it underneath
the ObjectDataSource control.

11.	 From the GridView Tasks, select ObjectDataSource1 (see Figure 7-18) from the list alongside
the Choose Data Source option. The GridView control will be refreshed showing the columns
from the Items collection of the cart. We don’t need to see all of the columns, so from the
GridView Tasks, select Edit Columns (see Figure 7-19).

Figure 7-18: Setting the Data Source

228

10_588079 ch07.qxd 11/29/05 3:57 PM Page 229

Placing an Order

Figure 7-19: Editing the fields of a GridView

12.	 In the Selected fields area, select MenuItemID, and in the BoundField properties area, scroll
down to find the Visible property. Set the value to False.

13.	 In the Selected fields area, select ItemName and set the ReadOnly property to False. Repeat this
action for the ItemSize, ItemPrice, and LineValue fields.

14.	 From the Available fields list, select CommandField, and click the Add button. This will add a
CommandField to the Selected fields list. Select that field and click the up arrow until the
CommandField is at the top of the list.

15.	 With the CommandField still selected, in the BoundField properties, move to the behavior
section. Set the InsertVisible property to False, the ShowDelete property to True, and the
ShowEdit property to True.

16.	 Click OK to close the field editor.

17.	 On the GridView Tasks select Edit Templates, and pick the EmptyDataTemplate (see Figure 7-20).

229

10_588079 ch07.qxd 11/29/05 3:57 PM Page 230

Chapter 7

Figure 7-20: The EmptyDataTemplate

18. In the EmptyDataTemplate, enter the following text:

You have not ordered any items yet.

Please visit the order pages to add items to the cart.

19.	 Click the End Template Editing Link.

20.	 With the GridView still selected, move to the properties area and find the DataKeyNames
property (the Data section). Click into the empty area on the right, and then click the button that
appears (the one with ... on it). On the Data Fields Collection Editor, select MenuItemID and
click the button with the right arrow on it, to move the field to the right-hand list. Do the same
for the ItemSize field (see Figure 7-21), and click OK to close the editor.

Figure 7-21: Editing the DataKeyFields property

21.	 Save and close the user control.

Let’s see how this works.

How It Works
The cart user control relies upon the ObjectDataSource control. We created this in Design view, but it’s
worth looking at in Source view to see what the Configuration Wizard has done. The ObjectDataSource
control is similar to the SqlDataSource control, except that instead of dealing with databases, it deals
with classes. Both controls have methods for handling data: the SelectMethod to read items, the
InsertMethod insert items, the DeleteMethod to delete items, and the UpdateMethod to update
items. But instead of SQL commands, the ObjectDataSource simply sets these to the methods in the
underlying class. To find that class, the TypeName property is used, in this case being set to
StoredShoppingCart.

230

10_588079 ch07.qxd 11/29/05 3:57 PM Page 231

Placing an Order

<asp:ObjectDataSource ID=”CartItemsData” runat=”server”

TypeName=”StoredShoppingCart”

DeleteMethod=”DeleteItem” InsertMethod=”InsertItem”

SelectMethod=”ReadItems” UpdateMethod=”UpdateItem” >

When you selected the class methods for the SELECT, UPDATE, INSERT, and DELETE methods (see Figure
7-17), the wizard automatically queried the methods and created parameters for the ObjectDataSource
control based upon the parameters of the method. So, the DeleteMethod has MenuItemID and ItemSize
defined.

<DeleteParameters>

<asp:Parameter Name=”MenuItemID” Type=”Int32” />

<asp:Parameter Name=”ItemSize” Type=”String” />

</DeleteParameters>
<UpdateParameters>

<asp:Parameter Name=”MenuItemID” Type=”Int32” />

<asp:Parameter Name=”ItemSize” Type=”String” />

<asp:Parameter Name=”Quantity” Type=”Int32” />

</UpdateParameters>
<InsertParameters>

<asp:Parameter Name=”MenuItemID” Type=”Int32” />

<asp:Parameter Name=”ItemSize” Type=”String” />

<asp:Parameter Name=”ItemName” Type=”String” />

<asp:Parameter Name=”Quantity” Type=”Int32” />

<asp:Parameter Name=”ItemPrice” Type=”Decimal” />

</InsertParameters>

</asp:ObjectDataSource>

We explained how the parameters of a grid worked with updates, inserts, and deletes in Chapter 6 when
looking at the SqlDataSource control, and the ObjectDataSource control works in the same way. Figure
7-22 shows that the parameters in the UpdateParameters section of the control map through to the
parameters of the UpdateItems method in the StoredShoppingCart class. The DeleteParameters and
InsertParmaters work in the same way, with each <asp:Parameter> object mapping to a parameter of
the class method. The insert functionality isn’t used in the grid because we manually add items to the cart,
but we’ve included it here just so you can see that the technique is the same as we discussed in Chapter 6.

<UpdateParameters>
 <asp:Parameter Name=”MenuItemID” Type=“Int32” />
 <asp:Parameter Name=”ItemSize” Type=”String” />
 <asp:Parameter Name=”Quantity” Type=”Int32” />

</UpdateParameters>

UpdateMethod

ObjectDataSource

UpdateItems(
 ByVal MenuItemID As Integer,
 ByVal ItemSize As String,
 ByVal Quantity As Integer)

StoredShoppingCart

Figure 7-22: Matching the ObjectDataSource parameters to class method parameters

The GridView control uses the same techniques as seen in previous chapters, but this time is bound to
the ObjectDataSource control. The DataKeyNames has been set to the fields that uniquely identify a
row within the items — this is the ID of the item, and the size. The ID alone isn’t sufficient because you

231

10_588079 ch07.qxd 11/29/05 3:57 PM Page 232

Chapter 7

might order one large pizza and one small, so the size is also included. The AutoGenerateColumns
property is false so that the grid doesn’t automatically generate the columns for display.

<asp:GridView ID=”CartView” runat=”server” EnableViewState=”false”

DataKeyNames=”MenuItemID,ItemSize”

DataSourceID=”CartItemsData” AutoGenerateColumns=”False”>

The EmptyDataTemplate is displayed when there is no data — when there are no items in the cart.

<EmptyDataTemplate>

You have not ordered any items yet.

Please visit the order pages to add items to the cart.

</EmptyDataTemplate>

The Columns define the columns (fields) to be shown. The first of these is a CommandField, which
shows the commands that can be used on each row. The ShowDeleteButton and ShowEditButton
properties are set to True, so that each row will allow deletion and editing.

<Columns>

<asp:CommandField ShowDeleteButton=”True” ShowEditButton=”True” />

Next come the actual fields to be displayed. A BoundField is used for each of these. For the fields that
don’t allow editing (all but the quantity), the ReadOnly property is set to True, which means that when
the Edit button is selected, only the Quantity field will show a text area.

<asp:BoundField DataField=”MenuItemID” Visible=”False” />
<asp:BoundField DataField=”ItemName” HeaderText=”Item” ReadOnly=”True” />
<asp:BoundField DataField=”ItemSize” HeaderText=”Size” ReadOnly=”True” />

For the money fields (ItemPrice and LineValue) the DataFormatString is set to {0:c}, which dis­
plays the number in the currency format as set by the Regional Settings from the control panel.

<asp:BoundField DataField=”ItemPrice” HeaderText=”Price”

DataFormatString=”{0:C}” ReadOnly=”True”

ItemStyle-HorizontalAlign=”Right” />

<asp:BoundField DataField=”Quantity” HeaderText=”Quantity”

ItemStyle-HorizontalAlign=”Center” />

<asp:BoundField DataField=”LineValue” HeaderText=”Total”

DataFormatString=”{0:C}” ReadOnly=”True”

ItemStyle-HorizontalAlign=”Right” />

</Columns>

</asp:GridView>

That’s all there is to the cart — an ObjectDataControl to interact with the StoredShoppingCart class,
and a GridView to display the items. Let’s build a new page that uses the user control just created so we
can actually see the cart items.

Try It Out The Shopping Cart Page
1.	 In the Solution Explorer, select the top-level directory and add a New Web form, called

ShowCart.ascx, making sure that you select the PPQ.master master page.

232

10_588079 ch07.qxd 11/29/05 3:57 PM Page 233

Placing an Order

2.	 When the form is created, switch to Design view, and from the Solution Explorer select Cart.ascx
in the user-controls directory. Drag the Cart.ascx user control from the Solution Explorer, and
drop it in the Content control, where you’ll see the contents of the user control (see Figure 7-23).

Figure 7-23: The Cart user control on the form

3.	 From the Toolbox, drag a Hyperlink control and drop it underneath the user control. If the
Hyperlink appears to the right of the user control, just move the cursor and press Return.

4.	 Select the new Hyperlink, and change the NavigateURL to ~/Checkout.aspx, and the Text
property to Proceed to the checkout. We’ll be building the checkout page in Chapter 8.

5.	 Save the file and run the application.

6.	 Navigate to the Order page, and order some items, clicking the Add item to order button. For
one of the items, make sure that you add it to the cart twice.

7.	 Navigate to the Cart page to see the cart with those items in it (see Figure 7-24).

Figure 7-24: The shopping cart in action

8.	 Click the Edit button, and edit the Quantity of one of the items (see Figure 7-25). Press Update
to save the changes.

233

10_588079 ch07.qxd 11/29/05 3:57 PM Page 234

Chapter 7

Figure 7-25: Editing a cart item

9. Use the Delete button to delete one of the items from the cart.

How It Works
The working of this is all to do with the user control, and the ObjectDataSource and GridView con­
trols within it. The ObjectDataSource control interacts with the StoredShoppingCart class to pro­
vide read and write functionality of the cart data. The GridView provides the interface for displaying
and editing that data. What’s so good about this is that you haven’t had to learn anything new about the
GridView to use custom classes — the grid interacts with the ObjectDataSource control, which isn’t
very different from the SqlDataSource control. This means you have to learn only one set of techniques
and makes using new objects easier.

Summar y
We’ve covered a lot of ground in this chapter, and although we haven’t explained all the ins and outs of
the Visual Basic .NET language, much of the code is simple. We started the chapter by taking a look at
the order process, and the idea of thinking about the requirements — what is needed for ordering items
and where they would be stored during the order.

Having decided that custom classes were going to be used to store the shopping cart, we then looked at
how you create classes. We showed the creation of two classes (one for the cart and one for the cart
items), and how you add properties and methods to them. Following that was another class, to provide
the storage for the cart using the Session object.

We then built a page that added items into the shopping cart. This was similar to the menu page, but
instead of showing just the size and price of the item, a link was added so that, when clicked, the item
was added to the cart.

Next was the creation of a user control, containing an ObjectDataSource control and a GridView con­
trol, so that the display of the cart items could be seen. The ObjectDataSource control interacts with
the classes to both read and write data to the cart. This use control was then placed on a Web form so
that the items could be seen.

Many of the techniques in this chapter follow similar principles to those in previous chapters: using a
control to fetch the data and using a grid to display the data. The key point that this shows is that many
of the ASP.NET controls have similar properties, or methods of working, which means that you have less
to learn.

In Chapter 8, we’ll take the order process one step further by building the checkout page, where we’ll let
customers enter payment and delivery details.

234

11_588079 ch08.qxd 11/29/05 3:58 PM Page 235

8

The Checkout Process

In Chapter 7, we looked at the process of ordering items, which involved the creation of custom
classes to store the order and the order items. These were stored in the Session object and bound
to a GridView by way of an ObjectDataSource control. We left the chapter with the shopping
cart page, showing all items in the cart. Now we need to take the next step and build the checkout
process.

In this chapter, we will build a single page that walks the user through the checkout, so we will be
covering the following:

❑ The Wizard control, and how you can use it for multistep operations

❑ How to make the checkout page react to user selections, by viewing and hiding sections

❑ How to use transactions so that database changes remain consistent

At the end of this chapter, we will have a page that steps the user through the purchase process.

Paying for the Order
The order process requires three key pieces of information:

❑ The name and address of the user

❑ How they would like to pay

❑ Confirmation of the order

We could have all of these on the page at once, but the page would probably look a little cluttered,
so we’ll use the Wizard control instead. This introduces the notion of steps, where each step is a
template into which we can place controls. The Wizard manages the navigation between the steps,
so we don’t have to worry about that ourselves. As we step through the Wizard, ASP.NET shows
and hides the templates so that only the correct controls are shown.

11_588079 ch08.qxd 11/29/05 3:58 PM Page 236

Chapter 8

Once the user confirms the order, we will need to add the order details into the database, which means
creating an order and then copying the order items from the shopping cart into the order items table.
Once this is done the shopping cart can be cleared, so that the old items don’t remain around.

We’re going to split the checkout process into several steps, one step for each of the steps in the process.

Try It Out Using the Wizard Control
1.	 Create a new Web Form called Checkout.aspx. Don’t forget to place the code in a separate file

and use the PPQ.master master page.

2.	 Switch the page to Design view, and drag a Wizard control onto the Content area. Set the Width
property of the Wizard to 100%.

3.	 From the Wizard Tasks, select Add/Remove WizardSteps. . . (see Figure 8-1).

Figure 8-1: Add/Remove Wizard Steps

4.	 On the WizardStep Collection Editor, select Step 1 and change the Title property to Delivery
Address, and the StepType property to Start.

5.	 Select Step 2 and change the Title property to Payment.

6.	 Click the Add button to add a new WizardStep, and for the new step set the Title property
to Shopping Cart and the StepType property to Finish.

7.	 Click the Add button to add a new WizardStep, and for the new step set the Title property
to Order Complete and the StepType property to Complete.

8.	 Click OK to close the editor window.

9.	 From the Wizard Tasks select AutoFormat, and on the Auto Format window select the Simple
scheme and click OK. Your Wizard control should look like Figure 8-2.

236

11_588079 ch08.qxd 11/29/05 3:58 PM Page 237

The Checkout Process

Figure 8-2: The formatted Wizard control

10.	 Save the file and View the page in the browser. Step through the wizard, using both the links
and the buttons provided. Notice how the buttons change depending on your current step.

Let’s see how this works.

How It Works
All you’ve done in this exercise is to use one control, but you can see that it provides quite a bit of
functionality. What you did was configure the steps through the Wizard Tasks interface, so let’s have a
look at the code and see what it created, starting with the definition of the control and the styling:

<asp:Wizard ID=”Wizard1” runat=”server”
BackColor=”#E6E2D8” BorderColor=”#999999”
BorderStyle=”Solid” BorderWidth=”1px” Font-Names=”Verdana” Font-Size=”0.8em”>
<StepStyle BackColor=”#F7F6F3”

BorderColor=”#E6E2D8” BorderStyle=”Solid” BorderWidth=”2px” />
<SideBarStyle BackColor=”#1C5E55” Font-Size=”0.9em” VerticalAlign=”Top” />
<NavigationButtonStyle BackColor=”White”

BorderColor=”#C5BBAF” BorderStyle=”Solid”
BorderWidth=”1px” Font-Names=”Verdana” Font-Size=”0.8em”

ForeColor=”#1C5E55” />

<SideBarButtonStyle ForeColor=”White” />

<HeaderStyle BackColor=”#666666”

BorderColor=”#E6E2D8” BorderStyle=”Solid” BorderWidth=”2px”
Font-Bold=”True” Font-Size=”0.9em” ForeColor=”White”
HorizontalAlign=”Center” />

Here you can see what the AutoFormat has done by setting colors and styles. You can see that there are
separate styles for the steps, the sidebar, the buttons in the sidebar, the header, and for the navigation
buttons, which gives you a great deal of flexibility in how the Wizard looks. You can even remove the
sidebar and just rely on the buttons, as well as configuring steps to disallow backward movement. Some
of the styles shown here may actually appear after the WizardSteps in the code, but that’s OK — where
they appear doesn’t matter. We’ve moved them together here so that it’s easier to read.

237

11_588079 ch08.qxd 11/29/05 3:58 PM Page 238

Chapter 8

For the steps, you can see that there are four WizardStep controls within the WizardSteps section.

<WizardSteps>
<asp:WizardStep runat=”server” Title=”Delivery Address” StepType=”Start”>
</asp:WizardStep>
<asp:WizardStep runat=”server” Title=”Payment”>
</asp:WizardStep>
<asp:WizardStep runat=”server” Title=”Shopping Cart” StepType=”Finish”>
</asp:WizardStep>
<asp:WizardStep runat=”server” StepType=”Complete” Title=”Complete”>
</asp:WizardStep>

</WizardSteps>

</asp:Wizard>

Each of the WizardStep controls has a Title property, which is shown in the sidebar. The StepType
property defines the functionality of the step, and the values are described in Table 8-1.

Description

Auto This is the default value for StepType and means that the type of step is

Complete

Finish

Start
button is not.

Step

Table 8-1: The StepType Values
Type

decided by the order in which it is declared. For example, if the step is the first
declared then it automatically becomes a Start step.

The step is the last one to appear, and no navigation buttons are shown.

The step is the final data collection step, and the Finish and Previous buttons
are shown.

The step is the first one to appear, and a Next button is shown but a Previous

The step is any step between the Start and the Finish step, and the Previous
and Next buttons are shown.

You set the StepType property of the first step, the Delivery Address, to be Start, since that is the
first step, which means that only the Next button is displayed — you can’t go backward from the first
step. Payment doesn’t have a specific StepType, so it defaults to Auto, which means no specific
functionality is associated with the step, but that Previous and Next buttons are shown. The Shopping
Cart step had the StepType set to Finish, which means that it is the last step where data is collected,
and a Previous button is shown, but the Next button isn’t — instead a Finish button is shown, letting the
user know that this is the last step. The Complete step had a StepType of Complete, and there are no
buttons shown. This is because the navigation process has finished, and this step will be used to display
a message to let the user know the order is on its way.

238

11_588079 ch08.qxd 11/29/05 3:58 PM Page 239

The Checkout Process

Collecting the Delivery Address
Now that the Wizard and steps have been set, it’s time to start filling in those steps. The first part of this
process is to collect the delivery address. In Chapter 9, you’ll see how we can have users join a membership
to the PPQ restaurant, so instead of filling in their details, it will remember who they are. You’ll still be
using the controls you created in this chapter, so let’s go ahead and create them.

Try It Out Collecting the Delivery Address
1.	 On the Checkout.aspx page, select the Delivery Address step. You can do this either by

clicking the link or by selecting the Step from the Wizard Tasks.

2.	 Click into the area to the right of the steps and above the Next button. From the main Layout
menu, select Insert Table. On the Insert Table window (see Figure 8-3), select the Custom option,
and change the Rows to 4 and the Columns to 2. Tick the Width and Height properties, making
sure that the value for both is set to 100%. Set the Align property to left, and from the
Attributes area, tick Border and set the value to 0.

Figure 8-3: Inserting a table onto a form

3.	 Click the Cell Properties button, and on the Cell Properties window set the Vertical align
property to top (see Figure 8-4).

239

11_588079 ch08.qxd 11/29/05 3:58 PM Page 240

Chapter 8

Figure 8-4: Setting the Cell Properties of a table

4.	 You now have a two-column, four-row table. Into the first cell on row 1, type Name, and drag a
TextBox control into the second cell on row 1. Set the ID property of the TextBox to txtName.

5.	 In the first cell on row 2, type Address, and drag a TextBox control into the second cell on row
2. Set the ID property of the TextBox to txtAddress, the TextMode property to MultiLine,
the Rows property to 5, and the Columns property to 30.

6.	 In the first cell of row 3, type Zip Code, and drag a TextBox control into the second cell on row
3. Set the ID property of the TextBox to txtZipCode.

7.	 In the first cell of row 4, type Area. Into cell 2, place an ObjectDataSource control, from the
Data area of the Toolbox.

8.	 Select Configure Data Source . . . from the ObjectDataSource Tasks, and for the business object,
select StoredShoppingCart.

9.	 For the SELECT method, pick Read (see Figure 8-5), and for the UPDATE method pick Update
(see Figure 8-6). Leave INSERT and DELETE empty. Click the Finish button to close the data
source configuration.

Figure 8-5: Setting the SELECT method for the ObjectDataSource
control

240

11_588079 ch08.qxd 11/29/05 3:58 PM Page 241

The Checkout Process

Figure 8-6: Setting the UPDATE method for the ObjectDataSource
control

10.	 With the ObjectDataSource selected, view the events (the lightning icon in the properties
area), and find the Updating event. Double-click into the area to the right of it to open the code
window. Between the Protected Sub and End Sub, add the following:

Dim ddl As DropDownList = _
DirectCast(FormView1.FindControl(“DropDownList1”), DropDownList)

e.InputParameters.Add(“DeliveryCharge”, ddl.SelectedValue)

11.	 Back in Checkout.aspx, underneath the ObjectDataSource, place a FormView, also from the
Data section of the Toolbox. Don’t select the data source because this creates lots of controls, and
we don’t need them all — we’ll set the data source manually a little later. Set the DefaultMode
property of the FormView to Edit.

12.	 On the FormView Tasks, select EditItemTemplate from the Display list.

13.	 From the Data section of the Toolbox, drag an XmlDataSource control, and drop it into the
EditItemTemplate. From the XmlSource Tasks, select Configure Data Source On the configu­
ration window, click the XML-Data button alongside the Data file, and pick delivery-costs.xml
from the XML-Data folder. Click OK to close the window.

14.	 Underneath the XmlDataSource, type Deliver to, and alongside that place a DropDownList.
From the DropDownList Tasks select Choose DataSource . . ., and pick XmlDataSource1 from
the data source list. Enter name for the display field and delivery-cost for the value field (see
Figure 8-7). Click OK to close the window.

241

11_588079 ch08.qxd 11/29/05 3:58 PM Page 242

Chapter 8

Figure 8-7: Configuring the delivery costs list

15.	 Select Edit DataBindings . . . from the DropDownList Tasks. Ensure that SelectedValue is
highlighted on the “Bindable properties” list, and that the “Custom binding” option is selected.
Into the “Code expression” text box, enter the following:

Bind(“DeliveryCharge”)

16.	 Click OK to close the bindings window.

17.	 On the DropDownList Tasks, tick the Enable AutoPostBack option.

18.	 With DropDownList1 selected, view the events, and double-click into the area next to the
SelectedIndexChanged event.

19.	 In the event procedure, add the following:

FormView1.UpdateItem(False)

20.	 Save the file and view the page in the browser (see Figure 8-8). Navigate on and off the delivery
address step, noting how the controls appear only in the first step. You won’t see any effect from
changing the area list, apart from the page refreshing, but you’ll see where it is used later.

242

11_588079 ch08.qxd 11/29/05 3:58 PM Page 243

The Checkout Process

Figure 8-8: The completed first step

How It Works
The first part of this exercise was simple, as you added a table. Using the Insert Table window, you
created a four-row, two-column table and set some properties for it. Using the Insert Table window
means that you don’t have to know what these properties are in HTML, nor even what HTML is used
for a table — it makes creating Web pages easier. Within the table cells for the first three rows, you added
text and TextBox controls to collection the name and address:

<asp:WizardStep runat=”server” Title=”Delivery Address” StepType=”Start” >
<table border=”0” style=”width: 100%; height: 100%”>

<tr>
<td style=”width: 100px” valign=”top”>

Name</td>
<td style=”width: 100px” valign=”top”>

<asp:TextBox ID=”txtName” runat=”server”></asp:TextBox>
</td>

</tr>

<tr>

<td style=”width: 100px” valign=”top”>
Address</td>

<td style=”width: 100px” valign=”top”>
<asp:TextBox ID=”txtAddress” runat=”server”

Columns=”30” Rows=”5” TextMode=”MultiLine”></asp:TextBox>
</td>

</tr>

<tr>

<td style=”width: 100px” valign=”top”>
Zip Code</td>

<td style=”width: 100px” valign=”top”>
<asp:TextBox ID=”txtZipCode” runat=”server”></asp:TextBox>

</td>
</tr>

243

11_588079 ch08.qxd 11/29/05 3:58 PM Page 244

Chapter 8

The first cell of the final table row just contains the text description of the row, but the second cell is
more complex because you added two lots of data bound controls:

<tr>

<td style=”width: 100px” valign=”top”>

Area</td>

<td style=”width: 100px” valign=”top”>

The first of these is an ObjectDataSource control, which is bound to the StoredShoppingCart class.
This uses a technique similar to that used in Chapter 7, when we bound the items of the shopping cart.
Here we set the TypeName to StoredShoppingCart— this is the class that handles the cart for us, with
the SelectMethod set to Read (which returns the cart) and the UpdateMethod set to Update (which
updates the cart). The only updateable field is the DeliveryCharge, so the UpdateParameters reflect
that.

<asp:ObjectDataSource ID=”ObjectDataSource1” runat=”server”
SelectMethod=”Read” TypeName=”StoredShoppingCart”
UpdateMethod=”Update”>
<UpdateParameters>

<asp:Parameter Name=”DeliveryCharge” Type=”Decimal” />
</UpdateParameters>

</asp:ObjectDataSource>

Next you added a FormView control. In Chapter 6 you looked at the DetailsView, and the FormView is
similar, the main difference being that the FormView doesn’t automatically display anything; you have
to supply the controls. You set the DataSourceID property of the FormView to ObjectDataSource1,
so it will be bound to the shopping cart. The DefaultMode property is Edit so that the FormView is
always in Edit mode, which allows us to update the underlying data (the shopping cart) without explic­
itly clicking Edit and Update buttons.

<asp:FormView ID=”FormView1” runat=”server”
DataSourceID=”ObjectDataSource1” DefaultMode=”Edit”>

Since we are permanently in edit mode, we need only the EditItemTemplate:

<EditItemTemplate>

Within the template, you placed an XmlDataSource, fetching the data from the delivery-costs.xml
file.

<asp:XmlDataSource ID=”XmlDataSource1” runat=”server”
DataFile=”~/XML-Data/delivery-costs.xml”>

</asp:XmlDataSource>

Next you added a DropDownList, binding it to the XmlDataSource and setting the AutoPostBack
property to True, so that simply selecting a value causes the page to be refreshed. Nothing visibly
changes from that refresh, but an event procedure is raised (the SelectedIndexChanged event, as set
by the OnSelectedIndexChanged property — we’ll be coming to that shortly).

The DataTextField defines the value that is seen on the form, while the DataValue field is used
to store the value. The SelectedValue property is bound to the DeliveryCharge property of the
FormView, which itself is bound to the shopping cart. Since you used the Bind statement, the binding
is two-way, meaning that any changes to the selection will be pushed back to the shopping cart.

244

11_588079 ch08.qxd 11/29/05 3:58 PM Page 245

The Checkout Process

<asp:DropDownList ID=”DropDownList1” runat=”server”
DataSourceID=”XmlDataSource1” AutoPostBack=”True”
DataTextField=”name” DataValueField=”delivery-cost”
OnSelectedIndexChanged=”DropDownList1_SelectedIndexChanged”
SelectedValue=’<%# Bind(“DeliveryCharge”) %>’ >

</asp:DropDownList>

</EditItemTemplate>

</asp:FormView>

</td>

</tr>

</table>

</asp:WizardStep>

For the event procedure, you add a single line of code, calling the UpdateItem on FormView1— this
tells the FormView to push the changes back to the data source and update the data. The parameter
False indicates that no validation should be performed.

Protected Sub DropDownList1_SelectedIndexChanged(ByVal sender As Object,
ByVal e As System.EventArgs)

FormView1.UpdateItem(False)

End Sub

That’s the first step complete, so let’s move on to the next.

Collecting the Payment Details
For the next part in the process, we have to ask how the customer is going to pay for the order. There are
two options here: cash on delivery or by credit card (because, you know, on those late night beer and
pizza nights, you never have enough cash). This step will introduce a little code, because you don’t need
to see the credit card data entry area if cash is being used.

Try It Out Collecting the Payment Details
1.	 Back on the Checkout.aspx page, select the Payment step, and into the empty area above the

Previous and Next buttons, place a RadioButtonList control.

2.	 Click the Edit Items . . . link, and from the ListItem Collection Editor window. Click the Add
button. For the new ListItem, set the Selected property to True, the Text property to Cash
On Delivery, and the Value property to COD. Click the Add button to add another ListItem,
and set the Text property to Credit Card, and the Value property to CC. Click OK to close
the ListItem Collection Editor.

3.	 Set the AutoPostBack property of the RadioButtonList to True, and view the events (the
lightning icon). Double-click next to the SelectedIndexChanged event to open the code
window. Between the Protected Sub and End Sub, add the following code:

Dim rbl As RadioButtonList = DirectCast(source, RadioButtonList)
Dim ccp As Panel = DirectCast(Wizard1.FindControl(“CreditCardPayment”), Panel)

If rbl.SelectedValue = “CC” Then

245

11_588079 ch08.qxd 11/29/05 3:58 PM Page 246

Chapter 8

ccp.Visible = True
Else

ccp.Visible = False
End If

4.	 Back on the Checkout.aspx page, drag a Panel control from the Toolbox, and drop it under­
neath the RadioButtonList, set the ID property to CreditCardPayment, and set the Width
property to 100% and the Visible property to False.

5.	 Click into the Panel and type Card Type:.

6.	 Drag a DropDownList from the Toolbox and drop it next to the Card Type text, and from the
DropDownList Tasks select Edit Items. From the ListItem Collection Editor, click Add to add a
new ListItem. Set the Text and Value properties to MasterCard. Add another ListItem,
and set the Text and Value properties to Visa. Click OK to close the ListItem Collection Editor
window. Set the ID property of the DropDownList to lstCardType.

7.	 Underneath the card type DropDownList, type Card Number:. Next to that, place a TextBox
control, and set its ID property to txtCardNumber.

8.	 Underneath the card number, type Expires:, and place a TextBox control there, setting its ID
property to txtExpiresMonth, and its Columns property to 2. Type a / character after the
TextBox, and after the / character add another TextBox control. Set its ID property to
txtExpiresYear and its Columns property to 4. Your finished payment step should now look
like Figure 8-9.

Figure 8-9: The second step designed

9.	 Save the page and run it. Select the Payment step and notice that the cash option is selected,
and the details of the credit card aren’t shown. Select Credit Card and see how the details now
appear.

How It Works
The placement of the controls you added to the page follows the same rules as the previous step, with
them being placed into the Wizard Step. The first control was the list:

<asp:RadioButtonList ID=”RadioButtonList1” runat=”server” AutoPostBack=”True”>
<asp:ListItem Selected=”True” Value=”COD”>Cash on Delivery</asp:ListItem>
<asp:ListItem Value=”CC”>Credit Card</asp:ListItem>

</asp:RadioButtonList>

246

11_588079 ch08.qxd 11/29/05 3:58 PM Page 247

The Checkout Process

Here the list contains two items, for selecting cash or credit card. You set the AutoPostBack property
to True, which means that when the selection changes, the page is posted back to the Web server. When
you created the event procedure by double-clicking next to the SelectedIndexChanged event, the
following was created:

Protected Sub RadioButtonList1_SelectedIndexChanged(ByVal sender As Object,

ByVal e As System.EventArgs) Handles RadioButtonList1.SelectedIndexChanged

End Sub

This is the event procedure and will be used to run code when the radio button selection changes,
which is what the SelectedIndexChanged event means. Each ListItem has an index number (created
automatically by ASP.NET), and when the selected item changes, so does its index number, and this
event is raised when that index number changes.

Within the event procedure, the first line of code is as follows:

Dim rbl As RadioButtonList = DirectCast(source, RadioButtonList)

This defines a variable as a RadioButtonList and takes its value from the source argument of the
event procedure, which identifies the control that raised the event. However, the source argument is
passed into this event procedure by ASP.NET as an object type, so you used DirectCast to convert it
to a RadioButtonList.

The next line declares a Panel object, which is used to reference the panel containing the credit card details.
You use the FindControl method of the Wizard control to find the panel (called CreditCardPayment),
and use the DirectCast statement to convert this to a Panel type (FindControl returns an object type).

Dim ccp As Panel = DirectCast(Wizard1.FindControl(“CreditCardPayment”), Panel)

Next, you test the SelectedValue of the RadioButtonList to see if it is CC. If it is, then the user has
selected credit card option, so you set the Visible property of the Panel to True. This shows the panel
containing the credit card details. If the SelectedValue is not CC, then the user has selected the cash
option, so the panel is hidden by setting the Visible property to False.

If rbl.SelectedValue = “CC” Then

ccp.Visible = True

Else

ccp.Visible = False

End If

This code makes the page react to the user, showing and hiding controls depending upon what the user
does. It’s a common, and very useful, technique.

Once you finished the code, the Panel and credit card details were added.

<asp:Panel ID=”CreditCardPayment” runat=”server”
Height=”50px” Width=”100%” Visible=”false”>
Card Type:
<asp:DropDownList ID=”lstCardType” runat=”server”>

<asp:ListItem>MasterCard</asp:ListItem>
<asp:ListItem>Visa</asp:ListItem>

247

11_588079 ch08.qxd 11/29/05 3:58 PM Page 248

Chapter 8

</asp:DropDownList>

Card Number:

<asp:TextBox ID=”txtCardNumber” runat=”server”></asp:TextBox>

Expires:

<asp:textbox id=”txtExpiresMonth” runat=”server” columns=”2” />

/

<asp:textbox id=”txtExpiresYear” runat=”server” columns=”4” />

</asp:Panel>

These details are simply placeholders to show you a part of the process. In reality, you’d use these credit
card details to pay for the order once the Finish button is clicked by interacting with a credit card processing
company. How you do this depends upon the company selected, so we won’t be covering that here.

Confirming the Order
Confirming the order requires two sets of information:

❑ The shopping cart needs to be shown, so that the customer can see what has been ordered.

❑ The totals (including delivery charge and sales tax) need to be shown.

The cart items is easy, because you created a user control for that in Chapter 7, so you only need to add
data binding for the totals.

Try It Out Confirming the Order
1.	 Select the Shopping Cart step. From the Solution Explorer, open the user-controls folder

and drag Cart.ascx onto the page, dropping it into the empty area on above the Previous and
Finish buttons (see Figure 8-10).

Figure 8-10: The Shopping Cart user control in the Wizard

2.	 From the Data section of the Toolbox, drag an ObjectDataSource control onto the page, drop­
ping it to the right of the Shopping Cart user control.

248

11_588079 ch08.qxd 11/29/05 3:58 PM Page 249

The Checkout Process

3.	 From the ObjectDataSource Tasks, select Configure Data Source On the Choose a Business
Object of the data source configuration, select StoredShoppingCart from the list, and click the
Next button.

4.	 For the SELECT method, pick Read (see Figure 8-11). Leave the Update, Insert, and Delete
methods empty, and click Finish to close the data source configuration.

Figure 8-11: Setting the SELECT method for the
ObjectDataSource control

5.	 From the Data section of the Toolbox, drag a DetailsView onto the page, drop it underneath
the ObjectDataSource, and set the Width property to 100%. From the DetailsView Tasks
select ObjectDataSource2 as the data source, and then select Edit Fields

6.	 On the Fields window, move to the selected fields area. Select the SalesTax field, removing it
from the list. Modify the other fields so that they are in the following order, and set the proper­
ties accordingly:

Control FormatString ReadOnly ItemStyle

HorizontalAlign

SubTotal {0:C} True Right

DeliveryCharge Delivery {0:C} True Right

SalesTaxPercent {0:C} True Right

Total {0:C} True Right

HeaderTextData

Sub-Total

Sales Tax

Total

7.	 Select SalesTaxPercent and at the bottom right of the window, click the “Convert this field
into a TemplateField” link.

8.	 For each of the fields, move to the Styles section of the properties, and open the ItemStyle. Set
the HorizontalAlign property to Right. Click OK to close the Fields window.

9.	 Select the DetailsView and set its Width property to 100%. Set the DefaultMode property

to Edit.

10.	 From the DetailsView Tasks, select Edit Templates, and from the Display list select the
HeaderTemplate for SalesTaxPercent (see Figure 8-12).

249

11_588079 ch08.qxd 11/29/05 3:58 PM Page 250

Chapter 8

Figure 8-12: Selecting HeaderTemplate

11.	 Switch to Source view, move to the DetailsView, and find the TemplateField called
SalesTaxPercent. Remove the InsertItemTemplate and ItemTemplate completely.
Remove the contents of the EditItemTemplate, replacing them with:

<%# Eval(“SalesTax “, “{0:C}”) %>

12.	 Create a new HeaderTemplate, adding the following code just before the EditItemTemplate:

<HeaderTemplate>
Sales Tax (<%#Eval(“SalesTaxPercent”, “{0:0%}”)%>)

</HeaderTemplate>

<EditItemTemplate>

13.	 The Shopping Cart step should now look like Figure 8-13 in Design view.

Figure 8-13: The completed Shopping Cart step

14.	 Switch to Source view, and find the Wizard control, Wizard1. Remove the ActiveStepIndex
property and its associated value.

250

11_588079 ch08.qxd 11/29/05 3:59 PM Page 251

The Checkout Process

15.	 Save the file, and view it in the browser. Select the Delivery Address and change the area to Out
of State, and click Next twice to get to the Shopping Cart screen. Notice that the Delivery
Charge shows the charge for the Out of State area (see Figure 8-14).

Figure 8-14: Running the Wizard

16.	 There are no items in the cart, so no rows show. Add some items to the cart and then navigate
back to this step of the wizard (see Figure 8-15).

Figure 8-15: The Wizard with Shopping Cart items

Let’s see how this step works.

How It Works
The first thing you did was drag the Shopping Cart user control onto the page, which does two things
to the code. First, it adds a Register directive at the top of the page:

<%@ Register Src=”user-controls/Cart.ascx” TagName=”Cart” TagPrefix=”uc1” %>

This defines the source (the src attribute) of the user control, plus the name and prefix to be used when
the control is placed on the page. You can see this by the code used to include the control:

<uc1:Cart ID=”Cart1” runat=”server” />

The next thing you did was to create an ObjectDataSource, bound to the StoredShoppingCart, but
using only the SelectMethod because this will be read-only:

<asp:ObjectDataSource ID=”ObjectDataSource2” runat=”server” SelectMethod=”Read”
TypeName=”StoredShoppingCart”>
</asp:ObjectDataSource>

251

11_588079 ch08.qxd 11/29/05 3:59 PM Page 252

Chapter 8

Bound to the ObjectDataSource is a DetailsView:

<asp:DetailsView ID=”DetailsView1” runat=”server” AutoGenerateRows=”False”

DataSourceID=”ObjectDataSource2”

Height=”50px” Width=”100%” DefaultMode=”Edit”>

The DefaultMode is set to Edit so that the user doesn’t have to click an Edit or Update link.

The first two fields, SubTotal and DeliveryCharge, are bound to the SubTotal and DeliveryCharge
from the shopping cart. Remember that in the first step, where the address was collected, we had a list
for the area, which updated the delivery charge. This is where that delivery charge is displayed.

<Fields>
<asp:BoundField DataField=”SubTotal” DataFormatString=”{0:C}”

HeaderText=”Sub Total”
ReadOnly=”True” SortExpression=”SubTotal”>
<ItemStyle HorizontalAlign=”Right” />

</asp:BoundField>
<asp:BoundField DataField=”DeliveryCharge” HeaderText=”Delivery”

SortExpression=”DeliveryCharge” DataFormatString=”{0:C}”
ReadOnly=”True”>
<ItemStyle HorizontalAlign=”Right” />

</asp:BoundField>

The DataFormatString is set to {0:C}, which displays the data in the currency format set on the
machine. Our test machine is set to US, so it shows a $, but with UK settings you would see Figure 8-16.
The ItemStyle element allows styling of the item, and here every field is right-aligned, so they line up.

Figure 8-16: The shopping cart with UK settings

The next field is a template field for the sales tax. We didn’t use a BoundField for this because we need
a bit of customization to show the percentage in the header (the first column), and the amount in the
second column.

<asp:TemplateField HeaderText=”Sales Tax”

SortExpression=”SalesTaxPercent”>

The HeaderTemplate shows for the header, and this is a combination of some text and the percentage of
the sales tax. You’ve seen the Eval statement before, where only a single parameter was passed into it —
the field to be shown. But here we use another form, passing in a second parameter which is the format
string. This follows the same style as the DataFormatString property of a BoundField, but instead of
a currency, a percentage is displayed.

252

11_588079 ch08.qxd 11/29/05 3:59 PM Page 253

The Checkout Process

<HeaderTemplate>
Sales Tax (<%# Eval(“SalesTaxPercent”, “{0:0%}”) %>)

</HeaderTemplate>

For the EditItemTemplate, just the sales tax is displayed, and this is a currency — the amount of the
tax, rather than the percentage.

<EditItemTemplate>
<%#Eval(“SalesTax”, “{0:C}”)%>

</EditItemTemplate>
<ItemStyle HorizontalAlign=”Right” />

</asp:TemplateField>

That’s all there is to this step. It is simply using an ObjectDataSource to display the values from the
shopping cart. The items are displayed by the user control, which shows how great user controls are —
all of the work to code that has already been done, and we can simply reuse the functionality. It’s a great
way to create sections of a site that will be used in multiple places.

The DetailsView showed the use of BoundFields as well as TemplateFields and that you can easily
customize the display.

The ActiveStepIndex property was removed because this affects how the wizard appears when the
program is run. It is used at both design and run time, and when run retains the value of the last selected
step at design time.

Let’s now move on to completing the order.

Completing the Order
To complete the order, the order needs to be added to the Orders table in the database, and the items
must be added to the OrderItems table. This will involve extracting the order and address details and
writing them to one table, and then looping through the order items to add those. Let’s give this a go.

Completing the OrderTry It Out
1.	 Switch back to Design view, and select the Order Complete step. Enter the following text into

the step area:

Thank you for your order.

2.	 Underneath the Wizard, add two label controls. Copy these from Checkout.aspx.txt in the
page-content folder — you can paste straight into the area underneath the Wizard (see Figure
8-17). These will be used to let the user know whether or not the order was placed successfully.

253

11_588079 ch08.qxd 11/29/05 3:59 PM Page 254

Chapter 8

Figure 8-17: The success and failure messages

3.	 Select the Wizard control, Wizard1, and in the properties area select the events. Double-click in
the area to the right of the FinishButtonClick event, which will create the event procedure in
the code window.

4.	 Copy the code from Checkout.aspx.vb.txt in the page-content folder, and paste it into the
event procedure.

5.	 At the very top of the file, add the following:

Imports System.Data
Imports System.Data.SqlClient

6.	 Switch back to Checkout.aspx. Switch to Source view, and find the Wizard control, Wizard1.
Remove the ActiveStepIndex property and its associated value.

7.	 Save the files and run the application. Add some items to the cart and step through the checkout
process, and you should see the success order. At the moment, there is no method to view the
orders, so let’s create a page for that.

8.	 Close the browser window, and add a new Web Form to the application called ViewOrder
.aspx, remembering to place the code in a separate file, and select the PPQ.master master
page.

9.	 Switch to Design view, and from the Database Explorer, expand the tables, and drag the Orders
table onto the page.

10.	 When the GridView Tasks appear, tick Enable Paging and Enable Selection.

11.	 From the Database Explorer, drag the OrderItems table onto the page. Select the GridView
Tasks, and tick Enable Paging.

12.	 Select SqlDataSource2, and select Configure Data Source . . . from the SqlDataSource Tasks.
Click Next on the Choose Your Data Connection page, and on the Configure the Select
Statement page click the WHERE . . . button.

13.	 On the Add WHERE Clause page select fkOrderID for the Column and Control for the
Source. Then select GridView1 for the ControlID, and click the Add button. Click the OK
button to close the window.

14.	 Back on the configuration window, click Next and then Finish.

254

11_588079 ch08.qxd 11/29/05 3:59 PM Page 255

The Checkout Process

15. Save the page and run it. Click Select on an order, and you’ll see something like Figure 8-18.
We’ve added two orders, so the top grid has two items.

Figure 8-18: The View Orders page

We’ve not formatted any of the columns, which is why it looks a little raw, but it’s perfectly functional,
and lets you see the orders and order items. Let’s see how all of this works.

How It Works
The first part of this step was to simply add some text into the step area — this is the text that will be
displayed when the step is completed.

We then added two Label controls, one for the successful order message and one for the failed order
message. The Visible property for both is False, so that these aren’t initially shown — we’ll show
them from the code.

<asp:Label ID=”CreateOrderSuccessLabel” runat=”server” Visible=”False”>
Our trusty delivery boy is at this moment donning

his crash helmet, ready to leap aboard is skateboard to head to your

residence.

Remember that if the delivery doesn’t arrive within the alloted time you’ll

get

a full refund and the boss will personally take a helicopter to your door to

ensure it

gets there.

</asp:Label>

<asp:Label ID=”CreateOrderErrorLabel” runat=”server” Visible=”False”>

We’re sorry but something appears to have gone wrong with the creation of that
order.

Please give us a ring and will place it on high priority.

255

11_588079 ch08.qxd 11/29/05 3:59 PM Page 256

Chapter 8

</asp:Label>

Next, we created an event procedure for the FinishButtonClick event. This is the event that is run
when the Finish button is clicked. Into this, we pasted some prebuilt code — there’s a lot of it, but we’ll
go through it all.

The first line is the event procedure declaration. The second parameter, e, can be used to work out what
step you are on, and even cancel the navigation to this step — you’ll see this in a little while.

Protected Sub Wizard1_FinishButtonClick(ByVal sender As Object,

ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs)

Handles Wizard1.FinishButtonClick

Next, we have the variable declarations, starting with a SqlConnection object, which will be used to
connect to the database. After that there is a SqlTransaction object, which will be used to ensure that
the database remains in a stable state — don’t worry about it for now, as we’ll explain transactions soon,
in the “Understanding Transaction” section later in this chapter. After the transaction is a SqlCommand
object, which will be used to run the SQL commands. Finally, there is a ShoppingCart object, which is
set to the value of the current cart — this contains the order details.

Dim conn As SqlConnection = Nothing
Dim trans As SqlTransaction = Nothing
Dim cmd As SqlCommand
Dim cart As ShoppingCart = StoredShoppingCart.Read()

Next, we check that the cart object is valid by testing to see if it is Nothing. This is a special test for an
object, and if it is Nothing, then there is no shopping cart — something has gone wrong in the creation
of it. We also test the Count property to see if the Items collection of the cart has any items — if 0 then
no items have been added to the cart. In either of these two cases, we don’t want to continue processing
the order, we set the Cancel property of the parameter e to True. This tells the Wizard that we are
canceling the navigation of this step, and not to allow it. The Return statement returns from the
procedure without processing the order. You can go ahead and try this if you like. Navigate to the
Checkout page without adding any items, and notice that even though you click the Finish button, you
don’t move onto the Complete step.

If cart Is Nothing OrElse cart.Items.Count = 0 Then
e.Cancel = True
Return

End If

Next, we have a Try statement, which is part of the error handling. Like transactions, we’ll explain this
fully in the “Understanding Exception Handling” section later in this chapter.

Try

Within the Try block, we define an Integer variable, OrderID, to hold the Order ID. We’ll need this
because when we create the order, an ID will be created, and this will be used in the OrderItems table
in the fkOrderID column, which is the foreign key to the Orders table (this was covered in Chapter 3).

Dim OrderID As Integer

256

11_588079 ch08.qxd 11/29/05 3:59 PM Page 257

The Checkout Process

Next, we create the connection to the database, using the SqlConnection object. The
ConfigurationManager is a class supplied by ASP.NET that lets us get values from web.config—
the configuration file. The value we want is in the <connectionStrings> section, and stores the
details of the database connection. We use this so it is defined only once, in a central location. Once the
connection is set, it is opened using the Open method.

conn = New SqlConnection(ConfigurationManager.ConnectionStrings

(“PPQ_DataConnectionString1”).ConnectionString)

conn.Open()

Next, we begin the transaction — again, this is something we’ll be coming back to later.

trans = conn.BeginTransaction

We now create a SqlCommand object, and set the Connection and Transaction properties to the con­
nection and transaction created earlier.

cmd = New SqlCommand()
cmd.Connection = conn
cmd.Transaction = trans

We then set the command to be run, and the type of command. The CommandText is set to the name
of a stored procedure, which is already in the database, and CommandType is set to CommandType
.StoredProcedure to tell ASP.NET that a stored procedure is being used, rather than a plain SQL
statement.

cmd.CommandText = “usp_InsertOrder”
cmd.CommandType = CommandType.StoredProcedure

We then define the Parameters of the command, adding a parameter for each parameter in the stored
procedure.

cmd.Parameters.Add(“@Name”, Data.SqlDbType.VarChar, 25)

cmd.Parameters.Add(“@Address”, Data.SqlDbType.VarChar, 255)

cmd.Parameters.Add(“@ZipCode”, Data.SqlDbType.VarChar, 15)

cmd.Parameters.Add(“@OrderDate”, Data.SqlDbType.DateTime)

cmd.Parameters.Add(“@DeliveryCharge”, Data.SqlDbType.Money)

cmd.Parameters.Add(“@TotalValue”, Data.SqlDbType.Money)

cmd.Parameters.Add(“@OrderID”, SqlDbType.Int)

cmd.Parameters(“@OrderID”).Direction = ParameterDirection.Output

Parameters is a collection on the SqlCommand object, and the Add method creates a new parameter in
the collection. Add takes two or three arguments, depending upon the type of parameter being added.
The first argument is always the parameter name, and the second is the data type. For parameters that
have a variable length (such as strings), the VarChar type is used as the data type, and the third argu­
ment is the length — the number of characters. So, for the first line in the previous code, the name of the
parameter is @Name, and it is a string of 25 characters. The DateTime type is used to store dates and
time, Money is used to store monetary values, and Int is used for whole numbers.

The final line sets the Direction property of the OrderID parameter to ParameterDirection
.Output, which tells the command which direction data is going to flow. The Direction defaults to
ParameterDirection.Input, meaning that values flow into the stored procedure, but an Output

257

11_588079 ch08.qxd 11/29/05 3:59 PM Page 258

Chapter 8

parameter means that the value flows out of the command (from the stored procedure back to our code).
This is used because the OrderID is created by the database. It is automatically generated, and since
we need it for the foreign key in the OrderItems table, we need a way to get that value. The output
parameter means that once the command has been run, the OrderID parameter will hold the ID of the
newly inserted order.

Next, we need to set the values of these parameters, using the Value property, so that the values are
passed into the stored procedure. The first three are set to the values from the TextBox controls in the
first Wizard step, where the name and address were collected.

cmd.Parameters(“@Name”).Value = _

CType(Wizard1.FindControl(“txtName”), TextBox).Text

cmd.Parameters(“@Address”).Value = _

CType(Wizard1.FindControl(“txtAddress”), TextBox).Text

cmd.Parameters(“@ZipCode”).Value = _

CType(Wizard1.FindControl(“txtZipCode”), TextBox).Text

In case you are wondering, the “_” character, when the last character on a line and preceded by a space,
acts as a line-continuation character. This means that you can have a line of code spanning more than
one physical line, which sometimes makes the code easier to read.

The next parameter, @OrderDate, is set to the current date and time, using the Now method of the
DateTime object. @DeliveryCharge is set to the DeliveryCharge value from the cart, and
@TotalValue to the Total value from the cart.

cmd.Parameters(“@OrderDate”).Value = DateTime.Now()
cmd.Parameters(“@DeliveryCharge”).Value = cart.DeliveryCharge
cmd.Parameters(“@TotalValue”).Value = cart.Total

The parameters have now been set, so the command can be run, using the ExecuteNonQuery method.
This tells ASP.NET to run the command but not to expect any data — the output parameters still come
back, but no other data (such as a set of rows) is returned.

cmd.ExecuteNonQuery()

With the command run, the output parameters can be extracted. We take the Value of the @OrderID
parameter, and using a conversion routine, convert it to an Integer. (ToInt32 refers to the length of the
Integer type, which is 32 bits.)

OrderID = Convert.ToInt32(cmd.Parameters(“@OrderID”).Value)

At this stage, the order has been inserted and we have the ID of the order, so we need to insert the order
items. The first part of that is to change the name of the stored procedure being used.

cmd.CommandText = “usp_InsertOrderItem”

We then empty the Parameters collection using the Clear method because it currently contains the
parameters for the Orders table.

cmd.Parameters.Clear()

Now, the parameters for the OrderItems are set, using the same method as used previously.

258

11_588079 ch08.qxd 11/29/05 3:59 PM Page 259

The Checkout Process

cmd.Parameters.Add(“@fkOrderID”, Data.SqlDbType.Int)

cmd.Parameters.Add(“@MenuItemID”, Data.SqlDbType.Int)

cmd.Parameters.Add(“@ItemSize”, Data.SqlDbType.VarChar, 50)

cmd.Parameters.Add(“@ItemName”, Data.SqlDbType.VarChar, 50)

cmd.Parameters.Add(“@Quantity”, Data.SqlDbType.Int)

cmd.Parameters.Add(“@LineValue”, Data.SqlDbType.Money)

The Value for the @fkOrderID property is set to the OrderID variable, as taken from the @OrderID output
parameter. There may be multiple order items added to the order, but all will have the same OrderID, so
this is set only once.

cmd.Parameters(“@fkOrderID”).Value = OrderID

Now, we need to loop through the items in the shopping cart, and for each item, set the parameter
values and run the command. The For Each statement allows us to loop through the Items collection
of the cart. Each time through the loop, the item variable (a CartItem data type) is set to the item in
the collection — so each time around, the properties of item will be the properties of the order item.

For Each item As CartItem In cart.Items

The parameter value for each of the parameters comes from the related property of the cart item.
Therefore, @MenuItemID comes from the MenuItemID property, and so on.

cmd.Parameters(“@MenuItemID”).Value = item.MenuItemID
cmd.Parameters(“@ItemSize”).Value = item.ItemSize
cmd.Parameters(“@ItemName”).Value = item.ItemName
cmd.Parameters(“@Quantity”).Value = item.Quantity
cmd.Parameters(“@LineValue”).Value = item.LineValue

Once the parameters have been set, the command can be executed within the loop. Remember that we
are inserting multiple rows (one for each cart item), so the command needs to be run multiple types. It’s
only the parameter values that change, so the parameter definitions are outside of the loop because they
need to happen only once.

cmd.ExecuteNonQuery()

Next

At this stage, we have inserted both the order and the order items, and there have been no errors (the
Try statement ensure that, as you’ll shortly see). If we know nothing has gone wrong, we can commit
the transaction, which tells the database that everything is okay, and we display the success label to
let the user know the order has been completed.

trans.Commit()

CreateOrderSuccessLabel.Visible = True

The next code segment deals with errors. We use the Catch statement for this, which is related to the Try
statement, which was near the top of the code. We’ll look at this in more detail later, but for a quick synopsis,
if there is an error in code between the Try and Catch statements, then the code underneath the Catch
statement runs. This gives us a central place to deal with errors. You can catch different types of errors, but
the type we are interested in is a SqlException, which would mean that a database problem happened.

Catch SqlEx As SqlException

259

11_588079 ch08.qxd 11/29/05 3:59 PM Page 260

Chapter 8

Within the Catch block, we check the transaction. If it has a value (that is, it is not Nothing), then we
Rollback the transaction. Again more on that later, but a quick definition is that it undoes all database
commands since the transaction was started. This keeps the database in a stable state, so that no orders
are inserted without order items, and no order items are inserted without an order.

If trans IsNot Nothing Then

trans.Rollback()

End If

We now need to generate an error for the user to see, so we simply make the error label visible and
return from the procedure.

CreateOrderErrorLabel.Visible = True

Return

The Finally statement is related to Try and Catch, and is always run after a Try or Catch block. So,
you either run the Try code and if everything is OK, then you run the Finally code. Alternatively you
run the Try code, and if something goes wrong you run the Catch code, and then the Finally code.

Finally

Within the finally code we simply Close the connection if it is a valid object (that is, if it has a value
other than Nothing).

If conn IsNot Nothing Then

conn.Close()

End If

End Try

The very last piece of code to run is to clear the items collected in the cart, since all of the items have
been added to the database:

cart.Items.Clear()

End Sub

That’s all the code for creating the order. Although there was quite a lot of code, it falls neatly into
blocks. First we create the command and parameters for the order, set the parameter values, and insert
the order. Then we set the command and parameters for the order items, and for each order item set the
parameter values and run the command, thus inserting each order item. The Try, Catch, and Finally
statements allow us to protect out code against errors. Let’s have a look at this exception handling in a
little more detail.

Understanding Exception Handling
Exception handling is a core piece of programming in ASP.NET and provides a way to protect programs
against unexpected occurrences (such as the cleaner unplugging the database server to plug in the
vacuum cleaner — don’t laugh, we’ve seen it happen). Exception handling in Visual Basic revolves

260

11_588079 ch08.qxd 11/29/05 3:59 PM Page 261

The Checkout Process

around blocks of code, code that you want to try and run. If it runs, fine, then that’s great. But if some­
thing goes wrong, you need to handle that gracefully and show a nice message to the user, rather than
some horrible error message that the user won’t understand.

Exception handling revolves around three statements: Try, Catch, and Finally. Following is some
pseudo-code to show the structure:

Try
‘ here we have the code that we want to run

Catch SqlEx As SqlException
‘ this code will be run if a SqlException was raised in the Try block

Catch Ex As Exception
‘ this code will be run if a Exception was raised in the Try block

Finally
‘ this code will always run, either after the Code in the Try block,
‘ or after the code in one of the exception blocks

End Try

So, walking through, even though there is no code in the code blocks, we start with the Try statement.
This says to Visual Basic, “Right, it’s up to you to monitor the code for problems — if something happens,
don’t just fall over and show an error message, jump to one of the Catch blocks.”

If something does go wrong, an exception will be raised, and this can come from a number of places.
Any of the supplied classes can raise exceptions, and the exception raised will depend upon which code
is being run when the problem occurred.

For example, if you are running a database command then you will get a SqlException. When an
exception is raised, Visual Basic checks each Catch statement for a match and stops at the first match.
In the previous example, the first Catch block is a match, so only the code for that Catch block will be
run. The code for other Catch blocks is ignored, and execution continues in the Finally block, or at the
line after the End Try if no Finally block is present. The syntax for the Catch block is:

Try variable As ExceptionType

The variable will contain the details of the exception, and you can use the Message property to get the
error message, or the ToString() method to see all of the details about the error. The ExceptionType is
the type of exception and allows you to have different error-handling code for different types of exceptions.

The previous code shows two Catch blocks, one for SqlException and one for Exception. The order
in which they are declared is important because the test for the exception type is from top to bottom.
This may not seem important, but you have to understand that a SqlException is also an Exception.
This is so because Visual Basic is an object-oriented programming language and has a feature called
inheritance. This means that classes can inherit characteristics from other classes, much like the way we
inherit things from our parents (yeah, hay fever, thanks Mom). So, Exception is the base class, defining
the characteristics that all other exception types contain. The effect this has on us is that if a database

261

11_588079 ch08.qxd 11/29/05 3:59 PM Page 262

Chapter 8

error occurs, and a SqlException is raised, the exception could match either SqlException or
Exception. So, you can see that the order of the Catch blocks is important. In the previous code, the
SqlException came before the Exception, so it would always be matched first. However, imagine if
we had the following:

Try
‘ here we have the code that we want to run

Catch Ex As Exception
‘ this code will be run if a Exception was raised in the Try block

Catch SqlEx As SqlException
‘ this code will be run if a SqlException was raised in the Try block

Finally
‘ this code will always run, either after the Code in the Try block,
‘ or after the code in one of the exception blocks

End Try

If a SqlException was raised in the Try block, the first exception tested is Exception, and because
of inheritance, there is a match. This means that any special code to handle the database error in the
SqlException Catch block would not be run. So, the rule is, if you have multiple Catch blocks, always
put the one matching Exception last.

The other rule for exception handling is that you should catch exceptions only if you can handle the
error and recover from it gracefully. If there is nothing you can do, then it’s not worth catching the
exception.

Understanding Transactions
Transactions are an important part of database consistency and work hand-in-hand with exception
handling. Transactions ensure either that all database operations succeed or that none do. The classic
example used for this is a money transfer operation, where you debit one account and credit another.
Both have to happen or neither should happen. You don’t want to have money debited but not go
anywhere. You might want to have money credited to another account without it being debited from
your account, but you can be sure the bank doesn’t want that!

In our application, there are several commands that must be run, first to insert the order and then to
insert the order items. Neither makes sense without the other; an order without order items is of no use,
and order items without an order would leave us unable to find the order items, there being no order to
select.

The process of handling transactions is quite simple. Before the commands are run, you start a transaction,
which tells the database to keep track of all database changes you are doing. You then proceed to modify
data, in our case inserting records. You then either tell the database to commit those changes if nothing
went wrong, or to roll back the changes if something did go wrong. Rolling back means that every database
change since the transaction started is undone, thus leaving the database in a consistent state, the state it
was in before the transaction started.

262

11_588079 ch08.qxd 11/29/05 3:59 PM Page 263

The Checkout Process

A transaction is held as a Transaction object, and you start a transaction by using the
BeginTransaction method of the connection. If everything was successful, you use the Commit
method of the transaction to commit the changes, or you use the Rollback method if there were errors.
You can combine this with exception handling to great effect, as shown in the following:

Try
Dim trans as Transaction
trans = conn.BeginTransaction()

‘ here we have the code that we want to run
‘ it will insert rows into the database

‘ everything is OK, so commit the changes
trans.Commit()

Catch SqlEx As SqlException
‘ this code will be run if a SqlException was raised in the Try block

‘ roll back the changes
trans.Rollback()

Finally
‘ this code will always run, either after the Code in the Try block,
‘ or after the code in one of the exception blocks

End Try

You can see that the transaction is started at the beginning of the Try block, and the Commit is at the
end of the Try block, which will be reached only if no exception was raised. If a SqlException occurs,
control will pass to the Catch block, where the transaction is rolled back.

Transactions are often not taught in introductory-style books, but they are extremely important when
dealing with multiple database commands. (You don’t need them for a single command because these
have an implicit transaction.) As you can see, they are extremely simple. They protect you from many
database troubles, and even if you don’t use them much, at least you know about them and how to
use them.

Summary
This chapter brings to close the ordering and checkout process, and here we have looked at the latter —
converting the items from the shopping cart into an order in the database. We used a Wizard control to
provide a step-by-step process for collecting the order details, from the delivery address to the credit
card details.

For the delivery address, along with some text boxes, we used an ObjectDataSource to bind to the
shopping cart and a FormView control to display the bound data.

A list allowed the selection of the delivery area, which resulted in the delivery charge updating the cart.

263

11_588079 ch08.qxd 11/29/05 3:59 PM Page 264

Chapter 8

On the final step, we used the user control created in Chapter 7 to display the cart items. The totals were
shown using an ObjectDataSource and a Details view, but in read-only mode, with a templated
column to customize the display of the sales tax.

For the final step, we handled an event that is run when the Finish button is clicked, and we inserted
the order and order items into the database. This code used a combination of exception handling and
ransactions to ensure that the database remained consistent, and that the user received appropriate
messages.

Now it’s time to have a look at security and personalization, so see how we can protect the Admin page
(created in Chapter 6) and the View Orders page (created in this chapter) from prying eyes.

264

12_588079 ch09.qxd 11/29/05 3:59 PM Page 265

9

Security and Deployment

In Chapter 6, we created an administration page, allowing a user to update the menu items, and
in Chapter 8, we created the checkout page. We don’t want everyone to be able to run the
administration page, so we need to lock them out somehow. For the checkout, it would be good to
recognize members of the site and give them the option of having their order added to their
account, instead of paying by cash or credit card.

The aim is to have a site where users can log in, and have functionality change depending upon
whom they are.

In this chapter, we will look at the following:

❑ How security works, and how to configure it

❑ How to add users and roles to a site

❑ How to secure pages

❑ How to change the menu system so that secured pages are not shown on the menu

We will also look at the topic of what to do once you’ve created your first site, and how you can
copy this to a service provider to make the site public. Let’s start with the security aspects.

Configuring Security
Security revolves around the two concepts: authentication and authorization. Authentication is the
process of identifying users of a Web site, and authorization is checking that the user is allowed
to access the page he or she is trying to access. Each of these requires configuration, the first to
determine who the users are and the second to define which pages they are allowed access to.

In ASP.NET, you manage authentication with the Membership service, which allows definition of
the members of a site. There are many places to store the membership details, including a text file,
a database, or even the Windows user accounts store. We’ll be using a database, but won’t be
storing the users in the PPQ database. Instead, we’ll use the database that ASP.NET automatically
creates for us.

12_588079 ch09.qxd 11/29/05 3:59 PM Page 266

Chapter 9

You can configure authorization either on a user-by-user basis or by roles, using the Role Manager
service. Roles are a way to make configuration easier because you set the configuration for the role and
then you add users to the role. This way, if you add or remove users, you only have to add them to the
role, rather than changing the configuration. You’ll see this in action as we go through the exercises.

The configuration of the authorization is done in the Web configuration file, web.config, where we will
define which pages users can access. Let’s give this a go, starting with creating the users.

Try It Out Configuring Security
1.	 In VWD, select the Website menu, and then select the ASP.NET Configuration item. This will

launch the Web Site Administration Tool (see Figure 9-1).

Figure 9-1: The Web Site Administration Tool

2.	 Select the Security tab, and click the “Use the security Setup Wizard to configure security step
by step” link. Step 1 is the welcome step, so click Next.

3.	 On step 2, select the “From the Internet” option, and click Next.

4.	 Step 3 tells you that the application is configured to use advanced provider settings, so select Next.

5.	 Step 4 allows the definition of Roles, so tick the “Enable roles for this Web site” option, and
click Next.

266

12_588079 ch09.qxd 11/29/05 3:59 PM Page 267

Security and Deployment

6.	 You now have an option to define the roles. In the New Role Name text box, type Admin and
click the Add Role button. No more roles are required, so click the Next button.

7.	 Step 5 allows creation of users, so use the following to create a new user. Make sure that the
Active User box is ticked, because that ensures the user is active on the site. When you’ve
entered the details, click the Create User button:

Field

User Name Dave

dave@123

dave@123

E-mail

Security Question Favorite Pizza

Security Answer

Text to Enter

Password

Confirm Password

dave@ppq.org

Margerhita

8. When the account is created, click the Continue button, and use the following to add another user:

Field

User Name Alex

alex@123

alex@123

E-mail

Security Question Favorite Pizza

Security Answer

Text to Enter

Password

Confirm Password

alex@ppq.org

Three Cheeses

9.	 When the second user has been created, click the Next button.

10.	 Step 6 allows you to add new access rules, restricting pages to selected users. This allows
security to be added only to folders, but we want individual pages, and we’ll do this manually
later, so click the Next button.

11.	 Step 7 is the Complete step and tells you that the wizard has been successful, so click the Finish
button, which will return you to the Security tab, now with the number of users and roles
shown (see Figure 9-2).

Figure 9-2: The user and role configuration options

267

12_588079 ch09.qxd 11/29/05 3:59 PM Page 268

Chapter 9

12.	 Click the “Create or Manage roles” link, and select the Manage link alongside the Admin role.

13.	 On the Search for Users page, click the A link to show users whose name begins with “A.” Tick
the User Is In Role option (see Figure 9-3).

Figure 9-3: Adding a user to a role

14. The users and roles creation is now complete, so close the Web Site Administration Tool.

How It Works
All of this work is done by ASP.NET and the Web Site Configuration Tool, so there is no code to examine.
However, you must understand what this tool has done, so we’ll start by looking at what additional files
the tool has added to the site. In the Solution Explorer, if you select the App_Data folder, and click the
Refresh button, you’ll see that a new database file base been added, ASPNETDB.MDF (see Figure 9-4).

Figure 9-4: The ASP.NET User and Roles File

This is the database that contains the users and roles, as well as details of which users are in which roles.
We’re not going to look at this database, because you don’t really need to know anything about it, just
that it works — ASP.NET handles everything to do with this database for us.

You can see the other changes in the Web configuration file, web.config, where the following have
been added:

<roleManager enabled=”true” />
<authentication mode=”Forms” />

The first of these, roleManager, simply enables the Role Manager service, so that when users log in,
they have roles associated with them. If this option is disabled, none of the role-based features will work.

268

12_588079 ch09.qxd 11/29/05 3:59 PM Page 269

Security and Deployment

You created two users, Dave and Alex, and Alex was given the Admin role. You’ll soon see how we
configure the site so that only users in certain roles can access certain pages.

The second addition, authentication, sets the mode of authenticating users. This is set to Forms, which
means that a Web form will supply the user credentials (that is, typed by the user on a page). Another
common value for this is Windows, which means the user does not have to explicitly enter a user name
and password. Instead, the user name used to log in to Windows is used. For a public Web site, you
should use Forms authentication.

At this stage, you have only created the users and defined the authentication scheme. Now it’s time to
configure the authorization.

Try It Out Securing Pages
1.	 Run the PPQ application, and when it is displayed in the browser, click the Home link on the menu.

2.	 In the browser address bar, replace Default.aspx with Admin.aspx (see Figure 9-5) and press
Return to view the administration page.

Figure 9-5: Directly navigating to the Admin page

3.	 Notice that you haven’t logged in, but that you can navigate directly to this page, even though it
doesn’t appear on the menu. Close the browser window.

4.	 Open web.config, and move to the end of the file.

5.	 Between the </system.web> and </configuration> elements, add the following:

<location path=”Admin.aspx”>
<system.web>

<authorization>
<allow roles=”Admin” />
<deny users=”*” />

</authorization>
</system.web>

</location>

6. Save the file, and switch to Admin.aspx. From the right mouse menu, select View in Browser,
and notice this time that you don’t see the admin page, you see an error message (see Figure 9-6).

269

12_588079 ch09.qxd 11/29/05 3:59 PM Page 270

Chapter 9

Figure 9-6: Navigating to an unauthorized page

7. Close the browser window, and return to VWD.

How It Works
The bulk of the work for securing the admin page is done by the Membership service, but that service
needs to know what pages users are allowed to access. By default, all users are allowed to access all
pages, so you locked down the security by adding a location element. The location element defines
a page by using the path attribute, and it is this page that further configuration is applied to:

<location path=”Admin.aspx”>

Within the location element, you added a system.web section, which identifies Web site settings
(there are other settings, but you don’t need to know about them for this example).

<system.web>

Within the system.web section, you added an authorization section, which details which users you
allow access to the Admin.aspx page.

<authorization>

The first part of the authorization is to allow users who belong to the Admin role, using the allow ele­
ment (this grants permission to the file). The roles attribute defines the roles to be allowed.

<allow roles=”Admin” />

Next, you must stop all other users accessing the page, so you used the deny element. The users
attribute can be a comma-delimited list of users, but you want all users, so the special symbol * is used
(this matches any user).

<deny users=”*” />

Finally, all of the open elements were closed:

</authorization>

</system.web>

</location>

270

12_588079 ch09.qxd 11/29/05 3:59 PM Page 271

Security and Deployment

So, the process of authorization is to deny all users but then allow selected users or roles. We mentioned
earlier that roles are the best way to do this because you only have to configure the security for the role
once. For example, the user Alex is a member of the Admin role, so Alex would have access to the
Admin.aspx page, but Dave, who isn’t in the Admin role, wouldn’t be able to access the page. To allow
Dave access, all you have to do is add him to the role; you don’t have to change the configuration.

The syntax of the allow and deny elements can take several forms (they are both the same, so we’ll
show only allow in the following table:

Configuration Meaning

one who hasn’t logged in.

Allow all users.

Allow only the users Alex and Dave.

Admin

<allow users=”?” /> Allow all anonymous users. An anonymous user is

<allow users=”*” />

<allow users=”Alex, Dave” />

<allow roles=”Admin” /> Allow only users who are in the role.

You can see that there is quite a degree in flexibility, and to add to that flexibility, you can configure
authorization added at three levels:

❑	 For the entire Web site, by using an authorization element in the main Web configuration file

❑	 For a folder, by placing a Web configuration file in the folder and setting the authorization
element

❑	 For individual files, by using location elements

You used the latter, but the other two methods follow the same rules.

What we now need to do is allow users to log in to the site, so that the administrator (or more accurately,
users who are in the Admin role) can access the admin page. Users can belong to more than one role, but
as long as one of those roles is Admin, the user will be allowed access to the page.

Try It Out Creating the Login Page
1. In the web.config file, change the authentication section so that it looks like the following:

<authentication mode=”Forms”>
<forms loginUrl=”Login.aspx” />

</authentication>

2.	 Save the configuration file and close it.

3.	 Create a new Web form called Login.aspx, remembering to place the code in a separate file,
and select the PPQ.master master page.

4.	 Switch the page to Design view, and open the Login section of the Toolbox. Drag a Login
control, and drop it into the Content area. Select the Auto Format . . . option from the Login
Tasks, and select the Simple scheme, before clicking OK to format the control (see Figure 9-7).

271

12_588079 ch09.qxd 11/29/05 3:59 PM Page 272

Chapter 9

Figure 9-7: The formatted Login control

5.	 Save the file, and switch to Admin.aspx. From the right mouse menu, select View in Browser,
and notice that instead of the error message, you now see the login page.

6.	 For the user, enter Dave, and for the password enter dave@123 and press the Login button. You
are returned straight to the login page. Enter Alex for the user, and alex@123 for the password.
Press Login and you will see the administration page.

Let’s see how this works.

How It Works
The first thing you did was to change the authentication section in web.config. Instead of just
defining the mode as Forms, you added a forms element, with the loginUrl attribute set to
Login.aspx.

<authentication mode=”Forms”>
<forms loginUrl=”Login.aspx” />

</authentication>

The loginUrl defines the login page, and ASP.NET will show this page whenever you try to access a
page for which you are unauthorized — it’s giving you the opportunity to log in with user credentials
that are allowed to access the page.

When you tried to log in as the user Dave, you weren’t allowed access to Admin.aspx because Dave
isn’t a member of the Admin role. Remember, in the earlier exercise you set the authentication, and
allowed access only to members of the Admin role. Alex is a member of the Admin role, so when you
logged in as Alex, you were allowed access to the page.

You can see how simple security is, because all you have to do is run the Web Site Administration Tool to
set the initial configuration, and add users and roles. You then set a few options in the Web configuration
file, and ASP.NET handles everything else for you.

272

12_588079 ch09.qxd 11/29/05 3:59 PM Page 273

Security and Deployment

Modifying the Menu
One thing that still needs work on the site is usability — you don’t want to force the administrators to
type in the Admin.aspx page name. It would be much simpler if the Admin option appeared on the
menu, but this means that all users would be able to see it. Let’s see how we can add Admin to the menu
but have it visible only to authorized users.

Try It Out Configuring the Menu
1.	 Close any browser windows, and return to VWD.

2.	 Open Web.sitemap, and move to the end of the file. Underneath the Contact node, add the
following:

<siteMapNode url=”Admin.aspx” title=”Admin” description=”Edit Pizzas” />

3.	 Save the file and close it.

4.	 Open PPQ.master, and switch to Design view.

5.	 From the Login section of the Toolbox, drag a LoginStatus control, and drop it underneath the
menu (see Figure 9-8).

Figure 9-8: Adding a LoginView control to the page

6.	 Save the page and run the application. Notice that there is now a Login link under the menu.
Click the link, and you are taken to the login page. Log in as Dave (the password is dave@123),
and see how the Login link now says Logout. Also notice that the menu shows the Admin item,
even though Dave is not authorized to access the page.

7.	 Click the Admin link on the menu, and notice how the login page is shown once more.

8.	 Close the browser window, and return to VWD.

273

12_588079 ch09.qxd 11/29/05 3:59 PM Page 274

Chapter 9

9.	 From the page-content folder, open Web.Config.txt, and copy the contents (the siteMap
section).

10.	 Open Web.config, and underneath the </authentication> element, paste the code you
copied from Web.Config.txt.

11.	 Save the file and run the application. Notice that the Admin item is now not shown on the
menu.

12.	 Login as Dave (using dave@123), and you see that the Admin item still isn’t shown. Log out,
and log in as Alex (using alex@123), and notice that the Admin item appears.

Let’s see how this works.

How It Works
The first thing you did was to add a new siteMapNode to the menus structure. This adds the Admin
item to the bottom of the menu.

<siteMapNode url=”Admin.aspx” title=”Admin” description=”Edit Pizzas” />

You then added a LoginView control to the master page, and this is a clever control. When you are
not logged into the site, the LoginView control shows a Login link. When you click this link, you are
redirected to the login page (the login page you defined earlier in the chapter) with the loginUrl
attribute on the login element in the authentication section. Once you have logged in, the
LoginView control shows a Logout link, which, when clicked, will log you out of the site.

You then ran the application and used the LoginView to log into, and out of, the site, but noticed that
the Admin link was shown no matter who you logged in as. This is because, by default, the menu
system doesn’t apply any security. To correct that, you modified the Web configuration file, and a
sitemap element:

<siteMap defaultProvider=”AspXmlSiteMapProvider” enabled=”true”>
<providers>
<clear/>
<add name=”AspXmlSiteMapProvider” type=”System.Web.XmlSiteMapProvider,

System.Web, Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
siteMapFile=”web.sitemap” securityTrimmingEnabled=”true”/>

</providers>
</siteMap>

You don’t need to know what all of this means, except for the securityTrimmingEnabled attribute,
which is the key to the menu security. When securityTrimmingEnabled is set to True, the menu
system will check the authorization for each page before displaying it. When logged in as Dave, the
menu system checks each page before showing it, and Dave isn’t authorized to access the Admin page,
so it isn’t shown on the menu. Alex is authorized, so the page is shown on the menu.

Once again this shows the power of the security system in ASP.NET, and how you can easily add power
to your Web sites with very little effort. Let’s now see how we can use the security system from code, to
help the checkout page.

274

12_588079 ch09.qxd 11/29/05 3:59 PM Page 275

Security and Deployment

Try It Out Modifying the Checkout Page
1.	 Open Checkout.aspx, and double-click anywhere on the page, outside of the Content control.

This will open the code file, and create the Page_Load event.

2.	 Into the event procedure, add the following code:

If Not Page.IsPostBack Then
If User.Identity.IsAuthenticated Then

Dim rbl As RadioButtonList = _
DirectCast(Wizard1.FindControl(“RadioButtonList1”), RadioButtonList)

rbl.Items.Add(New ListItem(“Charge my account”, “Account”))
End If

End If

3.	 Save the file and run the application.

4.	 Navigate to the checkout page, and step into the Payment step. Notice how the payment
options list shows only two items.

5.	 Log in to the site. Repeat step 4, and notice how there are now three items on the payment
options list.

Let’s see how this works.

How It Works
You added code to the Page_Load event, which will run whenever the page is loaded. The first line
checks to see if the IsPostBack property of the Page is set. If it is, then a button or link on the page has
been clicked, and it isn’t the first time the page is loaded. If the IsPostBack is not set, then it is the first
time the page has loaded, so further code is to be run.

If Not Page.IsPostBack Then

You then use the Membership service from code, starting with the User class, which identifies the
current user. The User class has an Identity property, which gives further details about the user, and
one of those further details is the IsAuthenticated property. If this is set, then the user is authenticated
(that is, logged into the site).

If User.Identity.IsAuthenticated Then

Next, you obtained a reference to the RadioButtonList control that shows the payment method.

Dim rbl As RadioButtonList = _
DirectCast(Wizard1.FindControl(“RadioButtonList1”), RadioButtonList)

You then add a new ListItem to the RadioButtonList, with a Text value of Charge my account, and
a Value of Account.

rbl.Items.Add(New ListItem(“Charge my account”, “Account”))
End If

End If

275

12_588079 ch09.qxd 11/29/05 3:59 PM Page 276

Chapter 9

That’s all there is to the code. When the page first loads, you check to see if the user is logged in. ASP.NET
provides a User object, which has a property called Identity, and this identifies the user. A property of
the Identity object, IsAuthenticated, tells us whether or not the user has been authenticated (that is, if
they have logged in). If the user is logged in, you add another option to the list, which you could then use
in the final stage of the payment to charge the user’s account.

That’s the end of modifying the pages, so let’s now look at how you can transfer this site to a Web server.

Publishing a Site
When using VWD, you have a built-in way to run the Web pages. But for live Web sites, you need a pub­
lic Web server, and these are managed either by your company or by a service provider. To make your
site available, you need to copy it to the target Web server, and there is a utility provided within VWD to
help you with it.

This utility is available from the Copy Web Site . . . option from the Website menu, which shows the
Copy Web page (see Figure 9-9)

Figure 9-9: The initial Copy Web page

276

12_588079 ch09.qxd 11/29/05 3:59 PM Page 277

Security and Deployment

To pick the target site, select the “Connect to . . .” option, which shows the Open Web Site window. You
have the option of copying to a folder, a Web server (Local IIS), an FTP Site, or a Web site using HTTP
(Remote Site). Figure 9-10 shows connecting to an FTP site.

Figure 9-10: The Open Web Site page

Once connected, you can see the files from the local site on the left, with the files from the remote site on
the right, and you have options to copy between the two sites. For example, Figure 9-11 shows upload­
ing files to a remote Web site using the FTP option.

277

12_588079 ch09.qxd 11/29/05 3:59 PM Page 278

Chapter 9

Figure 9-11: Uploading files to a Web site

The Copy Web feature allows copying both ways, so if you’ve mistakenly deleted some files from the
local site, you can always fetch them from the remote site.

Summary
This chapter has covered two major topics: security and deployment.

For security, we looked at how you can use the Web Site Configuration Tool to set up security, add users,
and set the roles for the users (that is, authentication). We then discussed how to secure Web pages so
that only authorized users can access them, both directly and from a menu. This allows you to create
pages that only selected users can see, and this aspect, although not covered here, can be extended to
parts of a page, so that a page will show different content depending upon the user.

You saw that the security system is extremely simple to set up, with only a few configuration options
required to protect a site. Not only can you use the security controls to interact with the Membership
service but you can also use code. This brings added flexibility and becomes more useful as you add
more code to your sites.

278

12_588079 ch09.qxd 11/29/05 3:59 PM Page 279

Security and Deployment

Finally, we briefly looked at how you can deploy your Web site to a remote location, using the Copy Web
tool. This allows you to use a variety of methods to copy sites to public Web servers. There are other
ways to deploy applications, but these aren’t built into the tool. The deployment offered in VWD allows
for a variety of protocols and covers the basics of what you’ll need to deploy to a remote location.

In all, we’ve covered a lot of ground in this book, but we have really only scratched the surface of what
ASP.NET can achieve. You’ve seen how to use databases, how to structure sites using master pages and
navigation, how to view and update data in grids, how to create custom classes, and how to implement
security. These cover the basics of what you need to construct Web sites and give you good grounding
from which to continue your exploration of ASP.NET.

We hope that you’ve enjoyed this book and that you continue to explore both ASP.NET and Visual Web
Developer as a means to creating Web sites.

279

12_588079 ch09.qxd 11/29/05 3:59 PM Page 280

13_588079 bindex.qxd 11/29/05 4:00 PM Page 281

Symbols
@ (at) symbol, 138

@Page directive, 56

/* */ (forward slash plus asterisk) symbol, 102–103

~ (tilde) symbol, 56

_ (underscore) symbol, 258

A

abstractions (object-oriented programming), 206

Access databases (Microsoft), connecting to, 16–17

access permissions (Internet Information Services),

8–9
accessibility features

identifying accessibility needs, 32

testing, 63–64

text links, 33

Active User box (Security Setup Wizard), 267

Add Connection dialog box (Database Explorer, Data

Connections), 16–19

Add New Item dialog box (skeleton solution, Web site

menu)

Master Page, 38–39

Web form, 22–23

Web User Control, 164

Add New Stored Procedure (Stored Procedures
context menu), 102–103

Add New View option (Views context menu), 104

Add ORDER BY clause dialog box, 137–138

Add Table dialog box

Database Diagram window, 91

Query Editor, 13

Add WHERE clause dialog box
opening the dialog, 134

selecting columns for, 135–137

Admin role
accessing from menu, 273–274

setting up, 267–268

Index

Admin.aspx
adding to menu, 273–274

creating, 269–270

how it works, 270–271

uses for, 174, 190

Advanced Properties dialog box (Add Connection
dialog box), 19

Advanced SQL Generation options dialog box, 175

alignment settings (Content Page), 58–59

allow element (web.config file), 271

Alt property (Image control), 45–46

AlternateText property (Image control)

binding to columns, 120

uses for, 113

anchors, target, adding to Master Page, 46–47

App_Code folder (Class Files file), 197

AppSettings property (ConfigurationManager

class), 208

</asp:Content> tags, 62–63

ASP.NET 2.0

building web pages

opening a Web site, 20

server controls, 23, 48

exception handling, 260–262

IIS access permission, 8

Master Page support, 34

navigation controls, 35

objects overview, 109–110

.aspx pages
Admin.aspx

adding to menu, 273–274

creating, 269–271

function, 174, 190

Checkout.aspx
adding delivery address form, 239–245

adding order confirmation, 248–253

adding payment details, 245–248

completing the order, 253–254

creating, 223, 236

security modifications, 275–276

creating, overview, 22–23, 131–133

In
de

x

13_588079 bindex.qxd 11/29/05 4:00 PM Page 282

.aspx pages (continued)

.aspx pages (continued)
Default.aspx

accessing, 55, 56–57

adding content to, 57

adding pages to, 163

Content Page, 60

creating, 56

editing, 60

executing, 170

viewing, 55

Delivery.aspx, 158

for interface implementation, 131–133

Login.aspx

creating, 271–272

how it works, 272

Order.aspx
creating, 190

formatting, 220–221

Order.aspx.vb.text, 220

ShowMenu.aspx
creating, 150–153
how it works, 153–157

TestMenu.aspx, 22–23, 60–61

TestMenu2.aspx, 94, 104–105

TestMenu3.aspx.vb, 141

ViewOrder.aspx, 253–254

at (@) symbol (SQL server parameters), 138

authentication

adding to checkout page, 276

code for, 266

security function, 265

web.config file for

how it works, 268–269

set up process, 266–268

authorization
security function, 265

web.config file for

allow and deny element configurations, 271

code for, 269

how it works, 270–271

Auto Format dialog box
DetailsView pane, 124

GridView Tasks pane, 25–26

Menu Tasks pane, 54

Auto StepType value (WizardStep control), 238

AutoGenerateColumns property (GridView control),

111, 180

AutoPostBack property (RadioButton control), 245

B
BeginTransaction method (Transaction

object), 263

Bind() code expression, 120

bindings, two-way, 120

bit data type, 110–111
<body> element (Master Page), 40–41
BoundField control

with GridView control, 110, 181

hiding, 182

BoundField properties settings (Fields dialog box),

26, 182

“bread-crumb trails”

ASP.NET 2.0 controls for, 35

how they work, 33

implementing using SiteMapPath control, 54

C

canceling orders, code for, 256

Cart user control (shopping cart), 233

CartItem class

creating, 199–200

properties, 205–206

storing data from, 207

Subtotal property, 209

Total property, 209

variable definitions, 203–204

Cascade action (Delete and Update Rules), 89

Cascading Style Sheet (CSS)

adding images using, 44

adding to Content Page, 58

applying typefaces using, 35

casting, 218

Catch statements

exception handling using, 261–262

with Order Confirmation step, 259–260

transaction handling using, 263

cell properties (tables), 240

checkout process

adding security tools, 275–276
collecting delivery address

code for, 239–242

how it works, 243–245

testing collection form, 242–243

collecting payment details

code for, 243–245

how it works, 246–248

designing, 235

Order Complete step

code for, 253–255

how it works, 255–260

Order Confirmation step

code for, 248–251

displaying shopping cart, 248–249

displaying subtotals and totals, 249–251

how it works, 251–252

Web form for, 236

Wizard control for, 235

282

13_588079 bindex.qxd 11/29/05 4:00 PM Page 283

controls (ASP.NET 2.0)

Checkout.aspx ImageField, 114–117
adding delivery address form, 239–245 indexing in tables, 85–87
adding order confirmation page, 248–253 TemplateField, 117–123
adding payment details form, 245–248 CommandField control, delimiters for, 181
adding to ViewOrder.aspx, 253–254 comments, delimiters for, 103
completing the order, 253–254 Commit method (Transaction object), 263
creating, 223, 236 complete solution (Database Explorer)
security modifications, 275–276 accessing, 13

Class Files file (App_Code folder), 197 Criteria grid section, 15
classes (ASP.NET 2.0) versus skeleton solution, 12–13
CartItem Complete StepType value (WizardStep control), 238

creating, 199–200 ConfigurationManager class
properties, 205–206 formatting sales taxes using, 208
storing data from, 207 using with Order Confirmation step, 257
Subtotal property, 209 Configure Data Source Wizard
Total property, 209 accessing and using, 94–95
variable definitions, 203–204 creating stored procedures, 102–104

ConfigurationManager nested displays
formatting sales taxes using, 208 creating connection string, 134
using with Order Confirmation step, 257 Parameter Values Editor dialog box, 138–139

implementing sorting data items, 137–138
events for, 198 with SqlDataSource control, 175–178
methods for, 198 with StoredShoppingCart class, 226–228
properties for, 197 using data views as source, 105

ShoppingCart viewing and testing SQL statements, 99–100
creating and editing, 201–203 Configure the Select Statement dialog box, 175
custom code for, 197–202 connection strings
methods, 209–210 creating, 94–95
properties, 211 nested displays, 134, 154
using, 206 SqlDataAdapter, 154–156

StoredShoppingCart Content Page
adding user controls, 226–232 accessibility testing, 63–64
function of, 219 converting existing pages to, 60–61
how it works, 216–219 creating
methods, 213–216, 225 adding content, 57
with ObjectDataSource, 213, 249 adding styles, 58

storing, 197 code for, 55–56
as templates, 197 Content control, 56, 62

Codd, E. F. (Ted) (programmer), 72 Default.aspx, 56
code, custom formatting, 58

dynamic text-linked user controls, 162–170 for nested displays, 150
for nested displays viewing and debugging, 60

advantages of using, 143–144 ContentPlaceHolder control (Master Page), 39
combining SQL with ASP.NET code, 144–158 ContentPlaceHolderID attribute, 56
XML data binding, 158–162 context menu, icon for, 97

for shopping carts, 197–202 controls (ASP.NET 2.0)
for XML data, 161–162 adding from Toolbox, 41–42

“code inline” Web site design model, 39 BoundField
code line continuation character, 258 with GridView control, 110, 181
code-behind approach, 131 hiding, 182
ColSpan properties (<td> element), 42 Cart, 233
columns CommandField, 181

changing data types for, 111–123 Content
defining explicitly, 181 adding to Content Page, 56
HyperlinkField, 114–115 adding to existing Web pages, 62

283

In
de

x

13_588079 bindex.qxd 11/29/05 4:00 PM Page 284

controls (ASP.NET 2.0) (continued)

controls (ASP.NET 2.0) (continued)
ContentPlaceHolder, 39

DataGrid, 109–110

DataList

modifying for order page, 223

nested displays, 146–149, 156

when to use, 111

DataSet, 156–157

DetailsView

adding rows using, 186–192

applying to Web page, 124, 125

limits, 127

when to use, 111

Div
adding to XML data display pages, 166

converting to XSLT style sheet, 167–168

EditItemTemplate
accessing and binding, 183–184

adding DetailsView control, 187–188

how it works, 184–186

preparing file for, 182–183

for StoredShoppingCart user controls, 253

FormView
applying to Web page, 125

with DeliveryAddress form, 241

limits, 127

when to use, 111

GridView

adding to SqlDataSource control, 179–180

applying grid to Web page, 23–24

automatic data extraction, 108–109

changing column data type, 111–115, 117–123

changing data types using, 111–112

creation of BoundField control by, 110

with DetailsView control, 189–190

displaying XML data using, 161

edit mode, 111–112, 116–117

formatting Web pages using, 25–27

how it works, 180–181

with nested displays, 133–134, 141

Properties dialog box, 119–121

with SqlDataSource control, 110, 144–145

with StoredShoppingCart class, 231–232

Hyperlink
adding to shopping cart display page, 233

Master Page, 46–47

when to use, 109–110

Image

AlternateText property settings, 113

Content Page, 58–59

header and footer templates, 147–148

Master Page, 43–46

property settings, 113

setting path to, 113

when to use, 109–110

Label
binding properties to, 119–121

property settings for templates, 119–122

using with DataList control, 149–150

List, 207

Login

creating and formatting, 271–272
how it works, 272

LoginView, 274

Menu

accessing, 49–50

formatting, 54

when to use, 109–110

MXDataGrid, 24
MXSqlDataSource, 24
ObjectDataSource

with DeliveryAddress form, 240–241

how it works, 230–232

properties overview, 212

SELECT method configuration, 249

with Shopping Cart user control, 248–249

similarity to SqlDataSource control, 212

with StoredShoppingCart user controls, 253

using with data layers, 213

as objects, 109–110
Page

security settings, 275–276

when to use, 109–110

Panel
code for, 246

how it works, 247–248

properties, methods, and events, 110

RadioButtonList, 245–248

Repeater

ItemCommand method, 224

ItemTemplate method, 222

nested displays, 139–142, 143, 157

when to use, 111

Session, 197

Shopping Cart

code for, 248–249
how it works, 251–252

SiteMapDataSource, 51–53
SiteMapPath, 54
SqlDataAdapter

configuring, 179–181

nested displays, 154–156

SqlDataSource
configuring for custom statements, 100–101

configuring for editing, 174–175, 178–181

configuring for nested displays, 134–139

DataReader property, 144–145

ID property, 110

as object, 109–110

precursors, 24

284

13_588079 bindex.qxd 11/29/05 4:00 PM Page 285

databases

properties, methods, and events, 110

SQL commands with, 173–174

with stored procedures, 104

SqlException, 261–262

WebMatrix third-party controls, 24

Wizard

Add/Remove WizardSteps option, 236

autoformatting, 236–237

code for, 250–251

how it works, 237–238

WizardStep
how it works, 237–238

StepType property values, 238

XmlDataSource
adding user controls, 163–165

binding user controls, 168–170

converting to XSLT, 167–168

with DeliveryAddress form, 241–242

displaying XML data, 158–162

with Div control, 166–168

Copy Web page feature (VWD), 276–278
Create or Manage roles link (Security Setup

Wizard), 267
Create User button (Security Setup Wizard), 267
credit card information form (checkout process), 246
Criteria grid section (databases), 15
Criteria pane (Query window), 80
CSS (Cascading Style Sheet)

adding images using, 44

adding to Content Page, 58

applying typefaces using, 35

Ctrl-Alt-S keyboard shortcut, 76
Ctrl-Alt-X keyboard shortcut, 41
CType method versus DirectCast method, 218
currency formats, applying, 26–27, 116
custom SQL statements

creating database views from, 104–105

creating in Query Builder, 95–98

executing, 98–99

reconfiguring SqlDataSource control, 100–101

viewing and testing, 99–100

when to use, 95

D

data

displaying
binding properties for, 120–121
controls overview, 110–117
DetailsView control formatting features, 122–127
FormView control formatting features, 122,

125–127
GridView control formatting features, 111–122
nested displays, 129–131

extracting from tables

custom SQL statement for, 94–101

database view for, 104–105

stored procedures for, 101–104

streaming from databases, 144
data access code, custom

nested displays

advantages of using, 143–144

code for, 144–158

for XML data, 161–162
data access, designing sites for, 36
data layer classes (shopping carts), 213–219
data methods (StoredShoppingCart class),

227–230, 231–232
data sources, accessing

configuring for nested displays, 133

controls for

DataSet property versus DataReader

property, 144

with GridView control, 108–109

SqlDataSource control, 173–174

Data Source Configuration Wizard

adding deliver-to and delivery-cost information using,

241–242

SiteMapDataSource control options, 51–52

specifying in Add Connection dialog box, 16–19

data types (table columns)

changing using GridView control

HyperlinkField columns, 114–115

ImageField columns, 111–114

TemplateField columns, 117–123

Data Type definitions, 203–204

recasting, 218

viewing and editing in Table Designer, 80

Database Diagram feature (Database Explorer window)
defining table relationships, 90–94

enabling during VWD setup, 11–12

Database Explorer (VWD)
accessing, 11–12

Add Connection dialog box, 16–19

context menus

database management tools, 77–78

Open Table Definition option, 78–80

StoredProcedures, 102–103

Views, 104

Data Connections option

Add Connection dialog box, 16

Create New SQL Server Database, 81–82

Database Diagram feature, 90–94

viewing tables in, 76

viewing Web site files in, 21–22

databases. See also tables (database)
accessing data

custom SQL statements for, 95–101

database view for, 104–105

In
de

x

285

13_588079 bindex.qxd 11/29/05 4:00 PM Page 286

databases (continued)

databases (continued)
accessing data (continued)

remote access, 16

stored procedures for, 101–104

and Web site design, 35–36

connecting to, 16–19

creating, 81–82

designing

applying normalization rules, 70–72

creating first table, 70

creating second table, 71

entities, 68

normalization rules, 68

table structure, 68–69

viewing final design, 74–75

editing and updating, 28, 185–186

managing, 77–81

for nested displays, 151

relationship models, 75–76

sorting items in, 15

storing shopping carts in, 196

tables

defining relationships among, 88–93
viewing, 13, 80–81

testing, 12

transaction handling, 262–263

updating values in, 28

viewing, 10–11, 104–105

viewing query results, 16

DataField property (GridView control), 111

DataFormatString field

formatting, 26–27

property settings, 116

DataGrid control, 109–110

DataImageUrlFormatString property, 114

DataList control

ItemBound event, 223

nested displays

binding to the DataSet control, 156

creating and formatting, 146–148

ItemTemplate declaration, 148–149

when to use, 111

DataList Tasks pane, 147–148
DataNavigateUrlFormatString property

(HyperlinkField column), 114–115
DataSet control

binding columns to, 156–157

creating relationships, 156

DataSet object, populating, 154

DataSource attribute (nested displays), 157

DataSourceID property (GridView control), 180

DataSourceMode property (SqlDataSource

control), 144

datetime data type, 80

dbo prefix, 103

debugging Web pages
Content Page, 60

Debugging Not Enabled dialog box, 27–28

enabling debugging process, 27

Decimal data type, 204

declarations (nested displays)

adding Repeater control, 139–140

configuring data sources, 133

configuring SqlDataSource control, 134–140

creating .aspx pages, 132–133

creating GridView links, 133–134

event handler routine, 141–143

default data source, 16

Default.aspx

adding content to, 57

adding pages to, 163

Content Page, 60

creating, 56

executing, 170

viewing, 55

Delete method (ShoppingCart class), 210, 211

Delete Rule actions, 89–90

DELETE tab (StoredShoppingCart class), 228

DeleteCommand property (SqlDataSource

control), 174

DeleteItems method (StoredShoppingCart

class), 213–219

DeleteMethod property (ObjectDataSource

control), 212

DeliveryAddress form (checkout process)

code for, 239–243

how it works, 243–245

testing, 242

Delivery.aspx, 158

DeliveryCharge property (ShoppingCart class),

211, 249–250

deny element (web.config file), 271

Design view (VWD main window)

ContentPlaceHolder control, 56

Master Page

viewing in browser, 34

viewing structural layout, 43

viewing Web pages, 23–24
Designer window (Table Designer), 88–89
designing Web sites

accessibility issues, 32

adding multilingual capability, 32–33

“bread-crumb trails”, 33

“code inline” design model, 39

Content Page

adding content to, 57

adding styles, 58

Content controls, 56

converting existing pages to, 60

creating, 60–63

286

13_588079 bindex.qxd 11/29/05 4:00 PM Page 287

foreign keys (tables)

Default.aspx, 56

formatting, 58

naming conventions, 55–56

uses for, 55

viewing and debugging, 60

data access considerations, 35–36

layout controls, 41–43

Master Page

adding hyperlinks and anchors, 46–47
adding Image controls, 43–46
adding layout controls, 41–44
<body> element and <title> element changes,

40–41

navigation tools, 48–55

removing white spaces, 47–48

server controls, 48

viewing, 48

normalization rules, 72

typefaces, 35

Destination Folder page (VWD Setup Wizard), 4

DetailsView control

adding rows using

accessing and binding, 186–190

how it works, 190–192

when to use, 186

applying to Web page, 124–125

autoformatting, 124

limits, 127

when to use, 111

Diagram pane (Query window), 14, 80

diamond-shaped icon (Query Builder), 97

DirectCast, versus CType method, 218

Div control

adding to XML data display pages, 166

converting to XSLT style sheet, 167–168

download sites
IBM Home Page Reader evaluation version, 64

Pizza Pretty Quick example application, 7

E
Edit Columns dialog box (GridView Tasks dialog box),

26, 111

Edit Fields link (DesignView Tasks pane), 126

Edit Master (Content control Properties), 58

editing data

data source configuration, 174–178

DetailsView control, 186

EditItemTemplate control

accessing and binding, 183–184

how it works, 184–186

preparing file for, 182–183

GridView control

adding to SqlDataSource control, 179–180

enabling, 111

how it works, 180–181

limits, 185–186

EditItemTemplate control
accessing and binding, 183–184

adding DetailsView control, 187–188

how it works, 184–186

preparing file for, 182–183

for StoredShoppingCart user controls, 253

Enable AutoPostBack option (DropDownList Tasks

pane), 241–242

Enable roles for this Web site option (Security Setup

Wizard), 267

Enabling Editing and Deleting (GridView Tasks pane),

179–180

Enabling Paging option (DetailsView Tasks pane), 124

End Template Editing link (GridView Tasks pane), 122

error handling

Debugging Not Enabled message, 27

Try and Catch statements for, 256, 259–260

Eval() code expression, 120

event handler routine

for collecting payment details, 247

nested displays, 141–143, 151–152

event-driven architecture, 109–110

events, implementing classes using, 198

Exception base class, 261–262

exception handling statements, 261–262

Execute Query button (Query Builder), 98

Extensible Markup Language (XML) data

converting to XSLT style sheet, 163–164

display approaches, 157

Extensible Style Language Translation (XSLT), 163–164

F
FetchCart method (StoredShoppingCart

class), 218

Fields dialog box (GridView Tasks dialog box),

25–27, 111

fields, editing (DesignView Tasks pane), 126

File menu

Add New Item dialog box, 132

New File option, 38–39

Open Web Site option, 10–11, 20

Save Table option, 87

files, Web site, uploading and removing, 277–278

Fill method (SqlDataAdapter), 155–156

filtering database items, 15

Finish StepType value (WizardStep control), 238

FinishButtonClick event procedures, 256–260

first normal form (tables), 70

fk prefix, 83

foreign keys (tables)

for order items table, 82

settings for, 92–93

In
de

x

287

13_588079 bindex.qxd 11/29/05 4:00 PM Page 288

formatting

formatting
Cascading Style Sheet

adding images using, 44

adding to Content Page, 58

applying typefaces using, 35

columns, 116–117

Content Pages, 58

DataList control displays, 146–147

Web pages, 111–122

Forms authentication, 268–269

FormView control

applying to Web page, 125

with DeliveryAddress form, 241

limits, 127

when to use, 111

forward slash plus asterisk (/* */) symbol, 102–103

FROM clause (SQL statements), 98

G

GenerateEmptyAltText property settings, 59

generic lists, 207

globalizing Web sites, 32–33

grid controls (ASP.NET 2.0), overview, 24

GridLine property (GridView control), 122

GridView control

applying grid to Web page, 23–24

automatic data extraction, 108–109

changing column data type

HyperlinkField columns, 114–115
ImageField columns, 111–114
TemplateField columns, 117–123

changing data types, 111–112

creation of BoundField control by, 110

with DetailsView control, 189–190

displaying XML data, 161

edit mode

deleting columns, 111–112

editing and deleting data, 179–181

formatting columns, 116–117

formatting Web pages, 25–27

nested displays

raising RowDataBound event, 141

selecting formatting templates, 133–134

Properties dialog box, 119–121
with SqlDataSource control, 110, 144–145
with StoredShoppingCart class, 231–232

GridView Tasks pane
Auto Format dialog box, 25–26

creating and adding controls, 228–229

Edit Columns dialog box, 26, 111

Edit Templates option, 183

editing mode, 119

Enabling Editing and Deleting, 179–180

enabling page control features, 24–25

End Template Editing link, 122

Fields dialog box, 26–27, 117–118

formatting templates, 100–101, 229–230

H

header and footer templates, 35, 162–170
HTML (Hypertext Markup Language) tags, 39–41
Hyperlink control

adding to shopping cart display page, 233

Master Page, 46–47

when to use, 109–110

HyperlinkField column, 114–115
Hypertext Markup Language (HTML) tags, 39–41

I

IBM Home Page Reader, evaluation version

download, 64

icons

diamond shaped, in Query Builder, 97

key symbol, 84

IIS (Internet Information Services), 8

Image control

AlternateText property settings, 113

with DataList control, 147–148

image file path settings, 113

ImageUrl property settings, 113

Master Page

adding, 58–59

adding images using, 42–44

logo-related settings, 45–46

“Skip To” property settings, 44–45

when to use, 109–110
ImageField column properties, 112–114

ImageUrl property (Image control), 113

Imports statement, 203

index columns, creating, 85–87

Index/Keys dialog box, 85–86

inheritance, 261

INNER JOIN clause (SQL statements), 98

Insert method (ShoppingCart class),

209–210, 211

INSERT tab (StoredShoppingCart class), 228

InsertCommand property (SqlDataSource

control), 174

InsertItems method (StoredShoppingCart

class), 213–219

InsertMethod property (ObjectDataSource

control), 212

Installations Options page (VWD Setup Wizard), 3

installing

Pizza Pretty Quick example application, 7–9
Visual Web Developer 2005 Express Edition, 3–7

Integer data type, 204

288

13_588079 bindex.qxd 11/29/05 4:00 PM Page 289

L

navigation tools and controls

IntelliSense feature, 62

interface, SQL Server 2005, 16

Internet Information Services (IIS), 8

intrinsic objects, defined, 212

IsAuthenticated property (Identity object), 276

IsPostBack property (Page control), 275–276

IsUnique property (table indexes), 86

Item Template declaration (DataList control),

148–149

ItemDataBound event (DataList control), 223

ItemIndex method, 209–210

ItemName property (GridView control), 111–112

Items property (ShoppingCart class), 211

ItemTemplate declaration

with FormView control, 127

with Repeater control, 140, 221

J
joining line (Database Diagram window), 91–92

K
key symbol icon, 84

keyboard shortcuts

Database Explorer access, 76

debugging process, 27

Toolbox access, 41

Label control
with DataList control, 149–150
template property settings, 119–122

Label1 DataBindings dialog box, 119

Label2 DataBindings dialog box, 120–121

Label3 DataBindings dialog box, 120–121

languages, multilingual capability, 32–33

layout controls (Master Page)

code listing for, 42–43

HTML table approach, 41–44

structural layout, 43

links
SiteMapDataSource control, 52–53

for tables, 70–71, 73

text, as navigation aid, 33

List control, generic type, 207

ListItem Collection Editor window, 245–246

location element (web.config file), 271

Login.aspx, Login control (web.config file)

code for, 271–272

how it works, 272

LoginView control (menus), 274

logos, adding to Master Page, 45–46

Logout link (menus), 274

M
Master Page

accessibility testing, 63–64

adding existing pages to, 60–63

ASP.NET 2.0 support, 34

creating

accessing skeleton solution, 37–38
adding hyperlinks and anchors, 46–47
adding Image controls, 43–46
adding layout controls, 41–44
adding Master Page to Web site, 38–39
<body> element and <title> element changes,

40–41

navigation controls, 48–55

removing white spaces, 47–48

structural layout, 43

viewing HTML code, 39–40

using as template, 33

viewing, 48, 56–57

MasterPageFile attribute (@Page directive), 56

Menu control

formatting, 54

Menu Item Editor dialog box, 49–50

when to use, 109–110

Menu Tasks pane
Auto Format dialog box, 54

Choose Data Source drop-down list, 51

Edit Menu Items option, 49–50

menus
accessing Admin role from, 273–274

accessing menu items data table, 94–101

Menu.aspx.txt, 148–149

methods, function of, 198

Microsoft Access databases, connecting to, 16–17

Microsoft Web Accessibility Initiative (WAI)

Web site, 32

money data type, 80

MSDN Express Library, enabling, 3

MXDataGrid control (WebMatrix), 24

MXSqlDataSource control (WebMatrix), 24

N

namespaces, 32–33

naming conventions, 138

NavigateUrl property (Hyperlink control), 120

navigation tools and controls

automatic displays, 162–170

bars and menus, 35

“bread-crumb trails”, 33

Master Page

Menu control options, 49–50

XML sitemap file for, 51–55

text links, 33

In
de

x

289

13_588079 bindex.qxd 11/29/05 4:00 PM Page 290

nested displays

nested displays
advantages of using, 129–131
custom code for

advantages of using, 143–144
combining SQL with ASP.NET code, 144–158

DataList control approach
creating and formatting the control, 146–148
database access code, 151
how it works, 145

declarative approach
adding Repeater control, 139–140
code listing for, 140
configuring data sources, 133
configuring SQLDataSource control, 134–140
creating .aspx pages, 132–133
creating GridView links, 133–134
event handler routine, 141–143

dynamic text-linked user controls, 162–170
event handler routines, 153–157
for XML data

adding and formatting Grid control, 160–161
approaches to, 157
creating XmlDataSource control, 158–160
editing code sections, 161–162

NETWORK SERVICE account setup, 8
New constructor (CartItem class), 204–205
New Query option (Database Explorer), 13
No Action option (Delete and Update Rules), 90
normalization rules

applying to database, 70–72

function, 68, 130–131

O
Object data type, 218
ObjectDataSource control

with DeliveryAddress form, 240–241
properties overview, 212
with Shopping Cart user control, 248–249
similarity to SqlDataSource control, 212
with StoredShoppingCart control

how it works, 230–232, 253

SELECT method configuration, 249

when to use, 213

object-oriented programming

architecture overview, 109–110

use of properties in, 206

objects (ASP.NET 2.0)
class instances, 197

examples, 109

intrinsic objects, 212

overview, 109–110

properties, methods, and events, 109

ODBC (open database connectivity) data sources,
16–17

one-to-many database relationship model, 75–76

Open a Web Site dialog box (VWD), 20–21
open database connectivity (ODBC) databases, 16–17
Open Web Site window, 277–278
Options dialog box (VWD Tools menu), 5–6
Oracle database connections, 16–17
ORDER BY clause (nested displays)

code listing for, 154

function, 137–138

parameter settings, 138–139

Order Complete step (checkout process)
adding thank you text, 253

success and failure messages, 254

viewing ViewOrder page, 255

Order Confirmation step (checkout process)
displaying items purchased, 248–249

displaying subtotals and totals, 249–251

testing, 251–252

Order page (shopping cart)
code for, 219–222

designing, 196–197

testing, 233

Order.aspx
creating, 190

formatting, 220–221

Order.aspx.vb.text, 220

ordering process, designing for, 235

P
Page control

Master Page, 34

security settings, 275–276

when to use, 109–110

@Page directive, 56
Page_Load event handler, 153–157
page-rule.gif file, 58–59
Panel control

code for, 246

how it works, 247–248

Parameter Values Editor dialog box (Configure Data
Source dialog box), 138–139

Parameters collection (SqlCommand object),
257–259

parent table, specifying relationships with, 89–90
path

to images subfolder, 113

for VWD, default, 4

Payment form (checkout procedure), 245–246
permissions, access (Internet Information Services),

8–9
Pizza Pretty Quick (PPQ) example application. See also

shopping carts
accessing files for, 7
database design

menu items data table, 68–72

order items table, 81–87

orders and customer data table, 72–74

290

13_588079 bindex.qxd 11/29/05 4:00 PM Page 291

security tools

displays, 74

extracting and displaying menu items, 94–101

installing, 7–9

Master Page, 37–38

nested displays, 132–143

publishing on Web, 276–277

security tools, 265–268

viewing files and databases for, 21–22

Web site

adding Web pages, 22–23

deleting files, 278

formatting Web page displays, 24–30

publishing files on, 276–277

pop-up task panes, 25

port numbers (Web servers), 29

PPQ. See Pizza Pretty Quick (PPQ) example application

primary keys (tables)

changing, cautions about, 90

dragging into foreign key column, 92

uses for, 70

using three columns for, 84–85

viewing and editing in Table Designer, 79

Private variables
advantages of using, 211

defined, 203–204

Profile feature (shopping cart), 196

properties. See also specific classes

binding, 120–121

implementing classes using, 198

for menu items, 49–50

read-only, creating, 208

shopping cart classes, 200–202

for tables, viewing, 79

Q
queries (databases)

custom SQL statements, 95

generating in Query Editor, 14

viewing results from, 16

Query Builder window
accessing, 13, 80, 95–96

Add Table dialog box, 96

Execute Query button, 98

generating queries in, 14

SQL queries

custom, 97–98

executing, 98–99

syntax, 98

R

RadioButtonList control

AutoPostBack property, 245

collecting payment information, 247–248

Panel control, 246

Read method (StoredShoppingCart class),

213, 216

ReadItems method (StoredShoppingCart class),

213, 217

read-only properties, 208

recasting data types, 218

relationship models (databases), 75–76, 88–93

relationships, table

defining using Database Diagram feature, 90–94

defining using Query Builder, 97–98

defining using Table Designer, 88–90

remote servers
connecting to, 16–18

publishing Web sites, 277–278

using data from, 16

RemoveAt method (shopping cart), 210–211

removing files from remote sites, 278

Repeater control

ItemCommand method, 224

ItemTemplate method, 222

nested displays

adding, 139–140

event handler routine, 141–142

function, 157

results of, 143

when to use, 111

results of queries, viewing, 16

Role Manager service, enabling, 268

Roles (security), 266–267

Rollback method (Transaction object), 263

RowDataBound event, 141

rows

adding to tables, 186–190

in Web pages, 27–28

S

Safe Mode, disabling simple file sharing, 9

sales tax

displaying during checkout, 249–250, 252

SalesTax property, 208–209, 211

SalesTaxPercent property (ShoppingCart class),

211

sans-serif typeface, 35

second normal form (tables), 70

Security Setup Wizard (Web Site Administration Tools),

266–267

Security Tab (Web Site Administration Tool), 267

security tools. See also shopping carts

adding to checkout page, 275–276

adding to menu, 273–274

authentication

code for, 266–269

defined, 265

authorization

code for, 269–271

defined, 265

In
de

x

291

13_588079 bindex.qxd 11/29/05 4:00 PM Page 292

security tools (continued)

security tools (continued)
Internet Information Services (IIS) access permissions,

8–9

Login control, 271–272

Roles, 266

securityTrimmingEnabled attribute (LoginView

control), 274

SELECT clause (SQL statements), 98

SELECT method configuration (DeliveryAddress

form), 240

SELECT tab (StoredShoppingCart class), 228

Select Users or Groups dialog box (App_Data

Properties), 8–9

SelectCommand property (SqlDataSource control),

173–174

SelectMethod property (ObjectDataSource

control), 212

server controls, 48

servers, remote, accessing data from, 16

service-oriented architecture (SOA) model, 36

Session control (shopping carts)

advantages of using, 197

code for, 212

Set Default action (Delete and Update Rules), 89

Set Null action (Delete and Update Rules), 89

Set Primary Key, 84–85

Setup Wizard (Visual Web Developer 2005 Express

Edition), 3–7

Shopping Cart user control

code for, 248–249

how it works, 251–252

shopping carts
adding items to from order page, 221

adding sale tax variable, 208

clearing, 260

creating

code for, 198–203

how it works, 203–212

order pages, 219–221

custom classes for, 197

DataTable limits, 197

display page

code for, 232–234

how it works, 234

error handling during Order Confirmation step,

259–260

storing items in the cart, 207

storing the cart

choosing location for, 196–197

data layer classes, 213–219

ObjectDataSource control for, 212

using Session for, 212

subtotal calculations, 209

ShoppingCart class

applying, 206

creating and editing, 201–203

methods

Delete, 210

Insert, 209–210

Update, 210

properties overview, 211

Show all setting checkbox (VWD Optional dialog

box), 6

ShowHeader property (Image control), 114, 122

ShowMenu.aspx

creating, 150–153

how it works, 153–157

Simple File Sharing (Windows XP), disabling, 9

SiteMapDataSource control

adding link levels, 52

function, 51

SiteMapPath control, 54

skeleton solution (Database Explorer)

accessing, 20, 22

versus complete solution, 12–13

“Skip To” Properties (Image control), 44–45

SOA (service-oriented architecture) model, 36

Solution Explorer window (VWD)

accessing, 11

adding Master Page, 38–39

user controls for shopping cart, 225

viewing Web pages, 23

viewing Web site files, 21–22

sorting data
results of custom SQL statements, 98

using Criteria grid for, 15

SortOrder column, 98

SortType column, 98

Source view (VWD main window), 23

sp prefix, 103

SQL pane (Query window), 80

SQL Server 2005 Express Edition

configuration options, 4

connecting to MDF database file, 19

creating new databases, 81–82

features, 11–12

installing with Visual Web Developer, 3

naming conventions, 138

parameter settings, 138

SQL (structured query language) statements/queries
copying to clipboard, 102

creating database views from, 104–105

custom

creating using Query Builder, 95–98

executing, 98–99

reconfiguring SqlDataSource control, 100–101

when to use, 95

generating in Query Editor, 14

for nested displays

code listing for, 154

ItemType specification, 155

ORDER BY clause, 137–138

292

13_588079 bindex.qxd 11/29/05 4:00 PM Page 293

TemplateField columns

setting parameters and testing, 138–139
WHERE clause, 135–137

for SqlDataSource control binding, 176–178
SqlCommand object (Parameters collection),

257–258
SqlDataAdapter control

configuring, 179–181
nested displays

connection strings, 154

extracting data from database, 155–156

ItemType specification, 155

SqlDataSource Configuration Wizard, 187
SqlDataSource control

configuring

for custom statements, 100–101

for editing, 174–175, 178–181

nested displays, 134–139

DataReader property, 144–145

ID property, 110

as object, 109–110

precursors, 24

properties, methods, and events, 110

SQL commands with, 173–174

with stored procedures, 104

SqlDataSource Tasks pane
Configure Data Source link, 102

Configure Data Source Wizard, 94–95

SqlException class, 261–262
Src property (image files), 45
Start Debugging button (VWD Toolbar), 27
Start Page (VWD)

Open a Web Site option, 20–21

Tools menu, 5–6

StepType properties (WizardStep control), 238
stored procedures

creating, 102–103

naming and saving, 103–104

with Order Confirmation step, 257

uses for, 101–102

StoredShoppingCart class
how it works, 216–219
methods

InsertItem method, 225

overview and code for, 213–216

with order confirmation process, 249

relationship to ObjectDataControl, 213

user controls

code for, 226–230

how they work, 230–232

String data type, 204
structural layout (Master Page)

code listing for, 42–43

viewing, 43

structured query language. See SQL (structured query
language) statements/queries

Style Builder dialog box, 167–168

Style property settings, 58
styles, applying automatically, 25–26
subtotal calculations

code for, 250–251

displaying, 209

Subtotal property (ShoppingCart class), 209, 211
System.Globalization namespace, 32–33

T

Table control, adding to Master Page, 41–42
Table Designer (VWD)

accessing, 78

context menu, 80–81

creating tables

defining relationships, 88–90

Index/Keys options, 85

Set Primary Key option, 84–85

viewing properties, 79

viewing tables in, 78
Tables and Columns dialog box (Database Diagram

window), 92
Tables and Columns Specification property

(Foreign Key Relationships dialog box), 88–89
tables (database)

accessing data in

custom SQL statement for, 94–101

database view for, 104–105

setting cell properties, 240

stored procedures for, 101–104

creating

applying normalization rules, 70

designing structure for, 68–69

order items, 81–87

process for, 72–74

index columns, 85

linking, 70–71

multiple, 130–131

primary key

cautions about changing, 90
creating, 70–71

querying, 96–97

saving table definitions, 87

viewing

Query Builder for, 80–81

Table Designer for, 78–80

Tabular Data Stream (TDS), 16
<td> elements

accessing shortcut menus using, 58

ColSpan properties, 42

Template Editing Mode pane
formatting StoredShoppingCart class controls,

229–230

nested display settings, 134

property settings, 119–122

TemplateField columns, 117–118

In
de

x

293

13_588079 bindex.qxd 11/29/05 4:00 PM Page 294

templates

templates
advantages of using, 33

classes as, 197

with FormView control, 126–127

with GridView control, 133–134

TestMenu2.aspx
changing column types, 111, 118, 124

converting to Content Page, 60–61

creating and testing, 94, 104–105

TestMenu3.aspx
creating and testing, 131–133

TestMenu3.aspx.vb, 141

text links, 35

Text property, binding to columns, 120

TextBox controls (DeliveryAddress form), 240

third normal form (tables), 70–72

tilde (~) symbol, 56

<title> element (Master Page), changing content, 40

Title property (Image control), 45–46

Toolbox (VWD main window)

accessing, 41

adding controls using, 41–42

Data section, 51

Image control, 43–44

Navigation section, 49–50

Start Debugging button, 27

viewing ASP.NET controls in, 23

total costs, displaying during order confirmation,
250–251

Total property (ShoppingCart class), 209, 211

transaction handling, 262–263

Transaction object, 263

Transact-SQL (T-SQL) commands, 14

Try statement

error handling using, 156, 256

exception handling using, 261–262

with Order Confirmation step, 259

transaction handling using, 263

two-way bindings, 120

typefaces, 35

TypeName property (ObjectDataSource

control), 212

U
underscore (_) symbol, 258

Update link (Web pages, edit mode), 29

Update method

ShoppingCart class, 210, 211

StoredShoppingCart class, 213, 217–219

Update Rule actions, 89–90

UPDATE tab (StoredShoppingCart class), 228

UpdateCommand property (SqlDataSource

control), 174

UpdateItems method (StoredShoppingCart class),
213–219

UpdateMethod property (ObjectDataSource
control), 212

uploading Web site to server, 277–278

usability, 273–274

user accounts

adding, 268

creating using Security Setup Wizard, 267

user controls, custom
converting Web page sections to, 170

for generating text links, 35

with StoredShoppingCart class

code for, 226–230

function, 225–226

ObjectDataSource control for, 230–232

text-linked, for XML data displays

converting XML with XSLT style sheet, 163–164

creating and binding the control, 164–170

User object, Identity property, 276

V

VAlign property settings, 58–59

values (databases), updating, 28

View menu

accessing Toolbox, 41

Database Explorer, 11–12

ViewOrder.aspx
adding Checkout.aspx to, 253–254
creating and viewing, 254–255

Visual Web Developer 2005 Express Edition (VWD)
Database Explorer, 11–12, 76

download site, 3

features, 1

installing, 3–7

Master Page support, 34

publishing Web sites, 276–277

Query Editor, 13

Start Page, 5

unlocking and moving windows, 12

viewing PPQ database, 10–11

W

WAI (Microsoft Web Accessibility Initiative), 32

Web form (checkout process), 236

Web Form option (File menu, Add New Item), 132

Web pages

debugging, 26

designing, 196–197

existing, converting to Content Pages, 60–63

formatting

controls and bound properties for, 119–121

GridView control for, 25–27

294

13_588079 bindex.qxd 11/29/05 4:00 PM Page 295

XSLT

highlighting rows in, 27
nested displays

advantages of using, 129–131

XML data in, 158–170

sorting rows in, 28

XML data displays, 162–170

Web servers
alternate port numbers for, 29

publish Web sites to, 276–277

Web Site Administration Tool
accessing, 266

Security Tab, 266

Web sites
Microsoft Accessibility Initiative, 32

Microsoft Visual Web Designer, 3

Web User Control option (Solution Explorer, Add New
Item)

accessing, 164

modifying for shopping cart controls, 226

web.config file
authentication using, 268–269

authorization using, 269–271

creating, 27–28, 266–268

login page, 271–272

WebMatrix third-party controls, 24
Web site menu (VWD), 276–277
Web.sitemap file, 51–52
WHERE clause (nested displays)

code for, 154

selecting columns for, 135–137

white space removal code, 47–48
Windows Server 2003, access permissions, 8
Windows XP Home Edition, 9
Wizard control

Add/Remove WizardSteps option, 236

autoformatting, 236–237

subtotal and total calculations

code for, 250–251

how it works, 237–238

Wizard Tasks pane
adding DeliveryAddress form, 239–240

Add/Remove WizardSteps option, 236

autoformatting Wizard control, 236–237

WizardStep controls
how they work, 237–238

StepType property values, 238

Write permissions, 9

X
XML (Extensible Markup Language) data

converting to XSLT style sheet, 163–164

display approaches, 157

XML sitemap file, 51–55
XmlDataSource control

adding user controls to, 163–165

binding user controls to, 168–170

with DeliveryAddress form, 241–242

displaying data

adding and formatting Grid control, 160–161

building Web page, 158–162

Div control, 166–168

XmlDataSource Tasks pane

adding and formatting Grid control, 159–161

configuring Data Source from, 158–159

xp prefix, 103
XPath statement, 168–169
XSLT (Extensible Style Language Translation), convert­

ing XML to, 163–164

In
de

x

295

13_588079 bindex.qxd 11/29/05 4:00 PM Page 296

14_588079 lic.qxd 11/29/05 4:01 PM Page 297

14_588079 lic.qxd 11/29/05 4:01 PM Page 298

This program was reproduced by Wiley Publishing, Inc. under a special arrangement with Microsoft
Corporation. For this reason, Wiley Publishing, Inc. is responsible for the product warranty. If your
diskette is defective, please return it to Wiley Publishing, Inc., who will arrange for its replacement.
PLEASE DO NOT RETURN IT TO OR CONTACT MICROSOFT CORPORATION FOR SOFTWARE
SUPPORT. This product is provided for free, and no support is provided for by Wiley Publishing, Inc. or
Microsoft Corporation. To the extent of any inconsistencies between this statement and the end user
license agreement which accompanies the program, this statement shall govern.

	cover.pdf
	page_c2.pdf
	page_r1.pdf
	page_r2.pdf
	page_r3.pdf
	page_r4.pdf
	page_r5.pdf
	page_r6.pdf
	page_r7.pdf
	page_r8.pdf
	page_r9.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_1.pdf
	page_2.pdf
	page_3.pdf
	page_4.pdf
	page_5.pdf
	page_6.pdf
	page_7.pdf
	page_8.pdf
	page_9.pdf
	page_10.pdf
	page_11.pdf
	page_12.pdf
	page_13.pdf
	page_14.pdf
	page_15.pdf
	page_16.pdf
	page_17.pdf
	page_18.pdf
	page_19.pdf
	page_20.pdf
	page_21.pdf
	page_22.pdf
	page_23.pdf
	page_24.pdf
	page_25.pdf
	page_26.pdf
	page_27.pdf
	page_28.pdf
	page_29.pdf
	page_30.pdf
	page_31.pdf
	page_32.pdf
	page_33.pdf
	page_34.pdf
	page_35.pdf
	page_36.pdf
	page_37.pdf
	page_38.pdf
	page_39.pdf
	page_40.pdf
	page_41.pdf
	page_42.pdf
	page_43.pdf
	page_44.pdf
	page_45.pdf
	page_46.pdf
	page_47.pdf
	page_48.pdf
	page_49.pdf
	page_50.pdf
	page_51.pdf
	page_52.pdf
	page_53.pdf
	page_54.pdf
	page_55.pdf
	page_56.pdf
	page_57.pdf
	page_58.pdf
	page_59.pdf
	page_60.pdf
	page_61.pdf
	page_62.pdf
	page_63.pdf
	page_64.pdf
	page_65.pdf
	page_66.pdf
	page_67.pdf
	page_68.pdf
	page_69.pdf
	page_70.pdf
	page_71.pdf
	page_72.pdf
	page_73.pdf
	page_74.pdf
	page_75.pdf
	page_76.pdf
	page_77.pdf
	page_78.pdf
	page_79.pdf
	page_80.pdf
	page_81.pdf
	page_82.pdf
	page_83.pdf
	page_84.pdf
	page_85.pdf
	page_86.pdf
	page_87.pdf
	page_88.pdf
	page_89.pdf
	page_90.pdf
	page_91.pdf
	page_92.pdf
	page_93.pdf
	page_94.pdf
	page_95.pdf
	page_96.pdf
	page_97.pdf
	page_98.pdf
	page_99.pdf
	page_100.pdf
	page_101.pdf
	page_102.pdf
	page_103.pdf
	page_104.pdf
	page_105.pdf
	page_106.pdf
	page_107.pdf
	page_108.pdf
	page_109.pdf
	page_110.pdf
	page_111.pdf
	page_112.pdf
	page_113.pdf
	page_114.pdf
	page_115.pdf
	page_116.pdf
	page_117.pdf
	page_118.pdf
	page_119.pdf
	page_120.pdf
	page_121.pdf
	page_122.pdf
	page_123.pdf
	page_124.pdf
	page_125.pdf
	page_126.pdf
	page_127.pdf
	page_128.pdf
	page_129.pdf
	page_130.pdf
	page_131.pdf
	page_132.pdf
	page_133.pdf
	page_134.pdf
	page_135.pdf
	page_136.pdf
	page_137.pdf
	page_138.pdf
	page_139.pdf
	page_140.pdf
	page_141.pdf
	page_142.pdf
	page_143.pdf
	page_144.pdf
	page_145.pdf
	page_146.pdf
	page_147.pdf
	page_148.pdf
	page_149.pdf
	page_150.pdf
	page_151.pdf
	page_152.pdf
	page_153.pdf
	page_154.pdf
	page_155.pdf
	page_156.pdf
	page_157.pdf
	page_158.pdf
	page_159.pdf
	page_160.pdf
	page_161.pdf
	page_162.pdf
	page_163.pdf
	page_164.pdf
	page_165.pdf
	page_166.pdf
	page_167.pdf
	page_168.pdf
	page_169.pdf
	page_170.pdf
	page_171.pdf
	page_172.pdf
	page_173.pdf
	page_174.pdf
	page_175.pdf
	page_176.pdf
	page_177.pdf
	page_178.pdf
	page_179.pdf
	page_180.pdf
	page_181.pdf
	page_182.pdf
	page_183.pdf
	page_184.pdf
	page_185.pdf
	page_186.pdf
	page_187.pdf
	page_188.pdf
	page_189.pdf
	page_190.pdf
	page_191.pdf
	page_192.pdf
	page_193.pdf
	page_194.pdf
	page_195.pdf
	page_196.pdf
	page_197.pdf
	page_198.pdf
	page_199.pdf
	page_200.pdf
	page_201.pdf
	page_202.pdf
	page_203.pdf
	page_204.pdf
	page_205.pdf
	page_206.pdf
	page_207.pdf
	page_208.pdf
	page_209.pdf
	page_210.pdf
	page_211.pdf
	page_212.pdf
	page_213.pdf
	page_214.pdf
	page_215.pdf
	page_216.pdf
	page_217.pdf
	page_218.pdf
	page_219.pdf
	page_220.pdf
	page_221.pdf
	page_222.pdf
	page_223.pdf
	page_224.pdf
	page_225.pdf
	page_226.pdf
	page_227.pdf
	page_228.pdf
	page_229.pdf
	page_230.pdf
	page_231.pdf
	page_232.pdf
	page_233.pdf
	page_234.pdf
	page_235.pdf
	page_236.pdf
	page_237.pdf
	page_238.pdf
	page_239.pdf
	page_240.pdf
	page_241.pdf
	page_242.pdf
	page_243.pdf
	page_244.pdf
	page_245.pdf
	page_246.pdf
	page_247.pdf
	page_248.pdf
	page_249.pdf
	page_250.pdf
	page_251.pdf
	page_252.pdf
	page_253.pdf
	page_254.pdf
	page_255.pdf
	page_256.pdf
	page_257.pdf
	page_258.pdf
	page_259.pdf
	page_260.pdf
	page_261.pdf
	page_262.pdf
	page_263.pdf
	page_264.pdf
	page_265.pdf
	page_266.pdf
	page_267.pdf
	page_268.pdf
	page_269.pdf
	page_270.pdf
	page_271.pdf
	page_272.pdf
	page_273.pdf
	page_274.pdf
	page_275.pdf
	page_276.pdf
	page_277.pdf
	page_278.pdf
	page_279.pdf
	page_280.pdf
	page_281.pdf
	page_282.pdf
	page_283.pdf
	page_284.pdf
	page_285.pdf
	page_286.pdf
	page_287.pdf
	page_288.pdf
	page_289.pdf
	page_290.pdf
	page_291.pdf
	page_292.pdf
	page_293.pdf
	page_294.pdf
	page_295.pdf
	page_296.pdf
	page_297.pdf
	page_298.pdf

