M

Programmer to Programmer

Beginning

InfoPath
2003

F. Scott Barker

Updates, source code, and Wrox technical support at www.wrox.com

Beginning InfoPath™ 2003

Beginning InfoPath™ 2003

E. Scott Barker

WILEY

Wiley Publishing, Inc.

Beginning InfoPath™ 2003

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 0-7645-7948-7

Manufactured in the United States of America

10987654321

1B/ST/QS/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, e-mail: brandreviewewiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTIC-
ULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMO-
TIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please con-
tact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Control Number: 2004029500

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affil-
iates, in the United States and other countries, and may not be used without written permission.
InfoPath is a trademark of Microsoft Corporation in the United States and/or other countries. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

www.wiley.com

About the Author

E. Scott Barker, a Microsoft MVP, has worked as a developer in the database field for over 16 years, and
with Visual Basic, SQL Server, and Microsoft Access for the last 12 years. Scott is currently working on a
major InfoPath project for Toyota, converting a largely manual paper form production quality control
system to InfoPath forms. Scott worked at Microsoft in the Access and Foxpro teams. Since leaving he
has been contracting with Microsoft developing in-house tools used throughout Microsoft. Scott is a
writer for a number of VB/Office magazines as well as a columnist for DotNetJunkies.com and is the
author of a number of books.

Credits

Acquisitions Editor
Jim Minatel

Development Editor
Howard A. Jones

Senior Development Editor
Kevin Kent

Production Editor
Pamela Hanley

Technical Editor
Wiley-Dreamtech India Pvt Ltd

Copy Editor
Foxxe Editorial

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Kristie Rees

Graphics and Production Specialists
Carrie A. Foster

Lauren Goddard

Denny Hager

Joyce Haughey

Amanda Spagnuolo

Quality Control Technicians
Leeann Harney

Jessica Kramer

Susan Moritz

Proofreading and Indexing
TECHBOOKS Production Services

I want to dedicate this book to my oldest son, who has fast become a man.
Chris, stay true on the path and there will be nothing you can’t accomplish!

Contents

Introduction xXiii
Chapter 1: InfoPath — The Journey Begins 1
What Is InfoPath, and How Can It Be Used? 1
The Challenge of Forms Management 1
Microsoft’s Solution: InfoPath 2
Try It Out: Opening the Sample Absence Request InfoPath Form 2

Side Trip: Installing the InfoPath 2003 Service Pack 1.1 4
InfoPath Features 4
Features Introduced in Service Pack 1.1 5

The InfoPath Form Process 6
Ways to Use InfoPath 7
Single User 7
Published for Others’ Use 8
Collaborative Efforts 8
Ways to Connect Data to InfoPath 8
Deployment Requirements for Designing and Filling Out InfoPath Forms 8
Taking a Look at a Typical InfoPath Form 9
Try It Out: Testing the Features of the Absence Request Form 10
Summary 12
Exercises 12
Chapter 2: Getting Started Designing with InfoPath 13
Touring the InfoPath Designer 13
Overview of the Task Panes 15
Layout Task Pane 15
Control Task Pane 16

Data Source Task Pane 17
Views Task Pane 18
Creating Your First InfoPath Form 19
Try It Out: Creating a New InfoPath Form 19

Exploring the Ways of Designing a New Form 21

Contents

Working with Tables 22
Adding a Table 22

Try It Out: Adding the Tables 22

Resizing Table Columns and Rows 23

Try It Out: Resizing Elements 24

Setting Fonts and Adding Text to the Form 24

Try It Out: Setting Font Information and Adding Text 25

Adding Controls to the Form 25

Try It Out: Adding Controls 26

Setting a Color Scheme 26

Try It Out: Set the Color Scheme 26
Summary 27
Exercises 28
Chapter 3: Understanding Data 29
A Quick Database Primer 29
Databases in the Real World 30
Database Models 31
Flat File Model Databases 31
Relational Database Model 32
Tables: Where Data is Stored 32

It's All about Relations 34
Referential Integrity 34
Normalizing Your Data 35
Working with Various Databases 35
File Server versus Client Server 36
Front and Backends 36
Microsoft Access 36
Benefits and Issues of Microsoft Access 37
Microsoft Access Objects Used with InfoPath 37
Microsoft SQL Server 38
Benefits and Issues of Microsoft SQL Server 38
Microsoft SQL Server Objects Used with InfoPath 39
Other Databases 40
Looking Briefly at XML 40
Try It Out: Examining an XML Document 42
Introduction to Web Services 42
Web Services Overview 42
Using Web Services with InfoPath 43
Summary 44
Exercises 44

Xii

Contents

Chapter 4: Creating an InfoPath Form from an Existing Data Source 45
Starting the Form Based on a Data Source 45
Specifying the Right Data for the Right Job 46
Working with the Data Connection Wizard 46
Try It Out: Creating the Form and Specifying the Data Source 47
Working with the Created InfoPath Form 51
A Look at the Features of the New Form 51
Try It Out: Filling in the Form Header Information 52

Data Source Task Pane 53
Try It Out: Displaying the Fields in the Data Source 53

Query Field Section 54
Adding the fields 54

Try It Out: Adding Fields to the Query Field Section 54

Using More Than One Query Field 55

Data Field Section 55
Adding Fields One at a Time 55
Adding Repeating Sections of Fields to the Form 55

Try It Out: Adding Fields to the Data Field Section 56

New Record and Run Query Command Buttons 56
Try It Out: Examining to Run Query Command Button Action 57
Previewing the Form 58
Try It Out: Querying a Customer Record by Region 58

Try It Out: Modify a Customer’s Record 59

Try It Out: Adding a New Customer 60
Updating a Form’s Data Source 61
Try It Out: Adding a Sort Order to tbiCustomers 62
Summary 63
Exercises 64
Chapter 5: Utilizing XML and Web Service Data Sources 65
XML Overview 65
What Is XML? 66
XML Documents 66
Standard XML Files 66
The XML Data Document (*.xml) 68

The Schema File (*.xsd) 69

Try It Out: Exporting tbIShippers from Access to XML 70
Utilizing XML Data in InfoPath 71
Why Use an XML Data Source? 71

Xiii

Contents

Creating an InfoPath Form Using an Existing XML Document 72
Try It Out: Specifying a XML Data Source 72

Try It Out: Adding the Fields 74

Utilizing Data with an XML Data Source 75
Try It Out: Adding a Data Source Using an XML Document 75

A Brief Look at the XML Used for InfoPath Forms 80
Try It Out: Examining the Files 80
Summary 81
Exercises 81
Chapter 6: Working with Controls in General 83
Using the Right Control for the Right Job 83
Looking at the Starting Form for the Chapter 85
Try It Out: Open the Sample Form 86
Working with the Property Sheet 86
Setting the Default Value of a Control 87
Using Literal Values 87
Try It Out: Adding a Default Value to Quantity 87

Using Formulas 89
Try It Out: Using a Formula for Order Date Default Value 90
Working with Rules at the Control Level 92
What Are Rules and When Are They Used? 92
Creating Rules 93
Try It Out: Adding a Second Rule 96
Formatting Fields 98
Using Standard Formatting 98
Try It Out: Formatting the UnitPrice for Currency 929
Conditional Formatting 100
Formatting Attributes 100
Display Properties of a Text Box 100

Try It Out: Creating Conditional Formatting 101
Summary 102
Exercises 102
Chapter 7: Looking at Some Useful Controls and Techniques 103
Using Expression Boxes with Formulas 103
Try It Out: Adding an Expression Box Based on a Formula 104
Utilizing Command Buttons 106
Try It Out: Adding a Delete Button 107

Xiv

Contents

Utilizing Drop-Down List Boxes on the Form 109
Adding a Drop-Down List Box to a Form 109
Try It Out: Adding the Field from the Data Source as a Text Box, and then Changing It 110

Try It Out: Adding a Drop-Down List Box and Binding it to a Field 111
Specifying List Box Data Sources 112
Working with an Additional Data Source 113

Try It Out: Specifying an Additional Data Source 113

List Box Data Connection Properties 115

Try It Out: Setting a List Box’s Data Connection Properties 115

Entering the List Manually 117

Try It Out: Creating the List Manually 119
Summary 121
Exercises 121
Chapter 8: Working with Sections 123
Overview of Types of Sections in an InfoPath Form 123
Looking at Choice Sections and the Choice Group Control 124
Try It Out: Adding a Choice Group Control 126
Optional Sections 127
Try It Out: Adding an Optional Notes Section and Setting Its Properties 129
Specifying Filters on InfoPath Forms 130
Try It Out: Filtering a Repeating Table Using a Drop-Down List Box 131
Master/Detail Sections 134
Summary 134
Exercises 134
Chapter 9: Managing Views 135
Views Overview 135
Try It Out: Creating the Default View 136
Working with View Properties 139
Reviewing the Views Task Pane 140
Getting to the View Properties 141
Try It Out: Changing the Default View’s Properties 143
Creating Multiple Views 144
Try It Out: Adding the Notes and Orders Views 144

Try It Out: Switching between Multiple Views 147
Custom Task Panes 149
HTML Web Page Used for Custom Task Pane 150
Try It Out: Creating the Task Pane in HTML 151

XV

Contents

InfoPath Custom Task Pane Properties 152
Try It Out: Specify Task Pane Files in Your InfoPath Form 152

Print Views 155
Try It Out: Creating Print Views 156
Summary 159
Exercises 160
Chapter 10: Publishing InfoPath Forms 161
What It Means to Publish an InfoPath Form 161
Differentiating Forms to Fill from Their Templates 162
Ways to Distribute InfoPath Forms 162
Publishing to a File Server 162
Try It Out: Publishing a Form on a File Server 163
Publishing to a Web Server 167
Try It Out: Publishing an InfoPath Form to a Web Server 167
E-mailing InfoPath Forms 170
Try It Out: E-mailing an InfoPath Form When Filling 171
Exporting to a Web Page 173
Try It Out: Exporting an InfoPath Form 174
Merging Data from Separate Forms 176
Try It Out: Merging Data from Separate InfoPath Forms 177
Summary 180
Exercises 180
Chapter 11: Working with Code in Your InfoPath Form 181
When Is Code Necessary? 181
Choose Your Flavor of Code: Script or Managed Code (.NET) 182
JScript or VBScript? 182
Try It Out: Setting the Default Script Editor 183
Managed Code with .NET 184
Try It Out: Downloading the InfoPath 2003 Toolkit for Visual Studio .NET 184
Looking at Event Programming 186
What Is an Event? 186
InfoPath Events 187
Try It Out: Creating Your First Scripted Event 188

Try It Out: Creating Your First Managed Code Event 189
Summary 192
Exercises 192

XVi

Contents

Chapter 12: Getting Started Using Scripts 193
Introduction to Microsoft Script Editor 193
Try It Out: Creating the Initial Form 195
Working with JScript 196
Working with Custom Functions 197
Try It Out: Creating a Custom Function 197

Try It Out: Calling a Custom Function 198

Using Variables 200
Reference Variables 200

Value Variables 200
XDocument Object 200
Try It Out: Adding References to Fields on an InfoPath Form 201
Performing Operations on Variables 202
Try It Out: Updating the txtFullName Field from Code 202

Try It Out: Displaying LastName, FirstName 203
Conditional Branching 204
Try It Out: Adding an Conditional If Statement 205
Summary 205
Exercises 206
Chapter 13: Working with .NET Managed Code 207
Introduction to the .NET Framework 207
Common Language Runtime 208
.NET Framework Class Library 209
Using Visual Studio .NET 210
Try It Out: Creating a C# Windows Application Project 211
Elements of the IDE 213
Modifying the Project by Adding a Control and Event Code 214
Try It Out: Adding Controls and Code 214
Executing the Application 215
Executing with Debugging (Debug Mode) 216
Executing without Debugging (Release Mode) 216

Try It Out: Running Your Application 216
Developing InfoPath Projects in .NET 217
Review: Installing the InfoPath 2003 Toolkit for Visual Studio .NET 217
Working with the InfoPath Namespaces 217
Try It Out: Creating an InfoPath .NET Project 218
Distributing InfoPath .NET applications 221
Try It Out: Creating the Setup Distribution Project 221
Summary 227
Exercises 227

XVii

Contents

Chapter 14: Real-World Tasks and Coding Examples 229
Date Calculations 229
Simple Date Calculations Using Script 230
JScript Date Object 230
Creating a Reference to an InfoPath Field 230
Assigning a Value to a Variable 231

Try It Out: Creating a Form That Manipulates Dates Using Script 231

Date Calculations Using C# and Visual Studio .NET 233
System.DateTime Class 233
Creating a Reference to an InfoPath Field 233
Assigning a Value to a Variable 234

Try It Out: Manipulating Dates Using C# 234
Sending a Form in an E-Mail 236
Try It Out: Creating a Form That Can E-Mail Itself 237
Providing Context-Sensitive Help 240
Try It Out: Creating a Context-Sensitive Help Task Pane 243
Summary 246
Exercises 247
Chapter 15: Creating and Working with Web Services 249
Web Services Overview 250
Web Services Infrastructure 251
Using Web Services Locally 253
Try It Out: Setting Up a Web Service Locally 253

Using Web Services for Data Source 255
Try It Out: Basing an InfoPath Form on a Web Service 256
Creating a Web Service Using ASP.NET 262
Introducing ASENET 262
Try It Out: Creating an ASP.NET Web Service Project 263

Looking at the Initial Template 265
The Using Directive 266
Namespace and Class Directives 266
Initialization Code 266

The Sample Web Service 267

Try It Out: Creating and Testing Your First Web Method 267
Working with Web Service Methods That Return Data 270
Introducing ADO.NET 270
Differences between ADO and ADO.NET 270
ADO.NET Data Provider Classes 270

xviii

Contents

ADO.NET Objects 271

Try It Out: Creating the Method to Return Supplier Information 272
Summary 274
Exercises 274
Chapter 16: Implementing Security 275
What Does Security Mean? 275
InfoPath Security 276
Form-Based Security 277
Try It Out: Looking at IE’s Security Settings 278

Fully Trusted Forms 278
Try It Out: How to Create a Fully Trusted Form 279

Using the SDK Regform Utility 280

Try It Out: Creating a Fully Trusted Form Using the RegForm Utility 282

How It Works 282
Creating an MSI to Automatically Set Up Full Trust 283
Try It Out: Use the RegForm Utility to Create an MSI 283
Defining Security with the .NET Framework 284
Defining Assemblies 284
Assemblies in Web Services 284
User versus Code Security 285
Code-Based Security 285
Role-Based Security 285
System.Security Namespace 285
Digital Signatures 286
Using Digital Signatures with InfoPath 286
Try It Out: Creating a Test Digital for Testing 286

Try It Out: Sign the Form with the Digital Signature 287
Summary 289
Exercises 289

Chapter 17: Working with InfoPath and Windows SharePoint Services 291

What Are Windows SharePoint Services?
Windows SharePoint Services Site Features
The Difference between Windows SharePoint Services and SharePoint Portal Services
Touring a SharePoint Site
Default Lists of the Site
Try It Out: Touring the Different Areas
Other Major Areas

292
292
292
293
293

296
296

Xix

Contents

Customizing the Windows SharePoint Services Team Site 297
Try It Out: Applying a Theme to the Site 298

Adding Existing Web Parts to Your Site 299
Creating Your Own Web Parts 300
Using InfoPath and SharePoint 300
Publishing an InfoPath Form on a SharePoint Site 301
Try It Out: Publish a Sales Report to a SharePoint Site 301

Filling Out InfoPath Forms on the SharePoint Site 306
Try It Out: Working with the Form Library 306
Summary 308
Exercises 308
Chapter 18: Manufacturing Plant Case Study 309
The InfoPath Document 309
Creating the Database 310
The BoilerSystem Data Model 311
BoilersOperatinglLog table 311
SystemLog Table 312
Lookup Tables 313

The BoilerSystem Relationship Model 313
Looking at the Boiler Web Service 314
Creating the Data Adapters 315
Creating the Datasets 316
Creating Typed Datasets 317
Exposing the Datasets 318
Inserting Data 320
Submitting from InfoPath 320
Submitting Forms 321
Situation 321
Summary 322
Appendix A: Answers to Exercises 323
Index 327

XX

Acknowledgments

As a father of five, I think I can safely say that every book I write is like going through pregnancy. By the
end of it, you are ready just to be done. Just as with a pregnancy you need a good coach to get through it
with a positive attitude. There are a number of people I want to thank at Wrox and Wiley for helping get
me through another book with encouragement throughout the endeavor: Jim Minatel, who has got to be
one of the easiest acquisition editors I have worked with. He can prod you on, yet ease pressure from
you at the same time. Howard Jones, by far the best development editor, who encourages you with
every phone call and has you looking forward to every page of red marks. My thanks also go to the tech-
nical editors for their positive remarks and keeping me honest.

I want to thank good friend Mark Woodlief, who worked on the Security chapter and case study and
provided examples in a pinch when I was brain dead.

At Microsoft I want to thank Ned Friend for recommending me for the task and providing answers to
my questions when needed. Thanks are also due to the MVP leads Rita Nikas and April Dalke for being
quick to get resources when needed, and also just for being good friends. You two are awesome and give
Microsoft a great name.

Thanks again for Woodinville Starbucks #2, for keeping my seat warm and latte hot.

As usual, I have to of course thank my patient, if unruly, family for putting up with me in the writing
mode again. Especially my lovely wife Diana, who puts up with so much.

Introduction

If you have heard of Microsoft InfoPath but never had the chance to work with it, you are in for a treat.
Microsoft has really outdone itself coming up with a tool that gives the power user a forms tool they can
use right away, and the developer a forms tool that can be taken to the next level. This book guides you
in taking advantage of this very cool new product.

While using InfoPath is fairly straightforward, there are features and concepts that may confuse or deter
you from getting as much out of InfoPath as you could. This book was written to save you from any con-
fusion or frustration. As you read it you're likely to get more and more excited about InfoPath because
you'll see all that can be done with it.

InfoPath is very unique in that it works well as standalone, yet dovetails into enterprise use with prod-
ucts and technologies such as XML Web services, Windows SharePoint Services, and BizTalk. By the end
of this book you will see the necessary steps to use these technologies, and read some real-world case
studies of major institutions that have used them.

Who This Book Is For

Beginning InfoPath was written with both the power user and developer in mind. A power user is a user
who has a fairly good handle on most of windows functionality, working with the Office applications,
and creating small Access or Excel applications for their own groups or departments. A developer cre-
ates applications using .NET technologies or something similar. They may be developing solutions for:

Q Their own use.

QO Department use.

Q IT Department use.
Q

Independent Project for someone.

Once they start reading this book, power users will learn how to crank out fairly sophisticated forms
very quickly. The power user may get by just by reading the first two sections (chapters 1 through 9) if
they are not interested in creating code behind their InfoPath forms or working with InfoPath at the
enterprise levels.

Developers will want to read this book cover to cover. Because InfoPath is so new, they will want to read
the first two sections to get a handle on the user interface, and see how to create forms that are as stream-
lined as possible. The last two sections of the book contain the most useful information for developers.

With the inclusion of InfoPath in the growing number of products to take advantage of managed code
and .NET, this book helps the developer take advantage of using Visual Studio for writing code, or learn
how to use their favorite scripting language. Developers also get some experience with enterprise-wide
use of InfoPath.

Introduction

What This Book Covers

First and foremost, this book gets you, the reader, comfortable with creating forms in Microsoft InfoPath
2003, including the features that come with the latest service release 1.1.

The databases Microsoft Access and SQL Server are mentioned, with Access databases being used for
sample purposes.

.NET Technologies such as Visual Studio 2003, the C# programming language, and XML Web Services
are discussed. Other ways of coding using scripting are covered in later chapters, as well as enterprise
products such as Biz Talk and SharePoint covered.

Finally, you will be presented with two Case Studies featuring InfoPath deployment with Windows
SharePoint Services, SQL Server, and Microsoft BizTalk.

How This Book Is Structured

The book has been broken up into four parts to give you as much value for your investment as possible
and to give you the best information you need for the stage you are at in your InfoPath journey.

Chapters 1 through 6 introduce you to InfoPath, and what possibilities exist for using it as a develop-
ment tool.

Q Chapter 1: InfoPath — The Journey Begins: This chapter discusses how InfoPath became the
product it is today. Also discussed is how you can use InfoPath in various scenarios to meet
your various forms needs. Ways to use data are discussed, including XML technology, Access
and SQL Server databases, and XML Web services. Deployment requirements are reviewed, and
finally a typical InfoPath form is examined.

Q Chapter 2: Getting Started Designing with InfoPath: This chapter starts off with a tour of the
InfoPath form editor, showing you the various tools that make up a very versitile editor. It exam-
ines one of the many sample forms that come with InfoPath and shows you how to access more
form templates from the Web. By the end of this chapter you will have all the information you
need to use most of the tools on the task panes.

0 Chapter 3: Understanding Data: This chapter gives you an overview of relational databases,
and how you can use them with InfoPath. By the end of the chapter you will have a good
understanding of what databases are used for, and how data is represented in them. Microsoft
Access and Microsoft SQL Server are highlighted and discussed, as you're provided with a brief
look at XML.

Q Chapter 4: Creating an InfoPath Form from an Existing Data Source: This chapter walks you
through creating an InfoPath form working against an existing database. You see how to use
multiple (related) tables from the same database, where they are used in a form, as well as how
to refresh the data source if it has changed.

Q Chapter 5: Utilizing XML and Web Service Data Sources: One of the things that can be pretty
intimidating is the thought that you may have to use XML for a data source. This chapter
removes any concerns you have about using XML because the majority of the work is done by

XXiv

Introduction

InfoPath. You will see how to create a form with an existing XML document as the data source,
and how to create a new InfoPath form, specifying the XML document (schema).

Chapter 6: Working with Controls in General: This chapter provides a great overview of what
controls are available in InfoPath. It lays out when you will want to use which type of controls
for the data you are using. You will read about the different ways you can put controls onto
your InfoPath form. Also discussed are ways to enhance the user’s experience while controlling
what data goes into your form by using default values and data validation. Lastly you also will
see how to use conditional formating to highlight specific data conditions, and use formulas on
calculated fields.

Chapters 7 through 10 take you from the basics to creating some useful InfoPath forms, then show how
to publish those forms for other users” use.

Q

Chapter 7: Looking at Some Useful Controls and Techniques: This chapter highlights some of
the very useful controls that let you work with data on your forms. You will see how to use the
Drop Down List Box control to give users controlled choices in the data they enter. Additional
data sources will be discussed, as well as entering the information in your list manually if
desired. You will also see how to base drop downs on other drops, and work with other controls
such as the Rich Text Box Control.

Chapter 8: Working with Sections: InfoPath forms are created using various types of sections,
whether they are a main section of table information, or a repeating section of related data. This
chapter explains how to work with the various types of sections, taking advantage of different
properties and creating master/detail sections. You will even see how to “trim” sections based
on the users security level.

Chapter 9: Managing Views: Instead of using multiple forms to organize data as traditional
applications do, InfoPath enables you to manage various types of data using multiple views in
one form. This chapter discusses in further detail the concept of views and shows you how to
manage them. You will also see how to switch between views using built-in menu choices and
custom task panes.

Chapter 10: Publishing InfoPath Forms: Once you have created your forms, you may have to
have other people use the forms as well. This chapter shows you several ways to deploy your
forms for other people to use, including putting the form out on a file server that other users can
access, and emailing the form to other users. You also see how to merge data from multiple
forms so that you can aggregate and study the data that different people have inputed.

In chapters 11 through 14 you're shown various ways to add code behind your InfoPath forms. Besides
giving the fundamentals of coding you will see some real-world examples that you can use in your own

forms.

Q

Chapter 11: Working with Code in Your InfoPath Form: This chapter introduces you to the
world of coding behind InfoPath forms. While InfoPath does a lot for you regarding common
data tasks, there are some times when you just need to code it yourself. In this chapter you will
see the various choices you have when it comes to coding behind your InfoPath forms. You will
also read about event programming and get a better understanding of that.

Chapter 12: Getting Started Using Script: Introduces using the Scripting languages behind
your form. The default scripting language, Jscript, will be featured. You will see how to use the

XXV

Introduction

scripting editor to create and edit your code. You also will get a chance to work on some tasks,
and run the code with your forms to test them out.

Chapter 13: Working with .NET Managed Code: .NET is Microsoft’s new development plat-
form, offering a number of different languages for coding applications. With Service Pack 1.1
InfoPath has joined a grower number of applications that allow developers to use C# behind

their forms instead of scripting. This chapter shows you how to set up an InfoPath project in

Visual Studio, create the code behind your InfoPath form, and run it.

Chapter 14: Real World Tasks and Coding Examples: Now is where the work in the preceding
chapters pays off with creating real world examples yourself. You'll see routines for date calcu-
lations to use behind your forms, handling data submission on a form offline then synching it

up with a database, and many more.

Chapters 15 through 18 take you through the various technologies that you can use with InfoPath to
have your data used throughout the enterprise, including using technologies such as Windows
SharePoint Services and BizTalk. You also will be able to read a couple of real-world case studies where
InfoPath has been used successfully at an enterprise level.

a

Chapter 15: Creating and Working with Web Services: In earlier chapters you saw how to
attach a data source to a Web service; in this chapter you see how to create your own. You will
have a greater understanding of what Web services are, as well as how to create them and test
them using Visual Studio 2003. Lastly, you will see how to publish them so that you can access
them over your intranet.

Chapter 16: Implementing Security: As with every other application where you are working
with data, Security is very important. This chapter shows you how to set security up for other
users, specifying trust levels in Windows. You see how to create an MSI and use digital signa-
tures to secure forms. You're also shown how to secure the designer so that only you can modify
the structure of a form.

Chapter 17: Working with InfoPath with Windows SharePoint Services: Windows SharePoint
Services is a collaborative Web site software published by Microsoft. When used with Microsoft
InfoPath, it’s a great way to get information consolidated for a company, aggregate results, and
maintain forms for a common purpose. This chapter provides an overview of WSS and how to
set up a WSS site. You are then shown how to publish InfoPath forms onto the site, specifying
fields from the form to list as columns in the browse display of the site. Other features such as
totalling, sorting, and filtering are covered as well.

Chapter 18: Manufactoring Plant Case Study: This chapter is a culmination of all the tech-
niques you have seen throughout the book, and is used with the real world showing how
InfoPath is used with SharePoint. Also shown is how to take the data inputed using InfoPath
and displaying it on an ASPNET Web site.

What You Need to Use This Book

The majority of this book covers Microsoft InfoPath 2003 with Service Pack 1.1. This service pack is
required because Microsoft InfoPath 2003 is a 1.0 product, and as a result, a substantial number of
changes and improvements have been made to it. You can download the Microsoft InfoPath 2003 Service
Pack 1.1 at http://office.microsoft.com/officeupdate/.

XXVi

Introduction

In the second half of the book you will read about creating code behind your InfoPath forms. You will be
able to use VBScript or Jscript without any additional software. If you choose to use the managed code
samples, you need to install the NET Framework and Visual Studio 2003 with C# included. These last
two products also are required if you wish to create XML Web services, as described in this book.

Lastly, some of the last chapters cover enterprise products such as BizTalk and Windows SharePoint
Services, which, besides the products, require Windows Server 2003. Here you also will want to
download the InfoPath 2003 SDK to use InfoPath with BizTalk. You can download the SDK from
http://www.microsoft.com/downloads/, then supply InfoPath for the product/technology, and
SDK for the keyword.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q We highlight, or in this book italicize, important words when we introduce them
Q We show keyboard strokes like this: Ctrl+A

0 We show file names, URLSs, and code within the text like so: persistence.properties
O We present code in two different ways:

In code examples we highlight new and important code with a gray background.
The gray highlighting is not used for code that's less important in the present
context, or has been shown before.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http: //www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the
ISBN is 0-764-57948-7.

XXvii

Introduction

Once you download the code, just decompress it with your favorite compression tool. Alternately, you can
go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/download.aspx
to see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http: //www.wrox.comand locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list including

links to each’s book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We'll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.comand click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4, You will receive an e-mail with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

XXViii

Introduction

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

XXiX

InfoPath — The Journey
Begins

InfoPath is a new journey for both users and developers. If you are like many people, you may
have many questions about just what InfoPath is and how it will help you in your work. That is
what this chapter is all about. In it you will:
QO Learn what InfoPath is, and how it can be used for various solutions.
Read about different ways to connect data to InfoPath.

Q
QO Understand deployment requirements of InfoPath forms.
0 Take alook at a typical InfoPath form.

What Is InfoPath, and
How Can It Be Used?

InfoPath is a forms management tool that enables you to create forms and publish them in a num-
ber of different ways. InfoPath enables you to use forms that are attached to various types of exist-
ing data, and to use data that is self-contained within the form. Before going into more detail, take
a look at what the problem was before InfoPath came about.

The Challenge of Forms Management

Over the last decade there have been a number of attempts, both inside and outside of Microsoft,
to enable users to create forms quickly, yet responsibly, to work with data. You can see this with
database systems such as Access, and the form tools in Word and Excel. However, these tools have
either come up short in helping users control and share their data, or they are too confusing to use
to create forms that can handle data made up of more single-table solutions.

Chapter 1

To be useful for other systems, data needs to be manipulated or combined with other data. IT depart-
ments tend to cringe when a system like Microsoft Access is used to create a standalone or medium-
sized solution because they have no control over the data.

The IT manager of one large corporation figured that the corporation had at least 40,000 Access databases
throughout its enterprise. These are databases that are not controlled by the IT departments until the
authors (developers) of these databases transfer from or leave the company. Then the IT department has
to assign its own developer to learn and work with the system and control the data.

Users create their own standalone or group databases because IT departments don’t have the time and
manpower for smaller projects. Traditionally, trying to create an application that the department knows
would work for their needs, with a large backend database, has been something of a struggle. So, the
question remains: What is a solution to this set of challenges?

Various companies, such as Adobe and Oracle, have created their own form packages that attempt to
resolve the issue of forms management. The problem with these packages is that they are either limited
to the product they come with, such as Oracle forms, or to other proprietary data storage.

Even Microsoft has a number of possible forms packages, depending on the products you are using. In
fact, some of them are pretty robust and powerful. Access has a great forms package built in that gives
you the power you need when working with Access, or even SQL Server, data. Word and Excel have
more limited forms packages. But again, these packages are somewhat limited in how they are bound to
data of different types.

Microsoft InfoPath changes all that — not only by using the quickly becoming universal Extensible
Markup Language (XML) standard for its base file structure, but also because of its expanding base of
ways to connect to different types of data.

Microsoft’s Solution: InfoPath

Microsoft’s solution is InfoPath. Although there have been a number of forms packages from Microsoft
in various products, InfoPath is the most intuitive, yet full featured, to date. With InfoPath, you can
quickly create forms, either by using existing data or by creating the new data structure when you create
the form itself. Now IT departments can create the backend database for the users and let the users cre-
ate their forms based on the data. An example of an InfoPath form can be seen in Figure 1-1, where an
Absence Request form has been filled out by an employee.

This form is one of the many sample forms included with InfoPath.

Try It Out Opening the Sample Absence Request InfoPath Form

If you have already played with InfoPath forms, then you can skip this example. Otherwise this is a
good way to get the feel for how users fill out an InfoPath form. After you have installed Microsoft
InfoPath:

1. From the Windows Start menu, choose Microsoft Office & Microsoft Office InfoPath 2003. The
Fill Out This Form dialog box appears, as shown in Figure 1-2.

InfoPath—The Journey Begins

(21 Form2 - Microsoft Office InfoPath 2003

BE]

i File Edit View Insert Format Tools Table Help
HE AN~ REAT NENe AR WEC. W AN M oN|

idafeis [0 p 2yl

IRENLAR- NN

Type a question forhep =

[~
Absence Request
Request Date: Reguest Time:
7/8/2004 = 7:38 AM
Employee Manager
Name: Name:
Scott Barker
ID Number: Telephone Humber:
1232
Department: E-mail Address:
Development
Telephane Humbar:
E-mail Address;
Absence Details
Start Date End Date Type | Hours
7/26/2004 7/28/2004 Paid vacation 7] 16.00
Total hours requested 16.00
[v
4 FormID: Aicrosoft i equest: 1033
Figure 1-1
Fill Out a Form
Form categories Sample Forms Form tasks
Recently Used Forms [a|| | | Fll Out this Form
Favorites T G add o Favorites
All Forms Design this Form
SargeF Remaove this Form
[Sergefoms] Get Update of this Form
Open a form 3
& tin & T 553 Get Updates of Forms in this
) Forms on Office Online pplcant A3ting sset Tracking A Category
Design a form
é] Design a Form
Change Order Expenses Report Ewpense Report
(Domestc) {International)
Irvoice (Multiple Taxe Imvoice (Single Tax Invoice Request
Rateg) Rate)
el L] Take a Tour of InfoPath

Figure 1-2

Chapter 1

2. Select the Absence Request form.
3. Click on the Fill Out This Form task in the Forms Tasks task pane. The Absence Request form
opens, ready to be filled out.

Take time to move around the form and get used to the way to enter data. You will notice a number of
very nice features in the InfoPath form. The next section discusses some of those features.

Besides the sample forms included with InfoPath, Microsoft offers some additional
forms on the Office Online Web site. To get there, click on the Forms from Office
Online task, located on the Open a Form task pane on the Fill Out a Form dialog box
displayed in Figure 1-2. Once on the Web site you can search for InfoPath in the
search field, and all the available templates (forms) will be displayed.

Side Trip: Installing the InfoPath 2003 Service Pack 1.1

If the Fill Out a Form dialog box presented in Step 1 doesn’t look the same as the one displayed in Figure
1-2, this means that you probably have not installed Office 2003 Service Pack 1, which you can download
from Microsoft. To download and install the service pack, go to http://office.microsoft.com/
officeupdate and download and install the service pack.

InfoPath Features

You can see just how powerful InfoPath is as you continue through the book. Here are just a few of the
many things InfoPath enables you to do:

Create Attractive Forms Quickly

The designer provided in Microsoft InfoPath enables you to create forms that are pleasing to the eye,
while being functional and very powerful, with very little extra work. Controls are provided automati-
cally for specific tasks and types of data. For example, when you have a date type field, and place it on
your form, InfoPath places an icon beside it in the shape of a small calendar. When you click the calen-
dar icon, a small calendar appears, allowing you to pick a date to enter into the field.

Forms are laid out using a table and section format, with various types of tables available to choose
from. You can create your own custom tables as well.

Prevent Data-Entry Errors

Through the use of field properties for the various controls, you can easily help users prevent data entry
errors. Some of the ways to prevent data entry errors are by using;:

Q Default Values: Default values ensure that fields are not unintentionally left blank.

Q Data Validation Conditions: Data validation conditions allow you to specify values that are
okay to enter, including ranges. Based on the data, you can either have InfoPath give an error
message or run code to handle issues that arise.

O Rules: Rules can be applied that cause InfoPath to perform a set of actions based on the data
entered.

InfoPath—The Journey Begins

Consistent and Conditional Formatting

You can apply formatting to fields and color schemes throughout a form and throughout multiple forms.
This makes for a more consistent and comfortable experience when inputting data into forms.

Conditional formatting also can be specified to let users know when field values are negative (making
them red) or when a field is invalid for some reason.

Combine Data from Multiple Forms

When you create a standalone form, you can e-mail that form and have the form e-mailed back to you.
Once you have received one or more forms with the data filled in, you can merge the data with other
forms that use the same form template. This is very useful, for example, if you are compiling data, such
as evaluations from a presentation, and want to provide a report with all the data in one form.

Generate Different Views of Data

You can have multiple views with one form, switching between those views by using a task pane on the
form. Task panes are a section of the form that include hyperlinks you can use to pick other tasks to per-
form. Besides the task pane in the InfoPath designer, Access and Excel both include task panes.

While the information displayed and edited could be different views of the same data, it makes more
sense to create forms that contain different types of related data. An example of a form that includes
multiple views is a form created for an auto repair shop. Here is way the views could be laid out:

1. Customer Information: This information would be entered once for a customer and could be
pulled up into future forms that are filled out for the customer.

2. Description of Issues: This allows the customer and mechanic to list what the issues are. This
form could include the make and model of the car as well as current issues.

3. Mechanics Bid: Pulling forward the information from the description of issues view, hours and
dollars can be assigned and the bid presented to the customer.

4. Final Invoice: The final invoice can be displayed here and printed for the customer.

While it is not mandatory to break your forms into separate views, it can help with organizing the data
for the user.

Features Introduced in Service Pack 1.1

The service pack has enough interesting features that it is well worth mentioning. With the additions
listed in the next sections, the service pack has enough new features, rather than just bug fixes, to make
it a 2.0 release. The following sections outline some new features and enhancements.

Ink Enabled for Tablet PC

With the release of Service Pack 1.1 of InfoPath, Microsoft has made InfoPath ink-enabled for use on
tablet PCs. Microsoft has added additional support for the tablet environment, including special input
boxes that appear in which users can write their entries for their InfoPath forms and then convert the
information into text. Additional ink controls also are included for displaying images such as pictures
and enabling the user to annotate the images. All of these features are included without the need for any
additional programming.

Chapter 1

Additional Controls

There are a number of new types of controls that were added with the Service Pack 1.1. They fall into a
number of different areas, and you will see their value as you use them throughout the rest of the book.

Q ActiveX Control: This enables you to utilize standard ActiveX controls that can be used in a
number of different applications and languages. This control enables you to use Window’s
standard controls such as file open dialog boxes, TreeView controls, and more. There are liter-
ally hundreds of ActiveX controls available on the market.

Q Choice Group: This allows you to replace an option at the time you are filling out a form — for
example, if you wanted to replace a person’s cell phone with his or her office phone as the con-
tact phone.

Q File Attachment Control: Enables you to attach files to a form being filled out.

QO Master/Detail Control: Allows you to use data from two different tables, such as a Customer
table and Orders, displaying and editing the data easily without any additional programming.

U Repeating Recursive Section: This can be inserted within itself, bound to nested reference
fields, and repeats. This is extremely useful when you need to create hierarchical content.

Q Scrolling Region: This allows you to scroll through text inside fields.

Q Vertical Label: This specifies that text should appear at a 90-degree angle in the form.

Control Enhancements

There are a number of control enhancements that we take for granted in other applications that have
been around for a while, such as Microsoft Access. For example, you can now highlight and edit multi-
ple controls and modify their properties all at once.

Data Enhancements

The biggest improvements in the area of data enhancements is probably in the way that InfoPath handles
data used as the source for forms. Besides being able to populate list boxes with choices by using sec-
ondary data sources, you can now bind controls to those secondary data sources. You can then use these
controls to submit data to and query the secondary data source. In InfoPath 1.0, you could not submit
data to the secondary data source. Data sources and secondary data sources are discussed in Chapter 4,
“Creating an InfoPath Form from an Existing Data Source.”

In addition to the data enhancement just mentioned, Windows SharePoint Services support has been
greatly increased, and you can now submit forms using an e-mail program by attaching the form.

These are just a few of the enhancements with the Service Pack 1.1. You will be experiencing the features
just mentioned and others as you progress through this book. For now, the next section walks you
through a condensed set of steps you will take when working with InfoPath forms.

The InfoPath Form Process

When working with InfoPath you can accomplish creating and entering the data in a 2 to 4 step process
in some cases. The steps are:

InfoPath—The Journey Begins

1. Create the Data Source: In some cases, the data source will have already been created, so all
you have to do is connect to it during the next step.

2. Design the Form, Using the InfoPath Designer: This designer is a powerful, yet simple tool
that uses a table layout.

3. Publish the Form: If you are using the form for your own purposes, you can skip this step
altogether.

4. Fill Out the Form with Data.

Microsoft has created InfoPath so that it both stores and manipulates data using XML, as specified by the
World Wide Consortium (WC3). XML is to data what HTML (Hypertext Markup Language) is to display-
ing information. This opens up the structure of InfoPath forms, allowing developers to work with the data
and forms, and use the data with other business systems when necessary, in a nonproprietary way.

The beauty of working with InfoPath is that you don’t have to have a computer science degree in XML
to create some very powerful and useful forms. In Figure 1-3, you can see a simplified overview of how
InfoPath uses XML to let you enter data. InfoPath puts that that data into your database, in this case
Access, where you can then generate reports.

%j ﬁ ﬁ

|
—J
Enter
Data = Access DB Reports
Form Data
in XML

Figure 1-3

The InfoPath forms editor does most of the work for you. This doesn’t mean that you are limited to what
the editor gives you for controlling your form. Like database systems, there are underlying languages
that can be used to extend the power of what Microsoft gives you in InfoPath. In InfoPath, you can use

script languages, such as Java or VBScript, or if you are using Visual Studio, you can even use C# .NET,
Microsoft’s newest language.

Ways to Use InfoPath

The various ways to use InfoPath forms is limited only by your imagination, as shown by the number of
sample forms included in InfoPath (refer again to Figure 1-2). The following sections outline some of the
major uses for InfoPath.

Single User

You can create an InfoPath form that is just used for your own use. This form will be stored on your own
computer, be it a desktop, notebook, or tablet PC. You may want to use this to create an expense report
for yourself and print it or export the information to Excel.

Chapter 1

Published for Others’ Use

You can create forms to share with other users. You can place the form on a server, and others can use it
as a template for their own data. An example of this is a form that inspectors pull off a network and use
for their reports. Using this method of development provides each report with a common look and feel,
but allows them to contain autonomous data.

Collaborative Efforts

There are several ways to collaborate in InfoPath forms. The first method is to e-mail a form around the
company, which still requires you to have a common share where the users of the form can find the tem-
plate for the form.

Another method of collaboration is to use a SharePoint Team Service Web site to store common forms,
where the user can fill out forms, leaving the filled out forms on the Web site, with lists being generated
from the completed forms. There’s more detail about using InfoPath forms with SharePoint in Chapter 4.

You can use InfoPath forms with various methods of data storage, depending on your needs. One of
those methods is to store them locally, using XML.

Ways to Connect Data to InfoPath

Designing a form with InfoPath is a lot easier than with databases such as Access, because you drag and
drop the fields onto the form, and InfoPath creates the underlying form definitions and defaults to what-
ever type of data the field is. There are three ways that you can connect data to InfoPath.

Q Standalone XML: This has been mentioned before; the data is stored in a separate XML file by
itself. The XML file (and schema) can already exist, or be created on the fly at the time the form
is being designed. Creating an XML schema is discussed in Chapter 5, “Utilizing XML and Web
Service Data Sources.”

QO Connecting to an Existing Database: This could be as complicated as SQL Server or Oracle,
which are called client/server databases and are used for large-scale data storage. Or, it could
be as easy as an Access database, which can even travel with the document. Connecting to an
existing database is discussed in Chapter 4.

0 Using XML Web Services: This sounds scarier than it is. An IT department, or you, can create
routines that provide access to data over the Internet. When you connect to an XML Web ser-
vice, the fields will look the same as when you are connecting an existing database or XML file.
Creating and connecting to XML Web Services is discussed in detail in Chapter 15, “Creating
and and Working with Web Services.”

Deployment Requirements for Designing and Filling Out
InfoPath Forms

To design or deploy InfoPath forms, each user needs to have InfoPath on their computer. You can post a
read-only version of a form on the Web and users can read it without owning a copy of InfoPath.

InfoPath is considered a Microsoft Office application, but it can only be purchased by itself or as part of
the Office Professional Enterprise Edition 2003.

InfoPath—The Journey Begins

When deploying forms for common use, you need to have the templates available on a network share or
on a Windows SharePoint Services Web site. Deploying InfoPath forms in the various ways other than
SharePoint is discussed in Chapter 10, “Publishing Your Forms.” SharePoint and deploying InfoPath
forms on a SharePoint site is discussed in great detail in Chapter 17, “Working with InfoPath and
SharePoint.”

Taking a Look at a Typical InfoPath Form

There are many aspects to an InfoPath form that make it powerful, yet convenient to use. Returning to
the first example, in Figure 1-4 you can see the Absence Request form, which is a typical InfoPath form,
with some of the features highlighted.

Date Picker Table Type Layouts Hidden Section
@ Form1 - Microsoft Office InfoPath 2003 =03
! File Edit View Insert Fomgmat Tools Table Help forhelp -
HEA=N " SN N= Mo A e Wh N AN R -
Py i Bz v Sl= == 0= w1 |
”~
Absence Request
Request Date: Reqguest Time:
7/16/2004 &= 11:07 AM
< July, 2004 >
Empl <] £3 Manager
Name: 1 7 3 Name:
Barke 4+ 5 5§ 7 3 3 W |
IDHun 11 12 13 14 15 E 17 Telephone Number:
1234 18 18 220 21 22 23 24
25 2% 27 2B 2@ 30 3
Depart E-mzil Address:
[IToday: 7/16/2004
TelephTie NOMOErT
E-mzil Address:
Absence Details
Start Date End Date Type Hours
|Paid vacation [VI 0.00
Total hours requested 0.00
W Click here to insert the Absence Availability section.
Contacts While Away
Business Contact Personal Contact
Name: Name: [v]
j Form ID: urn:schemas-microsoft-com: office:infopath:oob: AbsenceRequest: 1033

Figure 1-4

Chapter 1

In Figure 1-4 you can see a few of the common features of an InfoPath form. These include:

Q

a

a
a

Common colors can be assigned at the view or control level. Note that the summary column is a
different shade than the other fields.

Data is laid out using tables. Those tables can range in size from one column to as many as you
want. You can also embed tables within tables using drag and drop.

Controls such as the Date picker are automatically placed on a form, based on the type of data
you are using.

You can create multiple sections, and those sections can be hidden. When a section is hidden,
InfoPath displays a message telling users to click a spot to redisplay the section. Groups can be
repeating, based on the type of data you are using. You can see this in Figure 1-5.

Repeating Section Drop Down List Boxes Formulas

Absence Details

Start Date End Date Type Hours

7/19/2004 7/21/2004 Sick leave v| 24.00
7/26/2004 7/28/2004 Paid vacation | 24.00 |

[T HPaid vacation | e

| Sick leave FEELE

Floating holiday
Unpaid leave

Bereavement
&) Click here to insert the Absence Availa Other

Figure 1-5

Drop-down list boxes enable you to control the data that is going into a field. In Figure 1-5 you
are limited to a list of types of absences.

Fields can use formulas to display the summation of data.

Sections can be redisplayed, as shown in Figure 1-6.

Try It Out Testing the Features of the Absence Request Form

After looking over the bullet points mentioned over the last couple of pages, open the Absence Request
form once again, and test the features for yourself:

1.

2.

10

From the Windows Start menu, choose Microsoft Office | Microsoft Office InfoPath 2003. The
Fill Out This Form dialog box will appear.

Select the Absence Request form.

Click on the Fill Out this Form task in the Forms Tasks task pane. The Absence Request form
will open, ready to be filled out.

InfoPath—The Journey Begins

#| Form1 - Microsoft Office InfoPath 2003 =JEES
! File Edit View Insert Format Tools Table Help Type a question for help
HE A=A M1 = Mo 4 [EENE . AL, MCN| Jdl%l,ﬁl@g

: 4y | o Bz U B]= ==t s s o iE s Zosol
E-mail Address: [ﬂ
Absence Details
Start Date End Date Type Hours
7/19/2004 7/21/2004 |Sick leave M 24.00
7/26/2004 7/28/2004 | Paid vacation [~ 24.00

Total hours requested 48.00
Absence Availability
Leave Type Previous Hours This New Balance
Balance Request

Paid vacation 0.00 24.00 (24.00)
Sick leave 0.00 24.00 (24.00) L
Floating holiday 0.00 0.00 0.00
Unpaid leave 0.00 0.00 0.00
Bereavement 0.00 0.00 0.00
Other 0.00 0.00 0.00
Contacts While Away
Business Contact Personal Contact
Mame: Mame: M

vj Form ID: urn:schemas-microsoft-com:office:infopath:oob:AbsenceRequest: 1033

Figure 1-6
4. Click on the date picker control, next to the request date field.
5. Picka date, and click OK.

6. Fill in some entries for the absence details. As you place the cursor over an entry, a gray down
arrow icon appears to the left of the section. Clicking on this arrow gives you the choice of
inserting items above or below the current item, or removing the item. You can also choose to
cut, copy, or paste data. You can see the menu in Figure 1-7.

11

Chapter 1

Absence Details

Start Date End Date Type Hours

7/19/2004 7/21/2004 Sick leave ™ 24.00
Insert Above |(Padvacation | M 23991
Insert Below Ctrl+Enter Floating holiday V 16.00
Remove E] Paid vacation V 0.00

&4 Cut Ctrl+X

[Total h ted 64.00

@ Qopy ctrl'_c ota ours requeste

% Paste Ctrl+V

Figure 1-7

Summary

This chapter has introduced you to InfoPath and how to use it. InfoPath is a forms management tool
that provides users with a means of creating attractive forms that control how data is entered, while also
letting them use their forms for existing or new data. There are a number of very power features in
InfoPath, such as the ability to merge data from multiple forms, to provide multiple views in a single
form, and to work with data from many sources.

You can base your forms on one of the of sample forms providing with InfoPath out of the box. Or, you
can go online and use one of the forms that Microsoft provides on the Web. While the InfoPath editor
lets you create forms that accomplish a great deal, you also have the ability to use scripting or code
NET-managed code if needed.

Exercises

1. Whatis the main deployment requirement for InfoPath?

What are the two scripting languages supported in InfoPath?

Which .NET language is supported in InfoPath with the Service Pack 1.1 release?
What are the three main ways to use InfoPath?

What are the three ways that data sources are utilized in InfoPath?

Name the two databases to which you can directly connect an InfoPath form.

What are the main steps in the InfoPath form process?

® NO Ok WDN

Name two of the controls used on an InfoPath form.

12

Getting Started Designing
with InfoPath

The forms, or form templates, you create with InfoPath are actually XML files. You could create a
form by specifying the XML commands in a file if you wanted to, with the extension of .xsn.
However, this is cumbersome because you would be editing Extensible Markup Language (XML)
in either an XML editor or a text editor. Microsoft realizes that for most business developers and
users, who just want to create forms to take care of their business, this is not a practical answer.

In an effort to make life easier for InfoPath developers and users, Microsoft came up with a very
robust designer, set up in a very logical manner for the way that you create InfoPath forms. With
the designer, you can specify the layout, insert data intelligent controls, assign scripts or code to

events related to the form, and much more.

This chapter is all about getting going with the InfoPath Designer. In this chapter you will:

O Take a tour of the InfoPath Designer.
0 Learn about ways to create InfoPath forms.
O Discover the tools in the task panes.

0 Work with the Layout task pane.

Q

Create your first InfoPath form.

Touring the InfoPath Designer

To examine the InfoPath Designer, a good sample form is necessary to show off the various
features available. For this reason, the Absence Request form should be opened in design view.
This is a good form that includes various controls and provides a good overview of various
designer tools.

Chapter 2

When first starting Microsoft InfoPath 2003, the Fill Out a Form dialog box opens. After picking Sample
Forms from the Form categories on the left, the Absence Request form is highlighted. One of the tasks in
the Form tasks is Design this Form, shown in Figure 2-1.

Fill Out a Form
Form categories Sample Forms EJ i Form tasks
Recently Used Forms [= Fill Qut this Form
Favorites 55 Add to Favarites
All Forms Hon thée Fof
renon
s = 1
e | Get Update of this Form
Open a form 29 — —
R o mak .. . 43 GetUpdates of Forms in this
% Forms on Office Onine RENETREIER AvplcontRating Asset Tracking i = Category
[Open...
Design a form
i) Design aForm
Change Order Expenss Report Expense Report
{Domestic) (International)
v
< > L] Take a Tour of InfoPath

Figure 2-1

After clicking the Design this Form task, the Absence Request form opens in the InfoPath designer, as
shown in Figure 2-2.

As can be seen in Figure 2-2, there are three main areas within the form designer:

Q Menus and Toolbars: It contains the standard setup of menus and toolbars, which change
depending on the task you are currently performing.

Q Main Design Layout: This is where the design of the form is laid out. Elements are dragged
from the various task panes and are laid out in table format.

0 Task Panes: These tasks panes will display different tasks when various categories are chosen.
The various categories are described in the next section.

The last option displayed in the Task Panes panel, Publish Forms. . ., is not a task
pane unto itself, but a task. If you click it, the Publishing Wizard will open. This
wizard will be covered in Chapter 10, “Publishing InfoPath Forms.”

14

Getting Started Designing with InfoPath

Menus and Toolbars Main Design Layout Task Panes
2l (Design) T 1 - Microsoft Office InfoPath 2003 L}[:j]
{ File Edit View |nsert Format Tools Table Help alp -
] 5 b | Y Preview Form | 3 W & 5= A '%J;ﬂlﬁﬂsﬂml’a&k&..l@a
i A4 verdana -0 B L U|E|EES= = 2-FE WA
|i #{ Draw Table [{ 1o border - —| = | Za - | Insert- 09 G5 O :E'I |
™ : Design Tasks v x

| Raguast Daba:

Raquast Tima:

Absence Request

Leave Type

Previous
Balance

|

{Employee Manager

| Hame: Hame:

1D Number: Telephone Number:

| Dapartmant: E-mail Address:

1 Telephone Number:

E-mall Address:

Absence Details

Start Date End Date Type Hours
= [|| paid vacation v 0.00

Total hours requested 0.00
d

Hours This w Balance

Request

Tasks
0§ Layout

Insert areas in your form's view to control
layout

2 Controls
Add controls to let users enter data into
the form
”__1 Data Source
Display and modfy the form's data source
1% views

Create views to define the appesrance of
form data

i Publsh Form..,

Distribute the form to other users by
pubidishing it in a shared location

@) Help with Desgn Tasks

Figure 2-2

Overview of the Task Panes

In Microsoft Office applications, such as Word and Excel, you are using task panes when you choose to
open or create new documents. InfoPath takes things a step further by displaying a task pane constantly

when designing forms using the various categories of tasks.

Layout Task Pane

The Layout task pane contains tasks that help build the base structure of the form. The various layout
tasks mainly have to do with specifying table layouts with different numbers of columns, as shown in

Figure 2-3.

15

Ch

apter 2

Switch between task categories
by clicking on the other hyperlinks

When initially creating the form,
you can use the table with title
task to create the header

Layout * X

08| Layout

& Controls

7 Data Source
i views

Insert layout tables:
j Table with Title
d One-Column Table

M Two-Column Table

ﬂ Three-Column Table

jé Custom Table...

Merge and split cells:

() Help with Layout

Figure 2-3

Control Task Pane

16

The Control task category will be used to insert the various controls that you can use on your forms.
Controls are used to control or insert data into your forms. While some controls are automatically
inserted into the form when you choose your fields from data sources, there will be times when you will
want to add special controls to your form. Some of these controls can be seen on the Control task pane
in Figure 2-4.

In addition to the two control categories displayed in Figure 2-4, Standard controls and Repeating and
Optional (sections), there are two other categories: File and Picture controls and Advanced controls.

Getting Started Designing with InfoPath

You will see more on the various controls and how to use them in Chapter 6, “Working with Controls
in General.”

You can add custom activex controls
to accomplish additional tasks

When checked, as you drag a
control onto the form, a data
field is added to the data source

Controls - W

08 Layout
& Controls
i 3 Data Source
3 views
Insert controls:
Standard A
Jabl TextBox

22 Rich Text Box

ﬂ Drop-Down List Box
(=M List Box

] Date Ficker

[¥ ChedkBox

(&) Option Button

-l Button

:QI Section

Repeating and Optional
I:I Optional Section

I@I Repeating Section

|==] Repeating Table

= Master/Detail

= Bulleted List [v]

Add or Remove Custom Controls...

(@) Help with Controls

Figure 2-4

Data Source Task Pane

The Data Source task pane is where you specify and work with the data sources you will use as the base
for your form. You can see the data source, in this case an XML schema (data structure), displayed in
Figure 2-5. If you are adding a data source, or specifying one for the form such as a database, you will
use the Data Connections command on the Tools menu.

You will learn about databases and XML in the next two chapters.

17

Chapter 2

Clicking the add button enables you
to add new data fields to your structures

When checked, details
about each field will be
displayed such as data type

iData Source v | X

08| Layout

S Contrals

i % Data Source
3 views

Data source:

[=l [.=* absenceRequest
=} date
'_? time:
=§ purpose
|5 contact
|5 manager
|57 awayContact
|57 leaves
|5 balances
'_? notes
(8 items
[Esr list
(=8 signatures

[show details

(@ Help with the Data Source

Figure 2-5

Views Task Pane

18

The Views task pane manages the various views you have in your forms. As mentioned in Chapter 1,
a form can have multiple views where you are organizing your data. You can also have views to

query data and others to manage the data. Figure 2-6 displays the single view choice in the Absence
Request form.

Views will be discussed in great detail in Chapter 9, “Managing Views.”

|l Desigp Tasks...

Note that if you want to get back to the original choice of task panes displayed in

Figure 2-2, you can do so by clicking the Design Tasks toolbar button, located on the
far right of the toolbar.

Getting Started Designing with InfoPath

Using this option creates data
that can be used in a Word document

This option allows you | Creates printer friendly
to add a new view | version of your form

i\n‘iews v X

08| Layout

S Controls

i 7 Data Source
) views

Select a view:

View 1 (default)

View Proper ties...

Actions

Add a Mew View.., —
Add Print View for Word,,,—
Create Print Version for This View..m—

@ Help with Views

Figure 2-6

Creating Your First InfoPath Form

In the prior sections in this chapter you were introduced to the various task panes and the tasks con-
tained within each pane. Now it is time to get to work and perform some of those tasks. In the next sec-
tions, you will create a new form, adding a few tables and controls by dragging and dropping them from
the various areas on the Layout and Controls task panes. To create this form, the top section of the
Absence Request form will be replicated, shown in Figure 2-7.

Absence Request

Request Date: Request Time:

Figure 2-7

Try It Out Creating a New InfoPath Form

1. Open InfoPath by choosing All Programs = Microsoft Office = Microsoft InfoPath 2003 from
the Start menu. The Fill Out a Form dialog box is opened.

19

Chapter 2

2. Click on the Design a Form task. You will then see the Design a Form task pane with a blank
design layout. The Design a Form task pane can be seen in Figure 2-8.

Design a Form v X

Design a new form
;‘j Mew from XML Document or Schema...
|59 New from Data Connection...
1 Mew Blank Form
E Customize a Sample...
;‘j Import Form...
Open a form in design mode
£ On My Computer...
On a SharePoint Site...
Fill out a form

= Fil OutaForm...

Get started
EL) Take a Tour of InfoPath...

Figure 2-8

3. Click on the New Blank Form task. The designer now displays a blank form, with the Design
task panes open.

How It Works

When a form is created using the InfoPath editor, you visually see what you are putting on the form,
such as tables and controls. Under the covers InfoPath is creating a number of XML documents. To see
the actual documents, you can choose File = Extract Form Files. InfoPath then displays a dialog box
asking where you want to put the files. After you browse for the folder and click OK, InfoPath stores the
files described in the following table:

File Extension Description

manifest.xsf The manifest file ties all the other files together, you will see all the
other files listed in this file at one point or another.

myschema . xsd This file defines the data schema (structure) as you add controls to
your form. Used with myschema . xsx.

myschema.xsx Holds information about the schema for the designer surface.

sampledata.xml Stores any sample data that may be used in a form.

template.xml XML file contains information about overall forms data sources,
if created.

viewl.xsl Contains information about individual view.

20

Getting Started Designing with InfoPath

Don’t use the File = Extract unless you are very comfortable with XML. Even then, there is a good
chance that you could break a form if you tweak it under the covers incorrectly. Be careful!

Exploring the Ways of Designing a New Form

Taking a closer look at the list of tasks under the heading Design a new form in Figure 2-8, you can see
that there are a number of ways to accomplish creating a new form, depending on your needs. While
you will be using the various ways throughout the rest of the book, here are the ways listed with
descriptions of their purpose:

a

New from XML Document or Schema: XML Documents are files that contain data and describe
that data in a specific format. When you get an XML document from a source, InfoPath will read
it and use it as a data source, so you can add the data fields to your new form. More on using
XML documents can be found in Chapter 5, “Utilizing XML and Web Service Data Sources.”

New from Data Connection: Frequently the data you want to work with already exists in a
database of some kind, such as Access or SQL Server. This option enables you to connect to the
databases just mentioned, as well as to Web services.

Web services, also called XML Web services, work as a shell around a database, limiting views
and access to the data and giving access to those databases over the Internet or intranet. Where
InfoPath can only connect directly to Access or SQL Server, you can use a Web service to work
with other types of databases such as Oracle. You will read about databases in general in
Chapter 3, “Understanding Data,” and Web services are discussed in Chapter 15, “Creating and
Working with Web Services.”

New Blank Form: The option you currently are using, this form creates a blank form that has no
data connected whatsoever. You can create an XML schema or connect to data once you have
started a form using this method of creating a new form.

Customize a Sample: This is a great option when you know that one of the samples included in
InfoPath is very close to the form you want to create. When you choose this option, a new tem-
plate is created based on one of the samples.

Remember also that there are additonal templates at Office Online. If you want to
look at these templates, click the Customize a Sample task, and then click on the
button labeled Form Templates at Office Online in the Custom a Sample dialog box.

Q

Import a Form: If somebody you know has created a form that is what you need or even a simi-
lar one, you can import that form with this option and modify it as needed.

Now that you know the various ways that you can create forms, you're going to continue with creating
your first form, which you started using the New Blank Form task. It is time to add some new tables, so
let’s get busy.

21

Chapter 2

Working with Tables

As mentioned previously, tables play a big role when designing InfoPath forms. Controls are placed
within tables as are other tables to organize the layout of the form. For convenience, there are a number
of different table layouts that you can drag and drop onto the designer layout area. To create the
heading portion of the form displayed in Figure 2-8, two table layouts are used: Table with Title and
Three-Column Table.

Adding a Table

Adding a table to your form is fairly straightforward. When you want to add a table, you place the cur-
sor in the area you want the table to appear, and then choose from the list of table layouts in the Insert
layout tables tasks.

To insert a table into another table, place the cursor in the cell of the table where you want the second
table to appear. Next, under the Insert layout tables tasks, click the table with the number of columns
you want to use, or click Custom Table . .. to specify the number of columns and rows you want in the
new table yourself.

Try It Out Adding the Tables

1. Continuing with the form you created in the last Try It Out, click on the Layout design task. The
Layout task pane is displayed.

2. With the cursor located at the top of the blank form, click the Table with Title task in the Layout
task pane. The table is then displayed in the top of the layout area of the form designer, as
shown in Figure 2-9.

Note that Figure 2-9 has the title (Design) Template2 at the top of the form. This may
differ from yours, depending on if this is your first form or if you have been experi-
menting and creating your own forms.

3. Click in the area labeled Click to add a title, and type in Absence Request.
4. Place the cursor in the area of the table labeled Click to add form content.

5. Click Three-Column Table in the Insert layout tables tasks. You now see three columns display-
ing Click to add form content, shown in Figure 2-10.

How It Works

That'’s all there is to it. As you add the tables, they show up in the location where you place the cursor.
You can then size the columns and rows as you see fit. The nice thing is that you can embed as many
tables as you need to. However, don’t add unnecessary tables. This will just clutter your forms.

22

Getting Started Designing with InfoPath

(el (Design) T

2 - Microsoft Office InfoPath 2003

) 5 e | 3y Preview Form | 4 4 % &

§Eils Edit View Insert Format Tools Table

Help
L (B 9

| @ [3 | &% Design Tasks... | & B

44 Verdana -0 - B I ﬂ||§|

_— = = 4=
=E=EE =

- | 4= 4 =, 35 =) ahr -
[iS-iE-E& - AL

i " Draw Table "4 Nobaorder -

sl ol a2 o | Ingerts

z
= |5

Click to add a title

Eclick to add form content

<1

: Layout

[Layout

))‘\‘: Cantrols
:J_J Data Source
A Views

Insert layout tables:
j Table with Tite

j One-Column Table
ﬂ Two-Column Table
ﬂ Three-Column Table

ﬂ Custom Table...

Merge and split cells:

i
kd
E

e

1 e

& Help with Layout
2|

Figure 2-9

[
‘Absence Request

Click to add form content

Click to add form content

éCIick to add form content

Figure 2-10

Resizing Table Columns and Rows

Before adding controls to your form, it is a good idea to resize the table, columns, and rows to the sizes
you ultimately want them to be. While you can resize all three with controls in them, that just makes it a
bit more cumbersome. To resize the columns and rows, as well as the borders of tables, you will move
the cursor over the frame you want to resize, and the cursor will change into crosshairs with arrows

pointing up and down.

23

Chapter 2

Press and hold the left mouse button, and then drag the cursor in the direction you want to resize. When
the particular edge is where it is supposed to be, release the left mouse button. This works the same way
that resizing objects such as Word tables or Excel cells works in other Office applications.

Try It Out Resizing Elements
1. Place the cursor over each of the inside column edges, pressing the mouse button when the cur-
sor changes.
2. Drag the edge in the direction in which you need it to go. Then release the mouse button.

3. Repeat Steps 1 and 2 for the bottom edge of the 3-column table. You can see what this step will
look like in Figure 2-11.

O
Absence Request
Click to add form content Click to Click to add form content
add* form
Figure 2-11

The table will now be resized to the desired dimensions.

The text “Click to add form content” in the individual cells of the table will disap-
pear as soon as you place (click) the cursor inside the individual cell. So, if your
screen doesn’t have this text, you probably accidentally clicked in the cell or cells.
Also, don’t panic if you have clicked in the cell, removing the text, and afterwards
chose Edit > Undo with no effect. Once you have clicked in the cells, the text will
not return regardless of what you do. It will not affect your final form, because the
text is not displayed in any case.

Setting Fonts and Adding Text to the Form

With many applications, such as Access, when you want to add text to your forms, you do so by adding
controls called labels. With InfoPath you just type the text where you want it, first setting the font and
size of the text from the Format toolbar, located at the top of the form, as displayed Figure 2-12.

11
4
11
4
ik,
]
"
L]

v | i

-

=v-A-d

|§-a\c’erdana vyi0 | B I ﬂ.

Figure 2-12

Once you have set the font, font size, and any other attributes such as underline, color, and so on that
you want to use, type the text to be displayed. This is how you add the label information about the con-

trols you are adding to the form.

24

Getting Started Designing with InfoPath

Try It Out Setting Font Information and Adding Text

1. Place the control in the cell of the table you want to place the control in. In this case, it will be
the first column of the three-column table you added.

2. Click on the font you want to use — in this case Verdana font, size 8.
3. Type Request Date:
4. Press the Tab key twice to jump over to the third column.
5. Once again set the font to Verdana and size to 8.
6. Type Request Time: Your form should now look like Figure 2-13.
O
Absence Request]
Request Date: Request Time:
Figure 2-13

Seeing how to add text to the form is a big step in creating forms. With literal text you can create not
only labels for individual controls, but also section headings and form instructions. However, forms are
not much good with just a bunch of literal text on them; you need to have a way to accept data as well as
display text. To accept data you need to add controls.

Adding Controls to the Form

Adding controls really isn’t any different from adding tables. Once you have placed the cursor in the cell
where you want the control to be inserted, choose the control you want from the list in the Controls lists.
You can also drag and drop the control into the location you want it to be on the form. Just click on the
control, and holding down the left mouse button, drag the control where you want it and release the
button. The control is displayed in the location where you placed it.

While a number of the controls will be displayed and be set up as needed just by dropping them onto a
form, some controls will need to be adjusted by setting either their width, height, or other necessary
properties. Which properties need to be set will depend on the control.

You can also resize controls using the same steps you used to resize table columns and rows. Place the
cursor on the edge of the control, and when you see the double arrow cursor, hold down the left mouse
button and drag the cursor (and edge of the control) in the direction you want to resize. Note that one
difference is the look of the cursor. The control resize cursor is simply two double arrows, versus two
double arrows with a bar in between them, which is used with table resizing.

If you are resizing a table to be smaller than the control or controls contained
within, you need to resize the control (or controls) first. Otherwise, the control will
be larger than the table cell that contains it, and the controls won't act correctly.

25

Chapter 2

To move a control, or a table for that matter, move the cursor over the top left corner of the table or con-
trol, and when you get the four arrows, hold down the left mouse button and drag the object where you
want it.

Try It Out Adding Controls

1. Place the cursor in the cell of the table where you want to add the control. In this case it will be
the first column of the 3-column table you added, under the text reading “Request Date:”.

2. Click on the Controls task list.
Click on the Date Picker.

w

4. Using the same steps outlined for resizing table elements, resize the Date Picker control you just
added to the form.

5. Repeat steps 1 through 4 and add a Textbox control under the test “Request Time:”. When com-
pleted the form looks as displayed here in Figure 2-14.

O
Absence Request

Request Date: Request Time:

Figure 2-14

When laying out controls this way, the data is not going to be added into a database
because you are not binding the controls. Data binding of controls will be discussed
in Chapter 4, “Creating an InfoPath Form from an Existing Data Source.” An XML
document is being created, although specific field names are not being used.

Setting a Color Scheme

The form is looking good as far as replacing the Absence Request form heading. One last thing remains:
to change the color scheme to match the colors on the original form. Changing colors is actually easier
than it sounds. While you can set the background color for a view, and the individual colors for text and
controls, it is a lot easier to set all the necessary colors using a color scheme.

Try It Out Set the Color Scheme

1. With the cursor anywhere in the form, choose Format = Color Schemes. You then see the color
scheme chart shown in Figure 2-15.

2. To match the color scheme used in the Absence Request form, click on the Blue color scheme.

26

Getting Started Designing with InfoPath

Color Schemes w X

Cl@| a

Apply a color scheme:

Mone
Black & White
Gray
Slate
Burgundy
Mahogany
Brown
Blue
Blueberry
Bright Blue
Turguoise
Green
Olive

Agua

Red

Orange

]
]

Purple Saae

@ Help with Color Schemes

Figure 2-15

There you have it. The form will now match the Absence Request form.

Summary

After reading this chapter you have seen various aspects of the InfoPath designer. Microsoft created the
designer to make InfoPath developers’ and users’ lives easier when trying to create InfoPath forms.

Using the InfoPath designer you are able to control the layout using tables of various sizes (rows and
columns) based on your needs. The designer supplies a set of task panes to handle the different tasks

and objects you need to add to your forms such as tables, text, and controls.

You can also apply a color scheme to your form, so that you don’t have to set the individual colors.

27

Chapter 2

Exercises

28

1.

2.
3.
4

o

What are InfoPath forms made up of?
Name the four main task panes that you use in the InfoPath Designer.
What is the fifth choice that appears when you are on the main Design a Task pane?

What is the first step when adding an object, when you are just clicking on the the control
(or table) to add it to a form?

What is the other way to add an object to a form, other than the one just mentioned in the
last exercise?

Understanding Data

Getting to know the InfoPath Designer is very important if you're going to get the most benefit
from the program. Getting to know and understand data is just as important. One of the main
obstacles occurs when the data is not set up correctly, or logically.

Alot of users, and developers for that matter, treat the data side of forms management as they
would Excel spreadsheets or Word documents. This is not said as a slam against either the prod-
ucts or the people. It is just truth. The reason for this dilemma is that people don’t know any bet-
ter. Users feel they don’t have the time or capacity to learn the ins and outs of databases, and some
developers feel they already know it enough.

This chapter covers data — primarily data used in databases. While you can use data without
managing whole databases, having a good understanding of what databases, or in this case rela-
tional databases, are and how to work with them will help you create forms that are more logical,
powerful, and easy to work with. In this chapter you will

0 Begiven a quick database primer.
Read about the databases to which InfoPath connects.

Q
0 Begiven an overview on XML.
Q

Be introduced to Web services.

A Quick Database Primer

As you work with computers, you quickly realize that everything you do on a computer deals
with data in one sense or another. Whether you are creating a Word document or crunching num-
bers with Excel, it is all data. However, not all data belongs in a database, and not all programs are
meant to be used as databases, although if you look at some people’s documents and worksheets,
you may wonder if they are trying to use them as databases. This section explains a few things
about databases and shows how you use real-world databases everyday.

If you have been using Microsoft Office products for a while, you have probably had some experi-
ence with or at least heard of databases. In fact, even if you haven’t used databases on the com-
puter, you have used them in real life.

Chapter 3

Databases in the Real World

In the real world there are a never ending number of tasks and subjects that work as an example of
databases. Every day from the time you get up until the time you go to bed, you are dealing with
databases of one kind or another. Here are just a few examples of real-world data:

Mailing lists

a
Q School registrations
Q Checking account information and history
Q Membership lists
Q Customer information
And the list goes on and on. While some of these items look like simple topics in themselves, undoubt-

edly each topic could be fleshed out with additional data so that more than one topic, (what are called
tables in database jargon) would be necessary.

The last entry in the preceding list is a common example of a real-world database and is worth discussing
further. Customer information is stored as business records in manila folders, usually located in a filing
cabinet. In the manila folders customer information is stored, with either:

O One customer’s information stored in each folder

Q All customer information sheets in one folder

Electronic databases can be analogous to either of these methods, which have been used for years in the
real world.

In accessing the real-world customer database, you:

1. Open the file cabinet

Search through the cabinet for the folder you are looking for

Pull out the folder

Look through the folder for the information for which you are searching

Take the piece, or pieces of paper, containing the information

2L

Read the data on the page
7. Modify the data as necessary

At this point, you also could also add new information by filling out a new form or delete information
by throwing away information. Of course, nowadays you would most likely shred the information for

security reasons.

It should be noted that the following terms are generic as far as the various database systems are con-
cerned. These terms will be discussed in greater details in the next section.

30

Understanding Data

Tables are used to store data in databases. Fields (columns) are used to store individ-
ual pieces of data such as customer name, address, and so on. The information sup-
plied in all the fields makes up a record (row) in the table. So in this instance, all
customer information such as name, address, city, state, and so on makes up a record
(row). These terms are used interchangeably when discussing various database
products such as Microsoft Access (fields, records) and Microsoft SQL Server
(columns, rows).

Database Models

Various models of databases exist, two of which are flat file and relational databases. Nowadays, the
relational model of databases is the most commonly used model for desktop and Web development.
However, before going deeper into the relational database model, you'll read about the flat file model,
including how these databases store data and their drawbacks.

Flat File Model Databases

Flat file model databases store information in single tables, including repeated data. For example, if a
store were selling different kinds of coffee and wanted to track customers, invoices, invoice items, and
suppliers, it would organize information as shown in Figure 3-1, which is a flat file style table.

Customer Invoice Date Invoice # Productl Product5upplierl Product1Cost Product2 Product5upplier2 Product2Cost
John Smith 9/1/2004 3443 French Roast Starbucks Coffes 510.95 House Blend Starbucks Coffes 511.95
Sally Jones 9/1/2004 3445 Sumatra Starbucks Coffes $11.95 |French Roast Starbucks Coffee 512,95
Harry James 9172004 3445 Columbia Sesttles Best Coffee $12.95 |Columbia Seattles Best Coffee §12.95
Figure 3-1

If you look at this figure closely, you may notice that it looks as if it was created in
Excel, which it was. A lot of developers and users store data in Excel spreadsheets,
thereby creating flat file tables and databases without realizing it.

There are a number of problems with the flat file database model. Here are just a few of the issues:

0O Redundant Data: Often Entries are repeated, taking up more space than necessary. In Figure 3-2,
there is no reason to spell out the names each time, taking up more space.

Q Error Prone: When data has to be repeated, there is more of a chance of entering erroneous data
into the table.

Q Limited Columns: Currently, only two products and their information can be entered using the
table structure displayed.

Q Extra Work to Update: With the redundant data issue, if you want to make any updates, you will
have to make sure that you parse through the other fields and update those values to match.

In addition to these issues, reporting on the data can be problematic. Now take a look at the relational
database model.

31

Chapter 3

Relational Database Model

Unlike the flat file database model, which stores all data, including related data, in a single record and
table, the relational database model uses tables that are related to each other to store information. For
example, instead of having your coffee invoices all stored in a single table called tblCoffeelnvoices, the
information would be stored in related tables with customer information being stored in one table, invoice
information being stored in another, product information in yet another, and so on. Figure 3-2 shows an
example of how the flat file table in the previous section could be restructured into a relational model.

tblCustom... thllnvoices thlinvoices... tbIProducts thlSuppliers
CustomerID i - o [IMVoicelD - oo |IMvoiceDetallD - ProductD ~ SupplerD
CustomerName CustomerID InvoiceMo ProductMame SupplierMame
InvoiceDate ProductlD SupplierID
Price Price
Quantity

Figure 3-2

This figure was taken from Microsoft Access and is a shot of the tables in a database called Coffee.mdb,
located in the Chapter 3 folder. The figure shows the structure with the data from the single table sepa-

rated out into multiple tables. The process of normalizing a database is discussed later in the chapter, in
the section titled “Normalizing Your Data.”

Take a look at some of the benefits of using relational databases. They are pretty much the opposite of
the issues found in flat file databases:

0O Nonredundant Data: Because entries are entered once, and other tables point to the data, there
is less redundant data.

Q Less Error Prone: When data is entered once in lookup tables, data is then picked from lists; this
process can be controlled and is less prone to error.

0 Unlimited Data: Because data is stored in records (down the table) as opposed to fields (across
the table), the data is not limited to predefined structures. For example, when you want add
another product to an invoice, you simply add another record to tblInvoiceDetails, where before
in the flat file you would have had to add a third or fourth product column.

It may look like a lot more work to maintain a relational database when you look at Figure 3-3 because
of the multiple tables, but you very quickly learn to appreciate the benefits of the relational database
despite the extra work needed in the beginning. Next, you'll read about the elements that make up rela-
tional databases.

Tables: Where Data is Stored

As mentioned in a note earlier in the chapter, tables are where your data is stored. Tables have specific
component: fields, primary keys, and indexes.

Fields

When created, table structures consist of fields that represent pieces of data. Fields have properties that
give you control over the data that goes into them. Here are a few of those properties common to differ-
ent database systems such as Access and SQL Server:

32

Understanding Data

Q Name: Field names are what you will refer to when you want to pull information from the field
or assign data to the field. You will want to assign names that are easy to understand. For exam-
ple, in the tblCustomer table the two fields displayed in Figure 3-3 these would be CustomerID
and CustomerName.

Q Data Types: Data types tell the database system how to handle the data placed in the field. Which
types of data types there are will depend on the specific database system. Microsoft Access calls
text data under 255 characters the Text datatype; in SQL Server this would be nvarchar(255).

Q Other Properties: There are a number of other properties that help control data going into the
fields, and those properties will again depend on which database system you are using. Some
properties, such as Default Value, are used by most systems, but then some, such as the Caption
property, are used by Access but not SQL Server.

You can see an example of the table structure for tblCustomers listed in Figure 3-3 with the Customer
field highlighted. The table structure is displayed in Microsoft Access.

Data Type Property

Primary Key Field

Access dispays properties for
Name Property current field highlighted
|1 thiCustomers : Tgble JEES
Field Name | DataType | Deg:ripm
% | CustomerID AutoMNumber . =
| | CustomerName Text 2]
b

Field Properties

General | Lookup

Field Size 50
Format

Input Mask

Caption

Default Value

Validation Rule

Validation Text

Required Mo
Allow Zero Length ‘fes
Indexed Mo
Unicode Compression Yes
IME Mode Mo Control
IME Sentence Mode MNone
Smart Tags

Figure 3-3

Primary and Foreign Key Fields

Notice the callout for the Primary Key field in Figure 3-4. Each table should have a primary key. In the
case of tblCustomers, the primary key is the field CustomerID. The primary key makes sure that each
record in a table is unique, and it provides the ability to always find a specific record. How primary keys
are specified will again depend on the database system you are using.

Foreign key fields are fields in a table that point to primary key fields in other tables. For example, you will

see CustomerID in tblInvoice, which is used to match the primary key field CustomerID in tblCustomers.
Primary and foreign key fields are especially important in the use of relations.

33

Chapter 3

It’s All about Relations

Relationships are how you tie (relate) data together using separate tables. Figure 3-4 is a repeat of
3-2 because it actually shows the relationships window in Access, displaying the relationships for
Coffee.mdb.

Foreign Keys Primary Keys Foreign Keys
tblCustom... tblinvgices thlinvdices... tbIProducts tblSupplier:
ustomerMame CustomerID InvoiceMo oo ProductiMame oo SupplierMame —

InvoiceDate ProductlD SupplierID
Price Price
Quantity
Figure 3-4

There are three types of relationships found in relational databases. Because coffee.mdb mainly uses
one type of relationship, other examples are listed outside that database:

QO One-to-One Relationship: Used when you want to have records in one table match up with
individual records in another table based on the same primary key in each table. An example of
this in a banking database is a table that stores private information that would match up directly
with a table that stores information that can be viewed by anyone. This is probably the least used
type of relationship, because the use of queries (Access) and views (SQL Server) can limit the
data you can access in tables.

QO One-to-Many Relationship: This type of relation is used to relate a table such as tblCustomer
(a customer) with one such as tblInvoices (the customer’s invoices). The way you look at it is
that one customer can have many invoices. Note that the primary key is in tblCustomer, and
the foreign key in tblInvoices.

QO Many-to-Many Relationship: This is a pair of one-to-many relationships used with three tables.
An example of this could be used in an insurance database. Insurance companies can have mul-
tiple customers, and customers can have multiple insurance companies.

Which type of relationship you use will depend on the need being met. You can use all three in the same
database or just use one type of relationship throughout the database. It really comes down to the data.

Referential Integrity

One of the important aspects of relational databases is maintaining the referential integrity of the data.
An example of maintaining referential integrity in the coffee database is that a record in the tblInvoices
table can’t be created without a related record existing in tblCustomers. Another example would be that
a record in the tblProducts table could not be added if a record were already in the tblSuppliers table.

Depending on the database system, you can set referential integrity up to also help maintain data once
it is in the database. For example, you can specify that a record can’t be deleted in one table, such as

tblCustomers, if there are records in tblInvoices related to it.

Another use for referential integrity with current data is to have records deleted in related tables, such as
tblInvoices, when a record is deleted in the table that contains the primary key, in this case, tblCustomers.

34

Understanding Data

Normalizing Your Data

Normalizing data is the steps taken to take non-normalized data (a flat file) and shape it into what is
called normal (relational) form. Refer again to Figure 3-1.

Here are the steps and the tasks you for each step:
First normal form (1NF):

1. Remove duplicate columns from the table.

2. Create separate tables for each group of related data, identifying each row with a unique col-
umn or set of columns. This unique column or set of columns would be the primary key.

In the case of the table displayed in Figure 3-1, the Productl, Product2, and product-specific information
is removed from the main table and broken out into separate rows.

Second normal form (2NF):

1. Remove subsets of data that apply to multiple rows of a table and place them in separate tables.

2. Create relationships between these new tables and their predecessors through the use of
foreign keys.

In this case, you would remove the customer information and store it into a separate table, then create a
relationship between the new customer table and the table containing the invoice information.

Third normal form (3NF):

QO Remove columns not dependent upon the primary key.
Invoice detail is broken out into separate tables at this point and each item is given its own ID, with a
foreign key pointing to the invoice header record. At this point, the tables and relations would look as
shown in Figure 3-5.
Fourth normal form (4NF):

Q Arelation is in 4NF if it has no multivalued dependencies.

There are additional forms possible, depending on how far you want to take the normalization. The
majority of databases are in used in third or fourth normal form.

Working with Various Databases

You've read about flat file and relational databases and now know the differences. There is some addi-
tional information you need to know about the available relational databases and their platforms. Before
talking about Microsoft Access and SQL Server specifically, there is some terminology you need to get
comfortable with.

35

Chapter 3

File Server versus Client Server

File server databases are those where the database is stored in a folder on a file server. When you access
the database, all the data is brought over the network and locally processed. Microsoft Access is a file-
server-based database system.

Client/server databases are stored on a server, but when it comes time to process the data, the process-
ing is performed on the server, and just the necessary data is brought over the network. Microsoft SQL

Server is a client/server product.

With most development environments, how you develop against the two types of database platforms
will vary. With InfoPath, you use the same methods for both platforms.

Front and Backends

When working with database applications, you have front- and backends. The database containing the
data is the backend. The application created to control the input and output of the data is called the
frontend. The application contains forms, reports, and other programming elements. When connecting to
a database, the data source, such as Microsoft Access or SQL Server, is the backend and the InfoPath

form is the frontend.

The next sections describe the two databases that Microsoft InfoPath connects to directly: Microsoft
Access and Microsoft SQL Server.

Microsoft Access

Perfect for small to medium-sized solutions when used as a backend, Microsoft Access is a popular
database system with thousands, if not millions, of installations. Access can also be used as a frontend,
but that is a topic for another book. You can see Access with the Cof fee .mdb open with tblCustomers

displayed in Figure 3-5.

Type a question for help -

! File Edit View Insert Format Records Tools Window Help
; = Wi W= W N AN

_1 thiCustomers : Table 9= %)
e D | G
> 1/ Diana Barker
Objects Create table in Design view 2 Scott Barker
Create table by using wizard 3 Chris Barker
Create table by entering data 4|Kari Anna Barker
3 thicustomers 5 Michole Barker
6| David Barker
7 Joseph Barker
(AutoMumber)

1 thllmvoices
thilnvoicesDetails
thiProducts

] thisuppliers

B0k E g

§

Figure 3-5
36

Understanding Data

Benefits and Issues of Microsoft Access

There are quite a few benefits to using Access as opposed to other database products. Some of the posi-
tive aspects of Access are:

Q

Q

Established Application: Access has been around for quite a few versions, with Microsoft
enhancing the product with each version. The current version is Microsoft Access 2003.

Powerful Report Writer: It includes a banded report writer, with bands set up for Report
Headers/Footers, Group Headers/Footers, Page Headers/Footers, and Detail. You can embed
reports within reports. The Access report writer is commonly used by other products, includ-
ing Visual Basic and SQL Server, to create reports.

Can Be Used as a Frontend and/or Backend: It is almost as common to find Access used as a
frontend for a SQL Server database as it is to see it used strictly with Access. It can be used with
SQL Server by linking tables in a * .mdb or by using an Access * . adp, which is a database pro-
ject specifically set up to be a frontend for a SQL Server database.

Macro Language for Beginners and VBA for Developers: Access provides a powerful forms
package with the Visual Basic for Applications (VBA) development language behind it, or a
macro-type language.

Easy-to-Transfer Database Files: Just by using Windows copy and paste, you can move or copy
Access databases locally over a network, or you can even store the database in a compressed
folder and e-mail the folder.

There are some issues that can arise when using Access for your databases:

Q

Q

Large Databases Bog Down: You can run into problems with large databases, if those databases
are not carefully created.

Large Number of Users Bog Down the System: You need to be very careful when creating an
application for a large number of users, as the application can bog down when users are query-
ing and updating data. This is especially true with large databases, as mentioned in the previ-
ous bullet.

Form Designer Can Be Confusing to Use: As powerful as they both are, the form and report
designers in Access can be confusing to use when moving beyond the basics.

Not Built for Use with the Internet: Because Access is a file server product and not meant for
the truly high volume you get when using database over the Internet, Access is made more for
use on a local area network (LAN).

Access works very well with InfoPath as a backend when you have a limited number of people access-
ing the data. Access is also a great database to prototype applications in, for later use in another develop-
ment language such as Visual Basic with the data moved to SQL Server. You also can also use the Access
database from other products without having to have a version of Access installed, which makes Access
even more worthwhile to use with InfoPath.

Microsoft Access Objects Used with InfoPath

With InfoPath, you will be using the following objects in Access:

37

Chapter 3

Q Tables: Used to store data

O Queries: Used to recombine data using Select statements; also provide a means of adding,
updating, and deleting data from tables

Microsoft SQL Server

Built for small to enterprise-wide databases, SQL Server is designed for use with other development

products and includes no form management tools of its own.

You can see SQL Server’s Enterprise Manager with the CoffeeSQL database open in Figure 3-6.

%1 SQL Server E ise Manager - [Console Root\Microsoft SQL Servers\SQL Server Group\(LOCAL) (Windows NT)... =JOEd

(23 Console Root
=] Mirosaft SQL Servers
=40 5Qu server Group
=1 [illy (LOCAL) (Windows NT)
=0 Databasss
[AppicationsPlus
+- 1 CMaRussa
= [CoffeesqL
oS Diagrams
[=] Tables
& Views
Stored Procedures

[Z] Defaults
. User Defined Data Types
% User Defined Functions
[pau
1 L10sLibrarySQL

+

¥

5

¥

5

¥

H

¥

+

0

44 tempdb
[Data Transformation Services

~

v

"%1 File Action View Tools Window Help

e~ BETRB @ * No 0 @B

e

Tables 24 Ttems
Te— [0..[Twe [crestepate
E syscolumng doo System §(5/2000 1:3%:12 AM
==] syscomments dbo System 8/6/2000 1:25:12 AM
sysdepends doo System 8/5/2000 1:29:12 AM
Ecrsﬁlegrm dbo System 8/6/2000 1:79:12 AM
=] sysfiles dbo System &/6/2000 1:25:12 AM
ﬂs's'sﬁles'_ doo System 3/5/2000 1:29:12 AM
Ec'ﬁsfaegﬂkeys dbo System 8/6/2000 1:29:12 AM
=] sysfulltexteatslogs dbo System §(6/2000 1:25:12 AM
5] systulltextnotify dbo System §/5/2000 1:28:12 AM
chslndexes dbo System 8/8/2000 1:39:12 AM
(=] sysindexkeys dbo System §/6/2000 1:25:12 AM
=] sysmembers dbo System 8/5/2000 1:29:12 AM
Ec','snhjens dbo System 8/6/2000 1:79:12 AM
SYSpErmissions doo System §(6/2000 1:25:12 AM
sysproperties dbo System §/(5/2000 1:35:12 AM
=] sysprotects dbo System 552000 1:29:12 AM
= sysreferences doo System §(6/2000 1:25:12 AM
systypes dbo System 8/5/2000 1:25:12 AM
SYSUSErsS doo System 8/5/2000 1:29:12 AM
=| thiCustomers doo User 7/30/2004 11:40:02 AM
=] thilnvoices dbo User
=] thllnvoicesDetais dbo User 7/30/2004 11:40:02 AM
thiProducts doo User 7/30/2004 11:40:02 AM
=] thisupphers dbo User 7/30/2004 11:40:02 AM
<l >

Figure 3-6

Benefits and Issues of Microsoft SQL Server

As with Microsoft Access, there are a number of benefits to using Microsoft SQL Server. Some of those

benefits are:

Q Established Application: As with Access, SQL Server has been around for quite a few versions.
At the time of the printing of this book, SQL Server 2000 is the current version.

0 Robust Set of Client Tools for Data Management: Headed by Enterprise Manager and Query
Analyzer, SQL Server has a number of tools that help you to manage data in your databases.

Q Extensive SQL Language for Data Manipulation: Using Transact SQL you can create stored pro-
cedures that can manipulate data in just about any way necessary. Also available is Data
Transformation Services (DTS), which enables you to create packages to schedule tasks for work-
ing with the information in your database.

38

Understanding Data

Large Amounts of Data Can Be Handled: SQL Server is made for large amounts of data. On a
server that has been properly set up, you can store many gigabytes of data. In addition to resid-
ing on the proper system, the data needs to be normalized and care taken when creating views
and stored procedures.

Works Well with the Internet: Because SQL Server works well with large databases and a large
number of users, it works well as a database for use with the Internet. Of course, you do need to
be conscientious when creating the database.

There are some issues that can arise when using SQL Server for your databases:

Q

Tools Are Not End-User-Friendly: Where Access’s tools are built for end-user use, SQL Server’s
tools are made for use by system administrators. So while the tools are powerful, they are not
very friendly.

No Form Management Tool: You will have to use other products as frontends to SQL Server
databases, because it doesn’t have any type of forms management. There is now a reports man-
agement tool available.

Not Convenient for Transferring Databases: While it can be done, you need to use the tools
available for the system administrators for detaching/attaching databases to SQL Server, or use
code. You also can back up and restore databases, again using a tool or code. Once these proce-
dures are done, you can then copy and paste the files using Windows commands.

SQL Server works well using InfoPath for the frontend, and is easy to connect to databases for data

sources.

Microsoft SQL Server Objects Used with InfoPath

When using SQL Server as a backend to InfoPath, you will be using the following objects in Microsoft
SQL Server:

Q

Tables: Used to store data. You can see the tblCustomers table displayed using the SQL Server
Enterprise Manager in Figure 3-7.

“£1 Data in Table 'tbICustomers’ in 'CoffeeSQL" on '(LOCAL)" (=] EEF
CustomerID | CustomerMame

] Diana Barker
. Scott Barker
I Chris Barker
e Kari Anne Barker
L |5 Nichole Barker
e David Barker
|7 Joseph Barker
¥ |

Figure 3-7

Views: Used to recombine data using Select statements, views allow you to display data as
needed in various ways.

Stored Procedures and Functions: Provide means for adding, updating, and deleting data from
tables.

39

Chapter 3

There is a version of Microsoft SQL Server called the MSDE, which stands for Microsoft SQL Server
Desktop Edition. This version of SQL Server comes with various products such as Visual Studio .NET,
and can be redistributed for use with systems that don’t have the full version of SQL Server installed.

Other Databases

When developing InfoPath forms and wanting to work with other databases such as Oracle, Informix,
and others, you have to use Web services to connect to them. You can read a brief introduction on Web
services in the section called “Introduction to Web Services,” found later in this chapter. Developing Web
services is discussed in Chapter 15, “Creating and Working with Web Services.”

Looking Briefly at XML

40

One of the exciting things about InfoPath is that under the covers it all comes down to XML (Extensible
Markup Language). As mentioned, XML has fast become the de facto standard for transferring and stor-
ing data on and off the Web, as well as between various business systems. XML itself is not a terribly
confusing file structure, because it is just a bunch of tags.

To quickly examine XML, take a look at a small example called Customers . XML, shown here:

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="Customers.xsd" generated="2004-07-30T12:11:47">
<tblCustomers>

<CustomerID>1</CustomerID>

<CustomerName>Diana Barker</CustomerName>
</tblCustomers>

<tblCustomers>

<CustomerID>2</CustomerID>

<CustomerName>Scott Barker</CustomerName>
</tblCustomers>

<tblCustomers>

<CustomerID>3</CustomerID>

<CustomerName>Chris Barker</CustomerName>
</tblCustomers>

<tblCustomers>

<CustomerID>4</CustomerID>

<CustomerName>Kari Anne Barker</CustomerName>
</tblCustomers>

<tblCustomers>

<CustomerID>5</CustomerID>

<CustomerName>Nichole Barker</CustomerName>
</tblCustomers>

<tblCustomers>

<CustomerID>6</CustomerID>

<CustomerName>David Barker</CustomerName>
</tblCustomers>

<tblCustomers>

<CustomerID>7</CustomerID>

Understanding Data

<CustomerName>Joseph Barker</CustomerName>
</tblCustomers>
</dataroot>

You may have heard of a language used for Web page design called HTML (Hypertext Markup Language).
HTML is a language that uses tags to specify how to create a presentation in a Web browser. XML uses tags
to specify how to work with data.

You can see from the XML file just displayed that it refers to another file called Customers.xsd. .xsd
files are called schema files and hold information about fields such as the type of data they are.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:od="urn:schemas-
microsoft-com:officedata">

<xsd:element name="dataroot">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tblCustomers" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

<xsd:attribute name="generated" type="xsd:dateTime"/>
</xsd:complexType>

</xsd:element>

<xsd:element name="tblCustomers">

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="CustomerID " primary="yes"
unique="yes" clustered="no"/>

<od:index index-name="CustomerID" index-key="CustomerID " primary="no" unique="no"
clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="CustomerID" minOccurs="1" od:jetType="autonumber"
od:sglSType="int" od:autoUnique="yes" od:nonNullable="yes" type="xsd:int"/>
<xsd:element name="CustomerName" minOccurs="0" od:jetType="text"
od:sqglSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

The good news is that you don’t have to deal with the XML files directly to work with InfoPath. If

you create a standalone InfoPath form that uses XML for storage, then InfoPath will build the schema
for you.

41

Chapter 3

Try It Out Examining an XML Document

1. Download Customer.xml.

2. In Windows Explorer, right-click on the file, and choose Edit. The file will be displayed in

Notepad as shown in Figure 3-8.

@ Cust xml - Notepad

=3

File Edit Format View Help

<7xml version="1.0" encoding="UTF-8"7>
<dataroot xmins:od="urn:schemas-microsoft-com:officedatra”
¥mins:xsi="http: #3.0rg/2001/xMLSchema-instance” xsi:noNamespaceSchemalocation="Customers.xsd”
generated="2004- 07 30T12 11:47">
<thlcustomers:

<CustomerID>1</Customer IDx>
<CustomerName=Diana Barker</CustomerName>
</thlcustomers:

<thlcustomers:

<CustomerID=2</Customer ID>
<CustomerNames>Scott Barker</Customernames
</thlcustomers:

<tblcustomers>

<CusTomer I0=3</Customer ID=
<Customername=Chris Barker</CustomerNames>
=/thlcustomers>

<tblCustomers>

<CustomerIDe=4</Customer ID>

<CustomerName=Kari Anne Barker</CustomerName:>
</tblCustomers:

<thlcustomers:

<CustomerID=5</Customer ID>
<CustomerName=Nichole Barker</CustomerNames
</thlcustomers:>

<thlcustomers:

<Customer ID>6</Customer ID>
<CustomernamexDavid Barker</Customernames
</thlcustomers:

<thlcustomers>

<CusTomer IDs7</Customer ID>
<CustomernName=Joseph Barker«/CustomerNames=
</thlCustomers>

</dataroot>

Figure 3-8

3. Repeat the steps for Customers . xsd, which is the schema document.

Introduction to Web Services

You have read thus far in this chapter about two ways of using data with Access: databases and XML
documents. The third way is to connect to a Web service. Web services, also called XML Web services,
provide the ability to expose your information in a controlled manner to any number of clients over the

Internet or an intranet.

Web Services Overview

Web services act as wrappers around your data, allowing you to provide it to users using methods and

properties that you want to specify.

Web services are based on SOAP (Simple Object Application Protocol). As with a lot of other new Web
development environments, there are tools that generate the SOAP for you so you just have to use com-
mon development languages such as ASPNET, C#, and Visual Basic .NET. Creating your own Web service

is discussed in Chapter 15 .

42

Understanding Data

Even better news is that you don’t even have to use these tools to connect to Web services. An example
of a Web service is one that provides the current weather information for whatever airport code you sub-
mit to the Web service. You can see the Web site for this Web service in Figure 3-9.

So if the Airport Weather Web service method get Summary () is called with SEATAC as a parameter, it
will return the weather for Seattle Tacoma International Airport.

You can use Web services to both retrieve and update information, depending on how the methods of
the Web services are set up. There are a number of ways to invoke a Web service, using various develop-
ment languages, such as Visual Basic, or in InfoPath using a wizard.

Using Web Services with InfoPath

When using Web services with InfoPath, you will be using them as data sources for your InfoPath form.
You can connect to the Web service as either the primary data source for querying and updating the main
sources of information or as a secondary data source such as populating a drop-down list box with values.

You will read more about connecting to a Web service as a data source in the next chapter.

€71 Airport Weather Web Service - Microsoft Internet Explorer [=JI=ES
File Edit View Favorites Tools Help w
A) = - Fe 1 LY G 2
Qs - Q- [X] B @] Psewcr Jrrmors @rese @ (-5 vl - [J I B
Address |] htto: [fvnn.capescience com/iwebservices/ar por bveather frdex. shml t| Go Links
Google~ |rort weather web service = || @b Searchieb) | Ehs2biocked] Al | B Optons 4 | [E] arport weather web (&) service
-~
CapeScience €9 CAPECLEAR
Web Services Developer Community | ==ercy |
Home Forum Knowledge Base Education Articles Resources Weblog
Home: Web Services: Airport Weather
- Help [Support?
AirportWeather

Having problems with

This web service reports on weather at all airports and airfields that have a registered ICAD
(International Civil Aviation Organisation) number, Input to all methods is the ICAD
designation e.g. EIDW for Dublin Airport Ireland or KIFK for JFK Airport in New York, USA.
The weather service data is provided by the US Government's National Weather Service; -
this data is freely available and reuseable, but is non-copyrightable in its raw form.

AirportWeather? Visit our

bulletin board.

AcademicVarifisr

Tutorial

> AirportWaathar

There is a tutorial (with
AmazonSearchSarvica

There are several methods for retrieving weather items (e.g. ges , getTenperacure sample client code) which
EOPServis
E—) which return a string. However, there is also a method, getSums {1, which returns a shows how to invoke the
GlobalWeather complex object, the fields of which can be inspected. Web Service using
CapeMail The following are 1CAD designaticns for some popular airports: VBScript.

* KIFK - New York JFK SOAP Request
* KLAX - Los Angeles Intl.
EIDW - Dublin, Ireland
WHHH - Hong Kong Intl.
® EHAM - Amsterdam
EGLL - London Heathrow
YSSY - Sydney Intl.

® RITT - Tokyo Intl.

HECA - Cairo

This 504 est will

successfully invoke

AirportWeather. Use
NetTool to POST this
message to the

AirportWeather endpoint
(see table).

Alternately, you can go to http://www.ar-group.c

m/icaaiata.htm to find your local aiport.

i

&l 4 Internet
Figure 3-9

43

Chapter 3

Summary

InfoPath is a powerful tool. But it is only as powerful as the information you can use with it. In the chap-
ter, you saw how databases are used in real life every day and how those databases can be visualized
using the computer.

There are a number of database models that can be used, but one in particular is very popular: the rela-
tional database model. There are a number steps needed to come up with good relational model for your
database, but when set up correctly, it can be very intuitive to retrieve and update data.

There are two database solutions that Microsoft offers: Microsoft Access and Microsoft SQL Server. Both
connect directly to InfoPath and are relational, but they are made for different scenarios. Two other alter-
natives for using data with InfoPath are XML documents and Web services.

Exercises

44

1.

2
3.
4.
5

Name the two types of databases discussed in this chapter.

What are the names of the two Microsoft relational databases that InfoPath connects to directly?
What types of fields do you use to create a one-to-many relationship between two tables?

What are the steps called when taking a flat file and turning it into relational database?

Name two of the file extensions used for XML documents.

Creating an InfoPath
Form from an Existing
Data Source

Up until this point in the book you have read about the various types of data you can connect to
with InfoPath. You have actually seen the native database applications such as Access and SQL
Server and have discussed Web services briefly. InfoPath forms have also been created from
scratch, to give you a taste of how to use the InfoPath Designer.

Now comes time to combine what you have learned so far to create InfoPath forms based on data
located in either databases or Web services. In this chapter you will:

Q

Q
a
a
a

Connect to a database as a data source.

Examine features of the form created.

Add fields from your data source onto an InfoPath form for querying data.
Add fields for updating data.

Update a data source.

Starting the Form Based
on a Data Source

When creating forms based on data, the data that is to be used with the form needs to be specified.
This does not mean merely which database you want to use, but also the tables or queries, and
even the fields. While the InfoPath team has been kind enough to give us a wizard to connect to
data sources, there are specifics you need to understand to have the correct data available for use
on your InfoPath form.

Chapter 4

Specifying the Right Data for the Right Job

When using more than one table for a form, all the tables necessary must be chosen. For example, if you
wanted to list customers and their invoices with details, you would choose tblCustomers, tblInvoices,
and tblInvoiceDetails. For this chapter, you will be use a Microsoft Access table from the Chapter

4 .mdb titled tblICustomers. You can see some data from this table displayed in Figure 4-1.

_1 tbiCustomers : Table EEE
_J Customer 1D Company Name | Contact Name Contact Title Address | City | Region | Postal Codc| Country = |
Ak Alfreds Futterkiste Mana Anders Sales Representative Obere Sir. 57 Berlin 12209 Germany
|+ ANATR Ana Trujillo Emparedados v he Ana Trujilo Owner Avda de la Constitucid México D F 05021 Mexico
|+ ANTON Antonio Moreno Taquaria Antonio Moreno Cwiner Mataderos 2312 México D.F. 05023 Wexico
|+ AROUT Around the Horm Thomas Hardy Sales Representative 120 Hanover Sq. London WAT1DP UK
||+ BERGS Berglunds snabbkdp Christina Berglund | Order Administrator Berguvsvagen 8 Luled 5-953 22 Sweden
|+ BLAUS Blaver Sea Dealikatessan Hanna Moos Sales Representative Forsterstr 57 Mannhaim 68306 Garmany
|+ BLONP Blondel pére et fils Frédérique Citeaux Marketing Manager 24, place Kléber Strasbourg G7000 France
|+ BOLID Bolido Comidas preparadas Martin Sommer Owiner G/ Araguil, 67 Madrid 28023 Spain
||+ BONAP Bon app’ Laurence Lebihan | Owner 12, rue des Bouchers Marseille 13008 France
|+ BOTTM Bottom-Dollar Markets Elizabeth Lincoln Accounting Manager 23 Tsawassen Bivd Tsawassen BC T2F 804 Canada
||+ BSBEV B's Beverages Victoria Ashworth | Sales Representative Fauntieroy Circus London EC2 SNT UK

+ CACTU Caclus Comidas para llevar Palricio Simpson Sales Agenl Cerrito 333 Buenos Alre: 1010 Argentina
||+ CENTC Centro comercial Moctezuma Francisco Chang Marketing Manager Sierras de Granada 29 México D.F. 05022 Mexico
||+ CHOPS Chop-suey Chinese Yang Wang Cwinar Hauptstr 29 Bern iz Switzaran:
|+ COMMI Comércio Mineiro Pedro Afonso Sales Associate Av. dos Lusfadas, 23 Sdo Paulo SP 05432-043 | Brazil

+ CONSH Consolidated Holdings Elizabeth Brown Sales Represenlalive Berkeley Gardens London WHX1ELT UK
||+ DRACD Drachenblut Delikatessen Swen Otflieb Order Administrator Walserweg 21 Aachen 52066 Germany
|+ DUMON Du monde antier Janing Labrune Owiner 67, rue des Cinquante Mantes 44000 France
|+ EASTC Eastern Connsction Ann Devon Sales Agent 35 King George London WS BFW UK

+ ERMEH Ernst Handel Roland Mendel Sales Manager Kirchgasse § Graz &010 Awslria
|+ FAMIA Familia Arguibaldo Aria Cruz Marketing Assistant Rua Ords, 92 S&o Pauln SP 05442-030 Brazil
|+ FISSA FISSA Fabrica Inter. Salchich Diego Roal Accounting Manager C/ Moralzarzal, 86 IMadrid 28034 Spain
| |+ FOLIG Folies gourmandes Martine Rancé Assistant Sales Agent 184, chaussée de Tour Lille 59000 France

+ FOLKO Folk och fa HB Maria Larsson Owiner Akergatan 24 Bracke 5-844 67 Sweden .
record: [M] 4« [T [[M]rE] of o [%] L >

Figure 4-1

To make it simpler all the data from this table will be used. If using only a few fields from a table, then
only those fields should be specified. The Data Connection Wizard guides you in making these choices.

Working with the Data Connection Wizard

The Data Connection Wizard steps you through accomplishing the following tasks:

Q

46

Pick a Database: Besides picking the type of database (for example, Access, SQL Server, or Web
service), the actual database can be specified.

Choose Tables and/or Queries: As mentioned in Chapter 3, “Understanding Data,” tables con-
tain the actual data, and queries provide views of the data, letting you combine and limit data
as needed. These tables and queries are generally set up ahead of time by the developer or sys-
tem administrator of the database.

Verify and Create Relationships: Usually created ahead of time by the database creator, the
Data Connection Wizard lets you create or modify relationships for use with your InfoPath form
when you specify more than one table or query.

Creating an InfoPath Form from an Existing Data Source

Choose Fields to Use: Although you can have InfoPath bring all the fields in tables or queries
into your form for possible use, performance is enhanced when you only use fields that you will
be using. This is especially true when you use SQL Server or Web services based on other
client/server products, because only that data specified in the wizard will come down over the
wires (network or Internet).

Edit the SQL Created: If you happen to be comfortable with writing SQL statements, the wizard
provides the ability to modify the SQL created by InfoPath for the data connection. This is espe-
cially useful if you want to create more extensive statements with subqueries or even just add
an Order By clause on the SQL to specify a sort order.

When picking the data for the initial form, don’t worry about picking the data sources for all your con-
trols such as value lists for drop-down list boxes that are going to be on your form. Only the data that is
going to be used for inputting or modifying your data on the main form will be chosen using the initial
Data Connection Wizard. The other data sources are called secondary data sources and can be chosen later
in the form design.

Try ltOut | Creating the Form and Specifying the Data Source

1.

2.

Open InfoPath by choosing All Program = Microsoft Office = Microsoft InfoPath 2003 from the
Start menu. The Fill Out a Form dialog box is opened.

Click the Design a Form task. You will then see the Design a Form task pane, with a blank
design layout.

Click New from Data Connection . . . The Data Connection Wizard starts, as shown in
Figure 4-2.

-

(Data Connection Wizard E

This wizard helps you design a form based on the data you receive from or submit to @ Web
service or database.

"5' Select the type of data connection you want to use for your form:
(Microsoft SQL Server or Microsoft Office Access only)

Ol"-_ieb service

Next = |[Cancel

Figure 4-2

47

Chapter 4

48

4,

6.

Because you are going to use an Access database, click the Next button. The next page displays
selected tables and queries. Currently it is disabled, except for a button that reads Select Database.

Click the Select Database button. The Select Data Source dialog box opens. This dialog box is
used by applications that are selecting data sources. Besides selecting Access .mdb files, you also
can specify ODBC connections and SQL Server connections. You can see these options in the
Select Database dialog box shown in Figure 4-3.

Select Data Source
Look jn: [&] My Data Sources _IVI S | |Q X Cis T - Tools -
X &)+ Connect to New Data Source.odc
Ik <3 “@l+New SQL Server Connection.odc
My Rece...
€
Dasktop

My Documents
My Computer

My Netwo...

File nama: | Ll [New Source... | [Open]

Files of type: | All Data Sources (*.odc; *.mdb; ".mc'v] _

Figure 4-3

For this example locate the database for Chapter 4 (Chapter 4.mdb). You can see this file
selected in Figure 4-4.

'Select Data Source &)
Look jn:) Chapter 4 _'v] @ < L_a |.Q >(Ci] « Tools ~
D
My Rece...
[
Dasktop

My Documents
My Computer

My Netwo...

File pame: | Ll [New Source... | [Open]

Files of type: | All Data Sources (*.odc; *.mdb; ".mc'v] _

Figure 4-4

Creating an InfoPath Form from an Existing Data Source

7.

8.

9.

Click Open. You are now taken back to the Data Connection Wizard and shown a display of the
tables and queries in the database you choose.

Highlight tblCustomers in the Select Table dialog box, as shown in Figure 4-5.

Select Table

Mame

B thlOrders
B thlProducts

[thiShinnare

<]

B tblorderDetails

Description

thlCategories Categories of Northwind products.

Customers' names, addresses, and phone numbers.

El thiEmployees Employees' names, titles, and personal information.
Details on products, quantities, and prices for each order ir
Customer name, order date, and freight charge for each ol

Product names, suppliers, prices, and units in stock.
Shinnare' namae and nhana nimhars

Figure 4-5

Click OK. As you can see here in Figure 4-6, the Data Connection tables and queries page with
tblCustomers and its fields specified is now displayed.

rData Connection Wizard

Datab C:\Books\InfoPath\Samples\Chapter 4\Chapter 4.mdb Changeoambase

If you want to change the database, click Change D

Your data source can indude one or more tables or queries from the selected database.

Data source structure:

CustomerID

= [thicustomers - Add Table...
CompanyName Remove Table

Contacthamea

c;:tam’nﬂe = Modify Table...
v Address

City

Region

PostalCode

Ef“"“n’ = Edit SQL...

Show table golumns

< Back II Hext > I[Cancel

Figure 4-6

In addition to tblCustomers and its fields being displayed, there are also a number of command

buttons, a tree view, and a check box that accomplish the following:

49

Chapter 4

50

Command Label

Data source structure

Change Database
Add Table
Remove Table

Modify Table.
EditSQL. ..

Show Table Columns

Description

Lists the tables or queries used in the connection. Columns can
be specified by checking or unchecking the check boxes next to
the column name.

Used to connect to a completely different database.
Displays the Add a Table or Query dialog box.
Removes the table highlighted in the data source structure.

Enables you to modify the sort order of a table or query used
with the InfoPath form.

Used to modify the native SQL statement created by the Data
Connection Wizard.

Toggles the visibility of the field (column) names in the data
source structure.

If a mistake is made and data not specified correctly, the wizard can be rerun to cor-
rect the changes. Modifying the data source, including using the Add Table, Modify
Table, and Edit SQL . . . options will be discussed later in this chapter in the section
“Updating a Form’s Data Source.”

10. Click Next because the tblCustomers table and all its fields are utilized for this example. The
Summary page of the Data Connection Wizard is displayed, as shown in Figure 4-7.

Data Connection Wizard @

Enter a name for this data connection:

Main connection

Summary

Type: Retrieve and submit data to database

Datab C:\Books) ath\Samples\Chapter 4\Chapter 4.mdb
Frimary parent table: thiCustomers

Number of tables induded in data source: 1

Submit status: Enabled

< Back IL Finish ;I Cancel

Figure 4-7

Creating an InfoPath Form from an Existing Data Source

You also have the opportunity to specify the data connection name for the InfoPath form, with Main

connection being the default.

11. Click Finish, leaving the default connection name. Once you have completed the Data
Connection Wizard, InfoPath creates a form, with a number of controls already on it, as shown
in Figure 4-8.

Form Header

Query Field Section

Data Field Section

Data Source

|&] (Design) Template1 - Microsol
: File Edit View |nsert Format Tools Table Help

i) 5 |d | - Preview Form |

3 3 ¥

ft Office InfoPath 2003

2, 1 4 | ¥ Design Tasks... | @ _

i M verdana DT

B Z U

e

- A~
iF i -5

: 74 Draw Table "4 No border

ER

Click to add a title

Click to add form content

Drag query fields here

Run Query

Drag data fields here

Task Pane
[EE<|
A que ép -
: Data Source - x
08 vayout
P2 Controls
3 Dato Source
L3 views
Data source:
=l = myFiekds
F [F quaryrizlds
t [demFields
[[]show detaits
ki Belp with the Data Scurce

Figure 4-8

Working with the Created InfoPath Form

Before continuing with completing the InfoPath form, it is worthwhile to take a look at the various
features created by default on the form and in the designer.

A Look at the Features of the New Form

Working with the callouts in Figure 4-8, the following list details different features of the new form

created:

51

Chapter 4

Q Form Header: This section is a layout table with the type of Table with Title. It is used as the
header for the form.

Q Data Source Task Pane: This task pane displays the main data source for the InfoPath form. It
includes fields used for both the query and data sections of the form.

QO Query Field Section: To limit the data brought down over the network, be it local area network
or Internet, fields can be assigned for querying data. When fields are assigned to the Query
Field section, they may or may not be used for querying, and the records returned from the
query supplied to the form used for display or modification.

QO Query Field Section: To limit the data brought down over the network, be it local area network
or Internet, fields can be assigned for querying data. When fields are assigned to the Query
Field section, they may or may not be supplied, and records displayed in the form for modifica-
tions if specified.

Q Data Field Section: This section contains the data fields used on the form. Data fields are used
to display, modify, or append data.

Once data has been updated or added to the Data Field section, the user will click the Submit toolbar
button. An alternative is to choose Submit from the File menu. The data is then submitted into the
database.

0O New Record Command Button: Once this button is clicked, blank fields are displayed ready
for adding new data. Click submit to append the record to the database.

QO Run Query Command Button: After query fields are filled in and this button clicked, a query
is sent to the connected database, and data is returned matching the query for use in the
InfoPath form.

The remaining sections of this chapter cover each of the features displayed in the prior list. Before
moving on to the more interesting features, complete the following Try It Out, specifying the header
for the form.

Try It Out Filling in the Form Header Information
Using the form created in the last Try It Out:

1. Click in the Header section, in the area labeled Click to add a title.

2. Type Customer Information. The header will look as it does in Figure 4-9.

O
Customer Information

Click to add form content

Figure 4-9

The bottom half of the section will not be used for this example.

52

Creating an InfoPath Form from an Existing Data Source

Data Source Task Pane

The Data Source task pane contains the data sources specified using the Data Connection Wizard. In the
initial form as created in the last Try It Out, data sources (tables, queries, and fields) are displayed for
queryFields and dataFields using a tree view style display.

Clicking a node in the tree view displayed in the data sources task pane expands the next level of the

data source.

Try It Out Displaying the Fields in the Data Source

Continuing with the form used in the last Try It Out:

1. Click the plus (+) symbol by the queryFields description. The tree node with the label

q:tblCustomers is displayed.

2. Click the plus (+) symbol by the q:tblCustomers tree node. The fields you designated to be
included from the table are displayed.

3. Perform Steps 1 and 2 for the dataFields node in the tree view to display the fields used in the
Data Fields section of the form. The tree view then looks as it does in Figure 4-10.

=I .= myFields

<

=& gueryFields]

=l (=R g:thlCustomers
‘_? :CustomerID
(=8 :Companyhame
(=8 :ContactName
(B :ContactTitle
(8 :Address
(= :City
‘_'? :Region
(C8 :PostalCode
(=8 :Country
=8 :Phone
‘_? :Fax

= (=8 dataFields

= [d:thlCustomers
‘_? :CustomerID
(=8 :CompanyName
(=R :ContactName

T crantactTiHa

-~

Figure 4-10

There are a number of other features within the Data Source task pane that you will use throughout the
rest of this book. The Data Source task pane and its elements are now set up for use with the rest of the

chapter, starting in the next section.

53

Chapter 4

As you drag any of the fields onto the form, InfoPath will create a control for you, based on the type of
the data. For example, if you drag a field onto the form that is a Date data type, then InfoPath creates a
Date Picker type control for you, bound to the field in the data source. Controls also can be placed upon
the form and then bound to a field in the data source.

The default control type created is Text Box. This includes controls dragged into the Query Field section.

Query Field Section

The Query Field section is used to specify fields that can be used to query data in the connected
database. An example of this is adding the City field onto the Query Field section. When the form is
opened, the user can supply a city such as Seattle and InfoPath returns the records where the data in the
City field matches Seattle.

Adding the fields

To add a query field a field is highlighted in the queryFields node of the data source tree. Holding down
the left mouse button, the field is dragged over onto the Query Field section of the form. Besides a text
box control being created, a label with the field’s Caption property is created.

Try It Out Adding Fields to the Query Field Section
Using the form created in this chapter, as displayed in the last Try It Out:

1. Click on the Region field located in the queryFields = q:tblCustomers node of the data source
tree view control.

2. Drag and drop the Region field into the Query Fields section of the form. The section then look
as shown in Figure 4-11, with the Run Query button included.

Region:

Figure 4-11

You need to supply the fields in the Data Field section before you can see any of the records returned
from the database.

54

Creating an InfoPath Form from an Existing Data Source

Be sure to pull the fields from queryFields tree nodes for the Query Field section. Otherwise, if you use
dataFields for the Query Field section an error will be displayed stating “The action will delete all infor-
mation in the current form.” The dataFields fields used in the Data section will display the query data.

Using More Than One Query Field

When using more than one field in the Query Field section, InfoPath will “And” the fields when query-
ing the database. What this means is that if you have both City and Country in the Query Field section
and both fields are filled in, then records where both fields are equal will be returned. For instance:

Q If you have specified Seattle for the city and Canada for the country, then no records will be
returned.

Q If you have specified Vancouver for the city and Canada for the country, then one or more
records will be returned.

Data Field Section

Where the Query Field section is for querying the database, the Data Field section is for displaying,
updating, and adding the actual data. More choices are necessary when adding the fields to the Data
Field section. You can add fields one at a time or add a whole section.

Adding Fields One at a Time

When adding fields individually you have more control over how you want to have the fields displayed
as you are adding them. Tables can be added to the form for additional formatting of the form. If you are
adding fields one at a time, click the field in the dataFields branch of the data source tree view, dragging
it to the location where you want it on the form, much as you did with the queryFields. A repeating sec-
tion is added when you add the first field onto the form. More information about repeating sections is
discussed in the next section.

To add the tables when needed, switch to the Layout task pane, and choose the layout table desired, as
shown in Chapter 2, “Getting Started Designing with InfoPath.”

Adding Repeating Sections of Fields to the Form

Another way to add fields is to add complete repeating sections to the form. Repeating sections are
analogous to tables or queries, in that you will drag them onto the form to create the section that will
display one or more records. When you click the table tbICustomers, you will see the menu displayed
in Figure 4-12.

;] Repeating Table

IE]| Repeating Section with Controls
EI Repeating Section

= Master/Detail

Figure 4-12

55

Chapter 4

The following list discusses the available items:

Q

Repeating Table: Displays data in a tabular view similar to a datasheet view in Access, or a
spreadsheet in Excel. This is a good choice when you expect to have many records returned
from the query.

Repeating Section with Controls: Creates a repeating section with the fields going down the
page rather than across it like the prior choice. A repeating section with controls is recom-
mended when you are only expecting single records to be returned.

Repeating Section: The section created from this choice is bound to the section, but contains no
controls initially. This is the option to use when you are planning to add the fields singularly.

Master/Detail: These sections are used for two related tables, showing a master record such as
invoice information, and one-to-many detail records such as the detail records for an invoice.

Remember that whichever choice you use you can modify the sections to match the vision you have in
your mind for the form you're creating.

Try It Out Adding Fields to the Data Field Section

This Try It Out continues with the form created earlier in this chapter:

1. Highlight the d:tblCustomers table in the data source tree view, holding down the left mouse
button.
2. Dragand drop the d:tblCustomers into the Data Fields section. The menu for type of repeating
section is displayed.
3. Click the Repeating Table option.
4. Adjust the width of the table and fields to show more of the City field, as shown in Figure 4-13.
g
Cust ID Company Contact Contact Address City Region Postal Country Phon
Name Name Title Code
Figure 4-13

The form is now ready for prime time, or at least for you to preview. Before previewing the form, read
the following section about the two command buttons created by default on the form.

New Record and Run Query Command Buttons

The two command buttons added to the form include two of the four built-in commands you can assign
to command buttons. To check out the actions of command buttons, right-click and pick Properties. You
then see the button properties, as shown in Figure 4-14.

56

Creating an InfoPath Form from an Existing Data Source

(Design) Template1 - Microsoft Office InfoPath 2003 -=E3
i File Edit View Insert Format Tools Table Help Type a question for help «
;!df_i | 2y Preview Form | <4 [4 %7 | % U3 @ F| 9 | [|| Design Tasks... | v

i 44 verdana 110 B ZU|[E[=EEi=-i=-i= g A

: "4 Draw Table [/ no border - | | L ~| & ~ | Ingert~] 5 5%]| 5

Customer Information

|Buttoanperﬁes
General Display | Size | Advanced
o
Qsj:IDC """""""" C """ ta t Action: | New Record % C """ t """ Ph """"" F """"""
s ompany Contac ountry one Fax
Name Name Label: | HEINERES
B-
Regmn |
ox) [cance aooly
Figure 4-14

The four built-in commands are pretty self-explanatory. Run Query, Submit, New Record, and Delete &
Submit are all commands that are performed using the current view against the database. Rules and
Custom Code enable the developer to create rules or custom code using scripts (or C#) to accomplish
custom tasks.

_ Examining to Run Query Command Button Action

Continuing with the form created in this chapter:

1. Right-click the command button labeled Run Query.
2. Choose Properties. The Button Properties dialog box opens.

You will see the Run Query action displayed for the action of the command button. More on creating
your own command buttons can be found in Chapter 6, “Working with Controls in General.”

57

Chapter 4

Previewing the Form

Now that all the work has been done to create the form, it is time to test the work that you have done.
It’s a good idea to preview a form before you publish the form for other users. To accomplish this, click
the Preview Form toolbar button or choose File => Preview Form.

2, Preview Form

When creating larger forms, test the form as you create major sections. Make sure
that the form is looking as you want it when it is to be used in production.

Note that when you make changes to data in Preview mode and submit the data, the data is actually
submitted to the database as if you had published the form or opened the form for filling. The reason it is
referred to as previewing is because you are viewing it from Design mode rather than from Fill mode.

Try It Out Querying a Customer Record by Region
The first thing to test when previewing the form is to make sure that the query field is working correctly.
To test this feature using the form created in the chapter:
1. Click the Preview Form toolbar button.
2 If necessary, scroll down to the Query Fields section.
3. Type WA in the Region query field.
4

Click Run Query. The record of the customer who is located in WA is displayed, as shown in
Figure 4-15.

How It Works

When the Region field was added from the queryFields branch in the data source tree view to the Query
Field section, InfoPath then knows that you are intending to use that field to query the database. When
you supply a value in the Region field and click the Run Query button, InfoPath creates a select query

similar to:
Select tblCustomers.CustomerID, tblCustomers.Company, ... From tblCustomers Where
Region = "BC"

The query is then submitted to the connected database. XML is generated in the form of records match-
ing the criteria that are then populated into the fields and displayed in the form. If no records match, a
message box is displayed notifying you of the fact that there are no records.

58

Creating an InfoPath Form from an Existing Data Source

Preview10 - Microsoft Office InfoPath 2003

i File Edit View Insert Format Tools Table Help
i @Asubmit| -7 7 [1|2 Close Preview | (3 (3 ¥ | 4 a8 S99
:_!. '“ VJBIQlEE’EE

SEX|

Type a question for help -

] L3l | :;|Q'E
Eolissis o Al startink Entry -2

Customer Information

Cust ID Company Contact Contact Address City Region Postal Country Phone Fax
Name Name Title

Code
LAZYK Lazy K Kou John Steel Marketin 12 Orchi Walla Walli WA 99362 USA

TRAIH Trail's Hea Helyetius I Sales As 722 Da\ Kirkland WA 98034 USA
WHITC White Clov Karl Jablor Owners 305 - 14 Seattle WA 98128 USA

2 Insertitem

(509) 5 (509) 5¢
(206) 5 (206) 5¢
(206) 5 (206) 5¢

Region:
WA

4 Form template's location: C:\Documents and Settings\FSBarker\Local Settings\Application Data\Microsoft\InfoPath\Designer\322afd T
Figure 4-15

dryltOut | Modify a Customer's Record

Using the customer record that was retrieved in the last Try It Out:

1. Modify one of the fields in the record.

2. Choose File & Submit, or click on the Submit toolbar button. The data is then updated to the

database.

How It Works

When the Submit button is clicked after the information in the field has been updated, an UPDATE

SQL statement is generated, with the data updated back in tables in the database specified in the data
connection.

59

Chapter 4

TryltOut | Adding a New Customer

With the form used in the last Try It Out:

1. Click the New Record button. The fields are then cleared in the form, as shown in Figure 4-16.
Notice that the query field has not been cleared.

Preview10 - Microsoft Office InfoPath 2003 |;|[i|
i File Edit View Insert Format Tools Table Help Type a question for help -
i@asubmit| v A |- ClosePreview J QT |4 o8 S9 -]o] Al dled

LA | B LUIEES S E == is o EiE A LB/ start ink Entry -2

Customer Information

Cust ID Company Contact Contact Address City Region Postal Country Phone Fax
Name Name Title Code

2 Insert item

Region:
WA

4 Form template's location: C:\Documents and Settings\FSBarker\Local Settings\Application Data\Microsoft\InfoPath\Designer\322afd

Figure 4-16

2. Add the desired data into the fields.
3. Click the Submit button. The data is then updated in the database.

Notice the arrow below the table displayed in Figure 4-16 with the label Insert Item. This is another
way to add a new record to the database, provided by InfoPath, with no additional work to perform

on your part.

How It Works

After you have adding the information into the fields and clicked the Submit button, an INSERT INTO
SQL statement is generated and the information inserted into the tables in the database that was speci-

fied by the data connection.

60

Creating an InfoPath Form from an Existing Data Source

Updating a Form’s Data Source

No matter how well you plan out your forms and the data you base the forms on, there will be many
times when you need to modify the data source for a form. Hopefully, you will only be adding a couple
of fields to the form that already exists in the database. If you need to modify objects in the database
itself, you need to open the database, in Access for example, and modify them there, and then modify
the data source in InfoPath.

When you need to modify the data source for a form in InfoPath, use Tools & Data Connections. A dia-
log box listing the current connections used by the form will displayed, as shown in Figure 4-17.

Data Connections

Data connections for your form:

Main connection Add...

Details

Name: Main connection
Type: Retrieve and submit data to database
Data source type: Main data source

Close

Figure 4-17

After highlighting the connection you want to use and clicking Modify, the Data Connection Wizard will
be opened again. At that point, you can make your modifications that you want to make. There are a
number of ways you can make modifications to the data source. For example, if you want to add a sort
order to a table you can use the Edit SQL . . . command or choose the Modify Table command, both on
the Data Connection Wizard.

Which command you use will depend on if you are comfortable with working with SQL statements
directly or not. If so, then use the Edit SQL . . . command. If you are just adding a sort order to a table,
then the best method would be to use the Modify Table command, which opens a fairly user-friendly
dialog box.

61

Chapter 4

Try It Out Adding a Sort Order to tblICustomers

62

Working with the form you have been using for this chapter:

1. Choose Tools = Data Connections The Data Connections dialog box will open.

2 Highlight main connection, and click Modify The Data Connection Wizard starts.
3. Click Modify Table. The Sort Order dialog box opens.

4 Select City. The dialog box will now look like Figure 4-18.

Sort Order

Table: tbiCustomers

Sort by:

City | v| @ Ascending
(") Descending

Then by:

(None) [~ (®) Ascending
(C) Descending

Then by

(None) (~] (@) Ascending

(") Descending
Multiple records

[W] Allows multiple records from this table to be displayed in the form

Einish l l Cancel

Figure 4-18

5. Click Finish. The Sort Order dialog box is closed.

6. Click Next and then Finish to close the Data Connection Wizard.

Now preview the form, type WA for the Region, and click Run Query. You will now see the records in
alphabetical order by City, as shown here in Figure 4-19.

You can compare this with Figure 4-15, and you can see that the sort order has been updated as
specified.

Creating an InfoPath Form from an Existing Data Source

|22 Preview11 - Microsoft Office InfoPath 2003 B[]
i File Edit View Insert Format Tools Table Help Type a question for help ~
:] Submit | 2 [2 Close Preview | 4 (3 % | : 9]| k2| & | @) =

i A B L U = = =R A= s s SR R, -'E/StanlnkEntwa

Customer Information

MNew Record

Cust ID Company Contact Contact Address City
Name Name Title

Region Postal Country Phone Fax
Code

TRAIH Trail's Hea Helyetius I Sales As 722 Da\ Kirkland WA 98034 USA
WHITC White Clov Karl Jablor Owners 305 - 1¢ Seattle WA 98128 USA
LAZYK Lazy K Kov John Steel Marketin 12 Orchi Walla Walli WA 99362 USA

2 Insertitem

(206) 5 (206) 5¢
(206) 5 (206) 5¢
(509) 5 (509) 5¢

4 Form template's location: C:\Documents and Settings\FSBarker|Local Settings\Application Data\Microsoft\InfoPath\Designer\322afd

Figure 4-19.

Summary

So, you now know how to create an InfoPath form based on a database. InfoPath performs quite a bit of
the work for you, one part of which is supplying the Data Connection Wizard.

The Data Connection Wizard walks you through locating the database you want to use, as well as the
tables, queries, and fields necessary. If desired, more than one table or query can be used, and the
wizard will help to create or modify relationships if necessary. Once the data source is specified, and

the Finish button clicked, InfoPath creates a form that contains a header section, data section, and query
section for you.

63

Chapter 4

In this chapter, you also saw and experienced how easy it was to drag and drop the fields onto the form,
and choose what kind of repeating sections you want to use. You then saw how to preview a form, query
a database, and modify data from the database. Finally, you saw how to modify a data source.

Exercises

1.

2.
3.
4

64

What is the default control created for a form for fields in a data source?
Name the types of sections created when you drop a table onto the form.
Name the four built-in actions for command buttons.

What are the two ways in the Data Connection Wizard to modify tables?

Utilizing XML and Web
Service Data Sources

XML is quickly becoming the standard file format when working with data not only transferred
between multiple business systems, but also used within single business systems. Nothing points
this out more than Microsoft InfoPath, where besides some of the main data file formats being
used (XML schemas and Web services), the physical structures of the forms themselves being
maintained use Extensible Markup Language (XML) technology.

Once you have worked with XML schemas for a bit they lose a lot of their mystery, but you gain
respect for their simplicity. This chapter lifts the veil of some of the mysteries and has you:

O Look at some of the file structures used for XML technology.

0 Create an InfoPath form based on an existing XML schema.

0O Use XML data for a data source of an InfoPath form.

QO Take a quick look at the XML files that make up an InfoPath form.

XML Overview

As a power user or developer, chances are you have at least heard of XML. XML is to data what
Hypertext Markup Language (HTML) is to displaying Web pages in a browser. While XML describes
the data to be used, HTML describes how information is to be presented on a page. Another big dif-
ference between the two is that although HTML is primarily for the Web, XML can be used anywhere
data is to be utilized. This includes single systems on a desktop, multiple business systems, or utiliz-
ing data over the Internet.

The World Wide Web Consortium (W3C), creator of HTML, first met in 1996. It is also the W3C
who sets the standards for XML.

Chapter 5

What Is XML?

XML is a data file standard. Where the format is agreed upon, the actual commands (tags) used will
depend on the technology, system, or development language utilizing the data. There are technologies
commonly used by applications that take advantage of XML, a common one being XML documents. An
XML document can consist of a single table or an entire database. A good example of various systems
that use XML documents are the Office applications. The majority of them can both import and export
XML, including Word. You can see an example of exporting XML in this chapter in the next section.

As with the HTML, various XML files use tags. However, that is all you specify in XML, what the data
is. You are not specifying how the data looks. One difference between HTML and XML is that XML has
much stricter requirements for creating tags. There are certain rules that you must follow. If you have
followed those rules in the initial creation of your document, then you are said to have created a well-
formed document.

XML Documents

While the information and specific commands included in XML differ based on the technology using
them, XML documents are said to be well formed if they conform to the following basic rules of XML:

Q Each XML document must have a unique root element (an element encompassing the entire
document).

QO The document has matching start and end tags.

O

The elements do not overlap.
Q Certain reserve characters are part of the XML syntax and will not be interpreted as the charac-

ters themselves if used in the data portion of an element.

Besides the * . xm1 file created, additional files are created when you work with an XML document. XML
describes what the data is and is separate from how the data is actually presented. You can use the same
data and present it differently based on separate specification files.

Standard XML Files

XML documents can be made up of a single file if necessary. When only one file is used, however, it is up to
the systems reading the data to figure out the type of data they’re dealing with. When using more than one
document to specify the data, you can specify properties such as data types and other attributes.

Here are some of the extensions and types of files used for XML documents:

Extension Description

* . xml The XML data document. This is a static snapshot of data itself.

*.xsd The schema file. This schema was based off the persisted table or query and is in
the W3C XSD standard.

66

Utilizing XML and Web Service Data Sources

Extension Description

*.xsl Presentation document. The XSL document specifies how the data in the XML is
to be displayed, transforming the data for presentation purposes. A * .XSL is also
used for XSLT documents, which use a subset of commands from XSL. One big
difference is that XSLT also performs the transformation permanently, and in fact

can create other types of files such as HTML from the XML.

* . htm Final Package. This ties the * .xm1 (data) and *.xs1 (presentation) together to be
used on the Web.

There are ways to embed the definition information inside the * . XML, and thereby not have to include

the * . xsd file, however, this is not the recommended practice. The reason for not embedding the defini-
tion is that the business systems need to be able to read the embedded definitions. Another reason is that
it is generally accepted that, just as you want to keep the presentation of the data separate from the data

itself, it is a good idea to keep the definition separate as well.

If you are passing the data to another business application, then you will probably just send the * . xm1
and *.xsd files. In the case of InfoPath, if you are going to create a form based off the structure of exist-

ing XML data, you have only to specify the *xsd. You will see more on this in the section titled
“Creating an InfoPath Form Using an Existing XML Document” later in this chapter.

One of the best ways to understand XML files is to see what they actually look like. For the purposes of
this section, you will see the XML files created by exporting the tblCustomers table to XML. You can see
the original table structure in Figure 5-1.

General | Lookup

Field Size

Format

Input Mask

Caption

Default Value
Validation Rule
Validation Text
Required

Allow Zero Length
Indexed

Unicode Compression
IME Mode

IME Sentence Mode
Smart Tags

Company Name

es

Mo

‘fes (Duplicates OK)
fes

Mo Control

Mone

_I tbICustomers : Table [m][%]
Field Name | Data Type | Description [l
| % |CustomerID Text Unigue five-character code based on customer name. | = |
| | Companyrame| Text i
| |ContactName Text
| | ContactTitle Text
| |Address Text Street or post-office box.
| |City Text
| |Region Text State or province.
| |PostalCode Text
| |Country Text
| |Phone Text Phone number indudes country code or area code.
| |Fax Text Phone number indudes country code or area code.
| |MNotes Text
| |FavoriteShipperlD Number
Field Properties

A field name
can be up to
64 characters
leng, including
spaces. Press
F1 for help on

field names.

Figure 5-1

67

Chapter 5

Although this isn’t an Access book, if you open Chapter 5.mdb in the samples folder, you can right-
click the tblCustomers table in the Table tab of the database window, and choose Export . . . from the
menu. In the Export table dialog box, set XML (* . xm1) as the type of document to export to and click

Export. You are then presented with the XML Export dialog box displayed in Figure 5-2.

Export XML
Select what information will be exported

Data (XML)

Schema of the data (XSD)

[Presentation of your data (X5L)

[More Options...] [0K l [Cancel

Figure 5-2

In Figure 5-2, you can see three of the basic types of files created. For the purposes of using the file struc-
ture to base an InfoPath form on, you only need the XSD. But to get a good look at what the XML looks

like both the data and the schema were exported.

The XML Data Document (*.xml)
The XML data document is just that, data. So, the tblCustomers table would look like this:
<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="tblCustomers.xsd" generated="2004-09-20T16:04:

<tblCustomers>
<CustomerID>ALFKI</CustomerID>
<CompanyName>Alfreds Futterkiste</CompanyName>
<ContactName>Maria Anders</ContactName>
<ContactTitle>Sales Representative</ContactTitle>
<Address>0Obere Str. 57</Address>
<City>Berlin</City>
<PostalCode>12209</PostalCode>
<Country>Germany</Country>
<Phone>030-0074321</Phone>
<Fax>030-0076545</Fax>
</tblCustomers>
<tblCustomers>
<CustomerID>ANATR</CustomerID>
<CompanyName>Ana Trujillo Emparedados y helados</CompanyName>
<ContactName>Ana Trujillo</ContactName>
<ContactTitle>Owner</ContactTitle>
<Address>Avda. de la Constitucidén 2222</Address>
<City>México D.F.</City>
<PostalCode>05021</PostalCode>
<Country>Mexico</Country>
<Phone> (5) 555-4729</Phone>
<Fax>(5) 555-3745</Fax>
</tblCustomers>

68

16">

Utilizing XML and Web Service Data Sources

<tblCustomers>
<CustomerID>WOLZA</CustomerID>
<CompanyName>Wolski Zajazd</CompanyName>
<ContactName>Zbyszek Piestrzeniewicz</ContactName>
<ContactTitle>Owner</ContactTitle>
<Address>ul. Filtrowa 68</Address>
<City>Warszawa</City>
<PostalCode>01-012</PostalCode>
<Country>Poland</Country>
<Phone> (26) 642-7012</Phone>
<Fax>(26) 642-7012</Fax>

</tblCustomers>

</dataroot>

The first line of code, <?xml version="1.0" encoding="UTF-8" ?>,specifies the version of the
XML and encoding format being used.

The <dataroot> tag line specifies other information about the whole XML file itself, such as the schema
file being used and when it was generated.

The next tag, <tblCustomers>, describes the table. If there were multiple tables included, this tag would
be repeated for a different table after the field tags for the tblCustomers were specified. After listing the
various fields in a record, the end tag of </tblCustomers> is used.

There are additional customer records included in tblCustomers.xml, but they are represented with
an ellipsis so as not to waste space.

Finally, the end tag for the dataroot is displayed: </dataroot>. You can see from the preceding listing
that no information about the structure of the data was included other than the names for the table and
fields. The other information was specified in the * . xsd file. Field tags in the *.xm1 document match
up directly with field tags in the schema document.

The Schema File (*.xsd)

The schema file specifies not only the definitions for the individual fields, but for the whole XML file
itself. The <xsd: element> tags in the following listing are used to specify each element in the * . xm1 file
used for tblCustomers. Other tags are used to specify different attributes matching the properties set for
the table and fields in Access.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:od="urn:schemas-
microsoft-com:officedata">

<xsd:element name="dataroot">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tblCustomers" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

<xsd:attribute name="generated" type="xsd:dateTime"/>
</xsd:complexType>

</xsd:element>

<xsd:element name="tblCustomers">

<xsd:annotation>

69

Chapter 5

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="CustomerID " primary="yes"
unique="yes" clustered="no"/>

<od:index index-name="City" index-key="City " primary="no" unique="no"
clustered="no"/>

<od:index index-name="CompanyName" index-key="CompanyName " primary="no"
unique="no" clustered="no"/>

<od:index index-name="FavoriteShipperID" index-key="FavoriteShipperID "
primary="no" unique="no" clustered="no"/>

<od:index index-name="PostalCode" index-key="PostalCode " primary="no" unigque="no"
clustered="no"/>

<od:index index-name="Region" index-key="Region " primary="no" unique="no"
clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="CustomerID" minOccurs="0" od:jetType="text"
od:sqglSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="5"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="CompanyName" minOccurs="1" od:jetType="text"
od:sqglSType="nvarchar" od:nonNullable="yes">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="40"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="FavoriteShipperID" minOccurs="0" od:jetType="longinteger"
od:sglSType="int" type="xsd:int"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

When you are passing data from one business system to another, as long as the system can read XML,
the two file types discussed here are all you need to hand off. If you want to specify how the presenta-
tion is handled, use the *.xs1 file. For our purposes the first two files do the job.

As with the tblCustomers . xnl file, there are additional elements included in the
tblCustomers.xsd file, but they are represented by an ellipsis so as not to waste space.

Try It Out Exporting tbiShippers from Access to XML

To give you more exposure to working with XML files and transferring them between systems, using
Access you will work with the Chapter 5.mdb database to export the tblShippers table. You will also
utilize the * . xsd file you create in a section later in this chapter:

70

Utilizing XML and Web Service Data Sources

1. Open the Chapter 5.mdb database in Access.

2. Click on the Tables tab.
3. Right-click the tblShippers table, and choose Export . . . from the menu. The Export table dialog
box opens.

4. Select XML (*.xm1) for the Save as type. The dialog then looks like Figure 5-3.

Export Table "tblShippers’ As
Save in: | Chapter 5 > @ 3| Q@ X i E - Tods ~

L thiCustomers. xml
i z).

My Recent
Documents

Desktop

T,

My Documents

-1
we
My Computer

My Network

Places | Save as type: L (S v

Figure 5-3

5. Click Export. The XML Export dialog box then appears. For this example you once again use the
default of creating the * .xm1 and *.xsd files.

6. Click OK to create the files.

To test the files you can go to the folders they were created in, and open them in NotePad, WordPad, or
some other XML editors.

Now that you have created an XML file, read on to see how to use these files for InfoPath forms.

Utilizing XML Data in InfoPath
Why Use an XML Data Source?

Because you can hook forms up to databases such as Access and SQL Server, you may wonder why you
would need to use XML as a data source. Two of the main reasons are portability and collaboration.
Because InfoPath gives customers a choice of e-mailing forms, using them on laptops offline, and collab-
orating with them using Windows SharePoint Services (WSS). WSS is discussed in Chapter 17, “Working
with InfoPath and Windows SharePoint Services.”

71

Chapter 5

Creating an InfoPath Form Using
an Existing XML Document

You created an InfoPath form based on an Access database in Chapter 4, “Creating an InfoPath Form from
an Existing Data Source.” Creating one based on an XML data source is not much different. However, in
contrast to using the database, you have a choice of basing the InfoPath form on just the structure of the
database rather than also having to use the data itself. For the purposes of this section you do just that. Use
the task New from XML Document or Schema . . . from the Design a Form task pane. Once you have clicked
the task, you are taken to the Data Source Wizard, introduced in Chapter 4. The information requested is
different because you will specify which XML document you want to use instead of database specifics.

Try It Out Specifying a XML Data Source
1. Open Microsoft InfoPath.
2. Click Design a Form in the Design a Form task pane.

3. Choose New from XML Document or Schema . . . in the Design a New Form task pane. The
Data Source Wizard opens, prompting you to enter the location of the XML schema to use. You
also can use the Browse button.

4. Locate the XML schema, as displayed in Figure 5-4. Remember that you only want the schema
for this Try It Out and not the data.

Data Source Wizard

This wizard helps you build a form based on an XML document or schema.

Enter the location of the XML document or schema that you want to use as your data source:
C:'\Books\InfoPath\Samples\Chapter 5\tblCustomers.xsd] E

5;

Figure 5-4

Next =][Cancel

5. Click the Next button. You are then asked if you would like to add another XML schema or
XML document. The default is no.

72

Utilizing XML and Web Service Data Sources

6. Click Finish. You now see the blank form displayed. In the Data Source Pane, the tblCustomers
are listed. Expand the tblCustomers node, and you then see the fields in the table, as shown in
Figure 5-5.

! Data Source v X

®| 8| a
H Layout

3 Controls

i 3 Data Source
5 views

Data source:

= [£8 dataroot
(=8 generated *

B [F thicustomers
'_? CustomerID
(=8 CompanyMame
(=P ContactMame
=8 ContactTitle
(=F Address
=F city
'_'? Region
(=F PostalCode
=F Country
=8 Phone
'_? Fax
(=8 Motes
=8 FavoriteShipperID *

[show details

(@) Help with the Data Source

Figure 5-5

Unlike using the database, when you create the form from the data source, the data goes with the
InfoPath form. Now it’s time to create the form itself. You will follow the same steps you used when you
created a form based on the information in the database.

Notice that when InfoPath creates this form, the form is blank; it does not contain query and data sec-

tions, only a single area. This is because the only data going in is for this particular form. There is no rea-
son for a query area.

73

Chapter b

TryltOut | Adding the Fields

Using the form you just created:

1. Click the tblCustomers node, and drag it onto the form. You are then presented with the options
for adding a section to the form, as shown in Figure 5-6.

Repeating Table

[E] Repeating Section with Controls
ﬁ Repeating Section

= Master/Detail

Figure 5-6

2. Select Repeating Section with Controls. The form is then created, and can be seen in Figure 5-7.

] (Design) Template2 - Microsoft Office InfoPath 2003 S
:Eile Edit View |nsert Format Tools Table Help Type a question for help =

; |LQErewewFurm|dL§':7|Ja -Juz.fmwa) i Desigg Taska.. Cl)

: Data Source X
Customer ID: W

Company MName: 08 Layout
Contact Name: ¥% Contrals
Contact Title: 23 Data Source
Address: 2 views
City: Data source:
Region: | Main
Postal Code: = [LF dataroot
Country: £ genersted”
try = | thiCustomers]
Phone: =F CustomerID
Fax: ‘:’? CompanyMame
) (2% Contactiame
Motes: =8 ContactTitie
Favorite Shipper ID: =8 Address
R ity
5 regon
¥ PostalCode
] £ Country
| ¥ Phone
=5 Fax
=8 Motes
(8 FavoriteShippertD *

[show detsils

() Help with the Data Source

Figure 5-7

74

Utilizing XML and Web Service Data Sources

Utilizing Data with an XML Data Source

In the last section, you saw how to set a data source to an XML schema file. This helps create the struc-
ture of the data to be used with the form, but it includes no data. There are times when you want to
include the data with the structure. Here are some of the reasons to include the data with the schema:

Q To Utilize Data from Another Business System: When using data from another system by using
the XML document, the data can be viewed in the InfoPath form. You also can create code to
update the data and return it to the system or recreate an XML document from the updated data.

Q To Supply Prototype Data for a New System: By seeding the InfoPath form, you can suggest
the type of data to be entered into the form. When creating an InfoPath form that will be used
against a database or Web service (backends), it may take a while for the IT group or whoever is
in charge of the backend to have the backend ready for use. Until the backend is ready, you can
have the people creating the backend generate an XML document to work with until the back-
end is complete. You may have to make some modifications to match changes that occur.

Q To Add Data for Lookup Purposes: Even when entering data into individual forms, there are
cases when you want to supply some data to the form, even if the main form’s data source is
created using just an XML schema.

For the purposes of this section, you will be adding a data source using the last scenario, in the Try It Out.

Try It Out Adding a Data Source Using an XML Document

To show this technique, you will be using the XML document you created when you exported the
tblShippers table from Access to tblShippers.x1mand the InfoPath form you created in the last couple
of Try It Outs. You can see tblShippers.xml displayed in Figure 5-8.

@C."E ks\InfoPath\S les\Chapter 5itblShippers.xml - Microsoft Internet Explorer :]E]
File Edit View Favorites Tools Help o

Do O W B G P e @ 2- 5% - UE B

\ddress @ C:'\Books\[nfoPath\Samples'Chapter 5lthishippers.xml | Go |Links ™ Go:‘.glev i

<?aml version="1.0" encoding="UTF-8" 7>
- zdataroot xmins:od="urn:schemas-microsoft-com:officedata" xmins:xsi="http:/ /www.w3.0rg/2001/XMLSchema-
instance" xsi:noMamespaceSchemalocation="tblShippers.xsd" generated="2004-09-20T17:13:43">
- «tbiShippers=>
<ShipperID>1</ShipperlD>
<CompanyMame>Speedy Express</CompanyName>
<Phone={503) 555-9831</Phona=
</thiShippers =
- <tblShippers=
<ShipperlD>2</ShipperlD>
<CompanyName>United Package</CompanyMName =
<Phone=(503) 555-3199</Fhone=
</tblShippers>
- «tbiShippers=>
<ShipperlD =3 </ShipperlD>
<CompanyMName=Federal Shipping </CompanyName=
<Phone={503) 555-9931</Phona=
</thiShippers =
</dataroot>

] Done “§ My Computer

Figure 5-8

75

Chapter 5

The last field displayed in the new form is FavoriteShipperID. The first task is to convert this field from
a text field to a list box. Then you will be specifying the XML document as the data source for the list to
display for the list box.

1. Open the form created in the last couple of Try It Outs in design view.

2. Right-click the text box bound to the FavoriteShipperID field. The context menu appears.

3. Choose Change To from the menu, and then highlight List Box from the list of controls avail-
able, as shown in Figure 5-9.

Once chosen, the text box bound to the FavoriteShipperID is changed to a list box control.

4. Right-click the new list box control, and choose List Box Properties . . . from the menu dis-
played. The List Box Property dialog box is displayed.

5. Inthe List Entries options, click the last one, labeled Look up values in a data connection to a
database, Web service, file, or SharePoint library or list, as shown in Figure 5-10. You will be
selecting a file.

6. Click Add. The Data Connection Wizard is then displayed. You will be using the default choice,
XML document, as displayed in Figure 5-11.

2] (Design) Template2 - Microsoft Office InfoPath 2003 BE
! File Edit View |Insert Format Tools Table Help Type a queston for help =
i B 5 bl |2 Preview Form | cd (& 3 | % 53 @ 9 ™ | | | s Desigp Tasks... | & =
i A4 Verdana o0z B L UJS= ==t oo A -
i [Draw Table [noborder = | Jedr) Oz insents s o (] o
i Data Source v x
Customer ID: EI In
Company MName: (0] Lavout
Contact Name: B Controls
Contact Titla: 3 Data Source
Address: 3 views
City: Data source:
Region:
Postal Code: [= [CF dataroot
C try: (F generated ™
ountry 1= [F thiCustomers
Phone: 5 customerD
Fax: g ‘Comparyhame
3 =i Contactiame
Motes: o o (-8 ContactTrte
Favorite Shipper ID:0 tn“””teg"nwm OE =8 Address
o o @ Change Binding... £8 Gty
<13 Show Data Source... 8 Region
PostalCode
a 4 Cut 8 Country
3 Copy =§ Phone
£ Fax
54| Paste 8 Notes
Apply Font to All Text Box Controls _¥ FavoriteShipperiD v |
% Borders and Shading...
| __Change To 14 | B Drop-Down List Box
Text Box Properties... l_H List Box
& Option Button [show detsis
[+ Check Box
Aa Expression Box
O] Section (g Help with the Data Source
Figure 59

76

Utilizing XML and Web Service Data Sources

Data |Displa\-I " Size " Advanced

List Box Properties 3

Binding

Field name:

Drata bype:

Validation and Rules

C t be blank

Data Validation... !..lse daiﬁ wvalidation to display errors when users enter
= invalid data.
Use rules to apply actions when users change the
wvalue in this contral.

List box entries
() Enter list box entries manually
() Look up values in the form's data source

(®) Look up values in a data connection to a database, Web service, file, or
SharePaint library or list

Data Conneckion: | | L Add... J
Choose the repeating group or field where the entries are stored.
Entries: | | g 3
Yalue: | | i E]
Display name: | | ‘1_1
o) (e) (s
Figure 5-10

Data Connection Wizard

‘fou can receive data from an XML document, database, Web service, or SharePoint library or

list.

From where do you want to receive your data?
OF
(") Database (Microsoft SGL Server or Microsoft Office Access only)
() web service
() SharePoint library or list

[[==]
1]
1]

ki

[MNext >

][Cancel

Figure 5-11

77

Chapter b

7. Click Next. The next page of the Data Connection Wizard enables you to choose the actual XML
document you want to use. You can either type the path and name of the file or use the Browse
button, located to the right of the file text box. You can see the file in Figure 5-12.

Data Connection Wizard %)
XML data file details

Enter the location of the XML data file that you want to use as your data connection:
|C:‘Books\,lnfnPaﬂﬂSamples‘n,Chapher ShthiShippers. xml | L Browse... a|

Resource Files...

< Back][MNext >][Cancel

Figure 5-12

8. Click Next to see the last page of the Data Connection Wizard. This summary page lets you specify
what you would like to call the connection and also note whether you would like to have the data
loaded when the form is opened. Leave the defaults as you can see them in Figure 5-13.

Data Connection Wizard

Enter a name for this data connection:

| thishippers |
Automatically retrieve data when form is opened

Mote: You can also add a Query button to your form, which will retrieve the data.

Surmmary

Type: Retrieve data
¥ML file: C:\Books\InfoPath\Samples\Chapter 5\tbiShippers. xml

<gack | [_Fnsh] [cancel

Figure 5-13
78

Utilizing XML and Web Service Data Sources

10.

11.
12.

13.
14.

Click Finish. You will then see a message box displayed informing you that the data is not part
of the form. It gives you the choice of adding the file to the form. You can see this dialog box in
Figure 5-14.

Microsoft Office InfoPath
] The selected file is not part of the form, which means it might not be accessible from other computers. Do you want
. to add this file to your form so that it will be accessible from other computers?

Figure 5-14

Click Yes. The name of the new data connection is then listed in the Data Connection property
of the property sheet.

Click the Select XPath button, next to the Entries text box on the List Box Properties dialog box.

Select tblShippers, and click OK. The tbIShippers XPath is then added to the Entries text box,
and the ShipperID is filled in the Value and Display name properties.

Click the Select XPath button next to the Display name text box.

Select the CompanyName from the treeview of nodes, and click OK. All the properties are now
filled out as they should be for displaying shippers, and can be seen in Figure 5-15.

List Box Properties

Data | Display | Size | Advanced

Binding

Validation and Rules

Data Validation... !_lse Flata wvalidation to display errors when users enter
invalid data.
Use rules to apply actions when users change the
wvalue in this contral.

List box entries
() Enter list box entries manually
() Look up values in the form's data source

(%) Look up values in a data connection to a database, Web service, file, or
SharePoint library or list

Data Connection: | thiShippers v

Choose the repeating group or field where the entries are stored.
Entries: J/dataroot/tblShippers

Value: ShipperID
Display name: CompanyMame
[OK] [Cancel] [Apply
Figure 5-15

79

Chapter 5

15. Click OK to accept the properties.
16. Click Preview Form to view the InfoPath form.

After typing in some values and picking a Shipper, your form should look something like the one in
Figure 5-16.

ud Customer ID: Test

Company Name: Mew Company

Contact Nama:

Contact Title:

Address:

City:

Region:

Postal Code:

Country:

Phone:

Fax:

Notes:
Speedy Express ~
United Package

Favorite Shipper ID: Federal Shipping ~

B Insert item

Figure 5-16

A Brief Look at the XML Used
for InfoPath Forms

Before finishing up this chapter, it is worth examining more closely the fact that InfoPath forms are cre-
ated using XML. There is a very cool and easy way to accomplish this. Taking the InfoPath form that

has been used throughout the chapter, you can choose File &> Extract Form Files . . . while the form is in
design view. You can then specify the folder you want to extract, and the files are then extracted. You can
see the files displayed in the new folder in Figure 5-17.

Try It Out Examining the Files

You can see from the extension of each file and their descriptions what the purpose of each file is. The
manifest.xsf is the file that ties all the others together.

1. Double-click each of the files and take a look at what is displayed.

2. Openmanifest.xsf in Notepad, and read through it.

If you double-click manifest . xs£, it will open the form for filling. Howeuver, the form won’t open
quite right. So, just open the form for viewing.

80

Utilizing XML and Web Service Data Sources

= IndividualXMLFiles = %]
File Edit View Favorites Tools Help "
@ Back - g .? / ! search | Folders v
Adcress () Cr\Books\InfoPath\Samples|Chapter 5\indnidusliMLFies v| B 5o
T j manifest. xsf
File and Folder Tasks ¥ LE crosoft Office InfoPath For..
. 03
Otheriecsy [£3 | thiCustomers.xed
I Chapter 5 23] &3] .,'_: e e KB
&) My Documents B o
§ vy ot G| pvopese B i,
N My Netwark Places €3] [£3 6= 1KB
B yiew1 xsl
aal viewL
g o <@
=
IndividualXMLFiles

File Folder

Date Modified: Today,
September 21, 2004, 1:02 AM

Figure 5-17

You can actually create an InfoPath form programmatically or manually by creating the necessary XML.
If you find this a necessity, a great book for seeing how to accomplish this is Professional InfoPath 2003
also published by Wrox.

Summary

XML has been the standard for sharing data not only over the Internet between business systems, but
also within single systems. Just as HTML is used for displaying information, XML is used for describing
and working with data. InfoPath goes a step further by utilizing XML not only for data storage, but also
for describing InfoPath forms themselves.

XML can be made up of a single file or multiple files, depending on the purpose. Each of the Office
applications can import and export data to and from XML files.

As shown, you can bind InfoPath forms not only to databases, but also to XML documents and schemas.
When binding an InfoPath form, you can specify whether or not to include the existing data located in
the XML or just the schema.

Exercises

1. What does W3C stand for?

2 What are two of the W3C’s major contributions?

3. What is the extension for the XML file that contains the schema for the data?
4

What are the two types of XML files that you can use as a data source for an InfoPath form?

81

Working with Controls
in General

As you saw in the last chapter InfoPath provides a powerful designer for creating your forms.
When you add the data source and drag fields onto a form, InfoPath adds controls that allow you
to view and manage your information. So far we have only scratched the surface of what you can
do with the controls provided by InfoPath.

The controls provide so much that two chapters are devoted just to them alone. In the next chap-
ter, you will see how to take advantage of some of the more advanced controls provided. But
before that, you will need to see just what you can do with all the controls that come in the control
task pane. In this chapter you will:

0 See what controls are provided, and the purpose of each.
Learn how to take advantage of the Property sheet and some important properties.
Provide data validation on the form.

Work with rules and figure out when to use them.

Use conditional formatting on controls.

0O 00 0 O

Create controls that use formulas.

Using the Right Control for the Right Job

InfoPath has default controls it puts on forms based on the type of data the field is for. It does a
good job, but it can only do so much. For instance, if you add a date field to the form, the Date
Picker control is created for you. However, if you have a data field that is based on a lookup field,
InfoPath doesn’t automatically create a drop-down list box to look up the values; you have to
know how to do that.

Chapter 6

To get comfortable with the different controls, the following table displays the names of the controls in
the Controls task pane along with what time of data you would use it with.

84

Control Name Type Description

Text Box Text Input Default control for input, accepts plain text, no spe-
cial characters.

Rich Text Box Text Input Accepts both plain text and rich text, allowing for-
matted text just as would be entered using Word
with fonts, colors, and so on.

Drop-Down List Box List Input Displays specified values in a drop-down list,
initially displaying the selected value.

List Box List Input Displays specified values in a list, initially
displaying however many values you decide
by dropping the control on the form.

Date Picker Calendar A calendar is displayed, and values chosen by click-
ing on a date.

Check Box Yes/No Used for specifying a true or false (yes or no) value.
A checkmark is displayed in the box when true.

Option Box Multiple Choice Also called radio buttons, you can use option boxes
to either pick multiple choices or single choices in a
group.

Button Command Created to trigger actions to automate tasks on the
form.

Section Section Base control for managing blocks of data such as
tables on the form, or simply to break up a form for
display purposes.

Optional Section Section Creates a section that starts with no records
displayed on the form.

Repeating Section Section Displays multiple rows from a table in a data source
on a form. Displays data in a vertical manner.

Repeating Table Section Displays multiple rows from a table displaying the
data across the form as an Excel worksheet or Access
datasheet would.

Master /Detail Section A method for tying together master/detail records
such as customers and orders on a form.

Bulleted List List Display Displays data in a bulleted list on a form.

Numbered List List Display Displays data in a numbered list on a form.

Plain List List Display Displays a list of data on a form without bullets or

numbers.

Working with Controls in General

There are also additional controls for more advanced features such as file attachments and ink controls.

For the complete list scroll through the Controls task pane.

As you are working through the chapters in this book, you will be working with the various types of
controls. Each of the various controls share a few things in common, called properties. While the proper-
ties may vary depending on the type of control you are using, all controls have them.

Looking at the Starting Form
for the Chapter

For this chapter a form was created using the tblCustomers, tblOrders, and tblOrderDetails tables, as
seen in the prior chapters . To help you learn the most concepts in this chapter, the form is set up so that
you can continue modifying the form in its current state. The form is called Chapter 6 Starting.xsn.

You can see the form in Figure 6-1, displayed in design view.

] (Design) Chapter 6 Start - Microsoft Office InfoPath 2003 BEX]
i File Edit View |nsert Format Tools Table Help ype a guestion for help =
P 5 e | 5y Preview Form | i (3 % | & @ 2
i A4 verdana -0 | B I[[_l%
i (¥ Draw Table [Noborder - |2 -
: " . p [A ! Data Source v X
Customer Information with Invoices (¢ 10| » I
| ﬂﬂ] Layout
W Contrals
New Record 23 Data Source
3 views
Customer ID: Contact Name: Lol s
Company Name: .Contact Title: :
: = [y myFields [~
Address: Phone: Fax: [[F queryFields [
H = [£F dataFields
City:
w i B = [5F d:thiCustomers
Region: Postal Code: Country: | (28 :CustomerID
' : (ZF :CompanyNam
[(£# :Contacthame | =
(2§ :ContactTite
[# :Address
Order ID: Order Date: Required Date: =) 28 :city
. (§ :Region
Employee ID: Shipped Date: (EF :PostaiCods
.. 0 . Country
Order ID Product ID Unit Price Quantity Discount Item Total :; :P:::e ’
[:Fax
=] = [thiorders
(8§ :OrderID
Total:! (=8 :Customerl
(5§ :Employeel
a B v rrrvare ¥
a < | I 2.
[show detsis
Run Query
.Region:
[v i) Help with the Data Source
al ' '
Figure 6-1

85

Chapter 6

Try it Out Open the Sample Form

As mentioned, you will want to open the Chapter 6 Starting.xsn form. To accomplish this, after
downloading the sample forms from the WroxWeb site to the Chapter 6 folder:

1. Open Microsoft InfoPath.

2 Click on Design a Form.

3 Click on On My Computer....

4. Locate the Chapter 6 Starting.xsn form using the Open in Design Mode dialog box.

5. Highlight the form, and click Open.

How It Works

The form that you are starting consists of three sections, one for each table. The two outer sections are
repeating sections (tblCustomers and tblOrders, and the last a repeating table type section, displaying
the data from tblOrderDetails. The fields have been arranged on the form using various tables with the
default control types used to accept data.

Two labels have been added: Item Total and Total. These labels will be associated with controls that are
added in later sections in the chapter. Other controls that are on the form also are used to highlight vari-
ous features.

The way to take advantage of various control features is to utilize various properties of the controls. As
with other applications the way to work with properties is by use of the property sheet.

Working with the Property Sheet

86

The property sheet can be opened by right-clicking a control and choosing ControlType Properties..., with
ControlType being the type of control you are using. Another way to open the property sheet for a control
is to double-click the left mouse button on the control. Which properties exist for a control will depend
on what type of control it is.

The property sheet is broken up in to tabbed pages, based on categories of properties. Some examples of
properties are Data, Display, Size, and Advanced. You will see an example of the property for a text box
on the next section when you are shown how to set the default value of a control.

Working with Controls in General

Setting the Default Value of a Control

When a control is based on a field from a data source, there are some cases when you want to have a
value put in the control automatically when new records are added. This value is called the default value.
In a perfect world the default value of a field is specified for the field in the table, located in the
database. However, there will be times when it is overlooked, or you want to override the default value
set at the database level.

Which type of data you will use as a default value will depend on the data type of the field. The follow-
ing table displays some example of default values that could be used with the form used in this chapter:

Field Default Value Description

Region “WA” Places the abbreviation for the state of WA in the
Region field.

Order Date today() Use the today() formula to assign today’s date.

Quantity 1 Setting a numeric value to 1 or 0; this helps to keep

users from leaving values blank.

When set at the form level, default values are just like other values you enter into forms in that you need
to click the Submit button to have them saved in the database.

Using Literal Values

The way to specify default values is to use the property sheet of the control. There are several ways to
specify default values. The first way is enter the value you want into the Value entry in the Default Value
area on the data tab of the property sheet.

Try It Out Adding a Default Value to Quantity

Using the Chapter 6 Starting.xsn form:

1.

2.
3.
4

Right-click the Quantity field, located under the label displaying Quantity in bold.
Choose Text Box Properties... The property sheet for the Quantity text box opens.
Type 1 into the Value property. The property sheet will then look as it does in Figure 6-2.

Click OK. The default value for the Quantity field is now set to 1. It is time to test it.

87

Chapter 6

Text Box Properties

Data

Display | Size Advanced

Binding

Default Value
Valug: 1

Example: 1234

Validation and Rules

Data Validation... Use d.?ta vlalidaﬁon to display errors when users
enter invalid data.
Use rules to apply actions when users change the
value in this contral.

l 0K][Cancel][Apply

Figure 6-2

Click Preview Form. Even at this point, when the form is showing a blank form, you can see 1

displayed in the Quantity field, as shown in Figure 6-3.

While Figure 6-3 shows a the use of default value, a few more steps will show the default value

even better when a new order detail record is inserted into existing records.

Order ID: Order Date: Required Date: =)

Employee ID: Shipped Date:

Order ID Product ID Unit Price Quantity Discount Item Total

1
A Insertitem
Total
O tmeemitem
Figure 6-3

6. Inthe query portion of the form, type in BC for the region, then click Run Query. A record

appears displaying entries for the Bottom-Dollar Markets company.

7. Click the Insert Item choice, under the existing order detail entries. A new record will appear,
and once again the number 1 will be displayed in the Quantity field. You can see this in

Figure 6-4.

You should now have a good idea what the default value property accomplishes for you when you type
a literal value such as 1 in the property. There also is another way to specify default values, and that is

by using a formula, also called an expression.

88

Working with Controls in General

2 Preview2 - icrosoft Office InfoPath 2003 =J=Ed
i File Edit View |nsert Format Tools Table Help Type a guestion for help =
i @d Submit | 7 [W 1| ZF Close Preview | (3§ (& ¥ | & Ha % F |9 | :|'-'|.-|'§¢E
H === f=.|ic .= . 3F sFE . A . E - - =
5 B .z U] R e | i/ startInk Entry |[Z]- 2 |- = |
-~
Customer Information with Invoices
New Record |
Customer ID: BOTTM Contact Name: Elizabath Lincoln
Company Name: Bottom-Dollar Markets Contact Title: accounting Manage
Address: 23 Tsawassen Blvd Phone: (604) 555-4729 Fax: (604) 555-3745
City: Tsawassen
Region: BC Postal Code: T2F 8M4 Country: (Canada
Order ID: 10,389 Order Date: Required Date: 1/17/1997
Employee ID: 4 shipped Date: 12/24/1995
Order ID Product ID Unit Price Quantity Discount Item Total
10,389 10 24.8 16 0
10,389 55 19.2 is 0
10,389 62 39.4 20 0
10,389 70 12 20 o
~ | 1
H Insert item
Total:
Qrder 1D: 10,410 Order Date: Required Date: 2/7/1997 =)
Emnloves THe - Shirned Nata: atariinnT =) s
< [2]
Y | Form s location: C:\Documents and SettingsFSBarker \Local Settings\Application Data\Microsoft\InfoPath \Designer | 36bsfa

Figure 6-4

Using Formulas

You can use formulas for various purposes on your InfoPath form. Just as with formulas used in Excel,

they can be expressions such as the values of two fields being added together or an aggregate function
such as Sum(). Formulas can consist of:

Q Fields and other formula controls being added together
QO Functions
Q Combination of functions and fields.

When setting default values, where formulas are concerned you will use functions, because when a
default value is utilized, other fields are not yet supplied.

Whatever type of information you want to use, there are two methods you can utilize to create the for-
mulas. For the default values, you can type the formulas directly into the Value field of the Default Value

89

Chapter 6

area in the Data tab of the Properties dialog box. The other alternative is to click the Formula command
button, located beside the Value field.

(=]

If you choose to use the Formula command button, the Insert Formula dialog box will open as seen in
Figure 6-5.

Insert Formula

To add a field or group to the formula, dick Insert Field or Group. To
add a standard function, dick Insert Function.

Formula:

[Insert Field or Group...] [Insert Function...] [Verify Formula]

[edit ¥Path (advanced)

[OK] [Cancel] [Help]

Figure 6-5

The three command buttons accomplish the following:

Q

Insert Field or Group: This button enables you to specify an individual field or a group of fields
to use. You also can utilize filters to narrow down the data displayed. In the next chapter, you
will read about using fields and groups of fields in formulas to display information.

Insert Function: This button displays the Insert Function dialog box, where you can pick func-
tions to use from Date and Time, Field, Math, and Text categories. Functions will return a value
when given a parameter or parameters, or just when called by itself, depending on the require-
ments of the functions.

Verify Formula: As the caption says, this button verifies the syntax of the formula. Note that if
your formula has problems other than syntactical ones, the errors won’t show up until you pre-
view the form.

Edit XPath (Advanced): XPath, or XML Path Language, is a language used to search informa-
tion within an XML document. In Microsoft Office InfoPath 2003, these are the same as fields or
controls on a form. If you are familiar with Xpath, you can edit the expressions directly by
checking this box.

Try It Out Using a Formula for Order Date Default Value

For the purposes of examining the use of a formula for default value, you must use a call function within
your formula. In the form you have been using thus far in the chapter:

1.

2.

20

Right-click the OrderDate field, underneath the label with the caption Order Date, and choose
Date Picker Properties... from the menu. The Properties dialog box opens.

Click the Formula button, next to the Value field under Default Value. The Insert Formula
dialog box opens.

Working with Controls in General

Click the Insert Function command button, opening the Insert Function dialog box.

Select the Date and Time category in the Categories list box. You will then see the two functions:
now and today. The function now will rerturn both the current system time and date, and the
function today returns the current system date only.

5. Highlight the today function, as shown in Figure 6-6.

Insert Function
Categories: Functions:

Maost Recently Usad niow

All today,

Date and Time

Field

Math

Text

Returns the current system date in IS0 format.

OK l [Cancel
Figure 6-6
6. Click OK to accept the function. The Insert Formula dialog box now displays the today()
function as shown in Figure 6-7.
Insert Formula
To add a field or group to the formula, dick Insert Field or Group. To
add a standard function, dick Insert Function.
Formula:
today ()|
[Insert Field or Group...] [Insert Function...] [Verify Formula]
[Edit %Path (advanced)
[Ok] [Cancel] [Help]
Figure 6-7

Click OK to accept the formula. The formula is now displayed in the Value field of Default
Property area of the Date Picker Properties dialog box.

8. Click OK to accept the new default value.

Now, when you add a new order for any of the customers, the current date (today) will be set as the
Date Ordered default value. You can see this in the form by clicking the Preview Form toolbar button,
locating a customer, then clicking the Insert Item button under the Orders section. You also can see it in
the default blank record displayed on the form when you first open it, as shown in Figure 6-8.

91

Chapter 6

Order ID: Order Date: 8/19/2004 [E5) Required Date:
Employee ID: Shipped Date:
Order ID Product ID Unit Price Quantity Discount Item Total

A Insertitem

E Insertitam

Figure 6-8

As of this writing, a bug occurs with forms bound to a database where the default value is repeated in
all records displayed. This makes this feature currently more useful in forms used with XML.

Working with Rules at the Control Level

While you can specify values as a default value for a control, there are times when you want a control to
be updated to a value based on a different control. You can’t do that with a default value, because at the
time the default value is assigned there are no values, other than default values, in the other fields of the
form. If you try to use another field in a default value assignment, you will receive an error. Instead of
using the default value, you would specify a rule on the control you want to “trigger” the rule on.

What Are Rules and When Are They Used?

92

Rules are a combination of conditions and actions that you can use to manipulate values in other con-
trols that are based on the control to which the rules are assigned.

You can have more than one rule per control, and you can specify that those rules either run all the way
through or stop when a condition is met. You can also specify the order of the rules, and rearrange them
as necessary.

Here are a few examples of utilizing rules:

0 Assign a default tax on an order based on the city the order was sold in.
O Update a contact e-mail field on an order after a customer has been chosen.

Q Update a ship date field to the order date field plus a couple of days when the order date is
specified.

Q In the current form a good example of a set of rules is assigning various discounts based on the
quantity ordered.

We are going to use the last example mentioned to demonstrate creating rules in the next section.

Working with Controls in General

Creating Rules

The way to assign rules is to open the property sheet for the control, in this case the Quantity text box,
and click the Rules... command button. After doing so, you will see the Rules dialog box, as shown here
in Figure 6-9, minus the two rules.

Rules

Use rules to display messages, set values, and apply other
actions based on conditions in the form.

Rule {applied in the order shown)
Rule 1 (Quantity > 5)
Rule 2 (Quantity = 1and Quantity = 5)

[QK][Cancel][Apply]

Figure 6-9

Two rules displayed will be used in this section: The first will be described in detail. The second rule will
be created in the Try It Out section.

When you click the Modify command, the Rule dialog box opens, displaying the rule labeled Rule 1, as
shown in Figure 6-10.

Rule

Mame:
Rule 1

Condition:
Quantity > 3 Set Condition...
Actions (run in the order shown):

=% Set a field's value; @Discount = ", 10" Add Action. ..

Modify...

III I =

Remove

[15top processing rules when this rule finishes

OK] [Cancel

Figure 6-10

93

Chapter 6

94

The first order of business to create a rule is to set the condition or conditions that you want the rule to
perform the action, or actions, on. To accomplish this, you will click on the Set Condition button. The
Condition dialog box then opens, and you can set a connection, as shown in Figure 6-11.

X

Condition

Apply the rule when this condition is true:

iz greater than sl |5 %]

[oK] [Cancel]

Figure 6-11

Note that what is displayed in the second and third drop-down lists is based on what you set the first
drop-downlist to. They may also disappear altogether.

The first column contains the field or expression for the comparison, containing the following:

a

Fields in the Section: Each of the fields is listed. When you specify one of the fields, the list of
operators is displayed for you to choose from, including the is greater than operator displayed in
Figure 6-11. You can also choose to fill in the Type a Number text box (which changes with the
data type), select a field or group of fields, or specify a formula.

The Expression: Enables you to type in an expression directly. Using this option, you can type
in your own criteria as the condition. When referring to the current field you are creating the
rule in, you can use the period (.). For example, for the condition displayed in Figure 6-10, you
would type: . > 5.

User’s Current Role: With this option, you can customize a form based on the current user, and
his or her role. Roles are created in InfoPath and have nothing to do with Windows or SQL
Server roles.

Select Set of Signable Data...: With digital signatures, you can secure fields, groups of fields,
sections, or a whole form. When using this option, you can specify the name of the part of the
form to enable digital signitures for, thus adding more security to your form. You can read more
on digital signatures in Chapter 16, “Implementing Security.”

Select a Field or Group...: Picking this option displays all the fields and tables in the data source
of the form. Depending on what you pick here, the second drop-down list will display a list of
operators. One thing that is different from when you choose a field using the first option, fields
in the section, is that in the third drop-down list you can type various data types into the field,
instead of the just the data type of the actual field.

Once an option is chosen, the rest of the condition is filled out, varying with the option chosen. When
you select a field to use, the operator and value boxes are displayed for you to supply these elements. At
this point, additional criteria can be added, creating what is called complex criteria using ANDs and OR.
You can see the And button back in Figure 6-11.

Once the condition is completed, click the OK button, and the condition is added to the rule. After the
condition is specified, you can assign the actions you want to have performed when the condition you

Working with Controls in General

created is met. To create an Action, you will click the Add Action command button. The action for
Figure 6-10 can be seen in Figure 6-12.

Action
Action:
i=fx Set a field's value i
Field:
EDiscount
Value:
o
OK l [Cancel]
Figure 6-12

The first task to perform when entering the Action dialog box is to assign the Action to be performed.
There are a limited number of actions that can be performed, although you can add as many actions to
the rule as needed. A list of possible actions appears when you click the Action drop-down list. That list
is displayed in Figure 6-13.

é:l Shaw a dialog box message
£| Shaw a dialog box expression
- f Seta field's value

[) Query using a data connection
EejSUblTlit using a data connection
= Open & new form to fill out

Figure 6-13

The following list explains the actions that can be performed:

QO Show a Dialog Box Message: Displays a literal text string that you specify.

QO Show a Dialog Box Expression: Displays a message that you can create using a combination of
literals and formulas, including functions.

Q Set aField’s Value: Assigns the value you specify to field that you also provide. This was the
Action used in Figure 6-12.

QO Query Using a Data Connection: Queries the data connection you assign it to, refreshing the
data in a form or section.

U Submit Using a Data Connection: Submits data back to the database using a data connection.
This is necessary when you need to update the database when the information has been par-
tially entered.

QO Open a New Form to Fill Out: Opens a form with a blank record.

95

Chapter 6

As with the Condition dialog box, the fields after the Action field will vary depending on the action
chosen. After filling in the other field or fields in the Action dialog box, click OK to save the action to
the list of actions for the rule. At this point, you can add another action to the rule or accept the rule
by clicking OK.

Try It Out Adding a Second Rule

The time has finally come to add your own rule to the list of rules for Quantity. While the first rule estab-
lishes that any customer purchasing a quantity greater than 5 receives a 10 percent discount, you want
those customers who purchase between 2 and 5 to receive a 5 percent (or .05) discount. To accomplish
this, another rule has to be created.

96

1.

o r0Db

N o

10.
11.
12.

Right-click the Quantity field, and pick TextBox Properties.... The property sheet for the quantity
text box opens.

Click the Rules button. The Rules dialog box is displayed.
Click Add... in the Rules dialog box. A new rule is opened in the Rule dialog box.
Click the Set Condition button. The Condition dialog box opens.

For the first part of the condition, type Quantity, is greater than, and 1 in the three drop-downs
displayed.

Click on the And button. A new row will appear in the Condition dialog box.

For the next criteria type Quantity, is less than or equal to, and 5 in the three drop-down lists.
The Condition now looks as it does in Figure 6-14.

Condition

Apply the rule when this condition is true:

G is greater than w| |1 | |and w
Quantity |w|| |islessthanorequalto |w || |5 &4

[OK][Cancel]

Figure 6-14

Click Ok to accept the condition.

Click on Add Action. The Action dialog box opens with a blank action.

Choose Set a field’s value for the action. The Field and Value fields are displayed.

Type @Discount for the field, or use the Field locator button, displayed next the Field field.
Type .05 for the Value:. The Action dialog box now looks like Figure 6-15.

Working with Controls in General

Action

Action:

ke Set 3 field's value 7

Eield:

EDiscount

Value:

o5
OK l [Cancel]

Figure 6-15

13. Click the OK button to accept the action. The Action dialog box closes, and you are back in the

Rules dialog box.
14. Click OK twice to close the Rules dialog box and then the property sheet.

15. Click Preview Form to open the form in preview mode.

16. Query the form using BC, then modify the Quantity field to test the rules. Enter in various num-
bers such as 0, 1, numbers up to 5, and numbers over 5, then view the results. You should see
results simular to those shown in Figure 6-16.

Order ID: 10,389 Order Date: 12/20/1996 Required Date: 1/17/1997 =
Employee ID: 4 Shipped Date: 12/24/1996 [E
Order ID Product ID Unit Price Quantity Discount Item Total
10,389 10 24.8 1 (1]

10,389 44 19.2 4 0.05

10,389 62 39.4 [0.10

10,389 70 12 8 0.10
E Inzert item

Total:
Figure 6-16

As you have just seen, by using the rules as they are, you can accomplish quite a bit in creating a full-
featured form that will react as you need it to when users enter data into the various fields. You have
control over what happens. In other words you make the rules!

Another way of controlling how your form looks is by setting the formatting of the fields on the form.

97

Chapter 6

Formatting Fields

InfoPath does a good job of looking at the data that you are basing your form on and supplying the
control that matches that data. However, there are times when InfoPath can’t know how you want the
data to actually look. An example of this occurs with the OrderID and UnitPrice fields used in the form
for this chapter. Also, it would be nice to display the Quantity field in red if it is a negative number.
Looking at the Chapter 6 Starting.xsn form, you can see how the fields look, as displayed here in

Figure 6-17.
Order ID needs Unit Price needs
to lose the comma. to be currency.

~ |
Order ID: 10,389 Order Date: 12/20/1996 (&) Required Date: 1/17/1997 B
Employee ID: 4 Shipped Date: 12/24/1296 (B
Order ID Product ID Unit Price Quantity Discount Item Total
10,389 10 24.8 =1 (1]
10,389 55 19.2 il o
10,389 62 39.4 3 1]
10,389 70 12] a
H Insert item

Total:
Figure 6-17

Notice that there are two locations where the OrderID field is displayed, in the order header area, and

in the detail records. The OrderID field could also be removed from the detail level. Depending on how
you want to format your form.

There are two methods of formatting that are used to accomplish what is needed:

Q Standard Formatting: Used to set the format of the field regardless of the value stored in

the field.

QO Conditional Formatting: Format the field based on the conditions set in the conditional

formatting dialog box. Conditions for formatting are the same as those used for rules.

Using Standard Formatting

To change the formatting of a control, you will once again open the property sheet of the control. Once
the property sheet is open, you can choose Format... to open the Format dialog box. InfoPath will pro-
vide the formatting choices based on the actual data type of the bound control. For example, if you click

the Formatting... button in the property sheet for the OrderID field, then the dialog box displayed is the
Integer Format dialog box. The format options are:

Q None: This option displays the raw value provided by the XML.

Q Number: This option displays the designated format for the data type and number size.

Q Currency: This option allows you to specify which currency you want to display the number in,
such as U.S. dollars.

98

Working with Controls in General

Other options are displayed as well, depending on the type of data and size specified. You can see from
Figure 6-18 that in order to correct the OrderID, None (display XML value) was selected.

Integer Format

) Currency:

Other options

[OK l [Cancel

Figure 6-18

Again, by selecting None (display XML value), InfoPath will simply display the value supplied in the

field that the control is based on.

Try It Out

Formatting the UnitPrice for Currency

Using the form you have been working in this chapter:

1.
2.

Open the property sheet for the UnitPrice field.

Click on the Formatting... button. In this case, the Decimal Format dialog box opens. You will
see that format is set to Number.

Click on the Currency option. The dialog box will now look like Figure 6-19.

Decimal Format

Format:
() None (display XML value)
() Number

5 English (United States)

Other options
Decimal places: | Auto v
Use a digit grouping symbal ;)
Display negative numbers like this:
(81,234.12) v

[OK l [Cancel

Figure 6-19

99

Chapter 6

N o o

Click OK. The Formatting dialog box is closed.
Click OK to close the property sheet.
Click Preview Form to test the form you just modified.

Take a look at the UnitPrice field and notice the dollar signs, as shown in Figure 6-20.

Order ID: 10389 Order Date: 12/20/1996 [E&) Required Date: 1/17/1997)
Employee ID: 4 Shipped Date: 12/24/1296 (B
Order ID Product ID Unit Price Quantity Discount Item Total
10,389 10 $24.8 -1 o
10,389 55 519.2 1 o
10,389 62 539.4 3 0
10,389 70 512] o
E Insertitem
Total:
Figure 6-20

Now it’s time to take look at the other way of formatting fields.

Conditional Formatting

When you apply conditional formatting, you are basing the formatting of an object on conditions you

have specified. You can apply conditional formatting to quite a few controls including buttons.

Formatting Attributes

Almost all the controls, including sections, let you use conditional formatting with them. However, not
all the attributes of the conditional formatting dialog box can be used with each control. Attributes of the
conditional formatting include things such as Fonts, Bolding, Italicizing, and so on. You can even hide or

display a control based on the conditions created.

Display Properties of a Text Box

To apply conditional formatting, click the Display tab of the control that you are working with. It is
worthwhile to discuss the Display tab, because you can accomplish so much with it. The Display tab,
like other elements of the property sheet, varies with the type of control. In Figure 6-21, you can see the

Display tab for the Quantity text box property sheet.

You can see from Figure 6-21 just how much you can do when setting the display properties of the con-
trol using this page of the properties sheets. You should take some time to modify some of the properties

displayed in the figure and watch what happens.

100

Working with Controls in General

Text Box Properties

Data | Display |Size | Advanced

Available formatting

Options
Flaceholder:
Bxample: "Click here and type."

Dﬁead-only
Enable spelling checker

[¥]Enable AutoComplete
[]Limit text box ta: characters
Dﬂrap text

Scrolling:

Alignment: Left w

Change the appearance of the control

boCadtioga Lognaiing.., | based on values in the form.

[OK l l Cancel

Figure 6-21

Try It Out Creating Conditional Formatting

It is time to actually create the conditional formatting, by setting up a conditional format for the
Quantity field, when values less than 0 are entered. Using the form you have been using for the chapter:

1.
2.

w

Double-click the Quantity text box control to open the property sheet.

Click the button with the caption Conditional Formatting.... You will be presented with the
conditions that have been specified for formatting. At this point, you can modify or delete

any existing conditions, add new ones, and rearrange the conditions, much as in the Rules
dialog box.

Click Add.... The Conditional Format dialog box is displayed.

In the three drop-down lists displayed (the condition), type in Quantity, less then, and the
value 1. Again, these are just like the entries in the Condition text boxes of the rules you created
in the section titled “Working with Rules at the Control Level,” earlier in the chapter.

Just as with the conditions for rules, you can create complex criteria using the And button.

Select Red for the font color. Now, the format is set so that when the user enters a quantity less
than 0, the Quantity field turns red. You can see this condional format set up in Figure 6-22.

101

Chapter 6

Conditional Format

If this condition is true:

is less than (0 »

Then apply this formatting:
[Hide this coptrol
|—| Read-only
Dgnld Dgnderllne Font color: Shading:

D_Itallc |:| Strikethrough _ hd Automatic ~

AaBbCcYyZz

[0K I [Cancel

Figure 6-22

6. Test your form by previewing it, querying a record, and entering a value less than 0 for the
quantity. The field should turn red.

Again, take a look at some of the other attributes you can set using the Conditional Format dialog box.

Summary

You can have the most powerful and complete database in the world behind your InfoPath form, but
if you don’t use the right controls for the tasks they were created for, then users won’t be able to work
with the form intelligently. InfoPath provides controls for controlling how your data is inputted and
displayed.

In this chapter, you learned how to control input using controls. The chapter also discussed how default
values can be supplied for fields in new records so that you can specify what values those fields start
with. Rules also can be created so that actions are performed based on conditions specified at design
time. Formatting can be applied to fields and conditional formatting to cause records to be displayed
based on values in the record.

Data validation can be added to make sure that good data is entered into your database. Display con-
trols can be created using formulas, and command buttons added to perform tasks on your forms.

Exercises

1. What the two types of default values that can be created?
2 Name the two parts of a rule.

3. How do you create a complex condition?

4

What are the two types of formatting?

102

Looking at Some Useful
Controls and Techniques

The last chapter provided a good overview of what controls InfoPath provides for your forms,

as well as some of the properties you can set for those controls using the property sheet. InfoPath
supplies controls for all your needs, for both inputting and displaying data. While a number of
these controls take more work to set up to use, they are worth the effort.

Besides the two buttons created by default (New Record and Run Query) when a new InfoPath
form is created from a data source, InfoPath enables you use buttons for accomplishing whatever
tasks you need. Controls such as the drop-down list boxes display data from additional data
sources and control entry into fields. In this chapter you see how to use the controls just men-
tioned. You also see how to:
Q Use formulas with controls to display data.
Assign actions to buttons for performing tasks.

Q
Q Utilize drop-down list boxes, binding them to data sources.
Q

Use list boxes with other controls.

Using Expression Boxes with Formulas

Before you jump into the more complicated controls, there is a control that displays formulas on
your InfoPath forms. Besides being able to bind text boxes to fields, as is done when you drag
fields from the data source, you can display formulas using a control called an expression box.

Creating a formula to display in an expression box is the same as creating a formula for a default
value except that you can use other fields within the formula. You can use formulas in a number of
ways. Following are two of the most common:

Q Totaling columns: InfoPath supplies built in functions such as sum(), avg(), and others.

Q Combining the values of multiple fields.

Chapter 7

In this section, you get a chance to work with multiple fields.

Once you have added an expression box, you need to specify the formatting of the data being displayed.
To do this, you open the property sheet of the expression box control and set the format.

Try It Out Adding an Expression Box Based on a Formula

Once you open the form called Chapter 7 Intro.xsn in Design mode, you can see, as in Figure 7-1,
that there is a column with the title of Item Total. The object of this Try It Out is to add an expression box
to display a total for each item.

Order I1D: Order Date: E Required Date: EJ
Employee ID: +[Ship via: Shipped Date:
Order ID Product ID Unit Price Quantity Discount Item Total
1
Total:
=]
=]
Figure 7-1

1. Place the cursor in the table cell beneath the Item Total label.

2. Click on the Controls task in the Design tools task pane. The Controls task pane is then
displayed.

3. Click on the Expression Box control under the Advanced controls. The Insert Expression Box
dialog box is opened, as shown in Figure 7-2.

Insert Expression Box

Enter an ¥Path expression. The results of the expression will be displayed in the
control.

¥Path: |

[0]4 l [Cancel] [Help]

Figure 7-2

4. At this point, you can either fill in the expression if you are comfortable or you can click on the
Formula button, as shown in Chapter 6, “Working with Controls in General.” If you click on the
Formula button, the Insert Formula dialog box opens.

5. Using the steps discussed in Chapter 6, in the section titled “Using Formulas,” you can create
the following formula in the Insert Formula dialog box displayed here in Figure 7-3.

6. Click Verify Formula to verify the formula.
7. Click OK to accept the formula. The Insert Formula dialog box closes.

104

Looking at Some Useful Controls and Techniques

Insert Formula

To add a field or group to the formula, dick Insert Field or Group. To
add a standard function, dick Insert Function.

Formula:

@UnitPrice * @Quantity) - ((@UnitPrice * @Quantity) * @Discount)

[Insert Field or Group...] [Insert Function...] [Verify Formula]
[Edit %Path (advanced)
[0K] [Cancel] [Help]
Figure 7-3

8. Click OK to accept the expression box. The expression box is then added to the form. It’s time
now to set the format of the expression box. In this case, you will be setting the format of the
control to the Currency format.

9. Open the property sheet of the new expression box.
10. Select Decimal for the Format as: property.
11. Click the Format button. The Decimal Format dialog box opens.
12. Click the Currency option, as shown in Figure 7-4.

Decimal Format

Format:
(") Mone (display XML value)
() Mumber
() Percentage

§ English (United States) v |
Other options
Decimal places: Auto _v'

Use a digit grouping symbol (,}
Display negative numbers like this:
(61,234.12)]

I OK.] [Cancel

Figure 7-4

13. Click OK twice to accept the formatting. You are now ready to test the form.

14. Click Preview Form, type BC for the Region, and click Run Query. You will then see the new
expression box on the form, as shown in Figure 7-5.

And there you have it. The Item Total column is displayed with the discount being taken into effect.

105

Chapter 7

J Order 1D: 10389 Order Date: 13/20/1996 Required Date: 1/17/1997
Employee ID: Davolio, Nancy +|Ship via: 2 Shipped Date: 12/24/1996
Order ID Product ID Un.It Price Quantity Discount TItem Total '
10389 10 524.8 i 0.00 524.8
10389 55 $19.2 7 10.00 5120.96
10389 62 $39.4 6 10.00 5212.76
10389 70 512 1 0.00 $12

Total:
H Insert item

Figure 7-5

Utilizing Command Buttons

Command buttons, or buttons for short, are the way you can tell the form to perform various tasks you

want to perform. You have already seen a couple of examples of buttons in looking at the Run Query
and New Record buttons created by InfoPath.

To add a command button to the form, click on the Controls task in the Design Tasks task pane, and then
click a Button, dragging it to the spot you want it located. Once it is on there you can open the property
sheet. The first page of the property sheet is a General tab, and on it you can specify the Action you want
the button to perform. If you want to have InfoPath perform a task for you from the Action field, you
can choose from the following list:

QO Run Query: Queries the database, populating fields specified as data fields.
Submit: Saves changes to the database.

Q

O New Record: Creates a new blank form to be filled out.

QO Delete & Submit: Deletes the current record and saves the change to the data source.
Q

Rules & Custom Code: When the four preceding tasks don’t do the trick, you can use this task
to either create a rule or use custom code to perform your task. This option is discussed in
greater detail in Chapter 11, “Working with Code in Your InfoPath Form.”

When you specify an Action that includes submitting the form to the database, the Submitting Forms dia-
log box will appear, enabling you to set up various properties. This dialog box is displayed in Figure 7-6.

The Submitting Forms dialog box is very powerful in that it enables you to submit data not only to the
database, as shown in the Submit to field, but also to other entities as well. Following is a complete list
of destinations with descriptions:

0 Database: The default, this option submits data to the database using the data connection.

Q E-mail: This option enables you to specify a data connection that e-mails completed form infor-
mation, including To and Subject lines and the body of the text.

106

Looking at Some Useful Controls and Techniques

Submitting Forms

Configure the Submit commands on the menu, toolbar and
buttons. Submit can send data through a single submit
adapter or it can use rules or form code to submit to
multiple adapters and apply other custom actions.

(") Do not enable submit

Submit to:
Database B4l

Enable the Submit menu item on the File menu
Caption: | Su&bmit

Submit Options. ..

[Ok] [Cancel

Figure 7-6

Web service: A Web service can be set up to accept the data that you specify using methods
created on the Web service’s side.

SharePoint form library: SharePoint is collaborative Web site software, and with InfoPath you
can specify a form library where you can store InfoPath forms.

Web server (HTTP): When submitting the form to a Web server, you can submit the XML
generated.

Custom submit using form code: This option enables you to use either script or manage .NET
code to submit the data where specified.

Custom submit using rules: Rules are used to control how the data is submitted, specifying
actions and conditions.

Try It Out Adding a Delete Button

When you have InfoPath create a form for you, it gives you a means to add a new record as well as to
modify and save an existing record, but no way to delete a record. To add this button, open the form
you’ve been working with for this chapter:

1.
2.

w

Click on the Controls task in the Design Tasks task pane.

Click on the Button task, and holding down the left mouse button, drag and drop it onto the
form in the location you want.

Double-click on the button to open the property sheet.

Pick Delete & Submit from the Action list. After you pick this option, the Submitting Forms dia-
log box will appear, as shown in Figure 7-7.

107

Chapter 7

Submitting Forms

Configure the Submit commands on the menu, toolbar and
buttons. Submit can send data through a single submit
adapter or it can use rules or form code to submit to
multiple adapters and apply other custom actions.

() Do not enable submit

Submit to
Database v

Enable the Submit menu item on the File menu
Caption: | Su&bmit

Submit Options...

[OK l [Cancel

Figure 7-7

This form enables you to specify exactly how you want the submission of the data to be han-
dled. There may some cases in the future where you will want to hold off submitting the data or
have the data go to another data connection.

5. Click OK to accept the properties as they are for submitting forms.

6. Type Delete in the Label field. The dialog box will then look as shown in Figure 7-8.

Button Properties

General | pisplay || Size | Advanced
Button
Action: |Delete & Submit [»]

Label: |Delete

Define Action Parameters. ..

[0K] [Cancel] [Apply] [Help

Figure 7-8

7. Click OK to accept the button properties.
8. Click Preview Form.

108

Looking at Some Useful Controls and Techniques

9. Type SP for the Region, and click Run Query.

10. Pickarecord and click the Delete button. The record and its related records in other tables will
be deleted provided that Cascade Deletes have been turned on for its relationships.

Should you try to delete a record that contains related tables without having Cascade Deletes

turned on, an error will be displayed from Access. For more on table relationships reread Chapter 3,
“Understanding Data.”

Utilizing Drop-Down List Boxes on the Form

Drop-down list boxes are extremely useful for both controlling the data that goes into your form and
adding convenience for users by supplying the necessary choices for the field currently being updated.

A few good examples of locations where drop-down list boxes can be useful can be seen right on the
form you have been modifying. On the form that is being used for this chapter, Employee ID, Product
ID, and Ship Via are currently using text boxes that take a number as a value. The problem with selecting
a value is you can’t be sure what the value represents unless you have looked at data the values are

based on. For instance, instead of displaying the field Employee ID, you could display the names of the
employees and have the user choose from that list. See Figure 7-9.

Order ID: 10389 Order Date: 12/20/1996 Required Date: 1/17/1907 [B
Employee ID: Davalio, Nancy [v| ship via: 2 Shipped Date: 12/24/1996
Order ID N Price Quantity Discount Item Total
Buchanan, Steven
10389 callahan, Laura 1 a £24.80
10389 g 7 i0 $120.96
Dodsworth, Anne
10389 Fuller, Andrew 6 10 $212.76
03B King, Robert 1 o $12.00
— Leverling, Janet
& Insert ltem Peacock, Margaret Totak:
Suyama, Michael otal:
Figure 7-9

Although the Product ID field is hidden under the drop-down list box, you can see the Ship Via field

displaying an integer value instead of the various shipping options such as Speedy Express and United
Package.

This whole section can be applied to the list box control as well as the drop-down list box. Which you
decide to use depends on one main question: How much room is there to display data? The methods for
setting properties such as the data source will be the same.

Adding a Drop-Down List Box to a Form

There are two ways to add a drop-down list box to an InfoPath form:

1. Add the control from the data source as a text box, and then change it into a drop-down list box.

2. Add a drop-down list box control from the Controls task pane, setting the binding at that time.

109

Chapter 7

_ Adding the Field from the Data Source as a Text Box, and then
Changing It
Using the form that called Chapter 7 Intro.xsf:
1. Click the right mouse button, and highlight Change To.... You can now see the list of the types of
controls you can change the control to, as shown in Figure 7-10.
2. Click the Drop-Down List Box. A drop-down list box is displayed in the form.
The new control is now ready to have you specify the data source for the list. You can use the steps just

presented to create a drop-down list box from an existing control. However, there will also be times when
you simply want to add a control to an existing form. The next Try It Out shows you how to do this.

[(Design) Chapter 7 Intro - Microsoft Office InfoPath 2003 BE
i File Edit View |nsert Format Tools Table Help Type a question forhelp =
i) 5 b | 5 Preview Form | (4 57 | & Do @ F 9 o) 2 | 15 Desi
i Y Verdana -0 - B I y|ElE==t=.=.i2 5= |
i [4] Draw Table [oberder - el & linsenty 4 56 G [5
Customer Information with Invoices | ®1®|a
Layout
: (8
.. B Controls
®
3 Data Source
2 views
Insert controls:
Company Name: éContact Title: : Standard
Address: : ‘Phona: Fax: il Text Sox
| | . oF o
: ' ' =4 Rich Text Box
City: h | : :
- : H H H [Z8 orop-Down List Box
Region: i ‘Postal Code: | Country: LS =
! : I . List Box
. . . T Date Picker
‘Order 1D: i Order Date: Required Date: B ek
S g poeegegegegepegegegegepopopoeopepegepegegpepupt - pepepepepeopepeyppepupepuysupspugtt S fympupupupepspepupepepgs i Ck Box
g L eeeve Shipped Date: i] © Opton Buttan
Order ID cProdur_t iD nit Price Quantity Discount Item Total _al Button
o EProductinE E 1 $0.00 1] Sect
a . o S| @ Change Binding... L secton
23 Show Data Source... Total:| I::ﬁl::ﬂmal
& Cut -
Bl Repea & 24 Copy Iﬂ Repeating Section
@ paste 51 Repeating Tasle
a - Apply Font to All Text Box Controls B Drop-Down List Box E‘ Master/Dei A
n := Bulleted List
. | ChangeTo » | @ Option Button Add o Remave Custom Controls...
Region:] —| Text Box Properties... [Check Box] @ Help with Controk
b | P antrols
<] i Az Expression Box =l 1
EQI Section

Figure 7-10

110

Looking at Some Useful Controls and Techniques

Try It Out Adding a Drop-Down List Box and Binding it to a Field

To add a drop-down list box control right from the Controls task pane, you must first delete the text box
used for Ship Via from the form you have been using in this chapter:

1.
2.
3.

7.

Click the text box bound to the @ShipVia field, next to the label with the same text.
Press the Delete key. The text box is now gone.

Click the Controls task in the Design Tasks task pane. The controls will be listed in the Controls
task pane.

Making sure that the cursor is in the cell of the table where the old text box was located, click
the Drop-Down List Box control. The Drop-Down List Box Binding dialog box appears.

Locate and highlight the ShipVia field in the tblOrders table. The dialog box then looks as it
does in Figure 7-11.

Drop-Down List Box Binding
Data source:
Main HE'S

InfoPath cannot automatically areate a field or group in the section containing this contral,
To set the binding, select a field or group in which to store the control's data:
=l [thiorders -

(=8 :OrderlD b |

(=§ :CustomerID

=8 :EmployeelD

=B :0rderDate

(=§ :RequiredDate

(=§ :ShippedDate

B :shipvia |

(8 :Freight

(=8 :ShipName

(=§ :ShipAddress

(=8 :shipCity

(=8 :shipRegion

(=8 :ShipPostalCode

(=8 :ShipCountry v

[Ok l [Cancel

Figure 7-11

Note that the data source you are setting is what the control is bound to, not what is going to be listed
in the drop-down list box for the users’ choices.

6.

Click OK to close the dialog box. The drop-down list box control is added and is bound to the
ShipVia field.

Delete the text for the label, which reads ShipVia, that has been added for the new control.

As with the last Try It Out, the drop-down list box control has now been added to the InfoPath form, but
it still needs to have the data source and properties assigned for the data to be listed.

111

Chapter 7

Specifying List Box Data Sources

Once you have added a drop-down list box to your InfoPath form, you need to add data source proper-
ties for the list itself using the property sheet of the control. You can see an example of this using the con-
trol bound to the EmployeelD field in the InfoPath form you have been using for this chapter. You can
see the property sheet in Figure 7-12.

There are threes ways to supply the data that is displayed in a drop-down list box. They are:

Q Enter the list box entries manually: Here you will be specifying both the value to be stored in
the field that the control is bound to and the text you want to be displayed for the individual
values. This is useful if you have a static list that is fairly short.

QO Look up values in the form’s data source: When you want to limit the data to the data source
specified for the form, you can use this option, including when you want to use the control as a
filter for the form.

QO Look up values in a data connection to a database, Web service, file, or SharePoint library or
list: This option enables you to add additional data connections from the various sources. You
will get the same dialog box used when specifying the form’s main data connection.

Drop-Down List Box Properties

Data | pisplay | Size | Advanced

Binding

Validation and Rules

Data Validation Use data validation to display errors when users enter
= =") invalid data.
Use rules to apply actions when users change the
value in this control,
List box entries
() Enter list box entries manually

() Look up values in the form's data source

() Look up values in & data connection to a database, Web service, file, or
SharePoint library or list

Data Connection: |Employees Id and Name w|

Choose the repeating group or field where the entries are stored.

Entries: Jjdfs:myFields/dfs: dataFieldsd: thiE

Value: @EmployeeID
Display name: @EmployeeMame

Figure 7-12

112

Looking at Some Useful Controls and Techniques

Which of these options you use depends on what you need to accomplish with the list box.

Working with an Additional Data Source

In the case of the drop-down list box bound to the EmployeelD field, as shown in Figure 7-6, a new data
connection is created. Using the tbl[Employees table for the data connection, the EmployeelD field is
used for the Value property, and an expression called EmployeeName is used for the Display name.

To look at the data connection called Employee Id and Name, choose Tools = Data Connections.... In the
Data Connections dialog box, click Modify... with the Employee Id and Name data connection high-
lighted. Once you are back in the Data Connection Wizard, click Edit SQL...; you will then see the SQL
statement used here:

select [EmployeeID], [LastName] & ', ' & [FirstName] as EmployeeName from
[tblEmployees] as [tblEmployees] order by [LastName]

You have just read about specifying another data connection for a drop-down list; now it’s time to do the
same task yourself by completing the next Try It Out.

Try It Out Specifying an Additional Data Source

When modifying a data source using Tools => Data Connections..., you can add a new connection right
in the control’s property sheet. To see how to do this and specify the necessary properties, you will work
with a drop-down list box bound to the ProductID field on the form you have been working with:

1. Open the property sheet for the drop-down list box bound to the ProductID.

2. Select the third option in the List box entries option group. A Data Connections drop-down list
is displayed, as well as an Add... button.

w

Click the Add... button. The Data Connection Wizard opens.

P

Select Database for the source, and click Next>. You are taken to the main page of the Data
Connection Wizard for databases.

Click on Select Database....
Locate the Chapter 7.mdb database, as shown in Figure 7-13.

Click Open. The Select Table dialog box opens.

o N OO

Select tblProducts from the Select Table dialog box, and click OK. You are now taken back to the
main page of the Data Connection Wizard, with all the fields displayed in tblProducts.

©

Deselect all the fields except ProductID and ProductName, as shown in Figure 7-14.
10. Click Next. The last page of the Data Connection Wizard is displayed.
11. Click Finish to complete the wizard, accepting the default values on the last page.

113

Chapter 7

-

| Select Data Source &)
lookin: | Chapter 7 EI@'E.lQXDE'TW!S -
L s
73
My Rece...
€
Dasktop
My Documents
My Computer
My Netwo...
IREinaies | E| [Newsource,., | [Qpen]
Files of type: |AII Data Sources (*.ode; *.mdb; “,mcE A
d|
Figure 7-13
 Data Connection Wizard &3

C:\Boaks\InfoPat! ples\Chapter 7\Chapter 7.mdb i Change Database... I

If you want to change the database, click Change D

Your data source can indude one or more tables or queries from the selected database.

Data so
e |] - Add Table...
| ProductD [l
|:] Supplierld
0 cosgr :
[quantityperunit
[unitFrice
[unitsInStock
[unitsonorder :
Q ReorderLevel v Edit SQL...
Show table golumns

[<sack || mea> || concel

Figure 7-14

The name of the new data connection, tbIProducts, is entered into the Data Connection property of
the drop-down list box. You're not done yet. Although you have created a new data connection and
assigned it to the control as needed, there are some additional properties that need to be assigned.

114

Looking at Some Useful Controls and Techniques

List Box Data Connection Properties

There are three properties that need to be set, which were briefly mentioned earlier in the section:

Q Entries: The specific table or query within the data connection to be used. The text displayed
will be the XML XPath from within the form.

Q Value: The XPath representation of the field to be stored in the bound field of the control when
an item is chosen from the list.

Q Display name: Again, an XPath representation, but this time specifying the name of the field to
be used for displaying the choices in the list.

You can get a good idea of what values to use by working with the following Try It Out.
Try It Out Setting a List Box’s Data Connection Properties
While still using the drop-down list box control bound to the ProductID field:

1. Click the XPath button next to the Entries properties. The dialog box that enables you to specify
what field or group to use for the entry is displayed in Figure 7-15.

Select a Field or Group

=| =5 dataFields
+ L_,EJ d:tblProducts

Filter Data... l [oK l [Cancel

Figure 7-15

2. Click d:tbIProducts table, and then click OK. The XPath for the group is populated in the Entries
property.

115

Chapter 7

116

3. Click the XPath button next to the Value property. The Select a Field or Group dialog box is once
again displayed.

4. Choose ProductID, and then click OK. You can see in Figure 7-16 that @ProductID is filled in for
both the Value property and Display name.

The reason both the Value and the Display name boxes are filled in with the field specified in the Value
property is that many times you can use the same field for both properties, so InfoPath is saving you
some work. In this case, however, you will be also specifying a different field for the Display name.

5. Click the XPath button next to the Display name property. Once again the good old Select a
Field or Group dialog box is displayed.

6. Highlight the ProductName field, as shown in Figure 7-17.

Drop-Down List Box Properties

Data | Display | Size | Advanced

Binding

Validation and Rules

Data Validation... Use data vahdatlon to display errors when users
enter invalid data.
Use rules to apply actions when users change
the value in this control.
List box entries

C:-Enter list box entries manually

CZ' Look up values in the form's data source

If_.'::- Look up values in a data connection to a database, Web service,
file, or SharePoint library or list

Data Connection: |tblProducts v Add...

Choose the repeating group or field where the entries are stored.

Entries: /dfs:myFields/dfs:dataFields/d:tblf
Value: @ProductlD
Display name: @ProductlD {j

0K ll Cancel ll Apply

Figure 7-16

Looking at Some Useful Controls and Techniques

Select a Field or Group

=1 5P d:tblProducts
=8 :ProductlD
8 :Productiame

oK l l Cancel

Figure 7-17

7. Click OK. The Display name field is now populated with the @ProductName XPath name for
the desired field. You can see the property sheet one final time in Figure 7-18.

8. Click OK to save the properties as you have set them.
9. Click Preview Form.

10. Supply BC for query entry in the Region field, and click Run Query. You will now see the prod-
uct names displayed in a drop-down list box, as shown in Figure 7-19, rather than just the prod-
uct IDs.

There you have it. That is all there is to specifying a new data connection and assigning which fields
to use in your list box. Practicing a few more times will have you adding list boxes all over the place in
your forms.

Remember that you can modify the data connections as described in Chapter 4, “Creating an InfoPath
Form from an Existing Data Source.” Using the methods described in that chapter, you can specify sort
orders for the lists after they have been created.

Entering the List Manually

Sometimes as you are creating your forms you will want to base a drop-down list box on a list that doesn’t
exist anywhere in a data source or database. This occurs frequently with small static lists. An example of
this is that the Ship Via accepts values that represent three different shipping companies: 1 for Speedy
Express, 2 for United Package, and 3 for Federal Shipping.

It is recommended that you store this type of information in a table so that more information, such as

contact address and phone numbers, could be stored for each shipping company. For the purposes of this
example, you type the figures in yourself.

117

Chapter 7

Drop-Down List Box Properties

Bil"ldilly

List box entrie

Data |Disp|a',r Size | Advanced

Figld narme:

Data type:

Validation and Rule

Data validation... Use d;ta vghdatlon to display errors when use
enter invalid data.
Use rules to apply actions when users change
the value in this control.

rs

Ognter list box entries manually

() Look up values in the form's data source

Look up values in a data connection to a database, Web service,
file, or SharePoint library or list

Data Connection: |tblProducts IL]

Choose the repeating group or field where the entries are stored.

Entries: /dfs:myFields/dfs:dataFields/d:tblf
Value: @ProductID
Display name: @ProductName

0K l l Cancel l l Apply

Figure 7-18
: Order ID: 10389 Order 12/20/19¢@ Required 1/17/1997@
Date: Date:
{Employee pavolio, Nancy |v|Ship Via: [Select... [v[Shipped 12/24/19¢E) |
1 1ID: Date: ;
Order ID Product ID Unit Quantity Discount Item Total
Price
10389 Tkura E $24.8 1 0.00 $24.8
;10389 Paté chinois B $19.2 7 10.00 $120.96
| 10389 Tarte au sucre [v]$30.4 6 10.00 $212.76
! 10389 Outback Lager [v] 512 1 0.00 $12
: Total: 0
B Insert item

Figure 7-19

118

Looking at Some Useful Controls and Techniques

Another situation in which it makes sense to type the figures in statically is if you are going to be using
the InfoPath form without a database behind it, for example, if you are going to e-mail the form to other
users and just have the data stay with form, instead of in an Access or SQL Server database. As far as the

users are concerned, the input experience will be the same when filling out the form.

Try It Out
Using the drop-down list box control bound to the ShipVia field in the form you have been working

Creating the List Manually

with in this chapter:

1.
2.

4.
5.

Open the property sheet.

Leaving the default of Enter list box entries manually for the list box entries option and click on
the Add... button, located next to the list of current entries. The Add Choice dialog box opens.

Add the first entry: 1 for Value and Speedy Express for the Display name. The dialog box then

looks as it does in Figure 7-20.

Drop-Down List Box Properties

Data | Display | Size | Advanced

Binding

Validation and Rules

Data Validation. .. !_lse _data wvalidation to display errors when users enter
= invalid data.

- the
Add Choice
Listbox | yajye: 1
®En Example: 1234
L
OLoo Display name: | Speedy Express
O Loo file, or
sh,] []
OK Cancel
Valu d...

Select...

Yes

QK

] [Cancel

Figure 7-20

Click OK to accept the choice.

Repeat Steps 3 through 4 for the other two choices (United Package and Federal Shipping) dis-

played in Figure 7-21.

119

Chapter 7

Drop-Down List Box Properties

Data |Disp|ay Size | Advanced

Binding

Validation and Rules

Data Validation Use data validation to display errors when users enter
= =") invalid data.
Use rules to apply actions when users change the
value in this control,
List box entries
() Enter list box entries manually

() Look up values in the form's data source

() Look up values in a data connection to a database, Web service, file, or
SharePoint library or list

Value Display Name Default . Add.. |
Select... Yes

1 Speedy Express

2 United Package

3 Federal Shipping

Set Default

=

OK] [Cancel

Figure 7-21

6. Click OK to close the property sheet.

7. Click Preview Form, supply BC for the Region, and click Run Query. The form then displays a
record with United Package displayed in the Ship Via field. Remember that prior to this, a 1 was
displayed in the Ship Via text box control.

8. Click the Ship Via drop-down list box. You then see the possible list entries, as shown in Figure
7-22. Picking another item from the list stores the values specified in the Value property in the
database once the Submit button is clicked.

l‘ Order 1D: 10389 Order Date: 12/20/1996 Required Date: 1/17/1997
Employee ID: Davolio, Nancy [v|ship Via: [ynited packac[v|Shipped Date: 12/24/1906 (B
Order ID Product ID - Unit Price|Select... scount Item Total
10389 [1kura v|s24.8 00 $24.8
10389 Paté chinois [w]s10.2 [Federal Shipping| g0 $120.06
10389 Tarte au sucre :| $39.4 6 10.00 $212.76
10389 [outback Lager v s12 1 0.00 $12

Total: o
B Insertitem

Figure 7-22

120

Looking at Some Useful Controls and Techniques

Summary

Besides using text boxes for inputting and displaying field data, you can use expression box controls for
displaying expressions or formulas. InfoPath provides formatting for the expressions as well as the means
for inputting the expressions themselves by the entering the formulas directly or by using a wizard.

InfoPath also provides a means for adding your own buttons using either some built-in actions provided
or by adding your own code or script.

Drop-down list boxes, as well as other list boxes in InfoPath, enable the developer to control how the
data is input into the InfoPath form. This is accomplished by either supplying the entries for the list or
by specifying the data connection for the data to be displayed.

Exercises

1. What type of control would you use to display a formula on an InfoPath form?
2 Name the six types of built-in actions you can assign to a button.

3. What are the three ways to specify the data used for a list box?
4

How do you modify a data connection in InfoPath?

121

Working with Sections

One of the powerful features of InfoPath is the ability to create sections that provide additional
control over data for the developer of the form. Using sections with InfoPath forms means much
more than this does in other applications such as Word and Access. In those other products, when
you talk of sections you are talking about areas of forms or documents where data is entered, but
using sections in these applications does not accomplish nearly as much as it does in InfoPath.
When you specify a section on a form in InfoPath, you can have a whole section displayed or hid-
den with the data behind it (bound to it) being affected as well. Data can be repeated, optionally
displayed, or tied to specific data in a preceding section, much as the subform controls are used
in Access.

The majority of the different types of sections available in InfoPath forms have been touched upon
at one time or another in the chapters leading up to this one. Now it is time to see just how power-
ful sections are, and what you can do with them. In this chapter you will:

0 See the various types of sections available in InfoPath.

0 Examine using choice sections.

0O Work with optional section and repeating sections.

O Look at useful section properties.

Q

Filter data in a section.

Overview of Types of Sections
in an InfoPath Form

InfoPath provides various types of sections depending on the task you need to accomplish. These
sections are added to forms as controls and contain other controls within them. The majority also
are bound to groups of data. A group of data is related records in one of the tables included in a
data source, usually in a one-to-many relationship.

Chapter 8

An example of using a bound section is an optional section. An optional section is a repeating section
where data can be entered, but is not required. An example of an optional section is one bound to the
tblCustomerNotes table, which is related to tblCustomers on the CustomerID field. As with other data
tasks, InfoPath will take care of a lot of the work to handle adding the data in the CustomerID field

in the related table, based on how you set up the section.

Setting up some of the types of sections is covered throughout the rest of the chapter, but for now, take a
look at the types of sections available on InfoPath forms, and how you would use them. Some of the con-
trols can be found in the Sections task pane of the Controls task pane.

a

Choice Section: These are individual sections that are used in a Choice Group control. This con-
trol lets you specify fields to fill in based on a choice the user makes. You can also add a repeat-
ing choice group when you want to add more than one entry for the choice.

List Control: Though it is technically not a section, it is worth mentioning the List control
because it displays data in a section-like manner. There are three flavors of lists: bulleted, num-
bered, and plain. You can bind list controls to data or let the users create the lists on the fly.

Master/Detail Section(s): Used to represent a one-to-many relationship, these type of sections
are created in one of two different ways: manually, by putting a repeating table and repeating
section on the same form, or by choosing a Master/Detail control (version 1.1) and filling out

the properties.

Optional Section: As the name suggests, the data in this section is optional, thus it takes up no
room on a form if it is not needed. A notes section for products is a good example of this. Not
every product is going to have a note, so why take up the room?

Repeating Section: This is probably the most used type of section, whenever groups of data are
used. Examples are customers, orders, or products. All of these groups of information can be
managed using repeating sections.

Repeating Recursive Section: One of the most confusing section controls, this control lets you
embed other controls, including itself, so that you can recursively display and enter informa-
tion. An example of this is a hierarchical employee chart, where employees can be specified at
different levels with the same fields being used.

Scrolling Region: As with the list control, the scrolling region is not described as a section, but
displays data in a section-like format. Other controls can be placed in a scrolling region control
so that instead of scrolling down a whole form, users scroll down in a specific area.

Looking at Choice Sections and
the Choice Group Control

Choice sections and groups are very useful when you display and store a set of data in a form based on a
choice the user makes. There is no need to have fields on the form that don’t need to be filled in if the
data is not going to be used. In some form packages:

a
a

124

Developers have to programmatically disable or make fields invisible.

Users have to tab over the fields that aren’t necessary.

Working with Sections

The Choice Group control solves the problem by displaying data in choice sections based on the choices
made.

A good example, and one you will deal with in this chapter’s Try It Out is what information you want
filled out when a user chooses the type of payment he or she wants to make for an order, such as Cash,
Check, or Charge. You can see final form with the payment choice of Charge selected in Figure 8-1.

Order Information

Customer Name:
Test Customer

Order Date: 10/6/2004 m)
Order Amount: $40.00

Please choose Cash, Check or Charge below

j

Remove Charge Expiration Date Mame on Card
Replace with Check
Replace with Cash
& | Cut Crl+X
-3 Copy Ctrl+C

Paste

Figure 8-1

The credit card number is located under the menu in Figure 8-1. When the payment choice is Check, the
form looks as shown in Figure 8-2.

Order Information

Customer Name:
Test Customer

Order Date: 10/6/2004 o
Order Amount: $40.00

Please choose Cash, Check or Charge below

Remove Check
Check Number

Replace with Cash
Replace with Charge

& | Cut Ctrl+X

| Copy Cirl+C

i Paste Ctrl+V
Figure 8-2

When the choice is Cash, then no fields are displayed in the section.

After dragging a Choice Group control onto the form, two Choice Section controls are added by default.
You will then add controls to each of the sections, based on the data you want the user to edit in each. To
have the menu display the various names of the choices, the field name is filled in using the Choice
Section property sheet. To add an additional choice to the Group Choice control, Choice Section is
selected from the Advanced section of the Insert Controls task pane. This will all become clearer as you
work on the following Try It Out.

125

Chapter 8

Try It Out Adding a Choice Group Control

For the purpose of this Try it Out, you will be creating a new form. When completed it will look as it
does in Figure 8-3.

126

N

P

Order Information

Customer Namea:

Order Date:
COrder Amount:

Please choose Cash, Check or Charge below

%]
Check Number
=]
Credit Card Number Expiration Date Mame on Card
]
Figure 8-3

Open Microsoft InfoPath 2003. The Fill Out a Form dialog box is displayed.
Choose Design a Form.

Click on New Blank Form from within the Design a Form task pane. A blank form will be
displayed.

Add a Table with Title from the Layout task pane.

Add the controls and text as displayed in Figure 8-4. What the names of the controls are isn’t
important for this Try It Out.

Order Information

Customer Name:

Order Date: =
Order Amount:

Please choose Cash, Check or Charge below

Figure 8-4

Drag a Choice Group control from the Advanced section of the Controls task pane. You will see
the control displayed on the form as shown in Figure 8-5.

Add the desired controls to the first two sections —in this case, nothing in the first section and a
3-column table with a label and text box for the Check Number as shown in Figure 8-3.

Working with Sections

Figure 8-5

8. Dragand drop a Choice Section control from the Advanced section of the Controls task pane
into the bottom of Choice Group control.

9. Add a three-column table with the necessary controls, as shown in Figure 8-6.

a
Check Number
]
Credit Card Number Expiration Date Name on Card
]
Figure 8-6

10. Next, to have the choices displayed, click Preview Form, and click the area below the prompt:
Please choose Cash, Check, or Charge.

11. Make your selections, and the form will be displayed as shown in Figures 8-1 and 8-2.

One issue with binding the choice group to a database is that you need to have the data structured as it
is on the form. Therefore, it is simplest to use the control with a new form, creating the XML schema
with the form.

Optional Sections

You have seen optional sections inserted earlier in forms in other parts of the book, but it’s time now to
take a closer look at them and see how to really take advantage of the different properties of the optional
section.

127

Chapter 8

Optional sections are useful when you have data that is not required on the form. Some examples of
data that is good in optional sections are notes, activities, appointments, or any information that does
not require at least one entry to be included. If you need to include at least one entry, for example, when
detail lines in an order need to include at least one item to order, the entries are not optional.

You can include other types of sections, such as repeating sections within optional sections. That way if
you might have more then one note, but don’t need to include any at all if you don’t want to, then a
repeating section within an optional section is the way to go.

When working with optional sections, you can specify to:

Q Include the section on the form by default.
O Not to include the section by default.
QO Whether or not to allow users to insert the section.
QO Whether to show an insert button and the hint text.
The last choice is also available for other types of sections. You can also set up rules, default values, and

custom commands, all of which were discussed in Chapter 6, “Working with Controls in General.” The
way to specify all of these options is to use the Section Properties dialog box, displayed in Figure 8-7.

Section Properties

Data | Display | Digital Signatures | Size | Advanced
Binding
Field or group name: | group8

Default settings
-f::llnclude the section in the form by default

(®) Do not include the section in the form by default
P\”Uﬂ users to insert the section

l Rules] Use rules to apply actions when
- users insert the section.
l Edit Default Values...] Edit .the default values of the
section.

Customize the names and locations
of the commands used to insert and
delete the section.

l Customize Commands...]

Show insert button and hint text:

Click here to insert

OK l l Cancel

Figure 8-7

128

Working with Sections

_ Adding an Optional Notes Section and Setting Its Properties
Using the form you created in the last Try It Out:

1. Place the cursor under the Choice Group.

2. Select the Optional Section from the Repeating and Optional section of the Controls task pane.
The optional section will then be added to the form.

® NO O R~

Type Notes into the optional section added in Step 2.
Add a Text Box control, naming it Notes.

Open the property sheet for the optional section you added.

Change the hint text to: Click here to insert a Note.

Type NotesOptionalSection in the property labeled: Field or group name.

Click Apply. The property sheet and form will look as it does in Figure 8-8.

(Design) Template2 - Microsoft Office InfoPath 2003

i File Edit View Insert Format Tools Table Help

Ei..'ll_'_'fﬂ.J;Era\nrha\mrForm|t_{l‘;‘"f"'‘_ - . ——

i 44 verdana 10 ~| B I

: 74 Draw Table [{ No border

Order Amount:

Please choose Cash, Check or Ch

iCredit Card Number Expira

Data Display | Digital Signatures | Size | Advanced|

Properties

Binding-
Field or group name: NotesOptionalSection
Default settings
(O Include the saction in the form by default
@gn not include the section in the form by default
Allow users to insart the section
Use rules to apply actions when
- users Insart the section.
Edit Default Values. .. Edit the default values of the
= section.
C ize the names and locations
of the commands used to insert and

delete the section.

Show insert buttan and hint text:
Click here to insert a Note

1

Y

":l_J

Type a question for help -

: controls v X

- 10 ~ EEEE

0 Layout
”}? Controls
{_1 Data Source
e
L3 Views
Insert controls:
Standard
m Text Box

25 Rich Text Box

j Drop-Down List Box
B vist Box
j Date Fickar

[check Box
% | oK | | Cancel | s (& option Button
- dl Button
Notes 1 secton
o)
Aummaucally create data source
oo Add or Remove Custom Controls...
() Help with Controls
fiv]
Figure 8-8

129

Chapter 8

9. Click OK.

10. Click Preview Form. The form will open, and at the bottom of the form you will see the prompt
added in Step 7, as displayed in Figure 8-9.

Order Information

Customer Name:

Order Date: =
Order Amount:

Please choose Cash, Check or Charge below

Credit Card Number Expiration Date Name on Card

@ Click here to insert a Note

Figure 89

11. Click the prompt labeled Click here to insert a Note. The Note text box will then be displayed.
12. Type some text in the text box, as shown in Figure 8-10.

Order Information

Customer Name:

Order Date:
Order Amount:

Please choose Cash, Check or Charge below

Credit Card Number Expiration Date Name on Card

Notes
This is the note|

Figure 8-10

Specifying Filters on InfoPath Forms

When working with data located in a Web service or database you can limit the amount of data, or filter,
by using the query fields. There are times when it is convenient to limit data when using a standalone
form as well. One way to do this is to specify filters, which can be done for a whole form, or individual
repeating tables.

130

Working with Sections

The way to accomplish filtering is by setting the Filter Data properties on a repeating table or section,
located on the Display table in the property sheet, and pointing them to another control containing the
values to filter for, such as a drop-down list box. You can see an example of this in Figures 8-11 and 8-12,
where first all records are displayed,

Display All v
Last Name First Name Employee Type
Barker Scott Full Time
Barker Diana Part Time
E Insert item
Figure 8-11
iFull Time i
Last Name First Name Employee Type
Barker Scott Full Time
H Insert item
Figure 8-12

Try It Out: Filtering a Repeating Table Using a Drop-Down List Box

For this task, you will make a new blank InfoPath form that will create a list of employees with

their type.
1. Open InfoPath.
2. Click on Design a Form.
3. Click New Blank Form....
4 Add a Repeating Table control from the Repeating and Optional section of the Controls task

o

pane. The Insert Repeating Table dialog box will open, as shown in Figure 8-13, with the
default value of three columns displayed.

Insert Repeating Table

Number of columns: 3 5

Users can insert additional rows
when filling out the form.

[oK l l Cancel

Figure 8-13

Click OK.

Add text and text boxes for Last Name, First Name, and Employee Type, naming the text
boxes as the labels are, without the spaces. You can see the EmployeeType field displayed in
Figure 8-14.

131

Chapter 8

(Design) Template2 - Microsoft Office InfoPath 2003 _ &

Validation and Rules
Dgannot be blank

— Use data validation to display errors when users
DEEREIE TS enter invalid data.
Use rules to apply actions when users change the ;
Rules... y
value in this control. [Cshow details

Add...

ooc [

(i) Help with the Data Source

i File Edit View Insert Format Tools Table Help Type a question for help «
i) 25 | 5y PreviewForm | (4 (& W | % B3 @ F |9 ¢ |2 [ﬂl(”;DaslggTasks...lgE
i A4 verdana -0 -|B I g||§|ggg:§-|izvzzvi_jléjl|'vvgv
: "4 Draw Table [/ no border - -|Z ~| & > Ingert~] :;‘Elﬁa
m} E
. : Data So v X
Last Name First Name Employee Type —
EmployeeType &
g Layout
g - = 0 oy
Text Box Properties 38 controls
Data |Display | Size | Advanced # 5 Data Source
:3] Views
Binding
Field pame: | EmployeeType Data source:
Data type: | Text (string) |
= [5r myFields
Default Value - =[5 groupt
0 =l lg# group2
=] S LastName
Example: Sample Text] FirstName
& result of the : | EmployeeType |

Figure 8-14

N

Click OK to accept the EmployeeType field.

0

Add a Drop-Down List Box control, naming it ddEmployeeTypeFilter.

9. Add the values Display All, Full Time, and Part Time for the list box entries, as displayed in
Figure 8-15.

10. Click OK to accept the properties for ddEmployeeTypeFilter.

11. Right-click the label for the repeating table, and choose Repeating Table Properties.
12. Click the Filter Data... button on the Display tab. The Filter Data dialog box opens.
13. Click the Add... button. The Specify Filter Conditions dialog opens.

14. Choose Select a field or group, then ddEmployeeTypeFilter for the first box. Choose Is equal
to in the second box

15. Choose Select a field or group and then EmployeeType for the third box.
16. Click the And button to add another condition.
17. Select “or” in the fourth box.

132

Working with Sections

18.

19.

Drop-Down List Box Properties

ml Display || Size | Advanced
Binding
Field name: | ddEmployeeTypeFilter
Data type: Text (string)

Validation and Rules

[]cannot be blank

(]

Rules...

List box entries

Data Validation... Use d;ta v;hdatmn to display errors when users
enter invalid data.

Use rules to apply actions when users change
the value in this control.

@gnter list box entries manually

() Look up values in the form's data source

Look up values in a data connection to a database, Web service,
file, or SharePoint library or list

Value Display Mame Default Add...
Select... Yes
Display All Display All
Full Time Full Time
Part Time Part Time
Set Default
oK Cancel]

Figure 8-15

Choose Select a field or group and then ddEmployeeTypeFilter for the first box in the

second row.

Type Display All without the quotes in the third box. The Specify Filter Conditions dialog box

should now look as it does in Figure 8-16.

Specify Filter Conditions

X

Display data that meets the following conditions:

EmployeeType i ar w

Tip: To learn how to build a filter with an option to show all values or display blanks, click the Help button.

ddEmployeeTypeFilter v is equal to v

ddEmployeeTypeFilter v: is equal to v: Display All

Figure 8-16

133

Chapter 8

20. Click OK to accept the filter conditions.

Now when you click Preview Form, you can enter data and see it filtered as shown in Figures 8-11
and 8-12.

Master/Detail Sections

When you use Web services and databases as data sources for InfoPath forms, master/detail sections are
created automatically when you drag fields from a data source onto your form, such as tblOrders and
tblOrderDetails, which have been used in prior chapters.

Master/Detail sections are created by two basic methods:

Q Dragging and dropping a Master/Detail control onto the form.
0 Dragging on two or more tables as mentioned in the last paragraph.

Using either of these methods creates a repeating table as the master section and a repeating section for
the detail section. When created, a field (or fields) needs to be specified to link the two sections.

Summary

Sections make up a large part of InfoPath forms. Just about any solution to various tasks you may have
will most likely require one type of section or another. Sections are added to forms in a number of differ-
ent ways, including just adding fields from a data source onto the form or creating a repeating table. You
can add sections onto a form by also utilizing various section controls, including adding the ability to
hide data, or to include data only when specific choices are made using the choice sections.

This chapter also showed you how to filter data using the Filter properties on repeating sections and
tables.

Exercises
1. What are the three types of repeating objects?

2. Name the objects used for displaying areas of data based on user selections.

3. Which tabs are the Filter Data properties on, and which type of section and table?

134

Managing Views

Views in InfoPath provide the ability to organize and present data in your forms. Where other
applications use multiple forms for managing information, views accomplish the same tasks in
single InfoPath forms. With traditional applications, you generally have a main switchboard and
then switch between forms that refer to specific areas of data.

InfoPath provides the ability to switch between views by either using the built-in menus or creat-
ing custom task panes. This chapter explains how to work with views. In this chapter you will:

0 See an overview of using views in InfoPath forms.

Take a look at the various view properties.

Q
QO Learn about multiple views.
O Design a print view.

Q

Learn about custom task panes.

Views Overview

InfoPath provides views (pages) to help you create forms that are organized in a way that makes
sense for users, rather than just putting all the data on a single page.

You can see in Figure 9-1 where views have been created for Customer, Notes, and Order informa-
tion, tied together with a custom task pane.

For the purpose of this chapter, one InfoPath form will be created from start to finish based on the
database called Chapter 9.mdb. The tables called tblCustomers and tblOrders will be used.

Besides creating views to break up information, you can also create views based on secondary data
sources, or special views made to print information for current views. These are discussed in the
last section in this chapter.

Chapter 9

] Preview! - Microsoft Office InfoPath 2003 JEEd
! File Edit View Insert Format Tools Table Help Type a question for help -
@i submit) 2 S i Bf Close Preview | (3 & | 4 Ca A F)0 oo @ 1 g k2] B) e 8

P Gl s === A B2 Startink Enty |[£]. 2] 2= B

] -
. ~— [Custom Task Pane * X
Customer Information

Customer ID: BQLID

Company Name: Bolido Comidas prer

Contact Name: Martin Sommer

Contact Title: Owner

Address: ©/ Araquil, 67] m
City: Madnd

Region:

Postal Code: 28023

Country: Spain

Phone: (91) 555 22 82

Fax: (91) 55591 99

E insert item

Customer ID:
BOLID vl
| ! | (2]
4 Form template's location: C:\Documents and Settings\FSBarker\Local \Appl 1 Data\Micr \InfoPath\Designer\2108bf

Figure 9-1

Try It Out Creating the Default View

To get started with managing multiple views, you need to start with one view. To give you a feel for cre-
ating more than one view, you will specify the data as you would in real life.

136

1.
2.

P

© 0N O

Open InfoPath.
Click on Design a Form. The Design a Form task pane will appear.

Click on New from Data Connection.... The Data Connection Wizard will start, with the first
page asking if you would like to use a database or Web service.

Click Next, specifying to use a database by default. The next page displays only one button,
Select Database.

Click the Select Database button. The Select Data Source dialog box will open.

Locate and select the desired data source —in this case Chapter 9.mdb, as shown in Figure 9-2.
Click Open. The Select Table dialog box will appear.

Select tblCustomers, and then click OK. You will be taken back to the Data Connection Wizard.

Choose Add Table, and use the Select Table dialog box to choose tblOrders. The Data
Connection Wizard will now look as it does in Figure 9-3.

Managing Views

Select Data Source B4
Look in: |E;|Cha|:lter9 M@'D|Q)<E“D'Tools -

My Recent
Documents

=

Desktop

My Documents

W

My Computer

[File name: w New Source 0
n; | Si - pen
My Network | [] [
Places Files of type: |AII Data Sources {*.odc; *.mdb; *.mde| Vl

|
Figure 9-2

Data Connection Wizard

Database: C:\Books\InfoPath\Samples\Chapter 9\Chapter 9.mdb
If you want to change the database, dick Change Database. =

‘Your data source can indude one or more tables or gueries from the selected database.

Data source structure:
= [7 thiCustomers
..... @ﬂ)lOrders
Edit 50L...
[show table columns

< Back][Next =][Cancel

Figure 9-3

10. Click Next. The final page of the Data Connection Wizard is displayed.

11. Click Finish. The initial InfoPath form is created with the query and data areas on the default
view of the form.

137

Chapter 9

12. Dragand drop the CustomerID field from the queryFields tree in the Data Source task pane
into the area below the button labeled Run Query.

13. Dragand drop the d:tblCustomers group from the dataFields tree in the Data Source task pane
into the area below the button labeled New Record. The right-click list (list on the right) will
appear displaying the section choices.

14. Choose Repeating Section with Controls from the list displayed. The fields from both the
tblCustomers and tblOrders tables are displayed on the form.

15. Click the border of the section for the tblOrder fields, as shown in Figure 9-4.

| (Design) T 1 - Microsoft Office InfoPath 2003 [=JES

i File Edit View |nsert Format Tools Table Help pea forhelp =

i) 5 bl |2 Preview Form | (3§ (3 % | # Sa @ F 9 | | s Design Tasks. @ 2

§ A4 verdana o0z B L UJS= ==t oo A -

i [%] Draw Table [Noborder - | | &~ | Ingert- :;E;aﬁl}a

Click to add form content ' 2] ! Data Source v x
MNew Record 8 Layout
[} ¥ Controls
3 Data Source
Customer ID: 1 Views
Company Name: DaEE e
Contact Name:
Contact Title: = & myFids
Address: L [(L queryFields
. = [datzFelds
C|t\.r.. =57 d:tbiCustomers
Region: (f :CustomerID
Postal Code: (' :CompanyName
8 :Contactiame
Country: (& ContactTitle
Phona: £f :Address
. [= Eel
;a: if ::ett:iun
otes: o (= :PostalCode
Customer ID: : (P Fax
. (& :Motes
Employee ID: 4.7 tiorders ~
Order Date: =) Jt; |
Required Date: i
Shipped Date: @
Ship Via: [5how detais
a Freight: ﬂ
Ship Name:
Ship Address: @) Help wiith the Data Source
Ship City: |
Figure 9-4
16. Press Delete. The tblOrder fields will disappear.
15. Delete the Notes label and field.
17.

in Figure 9-5.

138

Add the title Customer Information to the top of the form. You form will now look like the one

Managing Views

P ~
2| (Design) Chapter 9 - Microsoft Office InfoPath 2003 =JOEd
File Edit View Insert Format Tools Table Help Type a question for hel <
i) 5 | 3 PreviewForm | 4 | 4 @ A9 | 2, (1 3 | % Design Tasks... | @ o
: 44 verdana -0 .| B I g|[§|5 o v Al
i A Draw Table "4 Mo border - |2 -] 23 - | Insert~ -

: Data Source v x
H .) i
‘Customer Information QIIry
- (g Layout
(Click to add form content g ;o;ds
. ”_3 Data Sowrce
: Data source:
| Customer ID:
C . = [myFields)
ompany Name & [queryFiekds
| Contact Name: B [Bf dataFields
| Contact Title: =] d_.'?mlcust:unefs
| R Z8 :CustomeriD
A.ddress. (2% :CompanyName
| City: £8 :Contactiame
Region: (5 :ContactTitle |
(8 :address =
| Postal Code: 8 ity
Country: (=8 :region
Phone: (2R :PostalCode
! (28 :Country
| Fax: (2R :Phone
= (50 :Fax
28 :Notes
L wiorders B
\Customer ID: [lsnow detals
(i) Help with the Data Source
Figure 9-5

You can spruce up your form as you see fit. In Figure 9-5 extra spaces have been removed.

The default view has now been created. The next two views will be created in the section titled
“Creating Multiple Views.”

Working with View Properties

Another great feature of InfoPath is the ability to set properties at the view level. This means that you
can give users visual clues as to which view they are working on by setting the views up with different
properties such as background color and size, and even adding a background picture if desired.

139

Chapter 9

Reviewing the Views Task Pane

Before discussing the property sheet itself, take a look at the Views task pane and what the options are
for working with views. You can see the views task pane in Figure 9-6.

The first thing you will notice is the list of views. This list displays all the available views, including
print views. You will see this list grow as the chapter goes on. Below the list is the View Properties
button. This button opens the property sheet for the currently highlighted view. You can also open the
property sheet by double-clicking the view.

E\ﬁews - o
8| a

H Layout

}i’” Controls

:J_j Data Source

:11 Views

Select a view:

View 1 (default)

View Properties...

Actions
Add a New View...
Add Print View for Word. ..
Create Print Version for This View...

@ Help with Views

Figure 9-6

In the Actions tasks, you can see the following choices:

QO Add a New View: Creates a new view in the current form you are in. When clicked, a blank
view will be created, based on the main data connection. You can also create views based on
secondary data sources.

Q Add Print View for Word: This task takes the data from the InfoPath form view and allows
the user to specify an XML transformation file (XSLT) to create the file for printing use
Microsoft Word.

Q Create Print Version for This View: With this option you can create a view that can be format-
ted for printing. This view can combine information from multiple tasks and display it in a sin-
gle view, which may be more convenient when printing.

The best way to open a view is to click the Views task in the Design Tasks task pane. In the Views task
pane you can click the View Properties buttons, located below the list of views.

140

Managing Views

Getting to the View Properties

Properties for views are broken up into four categories, which you can see in the following series of

figures:

Q

General properties: This tab, displayed in Figure 9-7, contains three categories of settings. The
first is View settings, which is where you will specify the name of the view. When there is more
than one view, you can set when you want a particular view to be the default view and whether
or not you want to have the view displayed on the View menu. For example, you may not want
a view to be displayed on the View menu if you are switching to that view by using a button or
after submission instead.

View Properties

General | Text Settings | Print Settings | Page Setup
View settings

View name: View 1

Background

Background color: ™|

[Juse a background picture

Layout settings
[JUse a custom layout width for this form

[OK l [Cancel] [Help

Figure 9-7

Within the General tab there are also Background properties, including color and a picture if
desired. Finally, Layout settings enables you to specify a custom width for the form.

Text Settings: This tab enables you to set the formatting properties for the various types of
controls you have on the current view. By setting the properties at this level, you make all the
controls of that type consistent, but different from other views if desired. Note that not all con-
trol types use all the properties. You can see the Text Settings for the current view in Figure 9-8.

Print Settings: Using this tab, you can set various properties for how you want the view to
print. Categories include using a specific view to print with, Orientation as in Portrait or
Landscape, Headers and Footers, Number of copies, and number of pages to print. You can see
this page in Figure 9-9.

141

Chapter 9

142

View Properties

General | Text Settings | Print Settings | Page Setup

Set formatting options for controls in the current view.
Apply settings to:
Text Box Font:
Rich Text Box verdana w
Date Picker [—]
Drop-Down List Box Font size: Font golor:
List Box
Bulleted List 10 M
MNumbered List
Plain List Clgod
Expression Box [italic
[Junderline
| Ok | [Cancel] [Help
Figure 9-8

View Properties

Designate print view

General | Text Settings | Print Settings | Page Setup

Select an existing view to use when printing this view:

‘You can specify custom settings for the current view that
will be applied when a user prints this form.

Orientation

View 1 (default) [v]

(%) Portrait () Landscape

Headers and footers

[Header...] [Footer...]

Copies
Mumber of copies: |1 [¥]Collate
Print Range:
®al
(O'Page(s) From To
| oK | [Cancel] [Help
Figure 9-9

Managing Views

Q Page Setup: The last tab contains settings for which printer to use, the type of paper, and the
margins for the page. This tab can be seen in Figure 9-10.

View Properties
General | Text Settings || Print Settings | Page Setup
Printer
Name: | (default) [w]
Paper
Sige: | (default) [w]
Source: | (default) Ed
Margins (cm)
Top: 1.91 &3 Left: |1.91 &3
Bottom: |1.91 2 Right: |1.91 =
| oK. | [Cancel
Figure 9-10

Try It Out Changing the Default View’s Properties

For the purposes of this chapter, you will not be changing too many properties. In fact, using the form
you created in the last Try It Out, you will be simply changing the name of the view so that you can dis-
tinguish it from the other views you are creating in the next Try It Out.

1. Click the Views task in the Design Tasks task pane.

2. Click the View properties button, or double-click the only view in the Views list: View 1. The
property sheet for the view will open.

3. Change the name of the view to Customer Information, as displayed here in Figure 9-11.

4. Click OK. The property sheet closes, and the new name is reflected in the Views list.

Because the purpose of this chapter is to see how to use multiple views, it’s time to get busy.

143

Chapter 9

View Properties

General Text Settings || Print Settings || Page Setup

\iew settings

View name: Customer Infnrmah'on|
Background

Background color: v

[Juse a background picture

Layout settings
[use a custom layout width for this form

[OK] [Cancel] [Help

Figure 9-11

Creating Multiple Views

Creating multiple views is actually quite easy and can greatly enhance the usability of the InfoPath
forms. To accomplish creating a new view, press the Add a New View... button. This will create a blank
view that you can fill in. Since you will be using the same data source you don’t have to worry about
that step. Once the view is created you can then modify the view properties for display in the menu and
customize as needed.

Try It Out

chapter:

Adding the Notes and Orders Views

It’s time now to create a couple of more views for your form. You will be using the Notes field for one
view and the tblOrders table for the other. Using the same form you have been working on in this

1. Click the Views task in the Design Tasks task pane.

2. Click the Add a New View... link. The Add View dialog box will be displayed.

144

Managing Views

3. Type Notes in the New view name text box, as shown in Figure 9-12.
Add View
New view name: | Noteg
oK l ’ Cancel l
Figure 9-12
4. Click OK. A blank view will be created and displayed.
5. Click the Data Source task in the Design Tasks task pane.
6. Dragand drop the Notes field from the tblCustomers table in the dataFields branch of the data
source. A repeating section will be created with Notes field included.
7. Arrange the Notes label and field on the view as shown in Figure 9-13.
[(Design) Chapter 8 - Microsoft Office InfoPath 2003 BEX]
: File Edit View Insert Format Tools Table Help Type a question for hep =
i) 05 [| & PreviewForm | (3 %) 4 o % F| 9 | @ [[l i Design Tasks..| @ &
: A4 verdana 10 v B [H|E‘§§§:§'HE'E'§§EW'A':
: [Draw Table 4 No border v | | ~| Z2 ~| Insert~ T4 5 24 |
Notes: : Data Source w X
©| 8| a
m Layout
"S:_ Controls
’1 A Data Source
L::] Views
Data source:
5 |_? iFax _“|
_.ﬁ I’hIOrriPrq bl |
< | I
[show details
(g Help with the Data Source
<] 1L | [)]
Figure 9-13

145

Chapter 9

8. Click the Views task in the Data Source task pane.
9. Click the Add a New View link once again. The Add View dialog box appears.
10. Type Orders for the new view name, and click OK. A new blank view will be displayed.
yp play!
11. Click the Data Source task.
12. Dragand drop the tblOrders table onto the view. Then a menu with types of sections will
appear on the right.
13. Choose Repeating Section with Controls. The new view is then created as shown in Figure 9-14.
P g g
(21 (Design) Chapter 9 - Microsoft Office InfoPath 2003 BEX]
: File Edit View Insert Format Tools Table Help Type a question for help =
:) 5 [|2y PreviewForm [(3, ¥ | & 53 (4 F |9 [] || s* Design Tasks... | v
: A4 verdana v 10 vlﬂfﬂl@%%%tgvli v—vﬂii?“}v&va
: [Draw Table [No border - | <|2 ~| &« | Insert~ 4 ';ﬁl =
b = [Boders 18] : Data Source v x

Order 1D:
Customer ID:

LEE Layout
Employee 1D: 9% controls
Order Date: gl 3 Data Source

Required Date: (3 Views
Shipped Date: Data source:
Ship Via:
8 : . o (8 :Country ~
Freight:
a (8 :Phone
Ship Name: =8 Fax
Ship Address: (8 otes |
thiOrders =
Ship City: i ']-v-
Ship Region: < | W [>
Ship Postal Code: [l show details
Ship Country:
Da (=} o
& Help with the Data Source
Figure 9-14

146

Managing Views

_ Switching between Multiple Views

The new views have now been created. It’s time now to test the new views.
1. Click Preview Form. The InfoPath form opens.
2. Type in BOLID for the Customer ID field under the Run Query button.
3. Click Run Query. The customer information is displayed.

4. Click the View menu, you will see the three views displayed, as shown in Figure 9-15.

=2 Preview2 - Microsoft Office InfoPath 2003 ME=)
i File Edit Miew|lnsert Format Tools Table Help Type a question for help -
: 31 submit |[v| Customer Information Bl daan oo e a8

S ===l i o T g i/ StatinkEntry |2~
Orders =l . e Z "’Y,;] 4 E

]

Custon 2 startink Entry
Task Pane Ctri+F1

Toolbars »

| New Record

Customer 1D: BOLID

Company Name: Boélido Comida
Contact Name: Martin Somme
Contact Title: Owner

Address: C/ Araquil, 67

City: Madrid |

Region:

Postal Code: 28023
Country: Spain
Phone: (91) 555 22 8;
Fax: (91) 55591 9

& Insert item

Customer ID:

BOLID

<]

4 Form template's location: C:\Documents and Settings\FSBarker\Local Settings\Application Data\Microsoft\InfoPath\Designer\e7ca3c
Figure 9-15

147

Chapter 9

5. Select View = Notes. The Notes view becomes visible, as shown in Figure 9-16. You may mod-
ify the text of the note and click the Submit button.

(21 Preview2 - Microsoft Office InfoPath 2003 BEX)
: File Edit View Insert Format Tools Table Help Type a question for help =
i 91 Submit| - | ¥ Close Preview | 4 (3 57| = A] MEqe- o5
| - Bz U= == i . i=E= ,_-,v%i/StaﬁlnkEn&yl]Zle El
Notes:

These are the notes for BOLID

B Insert item

+ Form template’s location: C:\Documents and Settings\FSBarker\Local Settings\Application Data\Microsoft\InfoPath\Designer\e7ca3c

Figure 9-16

6. Select View & Orders. The Orders view is now displayed, as shown in Figure 9-17.
It is great to be able to switch between views without any work using the built-in menus. However, it is

nice to give users a custom task pane that displays the views that are available. The next chapter covers
just this.

148

Managing Views

] Preview2 - Microsoft Office InfoPath 2003 ek
: File Edit View Insert Format Tools Table Help Type a question for hep =
i 5] Submit| - . | ¥ Close Preview | 4 (3 57| P A s 8 oF

;4] 0 B LulES sl Leatinkenty £ 02 B

Order ID: [10,326

Customer I1D: BOLID
Employee 1D: 4

Order Date: 10/10/1996E)
Required Date: 11/7/1996 &
Shipped Date: 10/14/199%6@
ship via: 2

Freight: 77.92

Ship Name: Bolido Comida
Ship Address: C/ Araquil, 67
Ship City: Madrid

Ship Region:

Ship Postal Code: 28023
ship Country: Spain

Order ID: 10,801
Customer ID: BOLID

+ Form template’s location: C:\Documents and Settings\FSBarker\Local Settings\Application Data\Microsoft\InfoPath\Designer\e7ca3c

Figure 9-17

Custom Task Panes

Besides switching views, you can create custom task panes for various purposes such as displaying con-
text-sensitive help, as discussed in Chapter 14, “Real-World Tasks and Coding Examples.” A custom task
pane consists of a Hypertext Markup Language (HTML) Web page using links or code that switches the

current view. You also can include button images, as shown in Figure 9-18.

Once you have created the HTML page that contains the necessary code, you can set form options to tell
InfoPath which files (resources) make up the Web page, and that you want the InfoPath to include a cus-

tom task pane.

The logical place to start in using a custom task pane is to outline what goes into creating the HTML
Web page.

149

Chapter 9

|#] Preview4 - Microsoft Office InfoPath 2003 E@
: File Edit View Insert Format Tools Table Help Type a question for help =

i 9] Submit | Ll | 2F Close Preview | 4 (3 %7 7| | U8 0B

it o B LUIES == ic o imim - A - B/ startinkEnty [£]- 2 Bl
MNotes: Ostom Task Pane v X

iy

T~

< | | 2]
+ Form template’s location: C:\Documents and Settings\FSBarker\Local Settings\Appication Data\Microsoft\InfoPath\Designer\6fd3dc
Figure 9-18

HTML Web Page Used for Custom Task Pane

While the HTML Web page created for the custom task pane is pretty straightforward as far as Web
pages go, it does involve some Java Script coding and using the InfoPath object model. Normally, this
would be covered in a later chapter such as Chapter 12, “Getting Starting Using Script,” which will
cover the topics discussed here in greater detail. However, because the code is minimal and the topic so
useful, it is logical to include this custom task pane in this chapter.

In the HTML Web page you will have the standard tags for <html>, <head>, and <body>. You will also
use the images in the Web page as well. The biggest change is the use of <script> in the code, and a
function that is created. The function is called Switchview () and is used to switch views.

<script>
function SwitchView(view)
{
gobjXDocument = window.external .Window.XDocument;
gobjXDocument .View.SwitchView (view) ;
}

</script>

This code uses the XDocument object, which is the primary InfoPath object for programming the
InfoPath object model. Using the syntax:

window.external .Window.XDocument

150

Managing Views

the code specifies the XDocument object of the window that the Web page is residing in, which will be
the InfoPath task pane area. Within the XDocument object is the View object. When the following line of
code is called:

gobjXDocument .View.SwitchView(view) ;

the SwitchView method of that object is called, being passed the name of the view to switch to. An exam-
ple of assigning the call to the custom function within the HTML is:

<p><img border="0" src="Notes.png" width="123" height="38"
onclick="SwitchView ('Notes')"></p>

You also will have to create the image files, in this case Notes.png, to use as the buttons.

Try It Out Creating the Task Pane in HTML

You can find all the objects created in this and the next Try It Out in the Chapter 9 folder for this book
on the Wrox Web site. As mentioned, the image files will have to be created using a image editor.

For the purposes of this Try It Out, three image files: Customer.png, Notes.png, and Orders.png,
were created.

1. Open NotePad. exe.
2. Type in the following text:
<html>
<head>

<title>Custom Task Pane</title>
<script>
function SwitchView (view)
{
gobjXDocument = window.external.Window.XDocument ;
gobjXDocument .View.SwitchView(view) ;
}
</script>
</head>
<body>
<p>Custom Task Pane</p>
<p><img border="0" src="Customer.png" width="123" height="38"
onclick="SwitchView ('Customer Information')"></p>
<p><img border="0" src="Notes.png" width="123" height="38"
onclick="SwitchView('Notes')"></p>
<p><img border="0" src="Orders.png" width="123" height="38"
onclick="SwitchView('Orders') "></p>
</body>
</html>

151

Chapter 9

3. Save the text as index.htmin the Chapter 9 folder on the Wrox Web site.

4. Copy the image files into the Chapter 9 folder.

That'’s all there is to it. Now you are ready to specify the task pane information in InfoPath.

InfoPath Custom Task Pane Properties

InfoPath lets you easily specify which custom task pane files to use on the Form Options dialog box.
Using the dialog you will specify the following properties:

Q Enable custom task pane: When checked the next custom task pane properties and options are
enabled.
O Task pane name: This is used to specify the name for the task pane.

Q Task pane location: This property points to the main task pane HTML file you have created.
The file will need to added using the Resource File dialog box.

0 Resource Files button: This opens the Resource File dialog box, which enables developers to

specify the files used for the custom task pane, including the HTML and image files.

When you specify the resource files, when you publish the file, then the files are included in the .xsn
created. You can export the files from the form using the Resource Files dialog box.

Try It Out Specify Task Pane Files in Your InfoPath Form
Using the InfoPath form you have created throughout the chapter and the HTML file and images men-
tioned in the last Try It Out.
1. Open InfoPath.
Open the form in design view.
Choose Tools = Form Options from the menu. The Form Options dialog box will open.
Click on the Advanced tab.
Type Custom Task Pane in the Task pane name field, as shown in Figure 9-19.
Click the Resource Files... button. The Resource Files dialog box opens.

Click the Add... button. The Add File dialog box opens.

No ok

152

Managing Views

Form Options
General Form Library Columns Digital Signatures
Advanced Open and Save Security

Customn task pane

Select an HTML file whose contents will be displayed to users in a custom task
pane. Enter the name and task pane location below, or use the Resource Files
to add form files for this form.

[W]Enable custom task pane
Task pane name: Customn Task Pane

Task pane location: v

Resource Files...

Form template version
Version number: 1.0.0.4

On version upgrade: | Automatically upgrade existing foZ v:

Programming language
The programming language can only be set when no code exists in the form.
Form code language: |JScript v

Service pack

This form uses enhanced features that require its users to have

Microsoft Office 2003 Service Pack 1 or later installed. You can

export a copy of this form for users that do not have the service
pack installed, but the copy will lose all the enhanced Service

Pack features.

OK ll Cancel]

Figure 9-19

8. Locate and select the four files that make up the custom task pane including: index.htm,
Customer.png, Notes.png, and Orders . png.

When the last file is selected, the Resource Files dialog box will look as it does in Figure 9-20.
9. Click OK. The dialog box closes.

10. Select index.htm for the Task pane location drop-down dialog box, as shown in Figure 9-21.

153

Chapter 9

154

Resource Files

Resource files in form:

Customer.png
indesx.htm
Motes.png
Orders.png

Figure 9-20

Form Options

General Form Library Columns

Digital Signatures
Advanced

Open and Save Security

Custom task pane
Select an HTML file whose contents will be displayed to users in a custom task
pane. Enter the name and task pane location below, or use the Resource Files
to add form files for this form.

[¥] Enable custom task pane

Task pane name: Custom Task Pane

Task pane location: index.htm

Resource Files...

Form template version

Version number: 1.0.0.4

On version upgrade: | Automatically upgrade existing foZ v:

Programming language
The programming language can only be set when no code exists in the form.
Form code language: |J5cript v

Service pack

This form uses enhanced features that require its users to have
Microsoft Office 2003 Service Pack 1 or later installed. You can
export a copy of this form for users that do not have the service

pack installed, but the copy will lose all the enhanced Service
Pack features.

Figure 9-21

Managing Views

11. Click OK to accept and close the Form Options dialog box.

12. Click the Preview Form button to display the new form. The form is now displayed with the
custom task pane on the right side, as shown in Figure 9-22.

13. Click the various choices in the task pane to test the new form.

Preview6 - Microsoft Office InfoPath 2003 H[ilﬂ

i File Edit View Insert Format Tools Table Help Type a question for help «

: @ submit| -7 7 [2 closePreview | (4 (A V| 4 2% S99 a4 ;:|Q§'E

| A B zu|===="'. :-.:v;_E=__E|;'_\'?/StartlnkEntryv/
*| | custom Task Pane v X

Customer Information

Custom Task Pane

N—
“———
e——

MNew Record

Customer 1D: BOLID

Company Name: Bolido Comida
Contact Name: Martin Somme
Contact Title: Owner

Address: C/ Araquil, 67

City: Madrid

Region:

Postal Code: 28023

Country: Spain

Phone: (91) 555 22 8!

Fax: (91) 55591 9

2 Insert item

Customer ID:

BOLID

fiv]

4 Form template's location: C:\Documents and Settings\FSBarker\Local Settings\Application Data\Microsoft\InfoPath\Designer\6fd3dc
Figure 9-22

Print Views

The last topic to cover with views is the use of print views, which enable developers to organize the data

that users are modifying in a way that makes it easier to handle, and also print additional information
if desired.

155

Chapter 9

Print views can either be displayed or not on the View menu. Creating print views is as easy as creating
any other view. After selecting the view to create the print view for, you will design the new view just as
you would other views, by dragging and dropping objects on to the form. Then, to use the new print
view, you will choose File = Print just as you would for other applications, but InfoPath will use the
print view for the information printed.

Try It Out Creating Print Views

Using the InfoPath form created during this chapter:

156

1.
2.
3.

o

Click the Views task.
Click the Customer Information view in the Views task pane.

Click Create Print View for This View... link. The Create Print View dialog box will appear,
displaying the suggested name in the New view field, as shown in Figure 9-23.

Create Print Version

New view name: Print Version Customer Information

oK ll Cancel l

Figure 9-23

Click OK to accept the default name. A blank view will be displayed.
Click Data Source.

Design the print view as you desire, showing the data in the form you want. In Figure 9-24, you
can see that the tblCustomers fields are displayed in a section with controls, and the tblOrders
field in a repeating table format.

Select Views Properties... from the Views task pane. The View Properties dialog box opens.

Managing Views

[(Design) Chapter 9 - Microsoft Office InfoPath 2003 mEx|
: File Edit View Insert Format Tools Table Help Type a question for help -
B (5 | A PreviewForm | 4 (3 V| 4 @8 F|9 o | @ [(3] W;Design Tasks..| © &

44 verdana v c[BlzU|E==mizi=-ic W ACE

: | Draw Table [{ No border z[ret

£ ~] 22 ~ | Ingert> 1] i ,,i
Customer Report m ,n —

Customer ID:

B

0 Layout
Company Name: 2 Controls
Contact Name: 4 Data Source
Contact Title:) Views
Address: Select a view:
City: Customer Information (default)
Region: Notes
Postal Code: =| | orders
Country: Print Version Customer Information
Phone:
Fax:
Notes:

Order Customer Employee Order Required Shipped Ship Freight Ship S -
iD (v D Date Date Date Via Name A| | Actions

Add a New View...

&) & = Add Print View for Word...
~T o Create Print Version for This View...
. [v] i) Help with Views
< | i >
Figure 9-24

8. Unselect the check box next to the label Show on the View menu when filling out the form. The
dialog box then looks as it does here in Figure 9-25.

This will cause the view name to not show up on the View menu with the other view choices.
Of course, if you are supplying a custom task pane, then you also can leave the choice off the
task pane as desired.

157

Chapter 9

10.
11.
12.
13.

158

View Properties

General | Text Settings | Print Settings | Page Setup
View settings
View name: Print Version Customer Information

[set as default view

Dghow on the View menu when filling out the form
Background

Background color: >

[Juse a background picture

Layout settings
[Juse a custom layout width for this form

oK ll Cancel]l Help

Figure 9-25

Click OK.

Click Preview Form. The form is displayed.

Type BOLID in the Customer ID field under the Run Query button.

Click the Run Query button. The customer information for BOLID is displayed.

Choose File = Print Preview..... The print preview for InfoPath is displayed using the new view,
as shown in Figure 9-26.

Managing Views

r@ (Print Preview) Preview8 - Microsoft Office InfoPath 2003
=1 Page: 1 - | G G 100% vlg_losaE

-

E) %]

Customer Report

Customer ID: BOLID

Company Name: Balido Comidas ...
Contact Name: Martin Sommer E
Contact Title: Owner
Address: C/ Araquil, 67
City: Madrid

Region:

Postal Code: 28023
Country: $pain

Phone: (91) 55522 82
Fax: (91) 55591 99
Notes: These are the n...

Order |Customer ID [Employee ID |Order |Required Shipped Ship |Freight |Sh
ID i

Date Date Date Via Na

10,326 |BOLID 4 10/1(11/7/199¢ 10/14/1¢ 2 77.92 Ba
10,801 |BOLID 4 12/2¢ 1/26/199¢ 12/31/1¢ 2 97.09
10,970 |BOLID 9 3/24 4/7/1998 4/24/19¢ 1 16.16 Bo [l
<] 1n

Figure 9-26

Summary

InfoPath lets you manage how you have users input information into your InfoPath forms by giving you
the ability to organize your data using views. This makes entering data into the forms simpler from the

user’s standpoint and also gives you, the developer, more control. Creating multiple views is as simple
as creating a single view using the Views task pane.

159

Chapter 9

Using HTML you can create custom task panes, giving your form a more professional and custom look.
Print views enable you to print more information than is displayed on the current view, and can be set to
not show up in the View menu.

Exercises

1. How do you create more than one view?
2. Whatdo you have to do to get the view to show up on the View menu?

3. Where are the properties for specifying a custom task pane?

160

10

Publishing InfoPath Forms

With many other programs such as Access or development languages such as Visual Basic, when
you create applications with forms you need to distribute the applications onto either a shared net-
work or using a setup program. When Web applications are created and are ready for production,
the HTML files are published to a Web server for user access. InfoPath enables you to use some of
the ways just mentioned to distribute forms, but also introduces new ways as well.

Thus far in the book you have primarily seen how to design and preview forms. This is great, but
if you don’t know how to publish them for other people’s use, or for your own use beyond your
computer, they don’t do much good. This chapter discusses how to publish your form. In this
chapter you will:

O See the various ways to publish InfoPath forms.

QO Publish an InfoPath form to a shared location on the local network.

O E-mail a form to a user for them to fill out.

QO Publish an InfoPath form to a Web Server.

a

Merge data from multiple forms.

What It Means to Publish
an InfoPath Form

As mentioned previously InfoPath forms are made up of multiple XML-type files, creating the
form templates you design. When you publish a form, you are going to place the template in a
shared location that can be:

QO In ashared local area network folder

Q On a Web server

Chapter 10

Q In a SharePoint library: Windows SharePoint Services is software created by Microsoft
to enable companies to create collaborative Web sites. These Web sites include areas for: docu-
ment libraries, events, various lists, tasks, and much more. The additional areas and publishing
to SharePoint are discussed in detail in Chapter 17, “Working with InfoPath and Windows
SharePoint Services.”

Differentiating Forms to Fill from Their Templates

When the user fills out a form based off a template, that form is then saved separately. But it is still based
on the original form template. One of the really cool things about this is that when the template is modi-
fied, the forms based on that template are updated as well. This makes it extremely easy to modify and
update published forms.

Ways to Distribute InfoPath Forms

Once the template has been placed where it is accessible to users, there are different ways that users can
fill out the forms. The ways to fill out InfoPath forms depend on where you published the forms,
because a form must have access to the template it was based on. So, you can have users access the form:

O Onashared network drive

Q Using a Web server

Q Ina SharePoint library

Q By e-mailing users forms to fill out

All the methods just mentioned require that the user have access to the form template and a copy of
Microsoft InfoPath installed on their local system.

Finally, you can also distribute a filled out form either in e-mail, or as a static Web page.

Publishing to a File Server

This method of publishing forms is probably the most straightforward. All you need is the UNC
(Universal Naming Convention) path of the folder you want to publish the form to and to be connected
to that folder. Utilizing the UNC path is discussed in the following Try It Out.

Besides running the Publishing Wizard as outlined in the next Try It Out, you need to make sure

that users have access and write permissions for the folder in which you are going to publish the
InfoPath form.

162

Publishing InfoPath Forms

TryltOut | Publishing a Form on a File Server

To illustrate publishing a form on a file server, you will use a sample form provided by InfoPath:

1.
2.

o

Open InfoPath. The Fill Out a Form dialog box opens.

Click Design a Form task. Microsoft InfoPath opens with the Design a Form task pane
displayed.

Click Customize a Sample.... The Customize a Sample dialog box is opened, listing all the
sample forms.

Highlight the Absence Request form, and click OK. The form opens in Design mode.

Choose File &> Publish.... The Publishing Wizard begins, displaying the introduction page
shown in Figure 10-1.

Publishing Wizard

Welcome to the Publishing Wizard!

This wizard helps you to:
- Distribute forms to your users,
- Motify your users when new forms are available.

Click Next to continue

[Mext = |[Cancel

Figure 10-1

Click Next. The next page gives the options for publishing the form: to a shared folder on the
local area network, network, SharePoint form library, or Web server, as shown in Figure 10-2.
For this first Try It Out you will use the first choice.

Click Next. This page is where you will specify the folder on the network share and name of
the form.

Click Browse to locate the folder.

Click OK. You will see the file path and name of the form, as shown in Figure 10-3.

163

Chapter 10

Publishing Wizard
Where do you want to publish this form?
() To & SharePaint form library
() To & Web server
< Back “ Next =] [Cancel
Figure 10-2
Publishing Wizard

Enter the path and file name where you want to publish your form, and then
enter a name to describe your form. The spedified path should be accessible to
all users of this form.

Farm path and file name:

\\Swrbarkley\DRoot\InfoPath Forms \AbsenceRequest. xsn

Form name:
AbsenceRequest

< Back “ MNext =][Cancel

Figure 10-3

10. Click Next. The next page displays the file path and name of the form you specified. It is used to
verify the choice made on the last page. It asks you to make sure that others have access to the
form and lets you specify an alternate route to the form, as shown in Figure 10-4.

Note that if there had been problems accessing the form itself an error message would have
been displayed.

11. Click Finish to accept the form as it is. The last page of the Publishing Wizard is displayed, giv-
ing you two options: notify users via e-mail and open the form (to fill) from the new location, as
shown in Figure 10-5.

164

Publishing InfoPath Forms

12.

13.
14.
15.

Publishing Wizard

If the form path and file name you entered in the previous step are accessible
to all users, dick Finish.

If your users require an alternate access path that points to the saved location
(such as a public URL or full network path), enter it below, and then dick Finish.

\\Svrbarkley\DRoot\InfoPath Forms\AbsenceRequest.xsn

If you're not sure, dick Finish to publish your form,

< Back H Finish l[Cancel

Figure 10-4

Publishing Wizard

‘Your form template was successfully published to the following
location:

\\Svrbarkley\DRoot\InfoPath Forms\AbsenceRequest.xsn

Users who have access to this shared location can now open new
forms based on this form template and fil them out.

You can now create e-mail messages with a link to this new form to
notify users of its availability.

Notify Users. ..

[open this form from its published location

Figure 10-5

Click Notify Users.... Outlook, or whatever your e-mail program is, will open and information
will be displayed regarding the newly published form. This will include a hyperlink to the
form, as shown in Figure 10-6.

Close the e-mail.
Click the checkmark next to the label: Open this form from its published location.

Click Close. The form will now open, as shown in Figure 10-7.

165

Chapter 10

166

13 New InfoPath form available: Al Request - Message

! File Edit View Insert Format Tools Table Window Help

iidSend |) - |2 8 |4 ¢ & ¥ (S| Options... - |HTL -

Wro.. |

Wee.. |

Subject: |I‘hw InfoPath form avaiable: AbsenceRequest

A new InfoPath form is available for vou to use at the following location:

Form Name: AbsenceRequest

Location: \\Svrbarklev' DR oot InfoPath Forms'AbsenceRequest.xsn
To use this form, open it from its published location.

Bl

w e e

Figure 10-6

<] Form1 - Micros: ce

S[E]X]

! File Edit View Insert Format Tools Table Help

REHoGRZ sandlasie o s el

Absence Request

Reguest Date: Reguest Time:
10/16/2004 12:19 PM
Employee Manager

Name: Name:

ID Numbar: Telaphone Numbar:
Department: E-mail Addrass:

Telephone Number:

E-mail Address:

Absence Details
Start Date End Date Type Hours

Paid vacation I¥] 0.00

Total hours requested 0.00

Absence Availability

Type a question for help

~

[> b

“J Fom lacation: || ath Farms\/ x3n

Figure 10-7

Publishing InfoPath Forms

Notice that the path in the status bar at the bottom of the form reflects the new form template
location. When you save the form, you will be asked where to save it, because the form is sepa-
rate from the template.

Publishing to a Web Server

The steps for specifying a Web server are very similar to those for publishing an InfoPath form on a file
server. Instead of using a UNC path, you will use a URL (Uniform Resource Locator) to designate where
to publish the form.

Along with knowing the URL you want to publish to, you also want to make sure the users will have
access and write permissions for the folder. You also will want to make sure that the Web server you are
going to be publishing to has Microsoft WebDAV enabled. Microsoft WebDAV is an extension to the
Hypertext Transfer Protocol (HTTP). Microsoft WebDAV allows developers to perform remote authoring
and manages Web content. If the Web server doesn’t have WebDAV enabled, then you will need to use
the shared folder method to publish the InfoPath form.

Try It Out Publishing an InfoPath Form to a Web Server

For the purpose of this Try It Out you will once again use the Absence Request form. Instead of publish-
ing to a shared folder you will be specifying a Web server.

1.

2
3.
4.
5

N o

Open InfoPath.

Click Design a Form. InfoPath opens, and the Design a Form task pane is displayed.
Click Customize a Sample.... The Customize a Sample dialog box opens.

Select Absence Request, and then click OK. The form is now displayed in design mode.

Select File = Publish.... The first page of the Publishing Wizard is displayed. This page is merely
an introductory page.

Click Next. The next page displays the various choices for publishing the form.
Select the option: To a Web server, as shown in Figure 10-8.

Click Next. The next page is where you specify the URL to which to publish the InfoPath form.
In this case http: //www.AppsPlus.com and AbsenceRequest . xsn is the form. You can see
this in Figure 10-9.

Click Next.

At this point, you may be asked to enter a login name and password for the Web server.

As with the last Try It Out, this page verifies the address you specified for the published tem-
plate, as shown in Figure 10-10. If required you could enter an alternate access path. Depending
on the set up for the Web server, you may or may not require login information from the users.

167

Chapter 10

168

Publishing Wizard

Where do you want to publish this form?
() To & shared folder on this computer or on a network

() To & SharePaint form library

®

< Back “ MNext =][Cancel

Figure 10-8

Publishing Wizard

Enter the Web URL and file name where you want to publish your form, and
then enter a name to describe your form, The specified Web server should be
accessible to all users of this form.

Web URL and file name:

http:/jwww.appsplus.com/AbsenceRequest. xsn

Example: http:/fsample. microsoft.com//form. xsn

Form name:
AbsenceRequest

< Back “ MNext =][Cancel

Figure 10-9

Publishing Wizard

If the form path and file name you entered in the previous step are accessible
to all users, dick Finishi.

If your users require an alternate access path that points to the saved location
(such as a public URL or full network path), enter it below, and then dick Finish.

http: /jwww.appsplus.com/AbsenceRequest. xsn

If you're not sure, dick Finish to publish your form.

< Back “ Finish l[Cancel

Figure 10-10

Publishing InfoPath Forms

10. Click Finish. The last page, displaying the final location where the form template has been pub-
lished is displayed, as shown in Figure 10-11. As with publishing to the file server, you can
notify users that a form has been published.

Publishing Wizard

‘Your form template was successfully published to the following
location:

http: /jwww.appsplus. com/AbsenceRequest. xsn

Users who have access to this shared location can now open new
forms based on this form template and fil them out.

‘You can now create e-mail messages with a link to this new form to
notify users of its availability.

Notify Users...

[]Open this form from its published location

Figure 10-11

11. Click the option Open this form from its published location.

12. Click Close. InfoPath will then attempt to open the form from the Web server. You may then
receive the message box displayed in Figure 10-12, which is common when opening files from
the Web. This will depend on the level of Internet security. Also, if the form is digitally signed
you can have this form open without this dialog box. Internet and InfoPath security, including
digitally signing forms, is covered in Chapter 16, “Implementing Security.”

File Download

Do you want to open or save this file?

@ Name: AbsenceRequest.xsn
! Type: Microsoft Office InfoPath Form Template, 17.9 KB
From: www.appsplus.com

[Open] [Save] [Cancel

Always ask before opening this type of file

‘While files from the Intemet can be useful, some files can potentially
harm your computer. f you do not trust the source, do not open or
save this file. WWhat's the risk?

Figure 10-12

13. Click Open. The form is then opened with the template location displayed in the status bar of
the form, as shown in Figure 10-13.

169

Chapter 10

2] Form1 - Microsoft Office InfoPath 2003 =JOEd
File Edit Wiew Insert Format Tools Table Help pe & question for hel -
HE@=R" BENI= RE S A RN i 4 |2 W=4p-NRCY
| 0 B L UIE= s e sE o - A - B2 startink Eniy |[F] 2 5o =B
lr\
Absence Request
Request Date: Request Time: 3
10/16/2004 @ 12:26 PM
Employee Manager
Hama: Hama:
ID Number: Telephone Number:
Department: g-mail Address:
Telaphone Humbar:
E-mail Address:
Absence Details -
I T
® Form template's location: http:/fwwiw.appsplus,com

Figure 10-13

You have now seen how to publish InfoPath template forms on both a file server (on a network) and on
Web servers. You also have opened the form template in both locations for filling out the data. Another
way of enabling users to fill out is using e-mail. You can send a form just for viewing as well.

E-mailing InfoPath Forms

If the e-mail program you are using is Outlook, you can e-mail InfoPath forms for either data input or
viewing by opening forms the following ways:

Q For filling out a form from the location where you published the template, picking File => Send
to Mail Recipient.

Q In Design mode, select Send Form as Attachment....
Both of these methods require that the template form be in a shared location.

Another thing to remember is that depending on what the template form is using as a data source will
determine how much work the user has to do when filling out the form. If the data source (connection)
is a Web service or database such as Access or SQL Server, then the data is put in the data source when
the form is submitted. If you are using an XML document for the data, then the user needs to e-mail the
XML document back to you so that you have access to the data.

While users will be able to see the data already in the form that was sent for them to update and return,

they need to open the XML file attached to the e-mail. They will then choose File => Send to Mail
Recipient after filling in the information in the form.

170

Publishing InfoPath Forms

Ty ltOut | E-mailing an InfoPath Form When Filling

After publishing as shown in the last few Try It Outs and then opening the form for filling in, you want

to send it to someone via e-mail:

1. Choose File & Send to Mail Recipient. An e-mail message will be created, with the form dis-
played in the body of the e-mail. Along with your standard fields of To, CC, and Subject there
is also another field with the label of Introduction. This field lets you introduce the form and
provides instructions about how you want the user to fill out the form and send it back to you.

2. Fill in the Introduction. You can see the form with the introduction field displayed in
Figure 10-14.

(2l Form? - Microsoft Office InfoPath 2003 SO
! File Edit View Insert Format Tools Table Help Type a question forhelp -
HE N u:l.ld Bl s @ sl oo 1Ak R s
HPTY A B 2 n = =i] A Bl satinkEnny | 2o 2l = ﬂ
iASend |l - |/ & 14 ¢ & | ¥ (S [Options... -

Wo... , Scott Barker <FSBarker@a (£omz;
Wee.. |
Sbject: | InfoPath Foen|
Introduction: |Please fill out this form and return it to me.
fe
Request Date: Request Time: =
10/16/2004 5] 12:28 PM
Employee Manager
Name: Name:
ID Number: Telephone Number:
Departmant: E-mail Address:
Telephone Mumber:
E-mall Address:
Absence Details [s

“J Fom location: \\Svrbarkley\DRoot\InfoPath F A X5

Figure 10-14

3. Click Send. The user will then receive the form as shown in Figure 10-15. Notice the Attachment

with the name of forml.xml. As mentioned, while users can read the form in the e-mail body
itself, to fill out the form they need to double-click the Attachment.

171

Chapter 10

(@] Inbox - Microsoft Outlook i; E [«ZJ
i File Edit View Go Tools Actions Help Type a question for help
iNew - |4 3 X | &Reply “diReply to Al -
- Search In~ Inbox Find Now Clear Options~ X
| Favorite Folders o
Drag Your Favorite Folders Here Arranged By: Date Attachments: 2] Form Lol (10 KE)
-
All Mail Folders]
[=) - B Today Please fill out this form and return it to me.
3 Tech Information (=1 F. Scott Barker 12:320M
g Temp InfoPath Farm [
o2 I InfoPath Form - Message (HTML)
3|} File Edit View Insert Format Tools Actions Help o |
Q:, = P y G |03 % | & - @ - AF - 1
| uBeply | $Reply to All| ‘pForward | 4 | 31 ¥ 6553 X A @
(v] Manager
ca From: A F. Scott Barker [FSBarker @appsplus.com] Sent: Sat 10/16/2004 12:30 PM Mame:
oal| ™ F. Scott Barker' :
s@m|| &=
= Subject: InfoPath Form Talephona Humt
Ca|| Attachments: (2] FormLmi (10 kB)
E3 i E-mail Address:
[:d‘ Ul piease fill out this form and return it to me.
= [MY
3 ne
[ELIl Absence Request
Sise .
B3 Td Ragquast Data: Ragquast Tima:
= [g4 10/16/2004 12:28 PM
& Archi
Employee Manager
- Mame: Mame: e —
T i i [vpe
Calen 10 Mumber: Telephone Number: Paid vacation
~ Total hour:
8| Conti| | popartmant: E-mail Addrass: ————
71 Ta
L] | Telephene Number: [__ _M
v

Figure 10-15

4. Double-click the attachment Form1 . xm1. The form opens, and you can fill out the information,

as shown in Figure 10-16.

5. Choose File &> Send to Mail Recipient to e-mail the changes in data back to the person who first

sent the form.

Remember that if the form uses a Web service or a database as the data source, you don’t have to mail

the information back to the sender.

172

Publishing InfoPath Forms

rﬁl Form1.xml - Microsoft Office InfoPath 2003

File Edit View Insert Format Tools Table Help
HEA=N" RENNE NE S AN N A RN
e o B oy ==

WZ4P-NECN |

= -|A - B 7 sartinkEnty ([Z]- 2] - =

Request Date: Reguest Time:

:F’aid vacation

Total hours requested

v

Absence Request

10/16/2004 =] 12:28 PM

Employee Manager

Nama: Name:

John Dog|

ID Number: Telephane Humber:

Department: E-mail Address:

Telaphans Numbsar:

E-mail Addre==:

Absence Details

Start Date End Date Typa |Hnnn

0.00

0.00

Absence Availability

location: |

“J Fom \DRootlinfoPath f

mpilal

Figure 10-16

Exporting to a Web Page

There are times when you want to display the InfoPath form and

data, but don’t want to necessarily

have the information updated. The way that InfoPath enables you to accomplish this is by allowing you
to export your forms. The forms are then exported to a file that includes both the HTML and XML

needed to display the form and data together.

When exporting a form, you have the choice of exporting it to either a Web page or an Excel spreadsheet.
For the purpose of the next Try It Out, you will be exporting it to a Web page.

173

Chapter 10

_ Exporting an InfoPath Form

To export a form such as the Absence Request form used throughout the chapter:

1. Choose File &> Export To &> The Web..., and the Microsoft Excel menu is then displayed as
shown in Figure 10-17.

Form1 - Microsoft Office InfoPath 2003 M=%
File | Edit View Insert Format Tools Table Help Type a question for help »
d:K_I Design a Form... W= A Momk a.'&|ﬂ|@ﬂ
f Close |E':v.:-|_\'E§/8hrtlnkEntry|v/ 2
= Save Ctri+S -
| ExportTo bl[gg Web..
i) Send to Mail Recipient =5 Microsoft Office Excel... 1
¥
Employee Manager
MName: MName:
F. Scott Barker
ID Mumber: Telephone Number:
89988
Department: E-mail Address:

Development

Telephone Number:
555 555 5555

E-mail Address:

Ahcanca Nataile

%J Form template's location: C:\Documents and Settings\FSBarker\My Documents\Templatel.xsn

Figure 10-17

2. Click Web.... The Export to Web dialog box is then displayed. This dialog box enables you to put
the Web page created in the location where you want it to be. You can then name it as you see
fit. For the purposes of this Try It Out, the default name was used, as was the default location.
You can see the Export to Web dialog box in Figure 10-18.

3. Click Export. The file is then created in the location specified. To take a look at the Web page,
you will want to locate the new file, and double-click it. The page will look just as it does in
Figure 10-19.

And that’s all there is to it.

174

Publishing InfoPath Forms

-

Export to Web [&
k.
Save jn: (£} My Documents [TI O | |Q X 4 id - Todls -
\EaAdobe Bl Absence Request_View 1.mht
|k <3 Command and Conguer Generak Data

) Dungeon Sege
2 Dungeon Sege LOA
= S Fax
E—_ﬁ% 5| My Data Sources
Desktop DMy eBooks
My Fle Panet Downloads
ey My Music
L-) My Notebook
My Documents lﬁMY Pictures

My Rece...

)My PSP8 Files
ol)My Received Fies
) B My videos
My Computer | My Virtual Machines
CINew Folder

Cavisual Studio Projects

My Netwo...

File name: |'rampua1_m 1.mht E]
Save as type: |Single File Web Fage (*.mht; *.mhtml) [v] Cancel
|
Figure 10-18

Qo - O HRA G Psecnh oo @ 2 =LK B
&1 cuments and Settings\FSBarker\My Documenits\Templiatel_View L.mht v] B Go Googler

Address

(] mhtmi-file:/IC\Documents and Settings\F SBarkqriMy Documents\ Template1_View 1.mht BEx)
File Edit View Favorites Tools Help j o

lia]
Absence Request
Request Date: Request Tima: T
10/17/2004 10:52 PM
Employee Manager
Name: Name:
F. Scott Barker
1D Number: Telephone Mumber:
89988
Department: E-mail Address:
Development
Telephone Number:
555 555 5555
E-mail Address:
livl
|€] Done 49 My Computer
Figure 10-19

175

Chapter 10

Merging Data from Separate Forms

The last task to talk about is the ability to merge data from multiple forms. This is extremely useful when
you have data that you want to accumulate into one form such as expense sheets, sales figures, and in
the case of this chapter, the aggregated absence requests. To accomplish this, you will need to have pub-
lished the form.

Next, you need to choose Tools &> Form Options... when in design mode. On the General page, you will
see the choice of Enable Form Merging. You need to check that choice, as displayed in Figure 10-20.

Form Options "
Advanced Open and Save Security
General Form Library Columns Digital Signatures
Protection

Select this option to disable the form customization commands on the Tools menu.
This discourages users who are filling out the form from changing the form
template.

Merge forms
Select this option to let users import data from multiple forms into a single form.
Enable form merging

Default values for form

You can specify the default values and structure for a newly created form.

Edit Default Values...

Calculations

Select this option to have InfoPath treat blank values in mathematical operations
as zero.

[] Treat blank values as zero

OK l [Cancel

Figure 10-20

Now you are ready to merge forms.

176

Publishing InfoPath Forms

_ Merging Data from Separate InfoPath Forms

To merge data from separate InfoPath forms, you must first fill out the forms with separate data:

1. Fill out the form first using John Doe as the employee.
2. Fill in the Start Date, End Date, Type of Absence, and finally the number of hours absent.

3. Save your form. In this case, the first form has been saved as JohnDoe .xml1, as shown in
Figure 10-21.

[z JohnDoe.xml - Microsoft Office InfoPath 2003 L ek
: File Edit View Insert Format Tools Table Help Type a question for help =

= @=1" W 1= NS AR REER: - N SR ==l 40 - VY |
i A4 [Verdana i -||B|§IEv;Evl_\vEéiStamnkEnnﬂZ[vJ H

Absence Details
Start Date End Date Type Hours

10/11/20[| 10/18/20E || paid vacation [~ 78.00

Total hours requested 78.00

Absence Availability

Leave Type Previous Hours This |New
Balance Request Balance

Paid vacation 0.00 78.00| (78.00)
Sick leave 0.00 0.00 0.00
Floating holiday 0.00 0.00 0.00
Unpaid leave 0.00 0.00 0.00
Bereavement 0.00 0.00 0.00
Other 0.00 0.00 0.00

%J Form template's location: \\Svrbarkley\DRoot\InfoPath Forms\AbsenceRequest.xsn
Figure 10-21

177

Chapter 10

4. Close the form.

5. Open the second form by double-clicking the template once again.
6. Fill out the form for Jane Doe this time.
7. Fill in the Start Date, End Date, Type of Absence, and finally the number of hours absent.
8. Save your form. In this case the first form has been saved as JaneDoe . xm1, as shown in
Figure 10-22.
(21 JaneDoe xmi - Microsoft Office InfoPath 2003 BEx)
: File Edit View Insert Format Tools Table Help k Typeaquestonforhep -

= d=1" = 1= IS AR aEeniegs I8 Al i IR o2
] 0 B E s sla s/ startinkEntry [Z]- ﬁ

Absence Details
|Starl: Date End Date Type Hours

Sick leave |~|| 100.00

Total hours requested| 100.00

Absence Availability

Leave Type Previous Hours This |New
Balance Request Balance
Paid vacation 0.00 0.00 0.00
Sick leave 0.00 100.00| (100.00
)
Floating holiday 0.00 0.00 0.00
Unpaid leave 0.00 0.00 0.00
Bereavement 0.00 0.00 0.00
Other 0.00 0.00 0.00

%) Form template's location: \|Svrbarkley\DRoot\InfoPath Forms\AbsenceRequest.xsn
Figure 10-22

9. Double-click the form template you are using one more time.
10. Pick File &> Merge Forms.... The Merge Form dialog box will open.

11. Locate the forms you want to merge the data for. In this case, it is JohnDoe . xm1 and
JaneDoe.xml, as shown in Figure 10-23.

12. Click Merge. The data in each of the forms will now be merged into the currently opened form,
as shown in Figure 10-24.

178

Publishing InfoPath Forms

[Merge Forms N =)
Look jn: |a My Documents EI @ E‘|Q X 4 - Tools -

My Netwo... ‘

= bAﬂobe
| = IDl:ommand and Conguer Generak Data {:]

My Rece... ::lDungeon Sege
E'JDungeon Sege LOA

= I1:'.'|Fax
| (& My Data Sources

Desktop IT:IM*V eBooks
LMy Fle Panet Downloads
Al By Music
Lj Dr-w Notebook
My Documents éle Pictures
E'JMV PSP8 Files
r E'.'lh'hf Received Fies
! Em \ideos
My Computer DM*V Virtual Machines
CaNew Folder
aVisual Studio Projects

] Form1.xml

'ﬂtemplate.)(iTI|

File name: | El ¥, Merge
Files of type: | infoPath Forms (= xml Cancel
| ath Forms (*.xml) ncel A
Figure 10-23
[2Z] Form1 - Microsoft Office InfoPath 2003 . LEE!
i File Edit View Insert Format Tools Table Help W Type a question for hep +

SI= NS AR EE N - S A RS ENm R 48 WY |

é-_g_l'-.'x—ltldm

[0 -|.B

Absence Details

LSoiscla B/ sertinkeny [Z) 2 B

StartDate |End Date Type Hours
|Paid vacation [~ 0.00
10/11/20[| 10/18/20E || paid vacation [~ 78.00
& | Sick leave [v]| 100.00
Total hours requested 178.00

Absence Availability

Leave Type Previous Hours This |New
Balance Request Balance
Paid vacation 0.00 78.00| (78.00)
Sick leave 0.00 100.00| (100.00
)
Floating holiday 0.00 0.00 0.00
Unpaid leave 0.00 0.00 0.00
Bereavement 0.00 0.00 0.00
Other 0.00 0.00 0.00 v

%) Form template's location: \\Svrbarkley\DRoot\InfoPath Forms\AbsenceRequest.xsn

Figure 10-24

179

Chapter 10

Summary

InfoPath has a number of ways to publish forms using form templates, which when shared allow
users to open forms on their local machines. You can publish forms using network shared folders or
Web servers, and finally SharePoint form libraries. Once published the form can be opened from users’
machines as well as e-mailed to users for data import. E-mail can be used for data that needs to be
added or for sending data. You can also export InfoPath forms to be a standalone Web page.

In this chapter, you also saw how to combine data from multiple forms by merging them into a
single form.

Exercises

1.
2.

180

What are three locations you can publish your form template to?

What kind of access permissions do users need to have to access folders containing form
templates?

What is the technology used to enable remote authoring of Web sites and content management?

Export an InfoPath form to Excel using the File => Export To... menu option.

11

Working with Code in
Your InfoPath Form

You have been able to create quite a few InfoPath forms throughout the book that have been very
useful with a stitch of code. However, as with other development products, the more you use
InfoPath, the more extensive your needs are likely to become. As you start to look at working with
other products such as BizTalk and adding functionality such as e-mailing users from forms, the
need for more power than you get just by using the InfoPath editor and main form templates
becomes more apparent.

Microsoft InfoPath originally gave you the ability to automate using your choice of VBscript or
JScript and editing with the Microsoft Script Editor. With the Microsoft Office Service Pack 2 the
ability to utilize managed code such as C# or Visual Basic .NET has been added. In either environ-
ment, an object model and events have been provided to let you accomplish just about anything
you need to do.

The next few chapters go into greater detail about what technologies you can use to develop code,
including giving some real-world examples. Because of the choices you have, this chapter gives an
overview of what capabilities are being developed in code. In this chapter you will:

0 Look at the two different development environments.
Q Get started working in each environment.

Q Learn about creating code with .NET.

0 Work with the InfoPath event model.

When Is Code Necessary?

The majority of those working with Microsoft InfoPath forms will be able to use forms as they are
“out of the box.” By using the form designer they can create most forms that will cover their tasks.

Chapter 11

However, as larger needs arise, requiring more extensive development, InfoPath gives you a number of
choices to take care of those needs.

Before getting into detail about what Microsoft provides, it’s good to take a look at some of the situa-
tions that may require coding. Some of those situations may be:

Q Adding Security through the User Interface: There are times when you may want to add addi-
tional security, or create your own. For example, you may want to toggle the visibility of certain
sections of a form based on the user working with the form.

Q Interacting with Other Enterprise-Wide Applications: These situations may involve anything
from sending data on to various databases not connected directly to the form to working with
Microsoft Biztalk, enterprise server application software used for managing information work-
flows. There is more information on using InfoPath forms with BizTalk in Chapter 17, “Working
with InfoPath and Biztalk.”

0O Extending Forms Functionality: This is probably the most used reason for coding behind
InfoPath. It also covers a number of different tasks, including adding additional validation to
forms, e-mailing users, and data manipulation such as working with dates. The last two of these
examples are cover in Chapter 14, “Real-World Tasks and Coding Examples.”

Again, these are just a few possible situations. The possibilities are endless.

Choose Your Flavor of Code: Script
or Managed Code (.NET)

Version 1.0 of Microsoft InfoPath originally shipped with Microsoft Script Editing technologies, giving
the user the choice of using either Microsoft JScript, which is the default scripting language for a form,
or Microsoft Visual Basic Scripting Edition (VBScript). Other Microsoft Office products ship with Visual
Basic for Applications (VBA), except for Outlook, which also uses scripting to program with Outlook
forms.

JScript or VBScript?

The choice of which of the scripting languages you depend on may come down to which one you have
had experience with. If you have used Java in the past, you may want to use Jscript; if you have used
one of the Visual Basic development languages, then VBScript may be the way to go.

If you're just starting out in developing, you will probably want to use the default scripting language,
which is JScript. If you decide to go with VBScript, then you change the default script language by
selecting it on the Advanced tab of the Form Options dialog box.

If you want to change the default programming language behind an InfoPath form, you have to do it
before the form has any code behind it.

182

Working with Code in Your InfoPath Form

Try It Out: | Setting the Default Script Editor

Using a new form:

1. Open InfoPath.

2. Create a new blank form.

3. Choose Tools &> Form Options.
4. Click the Advanced Tab.
5

. Click on the Form code language , under the Programming Language section. The drop-down
list can be seen in Figure 11-1.

Form Options
General Form Library Columns Digital Signatures
Advanced Open and Save Security

Custom task pane
Select an HTML file whose contents will be displayed to users in a custom task
pane. Enter the name and task pane location below, or use the Resource Files to
add form files for this form,

[JEnable custom task pane
Task pane name:

Task pane location:

Form template version
Version number: 1.0.0.1

On version upgrade: | Automatically upgrade existing fDIM Edit

Programming language

The programming language can only be set when no code exists in the form.

Form code language: | J5cript

Service pack: VEScrint
This form uses enhanced features that require its users to have
Microsoft Office 2003 Service Pack 1 or later installed. You can
export @ copy of this form for users that do not have the service Export...
pack installed, but the copy will lose all the enhanced Service Pack
features.

OK] [Cancel] Help

Figure 11-1

6. Select the language of your choice.

7. Click OK.

The language will now be specified, and InfoPath and Microsoft Script Editor will create the necessary
commands in a script file.

183

Chapter 11

Managed Code with .NET

With the introduction of InfoPath 2003 Toolkit for Visual Studio .NET, developers have other choices
when deciding what programming language to use behind their InfoPath forms. Developers can use
managed code in .NET to write code for their forms. .NET managed code languages, such as C# and
Visual Basic .NET, are supported for InfoPath.

Besides simply allowing you to create managed code files behind your InfoPath forms, Microsoft also
provides support in Visual Studio .NET for InfoPath project files, giving you a development platform in
which to create your applications. Assemblies and classes are provided for working with the InfoPath
object model, providing access to methods, properties, and events. Events and the InfoPath object model
are discussed in the remaining sections of this chapter.

While .NET and creating InfoPath applications in .NET will be covered in detail in Chapter 13, “Working
with .NET Managed Code,” the first thing you want to do is download and install the InfoPath 2003
Toolkit for Visual Studio .NET.

If you want to use the toolkit mentioned earlier, then you will already need to have Visual Studio NET
installed with the desired language: C# or Visual Basic .NET.

Try It Out Downloading the InfoPath 2003 Toolkit for Visual Studio .NET

On your development machine that you are using to create your InfoPath forms:

Microsoft may have changed some of the links and Web pages by the time you read this. But you should
be able to find the download using these pages.

1. Using your favorite Internet browser, go to the Microsoft Office Online Web site. As of this writ-
ing the Web address was:

http://office.microsoft.com/en-us/officeupdate/default.aspx

You can see the page shown in Figure 11-2.

2. Click Downloads for Office 2003, located under BROWSE DOWNLOADS in the middle of the
page. The Downloads for Office 2003 page will be opened.

3. Click the Add-Ins link under InfoPath 2003. The Add-Ins for InfoPath 2003 page will be dis-
played, listing the InfoPath 2003 Toolkit for Visual Studio .NET.

4. Click the InfoPath 2003 Toolkit for Visual Studio .NET link. The download page will then be
displayed.

5. Click Download. If you are in Internet Explorer, a security warning is given.

6. Click Run to download and install the toolkit. You will see the message displayed in Figure 11-3.

184

Working with Code in Your InfoPath Form

-

'] Microsoft Office D

loads Home Page - Microsoft |

Explorer

Address :m

File Edit View Favorites Tools Help
Que- @ -MREB G P oo @ - @ - B
Lnks ® Google~ | o

United St

Eﬁﬁoeﬂnline

Assistance

Training

Templates

Clip Art and Madia
Downloads

Office Marketplace
Tools for Your Job
Microsoft Office System
Deployment Center

Things To Do
Chedk for updates
Suggest a download

Get answers from other
Office users

Get our newsletter
Comment on this Web page
Contact Us

Worldwide
Office Worldwide &

Downloads

Office Update

Gn

Microsoft.com Homa

Check for free updates that improve Office's

stablity and security.
(@) Check for Updates

New updates
= Office ¥P

= Excel 2002
= Excel 2000

Popular Office downloads
= Office 2003 Trial

= Global IME (Smplified Chinese)

= Snapshot Viewer for Access

Running Office 20037 Help secure your
computer

Get the latest updates and
Office 2003 Service Padc 1.

security enhancements with

BROWSE DOWNLOADS

= Dowrloads for Office 2003
= Dowrloads for Office 2000

* Protect your PC
» Training: Security in Office

= Downloads for Office ¥P
= Downloads for Office 97/98

Marketplace downloads

What is the Office Marketplace?

PowerPaint backgrounds to add a

Office 2003 Editions.

* Downloadorder a trial

* Reasons to upgrade

+ About Office 2003 Editions
* How to buy

Quick links.

+ See Office demos

+ Small business

+ Find solutions

+ Office quizzes
Calendars and planners
+ Business photos

T S » Determine if security <elated e-mail fitle extra style) ’ colmsts
from Microsoft is genuine * Web site themes and add-ins that get
:;T;mi; » Microsoft security bulleting ., ;uu "|:|liclcd)
= » Security info for developers Free PowerPaint templates from ["]
&l ® inemet

Figure 11-2

e —
ﬂ osoft Office InfoPath 2003 Toolkit for Visual Studio .MET Setup E

Eln Microsoft Office InfoPath 2003 Toolkit for Visual Studio .NET Setup
i) has completed successfully.

Figure 11-3

185

Chapter 11

After downloading and installing the toolkit, you can open Visual Studio .NET. When you select a new

project, additional choices will be displayed, offering C# or Visual Basic .NET projects, as shown in
Figure 11-4.

@ Microsoft Development Environment [design] - Start Page

m[%]
File Edit View Tools Window Help
IR TEer 1 - g seHdD - AEERRF-
Tookox a1 x | Object Browser | Start Pagel <4 I X || Solution Explorer a x
Clipboard Ring

General =

New Project I
Project Types: Templates: EE g
|3 Visual Basic Projects g
(2] visual C# Projects #
=& Microsoft Office InfoPath Projects | foppat Form
(] Visual Basic Projects Template
{3 Wisusl C# Projects

(2] Setup and Deployment Projects
-0 Other Projects
(2] visual Studio Seolutions

B server Bxoio,.. 3% Toobox Create a project using Visual C= that targets a new or existing Microsoft Office InfoPath form template
Output Name: [infoPathProject2
| Location: | C:'\Documents and Settings{FSBarker My Documents j Erowse...

Project will be created at C:\,.. \FSBarker My Documents\isual Studio Projects\infoPathProject2,
shos | o« | can | Hep |
2] Task List | E) Command Window | [E] Output | T3 Index Resuits for date functions | B8 Search Results
4
Figure 11-4

Creating a project using managed code will be covered further in Chapter 13. For now, take a look at
what it means to develop using event-driven programming.

Looking at Event Programming

Regardless of which language you decide to use, scripting or managed code, you need to understand
how event programming works. Most applications created for the Windows platform use event pro-

gramming to enable developers to capture events that occur and create routines to perform tasks based
on those events.

What Is an Event?

In Windows, events occur when a user clicks a button, data is entered in a field, or a key is pressed.
Windows applications also have their own set of events that can be programmed against, so that devel-
opers can control their applications. The object model of an application will include the available events

186

Working with Code in Your InfoPath Form

in a development environment such as InfoPath. Object models will be discussed in the next couple of
chapters, but for now take a look at the available events created for your use in InfoPath forms.

InfoPath Events

As with other development environments, InfoPath has some built-in events that can be utilized to per-
form tasks when triggered. The following table outlines those events.

Event Name

Description of When Event Occurs

OnAfterChange After you have changed the XML document that is bound to a form.

OnAfterImport After data has been import or merged into a form.

OnBeforeChange Before changes are made to the XML document bound to the form.

OnClick When a command button is clicked on a form.

OnContextChange When moving from one element on a form to another. An example is
moving from one field to another.

OnLoad When a form is first loaded.

OnMergeRequest When a merge request is made on a form either made using the UI
or programmatically.

OnSaveRequest When a save request is made on a form using either the Ul or
programmatically.

OnSign When data is signed digitally.

OnSubmitRequest When a submit request is made on a form using either the UI or
programmatically.

OnSwitchView When switching between views on a form.

Onvalidate When validating data on a form.

OnVersionUpgrade When a form is upgraded from one version to a later one at runtime.

The more common events are listed in the Tools & Programming menu, as shown in Figure 11-5.

On Load Event...
On Switch Views Event...
On Context Change Event...
On Sign Event...
@8 Microsoft Script Editor Alt+Shift+F11

Figure 11-5

187

Chapter 11

After you have created events, you can edit the code by selecting one of the events listed, or by selecting
the last choice, Microsoft Script Editor.

Try It Out | Creating Your First Scripted Event

To create your first scripted event you will create a new blank form:

1. OpenInfoPath.
Choose Design a Form.

Click New Blank Form.

ISR

. Choose On Load Event from the Tools & Programming menu. The Microsoft Script Editor
opens with the OnLoad event defined against the XDocument object. This object will be dis-
cussed in greater detail in the next section.

5.

XDocument .UI.Alert ("Instructions could be given here for the form.");

Type the following line in between the curly brackets of the OnLoad event:

The code will then look as it does in Figure 11-6.

-

-
&0 Template1 - Microsoft Script Editor [design) - script.js =]
File Edit View Debug Tools Window Help
o= W N REEN: N RN RN =R =S |
— —
el g g = ik
=P - g = | LT
Do) E - Slen el
Document Cutine E WMI 4 b % | Project Explorer - Templa... # X
j " Thi fil i £ i £ d lidati d £ 1 1 [=
% Tk file contai unctiomn r dat tior rm=lev renta.—| o
& XDocument;:Onload =113. ile contains fun .1:3r.3- o ata validation an- crm-level events W
* Because the functions are referenced in the form definition (.xsf) file e saript.s
* it is recommended that you do not modify the name of the function,
* or the name and number of arguments.
./
ff The following line iz created by Microsoft Office InfoPath to define tf
/{ for all the known namespaces in the main XML data file.
S kny modification to the form files made outszide of InfoPath
J// will not be automatically updated.
f{<namespacezDefinition>
KDocument.DOM, setProperty ("Selectioniamespaces”™, 'xmins:my="htip://schemsas Propertes % x
f/</namespacesDefinitions> | J
AW
function XDocument::OnLoad(eventlbl)
i
XDocument.UI.Alert ("Instructions could be given here for the form."):
1
5 -
9% Toolbox [S] Document ... |— 4| 3
Ready | tn2s col2 chz | s /|
Figure 11-6

188

Working with Code in Your InfoPath Form

N

Choose File = Exit. The Save Changes dialog will be displayed.
Click Yes to save the script. js file.

Click the Preview Form button. The message box displayed in Figure 11-7 appears.

Microsoft Office InfoPath

1] E Instructions could be given here for the form.
L

Figure 11-7

There you have it: Your first InfoPath script event. Now take a look at the steps to create the same thing
using Visual Studio .NET.

Try It Out Creating Your First Managed Code Event

If you have installed Visual Studio .NET 2003 and the InfoPath 2003 Toolkit for Visual Studio .NET, you
can create an InfoPath form with code behind it:

1.
2.
3.

P

Choose Microsoft Visual Studio .NET 2003 from the Windows Start menu.
Click the New Project link. The New Project dialog box will open.

Click the Microsoft Office InfoPath Projects node in the Project Types tree. You will then see
the two choices of Visual Basic Projects and Visual C# Projects.

Click the Visual C# Projects node.

Specify the location of the project where you would like to have it stored, as shown in
Figure 11-8.

Click OK. The Microsoft Office Project Wizard will open, shown in Figure 11-9. The default
choice of the type of InfoPath form is to create a new InfoPath template.

Click Finish. A new blank InfoPath form will be created, with Visual Studio .NET displaying the
InfoPath project in the Solutions Explorer.

Choose On Load Event... from the Tools => Programming menu. You will then be taken to the
Visual Studio .NET editor, and the new event code will be displayed, as shown here:

// The following function handler is created by Microsoft Office InfoPath. Do not
// modify the type or number of arguments.

[InfoPathEventHandler (EventType=InfoPathEventType.OnLoad)]

public void OnLoad(DocReturnEvent e)

// Write your code here.

189

Chapter 11

New Project
Project Types: Templates: IE =E=E|
{23 visual Basic Projects i

=
[Z3 visual C# Projects #
—-[Z1 Microsoft Office InfoPath Projects InfoPath Form
{23 visual Basic Projects Template
{29 Visual C# Projects
|23 setup and Deployment Projects
+-{.0 Other Projects
123 visual Studio Sclutions

| Create a project using Visual C# that targets a new or existing Microsoft Office InfoPath form template

Name: | InfoPathPraject1]

Location: I C:\Books\InfoPath\Samples\Chapter 11\InfoPathCShal LI Browse... |

Project will be created at C:'\Books\InfoPath\SamplesChapter 11\InfoPathCSharp\InfoPathProject1.

FMore | oK I Cancel | Help |

Figure 11-8

| Microsoft Office Project Wizard

Select a Form Template for Your Application

You can create a new form template for your application or use an existing form template.
Choose one and dick Finish.

InfoPath Form {+ Create new form template
" Open existing form template

Location of the InfoPath form template to import:

I Erowise. .. |

Mame of Visual Studio project to create:

I InfoPathProjectl

Directory to create Visual Studio project in:
I C:\Books\InfoPath'\Samples\Chapter 11\InfoP

Finish I Cancel Help

Figure 11-9

190

Working with Code in Your InfoPath Form

9.

thisXDocument.UI.Alert ("You can add information here about the form.

The code will look as it does in Figure 11-10.

™) 5

Add the following line of code in place of the line that reads // Write your code here.

- -~
> InfoPathProjectlFormCode - Microsoft Visual C# .MET [design] - FormCode.cs =] =]
File Edit View Project Build Debug Tools Window Help
H-a-=El@ & BB » Debug - | [SPHarlD - | BETE b : %,
% Object Browser Form(ode.tr.l 4 B XIlSoluhunErplmer InfoPathProject1 2 x
32| [InfopathProject . InfoPathroectt | [-#0nioadpocetumevent <) I EE S &
A E public void _Startup(Rpplication app, XDecument doc) j A Soluticn InfoPathProject1’ (1 project)
- { =]fmtopamprmecu
= thisXDocument = doc! & InfoPathProject IFormCode
thisApplication = &pp: El- la] References
} #] Assemblylnfo.cs
L *] FormCode.cs
ublic void _Shucdown()] morifestoxst
(=] public void _Shut 1 9 sampledata.xmi
{ view 1.xsl
t myschema. xed
L] template.xml
3 [InfoPethEventHandler (EventType=InfoPathEventType.Onload)]
= public void OnLoad(DocReturnEvent e}
{
/f Write your code here [Propertes 1 =
thisXDocument.UIl.Rlert ("You can add information here about the form.") I j
I Y E =
I] L
3 }
: =
4| |
Output 1 x
[pebug =
[] I | (2]
&) Task List |7 Command Window [E Output @ Index Results for date functions El Search Resuts
Ready | tn3s Col 1 ch1 | s A

Figure 11-10

10.
dialog box displayed, as shown in Figure 11-11.

Microsoft Office InfoPath

You can add information here about the form,

a

Figure 11-11

Choose Debug = Start to test the form. The form will open in preview mode, with the specified

191

Chapter 11

Summary

As with other development environments, InfoPath offers choices for creating code behind your
InfoPath forms. While the majority of the users will probably find their needs met without creating code,
some tasks require writing either script or managed code using .NET. As with other Windows applica-
tions you can use events to perform tasks when needed.

Microsoft provides editors for whichever development environment you wish to use.

Exercises

1. What are the two development environments used for writing code behind InfoPath forms?
2. Which two Microsoft scripting languages can developers choose?

3. What is the name of the toolkit used for creating managed code?

192

12

Getting Started
Using Scripts

As mentioned in the last chapter, 80 percent of the users who work with Microsoft InfoPath do so
mainly by creating forms through the user interface with very little code. However, when it comes
time to use code, and if you don’t own Visual Studio .NET 2003, then you have to use Microsoft
Scripting Technologies to automate your forms using code. Once you decide to use script, you
need to decide which script language to use, Microsoft JScript or Microsoft VBScript.

Regardless which scripting language you decide to use, the natural editor to use is the Microsoft
Script Editor provided by InfoPath for editing your script. This chapter discusses using the editor.
In this chapter you will:

Q Create another scripting routine.

Q Beintroduced to the different elements Microsoft Editor.

Q Learn about the InfoPath object model in .NET.

Introduction to Microsoft Script Editor

The last chapter introduced you to the Microsoft Scripting Technologies and briefly showed

you the Microsoft Script Editor while creating your initial script routine. The Microsoft Script
Editor is very straightforward to use, especially if you have used other Microsoft editors such as
Visual Studio or even other Office products. The other Office products use the Visual Basic for
Applications programming language and have an editor called the IDE, or independent develop-
ment editor.

The Microsoft Script Editor (MSE) has fewer features than other similar editors. This makes it less
powerful but simpler to use. You can see an example of the editor in Figure 12-1.

Chapter 12

@& Chapter 12 - Microsoft Script Editor [design] - scriptjs® BE X
File Edit View Debug Tools Window Help
™ = N - ~ & v E| ~ E | p | oHTMLDOC e g,-@vﬁ
: | | E v| v| v| vI|B i u| | E = === :,:Eé
- == i
i) Wy o Az EF R XX XA
Document Qutline 2 X | scriptis®| 4 b % | Project Explorer - Chapter... % X
. fj his fi i unctions for data v*1z .
CreateFullName . Beaon . T T L T = [chapter 12
) ause s are referenced in t i
@ msoxd_my_baFirstame: :0nAfterChange Lo T oT R T . [& script.js
L * it is recommended that you do not modify
¢ msoxd_my_bdLastName::OnAfterChange) R
* or the name and number of arguments.
*
*/
is i by Microsof
// for all the known namespaces in the main
// Bny mociifi:btior. to the form files made o_|
f/ will t be au cally updated.
3 Definition>
¥Document .DOM. setProperty ("SelectionNamespac
//</namespacesDefinition>
function CreateFullName ()
{
var firstnameField = XDocument.DOM.selec
var lastnameField = XDocument.DOM.select
var lastfirstwithcommaField = XDocument.
var fullnameField = XDocument.DOM.select
// Combine the last name and first name
if ((firstnameField.text.length>0) && (1
lastfirstwithcommaField.text = 1v|
9 Toolbox [Z] Document Outline 1 | _’l |
Ready Ln11 Col 15 Ch 15 | INS|
Figure 12-1

The first two panels displayed are ones that you will use the most when editing scripts in the MSE. The
Document Outline panel displays the various events and procedures that you have created code for, and
it allows you to move between them. The Main Editing panel, displaying the code in script.jsin
Figure 12-1, is where the code you will be editing is displayed.

As with other Microsoft editors, the MSE has color formatting for various elements of the languages it
supports, including JScript. As you type the commands, you will see the code reflected in different col-
ors, such as comments in green and command statements in blue. As with other limited features, you
can change various colors by choosing Tools &> Options while in the editor, and then click the Fonts and
Colors choice under Environment. You can see the Comments color choice in Figure 12-2.

The best way to introduce the editor is to use it, as you did in the last chapter, with real code. As with
other chapters, this one will walk you through the creation of an InfoPath form. This time the chapter
takes you through the various steps you would perform if you were creating your own form using
scripting. The chapter also takes you through various features of the editor and scripting. To start off,
you need to create the form.

194

Getting Started Using Scripts

Compiler Error

Sample:

Current list location
Current Statement
Debugger Data Changed

e -~
Options E
Za Environment Show settings for:
General [Text Editor | use Defaults |
% Fonts and Colors
Keyboard Font (fixed width fonts are in bold): Size:
(X Text Editor - .
1 Debugging |Cour|er New (Western) LI IlD LI
HTML Desi
= Designer Display items: Ttem foreground:
call Return | [. Dark green ﬂ Custom... |
Collapsible Text
Comment

! ntem background:

[Davomone = cusom.._|

[v] [~ Bold

RaBbClcxYyZz

oK | Cancel Help

Figure 12-2

_ Creating the Initial Form

To show you the features of the editor and scripting, you will create a form that has the user provide his
or her first and last name. The form then displays the name in two different formats: LastName,
FirstName and Full Name consisting of First Name and Last Name. You can see an example of the com-

pleted form in action in Figure 12-3.

] Previews - Microsoft Office InfoPath 2003

=JEEd
! File Edit View Insert Format Tools Table Help Type & question for help -
P 5 A | Ef Close Preview | & [& % | % Ga B F 9 |9 8 k| & BB
| / StartInk Entry || Z]- | & - =
T -~
First Name:
Last Name: Barker
Full Name with Barker, Scott
Comma:
Full Name Scott Barker 1
[v]
d Form template's location: C:\Documents and Settings\FSBarker\Local Settings\Application Data\Microsoft\InfoPath\Designer

Figure 12-3

195

Chapter 12

1. Open InfoPath.

2. Click Design a Form.
3. Click New Blank Form under the Design a Form.
4. Click on the Layout task.
5. Click on Two-Column Table.
6. Using the methods described throughout the book, add the labels and four fields as shown in
Figure 12-4.
2] (Design) Chapter 12 - Microsoft Office InfoPath 2003 =JOEd
File Edit View Insert Format Tools Table Help pe a question for hel -
Ik) (5 [| 3 Preview Form | 4 3 ¥ B 79 0@ & [E| W Design Tasks... | @ B idd| B | = &
A Draw Table " Nobarder - 7 - | % - | Ingert~ P .:l -
| Data Source T
First Name: 08 Layout
Last Name: & Controls
3 Data Source
9 views
. Data source:
Full Name with
Comma: |
Full Name = [myFields ~
: _| buFirstilame [»
=] mitlastiame =
=] ot astFirstVithComma |
= mtFulName =
[show detals
(g Help with the Data Source
Figure 12-4

7. Name the four fields, as shown in Figure 12-4.

Once you have the form set up as described, you are ready to work with code. In the last chapter, you
saw the Load: : function used in conjunction with a form to display a message box. In this chapter, you
will use more than just the Load: : function. To prepare you for that, take a look at a few commands
available in JScript.

Working with JScript

To cover all the features and commands of JScript would take a whole book, so in this chapter the fea-
tures used in the sample code will be covered. To start off, it is a good idea to discuss creating your
routines.

196

Getting Started Using Scripts

The order of the Script discussion will follow the flow in which the sample application will be created,
thus providing meaningful examples as the discussion progresses.

Working with Custom Functions

Custom functions are even more straightforward. To create a custom function that doesn’t return any-
thing requires the following syntax:

function functionname

{

}
where functionname is the name of the function you specify.
Curley brackets are used to segment pieces of code. Besides using them for functions as described previ-

ously, you will use them for loops and branching code such as if statements. You can see more about if

statements in the sections following.

Try It Out: Creating a Custom Function

For the purpose of the example in this chapter, you will be creating your own function called
createFullName. This routine ultimately will take values set in the first name and last name fields

(called txtFirstName and txtLastName). To start, open the form you created in the last Try It Out:

1. Choose Microsoft Script Editor from the Tools = Programming... menu selection. The MSE will
open, placing you in the script. js file, listing comments, and the following line of code:

XDocument .DOM. setProperty ("SelectionNamespaces",
'xmlns:my="http://schemas.microsoft.com/office/infopath/2003/myXSD/2004-11-17T07:09

: 3 3 "o) ,.
The XDocument object will be displayed in the next section.
2. Place the cursor in the bottom line of the editor.
3. Type in the following lines of code:

function createFullName ()

{
XDocument .UI.Alert ("Filler for now");

}

While the names of functions and variables discussed in the next section are case sensitive, how you
name them is up to you. You should land on a standard and use it throughout out your programming.
Huaving a standard makes it easier to document and follow your own code when you have to come back

and read it at a later date.

The XDocument . UI.Alert method, introduced in the last chapter, is just to help you test that the
function is being called until you put more meaningful code in place.

197

Chapter 12

You will be using this function as you progress through the example. When you want to use the function
you just created, you type the name of the function, with its parentheses, on a line by itself, and end the
line with a semicolon. So the line of code looks like this:

createFullName () ;

Try It Out: Calling a Custom Function

You will be using the function you just created in the AfterUpdate events of the first and last name
fields.

1. Close the script editor, saving the file.

2. Double-click the field called txtFirstName on your InfoPath form. The Text Box Properties dia-
log box will open.

3. Click the Data Validation button. As introduced in previous chapters, this dialog box enables
you to create conditions for validating your data. This is also the place where you can specify
script to run for various events.

4. (Click the drop-down list under the Script label. You will see the list of possible events for the
txtFirstName text box, as shown in Figure 12-5.

Data Validation (txtFirstName)

Validation
Conditions with data validation:

Seript:
Events:
OnBeforeChange
OnValidate
OnAfterChange Cancel
Figure 12-5

5. Select the OnAfterChange event.

6. Click the Edit button. The MSE will open, placing you between the opening and closing braces
of the new event code created.

7. Inthe line just above the closing brace, type the following code:

createFullName () ;

198

Getting Started Using Scripts

10.

11.

The code will then look as follows:

function msoxd_my_txtFirstName: :0nAfterChange (eventObj)
{
// Write code here to restore the global state.
if (eventObj.IsUndoRedo)
{
// An undo or redo operation has occurred and the DOM is read-only.
return;
}
// A field change has occurred and the DOM is writable.
// Write code here to respond to the changes.
createFullName () ;

The other code, created by InfoPath for you, gives the ability to trap if the redo or undo command has
been given, and it enables you to program for that event. However, you don’t have to worry about that
at this point.

The // denotes comments in the code. These are used for documentation and highly recommended to
use. As mentioned earlier in the chapter, they will be displayed in green.

Close and save the script file.

Click Preview Form. The form is displayed.

Type in a name in the txtFirstName field, and then press tab. The message box is displayed (see
Figure 12-6).

i Preview5 - Microsoft Office InfoPath 2003
File Edit View Insert Format Tools Table Help pe a question for he <
| &5 Close Preview | (4 |3 7 | B S 19 = U sl Bis = B
i StartInk Entry [[Z]- |2 - = | & o
.A
First Name: Scott
Last Nama:
Microsoft Office InfoPath [X]
‘] Filer for now.
L)
i
4 Form template's location: C:\Documents and Settings\FSBarker Local Settings\Application DataMicrosoft\inforath \Designer|2 145ee

Figure 12-6

Repeat Steps 2 through 7 for the txtLastName field on the form.

Now that you have added your custom function to the form and are successfully calling it from events
on the form, it is time now to look at some meatier topics that make scripting useful for more than just
displaying an alert dialog box. The first thing to talk about is the use of variables to work with the fields
on the form.

199

Chapter 12

Using Variables

Just about every programming language uses variables. There are several types of variables in JScript:
reference and value variables. Whichever type of variable you use, you must declare the variable, and
then assign the value, or reference. You can accomplish this using either two lines of code, or one:

var variablename
variablename = value

or

var variablename = value

Reference Variables

The first type of variable is one that points to another object. Any operation that is performed using the
variable, such as assigning a value to it, will be reflected in the object that the variable references. An
example of this is assigning a variable to a field on a form. When you modify the text of the variable, the
value in the field on the form is modified. This is the type of variable that will be used in this example.

Value Variables

When you assign a value to a variable of this type, a copy is made of the data you have assigned to the
variable. This means that when you modify the data, it does not reflect back to the original information.

Before using the variables in a Try It Out, because so much of working with variables on InfoPath forms
in script involve creating references to fields on the forms, why not start right away, and learn how to
accomplish this task. To learn about working with forms in script, you need to learn more about the
InfoPath object model.

XDocument Object

When you deal with the InfoPath object model, you will be working with XML object models as well.
The main object used in the example in this chapter is the XDocument object. In the code of the last
Try It Out, the following line of code was mentioned:

XDocument .DOM. setProperty ("SelectionNamespaces",
'xmlns:my="http://schemas.microsoft.com/office/infopath/2003/myXsSD/2004-11-17T07:09
:33"");

The previous line of code, which was added automatically when you specified that you wanted to work
in script with your InfoPath form, sets up your code to use the object model used for InfoPath forms.
The DOM (Document Object Model) is a standard XML object that provides a number of methods and
attributes that let you manipulate an XML document, in this case an InfoPath form.

To assign a reference to an InfoPath field, as mentioned in the last section, you will use a method of the
DOM object called selectSingleNode and provide the XPath to the object on the form.

var firstnameField = XDocument.DOM.selectSingleNode ("//my:txtFirstName") ;

200

Getting Started Using Scripts

Note that to specify the XPath you will use "/ /my: " and then the name of the field you want to use.
This line of code enables you to work with the field on the form by manipulating the text property of the
firstnameField variable.

Try It Out Adding References to Fields on an InfoPath Form

You will be using the function you created in the last Try It Out.

1. Position the cursor between the opening and closing curly braces of the CreateFul1Name
function.

2. Type in the following lines of code:

var firstnameField = XDocument.DOM.selectSingleNode ("//my:txtFirstName") ;
var lastnameField = XDocument.DOM.selectSingleNode ("//my:txtLastName") ;

var lastfirstwithcommaField =
XDocument .DOM. selectSingleNode (" //my: txtLastFirstWithComma") ;
var fullnameField = XDocument.DOM.selectSingleNode ("//my:txtFullName") ;

Your editor should now look similar to the one displayed in Figure 12-7.

For the purposes of displaying all the text in the editor, the panels on each side were collapsed. You can
accomplish this by clicking the pins in each panel. Then as you need them you just bring the cursor over
the tab such as Document Outline. This works the same in all the Microsoft editors.

@ Chapter 12 - Microsoft Script Editor [design] - script.js* Qﬁ]
File Edit View Debug Tocls Window Help
B % S B9 - o FL | oHonc 1! om-g
] | : - -]l -'| v|Big ::t:l;;_.:..:f'
=y
I .Y & % Fo B B
4 4Fx -
s 2
g = g
= m
=
= =
H s
= g
3
=
=
[=]
=
2
S=m n>
XDocument.DOM. setProperty ("SelectionNamespaces”, 'xmlns:my="http://schemas.microsoft.com/oflfice/
//</nameapacesDefiniticn>
function createFullName (}
var firstnameField = XDocument.DOM.selectSingleNode ("//my:txtFiratName");
var lastnameFisld = XDocument.DOM.selectSinglelode ("//my:txclascHams");
wvar lastfirstwithcommaField = XDocument.DOM.selectSingleNode ("//my:txtLastFirstWithComma™) ;
var fullnameField = XDocument.DOM.selectSingleNode ("//my:txcFulllams")
1
-
4| +
Ready Ln 30 Cal 1 Ch1 INS
Figure 12-7

201

Chapter 12

At this point, the code merely assigns a reference to the fields on the InfoPath form and is not doing
much with them. The next section discusses how to manipulate the fields using the variables.

Performing Operations on Variables

One of the most useful purposes of variables is being able to perform operations with them. This can
take the form of performing mathematical calculations in the case of numeric type variables, or perform-
ing string manipulations in the case of character data.

In the case of working with fields as specified in the last Try It Out, because you will be working with
the data in the fields on the form, you will use the text property of the fields, concatenating them with
the + sign. The line of code looks like this:

fullnameField.text = firstnameField.text + ' ' + lastnameField.text

This line of code concatenates the field referenced to the firstnameField variable with a space and the
field referenced to the lastnameField. The space is treated as a literal value because it is between the
single quotation marks.

Try It Out Updating the txtFullName Field from Code

Using the ongoing example in this chapter, in the InfoPath form:

1. Choose Microsoft Script Editor from Tools = Programming....
2. Scroll down to the line of code that reads:

XDocument .UI.Alert ("Filler for now");

3. Type in the following line of code:

fullnameField.text = firstnameField.text + ' ' + lastnameField.text

4. Close and save the script file.
5. Click Preview Form.

6. Type in the first and last names. The Full Name is now displayed, as shown in Figure 12-8.

] Previewd - Microsoft Office InfoPath 2003 =JOEd
iEiIs Edit View Insert Format Tools Table Help pe & question for hel
| ¥ Close Preview | (4 & % | & 53 @ # |9 | 2] | s B

| / Start Ink Entry |[£]- | 2 - = |~

B:p B

First Name: Scot

Last Name: Barker

Full Name with
Comma:

Full Name Scott Barker

v

'd Form template's location: C:\Documents and Settings\FSBarkerLocal Settings\Application DataMicrosoft\infoPath\Designer|2

Figure 12-8

202

Getting Started Using Scripts

For the next task, combining last and first name with a comma, you learn how to test to make sure that
both are supplied before displaying the final string. However, before seeing that code, you will add the
line of code to display the error. Then using conditional branching will be discussed.

Try It Out Displaying LastName, FirstName
To accomplish this, you will once again use the example created in this chapter.
1. While you are in the InfoPath form, choose Microsoft Script Editor from the Tools =
Programming... menu.

2. Move down into the createFullName function you created, just above the line of code that
reads:

fullnameField.text = firstnameField.text + ' ' + lastnameField.text

3. Press Enter twice to add a couple of blank lines.
4. Type in the following line of code:

lastfirstwithcommaField.text = lastnameField.text + ', ' +
firstnameField.text;

Notice that code can wrap to another line without any special symbol. This is why the semicolon is used
to designate the end of the line(s) of code.

5. Close and save the script file. You will be returned in the InfoPath designer.
6. Click the Preview Form button.

7. Type in the first name of your choice.

Notice the small detail that when the first name is entered and tab pressed, the Full Name with Comma
field looks a little funky with a comma displayed with only the last name, as shown in Figure 12-9.

] Preview1 - Microsoft Office InfoPath 2003 =JOEd
File Edit View Insert Format Tools Table Help pe & question for hel
| 2 Close Preview | (4 3 & [e AN | L) | y,ﬁ | B | = g
| / Start Ink Entry |[Z]- |2 - = |~
First Name: Scott |
Last Name:
Full Name with . Scott
Comma:
Full Mame Scott
M
_é Form template's location: C:\Documents and Settings\FSBarker\Local Settings\Application Data Micresoft\InfoPath\Designer| 124317

Figure 12-9

While this is a small detail, it is a great opportunity to point out how to use conditional branching in
InfoPath.

203

Chapter 12

Conditional Branching

The term conditional branching is a fancy why of saying “if this is true, perform these tasks.” Conditional
statements in the case of the sample in this chapter consist of the if statement. The main syntax of the if
can be seen here:
if (condition)
{
Statements here;

}

where the condition will be a Boolean condition of true or false. A typical condition is one that you will
use in this example:

firstnameField. text.length>0
so the full initial line of the if statement is:
if ((firstnameField.text.length>0)
with the line, or lines, of code to execute following after.

Note that if you only have a single line of code following the if statement, the curly braces aren’t
required. The code used in the next Try It Out uses this syntax.

There are a lot of operators you can use to compare values; in the script editor if you search on the if
statement, you will see all of them.

One of the issues with the line of code just displayed is that it doesn’t help with the issue in the example
of the comma with no last name. To truly trap for both fields would be the way to go. To accomplish this,
you need to add another condition to the if statement. By doing this you will be making a complex con-
dition, and you can do this one of two ways, by using the logical AND or OR. In JScript you will use &&
for AND and | | for OR. In the case of the name, you want to make sure that the first name and the last
name are both included so you will use the && as shown here.

if ((firstnameField.text.length>0) && (lastnameField.text.length>0))

which is added to the code just before the line that reads:

lastfirstwithcommaField.text = lastnameField.text + ', ' +
firstnameField. text;

This way the code just mentioned is not executed unless both name fields have characters in them.

204

Getting Started Using Scripts

Try It Out Adding an Conditional If Statement

We're in the home stretch now. Using the form and code you have been using:

1. In the editor, add the following line of code:

if ((firstnameField.text.length>0) && (lastnameField.text.length>0))

just before the line of code that reads:
lastfirstwithcommaField.text = lastnameField.text + ', ' +
firstnameField. text;
So, the final code looks as follows, with an extra comment line thrown in:

function createFullName ()
{
var firstnameField = XDocument.DOM.selectSingleNode ("//my:txtFirstName") ;
var lastnameField = XDocument.DOM.selectSingleNode ("//my:txtLastName") ;
var lastfirstwithcommaField =
XDocument .DOM. selectSingleNode (" //my: txtLastFirstWithComma") ;
var fullnameField = XDocument.DOM.selectSingleNode ("//my:txtFullName") ;

// Combine the last name and first name and display them in different formats.
if ((firstnameField.text.length>0) && (lastnameField.text.length>0))

lastfirstwithcommaField.text = lastnameField.text + ', ' +

1

firstnameField. text;

fullnameField.text = firstnameField.text + ' ' + lastnameField.text

2. Save and close the form.

3. Click Preview Form.

The form will now open and will only add the comma when both first and last names are filled in.

Summary

InfoPath and scripting give you the ability to accomplish a number of tasks that just wouldn’t be possi-
ble with the two combined. Microsoft supplies the Microsoft Script Editor to help you manage the script
that is used with your InfoPath form. Microsoft also provides events for the various actions on the form
that developers can use for their needs.

205

Chapter 12

You can create your own routines to reuse and accomplish your own tasks. JScript provides a number of
programming commands that enable the developers to program as needed.

Exercises

1. Name the three events of a text box that are supplied by InfoPath.
2. What is the base object in the InfoPath form used for programming?
3. What are the programmatic, if compound symbols for AND and OR?

206

13

Working with .NET
Managed Code

While there are a lot of tasks you can accomplish with scripting in InfoPath, there are a number of
reasons for using .NET managed languages such as Visual Basic .NET and C#. This is especially
true if you already are using those languages. This chapter is primarily for those who are not using
.NET at this time. .NET is a very big development platform and can be overwhelming.

Unlike a single language such Visual Basic, the .NET platform and the managed code languages
that are used with it are all based on assemblies and classes that are the same regardless of what
language you use. This means they are a library of classes that include the properties, methods,
and events, as discussed in the last chapter.

This chapter looks at what makes up the .NET environment. In this chapter you will:

Q Take alook at Visual Studio .NET.

Q Examine what it means to create InfoPath projects in .NET.
Q Discuss the InfoPath object model in .NET.

Q Distribute your .NET InfoPath application.

Introduction to the .NET Framework

The Microsoft .NET Framework version 1.1 consists of two main elements: the common language
runtime (CLR) and .NET Framework class library. These two elements actually handle a lot of
work for developers, managing threads and memory (CLR), and allowing just about unlimited
expandability (class library). The CLR is used “under the covers” in that it handles translating
managed code into something that can run on any platform supporting .NET. You can see how
these elements fit together in Figure 13-1.

Chapter 13

XML Web Web
Services Forms
[ASPNET |

| Data and XML Classes

Windows
Forms

| Base Framework Classes

| Common Language Runtime

Figure 13-1

There are a number of reasons for using the .NET Framework for a development platform. Here are
some of those reasons:

a

Guarantees Safe Execution of Code, Including Code Created by Unknown or Semi-Trusted
Third Parties: This is where the term managed code comes from, since the applications have to
meet security standards and are managed just for that very purpose.

Allows Developers to Work in a Consistent Programming Environment Whether Creating
Applications for Desktops or the Internet: This means that although there are techniques that
vary between Web and desktop applications, you can use the same languages, such as C#.

Builds All Communication on Industry Standards to Ensure That Code Based on the .NET
Framework Can Be Integrated with Any Other Code: .NET uses XML extensively, as well as
other communication protocols such as SOAP (Simplified Object Application Programming),
which are both industry standards.

Minimizes Software Deployment and Versioning Conflicts: Also called DLL hell, when devel-
oping in prior platforms such as Visual Basic and using ActiveX controls. Many times when you
installed new versions of your applications, controls would conflict and not work.

Eliminates Performance Problems of Scripted or Interpreted Environments: Everything is
compiled into a common language that the various parts of the platform are designed to
work with.

Common Language Runtime

The common language runtime is a runtime engine that takes various languages, such as Visual Basic
.NET and C#, and compiles them into a common language that is used when the applications are exe-
cuted. This means that all the languages can use the same classes provided by the NET Framework
class library.

The CLR is extremely convenient and powerful in that it really doesn’t matter which language you write
in, because you can use the same objects and it all compiles down to the same efficient code.

208

Working with .NET Managed Code

.NET Framework Class Library

The NET Framework class library is made up of various namespaces. Namespaces are actually collec-
tions of classes and interfaces, logically organized. This enables you to have multiple versions of classes
with the same name, but in different namespaces, and not have conflicts.

One very interesting fact is that not only does the .NET Framework provide namespaces and classes for
developer use, but it also uses those very namespaces and classes for its own purposes, including edit-
ing, compiling, and executing code.

Another big benefit of using the NET Framework class library is the ability to use the classes in your
applications consistently no matter whether you are using C# or Visual Basic .NET, Windows or Web
forms. Namespaces can also be made up of other namespaces.

The best way to get into the NET Framework class library is to take a look at some of its namespaces.
You can see some of those namespaces in the following table:

Namespace Description
System Main system namespace that is broken into many categories.
System.Data Makes up the classes used for ADO.NET, and overall data manipulation

of just about any kind. Subnamespaces of System.Data include System.
Data.SqlClient and System.Data.OleDB.

System. XML Includes the DOM and classes for using XML in your applications.
System.Web Namespaces and classes used for creating ASP.NET applications.
System.Windows Namespaces and classes for creating Windows forms applications.

When you create a .NET application, Visual Studio creates references to different namespaces, based on
what kind of project you are creating. You can see an example of references created in an InfoPath type
.NET project in Figure 13-2.

[o Solution 'InfoPathProject2' (1 project)
- & InfoPathProject2
= [E¥ InfoPathProject2FormCode
- 2 References
+3 Microsoft. Office. Interop.InfoPath.SemiTrust
+ System
[#] AssemblyInfo.cs
B FormCode.cs
-éj manifest.xsf
sampledata.xml
viewl.xsl
myschema.xsd
&) template.xml

Figure 13-2

209

Chapter 13

The Microsoft.Office.Interop.InfoPath.SemiTrust namespace is installed in the .NET Framework when
the InfoPath 2003 Toolkit for Visual Studio .NET is installed, which is covered quickly once again in the
section titled “Review: Installing the InfoPath 2003 Toolkit for Visual Studio .NET.”

Using Visual Studio .NET

While you can create .NET applications using other editors, Microsoft provides Visual Studio .NET, and
it rocks. With VS.NET you can create just about any type of .NET application you need to, including:

Q Various .NET Languages: Visual Basic .NET and C# are both supported by InfoPath forms,
as well as other available .NET language such as COBOL .NET, J# .NET, and Microsoft

JScript .NET.

Q Create the Different Types of Projects: Depending on the tasks, you can create Windows
Applications, ASP.NET Web applications, Windows services, console applications, and ASPNET
Web services among many other choices. You can see an example of the various choices when
you create a new C# application, as shown in Figure 13-3.

New Project

Project Types: Templates: J

{1 visual Basic Projects Féﬂ ~

{3 Visual C# Projects
--[22 Microsoft Office InfoPath Projects Windows Class Library ~ Windows Control

(12 visual Basic Projects Application Library

(13 visual C# Projects
o 2 P

[setup and Deployment Projects
+-[_] Other Projects
Smart Device ASP.MET Web ASP.MET Web |
< | > | Application Application Service v

E‘

(23 visual Studio Solutions

A project for creating an application for Pocket PC and resource-constrained devices

Name: |Smar‘tDe\riceAppIicati0n1

Location: | C:\Documents and Settings\FSBarker\My Documents ﬂ Browse...

Project will be created at C:\...\My Documents\Visual Studio Projects\SmartDeviceApplicationl.

FMore OK | Cancel ‘ Help |

Figure 13-3

Q Other Application Templates Can Be Added: For example, when the toolkit is installed,
Microsoft Office InfoPath Projects also are added for Visual Basic and C#.

210

Working with .NET Managed Code

You can have multiple projects within a Visual Studio solution. These projects can be of different types
of languages and purposes. When you “build” a solution, you are creating the runtime files necessary to

make up the final application.

_ Creating a C# Windows Application Project

To get into the Visual Studio .NET editor, you will create a simple C# application. To accomplish this

you will:

1. Open Visual Studio .NET 2003. If it is installed, you will find it on the Windows Start menu in
the All Programs menu choices. The application shortcut is Microsoft Visual Studio .NET 2003
and can be found in a folder of the same name. When you open VS, the Microsoft Development

Environment (MDE) opens with the Start Page displayed.

Which panes are displayed on your screen will vary depending on how you have used Visual Studio.
For instance, the Server Explorer and Toolbox are not expanded in the screen shown in Figure 13-4.

wn Microsoft Development Environment [design] - Start Page ===
File Edit View Tools Window Help
B--eld@ faRo-«-8-B, ~ | i SPHdrD - BEEREE-,
% start page | 4 v x || solution Explorer a x
g =
g Projects Online Resources My Profile
m
E
2
5]
@ | Open an Existing Project
2 Mame L Modifed
InfoPathProject2 Today
DateCalculationsvs 10.1’2.1’2|P{0perti35 a1
DefGainsDailylUpdate 10/15/2 LI
DefCapGain 9/19/20| /51 a: .
w Elti[E])s
|
I_
New Project Open Project & Properties| @ Dynamic Help |
Index Results o x
Title | Location
Task List |1 Command Window | B output A Index Results
= L4
Figure 13-4

211

Chapter 13

You can see some of the past projects worked on displayed in the page under Open an Existing
Project. This makes it easy to go back and work on past projects.

Click New Project. The New Project dialog box will open.
Click Visual C# Projects, displayed in Project Types.
Select Windows Applications.

o reb

Locate the folder you want to place the project in, and give it the desired name. For this Try It
Out, the project is named MyFirstCSharpapp and is located in the Visual Studio Project folder,
which is in the My Documents folder. You can see the New Project dialog box with the specified
project in Figure 13-5.

New Project

Project Types: Templates: J

{13 visual Basic Projects rgﬂ ~

{3 visual C# Projects
=20 Microsoft Office InfoPath Projects Windows Class Library ~ Windows Contral
(13 visual Basic Projects Application Library

(3 visual C# Projects
(0 Setup and Deployment Projects

+-[_1 Other Projects @

(1 visual Studio Solutions E.lelﬂ %!' /1
Smart Device ASP.MET Web ASP.NET Web
(¢ | (s Application Application Service v

A project for creating an application with a Windows user interface

Name: |MyFirstCSharpApp

Location: | C:\Documents and Settings\FSBarker\My Documentsy ﬂ Browse...

Project will be created at C:\...\FSBarker\My Documents\Visual Studio Projects\MyFirstCSharpApp.

FMore oK | Cancel ‘ Help |

Figure 13-5

6. Click OK. The project is now created and is displayed in Visual Studio .NET 2003, with the start-
ing windows form displayed, as shown in Figure 13-6.

Congratulations. You have created your first C# windows application. Before taking it and adding any
code or controls, take a look at some of the different elements of the Microsoft Visual Studio .NET inte-

grated development environment (IDE).

212

Working with .NET Managed Code

" MyFirstCSharpApp - Microsoft Visual C# NET [design] - Form1.cs [Design]* E@
FEile Edit View Project Build Debug Data Format Tools Window Help
H-ta-= B’ oo~ » Debug ~ | @ SPHArID - REEPF -
| Toolbox Object Browser | Start Pzge Forml.cs [Design]* | 4 b % || solution Explorer - MyFirstCShar... 1 %
W o o o - —_
@ Data — EHE R 2 B
= g =157 = BB
E Companents Bs’ Form1 BE' [o4 Solution 'MyFirstcSharpapp' (1 praject)
m Windows Forms L Pu - £ MyFirstcSharpApp
‘E K Pointer + %Refersnces
S A Label [App.ico
o A LinkLabel [#) AssemblyInfo.cs
S = Forml.cs
] Button
[l TextBox o
El MainMenu
¥ CheckBox
& RadioButton
e Properties
[GroupBox ope 2 x
(&) PictureBox | Forml System.Windows.Forms.Form ﬂ
1 Panel . R ILEIR A
3] DataGrid] ZI
Clipboard Ring C
General &' Properties| @ Dynamic Help
Output 1 x
| =l
R Task Lst | 7] Command Window _E] Cutput R Index Results
Ready
Figure 13-6

Elements of the IDE

There are actually far more elements than can be covered in a single chapter, but these following are the

ones you use most.

Q Editing Window: The main editing window is where your forms are displayed, or in the case of

code files, where the code is displayed. You can drag and drop objects onto this window, as well
as move and resize objects.

Toolbox: This contains the controls that can be used on your windows forms and applications.
Different categories of controls include data, components, and windows form. The controls
available vary based on the type of project you are creating.

Solution Explorer: This controls the various files necessary for the solution and project.

Property Sheet: This presents various properties, depending on the object you are working
with.

Output Window: This window displays various statuses as the application is being developed,
compiled, and executed.

213

Chapter 13

Modifying the Project by Adding a Control and Event Code

Modifying a project consists of adding controls and writing code. When writing code in VS, you will use
event programming just as you do in scripting. To accomplish this you double-click a control to add the

default event.

For this section, you will use the MessageBox class in the System namespace. This class is used to dis-
play information in windows forms. The show method displays requested information.

Try It Out Adding Controls and Code

Currently the project does not do much good. Right now you have a form that only opens and does
nothing. The next step is to add a button and have it display a message box when pressed.

1. Click the Windows category in the Toolbox.

2. Dragand drop a Button control from the Toolbox on the form. The editor will now be displayed

as shown in Figure 13-7.

" MyFirstCSharpApp - Microsoft Visual C# NET [design] - Form1.cs [Design]*

BEX]

File Edit View Project Build Debug Data Format Tools Window Help

H-a-sldd fBe o- &- » Debug ~ | # SPHAIID v BE =R
L= i b [2) c
4 | Toolbox 0l x| Startrage Forml.cs [Design]® | Formi.cs Solution Expiorer - MyFIrstCShar... [3
7]] —
o Data — EE E @D B
] O =% — Er— r
% Components Bs’ Form1 BE' [g4 Solution "MyFirstCSharpapp' (1 project|a
m Windows Forms L 5] - & myFirstcsharpApp
.E % Pointer = &) References
S A Label 0 System =
] X
% A LinkLabel System.Data
+0 System.Drawing
i Button + System.Windows.Forms
[l TextBox +2 System. XML
& MainMenu |E1 App.ico Y
¥ CheckBox |< | 2
& RadioButton
Properties
[*] GroupBox ope 1 X
(&) PictureBox | button1 System.\c‘.‘indU\'.ls‘Forms,Buttnnﬂ
1 Panel R ILEIR A
B bR TextAlign MiddleCenter ZI
Clipboard Ring = C
General &' Properties| @ Dynamic Help
Index Results 1 x
Title Location

B output T Index Results

[Task List | Command Window
Ready

Figure 13-7

214

Working with .NET Managed Code

3. Double-click the button. The code file for the form opens with the new event routine created.

4. Type the following line of code in between the opening and closing brackets.
MessageBox.Show("Hello World");

The code now looks as it does in Figure 13-8.

-

wn MyFirstC SharpApp - Microsoft Visual C# .NET [design] - Form1.cs® M=
Eile Edit View Project Build Debug Tools Window Help
H-a-w @d » Debug = [SPHArID B E TIER L e =2 6% %%
24 | Toobox 0 3¢ || StertPage | Forml.cs [Design] Form:l.cs‘| 4 b X | solution Explorer - MyFIrstCShar... 11 X
g" Clipboard Ring - |ol:MyF|rstcsharpApp.Fnrm1 ﬂ |g’hurton1_cllck(ob]ect sender,sysrem.lﬂ = M| z 5 B
s || & Pointer [/// The main entry point for the app;i:z‘ [Solution 'MyFirstCSharpapp' (1 project| &
n /) </s - E¥ MyFirstcSharpApp I
3 s [STAThread] ? QR:'“;“;“ES
=] ! T i + oystem)
r_-‘: = static vold Main() .3 System.Data E
{) . +1 System.Drawing
Epplication.Run(new Forml()); +2 System.Windows.Forms
} -+ System.XML
& App.ico
L : o wred %+ 4 L [#1 Assemhivinfo.cs [
= private void buttonl Click(object sende [<] 7 5
{ =] =)
MessageBox.Show ("Hello World"); Properties 1 x
) l ~
o } Tl)
me| 2¢ || B
}
General =1« e Properties| @ Dynamic Help |
Index Results 1 x
Title Location
& Task List |E] command window | Bl output '% Index Results
Ready Ln 89 Col 13 ch4 S|
Figure 13-8

The code is now ready to test.

Executing the Application

Once you have created a project and made the desired changes, you will want to build and test the
application. There are two modes for executing, or running, your application. Those modes are debug
and release. You can specifically build and run applications in one or the other based on what your cur-
rent purpose is.

215

Chapter 13

Executing with Debugging (Debug Mode)

When you execute an application with debugging, you can use a number of options to watch how your
application is running. Some of the benefits to debugging are that you can walk line by line through the
code if desired or tell the code to stop at different locations in the code, much as was shown in the last
chapter for scripting. Specific debugging options and techniques are discussed later in this chapter in

a later section. To execute the application using this method from the project in Visual Studio, click

the F5 key.

Executing without Debugging (Release Mode)

When an application is built and run without debugging, it is said to be in release mode. In this
mode, you can’t debug the application. You will use this mode when you are ready to distribute the
application. To execute the application using this method from the project in Visual Studio, click the
Ctrl+F5 keys.

Try It Out Running Your Application

To accomplish this Try It Out, you will use the application you have been working in.

1. Click F5. The application will run, displaying the traditional Hello World message, as shown in
Figure 13-9.

s=! Form1

Hello World

Figure 13-9

There you go; you have now created and executed your first C# windows application.

216

Working with .NET Managed Code

Developing InfoPath Projects in .NET

If you are a developer using .NET for other projects, you won’t find much of a difference when working
with the InfoPath form and your code. Before going into details on developing InfoPath forms in Visual
Studio .NET, you need to make sure that you have two development tools: Visual Studio .NET 2003 and
InfoPath 2003 Toolkit for Visual Studio .NET.

Review: Installing the InfoPath 2003 Toolkit
for Visual Studio .NET

You should already have VS.NET 2003 installed by this point. The downloading and installing of
InfoPath 2003 Toolkit for Visual Studio .NET has already been covered in Chapter 11, “Working with
Code in Your InfoPath Form” in the section titled “Managed Code with .NET.”

After downloading and installing the toolkit, you can open Visual Studio .NET. When you select a new
project, additional choices will be displayed, offering C# or Visual Basic InfoPath .NET projects.

Working with the InfoPath Namespaces

When creating InfoPath forms using .NET, you will be using the InfoPath object model just as you do
when using scripting. However, instead of accessing the object model directly, Microsoft has created
namespaces to support the object model, creating the necessary classes with methods, properties, and
events. The following table contains some of the more useful classes available in the
Microsoft.Office.Interop.InfoPath.SemiTrust namespace:

Class Purpose

DataObject Enables developers to manipulate the data sources used in a form.
There are DataObjects representing the different types of data
adapters used, including: ADOAdapterObject, SharepointListAdapter-
Object, WebServiceAdapterObject, and the XMLFileAdapterObject
object.

EmailAdapterObject Used to represent a data adapter that is used to generate an e-mail.
This object is used in the next chapter using script.

ErrorObject Returns errors from data validation.

XDocument Provides information about a form and its underlying XML docu-
ment. This object also contains the DOM object, allowing you to get
the data.

217

Chapter 13

You will probably spend most of the time using the XDocument object when developing using InfoPath
and .NET. Using the XDocument class you just read about, you will now create an InfoPath project that
uses code to update a form.

Try It Out Creating an InfoPath .NET Project

You will create an InfoPath .Net project and utilize the XDocument object.

1.

2
3.
4.
5

o

10.

218

Open Visual Studio .NET 2003.

Click New Project.

Click the Node in the Project Types tree view with the label Microsoft Office InfoPath Projects.
Click Visual C# Projects.

Locate and name the project as you wish, as displayed in Figure 13-10.

New Project
oo e
Project Types: Templates: |; Boa-
|3 visual Basic Projects ' +

[E3 visual C# Projects
=123 Microsoft Office InfoPath Projects InfoPath Form
{23 visual Basic Projects Template
2 visual C# Projects
|23 Setup and Deployment Projects
+-{23 Other Projects
[visual Studio Solutions

Create a project using Visual C# that targets a new or existing Microsoft Office InfoPath form template

MName: | InfoPathProject?|

Location: | C:\Books\InfoPath\Samples\Chapter 13'DistributingInf j Browse...

Project will be created at C:\... \InfoPath\Samples\Chapter 13\DistributingInfoPathvs\InfoPathProject2.
FMore 0K | Cancel | Help |

Figure 13-10

Click OK. The Microsoft Office Project Wizard opens, as shown Figure 13-11.

Click the Finish button, keeping the default choice of creating a new form template. The new
project is created, along with the various C# project files as well as a new form template.

Click on the Controls task. The Controls task pane is displayed.

Drag and drop a text box onto the form. By default the name of the new control on the form will
be called field1, as shown in Figure 13-12.

Choose Tools & On Load Event to create the event routine for the Load event.

Working with .NET Managed Code

Microsoft Office Project Wizard

Select a Form Template for Your Application

‘fou can create a new form template for your application or use an existing form template.
Choose one and dick Finish.

InfoPath Form % Create new form template
{” Open existing form template

Location of the InfoPath form template to import:

I Browse.. . |

Name of Visual Studio project to create:

I InfoPathProject2

Directory to create Visual Studio project in:
I C:\Books\InfoPath\Samples\Chapter 13\Distril

Finish I Cancel Help

Figure 13-11
r_é] (Design) InfoPathProject? - Microsoft Office InfoPath 2003 g@\
{ Eile Edit View Insert Format Tools Table Help e r—r———
i) (5 [l | 3y Preview Form | & 4 % | L oo B S | @, [(& | s Design Tasks... | @ [0 § 41 verdana o
: 4 Draw Table "4 Mo border & L2l ingert o T . -
i Data Source —_—
| _ | @ | & o
ﬂ Layout
P& Controls
5 Data Sowce
A views

Data source:

= [myFields
] field1

[Cshow details

(6 Help with the Data Source

Figure 13-12

11. Type the following lines of code in between the beginning and ending brackets.

IXMLDOMNode Fieldl = thisXDocument.DOM.selectSingleNode("//my:fieldl");
if (thisXDocument.UI.Confirm("Store the word 'Test' in the field?",
XdConfirmButtons.xdYesNo)==XdConfirmChoice .xdYes)
Fieldl.text = "Test";

The screen should then look as it does in Figure 13-13.

219

Chapter 13

- -~
> InfoPathProject2FormCode - Microsoft Visual C# .MET [design] - FormCode.cs =JT&d
File Edit View Project Build Debug Tools Window Help
A-a-cedd 2R) Debug o et - BE TIEDRe FEZZ 4N,
% Object Browser | Start Page Form(ode.t_f.l 1 I % || Solution Explorer - InfoPathProject2 a1 x
33| [%¢ infopathproject2. InfoPathProject2 v [-#onioadipometumeent &) =32 E S &
5 | thisXDocument = dac: j G4 Solution nfoPathProject (1 project)
- shisipplication = app: = @@ InfoPathProject2
] = EH InfoPathProject2FormCode
// You can add ad nel initialization cod - lag) References
} #] AssemblyInfo.cs
L *] FormCode.cs
] marifest.xsf
=l public void _Shutdown() E::r—'pﬁ:daim
{ viewi Loxs|
4 myschema. xed
L 2] template sl
=] ! wing fun han iz created by Microscft Office InfoPath. D¢ # upgrade sl
I type her guments.
I [InfoPathEventHandler (EventIype=InfoFathEventIype.OnLoad)] | Propertes 1 x
(=] public void OnLoad (DocReturnEvent :}I
{ | El
INMLDOMNode Fieldl = thisXDocument.DOM.selectSingleNode ("//my:fieldl”): e =Rl =)
if (chis¥XDocument.UI.Confirm("Store the word 'Tesat' in the field?",
XdConfirmSuctons.xdYesNo)==KdConfirmChoice .xdYes)
Fieldl.text = "Teat";
I 1
I 1
}
L =i
4 » 5 properties | @ Dynamic Help |
Output a x
|Deb||g Ll
|iT e - ~
@) Task List |] Command Window _[E] Output |) Index Results
Build succeeded | Ln 33 Col 45 ch 33 INS| =
Figure 13-13

12.

shown in Figure 13-14.

Click Debug => Run to test the application. The code will then run, displaying the confirm box

Microsoft Office InfoPath

:\.’/I Store the word ‘Test' in the field?

Figure 13-14

13.
placed in the field on the form, shown in Figure 13-15.

Click Yes to store the word test into the field on the screen. The confirm box closes, and test is

There you have it, a simple InfoPath .NET application that updates a field on an InfoPath form. By run-
ning with this and expanding on the use of the object model using the InfoPath namespaces provided,
you can create some pretty powerful applications. The next chapter shows you how to manipulate dates
using C# and InfoPath. Now look at what you can do to distribute applications that you create.

220

Working with .NET Managed Code

2| Preview2 - Microsoft Office InfoPath 2003 =/EEd
! File Edit View Insert Format Tools Table Help pe & question for he -
| & Close Preview | (4 & ¥ Fe W A | & | 2 gisE

i/ StartInk Entry [[£]- 2 |2 -= & o

[Test

4 Form template's location: C:\Documents and Settings|FSBarker\Local Settings\Appiication DataMcrosoftiinfoPathiDesigner ccec

Figure 13-15

Distributing InfoPath .NET applications

While distributing .NET applications with InfoPath forms is not any different from distributing other
.NET applications, as with those types of projects you will want to make sure that you build your project
in release mode. There are a couple of options you can use to distribute your application.

The first option is simply to copy the objects in the Bin folder to a folder you want to use. If you are just
storing the application on a LAN this is a good option. The other option is to create a distributable run-
time setup program for your application. To do this use the Setup type Visual Studio .NET project.

You can create setup applications for installing from the Web or Windows desktops, creating download-
able . cab files, or merge modules, which work with the Windows installer.

The setup project you will use is a wizard that walks you through specifying the files you need to
include, located in the Bin folder of your InfoPath .NET project.

Try It Out Creating the Setup Distribution Project

For the purpose of this Try It Out, you will be using the InfoPath .NET application that you created in
the last exercise. In the project you just created:

1.

P w

Choose Release for the Solution Configure drop-down list, displayed on the toolbar. The drop-
down list most likely displays Debug currently.

Click Build => Rebuild Solution to create a Release version of the project. VS will then create the
necessary files in a folder called Bin under your project folder.

Choose File => Close Solution to close the current solution.
Click New Project. The New Project dialog box will open.

Click on the Setup and Deployment Project node in the Project Types tree view. The various
types of setup templates will be displayed.

Click on Setup Wizard, and then type in the name of the new project as you want it, as shown in
Figure 13-16.

221

Chapter 13

New Project
oo o
Project Types: Templates: EJ
{23 visual Basic Projects 1 -‘
[Z3 visual C# Projects %’.’
=1 Microsoft Office InfoPath Projects Setup Project Web Setup Merge Module
[:I Visual Basic Projects Project Project

[23 visual C# Projects
{23 Setup and Deployment Projects s
+-[.0 Other Projects o

123 visual Studio Sclutions ==
Setup Wizard Cab Project

Create @ Windows Installer project with the aid of a wizard.

Mame: | Setup2

Location: | C:\Documents and Settings\FSBarker My Documentsiv j Browse...

Project will be created at C:\... \FSBarker My Documents\Visual Studio Projects\Setup2.
FMore oK | Cancel | Help |

Figure 13-16

7. Click OK to start the Setup Wizard. The first page of the wizard will appear, as shown in 13-17.

Setup Wizard (1 of 4)

Welcome to the Setup Project
Wizard

This wizard will lead you through the steps of creating
a setup project.

A setup project creates aninstaller for your
application.

The project that is created can be used immediately or
further customized to add extra features not covered
by this wizard.

Click Next to create a new setup project, or Cancel to
exit the wizard.

Cancel | MNext = |

Figure 13-17

222

Working with .NET Managed Code

8.

10.

11.

12.

Click Next to move on to the next page. The next page displays a dialog box asking which kind
of setup application you want to create, as described in the introduction before this Try It Out.

You can see the defaults in Figure 13-18.

Setup Wizard (2 of 4)

Choose a project type

target computer.

" Createa downloadable CAB file

Cancel

The type of project determines where and howfiles will be installed on a

Izlﬂ Do you want to create a setup program to install an application?
¥ Create asetup fora Windows application

" Create asetup for aweb application

l Do you want to create a redistributable package?

™ Create a merge module for Windows Installer

Finish

< Back | Mext = |

Figure 13-18

Click Next to accept the defaults. The next page of the wizard lets you specify which files you

want to include.

Click Add. The Add Files dialog box will appear. Using this standard open file dialog box you
can locate and select all the files you want to include in the setup.

Locate and highlight all the files in the Bin folder of the project. You can see from Figure 13-19

that there are only two files necessary.

Click Open after highlighting both files. You will then see the files listed on the third page of the

Setup Wizard, as shown in Figure 13-20.

223

Chapter 13

224

Add Files

o

My Compit:
=

Loak in: I@ Release

- «eEerEr

File name: I"InfoF‘ath Project2.dll" "Info PathProject 2 xsn" j Open
Flesoftype: [All Fies (") =]

Figure 13-19

Setup Wizard (3 of 4)

Choose files to include
You can add files such as ReadMe files or HTML pages to the setup.

Which additional files do you want to include?

C:\Books\InfoPath\Samples\Chapter 13\InfoPathProject2\bin\Release\InfoPz Add...
C:\Books\InfoPath\Samples\Chapter 13\InfoPathProject2\bin'Release\InfoPz

Remove |

i (2]

Cancel < Back | MNext = | Finish

Figure 13-20

Working with .NET Managed Code

13. Click Next to display the last page of the Setup Wizard. This page, shown in Figure 13-21, dis-
plays summary information about the setup project.

Setup Wizard (4 of 4)

Create Project
The wizard will now create a project based on your choices.

Summary:

Project type: Create a setup for a Windows application

Project groups to indude: (none)

Additional files:
C:'\Books\InfoPath\Samples\Chapter 13\InfoPathProject2\bin\Release\InfoPathProject:
C:\Books\InfoPath\Samples\Chapter 13\InfoPathProject2\bin\Release\InfoPathProject:

Project Directory: C:\Books\InfoPath\Samples\Chapter 13\DistributingInfoPathVS\Setup1'

Cancel < Back | Finish |

Figure 13-21

14. Click Finish to create the setup project. The project will be created, and you will be placed in
Visual Studio with the project displayed. There are a lot of features you can set up using the pro-
ject, but for your purposes you simply need to build the release version of the setup program.

15. Choose Release from the Solution Configure drop-down list, as displayed on the tool bar.

16. Select Build = Rebuild Solution. The release version of the setup application is created. If you
look in the Release folder, located in the main setup project folder, you will see the files shown
in Figure 13-22.

You can now either burn the files to a CD, or put the project out on your local area network.

17. Click on Setup. exe to start the installation program. The first page of the installation program
will be displayed as shown in Figure 13-23.

You can then walk through the rest of the steps for installing the application.

Note that users still have to have a full copy of InfoPath installed on their system.

225

Chapter 13

- ~
" Setup1 - Microsoft Development Envi [design] - File System (Setup1) 8=]
File Edit View Project Build Debug Tools Window Help
B-fn-Sd@P| 2R 0->-F-B) ey | [SPHErID - BEER -
&5 Toolbox O X | ObjectErowser | StartPage File System (Setupd) | 1 I % || Solution Explorer - Setupl a2 x
g Clpboard Ring o g&esumoﬂwetmw E]we [Type ol gl =
General - Appiication Falder |Application Folder Folder &8 Solution ‘Setup’ (1 project]
) ject)
:‘1 I, Pointer 4] User's Desktop {&User's Desktop Folder Fg =
] {] User's Programs Menu &user's Programs Menu Folder =y Detected Dependendes
g gy dotnetfuredst_x85.msm
2 « InfoPathProject2.dl
5] infopathproject2.xsn
|Prnperh'u a x
ISetnpl Deployment Project Properties ﬂ
2 8=
B Misc =B
AddRemavePrograr (None) =
Misc
=| <] 1 [2] " g% eroperties | @ Dynamic el |
Output 1 x
| El
[2) Task List |) Command Window E] output | T3y Index Results
Ready A

Figure 13-22

226

anu

=33

File Edit View Favorites Tools Help

Qoo -) [T | PO sewan [roders | [F]w

File and Folder Tasks

Other Places

) Sewpl
&) My Documents
§ My Computer
& My Network Flaces

Details

Release
File Folder

Date Modified: Today,
November 08, 2004, 8:45 PM

Address .t]C:','_‘ W s

YChapter 1310

-

EE

Figure 13-23

Working with .NET Managed Code

Summary

Creating InfoPath forms that take advantage of the InfoPath object model does not have to be an oner-
ous task. The InfoPath and Visual Studio .NET teams have gone to a lot of work to make your develop-
ment experience as painless and seamless as possible. By using VS with your InfoPath form you get a
full-blown development environment instead of just a scripting language.

Once you've created an InfoPath application and want to distribute the files, you can use one of two
methods: Copy the files into the folder you run the application to, or use a setup type .NET project to
create an installation program.

Exercises

1. What are the three elements you need to create InfoPath .NET applications?
2. What are the two programming languages supported by InfoPath .NET applications?
3. What are the types of setup programs can you create using Visual Studio .NET 2003?

227

14

Real-World Tasks and
Coding Examples

The last few chapters have provided enough examples for you to get an idea of how to work with
the development environments that are available. Simple routines were used to show how to use
events and the object model of InfoPath using scripting and managed code in .NET. Now it is time
to show some more routines that you will probably find a use for in your applications. To show
how to create these routines, examples will be given using both scripting and C#, so that you can
have options in both development environments.

There are some techniques that come in handy when creating InfoPath forms. For instance, InfoPath
doesn’t provide functions or controls for handling dates, such as adding days or months, or displaying
the difference between two dates. Also, how do you send an e-mail within an InfoPath form? These are
a couple of the real-world examples that you will find in this chapter. In this chapter you will:
Q See asimple way of displaying dates using scripts.
See a more complete, and cleaner, way of displaying dates on a form using C#.

Q
Q Send a form via e-mail using code.
Q

Learn about how to provide context-sensitive help for your forms.

Date Calculations

One of the tasks that come in handy with some InfoPath forms is working with dates. The user
interface doesn’t really provide you with the ability to work with dates, but with scripting or man-
aged code (C#) you can do so.

An example of date manipulation is taking today’s date and displaying what tomorrow’s date will
be, or next week’s, next month'’s, and even a year from today. You can see the values displayed in a
form in Figure 14-1.

Chapter 14

] Preview5 - Microsoft Office InfoPath 2003 =JOEd
';Eils Edit View Insert Format Tools Table Help

| ¥ Close Preview | & 4 F | o | |]| | & &)

2]
| T e sl=slisaicala . B/ satinkeny |[Z]: 22 =
\A
Simple Date Calculations
Today's Date: 11/3/2004
Tomorrow: 11/4/2004
Next Weak: 11/10/2004
Next Month: 12/3/2004
Mext Year: 11/3/2005

'd Form template's location: C:\Documents and Settings\FSBarker'Local Settings\Applcation Data\Microsoft\InfoPath\Designer\db6esa

Figure 14-1

Simple Date Calculations Using Script

In both cases of creating the InfoPath form for displaying dates, you will be creating the form itself and
then manipulating the InfoPath object model using code either in a script or as managed code. When
discussing the code that is created using scripting, the first task to perform is to store today’s date in a

variable, using the following line of code:
var date = new Date();
JScript Date Object

The JScript Date object has a number of methods that can be used for extracting parts of the specified

date. If you use the Date object as shown in the preceding line of code, the current system date is
returned and, in this case, stored in the date variable.

Some of the methods that will be used for this section are shown in the following table:

Method Description

getDate Retrieves the current numeric day of the month of the Date object.
GetFullMonth Retrieves the current month of the Date object.

getFullYear Returns the four-digit year from the Date object.

Before using the various methods of the Date object, you must create a reference to an InfoPath control
for each of the controls used.

Creating a Reference to an InfoPath Field

var todayField = XDocument.DOM.selectSingleNode ("//my:TodaysDate") ;

230

Real-World Tasks and Coding Examples

Using the InfoPath object model, discussed in Chapter 12, “Getting Starting Using Scripts,” you will use
the main object, XDocument. The selectSingleNode method, part of the DOM (Document Object Model),
is used to retrieve a reference to the XPath value of the name of the control passed to it, in this case

“/ /my:TodaysDate”.

Assigning a Value to a Variable

Everything that is now done with the todayField variable will be reflected in the field on the form. So,
assigning a value to the Text property of the variable assigns the value to the field on the form, as in the
following line of code:

todayField.text = (date.getMonth() + 1) + "/" + date.getDate() + "/" +
date.getFullYear () ;

You also can see the Date object methods used in the last line of code. The last line of code changes based
on what you are trying to accomplish. That line placed a formatted version of today’s date into the
todayField control. To add a day to the current date, you use the following line of code, which assigns

it the variable called tomorrowsField

tomorrowsField.text = (date.getMonth() + 1) + "/" + (date.getDate() + 1) + "/" +
date.getFullYear () ;

Try It Out Creating a Form That Manipulates Dates Using Script

The first task you have to do is create a form to display the information:

1. Open InfoPath.

2 Click on Design a Form.

3. Click on New Blank Form.

4 Lay out the form as displayed in Figure 14-2.

O
Simple Date Calculations|

Today's Date:

Tomorrow:
Next Week:
Mext Month:

Mext Year:

Figure 14-2

B. Name the fields down the form as follows: TodaysDate, Tomorrow, NextWeek, NextMonth,
and NextYear.

6. Choose On Load Event from the Tools & Programming... menu. The Microsoft Script Editor
opens with the on load event shell displayed.

231

Chapter 14

7. Type in the following code between curly brackets of the function:

// create a variable storing today's date
var date = new Date();

// create references to the InfoPath form controls

var todayField = XDocument.DOM.selectSingleNode ("//my:TodaysDate") ;
var tomorrowsField = XDocument.DOM.selectSingleNode ("//my:Tomorrow") ;
var nextWeekField = XDocument.DOM.selectSingleNode ("//my:NextWeek") ;
var nextMonthField = XDocument.DOM.selectSingleNode ("//my:NextMonth") ;
var nextYearField = XDocument.DOM.selectSingleNode ("//my:NextYear") ;

// create the new date values and store them in the controls.

todayField.text = (date.getMonth() + 1) + "/" + date.getDate() + "/" +
date.getFullYear () ;

tomorrowsField.text = (date.getMonth() + 1) + "/" + (date.getDate() + 1) + "/" +
date.getFullYear () ;

nextWeekField.text = (date.getMonth() + 1) + "/" + (date.getDate() + 7) + "/" +
date.getFullYear() ;

nextMonthField.text = (date.getMonth() + 2) + "/" + date.getDate() + "/" +
date.getFullYear () ;

nextYearField.text = (date.getMonth() + 1) + "/" + date.getDate() + "/" +
(date.getFullYear () + 1);

The screen will then look as shown in Figure 14-3.

(@ DateCalculations - Microsoft Script Editor [design] - script.js BEx]
File Edit View Debug Tools Window Help
o~ - AN Y RN SR =S| M 1 Wl o 2 W |
E e h| - -] ez U A =5
EEEOET sl nml
Document Cutine 2 X sm'nf-i5| 4 b X | ProjectExplorer -D... # X
. F'J.’.’_‘\:l:r_ XDocument: :0nLoad (eventObj) z‘
 ¥Document::Onload ' // create a variable storing teday's date = ﬂﬂawd.atuns
[@ sointis

var date = new Date():

// create references toc the InfoPath form controls

var todayField = XDocument.DOM,.selectSingleNode ("//my:TodaysDate");
var tomorrowsField = XDocument.DOM.selectSingleNode ("//my:Tomorrow"):
var nextWeekField = XDocument.DOM.selectSingleNode ("//my:HNextWeek™)
var nextMonthField = XDocument.DOM.selectSingleNode ("//my:NextMonth™) ;
var nextYearField = XDocument.DOM.selectSingleNode ("//my:NextYear™):

[/ er th w date valu n tore them in the contrels. .

// create the new da alues and = e e n e co ols Frrois & %

todayField.text = (date.getMonth() + 1) + "/" + date.getDate() + 2
"o+ a&:e,cecfullx’earl?:l

tomorrowaField.text = (date.getMonth() + 1) + "/" + (date.getDate() + 1) +

"f" + date.gecFull¥ear():

nextWeekField.text = (date.getMonth(} + 1} + "/" + (date.gectDate() + T} +
"/" + date.getFull¥ear():

nextMonthField.text = (date.getMonth() + 2) + "/" + date.getDate() +
"/® + date.getFullYear():

nextYearField.text = (date.getMonth(}) + 1) + "/" + date.getDate(} +
iMoo+ (date.getFull¥ear() + 1) -k

i -
4% Toolbox [5] Doau... |— 4| | _DH

Ready Ln 40 Col 50 ch 32 [MS@

Figure 14-3

232

Real-World Tasks and Coding Examples

8. Save and close the editor.

9. Click Preview Form. The form is displayed with the various dates, as shown in Figure 14-1.
The reason that these are simple date calculations is that you are really just adding values to the parts of
the dates, not looking at the date values. For instance, if you add a month to the current month, and the

month is December, then you see an error in the displayed field. Now check out how to do it using C#
and Visual Studio .NET to resolve this issue.

Date Calculations Using C# and Visual Studio .NET

One of the huge benefits of using C# instead of JScript is that with C# you have the power of the classes
in .NET. Instead of using the limited Date object in JScript, you get to use the powerful DateTime .NET
class, including all the properties and methods belonging to it. These methods include specific opera-
tions for adding days, months, and years to dates.

As with the script example, you will assign today’s date to a variable, as shown here:

System.DateTime date = System.DateTime.Today;

System.DateTime Class

The DateTime class has a number of very nice methods for working with dates. You can see a number of
them in the following table, which are used for this example:

Method Description

Today Returns a DateTime object representing today’s date.

ToShortDateString Returns a string value formatted in the short date
format of mm/dd/yy.

AddDays Adds the number of days passed in an argument to the

DateTime object it is called from.

AddMonths Adds the number of months passed in an argument to
the DateTime object it is called from.

AddYears Adds the number of years passed in an argument to
the DateTime object it is called from.

Remember that these are methods of a DateTime object. You will see them used shortly. First check out
how to create a reference in your InfoPath form fields.

Creating a Reference to an InfoPath Field

Unlike using Jscript, when you use a variable in C# you need to declare it as a specific type. In the case
of assigning a reference to a field on the InfoPath form, it will be a IXMLDOMNode type. The command
itself looks very similar to the same line of code in JScript. Here is one of the lines of code you will use:

IXMLDOMNode todayField = thisXDocument.DOM.selectSingleNode ("//my:TodaysDate") ;

233

Chapter 14

Using the InfoPath object model in C#, discussed in Chapter 13, “Working with .NET Managed Code,”
you will use the main object, XDocument. The selectSingleNode method, part of DOM, is used to
retrieve a reference to the XPath value of the name of the control passed to it, in this case

"/ /my:TodaysDate".

By declaring the variable as an IXMLDOMNode object you will be able to see the properties and meth-
ods using Intellesense, also introduced in earlier chapters.

Assigning a Value to a Variable
Everything that is now done with the todayField variable will be reflected in the field on the form, as
can be shown the following line of code:

todayField.text = date.ToShortDateString() ;

This line of code stores the value in the date variable in the text property of the todayField, formatting
it using the ToShortDateString method. The line of code after this one varies depending on which

field is being assigned.

Try It Out Manipulating Dates Using C#

As with the last Try It Out, the first task you have to do is create a form to display the information:

1. Open Visual Studio .NET 2003.
2. Click New Project. The New Project dialog box will open.
3. Choose Microsoft Office InfoPath Projects.
4. Click Visual C# Projects. The InfoPath project will be displayed as shown in Figure 14-4.
New Project
Project Types: Templates: |7J
|23 visual Basic Projects ' +

|23 visual C# Projects
—-[Z1 Microsoft Office InfoPath Projects InfoPath Form
{23 visual Basic Projects Template
{29 Visual C# Projects
|23 setup and Deployment Projects
+-{.0 Other Projects
123 visual Studio Sclutions

Create a project using Visual C# that targets a new or existing Microsoft Office InfoPath form template

MName: | InfoPathProject4

Location: | C:\Books\InfoPath\Samples\Chapter 11\InfoPathCShai j Browse...

Project will be created at C:\Books'InfoPath\Samples\Chapter 11\InfoPathCSharp\InfoPathProjects.
FMore oK | Cancel | Help |

Figure 14-4

234

Real-World Tasks and Coding Examples

5. Click OK. The Microsoft Office Project Wizard will be displayed.

6. Click the Finish button, accepting the defaults. The project will be created with a new blank
form displayed.

7. Lay out the form as displayed in Figure 14-5.

Date Calculations

Today's Date:

Tomorrow:
Next Week:
MNext Month:

Mext Year:

Figure 14-5

8. Choose On Load Event from the Tools = Programming... menu choice. The new event will be
created, and you will be placed in the routine.

9. Type the following between the opening and closing brackets.

// Assign today's date to a variable.
System.DateTime date = System.DateTime.Today;

// Assign the field references.

IXMLDOMNode todayField = thisXDocument.DOM.selectSingleNode ("//my:TodaysDate") ;
IXMLDOMNode tomorrowsField = thisXDocument.DOM.selectSingleNode ("//my:Tomorrow") ;
IXMLDOMNode nextWeekField = thisXDocument.DOM.selectSingleNode ("//my:NextWeek") ;
IXMLDOMNode nextMonthField = thisXDocument.DOM.selectSingleNode ("//my:NextMonth") ;
IXMLDOMNode nextYearField = thisXDocument.DOM.selectSingleNode ("//my:NextYear") ;

// Assign the new values to the form fields.

todayField.text = date.ToShortDateString() ;
tomorrowsField.text = date.AddDays (1) .ToShortDateString() ;
nextWeekField.text = date.AddDays(7).ToShortDateString() ;
nextMonthField.text = date.AddMonths (1) .ToShortDateString() ;
nextYearField.text = date.AddYears(l) .ToShortDateString() ;

10. Choose Debug = Start. The form will then open in Preview Mode, shown in Figure 14-6.

2| Preview1 - Microsoft Office InfoPath 2003 =/EEd
! File Edit View Insert Format Tools Table Help pe & question for he! -
(Ao e sl ==z oA o i 2 startink Enty [2] 2. = E
lA

Date Calculations

Today's Date: |11/3/2004 3

Tomorrow: 11/4/2004

Mext Week: 11/10/2004

Mext Month: 12/3/2004

Next Year: 11/3/2005

|
<] ! L
f Form tempilate’s location: C:\Documents and Settngs\FSBarkerLocal Settings\Application DataWMicrosoft\infoPath\Designer \5624af
Figure 14-6

235

Chapter 14

If you change the system date to a later month, you will notice that unlike the form created in the script
version, all the dates are displayed correctly. Again, this is one of the benefits of using C# over scripting.
While you could jump through more hoops (meaning create more code) to accomplish the same goal, it

is easier to use .NET to accomplish the task.

Sending a Form in an E-Mail

Another useful feature is to be able to send forms to other users via e-mail. While you can accomplish
this using the menu choices, it is also more professional and convenient to be able to create code to
accomplish the same thing.

To send a form using e-mail, you will need to perform a couple of steps: First, you need to create a data
connection for your form, but in this case it will be used for sending e-mail instead of submitting and
retrieving data to and from a database. You can see the Data Connection Wizard used for setting up the
data connection in Figure 14-7.

Although you have to specify someone for the To field when creating the data connection, you can

Data Connection Wizard

X

Submitting through e-mail will create an e-mail message with the following properties. The
document will be attached to this message with a name spedified in the "Attachment Name™
field.

9
=)[=][=][]

Subject:

Introduction:

This message was created by a Microsoft Office InfoPath form. The form data may be
induded as an attachment.

Attachment Name:

[¥]

Form

Example: Status report or concat{™Status Report - , field1)

[< Back][Mext >][Cancel]

change all the properties using code at runtime.

The next step is to create the form you want to send. Finally, you have to write the necessary code,

added to a command button on the form. The code created will use a DataAdapter from the
DataAdapters collection off the XDocument object. You can see the line of code here:

var objEmail

236

XDocument .DataAdapters ("Submit") ;

Real-World Tasks and Coding Examples

Because you set the data adapter up to work with e-mail, InfoPath knows how to use it. The following
table contains some of the properties for the Email Adapter:

Property Description

AttachmentFileName Sets or returns the name of the attachment that will be made of the for.
BCC BCC recipient

€C CC recipient

Intro Introduction of the form

Name Name of the data adapter

Subject Subject of the e-mail message

To To recipient

The method you use will use here is the Submit method. You can see some of its properties displayed in
the table, along with the Submit used in the following lines of code:

objEmail.To = XDocument.DOM.selectSingleNode("//my:ToField") .text;
objEmail.Subject = XDocument.DOM.selectSingleNode("//my:SubjectField") .text;

objEmail.Submit () ;

Try It Out Creating a Form That Can E-Mail Itself
You will create a new blank InfoPath form for this Try It Out.

1. Open InfoPath.

2. Choose Design a Form.

3. Click New Blank Form. A new form is displayed.
4

Lay out the form as shown in Figure 14-8. The field names for the text boxes will be ToField and
SubjectField.

Send a Form in an Email
To:

Subject

[send Mail

This is the rest of the form.

Figure 14-8

5. Choose Tools => Data Connections. The Data Connections dialog box appears.

237

Chapter 14

6.

%

10.
11.
12.
13.
14.

15.

16.

238

Click the Add button. The Data Connection Wizard starts, with the first page asking if you
would to Submit or Receive data. The default is Submit.

Click Next. The next page asks how you would like to submit the data: To a Web Service, to a
SharePoint Library, or As an Email message.

Select the As an Email Message choice, then click Next.
Fill in the To text box with an e-mail address. The dialog box will then look like Figure 14-9.

&

Data Connection Wizard

Submitting through e-mail will create an e-mail message with the following properties. The
document will be attached to this message with a name specified in the "Attachment Name™
field.

To: FSBarker@msn.com

0
RIRRE

Subject:

Introduction:

This message was created by a Microsoft Office InfoPath form. The form data may be
included as an attachment.

Attachment Name:

Farm

[¥]

Example: Status report or concat{"Status Report -, field1)

[Mext =][Cancel]

Figure 14-9

Click Next. The last page of the Data Connection Wizard is displayed.
Click Finish, remembering the name of the data connector, Submit.
Click Close. The Data Connection dialog box closes.

Double-click the command button. The property sheet will open.

Change the Label of the button to Send Mail, and the ID to binSendMail. The property sheet
will then look like Figure 14-10.

Click the Edit Form Code button. The Microsoft Script Editor will open, and a new Click event
subroutine will be created.

Type the following line of code in between the opening and closing brackets:

var objEmail = XDocument.DataAdapters ("Submit") ;
objEmail.To = XDocument.DOM.selectSingleNode("//my:ToField") .text;
objEmail.Subject = XDocument.DOM.selectSingleNode ("//my:SubjectField") .text;

objEmail.Submit () ;

In the editor, the routine will now look as it does in Figure 14-11.

Real-World Tasks and Coding Examples

Button Properties %)

General |Display | size | Advanced |

Button

Action: |Ru|es and Custom Code M|
Label: | 5end Mail |
D: | binsendVai |

Edit Form Code...

[o][cencl Apply

Figure 14-10

—————— — — o
& SendAnEmail - Microsoft Script Editor [design] - script.js B[=]x]
File Edit View Debug Tools Window Help
E = T e . = & 4L g -
TR I Eoblol Bosem
T T = - - i A 2 ==
o = | [| | LB L UlAL ==
=S S %Y |
,m-pr_j,| 4 b * ProjectExplo.,. @ X
I* —
-
- - * This file contains functions for data validation and form-level events. W
#o l::0nclisk * Because the functions are referenced in the form definition (.xsf) file, h . J.gl

* it is recommended cthat you do not modify the name of the function,
* or the name and number of arguments.

/{ The following line is created by Microsoft Office InfoPath to define the prefi
ff for all the known namespaces in the main XML data file.

/{ Bny modification to the form files made outside of InfoPath

f/ will not be autcmatically updated.

//<namespacesDefinition>

XDocument.DOM. secProperty ("Selectioni, 23", 'xmlns:imy="http:// .micros
ref -]
f{</namespacesDefinition> B tes % X
Iy e 4] Ze:
. Lr
ff The following function handler is created by Microsoft Office InfoPath. —
/{ Do not modify the name of the function, or the name and number of arguments.
) j=======
function btnSendMail::0OnClick (eventlbj)
i
var objEmail = XDocument.DataRdapters("Submit™);
objEmail.To = XDocument.DOM.=elect5ingleMode ("//my:ToField") .text;
ob3jEmail.Subject = XDocument.DOM.selectSingleNode ("//my:SubjectField™).text;
ob3iEmail.Submit () ;
1 =
9% Toolbox EDuu.mr 4 [3
Ready | tn24 ol 1 ch1 [|[ms /|

Figure 14-11

17. Close the Microsoft Script Editor, saving the script file.
18. Click Preview Form. The form opens.

19. Fill in the To and Subject fields, then click Send. The message box is displayed, as seen in
Figure 14-12.

239

Chapter 14

< Previews - Microsoft Office InfoPath 2003
';Eils Edit View Insert Format Tools Table Help pe & question for hel <
| -| B L U= = = [i= = o 2 5= |2 -;‘.i,/SmrllnkEntry,Ig',/.g'E ;‘

-

Send a Form in an Email ’This is to test this feature - Message

To: FSBarker@Appsplus.com The form has created the following message to be sent from your default Microsoft
Subject This is to test this feature Office Outiook e-mall account, The form data may be submitted as an attachment.
Send Mail To: FsBarker SAppspius. com

Cex

Bec:
This is the rest of the form.

Subject: This is to test this feature

Attachment: Form,xml (668 bytes) view Attachment

Introduction: This message was crested by a Microsoft Office InfoPath form, The
form data may be induded as an attachment.

4 D connecting to Data Source, Please wait ..

Figure 14-12

After clicking Send, the e-mail will be sent to the recipient. There you have it! You can send forms to
your users and have them send the form back to you after they have filled in the information needed.

Providing Context-Sensitive Help

Besides displaying view choices in a custom task pane as shown back in Chapter 11, “Working with
Code in Your InfoPath Form,” you can also use the custom task pane to display context-sensitive help.
Context-sensitive help is information displayed based on where the user is on a form. For example,
when a customer is in a field such as Customer ID, you can display a description for the field or give
instructions on how to enter certain types of data. In Figure 14-13, you can see an example of the form
taken from Chapter 6, “Working with Controls in General,” modified to use context-sensitive help.

Just as when you're using the custom task pane for displaying views, you specify the custom task

pane properties using the Advanced tab of the Form Options dialog box. In addition to this, you will
supply an HTML page providing the information in the task pane. Finally, you will add code to the
ContextChange event so that as you are moving to each part of the form, the task pane will change the
description text to match.

240

Real-World Tasks and Coding Examples

r.£| Preview1 - Microsoft Office InfoPath 2003

! File Edit View

Insert Format Tools Table Help VP
i g Submit | - 1| 3f Close Preview | 4 (4 % | 4 o B S i@ 2] k] 8L Pad) '|. -||B = =
| 7 StartInk Entry [[£]- | 2 - = | @
el
. - - — : Context Sensitive Help v X
Customer Information with Invoices

Customer ID

i : - The Customer Identification
Customer ID: Contact Name: Mumber of the customer.
Company : Contact Title:

Addraess: Phone: Fax:

City:

Region: Postal Code: Country:

Order ID: Order Date: Required Date: [

Employee ID: Shipped Date:

Order ID Product ID Unit Price Quantity Discount

E nsert item [v]
< | I 3
d Form template’s location: C:\Documents and Settngs\FSBarker\Local Aol Data' \infioP; Designer BE74c

Figure 14-13

The actual steps are:

1.

Create the Form: In the case of this example, the form from Chapter 6 is used.

2. Create the HTML Web page: In creating the HTML Web page, you will use standard HTML

statements (tags) in a format that can be used by the code written for the ContextChange event.
You can see an example of the code in Figure 14-14.

</dive

</dive

< /dive

& ContextSensitiveHelp.html - Notepad Q@

File Edit Format View Help

<html> -
<body=

 3

<div id="dfs:myFields"” style="display:none’>

<div id="d:tblcustomers” style="display:none”s

<div id="CustomerIip” sty'l e="display:none">

<g>—=f_ont color="Red"><b=Context Help</b=</font=</p>
=br /=
Please the cursor in the Customer ID, Company Name or Contact Name Fields.

=p=<font color="Red »Customer Table=</bs</fonts</p>

This is where all the main customer information is presented.”

<g>—=f_ont color="Red">Customer ID</b=</fonts</p>
=br /=
The customer Identification number of the customer.

Figure 14-14

241

Chapter 14

The main object to notice is the <div> object. This object is used to display HTML in a specific
section. In this case the code will look up the ID of the object and display the HTML in task
pane. The other tags specify different formatting commands.

Notice also the first two DIVs, dfs:myfields and d: tblCustomers. The first node,
dfs:myfields, displays its message when you are on the blank part of the form and the heading.

d:tblCustomers is displayed when you are on the tblCustomers table part of the form, when the
individual fields aren't being displayed.

Tag Description

<p> Specifies the start of a new paragraph.

 Sets text between the beginning and end tags to bold.

 Set different properties of the font of text between the beginning and
end tags.

3. Create the Code in the ContextChange Event: Using the Microsoft Script Editor, you will create
the following code on the ContextChange event:

var strHelp = null;

function XDocument: :0OnContextChange (event0bj)

{

if (eventObj.Type == "ContextNode")

{
var objTP = XDocument.View.Window.TaskPanes.Item(0) ;
var objDoc = objTP.HTMLDocument.all;

if (strHelp)
objDoc.item(strHelp) .style.display="none";

objDoc.item(eventObj.Context.nodeName) .style.display="";
strHelp=eventObj.Context .nodeName;

return;

After testing for the context node, a reference is created for the task pane in the line of code that reads:

var objTP = XDocument.View.Window.TaskPanes.Item(0);

Next, a string variable called strHelp is queried to see if it was set to a value; if not, then it is cleared.

if (strHelp)
objDoc.item(strHelp) .style.display="none";

Finally, set the task pane to the current node of data, and store the node name for later use.

242

Real-World Tasks and Coding Examples

objDoc.item(eventObj.Context.nodeName) .style.display="";
strHelp=eventObj.Context .nodeName;

That’s it. Now try it out yourself.

_ Creating a Context-Sensitive Help Task Pane

For the purposes of this Try It Out the Chapter 6 form has been copied into the Chapter 14 folder for this
book on the WROX Web site (ContextSensitiveHelp.xsn)and ContextSensitiveHelp.htm with
the commands in it.

1. Open InfoPath.

2. Create the InfoPath form as desired. You can see the form used for this example in Figure 14-15;
you will want to make note of the field names.

2| (Design) ContextSensitiveHelp - Microsoft Office InfoPath 2003 =JOEd
! File Edit View Insert Format Tools Table Help Type a question for help -
i) 5] S Preview Form | (& % | 4 L B 7 | & [| i Design Tasks... | @ | i 41 verdana .10 LB =
i A Draw Table " Mo border - |2 2| 02 - | Insert- ([B ,__;'| .-
; : : . : pata Source v x
Customer Information with Invoices m—
08 Layout
W Contrals
3 Data Source
1% views

| Customer ID: Contact Name: Data source:

| Company : : Contact Title: | =
: ! B : = [myFields »
1 Address: Phone: Fax: [=5 queryFields Tl
HiE H H = [8 dataFields
1 City:
" ' . | =[G ditblCustomers |
| Region: Postal Code: Country: (28 :CustomerID 1
| .) 8§ :CompanyName
£8 :Contacthlame
8§ :ContactTitle D |
! (28 :Address
| Order ID: Order Date: =R -City
1 fyeyeyeyeyeyeyeyeysysyspepeyepepeyest SN s 8 :Region
| Employee ID: 8 -Dretairnds L]
| |order 1D |Product ID \Unit Price Quantity Discount | Dlsnon detals
a
H |3 (@ relp with the Data Source
< m >|

Figure 14-15

3. Using NotePad or your favorite editor, create the HTML Web page containing the help text. If
using the form with the layout displayed in Figure 14-15, the text would look as follows:

<html>
<body>

<div id="dfs:myFields" style="display:none">
<p>Context Help</p>

243

Chapter 14

Place the cursor in the Customer ID, Company Name or Contact Name Fields.
</div>
<div id="d:tblCustomers" style="display:none">

<p>Customer Table</p>

This is where all the main customer information is presented."
</div>

<div id="CustomerID" style="display:none">
<p>Customer ID</p>

The Customer Identification Number of the customer.
</div>
<div id="CompanyName" style="display:none">
<p>Company Name</p>

Company Name of the Customer.
</div>
<div id="ContactName" style="display:none">
<p>Contact Name</p>

Name of the Contact.
</div>

<div id="ContactTitle" style="display:none">
<p>Contact Title</p>

Contact's Title.
</div>
<div id="Phone" style="display:none">
<p>Phone</p>

Contact's Phone.
</div>

</body>
<html>

Note that you can fill out the HTML Web page with as many of the fields as you want to cover.
Save and close the HTML Web page, noting where it is saved.

Choose Tools = Form Options.
Click the Advanced tab.

Put a checkmark in the check box labeled Enable custom task pane.

0N o o

Click on the Resource Files ... button. Using this form, you will locate and specify the HTML
Web page you created in Steps 3 and 4.

Click Add....
10. Locate the HTML Web page you created.

©

11. Click OK. You can see the HTML Web page specified in the Resource Files dialog box in Figure
14-16.

244

Real-World Tasks and Coding Examples

Resource Files
Resource files in form:
ContextSensitiveHelp. himl
Figure 14-16

Click OK. You will be taken back to the Form Options dialog box on the Advanced page.
Type the name you want to use in the Task pane name field.

Pick the name of the HTML Web page you specified in Task pane location. You are now done
filling out the Form Option for the task pane information, as shown in Figure 14-17.

Form Options
General Form Library Columns Digital Signatures
Advanced Open and Save Security

Custom task pane
Select an HTML file whose contents will be displayed to users in a custom task
pane. Enter the name and task pane location below, or use the Resource Files to
add form files for this form.

Enable custom task pane
Task pane name: Context Sensitive Help
Task pane location: ContextSensitiveHelp. himl v

Resource Files.

Form template version
ersion number: 1.0.0.17

On version upgrade: | Do nathing (existing forms might |+ |

Programming language
The programming language can only be set when no code exists in the form.

Service pack
This form uses enhanced features that require its users to have
Microsoft Office 2003 Service Pack 1 or later installed. You can
export @ copy of this form for users that do not have the service
pack installed, but the copy will lose all the enhanced Service Pack
features.

oK][Cancel]

Figure 14-17

245

Chapter 14

15. Click OK.

16. Click Preview Form. The form opens. If you click various parts of the form, help will be dis-
played, as shown in Figure 14-18. The cursor is placed on the table called tblICustomers.

P ~
| Preview2 - Microsoft Office InfoPath 2003 =JEEd
i File Edit View Insert Format Tools Table Help Type & question for hel
L@l Submit | -2 = | & Close Preview | 3 (3 ¥ | % Ga % F| |2 8kl 8 i RN

i # Start Ink Entry || &)~ 2 | - = | &
-
- E B — [Context Sensitive Help * X
Customer Information with Invoices
e 8|a
Customer Table
a g : This is where all the main
STEEEr L e e (s customer information is
Company : Contact Titla: presented.”
Address: Phone: Fax:
City:
Region: Postal Code: Country: =
Order ID: Order Date: Required Data:
Employee ID: Shipped Date:
Order ID Product ID unit Price -_Qnanlitv"nI Discount ‘
E Insert item
B insert item
H rnsert item
Region: -
< I 3
f Form template’s location: C:\Documents and Settings\FSBarker\Local Settings\Application Data\Microsoft InfoPath\Designer \dosbbo
Figure 14-18

Make sure you test all areas of the form. If you don’t have a node entered into the HTML Web page, an
error will occur.

Summary

One of the areas that InfoPath forms don’t cover using the user interface is the manipulation of dates.
Even in JScript there are hoops you have to jump through, meaning additional code you need to write,
to handle cases where months and years overlap. You learned how you can take care of this using C#'s
DateTime methods to handle any date manipulation needed. You also learned how to handle additional
tasks such as sending a form using scripting and creating context-sensitive help using a custom pane.

246

Real-World Tasks and Coding Examples

There is virtually nothing you can’t accomplish using InfoPath forms with scripting or managed code.
Of the two language platforms scripting is provided by InfoPath, but C# gives you more flexibility.

Exercises
1. Name three methods of the JScript Date object used in this chapter.
2. What object is used to send e-mail using code?
3. What is the HTML element used to specify an area on Web page?
4. Where on an InfoPath form do you specify information about the HTML Web page you want to

use for context-sensitive help?

247

15

Creating and Working
with Web Services

Web services, sometimes called XML Web services, have been mentioned several times in this
book. Web services are fast becoming a very popular technology and are surprisingly easy to use
and create. Once created, you can expose the Web service to either your intranet or the Internet. If
the Web service is exposed to the Internet, other applications can access it regardless of if they are
desktop — or Web browser —based. They can be used (known as being consumed) using standard
Internet protocols.

Along with databases, such as Access and SQL Server, and XML documents and schemas, you can
use a Web service for InfoPath data sources. You may ask why you would bother if you can just
hook into the database just mentioned, but there are a number of other databases that you may
want to connect to over the Internet, and Web services are the way to accomplish that. In this
chapter you will:

O Beintroduced to Web services and the technologies behind them.
0O Getan overview of ASP.NET.
0 See how to create a Web service.

O Create a Web service and use it as a data source for an InfoPath form.

For the purposes of installing and testing the Web service provided in this chapter, you must have
Internet Information Services 5.x installed and ASP.NET 1.1 loaded for the local host. When creat-
ing the sample Web service in the chapter, you will use Visual Studio .NET 2003 with C#.

Chapter 15

Web Services Overview

Web services are fast becoming an essential part of various applications in use, including Windows itself.
Now in the later versions of Windows when you click a file using Explorer and the system doesn’t recog-
nize the file format, a dialog box such as the one in Figure 15-1 will appear.

Windows @

I] Windows cannot open this file:
< File: WeorldUp.zi_p

To open this file, Windows needs to know what program created it. Windows
can go online to look it up automatically, or you can manually select from a list
of programs on your computer.

What do you want to do?

(@) Use the Web service to find the appropriate program

(_) Select the program from a list

0K] l Cancel

Figure 15-1

Notice that the first option in the dialog box is to use a Web service to locate the appropriate program for
the file. To use the service, or communicate, the consumer (local machine or application) will use XML
Messaging and HTTP. The same is true when the Web service is communicating back to the consumer.

One of the great things about using XML Web services is that as long as the consumer can create and
consume messages defined for the Web service, it doesn’t matter what the consumer is written in, or
what even what platform. The term used for this is loosely coupled, or in other words, nonproprietary.
Figure 15-2 displays this concept.

Notice that no specific languages or platforms are named in this graphic, except to point out ASPNET of

course. The Web service can be created using ASP.NET or any other language that works with Simple
Object Access Protocol (SOAP).

250

Creating and Working with Web Services

Applications That Can Take Advantage
of XML Services

Internet

M}

ASPNET Web Site

U

Inside Desktop
Applications

Other Web Sites [|:|
XML Web Services

=—

Intranet
Applications

|

-

Outside Desktop
Applications

Figure 15-2

Web Services Infrastructure

When talking about the infrastructure of Web services, there are four main areas. They are:

QO XML Web Services Directories: The central location to locate XML Web services created by out-
side organizations. The UDDI registry is an example of one of these directories. Your Web ser-
vice client may not even need to use these if you know the address of the Web service you are
accessing.

Q

XML Web Service Discovery: Discovering documents that describe a particular XML Web ser-
vice using the Web Services Description Language (WSDL). The DISCO specification defines

an algorithm for locating service descriptions. Again, if you know the location of the service
description you can avoid this process.

251

Chapter 15

QO XML Web Service Description: Defines what types of methods the XML Web service uses. Tells

clients how to interact with an XML Web service so that they know how to use it.

QO XML Web Service Wire Formats: To be able communicate with all platforms and languages,
XML Web services use open wire formats. These protocols are understood by any system capa-

ble of supporting the most common Web standards. SOAP is the main protocol used.

You can see each of these parts of the infrastructure displayed in Figure 15-3.

Don’t panic. These steps are performed for you in most cases after you set up the Web reference, or in
the case of InfoPath, after you specify which Web service to use as a data source. You get a chance to

practice this in upcoming sections.

@ Directory
(http://uddi.microsoft.org)

The client attemps to locate an XML Web service. /

A URL to a discovery document is linked.

Discovery UDDI (or other
(http://www.contoso.com/default.disco) directory service)

The client requests the discovery document.

The discovery document is returned.

*/’@

Description
(http://www.contoso.com/MyWebService.WSDL)

=\
XML Web The client requests the service description. S
service —
client The service decription is returned.
@ Wire Format
T
. . XML Web
The client requests the XML Web service. Service
The service response is returned.
Figure 15-3

252

Creating and Working with Web Services

Using Web Services Locally

This section walks you through setting up a Web service locally to practice connecting to and creating
Web services. To accomplish this, you should download the final version of the Web service for this
chapter, called Chapterl5wWebService, into the root directory of your local host, using;:

drive: \ inetpub\wwwroot

Once the whole folder is copied to the specified folder, you will open up IIS and then make the folder
into a virtual directory by creating a default application for the folder using a property sheet.

Try It Out

Setting Up a Web Service Locally

You will need to have downloaded the Web service from the Chapter 15 folder on the WROX Web site.
When you have done so:

1.

2.

P

Copy the folder of the Web service into the default folder of your local host. In the case of the
authors machine: c:\inetpub\wwwroot.

Choose Adminstrative Tools = Internet Information Services from the Start menu. In IIS you
will see the default machine displayed.

Click the machine node to expand the tree view. You will then see the Web Sites nodes dis-
played. You may see other services listed such as SMTP and FTP if you installed them.

Click the Web Sites node. The Default Web Site node is displayed.

Click the Default Web Site node. You will then see a list of current Web sites and services on
your machine, as displayed in Figure 15-4.

T4 Internet Information Services

SEX)

File Action View Help

e - Bm XEFRE @ 2

@ Internet Information Services
= &) SHADRACHOS (local computer)
=10 Web Sites
- @ Default Web Site
+ §§ ISHelp
+ g Scripts
(i@ _vti_bin
+- (g Printers
+ {8 InfoPathsDK

Name

| Path

Status

C@_vti_bin

S bin

3 _vti_cnf

3 _vti_pvt

(3 _vti_script

2 _wti_txt

®) Assemblylnfo.cs

3] Chapterl5WebService....
@] Chapter15WebService....

9] Global.asax
9] Global.asax.cs
9] Global.asax.resx

C:'\Program Files\Common Fi..

+ (22 images 8] Servicel.asmx

+ {8 stockQuote 9] Servicel.asmx.cs

41 _private 8] Servicel.asmx.resx

a2 _vt_onf 9] web.config

= [_viti_log

(3 _vii_pvt £ >
Figure 15-4

253

Chapter 15

6. Right-click the Web service folder Chapter15WebService and choose Properties from the pop-
up menu. There are a number of properties listed here for the various types of Web sites.

7. Click the Create button, located under the application settings. The caption of the button
changes to Remove, and the name of the Web service is displayed in the Application Name
property, shown in Figure 15-5.

8. Click OK to close the property sheet. The Web service is now displayed in IIS with the virtual
directory icon displayed as displayed in Figure 15-6.

You can now close IIS, and the Web service will now be available as needed for use locally.

Chapter15WebService Properties
HTTP Headers Custom Errors Server Extensions
Directory Documents Directory Security

When connecting to this resource, the content should come from:

(®) The designated directory

() Aredirection to a URL

Local Path:

[]Script source access [¥]Log visits

Read [V]Index this resource
[wirite

|:| Directory browsing
Application Settings

Application name: Chapter15WebService Remove

Configuration...

Starting point <. \ChapteriZWebService

Execute Permissions: Scripts only 5l
Application Protection: Medium (Pooled) V
OK l l Cancel l l Apply l ’ Help
Figure 15-5

254

Creating and Working with Web Services

?__glnternet Information Services
File Action View Help
- BE XHFRHE @

@ Internet Information Services
= &) SHADRACHOS (local computer)
=10 Web Sites
- @ Default Web Site
+ £ NSHelp
+ g Scripts
(i@ _vti_bin
+- (g Printers
+ {8 InfoPathsDK
+- L1 aspnet_clent
+ 8 Chapter15WebService

Name

| Path Status

| |Z@_vti_bin

S bin

3 _vti_cnf

3 _vti_pvt

(3 _vti_script

2 _wti_txt

®) Assemblylnfo.cs

3] Chapterl5WebService....
@] Chapter15WebService....

9] Global.asax
9] Global.asax.cs

C:'\Program Files\Common Fi..

+ {§ DefCapGain 9] Global.asax.resx

+-(1 images 9] Servicel.asmx

+ {8 stockQuote 9] Servicel.asmx.cs

+-C3 _private 3] Servicel.asmy.resx

+ [0 _vt_enf 9] Web.config

= [_viti_log

(3 _vii_pvt £ >
Figure 15-6

Using Web Services for Data Source

The steps for specifying a Web service as a data source for an InfoPath form are almost as easy as, if not
easier, than those used for specifying a table in a database for a data source. InfoPath performs a number

of the steps for you.

The first thing you have to specify is whether you are receiving (querying) or submitting data. For now
you will see quickly how to specify a Web service for viewing data.

After specifying what you want to do with the data (receive and/or submit), you will need to specify
where the Web service you want to use is located. For the purpose of locating the Web service, you can
utilize the UDDI directories, displayed in Figure 15-3, on the prior page. To help you locate the Web ser-

vice, Microsoft supplies a dialog box, displayed in Figure 15-7.

Search Web Service

Search the following UDDI server:
http:/fuddi.microsoft. com finquire

Search in the following field:

Provider

Search for:
data

W

Search result:

Data Assodates, Inc::Currency Rate Cony
Data Assodates, Inc::UPS Online Package
Data Assodates, InciiWeather Fetcher

DataConcert, Inc.::Business Document Trg

Cancel

Figure 15-7

255

Chapter 15

For the purposes of this chapter, the Web services used will be located on the local machine at http://
127.0.0.1, so the dialog box displayed in Figure 15-7 will not be used. You can also test using
http://localhost.

Once you have specified the Web service, the wizard will walk you through the steps to specify which
methods to use. After the wizard is completed, you will then need to bind the fields displayed to the var-
ious controls just as you do when using other types of data for data sources.

TryltOut | Basing an InfoPath Form on a Web Service

To start off, you will be using an InfoPath form to display information from a Web service. While here
you will be seeing how to specify a Web method as an InfoPath data source, in the following sections
you will see the code on the Web service side that makes up the data connection. To start:

1. Open InfoPath.

2. Click Design a Form. The Design a Form task pane will be displayed on the right-hand side of
the application.

3. Click the task New from a Data Connection in the Design a Form task pane. The first page of the
Data Connection Wizard will be displayed.

4. Select Web Service from the first page, as shown in Figure 15-8.

-

(Data Connection Wizard E

This wizard helps you design a form based on the data you receive from or submit to @ Web
service or database.

‘V"I' Select the type of data connection you want to use for your form:
O_ Microsoft SQL Server or Microsoft Office Access only)

e

Bad Next = |[Cancel

Figure 15-8

5. Click Next to continue with the Data Connection Wizard. The next page asks you if you want to
receive and submit data, submit data, or just receive data. For the purposes of this task, you will
just receive data.

6. Choose Receive data, as shown in Figure 15-9.

256

Creating and Working with Web Services

-

Data Connection Wizard &

N

You can specify how your form works with the Web service, including whether it receives
and submits data to the service.

Do you want your form to both receive data from and submit data to the Web senice, only
to submit data, or enly to receive data?

() Receive and sybmit data
it data

< Back][Next > |[Cancel

Figure 15-9

Click Next. The page displayed is where you will supply information about the Web service you
want to use. In this case, you will be using your localhost service, or IP address, 127.0.0.1.

You will next be supplying the Web service name, in this case Chapter15Webservice, and the
main page of the Web service Servicel.asmx. Finally, you add the ?, which tells Web pages
you are sending a query, and the letters WSDL, which informs the Web service that you want
the descriptions of the available methods and properties of the Web service. You can see the full
string supplied for this example in Figure 15-10.

-

Data Connection Wizard &

Web service details (submit data)
Use these options to specify the Web service to which you submit data.

Enter the location of the Web service you want users to submit their forms to:
| http://127.0.0.1/Chapter15WebService/Servicel.asmx?WsDL | Search UDDL..

Example: http://www.contoso.com/Service.asmx?WSDL

< Back][Next > |[Cancel

Figure 15-10

257

Chapter 15

8.

Click Next. The wizard queries the URL you specified to see if it can read the WSDL. If so, you
see the list of methods provided by the sample application, as shown here in Figure 15-11.

-

(Data Connection Wizard E

The Web service that you selected has the following operations for submitting your XML
data to.

Select an gperation: Description of operation:

GetSupplierinfoXML
GetSupplierinfoForDropDown

Cope) e (o]

Figure 15-11

If you have specified the URL incorrectly, then a message box will appear, and you will need to click
Back in the wizard.

9.

10.
11.
12.

13.
14.

258

Select GetSupplierInfoDS, and click Next. The next page displays all the parameters that will be
used for querying the data. In this case, SupplierID will be used. To have InfoPath understand
how to query the data correctly, you have to supply a sample for the query. In this case supply
the value of 1, then InfoPath can do the rest of the work.

Click Set Sample Value.... The Parameter Details dialog box opens.
Type in 1, as shown in Figure 15-12.

Click OK to accept the value, and then click Next in the Data Connection Wizard. The summary
page, which is also the last page of the wizard, is displayed, as shown in Figure 15-13. You can
also change the name used for the data connection you want on this page.

Click Finish. The wizard is now complete and a query form template is displayed.

Click the Data Source task pane, and then expand the two branches queryFields and dataFields,
as shown in Figure 15-14.

These should look familiar because they also are using a database for the data connection.

Creating and Working with Web Services

(Data Connection Wizard 1

To design a form based on this Web service, InfoPath needs to collect more information
about the service by querying it with sample values in the parameters listed below.

To enter a sample value for each parameter, szlect the parameter and click Set Sample
Value.

Parameters:
Parameter | Type | sample value Set Sample Value...
tns:Supplierin™ long

name: |Su33ll-:'rlL) |

Data type: | long |

Sample value: | 1 |

[<sack || mea> || concel

Figure 15-12
[Data Connection Wizard X]
Enter a name for this data connection:
|Maln query
Summary

Type: Retrieve data
Web service: http://127.0.0.1/ChapterlSWebService/Servicel.asmyx
Operation: GetSupplierInfoXML

[<sacc | | _mmsn || concel

Figure 15-13

259

Chapter 15

15.

16.

17.

18.

19.
20.

260

= /= myFields ~
=| =8 queryFields [l
=] 58 tns:GetSupplierinfoXML
=R SupplierD=
=| [=8 dataFields
=| [(58 tns:GetSupplierInfoXMLResponse
= [=8 GetSupplierInfoXMLResult
=| [=8 :NewDataSet
=| [=8 Table
'_@ SupplierlD
=R companyName
=R contactName
=R ContactTitle
=R Address
=8 city

=R PostalCode hd

Figure 15-14

Drag the SupplierID field from the queryFields into the table under the button labeled Run
Query.

Drag and drop the Table node from dataFields data source branch under the table that has the
label Click to add form content. You will then see the sections menu appear, letting you choose
how you want to set the section up.

Pick Controls in Layout Section from the displayed menu. The fields will now all be displayed
as shown in Figure 15-15.

That'’s all there is to it. Now, the last step is to preview the form just as would any other form.

Click Preview form. The empty form is now displayed, ready for you to enter a supplier ID to
query.
Type 1 in the text box under the label Supplier ID.

Click Run Query. The parameter is supplied to the Web service, and the result is returned to the
form to be displayed, as shown in Figure 15-16.

Creating and Working with Web Services

[(Design) Template2 - Microsoft Office InfoPath 2003 E X
: File Edit View Insert Format Tools Table Help Type a question for help -
Sl ﬂ,«'}grevlawForrﬂd_L} e A R ﬁé F |9 | @] [J |3 Design Tasks... | @ E
| 44 vergana z10 /B 7 U|E|==miz.i=-ic oW AN
E;{IDra:aTabthoborder z[lpt v|év|{')lv|ln§artv _JE%
* | Data Source v x
Click to add a title
Click to add form content Eg 'g::::;g

4.4 Data Source

O
Supplier ID | 3 views
Company Name : Data source:
Contact Name |
------------- N —— = = myFields ~
Cl:lnl:al:tT|tIe : o =l [58 queryFields
Address : : B (58 tns:GatSupplierinfox
ZF Suppliern* 3
Gty ; : =l (= dataFields
Postal Code = (2§ tns:GetSupplierInfox
*] (= [GetSuppliernfo»
Country _ : : = &j NewDataSe
Phone i E =FTabl| v |
: | ZF sup
: =8 coml ™

-- I '<] Il [)_

- CIshow deais

'Supplier 1D: :
i () Help with the Data Source

fiv]

Figure 15-15

Now comes the fun part. If you've read Chapter 13, “Working with NET Managed Code,” along with
the Chapter 14, “Real-World Tasks and Coding Examples,” you should be somewhat comfortable with
Visual Studio .NET 2003. One of things not covered was using ASPNET and developing for the Web.
This next section provides an introduction to just that.

261

Chapter 15

|2Z] Preview1 - Microsoft Office InfoPath 2003 BEX|
i File Edit View Insert Format Tools Table Help Type a question for help «
; | ¥ Close Preview | (4 [3 % |9 o me | @
11 ¢ ¢ - -
- B s U= ===, s, =R, —;/StanlnkEntryv./
bl
Supplier ID 1

Company Name Exotic Liquids
Contact Name Charlotte Coope

Contact Title Purchasing Man

Address 49 Gilbert St.
City London

Postal Code EC1 45D
Country UK

Phone (171) 555-222:%

Supplier 1D:
1

3

4 Form template's location: C:\Documents and Settings\FSBarker\Local Settings\Application Data\Microsoft\InfoPath\Designer\567¢7¢

Figure 15-16

Creating a Web Service Using ASP.NET

In the prior chapters you have see how to use C# to manipulate the InfoPath object model and create
functions to accomplish tasks using Visual Studio .NET. Although some of your InfoPath development
thus far has used HTML and scripting to perform some of those tasks, none has used the Web. It is now
time to remedy that.

While there are many languages and platforms you can use to create Web services, to develop Web ser-
vices for this book you will be using ASP.NET.

Introducing ASPNET

With .NET developing for the Web becomes easier than ever. ASP.NET is actually even fun to work with.
In the past, it has been quite a task to develop applications in ASP. Now you can develop your Web
applications in much the same way you do Windows desktop applications, with a few major differences.

262

Creating and Working with Web Services

Those differences really won’t even be felt when you create the Web service for this chapter, because you
will really just be taking parameters and passing back data.

ASP.NET combines HTML and server-side code such as C# that helps to create dynamic Web pages,
which not only provide static Web presentations but also allow user interaction with data. In this chap-
ter, you use Web services for sending and receiving data, not only for the data presentation itself.

Note that when you use Web services Visual Studio (VS) does a lot of the work with setting up how the
Web service communicates using SOAP, which is used to transfer the data via XML. SOAP was created
originally by the W3C group, mentioned in Chapter 5, “Utilizing XML and Web Service Data Sources.”

Try It Out Creating an ASP.NET Web Service Project
When you create a new project in Visual Studio .NET, there are a number of choices of project types to
create; one of those is the ASPNET Web Service project:
1. Start Visual Studio .NET.
2. Click New Project. The New Project dialog box will appear.
3. Select ASPNET Web Service, as shown in Figure 15-17.

New Project
Bo b
Project Types: Templates: |; s
[Z visual Basic Projects A
129 visual C# Projects r% Iez
+-{Z Microsoft Office InfoPath Projects Windaws Class Library ~ Windows Control

(21 setup and Deployment Projects Application Library
+ [:l QOther Projects

(23 visual Studio Solutions % _:_EL%

Smart Device ASP.NET Web |ASP.NET Web
Application Application Service hdl

A project for creating XML Web services to use from other applications

Location: | http:/flocalhost/webService1 j Browse. ..

Project will be created at http:/flocalhost/WebService 1,
FMorg 0K | Cancel | Help |

Figure 15-17

When you specify the name of the Web service you want to create, Visual Studio will create a
folder under the Web server you specify. In the case of Figure 15-17, the majority of the project
files will be stored in the folder called webServicel under the localhost Web server. Remember
the default location for localhost is drive: \inetpub\wwwroot. WebServicel will also be set
as a virtual directory.

4. Click OK. Visual Studio .NET creates the project. By default you see the Solution Explorer on the
right and a blank * . cs file in Design view, shown here in Figure 15-18. The reason that you
don’t have a design surface to work with is that Web services don’t have a user interface.

263

Chapter 15

[WebService1 - Microsoft Visual C# NET [design] - Service1.asmx.cs [Design] [BE[X]
FEile Edit View Project Build Debug Data Tools Window Help
H-m-s@@ L BER| oo FE-E|)by * (8 SPHArID | BEEHRER
g R e e A T
'E Start Pane Servicel.asmu.cs [Dﬁun]| 4 b % || solution Explorer - WebServieel 1 X
2 EElEREIE
o [Solution “WebService1 (2) (1 project)
e = [} WebServicel
E - & References
AssemblyInfo.cs
] Global.asax
Service 1.asmx
‘Web. config
To add components to your dass, drag them from the Server Explarer or Toolbox and use the Properties windowto settheir properties. To create
methods and events foryour class, click hereto switchto code view. -
Properties I =
| service1 System.web.Services.Wel ~ |
A EIE A=
[E Configurations
B (DynamicProper
E Design
{Name) Servicel
(Name)
Ready [I

Figure 15-18

5. Click the link that says click here to switch to code view. You will then see the code created for you,
as shown in Figure 15-19.

264

Creating and Working with Web Services

7 WebService1 - Microsoft Visual C# .NET [design] - Servicel.asmx.cs

= J=Ed
File Edit View Project Build Debug Tools Window Help
Ar-ra-zEld bR . - @-E | poebg v | i) SPHATD - AEEHRE-, BERbkae | EZ 7
Z5 | StartPage | Service Lasm.cs [Desion] Servicelasmox.cs | 4 b % | Solution Explorer - WebServicel 1 X
i s e BRI
= D using System: — [eh Solution WebServiee ' (1 project)
B System.Collections; | = [webService1
= g System.ComponentModel ; - () References
o System.Data: E AssemblyInfo.cs
System.Diagnostics: l Global. asax
N P @ Service1.asmx
g System.Web; B Web.config
uging System.Web.Services: .
B namespace WebServicel
K
Properties 1 x
L | =
[AGIE
the string E rld
t the fo a = then save and build the project
Y this web service, press F3
s [WebMethed]
i public string HelloWo
17
'y 3
} ||
' ~|
4 2l
Resdy |[ina Col 1 chi ™S
Figure 15-19

Looking at the Initial Template

When looking at the file displayed in 15-19, the actual code that you will be modifying is at the bottom

of the code, and can be seen here:

// [WebMethod]

// public string HelloWorld()

/ {

// return "Hello World";
// }

You will be removing the comment markers (//) and modifying the code to create a method that will be
used by InfoPath. Microsoft provides a template to return a class message of “Hello World.” Before
checking this code out, take a look at the various parts of the file that are common in Web services, as

well as other C# applications.

265

Chapter 15

The Using Directive

In the first section, you will specify which classes and namespaces you need to import into your Web
service with the using directive as follows:

using System;

using System.Collections;
using System.ComponentModel;
using System.Data;

using System.Diagnostics;
using System.Web;

using System.Web.Services;

VS puts in the namespaces displayed here by default, and you can add your own as needed. For
instance, if you need to use commands that manipulate XML, then you will want to add a using direc-
tive as follows:

using System.Xml;

By specifying these namespaces, you can then utilize the classes within the namespaces without giving
the complete name path in your code.

Namespace and Class Directives

Already discussed in Chapter 13, the following code specified the namespace for the Web service, as
well as the name of the Web service itself, designated with the class.

namespace WebServicel
{
/// <summary>
/// Summary description for Servicel.
/// </summary>
public class Servicel : System.Web.Services.WebService

Notice that the type of class of Servicel is System.Web. Sevices.WebService. VS designats this class
to perform a ton of work for you, and it allows you to use all the methods and properties available to the
WebService class.

Initialization Code

The following method is run when the Web service is first run. When you have code that you want to
run whenever the Web service object is instantiated, you will put the code here. For the purposes of the
code used in this chapter, you won’t be using this method.

public Servicel ()

{
//CODEGEN: This call is required by the ASP.NET Web Services Designer
InitializeComponent () ;

266

Creating and Working with Web Services

The Sample Web Service

The following code is what you will be modifying and using for your own methods that will be created
for the Web service:

/7
/!
/7
/7
/7

[WebMethod]
public string HelloWorld()

{
return "Hello World";

}

As you can see, the code looks a lot like other C# methods introduced earlier in the book. The big differ-
ence is the [WebMethod] attribute added just before the method declaration. Everything else will be the

same.

Try It Out Creating and Testing Your First Web Method

To get started as quickly as possible, you will start small by removing the comment symbols in the cur-
rent code listed in the * . cs file created in the last Try It Out.

1.

Highlight each of the comment symbols (/ /) in the code just presented, and press the Delete
key.

[WebMethod]
public string HelloWorld()

{

}

return "Hello World";

That’s it. Now it’s time to test the code.

Choose Debug => Start. The Web Service project is built, or rebuilt, and then the test harness that
VS creates is started in Internet Explorer. You can see the test page in Figure 15-20.

Besides the name of the method to test, HelloWorld, there are some explanations on how to
implement the Web service and its methods. To see what the SOAP that VS creates looks like,
click the Service Description link. You will then see the page displayed in Figure 15-21.

Again, be thankful that Visual Studio does all that work for you. Click the Back button to return
to the test harness page.

Click the HelloWorld link. A test Web page with an Invoke button is displayed along with the
sample SOAP request and response, shown in Figure 15-22.

You won't be using the SOAP at all. If you had any parameters required by the method, they
would also be displayed on this page.

267

Chapter 15

268

] Service1 Web Service - Microsoft | Explorer

File Edit View Favorites Tools Help

Q== @ - |ﬂ |§| ,_b /'.) Search \:'\(Famines &

Adcress 48] http://127.0.0.1/WebService 1/Service 1.asmx

The following cperations are supported. For a formal definition, please review the Service Description.

+ HelloWorld

This web service is using http: / /tempuri.org/ as its default namespace.
Recommendation: Change the default namespace before the XML Web service is made public.

Each XML Web service needs a unique namespace in order for client applications to distinguish it from other services on the Web.
http:/ftempuri.org/ is available for XML Web services that are under development, but published XML Web services should use a
maore permanent namespace.

Your XML Web service should be identified by a namespace that you contral. For example, you can use your company’s Internet
domain name as part of the namespace. Although many XML Web service namespaces look like URLs, they need nat point to
actual resources on the Web. (XML Web service namespacss are URIs.)

Far XML Web services creating using ASP.NET, the default namespace can be changed using the WebService attribute's
Namespace property. The WebService attribute is an attribute applied to the class that contains the XML Web service methods.
Selow is a code le that sets the nar = to "http:/fmicrosoft.com/webservices/":

cE

[WebService (Hamespace="http://microsoft.com/webzervices/")]
public class MyWebService {
//{ implementation

<] m]
&l % Local intranst
Figure 15-20
-
] http://127.0.0.1\Web Service1/Service1.asmx?WSDL - Microsoft Internet Explorer
File Edit View Favorites Tools Help
Y =y 0 " 1A = |:
Qui - © W@ G P oo @ -5 @ - K B E
Adcress 48] http:ff127.0.0. 1 WebService 1/Service 1. asmxMWSOL 7| B s ® Googler | i
-~
<?gml version="1.0" encoding="utf-8" 7= [
- <wsdl:definitions xmins:http="http://schemas.xmlsoap.org/wsd|/http/"
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
="http://www.w3.org/2001/XMLSchema”
xmins:soapenc="http:/ /schemas.xmlsoap.org/soap/encoding /" xmins:tns="http:/ ftempuri.org/"
smins: tm="http://microsoft.com/wsdl/mime/textMatching/"
xmins:mime="http://schemas.xmlsoap.org/wsdl/mime/" targetNamespace="http:/ /tempuri.org/" =
smins:wsd="http:/ fschemas. xmlsoap.org/wsdl /">
- <wsdl:types>
- =s:schema elementFormbefault="qualified" targetNamespace="http://tempuri.org/ >
- «s:element name="HelloWorld">
<s:complexType />
</s:element>
- «s:element name="HelloWorldResponse"=
- es:complexType=
- <sisequence:
<sielement minDccurs="0" max0ccurs="1" name="HelloWorldResult"
type="s:string" />
</sisequence>
</s:complexTypes>
</s:element>
<fs:schema>
<fwsdl:types=
- zwsdl:message name="HelloWorldSoapIn"=
<wsdl:part name="parameters" element="tns:HelloWorld" /=
<fwsdl:message> [
- <wsdl:messags name="HelloWorldSoapOut"> |
&] Done & Local intranst
Figure 15-21

Creating and Working with Web Services

4,

Servicel

Click here for a complete list of operations.

Helloworld

Test
To test the operation using the HTTP POST protocal, click the ‘Invoke’ button.

Invoke

SOAP

The following is a sample SOAF request and response. The placeholders shown need to be replaced with actual values.

POST /WebServicel/Servicel.asmx HITP/1.1
Host: 127.0.0.1

Content-Type: text/xml; charset=ucf-&
Content=Length: length

SOAPAction: "http://tempuri.org/HelloWorld™

<?xml wersion="1.0" encoding="utf-8"32>

<soap:Envelope xmins:xsi="http://www.w3.org/2001/XMLSchema-instance” xmlns:xsd="http://www.w:
<goap:Body>

<HelloWorld xmlns="http://tempuri.org/™ />

< -e : | !

&1 Service1 Web Service - Microsoft Int t Explorer =JOkd
File Edit View Favorites Tools Help w
Qe - © - [x] A &) searcn ¢ Favorites {E) Rriz @ - JE 3=

=)] http:/127.0.0. 1/WebService 1/Service 1.asmi?op=Helolorid v| B o= ? Googler i

~

v

&] Done & Local intranet

Figure 15-22

Click the Invoke button. The final page is displayed with the XML returned from the Web service

and can be seen in Figure 15-23.

&7 hitp:/127.0.0.1Web Service1/Servicel.asmx/HelloWorld - Microsoft Internet E... [|[CT/E4
File Edit View Favorites Tools Help f,'-

- ¥
L

<) </ \ﬂ \ELI _l\l Pl) Search “};\:(Favorites E} S .,'_‘__; —
Address @ http:/f127.0.0. 1/WebService 1/Service I[V] Go Links * GODS]C' H

<?xml version="1.0" encoding="utf-8" ?=
<string xmins="http:/ ftempuri.org/">=Hello World </string>

ﬂj Done ‘:J Local intranet

Figure 15-23

If it seems like a lot of work for the little return of “Hello World,” the good news is that to return more
data doesn’t take much more effort. However, there are some more things you will need to cover that

apply not just to Web services, but to working with data overall.

269

Chapter 15

Working with Web Service Methods
That Return Data

Everything you have read in the preceding chapters on coding in Visual Studio .NET applies to creating
Web services. In addition to the commands covered already, .NET provides classes to help you work
with data. In comes ADO.NET.

Introducing ADO.NET

In Chapter 13, you were introduced to the concept of assemblies, namespaces, and classes. One of the
namespaces that can be found in .NET is the System.Data namespace. This namespace makes up
ADO.NET, which is a set of classes created to assist developers who work with data using the NET
Framework.

If you have done any development for the desktop using Visual Basic or VBA in the last couple of years,
especially when dealing with data, then you have probably used ActiveX Data Objects (ADO). ADO has
an object model created for the purpose of manipulating data using code. On the .NET platform
ADO.NET is used.

Differences between ADO and ADO.NET

The main difference between ADO and ADO.NET, besides specific objects, is the concept of connected
data (ADO) versus disconnected data (ADO.NET). In both versions of ADO, you will use a Connection
object, but in .NET the data is loaded either on the local computer or on the server using XML. The con-
nection is then broken until the data is resubmitted to the source data. The ADO.NET objects, using
properties, handle synchronization of data.

In ADO the main object was the Recordset, whereas in ADO.NET it is the DataSet. Unlike the Recordset
from ADO and DAO, the DataSet actually brings back a hierarchical view of the data. Using properties
and collections in the DataSet object, you can get from overall relations all the way down to individual
tables, rows, and columns. You will read more about the DataSet object in the section in this chapter
called “ADO.NET Objects.”

Rather than going class by class through both ADO and ADO.NET, you will read about the classes used
to work with the data in ADO.NET.

ADO.NET Data Provider Classes

.NET provides classes called data providers that will work with ADO.NET objects to provide access to
data. You can see some of those objects in Figure 15-24.

270

Creating and Working with Web Services

OleDb Manage-Provider Namespace

System

Data

L oleDb
OleDbCommand
OleDbConnection
OleDbDataAdapter
OleDbDataReader
OleDbParameter

SqlClient Manage-Provider Namespace

System

Data

L sqiclient
SqglCommand
SqlConnection
SqglDataAdapter
SqglDataReader
SqglParameter

Figure 15-24

As mentioned, Visual Studio .NET applications are made up of one or more assemblies. Each assembly
contains one or more namespaces. Namespaces are then made up of one or more classes (objects). Hence
the namespace for OleDb objects is System.Data.OleDb. You can find these objects using the Object
Browser. In the following table you can see a brief description of two of the OleDb objects that you will
use in creating the Web service method for supplying data.

This object opens a connection to the server and database you want to
work with. Unlike the ADO Connection object, how the connection
remains open depends on the object you are working with, such as a

Object Purpose
Connection

DataReader or DataSet.
DataAdapter

ADO.NET Objects

A real workhorse, the DataAdapter lets you create SQL statements and
fill DataSets with the data. It also will create other action queries nec-
essary such as Insert, Update, and Delete ADO.NET command objects.

As mentioned in the previous section, the main object used with ADO.NET is the DataSet object. You can
see the DataSet object, and its properties, methods, and additional objects, in Figure 15-25.

The DataSet object is used in conjunction with the other data controls, storing the results that are
returned by commands and DataAdapters.

271

Chapter 15

DataSet
DataRelationCollection
ExtendedProperties
DataTableCollection

I—DataTabIe

DataRowCollection
—DataView I—DataRow
—ChildRelations

—ParentRelations

—Constraints

DataColumnCollection
— ExtendProperties |—Data(‘.‘olumn
—PrimaryKey I—ExtendedProperties

Figure 15-25

Try It Out Creating the Method to Return Supplier Information
For this Try It Out, you can replace the HelloWorld method created in the last Try It Out.

1. Open the project just created.
2. Addthe following statement in the top of the * . cs file with the other using statements:

using System.Data.0leDb;

3. Add the code displayed here just after the last curly brace for the HelloWorld method:

[WebMethod]
public DataSet GetSupplierInfoDS(long SupplierID)
{

//Create a connection to the local Access Database.

string strCnn = "Provider=Microsoft.Jet.OLEDB.4.0; ";

strCnn += "Data Source=" + Server.MapPath("/Chapterl5WebService") ;
strCnn += "\\Chapter 15.mdb";

OleDbConnection cnn = new OleDbConnection() ;
cnn.ConnectionString = strCnn;

//Create an SQL DataAdapter to read the data.

string strSQL = "SELECT SupplierID, CompanyName, ContactName, ";
strSQL += "ContactTitle, Address, City, Region, PostalCode, ";
strSQL += "Country, Phone, Fax FROM tblSuppliers ";

StrSQL += "WHERE SupplierID=" + SupplierID;

OleDbDataAdapter daSuppliers = new
OleDbDataAdapter (strSQL, cnn);

272

Creating and Working with Web Services

// Create a DataSet and Fill it.
DataSet dsSuppliers = new DataSet();
daSuppliers.Fill(dsSuppliers) ;

return dsSuppliers;

}
4. Press F5 to rebuild and run the application. The introduction page to the test harness will
display both HelloWorld and your new Web method.
5. Click on the GetSupplierInfoDS link. You will then see the launch page for the Web method

displayed with a text box to accept the Supplier ID parameter.

6. Enter the parameter, as shown in Figure 15-26.

To test the operation using the HTTP POST protocol, dick the 'Inveke’ butten.

Parameter Valug

SupplierIo: |1

SOAP

The following is a sample SOAP request and response. The placeholders shown need to be replaced with actual values.

POST /WebServicel/Servicel.asmx HTTP/1.1

Host: 127.0.0.1

Content=-Type: text/xml; charset=untf-8
Content-Length: length

SOAPAction: "http://tempuri.org/GetSupplierInfoDS™

<?xml version="1.0" encoding="utf-8"2>

<]

@ Servicel Web Service - Microsoft Int t Explorer ;]E]E
File Edit View Favorites Tools Help o
A b 1 d - N s
Qu - © HNEAG Lo oo @ -5 @ - B
\odess @ http:/{127.0.0. 1/ WebService 1/Service 1. asmTop=GetSuppierinfoDS v Bo s ® Googler i
=
Servicel
Click here for a complete list of operations.
GetSupplierInfoDS
Test

E

|

&] Done & Local intranet

Figure 15-26

7. Click Invoke. The Web method is now executed, and the XML for the resulting data is displayed

as shown in Figure 15-27.

Notice that the Web service returned not only the data, but also the schema for the data. This is what
makes Web services so easy to use with InfoPath. Now you are ready to create other Web methods for

various purposes.

For more information and practice with creating Web services for InfoPath check out the POWebService
project, which is installed when you installed the Microsoft InfoPath 2003 SDK. This project displays
more complicated methods for receiving and submitting data between InfoPath and Web services.

273

Chapter 15

] http/127.0.0.1\WebServicel/Servicel. IGetSupplierinfoDS - Microsoft Internet Explorer =JOEd
File Edit View Favorites Tools Help o
3 == >ERENER) SO searn Spraites €8 (- o A L E B =2

ddress ﬁjhﬂp:,.'."ll?.ﬂ.ﬂ.W‘eb&q’vtz1,"Servml.asmxfCeiSupp|er[nquS V] GCI Links * Go:‘.glev I i
<xs:element name="City" type="xs:string" minDccurs="0" />]
<xs:element name="Region" type="xs:string" minOccurs="0" />
<xs:element name="PostalCode" type="xs:string" minOccurs="0"
<xs:element name="Country" type="xs:string" minOccurs="0" /
<x5:element name="Phone" type="xs:string" minOccurs=
<xs:element name="Fax" type="xs:string" minOccurs="0" /

=/¥s1sequence
</xs:complexType=
</xs:element>
<fxs:choice>
</xs:complexType =
</xs:element=
=fxs:schema>
- <diffgr:diffgram xmins:msdata="urn:schemas-microsoft-com:xml-msdata"
xmins:diffgr="urn:schemas- microsoft- com:xml-diffgram-v1">
- «NewDataSet xmins="">
- <Table diffgr:id="Table1" msdata:rowOrder="0">
<SupplierlD>1</SupplierlD>
<CompanyName=Exotic Liquids </CompanyName>
<ContactName=Charlotte Cooper</ContactName =
<ContactTitle=Purchasing Manager</ContactTitle=
<Address>49 Gilbert St. </Address>
=City =London</City =
<PostalCode =EC1 48D </PostalCode =
<Country =UK-/Country
<Phone=(171) 555-2222</Phone >
</Table=
</NewDataSet>
</diffgr:diffgram=
</DataSet>

f=

&] & Local intranet

Figure 15-27

Summary

Web services enable developers to work with data from databases other than Access and SQL Server.
They also make data that would be normally be off limits to outside systems available. Web services pass
the data via XML to both Web- and desktop-based applications.

Visual Studio .NET can be used to create Web services, and it performs quite a bit of the work in creating
the project. You can use the language of your choice, for example C# or Visual Basic .NET, with ASP.NET.
In addition, .NET provides ADO.NET classes for manipulation of data within your Web services.

InfoPath interfaces with Web services the same as it would Access and SQL Server, using the Data
Connection Wizard.

Exercises

1. What is the other name for Web services?

2. What does the acronymn SOAP stand for?

274

16

Implementing Security

Security is always the last thing developers seem to look at, when in fact security should be thought
about even before the first InfoPath solution is designed. Developers often get excited about the pos-
sibilities of forms, or applications, and fail to pay attention to the integrity of the system as a whole.

While security is not as exciting as developing the actual form, it is more important than just about
every aspect of the forms you create, because poor security could allow hackers to get into your
system and network. In this chapter you will:

Q See an overview of security and how it is handled in InfoPath.

Q Create fully trusted forms automatically and using a special utility called RegForm.
Q Learn how .NET defines security.
Q

Find out what digital signatures are and how to best use them in InfoPath forms.

What Does Security Mean?

As a developer, you may not have had to worry too much about security. This is especially true if
you have been working just on applications that are used primarily on your machine or in your
department in the office. If this is the case, then you may not have to read the rest of this chapter.
However, if you are creating InfoPath forms and distributing those forms around your company,
you need to have more information about what you have to do to secure those forms and what it
takes to work with Windows and Internet security. There are four major pieces to developing a
good secure application that define security itself. They are:

Q Authentication: This is kind of like a secret handshake. The typical network handshake
uses authentication such as the challenge response approach, where the challenge is sent
by the server and the user’s machine creates the response with no intervention from you.
Custom-built security solutions challenge a person with the user credentials, and he/she
has to log in.

Chapter 16

Q Authorization: A way of giving authenticated users no, partial, or full trust over the resource
being requested. For example, on a network, certain people have certain permissions to change,
edit, and delete files on shared areas; others have no authorization to do anything but read files.

Q Data Integrity: This is very important in this day and age as hackers are finding more and more
ways to break down the security barriers we strive to implement, which results in personal pri-
vacy being violated, monetary losses, and so on.

It is truly important that we set up secure barriers to protect the integrity of our data. This is
very important especially with the invention of HIPAA, which is a government regulation on
the handling of private information.

0 System Availability: Will it be possible to log on to the server or to use the domain logon?
These questions need to be considered up front. If you build the most secure InfoPath form in
the world, but the network it is used on doesn’t support security, you will have wasted your
time.

InfoPath Security

InfoPath has its own built-in security model that is exposed to developers to allow them to start with
some in-place baseline security and then customize it according to their needs. InfoPath’s security model
is different from most; it uses some settings from Internet Explorer as well as some of the .NET security
model. InfoPath works closely with Internet Explorer’s security model to closely guard your local
resources against malicious attacks from hackers

InfoPath is a client-side application, meaning it runs on your local machine. Because of being a client-
side application, it is not allowed to do certain things to your machine, for example, reformat your hard
drive. It must obey all security laws that regulate your machine. This allows the user of the forms to
feel assured that InfoPath or your custom-built form will not violate any security issues. Realize that
InfoPath, as a data-driven type of application, provides additional levels of security to protect the data
that is coming in and out of the custom-built InfoPath form.

The default behavior of InfoPath is to use Uniform Resource Locator (URL) based forms; the second
behavior is to use Uniform Resource Names (URN) based forms. These types of forms may look, act,
and feel the same, but there are some significant differences in the two models.

URL-based forms are the default form type used with InfoPath. These forms are created by publishing a
form to a Web server, a Microsoft SharePoint site, or file share. They are called URL-based because typi-
cally a user will open these InfoPath forms by using a URL pointing to the location of the published form.
URL-based forms are considered “sandboxed” forms. A sandbox is a location on your computer that is
controlled highly by IE’s security settings, in particular, the zones discussed in the next paragraph.

Internet Explorers security is based on the Zones theory. There are five zones in the IE model, with 1

being the most restrictive and 5 being the least: Restricted, Internet, Intranet, Trusted Sites, and the Local
Machine zone. You can see the icons in Figure 16-1.

276

Implementing Security

¢ 0 @

Intemet Local intranet Trusted sites Restricted stes

Figure 16-1

For example, if a Web page you visit has a script that tries to create an unsafe ActiveX control, it will
cause an error on every zone except Local Machine and Trusted Sites, which will prompt you first.

Local Machine is not listed in the choices in Figure 16-1 because everything on your local machine is
trusted.

Consider another example. Just as InfoPath forms can use scripts you create, other applications, such as
those created in HTML, use script as well. If an application that uses script tries to call a resource on
another domain, you will get the following Access Is Denied message: “This page is accessing informa-
tion that is not under its control. This poses a security risk. Do you want to continue?” This dialog box
will appear if you are in the Intranet Zone, but in the Local Computer or a Trusted Site zone your script
will run just fine. Script in InfoPath’s HTML task pane is subject to these rules as well.

Form-Based Security

As shown in Chapter 9, “Managing Views,” you can run script in the HTML custom task pane of
InfoPath. In Chapters 11, 12, and 13 you saw how to create scripts in InfoPath forms as custom business
logic, for example, scripting the On Load event of the form or the On Click event of a control. Each prop-
erty or method used from the InfoPath object model has its own security measures. These models are
numbered 1 to 3:

Q Level 1: Properties and methods can be called by anyone. These are methods that are consid-
ered safe no matter who or what calls them.

Q Level 2: InfoPath forms can communicate with each other. For example, you can write the fol-
lowing and get access to another form running on the machine:

Application.XDocuments.Item(1)

Whether this works or not is based solely on where the . xsn file is located. Most of InfoPath’s
Object Model resides in this zone.

Q Level 3: These calls are considered unsafe no matter who is calling them. The only way to call
these methods is to use Full Trust on the form. This means that you must register the form or
digitally sign the form. You also can use the regform. exe utility to register the form with full
trust for you.

InfoPath’s default security model restricts all access to local system resources and is not allowed to use
components that are not built to be safe for scripting.

Form templates (* . xsn) files based on a URL are thrown into what is commonly known as a sandbox. As

mentioned in the last section, the sandbox model means that the form is thrown into a local system cache
that inherits its security from Internet Explorers security settings, as shown in the following Try It Out.

277

Chapter 16

Try It Out Looking at IE’'s Security Settings
1. Open Internet Explorer.
2. Select Tools = Internet Options, and then select the Security tab. You will be presented with the
dialog box for editing IE’s Security levels.

Usually InfoPath forms run in the Local intranet zone of IE, using permissions that you set for that par-
ticular zone. You can see those permissions in Figure 16-2.

Internet Properties

General | Securty | Privacy | Content | Connections | Programs | Advanced

Select a Web contert zone to specify its security settings.

<. 2
. 1=
* ¢ ""J | —
Intemet Local intranet Trusted sites Restricted stes ||
[[2]
Internet

This zone contains all Web sites you
haven' placed in other zones

Security level for this zone
Move the slider to set the securty level forthis zone.
L_J- High

- The safest way to browse, but also the least functional
- Less secure features are disabled
- Appropriate for sites that might have hamful content

[Custom Level...] [Default Level]

[ok [cencel |

Figure 16-2

Remember that InfoPath security is based on the location of the . xsn form template, not the client loca-
tion. You will need to keep that in mind as you are developing the InfoPath forms. This means that any
local resources to which you allow permission on your machine will and can be accessed by InfoPath
over the network from other machines. So, if you give access to a resource just as specific folders on your
machine, other users will be able to access that folder on your machine. This is not good in most cases.

Fully Trusted Forms

It’s possible to allow InfoPath forms to run in a fully trusted context. The InfoPath form needs to be
installed locally and then given access to local system resources. Fully trusted forms have more privi-
leges on a local machine than cached or sandboxed forms. Being trusted on your system allows the
InfoPath to access:

278

Implementing Security

Q Objects external to the InfoPath form but on the same system

0 Microsoft ActiveX controls that are marked safe for scripting

Q Custom logic within the Component Object Model (COM) and additional object models

The higher the trust level the more resources the InfoPath form has access to. For this reason, the next
Try It Out shows you how to create fully trusted form on your machine.

Try It Out How to Create a Fully Trusted Form

The first step in creating a fully trusted form is to make sure the InfoPath IDE has an option checked.

1.
2.

Open InfoPath.
Go to Tools = Options. In this dialog box you will see a check box on the bottom of the
dialog box.
Check Allow fully trusted form to be have access to files and settings on my computer, shown in
Figure 16-3.
Options
General | speling | Design | Advanced
General options
g‘ 4 ¥ entries
[JPrint background colors and background pictures
[Do not automatically show the Fill Out a Form dialog box
System options
Certain browser-based options may affect the way InfoPath works. If you need to, you can
override these options,
Microsoft Office options
[check whether Office is the default program for opening and editing .xml fles
Security options
Allow fully trusted forms to have access to files and settings on my computer
Review the form developers and other publishers you have defined as trusted
Trusted Publishers. ..
QK
Figure 16-3

Once there you can also view all of your trusted publishers by clicking the Trusted Publishers button.
This dialog box shows you what particular publishers you give full access to, as shown in Figure 16-4.

279

Chapter 16

Microsoft Office InfoPath
Issued To Issued By Expiration Date | Friendh
Dell Computer Corporation VeriSign Class 3 Code Signing 2001-4CA 4/2/2003
expertdty.com, inc. VeriSign Class 3 Code Signing 2001 CA 7/19/2004
Microsoft Corporation Microsoft Code Signing PCA 1/24/2005
Network Associates, Inc, Verizign Class 3 Code Signing 2001-3CA | 7/6/2003
a [2)
[View...] [Remove]
[OK l [Cancel]
Figure 16-4

Using the SDK Regform Utility

Although you can manually create a fully trusted form, it is not good practice because there are too
many little details that all need to be in place for it to work correctly. Microsoft realized quickly that this
would be the case so they packaged a nice little utility for us called RegForm. This utility is included in
the InfoPath 2003 Software Development Kit (SDK).

http://www.microsoft.com/downloads/details.aspx?FamilyId=351F0616-93AA-4FE8-9238-
D702F1BFBAB4&displaylang=en

Once you install the SDK, you can find the RegForm utility at C: \Program Files\Microsoft Office
2003 Developer Resources\Microsoft Office InfoPath 2003 SDK\Tools, wherever you
installed the SDK.

regform. exe is a command-line tool that simplifies the creation of fully trusted forms by automatically:

a
a

a
a
a

Making a backup copy of your form template

Making the necessary changes to the .xsf file and XML template files to make them fully

trusted

Updating the version of the form template

Repackaging the files into an . x

sn file template

Creating a custom installation program

Imagine what a pain this would be to have to do all of that yourself. The RegForm parameters are very
straightforward, as shown in the help display of the tool:

Usage:

280

RegForm [/U urn] [/FT formtemplatename]
[/V [0-9999.0-9999.0-9999.0-9999]]

[/MSI] [/?]|/h|/help]

formtemplatefile

[/C companyname]
[/T Yes|No]

[/O outputfile]

Implementing Security

The following options can be seen in the command window by typing:

RegForm /?

Option

/U

/FT

/C

/N

/T

/0

/MST

/?|/h|/help

formtemplatefile

Examples:

Description

The URN to use for the form template. Must be in the form
of "urn:<string>:<string>".If the URN is not specified,
it is built using the specified form template and company
name parameters. If the form template or company name
parameters are not specified, a GUID value is used.

The form template name.
The company name.

The version number [0-9999.0-9999.0-9999.0-9999] of the
form template. If the version number is not specified, the
version number of the specified form template file is used.
If no version number is present in the form template file, the
default version number "1.0.0.1" is used.

Specifies that the form template is fully trusted. This sets
the requireFullTrust attribute in the form definition (. xs£)
file to Yes. The default value is No.

The path and name of the output installation file that is to
be created. If the path and name are not specified, the name
of the form template file is used.

Specifies that the output installation file is a Microsoft Sys-
tem Installer (.ms1) file. The default is a Microsoft JScript
(.3s) file.

Displays information about using the RegForm tool.

The full path to the InfoPath form template to process.

RegForm /U urn:MyForm:MyCompany /T Yes /MSI MyForm.xsn

RegForm /FT myForm /C myCompany /MSI myForm.xsn

Creating a fully trusted form this way is very simple:

Regform /U urn:FormName:CompanyName /T Yes C:\Directory\FormName.xsn

Using the tool this way, the /T indicates that the form should be fully trusted, and the last parameter is
the path of the form to be converted to fully trusted. If you have Visual Studio .NET installed on the
local machine, then you can also create an . MST installation program using the /MST switch:

281

Chapter 16

Regform /U urn:FormName:CompanyName /T Yes /MSI C:\Directory\FormName.Xsn

This will place an .ms1 file in the forms directory containing the setup files needed, as well as create a
Visual Studio solution file for you to modify. Using Visual Studio to create a custom installation program
was discussed in the “Distributing InfoPath .NET applications” section of Chapter 13, “Working with
.NET Managed Code.”

To get some experience with the RegForm utility, work through the following Try It Out.

Try It Out Creating a Fully Trusted Form Using the RegForm Utility
Start by creating a fully trusted form using an existing InfoPath template, and then save the form. For
the purpose of these instructions, Chapter 16.xsn will be used.
1. Choose Start &> Run from the Windows Start menu.
2. Type in CMD.EXE, and click OK. The Command Window opens.

3. Navigate to the regform. exe folder using the CD command, as shown in Figure 16-4. For this
example:

cd "C:\Program Files\Microsoft Office 2003 Developer Resources\Microsoft Office
InfoPath 2003 SDK\Tools"

4. Type regform /U urn:Chapter16:Appsplus /T Yes “C:\Books\InfoPath\Samples\Chapter
16\ Chapter 16.xsn”. The command line will report back any errors that may arise from running
the regform utility against the InfoPath template. If this is successful, you will see the text
shown in Figure 16-5.

B C:\WINDOWS\system32\cmd.exe (=] k7|

rozoft OfFfice Info
Daveloper Resoups

C Versio
2883. nll rights reserved.

[Building script..
[Rezult = il H Sanmples*Chapter 16“Chapter 16.js file.

iCompleted.

H ; Office 2083 Developer Resouw :rosoft OFfice Info
[P

Figure 16-5

How It Works

The Chapter 16.xsn form is now fully trusted by InfoPath and Internet Explorer. This will also result
in the RegForm utility creating a Chapter 16.bak file, and a Chapter 16. js file in the directory that
the original template is located in, as shown in Figure 16-6.

282

Implementing Security

_J Chapter 16 =[]
File Edit View Favorites Tools Help "
@ Back - 2, ﬂ' 7/ Search Folders T‘v
ddress |2 C:\Books\InfoPath \Samples\Chapter 16 "] B

Chapter 16.bak

- P—
File and Folder Tasks ¥ L?:i I Microso
Other Places S N 5

= Chapter 15.js
) Samples ___IG; Co R

L) My Documents
8 My Comout

Figure 16-6

~

The .bak file is a backup copy of the original template but without full trust, and the . js file is a script
run on machines where the form will be installed. To have this be fully trusted on another person’s
machine, you must send the *. js file, and that person must run it by double-clicking it. This script sets
the permissions on that person’s machine. When the file is double-clicked, the user receives the dialog
box shown in Figure 16-7.

Microsoft Office InfoPath Form Registering Script

Would you like to register form template C:\Books\InfoPath\Samples\Chapter 16\Chapter 16.xsn?

Yes Mo

Figure 16-7

Creating an MSI to Automatically Set Up Full Trust

If you have Visual Studio .NET 2003 installed on your local system, you are allowed to specify the /MSI
attribute when using the RegForm utility. This causes Visual Studio to create an MSI setup project, dis-
cussed in Chapter 13, based on your form template. This will result in creating a Windows installer
package. The following Try It Out walks you through using the /MST attribute.

Try It Out Use the RegForm Utility to Create an MSI
Using the command window navigate to the regform. exe folder as in the last Try It Out:
1. Type regform /U urn:Chapterl6:Appsplus /T Yes /MSI "C:\Books\InfoPath\

Samples\Chapter 16\Chapter 16.xsn".The RegForm utility will then complete as before,
and you will receive the completion messages.

2. Navigate to the form templates directory. You will now see an additional file with the extension
of .msi.

Distributing the .msi file to clients will allow them to set up the InfoPath form on another machine and
create the fully trusted form for you.

One of the exciting parts about using the /MSI switch is that in your users’ temporary directory under
the RegForm directory you will find a Visual Studio setup solution ready for you to open up in Visual

283

Chapter 16

Studio and modify as you wish. This allows for more control over the setup process on the users’ local
machines.

Navigating to your user temp directory can sometimes be difficult as it is hidden away for obvious rea-
sons. The best way to figure out how to get to your user’s temp directory is to open up the command
line and type cd %temp$.

This will navigate to the directory where the temp RegForm directory lives. Usually it is C: \Document
and settings\user\Local Settings\RegForm. You are encouraged to navigate to that directory
and discover what and why files are placed in that location.

This solution can be modified as you wish then recompiled to create your custom .ms1 file for distribut-
ing your fully trusted form.

Defining Security with the .NET Framework

The .NET Framework has several procedures and namespaces to help you build secure applications. The
term managed applications is used to refer to applications written to run within the common language
runtime (CLR), the engine used to process and run all NET assemblies. Assemblies are the core of all
.NET Framework applications, be they a Web application or a Windows-based application. An assembly
is actually a collection of types and resources that are compiled and built to work together to form a
complete application. Assemblies provide the CLR with the information needed during the runtime of
your application.

Defining Assemblies

Defining .NET assemblies is basically just coding. When you create types, enums, properties, and so on,
you are defining the .NET assembly. A NET assembly can be a single code class or can be spread out
over multiple code classes and then compiled into a new language called Microsoft Intermediate
Language (MSIL). The CLR uses this as its base for figuring handle versioning, deployment, reuse, secu-
rity, and scoping.

The advantage of using MSIL is that when an assembly is loaded the MSIL is interpreted and run by the
CLR for the platform on which it is residing. The advantage of this is that CLR can handle file validation,
code verification, integrity checking, and code security.

Assemblies in Web Services

A Web service is basically an assembly with an . asmx file (ASP.NET Web page) that is loaded into an IIS
instance. When you call a Web service, you're basically asking the ASP.NET runtime to grab the assem-
bly and process the instructions there using the CLR. A Web service file, an . asmx, contains a directive
that tells the CLR where the Web service can be found. This directive is used by ASPNET to bind the
Web service to the .d11 that contains the actual code to be run. Think of using a pointer; you call the
.asmx file (the Web service), which tells your application to use a particular .d11 (library file) and
where to find it.

Creating Web services and how to use them with InfoPath is discussed in Chapter 15, “Creating and
Working with Web Services.”

284

Implementing Security

User versus Code Security

The NET Framework holds two types of security models. The first is Code Access Security (CAS),
which is used to figure out if the code has the right permissions and to verify the origin of the assembly.
The second is a group of role-based permissions. This model is based on having users make a request,
and then figuring out if they have the right permissions to access the requested assembly or resources.

Code-Based Security

Coding your security levels is a very common practice. This allows the developer to grant access to cer-
tain resources without having to worry about what machine the assembly is running on. CAS isn’t con-
cerned with the user because the code has sent the request and has passed the correct credentials.

Role-Based Security

Role-based security is exactly what the name implies. You define particular groups, each of which has its
own security policies; your application is then coded to join one of those groups. For example, when you
use Windows authentication in your application, the CLR pushes security onto Active Directory or even
SQL Server to handle. There are three types of Authentication objects available for your use:

QO Windows: Windows authentication verifies credentials using the Security Accounts Manager
(SAM) or Active Directory. Windows or Domain groups are used for these types of roles.

Q Forms: Forms authentication requires you to add code to verify credentials and retrieve the role
from some sort of security store, usually held in a database table.

Q Passport: Passport authentication relies on the Microsoft Passport SDK to authenticate the user
against the .NET passport role, equivalent to MSN/Windows Messenger.

System.Security Namespace

The System.Security namespace is the base assembly that handles all security for the CLR. One thing to
remember is that the CLR enforces security on the location where the code is run from rather than on the
location where the user logged in. There are many classes that can be used in the System.Security
namespace. You can see the classes that apply to InfoPath in the following table:

Class Description

AllowPartiallyTrusted Allows signed assemblies to be called by InfoPath.
CallersAttribute

CodeAccessPermission Base class for all access permissions.

NamedPermissionSet Defines permissions with name and description attributes.
PermissionSet Collection of different types of permissions.
SecurityManager Main class for security interaction between InfoPath and CLR.
VerificationException The exception raised if anything goes wrong.

285

Chapter 16

You can implement the following interfaces in your classes created with Visual Studio to use in your cus-
tom security model for InfoPath.

Interfaces Interface Description
IEvidenceFactory Gets an object’s Evidence (property value).
IPermission Defines methods implemented by permission types; can be

inherited for utilizing methods and properties of a permis-
sion object.

Digital Signatures

You have probably seen digital signature dialog boxes in the various Microsoft Office applications, as
well as other applications you have created.

Digital signatures enable developers to create a public/private key pair set to use for authentication pur-
poses. This is much like a driver’s license: You show it to the police officer when you are pulled over, he
goes to his car and runs it, and the computer tells him that yes you are in fact so and so and that your
record is clear. In the same way, a digital signature is a way for software to verify the identity of the cre-
ator or publisher of the form, application, and so on.

Using Digital Signatures with InfoPath

InfoPath enables you to sign your forms with a digital signature to assure others that the form did in fact
did come from you or your company.

Try It Out Creating a Test Digital for Testing

To create a test signature used on the local machine, you must follow a few simple steps.

1. Download and install the Authenticode for Internet Explorer from:
http://www.microsoft.com/downloads/details.aspx?FamilyID=2B742795-DO0F0-4A66-B27F-
22A95FCD3425&displaylang=en

2. Open up the command-line utility and navigate to the C: \ inetsdk\bin directory, or wherever
the makecert. exe utility is located.

3. Type in the following to create your certificate; take note that you can replace the string
"CN:TestCertificate" with "CN: " and whatever name you want to use for the signiture,
that would have more meaning for you, and not imply that it was a test certificate.

makecert -n "CN:TestCertificate" -cy end -a shal -sky Signature -m 1 -iv
certRoot.pvk -ic certRoot.cer -ss MY

This will add the TestCertificate into the users Personal store.

286

Implementing Security

Now the new digital signature can be used to sign forms. You get a chance to use it in the following Try
It Out.

Try ltOut | Sign the Form with the Digital Signature

Using the form Chapter 16.xsn in Design view:

1. Select from the Tools = Digital Signatures. You will be prompted with the dialog box in Figure
16-8. This dialog box will enable you to view and Add/Remove Digital Signatures from your

form.
Digital Signatures M|
Use the following options to add or remove a digital signature or view an existing signature's
properties.

The following people have digitally signed this form:
Signer Status Signed data | Comment

£ | ?
To view the details of a digital signature, dick the View Signed Form button.

[Cloze][Help...

Figure 16-8

2. Click the Add... button. The Digital Signature Wizard appears and walks you through some
simple steps in getting your form signed. You can see this page in Figure 16-9.

Digital Signature Wizard [X]

This wizard helps you add a digital signature to this form.

Select the part of the form that you want to sign:

< Back [Mext >][Cancel

Figure 16-9

3. Click Next. On this page, you will see the Test Certificate created in the previous Try It Out, as
displayed in Figure 16-10.

287

Chapter 16

Digital Signature Wizard (%]

Choose how you want to sign.

Select the certificate that you want to use to sign the form:

Issued to Iszued by Expiration date
MarksTestCertificate Marks Certificate 11/10/2004

View Certificate. ..

[< Back][Next =][Cancel

Figure 16-10

4. Click the Next button, choosing the test certificate. The next page of the Digital Signature
Wizard is shown in Figure 16-11 and lets you specify some comments and summarize the digital
signature.

Digital Signature Wizard [X]

Type a comment to incude with your signature.

Signature details:

Signing: Entire_form
Issued to: MarksTestCertificate
Issued by: Marks Certificate

Expiration date: 11/10/2004

Comment:

[< Back][Einish][Cancel

Figure 16-11

5. Click Finish. The last page of the Digital Signature Wizard prompts you to review and verify all
your information as well as the information regarding your digital signature, as shown in
Figure 16-12.

6. Check the box labeled I have verified this content before signing.
7. Click the Sign button.

You have now digitally signed your InfoPath form, and it is ready to be used.

288

Implementing Security

verify that the form or section you are signing is correct, as well as the additional infeemation that will be stored with your signature,

Comment: =

~

Absence Request

Request Date; Request Time:
The folowing information wil be)
Stored with your signature: 10/11/2004 6:46 AM
~
Monday, October 11, 2004 6:5¢ Employee Manager
Nama: Nama:
G.1.2600
ID Number: Telephone Number:
11.0.6360
Department: E-mail Address:
11.0.6357
Tslaphona Numbar:
-
£ >

E-mail Address;

v
>

Yiew Certificate. .. [#]1 have verified this content before signing Sign
Figure 16-12

(I3

Summary

Now you know more than you ever wanted to know about security in Windows, .NET, and InfoPath.
Depending on how you are going to be using your InfoPath forms, you will need to have an under-
standing of the different options available in the area of security.

While you can add security to your forms in a number of different ways, you will have to set up security
to match the location where your forms are going to be deployed. This chapter showed you how to set
up your forms, including how to use of digital signatures.

Exercises

1. Name the four major pieces in developing a good secure application that define security itself.
2. Whatis a sandbox in regard to security?

3. What are the two ways to create a fully trusted InfoPath form?

4. Name the two types of security models in .NET Framework.

289

17

Working with InfoPath and

Windows SharePoint
Services

One of the major features of InfoPath is that it is a collaborative product, dealing with data from
various sources including databases, XML, and Web services. You have seen how to use this fea-
ture throughout the book. Now get ready for another major collaborative feature of InfoPath: The
ability to take advantage of integrating your InfoPath form with Microsoft’s collaborative technol-
ogy called Windows SharePoint Services.

Windows SharePoint Services enable companies to create collaborative Web sites that can be used
for a number of different purposes that will be covered in this chapter. In this chapter you will:

Q

00000 O

See what Windows SharePoint Services are all about.
Take a look at a SharePoint Web site.

Learn about creating your own SharePoint Web site.
Look at ways to use InfoPath and SharePoint.
Publish an InfoPath form to a SharePoint site.

Fill in an InfoPath form based on a SharePoint site.

Add a SharePoint Web component to your InfoPath document library.

To perform the tasks in this chapter, you have to have access to Windows SharePoint Services,
which instalsl on Windows Server 2003. If you have a Windows 2003 Server you can use, then
download Windows SharePoint Services from the following link: www.microsoft.com/
windowsserver2003/techinfo/sharepoint/wss.mspx.

Chapter 17

What Are Windows SharePoint Services?

Quickly becoming a popular solution for creating collaborative Web sites, Windows SharePoint Services
(WSS) enable companies to generate such sites rapidly and with a great deal of customization. At last
count, Microsoft itself had over 80,000 internal SharePoint sites used by various product teams. This is a
great example of what is referred to as “eating your own dog food.

A collaborative Web site is a site that enables groups of people such as teams or departments in a com-
pany to collaborate among themselves in a number of different ways. SharePoint facilitates this by
providing templates for various features that are necessary for collaboration.

Windows SharePoint Services Site Features
With WSS sites you can:
Q Store working documents in centralized locations called document libraries, including using
various Office solutions.

Q Assign various users different roles, from a casual browser to an advanced author or
administrator.

Q Create and maintain various lists including but not limited to contacts, announcements, pic-
tures, tasks, and meetings.

QO Make discussion areas that can include general discussions, notifications, and surveys.
U Use Search capabilities within the site, subsites, and documents within the site.
0 Use a programmable object model to create your own custom solutions.
WSS is very scalable, whether you are creating a site for a single group or multiple sites combined using

a SharePoint portal. The sites also are highly modifiable using ASP.NET and Web parts, discussed in
the section titled “Customizing the Windows Services SharePoint Services Team Site”

The Difference between Windows SharePoint Services
and SharePoint Portal Services

A question that people frequently ask when learning about SharePoint is what is the difference between
Windows SharePoint Services (WSS) and SharePoint Portal Services (SPS)? Both are key components of
Microsoft’s SharePoint products and technologies.

Windows SharePoint Services are used to create collaborative Web sites that let teams, site managers,
and users work together on Office documents, as well as use the other features mentioned in the last sec-
tion. Windows SharePoint Services are downloadable for Windows Server 2003, and can be used either
on an intranet or the Internet.

SharePoint Portal Services are a portal product that allows companies to create more than one SharePoint
site and then link them together. SharePoint Portal Services are a separate product that can be purchased.
It provides an environment for managing multiple SharePoint sites and creating applications.

292

Working with InfoPath and Windows SharePoint Services

Touring a SharePoint Site

You can see an example of a default WSS site in Figure 17-1.

The WSS site can be broken down into four or five main areas, some of which are repeated in various
areas of the site. An example of this is using task lists in subsites you create.

Default Lists of the Site

A good portion of WSS sites is handled as lists. These are not the lists of old that had a few columns
going across the page. While they display data in a list type format, they can be made up of various
types of controls, including drop-downs lists and hyperlinks. When you click a list item, you are gener-

ally brought to a view of the specific item, with a menu displayed to let you edit the item, and perform
other tasks.

£1 Home - Team Web Site - Microsoft Internet Explorer =J=ES
File Edit View Favorites Tools Help f,'
. A & e ; TR R - I
Qe - © ¥ B @ Psewer Joroms @ (3~ & - LK B
A 5 -@Jh:tu:.l'fauusnlur.rruuyks."dcfait.asulx e 60 Links ** GOOS]E* %
ﬁ Team Web Site
\) Home
Modify Shared Page v
Doc A t -
Shared Documents There are currently no active announcements. To add a new announcement, click "Add new ;'u
Pictures announcement” below. l—")'I
Mermery 4
Lists 8 Add new announcement Windo.ws
Contacts SharePoint Services
Tasks Events =
CrEr=roe There are currently no upcoming events. To add a new event, click "Add new event” below.

Links -
General Discussion 2 Add new event

There are currently no favorite links to
Surveys display. To add a new link, click "Add
new link” below.

@ Add new link

&
Figure 17-1

‘d Local intranet

293

Chapter 17

The default lists in SharePoint include:

0O Announcements: Can be set up to alert you to various changes and can be set to expire. Alerts
can be in the form of e-mail and can be set up as a one-time alert, or as daily or weekly updates.
An example of an announcement being edited is shown in Figure 17-2.

&1 Announcements - New Item - Microsoft Internet Explorer ﬁ,_]w
File Edit View Favorites Tools Help w~

Q== - O |ﬂ @ :;ﬁ)“.)Sean:h *Favnrﬂa e 2 ”‘i - 8 3=

@hﬂ:p:,.’ll’appq:\lus-4)‘y9IffsitesﬁnfODamLislszrrnm:!men:smenFam.aspV GD Lirks ** Googlev iy

-

it Home Documents and Lists Create Site Settings Help

Team Web Site
Announcements: New Item

|l Save and Close | [J Attach File | Go Back to List

My First Announcement

AAIB I U |EEZE|= = A oo
This feature rocks! This is of course using full text. These

fields, as well as the date below look like InfoPath in some

ways!

Expires 17172008 |

Enter date ir YYYY format.
* indicates a required field .v]
& % Local intranet
Figure 17-2

Once added, the announcements are displayed on the home page by default until the date spec-
ified passes. You can see the announcement added in Figure 17-3.

r@ Home - Team Web Site - Microsoft | Explorer ﬁ,_]w
File Edit View Favorites Tools Help w~

Q== - O |ﬂ @ :;ﬁ)“.)Sean:h *Favnrﬂa & ”‘i m- 8 3=
GD Links * Googlevli”

-

m Team Web Site
Home

Modify Shared Page =

Documents Announcements —

Shared Documents My First Announcement ! new 11/29/2004 10:25 AM l'“
Pictures by FSBarker “‘j
List This feature rocks! This is of course using full text, These by
L fields, s well as the date below look like InfoPath in some Windows
Contacts ways| SharePoint Services
Task:
ass w Add new announcement
Discussions Links -
General Discussion po 0 - There are currently no
e There are currently no upcoming events. To add a new event, fl—u;:Q;Euh::i,tl?niﬁg‘lii{'
click "Add new event” below. “add new link” belaw.
& Add new event 2 Add new link
&l % Local intranst
=
Figure 17-3

294

Working with InfoPath and Windows SharePoint Services

You need to specify which sections are displayed on the home page. Sections are actually Web parts.
Each of the lists discussed here are Web parts that are provided by WSS. Modifying the home page for
the site is discussed in the section titled “Customizing the Windows SharePoint Services Team Site,”
found later in the chapter.

O Contacts: Much as with the Outlook contacts, various data can be stored for contacts for a team
or project such as Name, E-Mail, Phone, and the like. Information can be exported, imported,
and linked to from Outlook. These options can be seen in Figure 17-4.

&] Contacts - Microsoft Internet Explorer =J2Ed
File Edit View Favorites Tools Help w
Qux - © X [@ 6 s Frrwvones @ 305 w1 - I 3
Address | &] http:/fappsplus-wuoyks/Lists/Contacts/Alltems.aspx ﬂ Go lnks * Googler i
;i Home Documentsand Lists Create Site Settings Help

$_I Team Web Site
— Contacts

Select a View Use the Contacts list for information about people that your team works with,

All =
[AlContacts] =New Item | ¥gFiter | ZHEdit in Datasheet | S#Link to Outlook | EhImport Contacts
e 0 Last ‘-Lrlrn— First Name Company Business Phone Home Phone E-mail Address

D rHEw - - -

Ao Barker F. Scott AppsPlus 206-369-7309 FSBarker@appsplus.com
& Export to

spreadsheet
& Modify settings |

and columns [v
< | 1 | [>

& &J Local intranet

Figure 17-4

Q Events: There are quite a few areas to work with under an event. Besides listing and editing the
various properties of the event itself, including; title, beginning and ending date/times, loca-
tion, and reoccurrences, you can create a workspace that is actually a subsite under the main
team site.

The workspace site has its own lists, consisting of Objectives, Attendees, and Agendas. You also
can modify the workspace, just as you can on the main site, including the theme. This gives you
the ability to allow your workspaces to have their own “feel.” So, for example, if you were plan-
ning a party, you could have a party theme for the workspace.

Q Links: Links let you add hyperlinks to various other Web sites you want to have linked to your
site. Links are displayed on your main home page, but like the rest of the lists (which are in
essence Web parts), they can be added to different areas of your WSS site. As with other lists
they can be exported to other applications.

Q Tasks: You can assign tasks to be performed and track the current status, the percentage of the
task that has been completed, and whether or not to include attachments. Alerts can be set up to
let you know when the status of your tasks changes. In the list view of tasks you can view for all
tasks, only your tasks, tasks due today, tasks that are active, and tasks by assignment.

295

Chapter 17

Although the other areas are displayed in list format at times, they contain more information than that
listed in these sections.

Try It Out | Touring the Different Areas

Once your IT administrator has downloaded and installed Windows SharePoint Services or SharePoint
Portal Services, it’s time to create the default Web site:

1.

Click the Announcements link. The announcements list is displayed, with only the getting
started announcement shown, as illustrated in Figure 17-5.

r@ Announcements - Microsoft Internet Explorer E]@1
File Edit View Favorites Tools Help o

Qo - © ¥ [@ @ Pseach Jrravores @ (2~ 5 & - [JE B
Address |] http:/fappsplus-wuoyks/Lists/Announcements/Alltems.aspx v|EJGo Links = Googler
-~

' Home Documents and Lists Create Site Settings Help

Team Web Site
8 Announcements

Select a View Use the Announcements list to post messages on the home page of your site.

SINew Item | ¥aFitter | HAEdit in Datasheet

o 0 Title Modified
Get Started with Windows SharePoint Services! 9/10/2004 11:45 PM
o Alert me
& Export to
spreadsheet

B Modify settings
and columns

livl
&) &J Local intranet
Figure 17-5

2.
3.
4.

Click the New Item link. A blank announcement is displayed.
Fill in the Title, Body, and Expiration date, and then click Save and Close.

Click the Home link, and see your new announcement listed on the home page of the site.

You can go directly to adding a new announcement by clicking Add new announcement from the home
page in the Announcements section on the home page.

Other Major Areas
There are a number of other major areas created by default that don’t fall into the lists category. They are:

Q Document Libraries: Various shared documents, stored in document libraries. Documents can
be anything including Excel spreadsheet, Word documents, XML documents, and . zip files.

296

Working with InfoPath and Windows SharePoint Services

Q Picture Libraries: Let you upload and maintain libraries of pictures. Features include tracking
the history (copies) of pictures you edit and save in the library; displaying thumbnails, slide
shows, and previews; and viewing pictures in Explorer View.

Q Discussion Areas: As with newsgroups, you can set up discussion areas, specifying whether or
not you want approval for items listed. Discussions can be viewed either as threads or flat.

Q Document Workspaces, Meeting Workspaces, and Sites: Enable you to create sites under your
main site. When you create one of these sites, you specify the title for the site and the location
under the main site. You are also given the opportunity to specify one of the many templates to
use to create the site.

O Surveys: You can set up surveys that let you see how users feel about various issues. Surveys
can be made up of different types of controls for receiving answers, including drop-downs lists,
multiple choice option buttons, check boxes, text boxes, and others.

These are the major areas and lists you can set up and use in your WSS site. If you were to create a Web site
that included all these features yourself, it would take quite a bit of work and programming. SharePoint
makes creating these sites easy. Before jumping into the integration with InfoPath, take a look at what it
takes to customize the WSS site beyond specifying which lists you want to include.

Customizing the Windows SharePoint Services Team Site

Companies can create their own custom site that reflects their business, group, or team’s mission just by
modifying some properties and adding lists and areas.

As mentioned, with no programming at all you can customize the site to display the features that you
need pretty quickly. You have seen all the available areas that you can add to existing lists and areas on
the site. You also can customize security, add additional Web parts, and apply themes. To change a site,
you have to have administrative privileges and click the link labeled Site Settings. You then see the page
displayed in Figure 17-6.

You can see the choices you have on the page displayed in Figure 17-6. Also included on this page, and
shown at the bottom of the figure, is Manage My Information. This feature enables you to track various

types of user information, including your contact information for the site.

If you click the Go to Site Administration option under Administration, you get a fairly extensive list of
options for managing the security of your site.

297

Chapter 17

@ | Site Settings - Microsoft Internet Explorer - [Eﬂ E

File Edit View Favorites Tools Help

Qo - © X [@ G Pserch Yrrovones @ v 5 1 - [JE B &

i Home Documents and Lists Create Site Settings Help
f Team Web Site
e Site Settings

Use the links on this page to manage site settings and update your persenal information on this Microsoft Windows
SharePoint Services 2.0 (6.0.2.5530) site.

Address | 4] http://appsplus-wuoyks/_layouts/1033/settings.aspx v|EJGo Links ” Googler | i

Administration

Use the links in this section to add or remove users, add or remove sites, or navigate to other site administration
features.

E Manage users
B Manage sites and workspaces
B Configure Site and Workspace Creation

B Go to Site Administration

Customization

= Use these links to change the look of the site, update lists and document libraries, or modify the text displayed at
|| the top of each page of the site.

B Change site title and description
B Apply theme to site
B Modify site content

B Customize home page

Manage My Information

Use these links to view or update the information stored about you, and to manage the list of documents or other
| 3 items in this site for which you receive alerts.

[TR S S

]

&1 & Local ntranet

Figure 17-6

TryltOut | Applying a Theme to the Site
Using the default WWS site created by your administrator:

1. Click the Site Settings link.
2. Click Apply theme to site, under the Customization category.
3. Pick the Sky view, as shown in Figure 17-7.

298

Working with InfoPath and Windows SharePoint Services

&7 Apply Theme - Microsoft Internet Explorer |;|[i|
File Edit View Favorites Tools Help -

@Back - |31 |21) /._\-Search \;}('Fa\ron'tes £ 2~ _,5 w - JEd 3=

Address | &] http://appsplus-wuoyks/_layouts/1033/themeweb.aspx v|EJGo Lnks ¥ Googler |

;' Home Documents and Lists Create Site Settings Help

Team Web Site
Apply Theme to Web site

Use this page to change the fonts and color scheme for your site, Applying a theme does not affect your site's layout,
and will not change any pages that have been individually themed.

Select a Theme

No Theme(Default)
Afternoon

Arctic

Blue Calm

Breeze

Canyon

Compass =
Concrate

Deep Blue
Evergreen

Ice

Iris

Journal

Papyrus

. Sonora
Preview Spring
Water

Apply] [Cancel v

&] Done & Local ntranet
Figure 17-7

Adding Existing Web Parts to Your Site

One of the huge benefits of using WSS to create your site is the use of Web parts. Web parts let you add
functionality to your site that would normally take hours to build yourself. If you just need to add a Web
part from existing Web parts, you can do so by choosing Site Settings on the WSS site home page.

Choose Customize home page, from the Customization category. The home page will open in a design
type mode, and the Web part task bar will open, as shown in Figure 17-8.

299

Chapter 17

ﬁ’ Team Web Site
Home .
ﬁ Modify Shared Page »
Shared Documents Announcements v X Site Image v X Browse bl
Pictures There are currently no ' Web Part Page Gallery (0} had
Lists active announcements. To f
contacts add a new announcement, I"I Team Web Site Gallery (13)]
click "Add new - Jrp— ' J Virtual Server Gallery (0)
Tasks announcement” below. 1
) ; WIndows N Online Gallery (8)
Discussions @ Add new announcement SharePoint Services
General Discussion
Web Part List ‘ﬁ Filter
Surveys Events * Links - %
There Qre currently no There are currently no = | Announcements |
upcoming evgnta. To add a favorite links to display. §5 Contacts =
new event, click "Add new To add a new link, dick
event” below. *add new link" below. |=l content Editor web Part
@ Add new event B Add new link = Events 3
| Form web Part
& General Discussion
=] Image Web Part
[=] vinks
%| Members
j Page Viewer Web Part
1 to 10 (of 13) Mext ||
w
Add to: Add r
< u [2]
&] & Local ntranet
Figure 17-8

As you can see, there are a number of Web part libraries you can choose from. You can even get Web

parts from third parties. When you know the Web part you are interested in, you can drag and drop it
onto your page.

Creating Your Own Web Parts

However, if you want to create your own Web Parts, or highly modify WWS sites, you will want to
learn ASP.NET and use the Software Developer Kit (SDK), which is available for download at http://
www.microsoft.com/downloads/details.aspx?FamilyId=AA3E7FE5-DAEE-4D10-980F-789B827
967B0&displaylang=en. To use the SDK, you need to be familiar with .NET, Web services, and
ASP.NET. But once you learn them, you have a whole new world of possibilities.

Using InfoPath and SharePoint

By using InfoPath with SharePoint, you can add a great deal of versatility and functionality to your
InfoPath forms. You can do a number of tasks such as:

300

Working with InfoPath and Windows SharePoint Services

Q
Q

Publish an InfoPath form onto the site for people to fill out with data stored in each table using
XML, and publish some of the fields in a list.

Sort the list based on values promoted from the InfoPath form.

Add a Web part to display a graph for each of the values.

You see how to perform these tasks in the following section.

One thing to remember when using an InfoPath form with SharePoint is that if you are using a database
for the data source of the InfoPath form, then the user’s machine and SharePoint site have to have access
to it. For this reason, it is best to use a Web service or simply store the data in XML format when using
InfoPath forms with SharePoint.

Publishing an InfoPath Form on a SharePoint Site

You can use any InfoPath form you create on a WSS site, with the data connected, just as you would on
your desktop. One of the convenient features of SharePoint is that even if you have your data in separate
XML files behind your InfoPath forms, you are able to promote fields to the SharePoint site list, and both
sort and query on those fields. The way to put the form up on a WSS site is to publish the form on the
site, in a document library. InfoPath creates a new library if you tell it to.

To publish an InfoPath form on a SharePoint site, you need to provide the Publishing Wizard with the
HTTP address of the site where you want to publish the form. The Publishing Wizard also provides a
means to promote some of the fields into the list and notifies other users about the form being posted.

Try It Out Publish a Sales Report to a SharePoint Site

To get started, you require a form that you have already created. In this case, one of the sample forms

called Sales Report.

1. Open InfoPath, and then click Sample Forms under the Forms Categories.

2. Highlight the Sales Report InfoPath form. The dialog box is shown in Figure 17-9.

3. Click Design this Form. The InfoPath form opens in design view.

4. Choose File & Publish.... The first page of the Publishing Wizard is displayed, as shown in
Figure 17-10.

5. Click Next to move to the next page of the Publishing Wizard. This page asks where you would
like to publish the form: a Shared folder, SharePoint site, or Web Server.

6. Select the second choice: To a SharePoint form library. The dialog box then looks as it does in

Figure 17-11.

301

Chapter 17

(Fill Out a Form &)

Form categories Sample Forms Form tasks

Recently Used Forms |A | -_? Fill Qut this Form

FavOTRR Purdiase Order P;;;::;E 3 Add to Favorites

all Forms Design this Form
| Sample Forms Remaove this Forf'n

Get Update of this Form

Open a form Vj Get Updates of Forms in this
D’a Forms on Office Online Category
(& open...
Dﬁ‘ql‘l a form Resume

&) Design a Form

Service Request Status Report
vl kL] Take a Tour of InfoPath

Figure 17-9

Publishing Wizard

Welcome to the Publishing Wizard!

This wizard helps you to:
- Distribute forms to your users.
- Notify your users when new forms are available.

Click Mext to continue

ack Next =

Cancel

Figure 17-10

7. Click Next to move to the next page of the Publishing Wizard. The next page asks where on the

SharePoint site you would like to publish the form: by creating a new form library or by modi-
fying an existing library. You can see the page in Figure 17-12.

302

Working with InfoPath and Windows SharePoint Services

Publishing Wizard

Where do you want to publish this form?
OTO a shared folder on this computer or on a network

@E‘I’o a SharePoint form library:
{) To a Web server

< Back ” Mext = ll Cancel

Figure 17-11

Publishing Wizard

When publishing to a SharePoint site, you can create a new form
library or modify an existing form library where your form template
can be saved.

Do you want to:

@?Create a new form library (recommended);
() Modify an existing form library

< Back ” MNext =][Cancel

Figure 17-12

Click Next to move to the next page of the Publishing Wizard. You are then asked to supply the
address of the Web site where you want to publish the form.

Type in the address of the Web site. You can see the address used by the author display in
Figure 17-13.

303

Chapter 17

Publishing Wizard
Enter the location of your SharePoint site:

http://appsplus-wuoyks/default.aspy IL]

Bxample: http://sample.microsoft.com

< Back ” Next =]’ Cancel

Figure 17-13

10. Choose to Create a new form library, and then click Next. You are then asked to enter the name
and description for the new form library.

11. Enter the name and description for the new library You can see an example in Figure 17-14.

Publishing Wizard

Type a name and description for this form library.

Name: |Sales Reports

Description:

This is my InfoPath Form called Sales Report. |

< Back ” Next >]l Cancel

Figure 17-14

12. Click Next. The next page lets you specify the fields you want to promote to the SharePoint site.

304

Working with InfoPath and Windows SharePoint Services

13. Choose the field you want to be displayed in the list on the site. You can select multiple fields by
holding the Ctrl key and selecting the fields. You also can add additional fields from the data
source of the form by clicking the Add button. The form is displayed in Figure 17-15.

Publishing Wizard
You can make form data listed below available as column names on a
SharePoint site.
Column Name [Add...]
iMonth |

Total Sales this Month

< Back ” Finish ll Cancel

Figure 17-15

14. Click Finish. The wizard adds the form to the list on the site. You are shown the summary page,
which asks if you want to notify other users about the new form being added to the site, as
shown in Figure 17-16.

Publishing Wizard

Your form template was successfully published to the following
location:

http://appsplus-wuoyks/Sales Reports/.../Alltems.aspx

Users who have access to this shared location can now open new
forms based on this form template and fill them out.

You can now create e-mail messages with a link to this new form
to notify users of its availability.

Notify Users...

Dgpen this form from its published location

Figure 17-16

15. Click Close.
305

Chapter 17

The new document library has been created and the form uploaded up to the SharePoint site. Remember

that although you upload the InfoPath form up onto the site, users will have to have a copy of Microsoft
InfoPath on their local machines.

Filling Out InfoPath Forms on the SharePoint Site

Now that you have added the InfoPath form to the SharePoint site, it is time to see how to fill out the
form and see the results in the form library list. To accomplish this, return to the SharePoint site and look

up the new document library. Once in the library you can view the form’s data in list view as well as sort
and filter the data.

To look at the data, however, you need to fill out some forms so that the data exists. That is the purpose
of this next Try It Out.

Try It Out | Working with the Form Library

Using the Windows SharePoint Service site specified throughout this chapter:

1. Click the Documents link, located on the left side of the home page. You see the Sales Reports
listed as a new document library, as shown in Figure 17-17.

&]Documents and Lists - Microsoft Internet Explorer =
File Edit View Favorites Tools Help a
Qeack - © - [x] (2 0| O search Jpravoes €| (A~ n w - [B =2
Address €] http://appsplus-wuoyks/_layouts/1033/viewlsts.aspx ?BaseType=1 v Go lnks * Googler

' Home Documents and Lists Create Site Settings Help

\j Team Web Site .
Documents and Lists

Select a View This page shows all the document libraries in this Web site. Click the name of the document library to view its
Al contents. To create a new document library, click Create Document Library.

Document Libraries —]Create Document Library

Picture Libraries

Document Libraries Description Items Last Modified
Lists (23] sales Reports This is my InfoPath Form called Sales 0 1 minute ago
Discussion Boards Report.
Surveys 53] Shared Documents Share a document with the team by 0 4 days ago
adding it to this document library.
See Also
& Sites
B Document
Workspaces
E Meeting
Workspaces
& & Local intranet
Figure 17-17

306

Working with InfoPath and Windows SharePoint Services

2. Click the link Sales Reports. You then see the empty document library with the columns you
specified in the previous Try It Out.

3. Click the link Fill Out This Form in the Sales Report document library. InfoPath then opens on
the local machine with the form opened for filling.

4. Fill out the form.

5. Choose File = Save. The Save As dialog box opens with the Sales Report document library dis-
played, as shown in Figure 17-18.

Save As

Save jn: 5 Sales Reports on appsplus-wuoyks _'V] PP | |Q . | :| - Tools

Team Web Site

My Rece...
' Sales Reports
i{%’} ype Name Modified By Modified Checked Out To
Degkto 4] MarkWoodlieflan04 F. Scott Barker 9/15/2004 9:21 AM
3 &) scottBarkerlan04 F. Scott Barker 9/15/2004 9:19 AM

My Documents

W

My Computer

My Netwo... .
File name: |DianaBarkerJan0d| v] Save
Save as fype: | [nforath Form (*.xml) ."l .
Figure 17-18

6. Type in a meaningful name for the file, because this will be displayed in the library. Figure 17-18
displays this dialog box with a couple of forms already filled out.

7. Click Save. The form is then saved on the WSS site and displayed immediately in the document
library list, as shown in Figure 17-19.

The columns displayed in Figure 17-19 have been modified to fit on the screen. You can modify the fields
by clicking on Modify Settings and Columns.

You can change the list order in the document library by clicking on the column headings. You can also
set filters by clicking on the Filter button, displayed in the toolbar over the list.

307

Chapter 17

& | Sales Reports - Microsoft Internet Explorer E}@
File Edit View Favorites Tools Help i
Qo - © N @A G Pserch Formors @ 3+ 2 3 - L H B

Address |] http://appsplus-wuoyks/Sales320Reports/Forms/ Alltems. aspx v|B o Lnks * Googler

;' Home Documents and Lists Create Site Settings Help

Team Web Site

ER! Sales Reports
2
Select a View This is my InfoPath Form called Sales Report.
All F
Il |] Fill Out This Form | _} Upload Form | [jNew Folder | “EFilter | .BEdit in Datasheet
Explorer View
Merge Forms Type MName Modified Month Salespersor Total Sales this Month Year =
oy o &) DianaBarkeran04 ! new 9/15/2004 9:23 AM January Diana Barker 1,200 2004
i:"‘i:j MarkWoodlieflan0o4 ! rew 9/15/2004 9:21 AM January Mark Woodlief 700 2004
A 1 e ; .
. uﬂ ScottBarkerJan04 & HEW 9/15/2004 9:19 AM January Scott Barker 564 2004
o Alert me
& Export to
spreadshest
E Modify settings |
and columns ["l
&) &J Local intranet

Figure 17-19

Summary

SharePoint products and technologies give companies powerful collaboration tools. Windows
SharePoint Services enables users, managers, and administrators to create collaborative Web sites that
are perfect for team, department, and company use. SharePoint Portal Services enable multiple WSS
sites to be linked with each other and other technologies.

In this chapter, you were given a tour of the SharePoint team site and shown the most common features
used on the sites. You were also shown how to modify the site to customize it for your own purposes.

Working with InfoPath forms on SharePoint is extremely powerful and easy. With little or no program-
ming, you can load forms up on a WSS site using the Publishing Wizard included in InfoPath. You can
expand the power of both SharePoint and InfoPath by using InfoPath with SharePoint and Web Parts.

Exercises

1. What operating system is required for installing Windows SharePoint Services?
2. How do you get Windows SharePoint Services?

3. What is the term for specifying fields from your InfoPath form to display on the WSS site?

308

18

Manufacturing Plant
Case Study

All of the earlier chapters in this book have tried to prepare you for completing an InfoPath solu-
tion. This chapter ties together many of the lessons and techniques learned, for the purpose of con-
structing an InfoPath solution that allows maintenance crews to check and report the status of the
boiler system associated with a particular building. However, many of the topics in this chapter
require an understanding of previously covered concepts, while several will reference code writ-
ten previously. This chapter also requires some general understanding of data store concepts
including Microsoft Access and XML Web Services to deliver the data.

There are many reasons for creating an InfoPath solution for this project, including:

Q Combining data from multiple boilers into a common data store.
Q Better analyzing boilers historical data.

Q Posting results of the boiler system to a Sharepoint portal from better analyzing by staff
that does not have InfoPath installed on their computer.

0 Allowing building maintenance crews to use a tablet PC and InfoPath for more efficient
data gathering.

For the purposes of this case study, an Access database will be created using Microsoft Access.
This database will be the data store and will be accessed by an XML Web service that that has been
created with Microsoft Visual Studio .NET 2003, and the .NET Framework 1.1.

The InfoPath Document

Some of the design of the InfoPath document that is used to collect the data will be described. You
can see the final form displayed in Figure 18-1.

Chapter 18

licrosoft Office
Ble Edt Wew [nssrt Format Took Table Hsp -
BB | B erevenrom | S (4 F 4 @ O G| wfesgnTasks.. @@ |2
A verdana - - B I U @ggg;;.g.;; TEYV-A-L
ﬁ Draw Table __1’ Mo barder - a] Insert~ B
Boiler Building 501 Boiler System = | pava source - x
Operating Log | @ a
: 08 Layout
3rd at 0000 : 0400 1st @ 0900 : 1300 2nd @ 1700: 2100 i 3B controls
@ l] #l2 Data Source
Date Scheduled Log Time Shift Operator # !) views
) Dl ™M Data source:
— = _] _] : Mar v
9w
=] = [Dataset1
i 2 G (hoice)
Boiler Boiler 1 | : Bl " BoilersOperationLog
Range Reading i e Bo!gl.'us.Dh
@ I L = : (F BoikeriD
Status N/A Select. .. [L]p™ i |3 (£ LogDate™
—] : (F LagTime
Steam Drum PSIG 15-120 a9 i (=P shiftlp=
. (=} OperatorD
. (Ef SteamDrumStatus
Excess 02 1.5-6 o : (= steamDrumPSIG
: _? Excess™
R Steamload™
Steam Load 0- 40 KPPH o ; &R steemCydes™
: =P Comments
Cycles 1-75 a
Comments 9 m []5how detais
[i Picture o
g Help with the Data Source
v.
Figure 18-1

When describing the form, you can start by defining the data schema being used. After creating the
schema in the InfoPath form to get started, the tables are created in Access with the same fields to hold

the data.

Laying out the form in InfoPath is fairly straightforward, using the techniques learned in early chapters
to place all of the controls on the form necessary for an inspector to input data.

Creating the Database

When you start to create any database, you need to move the physical world tasks and items, in this case
the boiler information, over into the electronic world of the database. To be a good backend or
data store, the database, must fulfill several business requirements, in this case to answer the

following questions:

1. What boilers are out of the predefined specs?

310

Manufacturing Plant Case Study

2. Which boilers are falling out of spec over and over again?
3. How often is the boiler falling out of spec?
4. Which operators are finding the most boilers out of spec?
5. How is the boiler system behaving as a whole?
6. How long is it taking the operators to complete the boiler inspections?
7. Can the InfoPath form expedite data collection?
To answer these questions, a database was created to maintain boiler information. To work with the data
in the tables, a plan was created that includes these major tasks:
Q Designing the Database using Microsoft Access to support the InfoPath frontend
Q Designing the XML Web service to deliver the data to the clients
O Designing the InfoPath document to display or collect data from the Web service

These tasks can be accomplished using a wide array of technologies. For this case study, Access was cho-
sen as the data store for the simple ease of use, without incurring the cost overhead of SQL Server.

The preceding bullet points directly reflect how the solution is broken up into three different logical
steps in order to create the best overall solution utilizing the best patterns and practices.

You may find that creating the database first is not where you wanted to jump in. Rest assured that if
you start creating an InfoPath form without finely detailed planning, which includes the database, you
will run into many problems and your solution will take twice as long to create.

InfoPath was designed to query and populate an existing data store. Unlike working directly in Access,
the best practice is to create the complete database first then work on the client side of the application.
This will make the InfoPath part of the solution very easy and less time-consuming to create.

The BoilerSystem Data Model

Database modeling and architecture are definitely out of the scope of this book, and there are many
books already published covering these two areas extensively.

To keep this case study fairly straightforward, the typical one-to-many type of relationships in the
database that will support most real-life situations will be used. If you are interested in more advanced
database architecture subjects visit www.wrox . com, and you will see many books on Microsoft Access
and/or SQL Server 2000. Following are the tables and fields outlining the BoilerSystem database:

BoilersOperatinglLog table

The first table created is the table to hold the actual boiler inspection data. During initial analysis and
gathering of the business requirements the BoilerOperatingLog table was found to need 12 Fields. The
fields are:

311

Chapter 18

Field Name Description

BoilerLogID Autonumber field that will uniquely identify each boiler log
record.

BoilerID Look up field to the Boiler table.

LogDate Date the inspection took place.

LogTime Dollar time the log was submitted.

ShiftID Number of items included in the order.

OperatorID Lookup field to the Operator table.

SteamDrumStatus Status of the boilers steam drum.

SteamDrumPSIG Status of the steam drum PSIG.

Excess Field to hold the excess PSIG data.

SteamLoad Steam load of this particular boiler.

SteamCycles Steam cycle data goes here.

Comments Any comments the operator may want to make on this
inspection are stored here.

SystemLog Table

The SystemLog table will hold the data that is particular to the boiler system as a whole. This will store
important information concerning the building and the overall health of the system.

The fields are:
Field Description
SystemLogID AutoNumber field that will uniquely identify each system
log record.
SteamHeaderPSIG Steam header PSIG.
SteamFeedWaterHeaderPSIG Steam water PSIG.
DearatorPSIG Dearator PSIG.

DearatorTemp
FMACOutsideAirTemp
BlowDownOnlineBoilersLWCO
ShiftID

LogTime

OperatorID

Comments

Dearator temperature.

FMAC outside air temperature.
Status of the boilers steam drum.
Field to hold the excess PSIG data.
Steam load of this particular boiler.
Steam cycle data goes here.

Any comments the operator may want to make on the sys-
tem inspection are stored here.

Manufacturing Plant Case Study

Lookup Tables

The following tables are considered lookup tables, they hold static data that doesn’t really change that
often and are there mostly to provide information to fill in combo boxes or to look up data in.

Boilers

This table will hold the individual boiler information. The fields are:

Field

BoilerID
BoilerNumber

BoilerDescription

Shifts

Description

AutoNumber field that uniquely identies each boiler.
Boiler number.

Description of the boiler.

This table will hold the individual boiler information. The fields are:

Fields

ShiftID
ShiftName
TimeStart
TimeEnd

Operators

Description

AutoNumber field that will uniquely identify each shift.
Shifts name, used for display purposes.

Time the shift starts.

Time the shift ends.

This table will hold the individual boiler information. The fields are:

Field

OperatorID
OperatorName

OperatorNumber

Description

AutoNumber field that will uniquely identify each operator.
Boiler number.

Description of the boiler.

The BoilerSystem Relationship Model

When working with more than one table in a database, it is usually more efficient to create one-to-many
relationships between the tables. This allows for a more normalized database structure and allows to
greater flexibility when creating the Web service and client-side application. Figure 18-2 shows the
design of the database with the relationships illustrated:

313

Chapter 18

Relationships

=7 Ble Edt Wew

DB

Relationships Tools Window Help

%

e x &o-

&

o

P
Ready

EailerMumber
BoilerDescription

LogDate
LogTime
ShiftID
OperatorlD

SteamDrumPSIG
Excess
Steamload
SteamCydes
Comments

SteamDrumStatus

1

Shiftih
Shifthiame
TimeStart
TimeEnd

OperatorD
OperatorNams
OperatorNumber

Systemi ogD
SteamHeaderPsIG
SteamFeed\WaterHeaderPSIG
DearatorPSIG

DearatorTemp
FMACOutsideAirTemp
BlowDownOnineBeilersLWCO
Comments

ShiftID

ScheduledLogTime
OperatorlD

3

Figure 18-2

Looking at the Boiler Web Service

The Boiler Web service is responsible for handling all transactions between the Access database and the
client application, in this case InfoPath. It was created using the XML Web services along with Visual

Studio .NET 2003 and C#, as outlined in Chapter 15, “Creating and Working with Web Services.”

Q Start by creating a new C# ASP.NET Web service using Visual Studio

A Name the new Web service BoilerWebService

Q Change the name of Servicel.asmx, to DataService.asnx (make sure you open the . cs file

and change the name of the class to DataService as well, shown here in Figure 18-3

314

Manufacturing Plant Case Study

" BoilerWeb Service - Microsoft Visual C# .NET [design] - DataService .asmx.cs® =JT&d
File Edit View Project Build Debug Tools Window Help
EoSRbae FE Z2 %%,
P-h-cH@ R o a- » Debug - | o Ssvelnitatstocks - BEERFH-
% Object Browser | Start Page | DataService .asmx.cs [Desion]* | DataService .asmoucs® | 4 I % || Solution Explorer - Boiler\WebService 2 x
% |Q:Balem’ebSemoe.DaaServoe j |"-‘DalaSeru|050 j == Il lﬁl =
_% G using Syscem: — [&3 Sokution 'BailerWebService' (1 project)
m using System.Collecticns; = =~ [bollerWebservice
= uzing System.ComponentModel ¥ 3 References
H using System.Data: 3] Assemblylnfo.cs
- using System.Diagnostics; % Ezzjm .&sm
uzing Sysztem.Web; 3m) .a'.-;x
R uszing System.Web.Services: = Wehconta
[namespace BoilerWebService i E Sohution Explarer
i
=] < 3 Properties 4 x
Su deacription for Servicel. | j
._ R o R . ~ - . N . A==
(=] public class DataService : System.Web.3ervices.WebService w2]
{
=] rublic DataSerwvice ()
i
//CODEGEN: This call is reguired by the ASP.NET Web Services Deasiq
InitializeComponent () :
1
-
1] b| | % eroperties | @) Dynamic help
Search Results a x
Output a x
(] TaskList [E] output
Ready Ln 16 Col 27 Ch 21 INS|
Figure 18-3

Creating the Data Adapters

The ADO.NET OleDbDataAdapters, OleDbDataConnection, and datasets of the System.Data namespace
of the NET Framework were used to create the middle tier of the solution. These components handle all
of the interaction between InfoPath and the Access database created for the solution.

OleDbDataAdapters have been created to query the database for specified information. Three were cre-
ated to handle the lookup tables we have created in the database: daBoilers, daShifts, and daOperators.
Two other data adapters were created for daBoilerLog and daSystemLog. You can see all the data
adapters in Figure 18-4, along with a oleDbConnection that was created.

315

Chapter 18

FBle Edt Vew Project Bulld Debug Data Took Window Help

A] - | - 8- » Debug v | @ UlraliProviderl - B HERE-.
Server Explorer 2 % || cupet | sieage DataService.asmi.cs [Design] | Datat 4 b X || Selution Explorer - Boiler\WebService a1 X
BEEE B = & @ E
=1 @ Data Connections & oleDbCannectiont 28 daseilers 7, daBaileriog &8 Soutien ‘BoierviebSeryice’ (1 project)
[(@ ACCESS.C:\Documents and Settings\mariov\Deskiop)| = £} BoilerWebService
< 8 ACCESS.C\Docurments and Settingsimark\Deskioo| L, da0parators P, dashifts % dasystemLog 4 i3] References
G ACCESS.C:\Inetpubwwwroot|\OffineCacheSampleSe 0 bin
4 [MARNTABLET,3MS.dbo - [®] Assembiyinfo.cs
[& MARNTABLET,CaseStudy.dbo - #) DataService,asmx
1 (B MARNTABLET.F3Delvery.dbo s ¥ Dataservice.asmu.cs
@ @ MARNTABLET,Morthwind.cho = qﬂ Global.asax
4] B MARNTABLET.TMMK.dbo 5§ vieb.config
=l %S:--:crs

+] MarxTablet

& u 2

I %Sc".'crExulorcr '}?“ool;\e:\' 1 350!.'50... I @ Propert... | @) Dynami.. E Class ¥i...
2] TaskList |
= I I

Figure 18-4

Creating the Datasets

The next task was to create the datasets that hold the data for the client application. This was started by
creating the dataset that holds the lookup tables. This is a fairly straightforward design-time task and a
good place to start with datasets. Using the Generate dataset from the main Visual Studio tool menu, the
dataset was created as shown in Figure 18-5.

This dataset was named dsLookups with only the Boilers, Operators, and Shifts tables are added. A
repository for the three data adapters that we are using to retrieve the data from the database.

Two more datasets were created using a slightly different approach because they contain relations to
other tables as well as hold data.

316

Manufacturing Plant Case Study

enerate Datase

Generate a datasetthat includes the specified tables.

Choose adataset:
" Existing | =

(* New: |dsL00kupS

Choose whichtable(s) to add to the dataset:

v| Boilers (daBoilers)
BoilersOperationLog (daBoilel.og)

v/| Operators {daOperators)

| shifts {dashifts)

SystemlLog (daSystemlLog)

| Addthis dataset to the designer.

(0] 4 | Cancel Help

Figure 18-5

Creating Typed Datasets

These next two datasets are a more advanced type of dataset. These two will by typed datasets that have
relationships in them. This will allow you to have one dataset that holds multiple tables that relate to
each other.

Using the Solution Explorer, a new DataSet object is added to the project, and named BoilersOperatingLog.
Once the dataset is opened, the tables BoilersOperationLog, Boilers, Shifts, and Operators are dragged onto
the design surface of the dataset.

A relation object is then dragged onto the BoilerID field in the BoilersOperationLog table in the dataset. The
relationship editor inside VS opens. A relationship between the BoilerID field in the BoilersOperationLog
table and the Boilers table is then created, as shown in Figure 18-6.

Relationships between ShiftID, OperatorID, and their respective tables have also been created. The

last dataset created for this solution was generated using the same methods used to create the
BoilerOperatingLog dataset. Two datasets were created to work with the schema of the database.

317

Chapter 18

MName: IBoiIersToBoiIersOperah’onLog

To define a relationship (keyref), select the parent element and key, select the child element,
and then select the child field carresponding to each parent field.

Parent element: Child element:
IBoilers j IBoilersOperationLog j
Key:
IBoilersOperaﬁngLogKeyZ j New... |

Fields:

Key Fields |Foreign Key Fields

BoilerlD BoilerID

Dataset Properties

|~ Create foreign key constraint only

Update rule: Delete rule: Accept/Reject rule:

| (Defauit) x| |Defaulty x| |oefaut) |

0K I Cancel | Help |

Figure 18-6

Exposing the Datasets

After creating the datasets to work with, you need to add the code necessary to expose these objects to
calling applications using a Web service.

QO IntheDataService.asmx.cs code file a Web method was created to return the dataset
dsLookups from the Web service (and database) that contains the three lookup tables.

Q At the top of the code file you will add the following using statement:

using System.Data.0leDb

Q The Web method that follows has three data adapters that go out to the database and fetch all
the records to fill up this dataset. The dataset is a container that has the ability to hold many
tables and relationships.

[WebMethod]
public System.Data.DataSet ReturnLookups ()
{
OleDbDataAdapter daBoilers = new OleDbDataAdapter ("Select * From
Boilers", this.oleDbConnectionl) ;
OleDbDataAdapter daShifts = new OleDbDataAdapter ("Select * From Shifts",

318

Manufacturing Plant Case Study

}

this.oleDbConnectionl) ;

OleDbDataAdapter daOperators = new OleDbDataAdapter ("Select * From
Operators", this.oleDbConnectionl) ;

dsLookups ds = new dsLookups() ;

daBoilers.Fill (ds, "Boilers");

dashifts.Fill (ds, "Shifts");

daOperators.Fill (ds, "Operators") ;

return ds;

Now that the Web method to expose the lookup tables has been described, the InfoPath template will be
opened and the datasource added to the form.

Q

Qa

Using the Data Connection Wizard a connection to the Web service is created. Because the only
method written thus far returns a dataset, something InfoPath is familiar with, you are allowed
to use this in the InfoPath document.

Be sure that you select Receive Data, from a Web Service. http://localhost/
BoilerWebService/DataService.asmx should be the name of your Web service, type that in
the text box, you'll notice right away that the Web method we created earlier shows up in the
box on the left, as shown in Figure 18-7:

The Web service that you selected has the following operations for retrieving ¥ML data.

Select an pperation: Description of operation:
ReturnLookups

[< Back][Next =][Cancel

Figure 18-7

This connection was named ReturnLookups.

Q During design time in the InfoPath document, three drop-down list box controls were dragged

onto the InfoPath form.

319

Chapter 18

QO The Web service is used to retrieve the data needed to fill these controls, following the necessary
steps to bind the drop-down list box controls to the WebServices dataset.

Inserting Data

Going back to Visual Studio to add another Web method will allow us to submit data from InfoPath, dis-
played here:

[WebMethod]
public void InsertNewBoilerLog (int BoilerID, DateTime LogDate, DateTime LogTime,
int ShiftID, int OperatorID, string SteamDrumStatus, int SteamDrumPSIG, int Excess,
int SteamLoad, int SteamCycles, string Comments)
{
string sql = "Insert into BoilersOperationLog(BoilerID, LogDate, LogTime,
ShiftID,OperatorID, SteamDrumStatus, SteamDrumPSIG, Excess,
SteamLoad, SteamCycles, Comments) values (" + BoilerID + ", " + LogDate +
", " + LogTime + ", " + ShiftID+ ", " + OperatorID + ", " +
SteamDrumStatus + ", " + SteamDrumPSIG + ", " + Excess + ", " +
SteamLoad + ", " + SteamCycles + ", " + Comments + ");";
System.Data.0leDb.0OleDbCommand cmd = new
System.Data.0OleDb.0leDbCommand (sgl, this.oleDbConnectionl) ;
cmd.Connection.Open() ;
cmd . ExecuteNonQuery () ;
cmd.Connection.Close() ;

Examine the preceding code, notice that the parameters of the Web method directly reflect the fields in
the table. The next step is to go back to InfoPath and create the DataConnection used to submit data
from InfoPath to this Web service.

Submitting from InfoPath

Switching back to InfoPath to set up the document for submitting its data, we are adding a new data
connection to submit data. On the first screen of the wizard, select Submit Data. On the Data Connect
dialog box that asks for the Web address of the Web service to use, the following is entered: http: //
ocalhost/BoilerWebService/DataService.asmx.

Under Select an Operation, there are now two Web methods exposed to you. For submitting data, the
InsertNewBoilerLog method has been used. At one point in the wizard, the ability to match up the
parameters of the Web method with the data fields on the InfoPath form is given, as shown here in
Figure 18-8.

All of the Web method parameters are matched up with the elements on the InfoPath form. The default
name of “Submit”” is left as the name of this data connection.

320

Manufacturing Plant Case Study

The submit operation for the Web service requires the following parameters. Specify which
fields or groups in your form provide the data for these parameters, If the Web service
parameter reguires an entire ¥ML document, you can specify that as well.

Parameters:
Parameter Type Element @
tns:BoilerID* int
tns:LogDate™ dateTime
tns:LogTime™ dateTime M
(%] i] [L]

Parameter options

Submit the following data for the selected parameter:
(®) Field or group: |

|
|

Include; |_':-.'.:-': child elements on

() Entire form (ML document, incuding processing instructions)

MNote: Digitally signed data must be submitted as a string to preserve white spaces.

[< Back][Next =][Cancel

Figure 18-8

Submitting Forms

The last task is to configure the way that InfoPath submits data from the form. Select Submitting Forms...
from the Tools menu; the Enable Submit check box is checked. Select the Web service from the drop-
down list, and select the Submit data connection for the submit property. Last, check Enable submit on
the file menu. The form is now set up to utilize your Web service to submit data.

Then add a button to the form, with the Submit property set.

Situation

The reason for creating this application was that an automotive manufacturing plant needed a way to
reduce the paper workflow currently used to collect boiler operation information. There are six boilers
spread out around the facility, and this requires constant supervision and safety checks.

Previously the inspectors used a paper-based solution. The inspector would fill out the paper form and
then pass it on to someone else to proof read before manually entering the data into the database.

This posed many problems, as you might have guessed. It was becoming more and more difficult to
keep track of how the boilers were operating as a whole and which boilers were last inspected and if any

work was done to them or not.

321

Chapter 18

Summary

InfoPath was chosen as the primary client application for the data collection. Because this facility wanted
to be completely mobile, the tablet PC platform was also chosen to distribute the application on. This
allows the users to better analyze and check the data that is going into the system.

As you have seen, through the solution a very mobile workflow has been implemented:

a

a
a
a
a

322

The user picks up a tablet PC and opens up Sharepoint Portal for the Maintenance department.
If one is available, InfoPath gets a new version of the InfoPath form we created.

The user visits each boiler in the facilty and fills out the inspection InfoPath form.

When finished the user submits the boiler inspection data to Access.

The manager comes to work, opens up Sharepoint Portal, or ASPNET Web page, and gets a list
of all boiler inspections that are outside of the normal operating requirements.

Answers to Exercises

Chapter 1
1. Acopy of Microsoft InfoPath must be installed.

2. JScript (default) and VBScript.

3. C#and Visual Basic .NET.
4, 1 Single user use. 2) Published for other’s use, or 3) Collaborative efforts.
B. Direct Database, Web Services, and XML Schemas
6. Microsoft Access and Microsoft SQL Server.
7. 1) Create the Data Source. 2) Create the Form. 3) Publish the form. 4) Fill in the Form.
8. Text Box and Drop Down List Box controls.
Chapter 2
1. xMmL
2. 1) Layout. 2) Controls. 3) Data Sources. 4) Views.

3. Publish Form...
4. Place the cursor on the form where you want the object placed.
5

Drag and drop the control where you want it on the form.

Chapter 3
1. Flat File and Relational.

2 Microsoft Access and Microsoft SQL Server.

3 Primary and Foreign Key fields.

4. The steps are called normalizing your database.
5. XMLand XSD.

Appendix A

Chapter 4
1. Text Box control.
2. Repeating Table, Repeating Table with Controls, Repeating Section, or Master/Detail, depend-
ing on the data added.
3. 1Run Query. 2) Submit. 3) New Record. 4) Delete & Submit.
4. 1) Change Database or 2) Edit SQL.
Chapter 5
1. World Wide Web Consortium.
2 HTML and XML standards.
3. XsD.
4. XML and XSD.
Chapter 6
1. Literal Values or Formulas.
2. Conditions and Actions.
3. Clicking the And... button and choosing from the available compounding operators.
4 Standard and Conditional.
Chapter 7
1. Expression Box control.
2. Run Query, Submit, New Record, Delete & Submi, and Rules & Custom Code.
3. 1) Enter the list box entries manually. 2) Look up values in the form’s data source. 3) Look up
values in a data connection to a database, Web service, file, or SharePoint library or list.
4. Data Connection Wizard.
Chapter 8
1. 1) Repeating Section. 2) Repeating Section with Controls. 3) Repeating Table.
2. Choice Sections and Choice Group Control.
3. Display tab on a repeating table or section.

324

Answers to Exercises

Chapter 9
1. Click the Add a New View... task on the Views task pane.

2. Inthe Generals tab of the View Properties dialog, check the “Show on the View menu when fill-
ing out the form” check box.

3. The Advanced tab of the Forms Options dialog.

Chapter 10
1. 1) In ashared local area network folder. 2) On a Web Server. 3) In a SharePoint library.

2. All the methods just mentioned require that the user has access to the form template
3. Microsoft WebDAV.
4 Data should appear in Excel.

Chapter 11
1. Microsoft Scripting Technologies and .NET Managed Code.

2. Microsoft JScript and Microsoft VBScript.
3. InfoPath 2003 Toolkit for Visual Studio .NET.

Chapter 12
1. 1) OnBeforeChange 2) OnValidate 3) OnAfterChange

2. XDocument

3. || and &&
Chapter 13
1. 1) Microsoft InfoPath 2003. 2) Visual Studio .NET 2003. 3) InfoPath 2003 Toolkit for Visual
Studio .NET.

2. C#and Visual Studio .NET.
3. Windows and Web Installation Programs or Merge Modules.

Chapter 14
1. 1) getDate 2) getFullMonth 3) getFullYear
2. Data Adapter
3. DIV
4 Custom Task Pane area on the Advanced tab of the Forms Options dialog.

325

Appendix A

Chapter 15
1. XML Web Services.

2. Simplified Object Access Protocol.

Chapter 16
1. 1) Authentication 2) Authorization 3) Data Integrity 4) System Availability

2. Asandbox is a location on your computer that is controlled highly by IE’s security settings.
3. 1) SDK Regform Utility 2) MSI
4. 1) CAS (Code Access Security) 2) Role based permissions.

Chapter 17
1. Windows Server 2003
2. Download from http:/ /www.microsoft.com/windowsserver2003/ techinfo /sharepoint /
WSS.mspx

3. Promoting fields.

326

Beginning InfoPath™ 2003

SYMBOLS &
NUMERICS

&& (AND) logical, 204

// (comments in code), 199
{ } (curly brackets), 197, 204
OR (]]) logical, 204

; (semicolon), 203

ANF (first normal form), 35
2NF (second normal form), 35
3NF (third normal form), 35
4NF (fourth normal form), 35

A

Absence Request form
e-mailing when filling, 171-173
features of, 3, 9-11
opening, 2
publishing to Web server, 167-170
Access (Microsoft) database
benefits and issues of, 37
exporting to XML from, 70-71
as file-server-based, 36
IT department and, 2
objects used with InfoPath, 37-38

Index

overview of, 36

relationships window, 34
Access Is Denied dialog box, 277
action, specifying

for button, 106

for view, 140
Action dialog box, 95-96, 97
Action drop-down list, 95
ActiveX Control, 6
ActiveX Data Objects (ADO), 270
Add a New View action, 140
Add a New View... button, 144
Add Files dialog box, 223, 224
Add Print View for Word action, 140
Add View dialog box, 144-145
AddDays method, 233
AddMonths method, 233
AddYears method, 233
Administrative Tools menu, Internet

Information Services command, 253

ADO (ActiveX Data Objects), 270
ADO.NET

data provider classes, 270-271

method to return supplier information,

creating, 272-274
objects, 271-272
overview of, 270

Index

AND (&&) logical

AND (&&) logical, 204
Announcements list on Windows SharePoint
Services site, 294, 296
answers to exercises, 323-326
application
client-side, 276
executing, 215-216
InfoPath .NET, distributing, 221-226
interacting with enterprise-wide, 182
managed, 284
XML Web services and, 251
. asmx file, 284
ASP.NET
initial template, 265-269
method, creating and testing, 267-269
namespaces, 266
overview of, 262-263
project, creating, 263-265
using directive, 266
Web service and, 250
Windows SharePoint Services and, 292, 300
assembly
defining, 284
namespace and, 271
in Web services, 284
assigning value to variable
in C#, 234
in JScript, 231
authentication, 275
Authentication objects, 285
authorization, 276

backend, 36
.bak file, 283
binding
choice group to database, 127
drop-down list box to field, 111
blank form, new
creating, 20, 21
table, adding, 22-23

330

Boiler Web service
datasets, creating, 316-317
exposing datasets, 318-320
inserting data, 320
OleDbDataAdapters, creating, 315-316
overview of, 314-315
submitting data, 320-321
submitting forms, 321
typed datasets, creating, 317-318
BoilerOperatingLog table, 311-312
Boilers lookup table, 313
BoilerSystem data model
BoilerOperatingLog table, 311-312
lookup tables, 313
overview of, 311
SystemLog table, 312
BoilerSystem relationship model, 313-314
Build menu, Rebuild Solution command, 221,
225
Bulleted List control, 84
Button control, 84
Button Properties dialog box, 57, 108, 239
buttons, adding to form, 106-109

C

C#
data calculations using, 233-236
Windows application project, creating,
211-213
calendar icon, 4
call function, 90-91
calling
custom function, 198-199
Web service, 284
Cascade Deletes, turning on, 109
case sensitivity of names, 197
case study. See manufacturing plant case
study
Check Box control, 84
Choice Group control, 6, 124-127
Choice Section control, 124-127

connected data

class
data provider, 270-271
DataObject, 217
DateTime, 233
EmailAdapterObject, 217, 237
ErrorObject, 217
MessageBox, 214
System.Security namespace, 285-286
System.Web.Services.WebService, 266
XDocument, 217
client/server database, 36
client-side application, 276
Close Solution command (File menu), 221
CLR (common language runtime)
assemblies and, 284, 285-286
description of, 208
code. See also JScript; .NET managed code
languages
comments in, 199
curly braces and, 197, 204
date calculations
C# and Visual Studio .NET, 233-236
JScript Date Object, 230-232
overview of, 229-230
JScript compared to VBScript, 182-183
providing context-sensitive help, 240-246
semicolon to designate end of line of, 203
sending form in e-mail, 236-240
uses for, 181-182
Code Assess Security, 285
code-based security, 285
collaborating on forms, 8
collaborative Web site, 292
color formatting for Microsoft Script Editor,
194
color scheme, setting, 26-27
Color Schemes command (Format menu), 26
columns, resizing, 23-24
combining data from multiple forms, 5
command buttons, adding to form, 106-109
commands
Administrative Tools menu, Internet
Information Services, 253

Build menu, Rebuild Solution, 221, 225
Data Connection Wizard, 50, 61
Debug menu
Run, 220
Start, 191, 235
File menu
Close Solution, 221
Export Tow> The Web..., 174
Extract Form Files, 20-21, 80-81
Merge Forms..., 178
Preview Form, 58
Print, 156
Print Preview, 158-159
Publish..., 163, 301
Save, 307
Send to Mail Recipient, 170
Format menu, Color Schemes, 26
SDK RegForm utility, 281
Start menu
Microsoft Office = Microsoft Office InfoPath
2003, 2
Run, 282
Tools menu
Data Connections, 17, 61, 113, 238
Digital Signatures, 287
Form Options, 176, 244
Internet Options, 278
On Load Event, 218
Options, 194
Programming, 187
View menu
Notes, 148
Orders, 148-149
comments in code, 199
common language runtime (CLR)
assemblies and, 284, 285-286
description of, 208
Condition dialog box, 94, 96
conditional branching, 204-205
Conditional Format dialog box, 101-102
conditional formatting, 5, 100-102
connected data, 270

connecting

connecting
data to InfoPath, 8
to Web services, 253-255
Connection object, 271
consistent formatting, 5
consumer, 250
Contacts list on Windows SharePoint Services
site, 295
ContextChange event, 240, 241, 242
context-sensitive help, providing, 240-246
Control task pane
description of, 16-17
list of controls in, 84
controls
adding to forms, 25-26
as automatically placed on forms, 10
command buttons, adding to form, 106-109
Display tab, 100-101
drop-down list box
adding and binding to field, 111
adding field from data source as text box,
then changing it, 110
adding to form, 109
description of, 109
entering data manually, 117, 119-120
setting data connection properties for,
115-117
specifying data source, 112-114
expression box, 103-105
field properties for, 4
modifying project by adding, 214-215
moving, 26
overview of, 83-85
property sheet, 86
rules
adding, 96-97
creating, 93-96
overview of, 92
sections
Choice and Choice Group, 124-127
Filter Data properties, 131-134
Master/Detail, 124, 134
Optional, 127-130

332

overview of, 123
types of, 123-124
Service Pack 1.1 and, 6
setting default value of
formulas, using, 89-92
literal values, using, 87-89
overview of, 87
tables and, 22
Create Print Version for This View action, 140
Create Print View dialog box, 156
Ctrl+F5, 216
curly brackets ({ }), 197, 204
Currency option (Decimal Format dialog box),
99-100
cursors, control resize compared to table
resize, 25
custom functions
calling, 198-199
creating, 197-198
custom task pane
creating, 149-150
displaying context-sensitive help in, 240-246
HTML Web page used for, 150-152
specifying files to use in form, 152-155
customer information database, 30
Customer Information form
default view, creating, 136-139
default view properties, changing, 143-144
notes and orders views, adding, 144-146
print views, creating, 156-159
specifying custom task pane files to use in,
152-155
switching between views in, 147-149
views and, 135
Customer Information with Invoices form
displaying context-sensitive help in, 240-246
opening, 86
customizing
sample form, 21
Windows SharePoint Services site
overview of, 297-298
theme, applying, 298-299

database

Web parts, creating, 300
Web parts, existing, adding, 299-300

D

data. See also data source; database
connected compared to disconnected, 270
connecting to InfoPath, 8
group of, 123
from multiple forms, combining, 5
returning, Web service methods for, 270-274
schema for, 273
Service Pack 1.1 and, 6
views of, generating different, 5
with XML data source, utilizing, 75-80
data connection, specifying for drop-down list
box, 115-117
Data Connection Wizard
basing form on Web service, 256-259
default view, creating, 137
exposing datasets and, 319
setting up data connection in, 236, 238
specifying data source for list box, 113, 114
submitting data, 320-321
tasks of, 46-47
using, 47-51
XML document and, 76, 77-78
Data Connections command (Tools menu), 17,
61,113, 238
Data Field section
adding fields one at a time, 55
adding repeating sections of fields, 55-56
description of, 52
data integrity, 276
data source
adding, 17
adding field as text box, then changing to
create drop-down list box, 110
creating, 7
Data Connection Wizard, working with, 46-51
e-mailing form and, 170
multiple tables, choosing, 46

x
[}
©
c

secondary, 47
specifying, 45, 47-51
specifying for list box, 112-114
updating, 61-63
Web service as, 249, 255-262
XML type, 71-73
Data Source task pane
description of, 17-18, 52
displaying fields in, 53
Web service and, 258, 260
data types, 33
data validation conditions, 4
Data Validation dialog box, 198
DataAdapter object, 271
DataAdapters collection, XDocument object,
236
database
Access (Microsoft)
benefits and issues of, 37
exporting to XML from, 70-71
as file-server-based, 36
IT department and, 2
objects used with InfoPath, 37-38
overview of, 36
relationships window, 34
binding choice group to, 127
for case study, creating, 310-311
connecting to existing, 8
customer information, 30
field, 31
file server versus client server, 36
flat file model, 31
frontend and backend, 36
overview of, 29
real-world examples of, 30-31
record, 31
relational model
normalizing data, 35
overview of, 32
referential integrity of data, 34
tables, 32-33
types of relationships, 34
setting up before creating form, 311

database (continued)

database (continued)
submitting form to, 106
table, 30, 31, 32-33
Web services and, 40
data-entry errors, preventing, 4
DataObject class, 217
DataSet object, 270, 271
datasets
creating, 316-317
exposing, 318-320
typed, creating, 317-318
date calculations, code for
C# and Visual Studio .NET, 233-236
JScript Date Object, 230-232
overview of, 229-230
Date Picker control, 84
DateTime class, 233
Debug menu commands
Run, 220
Start, 191, 235
Debug mode, executing application in, 216
Decimal Format dialog box, 99-100, 105
default script editor, setting, 183
default security model, 277
default values, 4
default values of controls, setting
formulas, using, 89-92
literal values, using, 87-89
overview of, 87
default view
creating, 136-139
properties, changing, 143-144
Delete command button, adding to form,
107-109
Delete & Submit command button, 57, 106
deploying forms, requirements for, 8-9
Design a Form task pane
description of, 20
New from XML Document or Schema task, 72
Design Tasks toolbar button, 18
designer
areas within, 14
main design layout, 14, 15

334

menus and toolbars, 14, 15
opening forms in, 14
overview of, 4,7, 13-14
task panes, 14, 15
designer task panes
Control, 16-17
Data Source, 17-18
Layout, 15, 16, 22
Views, 18-19
designing forms. See also designer
options for, 21
requirements for, 8
digital signature
creating for testing, 286-287
signing form with, 287-289
Digital Signature Wizard, 287-289
Digital Signatures command (Tools menu),
287
Digital Signatures dialog box, 287
directories, XML Web Services, 251
DISCO specification, 251
disconnected data, 270
discovering documents, 251
Discussion area of Windows SharePoint
Services site, 297
Display tab of control, 100-101
displaying
context-sensitive help, 240-246
total for each item, 104-105
variables, 203
distributing
forms, 162
InfoPath .NET applications, 221-226
<div> object, 242
.d11 file, 284
document design for case study, 310-311
Document Libraries area of Windows
SharePoint Services site, 296
Document Object Model (DOM), 200-201
Document Outline panel (Microsoft Script
Editor), 194
Document Workspaces area of Windows
SharePoint Services site, 297

Extract Form Files command (File menu)

DOM (Document Object Model), 200-201
double slash (//) comments in code, 199
downloading and installing
InfoPath 2003 Toolkit for Visual Studio .NET,
184-186
Software Developer Kit, 300
Windows SharePoint Services, 291
dragging fields onto form, 54
drop-down list box
adding and binding to field, 111
adding field from data source as text box,
then changing, 110
adding to form, 109
description of, 10, 109
entering data manually, 117, 119-120
filtering repeating table using, 131-134
setting data connection properties for, 115-117
specifying data source, 112-114
Drop-Down List Box Binding dialog box, 111
Drop-Down List Box control, 84
Drop-Down List Box Properties dialog box
data connection properties, setting,
116, 118
data source, specifying, 112
filters, specifying, 133
list, creating, 119, 120

E

Edit Form Code button, 238
Edit Relation dialog box, 317, 318
Edit SQL... command (Data Connection
Wizard), 61
Edit XPath (Advanced) button (Insert Formula
dialog box), 90
editing window (Visual Studio .NET IDE), 213
EmailAdapterObject class, 217, 237
e-mailing
form
code for, 236-240
when filling, 170-173
information on form, 106

entering data in form, 10-11
ErrorObject class, 217
event code, modifying project by adding,
214-215
event programming
built-in events, 187
managed code event, creating, 189-191
overview of, 186-187
scripted event, creating, 188-189
Events list on Windows SharePoint Services
site, 295
Excel spreadsheet (Microsoft), 31
executing application, 215-216
exercise answers, 323-326
Export Table dialog box, 71
Export to Web dialog box, 174, 175
Export To~> The Web... command (File menu),
174
exporting
from Access to XML, 70-71
to Web page, 173-175
exposing datasets, 318-320
expression. See formula
expression box, 103-105
Expression option (Condition dialog box), 94
extending form functionality, 182
Extensible Markup Language (XML). See also
XML document; XML Web services
connecting data to InfoPath with, 8
data document (* .xm1), 68-69
data source, 71-74
description of, 7, 65-66
examining XML document, 42
example of, 40-41
exporting from Access to, 70-71
Extract Form Files command (File menu)
and, 21
schema file (* .xsd), 41, 69-70
standard files, 66-68
utilizing data with data source, 75-80
viewing files in, 80-81
Extract Form Files command (File menu),
20-21,80-81

335

F5 key

F

F5 key, 216, 273
field properties for controls, 4
fields
adding drop-down list box to form and binding
to, 111
adding to form, 74
database, 31, 32-33
dragging onto form, 54
formatting, 98-102
overview of, 10
references to, adding, 201-202
references to, creating
in C#, 233-234
in JScript, 230-231
updating from code, 202-203
Fields in the Section option (Condition dialog
box), 94
File Attachment Control, 6
File Download message box, 169
file extensions for XML documents, 66-67
File menu commands
Close Solution, 221
Export To= The Web..., 174
Extract Form Files, 20-21, 80-81
Merge Forms..., 178
Preview Form, 58
Print, 156
Print Preview, 158-159
Publish..., 163, 301
Save, 307
Send to Mail Recipient, 170
file server database, 36
file server, publishing form to, 162-167
files
.asmx, 284
.bak, 283
.dl1, 284
Infopath file extensions, 20
.Js, 283
.msi, 282
.smx, 284

336

.xml, 20, 68-69
.xsd, 20, 41, 69-70
Fill Out a Form dialog box, 14, 302
Fill Out This Form dialog box, 2, 3
filling out forms on Windows SharePoint
Services site, 306-308
filters, specifying, 130-134
first normal form (1NF), 35
flat file model database, 31
font, setting, 24-25
foreign key field, 33
form header, specifying, 52
Form Options command (Tools menu),
176, 244
Form Options dialog box
Advanced tab, 240
context-sensitive help, creating, 245
custom task panes and, 152, 153, 154
default script editor, setting, 183
merging data from separate forms and, 176
Format menu, Color Schemes command, 26
Format toolbar, 24
formatting
consistent and conditional, 5
expression box, 104-105
fields, 98-102
UnitPrice for Currency, 99-100
form-based security, 277-278
forms
Absence Request example
e-mailing when filling, 171-173
features of, 3, 9-11
opening, 2
publishing to Web server, 167-170
basing on Web service, 256-262
blank, new
creating, 20, 21
table, adding, 22-23
buttons, adding, 106-109
collaborating on, 8
color scheme, setting, 26-27
combining data from multiple, 5
controls, adding, 25-26

getFullMonth method

creating, 19-20
Customer Information example
default view, creating, 136-139
default view properties, changing, 143-144
notes and orders views, adding, 144-146
print views, creating, 156-159
specifying custom task pane files to use in,
152-155
switching between views in, 147-149
views and, 135
Customer Information with Invoices example
displaying context-sensitive help in, 240-246
opening, 86
deploying, requirements for, 8-9
designing
options for, 21
requirements for, 8
distributing, 162
dragging fields onto, 54
e-mailing
code for, 236-240
when filling, 170-173
entering data in, 10-11
extending functionality of, 182
features created by default on, 51-52
features of, 9-10
filling out, 10-11
font, setting, 24-25
fully trusted
manually creating, 278-280
RegForm utility, creating with, 282-283
importing, 21
merging data from multiple, 5, 176-179
opening
in designer, 14
in Preview Mode, 235
Order Information example
adding Optional Section to, 129-130
creating, 126-127
previewing
adding new record, 60
modifying record, 59
overview of, 58
querying customer record by region, 58-59

x
[}
©
c

publishing
differentiating forms from templates, 162
to file server, 162-167
overview of, 161-162
on SharePoint site, 301-306
to Web server, 167-170
repeating sections, adding, 55-56
Sales Report example
filling out on site, 306-308
publishing to SharePoint site, 301-306
sample, customizing, 21
setting up database before creating, 311
steps for working with, 6-7
text, adding, 24-25
Forms authentication, 285
forms editor, 7
forms management
challenge of, 1-2
data side of, 29
formula
expression box and, 103-105
setting default value of control using, 89-92
uses of, 103
Formula button, 104
Formula command button, 90
fourth normal form (4NF), 35
frontend, 36
fully trusted form
manually creating, 278-280
RegForm utility, creating with, 282-283
functions
call, 90-91
formulas and, 89
JScript, custom
calling, 198-199
creating, 197-198
Switchview(), 150

G

Generate dataset dialog box, 316, 317
getDate method, 230
getFullMonth method, 230

getFullYear method

getFullYear method, 230
Go to Site Administration option, 297
group of data, 123

H

help, context-sensitive, providing, 240-246
HIPAA, 276
HTML (Hypertext Markup Language), 65
HTML Web page

for custom task pane, 150-152

error on, 246

if statement, 204-205
importing form, 21
InfoPath
description of, 1
features of, 4-6
opening, 19
sample form, 2, 3,4
InfoPath 2003 Software Development Kit, 280
InfoPath 2003 Toolkit for Visual Studio .NET,
downloading and installing, 184
initialization code, 266
ink controls for tablet PC, 5
Insert Expression Box dialog box, 104
Insert Field or Group button (Insert Formula
dialog box), 90
Insert Formula dialog box, 90, 91, 105
Insert Function button (Insert Formula dialog
box), 90
Insert Function dialog box, 91
Insert layout tables tasks, 22
Insert Repeating Table dialog box, 131
inserting table into another table, 22
InsertNewBoilerLog method, 320
installing
InfoPath 2003 Toolkit for Visual Studio .NET,
184-186
.NET application, 225-226

338

Office 2003 Service Pack 1, 4
Software Developer Kit, 280, 300
Web service, requirements for, 249
Windows SharePoint Services, 291
Integer Format dialog box, 98-99
interacting with other enterprise-wide
applications, 182
Internet Explorer security model, 276-277,
278
Internet Information Services command
(Administrative Tools menu), 253
Internet Options command (Tools menu), 278
Internet Properties dialog box, 278
Internet zone, 276-277
Intranet zone, 276-277
Invoke button, 269, 273
IT department and Access (Microsoft)
database, 2
IXMLDOMNode object, 233-234

J

. js file, 283
JScript
conditional branching, 204-205
custom functions
calling, 198-199
creating, 197-198
Date Object, 230-232
document object, 200-201
logical AND or OR, 204
overview of, 196-197
variables
performing operations on, 202-203
types of, 200
VBScript compared to, 182-183

L

Layout task pane
description of, 15, 16
tables, adding using, 22

Microsoft

Links list on Windows SharePoint Services
site, 295

List Box control, 84. See also drop-down list
box

List Box Properties dialog box, 76, 77, 79

List control, 124

lists on Windows SharePoint Services site,
293

Local Machine zone, 276-277

locating Web service, 255

lookup tables, 313

loosely coupled, 250

Main Editing panel (Microsoft Script Editor),
194
Manage My Information feature, 297
managed application, 284
managed code event, creating, 189-191
manifest.xsf file, 20
manufacturing plant case study
Boiler Web service
datasets, creating, 316-317
exposing datasets, 318-320
inserting data, 320
OleDbDataAdapters, creating, 315-316
overview of, 314-315
submitting data, 320-321
submitting forms, 321
typed datasets, creating, 317-318
BoilerSystem data model
BoilerOperatingLog table, 311-312
lookup tables, 313
overview of, 311
SystemlLog table, 312
BoilerSystem relationship model, 313-314
database, creating, 310-311
document design, 309-310
overview of, 309, 321
many-to-many relationship, 34
Master/Detail control, 6, 84

Index

Master/Detail Section control, 124, 134
Meeting Workspaces area of Windows
SharePoint Services site, 297
Merge Forms... command (File menu), 178
Merge Forms dialog box, 179
merging data from multiple forms, 5, 176-179
MessageBox class, System namespace, 214
method
AddDays, 233
AddMonths, 233
AddYears, 233
creating and testing Web service, 267-269
getDate, 230
getFullMonth, 230
getFullYear, 230
InsertNewBoilerLog, 320
security measures of, 277
selectSingleNode, 231, 234
Show, 214
Submit, 237
to return supplier information, creating,
272-274
Today, 233
ToShortDateString, 233
XDocument .UI.Alert, 197
Microsoft. See also JScript
Access database
benefits and issues of, 37
exporting to XML from, 70-71
as file-server-based, 36
IT department and, 2
objects used with InfoPath, 37-38
overview of, 36
relationships window, 34
Development Environment Start Page, 211
Excel spreadsheet, 31
forms package, 2
.NET Framework version 1.1, 207-210
Office 2003 Service Pack 1, installing, 4
Office Online Web site, 4, 185
Office Professional Enterprise Edition
2003, 8
Office Project Wizard, 189, 190, 218, 219

Microsoft (continued)

Microsoft (continued)

Script Editor
collapsing panels in, 201
initial form, creating, 195-196
opening, 188
overview of, 193-195

SQL Server
benefits and issues of, 38-39
as client/server product, 36
objects used with InfoPath, 39-40
overview of, 38

WebDAV, 167

Windows SharePoint Services
customizing site, 297-300
description of, 162, 291-292
filling out forms on site, 306-308
InfoPath and, 300-301
publishing form on site, 301-306
SharePoint Portal Services compared to,

292
site features, 292
support for, 6
touring site, 293-297
Microsoft Intermediate Language (MSIL),
284

Microsoft.Office.Interop.InfoPath.SemiTrust

namespace, 210, 217
model databases
flat file, 31
relational
normalizing data, 35
overview of, 32
referential integrity of data, 34
tables, 32-33
types of relationships, 34
Modify Table command (Data Connection
Wizard), 61
modifying
data source, 61
record, 59
moving control or table, 26
.msi file, 282
MSI setup project, creating, 283-284

340

MSIL (Microsoft Intermediate Language),
284
multiple forms, merging data from,
5,176-179
multiple projects within Visual Studio
solution, 211
multiple views
creating, 144-146
switching between, 147-149
myschema .xsd file, 20
myschema . xsx file, 20

names, assighing
to fields, 33
to functions and variables, 197
namespaces
ASENET, 266
assembly and, 271
InfoPath, 217-221
Microsoft.Office.Interop.InfoPath.SemiTrust,
210, 217
.NET Framework class library, 209-210
System, 214
System.Data, 270
System.Security, 285-286
.NET application, distributing, 221-226
.NET Framework
assemblies, 284
security, 284-285
System.Security namespaces, 285-286
.NET managed code languages
ADO.NET, 270-274
ASPNET
initial template, 265-269
overview of, 262-263
project, creating, 263-265
class library, 209-210
common language runtime, 208
distributing InfoPath .NET applications,
221-226
overview of, 184, 207-208

previewing

Visual Studio .NET
C# Windows application project, creating,
211-213
developing forms in, 217-221
executing application, 215-216
integrated development environment (IDE),
213
modifying project by adding control and event
code, 214-215
overview of, 210-213
.NET project, creating, 218-221
New Project dialog box
ASENET Web Service option, 263
C# application and, 212, 234
event and, 189, 190
InfoPath .NET project and, 218
.NET applications and, 210
setup distribution project and, 222
New Record command button, 52, 56-57, 106
normalizing data, 35
Numbered List control, 84

0

Object Browser, 271
object model of application and event
programming, 186-187
objects
ADO.NET, 271-272
Authentication, 285
Connection, 271
DataAdapter, 271
DataSet, 270, 271
<div>, 242
document, 200-201
IXMLDOMNode, 233-234
OleDb, 271
XDocument, 150-151, 200-201
Office Professional Enterprise Edition 2003
(Microsoft), 8
OleDb objects, 271
OleDbDataAdapters, creating, 315-316

On Load Event command (Tools menu), 218
one-to-many relationship, 34
one-to-one relationship, 34
Open a New Form to Fill Out action, 95
opening
form in designer, 14
form in Preview Mode, 235
InfoPath, 19
Microsoft Script Editor, 188
property sheet for views, 140
sample Absence Request form, 2, 4
sample Customer Information with Invoices
form, 86
view, 140
Visual Studio .NET, 186, 211
operators, 204
Operators lookup table, 313
Option Box control, 84
Optional Section control, 84, 124, 127-130
Options command (Tools menu), 194
Options dialog box, 194, 195, 279
OR (]|) logical, 204
Order Information form
adding Optional Section to, 129-130
creating, 126-127
output window (Visual Studio .NET IDE), 213

P

Parameter Details dialog box, 258
Passport authentication, 285
performing operations on variables, 202-203
Picture Libraries area of Windows SharePoint
Services site, 297
Plain List control, 84
POWebService project, 273
Preview Form command (File menu), 58
Preview Mode, opening form in, 235
previewing
form
adding new record, 60
modifying record, 59

34

previewing (continued)

previewing (continued)
overview of, 58
querying customer record by region, 58-59
view in Views task pane, 140
primary key field, 33
Print command (File menu), 156
Print Preview command (File menu), 158-159
print views, 155-159
Professional InfoPath 2003 (Wrox), 81
Programming command (Tools menu), 187
properties. See also property sheet
of controls, 85
of EmailAdapterObject class, 237
security measures of, 277
of tables, 33
Properties dialog box, 89-90
property sheet
assigning rules and, 93
button, 57, 106, 108, 238, 239
Display tab, 100-101
drop-down list box, 112, 116, 118, 119, 120,
133
formatting and, 98
list box, 76, 77, 79
section, 128, 129
specifying default values using, 87-88
text box, 132
views
default view properties, changing, 143-144
General properties, 141
opening, 140
Page Setup, 143
Print Settings, 141, 142
Text Settings, 141, 142
Visual Studio .NET IDE, 213
working with, 86
providing context-sensitive help, 240-246
Publish... command (File menu), 163, 301
publishing forms
differentiating forms to fill from templates, 162
to file server, 162-167
overview of, 161-162
on SharePoint site, 301-306
to Web server, 167-170

342

Publishing Wizard
file server and, 163-165
publishing report to SharePoint site, 301-306
Web server and, 167-169

Q

Quantity field, adding default value to, 87-88
Query Field section

adding fields to, 54

description of, 52

using more than one query field, 55
Query Using a Data Connection action, 95
querying customer record by region, 58-59

Rebuild Solution command (Build menu), 221,
225
record
adding, 60
database, 31
modifying, 59
reference variables, 200
references to fields
adding, 201-202
creating
in C#, 233-234
in JScript, 230-231
references to namespaces, Visual Studio and,
209
referential integrity of data, 34
RegForm utility
fully trusted form, creating with, 280-283
MSI, creating with, 283-284
relational database model
normalizing data, 35
overview of, 32
referential integrity of data, 34
tables, 32-33
types of relationships, 34
Release mode, executing application in, 216
Repeating Recursive Section control, 6, 124

Select a Field or Group... option (Condition dialog box)

Repeating Section control, 84, 124
repeating sections, adding to form, 55-56
repeating table, filtering using drop-down list
box, 131-134

Repeating Table control, 84
resizing

controls, 25

table columns and rows, 23-24

Resource Files dialog box, 153, 154, 244-245

Restricted zone, 276-277
returning data, Web service methods for,
270-274
Rich Text Box control, 84
role-based security, 285
rows, resizing, 23-24
Rule dialog box, 93
rules
adding, 96-97
controls and, 92
creating, 93-96
data entry and, 4
testing, 97
Rules & Custom Code command button, 106
Rules dialog box, 93
Run command
Debug menu, 220
Start menu, 282
Run Query command button, 52, 56-57, 106

S

Sales Report form
filling out on site, 306-308
publishing to SharePoint site, 301-306
sample form, customizing, 21
sampledata.xml file, 20
sandbox, 276, 277
Save As dialog box, 307
Save command (File menu), 307
schema file (* . xsd), 20, 41, 69-70
schema for data, 273
Script Editor (Microsoft)
collapsing panels in, 201
initial form, creating, 195-196

opening, 188
overview of, 193-195
script editor, default, setting, 183
scripted event, creating, 188-189
Scrolling Region control, 6, 124
SDK RegForm utility
fully trusted form, creating with, 280-283
MSI, creating with, 283-284
Search Web Service dialog box, 255
second normal form (2NF), 35
secondary data source, 47
Section control, 84
Section Properties dialog box, 128, 129
sections
Choice and Choice Group, 124-127
Filter Data properties, 131-134
hidden, 10
Master/Detail, 124, 134
Optional, 127-130
overview of, 123
redisplaying, 10, 11
types of, 123-124
Web parts as, 295
security
adding through user interface, 182
built-in model for, 276-277
digital signature, 286-289
form-based, 277-278
fully trusted form
manually creating, 278-280
RegForm utility, creating with, 282-283
.NET Framework
assemblies, 284
System.Security namespaces, 285-286
types of, 285
overview of, 275-276
SDK RegForm utility
fully trusted form, creating with, 280-283
MSI, creating with, 283-284
of Windows SharePoint Services site, 297
Select a Field or Group dialog box, 115,117
Select a Field or Group... option (Condition
dialog box), 94

343

Select Data Source dialog box

Select Data Source dialog box, 48,113, 114,
137
Select Set of Signable Data... option
(Condition dialog box), 94
Select Table dialog box, 49
selectSingleNode method, 231, 234
semicolon (;), 203
Send to Mail Recipient command (File menu),
170
sending form in e-mail, 236-240
Service Pack 1.1 features, 5-6
Set a Field’s Value action, 95
setting up
data connection, 236, 238
database before creating form, 311
Web services locally, 253-255
setup distribution project, creating, 221-226
Setup Wizard, 221, 222-223, 224-225
SharePoint form library, submitting form to,
107
SharePoint Portal Services, 292
SharePoint Services. See Windows SharePoint
Services
Shifts lookup table, 313
Show a Dialog Box Expression action, 95
Show a Dialog Box Message action, 95
Show method, 214
Site Settings page, 297-298
slash, double (//) comments in code, 199
. smx file, 284
SOAP (Simple Object Application Protocol),
43, 250, 263
solution. See manufacturing plant case study
solution explorer (Visual Studio .NET IDE), 213
sort order, adding to form, 62-63
Sort Order dialog box, 62
Specify Filter Conditions dialog box, 133
specifying
action
for button, 106
for view, 140
custom task pane files to use in form, 152-155

344

data connection for drop-down list box,
115-117
data source
for drop-down list box, 112-114
overview of, 45
steps for 47-51
filters, 130-134
form header, 52
specifying default values using property sheet,
87-88
Web service as data source, 255-262
spreadsheet (Excel), 31
SQL Server (Microsoft)
benefits and issues of, 38-39
as client/server product, 36
objects used with InfoPath, 39-40
overview of, 38
standard formatting of fields, 98-100
Start command (Debug menu), 191, 235
Start menu commands
Microsoft Office &> Microsoft Office InfoPath
2003, 2
Run, 282
Start Page, Microsoft Development
Environment, 211
starting Data Connection Wizard, 47
Submit command button, 57, 106
Submit method, 237
Submit Using a Data Connection action, 95
Submitting Forms dialog box, 106-107, 108
summary column, 10
Summary page of Data Connection Wizard, 50
Surveys area of Windows SharePoint Services
site, 297
switching between multiple views, 147-149
Switchview () function, 150
system availability, 276
System.Data namespace, 270
SystemLog table, 312
System.Security namespace, 285-286
System.Web.Services.WebService class,
266

typed datasets, creating

T

Table with Title task (Layout task pane), 22
tables
adding to form, 22-23
BoilerOperatinglLog, 311-312
database, 30, 31, 32-33
fields, 32-33
lookup, 313
moving, 26
overview of, 10
repeating, filtering using drop-down list box,
131-134
resizing columns and rows, 23-24
SystemLog, 312
tablet PC, support for, 5
tags
for displaying HTML in specific section, 242
XML, 66, 69
task panes
Control
description of, 16-17
list of controls in, 84
custom
creating, 149-150
displaying context-sensitive help in,
240-246
HTML Web page used for, 150-152
specifying files to use in form, 152-155
Data Source
description of, 17-18, 52
displaying fields in, 53
Web service and, 258, 260
description of, 5
Design a Form
description of, 20
New from XML Document or Schema task,
72
designer
Control, 16-17
Data Source, 17-18
Layout, 15, 16, 22
Views, 18-19

x
[}
©
c

getting back to original choice of, 18
Layout
description of, 15, 16
tables, adding using, 22
Views
description of, 18-19
previewing view in, 140
Tasks list on Windows SharePoint Services
site, 295
temp directory, accessing, 284
templates
ASPNET and, 265-269
differentiating forms to fill from, 162
Office Online and, 21
.xsn form, 277, 278
template.xml file, 20
testing
rules, 97
Web method, 267-269
text, adding to forms, 24-25
Text Box control, 84
Text Box Properties dialog box, 132
theme, applying to Windows SharePoint
Services site, 298-299
third normal form (3NF), 35
Today method, 233
toolbars
designer, 14, 15
Format, 24
toolbox (Visual Studio .NET IDE), 213
Tools menu commands
Data Connections, 17, 61, 113, 238
Digital Signatures, 287
Form Options, 176, 244
Internet Options, 278
On Load Event, 218
Options, 194
Programming, 187
ToShortDateString method, 233
total, displaying for each item, 104-105
Trusted Publishers button, 279-280
Trusted Sites zone, 276-277
typed datasets, creating, 317-318

UDDI registry

U

UDDI registry, 251, 255

UNC (Universal Naming Convention) path, 162

Uniform Resource Locator (URL)-based form,
276
Uniform Resource Names (URN)-based form,
276
updating
data source, 61-63
field from code, 202-203
URL (Uniform Resource Locator), 167
URL (Uniform Resource Locator)-based form,
276
URN (Uniform Resource Names)-based form,
276
user security, 285
User’s Current Role option (Condition dialog
box), 94
uses of InfoPath
collaborative efforts, 8
publish for others’ use, 8
single user, 7
using directive, 266

'}

value, assigning to variable
in C#, 234
in JScript, 231
value variables, 200
variables
assigning value to
in C#, 234
in JScript, 231
performing operations on, 202-203
types of, 200
VBScript, 182-183
Verify Formula button (Insert Formula dialog
box), 90
Vertical Label Control, 6
View menu, 147

346

View menu commands
Notes, 148
Orders, 148-149
View Properties button, 140
View Properties dialog box, 158
viewl.xsl file, 20
viewing data, specifying Web service for,
255-262
views
of data, generating different, 5
default
creating, 136-139
properties, changing, 143-144
multiple
creating, 144-146
switching between, 147-149
opening, 140
overview of, 135-136
previewing in Views task pane, 140
print, 155-159
properties
General, 141
Page Setup, 143
Print Settings, 141, 142
Text Settings, 141, 142
setting properties for, 139
Views task pane
description of, 18-19
previewing view in, 140
Visual Studio .NET
C# Windows application project, creating,
211-213
control and code, adding, 214-215
data calculations using, 233-236
developing forms in, 217-221
executing application, 215-216
integrated development environment (IDE),
213
modifying project by adding control and event
code, 214-215
overview of, 210-213
Web services and, 263, 267

XML document

W

W3C (World Wide Web Consortium), 65
Web page
exporting to, 173-175
HTML, 150-152, 246
Web parts
creating, 300
existing, adding to site, 299-300
sections as, 295
Web server
publishing form to, 167-170
submitting form to, 107
Web services. See also XML Web services
ADO.NET, 270-274
ASENET
initial template, 265-269
overview of, 262-263
project, creating, 263-265
assemblies and, 284
Boiler case study
datasets, creating, 316-317
exposing datasets, 318-320
inserting data, 320
OleDbDataAdapters, creating, 315-316
overview of, 314-315
submitting data, 320-321
submitting forms, 321
typed datasets, creating, 317-318
data source, using for, 255-262
databases and, 40
infrastructure, 251
overview of, 42-43, 249-251
schema for data and, 273
setting up locally, 253-255
submitting form to, 107
user interface and, 263
using with InfoPath, 43
Web Services Description Language (WSDL),
251
Web sites
collaborative, 292

Microsoft
Office 2003 Service Pack 1, 4
Office Online, 4, 185
WebDAV (Microsoft), 167
Windows authentication, 285
Windows SharePoint Services (WSS)
customizing site
overview of, 297-298
theme, applying, 298-299
Web parts, creating, 300
Web parts, existing, adding, 299-300
description of, 162, 291-292
filling out forms on site, 306-308
InfoPath and, 300-301
publishing form on site, 301-306
SharePoint Portal Services compared to, 292
site features, 292
support for, 6
touring site
default lists, 293-296
major areas, 296-297
wire formats, 252
workspace site, lists on, 295
World Wide Web Consortium (W3C), 65
WROX (Professional InfoPath 2003), 81
WSDL (Web Services Description Language),
251
WSS. See Windows SharePoint Services

X

XDocument class, 217
XDocument object
DataAdapters collection, 236
description of, 150-151, 200-201
description of, 150-151, 200-201
XDocument .UI.Alert method, 197
* xml (data document) file, 20, 68-69
XML document
adding data source using, 75-80
creating form using existing, 72-73
description of, 21

347

Index

XML document (continued)

XML document (continued)

rules for, 66

uses of, 66

XML (Extensible Markup Language). See also

XML document; XML Web services

connecting data to InfoPath with, 8

data document (* .xm1), 68-69

data source, 71-74

description of, 7, 65-66

examining XML document, 42

example of, 40-41

exporting from Access to, 70-71

Extract Form Files command (File menu)
and, 21

schema file (* .xsd), 41, 69-70

standard files, 66-68

348

utilizing data with data source, 75-80
viewing files in, 80-81

XML Web services. See also Web services

applications that can take advantage of, 251
description, 252
directories, 251, 252
discovery, 251, 252
using, 8, 21, 250
wire formats, 252
.xsd (schema) file, 20, 41, 69-70
.xsn form template, 277, 278

y 4

Zones theory, 276-277

	About the Author
	Credits
	Contents
	Acknowledgments
	Introduction
	Chapter 1: InfoPath -- The Journey Begins
	Chapter 2: Getting Started Designing with InfoPath
	Chapter 3: Understanding Data
	Chapter 4: Creating an InfoPath Form from an Existing Data Source
	Chapter 5: Utilizing XML and Web Service Data Sources
	Chapter 6: Working with Controls in General
	Chapter 7: Looking at Some Useful Controls and Techniques
	Chapter 8: Working with Sections
	Chapter 9: Managing Views
	Chapter 10: Publishing InfoPath Forms
	Chapter 11: Working with Code in Your InfoPath Form
	Chapter 12: Getting Started Using Scripts
	Chapter 13: Working with .NET Managed Code
	Chapter 14: Real-World Tasks and Coding Examples
	Chapter 15: Creating and Working with Web Services
	Chapter 16: Implementing Security
	Chapter 17: Working with InfoPath and Windows SharePoint Services
	Chapter 18: Manufacturing Plant Case Study
	Appendix A: Answers to Exercises
	Index

