WILEY —

"h.““

C+Programming

with CORBA

Anrens Vogel

Hhsicar Vasudeyon
Ssirn Bensmnin

Ted Vilkaiha

Pagei

C++ Programming with CORBAe

Andreas Vogel
Bhaskar Vasudevan
Maira Benjamin
Ted Villalba

WILEY COMPUTER PUBLISHIMNG

John Wiley & Sons, Inc.

New York = Chichester » Weinheim » Brisharne * Singapore * Thoronio

Pageii

Publisher: Robert Ipsen

Editor: Robert Elliott

Assistant Editor: Pam Sobotka

Managing Editor: Angela Murphy

Electronic Products, Associate Editor: Mike Sosa

Text Design & Composition: North Market Street Graphics

Designations used by companies to distinguish their products are often claimed as trademarks.
In al instances where John Wiley & Sons, Inc., is aware of aclaim, the product names appear
ininitial capital or ALL CAPITAL LETTERS. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

This book is printed on acid-free paper. &

Copyright © 1999 by Andreas Vogel, Bhaskar Vasudevan, MairaBenjamin, Ted Villalba - All
rights reserved.

Published by John Wiley & Sons, Inc.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in aretrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail:
PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold with the understanding that the publisher is not engaged in
professional services. If professional advice or other expert assistance is required, the
services of acompetent professional person should be sought.

Library of Congress Catal oging-in-Publication Data:
ISBN 0-471-28306-1
Printed in the United States of America.

10987 654 3 2 lbreak

Pageiii
Contents
Chapter 1 1
Introduction
1 Benefits of C++ Programming with CORBA 1
1.1 What Does CORBA Offer C++ Programmers? 2
1.2 What Does C++ Offer CORBA Programmers? 5

»

?2 C++ Overview

2.1 Objects and Classes
2.2 Encapsulation
2.3 Modularity and Scoping
2.4 Inheritance
2.5 Method Overloading
2.6 Exceptions
2.7 Hello World Example
3 Overview of C++ ORBs
3.1 Terminology
3.2 Clients and Servers as C++ Applications
3.3 Clients and Servers Implemented with Non-C++ ORBs
4 Building aFirst C++ ORB Application
4.1 Summary of the CORBA Development Process
4.2 Environment Setup
4.3 Interface Specification
4.4 Compiling the IDL
4.5 A Client asa C++ Application
4.6 Object Implementation
4.7 A Server asaC++ Application
4.8 Compiling the Server and the Client

4.9 Running the Application

Chapter 2
CORBA Overview

1 The Ohiert Mananement Grai In

I

B e kb R & K B E
© o o KN o K B B w0 0 o o o I~ N

8

24
26
27

29

2N

e Dttt bttt o v

1.1 OMG's Goals 30
Pageiv
1.2 The Organizationa Structure of the OMG 30
1.3 OMG Technology Adoption Process A
2 The Object Management Architecture 35
2.1 Overview of the OMA 36
2.2 Core Object Model 36
2.3 The Reference Model 41
3 Common Object Request Broker Architecture 44
3.1 Overview 44
3.2 Object Model 46
3.3 ORB Structure 49
3.4 OMG Interface Definition Language (IDL) 52
3.5 ORB and Object Interfaces 63
3.6 Basic Object Adapter 71
3.7 The Portable Object Adapter 5
3.8 Language Mappings 84
3.9 Interoperability 85
3.10 TypeCode, Any, and DynAny 87
3.11 Dynamic Invocation and Dynamic Skeleton Interfaces 92
312 Intarface Rennsitorv oA

R ittt ttitdP 4

Chapter 3
OMG IDL to C++ Mapping

1 Mapping Modules
2 Mapping Basic DataTypes
3 Mapping Strings
4 Mapping Congtants
5 Mapping Enumerations
6 Mapping for Structured Types
6.1 Mapping for Struct Types
6.2 Mapping Union Types
6.3 Mapping Sequence Types
6.4 Mapping for Arrays
6.5 Mapping Typedefs
6.6 Mapping the Type Any
7 Mapping for the Exception Types
8 Mapping Operations and Attributes
9 Argument Passing
9.1 Examples
10 Mapping of Interfaces
10.1 Client-Side Mapping

10.2 Server-Side Mapping

107

107
108
109
111
112
112
114
116
118
121
123
124
130
131
133
136
163
163

163

Pagev

Chapter 4
ORB Runtime System

1 Object Interface

1.1 get_implementation()
1.2 get_interface()

1.3 is nil()

1.4 duplicate() and release()
15 is &)

1.6 non_existent()

1.7 is_equivaent()

1.8 hash()

1.9 create_request()

2 ORB Interface

2.1 ORB Initialization

2.2 Converting Object References into Strings and Vice Versa
2.3 Obtaining Initial References

2.4 BOA Initialization

2.5 POA Initialization

3 Basic Object Adapter

3.1 Activation and Deactivation

3.2 Other Operations

4 TypeCodes

4.1 Interface TypeCode

42 Creatino TvneCodes

167

168
168
168
169
169
169
169
1/0
170
1/0
171
171
171
172
173
1/3
173
1/3
174
175

175

170

B e R RS A et i [J

5 Dynamic Invocation Interface 182

5.1 Common Data Structures 182
5.2 Creating an NVList 183
5.3 NVList Interface 183
5.4 DIl Request 184
5.5 Creating a Request 184
5.6 Request Interface 185
6 Dynamic Skeleton Interface 187
6.1 ServerRequest Interface 188
7 Context Interface 188
7.1 Creating a Context Object 189
7.2 Manipulating a Context Object 189
7.3 Manipulating the Context Object Tree 190
8 Portable Object Adapter 191
8.1 POA Policies 191
8.2 POAManager Interface 195
8.3 AdapterActivator Interface 197
8.4 ServantActivator Interface 198
8.5 ServantLocator Interface 199
8.6 POA Interface 201
8.7 Current Operations 207

Pagevi

Chapter 5
Discovering Services

1 Bootstrapping
2 The CORBA Naming Service
2.1 Overview of the Naming Service
2.2 Interface Specification
2.3 Using the Naming Service from a C++ Client
3 Trading Service
3.1 Overview of Trading
3.2 Overview of the Trading Service Interfaces
3.3 Exporting a Service Offer
4 Domains
5 Proprietary Object Location

Chapter 6
Building Applications

1 Application Specification
1.1 IDL Specification
2 Implementing Objects
2.1 Implementing the Meeting Object
2.2 Implementing the Room Object
3 Building Servers
3.1 Initializing the ORB
3.2 Creating an Object, Registering with the Root POA

R 2 Renigerinn with the Namina Service

210
211
218
221
222
226
238
257
258

261

261
263
264
264
265
268
270
2/0

271

Rt et B~ T TR TR B I

3.4 Entering the ORB's Event Loop

4 Building Factories

4.1 Meseting Factory Object Implementation

4.2 Meeting Factory Server
5 Starting Servers
6 Building Clients
6.1 Client Application
6.2 Methodsin the Client Application

7 Extensions to the Example Application

Chapter 7
Advanced Features

1 The Extended Hello World Example

1.1 Interface Specification

1.2 A Client

1.3 Servant Implementation
2 The Any Type and TypeCodes

2.1 Interface Specification

2.2 Object Implementation

2.3 Client Implementation

3 Interface Repository and Dynamic Invocation Interface

21 Initializina the ORR

r
F

|l\)
\l
N

277
278
279
287

289

289

289

Page vii

290
292
294
294
295
297

301

2N

3.2 Browsing the Interface Repository
3.3 A Simple Unparser
3.4 Initidizing Requests
3.5 Creating Supporting Objects
3.6 Using the Supporting Objects
3.7 Creating and Invoking a Request Object
3.8 Getting Results
3.9 Executing the Client
4 Dynamic Skeleton Interface
5 Tie Mechanism
6 IDL Context
6.1 Creating a Context
6.2 Invoking the Method

6.3 Getting Vaues from the Context

Glossary

Index

Foreword

IS

304
305
307
307
309
310
310
312
314
317
321
321
322
322
325

331

While it may seem somewhat retrograde in 1999 to publish a book which centers on C++
(rather than the hot C-based language, Java), this book will find an important place in the
library of programmers everywhere. Even as Javaturns 35 in dog years (0ops, | guess| mean

Internet years!), or about five in human reckoning, according to most surveyors of the

Pageix

programming scene C++ is still the primary C-based language, especially in mission-critical,
high-performance systems. Fortunately, the CORBA technology discussed in this tome (as was

discussed in its predecessor Java-based version) excels at solving cross-language integration
problems. In fact, the de facto standard CORBA architecture provides interoperability in
thousands of distributed, heterogeneous enterprise-wide applications worldwide today;
heterogeneous not just in programming language but in operating system, underlying network
connection, and hardware platforms as well. This C++ revision of the book provides another
strong platform for understanding and implementing CORBA technology with confidence.break

RICHARD MARK SOLEY, PH.D.
CHAIRMAN AND CEOQO,
OBJECT MANAGEMENT GROUP, INC.

Page xi

Acknowledgments

First of al, we want to thank those people who assisted us in writing this book. These are our
editors at John Wiley and Sons, Robert Elliott, Pam Sobotka, Angela Murphy, and the Wiley
production team.

Thanks to Keith Duddy, who wrote many CORBA-related sections of Java Programming for
CORBA which have been the base of this book and to Michagl McCaffrey, who helped with
some of the POA examples.

Special thanksto Inprise's Visibroker team, specifically to Prasad Mokkapati, Jon Goldberg,
Tom Casdletto, Vijay Natargan, Nick Trown and Vishy Kasar, which made an early
Visibroker release, which supported the POA, available to us and gave support and guidance
for using the POA features. We also thank Peter Holzwarth for his help with the Visibroker
Trader implementation.

We acknowledge the corporation of the OMG, and in particular Richard Soley.

Thanksto Metaand Dorit for letting me work on evenings and weekends instead of going out or
to the beach. | promise the next book will be the last one, for awhile.

Also aword of thanks to Mike Cook of Bellcore who | helped designing and building a cool
CORBA-controlled, Java-implemented | P telephony system. Mike aways teased me that my
CORBA books don't have any comics featuring out-of-space characters. Well, Mike, this one
doesn't have any comics either, but | recommend as a supplement publications by Hank Hill
which are of great educational value specifically when you raise an American boy as you do.

—ANDREAS

| am extremely grateful to Prasad Mokkapati, Jon Goldberg, Ke Jin, Nick Trown, and Vijay
Natargjan, to whom | owe all | have learnt about the ORB so far. | am grateful to my family and
friendsto whom | owe al | am today.

—BHASKAR

To Jazzy and Scott for giving me the love, support, and understanding that | needed to get this
book done and to al of my friends and family thatcontinue

Page xii

believed in me—you know who you are! | truly believe that without the support of the people
that you care for, you cannot achieve any of the goals that you are passionate about.

—MAIRA

| would also like to thank my mother for her amazing patience and unconditional love, thank my
father for his guidance and dedicate my efforts to my sister Elenafor teaching me that recycling
isaway of life: paper, plastic, duminum, code . . .continue

—TED

Page xiii

About the Authors

Andreas Vogel isaPrincipal Consultant with Inprise Corporation since January 1997. In this
position he works with customers, mostly Fortune 500 companies, on CORBA solutions for
their distributed computing needs. More recently, heis also involved in strategy and product
development.

Prior to this appointment, Andreas worked at the Distributed Systems Technology Centre
(DSTC) in Brishane, Australiain the position of a Principal Research Scientist, working on
various aspects of distributed systems including CORBA 2.0 Interoperability, OMG's Object
Trader specification, CORBA-DCE interoperability, Web and middleware integration, and
distributed multimedia systems. From 1993 to 1994, he worked as a Research Scientist for the
University of Montreal, Canada, on quality of service issues of multimedia applications.

Andreas has co-authored Java Programming with CORBA (John Wiley & Sons, 1998), and is
now working on a new book on Enterprise JavaBeans, the Java Transaction Service, and the
CORBA Object Transaction Service. Andreasis Java Report Online's CORBA columnist and
isacontributor to the Middleware Spectra. He also serves on program committees and
advisory boards of a number of international conferences, workshops, and journals devoted to
different aspects of distributing computing. Andreas holds a PhD and M Sc in Computer
Science from Humboldt-University at Berlin, Germany.

Andreas lives with hiswife Dorit G. Hillmann and daughter Meta J.D. Hillmann in San
Francisco. When not being at customer sites, he enjoys the 35 km commute to the San Mateo
office on his bicycle.

Bhaskar Vasudevan, a Software Engineer with Inprise Corporation, is part of the VisiBroker

for C++ team. Prior to this, he was a Member of Technical Staff with the Networking Products
Development group at Oracle Corporation. He earned his Masters degree in Computer Science
from the Rensselagr Polytechnic Ingtitute, New Y ork. He isinterested in distributed computing
and object-oriented programming. He currently livesin San Mateo, California.break

Page xiv

Maira Benjamin, a Senior Support Engineer with CrossWorlds Software, has extensive
expertise in educating and supporting customers and consultants to use complex business
solutions. She uses her knowledge of originating technologies such as CORBA, Java, C++,
Message Queuing, RDBMs, and data mapping tools to support interchange of data between the
companies solutions and other business solutions such as PeopleSoft and SAP.

Maira enjoys a successful career in high tech that included time at well-known companies
including ASK, Sybase, UNIFACE, and Visigenic Software. She's held various engineering
posts from porting and development to manager of maintenance, QA, and code management.
Maira has aso lent her talents to the consulting arena.

Maira enjoys the company of her husband Scott and her daughter Jasmine in their home located
in the San Francisco Bay Area. Mairawould like more opportunities to practice her Spanish,
French, Japanese, and Sign Language. Some of her other passions are dancing, fashion, and
going out with her friends.

Ted Villalba livesin San Francisco, works at Broadvision in Redwood City, and spends as
much time as possible on amountain bike in the mountains between the two.break

Page xv

How to Read This Book

This book introduces C++ Object Request Brokers (ORBS) to an audience familiar with the
basic concepts of object-oriented programming and distributed systems. It contains chapters
that fall into three categories:. introduction and background, tutorial, and reference.

Chapter 1 gives motivation for the use of C++ ORBs, as well as an introduction on CORBA

programming in C++. Chapter 2 is a solid introduction to CORBA. Chapters 3 and 4 explain
the complete mapping from IDL to C++ and the C++ mapping of al CORBA interfaces. The
new Portable Object Adapter is explained and many examples, specifically for the nontrivial
memory management in C++, are given.

Chapter 5 introduces two fundamental CORBA Services, the Naming and the Trading Service,
and demonstrates their use. This chapter aso covers the bootstrap mechanisms for CORBA
applications. Chapter 6 shows how to build applications with C++ ORBs using aroom
booking example. Advanced features are explained in Chapter 7. They include the Any type
and TypeCodes, the Dynamic Invocation Interface and the Dynamic Skeleton Interface, the Tie
mechanism, and Contexts.

Besides the default approach of reading the book front to back, we suggest the following paths
through the book. Beginners should start with Chapter 1 and then continue with Chapters 5 and
6 and eventually 7. Chapters 2, 3 and 4 can be used as references as needed.

Advanced programmers will have experience with C++ and CORBA and may be most
interested in the POA features and examples that are distributed throughout the book.

We recommend the book for self-teaching as well as source material for training and university
courses. In any casg, it is recommended that users work through the examples provided. The
source code can be obtained from the John Wiley & Sonsweb site at http://www.wiley.com/
compbooks/vogel. The web site is organized according to chapters, and should be easy to
navigate.break

Page xvi

Please note that the sample code in the book was tested against a beta of VisiBroker 4.0, but
should work with any ORB that includes the Portable Object Adapter (POA). Please check our
companion web site for updates reflecting new ORB releases.

Page 1

Chapter 1—
I ntroduction

1—
Benefits of C++ Programming with CORBA

This book brings together C++, the most widely used object-oriented programming language,
and the Common Object Request Broker Architecture (CORBA), the most popular
object-based distributed middleware. CORBA, a standard produced by the Object
Management Group (OM G)—the world's largest industry consortium—defines an
infrastructure that enables invocations of operations on objects located anywhere on a network
asif they were local to the application using them. Although CORBA is defined to support
many programming languages, C++ isthe most popular language for implementing CORBA
objects.

The OMG Interface Definition Language (IDL) is alanguage which alows you to specify the
interface of objects in an implementation and programming language independent manner.
Conceptudly and syntactically, the OMG IDL uses many C++ language conventions, so the
mapping from IDL to C++ isavery natura progression.

Throughout this chapter, we look at the advantages of usng CORBA for C++ users and the
advantages of using C++ for programming distributed systems with CORBA. Similarly, we
provide some explanation of the object-hard

Page 2

oriented concepts of C++ in the context of CORBA. We will also give an introduction to
CORBA and C++ Object Request Brokers (ORBS). Finally, we explain how to program with
C++ ORBs by introducing a smple example.

11—
What Does CORBA Offer C++ Programmers?

The major advantages of using CORBA to build distributed applications with C++ are
- Interoperability across programming languages and operating systems
- Open standardization of CORBA

- Vendor independence

- Legacy integration

- Location transparency

- Programmer productivity

- Reusing CORBA services and facilities

1.1.1—
| nter oper ability across Programming L anguages and Operating Systems

CORBA defines an architecture for building distributed systems (for details see Chapter 2).
One of the core pieces of CORBA isthe OMG IDL, alanguage used to define interfaces to
potentialy distributed objects. IDL is program language independent and there are a growing
number of specifications that define the mapping from IDL into programming languages.
Currently there are mappings defined for the following languages. C++, Java, C, Smalltalk,
Ada, and COBOL. Products implementing the CORBA architecture provide IDL compilers that
generate code into a programming language for your IDL specification.

The benefit of IDL isthat you can choose the most appropriate programming language for a
certain task. Thisallows you to choose Java to implement applets, and thus provides accessto
applications from within aweb browser. On the other hand, you can choose to use C++ to
implement your objects on the server side.

Similarly you can have multiple clients to an application using different presentation models.
This means that you can have an applet as well as a spreadsheet as a front end in the same
application.

1.1.2—
Open Standar dization of CORBA

The OMG is defining the standard for CORBA, which in turn isimplemented by companies,
also known as ORB vendors. Since the OMG is avendor consortium that is open to everyone,
you can participate in the processcontinue

Page 3

of what is defined by the OMG. A specification adopted by the OMG must be implemented by
the submitters.

1.1.3—

Vendor |ndependence

Since CORBA is an open standard, anyone can implement it without having to obtain alicense
from the OMG or anyone else. Hence there are lot of vendors providing CORBA
implementations. However, there are only a handful of companies providing full-featured,
industrial-strength CORBA implementations, including support for multiple programming
languages and arich set of CORBA services and facilities. In addition, there are many
companies that have CORBA -enabled their products. Examples of such products are Web
servers, databases, operating systems, and networks. Finally, there are a number of research
ingtitutions that provide free CORBA implementations, often including the source code.

Y ou can choose an appropriate ORB vendor depending on your requirements. Y ou can write
code so that it can be easily ported to a different ORB product, just in case you decide to
switch products or your ORB vendor goes out of business. To achieve this portability, you
must restrict yourself to the application programming interfaces (APIs) defined by the CORBA
specifications. However, ORB vendors often provide a value-added feature set that makes the
programming easier. Essentially it's a trade-off.

Besides the portability, you must aso consider the interoperability of different components or
subsystems that are implemented with different ORB products. CORBA specifies a hierarchy
of interoperability protocols: the General Inter-ORB Protocol (GIOP), which is transport
independent, and the Internet Inter-ORB Protocol (110P), which isthe TCP/IP implementation
of GIOP. These protocols are a mandatory part of the CORBA specification (since version
2.0). Details are given in Chapter 2. The protocols ensure interoperability between components
implemented with different products. Y ou can see alive demonstration of CORBA
interoperability at the CORBAnNet website (www.corba.net).

1.1.4—
L egacy Integration

There are two reasons to use CORBA. Oneisto build new distributed applications with an
object-based architecture. The other isto integrate existing systems into new applications. The
way CORBA integrates legacy system implementations is to wrap those systemsinto a layer of
IDL interfaces. You only need to write alayer of code which, in turn, makes the wrapper IDL
interface call functions on the legacy APIs. That can be rather straightforward for libraries
written in C, C++, or COBOL for which there are existing IDL mapping standards. If you have
code in other legacy languages, forcontinue

Page 4

example, in FORTRAN or PL/1, you can wrap it using a C or C++ layer between the CORBA
interfaces and the legacy code. The glue layer becomes more complex when the legacy system
does not support the notion of afunctional API. For example, a CICS interface to a mainframe
application could require parsing screens to extract data. However, once the legacy system has
been wrapped with alayer of IDL interfaces, it becomes very easy to enhance it with
additional functiondlity, to integrate it with another application, or to expose its functionality in
aweb browser.

1.1.5—
L ocation Transparency

If you build distributed systems with ssmpler mechanisms than CORBA, such as remote
procedure calls (RPCs) or transport protocol APIs such as sockets, you typically need to know
exactly where a server islocated. For example, when using TCP/IP networking, a client needs
the |P address and port number of a server.

CORBA provides the notion of an object reference, a concept known from C++ and other
object-oriented programming languages. But while a C++ object referenceis only valid in the
address space of a program, a CORBA object reference is valid across processes, machines,
programming languages, and ORB products. CORBA object references are often abbreviated
as interoperable object references (IORs). Once a component has obtained an IOR it creates a
client proxy which encapsulates all of the complexity of networking, and a devel oper only
needs to write code against the signature of thislocal object, in our case C++.

CORBA goes even further. IORs and client proxy objects are still valid in the case that the
object implementation changes its location. The ORB's communication infrastructure forwards
your invocations to the relocated object.

1.1.6—
Programmer Productivity

The CORBA environment maximizes programmer productivity. As you have just seen, CORBA
frees a developer from most of the complexity of network programming. There is no need to
deal with address information, network connections, or writing code for marshaling and
unmarshaling your application data structure in byte streams. CORBA gives you the freedom to
choose the programming language that is most appropriate for your task and that best fitsthe
skill set of your developers.

CORBA is not the only core component that can handle your invocations on potentialy remote
objects. There is an increasing number of services and horizontal and vertical facilities that are
specified by the OMG and implemented by ORB and component vendors. There are a good
number of such services available today. In the next section we provide more details.break

Page 5

The encapsulation of code in objects enables reusability. Thisis abenefit you probably won't
see when you implement your first CORBA application. But with a second application, you
will find that certain business objects you built in the first application are reusable in the
second one.

1.1.7—
Reusing CORBA Services and Facilities

As mentioned earlier, the OMG has specified a growing set of services and facilities for
common horizontal and vertical tasks. Following isalist of the most common and widely used
services:

Naming Service. White pages for CORBA objects (see Chapter 5).
Object Trading Service. Yelow pages for CORBA objects (see Chapter 5).

Event Service. An asynchronous, subscription-based messaging service.

Security Service. Securing CORBA applications.
Object Transaction Service. Transaction processing for distributed objects.

There are anumber of Domain Task Forces (DTFs) within the OMG which actively work on
vertical services and facilities. In particular, the Telecom DTF and the CORBAmed DTF have
produced a number of services and facilities. For details and activities of other DTFs, see
Chapter 2 and the OMG web site for the latest updates.

1.2—
What Does C++ Offer CORBA Programmers?

The main reason for using a C++ language mapping of the OMG IDL isto take advantage of the
following C++ features:

- Performance that is closaly tied to the machine
- Tiesto legacy systemg/architectures
- Low-level programming

1.2.1—
System Performance

C++ was designed with a strong focus on the performance of executables. C++ compilers
provide various levels of sophistication for optimizing executable code. The target of a C++
compiler istypicaly the native instruction set of a specific platform. The design of other
object-oriented languages such as Java and Smalltalk has followed other priorities, mostly
productivity and portability. The compilers for these two languages produce
platformindependent, intermediate code, which is then executed by an interpreter.continue

Page 6

Although many attempts are ongoing to improve the performance of code, particularly that
written in Java, executables generated by highly optimized C++ compilers are still more
efficient.

1.2.2—
L egacy Systemg/Ar chitectures

Today we face quite a bit of legacy code, which if it had to be rewritten would be quite
expensive. However, as explained, CORBA provides an excellent way of making this code
available through object wrapping. The C++ language mapping is akey CORBA feature that
makes this happen. The wrapping of C and C++ code is straightforward. For almost any
programming language, there exists an API into the C/C++ world that allows accessto
libraries written via CORBA through the C++ mapping.

Y ou might ask, why not use the IDL/C mapping instead of C++? Although this works, the IDL/C
mapping is not as natural asthe C++ one, since C does not have all of the object-oriented
features, making the mapping somewhat awkward. The call of C APIsfrom a C++ class,
however, is straightforward.

1.2.3—
L ow-Leve Programming

C++ has, through its C inheritance, the capability to write low-level code. Thisis hard or
impossible to do with languages such as Java or Smalltalk. Combined with the natural IDL
mapping, this makes C++ the language of choice for implementing CORBA interfaces to
low-level tasks, for example, controlling interfaces for device drivers.

2_
C++ Overview

C++ supports object-oriented programming. This section discusses object-oriented principles
within C++ that have significance to CORBA. There may be occasional references to CORBA.
Please note that thisis not meant to serve as atutorial. For detailed discussions and
observations concerning the language, please refer to one of the many books on C++.

The central proposition of object-oriented design is the definition of objects and the operations
that are invoked by them. Object-oriented design uses the following ideas:

- Encapsulation

- Modularity

- Abstraction/Interfaces
- Inheritance

- Exceptions/Overloadingbreak

Page 7

Throughout this section we use C++ coding samplesto help explain the concepts. We will end
the section with a Hello World example. Although it issimple, it does help to illustrate some
of the concepts presented. Later in this chapter we will distribute this example usng CORBA.

2.1—
Objects and Classes

Thereis adifferentiation between objects and classes within the object-oriented design
concept. A classisatype and an object isan instance of aclass. That means aclassisastatic
entity described in your code and an object is a runtime representation of this code. There can
be many objects/instances of the same class/type. For example, you can declare aclass bridge
which is atype describing the concept of abridge in generic terms. We can have bridge objects
that are instances of the class bridge, for example, the Bay Bridge, the Tri-Borough Bridge, the
London Bridge, etc.

Classesin C++ can be virtual or concrete. A virtual class defines only the signature. A
signature isthe syntax of the type. Thisis also known as an interface in generic
object-oriented terms. Javaand OMG IDL rely heavily on the concept of an interface. In our
bridge example, avirtual class defines the signature of a bridge with members such asi nt

year Conpl eted, int |ength,andmethodslikepayTol | ().

A virtual class must be fully implemented to make a program that contains objects of this class
executable. The concrete class is aso known as the implementation. It completely defines the
behavior of the class. A C++ convention isto define a class virtually in a header file and
provide the implementation of the methods in an implementation file.

OMG IDL isonly concerned with the definition of interfaces that are mapped to virtual classes.
It is the application programmer's responsibility to provide implementations of the methods of
the virtual classes.

2.2—
Encapsulation

Encapsulation builds on the concept of abstraction (or hiding) of implementation details. The
ideaisto show and provide access to a number of member variables and methods to an outside
entity. Variables and methods can be declared pr i vat e or publ i ¢. The concept of

f ri end weakens the clarity of this concept for pragmatic reasons. Generally only member
variables and methods declared as publ i ¢ can be accessed or invoked from the outside of
the object.

OMG IDL isonly concerned with the definition of the publicly available attributes and
operations. Attributes and operations are mapped to public C++ methods.break

Page 8

2.3—
Modularity and Scoping

Modularity ssimply means that a program can be separated into various parts. Scoping means
that these parts have separated namespaces. That means you use the same identifiersin various
parts. C++ contains better facilities than C for modular programming. C++ does this through the
mechanism known as nanespace. The concept of nanespace alows you to group related
data, functions, and the like.

Although C++ defines nanes paces to separate namespaces of different components, only
recently have C++ compilers supported this concept. The scope of nested classes can be used
to a certain extent as an alternative scoping mechanism.

OMG IDL uses the concept of module to separate different namespaces. The IDL/C++ mapping
defines two aternatives: a mapping to C++ namespaces where available and to the nested
classes otherwise.

2.4—
Inheritance

C++ supports the concept of inheritance of classes. A class, known as the derived class, can
inherit from another class, known as the superclass. That means that the derived class will have
all of the member variables and methods of the superclass and can define additional ones. For
our bridge example we can defineaclass Tr ai nBr i dge which inherits attributes from the
superclass Br i dge and adds a member variablei nt nunber O Tr acks. Inheritance can

be applied recursively. For example, we can defineaclass Aner i canTr ai nBri dges that
will inherit attributes from the class Tr ai nBri dge.

C++ a so supports the notion of multiple inheritance. This means that a class can inherit any
number of superclasses. Multiple inheritance of concrete classes has a potential problem.
When a class inherits the methods with the same signature from different superclasses, they can
have different implementations. The behavior of this method in the derived class is undefined.

OMG IDL aso supports the inheritance of interface, including multiple inheritance. The
problem described above does not apply because there is no behavior associated with methods
inIDL.

2.5—
Method Overloading

C++ provides method overloading. This means there can be multiple definitions of methods
with the same method in a class as long as the method result type and the parameter types allow
distinguishing between the various methods. This concept aso applies to multiple classes that
are in an inheritance relationship.break

Page 9

OMG IDL does not alow the overloading of operations. The motivation is in the mapping of
IDL to programming languages that do not provide the concept of method overloading.

2.6—
Exceptions

Exceptions provide an aternative termination of a method. Exceptions are often used to handle
errors or other exceptional conditions. C++ defines exceptions as classes and hence allows
inheritance of exceptions.

An entity can invoke methods that can raise exceptions. The entity can then decouple the
exception handling from the unexceptional behavior by encapsulating the method invocations
into atry-catch block. When a method raises an exception, it triggers the catch block in the
invoked program.

OMG IDL dso defines exceptions. However, exceptions are datatypes similar to structures and
not objects. Hence inheritance does not apply to exceptionsin IDL.

2.7—
Hello World Example

We will introduce a simple C++ example, aHello World program. We show the optional
definition of a C++ virtual class and its implementation. We then explain how to build a C++
application. The object of the implementation classis created and a method isinvoked on the
object. We return to the same example later in the chapter where we will distribute the
components.

The Hello World example contains an object of aclass GoodDay that provides a method
hel | o() . Thismethod returns a string containing the message, "Hello World, from location,"

where location is the name of a geographical location, for example, Brisbane.

2.7.1—
Defining the Signature and |mplementation Class

A C++ interface defines the signature of an object, its types, fields, and methods. Hence it
allows various substitutable implementations. For our example we define the interface
GoodDay, which has one method, hel | o() . Thisisdefined in the header file, CoodDay
. h, for this example.break

/1 GoodDay. h
cl ass GoodDay{

char * hello();

Page 10

2.7.2—
I mplementing the Class

Aswe noted before, we need to create an implementation class which we will use to execute
thehel | o() operation. Thehel | o() operation will return the locality which we set in the
constructor of the object. Thisimplementation of the classwe put in the CoodDay| npl . cpp
file.

/I GoodDayl npl . cpp

#i ncl ude "fstream h"
#i ncl ude " GoodDay. h"

cl ass GoodDayl npl : public GoodDay{

private:
char* _locality;
publi c:
CGoodDayl nmpl (char *locality) : _locality(locality){}

char *hello(){
return(_locality);
}

}

2.7.3—
Creating and Invoking the Object

We create a GoodDay object inthe mai n() routine of our program. We initialize with the
location "Brisbane." We then invokethe hel | o() method on the GoodDay object and print
out the result.

/ | GoodDaySer ver. C
#i ncl ude <GoodDayl npl . cpp>

int main(int argc, char* const* argv){

// Create a GoodDay object.
GoodDayl npl goodDayl npl (" Bri sbane");

/1invoke nethod hello() and print result
cout << "Hello Wirld, from" << goodDaylnpl.hello() << endl;

return(0);

}

27.4—
Build and Execute

Thefinal step in order for us to execute the Hello World program is to build the executable.
We compile the two C++ files and link them. Now we can run the executable, which prints the
following message:break

Hello Wrld, from Bri sbane

Page 11

3_
Overview of C++ ORB:¢s

A C++ ORB isan ORB that supports a C++ language mapping for OMG IDL. This language
mapping, or language binding, allows clients and objects to be implemented in C++. A C++
ORB must offer acomplete implementation of the CORBA specification.

This section introduces the architecture of the C++ ORB. First, we examine some necessary
terminology. We then discuss the requirements for C++ applications to communicate with
CORBA objects. Specifically, we cover the following topics:

- C++ ORB features
- C++ gpplications as clients and servers
- Clients and servers implemented using other programming languages

3.1—
Terminology

In this section and throughout the rest of the book we will use a number of termsthat have
specific technical meanings. Because both CORBA and C++ are object-oriented and have
similar object models at the interface level, some terms will apply to both. However, most of
the time we will use different language to refer to conceptsin each domain. Here isthe way in
which we will differentiate:

Object. Refersto some program component that has a well-defined interface. We
usually refer specifically to CORBA objects, whose interfaces are represented in OMG
IDL, and C++ objects, whose interfaces are represented by C++ variables and method
declarations.

Operation. An action that can be invoked on a CORBA object, as defined in IDL.

Method. An action that can be invoked on a C++ object, as defined in that object's
public class declaration. C++ objects can implement CORBA interfaces. Methods on
these objects correspond to operationsin the CORBA interface.

Client. A rolethat is played by a program in the context of an invocation.

Server. A rolethat is played by a CORBA object in the context of an invocation. Many
programs that are servers are also clients to other servers.

CORBA Server. An operating system process that is hosting one or multiple objects
and object adapters.break

Page 12

Object Adapter. A component of the ORB which connects CORBA objects with the
ORB runtime system. It can make CORBA objects accessible to clients, activate or
deactivate CORBA aobjects, control threading policies, etc.

3.2—
Clients and Servers as C++ Applications

Figure 1.1 illustrates the simplest scenario involving C++ ORBs: a client interacting with a
server. Client and server are both implemented in C++. Figure 1.1 is an abstract representation
of the client-server model in C++ ORBs. We see three componentsin the figure: the client, the
server, and the ORB. The client communicates with the ORB in order to convey arequest for
an operation invocation to the server, which then sends results viathe ORB back to the client.
The interfaces these components use are defined by the CORBA standard and by the
application-specific IDL definitions that the object at the server supports.

Figure 1.2 shows a more concrete view of how the ORB performs the task of conveying an
invocation from client to server. Most C++ ORBs are implemented as libraries that are linked
into aprogram. The lightly shaded objects in Figure 1.2 are provided by the ORB (compare
with Figure 2.4). The following sections describe the functionality of each of these
components.

3.21—
Stub and Skeleton Code

The IDL compiler generates a number of C++ classes known as stub classes for the client and
skeleton classes for the server. The role of the stub classisto provide proxy objects that
clients can invoke methods on. The proxy object method implementations invoke operations on
the object implementation, which may be located remotely. If the object implementationisat a
remote location, the proxy object marshals and transmits the invocation request. That is, it takes
the operation name and the types and values of its arguments from language-dependent data
structures and places them into alinear representation suitable for transmitting across a
network. The code to marshal programmer-defined datatypesis an essentia part of the
stubcontinue

Figure 1.1
Client-server model with C++ ORBs; abstract view.

Page 13

Object Implementation

Program

Figure 1.2
Client-server model with C++ ORBs: concrete view.

code. The resulting marshaled form of the request is sent to the object implementation using the
particular ORB's infrastructure. Thisinfrastructure involves a network transport mechanism
and additional mechanisms to locate the implementation object, and perhaps to activate the
CORBA server program that provides the implementation.

The skeleton code provides the glue between an object implementation, a CORBA server, and
the ORB, in particular the object adapter (OA). The original CORBA specification defined the
basic object adapter (BOA). This specification left many of the interfaces between the ORB
core, BOA, and server program partially or totally unspecified. For this reason, different
ORBs have different mechanisms for use by the BOA to activate servers and for use by servers
to inform the BOA that their objects are ready to receive invocation requests. In the meantime,
the OMG has adopted the specification of the portable object adapter (POA), which overcomes
the shortcomings of the BOA.

The POA was designed to provide a standard portable interface that CORBA objects can use
to communicate with the ORB runtime. The key dif-soft

Page 14

ferentiation between the POA and the BOA isthat the POA provides alayer of abstraction
between the object and the ORB, alowing an object implementation to be portable across
multiple vendor implementations. In contrast, the BOA is very tightly coupled with a particular
ORB implementation and object implementations written with one vendor's ORB will not work
with another vendor's ORB. In either case, the build process for the object is effectively the
same. When developing a CORBA object implementation, the class must access either the
BOA skeleton class or the more portable POA skeleton class. The access can be via
inheritance (inheritance approach) or by delegation (tie approach).

The skeleton class for either the BOA or POA implements the mechanisms by which invocation
requests coming into a server can be directed to the right method of the right implementation
object. The implementation of those methods is the responsibility of the application
programme.

3.2.2—
ORB and Object Adapter

The BOA has a proprietary interface to the ORB that is not standardized in CORBA. This
generally means that BOA functionality is implemented as part of the same code as the ORB,
partidly in libraries, partialy in stub and skeleton code, and partially in aruntime daemon
(background task or process). The marshaling routines in both the stub and skeleton code
exchange invocation requests and results via a network connection that is set up using ORB
library code that must be linked into CORBA servers and clients. This code a so communicates
with the ORB runtime daemon which knows which servers implement which objects and can
locate and/or activate servers when requests are made to them. The POA provides the same
functionality, but now the interfaces between the OA, the ORB, and the skeleton are defined.

Unlike the BOA, the POA provides awell-published interface for objects to code directly to,
independent of the underlying vendor implementation. The POA introduces new terminology,
defining CORBA object implementations as servants. In the POA mode, an object
implementation registers itself with the POA as a servant and the POA maintains a mapping of
object references to servant implementations. Further, the POA alows activation of these
servants based on the definition of various types of policies.

The information about how objects and servers are associated with idle or running C++ code
filesis stored in the Implementation Repository. Thisis a component of CORBA that is
assumed to exist, but itsinterface is not specified and is different in each ORB.break

Page 15

Figure 1.3 presents a simplified view of the interactions between server programs, the objects
they support, the ORB, and the OA. Asthe figure shows, a CORBA server usualy supports a
number of CORBA objects. The server's main routine is used to create CORBA object
instances and to notify the OA of their availability to CORBA clients.

The BOA providesthe operationsobj _to ready() andi npl _is_ready().They are
supported by library methods on a BOA pseudo-object in an implementation of a CORBA

pseudo-IDL interface specification in an ORB-dependent manner (usually aslibrary code).

The POA provides aricher interface that is explained in more detail in Chapter 2. Typically
the POA isimplemented in the same manner asthe BOA, as part of the ORB library. The
POA's palicies can be configured to make it behave like most vendors BOA implementations.
This allows programmers to continue writing code against the convenient BOA interface,
which, in fact, will be just an API on top of the POA with some default policies. The POA will
require different operations to be used to activate servants based on the activation policy.

3.3—
Clients and Servers | mplemented with Non-C++ ORBs

Since CORBA provides multiple programming language mappings for OMG IDL, clients and
servers can be implemented in awide variety of languages. There are many reasons for using
other languages, for example, to deploy clients on the Internet as Java applets, to integrate

legacy code, or to exploitcontinue
mplementation .’

various
uses

Server Object
notify Adapter

Figure 1.3
C++ ORB server side: simplified view.

Object |

create

Page 16

specific skills of a software engineering team. Other programming languages are made
available by ORB vendors in the following ways:

Within the same ORB or ORB family. Thisrequiresan IDL compiler that generates
the stub and skeleton code in the required programming language. The implementation
of the ORB and OA pseudo-objects must be accessible viaan APl wrapper in this
programming language or they must be reimplemented in this language. The ORB
runtime system, including daemons and configuration files, can be shared. The objects
implemented in different languages can use an ORB's proprietary protocol.

With different ORBsusing CORBA 2.0 inter oper ability. Implementationsin
different languages using the development and runtime environments of different ORBs
can communicate using IORs. Thisis often referred to as communication across ORB
domain boundaries.

Thetrend is clearly going toward the second approach. Today we see more and more ORB

implementations choosing 11OP as their native or primary communication protocol. Figure 1.4
illustrates the interworking between clients and serversimplemented in different programming
languages using |1OP as the communication protocol. Besides the C++ client and server, we
show Java clients and servers because they are very popular. A typical example of clients and
serversin other programming languages are those implemented in Smalltalk.break

Client - some
Programming Language

G+
Client

..'- 1]"-:

1 Server
1 Applet F

Server - some
Programming Language

Figure 1.4
Interoperability.

Page 17

4—
Building a First C++ ORB Application

In this section we use another simple Hello World example (see Figure 1.5) to introduce the
principles of building distributed applications with C++ ORBs. This example expands the
Hello World example introduced above. We will implement a client, a C++ application, and a
server supporting an object implementation. Figure 1.5 illustrates the components of our
example.

All codeisavailablein electronic form from www.wiley.com/compbooks/vogel. We used
Visibroker for C++ to develop and run our examples. The codeis available for Solaris and
Windows 95/NT and is easily portable to other platforms. Aslong as standard CORBA
features are used, the ORB you choose does not matter. However, there are afew portability
issues for CORBA/C++ code. We have aready mentioned the incomplete BOA specification
and how the POA overcomesiit.

The various ORB products, which conform to the CORBA specification, differentiate
themselves with implementation details that have an impact on performance and scalability.
Most aso have extensions to the CORBA core.break

HelloWorld
Client
Application

GoodDay
Object Implementatio

HelloWorld Server

Figure 1.5
Hello World application.

Page 18

The section starts with asummary of the development process for CORBA applicationsin
C++. We then give detailed explanations for the development of a simple example application
and subsequently extend this to include more features. In Chapter 6 we return to application
development with a more substantial example.

4.1—
Summary of the CORBA Development Process

The examples presented in this section will follow these steps.

1. Write some IDL that describes the interface to the object or objects that we will use or
implement.

2. Compilethe IDL using the IDL compiler provided by the particular ORB. This produces the
stub and skeleton code. It will convert an object reference into a network connection to a
remote server and then marshal the arguments we provide to an operation on the object
reference, convey them to the correct method in the object denoted by our object reference,
execute the method, and return the results.

3. Identify the classes (header and implementation files) generated by the IDL compiler that we
need to use or specialize in order to invoke or implement operations.

4. Write code to initialize the ORB and inform it of any CORBA objects we have created.
5. Compile all the generated code and our application code with the C++ compiler.
6. Run the distributed application.

Figure 1.6 showsthe use of IDL and the IDL compiler when building the application.

Executing the IDL compiler for the C++ ORB that you have installed typically creates two sets
of C++ files. The files contain the following information:

Theclient files (2). These files contain C++-type definitions for the client structure as
well as C++ definitions for the client classes. They aso contain the various C++
implementation methods for use by the client application. The methods generated by the
IDL are stub code methods.

The server files (2). These files contain C++ definitions for classes that contain
skeleton methods. The ORB uses skeleton methodscontinue

Page 19

1DL File

Client

Client Pro
Sorver [StubCode)

)
Figure 1.6

Building the Hello World application.

Object Implementation

to unpack parameters from the client application's request. They will invoke the actud
method on the server object.

4.2—
Environment Setup

Before we can start with the examples we have to set up aworking environment. We
implemented the examples using Visibroker for C++ on a Sun/Solaris platform and ported the
code to Microsoft's Windows operating system. For setups in other environments, the reader is
referred to the installation manuals for the particular products and platforms.

4.3—
I nterface Specification

Our first example provides the same functionality as the one introduced in section 3. However,

aclient invokes an operation hel | o() on theinterface of a potentially remote object
GoodDay. Theresult of theinvocation is a message that is printed by the client.

For any CORBA application we must write an IDL specification that defines datatypes and
interfaces, including attributes and operations. For our example, we defined an IDL file called
SimpleHellowWorld.idl, which resembles the C++ class of the Hello World example fromr
section 3.break

Page 20

/1 Sinmpl eHel | oWorl d. i dl
nodul e Si npl eHel | oWr | d{

i nterface GoodDay({
string hello();

}
}

The file contains the specification of amodule Si npl eHel | oWor | d. It isgood
specification style to

- Use modules to create a separate namespace for an application or its magjor components.
- Have one file per module.
- Name thefile after the module.

Within the module we define one interface: GoodDay . The interface is not in an inheritance
relationship. It provides one operation: hel | o() . This operation does not have any
parameters and returns aresult of typest ri ng.

Aswe will seein the implementation, the object returns a string describing itslocality as part
of the result of the operation hel | o() . The operation returns a message saying: "Hello
World, from location.”

4.4—
Compiling the IDL

The next step in the application development isto compile the IDL to generate the client code
stub and server skeleton code. The compiler for Visibroker for C++ isidl2cpp. The compile
command is

pronpt > idl 2cpp Sinpl eHel | oWorl d.idl

The following four files are generated by the IDL compiler:
- SimpleHellowWorld_c.hh

- SimpleHelloworld_c.cpp

- SimpleHelloWorld_s.hh

- SimpleHelloWorld_s.cpp

The SimpleHelloworld_c.* files comprise the client side of the application. The
SimpleHelloWorld_s.* files comprise the object server side of the application. The suffixes
.cpp and .hh help you distinguish between these generated files and the files you will need to
create to complete the example. The .hh files are the generated header files for the application.
The .cpp files are the generated source files for the application. Note that you will not need to
modify these generated files.break

Page 21

4.5—
A Client asa C++ Application

A client implementation follows these steps:

1. Initialize the CORBA environment, that is, initialize the ORB.

2. Obtain an object reference for the object on which it wants to invoke operations.
3. Invoke operations and process the results.

451—
Generated C++ Interfaces

Let'slook at the C++ definitions that correspond to the interface defined in the IDL. All these
classes extend a virtual base class for the CORBA object. Corresponding to our IDL interface
definition, the class GoodDay definesamethod hel | o() which returnsapointer tochar .
Here we present only an incomplete part of the code for clarity. Thisis coming from the
generated SimpleHelloWorld_c.hh header file:

class SinpleHel loWwrld (
publi c:

class GoodDay : public virtual CORBA (bject({
private:

static const CORBA:: Typel nfo cl assi nfo;
GoodDay(const GoodDayé&) {}

voi d operat or=(const GoodDay&) {}

virtual char* hello()

452—
Initializing the ORB

The client program isessentially amai n() function. Initializing an ORB means obtaining a
reference to an ORB pseudo-object. The ORB is called a pseudo-object because its methods
are provided by alibrary, and its pseudo-object reference cannot be passed as a parameter to
CORBA interface operations. Excluding that restriction, however, areference to an ORB looks
like any other object reference.

The reference to the ORB object is obtained by calling the static method
CORBA: : ORB_i ni t () .break

#i ncl ude "Si npl eHel | oWorl d_c. hh"

int main(int argc, char* const* argv){
CORBA: : String_var stringifiedlor;

try{
[/1lnitialize the ORB

CORBA: : ORB_var orb = CORBA:: ORB_init(argc, argv)

Page 22

45.3—
Obtaining an Object Reference

References to objects can be obtained by various means, as explained in depth in Chapter 5.
Here we use a rather unsophisticated method. Object references are opagque data structures.
However, an object reference can be made persistent by converting it into a string (as we show
when explaining the server). Thisis known as stringifying an object reference. The resulting
string is called a stringified object reference. Stringified object references are reconvertible
into "live" object references. Thisis done using the two corresponding operations

object _to_string() andstring_to_object () definedinthe CORBA: : ORB
interface. Stringified interoperable object references can be converted into working object
references by any CORBA 2.0-compliant ORB.

/1 get stringified |OR fromconmmand |ine

if(argc >=2)
stringifiedlor = (const char *) argv[1];

el se{
cerr << argv[0] << ": Mssing IOR' << endl;
return 1;

}

/1 get object reference fromcommand-I|ine argunent
CORBA: : Object obj = orb::string to object(stringifiedlor);

For this example client, we assume that a stringified object reference is provided as the first
argument to the client program. It is then provided as the argument to the method
string_to_object(),whichisinvoked onthe ORB pseudo-object. The method returns
an object reference of type CORBA: : Cbj ect _pt r, the base type of all CORBA objects. To
make use of the object, it needs to be narrowed to the appropriate type. Narrowing is
equivalent to downcasting in some object-oriented programming languages. The narrow
operation istype safe. It returns a null reference if the object is not of the expected type, but
make sure that you test for null references. In addition, the narrow operation can raise a
CORBA system exception.

/Inarrow it down to GoodDay
Si npl eHel | oWor | d: : GoodDay_var goodDay =
Si npl eHel | oWor | d: : GoodDay: : _narrow obj);
i f(goodDay == null){
cout << "CGood day is null" << endl;
return(l);

}

454—
Invoking the Operation

Once the ORB isinitialized and an object reference is obtained, CORBA programming looks
very much like standard object-oriented programming.break

Page 23
One invokes methods on objects, and it looks exactly the same for remote and local objects.

//invoke the operation and print the result
cout << "Hello Wrld, from" << goodDay->hello() << endl

Our simple client invokes the method hel | o() ontheobject goodDay and theresultis
printed to standard output.

Thelast thing to consider is handling exceptions that might occur. Since there are no user
exceptionsraised by the hel | o() operation, we only have to catch and process CORBA
system exceptions which can be raised during the initiaization of the ORB, thenar r ow()
and the invocation of thehel | o() operation.

[/ catch CORBA system exceptions
cat ch(const CORBA: : Exception& e){
cerr << e << end;
return(l);

return(0);

}
}

4.6—
Object | mplementation

Now we turn to the implementation of the object whose interface has been specified in IDL.
The object implementation class must be associated with the skeleton class generated by the
IDL compiler. This can be done by inheritance or by delegation.

The skeleton class is an implementation of the C++ interface, which corresponds to the IDL
interface. The object implementation is an extension of this class. Thisis known as associating
the skeleton with its implementation by inheritance.

Another way to associate the skeleton class with the inheritance implementation isto use the
Tie method. The Tie method associates the skeleton with its implementation by delegation.
That is, there are separate skeleton and implementation objects, and the skeleton is given a
reference to the implementation object. Thisis explained in detail in Chapter 7 using the same
example.

In our example, we have an implementation class Si npl eGoodDay| npl that extendsthe
POA skeleton class (POA_Si npl eHel | oWor | d: : POA _GoodDay). Asinthe
implementation of the equally named class shown in section 2, we locally declare a private
variable that holds a string identifying the location of the service. Here we mean the geographic
location, as shown in the client example.break

Page 24

We aso have to implement the constructor of the class. The constructor has one parameter that
isassigned to the private variable | ocal i ty.

cl ass Si npl eGoodDayl npl : public POA Sinpl eHel | oWorl d: : POA GoodDay/{

/1 variable declaration
private:
CORBA: : String_var_locality;

/] constructor
publ i c:
Si npl eGoodDayl npl (const char *locality,
Const char *object _nanme = NULL) :
_locality(locality),
_sk_Sinmpl eHel | oWorl d: : _sk_GoodDay (object _nanme){}

char *hello(){
CORBA: : strdup(_locality);

}
}

Weimplement the method hel | o() , which returnsa* char holding the value of the variable
_l ocal i ty.Wehaveto duplicate the string value, otherwise the ORB rel eases the memory.

4.7—
A Server asa C++ Application

Now we have to implement a server executable. This executable initializes the environment,
creates the implementation object, makesit available to clients, and then listens for events.

The server executable for our exampleiscalled Si npl eHel | oWor | dSer ver . Sinceitisa
stand-alone program, we need to have amai n() routine. We check for the right number of
arguments: one argument that indicates the locality of the server.

A server isresponsible for the following tasks:
- Initidizing the ORB and the POA

- Creating the object/servant

- Using the POA to activate a servant

4.7.1—
Initializing the ORB and POA

Weinitialize the ORB in the same way we did on the client side, by calling
CORBA: : ORB_i ni t (), which returns areference to the ORB pseudo-object. For the POA,
wewill call resol ve_initial _references() inorderto obtain arefer-soft

Page 25

ence. Thiswill return a CORBA: : Qbj ect , which must be narrowed to the appropriate POA
type.

try{
// Initialize the ORB

CORBA: : ORB var orb = CORBA:: ORB_init(argc, argv);

/[llnitialize Portable oject Adapter
/1 Get the Root POA object reference
CORBA: : Obj ect _var obj =
orb->resolve_initial _references ("PersistentPQA");

/I Narrow t he object reference to a POA reference
Por t abl eServer:: POA var root_poa =
Por t abl eServer:: PQA: . _narrow (obj.in());

4.7.2—
Creating the Object

We create our implementation object and supply one parameter for the constructor, which we
copy from the command line argument.

/l Create a new GoodDay obj ect.
GoodDayl mpl goodDayl npl (argv[1]);

4.7.3—
Using the POA to Activate a Servant

Once we create the implementation object we notify the POA that this object is available and
that it must map the object reference to a POA servant by calling the method

acti vat e_obj ect (). When using the POA instantiating a POA manager is also required.
A POA manager provides the ability to utilize multiple POAs, each with different policies. We
also print out the stringified version of the object reference, which we obtain by calling
servant _to_reference() togetthe standard reference, and then pass this to the ORB
operation obj ect _to_string() . Thisisthe object reference we used in the client to
establish a connection with a server.break

/1 Allocate a POA hject id and nap it to the servant
Por t abl eServer:: Objectld var oid =
root poa->activate_obj ect (&oodDayl npl) ;

/1 Activate a PQOA Manager for our PQA
root _poa- >t he_PQOAManager () - >acti vate();

/] Get a stringified IORto our Servant
cout << orb->object_to_string
(root _poa->servant _to_reference(&oodDayl npl)) << endl;

Page 26

orb->run();
}
cat ch(const CORBA: : Exception& e){
cerr << e << endl;
return(l);
}

return(0);

}

4.8—
Compiling the Server and the Client

To compile the server and the client source code and make them executable, it is best to create
amakefile that will also compile the IDL file. We are responsible for the following files:

- SimpleHellowWorld.idl

- SimpleHelloWorldClient.C

- SimpleHelloWorldServer.C

The makefile needs to take these files into account as well as the IDL-generated compiled files:
- SimpleHelloworld_c.cpp

- SimpleHellowWorld_c.hh

- SimpleHelloworld_s.cpp

- SimpleHellowWorld_s.hh

Here are the specific makefile rules for our SimpleHelloWorld application:

Si npl eHel | oWorl d_c. cpp: Sinpl eHel | oWorl d. i dl
i dl 2cpp Si nmpl eHel | oVorl d. i dl

Si npl eHel | oWorl d_s. cpp: Sinpl eHel | oWorl d. i di
i dl 2cpp Si npl eHel | oVorl d. i dl

Si npl eHel | oVWrl dC i ent.exe: SinpleHelloWwrld_c.o SinpleHell oWwrldCient.o
$(CC -0 SinpleHelloWwrlddient SinpleHelloWwrlddient.o \
Si npl eHel | oWor I d_c. o $(LI BPATH) $(LI BORB) $(STDCC LI BS)

Si npl eHel | oWor | dServer. exe: SinpleHell oWwrld_s.o SinpleHell oWrl dServer. o
$(CC -0 SinpleHell oWwrl dServer SinpleHell oWrl dServer.o \
Si npl eHel | oWor I d_s. o $(LI BPATH) $(LI BORB) $(STDCC LI BS)

The definitions of the global variables that we are referring to in this makefile are contained in
a standard makefile. It is best to distinguish platformspecific makefiles from each other.break

Page 27

4.9—
Running the Application

After the successful compilation of the files you have created, you will need to run the resulting
executable files—SimpleHelloWorldClient and SimpleHelloWorldServer—to test the validity
of the application. Start the application server:

pronpt > Si npl eHel | oWbr | dServer Bri sbane

The server will then display astringified IOR that we will need to reference when executing
the client:

| OR: 012020202100000049444c3a53696d706c6548656¢c6¢6f 576f 726c642f 476f 6f 64446179
3a312e3000202020010000000000000054000000010100200b00000031302e312e332e313434
0020170e20203800000001504d43010000002100000049444¢c3a53696d706c6548656¢c6¢6f 57
6f 726c642f 476f 6f 644461793a312e30002020200000000059810c35

We execute the client by typing the client application name and the stringified object reference
that was obtained from the execution of the server:

pronpt > Sinpl eHel | oWOr1 dd i ent | OR 012020202100000049444¢c3a53696d706c654865
6c6¢c6f 576f 726c642f 476f 6f 644461793a312€30002020200100000000000000540000000101

00200b00000031302e312e332e3134340020170€20203800000001504d430100000021000000
49444c3a53696d706c6548656c6¢6f 576f 726c642f 476f 6f 644461793a312e30002020200000
000059810c35

The client then prints the expected message:break

Hello Wrld, from Bri sbane

Page 29

Chapter 2—
CORBA Overview

This chapter contains detailed information, from a CORBA application developer's
perspective, about the OMG and the architecture documents and specifications it has produced.
Section 1 isan overview of the history, goals, organizational structure, and processes of the
OMG. It provides descriptions of al the committees, task forces, and special interest groups
within the consortium.

Section 2 is adetailed summary of the contents of the Object Management Architecture Guide
and includes the changes made to the OMA since the third revision in mid-1995. There are two
main topicsin this section, the Core Object Model (section 2.2) and the OMA Reference
Architecture (section 2.3).

The third, and longest, section summarizes the CORBA 2.1 specification. This section attempts
to balance conciseness and detail, and covers al of the content of the July 1995 Common
Object Request Broker: Architecture and Specification document that is relevant to ORB
users while briefly introducing the material relevant to ORB implementers. The maor topics
covered includebreak

Page 30

- CORBA Object Model (section 3.2)

- ORB Structure (section 3.3)

. OMG IDL (section 3.4)

- ORB and Object Interfaces (section 3.5)

- Basic Object Adapter (section 3.6)

- Portable Object Adapter (section 3.7)

- Language mappings (section 3.8)

- Interoperability Architecture (section 3.9)

- TypeCode, Any, and Dynamic Any (section 3.10)

- Dynamic Invocation and Dynamic Skeleton Interfaces (section 3.11)

- Interface Repository (section 3.12)

1—
The Object Management Group

The Object Management Group (OMG) isthe world's largest computer industry consortium,
with over 750 membersin 1997. It is a nonprofit organization that began in 1989 with eight
members: 3Com, American Airlines, Canon, Data General, Hewlett-Packard, Philips
Telecommunications N.V., Sun Microsystems, and Unisys. The organization remains fairly
small and does not devel op any technology or specifications itself. It provides a structure
whereby its members specify technology and then produce commercial implementations that
comply with those specifications. The OMG's processes emphasi ze cooperation, compromise,
and agreement rather than choosing one member's solution over another's.

1.1—
OMG's Goals

The goals of the OMG are promotion of the object-oriented approach to software engineering,
and development of a common architectural framework for writing distributed object-oriented
applications based on interface specifications for the objects in the application.

1.2—
The Organizational Structure of the OMG

The OMG Board administers the organization and ratifies the activities of the other groups
within the OMG (see Figure 2.1). Most positions in the OMG are unpaid and are held by
representatives of member companies.

The technical group of the OMG is overseen by the Architecture Board (AB), whose members
are experienced system architects. The AB is elected by the OMG membership. It reviews al
technology proposals and specifica-soft

Page 31

o e o7

General Spacial interest Groups

I End-User Special Interest Group (EUSIG)

I Security Spacial interest Group
l Metrics Special Interest Group I
R
—
PTC Task Forces OTC Toask Forces
I OABDbject Borvices Tnak Force (OSTF) II CORBAmed Task Force
r Common Facllfties Task Force (CFTF)] | Talscommunicatlons Taek Foros (CORBAIRI) I
l_]hjnnf Analyals and Design Task Forca (OADT Pi Manufacturing Domain Task Force
(CORBAmanufacturing)
[IFlnn ncial Domain Task Force (CORBAf nnnclalnal
PTC Spacial Intorest Groups
Imternet Special Interest Group (1SI1G) I Interactive Mullimedia & Electronic Commancs
Damnin Task Force
l_ Jupan Special Inlerest Group UEIGJ l Busineee Ohjects Domaln Task Forcs
RAeal-Time Spacial Interest Group (ATSIG) I

OTC Special Interaat Groups

Transporiation Specinl Interest Group (TSIG) I
1

Figure2.1
Organization of the OMG.

tions for consistency and conformance with the Object Management Architecture (OMA).

The structure of the committees, task forces, and other groups within the OMG reflect the
structure of the OMA. Two committees oversee the technology adoption of a number of task
forces (TFs) and special interest groups (SIGs).

Platform Technology Committee (PTC). This committee is concerned with
infrastructure issues. the Object Request Broker,continue

Page 32

Object Services, and the relationship of the OMA to object oriented analysis and
design.

Domain Technology Committee (DT C). This committee is concerned with
technologies to support application development, in particular vertical markets such as
manufacturing, electronic commerce, or health care.

Task forces may issue requests for proposals (RFPs). These are detailed statements of a
problem that needs to be solved. Responses are solicited in the form of IDL specifications with
object semantics explained in English. Two rounds of submissions are taken, usualy 3 months
apart, and then the most suitable specification is selected by avote of members and presented
to the task force's controlling committee.

Special interest groups may not issue RFPs directly or adopt technology specifications, but
may do so with the support of atask force. Usually special interest groups discuss areas of
common interest and report their findings to their controlling committee via documents and
presentations. A number of special interest groups do not belong to either the PTC or the DTC.
Instead they report directly to the Architecture Board.

1.2.1—
PTC Task Forcesand Special Interest Groups

The following are the task forces and special interest groups that report to the Platform
Technical Committee:

ORB/Object Services Task Force (OSTF). Thistask forceisresponsible for
specifying the ORB, which is published as the Common Object Request Broker
Architecture and Specification (CORBA). The task force also specifies general
purpose Object Services (published as CORBAservices). Thisisthe areawhich
supports the basic infrastructure of object interaction. This task force has adopted the
largest number of specifications.

Common Facilities Task Force (CFTF) (disbanded). Thistask force specified
technologies that provided services to applications at a high level. Its specifications
were published as CORBAfacilities. It was disbanded in June 1997 because most of
the work it undertook was undertaken by the Domain Task Forces. The distinction
between the remaining "horizontal" facilities and Object Services has long seemed too
subtle, and so future work will take place in other task forces.

Object Analysisand Design Task Force (OADTF). Thistask force is concerned with
applying widely used object-oriented analysis and design methodol ogies to distributed
object-oriented applica-soft

Page 33

tion development using CORBA. It is anew task force which has published some white
papers but as yet no specifications.

Internet Special Interest Group (ISIG). ThelSIG is concerned with the convergence
between distributed objects and the Internet, both as a distribution mechanism and asa
growing area of commercia activity.

Japan Special Interest Group (JSIG). The JSIG isafocus for Japanese devel opers of
distributed objects and is particularly concerned with internationalization issues across
the OMG.

Real Time Special Interest Group (RTSIG). The RTSIG is concerned with issues of

guaranteed performance of requests to distributed objects, embedded systems, and fault
tolerance.

1.2.2—
DTC Task Forcesand Special Interest Groups

The following are the task forces and special interest groups that report to the Domain
Technical Committee.

CORBAmed Task Force (Healthcare). The CORBAmed Task Force is concerned
with adopting specifications that meet the vertical domain requirements of the health
care sector. It also promotes the use of object-oriented technology in the medical field.

Telecommunications Task Force (CORBAtel). CORBAte isworking toward
adoption of specifications that meet the needs of telecommunications providers. It also
promotes the OMG and liaises with relevant telecommunications industry bodies.

Manufacturing Domain Task Force (CORBAmanufacturing). The MDTF promotes
the use of CORBA technology in manufacturing industry computer systemsand is
adopting technology specificationstailored to that broad sector.

Financial Domain Task Force (CORBAfinancials). Thistask force promotes the use
of financial services and accounting software based on OMG standards. They are
adopting specifications for standard interfaces to this kind of software.

I nter active M ultimedia and Electronic Commerce Domain Task Force. The
IMCDTF isinterested in on-line commerce, including rights and royalties, and
electronic payment for media services.

Business Objects Domain Task Force (BODTF). The BODTF covers a broad area: it
includes any standard objects used in business processes. This covers such areas as
workflow, document processing, task scheduling, etc. The first RFP issued by the
BODTF was controversia in that it did not solicit a single well-focusedcontinue

Page 34

specification, but rather invited submitters to specify anything that they considered to be
aBusiness Object. In the end a framework for business objects was adopted.

Transportation Special Interest Group (TSIG). The TSIG examines the requirements
of the transportation industry in the development of Distributed Object Applications.

1.2.3—
Architecture Board Special Interest Groups

The following special interest groups that report directly to the Architecture Board.

End User Special Interest Group (EUSIG). The EUSIG is becoming increasingly
important as the OMG membership shifts from representing mainly technology vendors
to including alarge number of users of the technology. The EUSIG seeks to emphasize
the usability of the specifications adopted throughout the OMG from the point of view
of application buildersin business, the military, and government.

1.3—
OMG

Security Special Interest Group. This SIG issmilar to the EUSIG in that it feeds the
security requirements of end usersinto the OMG-wide technology adoption process.

Metrics Special Interest Group. This SIG investigates the measurement of the
performance of object technology and the processes by which the technology is
devel oped.

Inactive SI Gs. The following SIGs till exist but are not meeting or currently
devel oping documents:

- Database Specia Interest Group
- Smalltalk Specia Interest Group
- Parallel Object Systems Specia Interest Group

- Class Libraries Special Interest Group

Technology Adoption Process

The process, in brief, isasfollows:

A task force puts out a Request for Information (RFI) on a particular technology area.

RFI submissions are considered in the process of drawing up an RFP, which solicits
submissions addressing its proposal from contributing members of the OMG.

Any member company that wishes to respond to an RFP must submit aletter of intent
(LOI) stating that they are willing to release acontinue

Page 35

commercia implementation of their submitted specification within one year of its
adoption, should it be chosen.

A voting list is established from OMG members who express an interest in selecting
from the submissions.

A first submission takes place, usually about 3 months after the issue of the RFP.
Typically there are three to six submissions.

The task force session at one of the six annua OMG meetings asks questions and
provides feedback on the initial submissions.

The submitters consider each other's specifications, and frequently some or all of them
decide to produce a consensus merger of specifications which align fairly closely.

Second (final) submissions are made, usually after another 3 months, and if there is
more than one submission the choice of which to adopt is put to avote.

The adopted specification is presented to atechnical committee plenary session and a
yes/no vote to adopt the chosen submission is put to the entire OMG membership. This

usually passes without problem.

The Architecture Board then considers the broader implications of the new
specification on the whole OMA. They may approve the specification unequivocally,
suggest revisions, or reject the specification and issue a new RFP. Reissue of the RFP
isnot likely to occur.

Once the Architecture Board is happy with the specification, it isratified by the OMG
Board based on afurther vote by members.

The form of submissions to the OMG's task forces and technical committeesis usualy a
specification detailing the problem areathat is being solved and proposing a number of
interface definitions (in OMG IDL). The IDL is accompanied by English text describing the
semantics of the objects and the roles and relationships to other objects in the specification and
outside of it. The interfaces are described in terms of the actions of their operations and not in
terms of a particular underlying implementation.

2—
The Object Management Architecture

This section introduces the OMA and provides a summary of the technical parts of the third

edition of the OMG publication Object Management Architecture Guide, which consists of
two main parts: the Core Object Model (described in section 2.2) and the Reference Model

(described in section 2.3).break

Page 36

2.1—
Overview of the OMA

The OMA isthe framework within which all OMG adopted technology fits. It provides two
fundamental models on which CORBA and the other standard interfaces are based: the Core
Object Model and the Reference Moddl.

The Core Object Model defines the concepts that allow distributed application development to
be facilitated by an Object Request Broker (ORB). The Core Object Moddl is restricted to
abstract definitions which do not constrain the syntax of object interfaces or the implementation
of objects or ORBs. It then defines aframework for refining the model to a more concrete form.
The model provides the basis for CORBA, but is more relevant to ORB designers and
implementers than to distributed object application devel opers.

The Reference Model places the ORB at the center of groupings of objects with standardized
interfaces that provide support for application object developers. The groups identified are
Object Services, which provide infrastructure; Domain Interfaces, which provide special
support to applications from various industry domains; Common Facilities, which provide
application-level services across domains; and Application Interfaces, which is the set of al
other objects developed for specific applications. Since the disbanding of the Common
Facilities Task Force (see section 1.2.1), the OMA Reference Model has not been redefined,
and a number of specifications still populate this space in the OMA.

The Reference Model is directly relevant to CORBA programmers because it provides the big
picture from which components and frameworks can be drawn to support devel opers of
distributed applications. The Reference Model also provides the framework for OMG's
technology adoption process. It does this by identifying logical groupings of interface
specifications that are provided by organizational groups (TFs and SIGs) which specify and
adopt them.

2.2—
Core Object Model

This section provides a detailed explanation of the theoretical underpinnings of CORBA.
These specifics will not be of interest to everyone. We have tried to provide a readable
summary of the contents of the OMG's Object Management Architecture Guide, but section 3
of this chapter on CORBA is written without assuming that the reader is familiar with the
details of the Core Object Model. This section will mostly be of interest to readers with a
background in object-oriented theory, but it starts with principles and so iscontinue

Page 37

readable by anyone with a somewhat broader interest than smply using CORBA as an
application development platform.

2.2.1—
Scope of the Core Object Model

The main goals of the Core Object Model are portability and interoperability. The most
important aspect of portability to consider is design portability. This means knowledge of an
object’'s interface and the ability to create applications whose components do not rely on the
existence or location of a particular object implementation. The core does not define the syntax
of interface descriptions, but does describe the semantics of types and their relationships to one
another.

Interoperability means being able to invoke operations on objects regardless of where they are
located, which platform they execute on, or what programming language they are implemented
in. Thisis achieved by the ORB, which relies on the semantics of objects and operations
described in the Core Object Model. The ORB also requires some extensions to the core which
provide specifications for specific communication protocols, an interface definition syntax, and
basic services to object implementations. CORBA provides these extensions.

The Core Object Model is not ameta-model. This means that it cannot have many possible
concrete instances of the basic concepts. It consists of an abstract set of concepts that allow
understanding of objects and their interfaces. However, these concepts cannot be redefined or
replaced, only extended and made more concrete. The Core Object Model is specialized using
components and profiles to provide a concrete architecture for an ORB.

2.2.2—
Components and Profiles

A component is an extension to the abstract Core Object Model that provides a more concrete
specialization of the concepts defined in the core. The core together with one or more

components produces what is called a profile. CORBA is a profile that extends the core with
several components which provide specializations such as a syntax for object interfaces and a
protocol for interoperation between objects implemented using different ORBs.

Figure 2.2 shows how components and profiles are used to add to the Core Object Model.

2.2.3—
Concept Definitions

The Core Object Model isaclassical object model. This means that actionsin the system are
performed by sending request messages to objects. Thecontinue

Page 38

c t ~
- I o

extended by

|
!
dox k.3

Profile -
defines

Figure 2.2
Components and profiles.

request will identify an operation and its parameters. The object will then interpret the message
and perform some actions, and then possibly send a return message to the caller containing
resulting values. The concepts defined in the Core Object Model are objects; operations,
including their signatures, parameters, and return values; nonobject types; interfaces; and
substitutability.

Objects. Objects are defined simply as models of entities or concepts. For example, an
object can model a document, a date, an employee, a subatomic particle, or acompiler.
The important characteristic of an object isitsidentity, which isfixed for the life of the
object and is independent of the object's properties or behavior. Thisidentity is
represented by an object reference.

Operations, signatures, parameters, and return values. An operation is an action
offered by an object which is known to the outside world by its signature. The notion of
sending arequest to an object is equivalent to the notion of invoking an operation on an
object.

An operation's signature has the following components. a name, a set of parameters,
and a set of result types. Operation names are unique within a particular object. No
syntax for describing operations and their typesis provided.

When arequest is sent to an object it nominates an operation and provides arguments
matching the parametersin that operation's signature. The operation then performs some

action on those arguments and returns zero or more results. It isimportant to note that
object references may be returned as part of the result of an operation.break

Page 39

Operations may cause some side effects, usually manifested as changesin the
encapsulated state of the object. When an object cannot process a request it will
typically return an exception message, but exceptions are defined in a separate
component that is part of CORBA, not in the Core Object Model.

The Core Object Model does not specify whether or not requests are accepted by an
object in parallel or what the consequences of parallel execution would be if they
were. An implementation of objects could choose to provide atomic operations or a
sequence of operations for transaction management.

Nonobject types. Unlike the object models of Smalltalk and Eiffel, there are typesin
the OMA core that are not objects. These are usually called datatypes. The set of
objects and nonobject types makes up the whole of the denotable valuesin the OMA..

While the Core Object Model does not specify a set of nonobject types, another
component of CORBA does. Even though the OMA core is designed to be extensible
into several profiles via different sets of components, the likelihood of an aternative
profile to CORBA being specified in the OMA is almost nonexistent. This design
decision has been made so that new components can be added to CORBA in a
consistent manner, and so that new versions of CORBA can be defined in terms of the
makeup of its components and their versions.

2.24—
I nterfaces and Substitutability

Aninterface is acollection of operation signatures. Typically the interface to an object isthe
set of operations offered by that object, but thisisleft, once again, to CORBA to specify.
Interfaces are related to one another by substitutability relationships. This means that an object
offering an interface can be used in place of an object offering a"similar” interface. The Core
Object Model ssimply defines substitutability as being able to use one interface in place of
another without "interaction error.” However, it is useful to examine a more concrete
definition.

The ssimplest form of substitutability is when two interfaces offer exactly the same operations.
Generdly, if aninterface A offers a superset of the operations offered by another interface B,
then A is substitutable for B. Substitutability is not symmetrical, except in the smple case
where A and B offer the same operations. However, it istransitive. That is, if A is
substitutable for B and B is substitutable for athird interface C, then A is also substitutable for
C.break

Page 40

225—
Inheritance

Since interfaces may offer operations with the same signatures that have different purposes and
semantics, it is useful to have an assertion of compatibility between them. In order to ensure a
semantic relationship, the model introduces inheritance. If interface A inherits from interface B,
then A offersal of the operations of B, and may a so offer some additional operations. The set
of operations of A istherefore a superset of the operations of B, and hence A is substitutable
for B. However, because the relationship between A and B is explicit, we can be certain that
the operations they have in common serve the same purpose, and A and B don't merely
coincidentally share signatures. Figure 2.3 shows this example in agraphical form.

The Core Object Model defines subtyping as aform of substitutability dependent on
inheritance of interfaces. That is, an interface A that inherits from an interface B is a subtype of
B. We can also say that B is a supertype of A. In the Core Object Model, subtyping isthe only
acceptable form of substitutability.

The supertype of all objectsin the Core Object Model is an abstract type Object that has an
empty set of operations. The inheritance hierarchy places Object at the root and all other
objects asits subtypes and is also called the type graph.break

Interface A Intarface B

op3(...)

a 4 b
Intarface b inherits Interface a

Figure 2.3
Inheritance.

Page 41

2.3—
The Reference Model

The OMA Reference Modél is an architectural framework for the standardization of interfaces
to infrastructure and services that applications can use. The object-oriented paradigm

emphasi zes reusability of components that perform small, well-defined parts of an
application's functionality. The Reference Model allows users of components to understand
what support they can expect in what areas from ORB vendors and third-party component
providers.

The Reference Modd is shown in Figure 2.4, which identifies five main components of the
OMA:

- Object Request Broker
- Object Services

- Common Facilities

- Domain Interfaces

- Application Interfaces

Only the last of these is not intended to have interfaces specified through OMG processes.
Application objects are the project-specific part of an integrated application.break

Application Objects Domain Objects

GRS L=
INAVN

Object Request Broker

RN
ofef= OO

Object Services Comman Facilities

O CORBA Object Legacy Application Wrapper

Figure 2.4
The OMA Reference Model.

Page 42

23.1—
Object Request Broker

The ORB is defined in the Common Object Request Broker Architecture (CORBA) and
Specification document. CORBA builds on the OMA Core Object Modd and provides

- An extended CORBA core including syntax and semantics for an IDL
- A framework for interoperability, including two specific protocol definitions

- A set of language mappings from IDL to implementation languages (C, C++, Smalltalk,
Ada95)

The ORB is situated at the conceptual (and graphical) center of the Reference Moddl. It acts as
amessage bus between objects which may be located on any machine in a network,
implemented in any programming language, and executed on any hardware or operating system
platform. The caller only needs an object reference and well-formed arguments in the language
mapping of choice to invoke an operation asif it were alocal function and receive results. This
is called location and access transparency .

At the heart of CORBA isthe Interface Definition Language (IDL), which is covered in detail
in section 3.4. It provides away of defining the interfaces of objects independent of the
programming language in which they are implemented. It isa strongly typed declarative
language with arich set of datatypes for describing complex parameters. An IDL interface acts
as a contract between developers of objects and the eventual users of their interfaces. It also
allows the user of CORBA objects to compile the interface definitions into hidden code for the
transmission of invocation requests across networks and machine architectures without
knowledge of the network protocol, the target machine architecture, or even the location of the
object being invoked.

2.3.2—
Object Services

This set of interface specifications provides fundamental services that application developers
may need in order to find and manage their objects and data, and to coordinate the execution of
complex operations. Object Services are the building blocks from which other components of
the OMA can be constructed and which application objects may require. The OMG brand name
for these servicesis CORBAservices. The published services include

- Naming
- BEvents

- Life Cyclecontinue

Page 43
- Persistent Object (deprecated)
- Relationships
- Externalization
- Transactions
- Concurrency Control
- Licensing
- Query
- Properties

- Security (including 11OP over SSL)

- Time
- Collections
- Trading

Some of these are simply framework interfaces that will be inherited by applications or other
objects, for example, the Life Cycle Service. Others represent low-level components on which
higher level application-oriented components can be built, for example, Transaction Service.
Others provide basic services used at all levels of applications, such as the Naming and
Trading Services. These last two services provide a means of |ocating objects by name or by
type and properties for late binding in an application. See Chapter 8 for a detailed description
of these services.

2.3.3—
Common Facilities

Common Facilities are those end-user-oriented interfaces that provide facilities across
application domains. The first such specification adopted, published by the OMG as
CORBAfacilities, is the Distributed Document Component Facility, based on OpenDoc. Work
has been completed on Internationalization and Time Facilities, Data Interchange, and Mobile
Agent Facilities, aswell as a Printing Facility. A Meta-Object Facility, which isaway of
defining repositories for IDL and non-IDL types, and a Systems Management Facility have also
recently been adopted.

2.3.4—
Domain Interfaces

The OMG contains alarge number of special interest groups and task forces which focus on
particular application domains such as telecommunications, Internet, business objects,
manufacturing, and health care. This area of standardization was separated fron” the Common
Facilitiesin early 1996 where it was called Vertical Facilities. Several Requests for
Information RFIs and Requests for Proposals RFPs are in progress in the Domain Task Forces.
Some examples are the Common Business Object Facility, Product Data Management Enablers,
and a Healthcare Patient Lexicon Service.break

Page 44

2.3.5—
Specification Adoption in the OMG

Technology adoption in the OMG emphasizes the use of existing technologies and rapid market
availability. To this end, submitters of specifications must vouch that an implementation of the
specification exists and that, should their submission be adopted, they will make an
implementation commercially available within 1 year of adoption. The adoption processis
detailed in section 1.3.

3—
Common Object Request Broker Architecture

This section provides a summary of the Common Object Request Broker Architecture and
Specification, version 2.0.

3.1—
Overview

CORBA isthe specification of the functionality of the ORB, the crucial message bus that
conveys operation invocation requests and their resultsto CORBA objects resident anywhere,
however they are implemented. The CORBA specification provides certain interfaces to
components of the ORB, but leaves the interfaces to other components up to the ORB
implementer.

The notion of transparency is at the center of CORBA.. Location transparency is the ability to
access and invoke operations on a CORBA object without needing to know where the object
resides. Theideaisthat it should be equally easy to invoke an operation on an object residing
on aremote machine asit isto invoke a method on an object in the same address space.

Programming language transparency provides the freedom to implement the functionality
encapsulated in an object using the most appropriate language, whether because of the skills of
the programmers, the appropriateness of the language to the task, or the choice of athird-party
developer who provides off-the-shelf component objects. The key to this freedom isan
implementation-neutral interface definition language, OMG IDL, which provides separation of
interface and implementation.

IDL interface definitions inform clients of an object offering an interface exactly what
operations an object supports, the types of their parameters, and what return types to expect. A
client programmer needs only the IDL to write client code that is ready to invoke operations on
aremote object. The client uses the datatypes defined in IDL through alanguage mapping. This
mapping defines the programming language constructscontinue

Page 45

(datatypes, classes, etc.) that will be generated by the IDL compiler supplied by an ORB
vendor.

The IDL compiler also generates stub code that the client links to, and this trandlates, or

mar shals, the programming language datatypes into awire format for transmission as a request
message to an object implementation. The implementation of the object has linked to it similar
marshaling code, called a skeleton, that unmarshals the request into programming language
datatypes. The skeleton can be generated by a different IDL compiler with a different language
mapping. In thisway the object's method implementation can be invoked and the results
returned by the same means. Figure 2.5 illustrates the use of stub, skeleton, and ORB code to
make a remote invocation.

IDL and IDL compilers alow programs providing and using object interfaces to agree on the
form of their exchanges, even though they may be devel oped completely independently, in
different languages, and on different ORB technologies. This means that objects offering the
same interfaces are substitutable, and that clients can decide which object to use at runtime
with the assurance that there will be no interaction mismatches. Because the implementation of
aparticular object offering an interface is hidden, there may be quality of service differences,

or even differences in the semantics of operations. The Trading Service alows clientsto find
the most appropriate object that matches their particular performance, location, cost, or other
criteria.

The interfaces to components of the ORB are all specified in IDL. This providesa
language-neutral representation of the computational interfacecontinue

Climnt

Client Proxy

| STubl o

Object Request Broker

Object Implemantation

Figure 2.5
Stub, ORB, and skeleton.

Page 46

of the ORB. However, certain parts of these definitions are designated as pseudo-I1DL (PIDL),
which means that their implementations are not necessarily CORBA objects and datatypes. Any
interface definition that is commented as pseudo-IDL may be implemented as a pseudo-object.
Thisusually meansthat it isalibrary that is linked into the application using it. Although
operations on pseudo-objects are invoked in the same way as operations on real CORBA
objects, their references and pseudo-1DL datatypes cannot be passed as parameters to real
CORBA objects.

3.2—
Object Model

The OMA Core Object Model provides some fundamental definitions of concepts that are
extended by the CORBA specification. CORBA uses the same concepts as the OMA core, but
makes them more specific and concrete. The definitions here refer to the way in which these
concepts are declared, but do not provide syntax for declarations. The syntax is provided by
IDL (see section 3.4).

3.21—
Object Implementations and Object References

It is necessary to distinguish between object implementations and object references. The
former is the code that implements the operations defined by an IDL interface definition, while
the latter is the object's identity, which is used by clients to invoke its operations.

An object implementation is the part of a CORBA object that is provided by an application
developer. It usualy includes some internal state and will often cause side effects on things that

are not objects, such as a database, screen display, or telecommunications network elements.
The methods of this implementation may be accessed by any mechanism, but in practice most
object implementations will be invoked via the skeleton code generated by an IDL compiler.

Object references are handles to objects. A given object reference will always denote asingle
object, but several distinct object references may denote the same object. Object references
can be passed to clients of objects, either as an operation's parameter or result, where the IDL
for an operation nominates an interface type, or they can be passed as strings which can be
turned into live object references that can have operations invoked on them.

Object references are opaque to their users. That is, they contain enough information for the
ORB to send arequest to the correct object implementation, but this information isinaccessible
to their users. Object references contain information about the location and type of the object
denoted, but do so in a sophisticated manner so that if the object has migratedcontinue

Page 47

or isnot active at the time, the ORB can perform the necessary tasks to redirect the request to a
new location or activate an object to receive the request.

Unless an object has been explicitly destroyed, or the underlying network and operating system
infrastructure is malfunctioning, the ORB should be able to convey an operation invocation to
its target and return results. The ORB a so supports operations that interpret the object
reference and provide the client with some of the information it contains.

3.2.2—
Types

Types are defined using predicate logic in the CORBA specification. Object types are related
in an inheritance hierarchy, with the type Object at the root. An object type derived from
another can be substituted for it. Object types may be specified as parameters and return types
for operations, and may be used as components in structured datatypes. A set of nonobject
types are defined with specific propertiesin CORBA. These are represented by constructsin
OMG IDL. The usua kind of basic numeric, string, and boolean types are defined. A type
caled Any isalso given as abasic type. It can store any legitimate value of a CORBA typein a
self-describing manner. See Chapter 6 for detailed descriptions of Anys and Chapter 10 for
examples using Anys.

The basic types can be used as components for arich set of structured types, including
structures, arrays, variable length sequences, and discriminated unions. The syntax and
gpecifications of CORBA types are given in the OMG IDL description.

3.23—
I nterfaces

Aninterface is adescription of the operations that are offered by an object and can aso
contain structured type definitions used as parameters to those operations. Interfaces are
specified in OMG IDL and are related in an inheritance hierarchy. In CORBA, interface types
and object types have a one-to-one mapping. Thisisarestriction of the OMA Core Object
Model, which implies that objects have single interfaces but does not state that this must be the
case. Theterm principal interface is used to indicate the most specific (most derived)

interface type that an object supports. The Multiple Interfaces RFP is currently soliciting
submissionsin the OMG, and amodel for objects with multiple interfaces will probably be
introduced in arevised CORBA specification.

3.24—
Operation Semantics

There are two kinds of operation execution semantics defined for static (stub code)
invocations:break

Page 48

At-Most-Once. An operation is a named action that a client can request an invocation
of. The invocation of an operation results in the ORB conveying the arguments to the
object implementation and returning the results (if any) to the requester, whichiis
blocked and waiting for a successful termination or an exception. The semantics of the
invocation are "at-most-once." That is, the operation will execute exactly onceif a
successful completion takes place, or if an exceptionisraised it will have executed no
more than once.

Best-Effort. If an operation is declared using the oneway keyword then the requester
does not wait for the operation to complete and the semanticsis "best-effort.” Both
these kinds of requests can be made using the generated stubs or using the Dynamic
Invocation Interface (DII), but the DIl also offers athird type of execution
semantics—deferred-synchronous. This allows the requester to send the request
without blocking and at some later time to poll for the results.

3.2.5—
Operation Signatures

Each operation has a signature, expressed in IDL, which contains the following mandatory
components:

- An operation identifier (also called an operation name).
- The type of the value returned by the operation.

- A (possibly empty) list of parameters, each with a name, type, and direction indication. The
direction will be one of in, out, or inout, stating that the parameter is being transmitted from the
client to the object, is being returned as a result from the operation, or is client datato be
modified by the operation, respectively.

An operation signature may also have the following optional components:

- Arai ses clause that lists user-defined exceptions that the operation may raise. Any
operation may raise system exceptions.

- A oneway keyword that indicates "best-effort” semantics. The signature must have avoid
return type and may not contain any out or inout parametersor ar ai ses clause.

- A cont ext clause that lists the names of operating system, user, or client progran
environment values that must be transmitted with the request. Contexts are transmitted as sets of

string pairs and are not type safe. Contexts are intended to play asimilar role to environment
variables known from various operating systems.break

Page 49

3.2.6—
Attributes

An interface may contain attributes. These are declared as named types, with a possible

r eadonl y modifier. They arelogically equivalent to a pair of operations. The first,an
accessor operation, retrieves avalue of the specified type. The second, a modifier operation,
takes an argument of the specified type and sets that value. Readomly attributes will only have
an accessor. Attributes cannot raise user-defined exceptions.

The execution semantics for attributes are the same as for operations. Attributes do not
necessarily represent a state variable in an object, and executing the modifier operation with a
particular argument does not guarantee that the same value will be returned by the next

accessor execution. Section 3.4.6 contains a full syntax for operation and attribute declarations.

3.2.7—
Exceptions

An exception is a specialized nonobject typein OMG IDL. It is declared with the keyword
except i on and has aname and optional fields of named data values that provide further
information about what caused the abnormal termination of an operation.

The standard IDL module, CORBA, contains declarations for 26 standard exceptions to
address network, ORB, and operating system errors. These exceptions may be raised by any
operation, either implicitly by the ORB or explicitly in the operation implementati on. Each
standard exception, also known as a system exception, has two pieces of data associated with
it:

- A completion status, an enumerated type with three possible values—COVPLETED _YES,
COVPLETED _NC, and COMPLETED MAYBE—indicating that the operation implementation
was elther executed in full, not at all, or that this cannot be determined

- A long integer minor code which can be set to some ORB-dependent value for more
information

Further user-defined exceptions may be declared in IDL and associated with operationsin the
rai ses clause of their signatures. An operation may only raise user exceptions that appear in
its signature.

3.3—
ORB Structure

Aswe have mentioned, OMG IDL provides the basis of agreement about what can be
requested of an object implementation viathe ORB. IDL, however, is not just aguide to clients
of objects. IDL compilers use interface definitions to create the means by which a client can
invoke alocal functioncontinue

Page 50

and an invocation then happens, asif by magic, on an object on another machine. The code
generated for the client to use is known as stub code, and the code generated for the object
implementation is called skeleton code. Figure 2.6 shows the ORB core, stub and skeleton
code, and the interfaces to the ORB.

These two pieces of generated code are linked into the respective client and object
implementations, and they interface with the ORB run-time system to convey requests and
results for static invocations. Static means that the IDL is statically defined at compile time,
and only operations on known interface types can be invoked.

The CORBA standard aso defines an interface to allow requests to be built dynamically for
any operation by aclient. Thisis known as the Dynamic Invocation Interface (DII). A
symmetric interface is defined for responding to arbitrary requests, called the Dynamic
Skeleton Interface (DSI).

CORBA defines an interface for communicating with the ORB from either client or server.
This interface deals mainly with ORB initiaization and object reference manipulation.

Finally, object implementations need extrafacilities for managing their interactions with the
ORB. A component called an object adapter (OA) fillsthisrole and is responsible for
operating system process management for implementations on behalf of the ORB and for
informing the ORB when implementations are ready to receive requests.break

(ly cumI R ﬁ}mmp.ﬂ;waﬁm

Dynamic oL Dynamic
Ilnu?ucutlum iDL ORB Skeleton| | Skeleton
Stubs Interface Interface

Interface

There May Be Multiple
S Standard Interface Object Adapters
Par-Object Type
I:] Generated Interface - OREDepsndent Intsrince
Figure 2.6
ORB interfaces.

Page 51

3.3.1—
Client Stubs

When aclient wishes to invoke an IDL-defined operation on an object reference asiif it were a
local method or function call, it must link in stubs for the IDL interface which convey that
invocation to the target object. In object-oriented implementation languages the stubs are
instantiated as local proxy objects that delegate invocations on their methods to the remote
implementation object. The stubs are generated from an IDL compiler for the language (and
ORB environment) the client is using.

3.3.2—
Dynamic Invocation I nterface

A request is anotional message that is sent to an object denoted by an object referenceto
request the invocation of a particular operation with particular arguments. The DIl defines the
form of such amessage so that clients that know of an object by reference, and can determine
itsinterface type, can build requests without requiring an IDL compiler to generate stub code.
A request interface is defined in pseudo-IDL. It provides operations to set the target object for
the invocation, name the operation to be invoked, and add arguments to send to it. It aso
provides operations to invoke the operation and retrieve any resulting values. As noted earlier,
the implementation of pseudo-IDL is provided as alibrary and the operations map to local
methods on anon-CORBA object.

The DIl defines various types of execution semantics for operations invoked using request
pseudo-objects. The usual synchronous at-most-once semantics are available, aswell asa
deferred-synchronous option which sends the request and immediately returns to the client code
to alow further processing while waiting for aresponse.

3.33—
I mplementation Skeleton

Once arequest reaches a server that supports one or more objects, there must be away for it to
invoke the right method on the right implementation object. The trandation from awire format
to in-memory data structures (unmarshaling) uses the language mapping to the implementation
language. Thisis achieved by the skeleton code generated by an IDL compiler.

3.34—
Dynamic Skeleton Interface

Implementation code may be written that deals with requests in a generic manner, looking at the
requested operation and its arguments and interpreting the semantics dynamically. Thisis
called the Dynamic Skeleton Interface (DSI) and isrealized by allowing the implementer
access to thecontinue

Page 52

request in the form of a ServerRequest pseudo-object, which is the same as the DI request,
except for the invocation operations.

An example use of the DSI isaminima wrapper around some legacy command processing
code which accepts each request it receives with a single string argument. It then parses the
string for a numeric value and setsthisin aregister before passing the operation name to an
interpreter. It then checks the contents of the register, and unless an error bit is set, encodes the

rest of the register as anumeric string and passes it back as the result. Clients can then write
IDL that matches the expected pattern and use the generated stubs in atype-safe way to invoke
the server which was implemented before the IDL was written.

3.35—
Object Adapters

An object adapter is a component that an object implementation uses to make itself available
through an ORB and which the ORB uses to manage the runtime environment of the object
implementations. An adapter is used, rather than extending the interface to the ORB, so that
different object adapters suitable for different implementations can be used for greater
efficiency.

Currently CORBA defines two such interfaces, the basic object adapter (BOA) and the
portable object adapter (POA). Their purpose is to generate and interpret object references,
and to activate and deactivate object implementations. The interface to the BOA is described in
detail in section 3.6, and the interface to the POA is described in section 3.7.

3.4—
OMG Interface Definition Language

OMG IDL isadeclarative language for defining the interfaces of CORBA objects. Itisa
language-independent way in which implementers and users of objects can be assured of
type-safe invocation of operations, even though the only other information that needs to pass
between them is an object reference. IDL is used by ORB-specific IDL compilers to generate
stub and/or skeleton code that converts in-memory data structures in one programming language
into network streams and then unpacks them on another machi ne into equivalent data structures
in another (or the same) language, makes a method call, and then transmits the resultsin the
opposite direction.

The syntax of IDL isdrawn from C++, but it contains different and unambiguous keywords.
There are no programming statements, asits only purpose isto define interface signatures. To
do this a number of constructs are supported:

Constants—to assist with type declarations

Data type declar ations—to use for parameter typingbreak

Page 53
Attributes—which get and set avalue of a particular type
Oper ations—which take parameters and return values
I nter faces—which group datatype, attribute, and operation declarations
M odules—for namespace separation

All of the declarations made in IDL can be made available through the Interface Repository
(IR). Thisis part of the CORBA specification and its interfaces are explained in section 3.12.

34.1—

Lexical Analysis
OMG IDL usesthe ISO Latin-1 character set.

| dentifiers. Identifiers must start with aletter and may be followed by zero or more
letters, numbers, and underscores. The only strange feature of the lexical analysis of
IDL isthat identifiers are case sensitive but cannot coexist with other identifiers that
differ only in case. To put it another way, to identify the same entity the identifier must
use the same case in each instance, but another identifier with the same spelling and
different case may not coexist with it. For example, short Di spl ayTer m nal
andi nterface displayTerm nal denotedifferent entities, but may not both be
declared in the same IDL. The reason for thisis that language mappings to
case-insensitive languages could not cope with both identifiers.

Preprocessing. The standard C++ preprocessing macros are the first thing to be dealt
withiin lexical analysis. They include #i ncl ude, #def i ne, #i f def , and
#pragna.

Keywords. Keywords are all in lowercase and other identifiers may not differ only in
case.

Comments. Both styles of C++ commentsare used in IDL. The"/*" characters open a
comment and "*/" closesit. These comments cannot be nested. The characters"//"
indicate that the rest of alineis a comment.

Punctuation. The curly brace is used to enclose naming scopes, and closing braces are
aways followed by a semicolon. Declarations are always followed by a semicolon.
Lists of parameters are surrounded by parentheses with the parameters separated by
COMMEE.

342—
Modules and I nterfaces

The purpose of IDL isto define interfaces and their operations. To avoid name clashes when
using severa IDL declarations together amodule is usedcontinue

Page 54

as anaming scope. Modules can contain any well-formed IDL, including nested modules.
Interfaces also open a new naming scope and can contain constants, datatype declarations,
attributes, and operations.

/ I RoonBooki ng. i dI
nodul e RoonBooki ng{
interface Roon{};

};

Any interface name in the same scope can be used as a type name, and interfaces in other name
scopes can be referred to by giving a scoped name that is separated in C++ style by double
colons. For example, RoonBooki ng: : Roon isthe name of the empty interface declared
above. Thisname can also be written : : RoonBooki ng: : Roorm to explicitly show that itis
relative to the global scope.

Modules may be nested inside other modules and their contents may be named relative to the
current naming scope. For example,

nodul e out er{

nodul e i nner{//nested nodul e

interface inside{};

1

interface outside{//can refer to inner as a local nane

i nner::inside get_inside();
1
1

Theget _i nsi de() operation returns an object reference of type
couter::inner:inside, butmay usethereativeform of the name dueto its position
in the same scope asthei nner module.

Interfaces may be mutually referential. That is, declarationsin each interface may use the name
of the other as an object type. To avoid compilation errors, an interface type must be forward
declared before it is used. That is,continue

interface A;//forward decl arati on

interface B{//B can use forward-declared interfaces as type nanes
A get _an_A();
b

interface A{
B get_a B();
b

Page 55

The preceding example declares the existence of an interface with name A before defining
interface B, which has an operation returning an object reference to an A. It then defines A,
which has an operation returning an object reference to B. Forward declaration of interfacesis
often used for formatting and readability rather than mutual recursion.

When a declaration in a module needs some mutual reference to a declaration in another
module, thisis achieved by closing the first module and reopening it after some other
declarations. Thisis shown in the following declaration:

nodul e X{

[/forward declaration of A

interface A

};//close the nodule to allow interface A needs to be decl ared

nodul e Y{

interface B{//B can use X : A as a type nane
X A get_an_A();

b

nodul e X{//reopen nodul e to define A

interface C[//C can use A unqualified as it is in the same scope
A get _an_A();

1
interface A{//A can use Y::B as a type nane
Y::B get_a _B();

1
1

Reopening modulesis arecent addition to OMG IDL, and as yet many IDL compilers do not

accept it asvalid syntax. Thisismainly due to the lack of such flexible name scoping

mechanisms in programming language compilers. Javais one language that can support this

correctly.

3.4.3—
Inheritance

The set of operations offered by an interface can be extended by declaring a new interface that
inherits from the existing one. The existing interface is called the base interface and the new
interface is called the derived interface. Inheritance is declared by using a colon after the new
interface name, followed by a base interface name, as the following example shows:break

nodul e | nheritanceExanpl e{

interface A{
t ypedef unsi gned short ushort;

Page 56

ushort opl();
s

interface B: A
bool ean op2(ushort nunj;

b
i

In this example, interface B extends interface A and offers operationsopl1() and op2() . The
datatype declarations are also inherited, allowing the use of ushor t asaparameter typein
op2() . All interfacesimplicitly inherit from CORBA: : Cbj ect . This becomes clear when
looking at the language mapping. In Java, for example, interface A will map to a Javainterface
A, which extends a Javainterface called or g. ong. CORBA. Obj ect provided by the ORB.
In the same manner interface B will map to a Javainterface B wrich extends A.

CORBA IDL adlows any nonobject types declared in an interface to be redefined in aderived
interface. We consider this to be an oversight, and it is not recommended that this feature ever
be used. The beauty of inheritanceisthat it is a clean mechanism for determining subtyping and
substitutability of interfaces. An object implementing interface B would be able to be used
where an object of type A was required, as B is a subtype of A.

3.4.4—
Multiple Inheritance

Aninterface may inherit from severa other interfaces. The syntax isthe same assingle
inheritance, and the base interfaces are separated by commas. For example,

interface C: A B, VendorY::interfaceX{

b

The names of the operations in each of the inherited interfaces (including the operations they
inherit from other interfaces) must be unique and may not be redeclared in the derived
interface. The exception to thisrule is when the operations are inherited into two or more
classes from the same base class. Thisis known as diamond inheritance (the inheritance graph
isin the shape of adiamond). For example,break

nodul e Di anondl nherit anceExanpl e{

interface Base{
string BaseO();

};

Page 57

interface Left: Base{
short LeftOp(in string LeftParan;

};

i nterface Right: Base{
any RightOp(in Iong R ghtParam;
b

interface Derived: Left, Ri ght{
octet DerivedOp(in float Derivedl nParam
out unsigned | ong DerivedQut Paran ;
b

}

Figure 2.7 showsthe IDL in graphical form. Both interfacesLef t and Ri ght contain the
operation BaseOp() , but they can both be inherited by Der i ved because BaseQp()
comes from the same base interface.

3.4.5—
Types and Constants

The name of any interface declared in IDL becomes an object type name that may be used as
the type of any operation parameter or return value or as a member in a structured type
declaration; for example, to declare the length of an array. The basic types are rich enough to
represent numerics, strings, characters, and booleans. The definitions of these are very precise
to alow unambiguous marshaling. The structured types available in IDL are structures,
discriminated unions, arrays, and sequences. Exceptions can be considered to be a special case
of structuresthat areonly usedin r ai ses clauses of operations.break

s
\

\ Derived

b interface b inherits from interface a

Figure 2.7
Diamond inheritance.

Page 58

The set of basic types provided by IDL and their required characteristics are as follows:

Type keyword Description

[unsi gned] short Signed [unsigned] 16-bit 2's complement integer

[unsi gned] | ong Signed [unsigned] 32-bit 2's complement integer

fl oat 16-bit IEEE floating point number

doubl e 32-bit |EEE floating point number

char ISO Latin-1 character

bool ean Boolean type taking values TRUE and FALSE

string Variable-length string of characters whose length is
available at run time

oct et 8-bit uninterpreted type

enumn Enumerated type with named integer values

any Can represent avalue from any possible IDL type, basic

or constructed, object or nonobject

Thekeywordt ypedef allowsaliasesto be created for any legal type declaration. In the case
of template types (types that require a parameter to determine their length or contents) a typedef
isrequired before the type can be used in an operation or attribute declaration. See the
following string example.

Strings may be bounded or unbounded. Bounded strings are atemplate type. That is, their
declaration contains a maximum length parameter in angle brackets. For example,

interface StringProcessor({
typedef octstring string <8>;
typedef centastring string <100>;

/...
octstring Mddl eEight(in string str);
centastring PadCctString(in octstring ostr, char pad_char);

};

Enumerated types are declared with a name, which can be used as a valid type thereafter, and a
commea-separated list of identifiers. The identifiers used in an enum declaration must be unique
within a namespace. For example,break

enum gl ass_col or{gc_clear, gc_red, gc_blue, gc_green};

Page 59

Any. The Any type has an API defined in pseudo-1DL which describes how values are inserted
and extracted from it and how the type of its contained value may be discovered. Thisis
addressed in Chapter 6.

Structures. Structures are declared with the keyword struct, which must be followed by a
name. This nameis usable as avalid type name thereafter. Thisisfollowed by a
semicolon-separated list of named typefields, asin C and C++. For example,

i nterface HardwareStore{
struct w ndow spec{
gl ass_col or col or;
hei ght fl oat;
width float;

}s

Discriminated unions. Discriminated unions are declared with the keyword uni on, which
must be followed by a name. The name, once again, becomes a valid type name for usein
subsequent declarations. The keyword swi t ch follows the type name and it is parameterized
by ascalar type (integer, char, boolean, or enum) which acts as the discriminator. The body of
the union is enclosed in braces and contains a number of case statements followed by named
type declarations. For example,

enum fitting_kind{door_k, wi ndow k, shelf_k, cupboard_k};

union fitting switch (fitting_kind){
case door_k: door_spec door;
case w ndow k: wi ndow_spec win;
defaul t: fl oat wi dt h;

1

The default case is optiona, but may not gppear more than once. In each language mapping
there isameans of accessing the discriminator value by name in order to determine which field
of the union contains avalue. The value of a union consists of the value of the discriminator
and the value of the element that it nominates. If the discriminator is set to a value not
mentioned in a case label, and there is no default case, then that part of the union'svaueis
undefined.

Sequences. Sequences are template types. That means that their declarations nominate other
types which will be contained within the sequence. A sequence is an ordered collection of
items that can grow at run time. Its elements are accessed by index. Sequences may be bounded
or unbounded. All sequences have two characteristics a runtime, a maximum and a current

length. The maximum length of bounded sequencesis set atcontinue

Page 60

compile time. The advantage of sequencesisthat only the current number of elementsis
transmitted to a remote object when a sequence argument is passed.

Sequence declarations must be given atypedef alias in order to be used as typesin operation
parameters or return types. Here are some example sequences of hardware fittings used to
convey orders to a hardware store:

/lunion type "fitting" decl ared above.

t ypedef sequence <fitting> HardwareO der Seq
t ypedef sequence <fitting, 10> LimtedHAY der Seq

t ypedef sequence <sequence <fitting> 3> ThreeSt oreHWX der Seq;
t ypedef sequence <sequence <fitting> > ManySt or eHWDr der Seq;

Sequenceis the only unaliased complex type that may be used in angle brackets. All other types
must be typedefed before sequences of them can be declared. Note that there is a space
between the two closing angle brackets in the final declaration. If these were put side by side
they would be parsed as the operator >>, which can be used when declaring integer constants.
A better style would beto declare Thr eeSt or eHWOr der Seq as a sequence of

Har dwar eOr der Seq.

Arrays. Arrays are also usually declared within atypedef, as they must be named before using
them as operation parameter or return types. However, they may be declared as an element type
of aunion or member type of a struct.

Arrays at runtime will have afixed length. The entire array (regardless of useful content) will
be marshaled and transmitted in arequest if used in a parameter or return type. In contrast,
sequences passed as arguments or returned as results will only be transmitted up to their length
at the time of the invocation.

Arrays are declared by adding one or more square-bracketed dimensions containing an integer
constant. For example,break

t ypedef w ndowf 10] W ndowVecl O;
typedef fitting[3][10] FittingGid;

struct bat hroon{

fl oat wi dt h;

fl oat | engt h;

fl oat hei ght ;
bool ean has _toilet;

fitting[6] fittings;

Page 61

Exceptions. Exceptions are declared in exactly the same manner as structures, using the
keyword except i oninplaceof st ruct . A set of standard exceptions, also known as

system exceptions, is declared in the CORBA module. Here are some examples of user-defined
exceptions:

exception O der TooLar ge{
| ong max_itens;
long num.itens_subnitted,

};

exception Col or M snat ch{
sequence <col or> ot her _w ndow_col ors;
col or col or _subm tted;

};

It isgood style to include values of arguments that are relevant to the cause of afailurein an
exception. That way exception handling can be done by a generic handler that does not know
what arguments were given that may have caused the exception. The handler can determine the
context of the operation that raised the exception from the values in the exception.

Constants. Constant values can be declared at global scope or within modules and interfaces.
The declaration begins with the keyword const , followed by a boolean, numeric, character,
or string type name, an identifier, and then an equals sign and a value. Numeric values can be
declared as expressions, with the full range of C++ bitwise, integer, and floating point
mathematical operators available. For example,

const short max_storage_bays = 200;

const short w ndows_per_bay = 45;

const | ong max_w ndows = max_storage_bays * w ndows_per _bay;

const string initial _quote = "fox in socks on knox on bl ocks";

const Hardwar eStore: : CashAnount bal ance = (nmax_storage_bays - 3)/1.45

3.4.6—
Operationsand Attributes

Operation declarations are similar to C++ function prototypes. They contain an operation
name, areturn type (or voi d to indicate that no value is expected), and a parameter list, which
may be empty. In addition, an operation may have ar ai ses clause, which specifies what user
exceptions the operation may raise, and it may have a context clause, which gives alist of
names of string properties from the caller's environment that need to be supplied to the
operation implementation.

Lists of parameters to operations are surrounded by parentheses and the parameters are
separated by commas. Each parameter must have a directional indicator so that it is clear
which direction the data travels in.continue

Page 62

These arein, out, and inout, indicating client to object, return parameter, and client value
modified by object and returned, respectively. These points are shown in the IDL that follows:

[linterface HardwareStore cont..
typedef float CashAmount;
t ypedef sequence <wi ndow spec> W ndowSeq;

CashAmount OrderFittings(in HardwareO der Seq order)

rai ses (O derToolLarge);

voi d O der W ndows(
in WndowSeq or der,
i n CashAnount willing_to_pay,
out CashAmount total price,
out short or der _nunber)
rai ses (O derToolLarge, Col orM snatch)
cont ext ("LOCAL_CURRENCY");

Operations can be declared oneway if it is desirable for the caller to send some noncritical
message to an object. Oneway operation invocations will use best-effort semantics. The caller
will get an immediate return and cannot know for certain if the request has been invoked. For
obvious reasons there can be no out or inout parameters declared on oneway operations. There
must benor ai ses clause and the operation must have avoi d return type. The following
declaration illustrates this.

/linterface HardwareStore cont..
oneway voi d request Account Statenent(in short custoner_id);

An attribute islogically equivalent to apair of accessor functions, one to access the value, the
other to modify it. Read-only attributes require only an accessor function.

Attributes are ssimpler to declare than operations. They consist of the keywordat t ri but e
followed by the type of the attribute and then an attribute name list. The optiona keyword
r eadonl y may precede the attribute declaration.

/linterface HardwareStore cont..
readonly attribute CashAnount m n_order, max_order;
readonly attribute FittingSeq new fittings;
attribute string quote_of _the day;

The previous attributes could be replaced by the following IDL: break

CashAmount min_order();
CashAmount max_order () ;

Page 63

FittingSeq new fittings();
string get_quote_of the_day();
voi d set_quote_of the_day(in string quote);

As declared, the operations and attributes are equivalent. The actual names chosen for the
methods in the object implementation are determined by the language mapping. Attributes and
operations can both raise standard exceptions. However, operations can be givenr ai ses
clauses, allowing better handling of error conditions.

3.4.7—
Contexts

Contexts provide away of passing string-to-string mappings from the computing environment
of the client to the object implementation. The specification does not define the way in which
an ORB popul ates contexts to pass to objects. Some ORBs treat contexts as equivaent to UNIX

or DOS environment variables. Others require users to build context objects explicitly. The
string literals within a context clause must start with aletter and may end with "*", the wild
card matching character. The matching character will cause the ORB to find all context items
with the leading characters in common.

Contexts are a powerful concept but must be used with care. For example, the use of wild card
pattern matching is especially dangerous, as the IDL author has no way at specification time of
knowing what names will be defined in the context of al callers. A broad pattern match may
cause many kilobytes of strings to be transmitted unnecessarily for an otherwise lightweight
operation invocation. In general, contexts are a hole in an otherwise type-safe interface
definition language.

3.5—
ORB and Object I nterfaces

The ORB interface is available directly to clients and object implementations for several
object management reasons. These include creating string representations of object references,
and transforming them back again, copying and deleting object references, and comparing
object references against the empty, or nil, object reference.

As aready mentioned, there are a number of interfaces defined within the CORBA standard
that use the IDL syntax for programming-languageneutral APl definitions. They are interfaces to
ORB components that are implemented as libraries or in whatever way ORB implementers see
fit. The IDL is commented as pseudo-IDL .break

Page 64

3.5.1—
Stringified Object References

As object references are opaque, the only way to correctly make an object reference persistent
isto stringify it. A stringified object reference can be passed by means such as email, web
sites, or pen and paper, and when supplied as an argument tothest ri ng_t o_obj ect ()
operation it will produce avalid object reference that can be invoked. In order to use
generated stubsto do this, the returned object reference must be passed to the nar r ow()
method of the appropriate interface stub to cast the object reference into areference to amore
specific interface than Obj ect .

nodul e CORBA{// Pl DL

interface ORB{
string object _to string(in Ooject obj);
oj ect string to object(in string obj);

/lseveral other operations are defined here but used in
/lother contexts, such as the ORB initialization and the DI

i
i
Theobj ect _to_string() operation takes an object and produces a string. This string
may be passed to the converse operation, st ri ng_t o_obj ect (), to generate a new object
reference that can be invoked and will send its requests to the same object passed to

object _to_string().

35.2—
Managing Object References

This subsection addresses the pseudo-IDL for the CORBA: : Obj ect interface. Thisisthe
base interface for all CORBA objects and its operations can be invoked on any object
reference. However, the functionality is implemented in the libraries provided by the ORB and
results are not obtained by sending a request to the object implementation.

Object references, athough opague to their users, always contain certain information that can
be extracted by using appropriate operations. The main components in an object reference are

- Abstract information about the name and location of the object implementation
- The interface type of the object

- Reference data, that is, a unique key that differentiates this object from other objectsin the
same implementation (server)

Theget _i npl enment ati on() andget _i nterface() operations provide accessto
the first two components, and theget _i d() operation on the BOA interfacecontinue

Page 65

provides access to the third. Many ORBSs provide this information in other forms by additional
operations not required by the standard.

nodul e CORBA{

interface Qbject{//PIDL

i mpl enent at i onDef get i npl ementation();

i nterfaceDef get _interface();

bool ean is_nil();

oj ect duplicate();

voi d rel ease();

bool ean is_a(in string logical type id);

bool ean non_exi stent();

bool ean i s_equival ent(in oject other_object);
unsi gned | ong hash(in unsi gned | ong maxi mum

//the create_request operation used by the DIl is defined here
s
s

Theget _i npl enent ati on() operation returns an ORB-dependent interface called
| mpl enent at i onDef , which the standard does not specify. Thisinterface should provide
information about how the object adapter launches implementations of objects. Usually the
object adapter does this by starting a new process or task running from a particular executable
file with certain arguments.

Theget i nterface() operation returns a standard interface from the Interface
Repository. This alows aclient to investigate the IDL definition of an interface viacalsto
objects that represent the IDL in the Interface Repository. This approach can be used to

discover the operations available on an object reference when its type is unknown at compile
time. The DIl can then be used to invoke these operations.

Thei s_ni | () operation returns TRUE if this object reference denotes no object. Object
implementations that return object references as output parameters or return values may choose
to return a nil object reference rather than raise an exception. Different language bindings
implement object references differently and an invocation on anil object reference may result
in afatal error.

Thedupl i cate() andr el ease() operations are very important in programming
languages where programmers do explicit memory management (such as C and C++). Luckily
in Javathisis done for us automatically. These operations ensure correct management of
copies of an object reference. When an object reference is to be passed to another object, or
thread of control, the opague type which implements the object reference must not be copied
by using features of the implementation language. Thedupl i cat e() operation must be used
instead. The reason is that when a remote clientcontinue

Page 66

uses an object reference, a proxy object is created locally for the client to invoke operations on
directly. The proxy, in concert with the ORB, creates the request which ends up at the object
implementation.

A proxy object keeps a counter of all object referencesthat refer to it. Thisiscalled a
reference count. If acopy of areferenceto that proxy is created without the knowledge of the
proxy, it cannot increase its reference count. When the counted references are released the
proxy assumes that no other referencesto it exist and it will deallocate its resources and delete
itself. Now the reference copied without using dupl i cat e() refersto adeleted proxy and
invocations made on it will incur arun-time error. Thisisillustrated in Figure 2.8.

Whendupl i cat e() iscalledto obtain a new copy of the object reference, the proxy will
increase its reference count and wait for all referencesto call r el ease() before cleaning up
and going away. This makes the importance of usng r el ease() equaly clear. If the last
reference to aproxy is deleted without calling r el ease() the proxy will continue to
consume memory, and probablycontinue

Client Server

oR1

copy(OR)

Invalid Objpeat
.Hlimm

OR1

L]
CORBA; mHesun()

L] = Dhject Reforsnce

—.’ Ramote Object Aelerence, Inculding Network Connection

m Reterence Count

Figure 2.8
Invalid object reference copy.

Page 67

network resources, until the process or task in which it executes dies. Figure 2.9 illustrates this
case. Figure 2.10 shows the correct use of dupl i cat e() andr el ease() wherethe
reference count in the proxy reflects the actual number of referencestoit.

Figure 2.11 shows what occurs when an object reference is duplicated for passing across
machine boundaries. The figure does not show the temporary increase in the reference count on
proxy object B before the skeleton code does ar el ease() when passing the reference back
to the client.

Thei s_a() operation returns TRUE if the Interface Repository identifier passed to it refers
to atype of which this object is a subtype. It ismainly used in dynamically typed languages that
cannot support anar r om) method. We recommend the use of nar r ow() , which can be
attempted for various object types. It will return avalid object reference if it is of acompatible
type. Otherwise it will return anil object reference or raise an exception.break

Client Berver

8 = Object Reference
= Famate Dbject Referance, Inculding Netwark Connection
Raference Count

Figure 2.9
Invalid object reference deletion.

Page 68

&= Object Reference

m—— Gemote Object Aeference. Inculding Network Connection
ﬂ Reterence Count

Figure 2.10
Correct use of duplicate() and release().

Thenon_exi st ent () operation returns TRUE if the object implementation denoted by this
reference has been destroyed. The ORB will return FALSE if the object exists or if it cannot
determine the answer definitively.

Thei s_equi val ent () operation isthe only way within CORBA of determining whether
two object references denote the same object. All references that are created by calling

dupl i cat e() onasingle object reference will be equivalent to the original reference and
with each other. Even o, it is possible that two references that actually denote the same object
may return aFALSE result from this operation. That is, a TRUE result guarantees that the
object denoted is the same, but a FAL SE result does not guarantee that two references denote
different objects. String representations obtained from obj ect _to_stri ng() are ORB
dependent and often are different every time they are generated. Hence they do not offer a
means of comparing references.break

Page 69

Client

OR = OR1.0pt{);
OR1
*
Client/Server
ORie # OR Client Server

ClientfSarver

Figure2.11
Proxy creation when passing object references.

Page 70

Thehash() operation provides away of searching for an equivalent object reference that is
more efficient than comparing areference against every object referencein alist. The same
object reference will return the same hash value each time. This provides away of selecting a
small number of possibly identical references in a chained hash table, which can be compared
pairwise for amatch. Most CORBA application programmers will never need to use

i s_equivalent() orhash().

353—
Initialization

The CORBA module contains a pseudo-IDL operation ORB_i ni t () for bootstrapping the
ORB.

nodul e CORBA{// Pl DL

typedef string ORBid;

t ypedef sequence <string> arg_|list;

ORB ORB_init(inout arg_list argv, in ORBid orb_identifier);
1

ORB_i nit () isprovided to obtain areference to an ORB pseudo-object. Ordinarily
operations must be associated with an interface, but ORB_i ni t () isfreestanding.

ORB_i ni t () takesthe command line arguments from a UNIX shell-style process launch and
removes any that are intended for the ORB. It a so takes the name of the ORB to be initialized
in the form of astring.

The ORB interface supports some further operations to allow any ORB user to get access to
fundamental object services and/or facilities by name. The most important of these for object
implementations is an object adapter. The following IDL shows the signature of

BOA i nit (), whichistheway to obtain areference to a BOA pseudo-object.

nodul e CORBA({
interface ORB{//PI DL
typedef string QA d
t ypedef sequence <string> arg_list;

BOA BQOA init(inout arg_list argv,
in QAid boa_identifier);

Aswith the ORB initidization, the argument list may be scanned for BOA-specific arguments
and it will be returned with these removed. The object adapter identifier parameter,
boa_identifier, must bepassed astring specified by the particular ORB vendor.

The declarations following allow the ORB user to find out which basic services and facilities
the ORB supports and obtain references to their objects. This mechanism is also used to obtain
aPOA reference. Thel i st _i ni -soft

Page 71

tial _services() operation providesalist of the strings that identify the services and
facilities,andther esol ve_initi al _references() operation takesthese strings as an
argument and returns an object reference.

/linterface ORB cont...
typedef string ojectld;
t ypedef sequence <Objectld> bjectidLlst;
exception I nvalidName{};

ojectldList list_initial_services();

Obj ect resolve_initial _references (in Cbjectld identifier)
rai ses (InvalidNane);

};//interface ORB

};// modul e CORBA

Theresol ve_initial _references() operationisabootstrap to get object references
to the POA and CORBA services, such as the Naming Service, Interface Repository, and
Trading Service. The argument is a string specified in each CORBA service specification, for
example, "NameService' for the Naming Service and "TradingService" for the Trader.

The type of interface expected as areturn type is well known, and the object reference returned
can be narrowed to the correct object type: CosNam ng: : Nam ngCont ext for the
Naming Service and CosTr adi ng: : Lookup for the Trading Service. See Chapter 8 for a
full explanation of how to obtain these references using the Java language binding and how to
use them to obtain references to application objects.

3.6—
Basic Object Adapter

For the object implementer, the BOA isthe interface used to inform the ORB when objects
come into existence and when running processes or tasks are ready to accept incoming requests
on those objects. However, for the client the BOA is the component of the ORB that ensures
that an invocation on an object reference always reaches a running object that can respond to it.
That is, the BOA is capable of launching processes, waiting for them to initialize, and then
dispatching requests to them. To do this it needs access to the Implementation Repository—a
component proprietary to each ORB which stores information about where the executable code
that implements objects resides and how to run it correctly.

The CORBA specification lists the creation, destruction, and lookup of information relating to
object references as one of the BOA's primary functions. It provides pseudo-IDL (PIDL)
descriptions of interfaces to do this.break

Page 72

These will be described later for completeness. However, in effect, creation and destruction of
object references is managed by code that is generated by IDL compilers as part of the
implementation skeleton. When implementation objects are created their object references are
usually created with them.

3.6.1—
Registration, Activation, and Deactivation of | mplementations

Let'slook at what a program that implements some objects needs to do to alow the skeletons
for those objects to be called and cause the methods of the objects to be invoked.

nodul e CORBA{// Pl DL

i nterface BOA{
void inpl _is ready (in InplenentationDef inpl);
voi d deactivate_inpl (in InplenmentationDef inpl);
void obj _is ready (in Qoject obj, in InplenentationDef inpl);
voi d deactivate obj (in Cbject obj);

[/ continued. ..

}s

The program implementing an object may have been started by some external means or by the
BOA using the information in the Implementation Repository. The BOA should use policy
information in the Implementation Repository to determine how to start the program (or server
process) and what registration calls to expect. Four policies are explained in the CORBA
specification:

Shared server activation policy. According to CORBA, each object should register
itself withan obj _i s_ready() operation if the processit runsin supports many
objects. Thisis called the shared server activation policy. Theobj i s_ready()
operation is invoked to associate a running object implementation with an entity in the
Implementation Repository. When an object can no longer respond to requestsit should
inform the BOA usingthedeact i vat e_obj () operation. Most ORBs provide
automatic deregistration of objects in the destructor of the generated skeleton code.

Unshared server activation policy. In the unshared server activation policy the
process encapsul ates an application that supports only one object interface. In this case,
when all the other initialization has been completed, thei npl _i s_ready()
operation should be invoked. This associates the single object with an entity incontinue

Page 73

the Implementation Repository. Thedeact i vat e_i npl () operation informsthe
BOA that the server can no longer service requests.

Server -per-method activation policy. In the server-per-method activation policy a
new process is started for each request received by the BOA. The standard says that no
registration call is needed in this case, but ORBs that support this policy often require
ani npl _i s_ready() cdl tonotify the ORB that requests can be served.

Persistent server policy. A persistent server is aprocess that is started by some means
other than BOA activation. Typically an operating system script or user command starts
the server. Inthiscasethei npl _i s_ready() operation should be used to register
the server with the BOA.

Some ORBs BOAssupportonly i npl _i s_ready() and don't allow objectsto be
activated individualy, while others support both approaches, even in programs that use the
shared activation policy. Some offer the above activation policies explicitly, but not
necessarily using the registration operations specified. Others support orthogonal policies
which consider the caler'sidentity. Most ORBsimplement i npl _i s_ready() asa
dispatch loop that doesn't return while the server is accepting requests and which calls
deactivate_inpl () if interrupted.

In short, BOA implementations vary a great deal, and object implementers should not only be
aware of their responsibilities when initializing implementations, but they should be aware of
the peculiarities of their ORB. See Chapter 7 for details of what Java ORBs require.

3.6.2—
BOA Implementation

The BOA isalogica component of the ORB, but itsimplementation is usually divided
between the ORB daemon, the BOA pseudo-object, and the generated code from the IDL
compiler. As one would expect, the ORB daemon takes responsibility for launching processes.
The BOA pseudo-object provides the interface that is invoked to register the objects.

Two common strategies are used by ORBs for object-oriented languages when incorporating
the skeleton code into the object implementation. The first isto inherit the generated skeleton
classinto each implementation of an interface described in the IDL file. The base classisthen
responsible for supporting interactions between the ORB and the implementation methods. The
second approach is to generate a proxy class that implements the same functionality asthe
skeleton class, but is not inherited by the class that implements the object's application
semantics. When alogical CORBA object isinstantiated, the application implementercontinue

Page 74

must actually instantiate two objects, the proxy object and an implementation object. The proxy
object must then be given areference to the implementation object so that it can delegate
incoming requests there. Thisis called the Tie approach, as the application devel oper must
"tie" the proxy and implementation objects together when they are created.

In the programming chapters of this book we use the inheritance approach, but the Tie approach
is covered in Chapter 10.

3.6.3—
Other Functions

The BOA interface description provided in the CORBA module contains several additional
operations that are seldom used by any ORB implementation. The generation of object
references is usually done implicitly when a programming language reference to an
implementation object is passed as a parameter. The handling of authentication and access
control is done by ahigher level service. The reference data in an object reference may be
used for many purposes, among them retrieva of persistent state. The following IDL supports
object reference creation for non-object-oriented languages and retrieval of information from
object references.

//interface CORBA: : BOA PIDL cont...

interface Principal;
t ypedef sequence <octet, 1024> ReferenceDat a;

oj ect creat e(
i n ReferenceData id,
in InterfaceDef intf,
in I nplenentationDef inpl);

voi d di spose(in Cbject obj);
Ref erenceData get _id (in Qoject obj);

voi d change_i npl enentation (
in Cbject obj ,
in I nplenentationDef inpl);

Princi pal get_principal (
in Cbject obj ,
in Environment ev);

};//interface BOA
};// modul e CORBA

Generation of object references. Asexplained in section 3.5.2, an object reference has three
main components. a unique key within the server implementation, the object's interface type,
and away of locating its imple-soft

Page 75

mentation, for example, an |P address and port number. Not surprisingly, these are the
parametersthat thecr eat e() operation needs to create a new object reference. It is unlikely
that this operation will actually be offered in most ORB implementations, as object references
are created implicitly from implementation objects by the ORB. The way to safely delete an
object referenceis by passing it to the di spose() operation.

Thechange_i npl enent at i on() operation associates a new object implementation with
aparticular object reference. This must be done with care, making sure to deactivate the object
before switching itsimplementation. There are security problems with providing accessto a
new object implementation using an existing object reference. Most objects will be associated
with a single implementation for the duration of their life span.

Accesscontrol. Theget _pri nci pal () operationis used to determine the identity of a
client that caused the activation of an object. It will generally be used by a higher level security
service.

Persistence. Theget _i d() operation will return the reference data of an object reference
that is guaranteed to be unique within the server that implements the object. This uniqueness
means that it can be used as a key to a database table which contains a persistent state that
survives between activations of a server.

3.7—
The Portable Object Adapter

The semantics of the BOA specification were | eft intentionally vague because it was not clear
which features would be required on various platforms or how implementations would be
achieved. As aresult, different vendors implemented different parts of the BOA with
differences in their semantics. Thisimplementation experience was used as the basis for the
specification of the portable object adapter (POA), which aims to eliminate these
inconsistencies and standardize some of the proprietary features that have emerged to fill the
gaps in the BOA specification.

3.7.1—
POA Overview

The POA aimsto provide a comprehensive set of interfaces for managing object references and
their implementations, now called servants. The code written using the POA interfaces should
now be portable across ORB implementations and have the same semantics in every ORB.

The POA defines standard interfaces to
- Map an object reference to the servant that implements that object

- Allow transparent activation of objectscontinue

Page 76
- Associate policy information with objects
- Make a CORBA aobject persistent over several server process lifetimes

The use of pseudo-IDL has been deprecated in favor of an approach that uses ordinary IDL,
which is mapped into programming languages using the standard language mappings, but which
islocality constrained. This means that references to objects defined in FOA may not be
passed outside of a server's address space. One addition has been madeto IDL: thenat i ve
keyword. Parts of the specification tagged as native may be mapped to programming languages
in amanner different from the standard language mappings.

The rest of this section will explain the architecture of the POA and provide an overview of the
important interfaces it provides as well as the object activation policies that the interfaces may
administer.

3.7.2—
POA Architecture

First it is useful to provide definitions of some key concepts used in the POA specification:

Servant. An implementation object that provides the runtime semantics of one or more
CORBA objects.

Object ID. Anidentifier, unique with respect to a POA, that the POA usesto associate
a CORBA object identity with a servant.

Active object map. A table of associations between Object IDs and servants kept by a
POA to dlow it to dispatch incoming requests.

I ncar nate. The action of providing arunning servant to serve requests associated with
aparticular Object ID. A POA will keep this association in its active object map.

Etherealize. The action of destroying a servant associated with an Object ID, so that
the Object ID no longer identifiesa CORBA object with respect to a particular POA.

Default servant. An object to which al incoming requests for Object IDs not in the
Active Object Map are dispatched.

3.7.3—
POA Palicies

The policies used by POAs are divided into several interacting categories.

I D unigueness. Whether more than one Object ID may refer to the same servant object.

The names of the policiesare UNI QUE_| Cand MULTI PLE | L.

| D assgnment. Whether the POA or the programmer assigns Object IDs. The names of
the policiesare USER | D and SYSTEM | D.break

Page 77

Lifespan. Whether objects are transient or persistent. That is, whether the CORBA
object isavailable to clients after the server process dies or whether it returns the
OBJECT_NOT_EXI ST exception when the server is reactivated. The names of the
policies are TRANSI ENT and PERSI STENT.

Servant retention. Whether the POA keeps Object |D/servant associations in its
Active Object Map or relies on default servants or servant locators to find servants for
each request. The names of the policies are RETAI N and NON_RETAI N.

Request processing. Whether the POA uses only the Active Object Map, only the
default servant, only a servant locator, or some combination of these to locate the
correct servant for incoming requests. The POA also relies on the value of the servant
retention policy to determine its request processing behavior. The names of the policies
are USE_ACTI VE_OBJECT_NMAP_ONLY, USE_DEFAULT_SERVANT, and

USE SERVANT MANAGER.

Servant manager. A programmer-supplied object that manages servants. There are
two subtypes of this abstract interface: activators and locators.

Servant activator. An object that a POA usesto incarnate objects for continued use
and then to etherealize them when their life cycle is complete.

Servant locator. An object that a POA uses to obtain a servant to invoke asingle
operation on an object identified by an Object ID. A POA will not place this
association in its Active Object Map.

The purpose of a POA isto dispatch incoming invocation requests to the correct servant object.
It does so based on policies determined by the programmer of the CORBA server. This alows
arange of behaviors from automatic generation of unique Object IDs, which are kept with
servant references in the Active Object Map, to the use of programmer-supplied servant
manager objects, which interpret Object |Ds and return appropriate servants for invocations.

There can be more than one POA active in a particular server; however, there is aways a root
POA from which al of the other POAs are created. Each POA has a name relative to the POA
in which it was created, and afind operation is defined to allow POAs to be located (and
activated) by their parents. POAs themselves have manager objects which activate them and
may change their processing state to alow them to suspend processing of requests or even to
discard requests for some period (see Figure 2.12).break

Page 78

Root POA

Active Oblect Mag

| I : Usersupplied
Ohject 1D @ nt
Adapter Activator POA Manager
4
POA A POA B
I Default Servant Marfager I Imlnul‘! Sa-ruun't;
Sarvant Ll Active Object Map / ' Active Object Map | 1 o Sarvant
Ob|ect TO- @ Object 10D & —
Il & | u
User-supplind QbjasiD-8 / Object 1D & | uﬂ""m
-
Uner-suppiled
Servant
User-suppliad
Servar

m— Pregramming language Servant Pointer/Raelerance
~ifpnnm— CORBA Object Referanca

Figure2.12
POA architecture.

Thread policy. Determines whether single or multiple threading is used so that safe
deletion of servants may be achieved. The names of the policies are
ORB_CTRL_MODEL and SI NGLE_THREAD_ MODEL .

Implicit activation policy. Determine whether the POA can implicitly activate a
servant or whether it needs to call a servant activator to do so. The names of the
policiesarel MPLI CI T_ACTI VATI ONand NO _| MPLI CI T_ACTI VATI ON.

Policies are specified as IDL interfacesin the Por t abl eSer ver module. They all derive
from abase interface called CORBA: : Pol i cy. The values that the policy objects represent
are specified as read-only enum attributes. There are factory operations defined in the POA
interface for creating these objects. For example, theLi f espanPol i cy object is specified
as follows:break

Page 79

enum Li fespanPol i cy Val ue{
TRANSI ENT,
PERSI STENT

}s

i nterface LifespanPolicy{
readonly attribute LifespanPolicyVal ue val ue;
s

with the following operation defined in the POA interface to create the object:
Li fespanPol icy create_lifespan_policy(in LifespanPolicyVal ue val ue);

The way in which anew POA is created and initialized is by using the root POA (or one of its
extant children) to create policy objects which are then passed in a sequence to the
creat e POA() operation.

Following are some useful policy combinations for child POAS:

RETAIN and USE ACTIVE OBJECT MAP ONLY. This combination resembles the
default situation of most ORBs implemented with the BOA. It relies on serversto
explicitly activate new objectsusing theact i vat e_obj ect () or

activate _object _wth_id() operations.

RETAIN and USE_ SERVANT_MANAGER. Thisis a portable way of allowing a
server to implement a generic servant manager interface (namely

Servant Act i vat or). The POA usesthe Ser vant Act i vat or when an object is
not found in the Active Object Map. Each Ser vant Act i vat or supportsthe
operationi ncar nat e() , which takes an Object ID and returns the servant that
implements the object identified.

RETAIN and USE_DEFAULT_SERVANT. This combination assumes that objects
not found in the Active Object Map are to be implemented by a generic servant object
(probably using the DSI), which is registered with the POA as its default servant. The
POA will raise the OBJECT _ADAPTER system exception if no default servant has
been registered.

NON_RETAIN and USE_DEFAULT_SERVANT. Thisissimilar to the previous
situation, except that no Active Object Map is kept, meaning that al requests are sent to
the default servant.

NON_RETAIN and USE_SERVANT_MANAGER. The server will configure a
POA to use this policy combination when it wishes to be in control of mapping each
incoming invocation request to the appropriate servant. The servant manager used in
thissituationisa Ser vant Locat or , which the POA calls using operationscontinue

Page 80

called pr ei nvoke() , which obtains the servant which will service the request, and
posti nvoke() , which allowsthe server to clean up afterward.

3.74—
POA LifeCycle

A reference to the root POA is always available from the ORB. Its name is RootPOA and it is
obtained usingthe ORB: : resol ve_initial _references() operation. It hasa
predetermined set of policies, which can be summarized by saying that all object references
are transent, mapping a single servant to an Object ID which is set by the POA and retained in
the Active Object Map. When a server isbeing initialized it is responsible for setting up any
other (descendant) POASs that it requires to support its objects.

Creating POAs manually. In order to create other POAS, thecr eat ePOA() operation must
be invoked on the root POA. A hierarchy of POAs can be created by subsequently calling

cr eat ePOA() ontheresulting child. When aPOA isno longer required itsdest r oy()
operation must be invoked. The other operation used in relation to children of aPOA is

fi nd_PQOA() , which allows arelative name to be resolved, returning an existing or newly
activated POA.

create PQA(in string adapter_nane,
i n POAManager a_POAManager,
in CORBA: : PolicyList policies)
rai ses (AdapterAl readyExists, InvalidPolicy);

Thecr eat e_PQA() operation takes aname parameter and a POAManager parameter,
which isusually anil object reference, indicating that the ORB should assign a manager to the
POA. It dso requires alist of consistent policies, such as the combinations given previoudly.

find_POA (in string adapter_nane, in bool ean activate_it)
rai ses (Adapter NonExi stent);

Thefi nd_PQOA() operation may find child POAs that have been activated by
creat e_POA() orit may be used to activate a POA using a preregistered adapter activator.

Adapter activators are associated with POAs at the time of their first creation and allow them
to be made persistent when their objects are not being used and reactivated when required. The
adapter activator for a POA isregistered by setting the POA attribute called

t he _activator.

Adapter activators have a single operation: break

bool ean unknown_adapter(in POA parent, in string nane);

Page 81

Thisoperationiscaledwhen fi nd_POA() isinvoked withtheacti vat e_i t argument
set to TRUE or when an invocation request is received nominating a POA that is not active. In
this case the activators are called in succession from the one closest to the root to the furthest
descendant. The parent parameter passes the reference of the parent POA to the activator. A
typical activator implementation retrieves any stored information about the child and uses the
parent POAS policy operations to create the correct policies. It then usesitscr eat e POA()
operation to instantiate the child. If it can successfully create the child, the activator returns
TRUE from theunknown_adapt er () cal. The ORB can then call

unknown_adapt er () on the adapter activator of the new child to activate the next POA in
the chain. For example, if the currently instantiated POA hierarchy consists only of the root
POA and itschild A, an incoming request for an object controlled by a POA identified as
"<root>/A/B/C" will result in the following calls (in pseudo-code):

if (A the_activator.unknown_adapter (A "B"))
then B.the_activator.unknown_adapter(B, "C')

POA referencesto other objects. Certain POA policies require the assistance of other
objects, such as managers, and the POA interface provides operations to set and get references
to these objects. References to other objects are implicit in the POA's position in the hierarchy

or are derived from the arguments provided to its parent at creation.

There are anumber of attributes that POASs support:

readonly attribute string the_nane;
readonly attribute POA the parent;
readonly attribute POAManager the_manager
attri bute AdapterActivator the_activator;

The read-only attributes allow users of the POA (ORB and server implementers) to access the
name of the POA with respect to its parent, the POA's parent, and its manager. The writable
atributet he_act i vat or must be set if this POA is not always created by the server
initialization code.

If the USE_DEFAULT_SERVANT policy is set, a servant must be nominated
as the default using:

voi d set_servant(in Servant p_servant) raises(WongPolicy)
The default servant can be retrieved using:

Servant get_servant() raises (NoServant, WongPolicy);

The W ongPol i cy exception israised by both operationsif the USE_DEFAULT _SERVANT
policy isnot set. NoSer vant israised by get _servant () whenset _servant () has
not yet provided a default servant.break

Page 82

If the USE_SERVANT _MANAGER policy is set, the following operations are used in the same
manner asset / get _ser vant () toinitializethe Ser vant Manager to be used by the
POA:

voi d set_servant _nanager (i n Servant Manager ingr)
rai ses(WongPol i cy);

Servant Manager get_servant _rmanager ()
rai ses(WongPol i cy);

3.7.5—
Using the POA to Create Object References

The other operations of the POA interface are for mapping Object IDs to servants and for
activating servants that already have Object IDs, thereby creating usable object references that
can be handed to clients. If the USER _ID policy is set, servers can alocate their own Object
IDs and map them to servants using the following operation:

voi d activate_object_with_id(
in Cbjectld id,
in Servant p_servant)
rai ses (Servant Al readyActive, bjectAl readyActive, WongPolicy);

TheSer vant Al r eadyAct i ve exception israised if the servant is already mapped and the
UNI QUE_| D policy isset. The Qbj ect Al r eadyAct i ve exception israised when this
Object ID isaready in use.

Whenthe SYSTEM | D policy isset, acti vat e_object _w th_id() will raisethe
W ongPol i cy exception and explicit server activation must be done using:

oj ectld activate object(in Servant p_servant)
rai ses (Servant Al readyActive, WongPolicy);

The return value isthe POA's allocated Object ID for the new servant.

One more step isrequired (under the USER | D policy) to make a usable object reference. The
create_reference_w th_id() operationisused to associate an object reference with
an Object ID and hence with its active servant.

oj ect create_reference_w th_id(
in Cbjectld oid,
in CORBA:: Repositoryld intf)
rai ses(WongPol i cy);

The Object ID becomes associated with an object reference and conforms to the type specified
in the Interface Repository using the repository ID provided asthei nt f argument. The
association between Object 1Ds and object references can be made by the POA when the
policy isSYSTEM | D:break

Page 83

Obj ect create_reference(in CORBA: :Repositoryld intf)
rai ses(WongPol i cy);

Once the object is no longer required, its Object ID is deallocated and the mapping is removed
from the Active Object Map using

voi d deactivate object(in ojectld oid)
rai ses(Cbj ect Not Active, WongPolicy);

3.7.6—
Discovering the Mappingsin a POA

If the Active Object Map isbeing used (RETAI N policy is set) the following operations alow
its mappings between Object ID, object reference, and servant to be interrogated:

ojectld reference_to_id(in nject reference)
rai ses (WongAdapter, WongPolicy);
oject id to reference(in Cbjectld oid)
rai ses (ObjectNot Active, WongPolicy);
Servant reference_to_servant (in oject reference)
rai ses (ObjectNot Active, WongAdapter, WongPolicy);
Servant id_to_servant(in ojectld oid)
rai ses (ObjectNot Active, WongPolicy);

The mappings from servant to Object ID and reference can aso be obtained if the
UNI QUE_| D policy is set:

ojectld servant _to_id(in Servant p_servant)
rai ses(Servant Not Active, WongPolicy);

oj ect servant _to_reference(in Servant p_servant)
rai ses(Servant Not Active, WongPolicy);

3.7.7—
The Current Interface

When a servant implements methods for more than one Object ID it often needs to know which
CORBA identity is associated with the request that has been dispatched to it. For this purpose
an interface is defined that allows the servant to acquire information about its POA and its
Object ID inthat POA. The CORBA: : Cur r ent interfaceisinherited by the

Por t abl eSer ver: : Current interface, which adds the following operations:

POA get_ POA() raises(NoContext);—this operation allows the servant to determine
which POA processed the request, and to examine the policies of that POA.

Objectld get_object_id() raises (NoContext)—this operation allows the Object ID
relative to that POA to be discovered, and the servant can use this identity to access the
correct state for the CORBA object it is serving for the current invocation.break

Page 84

3.8—
Language Mappings

The OMG has standardized four language bindings and has RFPs issued to standardize several
more. The current adopted specifications are C, C++, Smalltalk, Ada'95, COBOL, and Java.

3.8.1—
C

The C mapping was published along with the CORBA 1.1 specification. It provides an
example of how to implement CORBA clients and servers in a non-object-oriented language.
Operation and interface names are concatenated to provide function names and object
references are passed explicitly as parameters.

3.8.2—
C++

The C++ language mapping is the most widely supported language mapping at the moment. Its
syntactic resemblance to IDL provides class definitions that very closaly mirror IDL interface
definitions. The generated stub code can be incorporated by inheritance into object
implementation classes or delegate to them. The magjor drawback of this mapping is that
implementers of clients and servers must pay very close attention to memory management
responsibilities. The rules for allocation and deallocation of data mremory are just as complex
as old-style Remote Procedure Call (RPC) programming. Some helper classes are defined that
can deallocate memory when they go out of scope, but these must be declared and used with
care because they might deallocate memory that is still being used by another object.

3.8.3—
Smalltalk

Smalltalk is adynamically typed, single-inheritance object-oriented language in which all
types are first-class objects. The datatype mappings use existing Smalltalk classes and

operations map to methods on classes. The way in which IDL interfaces map to Smalltalk
objectsis unconstrained. Explicit protocol mappings are made for some IDL types, such as
unions and Anys, which provide a standard way of accessing their discriminators and
TypeCodes, respectively. However, implicit mappings may be used by programmers.

3.84—
COBOL

The IDL/COBOL mapping was adopted in 1997. Since COBOL is not object oriented the
mapping is not as natura as, for example, those for C++ orcontinue

Page 85

Java. In particular, IDL concepts such as name scopes, interfaces, and inheritance require
complex mapping rules. The datatype mapping is based on the optional COBOL typedef
construct. However, older COBOL compilers may not provide typedefs, in which case the
mapping has to use COBOL copy files as an dternative.

3.9—
| nteroperability

The CORBA 2.1 specification has a section called Interoperability. It specifies an architecture
for interoperability, as well as an out-of-the-box interoperability protocol, running over
TCP/IP, and a second, optional protocol which uses the DCE RPC transport.

The specification contains alot of technical detail about the protocols specified and about
bridging between proprietary protocols. Here we will give an overview of the framework
within which the two specified protocols exist and of the mandatory Internet Inter-ORB
Protocol (I1OP). The rest of the standard appliesto ORB implementers and will not be
covered.

3.9.1—
The ORB Interoperability Architecture

The architecture contains definitions of ORB domains, bridges, and interoperable object
references (I0ORs). It defines domains as islands within which objects are accessible because
they use the same communication protocols, the same security, and the same way of identifying
objects. In order to establish interoperability between domains, one of these elements must be
replaced with acommon element or a bridge must be set up to facilitate trandation of the
protocol, identity, authority, etc., between domains.

The approach of the architecture is to identify the things that can be used as common
representations (canonical forms) between domains and then suggest ways in which ORB
domains can create half-bridges that communicate using the common representation. The first
step, a common object reference format, is defined as part of the architecture. An IOR contains
the same information as a single domain object reference, but it adds alist of protocol profiles
indicating which communication protocols the domain of origin can accept requestsin. The
protocol interoperability problem is addressed in a separate component called the General
Inter-ORB Protocol (GIOP). Allowance is aso made for the introduction of third-party
protocols, called Environment-Specific Inter-ORB Protocols (ESIOPs), within this framework.

Figure 2.13 illustrates the rel ationships between these protocols.break

Page 86
CORBA |IDL
Giop ESIOPs [~
Other GIOP IDBE - CIOP
Transports |

D CORBAZ.0 Mandatory Frotocol

Figure2.13
ORB protocols.

3.9.2—
General Inter-ORB Protocol

The GIOP defines alinear format for the transmission of CORBA requests and replies without
requiring a particular network transport protocol.

3.9.3—
I nter net Inter-ORB Protocol

The I1OP is a specialization of the GIOP which specifies the use of TCP/IP (the Internet
Protocol). It defines some primitives to assist in the establishment of TCP connections. This
protocol isrequired for compliance with CORBA 2.0 and is intended to provide a base-level
interoperability between all ORB vendors products, even though some vendors will continue
to support proprietary protocols. Java ORBs are all implemented using I1OP.

3.94—
Other Approaches

As can be seen in Figure 2.13, the interoperability architecture allows for the specification of
ESIOPs, which will provide "islands of interoperability,” but which should be able to be
bridged to other ORBs using I1OP. The first adopted ESIOP is the DCE Common Inter-ORB
Protocol (DCE-CIOP), which was aready used by a number of ORBs before the introduction
of GIOP/11OP.

An dternative implementation for GIOP can be expected for 1998. There are projectsin
progress to implement GIOP directly over ATM protocol layers. Most likely the
implementation will choose AALS.

Before the CORBA 2.0 specification was introduced, each ORB vendor had to choose or
invent a protocol for the transmission of invocation requests and responses. Most vendors have
acustomer base with extant objects that use a certain protocol, and so it is in their interest to
continuecontinue

Page 87

to support old protocols aongside [1OP. However, leading ORB products now support [1OP as
their native protocol.

3.10—
TypeCode, Any, and DynAny

This section gives details about the interfaces to the generic container type Any and its
supporting type, the TypeCode, which it usesto identify its contents. The ORB Portability
Specification adopted by the OMG in 1997 extends the functionality available from Anys by
adding anew interface called DynAny, which allows programmers to navigate the contents of
Anys and access congtituent parts without requiring compiled stub code with which to extract
the entire contents of an Any.

3.10.1—
Any

The Any typeisabasic typein IDL. It designates a container that can contain a value of any
IDL type and identifies the type of its contents for typesafe extraction of the value. The
pseudo-IDL type TypeCodeis used to identify the type of avaluein an Any and can be used
outside of the context of Anysto identify IDL typesin generd. TypeCodes are not IDL basic
types, but they may be declared as parameters to operations and members of structured types.

Since the keyword any in IDL isabasic type, and it does not have a signature represented in
PIDL, it isleft to each language mapping to define the mechanism for inserting and extracting
values from Anys and defining the TypeCodes that identify the values they contain.

3.10.2—
L anguage M apping for Anys

The mapping for Anysin Javais given in Chapter 6, and provides methods on an Any class that
allow the insertion and extraction of al basic types, as well as additional methods on Helper
classes for IDL-defined types that produce Anys. To provide avery basic notion of what an
Any is, let'slook at the C mapping

t ypedef struct CORBA any{
CORBA TypeCode _type;
void * _val ue;

} CORBA _any;

There are no helper functions defined in the mapping, and programmers are responsible (asis
usua in C) for ensuring that the _val ue structure member is cast in atype-safe manner. To do
this the programmer must compare the _t ype member against TypeCode constants that
correspond tocontinue

Page 88
known IDL types and then cast the _val ue member to the mapped C type for that IDL.
3.10.3—

TypeCode

The ORB specification definesa PIDL interface to atype called TypeCode, which is used to
describe any IDL type. TypeCodes are one of only two PIDL types that can be used in IDL
definitions as components of structured types or as parameter and return types of operations or
attribute values. The other is Principa which isused for Security. The PIDL for TypeCodesis
given in the Interface Repository section of the CORBA 2.1 document. However, they are
implemented as a combination of library and IDL compiler-generated code and are available to
CORBA programmers independent of the Interface Repository.

In concept a TypeCode consists of akind field and a set of parameters that provide more
information about that kind of TypeCode. For example, a TypeCode for a struct will give the
name of the struct and the names and types (using recursive TypeCodes) of the members of that
struct. The PIDL for TypeCode provides operations to allow the programmer access to the
parameters, as well as an operation to compare TypeCodes for equality. All of the following
PIDL is situated in the CORBA module.

TypeCode kinds. The kinds of typesin IDL are given as an enumeration. The kinds have been
extended by the IDL Type Extensions Specification (OMG document ptc/97-01-01) to include
wide characters and strings, fixed-point decimal numbers, and 64-bit integers and
floating-point numbers. The extensions are given in italics below:

enum TCKi nd{
tk_null, tk_void,
tk_short, tk long, tk_ushort, tk_ulong,
tk float, tk _double, tk boolean, tk _char
tk_octet, tk_any, tk TypeCode, tk_Principal, tk objref,
tk_struct, tk_union, tk_enum tk_string,
tk_sequence, tk array, tk_alias, tk_except,
t k_l ongl ong, tk_ul onglong, tk_|ongdoubl e,
tk_wchar, tk_wstring, tk_fixed
1

Internationalization is also supported implicitly by the character and string types, whose
semantics now include the possible use of two-byte characters.

TypeCode oper ations. The TypeCode interface provides an equality operator whose
semantics are not well defined—i nt er f ace TypeCode{// Pl DL:break

bool ean equal (in TypeCode tc);

Page 89

Most ORB implementations perform a ssimple comparison that returns TRUE only when the
types compared have the same repository I1D. That means that no structural comparisons are
performed and no typedef aliasing is taken into account.

Making an analysis of a TypeCode begins with determining its kind with the ki nd()
operation, so that other appropriate operations may then be chosen to learn more about the

type:
TCKi nd ki nd():

Most types a so have definitions stored in the Interface Repository, which can be used as an

aternative source of type information. Thei d() operation returns the Repositoryld for any
nonbasic type. Basic types are not stored in the Interface Repository, and if the TypeCode's
kind isinappropriate, aBadKi nd exception israised. This exception is raised whenever an
operation inappropriate to a TypeCode's kind is invoked:

exception BadKi nd{};
Repositoryld id() raises (BadKind);

Object references and structured types, except for sequences, aways have an interface or tag
name. These are returned using the nanme() operation:

I dentifier name() raises (BadKind);

Structs, unions, enums, and exceptions contain named member fields. The number and names of
these members are discovered using the following operations. The exception Bounds is
raised by indexed operations when the index parameter exceeds the number of elements:

exception Bounds{};
unsi gned |1 ong nenber_count() raises (BadKind);
I dentifier nmenber _name (i n unsigned | ong index)

rai ses (BadKi nd, Bounds);

The members of structs, unions, and exceptions (but not enums) each have atype aswell. These
are returned as nested TypeCodes, which can be interpreted in the same way as their parent
TypeCode:

TypeCode nmenber _type(in unsigned | ong index)
rai ses (BadKi nd, Bounds);

Unions also have a discriminator type and label values of that type for each member, aswell as
an optional default case. Thenmenber | abel () opera-soft

Page 90

tion will return the value for each case. It returns an Any containing a zero octet for the default
casg, if itexists. Thedi scri m nat or _t ype() operation returnsthe TypeCode of the
ordinal type in the switch clause of the union, and thedef aul t _i ndex() operation returns
the index of the member that corresponds to the default case or zero if it does not exist.

any nmenber _| abel (in unsigned | ong index)
rai ses (BadKi nd, Bounds);

TypeCode di scrimnator_type() raises (BadKind);

| ong defaul t _i ndex() raises (BadKind);

Sequences and strings may be bounded to a certain length, and arrays are always of afixed
length. The return value from thel engt h() operation is zero for unbounded sequences and
strings:

unsi gned | ong I engt h() raises (BadKind);

Arrays and sequences contain elements of a particular type, and typedef aliases also refer to a
previoudly declared type. Thecont ent _t ype() operation returns a TypeCode which can
be interrogated to find out what type they contain:

TypeCode content _type() raises (BadKind);

Standard TypeCode Instances. The CORBA module defines TypeCode constants for all
basic IDL types. For example, the constant _t ¢c_| ong represents the TypeCode for longs.

IDL compilersusually generate TypeCode instances to correspond to all typesinan IDL
definition. They are named according to the language mapping. However, if no stubs are
available for a particular type the ORB interface defines operations to create TypeCodes fron
relevant parameters and a Repositoryld to nominate the IDL in which the type belongs. These
are seldom used, and we will only give an example here:

TypeCode create _union_tc (
in Repositoryld id,
in Identifier nane,
i n Uni onMenber Seq nenbers

);
The Uni onMenber Seq typeis defined in the Interface Repository specification.

3.10.4—
DynAny

The ability to access the contents of an arbitrary Any had not been specified in CORBA until
the adoption of the ORB Portability specification, and verycontinue

Page 91

few ORB implementations provided the ability to do so without access to compiled stub code.
The implementation of Object Services and other interfaces that use the type Any to pass
arbitrary values for storage or transmission often requires some access to these valuesin order
to perform their specified semantics. DynAny provides an interface to do thisin a standard
way. It is part of the CORBA module.

An Any must first be inserted into a DynAny before its values can be accessed. A DynAny
cannot be used as an operation parameter directly, and so a conversion back to an Any isaso
required. This functionality is provided as follows:

I nterface DynAny{
exception Invalid{};
void fromany (in any value) raises (Invalid);
any to_any() raises (lnvalid);

Assignment of one DynAny to another, production of anew copy of an existing DynAny, and
the destruction of DynAnys are achieved using the following operations:

- void assign (in DynAny dyn_any) raises (Invalid);
- DynAny copy();
- void destroy();

The DynAny interface also supports operations for the insertion and extraction of all the IDL
basic types. These take the form of a pair of operations per basic type:

exception InvalidVal ue{};
exception TypeM smat ch{};

void insert_basic type (in basic_type) raises (lnvalidVal ue);
basi c_type get basic _type() raises (TypeM snatch);

However, it is easy enough to insert and extract basic types from Anys, so DynAny extends this
functionality by adding operations to traverse structured types. These return new DynAnys that
refer to individual components of a structured type, which can be recursively traversed. The
model isthat of a cursor pointing to a current element.break

DynAny current_conponent () ;
bool ean next ();
bool ean seek (in |ong index);
void rew nd();
/...

};//interface DynAny

Page 92

The boolean return values are set to TRUE if there is a component at the index that they move
the cursor to. The components of structured types depend on the type. For example, the
components of structures are their members and the components of arrays and sequences are
their elements. The specification then defines a number of interfaces that inherit from DynAny
to provide more specific access to the components of particular structured types. We will 1ook
at anumber of significant examples.

Accessing Structs. Theinterface DynSt r uct provides away of getting the names of
structure members, and getting and setting their values:

typedef string Fiel dNane;
struct NaneVal uePai r{

Fi el dNane i d;

any val ue;

b
t ypedef sequence<NaneVal uePair> NaneVal uePai r Seq;

interface DynStruct: DynAny{
Fi el dNane current _nmenber _nane();
TCKi nd current _menber _ki nd();
NaneVal uePai r Seq get _menbers();
Voi d set_nenbers (in NaneVal uePair Seq val ue)
Rai ses (I nvalidSeq);

}

The operations inherited from DynAny are used to move the current cursor, and the new
operations access the value at the cursor.

Accessing Enums. The type DynEnun provides attributes that allow access to and change the
value of an enum as either a string tag name or along integer value:

i nterface DynEnum : DynAny{
attribute string value_as_string;
attribute unsigned | ong val ue_as_ul ong;

}

3.11—
Dynamic I nvocation and Dynamic Skeleton I nterfaces

This section describes the interfaces to the symmetrical pair of ORB components, the Dynamic
Invocation Interface (DI1) on the client side and the Dynamic Skeleton Interface (DSI) on the
server side. The DIl enables a client to invoke operations on an interface for which it has no
compiled stub code. It also alows a client to invoke an operation in deferred synchronous
mode. That is, it can send the request, do some further processing, and thencontinue

Page 93

check for aresponse. Thisis useful regardless of whether or not the interface type is known at
compiletime, sinceit isnot available viaa static, or stub-based, invocation.

The DSl is used to accept arequest for any operation, regardless of whether it has been defined
in IDL or not. The mechanism allows servers to implement a class of generic operations of
which it knows the form but not the exact syntax. It helpsin writing client code that uses
compiled IDL stubs based on an abstract IDL template. The client can then invoke operations
on acompiled proxy stub in atype-safe manner.

311.1—
Requests (DI1)

The heart of the DIl isthe Request interface. A request has an object reference and a target
operation name associated with it, aswell as operations to add arguments. Once the request
has the correct argumentsit isinvoked using thei nvoke() operation, and this blocksin the
same way as a stub invocation until the response (or an exception) is returned.

3.11.2—
Deferred Synchronous I nvocation

Thesend() operation provides the means for a deferred synchronous invocation. This returns
to the caller immediately and allows the client to perform some processing while the request is
being transmitted and executed. Theget _r esponse() operation, when called in this
situation, will either block until the request has returned its response or, if aflag is set, it will
return a status value indicating whether or not the request has completed. Operations are al'so
provided, but not specified in PIDL, for sending the requests to multiple objects and getting the
responses from these invocations.

The PIDL in the CORBA document does not specify the types of al the parameters and return
values of the operations on a Request, and so we provide the details of these operationsin
Chapter 7. The use of the DIl in Javais demonstrated in Chapter 10.

3.11.3—
ServerRequests (DS)

In aparticular object adapter implementation, an object reference is usually associated with an
object implementation of the equivaent type in a particular language binding. However, an
implementation that can deal with requests of several object types, called a Dynamic
Implementation Routine (DIR), could be associated with an object reference instead. In this

case, the object adapter does not look up a particular method and make an up-call by passing it
the argumentsin arequest. Instead it creates a ServerRequest pseudo-object and passes thisto
the DIR. Thisisthe definition of the ServerRequest interface:break

Page 94
nodul e CORBA{

pseudo interface ServerRequest{
Identifier op_nane();
Cont ext ctx();
voi d parans(i nout NVLi st parans);
Any result();
s
s
The DIR can check the interface on which the request was made and look up its details using
the Interface Repository. It could also be expecting requests of a known form and not require
any IDL details. It can use the interface above to check the operation name, unpack the

arguments, and find alocation in which to place the result. The Java language mapping for the
DSl isexplained in Chapter 7.

3.11.4—
Named Value Lists and Contexts

The PIDL for the Request and ServerRequest interfaces usesthe PIDL type NVLi st to
represent the values in an argument list. It isatype that is defined in each individual language
mapping for the best implementation. However, it islogically equivalent to the following PIDL
definition:
struct NanedVal ue{
Identifier name;

any ar gunent ;
| ong I en;//1ength/count of argunent val ue
Fl ags arg _nodes;//in, out, or inout

} ’
t ypedef sequence <NanedVal ue> NVLi st;

The other type that is used in requestsis the Cont ext . Thisisanother construct that is more
concretely defined in particular language bindings. Its PIDL may not be directly trandated
using the language mapping. The PIDL is not given here but is explained in full in Chapter 7.

3.12—
I nterface Repository

The Interface Repository is afundamental service in CORBA that provides information about
the interface types of objects supported in a particular ORB instalation. It can be thought of as
a set of objects that encapsulate the IDL definitions of al CORBA types availablein a
particular domain.

The Interface Repository specification defines a set of interfaces that correspond to each
construct in IDL: module, interface, operation, sequence, constant, etc. It also usestheidea of a

containment hierarchy to relate objects of these typesto one another. The Cont ai ner
interface is inherited by allcontinue

Page 95

IDL construct description interfaces that contain other constructs, and the Cont ai ned
interface isinherited by all the interfaces that describe IDL constructs contained in others. For
example, an interface can be contained in a module and can contain an attribute.

Theterm abstract interface is used to indicate that an interface is only meant to be inherited
into other interfaces. No objects of an abstract interface type will ever be instantiated. The
term concrete interface is used to indicate that objects of thisinterface type will be
instantiated.

All of the interfaces shown here are defined in the CORBA module. There are two mechanisms
for finding out the properties of virtually all IDL constructs:

Theinterfacesnamedi dl - const ruct Def provide attributes and operations that
explain the construct's properties and relationship to other IDL constructs. For example,
SequenceDef isaninterface definition with an attribute, bound, that givesthe
upper bound of a bounded sequence, or zero for an unbounded sequence. It has another
attribute to return the type of the elements of the sequence it is describing.

The Cont ai ned interfacehasadescr i be() operation that returns an enumerate
value to identify the kind of IDL construct and a vaue of type Any which contains a
structure dependent on that kind. The CORBA module defines a structure corresponding
to each IDL construct namedi dl - const ruct Descri pti on. The structure
contains the name, the repository identifier, the container where this construct is
defined, its version, and some other members depending on the kind. For example,

I nt erfaceDescri pti on containsalist of base interfaces of the interface it
describes.

This design has received a good deal of criticism. Some of the problems that have been
observed with the current specification are

- It contains alarge amount of redundancy.

- Often operations return Reposi t or yl ds, which then need to be resolved at the Repository
interface rather than object referencestothei dl - const r uct Def objects denoted by the
Ids.

- Vaues are returned in a generic manner by base interfaces (e.g., in an Any) and then need to
be interpreted based on an enumerated type. This functionality should have been pushed down
to well-typed operationsin the derived interfaces.

We recommend that you use Figure 2.14 as a basis for understanding the relationships between
interfaces, since the Interface Repository specification can get rather confusing.break

Page 96

IRObject

= 1

Container Contalned IDLType
Repoaitory T
ModuleDet TypeDet
InterfaceDet
ConstDel StruciDaf PrimitlveCat
ExceptionDef UnlonDet StringDaf
AttributeDel EnumDat SequenceDel
OperationDel AlinsDef ArrayDef
Abstract Base Interface Instantiable Interface

0 —— b Interface b inheriis from Interface a

Figure2.14
Structure of the Interface Repository.

3.12.1—
The Abstract Base | nterfaces

The interfaces to various syntactic constructs in IDL share common properties inherited from a
number of abstract base interfaces which provide the common properties of these groups.

Thel RObj ect interface provides an attribute returning a value from an enumerated
type that distinguishes between all IDL syntactic constructs. This attribute is available
on all object referencesin the Interface Repository and allows the user to determine
what kind of IDL construct description object they have a reference to.

The Cont ai ned interface isinherited by all interfaces representing userdefined IDL
constructs and offers attributes to discover the name of the construct and to obtain a
structure that describesit.

The Cont ai ner interfaceisinherited by the Reposi t ory, Modul eDef, and

I nt er f aceDef interfaces of the Interface Repository and contains operations to look
up and describe the contents of these containers. It also contains operations to create all
the obj ects thatcontinue

Page 97

inherit from Cont ai ned. These creation operations establish a containment
relationship between the Cont ai ner and the object that its operations create.

Thel DLType interface isinherited by all the interfaces that represent datatypes,

including all the basic type interfaces and user-defined datatype interfaces. It is also
inherited by | nt er f aceDef because interface types can be used wherever datatypes
areused in IDL. | DLType offersasingle attribute that returns the TypeCode of the
construct it describes.

The Typedef Def interfaceisinherited by all the user-defined type interfaces that are
given atype name: structs, unions, enums, and typedef aliases. It offersasingle
operation which describes the type.

3.12.2—
Nondatatype I nterfaces

Thereisan interface for each IDL construct that forms part of an interface:

Reposi t or y—top level naming scope; can contain constants, typedefs, exceptions,
interface definitions, and modules

Modul eDef —alogical grouping of interfaces; can contain constants, typedefs,
exceptions, interface definitions, and other modules

| nt er f aceDef —can contain constants, typedefs, exceptions, operations, and
attributes

Attri but eDef
Oper at i onDef —consists of alist of parameters and raised exceptions
Except i onDef

3.12.3—
Datatype I nterfaces

The following objects are used to represent the datatypes that IDL offers:
Const ant Def
St ruct Def
Uni onDef
EnunDef
Al i asDef —typedefs that rename a defined type
Prim ti veDef —CORBA-defined types that cannot be changed by users
St ri ngDef
SequenceDef
Ar r ayDef break

Page 98

3.12.4—

IDL Definitions of the Interface Repository Interfaces

The IDL for the Interface Repository separates the functionality of the operations and attributes
into read and write sections. The implementations of the Interface Repository that we have seen
only implement the read part of the specification. The repository is usually populated by the
IDL compiler using proprietary means. The purpose of this section isto allow usersto
investigate the functionality of an interface at runtime, so we will ignore the write interface.

The IRObject Interface. This base interface offers only aread-only attribute which indicates
what kind of IDL object you have.

enum Defi niti onKi nd{
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_interface,
dk_Modul e, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum
dk_Primtive, dk_String, dk_Sequence, dk_Array,
dk_Repository

1

interface | RObject{
readonly attribute DefinitionKind def ki nd;

b
The Contained I nterface.

t ypedef string Versi onSpec;
i nterface Contai ned: | RObject{

attribute Repositoryld id;
attribute Identifier nane;
attribute VersionSpec version;

The read/write attributes are aglobal 1D, a smple name, and aversion (default set to 1.0).

readonly attribute Container defined_in;
readonly attribute ScopedNane absol ut e naneg;
readonly attribute Repository containing_repository;

The read-only attributes are the module, interface, or repository where the text of this construct
is defined; the scoped name of this instance of the construct; and the repository object where
this construct definition object is kept.break

struct Description{
Defini tionKi nd ki nd;

Page 99

any val ue;
IE
Descri ption describe();
Thedescri be() operationreturnsaDescri pti on structure containing akind and a
value. The value returned depends on the kind. We will see what values correspond to each
kind when we reach the concrete interfaces. The type name for the value will be of the form

i dl -construct Descri ption,forexample, | nt er f aceDescri pti on for
interfaces.

The Container Interface.

t ypedef sequence <Contai ned> Cont ai nedSeq;

interface Container: |RObject(
Cont ai ned | ookup (in ScopedNane search_nane);

Thel ookup() operation finds an object with a scoped name relative to this container. If the
scoped name begins with "::" then the name is found from the enclosing repository.

Cont ai nedSeq contents (
in DefinitionKind limt_type
i n bool ean exclude_inherited

);

Thecont ent s() operation returns a sequence of the objectsin this container. The list may
be limited to a certain type and may exclude inherited objects.

Cont ai nedSeq | ookup_nane (

in ldentifier search_nane

in long levels_to_search

in DefinitionKind limt_type
i n bool ean exclude_inherited

);

Thel ookup_nane() operation performs arecursive search down the containment hierarchy
for asmple name. Restrictions can be placed on the number of levelsto search, the types
searched for, and whether or not to look at inherited objects.

The DL Type Interface.

interface | DLType: | RObj ect{
readonly attribute TypeCode type

};

Thisinterface isinherited by built-in types like sequences and arrays, and offers only the
TypeCode of the object.break

Page 100

The TypedefDef | nterface.

i nterface Typedef Def: Contai ned, |DLType{};

struct TypeDescri ption{
Identifier nane;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec versi on
TypeCode type

s

This interface combines the functions of the Cont ai ned and | DLType interfaces. Sinceitis
the base class for al user-defined datatype description objects and a derived interface of

Cont ai ned, it has adescription structure that is returned by thedescri be() operation
which it inherits. The TypeDescr i pt i on structure has asimilar form to the other

i dl -construct Descri pti on structures. It servesfor al interfaces derived from
Typedef Def , becauseitst ype member can describe any CORBA type.

The Repository Interface. Thisinterface isthe outer shell of the containment hierarchy and it
iswhere al the definitions for the base or primitive types are contained. It is a so the starting
point for browsing and allows users to find definitions using their repository IDs.

enum PrimtiveKi nd{
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_fl oat, pk_double, pkbool ean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref
b

interface Repository: Container{

Cont ai ned | ookup_id (in Repositoryld search_id);
PrimtiveDef get_primtive (in PrimtiveKind kind);
b

Thel ookup_i d() operation finds an object with a certain identifier in this repository. The
get _primtive() operation returnsaprimitive definition object contained in this
repository.

3.12.5—
The Multiply Derived Interfaces

Figure 2.14 showsthat Modul eDef and | nt er f aceDef arethe only concrete interfacesin
this specification that inherit directly from more than one abstract interface.

The ModuleDef I nterfacebreak

i nterface Mdul eDef: Container, Contained{};

struct Modul eDescri ption{
I dentifier nane;

Page 101

Repositoryld 1d;
Repositoryid defined_In;
Ver si onSpec ver si on

};

Modul eDef offersthe operationsfrom Cont ai ner and Cont ai ned and a structure that
allows them to be described in terms of name, 1D, and version. Thiswill be the value in the
Any returned from Cont ai ned: : descri be() for modules.

The InterfaceDef Interface. Thel nt er f aceDef interface inherits operations from all
three of the second-level base interfaces.

interface InterfaceDef: Container, Contained, |DLType{
attribute InterfaceDef Seq base_interfaces;
boolean Is_a (in Repositoryld interface_id);

Thebase_i nt er f aces attribute alows usto find al the interfaces that this interface
directly inherits. | s_a() returns TRUE if thisinterface has the identifier passed as an
argument and FAL SE otherwise.

struct FulllnterfaceDescription{
| dentifier nane;
Repositoryld 1d;
Repositoryld defined_in;
Ver si onSpec ver si on;
OpDescri ptionSeq operati ons;
AttrDescriptionSeq attri butes;
Reposi toryl dSeq base_interfaces;
TypeCode type;

}s

}; /11 nterfaceDef
Ful | I nterfaceDescription describe interface();

struct |nterfaceDescription{
Identifier nane;
Repositoryld 1d;
Repositoryld defined_in;
Ver si onSpec ver si on;
Reposi toryl dSeq base_interfaces;

|
Thedescri be_interface() operationreturnsaFul | | nt erf aceDescri pti on
structure that contains al the information about an interface's contentsin a number of sequences

that contain other i dl - const r uct Description structures. A
Ful I' I nt erfaceDescri pti on containsall the information needed to construct acontinue

Page 102

request to invoke an operation on an object of thisinterface type using the DIl. See the DII
section in Chapter 10 for an example of its use.

I nt er f aceDescri pti on isthe structure contained in the Any returned by the
descri be() operationinherited from Cont ai ned.

3.12.6—
Interfaces Derived from TypedefDef

The Typedef Def abstract interfaceisderived from Cont ai ned and | DLType.
Typedef Def addsaTypeCode attribute. All the interfaces derived from it are structured
types that must be user defined.

StructDef.

struct Struct Menber {
Identifier name;
TypeCode type;
| DLType type_def;
b

t ypedef sequence < Struct Menber > Struct Menber Seq;

interface StructDef: Typedef Def{
attribute Struct Menber Seq nenbers;

}s

A Struct Def describesits members by name and type, giving both a TypeCode and a
reference to the object that describes that type.

UnionDef.

struct Uni onMenber {
| dentifier nane;
any | abel ;
TypeCode type;
| DLType type_def;
1

t ypedef sequence < Uni onMenber > Uni onMenber Seq;

i nterface UnionDef: Typedef Def{
readonly attribute TypeCode di scrim nator_type;
attribute | DLType discrimnator_type_def;
attribute Uni onMenber Seq nenbers;
1

A Uni onDef describesits discriminator type with a TypeCode and by reference to the object
describing that typewith di scri m nat or _type anddi scri m nat or _type_def,
respectively. Its members are accessed in asimilar manner to those of a structure, but contain a
label value in addition to the name and type.break

Page 103
EnumDef.

typedef sequence < identifier > Enumvenber Seq;

i nterface EnunDef: Typedef Def {
attribute EnumMenber Seq nenbers;

};

The only information an enumerated type definition requires over that inherited from
Typedef Def isthelist of names used for its values.

AliasDef.

interface Al iasDef: Typedef Def{
attribute | DLType original _type_def;

};

Aliases are typedefs that Ssmply provide a new name for an existing type. The Al i asDef
interface has an attribute that refersto the object that describes the origina type.

3.12.7—
I nterfaces Derived from IDL Type

These objects represent the primitives and system-defined types.
PrimitiveDef.

interface PrimtiveDef: |DLType{
readonly attribute PrimtiveKi nd kind;

};

Theki nd attribute returns an enumerated value identifying the basic type that this object
represents.

StringDef.

interface StringDef: |DLType{
attribute unsigned | ong bound;

};

A bound vaue of zero means that the string is unbounded.

SequenceDef.

i nterface SequenceDef: |DLType{

attribute unsigned | ong bound;

readonly attribute TypeCode el enent _type;
attribute |DLType el ement _type_ def;

};

A bound of zero means that the sequence is unbounded. The other two attributes identify the
type contained in the sequence by TypeCode and object reference.break

Page 104

ArrayDef.

interface ArrayDef: |DLType{
attribute unsigned | ong | ength;
readonly attribute TypeCode el enent _type;
attribute IDLType el ement _type_def;

}

Multidimensiona arrays are created by having another array as the element, described by
el enment _t ype andidentified by el enent _type_def.

3.12.8—
I nter faces Derived Directly from Contained

ConstantDef.

i nterface ConstantDef: Contai ned{
readonly attribute TypeCode type;
attribute | DLType type_def;
attribute any val ue;

};

struct Constant Descri ption{
Identifier name;

Repositoryld id;
Repositoryld defined_in;
Ver si onSpec ver si on;
TypeCode type;

any val ue;

}s

A constant has atype described by t ype and referenced as another Interface Repository
objectint ype_def . Itasohasaval ue. TheConst ant Descri pti on structureis
returned as the value of the Any returned by thedescr i be() operation inherited from

Cont ai ned.

ExceptionDef.break

i nterface ExceptionDef: Contai ned{
readonly attribute TypeCode type;
attribute Struct Menber Seq nenbers;

};

struct ExceptionDescription{
Identifier nane;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec ver si on;
TypeCode type;

Page 105

An exception, like a structure, has alist of members that return more specific information about
the exception. Theinherited descri be() operationreturnsan Except i onDescri pti on
gructurein an Any.

AttributeDef.
enum Attri but eMbde{ ATTR_NORMAL, ATTR _READONLY};

interface AttributeDef: Contai ned{
readonly attribute TypeCode type;
attribute | DLType type_def;
attribute AttributeMde node;

};

struct AttributeDescription{
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec ver si on;
TypeCode type;
Attri but eMbde node;

b
Attri but eDef suppliesinformation about an attribute's type, as well as areference to the
object in which that typeis defined. The node attribute indicates whether thisis aread-only

attribute or not. Theinherited descri be() operation returns an
Attri buteDescri pti on structureinan Any.

OperationDef. Operations are perhaps the most complex entities that the Interface Repository
describes. They contain parameters and return types and may also raise exceptions and carry
context. Parameters are represented by structures, whereas definitions of exceptions are

objects.

Here are the types required for the Oper at i onDef interface and the
Oper at i onDescri pti on structure:break

enum Qper at i onMbde{ OP_NORVAL, OP_ONEWAY};

enum Par anet er Mode{ PARAM | N, PARAM QUT, PARAM | NOUT};

struct ParaneterDescription{
| dentifier nane;
TypeCode type;
| DLType type_def;
Par anet er Mode node;

1
t ypedef

t ypedef
t ypedef

t ypedef
t ypedef

sequence < ParaneterDescription > ParDescriptionSeq;

Identifier Contextldentifier;
sequence < Contextldentifier > Contextl| dSeq;

sequence < ExceptionDef > Excepti onDef Seq;
sequence < ExceptionDescription > ExcDescri ptionSeq;

Page 106

Thisisthe IDL for the interface which describes operations and the structure returned by the
descri be() operationinherited from Cont ai ned.

interface QperationDef: Contai ned{
readonly attribute TypeCode result;
attribute | DLType result_def;
attribute ParDescriptionSeq parans;
attribute Operati onMode node;
attribute ContextldSeq contexts;
attribute ExceptionDef Seq excepti ons;

}

struct QperationDescription{
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec ver si on;
TypeCode result;
Qper at i onMbde node;
Cont ext 1 dSeq cont ext s;
Par Descri pti onSeq paraneters;
ExcDescri pti onSeq excepti ons;

}

Thepar ans attribute of Oper at i onDef isalist of Par anet er Descri pti on

structures. The cont ext s attribute gives alist of scoped names of context objects that apply
to the operation.

3.12.9—
Repositorylds

There are three forms of repository identifiers:

IDL format. The string starts with "IDL:" and then uses the scoped name followed by a
major and minor version number to globally identify an object. Objects with the same
major number are assumed to be derived from one another. The identifier with the
larger minor number is assumed to be a subtype of the one with the smaller minor
number.

DCE UUID format. The string starts with "DCE:" and is followed by a UUID, a colon,
and then a minor version number.

LOCAL format. The string starts with "LOCAL:" and is followed by an arbitrary
string. Thisformat is for use with asingle repository that does not communicate with
ORBs outside its domain.break

Page 107

Chapter 3—

OMG IDL to C++ Mapping

This chapter provides a detailed explanation of the mapping from OMG IDL to C++ as defined
by the corresponding OMG standard (OMG document PTC-97-02-25). The mapping begins
with modules and the basic IDL types, then we continue with the structured types. Finally, we

explain the mappings for operations and attributes, interfaces and their inheritance
relationships, and modules.

The mapping, as defined by the OMG standard, assumes that the C++ environment supports the
features described in The C++ Annotated Reference Manual by Ellis and Stroustrup,
including the namespace construct and exception handling.

1—
Mapping Modules

An IDL module is mapped to a C++ namespace. Since, at the time of thiswriting, few C++
compilers currently support namespaces, the specification also allows a module to be mapped
to a C++ class:break

/11DL
nodul e ABCY...};
Page 108
is mapped to

/1 C++ - mapping to a nanmespace

namespace AB({...};
or

/1 C++ - mapping to a class
class AB(...};

Nested module definitions are mapped to nested namespaces or class definitions.

2
Mapping Basic Datatypes

The mapping of IDL basic typesto C++ is straightforward and mapped to a CORBA typedef.
Because of hardware implementations, some of the mappings are defined differently depending
on support for 32-bit and 64-bit implementations. These are defined in Table 3.1 as "platform
dependent.”

A CORBA type layer masks the different representations on different platforms. For example, a
CORBA: : Long would be represented as a 32-bit integer whether on a 32-bit machine or a
64-bit machine. For the sake of portability, a programmer would benefit fron- using the
CORBA types.

Thebool ean typeis defined to take only the values 0 or 1. Since many C++ environments
provide their own preprocessor macro definitions of TRUE and FAL SE, the OMG mapping
does not require that an implementation providecontinue

TABLE 3.1 Primitive Type Mappings

OMG IDL C++

short CORBA: : Short

| ong CORBA: : Long (platform dependent)

[ong | ong CORBA: : LongLong (platform dependent)
unsi gned short CORBA: : Ushort

unsi gned | ong CORBA: : U ong

unsi gned | ong | ong CORBA: : ULongLong (platform dependent)
fl oat CORBA: : Fl oat

doubl e CORBA: : Doubl e

| ong doubl e CORBA: : LongDoubl e (platform dependent)
char CORBA: : Char

wchar CORBA: : Whar (Platform dependent)
wstring CORBA: : Wt ri ng(Platform dependent)
bool ean CORBA: : Bool ean

oct et CORBA: : Cct et

Page 109

this mapping, and instead recommends that compliant applications use the values 0 or 1
directly to avoid compilation problems for CORBA applications.

3
—Mapping Strings

IDL string types can be bounded or unbounded. Both are mapped to the C++ type char *
which is null terminated. In addition to the char * mapping, CORBA defines the class
string_var (pronounced "string underscore var") that contains a pointer to the memory of
the alocated string. This mapping provides simplified memory management for strings.
Memory allocated to the string is automatically freed whenthe st ri ng_var object goes out
of scope or isdestroyed. Whena St ri ng_var iscreated fromachar * by construction or
assgnment, thechar * isconsumed in this process and can no longer be accessed by the
caller. Alternatively, assgnment fromaconst char * or another stri ng_var createsa
copy of thechar * for the caller. The following code illustrates how the St r i ng_var class
isimplemented. It has constructors that allow creation of ast ri ng_var object from a
char *, and overloaded operators to allow operations such as comparison of st ri ng_var
types, assgnment from char * , type casting from achar* toaSt ri ng_var , and the ability to
access array elements in an intuitive manner.

Thestring_var classiswritten as:break

/] C++
cl ass CORBA{
class String_var({
pr ot ect ed:
char*_p;
publ i c:
String_var();
String_var(char *p);
-String_var();
String_var & operator=(const char *p);
String_var & operator=(char *p);
String_var & operator=(const String_varé& s);
operator const char *() const;
operator char *();
char &operator[] (CORBA::ULong index);
char operator[] (CORBA::ULong index) const;
friend ostrean& operator<<(ostrean®, const,
String_var&);
inline friend Bool ean operator==(const String varé&
sl,const String_varé& s2);
s
s

Page 110

The following functions are provided for dynamic allocation and deallocation of strings. The
String_var expectsthat the string it points to was alocated using these functions.

/] C++
nanmespace CORBA

{

static char *string_all oc(CORBA: : ULong | en);
static char *string dup(const char *str);
static void string_free(char *data);

}s

Asdeclared in the preceding code, thest ri ng_al | oc() operation will return anull
pointer if it cannot perform the dynamic alocation. Otherwise it allocates space for the string
of length | en plusatrailing null character. Thest ri ng_dup() operation allocates enough
space for acopy of its string argument, copies the contents, and returns a pointer to the
allocated memory. If the operation fails, anull pointer isreturned. Thestri ng_free()
operation deallocates the memory associated with strings created by these operations.

The examples below illustrate the proper usage of the St ri ng_var class. Thefollowingis
correct and st ri ng_ex isconsumed:

string_ex = CORBA: :string_alloc(10);

string_ex = "char string";

CORBA: : String_var String varl = string_ex;

The next exampleisin error because the char * should point to data allocated with CORBA:
string_all oc(), soit cannot be consumed:

String_varl = "static string exanple";
Thefollowing is correct sinceaconst char * iscopied, not consumed:
String_varl = (const char *)"another string";
Strings can aso be constructed using a CORBA: : St ri ng_var constructor:
String_varl = CORBA:: String_var(string_ex);
The comparison operators let you compare string_var to char*:
if (String_varl == string_ex)
cout << "Strings are different "<< endl;

el se
cout <<"Strings are the sane" << endl;

For wide string types, CORBA definesthe classW6t r i ng_var which provides similar
operations for bounded and unbounded wide strings.break

Page 111
cl ass CORBA{
class Wbtring_var
{
publ i c:

Wstring_var ();

WGt ri ng_var (WChar *p);

WGt ri ng_var (const Wstring_var &w);
~WBtring_var();

WBt ri ng_var &operat or=(Whar *p);

WBtri ng_var &operator=(const Wstring_var &w);
operat or WChar*();

operator const Wchar*() const;
Wchar &operator[] (ULong index);
WChar operator[] (ULong index) const;

}o

Likewise dynamic allocation and deall ocation of wide strings must be performed viathe
following functions:

/] C++

Wchar *wstring_all oc(ULong | en);
voi d wstring_free(Whar*);

4—
Mapping Constants

IDL constants are mapped directly to a C++ constant declaration. The following isasimple
IDL declaration and a sample of the generated C++ code. The C++ code shown hereisonly a
snippet of the actual compiler output. For this example only the relevant parts are shown.break

//1DL
const | ong Long_Ex=1966;
interface Interface EX

{
const string String Ex="Your Name Here";

const bool ean Bool ean EX=TRUE;

}

/] C++
const CORBA: : Long Long Ex = 1966;

class Interface Ex : public virtual CORBA (bject({
publ i c:
static const char* String Ex;//"Your Nane Here"
static const CORBA::Bool ean Bool ean_Ex;//1

Page 112

b

Under certain conditionsan IDL to C++ compiler will generate the value of the constant rather
than the constant's name in the resultant C++ code. If a constant is declared and then that
constant is used as part of adeclaration of an array or other constructed type, the compiler will

replace the use of the constant name with the actual value of the constant. Below we show an
example:

/11DL
interface Interface_ Ex

{

const |ong Array_| ndex=10;
typedef |ong Long_Array[Array_j ndex];

|
will produce

[C++
class Interface Ex{
publ i c:
static const CORBA: :Long Array_| ndex;//10
t ypedef CORBA::Long Long_Array[10];
|,

5—
Mapping Enumer ation

Enumerations defined in IDL are mapped directly to C++ enumerations, for example,

//1DL
enum Enum Ex{fire, earth, water, air};

maps to

[C++
enum Enum Ex{fire, earth, water, air};

6—
Mapping for Structured Types

The IDL structured typesarest r uct , uni on, sequence, and ar r ay. All but the array are
mapped to a C++ struct or class with a default constructor, a copy constructor, an assignment
operator, and a destructor. The array is mapped to a C++ array.break

Page 113

The default constructor for structured types initializes object reference members to nil and
initializes string members to null. All other members are initialized with default constructors.
The copy constructor performs a deep copy, duplicating all object reference members and
allocating the heap for string members. The assignment operator releases al object reference
members, frees the string members, and performs a deep copy. The destructor releases all
object references and frees al string members. The mapping for each structured type varies
dightly depending on whether it isfixed length or variable length. The following types are
variable length:

- An unbounded or bounded sequence
- A struct or union with avariable length member
- An array with avariable length element type

The variation in mapping fixed and variable length types allows more flexibility in allocation
of out parameters and return values of an operation. The mapping of avariable length type as
an out parameter or return value is apointer to the associated class or array. For managing this
pointer, the IDL/C++ specification defines a mapping to an additional class that automatically
deletes the pointer when an instance is destroyed or reassigned. This type is named by adding

thesuffix _var (pronounced "underscore var") to the original type name. It behaves similarly
to the original, only the members are accessed indirectly. We have aready seen an example for
such amapping for the simplest variable type, IDL st r i ng. For reasons of consistency the
fixed length struct isalso mapped to an _var type. Theform of the _var typeis

/] C++
class T var

{
publi c:
T var() ;
T var(T *);
T var(const T var &;
~T_var();
T var &operator=(T *);
T _var &operator=(const T var &;
T *operator-> const();
/Il other conversion operators to support
/| paranmeter passing will be covered |ater

}

The default constructor createsaT_var containing anull T* . Before it can be converted to a
T*, or its operator -> can be used, it must be assigned avalid T* vaue or another T_var .
The copy constructor performs adeep copy of the T_var parameter, calling

_dupl i cat e() onal object reference members. The normal assignment operator deep
copies the data pointed to by T_var .continue

Page 114

The T* assignment operator deallocates any old storage pointed to by the T_var before
assuming ownership of the T* parameter.

The T* constructor createsaT_var that will delete the storage pointed to by the T* when the
T_var isdestroyed. T_var typesdo not work withaconst T* asaparameter. Instead, the
copy constructor for T can be used for explicit copying of const T* objectsinto T_var
types:

[C++

const T *t =...;
T var tv = new T(*t);

Whenthe T_var isdestroyed, or assigned a new value, the storage is also destroyed.

6.1—
Mapping for Struct Types

IDL st ruct typesaremappedto C++ struct s andasotoan _var class. Thefixed length
member types are mapped to their corresponding C++ types with exception to strings and
object references which have mappings to corresponding _var types. In order to allow for
simple field access and aggregate initialization, C++ structs cannot have user-defined
constructors, destructors, or assignment operators.

Assignment of strings or object reference membersto corresponding _var typesis performed
by copying the data, whereas assignment of these members to pointers does not result in

copying the data, but rather the pointer to the data. The exception to thisistheconst char *,
where, when assigned to a member, the storage is copied. Next is an example of an
IDL_defined fixed st r uct and its mapping to C++.

//1DL

struct Struct_EBEx{
| ong parant;
fl oat paran®;

}

/] C++

struct Struct Ex{
CORBA: : Long par ant,;

CORBA: : Fl oat par ang;

1

Following is an example of how the members are accessed and the memory management that
occurs when using variable length structs. Note that the string member and the interface
member both maptoan _var class.break

/11DL
interface Interface Ex;

Page 115

struct Struct Ex{
string nane;
Interface_Ex |nterface_Menber;

}s

[C++
struct Struct_BEx{

CORBA: : String_var nane;
Interface Ex var |nterface Menber;

};

cI éss Struct _Ex_var{

b

The following example uses the above defined structures in different ways to illustrate the
memory management that occurs. Note the different ways of accessing thest r uct members
depending on whether thest r uct orthest ruct _var isused. Weillustrate that assgnment
fromaconst char* resultsin old memory being freed and data copied. Similarly
assignment between a string or object reference member and the corresponding _var types
resultsin data being freed from the _var and the new data being deep copied. We show that

when assignments are made to the st r uct member name from a pointer, the memory will be
freed, but datawill not be copied if the pointer isnot declared asconst .

/1 C++

Struct _Ex structl;

Struct Ex _var struct2 = new Struct Ex;
char *non_const;

String_var string_var;

const char *const_a;

const char *const_b
const char *const_c

istring 17;
istring 27;

Becauseconst _b andconst _c areconst data, the storage in the field nane inthe

structure is freed and the new value is copied:

struct 1. nane = const_b;
struct 2- >nane = const_gc;

When dealing with pointers, the pointers are assigned and no storage is freed/copied:

non_const = struct 1. nane;
const _a = struct2->namne;

In thefirst line below, the storage areaof st r uct 1. nane isfreed but the datais not copied.
A pointer isjust assigned since the assigned value is acontinue

Page 116

non_const char *. Inthe second linethe old storage is aso freed. The assigned valueis
copied asitisaconst char*.

structl. nane
structl. nane

non_const ;
const _b;

In the following lines, the storage is freed and copied. In the first line, amember is assigned to
another member. In the other two lines we make assignmentsto and fromast ri ng_var.

struct 2- >nane = struct 1. nane;
struct 1. nanme = string_var;
string_var = struct2->nang;

Direct assgnmentsto the _pt r member of ast r uct do not free storage and do not copy
data. Such assignments should be avoided.

6.2—
Mapping Union Types

IDL unions map to a C++ class. Accessor functions are defined for setting and retrieving the
value of the data members. When accessor functions are used to initialize the data, a deep copy
is performed and any memory previoudly associated with that member is freed.

Accessor functions for array union members return a pointer to the array dice. Thediceis
defined asthe original array, but less the first dimension. Slices are covered in section 6.4 on
arrays. A discriminant type, having the name _d, is set by the application or may be
automatically set by the ORB when any of the data members are set.

//1DL
interface Ex_oj;
struct Struct EBEx{
| ong Long_nenber;
b
typedef string StringArray[10]
uni on Uni on_Ex switch (Iong){
case 1. long Xx;
case 2: stringy;

case 3: Struct_Ex z;
case 4; StringArray |ist99;
default: Ex_(oj obj;

1

The above defined IDL union, Uni on_EX, is mapped to the C++ class
Uni on_Exbelow.break

/] C++
class Uni on_Ex{

Page 117

private:
CORBA: : Long _di sc;
CORBA: : Long _X;
CORBA: : String_var __y;
Struct _Ex __ z;
StringArray _ list99;
Ex_Cbj _var _ obj;

publ i c:
Uni on_Ex() : _disc((CORBA::Long)0){}
~Uni on_Ex() {}
Uni on_Ex(const Uni on_Ex& _obj);
Uni on_Ex& oper at or =(const Uni on_Ex& _obj);

void _d(CORBA: :Long _val){ _disc = _val; }
CORBA: : Long _d() const{ return _disc; }

void _default(){ _disc =...; }//orb inplenmentati on dependent

voi d x(CORBA: : Long _val){
_x = _val;
_disc = 1;

}

CORBA: : Long x() const{ return _x; }
void y(char * _val){

_y = _val;
_disc = 2;
}
void y(const char * _val){
_y = _val;
_disc = 2;
}

const char *y() const{ return _y; }

void z(Struct _Ex _val){
_z = _val;
_disc = 3;

}

const Struct_Ex& z() const{ return __z; }

Struct _Ex& z(){ return __z; }

voi d obj (Ex_Cbj _ptr _val){
__obj _val;
_disc 4;//inpl enentati on dependant
}
void list99(StringArray_slice * _val)
StringArray forany t list99(__Iist99);
StringArray forany _t |ist99((StringArray_slice *) val);

Page 118
t list99 = t |ist99;
_disc = b5;
}
const StringArray& |ist99() const{ return _ 1ist99;}
StringArray& list99(){ return _ 1ist99; }
Ex_Cbj _ptr obj() const{ return _ obj; }
1

The generated code above shows the union constructors and the accessor functions for the
union members. The default union constructor does not initialize any of the union members, and
the discriminator must be set before accessing a member of the union. The copy constructor and
the assignment operator both perform deep copies of their parameters and the assignment
operator releases the old storage where necessary. If a default value is not explicitly defined in
the union, then the compiler sets the discrimi nant to alegal value. The destructor releases the
storage assigned to the union. Unlike accessors for simple datatypes and strings, accessors for
struct, union, sequence,andany will referencetoanon- const object for
read-write access. Also, the array slice returned from an array accessor allows read-write
access via subscript referencing to the array. The following illustrates usage of accessor
functions and the discriminator _d.

/] C++
Struct Ex struct_ A ={10};
Uni on_Ex uni on_A ;

uni on_A. z(struct _A) ;//nmenber z is selected
uni on_A. _d(3);//nenmber z is selected

uni on_A. _d(1);//nmenmber x is selected
union_A x(99);//nodifies nenber x

cout << union_A z();//Error ! Menber x is currently selected

6.3—
Mapping Sequence Types
AnIDL sequence isaone-dimensiona array with two characteristics. amaximum size and

alength. It ismapped to aclassfor thesequence aswell asasequence _var class The
maximum size of a bounded sequence is explicitly defined in the IDL specification and cannot

be changed by the application. Doing so will produce undefined behavior. On the other hand,
the maximum length of an unbounded sequence can be specified as a parameter to the
constructor to control initial buffer allocation and can be manipul ated by the programmer. The
current length of either sequence is modifiable by the application.break

Page 119

Memory management of the data vector of the sequence is determined by the release flag.
When TRUE, the flag indicates that the sequence ownsthe storage of the dataarray. The
contents of the vector will have to be allocated with the sequence al | ocbuf () function and
deallocated using the sequencef r eebuf () function. The default constructor of a bounded
sequence automatically setsthe release flag to TRUE.

Set to FALSE, the caller owns the storage of the data vector and is responsible for freeing each
of the elements of the data array, and the contents buffer, whenever assignment occurs or the
sequence goes out of scope. When FAL SE, users should avoid accessing the elements of the
data array with the[] operator because memory management errors may occur.

In the following example we will examine the results of compiling IDL that defines a bounded
and an unbounded sequence. Both are sequences of type Dat a_ Type.break

//1DL
typedef sequence<Data_Type> UnB_Seq;//unbounded sequence
t ypedef sequence<Data_Type, 2> B _Seq;//bounded sequence

/] C++

cl ass UnB_Seq //unbounded sequence

{

publ i c:

static CORBA: :Long *all ocbuf (ULong _nel ens);
static void freebuf(Long * data);

UnB_Seq() ;

UnB_Seq(ULong max);

UnB_Seq(ULong max, ULong | ength, Data_Type* dat a,
Bool ean rel ease = FALSE);

UnB_Seq(const UnB_Seq&);

~ UnB_Seq() ;

UnB Seq &operator=(const UnB Seq&);

ULong maxi mun() const;

voi d | engt h(ULong);

ULong | ength() const;

Dat a_Type &operator[] (ULong index);

const Data_ Type &operator[] (ULong index) const;
static void release(UnB Seq * ptr)

1

class B Seq //bounded sequence

{

publ i c:

static CORBA::Long *all ocbuf (ULong nel ens);
static void freebuf(Long * data);

B_Seq();

B Seq(ULong |l ength, Data_ Type *data, Bool ean rel ease = FALSE);
B Seq(const B Seq&);

Page 120

~B_Seq();

B Seq &operator=(const B Seq&);

ULong maxi mun() const;

voi d | engt h(ULong);

ULong | ength() const;

Dat a_Type &operator[] (ULong index);

const Data_ Type &operator[] (ULong index) const;
static void release(B Seq * ptr)

b
Table 3.2 describes the operations generated for sequence types:

An example of memory management and the release constructor parameter will help illustrate
the functionality provided by the ORB with relation to the release flag. Below is a declaration
of an unbounded sequence that, by default, has the release flag set to FAL SE. Also declared
is an unbounded sequence which passes TRUE in the constructor, setting the release flag
and thereby bestowing ownership of the data array upon the sequence. When this
sequence goesout of scopeitwill cal string free() foreachof itsdementsand

f r eebuf () onthe buffer passed into the constructor.break

//1DL
t ypedef sequence<string, 3> String_seq;

TABLE 3.2 Sequence Operations

Function Description
al | ocbuf (ULong _nel ens) Allocates memory for the sequence to be passed to the
constructor and initializes each member.

Freebuf (Long *_data) Free storage allocated for the data buffer.

UnB_Seq(ULong nax) Constructor for the unbounded sequence.

UnB_Seq(ULong max, ULong | ength, Release flag '=0. ORB manages memory of *datawhen
Data_Type* data, Bool ean data buffer isincreased. Differs from bounded sequence
rel ease = constructor in that maximumlength is specified.

FALSE); UnB_Seq(const UnB_Seq&) Copy constructor. Copies data storage of parameter.

~ UnB_Seq() If release flag !=0, destructor frees data storage.

UnB_Seq &operator=(const UnB_Seq& Deep copy.

ULong maxi muny{) Returns the size of the sequence.

ULong | engt h() Two length functions. One sets, one gets.

&operator[] (ULong i ndex) Two index operations. One sets, one only gets.

_release (UnB_Seq *_ptr) Releases the sequence. If the release flag of the

seguence is non-zero, then the ORB rel eases each
element of the sequence before releasing the contents
buffer.

Page 121

/1 C++ app
char *static_array[] ={i A, 1B, i1C};
char **dynami c_array = StringSeq:: all ocbuf(3);

String_Seq static_seq(3, static_array);//Release flag
//defaults to FALSE
String_Seq dynam c_seq(3, dynamic_array, 1);//Flag set to TRUE

static_seq[1l] = iAi;//old nmenory not freed, no copying of data
char *str = string_dup(iDi);
dynam c_seq[1] = str;//old menory freed, no copying

6.4—
Mapping for Arrays

IDL arrays are mapped to C++ arrays. IDL arrays can be statically initialized. If the array
element isastring or an object reference it will be mapped, like a structure member, to its
_var type. Thismappingto _var typesletsthe ORB manage the data storage of the elements
so that an assignment of an element will automatically release the storage of the previous value.
The _var typealso provides an overloaded [| operator for intuitive accessto array
elements.

The mapping aso provides atype definition for an array dice, specified by the origina array
name followed by the suffix _sl i ce. Anarray dliceisan array that has all the dimensions of
the original array specified, except the first. Slices are provided as a convenience for passing
multidimensional out and return arrays and will be discussed more in the section on parameter
passing.

//1DL
interface Interface Ex{

b

typedef |ong Long_Array[10];

typedef string String_Array[10][20]][30];
typedef Interface Ex Interface_Array[10];

Thefollowing is asnippet of what is generated by the compiler: break
/] C++
i&/bedef CORBA: : Long Long_Array[10];

t ypedef CORBA::Long Long_Array_slice;
class Long_Array_var{

}

Page 122

typedef CORBA::String_var String_ Array[10] [20] [30];
typedef CORBA::String_var String Array_slice[20] [30];
class String Array_var{

}

typedef Interface Ex var Interface Array[10];
typedef Interface Ex var Interface Array_slice;
class Interface_Array_var({

T

In addition to the above mappings, an IDL compiler is required to generate a special mapping
for each array to accommodate the type-safe any. The name of this C++ typeis the name of the
array followed by the suffix _f or any. Array_f or any types allow access to underlying
array elements, smilar tothear r ay_var types. The reason for the specia array typeis that
whenthear ray_var typeisdestroyed, it systematically deletes the underlying storage, but
because an any type retains ownership of its storage, thear r ay_f or any does not delete the
storage of the underlying array upon its own destruction. This ownership is retained by the any
type, and memory management will be discussed shortly when we undertake the discussion of
theany type. The _f or any classes generated by the compiler for the previous exampleis
presented next.break

[C++

cl ass Long_Array_forany{
publ i c:

Long_Array_forany(Long_Array_slice *slice) :_ptr(slice){}
|
class String_Array_forany{
publ i c:

String_Array forany(String_ Array slice *slice) : _ptr(slice){}
|
class Interface_Array_forany{
publ i c:

Interface_Array_forany(lnterface Array_slice *slice)
c_ptr(slice){}
|
Page 123

Finally, for dynamic allocation and deallocation of arrays, specia functions are provided at the
same scope of each array type. These functions allow the ORB to implement its memory
management of the array.

[C++
Long Array_slice *Long_Array_all oc(){
return new CORBA: : Long[10];

}

Long Array free(Long_Array_slice *_data)({
if (_data) delete[] _data;

}

String_Array_slice *String_Array_all oc(){
return new CORBA:: String_var[1Q [20] [30];

}

String_Array free(String Array_slice *_data)({
if (_data) delete[] _data;

}

Interface Array _slice *Interface Array_alloc(){
return new I nterface Ex_var[10];

}

Interface Array free(lnterface Array slice * _data)({

if (_data) delete[] _data;

}

6.5—
Mapping Typedefs

A typedef declares an dliasfor atype. Sincethe IDL to C++ mapping may create several C++
typesfor an IDL type, the compiler will create corresponding aliases for each type. For
example, anIDL array will maptoanarray_sl i ce, soatypedef for an arr ay will also
map to the corresponding ar r ay- sl i ce.break

//1DL

typedef 1ong Long_Ex;

interface Interface EX;

typedef Interface Ex Interface Ex2;

t ypedef sequence<l| ong>Sequence_Ex;

t ypedef Sequence Ex Sequence_Ex2;
typedef |ong Long_Array_ Ex[10];
typedef Long_Array_ Ex Long_Array_Ex2;

/] C++
t ypedef CORBA: : Long Long_Ex;

Page 124

class Interface_Ex_var{

1

typedef Interface Ex Interface Ex2;

typedef Interface Ex var Interface Ex2 var;
cl ass Sequence_ Ex_var{

b
t ypedef Sequence_Ex Sequence_Ex2;
t ypedef Sequence Ex_var Sequence Ex2_var;

class Long_Array_Ex_var{

|
t ypedef CORBA::Long Long_Array_Ex[10]

typedef Long_Array_Ex Long_Array_Ex2;
typedef Long_Array_Ex_var Long_Array_Ex2_var;

6.6—
Mapping the Type Any

Theany typeis a self-describing type, which can hold values of an arbitrary IDL type
(including an any type). The IDL to C++ mapping of the type any fulfills two requirements:

- Handling C++ types in a type-safe manner
- Handling values whose type is unknown prior to implementation compile time

In other words, it must handle the conversions required to insert into and extract from an any,
and it must accommodate requests or responses containing an any that holds data of atype that
was unknown to the caller at compile time.

Handling C++ typesin atype-safe manner requires the C++ mapping to provide overloaded
functions for each distinct IDL type. For those IDL types that do not produce distinct C++ types
(bool ean, octet, char,andwchar) separate functions are provided to distinguish
them from one another.

6.6.1—
Insertion into an Any

Insertion into an any is accomplished with the overloaded "left-shift-assign” operator. For
smaller datatypes, including bounded strings (passed as char *), enumerations, and object
references (passed as _ pt r), the operator copies the data, and uses the following form: break

Page 125

/] C++
voi d operator<<=(Any& Data Type);//copies the data

These last two functions are created to handle more complex types:

voi d operator<<=(Any& const Data_Type &);//copies the data
voi d operator<<=(Any& Data_Type*);//non-copying form

Note that with the noncopying form of the operator, the inserted data is consumed and cannot be
accessed by an application once it has been inserted into the any . For insertion of IDL types
without adistinct C++ mapping, suchasoct et, char, wchar,andboundedstri ng;
special "helper types' are provided and will be covered shortly in a section devoted to these

types.
The following function signature is generated for the IDL defined below:
/11DL

struct Struct EBEx{
| ong parant;
fl oat paran®;

}s

[C++
voi d operat or<<=(CORBA: : Any& _a, const Struct Ex& _val)

so that an application could insert valuesinto an any in the following manner:

/1 C++

struct _1 ={10, 20.0};

long I ong_val = 30;
char *string val = "Forty";
Any a, b, c;

a <<= struct_1;
b <<= |l ong_val
C <<= string_val;

6.6.2—
Inserting an Array into an Any

Insertion of arraysinto an any is accomplished withthe Ar r ay_f or any types generated for
each array defined in IDL. A copying insertion is the default. Depending upon the
implementation provided by the ORB vendor, the user may be ableto set anocopy flaginthe
Array_f or any constructor. With thenocopy flag set to TRUE, the inserted value will be
consumed by the any .break

/11DL
typedef |ong Long Array[10][20];

Page 126

[C++
t ypedef CORBA::Long Long_Array[10] [20];
cl ass Long_Array_forany{

1
6bér at or<<=(CORBA: : Any& _a, const Long_Array_forany& _val)...;
The above generated types can be used in an application as shown below:

/1 C++ app
Long_Array arrayl,

/[/...initialize array...

Any any_dat a;
any_data <<= Long_Array_forany(arrayl);

6.6.3—
Retrieving from an Any

To retrieve avalue from an any, the mapping overloads the "right-shift-assign" operator for
each IDL type. Thefunction returnsabool ean, indicating whether or not the type being
extracted is indeed the same type to which it is being assigned. If successful, the value will be

copied, or its pointer assigned (depending on the type). For primitive types, the following
function signature will suffice:

[C++
Bool ean operat or>>=(const CORBA: : Any& Data_Type&);

for nonprimitive datatypes.

[C++
CORBA: : Bool ean operat or>>=(const CORBA: : Any& Data_Type*&);

and for arrays:

[C++
CORBA: : Bool ean operat or>>=(const CORBA:: Any& , _forany&)

The following illustrates the use of the extraction operator for the various types: break

[C++
Any any_val ue;
[l... any_value is assigned a val ue..

if (any_val ue >>= Long_val ue){
/l... use the val ue..

Page 127

else if (any_value >>= struct_ptr){
/l... use the val ue..

else if (any_value >>= Array_forany ref){
[/... use the val ue..

6.6.4—
I nserting boolean, octet, char, wchar, and bounded string

Helper types are provided to distinguish these datatypes because as mentioned previously in
the basic datatypes section, the IDL to C++ mapping does not require them to map to distinct
C++ types. A means of distinguishing them from each other is necessary so that they can be
inserted and extracted from the type any . These are functions which, when passed a variable
of the specific type, areinserted to atype any. Also included, of course, are functions for
extracting the specified type from the any .break

/] C++
from bool ean{
from bool ean(CORBA: : Bool ean b) : val (b){}
CORBA: : Bool ean val ;

}s

from oct et {
fromoctet (CORBA :Cctet b) : val (b){}
CORBA: : Cct et val ;

}s

from char{
from char (CORBA: : Char b) : val (b){}
CORBA: : Char val ;

}s

fromstring{
fromstring(char *s, CORBA::ULong b,
CORBA: : Bool ean no_copy=0)
val (s), bound(b), nocopy(no_copy){}
char *val;
CORBA: : ULong bound;
CORBA: : Bool ean nocopy;

}s

fromwchar{
fromwchar (CORBA: : WChar b) : val (b){}
CORBA: : Wchar val ;

1

fromwstring{
fromwstring(CORBA: : Wohar *s, CORBA:: ULong b,
CORBA: : Bool ean no_copy=0)
val (s), bound(b), nocopy(no_copy){}

Page 128

CORBA: : Wchar *val ;
CORBA: : ULong bound;
CORBA: : Bool ean nocopy;

}s

voi d operat or <<=(from bool ean);
voi d operator<<=(fromoctet);
voi d operator<<=(fromchar);
voi d operator<<=(fromstring);
voi d operat or<<=(fromwchar);
voi d operator<<=(fromwstring);

t o_bool ean{
t o_bool ean(CORBA: : Bool ean& b) : ref(b){}
CORBA: : Bool ean& ref;

1

to_octet{
to_octet (CORBA:: Cctet& b) : ref(b){}
CORBA: : Cctet & ref;

1

to_char{
to_char (CORBA: : Char& b) : ref(b){}
CORBA: : Char & ref;

1

to_obj ect{
to_obj ect (CORBA: : Cbj ect _ptr &obj) : ref(obj){}
CORBA: : Obj ect_ptr &ref;

s

to_string{

to_string(char *&, CORBA: :ULong b)

val (s), bound(b){}
char *&val ;
CORBA: : ULong bound;

1

t o_wchar {
to_wchar (CORBA: : Wchar & b) : ref(b){}
CORBA: : WChar & ref;

1

to_wstring{
to_wstring(CORBA: : Wchar *&s, CORBA:: ULong b)
val (s), bound(b){}
CORBA: : Wchar *&val ;
CORBA: : ULong bound;

Page 129

CORBA: : Bool ean operat or >>=(to_bool ean) const;
CORBA: : Bool ean operator>>=(to_char) const;
CORBA: : Bool ean operator>>=(to_octet) const;
CORBA: : Bool ean operat or>>=(to_obj ect) const;
CORBA: : Bool ean operator>>=(to_string) const;
CORBA: : Bool ean operator>>=(to_wchar) const;
CORBA: : Bool ean operator>>=(to_wstring) const;

These operators are defined in the vendor's any class interface. Insertions would be similar
to the following, depending on the vendor's Any _Cl ass name:

/] C++
any_val ue <<=Any_d ass: : from Bool ean(bool ean_val);

any val ue<<=Any d ass::from Cctet(octet _val);

any_val ue<<=Any_Cl ass::fromstring(char_ptr_val,str_len, 1);
/I nocopy flag set to FALSE, and the any consunes the string
//and bound value > 0 indicates a bounded string

i f (any_val ue>>=Any_C ass::to_string(char_ptr_val,str_len)){
//then any contained a string of length 8

};

6.6.5—
The Any Class

The default constructor createsan any with its TypeCode settotypet k_nul | , which
means that the type of the value which the any can contain is undefined. The copy constructor
creates a deep copy of the any passed as a parameter. The fina constructor duplicates the
pseudo-object reference and assumes ownership of the storage of the value parameter if the
release flag is set to TRUE. Otherwise, if theflag is set to FAL SE the caller owns the storage.

[C++

CORBA_Any() ;

CORBA_Any(const CORBA Anyé&);
CORBA_Any(CORBA TypeCode _ptr tc, void *val ue,

CORBA: : Bool ean rel ease=0);

Also definedisan Any_var classsimilar tothe var class encountered earlier, which is
useful for the convenience of the memory management provided by the ORB. break

/] C++

{
Any var();

Any_var (CORBA_Any *a);
Any_var (const Any_var &a);
~Any_var ();

Page 130

Any_var &operat or=(CORBA Any *a);
Any var &operator=(const Any var &a);

CORBA _Any *operator->();
1

Theany classisauseful construct for handling values of generic types that may be unknown at
compiletime. Creating an any isas simple as declaring a standard datatype, and may also be
constructed by duplicating another any asseenintheany and any_var constructors.
Following is a simple example of creating an any:

/] C++
Struct Ex struct_1 ={10, 20.0};
Struct _Ex * struct_2

/lcreate an any and shuffle structure into it
any_struct = new CORBA:: Any();
*any_struct <<= struct_1,;

//Now to extract the struct fromthe any.
if (*any_struct >>= struct_2){
...lluse the val ue

}

To this point we have covered all the basic datatypes, constructed types, and types that handle
all these, even if they are undetermined at implementation time. The last type we have to cover
is the exception type.

[—
M apping for the Exception Types

The IDL to C++ mapping of except i ons issimilar to that of variable length st r uct s in
that each exception member must self-manage its storage. An IDL except i on mapping
derivesfrom the User Except i on class, which in turn derives from the base Except i on
class. Following is an example of a user-defined exception: break

//1DL
exception Sonet hi ngW ong{
string reason

long id;
}s
/] C++

cl ass Somet hi ngWong : public CORBA User Exception{
publi c:

Page 131

static const CORBA Exception::Description _description;
CORBA: : String_var reason;
CORBA: : Long i d;

Sonet hi ngWong(){}
Sonet hi ngW ong(
const char * _reason,
CORBA: : Long _id){
reason = _reason;
id=_id;
}

The default constructor creates the object, leaving the fields to be filled in. The second
constructor initializes the object with the parameter values.

The standard exceptions are derived from the Sy st enmExcept i on class, which, like the
User Except i on class, also derives from the base Except i on class. An exception is
caught in atry block, thrown as avalue, and caught as areference to the Except i on type.
User Excepti on and Syst enExcept i on, derived from the base Except i on class,
narrow the scope of the exception.

/] C++
try{

catch (const UserException &ue)

} catch (const SystenException &se){

All CORBA system exceptions include a completion_status code which will be one of the
following three values: COVPLETED _YES, COMPLETED NO, COMPLETED NAYBE.
Table 3.3 isalist of CORBA system exceptions:

88—
Mapping Operations and Attributes

IDL-defined operations and attributes are mapped to C++ functions. IDL operations map to
C++ functions of the same name. Attributes map to a pair of functions of the same name, one to
set the value and one to get the value. By default, all attributes are read-write, but if the
attribute has been defined as read-only, then only the "set” function is available. IDL allows
specification of operations that have no return value. A return type must not be specified for
oneway operations. The following example illustrates the mapping of the IDL for attributes and
functions:break

//1DL

interface A

TABLE 3.3 Standard Exception Types

Exception Explanation

BAD PARAM Aninvalid parameter was passed
NO_MEMORY Dynamic mem alocation failure
IMP_LIMT Violated implementation limit

COW FAI LURE Communication failure

I NV_OBJREF Invalid object reference

NO_PERM SSI ON No permission for attempted operation
| NTERNAL ORB internal error

MARSHAL Error marshalling parameter result

I NI TI ALI ZE ORB initialization failure

NO_| MPLEMENT Operation implementation unavailable
BAD_TYPECODE Bad typecode

BAD OPERATI ON Invaid operation

NO_RESOURCES Insufficient resources for request
NO_RESPONSE Response to request not yet available

PERSI ST_STORE

BAD_| N\V_ORDER

TRANSI ENT

FREE_MEM

| NV_| DENT

| N\V_FLAG

| NTF_REPOS
BAD_CONTEXT
OBJ_ADAPTER

DATA CONVERSI ON
OBJECT_NOT_EXI ST
TRANSACTI ON_REQUI RED
TRANSACTI ON_ROLLEDBACK
| NVALI D_TRANSACTI ON
UNKNOWN

Persistent storage failure
Routineinvocations out of order
Transient failure, reissue request
Cannot free memory

Invalid identifier syntax

Invalid flag was specified

Error accessing interface repository
Error processing context object
Failure detected by object adapter
Data conversion error

Nonexistent object, delete reference
Transaction required

Transaction rolled back

Invalid transaction

An unknown exception

string f();
oneway void g();
attribute long x;

};

/] C++
Avar() : _ptr(A:_nil())}

readonly attribute string vy;

Page 132

Avar(Aptr p) : ptr(_p){}

char* A :y(){...} //get function only

CORBA: : Long A :x(){...} //get function for x

Page 133
void A :x(CORBA: :Long _val){...}//set function for x

void A :g(){...} //oneway operation
char* A :f(){...}

}
The following code could be implemented by aclient:

/] C++

A var a;

a=../linitialize the object reference
a->f();

a->g();
Long n = a->x();//get
a->x(n + 1);//set

oO—
Argument Passing

Primitive types and enumerations are passed by their defined type. For object references, the
pt r typeisused. Passing structured types requires greater attention to the details of memory
management. |n-parameter storage is simplest because the caller has allocated and owns the
storage of the parameter. Out and inout parameters are more complicated.

If the out parameter is afixed length aggregate, then the mapping is by reference, T&. If the out
parameter is avariable length aggregate then both T and T* & can be used. Using the
aggregate's _var classfreesthe user from this consideration in that the mapping isT_var &
for both in and out (see Tables 3.4 and 3.5).

The cases described in Table 3.5 are the following:

1. Caller alocates al necessary storage, except that which is encapsulated and managed within
the parameter itself. For inout parameters, the caller provides theinitial value and the callee
may change that value. For out parameters, the caller allocates the storage but need not
initialize it, and the callee sets the value. Function returns are by value.

2. Cdler allocates storage for the object reference. For inout parameters, the caller provides
an initial value; if the callee wants to reassign the inout parameter, it first calls

CORBA: : r el ease ontheorigina input value. To continue to use an object reference passed
in as an inout, the caller must first duplicate the reference. The caller is responsible for the
release of all out and return object references. Release of all object references embedded in
other structuresis performed automatically by the structures themselves.break

TABLE 3.4 Basic Argument and Result Passing

Page 134

Datatype In Inout Out Return

short Short Short & Short & Short

| ong Long Long& Long& Long

I ong | ong LongLong LongLong& LongLong& LongLong

unsi gned UShor t Ushort & Ushort & Ushort

short unsi gned ULong ULong& ULong& U ong

| ong unsi gned ULongLong ULongLong& ULongLong& ULongLong

long | ong fl oat Fl oat Fl oat & Fl oat & Fl oat

doubl e Doubl e Doubl e& Doubl e& Doubl e

| ong doubl e LongDoubl e LongDoubl e& LongDoubl e& LongDoubl e

bool ean Bool ean Bool ean& Bool ean& Bool ean

char Char Char & Char & Char

wchar W har Wehar & Wehar & W har

oct et Cct et Cctet & Cctet & Cct et

enun enun enun& enun& enun

obj ect reference objref ptr objref ptré& objref ptré& objref ptr

ptr

struct, fixed const structé& struct & struct & struct

struct, variable const structé& struct & struct*& struct*

uni on, fixed const uni on& uni on& uni on& uni on

uni on, variable const uni on& uni on& uni on* & uni on*

string const char* char*& char*& char*

wstring const wchar* wchar * & wchar * & wchar *

sequence const sequence& sequence& sequence* & sequence*

array fixed const array Array array slice
array

array vari abl e const array array array
array slice*& slice*2

any const any& any& any* & any*

fixed const Fi xed& Fi xed& Fi xed& Fi xed&

3. For out parameters, the caller allocates a pointer and passes it by reference to the callee.
The callee sets the pointer to point to avalid instance of the parameter's type. For returns, the
calleereturns asimilar pointer. The calleeis not allowed to return anull pointer in either case.
In both casesthe caller isresponsible for releasing the returned storage. To maintain
local/remote transparency, the caller must always release the returned storage, regardless of
whether the callee islocated in the same address space as the caller or located in a different
address space. Following the completion of arequest, the caller is not allowed to modify any
valuesin the returned storage—to do so the caller must first copy the returned instance into a
new instance, then modify the new instance.

4. For inout strings, the caller provides storage for both the input string and the char * or
wechar * pointing to it. Since the callee may deallocatecontinue

Page 135

TABLE 3.5 Memory Management Rules for Parameter Passing

Datatype I nout parameter Out parameter Return result
short 1 1 1
| ong 1 1 1
| ong | ong 1 1 1
unsi gned short 1 1 1
unsi gned | ong 1 1 1
unsi gned | ong | ong 1 1 1
fl oat 1 1 1
doubl e 1 1 1
| ong doubl e 1 1 1
bool ean 1 1 1
char 1 1 1
wchar 1 1 1
oct et 1 1 1
enun 1 1 1
obj ect reference ptr 2 2 2
struct, fixed 1 1 1
struct, variable 1 3 3
uni on, fixed 1 1 1
uni on, variable 1 3 3
string 4 3 3
wstring 4 3 3
sequence 5 3 3
array, fixed 1 1 6
array, variable 1 6 6
any 5 3 3
fixed 1 1 1

the input string and reassign the char * or wchar * to point to new storage to hold the output
value, the caller should allocate the input stringusing st ri ng_al | oc() or

wstring_all oc() . Theszeof theout string is therefore not limited by the size of thein
string. The caller isresponsible for deleting the storage for theout using st ri ng_free() or
wstring_free().Thecaleeisnot allowed to return anull pointer for an inout, out, or
return value.

5. For inout sequences and any's, assignment or modification of the sequence or any may
cause deall ocation of owned storage before any reallocation occurs, depending upon the state

of the boolean release parameter with which the sequence or any was constructed.

6. For out parameters, the caller allocates a pointer to an array dlice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to the
callee. The callee sets the pointer to point to avalid instance of the array. For returns, the
calleereturns asimilar pointer. The calleeis not allowed to return acontinue

Page 136

null pointer in either case. In both cases, the caller isresponsible for releasing the returned
storage. To maintain local/remote transparency, the caller must always release the returned
storage, regardless of whether the callee islocated in the same address space as the caller or
located in a different address space. Following completion of arequest, the caller is not
allowed to modify any vauesin the returned storage—to do so the caller must first copy the
returned array instance into a new array instance, then modify the new instance.

9.1—
Examples

This section contains examples, which illustrate the passing of various IDL types as arguments
to CORBA method invocations. In particular, we see how the following IDL types, whose
I DL-to-C++ mappings were discussed in the previous sections, can be passed as arguments.

- fixed and variable struct type

- fixed and variable length union type
- fixed and variable length array

- fixed and variable length sequences
- octet

- object reference

9.1.1—
Fixed Length Struct

Consider the following IDL with afixed length st r uct Time:

//HelloWorld.idl
nodul e Hel | oWbr | d{
struct Ti me{
short hour;
short m nute;
1
i nterface GoodDay({
Time hello(in Tine in_tine,
i nout Tinme inout tine,
out Tine out _time);
1
1

In the above IDL, we have declared ast r uct Ti me withtwo short members, hour and

m nut e. Sincethe sizesof hour and m nut e arefixed, Ti ne isafixed length struct. We
haveasodeclaredani nt er f ace GoodDay that supports one operation, hel | o() . The
hel | o() operationtakesaninargumenti n_ti e, of typeTi me, ani nout argument

i nout _ti e, of typeTi nme, andan out argument out _ti e, also of typeTi ne. In
addition, thehel | o() operation has areturn value of type Ti nme.break

Page 137

If the above IDL is passed through the IDL compiler (the actual compiler used in these
exampleswasi dl 2cpp from Inprise VisiBroker), the following signature is generated in
Hel | oWor | d_c. hh corresponding to the method invocation:

Hel | oWorl d: : Ti me hel | of
const HelloWwrld:: Tine& in_tine,
Hel |l oWorl d: : Ti re& _i nout tine,
Hel l oWworl d:: Time& out tine

)

The code generated above adheres to the mapping rules specified by the CORBA specification.
A typical client program that uses the above generated stub code simply needs to understand
the memory management rules for parameter passing, allocate storage for the parameters (or
not allocate storage and depend on the callee to do it), and initialize the values for the
parameters. A typical client program could look like the following:

Hel lowbrld::Time in_tinme, inout time, out tine;
Hel loWworl d:: Tinme return_tine;

in_time.hour = 15; in_tinme.mnute = 30;
i nout tinme.hour = 20; inout tine.mnute = 35;

return_time = goodDay- >hel | o(
in_time, inout_time, out_tine);

In the above code we declare three variables, each of typeHel | oWor | d: : Ti me, whichis
thest r uct generated from the corresponding IDL type. We then assign valuesto the
variablesthat areto bethei n andi nout argumentstothehel | o() operation. To do this
we simply set valuesto thetwo shor t members, hour and m nut e of thest ruct . We
also declare another variabler et ur n_t i e, to hold the return value from the operation.
However, we do not initializetheout _t i me andther et ur n_t i me parameters. The values
for these are set by thehel | o() operation. Wethen invokethe hel | o() methodin
accordance with its signature generated by the IDL compiler (shown above).

It isimportant to note that in the above code, we have adhered to the memory management rules
for parameter passing listed earlier in Table 3.5. As an example, for afixed length st r uct
used as an in parameter, we see that in the generated code such a parameter is passed as a
const reference, const Hel | owor | d: : Ti ne&. In accordance with case 1, we have
allocated storage for this parameter on the stack (by declaring it asalocal variable) and have
passed it by reference to the callee. Similarly, for passing afixed length st r uct asan inout
parameter to a method, we have used case 1, which calls for caller alocated storage. We have
allocated storage on the stack for the st r uct passedcontinue

Page 138

as an inout parameter and have initialized it with avalue. We do realize that the callee could
change this value upon returning from the method invocation. As for the out parameter, the table
indicates that we use case 1. Therefore we allocate storage but do not initialize it with avalue.
The calleeis supposed to set avalueto it. So also, for the return type, the callee initializes the
st ruct returned with the correct value and returnsit by value to the caller.

In the skeleton code (inthefilesHel | oWor 1 d_s. hh, Hel | oWor | d_s. cpp) generated
fromHel | oWor | d. i dl , thesignature of thehel | o() operationisasfollows:

virtual Hellowrld:: Time hell o
const HelloWwrld::Tine& in_tineg,
Hel | oWorl d: : Ti me& i nout _ti ne,
Hel | oWorl d: : Time& out _tine) = 0;

The IDL compiler generates a pure virtua function that needs to be implemented by a servant.

A typica implementation of thehel | o() method by a servant named GoodDay| npl that
implementsthe Hel | oWbr | d: : GoodDay object is as follows:

Hel | oWorl d: : Ti me GoodDayl npl : : hel | o(
const HelloWrld:: Tine& in_tine,
Hel | oWorl d: : Ti me& i nout _tine,
Hel | oWorl d: : Ti me& out _time){

out tine.hour = 18; out _tine.mnute = 31

/I Repl ace the val ues received as an
/1inout argunent
i nout _tinme.hour = 19; inout tine.mnute = 32;

/I Create a return val ue
Hel loWworld::Time ret _tine:
ret _time.hour = 17; ret _tinme.mnute = 30;

return ret _tine;

}

In the above implementation, the signature of the method matches that of what was generated by
the IDL compiler in the skeleton code. We set valuesto theout _t i me argument, replace the
valuesinthei nout _ti nme argument, createar et urn_ti ne, set avaluetoit, and return it
to the client.

In terms of memory management associated with the example above, all storage allocation was
done on the stack. We could modify the above exampleto usethe _var types generated by the
IDL compiler for thest r uct Ti me. It enables storage allocation on the heap. In such a case,
the client code would look likebreak

Page 139

Hel | oWorl d: : Time_var in_tine,
i nout _time, out tine;
Hel |l oWorl d: : Ti me_var ret _tine;

in_time = new HelloWrl d:: Tinme();

in_time->hour = 15; in_tinme->mnute = 30;

inout _tine = new Hel l oWorld:: Tinme();

i nout tine->hour = 20; inout_tinme->mnute = 35;

return_time = goodDay- >hel | o(
in_tinme,
i nout _tine.inout(),
out _tine.out());

In the above code segment, we declare three variables, each of type

Hel | oWorl d: : Ti me_var,namely,i n_time, inout_tinme,andout time.Here
we usethe _var convenience class generated by the IDL compiler. The constructor for the
_var class alocates memory on the heap. The destructor for the _var class getsinvoked
whenthe _var classgoesout of scope and frees the allocated memory. Had we not used the
Hel | oWor | d: : Ti me_var classbut instead used Hel | oWor | d: : Ti me_pt r, wewould
have had to keep track of the storage allocated (when we call new) and remember to free it
appropriately before the method returns. The _var classtakes care of this problem by
managing memory associated with the_pt r . So we allocate storage for thei n_t i ne and

i nout _ti e variables by invoking the var class constructor. Like before, we assign
valuestoi n_ti me andi nout _ti me. Wedo not alocate any memory for out _ti nme and
forret urn_ti me. The memory for theseis alocated by the ORB and is freed when these
variables go out of scope. Asagenera rule, we awaystry to usethe var convenience class
generated for us by the IDL compiler whenever possible.

Also note that in the method invocation above, we passi nout _ti ne. i nout () and

out time. out () asthesecond and third arguments, respectively. Invoking thei nout ()
onaHel | oWor | d: : Ti me_var returnsaHel | oWwor | d: : Ti meé&. So dso, invoking the
out () onaHel | oWor | d: : Ti me_var returnsaHel | oWbr | d: : Ti ne&. The

i nout () andout () methods of the var class return the appropriate types expected by the
hel | o() method. We could haveusedi nout _ti nme andout _ti nme directly instead of
usngthei nout tinme.inout() andout time. out () asargumentstothehel | o()
method, since these variables are of the _var typeandthe var classhasimplicit conversion
operators to return the appropriate types expected by thehel | o() method. However, some
compilers have problems with this approach and hence it is better to usethei nout () and
out () explicitly.

Similarly, the servant implementation would look asfollows if we use
Hel | oWor | d: : Ti me_var instead of using stack based storage all ocation: continue

Page 140

Hel | oWorl d: : Ti me GoodDayl npl : : hel | o(
const HelloWwrld:: Tine& in_tineg,
Hel | oWorl d: : Ti me& i nout _tine,
Hel | oWorl d: : Ti me& out _time){
out tine.hour = 18; out _tine.mnute = 31

/I Repl ace the val ues received as
/lan inout argunent
i nout _tinme.hour = 19; inout tine.mnute = 32;

//Create a return val ue
Hel | oWorl d:: Tine_var return_tine =

new Hel | oVWor | d: : Ti me();
return_time->hour = 17; return_tinme->mnute = 30;
return return_tine._retn();

}

Weonly usethe _var classwhile allocating memory for ther et ur n_t i me parameter. The
in_timeandi nout ti me parametersare passed by const reference and reference,
respectively. Storage for these parameters has been allocated already. Similarly, for the out
parameter out _t i me, storage has already been allocated by the caller of the method. We just
have to assign values to its members.

One specia thing to note isthe use of the _r et n() method whilereturningreturn_ti nme
to the method. The _r et n() method is generated as part of the _var classand returnsthe
appropriate type that matches the return type of the method, whichisHel | oWor | d: : Ti ne.
Useof the_retn() methodissimilar to the use of thei nout () and out () methods on the
_var classinthe client code above.

9.12—
Variable Length Struct

The variable length struct example is interesting because of the memory management rules that
apply to the out parameter and the return type. We follow case 3 for the out parameter and the
return type. Consider the following IDL: break

[/ Hell oWorld.idl
nodul e Hel | oWbr | d{
struct Time{
short hour;
short m nute;
string | ocation;
i
i nterface GoodDay({
Time hello(in Tine in_tine,
i nout Tinme inout tine,
out Tine out _time);

Page 141

In the above IDL, we have declared ast r uct Ti nme with two shor t members, hour and
m nut e, andast ri ng member, | ocat i on. Sincethesizesof hour and m nut e are
fixed but the size of string isvariable, Ti e isavariable length struct. We have a so declared
ani nterface GoodDay that supportsone operation hel | o() . Thehel | o() operation
takesaninargument i n_t i nme, of type Ti me, ani nout argumenti nout _t i nme, of type
Ti me, and an out argument out _t i e, also of type Ti nme. In addition, thehel | o()
operation has areturn value of type Ti ne.

If the above IDL is passed through the IDL compiler (the actual compiler used in these
exampleswasi dl 2cpp from Inprise VisiBroker), the following signature is generated in
Hel | oWor | d_c. hh corresponding to the method invocation:

Hel | oWorl d: : Time *hel | o
const HelloWwrld:: Tine& in_tine,
Hel | oWorl d: : Ti re& _i nout tine,
Hel loWorl d:: Time_ptr& _out_tine
)

Following isatypical client program that uses the above generated stub code:

Hel | oWorl d: : Time_var in_tine,
i nout _time, out tine;
Hel |l owbrl d:: Ti me_var return_tine;

in_time = new Hel |l oWorl d: : Ti ne;

in_time->hour = 15; in_tinme->mnute = 30;
in_time->location = CORBA: :string_dup ("San Mateo");

i nout _time = new Hell oWorl d:: Ti ne;

i nout time->hour = 20; inout tine->mnute = 35;

i nout _time->location = CORBA::string_dup("San Bruno");

return_time = goodDay- >hel | o(
in_tine,
i nout _tine.inout(),
out _tine.out());

In this code we declare three variables, each of type Hel | oWbr | d: : Ti me_var , whichis

the _var class corresponding tothest r uct generated from the corresponding IDL type. We
then alocate storage (on the heap, by invoking new) and assign values to the variables that are
going to bethei n andi nout argumentstothehel | o() operation. We set valuesto the two
short members hour andm nut e, andthest ri ng member| ocat i on of thest r uct

containedintheHel | oWor | d: : Ti me_var.

We also declare another variabler et ur n_t i me, to hold the return value from the operation.
However, we do not initiadlizetheout _t i me andther et ur n_t i me parameters. In
accordance with case 3, which should be used forcontinue

Page 142

the out parameter, we only allocate storage for the pointer, which in this caseisjust the
declaration of the _var . Notethat the _var classcontainsthe _pt r asamember, and just
declaration of the _var class constitutes allocation of storage for the pointer, _ptr . The
calleeis supposed to set the pointer contained in the _var to avalid instance of the
parameter'stype, which in thiscaseisHel | oWor | d: : Ti me* . The samerule also appliesto
the return type. We then invoke the hel | o() method in accordance with its signature
generated by the IDL compiler (shown above). In terms of freeing storage, case 3 makesthe
caller responsible for releasing storage allocated for the out and return parameters. Since we
usethe_var classfor al the variables, storage is released automatically. In addition, use of
the _var classalso takes care of releasing the storage allocated for the in and inout
parameters, storage for which was allocated on the heap.

In the skeleton code (in thefilesHel | oWor I d_s. hh, Hel | oWwbrl d_s. cpp) generated
fromHel | oWwor |l d. i dl ,thesgnature of thehel | o() operation isasfollows:

virtual Hellowrld::Tine_ptr hell o

const HelloWwrld::Tinme& in_tineg,
Hel | oWorl d: : Ti me& i nout _tine,
Hel loWorl d:: Time_ptr& out _tine) = 0;

The IDL compiler generates a pure virtual function that must be implemented by a servant.

A typica implementation of thehel | o() method by a servant named GoodDay| npl that
implementsthe Hel | oWbr | d: : GoodDay object is as follows:

Hel | oWorl d: : Ti me_ptr CGoodDayl npl : : hel | o(
const HelloWrld:: Tine& in_tine,
Hel | oWorl d: : Ti me& i nout _tine,
Hel loWorld:: Time_ptr& out _tine)

out tinme = new Hell oWorl d: : Ti ne;
out tinme->hour = 18; out tine->mnute = 31;

/I Repl ace the val ues received as an
/1inout argunent
i nout _tinme.hour = 19; inout tine.mnute = 32;

/I Create a return val ue
Hel l oWworl d: : Tinme_var return_tinme =

new Hel | oWorl d: : Ti ne;
return_time->hour = 17; return_tine->mnute = 30;
return return_tine._retn();

}

In the above implementation, notice that the signature of the method matches that of what was
generated by the IDL compiler in the skeletoncontinue

Page 143

code. We set valuesto theout _t i me argument, replacethevauesinthei nout _tine
argument, and createar et ur n_t i ne, set valuetoit, and return it to the client. We use the
_var classwhenever possible to ensure proper memory management.

9.1.3—
Fixed Length Union

With regard to memory management, a fixed length union is treated identically to afixed length
struct. We follow case 1 when afixed length unionispassed asani n, i nout, or out
parameter or if used as areturn type. The caller alocates storage and passes by reference or
const reference to the callee. The caller isresponsible for releasing allocated storage.
Consider the following IDL.:

/1 HelloWwrld.idl
nodul e Hel | oWbr | d{
struct Time{
short hour;
short mnute;

}

uni on Ti meUni on switch(long){
case 1:
Time tinme;

case 2:
defaul t:
| ong val ue;

}s

i nterface GoodDay({
Ti meUni on hello(in TimeUnion in_union,
i nout Ti meUni on i nout _union,
out Ti meUni on out_union);

|

|
In the above IDL, we have declared ast r uct Ti nme with two shor t members, hour and
m nut e. We have also declared auni on Ti meUni on, which has a discriminator of type
| ong, and two members. t i e, of type Ti me andal ong val ue. Since Ti ne isafixed
struct and| ong isof afixed size, the length of the uni on isfixed. We have also declared
ani nterface GoodDay that supportsone operation hel | o() . Thehel | o() operation
takesani n argumenti n_uni on, of type Ti neUni on, ani nout argument
i nout _uni on, of type Ti meUni on, and an out argument out _uni on, aso of type
Ti meUni on. In addition, thehel | o() operation has areturn value of type
Ti meUni on.break

Page 144

If the above IDL is passed through the IDL compiler (the actual compiler used in these
exampleswasi dl 2cpp from Inprise VisiBroker), the following signature is generated in
Hel | oWbr | d_c. hh corresponding to the method invocation:

Hel | oWor | d: : Ti meUni on hel | o(
const Hel | oWorl d:: Ti meUni on& _i n_uni on,
Hel | oWor | d: : Ti meUni on& _i nout _uni on,
Hel | oWor | d: : Ti meUni on& _out _uni on

);
Following isatypical client program that uses the above generated stub code:

Hel | oWor | d: : Ti meUni on_var i n_uni on,
i nout _uni on, out_union;
Hel | oWor | d: : Ti neUni on_var return_union;

i n_uni on = new Hel | oWor | d: : Ti neUni on;
i nout _uni on = new Hel | oWor | d: : Ti meUni on;

Hel l oWorl d: : Tine_var tine =
new Hel | oWorl d: : Ti ne;
ti me->hour = 15; tine->mnute = 10;

//Set in_union's tinme nmenber
in_union->tinme = time;

/1 Set inout_union's val ue nenber
i nout _uni on->val ue = (CORBA: : Long) 20;

return_uni on = goodDay- >hel | o(

i n_uni on,
i nout _uni on.inout (),
out _union.out());

In the above code, we declare three variables, each of type

Hel | oWor | d: : Ti meUni on_var ,whichisthe var classcorresponding to theuni on
generated from the corresponding IDL type. We a so declare another variable

ret ur n_uni on to hold the return value fromr the operation. To set vaue to the union, set the
t i me member of theunion, i n_uni on, whichisthei n parameter, and the location member
of theunion, i nout _uni on, whichisthei nout parameter and set valuesto these. To set
valuetothet i me member, declareavariablet i me, of typeHel | oWor | d: : Ti me_var.
Weusethe var classinthe declaration for thei n_uni on aswell asfor its contained
elementt i me. Thisis necessary for proper memory management. Wherever possible we use
the memory managed _var class so that wecontinue

Page 145

do not have to keep track of freeing memory. We do not initialize the out _uni on and the

r et ur n_uni on parameters. The values for these will be set by thehel | o() operation. We
then invokethe hel | o() method in accordance with its signature generated by the IDL
compiler, which is shown above.

In the skeleton code (inthefilesHel | oWor I d_s. hh, Hel | oWwbrl d_s. cpp) generated
fromHel | oWwor |l d. i dl ,thesgnature of thehel | o() operation isasfollows:

virtual Hellowrld:: Ti meUni on hell o(
const Hell oWrl d:: Ti neUni on& i n_uni on
Hel | oWbr | d: : Ti meUni on& i nout _uni on
Hel | oWor I d: : Ti meUni on& out _union) =0

The IDL compiler generates a pure virtua function, as shown above, that must be implemented
by a servant.

Following is an implementation of thehel | o() method by a servant named GoodDay| npl
that implementsthe Hel | oWor | d: : GoodDay object:

Hel | oWor | d: : Ti meUni on GoodDayl npl : : hel | o(
const Hel |l oWrl d:: Ti meUni on& i n_uni on
Hel | oWor | d: : Ti meUni on& i nout _uni on
Hel | oWor | d: : Ti neUni on& out _uni on)

//declare and set a tine variable

Hel l oWorl d:: Time_var tine = new Hel | oWorld:: Ti me;
time->hour = 18; tinme->mnute = 30;

//set the time menber in out_union

out _union.tinme(tine);

/I Repl ace the val ues received as an
//inout argunent
ti me->hour = 19; tinme->mnute = 32;

i nout _union.tinme(tine);

//Create a return val ue

Hel | oWor I d: : Ti meUni on return_union;

//Set the time menber in return_union
time->hour = 17; tinme->mnute = 30;
return_union.tinme(tine);

return return_union;

}

In the above implementation, notice that the signature of the method matches that of what was
generated by the IDL compiler in the skeletoncontinue

Page 146

code. We set valuesto the out _uni on argument, replace the valuesin thei nout _uni on
argument, and createar et ur n_uni on, set valueto it, and return it to the client. We use the
_var classwhenever possible to ensure proper memory management. We could have used
stack-based allocation for t i me in the above code instead of usingthe _var class because the
szeof thest ruct isvery small.

9.14—
Variable Length Union

With regard to memory management, a variable length union istreated identically to avariable
length struct. We follow case 3 in terms of allocating and freeing storage for out and return
parameters. Consider the following IDL:

[/ HelloWrld.idl
nodul e Hel | oWor | d{
struct Tinme{
short hour;
short m nute;

};

uni on TineUnion switch(long){
case 1:
Tinme tineg;
case 2:
string | ocation;
case 3:
defaul t:
short val ue;

}s

i nterface GoodDay({

Ti meUni on hello(in TimeUnion in_union,
i nout Ti meUni on i nout _union,
out Ti nmeUni on out_union);

}s
}s

In the above IDL, we have declared ast r uct Ti nme with two shor t members, hour and
m nut e, andast ri ng member, | ocat i on. Sincethesizeof st ruct Ti e isfixed but

thesizeof stri ng isvariable, Ti meUni on isavariable length union. We have aso
declared ani nt er f ace GoodDay that supports one operation hel | o() . Thehel | o()

operationtakesan i n argument i n_uni on, of type Ti meUni on, ani nout argument
i nout _time,of typeTi nmeUni on, andan out argument out _ti me, also of type
Ti meUni on. In addition, thehel | o() operation has areturn value of type Ti meUni on.

If the above IDL is passed through the IDL compiler (the actual compiler used in these
exampleswasi dl 2cpp from Inprise VisiBroker), the fol-soft

Page 147

lowing signatureis generated in Hel | oWor | d_c. hh corresponding to the method
invocation:

Hel | oWor I d: : Ti neUni on *hel | o
const Hel | oWorl d:: Ti meUni on& _i n_uni on,
Hel | oWor | d: : Ti meUni on& _i nout _uni on,
Hel | oWor | d: : Ti meUni on_ptré& _out _uni on

)

Notice the difference in the signature of the hel | o() method in contrast to the signature
generated when afixed length union is used as an argument to the hel | o() operation. A
typical client program that uses the above generated stub code could look like the following:

Hel | oWor | d: : Ti meUni on_var i n_uni on,
i nout _uni on, out_union;

Hel | oWor | d: : Ti neUni on_var return_union;
i n_uni on = new Hel | oWor | d: : Ti neUni on;

Hel l oWorl d: : Tine_var tine =

new Hel | oWorl d: : Ti ne;
time->hour = 15; tine->mnute = 30;
in_union->tine(tine);

i nout _uni on = new Hel | oWor | d: : Ti meUni on;
i nout _uni on->| ocation =
CORBA: : string_dup("San Bruno");

return_uni on = goodDay- >hel | o(
i n_uni on,
i nout _uni on. i nout (),
out _union.out());

In the above code, we declare three variables, each of type

Hel | oWor | d: : Ti meUni on_var ,whichisthe var classcorresponding to theuni on
generated from the corresponding IDL type. We then assign values to the variable that are going
to bethei n andi nout argumentstothehel | o() operation. To do this, we set valuesto the
two short members, hour and m nut e, andthe stri ng member | ocati on of the
struct containedintheHel | oWor | d: : Ti ne_var . We aso declare another variable
ret ur n_uni on, to hold the return value from the operation. However, we do not initialize
theout _uni on andther et ur n_uni on parameters. The values for these are set by the

hel | o() operation. We theninvokethehel | o() method in accordance with its signature
generated by the IDL compiler, which is shown above.

In the skeleton code (inthefilesHel | oWor 1 d_s. hh, Hel | oWor | d_s. cpp) generated
fromHel | oWor | d. i dl , thesignature of thehel | o() operation is as follows:break

Page 148

virtual HelloWwrld:: TimeUnion *hell o
const Hell oWorl d:: Ti neUni on& i n_uni on,
Hel | owbr | d: : Ti meUni on& i nout _uni on,
Hel | oWor I d: : Ti meUni on_ptr& out_uni on) = 0;

Note that the IDL compiler generates a pure virtual function that needs to be implemented by a
servant.

Following is an implementation of thehel | o() method by a servant named GoodDay| npl
that implementsthe Hel | oWor | d: : GoodDay object:

Hel | oWor | d: : Ti meUni on *CGoodDayl npl : : hel | o(
const Hell oWorl d:: Ti meUni on& i n_uni on,
Hel | oWor | d: : Ti meUni on& i nout _uni on,
Hel | oWor | d: : Ti meUni on_ptré& out _union){

out _union = new Hel | oWorl d: : Ti neUni on;

Hel l oWorl d: : Tine_var tine =

new Hel | oWor | d: : Ti ne;
time->hour = 18; tine->mnute = 31;
out_union->tine = tinmg;

/I Repl ace the val ues received as an
//inout argunent
i nout _uni on->| ocation =
CORBA: : string_dup("San Mateo");

//Create a return val ue

Hel | oWor I d: : Ti meUni on_var return_union =
new Hel | oWbr | d: : Ti meUni on;

ret urn_uni on->val ue = (CORBA: : Long) 30;

return return_union._retn();

}

In the above implementation, the signature of the method matches the signature generated by the
IDL compiler in the skeleton code. We set valuesto theout _uni on argument, replace the
valuesinthei nout _uni on argument, and createar et ur n_uni on, set value to it, and
return it to the client. We usethe _var class whenever possible to ensure proper memory
management.

9.1.5—
Fixed Length Array

Therule to be used for afixed length array when used asin, inout, or out parameter is case 1,
and when used as areturn parameter is case 6. Consider the following IDL: continue

Page 149

[/ Hell oWorld.idl
nodul e Hel | oWbr | d{
struct Time{
short hour;
short mnute;
b
typedef Time TineArray[10];
i nterface GoodDay({
TimeArray hello(in TineArray in_arr,
i nout TimeArray inout_arr,
out TineArray out_arr);

}s
}s

In the above IDL, we have declared an array, Ti meAr r ay, which contains ten e ements each
of typest ruct Ti me with two short members, hour and m nut e. Since the sizes of
hour and m nut e arefixed, the array is of fixed length. We have also declared an

i nterface GoodDay that supports one operation hel | o() . Thehel | o() operation
takesani nargumenti n_arr, of typeTi meArr ay,ani nout argumenti nout _arr, of
type Ti meArray, andan out argument out _ar r, also of type Ti neAr r ay. In addition,
thehel | o() operation hasareturn value of type Ti neArr ay.

If the above IDL is passed through the IDL compiler, the following signature is generated in
Hel | oWbr | d_c. hh corresponding to the method invocation:

Hel | oWorl d:: TineArray_slice *hell o
const Hellowrld:: TimeArray _in_arr,
Hel | oWorl d:: TimeArray _inout_arr,

Hel l oWorl d:: TineArray _out_arr

);

Notice the peculiar return parameter Hel | oWor | d: : Ti meArray_slice *.Thistype

represents a pointer to a dlice of the array, which has al the same dimensions of the original

array except thefirst. A typical client program that uses the above generated stub code could
look like the following: break

Hel | oWorl d:: TimeArray_var in_arr,

inout_arr, out_arr;
Hel | oWorl d:: TineArray_var return_arr;

Hel | oWorl d: : Ti me_var tine=
new Hel | oWorl d: : Ti ne;

in_arr = Helloworld:: TineArray_all oc();

for(CORBA::Uong i = 0; i < 10; i++){

time->hour = i; tinme->mnute =i + 10;

in_arr[i] = time;
}

Page 150

inout_arr = HelloWrld:: TineArray_all oc();
for(CORBA::ULong j = 0; |j < 10; j++){

time->hour = j; time->mnute = (j*2) + 20;

inout _arr[j] = ting;

}

return_arr = goodDay- >hel | o(
in_arr,
i nout_arr.inout(),
out_arr.out());

In the above code, we declare three variables, each of typeHel | oWor | d

. Ti meArray_var whichisthe var classgenerated from the corresponding IDL type
Ti meAr r ay. To dynamically alocate storagetoi n_ar r ay, we invoke the

Hel | oworl d:: Ti meArray_al | oc() method found in the generated code. This method
is generated by the IDL compiler when an array is used in IDL. The implementation of this
method is as follows:

Hel | oWorl d: : TineArray_slice
*Hel | oWorl d: : Ti nreArray_al | oc(){
return new Hel | oWorl d: : Ti me[10] ;

}

To assign avalueto each element of i n_ar r ay, we do the following. We declare time, of
typeHel | oWor | d: : Ti me_var, and, in afor loop, assign arbitrary values (just to
illustrate) to the hour and minute members of time and then assign this time to an element of

i n_array. Similarly, we alocate storage and assign valuesto i nout _arr ay. Wealso
declare another variabler et ur n_t i me, to hold the return value from the operation.
However, we do not initidlizetheout _arr andther et ur n_ar r parameters. We only
allocate storage sufficient enough for the pointer _pt r contained inthe _var associated with
theout _arr andr et urn_arr types. Thevauesfor these will be set by the callee. We
theninvokethehel | o() method in accordance with its signature generated by the IDL
compiler (shown above). The caller isresponsible for releasing storage. In this case we use
the _var classfor al variables possible, so releasing storage happens automatically when the
_var classgoesout of scope.

In the skeleton code (in thefilesHel | oWor I d_s. hh, Hel | oWwbrl d_s. cpp) generated
fromHel | oWwor |l d. i dl ,thesgnature of thehel | o() operation isasfollows:

virtual Hellowrld:: TineArray_slice *hell o
const Hellowrld::TimeArray in_arr,
Hel | oWorl d: : Ti meArray inout_arr,
Hel | oWorl d:: TimeArray out _arr) = 0;

The IDL compiler generates a pure virtual function, as shown above, which must be
implemented by a servant.break

Page 151

Following is an implementation of thehel | o() method by a servant named GoodDay| npl
that implementsthe Hel | oWbr | d: : GoodDay object:

Hel | oWorl d: : Ti meArray_slice *CGoodDayl npl :: hel | o(
const Hellowrld::TimeArray in_arr,
Hel | oWorl d: : Ti meArray inout_arr,
Hel | oWorl d:: TimeArray out _arr){

/1 Set values to out_arr

Hel | oWorl d: : Time_var tine=
new Hel | oWorl d: : Ti ne;

for(CORBA::ULong i = 0; i < 10; i++){
tinme->hour = i; tine->nmnute = (i*2) + 20;
out_arr[i] = time;
}
/I Repl ace the val ues received as an
//inout argunent
for(CORBA::ULong j = 0; |j < 10; j++){
time->hour = j; tinme->mnute = (j*3) + 30;
inout _arr[j] = ting;
}
// Create a return val ue
Hel l oWorl d:: TimeArray_var return_arr =
Hel | oWorl d:: TimeArray_al | oc();
for(CORBA::ULong k = 0; k < 10; k++){
tinme->hour = k; tine->nminute = (k*4) + 40;
return_arr[k] = time;
}
return return_arr. _retn();
}

In the above implementation, the typesin the signature of the method match the signature types
generated by the IDL compiler in the skeleton code. We assign valuesto theout _arr
argument, replace the valuesin thei nout _ar r argument, and createar et ur n_arr, set
valuetoit, and return it to the client. We usethe _var class whenever possible so that
memory management is taken care of. In particular, we do use the _var classfor each element
of the array, whichisof typest ruct Ti ne.

9.1.6—
Variable Length Array

The only difference between fixed length arrays and variable length arrays in terms of memory
management is when passing them as out parameters. We apply case 1 while passing afixed
length array as an out parameter, whereas we apply case 6 while passing a variable length
array as an out parameter. Consider the following IDL: break

Page 152

[/ Hell oWorld.idl
nodul e Hel | oWbr | d{
struct Time{
short hour;
short mnute;
string | ocation;
b
typedef Time TinmeArray[10];
i nterface GoodDay({
TimeArray hello(in TineArray in_arr,
i nout TimeArray inout_arr,
out TineArray out_arr);

In the above IDL, we have declared ast ruct Ti ne with two short members, hour and
m nut e, andast ri ng member, | ocat i on. Sincethesizesof hour and m nut e are
fixed but thesizeof st ri ng isvariable, Ti me isavariable length struct. Hence the size of
thearray Ti meAr r ay isalso variable. Like before, we have also declared an i nt er f ace
GoodDay which supports one operation hel |1 o() . Thehel | o() operationtakesani n
argumenti n_ar r, of typeTi neArray, ani nout argumenti nout _arr, of type

Ti meArray, andan out argument out _ar r, aso of type Ti meAr r ay. In addition, the
hel | o() operation hasareturn value of type Ti neAr r ay. If the above IDL is passed
through the IDL compiler (the actual compiler used in these exampleswasi dl 2cpp from
Inprise VisiBroker), the following signatureis generated in Hel | oWwor 1 d_c. hh
corresponding to the method invocation:

Hel | oWorl d:: TineArray_slice *hell o
const Hellowrld:: TimeArray _in_arr,
Hel | oWorl d:: TimeArray _inout_arr,
Hel l oWorld:: TineArray_slice_ptr& _out_arr

);
Following is aclient program that uses the above generated stub code:break

Hel | oWorl d:: TimeArray_var in_arr,
inout_arr, out_arr;
Hel | oWorl d:: TineArray_var return_arr;

in_arr = Helloworld:: TineArray_all oc();
Hel l oWorl d: : Tine_var tine =
new Hel | oWor | d: : Ti ne;
for(CORBA::ULong i = 0; i < 10; i++)
time->hour = i; tinme->mnute =i + 20;
time->location =
CORBA: : string_dup("San Mateo");
in_arr[i] = time;

}
Page 153
inout_arr = HelloWrld::TimeArray_alloc();
for(CORBA::Uong j = 0; j < 10; j++){
time->hour = j; tinme->mnute = (j*2) + 30;

time->location =
CORBA: : string_dup("San Franci sco");
inout _arr[j] = tineg;

}

return_arr = goodDay- >hel | o(
in_arr,
i nout_arr.inout(),
out_arr.out());

The client code above is amost identical to the client code written for the fixed length array
example in the previous section. The only differenceis the setting of the location member of the
struct Ti me. Sincethe generated code declares the location member of st ruct Ti ne
asaCORBA: : String_var,wemust set valueto the_var . The only point to note hereis
that we usethe _var classfor each element of Ti meAr r ay in addition to using the _var

classfor the Ti neAr r ay itsalf.

In the skeleton code (inthefilesHel | oWor 1 d_s. hh, Hel | oWor | d_s. cpp) generated
from Hel | oWor | d. i dl , thesignature of thehel | o() operation would look like

virtual Hellowrld:: TimeArray_slice *hell o
const HelloWwrld::TineArray in_arr,
Hel | oWorl d:: TineArray inout_arr,
Hel l oWorld:: TineArray_slice_ptr& out_arr) = 0;

The IDL compiler generates a pure virtual function, as shown above, which must be
implemented by a servant.

Following is an implementation of thehel | o() method by a servant named GoodDay| npl
that implementsthe Hel | oWbr | d: : GoodDay object: break

Hel | oWorl d: : Ti meArray_slice *CGoodDayl npl :: hel | o(
const Hellowrld::TimeArray in_arr,
Hel | oWorl d: : Ti meArray inout_arr,
Hel |l oWorl d:: TimeArray_slice_ptr& out _arr){

Hel l oWorl d: : Tinme_var tine =
new Hel | oWor | d: : Ti mre;

out_arr = Hellowrld:: TinmeArray_all oc();

for(CORBA::ULong i = 0; i < 10; i++){
time->hour =i; time->nmnute = (i*2) + 20;
time->location =

CORBA: : string_dup("Scotts Valley");

out _arr[i] = tine;

}

Page 154

/I Repl ace the val ues received as an
/1inout argunent
for(CORBA::ULong j = 0; j < 10; j++){
time->hour =j; tinme->nmnute = (j*3) + 30;
time->location =
CORBA: : string_dup("Santa Cruz");
inout_arr[j] = tinme;

}

/I Create a return val ue
Hel |l oWorl d:: TimeArray_var return_arr =
Hel | oWorl d: : Ti meArray_al | oc()
for(CORBA::ULong k = 0; k < 10; k++){
time->hour = k; tinme->nminute = (k*4) + 40;
time->location =
CORBA: : string_dup("Mnterey");
return_arr[k] = ting;
}

return return_arr._retn();

}

In the above implementation, the types in the signature of the method matches the signature
types by the IDL compiler in the skeleton code. We set valuesto theout _ar r argument,

replace thevaluesinthei nout _arr argument and createar et ur n_arr, set valueto it
and return it to the client. We use the generated method Ti neArray_al | oc() to alocate
memory and the _var class whenever possible to ensure proper memory management.

9.1.7—
Sequences

The memory management rules for both fixed length and variable length sequences are the
same. Hence we only consider a variable length sequence in this section. Consider the
following IDL.:

[/ Hell oWorld.idl
nodul e Hel | oWbr | d{
struct Ti me{
short hour;
short mnute;
string | ocation;
b
t ypedef sequence<Ti ne> Ti neSeq
i nterface GoodDay({
TimeSeq hello(in TinmeSeq in_seq,
i nout TinmeSeq i nout_seq,
out TinmeSeq out_seq);
b
b

In the above IDL we have declared ast ruct Ti me withtwo short members, hour and
m nut e,andast ri ng member, | ocat i on. We have then declared acontinue

Page 155

sequence Ti meSeq, whose elements are of typest ruct Ti me. We have aso declared an
i nterface GoodDay which supports one operation hel | o() . Thehel | o() operation
takesani n argumenti n_seq, of type Ti neSeq, ani nout argument i nout seq, of type
Ti meSeq, and anout argument out _seq, also of type Ti meSeq. In addition, the

hel | o() operation hasareturn value of type Ti meSeq. If the above IDL is passed through
the IDL compiler (the actual compiler used in these exampleswasi dl 2cpp from Inprise
VisiBroker), the following signature is generated in Hel | oWor | d_c. hh corresponding to
the method invocation:

Hel | oWor |l d: : Ti meSeq_ptr hel | o(
const HelloWwrl d:: Ti meSeq& _in_seq,
Hel | oWor |l d: : Ti meSeq& _i nout _seq,
Hel | oWorl d: : Ti meSeq_ptr& _out _seq
);

Following is atypical client program that uses the above generated stub code:break

Hel | oWor |l d: : Ti meSeq_var in_seq,
i nout _seq, out_seq;
Hel | oWor |l d: : Ti meSeq_var return_seq;

in_seq = new Hel | oWrl d:: Ti neSeq;
CORBA: : ULong in_seq_len = 10;
in_seqg->length(in_seq_len);

for(CORBA::ULong i =0; i <in_seq len; i++)
time->hour = i; tinme->mnute =i + 10;
time->location =
CORBA: : string_dup("San Mateo");
in_seq[i] = timg;

}

i nout _seq = new Hel | oWorl d: : Ti meSeq;

CORBA: : ULong i nout_seq_l en = 20;

i nout _seq->l ength(inout_seq_len);

for(CORBA::ULong j = O;

j < inout_seq len; j++){
time->hour = j; time->mnute = (j*2) + 20;
time->l ocation=
CORBA: : string_dup("San Francisco");

in_out _seg->tinme = tineg;

}

return_seq = goodDay->hel | o
i n_seq,
i nout _seq. i nout (),
out _seq.out());

Page 156

In the above code, we declare three variables, each of typeHel | oWor | d: : Ti neSeq_var,
whichisthe var class corresponding to the sequence generated from the corresponding IDL
type. We then assign values to the variables that are going to bethei n andi nout arguments
tothehel | o() operation. To do thiswe simply set values to each member of the sequencein
aloop. We arbitrarily set values to each member just for illustrative purpose. Note that the
_var classprovides an overloaded oper at or [] , thus making it convenient to assign values
to the elements, like we would do with an array. We aso declare another variable
return_time,tohold the return value from the operation. However, we do not initialize the
out _seq andther et ur n_seq parameters. The values for these will be set by the

hel | o() operation. Wetheninvokethehel | o() method in accordance with its signature
generated by the IDL compiler, which is shown above.

In the skeleton code (inthefilesHel | oWor 1 d_s. hh, Hel | oWor | d_s. cpp) generated
fromHel | oWor | d. i dl , thesignature of thehel | o() operationisasfollows:

virtual HelloWwrld:: TinmeSeq_ptr hell o
const Hell oWwrl d:: Ti mneSeq& i n_seq,
Hel | oWor | d: : Ti meSeq_& i nout _seq,
Hel | oWorl d: : Ti meSeq_ptr & out _seq) = 0;

Note that the IDL compiler generates a pure virtual function that needs to be implemented by a
servant.

Following isatypica implementation of the hel | o() method by a servant named
GoodDayl npl that implementstheHel | oWbr | d: : GoodDay object: break

Hel | oWorl d: : Ti meSeq_ptr GoodDayl npl :: hel I o
const Hell oWrl d:: Ti meSeq& i n_seq,
Hel | oWor |l d: : Ti meSeq_& i nout _seq,
Hel | oWorl d: : Ti meSeq_ptr & out _seq){

Hel loWorl d: : Tinme_var tine =
new Hel | oWorl d: : Ti ne;

out _seq = new Hel | oWorl d: : Ti meSeq;
CORBA: : ULong out _seq |l en = 20;
out _seq->l ength(out_seq_len);

for(CORBA::Uong i = 0; i < out_seq_len; i++){

tinme->hour = i; tine->nmnute = (i*2) + 20;
ti me->l ocation =

CCRBA: :string_dup ("Scotts Valley");

out _seq[i] = tine;

}

// Case 5. Rel ease inout paraneter
/linout_seq is passed in as _ptr
/lassigning it to an _var ensures autonatic

/Il rel ease
Seq_var rel ease_seq(inout_seq);

/1 Create a new sequence
Hel | oWorl d: : Ti meSeq_var new seq =
new Hel | oWor |l d: : Ti meSeq;

/I Repl ace the val ues received as an
//inout argunent
for(CORBA::ULong j = 0;

j < inout_seqg->length(); j++){

time->hour = j; time->mnute = (j*3)+30;
time->location =

CORBA: :string _dup("Santa Cruz");
new seq[j] = tine;

i nout _seq = new_seq._retn();

Page 157

Here, we must use case 5, which applies to inout parameters. Case 5 implies that we release
the storage contained inthe _pt r passed asan i nout parameter. To do thiswe declare a
variabler el ease_seq of typeHel | oWor | d: : Ti neSeq_var andassigni nout _seq
to it. Thisforces arelease of the storage that was allocated toi nout _seq. (Look at the

implementation of the assignment operator, copy constructor for the

Hel | oWorl d: : Ti meSeq_var classin Hel | oWwor | d_c. hh). Following this, we create
anew sequence, assign valuesto it, and useits_r et n() vauetoassignittothei nout

argument that is then returned to the client.

//Create a return val ue
Hel | oWor | d: : Ti meSeq_var return_seq
new Hel | oWor |l d: : Ti meSeq;
CORBA: : ULong return_seq_|l en = 20;
return_seqg->length(return_seq_len);
for(CORBA::ULong k = 0;
k < return_seq_len; k++)
time->hour = k; tinme->mnute = (k*4) + 40;
time->location =

CORBA: : string_dup("Monterey"):
return_seq[k] = tineg;

return return_seq. _retn();

}

In the above implementation, the types of the signature of the method matches the signature
types generated by the IDL compiler in the skeleton code. We set valuesto theout _seq
argument, replace the valuesinthei nout _seq argument, and createar et ur n_seq, set
valueto it, and return it tocontinue

Page 158

the client. We usethe _var class whenever possible to ensure proper memory management.
Weusethe var classfor each element contained in the Ti neSeq aswell.

9.1.8—
Octet

Octets are smilar to IDL primitive types such as long, or float, with regard to argument
passing. We follow case 1 when an octet is passed as an argument to a method. An octet is
passed by valueif it occurs as an in argument, passed by referenceif an out or i nout
argument, and returned by value from a method. Consider the following IDL:

[/ Hell oWorld.idl
nodul e Hel | oWor | d{
i nterface GoodDay({
octet hello(in octet in_octet,
i nout octet inout_octet,
out octet out_octet);
1
1

In the above IDL, we have declared an i nt er f ace GoodDay which supports one operation
hel 1 o().Thehel | o() operationtakesaninargumenti n_oct et , of typeoct et , an

i nout argumenti nout _oct et , of typeoct et , and an out argument out _oct et , also
of typeoct et . Inaddition, thehel | o() operation has areturn value of type oct et .

If the above IDL is passed through the IDL compiler (the actual compiler used in these
exampleswasi dl 2cpp from Inprise VisiBroker), the following signature is generated in
Hel | oWor | d_c. hh corresponding to the method invocation:

CORBA: : Cctet hel | o
CORBA: : Cctet _in_octet,
CORBA: : Cctet & i nout _octet,
CORBA: : Cctet & out _octet

)
Following isatypical client program that uses the above generated stub code:break

CORBA: : Cctet in_octet, inout _octet, out octet;
CORBA: : Cctet return_octet;

in octet ="'a';
i nout _octet ="'b';

return_octet = goodDay->hell o
i n_octet,

Page 159

i nout _octet,
out _octet);

In the above code, we declare three local variables, i n_octet, inout octet,and

out _oct et , each of type CORBA: : Cct et , which isthe type corresponding to an IDL octet.
We then assign values to the variable that are going to be thei n andi nout argumentsto the
hel | o() operation. We aso declare another variabler et ur n_oct et , to hold the return
value from the operation. However, we do not initializethe out _oct et andthe
return_oct et parameters. The valuesfor these will be set by thehel | o() operation. We
theninvokethe hel | o() method in accordance with its signature generated by the IDL
compiler (shown above).

In the skeleton code (in thefilesHel | oWor I d_s. hh, Hel | oWwbrl d_s. cpp) generated
fromHel | oWwor |l d. i dl ,thesgnature of thehel | o() operation isasfollows:

virtual CORBA: :CQctet hell o
CORBA: : Cctet in_octet,

CORBA: : Cctet & i nout _octet,
CORBA: : Cctet & out _octet) = 0;

The IDL compiler generates a pure virtual function that needs to be implemented by a servant.

Following is an implementation of thehel | o() method by a servant named GoodDay| npl
that implementsthe Hel | oWor | d: : GoodDay object:

CORBA: : Cct et GoodDayl npl : : hel | o
CORBA: : Cct et in_octet,
CORBA: : Cctet & i nout _octet,
CORBA: : Cctet & out_octet){

out_octet = "'c';

/I Repl ace the val ue received as an
//inout argunent
i nout_octet = 'd';

[/ Create a return val ue
CORBA: : Cctet return_octet = 'e';
return return_octet;

}

In the above implementation, the types of the signature of the method matches the signature
types generated by the IDL compiler in the skeleton code. We set valuesto theout _oct et
argument, replace the valuesinthei nout _oct et argument, and createar et ur n_oct et ,
set value to it, and return it to the client.break

Page 160

9.1.9—
Object Reference

We follow case 2 when passing interfaces as arguments to an operation. IDL interfaces are
passed as pointers to object references. It isinteresting to observe the invocation of duplicate
and release on object references. Consider the following IDL:

[/ Hell oWorld.idl
nodul e Hel | oWbr | d{
interface MyQbj ect{
voi d ny_nethod();
i
i nterface GoodDay({
MyQbj ect hello(in M/Qoject in_obj,
i nout MyQbj ect i noutobj,
out MyCbj ect out_obj);
b
b

Inthe above IDL, we havedeclared an i nt er f ace MyQbj ect that supports one operation,
my _met hod. This operation does not take any arguments and does not return any vaue, just to
keep things ssimple. We have also declared an i nt er f ace GoodDay which supports one
operationhel | o() . Thehel | o() operationtakesani n argumenti n_obj , of type

MyQbj ect ,ani nout argumenti nout _obj , of type MyCbj ect , and an out argument
out _obj , aso of type MyQbj ect . Inaddition, thehel | o() operation has areturn value of
type My Qbj ect . Note that all the arguments are IDL interfaces. If the above IDL is passed
through the IDL compiler (the actual compiler used in these exampleswasi dl 2cpp from
Inprise VisiBroker), the following signature is generated in Hel | oWwbr | d_c. hh
corresponding to the method invocation:

Hel | oWorl d: : MyQbj ect _ptr hel |l of

Hel | oWorl d: : MyQbj ect _ptr _in_obj,

Hel | oWorl d: : MyQbj ect _ptré& _i nout _obj,
Hel | oWorl d: : MyQbj ect _ptr& _out _obj
);

Following is aclient program that uses the above generated stub code:break

Hel | oWor |l d: : MyQbj ect _var in_obj,
i nout _obj, out_obj;

Hel | oWorl d: : MyQbj ect _var return_obj;
/I somehow obtain a reference to M/Qbj ect
[leither by calling _bind() or _narrow() or
//fromthe Nami ng Service
in_obj =

Hel | oWorl d: : MyQbj ect:: _bind("InCbject");

Page 161

/lobtain a reference to M/Qbj ect
/land initialize inout_obj
i nout _obj =
Hel | oWorl d: : MyQbj ect:: _bind("I nQutbject");

return_obj = goodDay->hel | o
i n_obj,
i nout _obj . i nout (),
out_obj.out());

In the above code, we declare three variables, each of type

Hel | oWor | d: : MyQbj ect _var, whichisthe_var class corresponding to the

My Obj ect class generated from the corresponding IDL type, MyQbj ect . Following case 2,
the caller allocates storage for an object reference and passes a pointer to the object reference
asani n parameter. In our example we obtain an object reference by invoking _bi nd() ,
which isused to initializei n_obj .

_bi nd() isoneway to obtain an object reference. We could also haveused _narr ow() or
other means to obtain an object reference. We similarly initializei nout _obj . We aso
declare another variabler et ur n_obj to hold the return value from the operation. However,
wedo not initializetheout _obj andther et ur n_obj parameters. The values for these are
set by thehel | o() operation. Wetheninvokethehel | o() method in accordance with its
signature generated by the IDL compiler (shown above). We pass as the second and the third
argumentsto thehel | o() method the results of invoking i nout () andout () onthe var
class corresponding to Hel | oWor | d: : MyQbj ect . One subtle thing to note is that we have
used the var classfor al parameters. This ensures the appropriate releasing of the object
reference contained in them when the _var goesout of scope. Hadweusedan _pt r instead
of the _var , we would have had to remember to invoke CORBA: : r el ease on the object
reference contained inthei nout and out parameters.

In the skeleton code (inthefilesHel | oWor 1 d_s. hh, Hel | oWor | d_s. cpp) generated
fromHel | oWor | d. i dl ,thesignatureof thehel | o() operation isasfollows:

virtual HelloWwrld:: MQoject _ptr hell o
Hel | oWorl d: : MyQbj ect _ptr in_obj,
Hel | oWor |l d: : MyQbj ect _ptré& i nout_obj,
Hel | oWorl d: : MyQbj ect _ptr& out _obj) = 0;

Note that the IDL compiler generates a pure virtual function that needs to be implemented by a
servant.

A typica implementation of thehel | o() method by a servant named GoodDay| npl that
implementsthe Hel | oWbr | d: : GoodDay object is as follows:continue

Page 162

Hel | oWorl d: : MyQbj ect _ptr GoodDayl npl : : hel I o(
Hel | oWorl d: : MyQbj ect _ptr in_obj,
Hel | oWor |l d: : MyQbj ect _ptré& i nout_obj,
Hel | oWorl d: : MyQbj ect _ptré& out _obj)

/1if we need to hold onto the object
/I reference passed as in paraneter, need to
//duplicate it, ORB would release it otherw se
Hel | oWorl d: : MyQbj ect _ptr save_ in_obj =

Hel | oWorl d: : MyQbj ect:: _duplicate(in_obj);

//obtain an object reference
/leither by invoking _bind(), _narrow() or

/lother neans to initialize out_obj
out_obj =
Hel | oWorl d: : MyQbj ect:: _bind("Qut Coject”);

/I Rel ease incom ng inout paraneter
CORBA: :rel ease(in_obj)

[/ Now initialize the inout argunent
i nout _obj =
Hel | oWorl d:: MyQbj ect:: _bind("InQutChject");

/I Create a return val ue
Hel | oWorl d: : MyQbj ect _var ret_obj =
Hel | oWorl d: : MyQbj ect:: _bind("Retoject");

/1if we need to hold onto this object's
/lreference, duplicate it before we return it
//to the caller, else the ORB would release it
Hel | oWorl d:: MyQbject:: _duplicate(ret_obj);

return ret_obj;

}

In the above implementation, the types of the signature of the method matches the signature type
generated by the IDL compiler in the skeleton code. Again we use _bi nd() to obtain an
object reference, which we then useto initializeout _obj andr et ur n_obj . Theimportant
points to note here are the memory management rules. If we need to hold onto the object
reference passed to us an in parameter, we need to call _dupl i cat e() on the object
reference so that it is not released by the ORB. In accordance with case 2, we have to release
the object reference stored inthei nout parameter before we assign anew one to it. Also,
before we return an object reference, if we need to hold onto it for later use, we need to call
_duplicate() onitbeforewe return the value. Thisrule applies not only to object
references but al variable types.

Following these principles we set valuesto the out _obj argument, replace the valuesin the
i nout _obj argument, and createar et ur n_obj , initial-soft

Page 163

izeit, and return it to the client. We usethe _var class whenever possible to ensure proper
memory managemernt.

10—
M apping of Interfaces

IDL interfaces are mapped to C++ classes that contain datatype definitions and function
declarations for the operations of the interfaces. The mapping can be divided into client side
(caller) and a server side (called) mapping.

10.1—
Client Side Mapping

Given the background information on the mapping types and the rules for passing parameters,

we now look at how to use thisinformation to create distributed applications. The IDL
compiler isresponsible for creating the skeleton from which we can build our applications.
The client side pieces of this skeleton, commonly referred to as stubs, are implementations of
the C++ classes created by the IDL compiler from the corresponding IDL interface. From an
object reference obtained by the client, a client side proxy object is generated from the stubs
which allows the client to invoke functions as though the object were local. Upon execution,
the proxy object forwards the call to the implementation object and all the data marshaling and
low-level communication are transparently handled by the ORB to make remote invocations
appear local. In aclient program you need only declare an object reference of the C++ class
type, such as

Tester_var nyTester,;
and assign avalue to the variable, for example,

CORBA: : Obj ect obj = orb->string_to_object(iorString);
nyTester = nyTester._narrowobj);

The client can now invoke functions on this object in the usual manner. The differenceisin the
execution of the function. The proxy object forwards the call to the implementation object by
calling the ORB library to send the call to the remote object.

10.2—
Server Side Mapping

For the server side mapping we have to consider different cases. We have to consider two
object adapters, the BOA and the POA. In ether case the map-soft

Page 164

ping the IDL compiler generates is a skeleton class for each IDL interface. The implementor's
task is to implement the attributes and operations defined in the IDL specification and to glue
them together with the skeleton.

The gluing can be done in two ways, using an inheritance approach or a delegation approach.
In the inheritance approach you define an implementation class that inherits the skeleton class
generated by the IDL compiler. In the delegation approach the IDL compiler generates an
additional class, called the tie class. Thetie classis a pseudo-implementation class. Thetie
classinherits the skeleton class and holds a reference to the real implementation class you
provide.

The BOA specification is rather vague and it is particular in the area of the interface
implementation. Hence the mappings vary. For details on the various BOA details, review the
reference manuals of the particular products.

For demonstration purposes we use the Inprise VisiBroker for C++ idl2cpp compiler. For
example,

/| Exanpl e. i dl

i nterface Exanpl ef
void f();

s

compilesto produce the following C++ files:

interface_ex_c. hh
interface ex_c.cc
interface_ex_s. hh
interface ex_s.cc

Withini nt er f ace_ex_s. hh isthe skeleton class of thei nt er f ace_ex, named with the
prepended _sk_. From this the devel oper inherits and provides the class implementation and
method definitions.break

/llnterface Ex_ | npl enentation.h
#include Interface_Ex_s. hh

Class Exanple : public virtual _sk_Exanple

{
pr ot ect ed:
_sk_Exanpl e(const char *_obj _nanme = (const char *)NULL);
publ i c:
virtual void f() = GQ//operation stub
Page 165
1

/1l nterface Ex_ | npl enentation. cpp
#include Interface Ex | nplenentation.h

[/ const ruct or
Exanpl e: : Exanpl e() {

. /[linitialization(s);
}

voi d Exanple::f(){
.../ /do sonething

}

The POA takes the same approach as the BOA, but exactly defines the names and conventions
of the generated classes. First of all, the mapping defines avirtual C++ class with the same
name as the IDL interface, the classis asfollows:

[C++
class Exanple : public virtual CORBA:: (bject{
publ i c:
virtual void f();
i

There isachoice for ORB implementors of where to apply the virtual keyword, but the
signature of the interface isin any case the same. The mapping of the operations follows the
rules explained above.

The mapping defines two more classes for use in the inheritance and the del egation approach,
respectively. For the inheritance approach, aclass POA i nt er f ace_name is generated. It
inherits a servant base class and has the same signature asthe classi nt er f ace_nane. For
our example it would look like the following:

[C++
cl ass POA Exanple :: public virtual Portabl eServer:: Servant Base{
publ i c:
I,
virtual void f();
|

An implementation classis as follows:break

cl ass Exanpl el npl : public virtual PQA Exanpl e{
public
void foo() throw CORBA:: SystenkException){

Page 166

cout << ifoo invokedi << endi;
1
.
For the del egation approach, the compiler generates an additional class, thetie class. Thetie
classisnamed POA i nt er f ace_nane_t i e. Thetie classinherits the skeleton class. The
tie classfor our exampleis:

/] C++

t enpl at e<cl ass T>;

cl ass POA Exanple tie : public POA Exanpl e
publ i c:

1

It is now the application programmer's responsibility to provide the implementation of the
template class. For our examplethat is:

/] C++

t enpl at e<cl ass T>

voi d POA Exanpl e tie<T> :foo() throw CORBA: :SystenException){
cout << "foo invoked" << endl;

1

In the next chapter we explain the C++ mapping of the POA. More examples using the POA are
given throughout the remainder of the book, specifically in chapters 6 and 7.break

Page 167

Chapter 4—
ORB Runtime System

The CORBA specification defines the ORB runtime system in the form of the pseudo-objects

ORB, BOA and POA, and Obj ect . They are called pseudoobjects because they provide
interfaces like normal objects, but the operations on those interfaces are implemented in
libraries and do not usually result in aremote invocation. Interfaces of pseudo-objects are
specified in OMG IDL, which are commented as pseudo-IDL (PIDL). In this chapter we
explain the implementation of these pseudo-objects for C++ ORBS, that is, their corresponding
C++ APIs. Besides the three pseudo-objects, we introduce the C++ mapping for TypeCodes,
the DII, the DS, and the Contexts.

This chapter contains mappings for the following interfaces:
- CORBA: : (bj ect

- CORBA: : ORB

- CORBA: : BOA

- TypeCode

- DIl

- DS

- CORBA: : Cont ext

- CORBA: : PQADbreak

Page 168

1—
Object Interface

Using the BOA, all CORBA objects, that is, objects that have been specified in OMG IDL and
implemented in a CORBA environment, are extensions of CORBA: : (bj ect . Theinterface
CORBA: : bj ect definesthe operations that are applicable to any object. These operations
are implemented by the ORB itsalf instead of being passed to the implementation of the derived
object. POA servants are connected with CORBA: : Obj ect by delegation.

In this section we will discuss the mapping of these operationsto C++. The mappings will be
presented in the following format:

CORBA definition CORBA: : (bj ect
C++ mapping CORBA: : Obj ect

1.1—
get_implementation()
The Implementation Repository contains information that allows the ORB to locate and activate

object implementations. Thisinformation is accessible from an object with a CORBA
definition CORBA: : | npl enent at i onDef . Note that the specification of

CORBA: : | npl enent at i onDef isleft to the particular ORB implementation since it deals
with operating-system-specific information. The operating returns an object that can then be
queried about details of the object implementation.

CORBA definition | npl ement ati onDef get _i npl enentation();
C++ mapping CORBA | npl enent ati onDef _ptr::_get_inplenentatior

1.2—
get_interface()

The Interface Repository contains type information of 1DL-defined types. Although the Interface
Repository can be modified directly through an IDL-defined interface, the type information is
usually created and stored by the IDL compiler, with the appropriate options switched on. The
type information is kept in objects with the CORBA definition CORBA: : | nt er f aceDef .
Operations on thisinterface allow the query of type information in the Interface Repository.
Thequestionget i nterface() retunsan| npl enent at i onDef object that represents
that interface type of the object it was called on.break

CORBA definition | npl ement ati onDef get _interface();
C++ mapping CORBA InterfaceDef _ptr:: _get_interface()

Page 169

1.3—

IS _nil()

An object reference can be tested for this value by the operationi s_ni | () . Thisoperation
returns TRUE if the value of the referenceis nil, otherwise FALSE. The ORB determines the

result; the implementation of the object is not involved. Its parameter i< the object pointer
which needs to be checked.

CORBA definition bool ean is_nil ()
C++ mapping static CORBA:: Bool ean CORBA: :is_nil (NVList_ptr

1.4—
duplicate() and release()

The operationsdupl i cate() andr el ease() provide memory management for object
references. The operation dupl i cat e() isapublic member of the C++ class
CORBA: : Obj ect . Theoperationr el ease() isdefined in the CORBA namespace.

CORBA definition Obj ect duplicate();

vini A ral oacal)

VUI U 1 TI TAoCTy\),

C++ mapping static Qoject_ptr_duplicate
(Obj ectptr obj);
CORBA: : rel ease(nj ect _ptr obj);

The semantics and use of these operations are explained in Chapter 2.

1.5—

is a()

The operation is_a() testsif the object the operation is called on is of the interface type
supplied as an argument. This string argument to is_a() isinterpreted as an | nterface Repository
identifier (see Chapter 2 for an explanation). It returns TRUE if the object is of the type
identified. This means either that the object's type and the identified type are the same, or that
the identified type is a base type of the object's type. A FAL SE return value does not

necessarily mean that the object is not substitutable. The parameter for the C++ mapping isthe
repository identifier to check.

CORBA definition bool ean is_a(in string |ogical _type_id);
C++ mapping CORBA: : Bool ean _is_a(const char* |ogical _type_ic

1.6—
non_existent()

Theoperation non_exi st ent () can be used to test if an object has been destroyed. It
returns TRUE if the ORB can authoritatively determine thatcontinue

Page 170

the referenced object does not exist, otherwise it returns FALSE. Note that the FALSE may not
mean that the object still exists.

CORBA definition bool ean non_exi stent () ;
C++ mapping CORBA: : Bool ean _non_exi stent ()

1.7—
Is_equivalent()

Theoperationi s_equi val ent () determinesif two object references are equivalent, that
is, are they identical or do they refer to the same object. The operation returns TRUE if the
object reference on which the object was called and the reference ot her _obj ect are
known to be equivalent, otherwise it returns FALSE. Note that the FALSE does not mean that
the object could not possibly be the same.

~rNDR A Aofinitinn ic anmiiivalant/ in hiart nt hhar nhiart)-

UL/ uciiinuull 1 o_\,u|u| VAl viliL \ [WJ wvuL viilivl _UIJJ wuL l y

C++ mapping CORBA: : Bool ean _is_equival ent (CORBA:: Qbject_ptr
ot her _obj ect)

1.8—
hash()

The operation hash(') isused to effectively manage large numbers of object references. It
generates a hash value for the object reference on which the operation is called. The hash value
relates to an ORB-internal identifier. As usua with hash functions, different object references
can result in the same hash value and further operations, such as the operation

i s_equi val ent (), needto becalled.

CORBA definition unsi gned | ong hash(in unsigned | ong maxi mum ;
C++ mapping CORBA: : ULong hash(CORBA: : ULong maxi nmumn ;

1.9—
create request()

The operation cr eat e_r equest () isused to create a dynamic invocation request when
using the DII. It is discussed in this context in Chapter 7.break

CORBA definition Status create_request (
i n Context ctx,
in ldentifier operation,
in NVList arg_list,
i nout NanedVal ue result,
out Request request,
in Flags req_flags);

Page 171

C++ mapping CORBA: : Status _create_request (
Context _ptr ctx,
Const char *operation,
CORBA: : NVLi st _ptr arg_list,
CORBA: : NanedVal ue_ptré& resul t,
CORBA: : Request _out request,
Flags req_flags)

2_
ORB Interface

The ORB interface provides operations to bootstrap a CORBA application. This requires the
initialization of an object adapter, the conversion of object references into strings and vice
versa, and the resolution of initial references.

There are more operations defined on the ORB pseudo-interface that are concerned with
TypeCodes, contexts, the DI, and the DSI. The mappings for these operations are explained in
the appropriate sections. The ORB interface is mapped as follows:

CORBA definition CORBA: : ORB

C++ mapping CORBA: : ORB

2.1—
ORSB Initialization

Before an application can use the operations on the ORB interfaces it needs areferenceto an
ORB pseudo-object. The CORBA: : ORB i ni t () method initializes the ORB. A pointer to
the ORB isreturned. Theor b_i d parameter identifies the type of ORB to be used.

CORBA definition ORB ORB_ init(inout arg list argv, in ORB
orb_identifier);
C++ mapping CORBA: : ORB_init (int& argc,

char* const *argv,
const char* orb_id = NULL);

2.2—
Converting Object References into Strings and Vice Versa

Object references can be externalized by converting them into strings. A stringified object
reference can be conveniently stored in afile or passedcontinue

Page 172

around by means other than CORBA, for example, by ftp or email. Of course, astringified
object reference must be reconvertible into areal object reference, which refers to the same
object asthe original one.

There are two operations of the ORB interface which stringify and destringify object
references. Theobj ect _to_string() operation converts an interoperable object
reference (IOR) into a string.

CORBA definition string object _to_string(in Object obj);

C++ mapping char *object_to_string (CORBA:: Qbject_ptr obj)

Theoperationstri ng_to_obj ect () convertsastringified object reference back into an
IOR.

CORBA definition Qbj ect string to_object(in string obj);

C++ mapping CORBA: : Obj ect _ptr string_to_object
(const char *str)

A stringified I0OR that has been produced by obj ect _to_stri ng() isguaranteed to be
reconvertibleby st ri ng_t o_obj ect () independent of which ORB the operations have
been invoked on. Note that theresult of st ri ng_t o_obj ect () isof type

CORBA: : Obj ect and must be narrowed to the object type expected.

2.3—
Obtaining I nitial References

Besides initializing an ORB, client and server programs need to accessinitial objects such asa
root naming context, usually to bootstrap themselves. The ORB defines two operations for this
purpose.break

CORBA definition typedef string Objectld;
Typedef sequence <Objectld> ObjectldList;
exception InvalidName{};
ojectldList list_initial_services();

C++ mapping t ypedef char* Objectld;
class bjectldList{ ... };
class InvalidName{ ... };

ojectldList * list_initial_services();

CORBA definition Cbj ect resolve_initial _services(in Objectid
identifier)
rai ses(I nvalidNane);

C++ mapping oj ect resolve_initial_services(
const char *identifier);

Page 173

2.4—
BOA Initialization

A server also needs to initialize an object adapter. The ORB pseudo-interface provides the
operation BOA i ni t () toobtainaBOA.

CORBA definition BOA BOA_ init(inout arg lit argv, in QAD d
boa_identifier);

C++ mapping CORBA: : BOA ptr ORB::BOA_init(int & argc, char
*const *argv,
const char *boa_identifier = (char *) NULL);

25—
POA Initialization

A referenceto aninitial POA can be obtained using the operation r esol ve

initial _services(), asdefined above. The object identifier for theinitial POA is
RootPOA. An application program can obtain further, more refined POAs from the root POA,
which is explained below.

3—
Basic Object Adapter

Earlier we introduced the operation BOA i ni t (), which initializesaBOA and provides a
server with a pseudo-object reference to aBOA. In this section we introduce the operations

specified in BOA pseudo-interface and their mapping to C++. The IDL-specified BOA
pseudo-interface CORBA: : BOA is mapped to the C++ class CORBA: : BOA ptr.

3.1—
Activation and Deactivation

Theoperation obj ect i s_ready() makesthe specified object available for clients.

CORBA definition voi d object _is_ready(in Object obj,
I n I npl enent ati onDef inpl);

C++ mapping voi d obj _is_ready(CORBA: : | npl enent ati onDef _ptr
inpl _ptr = NULL);

Although an object reference can be passed to clients, for example, viaaNaming or Trading
Service, or externalized with obj ect _to_stri ng() assoonasan object is created,
methods can only be invoked after obj i s_ready() hasbeen caled for this particul ar
object.

Theoperation deact i vat e_obj ect () will deactivate the specified object. Once an
object has been deactivated it is no longer accessible to clients. Ancontinue

Page 174

attempt to invoke a method on a deactivated object will raise the exception

CORBA: : NO_| MPLEMENT.

CORBA definition voi d deactivate_object(in Ooject obj);

C++ mapping voi d deactivat e_obj ect (CORBA: : Cbj ect _ptr obj);

Theoperationi npl _i s_ready() activates objects on aper-server basis, that is, al
objects that have been created by a particular server are made accessible to clients.

CORBA definition void inpl _is_ready(in InplenmentationDef inpl);

C++ mapping void inpl _is_ready(
CORBA: : I npl enent ati onDef _ptr inpl _def = NULL);

Visibroker for C++, however, implements the method with dightly different semantics.
Visibroker requiresacall toobj i s_ready() for each object. The method
i mpl _i s_ready() makesaprogram listen for requests to the objects it has created.

3.2—
Other Operations

The BOA interface description provided in the CORBA module contains several additional
operations that are seldom used by any ORB implementation. The generation of object
references is usually done implicitly when a programming language reference to an
implementation object is passed as a parameter. The handling of authentication and access
control is done by a higher-level service. The reference data in an object reference may be
used for many purposes, among them retrieval of persistent state.

Note that the principal has been deprecated and we only show it for historical reasons. If you
want to implement your own access control, use the service context instead of the principal to
pass the identity of acaller along with an invocation.break

//interface CORBA: : BOA PIDL cont...

interface Principal;
t ypedef sequence <octet, 1024> Ref erenceDat a;

oj ect create(
I n ReferenceDat a id,
I n I nterfaceDef intf,
In | npl enentati onDef inpl);

voi d di spose(in Cbject obj);
Ref erenceData get _id(in Object obj);

Page 175

Voi d change_i npl enent ati on(

In Qbj ect obj ,
I'n I npl enentati onDef inpl);

Princi pal get_principal (

In bject obj ,

I n Envi ronnment env) ;
};//interface BOA
};// modul e CORBA

Theget _i d() operation will return the reference data of an object reference whichis
guaranteed to be unique within the server that implements the object. Activation and
deactivation of servers requires that object state information be stored persistently, for
example, in a database. The reference data can be used as a database key to retrieve this
information when a server is reactivated.

4—
TypeCodes

TypeCodes represent IDL type definitions at runtime. They can be created and examined at
runtime. TypeCodes are defined in the CORBA specification by the pseudo-CORBA definition
CORBA: : TypeCode. They are used in the following contexts:

The Any type—describes the type of the value contained by the Any object.
Dll—used to determine the type of the parameters of a Request.

| nterface repositor y—represents type specifications stored in the Interface
Repository. | ORs—represents the type of the referenced object.

4.1—
I nterface TypeCode

The pseudo-CORBA definition is mapped to C++ mappings or classes:

CORBA definition CORBA: : TypeCode

C++ mapping CORBA: : TypeCode

Thefollowing isalist of the TypeCode constants for IDL datatypes. All of the TypeCode
congtants have a datatype of TypeCode_pt r .break

_tc_null
_tc_void
_tc_short

Page 176

_tc_long
_tc_longlong
_tc_ushort
_tc_ulong

_tc_ul ongl ong
_tc_fl oat
_tc_doubl e
_tc_longdoubl e
_tc_bool ean
_tc_char
_tc_wchar
_tc_wstring
_tc_octet
_tc_Any
_tc_TypeCode
_tc_Principa
_tc_bject
_tc_string
_tc_NanedVal ue

41.1—
TCKind

The CORBA module defines a pseudo-IDL definition of an enun, TCKi nd. Thisenun
defines constants to determine various "kinds' of TypeCodes. Different operations are allowed
on different kinds of TypeCodes.

CORBA definition CORBA: : TCKi nd

C++ mapping CORBA: : TCKi nd

This classis used by the Interface Repository and the IDL compiler to represent the type of
arguments or attributes. Ty peCode objects are also used in aRequest to specify an
argument's type, in conjunction with the Any class. TypeCode objects have aki nd and
parameter list property.break

tk_nul |
tk_void
tk_short

tk_l ong

t k_l ongl ong
t k_ushort

t k_ul ong

t k_ul ongl ong
tk_float

t k_doubl e

t k_| ongdoubl e
t k_bool ean
tk_char

t k_wchar
tk_wstring
tk_octet

Page 177

t k_any
t k_TypeCode

tk_Princi pa
t k_obj r ef
tk_struct
tk_uni on
tk_enunm
tk_string

t k_sequence
tk_array

41.2—
General Methods

The operation equal () returns TRUE if the TypeCode is structurally equivaent to a
t ypecode, FALSE otherwise. Additionally, if the objects kind isnot CORBA: : t k_uni on,
aBadKind exception will be raised.

CORBA definition bool ean equal (i n TypeCode tc);

C++ mapping CORBA: : Bool ean equal
(CORBA: : TypeCode_ptr tc) const;

Theoperation ki nd() returnsthe kind of the TypeCode as defined in CORBA: : TCKi nd.

CORBA definition TCKi nd ki nd() ;

C++ mapping CORBA: : TCKi nd ki nd()const;

Theoperationi d() returnsaReposi t or yl d for atypein the Interface Repository.

CORBA definition Repositoryl D id()rai ses (BadKind);

C++ mapping CORBA: : String_var id();

There are three forms of repository identifiers:

IDL format. The string starts with "IDL:" and then uses the scoped name followed by a
major and minor version number to globally identify an object. We assume that objects
with the same magjor number are derived from one another. The identifier with the
larger minor number is assumed to be a subtype of the one with the smaller minor
number.

DCE UUID format. The string starts with "DCE:" and is followed by a UUID, a colon,
and then a minor version number.

LOCAL format. The string starts with "LOCAL:" and is followed by an arbitrary
string. Thisformat is for use with asingle repository that does not communicate with

ORBs outside its naming domain.break

Page 178

The operation nane() returns the unscoped name of the type as specified inthe IDL. Thisis
onlyvalidfort k_objref, tk struct, tk union, tk enum tk_ali as,
tk_except.

CORBA definition I dentifier name()rai ses(BadKind);

C++ mapping const char *name()const;

4.1.3—
Methodsfor Structured Types

The operation menber _count () returnsthe number of membersin the type description. Itis
only for thefollowing TypeCode kinds: t k_struct, tk_union, tk_enum and
tk_except.

CORBA definition unsi gned | ong nenber _count () rai ses(BadKi nd) ;

C++ mapping CORBA: : ULong nenber _count () const;
Throws system exception BadKi nd()

The operation nenber _nane() returnsthe name of the indexed member. Theindex is
zero-based. It isonly valid for the following TypeCodekinds: t k_struct, tk_uni on,
tk_enum andt _except.

CORBA definition I dentifier nmenber_name(in unsigned | ong index)
Rai ses(BadKi nd, Bounds);

C++ mapping const char nenber_nane CORBA:: ULong i ndex) const
Throws system excepti on BadKi nd and E

The operation menber _t ype() returnsthe type of the indexed member only valid for the
following Typecode kinds: t k_uni on,t k_except .

CORBA definition TypeCode nenber type(in unsigned | ong index)
Rai ses(BadKi nd);

C++ mapping CORBA_TypeCode_ptr: : menber _t ype(CORBA: : ULong
i ndex) const;

41.4—
Methods for Unions

The operation menber | abel () returnsthelabel of member index (of a case statement). It
isonly valid for thet k_uni on TypeCode kind.break

CORBA definition any nenber _| abel (i n unsigned | ong i ndex)
Rai ses(BadKi nd, Bounds);

C++ mapping CORBA: : Any_ptr CORBA TypeCode: : nenber _| abel (
CORBA: : ULong i ndex) const;
Throws system excepti ons BadKi nd and Bounds

Page 179

Theoperationdi scri m nat or _type() returnsthe type of the union discriminator (only
valid for t k_uni on).

CORBA definition TypeCode di scri m nator _type()rai ses(BadKi nd);

C++ mapping CORBA: : TypeCode_ptr
CORBA _TypeCode: : di scrim nator_type()
Throws system exception BadKi nd

Theoperation def aul t _i ndex() returnsthe default index of the union (only valid for
t k_uni on).

CORBA definition | ong defaul t _i ndex()rai ses(BadKi nd);

C++ mapping CORBA: : Long defaul t _i ndex() const;
Throws system exception BadKi nd

4.1.5—
Methods for Template Types

The operation | engt h() returnsthe number of elements contained by the type; it returns zero
for unbounded strings and sequences. It is only valid for the following TypeCode kinds:
tk_string, tk_sequence, tk_array.

CORBA definition unsi gned | ong | engt h() rai ses(BadKi nd) ;

C++ mapping CORBA: : U ong | engt h() const;
Throws system excepti on BadKi nd

The operation cont ent _t ype() returnsthe base type of the template types
(tk_sequence, tk_array) ortheaiasedtype(t k_al i as).

CORBA definition TypeCode content _type()rai ses(BadKind);

C++ mapping CORBA: : TypeCode_ptr context_type() const;
Throws system excepti on BadKi nd

4.2—
Creating TypeCodes

TypeCodes are created using operationsin the CORBA: : ORB interface. We will provide the
method signatures in this section. All the TypeCode creation methods follow a similar pattern.
The result of the method is the newly created TypeCode object. These methods must be
recursively applied for TypeCodes of recursive types.

4.21—
Structured and Flat Types

The methods to create TypeCodes for structured and flat types, that is, structs, unions, enums,
alias, exception, and interface, have the same firstcontinue

Page 180

two parameters. Thefirst parameter is a Repository Identifier specifying thetypein IDL. The
second parameter is the unscoped type name of the type. Further parameters determine specific
components depending on the kind of TypeCode. Thiswill be explained below.

Themethod cr eat e_struct _tc() createsaTypeCode describing an IDL structure. The
parameter members determine an array of structures defining the members of the type.

static CORBA : TypeCode ptr create _struct tc(
const char *repository_ id,
const char *type_nane,
const CORBA: : Struct Menber Seq& nenbers) ;

The method cr eat e_uni on_t c() createsa TypeCode describing an IDL union. The
parameter di scri m nat or _t ype determines the type of the discriminator, for example,
the type used in the switch statement. The parameter members determine an array of structures
defining the members of the type.

static CORBA: : TypeCode ptr create_union_tc(
const char *repository_ id,
const char *type_nane,
CORBA: : TypeCode_ptr di scrim nator_type,
const CORBA: : Uni onMenber Seq& nenbers) ;

The method cr eat e_enum t ¢() createsa TypeCode describing an IDL enum. The

parameter members determine an array of strings defining the members of the type.

static CORBA:: TypeCode_ptr create_enumtc(
const char *repository_id,
const char *type_nane,
const CORBA: : EnunmMvenber Seq& nenbers) ;

Themethodcreate_al i as_t c() createsaTypeCode describing an IDL typedef adias.
The parameter or i gi nal _t ype determines the aliased type.

static CORBA: : TypeCode_ptr create_alias_tc(
const char *repository_id,
const char *type_nane,
CORBA: : TypeCode_ptr original _type);

Themethod cr eat e_excepti on_t c() createsaTypeCode describing an IDL exception.
The parameter members determine an array of structures defining the members of the
type.break

Page 181

static CORBA: : TypeCode ptr create_exception_tc(
const char *repository_ id,
const char *type_nane,
const CORBA: : Struct Menber Seq& nenbers) ;

Themethodcreate_i nterface_tc() createsaTypeCode describing a CORBA
interface.

static CORBA: : TypeCode ptr create_interface tc(
const char *repository_ id,
const char *type_nane);

4.2.2—
Template Types

The methods to create TypeCodes for template types, that is, strings, sequences, and arrays,
have the same first parameter, length. These parameters specify the length of bounded types. A
zero value determines an unbounded type.

Themethod create_string tc() createsaTypeCode describing an IDL string.

static CORBA : TypeCode ptr create _string tc(
CORBA: : ULong bound);

The method cr eat e_sequence_t c() createsa TypeCode describing an IDL sequence.
The parameter el enent _t ype determines the type of the elements contained by the
sequence.

static CORBA: : TypeCode ptr create_sequence_tc(
CORBA: : ULong bound,
CORBA: : TypeCode_ptr el enent _type);

Themethod cr eat e_r ecur si ve_sequence_t c() createsa TypeCode describing an
IDL sequence. The parameter offset determines how many levels up in the type hierarchy the
TypeCode's definition can be found.

static CORBA: : TypeCode_ptr create_recursive_sequence_tc(
CORBA: : ULong bound,
CORBA: : ULong of fset);

Themethodcreate_array_t c() createsaTypeCode describing an IDL array. The
parameter el enent _t ype determines the type of the eements contained in the array.break

static CORBA: : TypeCode_ptr create_array_tc(
CORBA: : ULong | engt h,
CORBA: : TypeCode_ptr el enent _type);

Page 182

5—
Dynamic Invocation I nterface

The DIl enables clients to invoke operations on objects without compiletime knowledge of
their IDL type, that is, without the stub code generated by the IDL compiler. A client createsa
request, which is the dynamic equivalent of an operation. A request contains an object
reference, an operation name, type information, and the values of the arguments which are
supplied by the client. Eventually arequest can be invoked that has the same semantics as
invoking the operation using stub code.

In this section we will explain common data structures, the request interface, and the NV List
interface. The use of the DIl is explained by an example in Chapter 7.

51—
Common Data Structures

There are a number of common data structures to be used in the context of the DIl and
elsawherein the ORB. In this section we introduce NanedVal ue and NanedVal ueli st
and their respective mapping to C++.

Named values usually describe results and parameters of operations. A named valuelist is
used to describe a parameter list of an operation.

51.1—
Named Values

A named valueis specified in PIDL as

pseudo interface NanedVal ue{
readonly attribute Identifier nane;
readonly attribute any argunent;

readonly attribute Flags flags;

};

where nane determines the name of the parameter. The argument carries the value of the
parameter encapsulated in an Any. Note that the argument not only carries the value but aso
the type (in the form of a TypeCode) of avalue. Thel en parameter determines the length of
the value (argument) in bytes. Thear g_nodes can have the value CORBA: : ARG | N,
CORBA: : ARG _| NOUT, or CORBA: : ARG_QUT to determineif the parameter isi n, i nout ,

orout .

The type NamedVal ue is mapped as follows:

CORBA definition CORBA: : NanedVal ue

C++ mapping CORBA: : NanedVal ue

Its members are mapped to the following methods:.continue

Page 183
C++ mapping const char *name() const;
C++ mapping CORBA: : Any *val ue() const;
C++ mapping CORBA: : Fl ags fl ags() const;

Note that objects implementing the NaneVal ue interface cannot be created directly. Instead,
they must be obtained viathe NVLi st interface as shown below.

5.2—
Creating an NVList

AnNVLi st can be created by using the operation creat e _| i st () provided onthe ORB
pseudo-interface.

CORBA definition Status create_list(in | ong count,
out NVList new |list);

C++ mapping CORBA: : Status create_|ist(CORBA::Long count,
CORBA: : NVLi st _ptr& nvlist);

Theoperationcreat e | i st () createsapseudo-object of type NVLi st where count
determines the length of thelist. The return type St at us can be defined as either t ypedef
unsi gned | ong St at us (intended to describe a status code rather than raising an
exception) or t ypedef void Status.

5.3—
NVList Interface

Theinterface NVLi st isdefined in pseudo-IDL in the CORBA module. It providesthe
operations in the following subsections.

53.1—
Adding Elementsto NVLists

There are three operations defined in pseudo-IDL to add argumentsto an NVLi st .break

CORBA definition Status add(in Flags flags);

C++ mapping NanmedVal ue_ptr add(CORBA:: Fl ags fl ags);

CORBA definition Status add_iten(in Identifier itemnane, in Flacg
flags);

C++ mapping NanmedVal ue_ptr add_iten(const char *,

CORBA: : Fl ags fl ags);

CORBA definition Status add_value(in ldentifier itemnane, in any
value in Flags flags);

Page 184

C++ mapping NanedVal ue_ptr add_val ue(
const char *,
const Anyg&,
CORBA: : Fl ags fl ags);

Thef | ags parameter can take the values ARG | N, ARG_OUT, or ARG | NOUT, which
correspond to the parameter tagsi n, out , andi nout . The C++ language defines values for
these flags in the CORBA class.

The TypeCode and the value pointer parametersin the IDL are replaced by the Any inthe
methods. Thereisalso no need for thel engt h parameter becausethevoi d * isreplaced by
areference to a C++ Any object, and henceis of known length.

5.32—
Freeing Lists

The CORBA definition provides two operations to handle garbage collection.

53.3—
List Management

The pseudo-CORBA definition providesthe operation get _count () which returns the total
number of itemsin thelist.

CORBA definition St at us get _count (out | ong count);

C++ mapping CORBA: : Long count () const;

A number of other useful operations are provided. Thei t en{) method returns the indexed
element from the list.

C++ mapping CORBA _NanedVal ue_ptr itenm CORBA:: Long i ndex)

Ther enove() method removes the indexed el ement from the list. The exception
BAD_PARAN isthrown if theindex is out of range.

C++ mapping CORBA_NanedVal ue_ptr renove(CORBA: : Long i ndex)

54—
DIl Request

Request is a pseudo-CORBA definition that provides the mechanism to dynamically invoke
operations on objects. Requests are created by the ORB.

55—
Creating a Request

The pseudo-interface CORBA::ORB provides an operation to create Request objects. The
operationcr eat e_request () returnsanew Request pseudo-object.break

Page 185

CORBA definition Status create_request (
i n Context ctx,
in ldentifier operation,
in NVList arg_list,
i nout NanedVal ue result,
out Request request,
in Flags req_flags);

C++ mapping CORBA: : Status _create_request (
CORBA: : Cont ext _ptr ctXx,
const char *operation,
CORBA: : NVLi st _ptr arg_list,
CORBA: : NanedVal ue_ptr result,
CORBA: : Request _ptr& request,
Fl ags req_fl ags);

Thect x parameter specifies the context of the request. The operation parameter determines
the name of the operation to beinvoked. Thear g_| i st parameter provides the argumentsto
that operation. The result parameter provides atype expected as the result of the operation. The

req_f 1l ags andf | agsparameters indicate the memory management required for the out
parameters. If they are set to CORBA: : QUT_LI ST_MEMORY, al memory associated with out
parameters can be freed by the ORB when freeingthear g_| i st , otherwiseit has to be freed
explicitly. The newly created Request object is returned as the result of the method. Thereisan
additional operation to create partially initialized Request objects:

C++ mapping CORBA: : Request _ptr _request(const char* operatic

All other parameters of the Request object must be set through the object's interface as
described below.

5.6—
Request | nterface

The pseudo-interface Request is defined in the module CORBA. It is mapped to the C++
mapping CORBA: : Request . The pseudo-interface defines the following operations. The
add_ar g() operation incrementaly adds arguments of type NanedVal ue to the Request's
parameter list (of type NVLI st).break

CORBA definition St atus add_ar g(
in ldentifier nane,
in TypeCode arg_type,

Page 186

in void *val ue,
in long |en,
in Flags arg_flags

)i
C++ mapping CORBA: : Any& _addi narg(const char *nane);

When the Request is correctly initialized it can be invoked by calling thei nvoke()
operation:

CORBA definition Status invoke(in Flags arg_fl ags);

C++ mapping CORBA: : St at us i nvoke();

If the operation returns successfully, the result is set in the result field of the Request and the
i nout and out parameters have been modified in the Request's parameter list by the object

implementation.

The operation dest r oy() deletesthe Request object.

CORBA definition voi d destroy();

C++ mapping voi d destroy();

The operation send() allows an asynchronous Request to be made. The semantics are that the
operation returns without waiting for the target object to invoke the operation. It is paired with
the operation get _r esponse() which allowsthe caller to check for results at alater time.
Thei nvoke_f | ags parameter may contain the flag CORBA: : | NV_NO_RESPONSE to
indicate that the operation is one way, or that the caller expects no resultsin any case.

Thesend() operation is mapped to apair of methods. The method send_oneway() is
mapping for send() withtheflag CORBA: : | NV_NO_RESPONSE. It does not block and
does not result in a response being sent from the object implementation to the client
application. Themethod send_def er r ed() isthe mapping for send() without thisflag
set. It will not block waiting for aresponse. The client application can retrieve the response
usngtheget response() method.

CORBA definition Status send(in Flags invokeflags);

C++ mapping CORBA: : St at us send_oneway() ;
CORBA: : Status send_deferred()

The operation result and any inout or out parameters won't be valid until the operation

get _response() hasbeeninvoked and hasreturned. The operation get _r esponse()
receives the result as well asinout and out parameters from an operation invocation initiated
by thesend() operation.break

CORBA definition Status get _response(in Flags arg _flags);

C++ mapping CORBA: : St at us get _response();

Page 187
The methods block until the operation invocation initiated by the Request is complete.
Thereis an additional method, pol | _r esponse(), which returns a boolean value

indicating whether or not the operation invocation is complete.

C++ mapping CORBA: : Bool ean pol | _response();

It returns TRUE if the response to the asynchronous invocation is available, FAL SE otherwise.
Notethat get _r esponse() must becaled evenif pol | _response() returns TRUE,
sinceonly get _response() readsin the result values.

The CORBA specification provides an operation for making multiple requests,
send_nmnul ti pl e_request s(), and acorresponding response operation
get _next _response() . These operations are defined in C syntax.

The operations are mapped to the following C++ methods provided in the CORBA: : ORBclass.
The method send_nul ti pl e_requests_oneway() sendsall therequestsinits
argument array, and the method send_nul t i pl e_requests_def erred() sendsall of
the requests provided to it and returns.

C++ mapping CORBA: : Status send_mnul ti pl e_requests_oneway(

const CORBA: : Request Seq& seq) ;

Themethod get _next response() blocksuntil aresponse to adeferred Request is
available. Themethod pol | _next response() informsthe caler if any invocations have
completed.

C++ mapping CORBA: : St at us get _next _response(
CORBA: : Request *& request)

C++ mapping CORBA: Bool ean pol | _next _response();

6—
Dynamic Skeleton Interface

The DI provides a mechanism to invoke operations from a client without compile-time
knowledge about the interface. The DSI provides a similar mechanism for the other side; that
is, the ORB can invoke an object implementation without compile knowledge abott the

interface, that is, without the skeleton. For an object implementation, acall viaa
compiler-generated skeleton and the DS| are indistinguishable.

The idea behind the DSI isto invoke al object implementations via the same genera
operation. This operation is provided by an interface of thecontinue

Page 188

pseudo-object, called Ser ver Request , which issimilar to the Request pseudoobject of the
DIl. Weillustrate the use of the DSI in Chapter 7.

6.1—

ServerRequest | nterface

The pseudo-IDL specification of Ser ver Request providesthe following operations. The
operation op_nane() returnsthe name of the operation that was invoked.

CORBA definition I dentifier op_nane();

C++ mapping const char* op_nane() const;

Thect x() operation providestheinvocation Cont ext of the operation.

CORBA definition Cont ext ctx();

C++ mapping CORBA: : Context _ptr ctx() const;

Thepar ans() operation returnsthe list of parameters passed to the invocation.

CORBA definition voi d parans(inout NVLi st parans);

C++ mapping voi d paranms(CORBA: : NVLi st _ptr parans);

Ther esul t () operation returns the Any in which the result is to be placed.

CORBA definition Any result();

C++ mapping void resul t (CORBA: : Any_ptr result)

7_
Context I nterface

A context object contains alist of properties, pairs of names, and values. CORBA restricts
valuesto type string. The intended role of context objectsis similar to that of environment
variables in various operating systems, which can determine a user's or an application's
preferences. They could be defined for a system, for auser, or for an application. Context
objects can be manipulated by concatenating their property lists or by arranging them into
context trees. We demondtrate the use of contextsin Chapter 7.

Operations can be declared with a context by adding a context clause after the raises
expression. A context is made available to the server by an additional argument to the stub and
skeleton interfaces. When an operation with a context isinvoked through either the stub or the
DI, the ORB will insert the values of the properties of the specified context.break

Page 189

7.1—
Creating a Context Object

Contexts are organized in trees. Each context has an internal reference to its parent context. The
root context is the global default context. The pseudointerface Context is mapped to C++
mappings and classes.

CORBA definition CORBA: : Cont ext

C++ mapping CORBA: : Cont ext

The ORB pseudo-interface provides the operation get _def aul t _cont ext () toobtain
the root context. The equivalent method is provided by the C++ class CORBA: : ORB.

CORBA definition Status get _default _context(out Context ctx);

C++ mapping CORBA: : St at us
get _default_cont ext (CORBA: : Context _ptr&);

7.2—
Manipulating a Context Object

The pseudo-CORBA definition CORBA: : Cont ext provides operations to manipulate a
context object. The operation set _one_val ue() setsthe vaue of the named property.

CORBA definition St at us set _one_val ue(
in Identifier proper_nane,
in string val ue

)

C++ mapping CORBA: : St at us set _one_val ue(const char *nane,
const CORBA_Any&);

Thevaueissupplied asan Any rather thana St r i ng. Notethat NanedVal ue also has
values of type Any.

The operation set _val ues() setsthe values of those properties that are named in the
values parameter.

~rNDDR A Aofinitinn Ct at 1ie cat valiiaelin N\/Mict val 1iae) -

NUMN\D//A UCHiinuull L AL Uuo Q\cL_VuI U\’Q\I n INVLI OL var uvo l y

C++ mapping CORBA: : St atus set_val ues (CORBA:: NVList_ptr);

Note that the flags of the items of the NVLi st must be zero and that the TypeCode field of the
values of theitems must be TC_St ri ng.

Vaues can be read with the operation get _val ues() .break

CORBA definition St at us get _val ues(
in ldentifier start_scope,

Page 190
in Flags op_flags,
in Identifier prop_Nane,
out NVLi st val ue
);
C++mapping CORBA: : St at us get _val ues(const char *start_scope

CORBA: : Fl ags, const char *nane,
CORBA: : NVLi st _ptr&);

Thepr op_nane parameter specifies the name of the returned properties. A string can specify
multiple property names by using a naming convention with awildcard "*" smilar to the
notations used in various operating system shells. The parameter st art _scope determines
the scope of this query within the context hierarchy. The naming of scopesisimplementation
dependent. Theop_f | ags parameter can have the value CORBA: : CTX_RESTRI CT _
SCOPE, which limits the scope to the specified st art _scope. An empty flag uses the whole
context tree. The value parameter carries the named properties, including their values
contained in Anys.

The operation del et e_val ues() deetesthe named properties from the context object.

CORBA definition Status del ete_values(in ldentifier prop_nane);

C++ mapping CORBA: : St at us del et e_val ues(const char *nane)

Finally, thereis amethod that returns the name of the context object.

C++ mapping const char *context_nane() const;

7.3—
Manipulating the Context Object Tree

There are additional operations on the context object to manipulate the context tree. The
operationcreat e _chi |l d() createsanew context object that isachild of the object on
which the operation isinvoked.

CORBA definition Status create_chil d(
in ldentifier ctx_nane,
out Context child ctx

)
C++ mapping CORBA: : Status create_chil d(

const char *name,
CORBA: : Context _ptr &)

The methods mapping this operation assign a parent context to an existing context which is
obtained through theget _def aul t _cont ext () operation.break

Page 191

C++ mapping CORBA: : St at us
get default_cont ext (CORBA: : Context ptré&)

The operation del et e() deletesthe context object on whichitisinvoked. Thedel _fl ags
parameter can take the value CORBA: : CTX_DELETE_DESCENTS. If thisflag is specified it
causes the deletion of all descendent objects. If the flag is not specified and the object has
children, an exception is raised.

CORBA definition Status delete(in Flags del flags);

C++ mapping voi d operator delete(void *p)

Thereisan additional C++ function that returns the parent context of the object. It returns null if
the context is the global default context.

C++ mapping CORBA: : Context _ptr parent();

Portable Object Adapter

This section describes the C++ mapping of the portable object adapter (POA). The POA has
recently been added to the CORBA specification and supercedes the BOA. Basically the POA
plays the samerole as the BOA, being an object adapter, but in contrast to the BOA, the POA
isfully specified.

The POA-related interfaces are defined in a separate module from the CORBA module. Itis
called the Por t abl eSer ver module.

8.1—
POA Policies

The POA: : cr eat e_PQOA operations are derived interfaces from CORBA: : Pol i cy. Policy
objects are created using factory operations on any preexisting POA. Policy objects are
specified when a POA is created. Policies may not be changed on an existing POA. Policies
are not inherited from the parent POA.

We will discuss the various policies that are defined for the POA. Each of the policies may
have several values which influence the mechanisms of the policy.

- Thread policy

- Lifespan policy

- Object ID uniqueness policy
- 1D assignment policy

- Request processing policy

- Implicit activation policybreak

Page 192

8.11—
Thread Policy

ThePOA: : create_t hread_pol i cy() operation creates Thr eadPol i cy objects.
These are passed to the POA: : cr eat e_POA() operation to indicate which threading model
to use for the POA that was created.

CORBA definition ThreadPol icy create_thread_policy(in
Thr eadPol i cyVal ue
val ue) ;

C++ mapping ThreadPol icy _ptr create_thread_policy(
Thr eadPol i cyVal ue val ue);

The values that can be passed to the value parameter are

ORB_CTRL_MODEL. Assigning requests for an ORB-controlled POA to threadsis
the responsibility of the ORB.

SINGLE_THREAD_MODEL. Single-threaded POA requests are processed
sequentially.

The default value for the parameter is ORB_CTRL_ MODEL.

8.1.2—
Lifespan Policy

ThePOA: : create_ | i fespan_policy() operationcreatesLi f espanPol i cy
objects. These are passed to the PQOA: : cr eat e_POA operation to specify the lifespan of the
objects implemented for the POA that was created.

CORBA definition Li fespanPolicy create_|ifespan_policy(in
Li f espanPol i cyVal ue val ue);

C++ mapping Li fespanPolicy ptr create_|ifespan_policy(
Li f espanPol i cyVal ue val ue);

The values that can be passed to the value parameter are

TRANSIENT. The POA-implemented objects cannot outlive the process that created
them. An OBJECT _NOT_EXIST exception will be raised for any object references
that use the deactivated POA.

PERSISTENT. The POA-implemented objects are allowed to outlive the process that
created them.

The default value for the parameter is TRANSIENT.

8.1.3—
Object I D Uniqueness Palicy

ThePOA: : cr eat ei d_uni queness_pol i cy operation creates

| dUni quenessPol i cy objects. These are passed to the PQA: : cr eat e_POA operation
to indicate whether the servants activated in the created POA must have unique object
identities.break

Page 193

CORBA definition 1 dUni quenessPol i cy create_i d_uni queness_policy(i
| dUni quenessPol i cy val ue);

C++ mapping | dUni quenessPol i cy_ptr create_id_uni qgueness_pol i
(I dUni quenessPol i cyVval ue val ue);

The values that can be passed to the value parameter are
UNIQUE_ID. Servants activated with that POA support exactly one object ID.

MULTIPLE_ID. Servants activated with that POA may support one or more object
IDs.

The default value for the parameter is UNIQUE _ID.

8.14—
ID Assignment Policy

ThePOA: : create_i d_assi gnnent _pol i cy operation creates

| dAssi gnnent Pol i cy objects. These are passed to the PQA: : cr eat e PQA operation
to indicate whether object IDsin the created POA are generated by the application or by the
ORB.

CORBA definition |1 dAssi gnnment Pol i cy create_i d_assi gnnment _policy(i
| dAssi gnnent Pol i cy val ue);

C++ mapping | dAssi gnnment Pol i cy_ptr create_id_assi gnnent _pol i
(I dAssi gnnent Pol i cyVal ue val ue);

The values that can be passed to the value parameter are
USER_ID. The application can only assign object IDs to the created POA.

SYSTEM _ID. The POA can only assign object IDsto the created POA. If the POA
also hasthe PERSISTENT policy, assigned object IDs must be unique across al
instantiations of the same POA.

The default value for the parameter isSYSTEM _ID.

8.1.5—
Servant Retention Poalicy

ThePOA: : creat e_servant _retenti on_pol i cy operation creates

Servant Ret ent i onPol i cy objects. These are passed to the POA: : cr eat e POA()
operation to indicate whether the created POA retains active servants in an active object
map.break

CORBA definition Servant Retenti onPolicy create_servant_retention_
(in Servant RetentionPolicy val ue);

C++ mapping Servant Ret enti onPol i cy_ptr
create_servant _retention_policy
(Servant Ret enti onPol i cyVal ue val ue) ;

Page 194

The values that can be passed to the value parameter are
RETAIN. Active servants will be retained by the POA in its active object map.
NON_RETAIN. Servants are not retained by the POA.

The default value for the parameter is RETAIN.

8.1.6—
Request Processing Policy

ThePOA: : creat e_request _processi ng_pol i cy() operation creates
Request Pr ocessi ngPol i cy objects. These are passed to the POA: : cr eat e POA()
operation to indicate how requests are processed by the created POA.

CORBA definition Request Processi ngPol i cy create_id_assi gnnent _pol
(i n Request Processi ngPol i cy val ue);

C++ mapping Request Processi ngPol i cy_ptr request_processing

_policy
(Request Processi ngPol i cyVal ue val ue);

The values that can be passed to the value parameter are

USE_ACTIVE_OBJECT_MAP_ONLY. The RETAIN policy isalso required for
this parameter. If the object ID is not found in the active object map, an
OBJECT_NOT_EXIST exception is returned to the client. The POA does no automatic
object activation. The server must activate all objects served by the POA explicitly.

USE_DEFAULT_SERVANT. With the RETAIN policy, thereis adefault servant
defined for all requests involving unknown objects. The POA first triesto find a
servant in the active object map for a given object. If it does not find such a servant, it
uses the default servant. With the NON_RETAIN policy, the request is dispatched to
the default servant, if the default servant was registered with the POA. An

OBJ ADAPTER exception is returned to the client since no default servant has been
registered. The MULTIPLE _ID policy isalso required.

USE_SERVANT_MANAGER. Thisvaue, along with the RETAIN policy, will make
the object try to determine the servant by means of invoking thei ncar nat e()

method in the Ser vant Manager , if the POA doesn't find a servant in the active
object map. With the NON_RETAIN policy, one servant is used per method call. The
POA does not try to find a servant in the active object map because the active object
map doesn't exist. In every request, thecontinue

Page 195

POA will invoke the appropriate operation on the default servant registered with the
POA. If no default servant is available, the POA will raise the OBJECT_ADAPTER
system exception.

The default value for the parameter isUSE_ACTIVE_MAP_ONLY.

8.1.7—
Implicit Activation Policy

ThePOA: : create_inplicit_activation_policy() operation creates

| mplicitActivationPolicy objects. These are passed to the

POA: : creat e_PQOA() operation to indicate whether implicit activation of servantsis
supported in the created POA.

CORBA definition I nplicitActivationPolicy create_inplicit_activat
(in InplicitActivationPolicy val ue)

C++ mapping | mplicitActivationPolicy_ptr
create_inplicit_activation_policy
(I'nplicitActivationPolicyVal ue val ue);

The values that can be passed to the value parameter are

IMPLICIT_ACTIVATION. Implicit activation of servantsis supported by the POA.
This also requiresthe SYSTEM _ID and RETAIN policies.

NO_IMPLICIT_ACTIVATION. Implicit activation of servants is not supported by
the POA.

The default value for the parameter isNO_IMPLICIT_ACTIVATION.

8.2—
POAManager | nterface

Each POA object has an associated POAManager object. There are four methods within the
POAManager object construct. These operations correspond directly to four of the possible
processing states: active, inactive, holding, and discarding.

8.2.1—
activate()

Theact i vat e() operation changes the state of the POA manager to an active state. The
operation will raise an Adapt er | nacti ve exceptionif acti vat e() isissued whilethe
POA manager isin the inactive state. The POAS can process requests while in the active
state.break

CORBA definition void activate()
rai ses (Adapterl nactive);

L L mannina vni A activat afl)

UMy VUI U UuuvLl val v\ J,

Page 196

8.2.2—
hold _requests()

The state of the POA manager is changed to holding when this operation is used. An

Adapt eri nacti ve exceptionisraisedif hol d_r equest s() isissued while the POA
manager isin the inactive state. POAs can queue incoming requests while in the holding state.
Requests will continue to be queued while in the holding state for any requests that have been
queued and have not started executing.

The operation returns immediately after changing the state for a FAL SE value of the

wai t _for_conpl eti on parameter. For a TRUE vaue of the parameter, the operation
does not return until either there are no actively executing requests in any of the POAs
associated with this manager or the state of the POA manager is changed to a state other than
holding.

CORBA definition voi d hol d_requests(in bool ean wait_for_conpletic
rai ses (Adapterlnactive);

C++ mapping voi d hol d_request s(
CORBA: : Bool ean wait_for_conpl eti on)

8.2.3—
discard_requests()

The state of the POA manager is changed to discarding when this operation is used. An
Adapt er | nact i ve exception israised while the POA manager isin the inactive state. The
POA s discard incoming requests when entering the discarding state. Also, any requests that
have been queued and are not executing are discarded. A TRANSIENT system exception is
raised to the client when arequest is discarded.

The operation returns immediately after changing the state for a FAL SE value of the

wai t _for_conpl eti on parameter. For a TRUE value of the parameter, the operation
does not return until either there are no actively executing requests in any of the POAs
associated with this manager or the state of the POA manager is changed to a state other than
discarding.

CORBA definition voi d di scard_requests(in boolean wait_forconpl et
rai ses(Adapterl nactive);

C++ mapping voi d di scard_request s(CORBA: : Bool ean
wait _for_conpletion)

8.2.4—
deactivate()

The state of the POA manager is changed to inactive when this method is used. An
Adapt er| nacti ve exceptionisraised if thedeact i vat e() method isissued while the
POA manager isin the inactive state. The associated POA scontinue

Page 197

reject requests that have not begun to be executed, as well as any new requests upon entering
the inactive state.

If theet her eal i ze_obj ect s parameter is TRUE, the POA manager will cause all
associated POAs that have the RETAI N and USE_SERVANT _MANAGER policies to performr
theet her eal i ze() operation on the associated servant manager for all active objects. If
theet her eal i ze_obj ect s parameter isFALSE, theet her eal i ze() methodisnot
called. Thisis so that developers can be provided with a means to shut down POAsin some
unrecoverable error situation or in acrisis.

The method will return immediately after changing the state, if thewai t _f or _operati on
parameter isFALSE. In the case of aTRUE valuefor thewai t _for _conpl eti on
parameter, the method will not return until there are no actively executing requestsin any of the
POA s associated with this POA manager. In addition, if theet her eal i ze_obj ect s
parameter is TRUE, then dl invocations of et her eal i ze() have completed for POAs
having the RETAI N and USE_SERVANT _MANAGER policies.

CORBA definition voi d deactivate(in bool ean etherealize_objects,
in boolean wait _for_conpl etion)
rai ses(Adapterlnactive);

C++ mapping voi d deacti vat e(
CORBA: : Bool ean et hereal i ze_obj ect s,
CORBA: : Bool ean wait_for_conpl eti on)

8.3—
AdapterActivator | nterface

Adapter activators are associated with POAs. The ability to create child POAs on demand is
the domain of the adapter activator. Note that an application server that creates al its needed
POAss at the beginning of execution does not need to use or provide an adapter activator. We
only need the adapter activatorsin the case of POAs that need to be created during request
processing. An Adapt er Act i vat or object must be loca to the process containing the POA
objects it is registered with.

8.3.1—
unknown_adapter ()

When the ORB receives arequest for an object reference that identifies atarget POA that does

not exist, then this operation isinvoked. For each POA that must be created in order for the
target POA to exist, the ORB must invoke this operation. The method is invoked in the adapter
activator associated with the POA that is the parent of the POA that needs to be
created.continue

Page 198

The parent parameter represents the parent POA that is passed. The name parameter represents
the name of the POA to be created.

When the method returns TRUE, the ORB will process the request. If the method returns
FALSE, the ORB will processthe request and it will return OBJECT_NOT_EXI ST to the
client. If multiple POAs need to be created, the ORB will invoke unknown_adapt er once
for each POA that needsto be created. The OBJECT_NOT_EXI ST exception will be raised if
the parent of a nonexistent POA does not have an associated adapter activator. The ORB will
report an OBJ_ADAPTER exception if the method raises a system exception.

CORBA definition bool ean unknown_adapt er (i n POA par ent,
in string nane);

C++mapping CORBA: : Bool ean unknown_adapt er (
Port abl eServer:: POAptr parent,
const char *nane);

8.4—
ServantActivator | nterface

Servant managers are associated with POAs. When the POA hasthe RETAI N policy, it uses
servant managersthat are Ser vant Act i vat or s. There are a couple of methods that help in
the management of this concept.

8.4.1—
incarnate()

Whenever the POA receives arequest for an object that is not currently active, this operation is
invoked by the POA. We are assuming that the POA has the USE_SERVANT _MANAGER and
RETAI N policies.

Theoi d parameter contains the object ID value associated with the incoming request. The
adapt er parameter isan object reference for the POA in which the object is being activated.

If thei ncar nat e() operation returns a servant that is already active for a different object
ID and if the POA aso hasthe UNI QUE_I D policy, thei ncar nat e() hasviolated the POA
policy and is considered to bein error. The POA will raise an OBJ_ ADAPTER systerr
exception for the request.break

CORBA definition Servant incarnate(in Objectld oid,
in POA adapter)

v ai cncl CAarwvnmnr ADAanIiAct \ -

I Al STO\ rvil vval uncyucotu j ,

C++ mapping Port abl eServer:: Servant _ptr incarnate(
const (bjectld& oid,
POA ptr adapter);

Page 199

8.4.2—
etherealize()

Whenever a servant for an object is deactivated, this operation isinvoked. The POA must have
the USE_ SERVANT _MANACER and RETAI N policies. An active servant may be deactivated
by the servant manager viaet her eal i ze() , evenif it was not incarnated by the servant
manager.

Theoi d parameter contains the object 1D value of the object being deactivated. The adapter
parameter is an object reference for the POA in whose scope the object was active. Theser v
parameter contains a reference to the servant that is associated with the object being
deactivated. The ser v parameter has avaue of TRUE if the denoted servant is associated
with other active objectsin the POAs active map at thetimethat et her eal i ze() iscalled,
otherwise it iISFALSE. If thecl eanup_i n_pr ogr ess parameter is TRUE, the reason for
theet her eal i ze() operation isthat either the deactivate or destroy operation was called
withan et her eal i ze_obj ect s parameter of TRUE. For a FALSE parameter, the

et hereal i ze() operationiscalled for other reasons.

CORBA definition void etherealize(in OQojectld oid,
in POA adapter,
in Servant serv,
i n bool ean cl eanup_i n_progress,
i n bool ean renmai ni ng_activations);

C++ mapping void etherealize (const (ojectld& oid,
POA ptr adapter,
Servant _ptr serv,
CORBA: : Bool ean cl eanup_i n_pr ogr ess,
CORBA: : Bool ean remai ni ng_acti vati ons)

8.5—
ServantLocator | nterface

When the POA hasthe NON_RETAI N policy, it uses servant managers that are
Servant Locat ors.

85.1—
preinvoke()

This method isinvoked by the POA whenever the POA receives arequest for an object that is
not currently active, assuming the POA has the USE_SERVANT _MANAGER and

NON_RETAI N policies. The oi d parameter contains the object ID value associated with the
incomring request. The adapt er parameter is an object reference for the POA in which the
object isbeing activated. The Cooki e parameter is atype that is opague to the POA which
can be set bycontinue

Page 200

the servant manager for use later by the post i nvoke method. The operation is the name of
the operation that will be called by the POA when the servant is returned.

CORBA definition Servant prei nvoke(in ObjectlD oid,
in POA adapter,
in CORBA::ldentifier operatic
out Cooki e the_cookie)
rai ses(Forwar dRequest) ;

C++ mapping Port abl eServer:: Servant _ptr preinvoke(
bj ect 1 d& oi d,
PCA ptr adapter,
CORBA: : I dentifier_ptr operation,
Cooki e ptr& the_cookie);

8.5.2—
postinvoke()

This method is invoked whenever a servant completes a request, assuming the POA has the
USE_SERVANT_MANAGER and NON_RETAI N policies. The oi d parameter contains the
object 1D vaue associated with the incoming request. The adapt er parameter is an object
reference for the POA in which the object is being activated. The Cooki e parameter is atype
that is opaque to the POA which can be set by the servant manager for use later by the

post i nvoke method. The oper at i on isthe name of the operation that will be called by
the POA when the servant isreturned. Thei n_ser vant parameter contains areferenceto
the servant that is associated with the object. Please note that destroying a servant that is known
to the POA can lead to undefined results.break

CORBA definition Servant postinvoke(in Oobjectld oid,
in POA adapter,
in CORBA: :ldentifier operati
i n Cooki e the_cooki e,
in Servant the_servant)

v ai cncl CAarwvnmnr ADAanIiAct \ -

I Al STO\ rvil vval uncyucotu j ,

C++ mapping Port abl eServer:: Servant _ptr preinvoke(
bj ect 1 d& oi d,
POA ptr adapter,
CORBA: : I dentifier_ptr operation,
Cooki e_ptr the_cookie,
Servant _ptr the_servant);

Page 201

8.6—
POA Interface

A POA object manages the implementation of a collection of objects. There is support for a
namespace for the objects that are identified by object IDs. In addition, a POA also provides a
namespace for POAs. A POA iscreated as achild of an existing POA, which forms a hierarchy
starting with the root POA.

8.6.1—
create POA()

This method creates a new POA as a child of the target POA. Theadapt er _nane
parameter identifies the new POA with respect to other POAs with the same parent POA. A
new POAManager object is created and associated with the new POA if thea_POAManager
paraeter is null. Otherwise the specified POAManager object is associated with the new
POA. The POAManager object can be obtained using the attribute namet he_ POAManager .
Thepol i ci es parameter indicates which specified policy objects are associated with the
POA. It isused to control the POA behavior. Policies are not inherited from the parent POA.

The method will raise the Adapt er Al r eadyExi st s exception if the target POA aready
has a child POA with the specified name. An | nval i dPol i cy exception israised if
conflicting policy objects are specified, or if any of the specified policy objects require prior
administrative action that has not been performed. The exception contains the index in the
policies parameter value of the first offending policy object.

CORBA definition POA create POA(i n string adapter_nane,
i n POAManager a_PQAManager,
in CORBA: : PolicyList policies)
rai ses(Adapt er Al readyExi sts, |nvalidPolicy)

C++ mapping Port abl eServer:: POA ptr create_PQOA(
const char *adapter_nane,
POAManager ptr a_ PQOAManager,
CORBA: : Pol i cyLi st _ptr policies);

8.6.2—

find_POA()

This method will return the child POA if the target POA is the parent of a child POA with the
specified name. If thevalue of theact i vat e_i t parameter is TRUE and if achild POA
with the specified name does not exist, then the target POA's adapter activator isinvoked, if it
exigts. If it successfully activates the child POA, then that child POA isreturned. An

Adapt er NonExi st ent exception is raised otherwise.break

Page 202

CORBA definition POA find_POA(in string adapter_nane,
in bool ean activate_it);
rai ses(Adapt er NonExi st ent)

C++mapping Por t abl eServer:: POA_ptr find_POA (
const char *adapter_nane,
CORBA: : Bool ean activate_it);

8.6.3—
destroy()

This method destroys the POA and all descendant POAs. The destroyed POA may be
re-created later in the same process. When a POA is destroyed, any requests that have started
execution continue to completion. Any requests that have not started execution are processed as
if they were newly arrived, that is, the POA will attempt to cause re-creation of the POA by
invoking one or more adapter activators.

The parameters to this method have boolean values. If theet her eal i ze_obj ect s
parametersis TRUE, the POA hasthe RETAIN policy, and a servant manager is registered
with the POA, thenthe et her eal i ze operation on the servant manager will be called for
each active object in the active object map. If an et her eal i ze() method attempts to invoke
the operations on adestroyed POA, then it will receive an OBJECT_NOT_EXI ST exception.

If thewai t _for_conpl eti on parameter is TRUE, thedest r oy () operation will return
only after all requests in process have completed and all invocations of et her eal i ze have
completed. Otherwisethedest r oy() operation returns after destroying the POAS.

CORBA definition voi d destroy(i n bool ean et herealize_objects,
in boolean wait_for_conpletion);

C++ mapping voi d destroy(CORBA: : Bool ean et herealize_objects,
CORBA: : Bool ean wait _for_conpl etion)

8.6.4—
get_servant_manager ()

The USE_SERVANT _MANAGER policy is required for this method. Otherwise a

W ongPol i cy exception israised. This method returns the servant manager associated with
the POA. If no servant manager has been associated with the POA, it returns a null reference. It
is system dependent whether the root POA initially has a servant manager; the application is
free to assign its own servant manager to the root POA .break

CORBA definition Ser vant Manager get_servant _manager ()
rai ses (WongPolicy);

C++ mapping Servant Manager _ptr get_servant _manager ();

Page 203

8.6.5—
set_servant_manager ()

This method sets the default servant manager associated with the POA. The
USE_SERVANT_MANAGER policy isrequired for this method. If not present, the
W ongPol i cy exception is raised.

CORBA definition voi d set_servant _manager (i n Servant Manager i ngr)
rai ses(WongPol i cy) ;

C++mapping (voi d set_servant _manager (Ser vant Manager _ptr int

8.6.6—
get servant()

This method returns the default servant associated with the POA. A NoSer vant exception is
raised if no servant has been associated with the POA. The USE_DEFAULT _SERVANT
policy isrequired for this method. If not present, the W ongPol i cy exception is raised.

CORBA definition Servant get _servant ()
rai ses(NoServant, WongPolicy);

C++mapping Servant _ptr get_servant();

8.6.7—
set_servant()

The specified servant (with the POA as the default servant) is registered with this method. This
method will be used for al requests for which no servant is found in the active object map. The
USE_DEFAULT_SERVANT policy isrequired for this method. If not present, the

W ongPol i cy exception israised.

CORBA definition void set_servant(in Servant p_servant)
rai ses(WongPol i cy);

C++mapping voi d set_servant (Servant _ptr p_servant);

8.6.8—
activate_object()

This method generates an object ID and enters the object ID and the specified servant in the
active object map. The object ID isreturned. The SYSTEM | C and RETAI N policies are
required for this method, otherwise aW ongPol i cy exceptionisraised. Also, a

Servant Al r eadyAct i veexceptionisraised if the POA hasaUNI QUE_| D policy and the
specified servant is already in the active object map.break

CORBA definition Cbj ectid activate _object(in Servant p_servant)
rai ses (Servant Al readyActive, Wc

C++ mapping Qoj ect I d* activate_object(
Servant _ptr servant);

Page 204

8.6.9—
activate _object_with_id()

This method enters an association between the specified object ID and the specified servant in
the active object map. However, an Obj ect Al r eadyAct i ve exceptionisraised if the
CORBA object denoted by the object ID valueisaready active in this POA. A

Servant Al r eadyAct i ve exceptionisraised if the POA hasthe UNI QUE | D policy and
the servant is already in the active object map. A W ongPol i cy exception israised if the
RETAI N policy is hot present. In addition, aBAD_PARAN system exception israised if the
POA hasthe SYSTEM | C policy and it detects that the object ID value was not generated by
the system or for this POA.

CORBA definition void activate_object_with_id(in Objectld oid,
in Servant p_serv
rai ses ((Obj ect AlreadyActive, ServantAlreac
W ongPol i cy) ;

C++ mapping void activate_object_wth_id(Objectld_ptr oid,
Servant _ptr p_servant);

8.6.10—
deactivate object()

The removal from the active object map of the association of the object ID map specified by
theoi d parameter and its servant is performed by this method. An Obj ect Not Acti ve
exception israised if there is no active object associated with the specified object ID. The
method Ser vant Locat or : : et her eal i ze will beinvoked with the oi d and the servant
if aservant manager is associated with the POA.

CORBA definition voi d deactivate_object(in Cbjectld oid)
rai ses (CObjectNotActive, WongPolicy);

C++ mapping voi d deactivate_object (Objectldptr oid);

8.6.11—
create reference()

An object reference that encapsulates a POA-generated object 1D value and the specified
Interface Repository ID is created by this method. This method does not cause an activation to
take place. The resulting reference may be passed to clients. This means that subsequent
reguests on those references will cause the appropriate servant manager to be invoked, if one
isavailable. The generated object ID value may be obtained by invoking

PQA: : ref erence_t o_i d with the created reference. A W ongPol i cy exception is
raised if the method does not use the SYSTEM | B policy.break

CORBA definition Obj ect create_reference(in CORBA: : RepositorylD i
rai ses(WongPol i cy) ;

Page 205

C++ mapping Qoj ect _ptr create_reference(CORBA: : Repositoryld
_ptr intf);

8.6.12—
create reference with_id()

An object reference that encapsul ates a POA-generated object 1D value and the specified
Interface Repository ID is created by this method. An activation does not take place with this
method. The resulting reference may be passed to clients, so that subsequent requests to those
references will cause the object to be activated if necessary, or the default servant used,
depending on the applicable policies. A BAD _PARAN system exception israised if the POA
hasthe SYSTEM | S policy and detects that the object ID value was not generated but the

system or for this POA.

CORBA definition Obj ect create_reference_wth_id(in Objectld oid,
In CORBA: : Repositoryld intf);

C++ mapping Qoj ect _ptr create_reference_w th_id(
CORBA: : bj ect _ptr oid,
CORBA: : Repositoryld ptr intf);

8.6.13—
servant_to_id()

With the UNI QUE_I D policy, and the specified servant is active, the object ID that is
associated with that servant is returned. Withthel MPLI CI T_ACTI VATI ON policy, and
either the POA hasthe MULTI PLE_I D policy or the specified servant is not active, the
servant is activated using a POA-generated object 1D and the interface ID associated with the
servant, and a corresponding object ID isreturned. A Ser vant Not Act i ve exceptionis
raised otherwise. Therefore this method requires the use of the RETAI N and elther

UNI QUE | Dorl MPLI CI T_ ACTI VATI ON policies, otherwiseaW ongPol i cy
exception israised.

CORBA definition Obj ect servant _to_id(in Servant p_servant)
rai ses(Servant Not Active, Wc

C++ mapping Qbj ectptr servant _to_id(Servant_ptr p_servant);

8.6.14—
servant_to_reference()

With the UNI QUE_| D policy, and the specified servant is active, an object reference
encapsulating the information used to activate the servant is returned. With the

| MPLI CI T_ACTI VATI ON policy, and either the POA hasthe MULTI PLE_1 D policy or the
specified servant is not active, the servant is activated using a POA generated object ID and the
interface |D associated with the servant, and a corresponding object reference is returned.
Acontinue

Page 206

Ser vant Not Act i ve exception is raised otherwise. Therefore this method requires the use
of the RETAI N and either UNI QUE_| Dor | MPLI CI T_ACTI VATI ON policies, otherwise a
W ongPol i cy exception is raised.

CORBA definition Qbj ect servant _to reference(in Servant p_servant

r ai cncfl Carviant Nlnt Ant i vin \AW AnnnADAI

I Al SDTO\ YCTI valit IwviL \viLil veo, VY viiyr uvi

C++ mapping Qoj ect _ptr servant _to_reference(
Servant _ptr p_servant);

8.6.15—
reference to_servant()

This method returns the servant associated with that object in the active object map if the POA
hasthe RETAI N policy and the specified object is present in the active object map. Otherwise
this method returns the default servant if the POA has the USE_DEFAULT _SERVANT policy
and adefault servant has been registered with the POA. The W ongAdapt er exceptionis
raised if the object reference was not created by this POA. The W ongPol i cy exception is
raised if either the RETAI N or USE_DEFAULT _SERVANT policy is not present.

CORBA definition Servant reference_to_servant (Qoj ect reference)
rai ses(Obj ect Not Acti ve, W ongAdapter,
W ongPol i cy) ;

C++ mapping Servant _ptr reference_to_servant(
CORBA: : Obj ect _ptr reference);

8.6.16—
reference_to_id()

The object ID value encapsulated by the specified reference is returned by this method. A

W ongAdapt er exceptionisraised if the reference was not created by the POA on which the
operation is being performed. The object denoted by the reference does not have to be active
for this method to succeed. Currently, the W ongPol i cy exception is declared to allow for
future extensions.

CORBA definition Qbjectld reference_to_id(in Object reference)
rai ses(WongAdapter, WongPolicy)

C++ mapping Qojectld_ptr reference_to_id(
CORBA: : Obj ect _ptr reference);

8.6.17—
id_to_servant()

The active servant associated with the specified object ID value is returned by this method. An
(bj ect Not Act i ve exceptionisraised if the object ID value iscontinue

Page 207

not active in the POA. A W ongPol i cy exceptionisraised if this method does not use the
RETAI N policy.

CORBA definition Servant id_to_servant(in Objectld oid)
rai ses(Obj ect Not Active, WongPc

C++ mapping Servant _ptr id_to_servant(Cbjectld ptr oid);

8.6.18—
id_to_reference()

A reference encapsulating the information used to activate the object is returned by this method
if an object with the specified object ID valueis currently active. An Qbj ect Not Acti ve
exception israised if the object ID value is not active in the POA. A W ongPol i cy
exception israised if this method does not use the RETAI N policy.

CORBA definition Object id_to_reference(in Objectld oid)
rai ses(Obj ect Not Active, WongPol i

C++ mapping Qoj ect_ptr id_to_reference(const Objectld& oid);

8.7—
Current Operations

Derived from CORBA: : Curr ent ,thePor t abl eSer ver: : Current interface provides
method implementations with access to the identity of the object on which the method was
invoked.

8.7.1—
get_POA()

A reference to the POA implementing the object in whose context is called is returned by this
operation. A NoCont ext exceptionisraisedif get POA() iscalled outside the context of
a POA-dispatched operation.

CORBA definition POA get PQOA()
rai ses (NoContext);

C++ mapping CORBA: : Current:: POA ptr get_ PQOA();

8.7.2—
get_object_id()

The object ID identifying the object whose context is called is returned by this operation. A

NoCont ext exceptionisraisedif get _obj ect i d() iscalled outside the context of a
POA -dispatched operation.break

CORBA definition Obj ectid get_object _id()
rai ses (NoContext);

C++ mapping CORBA: : Current:: Objectld_ptr get_object _id();

Page 209

Chapter 5—
Discovering Services

This chapter provides an overview of mechanisms for discovering CORBA aobjects. We
explain the two most important CORBA services for locating objects: the Naming Service
(Section 2), which finds objects by name, and the Trading Service (Section 3), which finds
objects by type and properties. However, thereis still the question of how to find initial
references to instances of those services. In Section 1 we explain the operations on the ORB
pseudo-interface that can be used for bootstrapping.

In Section 4, Naming and Trading domains are introduced. This section discusses which object
instance is returned by the bootstrapping operations.

Finally, Section 5 explains how ORBs name and locate servers and objects by using
proprietary mechanisms. Although these mechanisms are not standardized, and hence not
portable or interoperable, they are quite popular due to their simplicity.

1—
Bootstrapping
CORBA solves the bootstrapping problem by providing a pair of operations on the ORB

pseudo-interface: | i st _i nitial _servi ces()—list the namesof initial serviceswhich
areavailablefromthe ORB; r esol ve_i ni ti al _r ef er ences() —returns ancontinue

Page 210

initial object reference to a named service. For example, a naming context is returned when a
Naming Service reference is requested.

We have already introduced these operations in Chapter 2 and have explained their C++
mapping in Chapter 7. We show how to use these operations in the Naming Service examplein
the following section.

These two operations only provide a bootstrapping mechanism for the services offered by a
particular ORB implementation because the mechanism for registering services with the ORB

is not defined by CORBA. However, the standard interface to the ORB ensures the portability
of application code.

These two operations do not provide full bootstrap support. The problem isthat it is not clear
which object instance is returned when several are available. We discuss this problem in more
detail in Section 4 where we introduce the concept of domains as a solution.

An dternative way to bootstrap applicationsis to use proprietary mechanisms provided by
various ORB implementations. We have a closer ook at some of the optionsin Section 5.

2—
The CORBA Naming Service

The Naming Service allows object implementations to be identified by name and isthus a
fundamental service for distributed object systems. This section is organized as follows:

- We give an overview and explain how to use the Naming Service (Section 2.1).
- We explain the interface specification in detail (Section 2.2).
- We provide an example (Section 2.3).

2.1—
Overview of the Naming Service

The Naming Service provides a mapping between a name and an object reference. Storing such
amapping in the Naming Service is known as binding an object and removing thisentry is
called unbinding. Obtaining an object reference bound to a name is known as resolving the
name.

Names can be hierarchically structured by using contexts. Contexts are similar to directoriesin
file systems and they can contain names as well as subcontexts.

The use of object references alone to identify objects has two problems. First, object
references are difficult for human users, as they are opaque datatypes, and second, their string
form isalong sequence of num-soft

Page 211

bers. When a service is restarted, its objects typically have new object references. However,
in most cases clients want to use the service repeatedly without needing to be aware that the
service has been restarted.

The Naming Service solves these problems by providing an extralayer of abstraction for the
identification of objects. It provides readable object identifiers for the human user—users can
assign names that look like structured file names—and a persistent identification
mechanism—obj ects can bind themselves under the same name regardless of their object
reference.

The typical use of the Naming Service involves object implementations binding to the Naming
Service when they come into existence and unbinding before they terminate. Clients resolve
names to objects, on which they subsequently invoke operations. Figure 5.1 illustrates this

typical usage scenario.

2.2—
I nterface Specification

The central interfaceis called Nam ngCont ext and it contains operations to bind names to
object references and to create subcontexts. Nanes are sequences of NanmeConponent s.
Nam ngCont ext s can resolve a name with a single component and return an object
reference. They resolve names with more than one component by resolving the first component
to a subcontext and passing the remainder of a name on to that subcontext for resolution.

221—
TheName Type

The CosNam ng module provides type definitions used to identify objects by names: break

lient Application

resolve()

Objectimpl

bind()
unbind()

CORBA Naming Service

NamingContext

Figure5.1
Typical use of the CORBA Naming Service.

Page 212
nodul e CosNami ng{

typedef string Istring;

struct NaneConponent {
Istring id;
Istring Kind;

b

typedef sequence <NanmeConponent > Naneg;

Thetypel st ri ng isused to define the Nane type for future compatibility with
internationalized strings. At the time of writing, thistypeisdefinedtobestri ng. A
NanmeConponent hastwo fields: i d contains the string that is actually matched when aname
isresolved; ki nd isavailable for application-specific purposes and may or may not be
interpreted by the Naming Service. We recommend that the ki nd field always be initialized to
the empty string.

The Nane type is a sequence of component, or atomic, names and no syntax is given for the
textual representation of names. This allows application programs to use separators such as the
UNIX file system "/" character to separate components when printing names for users.

2.2.2—
Bindings

The Bi ndi ng type provides information about the bindings in a context:

/I modul e CosNami ng
enum Bi ndi ngType{ nobj ect, ncontext};

struct Bi ndi ng{

Narme bi ndi ng_nane;

Bi ndi ngType bi ndi ng_type;
s

t ypedef sequence < Bindi ng > Bi ndi ngLi st;

Thetype CosNam ng: : Bi ndi ng provides aname and aflag of type Bi ndi ngType. The
value ncont ext indicates that an object bound to anameisaNam ngCont ext at which
further name resolution can take place. Thevalue nobj ect meansthat the binding, even if to
aNam ngCont ext , cannot be used for further resolution.

2.2.3—
Adding Namesto a Context

There are two operations for binding an object to a name in a context and two for binding
another context to a name.break

Page 213
/I modul e CosNami ng

i nterface Nanmi ngCont ext {
/Iwe elide the exceptions declared here

void bind(in Nanme n, in Cbject obj)

rai ses(Not Found, Cannot Proceed, Invali dName, AlreadyBound);
void rebind(in Nane n, in Object obj)

rai ses(Not Found, Cannot Proceed, Invali dNane);

voi d bind_context(in Name n, in Nam ngContext nc)

rai ses(Not Found, Cannot Proceed, Invali dName, AlreadyBound);
voi d rebind_context (in Nane n, in Nam ngContext nc)

rai ses(Not Found, Cannot Proceed, |nvali dNane);

Thebi nd() andbi nd_cont ext () operations associate a new name with an object. In the
caseof bi nd_cont ext () theobject must be of type Nam ngCont ext . We will see how
to create new contexts below. If the name used has more than one component, the

Nam ngCont ext will expect that all but the last component refers to a nested context, and it
will make the binding in the context resolved by the first part of the name. For example,

consider Figure 5.2.

We usethe"/" character as a separator for NanmeConponent s. In our example we invoke the
bi nd() operation on the Nanm ngCont ext object we have caled "Contextl" with the
parameters " Context2/Context5/MyName" and some object reference. Thisresultsin anew
atomic name, "MyName," being bound to the object in the "Context5" context (see Figure 5.3).
The Bi ndi ngType of the resulting binding will be nobject.

If weinvoked bi nd_cont ext with the same parameters (although the object reference must
beto aNam ngCont ext) then the same situation would result. However, the

Bi ndi ngType will bencont ext , and the "Context5" context would then be able to resolve
names like "MyName/x/y/z" by passing the remainder, "x/y/z," to the new "MyName"

context.break
 Context2 | Context3

Figure5.2
NamingContext structure—before binding .
Page 214
I Context1 I
| Context? l l Contextd I
[Contaxtd I I Cantexts I
MyHName
I0R of object

Figure 5.3

NamingContext structure—after binding.

Ther ebi nd() andr ebi nd_cont ext () operations work the sameasbi nd() and
bi nd_cont ext (), but rather than raising an exception if the name already exists, they
simply replace the existing object reference.

224—
Removing Names from a Context

The operation unbi nd() will remove a name and its associated object reference from a
context or one of its subcontexts.

voi d unbi nd(in Name n)

rai ses(Not Found, Cannot Proceed, Invali dNane);

225—
Name Resolution

Ther esol ve() operation returns an object reference bound to a name supplied asits
argument.

oj ect resolve (in Name n)
rai ses(Not Found, Cannot Proceed, |nvali dNane);

Ther esol ve() operation behaves asfollows:
It resolves the first component of the name, n, to an object reference.
If there are no remaining components then it returns this object reference to the caller.

Otherwise it narrows the object reference to aNanm ngCont ext and passes the remainder of
thenametoitsr esol ve() operation.

Implementations of the Naming Service will probably optimize this process so that the
narrow() andresol ve() operations are not called repeatedly.continue

Page 215

However, the result will logically be the same as that produced by the algorithm above.

2.2.6—
Exceptions

Here are the exceptions omitted above:

/1interface Nam ngCont ext
enum Not FoundReason{ m ssi ng_node, not_context, not_object};

exception Not Found{
Not FoundReason why;
Nane rest of nane;

exception Cannot Proceed{
Nam ngCont ext cxt;
Nane rest of nane;

}

exception | nvalidNane{};
exception Al readyBound{};
excepti on Not Enpt y{};

The Not Found exception indicates that the name does not identify a binding. It may be raised
by any operation that takes a name as an argument. The Naming Service specification does not
explain the meaning of the why member of this exception, but we make the following
interpretation: At some stage of tracing the leading name components down to the context in
which the final component is bound to a (possibly noncontext) object reference one of these
Situations occurs:

- A NaneConponent does not exist in the context expected (m ssi ng_node).

- A leading NanmeConponent isbound to an object with a binding type of nobj ect rather
than ncont ext , or an ncont ext binding is bound to an object of atype other than
Nam ngCont ext (not _cont ext).

- The object reference bound to aNameConponent denotes a destroyed object
(not _obj ect).

If this happens, ther est _of _nanme member returns the rest of the sequence from the
unresolvable name onward. Thisis not explicitly specified in the Naming Service.

The Cannot Pr oceed exception returnsaNam ngCont ext object reference and a part of
the original name. It indicates that ther esol ve() operation has given up, for example, for
security or efficiency reasons. However, the client may be able to continue at the returned
context. Ther est _of _nane membercontinue

Page 216
returns the part of the name that should be passed to the returned context ctx for resolution.

Thel nval i dNane exception indicates that the name is syntactically invalid. For example, it
might contain azero length NaneConponent . The names acceptable to different Naming
Services may vary.

The Al r eadyBound exception may be raised by bind operations. It informsthe caller that a
name is aready used and cannot be overridden without using a rebind operation.

Not Enpt y isan exception raised by thedest r oy() operation defined below. Contexts that
still contain bindings cannot be destroyed.

22.7—
Context Creation

There are operations to create new contexts defined in the Nam ngCont ext interface.

/1interface Nam ngCont ext

Nam ngCont ext new_cont ext ();
Nam ngCont ext bi nd_new _cont ext (i n Name n)
rai ses(Not Found, Al readyBound, Cannot Proceed, | nvali dNane);

New Nam ngCont ext s may be created and later used alone or bound into other contexts
usng bi nd_cont ext () . They can aso be created with a particular name and bound in a
single operation. new_cont ext () producesan empty Nam ngCont ext that can be used
anywhere. bi nd_new _cont ext () aso createsanew context, but bindsit into a subcontext
of the context on which the operation isinvoked. It can raise the usua exceptions for an
operation that takes a name as an argument.

22.8—
Context Destruction

When a context is no longer used, and all the bindings it contained have been unbound, it can be

destroyed.

/1interface Nam ngCont ext

voi d destroy()
rai ses(Not Enpty);

Thedest roy() operation will delete a context aslong asit contains no bindings. Be sure at
the same time to remove any bindings that may refer to this context.

229—
Browsing Contexts

A Nam ngCont ext supports browsing of its contents by use of thel i st () operation.break

Page 217

/linterface Bindinglterator; has been forward decl ared
/1interface Nam ngCont ext

void list (in unsigned | ong how many,
out BindingList bl, out Bindinglterator bi);

};//end of interface Nam ngCont ext

The parametersof thel i st () operation allow the caller to specify how many bindings to
returninaBi ndi ngLi st sequence. Therest will be returned through an iterator object
(which are explained below) referred to by the bi parameter, which will be anil object
reference if there are no further bindings.

2.2.10—
Binding Iterators

A Bi ndi ngl t er at or object will be returned if the number of bindingsin a context exceeds
thehow_many argument value of thel i st () operation invoked on the context.

/I modul e CosNami ng

interface Bindinglterator({
bool ean next _one(out Binding b);
bool ean next_n(in unsigned | ong how_many,
out Bi ndi ngLi st bl);
voi d destroy();

})
}://end of nodul e CosNanmi ng

If there are remaining bindings, thenext _one() operation returns TRUE and places a
Bi ndi ng initsout parameter. The Naming Service specification is ambiguous about whether
it should return FALSE if thisisthe last binding in the iterator or on the next call.

Thenext n() operation returns a sequence of at most how_nany bindingsin the out
parameter bl . It dso returns FALSE if there are no further bindingsto be iterated over. Itis
not specified whether the FAL SE value should be returned with the last binding or on the next
call.

Thedest roy() operation alowsthe iterator to deallocate its resources and it will render
the object reference invalid. Iterators may sometimes be implemented so that they time out or
are deleted on demand for resource recovery.

2211—
TheNamesLibrary

The Naming Service also defines some pseudo-IDL for aNames Library. Thisis a set of
operations intended to ease the creation and manipulation ofcontinue

Page 218

names. To our knowledge it has not been implemented in any Naming Service product, and so
we will omit details of this part of the specification.

Userstypically typein strings to nominate objects. In our examples we use a C++ classlibrary,
introduced in Section 2.3, which allows the use of stringsin a convenient syntax to access the
Naming Service.

2.3—
Using the Naming Service from a C++ Client

This subsection contains some of the methods for an EasyNam ng class that will be used in
subsequent chapters. This class allows applications to obtain a stringified object referenceto a
Nam ngCont ext and then use string arguments with the /" character as a name separator to
identify objects relative to that context.

First let'slook at the declaration of the class, its private fields, and constructors. There are two
constructors, one of which obtains aroot context viathe ORB, the other which uses a
stringified object reference for boot-strapping. break

/I EasyNam ng. C
#i ncl ude "EasyNanmi ng. h"

//constructors
EasyNam ng: : EasyNam ng(const CORBA: : ORB var& orb){
/[linitialize Nam ng Service via ORB
try{
cout << "Initial Services: " << endl;
CORBA_StringSequence_var servi ces;
services = orb->list _initial_services();

if (services->length() ==0)
cout << "No services avail able" << endl;
for(int i =0; i < services->length(); i++)

cout << services[i] << endl;

CORBA: : Obj ect _var obj =
orb->resolve_ initial _references("NaneService");

root _context = CosNam ng:: Nam ngContext:: narrow(obj);
if (root_context == CosNam ng::Nam ngContext:: nil()){
cerr << "Returned IORis not a Nam ng Context" << endl;
cerr << "@Aving up..." << endl;

exit(1);

}
cout << "Its IR is: " <<
orb->object _to _string(root_context) << endl;
}
cat ch(const CosNam ng:: Nam ngCont ext:: I nvalidNane& i nex){
cerr << inex << endl;
}
cat ch(const CORBA:: Syst enExcepti on& corba_exception){
Page 219
cerr << corba exception << endl;
}
)

Wefirst list al availableinitial servicesby callingl i st _initial _services().Thisis
not needed to initialize the object, but we use the opportunity to demonstrate the use of the ORB
bootstrap operation. We then try to obtain areference to aroot context of the naming service by
calingresol ve_initial _references() onthe ORB. We obtain an object reference
of thetype CORBA: : Cbj ect which we narrow to aNam ngCont ext . If the

r oot _cont ext isnil, the obtained object is of the wrong type and we give up.

Alternatively, thereis a constructor which initializes the EasyNam ng object with a
stringified object reference for aroot context. This constructor can be used for cross-ORB
bootstrapping.break

const CORBA:: String var& ior_string){
/[llnitialize Naming Service via stringified | OR
try{
CORBA: : Obj ect _var obj = orb->string_to_object(ior_string);
root _context = CosNami ng:: Nami ngContext:: narrow(obj);
if (root_context == CosNami ng::Nami ngContext:: nil()){
cout << "Could not narrow down object to root_context" << endl;
cout << "Narrowi ng down to Extended Nam ng" <<
cout << "Context Factory" << endl;
CosNami ng: : Ext endedNani ngCont ext Fact ory_var
ext _nam ng_factory =
CosNami ng: : Ext endedNami ngCont ext Factory:: _narrow(obj);
if (ext_namng_factory ==
CosNami ng: : Ext endedNami ngCont ext Factory:: _nil ()){
cout << "Extended Nami ng Context Factory is NULL" << endl;
cout << "Narrowi ng down to Naming Context Factory" << endl;
CosNami ng: : Nam ngCont ext Fact ory_var nami ng_factory =
CosNami ng: : Nam ngCont ext Factory:: _narrow(obj);
if (naming_factory ==
CosNami ng: : Nam ngCont ext Factory:: _nil ()){
cout << "Nami ng Context Factory is NULL" << endl;
cout << "Gving up" << endl;
exit (1);
}
el sef
//Creating a new root context
cout << "Creating root context" << endl;
root _context = nami ng _factory->create_context();

}

}

el se{
cout << "CGet root_context from Extended Nam ng Context"
<< "Factory" << endl
root _context = ext_nam ng_factory->root_context();

}

Page 220

Both constructors will create an object with aproperly initialized r oot _ cont ext private
field. We can now look at the methods provided by the EasyNam ng class.

A method called st r 2nane() takesa UNIX file name string format (always starting with a
"[" character, as all names are relative to our root context) and produces a

CosNam ng: : Name, which is mapped to CosNani ng : : NaneConponent . The
method's signature is defined below, and the implementation of the class EasyNam ng can be
found in the examples associated with this chapter.

CosNam ng: : Name_var EasyNam ng: : str2nane(const
CORBA: : String_var& str){
}

The EasyNam ng class provides methods equivalent to the operations on naming contexts,
but accepts string arguments. Thebi nd_from stri ng() and

rebi nd_from string() methods also alow the use of names that refer to nonexistent

contexts, and create subcontexts as necessary. This allows usto exercise the bi nd() or

r ebi nd() operations, aswell asr esol ve(), to check the existence of a subcontext and

bi nd_new _cont ext () to create the subcontexts that don't already exist. Thisis how we
implement bi nd_from stri ng() :break

CORBA: : (bj ect ptr obj){
CosNami ng: : Nanme_var nane;
try{
name = EasyNam ng::str2nane(str);
}
catch(const CosNam ng:: Nam ngCont ext:: | nval i dNane& excep){
cerr << "Caught Invalid nane exception" << endl
cerr << "String was: " << str << endl
return,

}

CosNam ng: : Nam ngCont ext _var context = root_context;
CosNam ng: : Name _nane;
_nane. |l ength(1);

try{
root cont ext->bi nd(narme, obj);

}

catch(const CosNam ng: : Nam ngCont ext : : Not Found& not found){
//bind step by step

//create and bind all nonexistent contexts in the path
for(int i =0; i <name->length() - 1; i++){
_nane[Q = nane[i];
try{

//see if the other context exists
context = CosNam ng:: Nam ngCont ext: : _narrow

Page 221

cont ext->resolve(_nanme));
cout << "Resolved " << nane[0].id << endl;

}
catch(const CosNam ng: : Nam ngCont ext : : Not Found& not found){

/1if not then create a new cont ext
cout << "Creating " << nane[0].id << endl;
cont ext = context->bi nd_new context(_nane);

}

/11et other exceptions propagate to the caller

First thest r argument is converted to a Naming Service name and an attempt is made to bind
theobj argument usingthebi nd() operation. If one of the contexts in the name path is not
found, the method bi nd_from st ri ng() descendsthe context hierarchy, one
NaneConponent at atime. If acomponent resolves correctly to a context then that context is
used to test the name of the next component. If ther esol ve() operation failsthen the name
component is used to create a new subcontext. This continues until the final component, which
isthen bound in the final subcontext to the object reference passed as an argument.

Similarly, we have implemented a more convenient method for resolving names. Below we
show the implementation of the method r esol ve_from stri ng(), which directly calls
the resolve operation on the root context after having converted the string name into aNaming
Service name.

CORBA: : Obj ect _var EasyNami ng::resolve fromstring(
const CORBA:: String varé& str){
return root_context->resol ve(EasyNam ng::str2nanme(str));

}

We have implemented other methods, matching the operations on naming contexts, which use
string names instead of Naming Service names. The complete implementation of
EasyNam ng isshown in the set of examples associated with this chapter.

3—
Trading Services

The Trading Service (see Figure 5.4) hasits basisin the | SO Open Distributed Processing
(ODP) standards. The trader work in this group had reached a Draft International Standard
(DIS) level within 1SO when responses were due for OMG's Object Services RFF 5. The
submitters to the RFP were mostly people who had been working on the ODP standard, which
enabled the convergence of the Trading Standards from both groups. Even though ODP uses
OMG IDL as an interface specification language,continue

Page 222

K ' Registe)

R LRI e
I -\.” :rl .

Figure 5.4
Typica use of a CORBA Trading Service.

implementations of ODP standards may use any technology. However, the common underlying
semantics of the two efforts greatly enhances the prospects for future cross-platform
interoperability.

3.1—
Overview of Trading

Traders are repositories of object references that are described by an interface type and a set
of property values. Such a description of an interface is known as a service offer. Each service
offer has a service type, which is acombination of the interface type of the object being
advertised and allist of properties that a service offer of this service type should provide
valuesfor.

An exporter isaservice or some third party acting as an agent for the service which places a
service offer into atrader. That service offer can then be matched by the trader to some client's
criteria.

A client which queries atrader to discover aserviceis caled an importer. An importer
provides the trader with a specification of a service type and a constraint expression over the
properties of offers of that type. The constraint expression describes the importer's
requirements.

A long-standing example of atrading scenario isthat of printing services. Currently system
administrators configure new printersin a networkcontinue

Page 223

by providing a unique name for a new device and then notifying potential users by email, news,
or notice board. Then each user must remember the printer's name and type it into adialog box
in an application. A better way to discover new printersisto alow applications or users to
provide their requirements to the application, which then sends the print job to the most

appropriate printer. Thisis achieved as follows:

We assume that new printers are provided with an implementation of a standard printing
interface, specified in IDL. For example

nodul e Printing{

interface Printer{
typedef string fil enane;

exception PrinterOfLine{};

void print_file(in filenane fn)

rai ses(PrinterOfLine);

short queue_Il engt h()

}s
}s

rai ses(PrinterOfLine);

Then we define a service type that nominatesthe Pr i nt er interface and a number of property
names and types. For example, the printer's location, its language (ASCII, PostScript, HP Laser
Jet, etc.), itsresolution in DPI, its color properties, its print queue length, and its name.

Each printer is then advertised by exporting a service offer to the trader. For convenience we
will refer to the example printers below by their "name" property:break

Property Value
building "A Block"
floor 2
language postscript
resolution 150
color black
gueue len ——> [PrinterObjectRef]->queue_length()
name "12ps’
Page 224
Property Value
building "A Block"
floor 3
language postscript
resolution 300
color black
gueue len ——> [PrinterObjectRef]->queue_length()
name "monster"

Property Value

building "A Block"

floor 7

language postscript

resolution 150

color 256c¢o0lor

gueue len ——> [PrinterObjectRef]->queue_length()
name "rib"

Applications configure print requests based on user preferences, either from auser's
environment, adialog box, or atext query. Thisresultsin a constraint expression that can be
passed to the trader in an import query. For example,

buil ding == "A Bl ock" && floor <= 5 && | anguage == postscri pt

This query would result in matching two printers ("12ps' and "monster”). The query can ask
for the resulting service offersto be ordered according to a preference expression. This
provides the matched service offersin order based on some minimal, maximal, or boolean
expression. For example, a preference to give us the highest resolution printers first would be
expressed as

max resol ution

The" queue_| en" property isadynamic property, which means that its value is not stored
but looked up each time a query is made. So we would probably have a default preference
criterionof " m n queue_| en". Thiswould sort the printers which are returned <o that we
print to the one that matches the constraint expression, and has the shortest queue.

Let'simagine that a new color printer isinstalled in Block A and that it is higher in resolution
than the "rib" printer. All users who want high resolution will have this maximized in their
preferences, and when they next require a color printer the new printer is automatically
selected when theircontinue

Page 225

application does an import. If, on the other hand, a new printer isinstalled on floor 1 of the
building, then people who used to walk upstairs to collect printouts will have their ordinary
black-and-white postscript print jobs directed to the new printer on their floor, without having
to change their environment, or even know the name of the printer. In thisway they will be
informed of anew device as soon as they trade for a printer and the new one meets their
requirements.

Of courseit is hard to set requirements and preferences when you don't know what is
available. Some applications that regularly use the Printer interface will have browsers built in
to allow usersto see all available printers and their properties by querying the trader with a

simple constraint such as
bui l ding == "A Bl ock"
3.1.1Service Types and Service Offers

Service types are templates from which service offers are created. They ensure that groups of
services that offer the same interface, and have the same nonfunctional considerations, are
grouped together. This alows efficient searching and matching of service offersin the trader.
Most importantly it allows exporters and importers to use the same terminology (property
names) to describe a common set of features so that expressions written in terms of those
properties will always be evaluated correctly.

3.1.2—
Export and L ookup of Service Offers

Any program may export a service offer to atrader if it has an object reference to some
application object and knowledge of the implementation behind the reference so that it can
describe the properties of that object. Often services will advertise themselves by exporting a
service offer.

Any client that is compiled using aset of IDL stubsfor a particular interface may assign any
valid object reference to avariable at run time and execute operations on that object. As new
implementations of servers become available, a client may wish to select objects based on
some proximity, quality of service, or other characteristics. To do this, it formulates a
constraint expression in terms of the property names of a service type. This expression
determines which service offers of that type match the client's requirements.

A client may also ask atrader to sort the matching service offers based on some preference
expression that emphasizes the values of particular properties. The trader will return a sorted
list of matching service offers, and the client will then use the object reference extracted from
one of these.break

Page 226

3.1.3—
Trader Federation

Each trader contains a database of service offers which it searches when it receives an import
request. It may also store anumber of links to other traders to which it can pass on queries to
reach alarger set of service offers. Links are named within atrader and consist of an object
reference to the Lookup interface of another trader, as well as some rules to determine when to
use the link to satisfy an importer's request. Traders which are linked in this manner are said to
be interworking, or federated.

Federated queries are import requests passed from one trader viaits links to other traders, and
perhaps by them to other traders and so forth. These queries can be constrained by policies
passed in by the initial importer, by the policies of each trader, and by the rules stored in the
links themselves.

3.2—

Overview of the Trading Service I nterfaces

In this section we give an overview about the specification of the CORBA Trading Service.
The specification includes the following interface definitions:

- Service Type Repository

- Trader Components

- Lookup

- Iterators

- Register

- Link

- Admin

- Proxy

- Dynamic Properties

We will ook at each of these in a separate subsection.

3.2.1—
Service Type Repository

We have seen the importance of service typesin the scenario presented in Section 3.1. If a
service offer does not provide an object reference of a known type then it isimpossible for an
importer to invoke operations on the object references it gets back. In the same way, service
types are important for writing constraint expressions. If a service offer's property names and
types vary then the constraint and preference expressions that express the requirements of an
importer will fail to match relevant service offers. For example, if one service offer for a

Pri nt er described itsfloor viathe propertycontinue

Page 227

("Floor", "ground"), and another as the property ("level”, 4), then it would be impossible to
compare them for proximity.

Servicetypes are stored in the Service Type Repository. A service type consists of aname, an
interface type, and a set of property specifications. A property specification gives the name and
TypeCode of propertiesthat will occur in service offers of this type. Properties are also given
modes which allow them to be specified as read-only and/or mandatory. Read-only properties
may not be modified after export. Mandatory properties must be included in a service offer to
be accepted as an instance of this service type.

The datatypes and operations for the Service Type Repository are contained in the

CosTr adi ngRepos: : Servi ceTypeReposi t ory interface. Most traders will
implement a compiler for a service type language (for which there is no standard syntax) and
browsing tools to enable importers to compose queries to atrader without needing to write
clientsto the Service Type Repository. The only type needed when importing using atrader is

Ser vi ceTypeNane, which isastring.break

t ypedef sequence <CosTradi ng:: Servi ceTypeNanme> Servi ceTypeNaneSeq;

enum Propert yMode{
PROP_NORMAL, PROP_READONLY,
PROP_VANDATORY, PROP_MANDATORY_READONLY
b

struct PropStruct{
CosTr adi ng: : PropertyNane nane;
CORBA: : TypeCode val ue_type;
Pr opert yMode node;

b
t ypedef sequence <PropStruct> PropStruct Seq;
typedef CosTrading::Istring Identifier;//IR:ldentifier

struct | ncarnati onNunber {
unsi gned | ong hi gh;
unsi gned | ong | ow

}

struct TypeStruct{
Identifier if_nane;
PropSt ruct Seq props;
Servi ceTypeNaneSeq super _types;
bool ean nasked;
I ncar nati onNunber i ncarnati on;

Page 228

Substitutability of Service Types. Service types, like IDL interfaces are substitutable viaan
inheritance relationship. For IDL interfaces this smply means that all the attributes and
operations defined in the base interface become part of the derived interface. However, in
service types there are three aspects to substitutibility:

The interface type of aderived service type may be a subtype of the interface typein
the base service type.

The property set may be extended in a derived service type with new property names
(and their associated type and mode specifications).

Inherited properties may be strengthened. That is, nonmandatory properties may be
made mandatory, and modifiable properties may be made read-only. However, the
datatype of an inherited property must remain the same.

When an importer queries the trader it may receive service offers of a subtype of the requested
service type in the same way that object references to subtypes of arequired interface type may
be passed where a base typeis required.

The masked member of the TypeSt r uct allows service typesto be declared as abstract
base service types. Thei ncar nat i on member isassigned an increasing index so that

gueries on service type definitions can be restricted to those that were defined after some other
service type which has alower incarnation number.

Creating and Deleting Service Types. Exporters and trader administrators will often want to
write code to define a new service type. Thisis done by populating aPr opSt r uct Seq and
then cdlingtheadd _t ype() operation.break

I ncar nati onNunber add_type (
i n CosTradi ng: : Servi ceTypeNane nane,
in ldentifier if_nane,
in PropStruct Seq props,
in ServiceTypeNanmeSeq super _type
) raises (
CosTradi ng: : 111 egal Servi ceType,
Servi ceTypeExi st s,
I nterfaceTypeM snat ch,
CosTradi ng: : 111 egal PropertyNane,
CosTr adi ng: : Dupl i cat ePr opert yNane,
Val ueTypeRedef i ni tion,
CosTr adi ng: : UnknownSer vi ceType,
Dupl i cat eServi ceTypeNane

Page 229

The nanme parameter isthe name of the service type, which is used by importers to nominate
the types of service offersthey wish to search over. Thei f _namne parameter is a Repository
ID that identifies the type of the object to be advertised by service offers of thistype. The
properties expected in service offers of thistype are givenin the pr ops parameter. The fina
parameter specifiesalist of existing service types which are being subtyped by the new
service type. The rulesfor inheritance of service types are explained above. The exceptions
are mostly self-explanatory, and many of them relate to conditions in which the properties
added or modified in a subtype do not follow the compatibility rules.

Service types should not be removed from arepository unless no service offers of thistype are
currently exported to the trader. Even in thiscase it is probably better to mask service types
(see below) than delete them, as this avoids the reuse of old service type names, which can
lead to confusion. On the rare occasions when a service type should be deleted, the operation
renmove_t ype() peformsthisaction.

voi d renove_type (
i n CosTradi ng: : Servi ceTypeNanme nane

) raises (
CosTradi ng: : 111 egal Servi ceType,
CosTr adi ng: : UnknownSer vi ceType,
HasSubTypes

)

A known service type cannot be removed if it has subtypes, and the exception Has SubTypes
israised in these circumstances.

Obtaining Service Type Information. The repository has operationsto list the service typesit
holds. It can aso describe them, either in terms of their supertypes and additional or modified
properties, or in terms of the properties that must go into a service offer to conform to this type.

Theoperation| i st _types() returnsall the service type names in the repository:

Servi ceTypeNaneSeq |ist_types (
i n SpecifiedServiceTypes which_types
)

The operationdescri be_t ype() returnsaTypeSt r uct which containsthe service
type's definition as it was added to the repository. It does not include any properties inherited
from its supertypes.break

TypeStruct describe type (
i n CosTradi ng: : Servi ceTypeNane nane
) raises (

Page 230

CosTradi ng: : Il | egal Servi ceType,
CosTr adi ng: : UnknownSer vi ceType

)

Theful |y _descri be_type() operation, onthe other hand, gives afull list of properties
derived from all of atype's supertypes. This operation would usually be called by importers
and exporters who want to know what properties to expect in a service offer of thistype.

TypeStruct fully_describe type (
i n CosTradi ng: : Servi ceTypeNane nane
) raises (
CosTrading: : Il | egal Servi ceType,
CosTr adi ng: : UnknownSer vi ceType

)

Masking Types. Masking a service typeis used to either deprecate an existing service type,
for which there are already offersin the trader, or to declare an abstract base service type
which must be subtyped before service offer instances will be accepted by the trader.

As a service type becomes widely used, people think of additional properties of a service that
they wish to describe. So rather than ssimply adding nonstandard extra properties to their
service offers, they create a new service type that subtypes the existing type. If the new
properties become important, or widely accepted, then the old type can be masked to prevent
new service offers being created without the extra properties.

Theoperation mask _t ype() indicatesthat thistypeisno longer used, at least in its base
form:

voi d mask_type (
i n CosTradi ng: : Servi ceTypeNane nane
) raises (
CosTradi ng: : 111 egal Servi ceType,
CosTr adi ng: : UnknownSer vi ceType,
Al r eadyMasked

)

Theunmask _t ype() operation reverses this masking, and the trader will once again accept
offers of thistype. The Trading Service authors think that this operation will seldom be
used.break

voi d unmask_type (
i n CosTradi ng: : Servi ceTypeNanme nane

) raises (
CosTradi ng: : 111 egal Servi ceType,
CosTr adi ng: : UnknownSer vi ceType,
Not Masked
);
Page 231
3.2.2—

Trader Components--Finding the Right I nterface

The trader defines five separate interfaces:

- Lookup—where importers make queries

- Regi st er —where exporters advertise new service offers
- Li nk—where links to federated traders are administered

- Adm n—where policies of the trader are administered

- Pr oxy—where legacy mechanisms for advertising services are added so that they look like
service offers

A singleinterface, Tr ader Conponent s, isinherited by all the interfaces listed above. This
allows usersto locate the other interfaces supported by a particular trader implementation.

i nterface Trader Conponent s{

readonly attribute Lookup | ookup_if;
readonly attribute Register register_if;
readonly attribute Link [ink_if;
readonly attribute Proxy proxy_if;
readonly attribute Adm n adm n_if;

}

3.2.3—
L ookup

The Lookup interface is used by importersto find service offers that meet their needs. It
offersasingle operation, quer y() , that requires a specification of the service type and
matching constraint expression, and returns alist of service offers. The signature for quer y ()
is significantly more complex than this simple explanation would indicate:break

voi d query (

in ServiceTypeNane type
Constrai nt constr,

Pref erence pref,

Pol i cySeq poli ci es,
Speci fi edProps desired_props,
n unsi gned | ong how_nany,

out O ferSeq offers,

out Oferlterator offer_itr,

5 5 5 S

out PolicyNaneSeq limts_applied
) raises (

I'I'l egal Servi ceType,

UnknownSer vi ceType,

I'l'I egal Constraint,

Il I egal Preference,

I'l'I egal Pol i cyNare,

Pol i cyTypeM smat ch,

Page 232

I nval i dPol i cyVal ue,
II'l egal PropertyNane,
Dupl i cat ePr opert yNane,
Dupl i cat ePol i cyNane

)

The third parameter, pr ef , isaminimizing, maximizing, or bool ean sorting expression that
tells the trader which matched offersto return first. Thepol i ci es parameter allowsthe
importer to influence the way in which the trader searches its service offers, and the way in
which it propagates the query to other traders. Often query invocations will be given an empty
Pol i cySeq asthe trader administrator will configure the trader to allow atrade-off between
search space and resource usage that will deliver appropriate services to users.

A desi red_props argument must be provided so that the trader knows whether to return
properties of the service offers that matched, or smply the object references to the services.
The Speci fi edPr ops typeisdefined asfollows:

enum HowvanyProps{ none, sone, all};

uni on SpecifiedProps switch (HowvanyProps){
case sone: PropertyNaneSeq prop_nanes;
b

Sometimes a service type will contain many properties that do not interest a particular
importer. In this case the importer will need to specify inthe pr op_nanes field of the
desi red_pr ops which property valuesto return. In many cases the choice to ignore the
property values or to require all the valuesis sufficient.

Thehow_many parameter specifies that the importer wishes to receive a certain number of
offers back in the form of a sequence (in the of f er s out parameter). The rest of the offers
will be obtained through an iterator, whose object referenceisreturned intheof f er _i tr out
parameter (see Section 3.2.4). Typically, importers are interested in one of these:

- Getting back a small number of offers so that they can ensure that one serviceis actualy
available at the time

- Examining alarge number of service offersfor direct comparison outside the trader

In the first case, an importer may save the trader the time and resources of creating an iterator
by specifying apolicy caled "return_card.” This policy instructs the trader only to return the
number of matching service offers specified by the policy. Making its value the same as the
how_many argumentcontinue

Page 233
will prevent the creation of an iterator. The creation of policiesis dealt with in Section 3.2.

3.24—
Iterators

An iterator is an object that controls alogical list of objects or dataitems and can return them
toaclient afew at atime. We use the term logical list because the object supporting the
iterator may produce new itemsfor the list as they are required. Thisisacommon style used in
many OMG specifications. In the trader two iterators are specified:

- O ferlterator isused when alarge number of service offers are returned from the
Lookup: : query operation.

- O ferldlterator isusedtoreturnal of the Offerlds held in a particular trader from the
Adm n::1ist_of fers operation.

They have essentially the same interface, so we will ook at only one of them here.

interface Oferlterator{

unsi gned | ong max_|left (

) raises (
UnknownMaxLef t

)

bool ean next_n (
in unsigned long n
out OferSeq offers

voi d destroy();
1

Themax_| ef t () operation provides an upper bound on the number of offers that the iterator
contains. If the offers are being constructed a few at atime, then the upper bound may not be
easily calculated, so the UnknownMaxLef t exception will beraised. The next _n()
operation will return up to n offersinthe of f er s out parameter, and areturn value of FALSE
indicates that no other offers are contained in the iterator.

Although the trader may clean up iterators from time to time to reclaim resources, responsible
clientswill call dest r oy () oniterators as soon as they have extracted enough offers.

3.25—
Register

TheRegi st er interface provides operations for advertisers of services. The most important
operations arecontinue

Page 234

- export () advertisesaservice offer in the trader and returns an identifier for it.
- W t hdraw() removes anidentified service offer from the trader.
- descri be() returnsthe properties of an identified service offer.

- nmodi fy() alowsan exporter to change the values of non-read-only properties of a service
offer.

Other operations allow exporters to withdraw all service offers matching a particular query
and to obtain the Regi st er interface of alinked trader by name.

Oferld export (
in oject reference,
in ServiceTypeNane type,
in PropertySeq properties
) raises (
I nval i dQbj ect Ref,
I'I'l egal Servi ceType,
UnknownSer vi ceType,
I nterfaceTypeM snat ch,
II'l egal PropertyNane, //e.g. prop_nane = "<foo-bar"
Pr opert yTypeM snat ch,
Readonl yDynam cProperty,
M ssi ngMandat or yPr operty,
Dupl i cat ePr opert yNane

)

Theexport () operation takes three parameters that describe a service and places that
service offer in the trader's database for return as aresult of an importer's query. The

r ef er ence parameter must contain an object reference of the type specified in the service
offer named by the second parameter, t ype. Thepr oper ti es parameter must contain a
value for each mandatory property in the service type and may contain values for other
properties. All values provided for property names specified in the service type must be of the
property type specified, and additional properties of any other name and type may also be
included. Any non-read-only property value may be replaced by a structure of the following

type:

struct Dynam cProp{
Dynam cPropEval eval _if;
TypeCode returned_type;
any extra_info;

}

Thiswill cause the property's value to be determined at import time, which means that the
constraint will be evaluated on up-to-date information. The printer example above has a
property that reflects the length of thecontinue

Page 235

current print queue. Theeval _i f member isan object reference to a standard interface that
has a single operation which returnsan any. Ther et ur ned_t ype member isthe type of the
value expected in that any, and must match the type specified for this property in the service

type.

The exceptions that may be returned are mostly self-explanatory. The
Readonl yDynam cPr operty exceptionindicatesthat it isillegal for aread-only property
to change after export.

Thew t hdr aw() operation passesthetrader an O f er | d returned from a previous
export (), and thetrader will remove the corresponding service offer from its database.

voi d withdraw (
in Oferld id
) raises (
Il'legal Offerld,
UnknownOf feri d,
ProxyOferld

)

The other withdraw operation, w t hdr aw_usi ng_constrai nt (), will remove al
service offers that match a particular constraint expression. This should generally only be used
by the administrator.

Thedescri be() operationreturnsan O f er | nf o structure corresponding to theid
parameter. OF f er | nf o contains exactly the same information as the three parameters to
export () : anobject reference, a service type, and a sequence of properties.

struct O ferlnfof
oj ect reference;
Servi ceTypeNane type;
PropertySeq properties;
1

Oferlnfo describe (
in Oferld id

) raises (
Illegal Oferld,
UnknownCF fer | d,
ProxyOfferld

)

Thenodi f y() operation allows exporters to change the properties contained in a particul ar
service offer. Some traders do not allow the modification of service offers and will raise the
Not | npl enment ed exception. Traders that implement this operation must succeed on all
modifications, or fail on all. Propertieslisted inthedel _| i st parameter will be deleted if
possible, andcontinue

Page 236

property valuesin nodi fy_| i st will replace current values in the identified service offer,
if thisis allowed. The reasons the operation may fail are reflected initslong raises clause. In
short, the two list parameters may be inconsistent, or the caller may be trying to modify
something read only, or delete something mandatory.

void nmodify (
in Oferld id,
in PropertyNaneSeq del |ist,

in PropertySeq nodify |ist
) raises (

Not | npl enent ed,

Illegal Oferld,

UnknownCr fer | d,

ProxyOiferld,

II'l egal PropertyNane,

UnknownPr opert yNane,

Pr opert yTypeM snat ch,

Readonl yDynam cProperty,

Mandat or yPr operty,

Readonl yPr operty,

Dupl i cat ePr opert yNane

)

Ther esol ve() operation isfor obtaining areference to the Register interface of another
trader, to which this trader has a named link. Thisis how one exports service offersto and
withdraws them from federated traders.

Regi ster resolve (
in Trader Name nane

) raises (
Il I egal Trader Narre,
UnknownTr ader Nane,
Regi st er Not Support ed

)

3.2.6—
Link

Links can be considered a specialization of service offers. They advertise other traders that can
be used to perform federated queries. The Li nk interface therefore looks much the same asthe
Regi st er interface, with operations to add and remove as well as describe and modify

links. Each link has four associated pieces of information: its name, its object reference (to a
Lookup interface), and two policies on link following. Most users of traders do not need to
know what links atrader has or how they are followed. The trader administrator sets up link
policies and trader defaults.break

Page 237

3.2.7—
Admin

The Adm n interface contains alarge number of operations to set the policies of atrader and
operationsto list the Of f er | ds of service offers contained in the trader. Ordinary trader
users can query the attributes of the other interfaces to determine the current policies of a trader
but will never need to use the Admi n interface. Some traders will not even offer thisinterface,
asal policy will be determined by the implementation.

3.2.8—
Proxies and Dynamic Properties

Proxies are objects that sit alongside service offers but hide some legacy mechanism of service
creation or discovery. Most traders will not support the Pr oxy interface. Traders that do,

return identical results from a proxy as from anormal service offer.

Dynamic properties are a mechanism to allow a service to provide a property value at import
time that reflects the current state of the service. We have seen in the explanation of the
export operation above that the value of a non-read-only property may be replaced by a
Dynam cPr op structure. Thiswill cause the trader to call back to an interface supported by
the service (or some associated server) to obtain the property value when the constraint
expression of aquer y isbeing evaluated. The object reference provided in that structure must
be of the following interface type:

i nterface Dynam cPropEval {

any eval DP (
i n CosTradi ng: : PropertyNane naneg,
in TypeCode returned_type,
in any extra_info

) raises (
DPEval Fai |l ure

)

}s

When evaluating a dynamic property, the trader invokesthe eval DP() operation of the
eval _i f member of the Dynam cPr op, passing the property name and the
returned_typeandextra_i nf o membersof the structure. It receives an appropriate
valuein return.

The evaluation of aquery which involves calling back to several servicesto determine the
dynamic value of a property can be very costly, and some traders will not support dynamic
properties, as indicated by the

Support Attri butes::supports_dynam c_properti es boolean attribute.
However, for some services the information isinvaluable for determining their suitability for a
purpose. For example, a printer that is one floor up from me and has acontinue

Page 238

zero-length queue is much more useful than one in the same room that has thirty jobs queued or
isout of toner.

3.3—
Exporting a Service Offer

In this section we will provide an example implementation of the Pr i nt er interface
introduced in Section 3.1. The server that supports objects of this type will export service
offers describing the printer objects to the trader. In this way printer clients can choose printers
using an expression of their requirements rather than the usua method of choosing the name of a
printer they know.

ThePri nt er interfaceisvery smple and emulates the kind of command line interface
provided by UNIX print commands such as 1pr . The purpose of thisimplementation isto
show how aminimal wrapper of this kind of service, which describes printer attributesin
service offers, can allow users more flexibility. They can not only choose a printer based on
some capability that it has, such as high resolution, but they can also choose it based on its
current state, such as the length of its print queue. In addition, users can discover new printers

that they were previoudly unaware of.

The environment in which we implemented this server is one in which many different operating
systems run on different machines. Although they all have access to the samefile systemsvia
NFS, it istoo complex to integrate all the different printing services, and printing is only
available on some machines. One way of extending printer availability isinstalling this server
on one of the printing machines and using a CORBA client on the other machines which passes
the name of thefile to be printed.

The implementation of the Printer Server has the usual steps. The first of these, specifying the
interface of a CORBA object, has already been done in Section 3.1, although we will extend
thisIDL to facilitate the evaluation of dynamic properties. The second isto compilethe IDL.
Following that we need to implement the Pr i nt er interface and write a server which creates
instances of the implementation class. Our server will also create service offers for the printers
it creates and export these to the trader.

3.31—
Implementing the Printer Interface

Weintend to alow the trader to use its dynamic property evaluation to get the printer queue
length at query time, so that clients of the trader can sort their returned printer service offers
according to the length of the queue. In order to do this we need to implement the interface
CosTr adi ngDynam c: : Dynam cPr opEval sothat the trader can call itseval DP()
operation to get thequeue_| en property of each printer service offer. The best way to do
thisistocontinue

Page 239

create a new interface that multiply inherits from the printer and the dynamic property
evaluation interfaces. We reopen the Printing module and define a new interface as follows:

nodul e chapt er 8{
nodul e Printing{
interface TradingPrinter: Printer,
CosTr adi ngDynami c: : Dynami cPropEval {};
i

}

The IDL compiler generates the following files: pri nti ngC. hh, printingC. cc,
printingS. hh,andprintingS. cc.

Our implementation of the Tr adi ngPr i nt er interface is done in the servant class
Pri nt er | mpl , whichinherits from the POA class generated from IDL,
POA Printing::POA Tradi ngPrinter.

[/Printerlnpl.C
#i ncl ude "printingS. hh"
class Printerlnpl : public PQA Printing::PQA Tradi ngPrinter{

Because the printer interface is so smple, we only need Pri nt er | npl to know the
command we will use to find the queue length, the command to print files, and the name of the
printer to which it will send them. Therefore we define three private string members to store
the commands and the name, and a constructor which accepts three corresponding string

arguments.break

[IPrinterlinpl.C

#include "Printerlnpl.h"

char

**print_conmand;
char **queue_conmand;
CORBA: : String_var printer_nane;

CORBA: : TypeCode_var ret _type;

/] construct or
Printerlnpl::Printerlnpl (const char *p_comand,

const char *qg_commrand,
const char *nane,
CORBA: : TypeCode_ptr dp_eval _ret_type){

print_conmmrand = new char *[4];

print_conmmand[0] = new char[256];
strepy(print_command[0], p_conmand);

print_conmand[1] = new char[256];
strepy(print_comrand[1], " -P ");
strcat (print_comrand[1], nane);
print_conmand[2] = new char[256];
strepy(print_command[2],"");
gueue_commrand = new char *[2];

gueue_comrand[0] = new char[256] ;

}

strcpy(queue_comrand[0], g_conmand);
gueue_command[1] = new char[256] ;
strcpy(queue_command[1], "-P");
strcat (queue_comrand[1], nane) ;
gueue_command[2] = new char[256] ;
strcpy(queue_comrand [2], "");

printer_name = CORBA:: strdup(nane);
ret_type = dp_eval _ret_type

Page 240

We could have chosen to initialize printer objects with all the characteristics which we will
export in their service offers, but because we don't define any attributes or operations to
retrieve these properties, there is no point in doing so. Instead we rake the server aware of
these characteristics, and it exports service offers with corresponding property values on the
objects behalf.

The remainder of the implementation consists of the methods mapped from the IDL operations.
Thefirst of theseisprint _fil e() :break

void Printerlnpl::print_file (const char *fn)({

strcpy(print_command[2], "");
strcat(print_command[2], fn);

print_conmmand[3] = new char [256];

strcpy(print_command[3], "");
cout << "print command: " << endl
for(int i =0; i <4; i++)

cout << print_command[i];
cout << endl

cout << "lnvoking print comrand" << endl
i f (execvp((const char *)print_conmmand| 0],
(char *const *) print_command) < 0){
cout << "execvp to print file failed " << endl
throw Printing::Printer::PrinterOfLine();

}

Page 241

The method isimplemented very smply by concatenating the print command, the printer name,
and the file name and executing it viathe system call, execvp() .

Thequeue_| en() method is also implemented by making acall to a UNIX executable,
which makes the crude assumption that the output of the queue command lists two lines of
header information of 80 characters, followed by aline of 80 characters for each queued

job.break

CORBA: : Short Printerlnpl::queue_l ength()({

const int MAXLI NE = 1024,

char line[MAXLINE], command[MAXLI NE];
CORBA: : UShort | en = 0;

int Iine_num= O;

FILE *fp;

/| Execute the | pq command
strcpy(command, queue_conmand[0]);
for(int i =1; i < 3; i++){

strcat(comand, " ");

strcat (command, queue_comrand[i]);

[/Print the command actual | y being invoked
cout << "Invoking command: ";
cout << command << endl

if ((fp = popen(command, "r")) == NULL
throw Printing::Printer::PrinterOfLine();

/ /sl eep while the queue commrand produces
/ I out put
VI SPort abl e: : vsl eep(1);

//read 1pqg out put
while ((fgets(line, MAXLINE, fp)) !'= NULL)
++l i ne_num

/lclose file
fclose (fp);

//check the | ength of the output available
//and use this to cal cul ate the nunber of
/11ines of queue output, then subtract the
[/ header lines to give queue |ength
len = (CORBA: : UShort) (line_num/ 80 - 2);
len = (len ? len : 0);
cout << "Printer " << printer_nanme <<

' queue_len:" << len << endl

Page 242

return | en;

}

The other method which must be implemented is for the dynamic property evaluation operation
eval DP() . Its parameters are extracted from the value of any dynamic property in aservice
offer. Thisvalue will always be of type

struct Dynam cProp{
Dynam cPropEval eval _if;
TypeCode returned_type;
any extra_info;

}

Theeval _i f member of thisstruct will be areferenceto our Pri nt er | npl object, and the
other two parameters will be passed to theeval DP() operation on that interface. Thisis
what we implement here;

CORBA: : Any_ptr Printerinpl::eval DP (const char *nare,
CORBA: : TypeCode_ptr returned_type,
const CORBA: : Any& extra_info){

cout << "Printer " << printer_nanme << " DPEval" << endl
if (strcnp(nane, "queue len") == 0){

t hrow CosTradi ngDynami c: : DPEval Fai | ure();
}

if (returned _type !=ret _type){
t hrow CosTradi ngDynami c:: DPEval Failure ();
}

CORBA: : Any_var ret_val;

try {
(*ret_val) <<= this->queue_| ength();
}

catch (const Printing::Printer::PrinterCfLine& pol){
t hrow CosTradi ngDynami c:: DPEval Fail ure();

}

return CORBA: : Any:: duplicate (ret_val);

The nanme argument to theeval DP() method is the name of the property in the service offer
which is being evaluated. We are expecting only one such name, queue_| en, and if we
receive any other we will throw the DPEval Fai | ur e exception. The result of the evaluation
must be an any with the TypeCode passed inther et ur ned_t ype argument. If the
TypeCode expected is not thecontinue

Page 243

typecode for an IDL short then we also raise an exception. We are not expecting any extra
information (such as arguments to supply to a method call), so we then create an any object
and place the result of the call to queue_| engt h() intoit and returntheany. The last
failure condition may occur when the printer is off-line and cannot return a queue length value.
In this case we also throw the DPEval Fai | ur e exception.

3.3.2—
| mplementing the Printer Server

Now that we have an implementation of aPr i nt er | npl servant class that satisfies the
requirements of printer clients and the trader, we will implement a server that creates printer
objects and service offers that represent their characteristics and then exports them to the
trader. We have used the Inprise VisiTrader implementation for testing. As it was not
incorporated into C++ ORB products at the time of writing, the ORB bootstrap
resolve_initial _reference() couldnot beused to obtain areference to atrader by
passingitthestring " Tr adi ngSer vi ce" . Instead, the application uses a helper class called
| ORFi | e that reads an Interoperable Object reference from afile and produces a string that
we can passthe ORB: : string_to_obj ect () operation.

Our server will take the following command line arguments:

- A filename where the trader's object reference is kept

- A command to send afile to the printer that takes the printer name and afilename
- A command to check the printer queue length that takes a printer name

- The characteristics of one or more printers including the printer's name, resolution in DPI,
building location, and floor number

ThePri nt er Ser ver programisin Pri nt er Server . C:

//PrintServer.C

#i ncl ude "CosTradi ngC. hh"

#i ncl ude " CosTr adi ngReposC. hh"
#include "Printerlnpl.h"
#include "I ORFi |l e. h"

const int NAME = O;

const int BULD NG = 1;
const int FLOOR = 2;
const int RESOLUTION = 3;
const int QUEUE LEN = 4;

const int COLOR = 5;
const int LANGUAGE = 6;

The server's main function is as follows:break

int main(int argc, char *const *argv){

i nt numprinters;

Printerlnpl **printers;

CORBA: : String_var printer_nane;

if ((argc < 8) 11((argc-4)% 1= 0)){
cout << "Usage: " << argv[O0]

<< Trader| ORFil e print_comuand ";
cout << "queue_l en_command nane "
<< "resolution building floor ";

cout << " [nane res build floor... 1"
<< endl;
exit(1);

}

Page 244

An array isdeclared for storing pointersto the printer object references. Various ORB and

trader variables are declared and then the usual ORB initialization is carried out.

/lallocate an array to store Printer I|nplenentation Objects

numprinters = (argc - 4)/4;
printers = new Printerlnpl *[numprinters];

cout << "nunber of printers: " << numprinters << endl;

CORBA: :ULong i = 0;
Weinitialize the ORB, obtain areference to preinitialized root POA.
try{

CORBA: : ORB var orb;

/linitialize the Object Request Broker
orb = CORBA:: ORB_init(argc, argv);

/1get the root PQOA object reference
CORBA: : Obj ect _var obj =
orb->resolve_initial _references("Root POA");

/I narrow t he object reference to a POA reference
Por t abl eServer:: POA var poa =
Por t abl eServer:: PQA: . _narrow(obj);

We then proceed with the trader-related declarations.break

/] Trader object reference declarations

CosTr adi ng: : LookupRef | ookup;
CosTradi ng: : Regi ster_ptr p_register;
CosTr adi ngRepos: : Servi ceTypeReposi tory_var st_repos;

Page 245

/1get the trader reference fromthe conmand |ine
//and initialize the ServiceTypeRepository and Regi ster
/linterface references fromthe Initial Lookup interface

|ORFil e trader_ref(argv[1]);
CORBA: : Obj ect _var obj =
orb->string to object(trader _ref.get _ior_string());

| ookup = CosTradi ng: : Lookup: : _narrow(obj);

if (lookup == CosTradi ng:: Lookup:: nil()){
cerr << "l ookup narrowed incorrectly" << endl;
exit(1l);

}

cout << "l ookup narrowed" << endl;

p_regi ster = | ookup->register_if();
cout << "register obtained" << endl;

obj = p_register->type repos();
st_repos =
CosTr adi ngRepos: : Servi ceTypeRepository::narrow obj);

if (st_repos ==
CosTr adi ngRepos: : Servi ceTypeRepository:: nil ()){
cerr << "ServiceTypeRepository narrowed incorrectly"
<< endl;
exit(1l);
}

The trader's reference is obtained from the file supplied on the command line using an instance
of thel ORFi | e class. Thefirst reference for atrader isto aLookup interface, from which
we obtain referencesto its Regi st er interface and the service type repository. The service
type repository reference returned from the attribute t ype_r epos is specified astype

oj ect inthe standard, in anticipation of the interface Ser vi ceTypeReposi t ory being
replaced by arepository specified by the Meta Object Facility, which was adopted by the
OMG in September 1997. Thisiswhy the returned reference must be narrowed.

The next thing we need to do isto check if the service type that we want to use is already
defined in the service type repository. We do this by checking the result of acall to the
descri be_type() operation, which will raise the UnknownSer vi ceType exception if
itisnot yet created.break

/Il check for Service Type existence
/land create a new Service Type if it does not exist

CORBA: : Bool ean type_exi sts = (CORBA: : Bool ean) 0;
CORBA: : String_var repos_id = (const char *)
"IDL:Printing/Printer:1.0";

Page 246

CORBA: : String_var serv_type_nane = repos_id;

CosTr adi ngRepos: : Servi ceTypeReposi tory: : | ncar nati onNunber
i ncarn_num

CosTr adi ngRepos: : Servi ceTypeReposi tory: : TypeStruct _var
t ype_desc;
try{
type_desc = st_repos->describe_type(
CORBA: : strdup(serv_type_nane));
cout << "called describe type - returned typedesc"
<< endl;
type_exi sts = (CORBA: : Bool ean) | ;
}
catch(const CosTradi ng:: UnknownSer vi ceType& ust){
cerr << "called describe type - raised UnknownServi ceType"
<< endl;
type_exi sts = (CORBA: : Bool ean) 0;

}

catch(const CosTrading:: ||l egal Servi ceType& ist){
cerr << ist << endl;
exit(1l);

cat ch(CORBA: : Syst enException& se){
cerr << se << endl;
exit(1l);

}

If the service type is not present then we must create it. We will use the same properties as
shown when we introduced the printing example in Section 3.1. We make all the properties
mandatory, so that we can be sure that a query using any property name in the service type will
be evaluated on all service offers of this type.break

if (type_exists == (CORBA: :Boolean)0){
cout << "service type does not exist" << endl;

//we will create a new service type

/lcreate a prop struct list with the property nanes
//for a printer service type

CosTr adi ngRepos: : Servi ceTypeReposi tory: : PropStruct Seq_var
st_props = new

CosTr adi ngRepos: : Servi ceTypeReposi tory: : PropStruct Seq() ;
st _props->l engt h(6);

st _props[NAME] . nane = (const char *)"nane";
st _props[NAME] . val ue_type = CORBA: : tc_string;
st _props[NAME] . node =
CosTr adi ngRepos: : Servi ceTypeReposi t ory: : PROP_MANDATORY;

Page 247

st _props[BU LDI NG . nane = (const char *)"buil di ng";
st _props[BU LDI NG . val ue_type = CORBA: : tc_ushort;
st _props[BU LD NG . node =
CosTr adi ngRepos: : Servi ceTypeReposi t ory: : PROP_MANDATORY;

st _props[FLOOR] . nane = (const char *)"floor";
st _props[FLOOR] . val ue_type = CORBA:: tc_ushort;

st _props[FLOOR] . node =
CosTr adi ngRepos: : Servi ceTypeReposi t ory: : PROP_MANDATORY;

st _props[RESCLUTI ON] . nane = (const char *)"resol ution";
st _props[RESCLUTI ON] . val ue_type = CORBA:: tc_ushort;
st _props[RESOLUTI QN] . node =

CosTr adi ngRepos: : Servi ceTypeReposi t ory: : PROP_MANDATORY;

st _props[QUEUE_LEN] . nane = (const char *) "queue_ | en";
CosTr adi ngDynami c: : Dynam cProp dynam cProp;
st _props[QUEUE_LEN] . val ue_type = dynam cProp.returned_type;
st _props[QUEUE_LEN] . node =

CosTr adi ngRepos: : Servi ceTypeReposi t ory: : PROP_MANDATORY;

st _props[COLOR] . nane = (const char *)"col or";
st _props[COLOR] . val ue_type = CORBA:: tc_string;
st _props[COLOR] . node =
CosTr adi ngRepos: : Servi ceTypeReposi t ory: : PROP_MANDATORY;

The other arguments required by the repository'sadd_t ype() operation are a service type
name, an interface's Repository 1D, and alist of supertypes. We are using the interface's
Repository ID as the service type name, and will not use any supertypes.break

/lcreate an enpty super type |ist
CosTr adi ng: : STSeq_var super_types =
new CosTr adi ng: : STSeq() ;

//add the new Service Type

//we use the Interface type string as the service
//type nane

cout << "about to add_type" << endl;

cout << "serv_type nane = " << serv_type_nane << endl;
cout << "repos_id = " << repos_id << endl;

i ncarn_num = st_repos->add_type(serv_type_ nane,
repos_id,
st _props,
super_types);

cout << "Created Service Type: " << serv_type_nane
<< endl;
cout << "lncarnation Nunber: high="

Page 248

<< incarn_num hi gh << endl;

cout << " | ow= "
<< incarn_num | ow << endl;

}

Now we are ready to create a template service offer, which we can reuse for all the printers
that we will export. This server is only going to support printers that are black and white and
use postscript, so we can set the values for the "color" and "language” properties now. The
other property that will share avaluefor al service offersis” queue_I| en", which will
contain aDynam cPr op. It will be initialized with the type expected from the dynamic
evauation, but the actual object reference will be added once the printer object is created.

/lcreate Service Ofer Property Seq to use for export
CosTradi ng: : PropertySeq_var so_props = new

CosTr adi ng: : PropertySeq();
so_props->l ength(7);

/lcreate a Dynamic Property for queue | ength eval uation
CosTr adi ngDynami c: : Dynam cProp_var queue_prop =
new CosTr adi ngDynanmi c: : Dynam cProp();

gqueue_prop->eval _if =

CosTr adi ngDynami c: : Dynami cPropEval :: _nil ();
queue_prop->returned_type = CORBA:: _tc_ushort;
/1 The first five properties will be different for each
[lprinter, so we initialize themin the |oop bel ow

so_props[NAME] . nane = (const char *)"nane";
so_props[BU LDI NG . nane = (const char *)"buil di ng";
so_props[FLOOR] . nane = (const char *)"floor";

so_props[RESCLUTI ON] . name = (const char *)"resol ution";
so_props[QUEUE_LEN] . nane = (const char *)"queue_l en";

//the last twp properties' values are assunmed by this
/] server
//so we initialize themfor all printers

so_props[COLOR] . nane = (const char *)"col or";

so_props[COLOR] . val ue <<= (const char *)"bl ack";
so_props[LANGUAGE] . nane = (const char *)"l anguage";
so_props[LANGUAGE] . val ue <<= (const char *)"postscript";

[lcreate printer object(s) and export

The next step is to process the command line arguments and create printers with the
corresponding characteristics. We do thisin aloop, creating the Pr i nt er | npl objects,
making them available to the ORB, and then updating the creating service offer to advertise
therrcontinue

Page 249
for(CORBA::ULong i = 0; i < numprinters; i++){

cout << "about to create printer" << endl;
/lcreate a Printer object
printers[i] = new Printerlnpl(
argv[2],
argv[3],
argv[i*4 + 4],
CORBA: : _tc_ushort
)

/lactivate the object created
Por t abl eServer:: bjectld var oid =
root _poa->activate(printers[i]);

/lactivate the POA to wait for requests
root poa->t he_PQOAManager () - >acti vate();

/lcreate Printer (bject Reference
CORBA: : Obj ect _var printerRef =
root_poa->id to reference (oid);

cout << "Printer IOR
' << orb->object to string(printerRef) << endl

cout << "Created printer: " << argv[i*4 + 4] << endl

We activate each printer object using the root POA and have the root POA create object
references for each of them, which will then be published through the TraderService.break

/linitialize the properties we get fromthe
//comand |ine

/' nare
so_props[NAMVE] . val ue <<= argv[i*4 + 4];

//resol ution
cout << "Resolution: " << argv[i*4 + 5] << endl
so_props[RESOLUTI Q] . val ue <<=
(CORBA: : Ushort)atoi (argv[i*4 +5]);

//buil di ng
cout << "Building: " << argv[i*4 + 6] << endl
so_props[BU LD NG . val ue <<= argv[i*4 + 6];

/1floor
cout << "Floor: " << argv[i*4 + 7] << endl
so_props[FLOOR] . val ue <<=
(CORBA: : Ushort)atoi (argv[i*4 + 7]);

Page 250

/lupdate the dynam c prop struct and insert into
/1the queue_ | en property of the service offer
queue_prop->eval _if = printers[i];
so_props[4] .val ue <<= queue_prop

/l export the service offer

cout << "about to export" << endl

p_register->export(printers[i],
serv_type_nane,
so_props);

cout << "Exported printer: " << argv[i*4 + 4] << endl
} //end for |oop

Once the printers are all created and their offers exported, we call or b- >r un(') to enter the
ORB's event loop. We aso have to catch the various CORBA user and system exceptions that
can be raised.

/lstart ORB's event |oop
orb->run();

}
catch(const CosTradi ng:: PropertyTypeM smat ch& pm) {

cerr << pm << endl;

cerr << pmtype << endl;

cerr << pm prop.nanme << endl;
cerr << pm prop.val ue << endl;

}
catch(const CORBA: : User Exception& ue){

cerr << "User Exception caught" << endl;
cerr << ue << endl;
exit(1l);

}
catch(const CORBA: : Syst enExcepti on& se){

cerr << "System Exception caught" << endl;
cerr << se << endl;
exit (1);

}

return O;

}

3.4—
Finding an Object Using a Trader

In this section we use VisiBroker for C++ to implement a simple C++ application client that
trades for asuitable Pr i nt er object to send its print job to. The application expects twa
mandatory and two optiona arguments:

- A name of thefilewherethe IOR to aCosTr adi ng: : Lookup object is stored

- The name of the file we wish to printbreak

Page 251
- A constraint expression to select suitable printers
- A preference expression to order the printer service offers returned
The structure of the application is as follows:

The program usage is checked for an appropriate number of arguments. We obtain an object
referenceto aLookup object.

The command line arguments to the application are processed.

Some basic policies for atrader query are established.

The query is made.

Thereturned Pr i nt er objectsaretried in order until one successfully prints thefile.

Let'slook at the code starting with the included files, the main function, and command line
argument check:

/[/PrintCient.C

#i ncl ude " CosTr adi ngC. hh"
#include "I ORFi |l e. h"

#i ncl ude "printingC. hh"
int main(int argc, char *const *argv){

if (argc < 3 11 argc > 5){
cout << "usage: PrintCient trader_ior_file printfile
<< "[constraint [preference]]" << endl;
exit(1);
}

The application exits if it has not been run with the two mandatory arguments.

The next piece of code declares some variables and then initializes the ORB and obtains a
reference to the trader's Look up interface.break

CORBA: : ORB var orb;

/linitialize the ORB

try{
orb = CORBA:: ORB_init (argc, argv);

}

catch(const CORBA: : Syst enExcepti on& excep){
cerr << "System Exception caught while

<< "jnitializing ORB" << endl;

exit(1);

}

Page 252

/I some general purpose variabl es
CORBA: : Any_var policy_any = new CORBA: : Any;
CORBA: : Obj ect_ptr obj;

/1get reference to trader |ookup interface

CosTr adi ng: : LookupRef ny_| ookup;

try{
IORFile ior_file(CORBA: :strdup (argv[1]));
obj = orb->string_to object(ior_file.get _ior_string());
ny_l ookup = CosTradi ng: : Lookup: : _narrow obj);

if (my_lookup == CosTrading::Lookup:: _nil ()){
cerr << "NIL Trader Reference" << endl;
exit(1);
}
}
catch(const CORBA: : Syst enExcepti on& se){
cerr << "Caught CORBA System Exception" << endl;
cerr << se << endl;
exit(1);
}

cout << "trader narrowed" << endl;

Thel ORFi | e class opens and reads the file given as a command line argument and produces
astring for usewiththe ORB'sst ri ng_t o_obj ect () method. We then narrow the
reference obtained.

The next step is to prepare the query for a printer. We use any constraint and preference strings

received from the command line and provide suitable defaults when they are not provided.

//determ ne the constraint
CORBA: : String_var constr;

if (argc > 3)

constr = (const char *)argv[3];
el se

constr = (const char *)"";

[/l determ ne the prefs
CORBA: : String_var prefs;

if (argc > 4)
prefs = (const char *)argv[4];

el se
/1if no preference, conpare the offers for shortest queue
prefs = (const char *)"m n queue_l en"

An empty congtraint string will match al service offers of the right type. If the user does not
supply a preference then we use a default which orders the returned printers by shortest queue
length. Now we set parameter values and some policies which will ensure that we get a
reasonable result.break

Page 253

//set sone basic policies
CosTradi ng: : Pol i cySeq_var query_pols = new
CosTr adi ng: : Pol i cySeq();

query_pol s->l ength (2);

//decl are variabl es needed in the query()
CORBA: : Short numoffers = 3;
CORBA: : String_var service_type_nane =
(const char *)"IDL:Printing/Printer:1.0";
CosTr adi ng: : Lookup: : Speci fi edProps_var desired_props;
CosTrading: : Of ferSeq_var return_offers;
CosTrading: :Oferlterator_var iter
CosTr adi ng: : Pol i cyNaneSeq_var limts;

We will ask for at most three offers back, as this provides a reasonable likelihood of one
printer being operational. We initialize a short variable num of f er s tothevalue 3. Thisis
used inthe policy "r et ur n_car d", which specifies the maximum number of service offersto
return from a query. If we then pass the same value to the quer y() operation'show_many
parameter, we can ensure that all of the results will come back in the offers out parameter, and
we will not have to process an iterator.

try{
//we want at nost 3 offers back

(*policy_any) <<= numoffers;

CosTr adi ng: : Pol i cyNane_var policy nanme =
(const char *) "return_card";

CosTrading: : Policy policy;

pol i cy. nane = policy_nane;

policy.value = *(policy_any);

query_pol s[0] = policy;
The other policy we will passto thetrader is"use_dynamni c_properti es"”, which
tells the trader to evaluate the "queue_| en" property dynamically so that the
value used is up to date.

//we want to use dynam c props to find
/lprinter queue length
(*policy_any) <<=
CORBA: : Any: : from bool ean((CORBA: : Bool ean)!);
pol i cy_nane (const char *)"use_dynam c_properties”;
pol i cy. nane pol i cy_nane;
policy.value = *(policy_any);
query_pol s[1] = policy;

Thedesi red_pr ops parameter to quer y() liststhe property names whose values we
want returned with the query result. For easy processing in thiscontinue

Page 254

example we will ask for only the printer name, which assumes that users of our application
know their printers by name so that they can go and pick up a print-out from the right location.
Remember that using the trader we can discover new printers that only the systems
administrator knows about. A more advanced printing application would probably ask for al
the properties and provide the user with information on the location of printers, which would
enable newly discovered printersto be found by location.

//we want back only the nane property
CosTr adi ng: : PropertyNaneSeq_var desired_prop_nanes;

desired_prop_nanmes = new CosTradi ng: : PropertyNaneSeq(1);
desi red_prop_nanes->|l ength(1);

desired_prop_nanes[0] = "nane";

desired_props = new CosTradi ng: : Lookup: : Speci fi edProps();
desi red_props->prop_nanes(desired_prop_nanes);

}

catch (const CORBA: : Syst enExcepti on& se){
cerr << "Query failed: " << se << endl
exit(1l);

}

The Speci fi edPr ops typeisaunion, so we must initidlize its value and discriminator. The
C++ mapping specifies that a method corresponding to a union branch name will set the
discriminator for us. We use the method pr op_nanes() to set the value of the only branch.

Having created objects or variables for each of the parametersto thequer y() method, we
can now invokeit:

/I make a query
try{
ny_| ookup- >query(service_type_nane,
constr,
pref s,

query_pol s,

desi red_props,
num of f ers,
return_offers.out(),
iter.out(),
limts.out());

}

Since we have set thevaluein policy r et ur n_car d to thevalue of num of f er s(thesize
of the sequence we are prepared to accept back into our r et ur n_of f er s object), we can
ignore the iterator. We aso ignore the feedback from the trader about what policy restrictions
it applied to our query,which arereturned inthel i m t s object. Thistime we must catch the
usercontinue

Page 255

exceptions as well as any system exceptions. Rather than catching each ofthe ten possible user
exceptions that the query() operation could raise, wewill catch the base class of all of these,
CORBA: : User Except i on.

//catch sone inportant exceptions
catch (const CORBA: : User Exception& ue){

cerr << "Query failed - User Exception: " << ue << endl
exit(1l);
}
catch (const CORBA: : Syst enExcepti on& se){
cerr << "Query failed: " << se << endl
exit(1l);
}

Having received aresponse from the trader we will now attempt to use the service offers to
print the file. We do this by entering aloop which exitsoncetheprint _fil e() operation
has successfully been invoked on one of the objects returned in a service offer. First we
declare and initialize some variables, including astring and an Any_var to extract the
printer's name from the single returned property in each service offer.

.//send job to printer

CORBA: :ULong i = 0;

CORBA: : Bool ean printed = (CORBA: : Bool ean) 0;
char *pnang;

CORBA: : Any_var return_any = new CORBA:: Any,
Then we enter the loop.break

..//we'll try all the returned printers until one works
while (i < return_offers->length() - 1 & !printed){
try{
return_any <<= return_offers[i].properties[0];
*(return_any) >>= pnane,;
Printing::Printer_var printer
Printing::Printer:: _narrow(return_offers[i].reference);

if (printer == Printing::Printer::_nil()){
cerr << "Printer " << pnanme << " not found" << endl
i ++;

conti nue;

}

printer->print_file(CORBA: :strdup(argv[2]));

printed = (CORBA: : Bool ean) 1

cout << "File " << argv[2] << "sent to printer"
<< pname << endl|

}

Page 256

If the string extraction from r et ur n_any and the narrow of the object reference work, we
attempt to print the file named in the second command line argument. If theprint _fil e()
call works, the termination variable is set to true, amessage is printed, and the loop will exit.
Other possibilities are that the printer is off-line or that the invocation fails for some other
reason.

catch (const Printing::Printer::PrinterOfLine& pol){
cout << "Printer " << pnane << " offline!" << endl

}
catch (const CORBA: : Syst enExcepti on& se){
cout << "Printer " << pnanme << " raised: " << se << endl
)
i ++;
}
}

Any falluresto print are notified to the user and the next printer istried. Thisis an example of
how we might run the application:

[Print>PrintClient trader.ior
[hore/ dud/ nyfile.ps \
| anguage == "postscript” &% floor < 4

Our constraint expression expresses our need for a postscript printer somewhere on the lower
floors of our building. We do not specify a preference, as the default preference for the shortest
print queue length is suitable. The execution above may result in the following output:

..Printer 12ps of fli ne!
..File /home/dud/ nyfile.ps sent to printer nonster

34.1—
Possible Enhancementsto the PrintClient

The example exercisesthe quer y () operation, demonstrates how to pass policies and how to
specify the properties we want back, and shows how to extract the returned property values.
However, it does not deal with the situation where no service offers match the constraint
expression.

A more sophisticated printer query might look up the user's default printer constraint
expression and preferences from afile if none were supplied on the command line. It could
also check that at least one working printer offer isreturned, and if not, it could make aless
specific query with an empty constraint string to match all available offers of the service type.

In the case where the first attempt fails, it could query for al printers and ask for all of their

properties to be returned, then display alist and allow the user to select an appropriate printer.
Thiswould require that ther et ur n_car d policy not be set and that an iterator be used, as
the number of offers returned would be unpredictable. When making a query that mightcontinue

Page 257

match a large number of offers, it is often best to set the how_nany argument to zero and have
asingle loop to process the iterator. This avoids having to have two loops, one for the returned
sequence of offers and the other to invokethenext _n() operation on the returned iterator.

4—
Domains

Aswesaw in Section 1, the operationr esol ve_initial _references() returnsan
object of type CORBA: : Obj ect , but this object is expected to be of a specific type,
depending on the service name specified as parameter. For the Naming Service, you narrow the
object to aNam ngCont ext . The question we want to discuss in this section is which object
instancethe method r esol ve_initial _references() returnsfor agiven service
name.

It might appear that the answer is the root context of the Naming Service. However, there are a
number of problems with this answer.

First of al, what is the Naming Service. CORBA does not define an association between the
ORB and Services, and there is aso no such thing as the ORB. When you obtain an ORB
pseudo-object by calling CORBA: : ORB_i ni t () aloca instance of the class CORBA: : ORB
is created which implements the operations defined in the pseudo-interface CORBA: : ORB.
Furthermore, novice users sometimes assume that an ORB is associated with an | P subnet—this
is not the case! Whenever your ORB isinitialized locally and obtains a reference to an object,
you can invoke operations on that object.

Aswe see, the ORB does not solve our problem. What we want is something which alows us

to share the same instances of initia services among a set of objects and clients. We call thisa
domain. There are multiple kinds of domains. In this context we have anaming domain, that is,
a set of objects and clients which share the same Naming Service.

In the case of the Naming Service we face an additional problem. The Naming Service
specification does not define a structure for the rel ationships between naming context objects.
Even though you organize your naming contexts as a tree, the Naming Service does not know
this. Hence any context may haveto bereturned by resol ve_initi al _references().
So adomain is specific to a specific service and identifies which initial object instance
provided by such aservice isreturned. All members of adomain will obtain the sameinitial
object. For the Naming Service, this means that all clients and objects which belong to the
same naming domain obtain the same context object when calling
orb->resolve_initial _references ("NaneService").

CORBA only provides aminimal interface for choosing domains. The only hook availableis
the parameters which can be used to initialize the ORB object. The C++ language binding
defines the following ORB'sORB_i ni t () operation: break

Page 258

CORBA: : ORB_ptr
CORBA::ORB init(int argc, char *const *argv);

Using thear gc and ar gv parameters, we can pass command line arguments to initialize the
local ORB object so that it belongs to a certain naming domain.

Weillustrate the use of domains with the VisiBroker Naming Service and asimple client
program which can resolve string names and print out stringified object references. This client
is defined in the Resolve program. The implementation is shown in the examples associated
with this chapter. Domains are implemented with VisiBroker using the ORB's underlying
directory service, implemented by the OSAgent (see Section 5 for details). We start the
Naming Service using afactory which creates one initial naming context object. We then
register this naming context object with the OSAgent under the name ROOT .

CosNami ngExt Factory ROOT /tnp/ ns_| og

Now we start the resolve client from Section 4 so that it belongs to the naming domain defined
by the naming context called ROOT. We do this by setting the command line argument
- DSVCnaner oot to the vaue ROOT.

Resol ve - DSVCnaner oot =ROOT "/ x/yl z"

Now whenwecall resol ve_initial _references() ontheloca ORB object, it
returns a reference to the Naming Service's context object called ROOT.

We can assume that the naming context object, whichisnamed " / x/ y" relative to the root
context, isregistered as” _ X _Y" with the OSAgent. We can again start the same resolve
client, but this time we want it to belong to a different naming domain and obtain the same
object. Thistime the object's name is different asit isrelative to a different naming context:

Resol ve -DSVCnaneroot=_X_Y "/z"

Alternatively, you can start a client with another command line argument which passes a
stringified IOR to determine the naming domain. Thisis particularly useful for ORB
interoperability.

Resol ve -DSVCnanel OR="1COR 000. ."

- DSVCnaner oot =ROOT - CRBagent 0 "/ x/y/z"
5—
Proprietary Object L ocation

Different ORB implementations provide proprietary mechanismsto locate objects. An example
of such mechanisms arethe bi nd() methods provided by Visibroker C++. Other ORBs such
as Orbix also have implementations ofcontinue

Page 259

thebi nd() method. Although the similarity of the names and signatures suggests
interoperability, thisis not the case. The set of bind methods have quite different mechanisms.

Although these bind mechanisms are neither interoperable nor portable between different ORB
implementations, they are quite popular among application programmers. In fact these
mechanisms ease the bootstrapping of applications and provide additional features. For
example, Visibroker provides load balancing, fault tolerance through replicas, and automatic
object activation.

We introduce here the binding mechanisms of Visibroker for C++. The mechanisms introduced
here are uniform across the product suites of the vendors that implement them. C++ ORB
access to CORBA objects implemented in other languages will rely on using the equivalent
mechanism in another ORB in the same family. We do not provide any details on how thisis
achieved, and the reader isreferred to the product documentation.

VisiBroker's mechanism for binding objects requires the object implementer to assign names to
objects when instantiating them. The name is then used to automatically register the object
implementation with aVisiBroker's Smart Agent. Clients of the object can then use their
knowledge of these names to bind to the objects.

The Visibroker-generated skeleton classes all have a constructor that accepts a string, which is
the implementation name for a particular object, assigned by the object implementer. This name
isthen used by clients to obtain areference to an object of a particular type by using the

bi nd() methods generated in the stub class for that interface type. Let's have alook at an
example constructor for an implementation of an interface X in the BOA modd:

class Xinpl : public _sk_X{
/] construct or
Xi mpl (const char *object_name) : _sk_X(object_name){

}

The object created using this constructor will now be accessible to any client that uses the
generated stub class. The client has to pass the same nameto abi nd() method on that class.
Thebi nd() method looks like the following:

static X ptr bind(const char *object_name = NULL,
const char *host nane = NULL,
const CORBA::Bi ndOptions *_opt = NULL,
CORBA: : ORB ptr _orb = NULL)

Specifying nonnull values for the parameters sets constraints on the bi nd() method in finding
implementations. For example, specifying anon-hard

Page 260

null host _nane restrictsthe bi nd() method to finding implementations on the specified
host _nane.

The _opt parameter allows the client to specify options by creating an object of class
CORBA: : Bi ndOpt i ons updating its boolean fields:

- def er _bi nd—do not make a connection to the target object until the first invocation
- enabl e_r ebi nd—reconnect to the target object if the connection islost

Object implementations with the same name are treated asreplicas. That is, if aclient holds an

IOR to an object and this object isn't accessible anymore, the invocation will be automatically
rerouted by the Smart Agent. The address information in the run-time representation of the IOR,
that is, the client side proxy, will be automatically updated. When multiple object instances
match a bind request, the Smart Agent returns object references in a round-robin fashion—a
simple but in many cases adequate load balancing mechanism. Finally, aslong an object
implementation is registered with the object activation daemon, the Smart Agent creates an
object instance if there are none of the requested specification available.break

Page 261

Chapter 6—
Building Applications

In this chapter we explain how to build applications using C++ ORBs. We have selected a
simple room booking system as an example. Since we want to demonstrate CORBA features
rather than prove that we can implement a sophisticated booking system, we have kept the
application-specific semantics simple. But aswill be seen in the IDL specification, we have
chosen a very fine-grain object model which allows the creation of many CORBA objects and
the demonstration of invocations between them. We will also demonstrate the use of the
CORBA Naming Service.

This chapter covers the development of an entire application including
- Interface specification (Section 1).

- Implementing objects (Section 2).

- Implementing a server (Section 3).

- Implementing afactory (Section 4).

- Starting servers (Section 5).

- Client application (Section 6).

1—

Application Specification

The room booking system allows the booking of rooms and the cancellation of such bookings. It
operates over one-hour time slots from 9 A.M. to 4 p.M. Tocontinue

Page 262

keep things simple we do not consider time notions other than these dlots, so there are no days
or weeks. The rooms available to the booking system are not fixed; the number and the names
of rooms can change. When booking aroom, a purpose and the name of the person making the
booking should be given. We do not consider security issues and anyone can cancel any
booking.

The following key design decisions were made:

- Rooms and meetings are CORBA objects.

- A meeting object defines a purpose and the person responsible for the meeting.

- A meeting factory creates meeting objects.

- A room stores meetings indexed by time dots.

- Rooms have a name and register themselves under this name with the naming service.

Figure 6.1 illustrates a typical configuration of the room booking system. There are three room
servers that all have one room object implementation. There is al'so a meeting factory server
that has created a meeting factory object. The meeting factory has created several meeting
objects that are in the same process space. There is also a naming service that has various
naming context objects forming a context tree. The room and the meeting factory object
implementations are registered with the naming service.break

Client Application

gsolvel) Cancel()

BA Service
COREAMmNog / bind()
NamingContext resalve()
wind! reateMeeting()

ingFactoryServer Meetingimpl

MeetingFactorylmpl
Meatinglmpl
Meatinglmpl
Meelinglmpl

Figure 6.1
Room booking system—atypical configuration.

Page 263

11—
IDL Specification

The IDL specification of the room booking system is contained in a hierarchy of modules as
motivated in Chapter 5. It contains a number of interface specifications: Meet i ng,
Meet i ngFactory, Roon.

Theinterface Meet i ng has only two attributes, pur pose and parti ci pant s, which are
both of type st r i ng and both r eadonl y. The attributes describe the semantics of a meeting.

Meeting objects are created at run time by ameeting factory which is specified in the interface
Meet i ngFact ory. It provides asingle operation, Cr eat eMeet i ng() , which has
parameters corresponding to the attributes of the meeting object and returns an object reference
to the newly created meeting object.

nodul e RoonmBooki ng{
interface Meeti ng{

/1A neeting has two read-only attributes which describe
//the purpose and the participants of that neeting.

readonly attribute string purpose;
readonly attribute string participants;

}s

i nterface Meeti ngFact or y{
/1A neeting factory creates neeting objects.
Meeting CreateMeeting(in string purpose, in string participants);

}

Within the specification of the interface Roor, we start with the definition of some datatypes
and a congtant. Thereisthe enum Sl ot which defines the time dots in which meetings can be
booked. The constant Max Sl ot s, of typeshor t , indicates how many dots exist. The typedef
Meet i ngs definesan array of length Max Sl ot s of meeting objects. Then we define two
exceptions, NoMeet i ngl nThi sSI ot and SI ot Al r eady Taken, which are raised by
operationsin theinterface. Thereisalso ar eadonl y attribute name of type st ri ng which
carries the name of the room, for example, "Board Room."break

i nterface Roon{
/1 A Room provides operations to view, nmake, and cancel booki ngs.
/1 Maki ng a booki ng nmeans associating a neeting with a tine slot
/1 (for this particular roon.

/1 Meetings can be held between the usual busi ness hours.

/1 For the sake of sinplicity there are 8 slots at which neetings
//can take place.

Page 264
enum Sl ot{ an®, amlO, anll, pml2, pm, pnR2, pn8, pnmi};

//since IDL does not provide means to deternmine the cardinality
/1of an enum a correspondi ng constant MaxSlots is defined.

const short MaxSlots = 8;

/1 Meetings associates all neetings of a day with tine slots
//for a room

typedef Meeting Meetings[MaxSl ot s];

exception NoMeetingl nThisSl ot {};
exception Sl ot Al readyTaken{};

[/ The attribute "nane" nanes a room
readonly attribute string nane;

There are three operations defined in the interface Roormn. The operation View() returns
Meet i ngs, the previoudly defined array of meeting objects. The meaning is that a meeting
object reference indicates that this meeting is booked into the indexed dot. A nil object
reference means that the indexed dot isfree.

The operation Book () booksthemeetinga_neet i nginthedot a_sl ot of the room
object on which the operation isinvoked. The operation raisesthe Sl ot Al r eadyTaken
exception if there is already a meeting booked into the specified dot.

The operation Cancel () removesthe meeting at thedot a_sl ot . It raisesthe
NoMeet i ngl nThi sSI ot exceptionif thereis no meeting in the dot.

2
I mplementing Objects

The servant classes we have to implement are for the IDL interfaces Meet i ng and Roon. We
use the POA model for both the meeting and room implementations.

2.1—
I mplementing the Meeting Object

We implement the meeting object inaclassMeet i ngl npi | which extendsthe
IDL-generated implementation base class POA_RoonBooki ng: : POA_Meet i ng. We
define two private variables _pur pose and _parti ci pant s, which correspond to the
attributes with the same nares. The constructor has two parameters which are used to initialize
those two private variables.break

Page 265

/1 Meetinglnpl.h
#i ncl ude " RoonBooki ng_s. hh";

class Meetinglnpl : public POA RoonBooki ng:: POA Meeti ng{

private:
CORBA: : String_var _purpose;
CORBA: : String_var _participants;

publi c:
/] construct or
Meetingl npl (const char * purpose,
const char * participants) :
_purpose(purpose), _participants (participants){}

IDL attributes are mapped to C++ methods. These consist of an accessor method and a
modifier method if the attributeis not r eadonl y. Since the attributes of the interface

Meet i ng arer eadonl y we only have to implement the accessors. Their implementation is
straightforward, they just return the value of the corresponding private variable.

[lattributes
char *purpose(){ return CORBA: :strdup(_purpose); }
char *participants(){ return CORBA: :strdup(_participants); }

2.2—
I mplementing the Room Object

The room object isimplemented in the class Room npl , extending the corresponding
IDL-generated class POA_RoonBooki ng: : POA _Roorn. We declare two private variables,
_narne to hold the name of the room object and neet i ngs to hold the array of booked
meetings. Note that the variable meetingsis of type RoonBooki ng: : Meet i ngs_var
which is a memory-managed type. We also declare athird private variable saf et yMut ex,
which will be used to ensure thread safety. We explain in subsequent sections how we make
use of the mutex. Note that the type of the mutex variableis VI SMut ex_var , whichisa
convenience class provided by Inprise VisiBroker.

Within the congtructor, we assign the only argument, determining the name of the room to be
created, to our private variable name.break

/1 Room npl . h

#i ncl ude " RoonBooki ng_s. hh"

class Room npl : public PQA RoonBooki ng:: POA Roon{
private:

CORBA: : String_var _nane;

Page 266

RoonBooki ng: : Meeti ngs_var *neeti ngs;
#i f defi ned(THREAD)

VI SMut ex_var saf et yMut ex;
#endi f
publi c:
/] construct or
Room npl (const char *name) : _nane(name){
neeti ngs = RoonBooki ng: : Room : Meetings_al |l oc();
}

Asintroduced in Chapter 3, IDL arrays are mapped to C++ arrays. Our variable neet i ngs is
an array. We use the constructor to initialize it appropriately. The length of the array is defined
in the specification of the interface Room as a constant Max S| ot s, which is mapped to a C++
constant Max S| ot s of type CORBA: : Short .

/ I RoonBooki ng_c. hh
class Room public virtual CORBA (bject({

static const CORBA: :Short MaxSlots;//8
}

Theat t ri but e nameisread-only and hence only the accessor method needs to be

implemented. It returns the value of the corresponding private variable.

[lattributes
char *name() {

return CORBA::strdup(_nane);
}

The operations of IDL interfaces are mapped to C++ methods. Clients can concurrently access
room objects. Therefore we have implemented room objects in a thread-safe manner. The
particular problem we have to addressis that the three methods, Vi ew() , Book() and
Cancel (), each either access or set the private member variable neet i ngs. These
variables are shared between multiple threads. For example, while one thread in the server
could be servicing the Book () operation and thus setting an entry inthemeet i ngs array,
another thread in the server servicing thecancel () operation could delete the same entry.
Thisleads to an inconsistency in the data structure neet i ngs and to undefined behavior. To
prevent this we introduce a private member variable saf et yMut ex that islocked at the
beginning of each of the methods—vi ew() , Cancel () and Book() -andisunlocked when
we exit from these methods. The mutex serializes the access to the member variables. Inprise
VisiBroker provides us with a convenience class VI SMut ex_var , which takes care of
locking and unlocking in its constructor and destructor,continue

Page 267
respectively. We simply make use of this class at the beginning of our methods.

The implementation of the method Vi ew() is shown below. We lock the mutex

saf et yMut ex to makethe Vi ew() method thread safe. We ssmply declare alocal variable
called | ock of typeVI SMut ex_var and passthesaf et yMiut ex asan argument to its
congtructor. Thistakes care of locking the saf et yMut ex. When theVI SMut ex_var
variable goes out of scope, its destructor is called which unlocksthe saf et yMut ex. Hence
thereis no explicit call to unlock the mutex at the end of the Vi ew() method.

Wedeclare avariablenew_neet i ngs of type RoonBooki ng: : Meeti ngs_var * and
allocate memory to it by making use of the Meet i ngs_al | oc() method generated by the
IDL compiler. For each element in this array, we assign the corresponding value from the
private member variable meet i ngs after invoking _dupl i cat e. The purpose of the
_dupl i cat e() method isto increment the reference count of the object reference contained
innmeeti ngs[i].Finaly, wereturn new_neet i ngs, which holds the object referencesto
the currently booked meetings. When we return an object reference, we must always invoke
_dupl i cat e() onit. Otherwise the skeleton would garbage collect the object. The object
reference is returned to the client but the reference on the server side is released. For
information on the reference counting mechanism, see Chapter 2.

RoonBooki ng: : Meeti ngs_slice *Room npl :: Vi ew()
#i f defi ned(THREAD)
VI SMut ex_var | ock(saf et yMut ex) ;
#endi f

RoonBooki ng: : Meetings_slice *new neetings =
RoonBooki ng: : Room : Meeti ngs_al |l oc();
for(CORBA::Uong i=0; i < RoonBooking::Room:NaxSlots; i++){
new neetings[i] =

RoonBooki ng: : Meeting: : _duplicate(neetings[i]);
}

return new neetings;

}

The method Book () hastwo parameters, one that determines the ot in which ameeting
should be booked and the other that identifies the meeting object. We lock the saf et yMut ex
to make the method thread safe, likewedid inthevi ew() method.

We check if the dot isempty, that is, if the object reference indexed by the dot isnil. If the dot
isempty we assign the meeting to the dot, otherwise we raise the exception
Sl ot Al r eadyTaken. The classfor the exception is defined in the class

RoonBooki ng: : Roorr since the corresponding IDL exception was defined in the interface
Room. break

Page 268

voi d Room npl :: Book(RoonBooki ng:: Room: Sl ot slot,
RoonBooki ng: : Meeting_ptr neeting){
i f #defi ned(THREAD)
VI SMut ex_var | ock(saf et yMit ex) ;

#endi f
i f(nmeetings[slot] == RoonBooking::Meeting:: _nil()){
neetings[slot] =
RoonBooki ng: : Meeti ng: : _dupl i cat e(meeti ng);
}
el sef

cout << "Throw ng exception: SlotAl readyTaken" << endl
t hr ow RoonmBooki ng: : Room : Sl ot Al r eadyTaken();

}

The method Cancel () isimplemented similarly. Welock the saf et yMut ex to ensure
thread safety. We check if the dot is occupied, and if so we assign

RoonmBooki ng: : Meeting:: _nil () tothedot. This causesthe object reference
contained inthe _var to bereleased. In the case where there is no meeting object in the
indexed dot, we throw the exception NoMeet i ngl nThi sSl ot .

Voi d Cancel (RoonBooking::Room: Slot slot){
i f #defi ned(THREAD)

VI SMut ex_var | ock(saf et yMiut ex) ;
#endi f

i f(nmeetings[slot] != RoonBooking::Meeting:: _nil()){
/1 Assigning nil rel eases object reference contained in
//the _var
neetings[slot] = RoonBooking::Meting::_nil ();

}
el se{

t hr ow RoonBooki ng: : Room : NoMeet i ngl nThi sSl ot () ;
}

3—
Building Servers

To instantiate the object implementations and to make them available to clients we have to
implement a server. The server is code that at run time executes as an operating system process
or task. There can be one server per object or a server can host multiple objects. A server has
four fundamental tasks:break

Page 269
- Initialize the environment, that is, get references to the pseudo-objects for the ORB.
- Create objects.
- Make objects accessible to the outside world.
- Execute a dispatch loop to wait for invocations.

Additional server tasks can include the registration of the objects with the Naming Service or
the Trading Service.

The server RoonSer ver doesthe four fundamental tasks and registers the newly created
room with the Naming Service. Thisis achieved inthe mai n() function of the RoontSer ver
program. We define two strings which are used when registering the room object with the
Naming Service. Then we check that the number of argumentsis correct and exit the program if
it is not. We expect one argument determining the name of the room object.

To use the Naming Service successfully, objects which want to share information viathe
Naming Service have to agree on a naming convention. For this example we use the following
convention, which isillustrated in Figure 6.2. Under aroot context we have a context
"BuildingApplications" which contains two contexts called "Rooms" and "M eetingFactories,”
respectively. We bind room objects into the context "Rooms" and the meeting factory object
into the context "M eetingFactories." Following this con-soft

IMHIMWIIHI

| MeetingFactories |
I

I Board Rcom] MeatingFactory I

i Training Room I

I Androas’ Office

I Meating Room

Koith's Office |

|| contextObject | | Oblectname |

Figure 6.2
Naming convention

Page 270

vention will ensure that clients can locate the appropriate objects. Note that the Trading
Service provides amore formal approach to categorization based on service types (see
Chapter 5).

According to this naming convention we initialize the variable cont ext _nane with a
corresponding string version of the room context name.

/ / Roonterver. C

#i ncl ude "EasyNam ng. h"
#i ncl ude "vpolicy. h"

#i ncl ude " Rooml npl . h"

int main(int argc, char *const *argv){

CORBA: : String_var context_nare;
char str_name[256];

if (argc < 2){

cerr << "Usage: " << argv[0] << "room nane" << endl;
exit(1l);
}
context _nane = (const char *)"/Buil di ngApplications/ Roons/";
3.1—

Initializing the ORB
Thefirst task isto initialize the ORB. To get a pointer to the ORB, we call the method

ORB_i ni t () onthe class CORBA.

try{
//linitialize the ORB

CORBA: : ORB var orb = CORBA: :ORB init(argc, argv);

3.2—
Creating an Object, Registering with the Root POA

The second task isto create the room object. We create an instance of the class Room npl

and provide the name as a parameter to the constructor (see Section 2.2 for the definition of
that class). Then we perform the third task. We use the standard POA model to implement the
server. We obtain areference to the persistent root POA by invoking

resolve_initial _references onthe ORB and nar r owingittoaPOA var.We
then activate the room object by invoking act i vat e_obj ect on theroot POA and passing
theinstance of Room npl as an argument. Following this, we activate the POA manager by
invoking act i vat e() onthe POAManager. We then have the POA manufacture an object
reference for the room object so that it can be exported to clients, either in atext file or through
the Naming or Trading Service.break

Page 271

/lcreate the Room obj ect
Room nmpl roonm(argv[1]);

/1 Get the Root PQA object reference
CORBA: : Obj ect _var obj =
orb->resolve_initial _references("Root POA");

/I Narrow t he object reference to a POA reference
Por t abl eServer:: POA var root_poa =
Por t abl eServer:: PQA:: _narrow(obj.in());

[/create a Persistent PQA
Por t abl eServer:: POA var persistent_poa = create_persistent_poa(root_poa);
/lcreate an CbjectlD
Por t abl eServer:: Objectld var oid =
Port abl eServer::string_to_(bjectl D{CORBA: : string_dup(argv[1]));

/I Regi ster servant with the POA explicitly
persi stent _poa->acti vate_object_w th_id(oid, & oon);

cout << "activating POA manager ..." << endl;
persi st ent _poa- >t he_PQAManager () - >acti vate();

cout << "create reference" << endl;
CORBA: : Obj ect _var roonRef =
persistent_poa->id_to_reference(oid);
3.3—
Registering with the Naming Service
The next step isto register the object with the Naming Service. The class EasyNami ng
provides a convenient interface to the Naming Service, as explained in detail in Chapter 5. Its

constructor obtains an initial context of a Naming Service viathe ORB's bootstrap mechanisms.
The class EasyNam ng handles simple names including contexts in anotation similar to the
notation of file namesin various operating systems.

/ <cont ext | >/ <cont ext 2>/ .../ <cont ext n>/ <name>

It parses strings in this format and creates Naming Service names of type
CosNam ng: : Nanme, which mapsto CosNam ng: : Nanme in C++.

Weinitialize such astring in the variable st r _nane, for example, with avalue
"/BuildingA pplications'Rooms/Board Room." We then bind the room object reference to the
name corresponding to this string by calling bi nd_from stri ng() on the object
easy_nam ng.break

//register with nam ng service
/I create EasyNam ng obj ect
EasyNam ng *easy nam ng = new EasyNam ng(orb, cosnamng_ ior);

Page 272

/1 Copy context nane to str_nane
strcpy(str_nane, context_nane);

/I Append string nane
strcat(str_name, argv[1]);

//bind str_name to room obj ect
easy_nam ng->bind_fromstring(str_nanme, roonRef);

3.4—
Entering the ORB's Event Loop

The fourth task of the server isto enter the ORB's event |oop by calling or b- >r un() to wait
for incoming invocations.

Finally, we catch exceptions. If an exception of type Al r eadyBound israised, werealize
that aroom with our room's name is aready registered with the Naming Service. We handle
any exception that israised in avery simple way. We print it out and exit.

/1 Enter ORB's Event | oop
orb->run();

}
catch(const CosNam ng: : Nam ngCont ext: : Al readyBound& al ready_bound) {

cerr << "Room" << context_nane << " " << argv[1]
<< " already bound. " << endl
cerr << "Exiting..." << endl
exit(1l);
}
catch(const CORBA: : User Exception& ue){
cerr << ue << endl

cerr << "Room" << context_nane << " " << argv[1]
<< " already bound. " << endl
exit(1l);

}

catch(const CORBA: : Syst enmExcepti on& se){
cerr << se << endl;
exit(1l);

}

return O;

}

4—
Building Factories

A factory is an object implementation with a particular design pattern. The difference from
ordinary objectsis that factories provide methods to dynamically create new objects. They
perform the same initialization of new objectsasaserver'smai n() method. That is, they
create objects and make them invokable. The process of building factories contains the
samecontinue

Page 273

steps as building any other server: implementing the object and implementing the server.

4.1—
Meeting Factory Object | mplementation

The meeting factory implementation, the class Meet i ngFact or yl npl , isan extension of
the corresponding IDL-generated class POA RoonBooki ng: : POA_ Meet i ngFact ory.
We declare private variables to hold pointers to the ORB and the POA. In the constructor we
pass references to the ORB and POA which have obtained in the server. We a so set the name
of the object in the POA model.

/I Meet i ngFactoryl npl . h

#i ncl ude " RoonBooki ng_s. hh"
#i ncl ude "Meetinglnpl.h"

class MeetingFactorylnpl : public POA RoonBooki ng:: POA Meeti ngFact or y{
private:
CORBA: : ORB var _orb;
Por t abl eServer:: POA var _poa;

publi c:
/] construct or
Meet i ngFact oryl npl (
CORBA: : ORB ptré& orb,
Por t abl eServer:: POA ptr poa):

try{
_orb = orb;
_poa = Portabl eServer::POA : duplicate (poa);

} catch(const CORBA:: SystenkExcepti on& excep){
cerr << "MeetingFactorylnpl: exception occurred" << endl;
cerr << excep << endl;
exit(1);

The implementation of the only method of the meeting factory, Cr eat eMeet i ng() , isshown
below. Its parameters correspond to those of the meeting object's Meet i ngl npl ()
constructor. We pass the parametersto the Meet i ngi npl constructor which creates a new
instance of a meeting object. We store the reference to this object in the variable

newMeet i ng. Once the object is created we follow the usual procedure to activate an object
in the POA mode. We activate the object, and have the POA manufacture an object reference
that can then be returned to the caller. We must duplicate the object reference before returning
to the caller, in accordance with the CORBA reference counting and IDL to C++ mapping rules
for returning object references.break

Page 274

/I Meet i ngFactorylnpl.C
#i ncl ude "Meeti ngFactorylnpl.h"

/I operations
RoonBooki ng: : Meeti ng *Meeti ngFact oryl npl :: Creat eMeet i ng(
const char * purpose, const char * participants){
Meet i ngl npl *newieet i ng;

try{
newMeeti ng = new Meeti ngl npl (purpose, participants);

i f (newMeeting == RoonBooking::Meting:: _nil()){
cerr << "newMeeting created is nil" << endl;

}

cout << "activating obj..." << endl;
Por t abl eServer:: Objectld var oid =
_poa->activate_object(neweeting);

cout << "create reference..." << endl;
CORBA: : obj ect_ptr obj = poa->id to_reference (oid.in());
_poa- >t he_PQAManager () - >acti vate();

/lincrease the reference count
r et ur nRoonBooki ng: : Meeting: : _narrow CORBA: : Cbj ect:: _duplicate(obj));

}
catch(const CORBA: : Syst enExcepti on& excep){

cerr << "System Exception occurred while creating new Meeting" <<
endl ;
exit(1);
}
return newhMeeti ngRef;
4.2—
Meeting Factory Server

The meeting factory server follows the same pattern as the room server. We initialize the ORB,
create the meeting factory object, and follow the usua rulesto activate the object with the root
POA .break

#i ncl ude "vpolicy.h"
#i ncl ude "EasyNam ng. h"
#i ncl ude "Meeti ngFactorylnpl.h"

int main(int argc, char *const *argv){

CORBA: : String_var context_namne;
char str_name[256];

if (argc < 2){

Page 275

cerr << "Usage: " << argv[0] << " FactoryServerNane" << endl;
exit (1);

cont ext _nanme =
(const char *)"/Buil di ngApplications/ MeetingFactories/";

try{
[linitialize ORB
CORBA: : ORB var orb = CORBA: :ORB init(argc, argv);

/1 Get the root PQOA object reference
CORBA: : Obj ect _var obj =
orb->resolve_initial_references("Root POA");

/I Narrow t he object reference to a POA reference
Por t abl eServer:: POA var root_poa =
Por t abl eServer:: PQA:: _narrow(obj.in());

/lcreate a persistent poa
Por t abl eServer:: POA var persistent_poa =
create_persistent_poa (root_poa);

/lcreate an object Id
Por t abl eServer:: Objectld_var

Por t abl eServer::string_to_objectld(CORBA: :string_dup(argv[1]));
Meet i ngFact oryl npl neeting factory(argv|[1]);

/] Regi ster servant with POA
persi stent _poa->activate_object_with_id(oid, & neeting factory);

cout << "activating poa ngr..." << endl;
root _poa- >t he_PQOAManager () - >acti vate();

In the meeting factory server we use the Naming Service differently from the way we useit in
the room server. Instead of binding a name to the object reference, we rebind it. This means
that when there is already an object bound to the name we have chosen, we override the old
binding. We usethe method r ebi nd_from stri ng() of theclassEasyNam ng which
callsr ebi nd() onthe naming context.

Note that we use rebind only to demonstrate another feature of the Naming Service; the rebind
semantics are not implied by the meeting factory.break

//register with Nam ng Service

/I create EasyNam ng obj ect
EasyNam ng *easy_nam ng = new EasyNam ng(orb);

/I Copy context _nane
strcpy(str_nane, context_nane);

/1 Append | ogical nanme to be registered with Nam ng Service

Page 276

strcat (str_name, "MeetingFactory");

//rebind str_name to neeting factory object
//overrides any previous binding
easy_nam ng->rebind fromstring(str_name, neeting factoryRef);

Wefinish by calling or b- >r un(') to wait for incoming invocations and then catch
exceptions.

/lenter ORB's event | oop
orb->run ();

} catch(const CORBA: : SystenException& sexcep){
cerr << "MeetingFactoryServer: System Exception occurred" << endl
cerr << sexcep << endl
exit (1);

} catch(const CORBA: : User Excepti on& uexcep){
cerr << "MeetingFactoryServer: User Exception occurred" << endl
cerr << uexcep << endl
exit (1);

}

return(0);
}
5
Starting Servers
Starting the servers requires the following steps. As explained in Chapter 5, we have defined a

naming domain to which al components of our gpplication belong. We do this by setting the
root context to a naming context called ROOT.

Start Naming Service

> CosNani ngExt Fact ory ROOT ROOT_| og > CosNaming.ior & (UN X)
> nanmeextf ROOT ROOT_| og > CosNaming.ior & (W ndows)

Start meeting factory server
> Meeti ngFact oryServer MeetingFactory -SVCnaneroot ROOT &
Start room server sbreak

RoonServer "Board Roont - SVCnaneroot ROOT &
Roonterver "Traini ng Roont' -SVCnhaneroot ROOT &
Roonferver "Meeting Roont' - SVCnaneroot ROOT &
RoonServer "Andreas' Ofice" -SVCnaneroot ROOT &
RoonServer "Keith's O fice" -SVChaneroot ROOT &

V VVVYV

6—
Building Clients

Page 277

Clients can be implemented as C++ applications or Java applications or Java applets. In order
to build Java client applications or applets, we require the Java ORB. For further details, refer
to Java Programming with CORBA by Andreas Vogel and Keith Duddy (1998). In this section

we illustrate how to build a text-based C++ client application.

The following output showsthe initial state of a client that is viewing a booking system

containing four bookings made previoudly by other clients.

Room Booking Client Application

AM PM
Rooms 9 10 11 12 1 2 3 4
Training room Book Book Book Book View Book Book Book
Keith's office Book Book View Book Book Book Book Book
Meeting room Book Book Book Book Book View Book Book
Board room Book View Book Book Book Book Book Book
Andreas's office Book Book Book Book Book Book Book Book

The following output shows a view of the booking system after a user has selected the training

room's 9 A.M. time dot and the booking has been made.

Room Booking Client Application

AM PM
Rooms 9 10 11 12 1 2 3 4
Training room View Book Book Book View Book Book Book
Keith's office Book Book View Book Book Book Book Book
Meeting room Book Book Book Book Book View Book Book
Board room Book View Book Book Book Book Book Book
Andreas's office Book Book Book Book Book Book Book Book

The following shows a sample output from invoking a"View" operation on the 9 A.m. slot of

the training room. break

Enter the nanme of the roomyou would Iike to book/cancel/view Trai ni ng Room

Enter the slot nunmber you would Iike to book/cancel/view

(9,10,11,12,1,2,3,4) :9

Meeting Details:

Page 278

Room nane: Trai ni ng Room

sel ected slot: 9am

Pur pose: C++ ORB Training
Participants: Andreas & Keith

The followi ng operations are avail abl e:
Cancel
Ret urn

To Cancel, enter 'c' or 'C
To Return to Main nenu, enter 'r' or 'R

6.1—
Client Application

Weinitializethe ORB by invoking ORB_i nit (). Wethencalinit _from ns() which
obtains the meeting factory and room naming context references from the Naming Service. Then
we invoke the method vi ew() to get the booking information from each room.

int main(int argc, char *const *argv){

try{
orb = CORBA:: ORB_init(argc, argv);
init_fromns();

CORBA: : Bool ean quit_flag = 0;

view();

Following initialization, we accept user input. The choices available to the user at thistime are
to view an existing booking, to book aroom or toquit. Based on the user input, we take action
accordingly. The method sel ect _room sl ot () allowsthe user to select a particular
room and dot. The method neet i ng_det ai | s() displaysthe details of an existing
meeting. The method di spl ay_r oons() presentsatable of all the rooms with their
booking status.break

/1 Accept input fromthe user
/I Modify internal variables accordingly
for(;;){
cout << "\'n\nThe foll owi ng operations are available:" << endl;
cout << "\tBook\n";
cout << "\tViewn";
cout << "\tQuit\n\n\n";

cout << "To Book, enter 'b' or 'B'\n";
cout << "To View, enter 'v' or 'V \n";
cout << "To Qit, enter 'q or 'Q\n";
char choi ce;

cin >> choi ce;

Page 279

swi t ch(choi ce) {

case 'v':
case 'V :
sel ect_roomslot();
neeting_detail s();
di spl ay_roons();
br eak;
case 'b':
case 'B':
sel ect_roomslot();
book();
br eak;
case 'q':
case 'Q:
quit();
quit_flag = 1;
br eak;
defaul t:
cout << "\'n\nThe choi ce you entered was incorrect. Please enter
agai n\n";
br eak;

}
if (quit_flag) break;
}

}
catch(const CORBA:: SystenException& sexcep){

cerr << "RoonBooki ngCient: System Exception occurred" << endl;
cerr << sexcep << endl;
exit (1);

}
cat ch(const CORBA:: User Exception& uexcep){

cerr << "RoonBooki ngdient: User Exception occurred" << endl;
cerr << uexcep << endl;
exit (1);

}

return O;

}

6.2—
Methods in the Client Application

In this section we explain the methods which are part of the client application.

6.2.1—
Overview of Methods

The C++ client application consists of the following methods:

void init_from ns()—Getstheroom context from the root context and obtains
areference to the meeting factory by resolving it from a predefined name.break

Page 280

CORBA: : Bool ean vi ew() —Queriesall rooms and displays the result at the user
interface.

CORBA: : Bool ean cancel () —Cancels a selected booking.

voi d sel ect _room sl ot () —Processes the event of clicking a button to book or
view ameeting. It decides if the room is free and a booking can be made or if the
booking details should be displayed.

voi d neeting_detail s()—Queriesand displays the details of ameeting. The
method deals mainly with GUI programming and hence the code is only shown in the
Appendix.

CORBA: : Bool ean book() —Creates ameeting and books it into a selected dot.

voi d di spl ay_r oons() —Displaysall the rooms and sotsin atabular fashion
along with their booking status.

voi d di spl ay_| abel s() —Helper functionfor di spl ay_r oons() . Displays
labels.

voi d di spl ay_room st at us() —Helper function for
di spl ay_roons() . Examinesthe booked array and displays Vi ew if the slot
already has a booking and Book if the dot isempty.

6.2.2—
Variable Declar ations

We start the implementation of the class with a number of local variables.break

/ I RoonBooki ngllient.C

#i ncl ude " RoonBooki ng_c. hh"
#i ncl ude "EasyNam ng. h"

CORBA: : ORB var orb;
CORBA: : String_var ior;

RoonBooki ng: : Meet i ngFactory_var neeting_factory;
CosNami ng: : Nam ngCont ext _ptr room cont ext;

CORBA: : String_var participants;
CORBA: : String_var purpose;

CORBA: : UShort **booked;

CORBA: : ULong sel ect ed_room
RoonBooki ng: : Room : Sl ot sel ected_sl ot;

RoonBooki ng: : Room var *roons;
RoonBooki ng: : Meeti ng_var *neeti ngs;

CORBA: : String_var *r_|abel;

Page 281

int numroons = 0;
const int max_slots = 8;
const int nmax_buf |en = 80;

6.2.3—
init_from_ns()

We have decided on a naming convention for the room booking system illustrated in Figure 6.2.
Room objects are bound to names in the context "/BuildingA pplicationsyRooms" and the
meeting factory object is bound to the name

"/BuildingA pplications/M eetingFactories/M eetingFactory.” Themethodi nit _from ns()
resolves the rooms context and obtains an object reference to the meeting factory using methods
from the class EasyNam ng, which we introduced in Chapter 5.break

/[llnitialize from Nam ng Service
void init from_ns()

try{

}

/1 Create EasyNanmi ng Obj ect
EasyNam ng *easynami ng = new EasyNami ng(orb);

/1 get room cont ext
room cont ext = CosNami ng:: Nam ngCont ext:: _narrow(
easynam ng- >resol ve_fromstri ng(
"/ Bui | di ngAppl i cati ons/ Roons"));

if (roomcontext == CosNami ng::Nami ngContext:: nil()){

cerr << "Room Context is NULL" << endl;
cerr << "exiting... " << endl;
exit(1);

}

/1 get MeetingFactory from Nam ng Service
neeting_factory = RoonBooki ng:: MeetingFactory:: _narrow
easynam ng- >resol ve_fromstri ng(
"/ Bui | di ngAppl i cations/ Meeti ngFactori es/ Meeting
Factory"));

if (meeting_factory == RoonBooking:: MeetingFactory:: nil()){

cerr << "No Meeting Factory registered at Nami ng Service" << endl;

cerr << "exiting..." << endl;

exit (1);
}

catch(const CORBA:: Syst enmExcepti on& system exception){

}

cerr << "System Exception while initializing from Nam ng Service: "<<
endl ;
cerr << systemexception << endl;

catch(const CORBA: : User Excepti on& nam ng_excepti on){

Page 282

cerr << "User Exception while initializing fromNam ng Service: " <<
endl ;
cerr << nam ng_exception << endl;

6.2.4—
view()

The method vi ew() displaysinformation about the current availability of rooms. Therefore it
has to find out about all existing rooms and call the Vi ew() operation on each of them.

Object references for the available rooms can be obtained from the Naming Service. We have
already initialized aroom context in which, according to our convention, room objects are
bound.

We query the room context by using the method | i st () , defined in the interface
CosNam ng: : Nam ngCont ext . Asexplained in Chapter 6, the operation | i st () has
three parameters:

i n 1 ong | engt h—The maximum length of the list returned by the second parameter,
whichisa CORBA: : U ong in C++.

out CosNam ng: : Bi ndi ngLi st —A sequence of names. Sinceit isan out parameter we
declareaBi ndi ngLi st _var variablebl anduseits. out () inaccordance with the C++
language mapping for out parameters.

out CosNami ng: : Bi ndi ngl t er at or —A binding iterator, that is, an object from
which further names can be obtained. It is aso an out parameter and so we declare a

Bi ndi ngl t erat or _var variablebi anduseits. out () in accordance with the C++
language mapping for out parameters.

In our implementation we demonstrate the use of the list aswell as the iterator. We obtain
object references from the room context viather esol ve() operation. We then narrow the
resulting object to the right type. We go through the binding list as well as through the binding
iterator.break

CORBA: : Bool ean vi ew(){
try{
[/1ist roons
/[linitialize binding Iist and binding iterator
/lobjects for out paraneter
CosNami ng: : Bi ndi ngLi st _var bl ;
CosNami ng: : Bi ndi nglterator_var bi

//we are lazy and consider only 20 roons
/lal though there could be nore in the binding iterator

i f (roomcontext == CosNam ng:: Nam ngContext:: nil()){
cerr << "room context has becone N L" << endl

Page 283

exit(1);
}

roomcontext->list(20, bl.out(), bi.out());

/lcreate an array of Roomand initialize it by resolving
//the entries in the Roomcontext of the Nam ng Service
num roons = bl->length();

roons = new RoonBooki ng:: Roomvar [num.roons];
for(CORBA::ULong i = 0; i < numroons; i++){
cout << "Room" << i << ": " << Dbl[i].binding_name[0].id << end
roons[i] = RoonBooki ng:: Room : _narrow
room cont ext - >resol ve(bl[i]. binding_nane));

}

//be friendly with system resources
if (bi !'= CosNaming::Bindinglterator::_nil())
bi - >destroy();

We create an array of labels, one for each room, which is eventually used to display the names
of the rooms. We aso create an array of type CORBA: : Bool ean for internal use to store
information about whether each dot is already booked or not.

/lcreate room | abels according to the nunber of roomns
r_label = new CORBA:: String_var[numroons];

/I create booked array according to the nunber of roons
booked = new CORBA: : UShort*[numroons];
for(i =0; i <= numroons-1; i++)

booked[i] = new CORBA:: UShort[max_slots];

Next we initidize the elements of the label array by invoking the accessor method for the
attribute name of the interface Room.

//show the | abel with the room nane
for(i =0; i < numroons; i++){

//get the names of the roons and store themlocally
r label[i] = roons[i]->nane();

For each of the rooms we invoke the operation Vi ew() , which returns an array of

Meet i ng_var objects. For such arrays avalid object reference identifies a meeting object
which is booked into the indexed slot, while anil object reference means an empty slot. We go
through the array and set the corresponding element in the booked array to 1 or O depending on
whether the dot is empty or not.break

/lcall view operation on the i-th room object
/land create book or free | abel
cout << orb->object to string(roons[i]) << endl

Page 284
neetings = rooms[i]->View);

for(CORBA::ULong j = 0;
j < RoonBooking:: Room : MaxSlots; j++){
if (meetings[j] == RoonBooking::Meeting:: _nil())
booked[i] [j] = O;
el se{
booked[i][]j] = 1;

}

di splay_roons ();

}

cat ch(const CORBA:: Syst enException& system exception){
cerr << system exception << endl

}

cat ch(const CORBA:: User Excepti on& nami ng_exception)
cerr << nam ng_exception << endl
}

return 1;

}

6.2.5—
cancel()

To cancel ameeting, the method cancel () invokesthe operation Cancel () onthe
appropriate room, providing the selected dlot as an argument.

If the selected slot does not contain a meeting object reference, the operation Cancel() raises an
exception of type NoMeet i ngl nThi sSI ot . Thiscan only happen when there are multiple
clients running that attempt to cancel the same mesting in overlapping time intervals. A more
sophisticated approach would be to use the CORBA Transaction Service.

CORBA: : Bool ean cancel (){

try{
roon{ selected room]->Cancel (selected slot);

}
cat ch(const RoomBooki ng:: Room : NoMeet i ngl nThi sSl ot & no_neeting) {
cerr << "Cancel: " << no_neeting << endl

}
catch(const CORBA:: SystenException& system exception){
cerr << "Cancel: " << system exception << endl

}

/I show booki ngs of all roons
return view();

}

The method sel ect _room sl ot () promptsthe user to enter the name of aroom that
he/sheisinterested in booking, viewing, or canceling an existing booking. It then validates the
user input by comparing against the list ofcontinue

Page 285

room names available. Following this, it prompts the user to enter a slot number and checks for
itsvalidity. At the end of this method, the variablessel ect ed_r oonm and
sel ect ed_sl ot contain valid values that can be further processed.

6.2.6—
book()

The booking of a meeting, managed by the method book() , involves two tasks: creation of the
appropriate meeting object and booking of the selected meeting.

We cresate the meeting object using the meeting factory. Thisis done by invoking the operation
Cr eat eMeet i ng() . Itstwo parameters are obtained from two text fields.

The newly created meeting is then booked by calling the operation Book() on the selected room
object. It is again possible that someone el se has booked the dot in the meantime. If so, we
catch an exception of type Sl ot Al r eady Taken.break

CORBA: : Bool ean book() {

try{
char purpose[nmax_buf_len];
char participants[max_buf len];

cout << "Enter the purpose of the neeting:";
cin.ignore(max_buf len, '\n');
cin.get(purpose, nmax_buf_len);

cout << "\nEnter the participants in the neeting:";
cin.ignore(max_buf len, '\n');
cin.get(participants, max_buf _len);

RoonBooki ng: : Meeti ng_var neeting =
neeti ng_fact ory->Creat eMeeti ng(purpose, participants);
cout << "Meeting created" << endl;

roons[selected_room]->Book(selected_slot, meeting);
cout << "Roomis booked" << endl;

}
cat ch(const RoonBooki ng:: Room : Sl ot Al readyTaken& al ready_t aken){

cerr << "book: " << already_taken << endl;
cerr << "Please select another slot or room' << endl;

}
catch(const CORBA: : Syst enmExcepti on& system exception){

cerr << "book: " << system exception << endl;

}

/I show booki ngs of all roomns
return view);

Page 286

6.2.7—
meeting_details()

Themethod neet i ng_det ai | s() displaysthe details about a meeting by invoking the
name() method on the meeting object. To obtain the purpose and the participants in a meeting,
itinvokesthe Vi ew() method on the selected room. Following this, the user is prompted for a
choice regarding cancellation of the current booking.break

voi d neeting details(){

try{

cout << "\n\nMeeting Details:\n\n";

cout << "Room nane:
<< roons|[selected room]->nanme() << endl

cout << sel ected slot:
/]l Get information about this room

neetings = roons[selected room]->View);

RoonBooki ng: : Meeting _var neeting = neetings[selected slot];

if (meeting != RoonBooking::Meting::_nil()){
cout << "Purpose: " << neeting->purpose() << endl
cout << "Participants: "

CORBA: : Bool ean valid _choice = 0;

cout << "\'n\nThe foll owi ng operations are avail able:\n";
cout << "\tCancel\n";
cout << "\tReturn\n\n";

while (!valid_choice){

cout << "To Cancel, enter 'c¢c' or 'C\n";

cout << "To Return to Main nmenu, enter 'r' or '"R\n";
char choi ce
cin >> choice
swi t ch(choi ce) {
case 'c':
case 'C:
cancel ();
valid_choice = 1;
br eak;
case 'r':
case 'R :
valid_choice = 1;
br eak;
def aul t:
cerr << "\n\nThe choi ce you entered was incorrect.\n";
br eak;
}
}
}
el se{
cerr << "\nThere is no neeting scheduled in the above slot and
room '\ n" << en
}

}
cat ch(const CORBA:: Exception& exception){

cerr << "neeting_details: " << exception << endl

}

<< sl ot _map[sel ected _slot] << endl;

<< meeting->participants() << endl

Page 287

T—
Extensions to the Example Application

The example can be extended, in particular to include various other CORBA services. We
outline possible extensions below.

The Object Trading Service could be used as an aternative to the Naming Service for locating
objects. The server classes would register objects with the Trading Service and a client would
query the Trading Service to search for room and meeting factory objects.

The Transaction Service could be used to ensure ACID properties to booking and cancel
operations. In the current implementation we do not explicitly roll back the creation of a
meeting object when it cannot be booked into a particular dot.

The Security Service could be used to authenticate users and to authorize a user to execute
certain operations. For example, only a user who booked a meeting originally should be
allowed to cancel it.

The Event Service could be used to notify certain users that a meeting in which they are
participating is now starting.break

Page 289

Chapter 7—
Advanced Features

In this chapter we explain and give examples of how to use some advanced CORBA features.
The features, which are explained in detail here, have already been introduced in Chapters 3
and 4. They are:

- TypeCodes

- Interface Repository (IR)

- Dynamic Invocation Interface (DII)

- Dynamic Skeleton Interface (DSI)

- Tie approach

- |IDL context

1—

The Extended Hello World Example

To demonstrate these advanced features we will adapt the distributed Hello World example
from Chapter 1.

11—
I nterface Specification

The IDL for the extended example will look as follows:break

Page 290
nodul e Hel | oWor | d{

i nterface GoodDay({
string hello(out short hour, out short mnute);
i

}

In the IDL above, we again specify an interface GoodDay with an operation hel | o() . The
moduleisagain called Hel | oWbr | d. However, we have changed the signature of the
operation specification. Its result is still a string, but this time the operation has parameters and
it returns the description of the server's location. The parameters are tagged as out, meaning
that their values will be supplied by the invoked object. They are both of type shor t and their
intended meaning is that they hold the current time at the server's location: hour holds the hour
and m nut e the minute.

An out parameter in an IDL operation has pass-by-result semantics. This means that a value for
this parameter will be supplied by the invoked object. The value will be available to the client
after the invocation is compl eted.

1.2—
A Client

The main difference between the client in this example and the ssimple Hello World example
introduced earlier isthat we now declare two CORBA: : Short variables, hour and

m nut e, and pass references to these variables during the invocation of thehel | o()
method.break

//Hellowrlddient.C
#i nclude "Hell oWrl d _c. hh"

int main(int argc, char* const* argv){
CORBA: : String_var ior;

CORBA: : Shor t m nut e;
CORBA: : Shor t hour ;
char *| ocati on;

/lget stringified | OR fromconmand |ine

if (argc >=2)
ior = (const char *) argv[1];

el se{
cerr << argv[0] << ": Mssing IOR specify IOR of server" << endl;
return 1,

}

cout << "|OR " << ior << endl;

Page 291

try{
[/1nitialize the ORB

CORBA: : ORB_var orb = CORBA:: ORB_init(argc, argv);

/1 get object reference fromthe conmand |ine
CORBA: : Obj ect _var obj = orb->string_to_object(ior);

/Inarrow it down to GoodDay
Hel | oWor | d: : GoodDay_var goodDay =
Hel | oWor | d: : GoodDay: : _narrow(obj);

/lcheck if object reference is NIL
if (goodDay == Hel |l oWorl d:: GoodDay:: _nil ()){
cerr << "Could not narrow object
reference to Hel | oWrl d: : GoodDay\ n";
exit(1l);
}

1.2.1—
Invoking the Operation

After weinitialize the ORB and obtain a narrowed object reference, we invoke the operation.
We assign the result of the operation to a string location. After the successful return of the
invocation, the variables named hour and minute will carry the values set by the invoked
object.

/1invoke the operation

| ocati on = goodDay->hel | o(hour, mnute);
/[lprint location and tine obtained

cout << "Hello Wirld!" << endl;

if (mnute < 10)

cout << "The local tinme in" << location << " is "
<< hour << ":0" << minute << "." << endl;
el se
cout << "The local tinme in" << location << " is "
<< hour << ":" << mnute << "." << endl;

} //Catch CORBA system exceptions
catch (const CORBA: : Exception& e){
cerr << e << endl;
return(l);

return (0);

}

When we print out the results we obtain the time at the remote location from the variables
hour and m nut e. We compile the client as before and execute the client. The stringified
object reference must refer to an object that provides the extended Hello World interface. The
following isatypical result.break

Page 292

$ Hellovworlddient 'cat HelloWwrld.ior'

| OR 012020201b00000049444c3a48656c6¢c6f 576f 726c642f 476f 6f 644461793a31
2e3000200200000001534956640000000101012009000006672616e6b6c696e00202
020f e040000010000003d00000001504d43000000001b00000049444c3a48656¢c6¢C6
f 576f 726c642f 476f 6f 644461793al 2e3000201100000048656¢c6¢6f 576f 726c6453
657276657200202020000000000000000059000000010100200e0000003230362€36
342e31352e3232370056113d00000001504d43000000001b00000049444c3a48656¢C
6c6f 576f 726c642f 476f 6f 644461793a312e3000201100000048656¢c6¢6f 576f 726¢C
6453657276657200

Hell o Worl d!
The local tine in San Mateo is 22: 25.
1.3—

Servant | mplementation

The servant, GoodDay| npl , derives from the skeleton class POA_Hel | oWor | d: : POA
__GoodDay which is generated by the IDL compiler. The variable declarations and the
constructor are asin the class GoodDay| npl of the smple Hello World example, but the
sgnature of the method hel | o() has changed thistime. There are now two references to
short variables as parametersto the hel | o() method. We create an object | ocal t i ne of
typeLocal t i me which holds the time information of the system. The convenience class
Local ti neisdefinedin Local ti nme. h, supplied with the examples. We retrieve the hour
and minute by invoking the methodshour () and mi nut e() on the localtime object. We
assign the values to the corresponding shor t variables passed in by reference. We aso return
the location as in the earlier example.break

// Hel | oWbr| dServer. C

#i ncl ude "Hel |l oWorl d_s. hh"
#i ncl ude "Local tine. h"

cl ass GoodDayl npl : public PQOA Hel | oWorl d: : POA GoodDay/{

private:
CORBA: : String_var _location

publ i c:
GoodDayl npl (const char *location
const char *object _name = NULL)
_location(location){
Por t abl eServer _Servant Base: : _obj ect _nane(object _nane)

}

char *hello(short &hour,
short &mnute){

/luse the Localtine class to get
//location and tine of the server
Localtine |ocaltine;

Page 293

hour = local tinme. hour();
mnute = localtine. mnute();

return CORBA: :strdup(_l ocation);
}

}s

The server implementation uses the servant class GoodDay| npl . Oncethe ORB is
initialized, we create an instance of the servant class GoodDay| npl . Wethen obtain a
reference to the root POA by invoking r esol ve_i niti al _ref er ences onthe ORB and
narrow it to a POA reference. The argument Inprise_TPool _Persistent makes the operation
return a POA with pre-set threading and lifespan policy.

int main(int argc, char* const* argv)
{
CORBA: : String_var | ocation;

location = (argc <2) ?
(const char *) "sonme place" : (const char *) argv[1];

try{
[/1lnitialize the ORB

CORBA: : ORB_var orb = CORBA:: ORB_init(argc, argv);

/Il Create a new GoodDay object.
GoodDayl npl goodDayl npl ("Hel | owor| dServer", |ocation);

/1 Get the Root PQA object reference with pre-set policies
CORBA: : Obj ect _var obj =
orb->resolve_ initial _references(
"I nprise_Tpool Persistent");

/I Narrow t he object reference to a POA reference
Por t abl eServer:: POA var root_poa =
Portabl eServer:: POA : _narrow obj.in());

Wetheninvoketheact i vat e_obj ect () method on the POA. This causes the
goodDayl npl object to be registered with the POA and activatesit. To activate the POA,
weinvoketheact i vat e() method onthe POAManager .break

cout << "Activating the GoodDay object ..." << endl;
Por t abl eServer:: bjectld var oid =
root poa->activate_object(&goodDayl mpl);

cout << "Activating the POAto wait for requests..." << endl;
root poa- >t he_PQOAManager () - >acti vate();

Page 294

We then create an object reference corresponding to the activated object by invoking

id to reference() onthePOA. This creates an object reference from the activated
object which we then stringify by invoking obj ect _to_stri ng() and then exportto
clients.

cout << "Create nject Reference..." << endl;
CORBA: : Obj ect _var goodDayRef =
root _poa->id to _reference(oid);

/1Stringify the object
cout << orb->object to_string(goodDayRef) << endl;

Wefindly enter the ORBs event loop.

/1 Enter ORB Event | oop
orb->run();

} //catch CORBA system exceptions
cat ch(const CORBA:: Excepti on& e){
cerr << e << endl;
return(l);

}

return(0);

}

2—
The Any Type and TypeCodes

In this section we demonstrate the use of Anys as parameters of 1DL-defined operations. We
use avariant of the distributed Hello World example introduced previoudly.

2.1—
I nterface Specification

In the IDL following, athough we have changed the signature of the interface specification, we
retain the semantics of thehel | o() operation. Both the result of the operation and the only
parameter are of type any. As before, the operation will return the location of the object
implementation as a string, thistime contained in an Any. Thisis an example of the use of a
predefined datatype within an Any.

Theany _ti nme parameter is an example of passing a user-defined datatypein an Any. The
parameter will contain a structure with two fields, both short integers, representing the minute
and hour of the local time at the objectcontinue

Page 295

implementation. Although this structure is not directly used in the specification of the operation,
its definition needs to be available to the client and the server. Hence we definethe Ti ne
structure within the module.

nodul e Hel | oWor | d{

struct Tinme{
short hour;
short m nute;

};

i nterface GoodDay({

any hello(out any any tine);
s
}

2.2—
Object | mplementation

The object implementation class GoodDay| npl derives from the skeleton base class
POA Hel | oWor | d: : POA _GoodDay which is generated by the IDL compiler. We also
keep the same private variable | ocat i on and the constructor.

[/ Hel | oWbr| dSer ver. C

#i nclude "Hel |l oWrl d_s. hh"
#i ncl ude "Local ti me. h"

cl ass GoodDayl npl: public POA Hell oWrl d:: POA GoodDay{

private:
CORBA: : String_var _location

publi c:
/] construct or
CGoodDayl npl (const char *object _nane,
const char *location)
. _location(location){
PQA Hel | oWor |l d: : POA _GoodDay: : _obj ect _nane(object _nanme);
}

The signature of the method hel | o() corresponds to the IDL mapping for Anys, as explained
in Chapter 3. We have an Any for the result and declare a variable of type
CORBA: : Any_ptr for the out parameter.

Wemakeuse of theLocal t i me classto obtain the local time at the server'slocation, asin
the original example. In the next step we create an object of theclassHel | oWor | d: : Ti ne,
which is the C++ representation of the IDL type definition st r uct Ti me. Thereisno default
constructor generated forcontinue

Page 296

this class, so we obtain the hour and minute frominvoking _| ocal ti me. hour () and
_localtime. mnute() andassignthe hour and minutefieldsof st ruct _ti ne.

We declare a CORBA: : Any variableany_t i nme, to return the time over to the client. Now
we have to insert the value of the time variable into the Any. The CORBA: : Any class
provides an entire range of methods overloading the insertion operator <<= and the extraction
operator >>=. However, these methods are available only for primitive datatypes and for
CORBA -specific datatypes. For user-defined datatypes, suchasHel | oWor | d: : Ti me inour
example, the IDL compiler needs to be instructed specifically (with VisiBroker for C++ 3.x
IDL compiler idli2cpp, using the-t ype _code_i nf o command line option) to generate code
that we can use for inserting avariable of typeHel | oWbr | d: : Ti me to aCORBA: ;. Any
and for extracting avariable of typeHel | oWor | d: : Ti me fromaCORBA: : Any. Usng the
insertion operator <<= that was generated by the IDL compiler, now the Any object

any_ti me containsthevalueof st ruct _ti ne.

/ [met hod

CORBA: : Any_ptr hello(CORBA: : Any ptré& any_tine){
/luse the Localtine class to get
//location and tine of the server
Localtine |ocaltine;

/lcreate time-structure assign hour and mnute to it
Hel | oWorl d: : Time struct _tine;

struct _time. hour = localtine.hour();
struct _time.mnute = localtine. mnute();

/lcreate an any and shuffle structure into it
any_tine = new CORBA:: Any();
*any time <<= struct_tine;

/lcreate an any and shuffle location into it

CORBA: : Any_ptr any_l ocation = new CORBA: : Any();

*any | ocation <<= CORBA: :strdup(_l ocation);
return any_| ocati on;

}
}s

The operation result is stored in the variableany _| ocat i on, an Any holding astring value.
Since the class CORBA: : Any provides us with an insertion operator <<= for strings, we
insert thevalueof _| ocat i on by calling the method operator <<= on the Any object. There
are similar methods, listed in Chapter 3, defined in the class CORBA: : Any for the other
predefined datatypes.

The last task of the implementationisto returnthe Any _ptr any_I| ocat i on. The server
class implementation is the same as above and in Chapter 1.break

Page 297

2.3—
Client mplementation

The client implementation follows the same structure that we used before.

2.3.1—
Initialization and I nvocation

We declaretwo variablesany_| ocati on andany_t i me of type CORBA: : Any for the
method's result and its parameter, respectively.

//Hellowrlddient.C

#i ncl ude "Hel l oWorl d_c. hh"

int main(int argc, char * const *argv){
CORBA: : String_var ior;
/1get stringified |OR fromcommand |ine

if (argc >=2)
ior = (const char *)argv[1];

el se{
cerr << argv[0] << ": Mssing IOR, specify |OR of server" << endl;
return 1,

}

try{
[linitialize the ORB

CORBA: : ORB var orb = CORBA :ORB init(argc, argv);

/I get object reference
CORBA: : Obj ect _var obj = orb->string to object(ior);

/land narrow it to GoodDay
Hel | oWor | d: : GoodDay_var goodDay = Hel | oWor| d: : GoodDay: : _narrow obj);

//check if object reference is NIL

if (goodDay == Hel |l oWorl d:: GoodDay:: _nil ()){
cerr << "Could not narrow object reference to Hell oWrl d: : GoodDay\ n";
exit(1l);

}

//invoke the operation

CORBA: : Any_var any_location, any_tine;
any | ocation = goodDay->hello(any_tinme.out());

We initialize the ORB, convert the command line argument into an object reference, and
narrow it to the right type. Then we invoke the method hel | o() with the argument
any_tinme.out () andassigntheresulttoany_ | ocat i on.break

Page 298

Note that we passany_t i me. out () inaccordance with the IDL/C++ mapping for out
parameters. Note that the out () is specified by the IDL/C++ mapping.

2.3.2—
Obtaining TypeCodes

TypeCodes are aruntime representation of IDL types. They are explained in detail in Chapter
4. In the following example we obtain type information about the values contained in the Anys.
First we declare avariablet ¢ of type CORBA: : TypeCode_var . Thetype

CORBA: : TypeCode_var isavariant of CORBA: : TypeCode and provides automatic
memory management. It isuseful to make use of the _var classes whenever possible to avoid
memory leaks in applications. Then we obtain the TypeCode of the value held in the container
variableany_ti me. The Any object referredto by any _ti nme hasamethodt ype(),
which returns the TypeCode of the stored value. In this example the value is a C++ object
representing an IDL struct.

A TypeCode represents an attributed type tree. It provides various methods to obtain the
values of the attributes. For example, we query the Interface Repository identifier of the type
by calling the method i d() onthe TypeCode object. Similarly, we get the name of the type
by invoking the method nane() .

Since we are expecting the Any to contain an IDL structure, we need to traverse the type tree to
obtain type information about the fields of the struct. The method menber _count () returns

the number of fieldsand nenber _nane() returnsthe name of the indexed field.

Because type definitions differ in their structure, operations on Ty peCode objects are only
valid for particular kinds of TypeCodes. If an inappropriate method is invoked, the exception
CORBA: : TypeCode: : BadKi nd israised. The method menber _nane() raisesthe
exception CORBA: : TypeCode: : Bounds when theindex is out of bounds.break

/Il declare a type code object
CORBA: : TypeCode_var tc;

//get type of any tine and print type information
tc = any_tinme->type();

try{
cout << "|IfRepld of any_tinme: " << tc->id() << endl
cout << "Type Code of any_ tinme: " << tc->nane() << endl
for(int i = 0; i < tc->menber_count(); i++)
cout << "\tnpanme: " << tc->nenber _nane(i) << endl
}
cat ch(const CORBA: : TypeCode: : BadKi nd ex_bk) {
cerr << "any_tinme: " << ex_bk << endl
}
cat ch(const CORBA: : TypeCode: : Bounds ex_b){
cerr << "any tine: " << ex_b << endl
}

Page 299

In the following code, we check if the value of any | ocat i on isof the expected kind,
CORBA: : t k_stri ng, andif sowe query for itslength. Note that the length refersto the type
definition and not the current value. The method | engt h() returnsthe maximum size of a
bounded string, sequence, or array. If the type is unbounded it returns zero. We must again
catch the exception CORBA: : TypeCode: : BadKi nd.

/1get length of any_l ocation
tc = any_l ocation->type();
try{
if (tc->kind() == CORBA::tk_string)
cout << "length of any_location: "<< tc->length() << endl << endl
el se
cout << "any_location does NOT contain a string." << endl << endl

}
cat ch(CORBA: : TypeCode: : BadKi nd ex_bt){
cerr << "any_location: " << ex_bt << endl

}
When executing the client, the preceding code will produce the following result:

| fRepld of any time: IDL:HelloWrld/ Tinme:1.0
Type Code of any_time: Tine

name: hour

name: mnute
I ength of any_location: O

2.3.3—
Unpacking the Results

Now we proceed to the normal behavior of the client; that is, we obtain the results and print
them. We can print the Anys directly by using their overloaded << oper at or method or we
could obtain the contained value and print them in a customized manner. We show both
possibilities.

First we print the Anysany | ocati on andany_t i e inthe default format. Then we
obtainthe string from any _| ocat i on by invoking the overloaded method for the extraction
oper at or >>=. To get the time object fromthe Any any_t i nme we cal the extract method
provided by the generated code. Once we have the values in the usual types, we print the
message in the same way asin the origina example.break

/lget String fromany_location
char *location = (char *)NULL;
*any_|l ocation >>= | ocati on;

Page 300

/lget Struct fromany_tine
Hel loWorld:: Time time;
*any tinme >>= ting;

[lprint results to stdout

cout << "Print Anys: " << endl;
cout << "any location: " << endl << any_location << endl << endl;
cout << "any_ time: " << endl << any_tine << endl << endl;

[lprint results to stdout

cout << "Hello Wrld!'" << endl;
if (tine.mnute < 10)

cout << "The local tine in " << |location << " is " << tine.hour
<< ":0" << tine.mnute << "." << endl;
el se
cout << "The local tine in " << |location << " is " << tine.hour
<< """ << tine.mnute << "." << endl;

}
cat ch(const CORBA: : Exception& ex){

cerr << ex << endl;
return 1;

}
When the client isinvoked, it prints the results in the following form: break

Print Anys:

any_|l ocati on:

TypeCode:

CORBA: : TCKi nd: tk_string
Par anmet er Number: O
TypeCode:

CORBA: : TCKi nd: t k_ul ong
Val ue:

0

Val ue:

Sanhat eo

any_tine:
TypeCode:

Repository id: IDL:Hellowrld/ Tinme:1.0

CORBA: : TCKi nd: t k_struct
Par aneter Nunber: O
TypeCode:

CORBA: : TCKi nd: tk_string
Par aneter Nunber: O
TypeCode:

CORBA: : TCKi nd: t k_ul ong
Val ue:

0

Val ue:

Ti me

Par anet er Nunber: 1

TypeCode:

CORBA: : TCKi nd: tk_string
Par aneter Nunber: O
TypeCode:

CORBA: : TCKi nd: t k_ul ong
Val ue:

0

Val ue:

hour

Par anet er Nunber: 2
TypeCode:

CORBA: : TCKi nd: t k_TypeCode
Val ue:

2

Par anet er Nunber: 3
TypeCode:

CORBA: : TCKi nd: tk_string
Par aneter Nunber: O
TypeCode:

CORBA: : TCKi nd: t k_ul ong
Val ue:

0

Val ue:

m nut e

Par anet er Nunber: 4
TypeCode:

CORBA: : TCKi nd: t k_TypeCode
Val ue:

2

Val ue:

22 25

Hell o Worl d!

The local tine in San Mateo is 22: 25.

3—

Interface Repository and Dynamic I nvocation Interface

Page 301

In this section we present a client that is capable of invoking operations on an object whose
type was unknown to the client at compile time. So far, clients have used stub code generated
by an IDL compiler to create a proxy object on which they have invoked methods
corresponding to each operation.

The structure of the exampleis
- Initialize the ORB (section 3.1).
- Browse the Interface Repository (section 3.2).

- Unparse and print the type information obtained from the Interface Repository (section
3.3).break

Page 302
- Create a Request object (sections 3.4-3.6).
- Invoke an operation using the Dynamic Invocation Interface (section 3.7).

- Obtain and print results (section 3.8).

To make invocations on objects without having access to IDL-generated code we have to
- Obtain information about the interface type of the object

- Invoke a method without an IDL-generated client-side proxy class (stub)

Thefirst task is carried out using the Interface Repository, which contains type information
about interfaces. Typicaly the Interface Repository is populated by the IDL compiler. Our
client will query the Interface Repository using a standard method on the object reference,
defined in CORBA: : Obj ect . Thisreturns areference to an Interface Repository object that
represents the target object’s interface type. The object is part of atype tree which the client
can traverse.

The second task is carried out using the Dynamic Invocation Interface (DII). It providesa
Request object which can be used for the invocation of methods on arbitrary objects. The DIl's
interface Request isdefined in the CORBA module using pseudo-IDL. It isthe programmer's
responsibility to initialize aRequest pseudo-object with al the necessary information (a
target object reference, an operation name, argument types and values) in order to make an
invocation.

Figure 7.1 illustrates the process by which interface information is obtained and used to invoke
the object implementation. The IDL compiler creates the skeleton code for the server side as
usual and populates the Interface Repository with the types specified in the IDL file. The client
can then query the Interface Repository about the type of any object reference it obtains.

3.1—
Initializng the ORB

The client obtains an object reference from, for example, a stringified object reference or from
the Naming or Trading Service. For simplicity, we use stringified object referencesin our

example. Note that we cannot narrow the object reference to its particular interface type
because we do not know its type and do not have accessto the _nar r owm() method, which is
part of the code generated by the IDL compiler.break

//Didient.C

#i ncl ude "corba. h"

Page 303
Client
Interface Repository
populate
Server | Skeleton Coda IDL File
Object Implementation
ORB
library
Figure7.1
DIl client.
int main(int argc, char * const *argv){

CORBA: : String_var ior;
/lget stringified | OR fromconmand |ine
if (argc >= 2)

ior = (const char *)argv[1];
el se{

cerr << argv[0] << ": Mssing IOR specify IOR of the server" << endl;

return 1,
}
cout << "IOR " << ior << endl;
try{

[linitialize the ORB
CORBA: : ORB var orb = CORBA: :ORB init(argc, argv);

/1 get object reference
CORBA: : Obj ect _var obj = orb->string_to_object(ior);

Wecdl themethod _get i nterface() onour new object reference. Thisis a standard
method, provided by the class CORBA: : Obj ect , which returns a pointer to an object of type

| nt er f aceDef . Note that we make use of the con-soft

Page 304

venienceclass| nt er f aceDef _var to storethe return value. This class takes care of
freeing dlocated memory. The | nt er f aceDef interfaceis defined in the Interface
Repository specification. The interfaces of the Interface Repository are explained in Chapter 2.

/1get interface definition fromlInterface Repository
CORBA: : InterfaceDef _var if_def = obj->_get_interface();

3.2—
Browsing the I nterface Repository

Thel nt er f aceDef interface has an operation, descri be_i nt erface(), which
returns apointer to astructure Ful | I nt er f aceDescri pti on. It contains a number of
nested structures which represent the operations and attributes contained in the interface. One
of the nested structures, Oper at i onDescr i pt i on, describing an operation, also contains
nested structures describing the operation's parameters.

Thestructure Ful | I nt er f aceDescr i pti on represents aflattening of the objectsin the
Interface Repository to provide all the necessary type information in a single data structure
without the need to make further callsto the Interface Repository objectsto query their types.
Alternatively, traversal of the Interface Repository can be done by obtaining object references
to Oper at i onDef objectsand At t ri but eDef objectsthat can be queried to discover
thelr component definitions.

/1get full interface description
CORBA InterfaceDef:: FulllnterfaceDescription_var full _if_desc =
i f_def->describe_interface();

In our client we store the interface descriptioninavariablef ul | _i f _desc. Thetypeis
defined in IDL as the following struct. We only show the type definitions we usein the
example.

typedef string ldentifier;
t ypedef sequence<Qperati onDescri pti on>CpDescri pti onSeq;

struct FulllnterfaceDescription{

Identifier nare;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec ver si on;

OpDescri ptionSeq oper ati ons;
AttrDescriptionSeq attributes;
Reposi t oryl dSeq base_i nterfaces;
TypeCode type;

}

We use the members name and operations, which is a sequence of
Oper ati onDescri pti on structs.continue

Page 305

t ypedef sequence < ParaneterDescription > ParDescriptionSeq;
t ypedef sequence < ExceptionDescription > ExcDescri ptionSeq;

struct QperationDescription{
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec ver si on
TypeCode result;
Qper ati onMbde node;
Cont ext 1 dSeq cont ext s;
Par Descri pti onSeq paraneters;
ExcDescri pti onSeq excepti ons;

}

In turn, parameters and exceptions that are part of an operation are described by structures.

3.3—
A Simple Unparser

The following code traverses the nested structures and prints al operations of the interfacein a
simplified verson in OMG IDL syntax. We go through al the operations that are defined in the
interface, obtaining the result type in the form of a CORBA: : Ty peCode, the operation name
which isasdtring, and the parameters. We invoke the method ki nd() on the result to obtain
the value of the typecode. Note that we use a helper function pri nt _t k2i dl () that takesas
input a CORBA: : TCKi nd and prints the corresponding IDL typeto cout .

int no_of paraneters = 0;

[lprint various information
cout << "Querying the Interface Repository" << endl

cout << "interface " << full _if_desc->nane << "{" << endl
for(int i =0; i <full_if_desc->operations.length(); i++){
no_of paraneters =
full _if_desc>operations[i].paraneters.|ength();
cout << " ",

[lprint the type code of the operation's result
print_tk2idl (full_if_desc->operations[i].result->kind());

[lprint the nanme of the operation
cout << " " << full _if_desc->operations[i].name << " (" << endl

The parameters are described by a sequence of structures of type Par anDescr i pti on:
enum Par anet er Mode{ PARAM | N, PARAM OUT, PARAM | NOUT} ; continue

Page 306

struct ParanDescri ption{
Identifier nane;
TypeCode type
| DLType type_def;
Par anet er Mode node

}s

The parameter's type member is of type TypeCode anditsnane isan | denti fi er, which
isanaliasof string. The parameter mode is an integer, and its values are defined in the
enumerated type CORBA: : Par anet er Mode. We have to convert the mode value into
strings.break

//define and initialize text representations
[/ for paraneter nodes

CORBA: : String_var node, in, inout, out;

in = (const char *)"in";

inout = (const char *)"inout";

out = (const char *)"out";

char last_char ="',"';

/lprint paraneters of the operations
for(int j =0; j < no_of_paraneters; j++){

//set the right text for the paraneter node
switch (full _if_desc->operations[i].paraneters[j].node){
case CORBA:: PARAM I N
node = in; break
case CORBA: : PARAM | NOUT:
node = inout; break
case CORBA: : PARAM QUT:
node = out; break

def aul t:
node = (const char *)"unknown node"
}
//deal with separating conmas
if(J == no_of_paraneters - 1)
| ast _char ="' ';
//print node, type and nane of the paraneter
cout << " " << node << " "
print_tk2idl(
full if _desc->operations[i].paranmeters[j].type->kind()
)
cout << " " <<
full if_desc->operations[i].paraneters[j].nang;
cout << last_char << endl
}
cout << ");" << endl
}
cout << "}';" << endl
Page 307
3.4—

Initializng Requests

Now that we have discovered the type of the object, we want to invoke an operation on it. We
will need the DII to do this. This requires the creation of a Request object, asillustrated in
Figure 7.2. A Request has three components:

- st ri ng—carries the name of the operation to be invoked

- NamedVal ue—carriesthe type and value of the operation's result

- NVLi st —carries the mode, type, and value of the operation's parameters
3.5—

Creating Supporting Objects

We now create and initialize the NamedVaue for the result and the NVList containing the
arguments to the operation. A NamedVaue is a datatype defined in pseudo-IDL in the module
CORBA. Itisatriple of aname of type CORBA: : St ri ng, atyped value of type Any, and a
mode of typei nt . Appropriate constants are defined in the enum

CORBA: : Par anet er Mbde. Ancontinue

Request
Operation Name

string operation

Operation Paramelters

MNVList
NamedValue NamedValue NamedValue
Flag Flag Flag
Mame Mame Name
Value Value Value
Operation Result
NamedValue
Flag
Name
Value
Figure 7.2
Request object.

Page 308
NVList isan object containing alist of NamedV alue objects. See Chapter 4 for details.

To initialize an operation result we only need to set the type we expect by initializing the value
with adummy value of the right type. After the invocation, the value will hold the result of the
operation.

Wecreatean NVListresul t _| i st of length one and insert asingle element later using the
method add_val ue() . Thismethod has three parameters, one for each of the components of
aNamedValue.

The tricky part isto create an Any which carries the type and the value of an argument. For out
parameters we only need to put the type information into the Any. The class Any provides
overloaded insertion and extraction operators for al primitive datatypes which take care of
filling in the appropriate typecode information (see Chapter 3). So we just create a new Any
object.

We need to be able to only set the types of Any objects but not their values. Thisis needed for
parameters which are tagged asin or inout. The IDL/C++ language mapping provides us with
overloaded insertion and extraction operators to solve this problem. If you look at the code
generated for IDL-defined types you will find examples of the use of output streams. While
these streams are standardized in the IDL/Java mapping and are used as a portability layer, this
isnot the case in C++.

The following code shows the implementation of the overloaded insertion operator <<=
defined intheclassHel | oWor | d: : Ti me which has been generated by the IDL compiler. It
isthe generated classfor thest ruct Ti nme that we defined for the previous example.

inline friend void operator<<=(CORBA:: Any& _a, const Tine& _val){
CORBA: : Mar shal Qut Buf fer _nbuf;
_nbuf << _val;
_a.replace(_tc_Tinme_get(), _nbuf);

}
inline friend CORBA: : Bool ean operator>>=(const CORBA:: Any& _a, Tinme&

_val){
CORBA: : TypeCode_var _tc(_a.type());
if (! _tc->equal(_tc _Tine get())) return O;
CORBA: : Mar shal | nBuf fer _nbuf ((char *)_a.val ue(),
(CORBA: : ULong) _a.len());
_nbuf >> _val;
return 1,

}

The overloaded method oper at or >>=() extractsval which is of type Ti ne& froman Any.
The previous methods use typecodes to ensure the type safety of the insertion.break

Page 309

3.6—
Using the Supporting Objects

We now return to our DIl client class. For simplicity we have chosen to invoke the first
operation of the interface specification, ful | i f _desc. operati ons [o] . Thisisthe
interface specification for the object whose object reference we obtained from a string when
initiaizing the client.

We create two NVLists, one for the operation result, r esul t _| i st , and the other for the
operation's parameter list, ar g_| i st . For the operation result, we only have to set the type
which we expect the operation to return. We get an Any object of the right type for the result by
creating a CORBA: : Any variable with the right TypeCode and an initial value of zero. The
list is populated using the NVLi st method add_val ue() .

/lusing the DIl to make an invocation

cout << "Make a DIl call" << endl

//create and initialize result
CORBA: : NVLi st _ptr result_list = new CORBA: : NVLi st ();

result |ist->add value("",

CORBA: : Any(
full if_desc->operations[0].result,
0

),

0);

/lcreate and initialize arg_list

CORBA: : NVLi st _ptr arg_list = new CORBA: : NVLi st ();

no_of _parameters = full _if_desc->operations[0].paraneters.|ength();
for(i =0; i < no_of_paraneters; i++){

//add enpty val ue
arg_|ist->add_val ue(

full if_desc->operations[0].paraneters[i].nang,
CORBA: : Any(
full if_desc->operations[0].paraneters[i].type,
0),
full _if_desc->operations[0].paraneters[i].node + 1);
}
cout << "operation: " << full _if_desc->operations[0].nanme << endl

For the argument list we use afor loop over the parameter specifications from the interface
description and add corresponding values for each argument with theadd_val ue() method.
The values are Any objects of the right type, obtained by invoking the constructor for

CORBA: : Any that takes as a parameter a TypeCode and an initial value. The argument list
must con-soft

Page 310

tain valuesfor in and inout arguments. Note that this method only deals properly with out
parameters.

3.7—
Creating and I nvoking a Request Object

Once we have initialized the result and the arguments, we can create and initialize a Request
object by calling _cr eat e_r equest () on the object reference on which we want to
invoke the operation. Themethod _cr eat e_r equest () hasthe following parameters:

Context—which we do not use and hence initialize to CORBA: : Cont ext

oo nil().
Operation name—which we obtain from the interface description.
Arguments—which we have created in NVListarg_| i st.

Result—whichisthefirst edement of theNVListresult _|i st.

Request object—which is the request object being constructed by this method. We use
theout () method since the request object is an out parameter to this method.

Flags—which we do not use and hence initialize to zero.

/lcreate request
CORBA: : Request _var request;
obj - > create_request (

CORBA: : Context:: _nil (), //context - not used
full _if_desc->operations[0].name, //operation nane
arg_list, /1 NVLi st with argunents
result list->item0), /I NanmedVal ue for result
request. out (), /Il created request

/] obj ect
0 /1 Fl ags

)
/1invoke request
request - >i nvoke();

Now we can call the method i nvoke() on the Request object. Thisresultsin an invocation
on the object reference from which we obtained the Request. Once the call is completed the
Request object will place the result of the operation and the values for the inout and out
parameters into the NV Lists provided to its constructor.

3.8—
Getting Results

Next we print the value of the result and the values of the out parameters of the operation. We
use the overloaded method for the extraction operatorcontinue

Page 311

<<= on the Any objects, which allows us to print the value of Any objects directly using cout ,
as shown below. Note that if the Any contains another Any, indicated by its TypeCode kind
CORBA: : t k_any, then we have to extract the contained Any as shown in the code snippet
bel ow.break

/1get result
CORBA: : Any_var res_any_var = request->result()->val ue();
cout << "result: " << endl

/] Check typecode of result
CORBA: : TypeCode_var tc = res_any_var->type();

/11f typecode kind is CORBA: :tk_any, need to extract
//the contained Any
if (tc->kind() !'= CORBA::tk_any){
cout << *(res_any_var) << endl
}
el sef
CORBA: : Any res_any;
* (res_any_var) >>= res_any;
cout << res_any << endl << endl

}

/1 get out paraneters

CORBA: : NVList_ptr nv_list = request->argunents();

for(i =0; i < no_of paraneters; i++){
cout << nv_list->tem i)->nane() << ":" << endl;
CORBA: : Any_var nv_any_var = nv_list->iten(i)->value();

/] Check the typecode of the Naned Val ue
CORBA: : TypeCode_var tc = nv_any_var->type();

//1f typecode kind is CORBA::tk_any, need to extract the
[/ contai ned Any
if (tc->kind() != CORBA :tk_any
cout << (*nv_any_var) << endl;
el se{
CORBA: : Any nv_any;
(*nv_any_var) >>= nv_any;
cout << nv_any << endl;
}
}
}

[/ catch exceptions

catch(const CORBA: : TypeCode: : Bounds& bex){
cerr << bhex << endl;
return 1;

}
cat ch(const CORBA:: Syst enException& ex){

cerr << ex << endl;
return 1;

Page 312

}
cat ch(const CORBA: : Excepti on& ex) {

cerr << ex << endl;
return 1;

}

3.9—
Executing the Client

When executing the DI client we can invoke operations on arbitrary objects. In our example
we invoke the first operation defined in the interface. The following output is produced when
the object reference used refers to an object supporting the extended Hello World interface.

.../dii>Didient | OR 012020201b00000049444c3a48656¢c6¢CH. . .

Querying the Interface Repository
i nterface GoodDay({
string hello (
out short hour,
out short mnute

);
b
Make a DIl call
operation: hello

result: TypeCode:

CORBA: : TCKi nd: tk_string
Par aneter Nunber: O
TypeCode:

CORBA: : TCKi nd: t k_ul ong
Val ue:

0

Val ue:

SanMat eo, Cal i f or ni a, USA

hour :

TypeCode:

CORBA: : TCKi nd: t k_ushort
Val ue:

22

m nut e:

TypeCode:

CORBA: : TCKi nd: t k_ushort
Val ue:

33

As another example, we use the DI client program to invoke the AnyHelloWorld object from
the previous section. Again the client queries the Interface Repository and prints the interface
gpecification in OMG IDLcontinue

Page 313

syntax. Asin the previous section, the interface GoodDay again provides an operation

hel | o() . However, thistime the result and the only parameter are both of type Any. The
client creates the corresponding Request object and invokes it. In this example, however,
notice that the return type is an Any and the out parameter is also an Any. In this case, we will
encounter CORBA: : t k_any in the typecode kind of the return value and the out values, thus
causing an additional extraction of the contained Any.break

.../dii >Didient |IOR 012020201b00000049444c3a48656¢c6¢6f57. .
Querying the Interface Repository
i nterface GoodDay({

any hello (

out any any_tine

)
s
Make a DIl cal
operation: hello

resul t:

TypeCode:

CORBA: : TCKi nd: tk_string
Par aneter Nunber: O
TypeCode:

CORBA: : TCKi nd: t k_ul ong
Val ue:

0

Val ue:

SanMat eo, Cal i f or ni a, USA

any_tine:
TypeCode:

Repository id: IDL:Hellowrld/ Tinme:1.0
CORBA: : TCKi nd: t k_struct

Par anet er Nunber :
TypeCode:

CORBA: : TCKi nd: tk_string

Par anet er Nunber :
TypeCode:

CORBA: : TCKi nd: t k_ul ong

Val ue:

0

Val ue:

Ti me

Par anet er Nunber :
TypeCode:

CORBA: : TCKi nd: tk_string

Par anet er Nunber :
TypeCode:

CORBA: : TCKi nd: t k_ul ong

Val ue:

0

Val ue:

hour

Par anet er Nunber :
TypeCode:

CORBA: : TCKi nd: t k_TypeCode

Val ue:

2

Par anet er Nunber :
TypeCode:

CORBA: : TCKi nd: tk_string

Par anet er Nunber :
TypeCode:

CORBA: : TCKi nd: t k_ul ong

Val ue:

0

Val ue:

m nut e

Par anet er Nunber :
TypeCode:

CORBA: : TCKi nd: t k_TypeCode

Val ue:
2

Val ue:
22 28

4—

Dynamic Skeleton Interface

Similar to the DIl on the client side, the Dynamic Skeleton Interface (DSI) provides an
interface on the server side which allows the invocation of methods on objects without

0

0

1

0

2

3

0

4

Page 314

compiler-generated skeletons. We introduced the CORBA specification of the DSI in Chapter 2

and explained its mapping to C++ in Chapter 4. In this section we demonstrate how to program
with the DSI. Once again we use amodified Hello World exampleto illustrate it.

The implementation of the server isthe same as usual, only we provide a different
implementation of the GoodDay interface. The interface isimplemented by a C++ class called
GoodDay| npl , which represents the servant in POA terminology.break

// Hel | owbr| dServer. C

#i ncl ude "corba. h"
#i ncl ude "Localti nme. h"

cl ass GoodDayl npl: public Portabl eServer_Dynamni cl npl enent ati on{

Page 315

The implementation class extends the class

Por t abl eServer _Dynam cl npl enent at i on. Aswith the static implementation class
we declare aprivatefield | ocat i on. The constructor of the GoodDay| npl class
implicitly calls the constructor of the base class.

We describe the interface type in the form of an Interface Repository identifier. These
identifiers are strings with the following syntax (in EBNF):

“IDL:" {module_name"/"} interface_name":" mgor "." minor

The major/minor pair are currently aways 1 and 0O, as the use of versioning in the Interface
Repository is not well defined.

Repository identifiers can be easily created. In our example we just hard-code them into the
class. More flexible and sophisticated solutions could look them up from the Interface
Repository or receive them from athird party.

private:
CORBA: : String_var _location

publi c:

/] construct or
GoodDayl npl (const char *location
const char *object_nanme) :
_location(location),
Por t abl eServer _Servant Base: : _obj ect _nanme(obj ect_nane);

}

TheclassPor t abl eSer ver _Dynam cl npl enent at i on defines the abstract methods
i nvoke() and_primary_interface().Thei nvoke() method is caled whenever
an invocation is made on the dynamic implementation object. The method has one parameter
whichis of class CORBA: : Ser ver Request , which isvery similar to the corresponding
classRequest inthe DIl in structure, but different in signature. The class

CORBA: : Server Request isdefined in C++ asbreak

cl ass CORBA: : Server Request {

publi c:

const char *op_nane() const{... }

CORBA: : Context _ptr ctx(){... }

voi d parans(CORBA:: NVList_ptr);

void result(CORBA :Any_ptr);

voi d exception(CORBA: :Any_ptr exception);
const char *operation() const{... }

voi d argunents(CORBA::NvVList_ptr param{ ... }
void set_result(const CORBA::Any& a){ ... }
voi d set_exception(const CORBA: : Any& a){... }

Page 316

Within the implementation of the method i nvoke() we need to analyze the server request
object to determine which operation has been invoked. The DSI istypically used to
dynamically delegate incoming requests for operations that were not defined at the tirre the
server was written. Of course, the server must be able to interpret the semantics of the request,
or forward the request somewhere where it is understood. Examples of this sort of behavior
can be found in generic wrappers whose clients define IDL in a particular pattern that is
understood by the server, which identifies the corresponding legacy functionality to perform the
required task, and in bridges that smply pass on the request uninterpreted. The recently
adopted CORBA-DCE interworking specification explains the use of the DSI in adynamic
bridge.

In our example we provide one operation as a demonstration of dealing with the
ServerRequest. Thisisimplemented directly inthei nvoke() method. If the operation name
of an incoming request is not "hello” we throw the CORBA system exception

CORBA: : BAD_OPERATI ON.

/I met hods
voi d i nvoke(CORBA:: Server Request ptr request){

cout << "DSl: invoke() called" << endl;
cout << "operation: " << request->op_nanme() << endl;
cout << "if def: " << this-> get_interface() << endl;

/I check operation nane
if (strcnp(request->op_nane(), "hello") = 0){
t hr ow CORBA: : BAD OPERATI ON() ;

}

The_primary_interface() method should return the Repository ID of the object being
implemented. Thisis required to provide the necessary type information to the dynamic
skeleton. In the static case, this information would be contained in the skeleton class generated
from the IDL. Following isthe implementation of the_pri mary_i nterface() method:

CORBA: : Repositoryld prinmary_interface(
const Portabl eServer:: (bjectld& oid,
Por t abl eServer: : POA ptr poa){
return CORBA: :string_dup("IDL:HelloWrld/ GoodDay:I.0");

Otherwise we proceed with the implementation of the hel | o() operation by making use of
theLocal ti me classto get the current time. To return the result and the out parameters we

have to wrap the values in Any objects and put them into the ServerRequest object. This needs
to be done earlier when we are expecting some arguments to our operation, as the
ServerRequest requires us to pass an NV List with all the parameter names and typesinitialized
into which it places the values that came from the client. In ourcontinue

Page 317

case, we are only passing out parameters, so we can create the NV List after the processing is
done.

We create the Any objects in the usual way and insert our values using the appropriate
overloaded methods for the insertion operator <<= on the Any object. For user-defined
datatypes we would use the overloaded method for the insertion operator <<= generated by the
IDL compiler, as described in the previous section.

//get local time of the server
Localtine | ocal tinme;
CORBA: : Short hour, m nute;

hour = localtinme. hour();
mnute = localtine. mnute();

/lcreate anys for hour, mnute and | ocation
CORBA: : Any any_hour;
CORBA: : Any any_mi nut e;

any_hour <<= hour;
any_mnute <<= mnute;

We now create a NameValue list for the arguments to which we add two e ements: the two Any
objects we have created for the out parameters. Then we set the parameters and the result of the
ServerRequest object.

CORBA: : NVLi st_ptr paraneters = new CORBA: : NVLi st ();
par anet er s- >add_val ue("hour", any_hour, CORBA: : ARG QUT);
par anet er s- >add_val ue("m nute", any_mni nute, CORBA: : ARG QUT);

request - >parans(paraneters);

/lcreate an any and shuffle location into it
CORBA: : Any_ptr any_locati on = new CORBA: : Any();
*any_| ocation <<= CORBA: :strdup(_l ocation);
request->result(any_location);

}
}

When a client invokes methods on an object implemented with the DSI, it does not notice any
difference to invoking an object implemented with an IDL-generated skeleton.

5_
Tie Mechanism

So far we have constructed statically typed object implementations by inheritance of skeleton
classes generated by the IDL compiler. These skeletonscontinue

Page 318

implement the marshaling and incoming request delegation of the CORBA object. They are then
extended to provide methods that support the operationsin the IDL interface. The inheritance
approach forces an implementation to inherit from a skeleton class. There are occasions when
there are existing classes which cannot be modified to inherit from the skeleton class.

A solution to the problem isto use delegation instead of inheritance. Thisis achieved by
generating a pseudo-implementation or Tie class which inherits the skeleton. However, rather
than implementing the operations, this pseudo-implementation class calls methods on another
object that actually implements the operations semantics. The delegation approach is also
known as the Tie mechanism.

We use the Hello World example as introduced in Chapter 1 to demonstrate the Tie gpproach.
We have to modify both the server class and the object implementation class, and introduce the
pseudo-implementation class. Let's start with the implementation class. The only difference
from the inheritance approach isin the declaration of class GoodDay| npl .

[/ Hel | oWbr| dSer ver. C

#i nclude "Hel |l oWrl d_s. hh"
#i ncl ude "Local ti nme. h"

cl ass GoodDayl npl {

While the implementation class extends the skeleton class in the inheritance approach, in the
Tie approach it does not.

The class GoodDay| npl implements the methods corresponding to the IDL. The Tie class
serves as awrapper around this real implementation class and delegates incoming requests to
it.

cl ass GoodDayl npl {

private:
CORBA: : String_var _location

publ i c:

[/ construct or

GoodDayl npl (const char *location) : _location(location){}
[/ met hod

CORBA: : Any_ptr hello(CORBA: : Any _ptré& any_tine){

In the server implementation, we initialize the ORB. Then we create an instance of the
GoodDayl npl class, called goodDay| npl , and supply it as a parameter to the constructor
of the Tie object goodDayPseudol npl . Asusual,continue

Page 319

we obtain areference to the root POA, register the servant with the root POA, and activate the
object. Following this, we activate the POA, have the POA manufacture the object reference,

write out the object reference to be exported to clients, and enter the ORB's event loop.break
int main(int argc, char * const *argv){
CORBA: : String_var |ocation;

location = (argc <2) ?
(const char *) "sonme place" : (const char *) argv[1];

try{
//linitialize the ORB

CORBA: : ORB ptr orb = CORBA: :ORB init(argc, argv);

/lcreate a GoodDay object
GoodDayl npl goodDayl npl (| ocation);

/lcreate a Tie bject
Hel | oWor | dPQA ti e_CGoodDay<GoodDayl npl >
goodDayPseudol npl (goodDayl npl);

/1 Get the Root PQA object reference
CORBA: : Obj ect _var obj =
orb->resolve_initial _references("Inprise TPool Persistent”);

/I Narrow t he object reference to a POA reference
Por t abl eServer:: POA var root_poa =
Por t abl eServer:: PQA: . _narrow(obj.in());

cout << "Activating the GoodDay object..." << endl;
Por t abl eServer:: Objectld var oid = root_poa->activate_object(
&goodDayPseudol npl) ;

cout << "Activating the POA to wait for requests..." << endl;
root _poa- >t he_PQOAManager () - >acti vate();

cout << "Create bject Reference ..." << endl;
CORBA: : Obj ect _var goodDayRef = root poa->id to reference(oid);

[lprint stringified object reference
cout << "IOR " << orb->object_to_string(goodDayRef) << endl;

/lstart ORB's Event | oop
orb->run();

}

catch(const CORBA: : Exception& e){

Page 320

cerr << e << endl;
return 1;

}

return O;

}

To understand what is happening behind the scenes, let's have alook at the class
Hel | oWor | dPQA ti e _GoodDay. Thisisthe Tie, or pseudo-implementation, class.

The Tie classinherits from the class POA_Hel | oWor | d: : POA_GoodDay, which connects
it with the ORB runtime system. The classis atemplated C++ class and contains a private
variable named _pt r which represents the real implementation class. This variable will be
initialized by each of the constructors. As we have already seen in the server class, the
implementation classis provided as a parameter to the constructor.break

tenpl ate <class T>
class Hel |l oworl dPQA ti e GoodDay : public POA Hell oWrl d: : POA GoodDay
{
private:
CORBA: : Bool ean _rel
Por t abl eServer:: POA ptr _poa;
T _ptr

Hel | oWor | dPOA GoodDay _ti e(const Hel | oWor | dPOA GoodDay _ti e&) {}
voi d operat or=(const Hel | oWorl dPOA GoodDay_ti e&) {}
publ i c:
Hel | oWor | dPOQA GoodDay tie(T& t)
. _ptr(&), _poa(0), _rel(0){}
Hel | oWor | dPOA_GoodDay_tie(T& t, Portabl eServer:: POA ptr poa)
Co_ptr(&t),
_poa(Portabl eServer:: duplicate(poa)), _rel(0){}
Hel | oWor | dPOA GoodDay tie(T* p, CORBA: : Bool ean rel ease= 1)
. _ptr(p), _poa(0), _rel(release){}
Hel | oWor | dPOA CGoodDay tie(T *p, Portabl eServer::PQOA ptr poa,
CORBA: : Bool ean rel ease=l)
. _ptr(p), _poa(PortableServer:: duplicate(poa)),
_rel (rel ease){}
virtual ~Hel | oWorl dPOA GoodDay tie(){
CORBA: : rel ease(_poa);
if (_rel) delete ptr;
}

CORBA: : Any* hel | o
CORBA: : Any*& any_time){
return _ptr->hell o
any tine);

Page 321

Once amethod isinvoked by a client, the pseudo-implementation object calls the method
hel | o() ontherea implementation object pt r and returns the result from this invocation
back to the client. Note that the out parameter is aso set by the pseudo-implementation.

6—
IDL Context

This section describes IDL-specified context. A Context can be used to supply optional context
information associated with a method invocation, such as the value of an environment variable.
In this section we show how to pass information using IDL context by extending the Hello
World example introduced earlier.

In the IDL below, the operation hel | o() now has a context associated with it called
MY_VALUE.

nodul e Hel | oWor | d{

i nterface GoodDay({
string hello(out short hour, out short mnute) context ("M _VALUE");

b
b
The code generated from this IDL will contain the following signature.

virtual char* hell of
CORBA: : Short & _hour,
CORBA: : Short & _m nut e,
CORBA: : Cont ext _ptr _cont ext

)

This code shows an additional parameter generated for the method hel | o() . This parameter
isof type Cont ext _pt r . The ORB provides methods to create a context, obtain the default
context, set values to a context, and get values from a context.

6.1—
Creating a Context

The code below shows a portion from the client program in the Context example. We obtain the
default context from the ORB and create a child from the default context called CONTEXT. We
again obtain the default context of the child created. We then create an Any variable, insert a
string" Test " into the Any and associateit with MY_VALUE usngtheset _one_val ue()
method. Note that MY_ VAL UE is actually the context specified in IDL.break

Page 322

//obtain default context fromthe ORB
CORBA: : Context _ptr default_ctx;
CORBA: : Context _ptr ctx;

orb->get default_context (default_ctx);
defaul t _ctx->create_chil d(" CONTEXT", ctX);
orb->get _default_context (ctx);

//set value to the context created
CORBA: : Any any;

any <<= (const char *) "Test";

ct x- >set _one_val ue(" MY_VALUE", any)

6.2—
I nvoking the Method

To match the signature of the hel | o() method in the generated code, we invoke the
hel | o() method using an additional parameter ct x that was created above:

//invoke the operation

| ocati on = goodDay->hel | o(hour, mnute, ctx);

6.3—
Getting Values from the Context

Similarly, to extract the information carried in a context, we usetheget _val ues() method.

The server program of the context example shows how to retrieve the information received
from a context.break

[/ met hod
char *hell o(short &hour,
short &m nute,
CORBA: : Context _ptr context){

[/ Obtain context information
if ('CORBA :is_nil(context)){

CORBA: : Fl ags flags = 0;
CORBA: : NVLi st _var nv_list;

cont ext->get _values("", flags, "MY_VALUE', nv_list.out());
char *val ue;
for(CORBA::ULong i = 0; i < nv_list->count(); i++){
CORBA: : NanmedVal ue_var naned_value = nv_list->iten(i);
*(named_val ue->val ue()) >>= val ue;
cout << "Hell oWwrldServer: context value [" << i << "] =";
cout << value << endl;

Page 323

el se{
cout << "The context information passed by the " << endl;
cout << "client for this method invocation is NIL" << endl;

}
In the previous code, we first check if theincoming cont ext isNIL. If not, we use the

get val ues() method to retrieve the information contained in the IDL context MY VAL UE.

Theget val ues() method takesin an empty NVLiI st and fillsin the values. We then
obtain the individual elements from the NVLi st .break

Page 325

Glossary

Acronyms
AB—ATrchitecture Board.

API—Application Programming I nterface.

BOA—Basic Object Adapter.

CGl—Common Gateway Interface.

CORBA—Common Object Request Broker Architecture.

DCE—Distributed Computing Environment.
DCE-CIOP—DCE Common Inter-ORB Protocol.
DI1—Dynamic Invocation Interface.

DI S—Draft International Standard.

DS—Dynamic Skeleton Interface.

DTC—Domain Technology Committee.

ESI OP—Environment-Specific Inter-ORB Protocols.
EUSIG—End User Special Interest Group.
FDTF—Financial Domain Task Force.

Gl OP—General Inter-ORB Protocol.

| DL—Interface Definition Language.break

| | OP—Internet Inter-ORB Protocol.

|MCDTF—Interactive Multimedia and Electronic Commerce Domain Task Force.

| OR—Interoperable Object Reference.

| R—Interface Repository.

| SIG—Internet Specia Interest Group.

| SO—International Standards Organization.
JSI G—Japan Special Interest Group.
MDTF—Manufacturing Domain Task Force.
ODP—Open Distributed Processing.

OM A—Object Management Architecture.
OM G—Object Management Group.
ORB—ODbject Request Broker.
PIDL—Pseudo-IDL.

Page 326

POA—Portable Object Adapter.

PT C—Patform Technology Committee.
RFI—Request For Information.
RFP—Request For Proposal.

RMI|—Remote Method Invocation.
RTSIG—Real Time Special Interest Group.
SIG—Specia Interest Group.

SSL —Secure Socket Layer.

TSI G—Transportation Specia Interest Group.
UUID—Universal Unique Identifier.

Terms
A

Any—Pre-defined data type in OMG IDL which can contain self-describing values of any
type.

Ar chitectur e Boar d—An OMG board that reviews proposals and technology for conformance
to the OMA.

Auditing—Keeping records of which principals perform which invocations on secured
objects.

Authentication—Verifing that principals are who they claim to be.
B

Basic Object Adapter—The first specification of an object adapter in the CORBA standard.
Itsinterface is considered incomplete, and ORB vendors have used divergent
implementations to complete its functionality.

Byte-code—Intermediate representation of programming language code. The Java byte-codeis
very popular and virtual machines which cancontinue

Page 327
execute Java byte-code are available for most hardware platforms and operating systems.
C
Common Facilities—See CORBA facilities.

Common Gateway | nterface—Interface at HT TP servers which allows access to resources,
e.g., databases or programs outside the server.

Common Object Request Broker Architecture—Architecture for distributed object systems
defined by the OMG.

Common Object Services—See CORBA services.

CORBAfacilities—A set of published specifications for application-level object services that
are gpplicable across industry domains, e.g., Printing Facility, Systems Management
Facility.

CORBAnet—Permanent showcase to demonstrate 11 OP-based ORB interoperability
sponsored by the OMG and most ORB vendors. CORBANet is hosted by the Distributed
Systems Technology Centre in Brisbane, Australia. CORBAnNet can be accessed at
http://www.corba.net.

CORBAservices—Set of published specifications for fundamental services assisting all
object implementations, e.g., Naming Service, Event Service, Object Trading Service.

Core Object Model—The fundamental object-oriented mode in the OMA which defines the
basic concepts on which CORBA is based.

Credential—An encapsulation of a principal'sidentity and security attributes.

D

DCE Common Inter-ORB Protocol. Environment Specific Interoperability Protocol based on
DCE. Thefirst ESIOP adopted by the OMG.

Digtributed Computing Environment. Distributed middleware developed under the control of
the Open Group, formerly Open Software Foundation (OSF).

Domain Task Force—Group in the OMG responsible for specifying technologies relevant to a
particular industry sector. They report to the Domain Technical Committee.

Domain Technology Committee—OMG Committee which supervises several Domain Task
Forces concerned with technology specification for particular domains.

Draft International Standar d—I1SO defines phases through which a potentia International
Standard must pass. Draft International Standard is the penultimate phase.

Dynamic Invocation Interface—Interface defined in CORBA which allows the invocation of
operations on object references without compile-time knowledge of the objects interface

types.

Dynamic Skeleton I nter face—Interface defined in CORBA which allows serversto
dynamically interpret incoming invocation requests of arbitrary operations.break

Page 328
E

Environment-Specific Inter-ORB Protocols—CORBA interoperability protocols which use
data formats other than the ones specified in the GIOP. See d'so DCE ESIOP.

F

Firewall—Networking software that prevents certain types of network connections and traffic
for security reasons.

G

General Inter-ORB Protocol—Protocol which belongs to the mandatory CORBA
Interoperability protocol specifications. It defines the format of the protocol data units
which can be sent via any transport. Currently there is only one transport protocol defined,
namely, [1OP.

I nter face Definition L anguage—L anguage to specify interfaces of objects independent of
particular programming language representations. OMG has defined OMG IDL.

I nter face Repository. Component of CORBA which stores type information and makes it
available through standard interfaces at run time. Typically, an Interface Repository is
populated by an IDL compiler when processing IDL specifications.

I nter oper able Object Refer ence—Object reference which identifies objects independent of
the ORB environment in which they have been created.

J

JavaBean—A Java class that supports certain conventionsto allow it to be inspected and used
as a component by visual application builder environments.

M

Mar shal—Conversion of data into a programming-language and architecture-independent
format.

N

Non-repudiation—Creation, transmission, and storage of irrefutable evidence that a principal
performed an action.

O

Object Adapter—The ORB component which at invocation time locates the correct method in
the correct programming language object based on an object reference. It is also informed
by servers when objects are ready to be invoked.

Object Management Architecture—Thisisthe overal architecture and roadmap of the
OMG, of which CORBA forms a part.

Object Management Group—An international industry consortium with over 600 members
which specifies an object-oriented framework for distributed computing, including
CORBA.

Object Refer ence—Opaque data structure which identifies a single CORBA object, and
enables clients to invoke operations on it, regardless of the object's location. Objects can
have multiple object references.

Object Request Broker—The central component of the OMA which transmits operation
invocation requests to distributed objects and returns the results to the requester.

Object Services—See CORBAservices.break

Page 329

OMA Reference M odel—The structural model defining roles for the various components
taking part in the OMA. It identifies five groups of objects to be specified: Object Request
Broker, Object Services, Common Facilities, Domain Objects and Application Objects.

Open Digtributed Processing—Group within 1SO which is concerned with the standardization
of open distributed systems.

P

Platform Technology Committee—OMG Committee which supervises several Task Forces
concerned with specifying the ORB platform infrastructure.

Portable Object Adapter—An object adapter with standard interfaces to associate CORBA
object references to programming language object instances. It is considered to be a
replacement for the Basic Object Adapter.

Principal—A user or system component with a verifiable identity deprecated since CORBA
2.2.

Pseudo-I DL —Interface definitions for components of ORB infrastructure that will not be
implemented as CORBA objects.

R

Request For Information—A formal request from an OMG body for submissions of
information relating to a specific technology area.

Request For Proposal—A formal request from an OMG body for a submission of a
technology specification in IDL with English semantics.

S

Secure I 1OP—AnN extension of the 110P protocol that includes security information and
provides optional encryption of request data.

Secure Socket L ayer—A protocol that extends TCP/IP sockets by providing authentication
and encryption of communications.

Servant—Term used in the context of the POA for the implementation of an IDL interface.

Special Interest Group—Member group in the OMG that has atopic of interest in common.

These groups report findings to Committees within the OMG, or the Architecture Board.

T
TypeCode—A run-time representation of an IDL type.

)

Universal Unique I dentifier. Used in DCE to identify an entity.
Unmar shal—The inverse of marshaling.break

| ndex

A
activate(), 195
activate_object(), 203
activate _object with_id(), 204
active object map, 76
Ada, 2, 42
AdapterActivator interface, 197-198
Admin interface, 237
advanced features, 289
Anys, 294-301
DS, 314-317
IDL context, 321-323
IR and DII, 301-314
Tie mechanism, 317-321
Any, 59, 87, 175
advanced features example, 294-301
Any class, 129-130
insertions, 125-126, 27-129
language mappings, 87-88

Page 331

mapping, 124-130

retrieving from 126-127
APIs (application programming interfaces), and portability, 3
application programming interfaces. See APIs
applications. See building applications; C++ ORBs
argument passing, 133-136

fixed length array, 148-151

fixed length struct, 136-140

fixed length union, 143-146

object reference, 160-163

octet, 158-159

sequences, 154-158

variable length array, 151-154

variable length struct, 140-143

variable length union, 146-148
arrays, 60

inserting into an Any, 125-126

mapping, 121-123

passing arguments

fixed length array, 148-151
variable length array, 151-154

at-most-once operation, 48
attributes, 49, 53, 61-63
mapping, 131-133

B

base interface, 55

basic datatypes, mapping, 108-109
basic object adapter. See BOA
best-effort operation, 48

binding, 210, 212. See also Naming Service
adding names, 212-214
removing names, 210, 214

BOA (basic object adapter), 71-75, 173-175
activation and deactivation, 173-174
different from POA, 13-15
implementation, 73-74
and the Implementation Repository, 72
initialization, 173
purpose, 52

BODTF (Business Objects Domain Task Force), 33-34

book(), 285

boolean, inserting, 127

bootstrapping, 209-210
pseudo-IDL operation, 70

bounded string, inserting, 127-129

bridge, 7

building applications, 261
application specification, 261-264
building clients, 276-287
building factories, 272-276
building servers, 268-272

extension to example, 287break

implementing objects, 264-268
starting servers, 276

Business Objects Domain Task Force (BODTF), 33-34

C
C

Page 332

mapping from IDL, 2, 42
mappings, 84
C++. See also CORBA; Hello World example
benefits of CORBA, 1-6
legacy systems/architectures, 6
low level programming, 6
mappings, 1, 2, 84
overview, 6-10
and system performance, 5-6
C++ ORBs
building an application, 17-27
client implementation, 21-23
compile server and client, 26
compiletheIDL, 20
devel opment process, 18-19
environment setup, 19
implement server, 24-26
interface specification, 19-20
object implementation, 23-24
run the application, 27
clients and servers
as C++ gpplications, 12-15
with non-C++ ORBS, 15-16
overview, 11-16
terminology, 11-12
cancel(), 284-285
CFTF (Common Facilities Task Force), 32
char, inserting, 127-129
Class Libraries Special Interest Group, 34

classes, 7. See also Hello World example
and inheritance, 8
and method overloading, 8
stub and skeleton, 12-14
clients
building, 276-287
client implementation, 21-23
client side mapping, 163
compiling, 26
description, 11
implementation example, 21-23
Naming Service and C++ client, 218-221
stubs, 51
clients and servers as C++ applications, 12-15
compiling, 26
with non-C++ ORBs, 15-16
COBOL
mapping from IDL, 2
mappings, 84-85
comments, 53
Common Facilities, 41, 43
Common Facilities Task Force (CFTF), 32
Common Object Request Broker Architecture. Sce CORBA
components, 37
concept definitions, 37-39
constants, 52, 57-61
mapping, 111-112
context interface, 188-191

create context object, 189

manipul ate context object, 189-190
manipul ate context object tree, 190-191
context object, 189-190

context object tree, 190-191

contexts, 63. See also Naming Service
creating, 321-322
getting values from, 322-323

CORBA (Common Object Request Broker Architecture). See also advanced features; C++
ORBs

advantages for C++ programmers, 2-5
benefits, 1-6
BOA, 71-75
DIl and DS, 92-94
Interface Repository, 94-106
interoperability, 2, 85-87
hierarchy of protocols, 3
language mappings, 84-85
legacy integration, 3-4
location transparency, 4, 44
most popular language, 1
Naming Service. See Naming Service
object model, 46-49
OMG IDL, 52-63
open standardization, 2-3
ORB and object interfaces, 63-71
ORB structure, 49-52
overviews, 29-30, 44-46
POA, 75-83
programmer productivity, 4-5

programming language transparency, 44

reason for using C++, 5-6
reuse, 5
Trading Service. See Trading Service
TypeCode, Any, and DynAny, 87-92
vendor independence, 3
CORBA server, 11
CORBA::BOA, 173-175
CORBA::Context, 188-191
CORBA::Object, 168-171
CORBA::ORB, 171-173
CORBA::TypeCode, 175-181
CORBAfacilities, 43
CORBAfinancials (FinancialDomain Task Force), 33
CORBA manufacturing (Manufacturing Domain Task Force), 33
CORBAmMed DTF, 5
CORBAmMed Task Force (Hedlthcare), 33
CORBAet website, 3
CORBAservices, 42-43
CORBAtel (Telecommunications Task Force), 33
Core Object Model, 36-40
and CORBA, 46-49
main goals, 37
create POA(), 201
create_reference(), 204-205
create reference with_id(), 205
create_request(), 170-171

D
data type declarations, 52
Database Specia Interest Group, 34

deactivate(), 196-197
deactivate object(), 204
deferred synchronous invocation, 93
deferred-synchronous, 48
derived interface, 55
design portability, 37
destroy(), 202
DIl (Dynamic Invocation Interface), 50, 92-93, 182
advanced features example, 301-314
common data structures, 182-183
creating arequest, 184-185
creating an NVLigt, 183
DIl request, 184
heart of DII, 93
NVList interface, 183-184
operation semantics, 48
request, 51
Request interface, 93, 185-187
and TypeCodes, 175
DIR (Dynamic Implementation Routine), 93-94
discard_requests(), 196break

discovering services, 209. See also Naming Service; Trading Service
bootstrapping, 209-210
domains, 257-258
proprietary object location, 258-260

discriminated unions, 59

Domain Interfaces, 41, 43

Domain Task Forces (DTFs), 5, 33-34

Page 333

Domain Technology Committee (DTC), 32, 33-34
Domains, 257-258
DSl (dynamic skeleton interface), 51-52, 92-94, 187-188
example, 314-317
ServerReqguest interface, 93-94, 188
DTC (Domain Technology Committeg), 32, 33-34
DTFs (Domain Task Forces), 5, 33-34
duplicate(), 169
Dynamic Implementation Routine (DIR), 93-94
Dynamic Invocation Interface. See DI
Dynamic properties, 237-238
Dynamic Skeleton Interface. See DS
DynAny, 87, 90-92

E
encapsulation, 7
and programmer productivity, 5
and transparency, 44
End User Specid Interest Group (EUSIG), 34
enumerations, mapping, 112
enums, accessing, 92
environment setup, 19
etheredlize, 76
etherealize(), 199
EUSIG (End User Specia Interest Group), 34
Event Service, 5
exception types, mapping for, 130-131
exceptions, 9, 49, 61

F
factories, 272-276

Financial Domain Task Force (CORBAfinancials), 33
find_POA(), 201-202

flat types, 179-181

freeing lists, 184

G

Genera Inter-ORB Protocol (GIOP), 3, 86
get_implementation(), 168

get_interface(), 168

get_object id(), 207

get_POA(), 207

get_servant(), 203

get_servant_manager(), 202

GIOP (General Inter-ORB Protocal), 3, 86

H
hash(), 170
Hello World example, 9
build the executable, 10
building a C++ ORB application, 17-27
client as C++ application, 21-23
compiling server/client, 26
compiling the IDL, 20
development process, 18-19
environment setup, 19
interface specification, 19-20
object implementation, 23-24
obtaining the code, 17
running application, 27
server as C++ application, 24-26
create/invoke object, 10

define signature, 9
extended version, 289-294
Anys, 294-301
the client, 290-294
DS, 314-317
the IDL, 289-290
IDL context, 321-323
IR and DII, 301-314
Tie mechanism, 317-321
implementing the class, 10
hold_requests(), 196

I
ID
assignment, 76, 193
uniqueness, 76, 192-193
identifiers, 53
IDL (Interface Definition Language), 42, 52
Any type, 59
arrays, 60
attributes, 53, 61-63
benefit of, 2
comments, 53
compiling the IDL, 20
constants, 52, 57-61
constructs, 52-53
contexts, 63
datatype declarations, 52
description, 1

discriminated unions, 59

and exceptions, 9, 49, 61

identifiers, 53

IDL compiler, 45

and inheritance, 8, 55-57

interface definitions, 44-45

and interfaces, 53-55

inheritance of, 8
wrapping code, 3-4

interoperability, 2

keywords, 53

lexical analysis, 53

mapping to C++. See mapping, OMG IDL to C++

mappings defined, 2

modules, 53-55

operations, 53, 61-63

preprocessing, 53

punctuation, 53

sequences, 59-60

specification, 263-264

structures, 59

types and constants, 57-61

why use C++ language mapping, 5-6
id_to_reference(), 207
id_to_servant(), 206-207
[1OP (Internet Inter-ORB Protocol), 3, 16, 86, 87
IMECDTF (Interactive Multimedia and Electronic Commerce Domain Task Force), 33
implementation skeleton, 51
implicit activation policy, 78, 195

incarnate, 76

incarnate(), 198
inheritance, 8
and Core Object Moddl, 40
and exceptions, 9
and interfaces, 8, 40, 55-57
and method overloading, 8
multiple inheritance, 7, 56-57
init_from_ns(), 281-282

initial references, obtaining, 172

Interactive Multimedia and Electronic Commerce Domain Task Force IMECDTF), 33

Interface Repository, 94-106
abstract base interfaces, 96-97
browsing, 304-305
Contained, 104-106
datatype interfaces, 97
example, 301-314
IDL for, 98-100break

IDLType, 103-104
multiply derived interfaces, 100-102
nondatatype interfaces, 97
repository identifiers, 106
and TypeCodes, 175
TypedefDef, 102-103

interfaces, 47
attributes, 49
base interface, 55
derived interface, 55

and inheritance, 8, 40, 55-56

Page 334

interface specification, 19-20
mapping, 163-166
OMG IDL, 53-55
principal interface, 47
and signature, 7
and substitutability, 39
interface TypeCode, 175-179
Internet Inter-ORB Protocol (110P), 3, 16, 86, 87
Internet Special Interest Group (ISIG), 33
interoperability, 85-87
advantage of CORBA, 2
communication across ORB domain boundaries, 16
Core Object Model, 37
GIOP, 86
[1OP, 86
offered by IDL, 2
ORB interoperability architecture, 85
website, 3
interoperable object references. See IORs
|ORs (interoperable object references)
location transparency, 4
and TypeCodes, 175
IR. See Interface Repository
is_a(), 169
is_equivalent(), 170
ISIG (Internet Specia Interest Group), 33
is nil(), 169
iterators, 233

J

Japan Specia Interest Group (JSIG), 33
Javainterface concept, 7

and low-level code, 6

mapping from IDL, 2

and system performance, 5-6

JSIG (Japan Specid Interest Group), 33

K
keywords, 53

L

language mappings, 84-85
for Anys, 87-88

legacy integrations, 3-4, 6

lifespan policy, 77, 192

Link interface, 236

list management, 184

location transparency, 4, 44

Lookup interface, 231-233

low-level programming, 6

M
Manufacturing Domain Task Force (CORBAmanufacturing), 33
mapping. See also Naming Service
language mappings, 84-85
and legacy systems, 3-4, 6
mapping, OMG IDL to C++, 107
any type, 124-130
argument passing, 133-136
fixed length array, 148-151
fixed length struct, 136-140
fixed length union, 143-146

object reference, 160-163
octet, 158-159
sequences, 154-158
variable length array, 151-154
variable length struct, 140-143
variable length union, 146-148
arrays, 121-123
basic datatypes, 108-109
constants, 111-112
enumerations, 112
for exception types, 130-131
of interfaces, 163-166
modules, 107-108
operations and attributes, 131-133
sequence types, 118-121
strings, 109-111
struct types, 114-116
for structured types, 112-130
typedefs, 123-124
union types, 116-118
meeting_details(), 286-287
method in client application, 279-287
description, 11
and exceptions, 9
methods for structured types, 178
methods for template types, 179
methods for unions, 178-179
overloading, 8-9
method overloading, 8-9

Metrics Special Interest Group, 34
modularity, 8
modules, 53-55

mapping, 107-108

multiple inheritance, 8

N
named values, 182
Naming Service, 5, 210-221
from aC++ client, 218-221
interface specification, 211-218
adding names to a context, 212-214
binding iterators, 217
bindings, 212
browsing contexts, 216-217
context creation, 216
context destruction, 216
exceptions, 215-216
name resolution, 214
nametype, 211-212
Names Library, 217-218
removing names from a context, 214
overview, 210-211
registering with, 271-272
non_existent(), 169-170
nonobject types, 39
NVLigt creating, 183
interface, 183-184

@)
OA (object adapter), 12, 52. See also BOA; POA

description, 12

and skeleton code, 13, 14
OADTF (Object Analysis and Design Task Force), 32-33
object adapter. See OA
Object Anaysisand Design Task Force (OADTF), 32-33
object id, 76
object implementations, 46-47. See also Naming Service
object interfaces, 63-71

initialization, 70-71

managing object references, 64-70

stringified object references, 64
Object Management Architecture. See OMA
Object Management Group. See OMG
Object Model, 46-49. See also Core Object Modelbreak

object-oriented programming, 6-10
encapsulation, 7
exceptions, 9
inheritance, 8
method overloading, 8-9
modularity and scoping, 8
objects and classes, 7

object references, 46-47. See also Naming Service
converting into strings, 171-172
location transparency, 4
managing, 64-70
obtaining, 22
passing arguments, 160-163
stringified, 64

Page 335

object request broker. See ORB
objects, 11
and classes, 7
credting, 25, 270-271
creating/invoking, 10
defined in Core Object Model, 38
implementation, 23-24
implementing, 264-268
locating. See discovering services object implementation, 23-24
supporting objects, 307-310
Object Services, 41, 42-43
Object Trading Service, 5. See Trading Service
Object Transaction Service, 5
octet inserting, 127-129
passing arguments, 158-159
OMA (Object Management Architecture), 35
Core Object Model, 36-40
and CORBA, 46-49
overview, 36
Reference Model, 36, 41-44
OMG (Object Management Group), 30
Architecture Board, 30-31, 34
and CORBA, 1, 2-3
DTC, 31, 32, 33-34
DTFs, 5
goalsof, 30
organizational structure, 30-34
illustration, 31
PTC, 31-33

special interest groups, 31, 32-34
inactive, 34
task forces, 31, 32-34
technology adoption process, 34-35, 44
OMG IDL (Interface Definition Language), 52-63. See also IDL
operation, 11
in Core Object Model, 38-39
invoking, 22-23
OMG DL, 53, 61-63
semantics, 47-48
signatures, 48
operations, mapping, 131-133
ORB (object request broker). See also C++ ORBs
entering event loop, 272
initializing, 21, 24-25, 171, 270
interoperability architecture, 85-87
and object interfaces
and OMA Reference Moddl, 41, 42
ORB and object interfaces, 63-71
initialization, 70-71
managing object references, 64-70
stringified object references, 64
ORB interface, 171-173
structure, 49-52
ORB runtime system, 167
BOA, 173-175
context interface, 188-191
Dll, 182-187
DSl, 187-188

object interface, 168-171

ORB interface, 171-173

POA, 191-207

TypeCodes, 175-181
ORB vendors, 2-3
ORB/ODbject Services Task Force (OSTF), 32
OSTF (ORB/Object Services Task Force), 32
overloading, 8-9

P
Parallel Object Systems Specia Interest Group, 34
parameters, 38
performance, 5-6
Persistent server policy, 73
Patform Technology Committee (PTC), 31-32
POA (portable object adapter), 13-15, 52, 75, 191
activate a servant, 25-26
AdapterActivator interface, 197-198
architecture, 76
creating, 79, 80
creating object references, 82-83
current interface, 83
current operations, 207
initializing, 24-25, 173
life cycle, 80-82
mappings, discovering, 83
overview, 75-76
POA interface, 201-207
POAManager interface, 195-197
policies, 76-80, 191-195

purpose of, 77
references to other objects, 81
registering with, 270-271
ServantActivator interface, 198-199
ServantLocator interface, 199-200
portability and APIs, 3
and CORBA/C++ code, 17
design portability, 37
and ORB vendors, 3
portable object adapter. See POA
postinvoke(), 200
preinvoke(), 199-200
preprocessing, 53
printers, 222-225
enhancements, 256-257
finding an object, 250-256
implement printer interface, 238-243
implement printer server, 243-250
productivity, programmer, 4-5
profiles, 37
programming and interoperability, 2
language transparency, 44
low-level programming, 6
programmer productivity, 4-5
proprietary object location, 258-260
proxies, 237-238
PTC (Platform Technology Committee), 31-33

punctuation, 53

R

Reference Model, 36, 41-44
references, obtaining initial references, 172
reference_to_id(), 206
reference to_servant(), 206
Register interface, 233-236
release(), 169
removing names from a context, 210, 214
request, 51, 93
create/invoke request object, 310
creating, 184-185
DIl request, 184
initializing, 307
interface, 185-187
ServerRequest, 93-94
request processing, 77, 194-195break

resolving the name, 210
return values, 38
reuse, 5

runtime system. See ORB runtime system

S
scoping, 8
Security Service, 5
Security Special Interest Group, 34
sequence types, mapping, 118-121
sequences, 59-60

passing arguments, 154-158
ServantActivator interface, 198-199
ServantL ocator interface, 199-200

Page 336

servants, 14, 76

activate, 25-26

activator, 77

default servant, 76

implementation, 292-294

implicit activation policy, 78

locator, 77

manager, 77

retention, 77, 193-194
servant_to_id(), 205
servant_to_reference(), 205-206
Server-per-method activation policy, 73
ServerRequest interface, 93-94, 188
servers. See also clients and servers

building, 268-272

as a C++ application, 24-26

compiling, 26

CORBA server, 11

description, 11

server side mapping, 163-166

starting, 276
Service Type Repository, 226-230
set_servant(), 203
set_servant_ manager(), 203
Shared server activation policy, 72
SIG (specia interest groups), 31, 32-34
signature, 7, 48

components, 38, 48

defining, 9

skeleton, 12-14
dynamic skeleton interface, 51-52
and IDL compiler, 45
implementation skeleton, 51
Smalltalk and low-level code, 6
mapping from IDL, 2, 42
mappings, 84
Specia Interest Group, 34
and system performance, 5
special interest groups (SIG), 31, 32-34
standardization of CORBA, 2-3
and reference model, 41-44
stringified object references, 64
strings converting into object references, 171-172
inserting bounded strings, 127-129
mapping, 109-111
structs accessing, 92
argument passing
fixed length struct, 136-140
variable length struct, 140-143
mapping, 114-116
structured types, 59
creating, 179-181
mapping, 112-114
arrays, 121-123
sequence types, 118-121
struct types, 114-116
type Any, 124-130
typedefs, 123-124

union types, 116-118

methods for, 178
stub, 12-14

client stubs, 51

IDL compiler and stub code, 45
substitutability and interfaces, 39
and subtyping, 40
subtyping, 40
supporting objects, 307-310

system performance, 5-6

T
TCKind, 176-177
TCP/IP implementation of GIOP, 3
Telcom DTF, 5
Telecommunications Task Force (CORBAtd), 33
template types creating, 181
methods for, 179
sequences, 59-60
thread policy, 78, 192
Tie mechanism, 317-321
TraderComponents, 231
Trading Service, 5, 45, 221-257
Admin interface, 237
Dynamic properties, 237-238
exporting a service offer, 238-250
finding an object, 250-257
iterators, 233
Link interface, 236
Lookup interface, 231-233

overview of
trading, 222-226
Trading Service interfaces, 226-238
Proxies, 237-238
Register interface, 233-236
Service Type Repository, 226-231
TraderComponents interface, 231
transparency, 4, 44
Transportation Specia Interest Group (TSIG), 34
TSIG (Transportation Specia Interest Group), 34
TypeCode, 87, 88-90, 175-181
creating, 179-181
interface TypeCode, 175-179
typedefs, mapping, 123-124
types, 47, 57-61

)
unbinding, 210, 214
union types mapping, 116-118
methods for, 178-179
passing arguments
fixed length union, 143-146
variable length union, 146-148
unions, discriminated, 59
unknown_adapter(), 197-198
unparser, 305-306
Unshared server activation policy, 72-73

V
variable declarations, 280-281

vendor independence, 3

view(), 282-284
virtual class, 7

Visibroker for C++, 17, 19 compiler for, 20

W

wechar, inserting, 127-129

wrapping code, 3-4, 6
the DS, 52

	Contents
	Foreword
	Acknowledgments
	About the Authors
	How to Read This Book
	Chapter 1 Introduction
	1 Benefits of C++ Programming with CORBA
	1.1 What Does CORBA Offer C++ Programmers?
	1.2 What Does C++ Offer CORBA Programmers?

	2 C++ Overview
	2.1 Objects and Classes
	2.2 Encapsulation
	2.3 Modularity and Scoping
	2.4 Inheritance
	2.5 Method Overloading
	2.6 Exceptions
	2.7 Hello World Example

	3 Overview of C++ ORBs
	3.1 Terminology
	3.2 Clients and Servers as C++ Applications
	3.3 Clients and Servers Implemented with Non- C++ ORBs

	4 Building a First C++ ORB Application
	4.1 Summary of the CORBA Development Process
	4.2 Environment Setup
	4.3 Interface Specification
	4.4 Compiling the IDL
	4.5 A Client as a C++ Application
	4.6 Object Implementation
	4.7 A Server as a C++ Application
	4.8 Compiling the Server and the Client
	4.9 Running the Application

	Chapter 2 CORBA Overview
	1 The Object Management Group
	1.1 OMG's Goals
	1.2 The Organizational Structure of the OMG
	1.3 OMG Technology Adoption Process

	2 The Object Management Architecture
	2.1 Overview of the OMA
	2.2 Core Object Model
	2.3 The Reference Model

	3 Common Object Request Broker Architecture
	3.1 Overview
	3.2 Object Model
	3.3 ORB Structure
	3.4 OMG Interface Definition Language
	3.5 ORB and Object Interfaces
	3.6 Basic Object Adapter
	3.7 The Portable Object Adapter
	3.8 Language Mappings
	3.9 Interoperability
	3.10 TypeCode, Any, and DynAny
	3.11 Dynamic Invocation and Dynamic Skeleton Interfaces
	3.12 Interface Repository

	Chapter 3 OMG IDL to C++ Mapping
	1 Mapping Modules
	2 Mapping Basic Datatypes
	3 Mapping Strings
	4 Mapping Constants
	5 Mapping Enumeration
	6 Mapping for Structured Types
	6.1 Mapping for Struct Types
	6.2 Mapping Union Types
	6.3 Mapping Sequence Types
	6.4 Mapping for Arrays
	6.5 Mapping Typedefs
	6.6 Mapping the Type Any

	7 Mapping for the Exception Types
	8 Mapping Operations and Attributes
	9 Argument Passing
	9.1 Examples

	10 Mapping of Interfaces
	10.1 Client Side Mapping
	10.2 Server Side Mapping

	Chapter 4 ORB Runtime System
	1 Object Interface
	1.1 get_ implementation()
	1.2 get_ interface()
	1.3 is_ nil()
	1.4 duplicate() and release()
	1.5 is_ a()
	1.6 non_ existent()
	1.7 is_ equivalent()
	1.8 hash()
	1.9 create_ request()

	2 ORB Interface
	2.1 ORB Initialization
	2.2 Converting Object References into Strings and Vice Versa
	2.3 Obtaining Initial References
	2.4 BOA Initialization
	2.5 POA Initialization

	3 Basic Object Adapter
	3.1 Activation and Deactivation
	3.2 Other Operations

	4 TypeCodes
	4.1 Interface TypeCode
	4.2 Creating TypeCodes

	5 Dynamic Invocation Interface
	5.1 Common Data Structures
	5.2 Creating an NVList
	5.3 NVList Interface
	5.4 DII Request
	5.5 Creating a Request
	5.6 Request Interface

	6 Dynamic Skeleton Interface
	6.1
	ServerRequest Interface

	7 Context Interface
	7.1 Creating a Context Object
	7.2 Manipulating a Context Object
	7.3 Manipulating the Context Object Tree

	8
	Portable Object Adapter
	8.1 POA Policies
	8.2 POAManager Interface
	8.3 AdapterActivator Interface
	8.4 ServantActivator Interface
	8.5 ServantLocator Interface
	8.6 POA Interface
	8.7 Current Operations

	Chapter 5 Discovering Services
	1 Bootstrapping
	2 The CORBA Naming Service
	2.1 Overview of the Naming Service
	2.2 Interface Specification
	2.3 Using the Naming Service from a C++ Client

	3 Trading Services
	3.1 Overview of Trading
	3.2
	Overview of the Trading Service Interfaces
	3.3 Exporting a Service Offer
	3.4 Finding an Object Using a Trader

	4 Domains
	5 Proprietary Object Location

	Chapter 6 Building Applications
	1 Application Specification
	1.1 IDL Specification

	2 Implementing Objects
	2.1 Implementing the Meeting Object
	2.2 Implementing the Room Object

	3 Building Servers
	3.1 Initializing the ORB
	3.2 Creating an Object, Registering with the Root POA
	3.3 Registering with the Naming Service
	3.4 Entering the ORB's Event Loop

	4 Building Factories
	4.1 Meeting Factory Object Implementation
	4.2 Meeting Factory Server

	5 Starting Servers
	6 Building Clients
	6.1 Client Application
	6.2 Methods in the Client Application

	7 Extensions to the Example Application

	Chapter 7 Advanced Features
	1 The Extended Hello World Example
	1.1 Interface Specification
	1.2 A Client
	1.3 Servant Implementation

	2 The Any Type and TypeCodes
	2.1 Interface Specification
	2.2 Object Implementation
	2.3 Client Implementation

	3 Interface Repository and Dynamic Invocation Interface
	3.1 Initializing the ORB
	3.2 Browsing the Interface Repository
	3.3 A Simple Unparser
	3.4 Initializing Requests
	3.5 Creating Supporting Objects
	3.6 Using the Supporting Objects
	3.7 Creating and Invoking a Request Object
	3.8 Getting Results
	3.9 Executing the Client

	4 Dynamic Skeleton Interface
	5 Tie Mechanism
	6 IDL Context
	6.1 Creating a Context
	6.2 Invoking the Method
	6.3 Getting Values from the Context

	Glossary
	Acronyms
	Terms
	A
	B
	C
	D
	E
	F
	G
	I
	J
	M
	N
	O
	P
	R
	S
	T
	U

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

