
Page i

C++ Programming with CORBA®

Andreas Vogel
Bhaskar Vasudevan

Maira Benjamin
Ted Villalba

Page ii

Publisher: Robert Ipsen
Editor: Robert Elliott
Assistant Editor: Pam Sobotka
Managing Editor: Angela Murphy
Electronic Products, Associate Editor: Mike Sosa
Text Design & Composition: North Market Street Graphics

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear
in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

This book is printed on acid-free paper.

Copyright © 1999 by Andreas Vogel, Bhaskar Vasudevan, Maira Benjamin, Ted Villalba • All
rights reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail:
PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold with the understanding that the publisher is not engaged in
professional services. If professional advice or other expert assistance is required, the
services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

ISBN 0-471-28306-1

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1break

Page iii

Contents

Chapter 1
Introduction

1

1 Benefits of C++ Programming with CORBA 1

1.1 What Does CORBA Offer C++ Programmers? 2

1.2 What Does C++ Offer CORBA Programmers? 5

2 C++ Overview 6

2 C++ Overview 6

2.1 Objects and Classes 7

2.2 Encapsulation 7

2.3 Modularity and Scoping 8

2.4 Inheritance 8

2.5 Method Overloading 8

2.6 Exceptions 9

2.7 Hello World Example 9

3 Overview of C++ ORBs 11

3.1 Terminology 11

3.2 Clients and Servers as C++ Applications 12

3.3 Clients and Servers Implemented with Non-C++ ORBs 15

4 Building a First C++ ORB Application 17

4.1 Summary of the CORBA Development Process 18

4.2 Environment Setup 19

4.3 Interface Specification 19

4.4 Compiling the IDL 20

4.5 A Client as a C++ Application 21

4.6 Object Implementation 23

4.7 A Server as a C++ Application 24

4.8 Compiling the Server and the Client 26

4.9 Running the Application 27

Chapter 2
CORBA Overview

29

1 The Object Management Group 30

1 The Object Management Group 30

1.1 OMG's Goals 30

Page iv

1.2 The Organizational Structure of the OMG 30

1.3 OMG Technology Adoption Process 34

2 The Object Management Architecture 35

2.1 Overview of the OMA 36

2.2 Core Object Model 36

2.3 The Reference Model 41

3 Common Object Request Broker Architecture 44

3.1 Overview 44

3.2 Object Model 46

3.3 ORB Structure 49

3.4 OMG Interface Definition Language (IDL) 52

3.5 ORB and Object Interfaces 63

3.6 Basic Object Adapter 71

3.7 The Portable Object Adapter 75

3.8 Language Mappings 84

3.9 Interoperability 85

3.10 TypeCode, Any, and DynAny 87

3.11 Dynamic Invocation and Dynamic Skeleton Interfaces 92

3.12 Interface Repository 94

3.12 Interface Repository 94

Chapter 3
OMG IDL to C++ Mapping

107

1 Mapping Modules 107

2 Mapping Basic DataTypes 108

3 Mapping Strings 109

4 Mapping Constants 111

5 Mapping Enumerations 112

6 Mapping for Structured Types 112

6.1 Mapping for Struct Types 114

6.2 Mapping Union Types 116

6.3 Mapping Sequence Types 118

6.4 Mapping for Arrays 121

6.5 Mapping Typedefs 123

6.6 Mapping the Type Any 124

7 Mapping for the Exception Types 130

8 Mapping Operations and Attributes 131

9 Argument Passing 133

9.1 Examples 136

10 Mapping of Interfaces 163

10.1 Client-Side Mapping 163

10.2 Server-Side Mapping 163

Page v

Chapter 4
ORB Runtime System

167

1 Object Interface 168

1.1 get_implementation() 168

1.2 get_interface() 168

1.3 is_nil() 169

1.4 duplicate() and release() 169

1.5 is_a() 169

1.6 non_existent() 169

1.7 is_equivalent() 170

1.8 hash() 170

1.9 create_request() 170

2 ORB Interface 171

2.1 ORB Initialization 171

2.2 Converting Object References into Strings and Vice Versa 171

2.3 Obtaining Initial References 172

2.4 BOA Initialization 173

2.5 POA Initialization 173

3 Basic Object Adapter 173

3.1 Activation and Deactivation 173

3.2 Other Operations 174

4 TypeCodes 175

4.1 Interface TypeCode 175

4.2 Creating TypeCodes 179

4.2 Creating TypeCodes 179

5 Dynamic Invocation Interface 182

5.1 Common Data Structures 182

5.2 Creating an NVList 183

5.3 NVList Interface 183

5.4 DII Request 184

5.5 Creating a Request 184

5.6 Request Interface 185

6 Dynamic Skeleton Interface 187

6.1 ServerRequest Interface 188

7 Context Interface 188

7.1 Creating a Context Object 189

7.2 Manipulating a Context Object 189

7.3 Manipulating the Context Object Tree 190

8 Portable Object Adapter 191

8.1 POA Policies 191

8.2 POAManager Interface 195

8.3 AdapterActivator Interface 197

8.4 ServantActivator Interface 198

8.5 ServantLocator Interface 199

8.6 POA Interface 201

8.7 Current Operations 207

Page vi

Chapter 5
Discovering Services

209

1 Bootstrapping 209

2 The CORBA Naming Service 210

2.1 Overview of the Naming Service 210

2.2 Interface Specification 211

2.3 Using the Naming Service from a C++ Client 218

3 Trading Service 221

3.1 Overview of Trading 222

3.2 Overview of the Trading Service Interfaces 226

3.3 Exporting a Service Offer 238

4 Domains 257

5 Proprietary Object Location 258

Chapter 6
Building Applications

261

1 Application Specification 261

1.1 IDL Specification 263

2 Implementing Objects 264

2.1 Implementing the Meeting Object 264

2.2 Implementing the Room Object 265

3 Building Servers 268

3.1 Initializing the ORB 270

3.2 Creating an Object, Registering with the Root POA 270

3.3 Registering with the Naming Service 271

3.3 Registering with the Naming Service 271

3.4 Entering the ORB's Event Loop 272

4 Building Factories 272

4.1 Meeting Factory Object Implementation 273

4.2 Meeting Factory Server 274

5 Starting Servers 276

6 Building Clients 277

6.1 Client Application 278

6.2 Methods in the Client Application 279

7 Extensions to the Example Application 287

Chapter 7
Advanced Features

289

1 The Extended Hello World Example 289

1.1 Interface Specification 289

Page vii

1.2 A Client 290

1.3 Servant Implementation 292

2 The Any Type and TypeCodes 294

2.1 Interface Specification 294

2.2 Object Implementation 295

2.3 Client Implementation 297

3 Interface Repository and Dynamic Invocation Interface 301

3.1 Initializing the ORB 302

3.1 Initializing the ORB 302

3.2 Browsing the Interface Repository 304

3.3 A Simple Unparser 305

3.4 Initializing Requests 307

3.5 Creating Supporting Objects 307

3.6 Using the Supporting Objects 309

3.7 Creating and Invoking a Request Object 310

3.8 Getting Results 310

3.9 Executing the Client 312

4 Dynamic Skeleton Interface 314

5 Tie Mechanism 317

6 IDL Context 321

6.1 Creating a Context 321

6.2 Invoking the Method 322

6.3 Getting Values from the Context 322

Glossary 325

Index 331

Page ix

Foreword

While it may seem somewhat retrograde in 1999 to publish a book which centers on C++
(rather than the hot C-based language, Java), this book will find an important place in the
library of programmers everywhere. Even as Java turns 35 in dog years (oops, I guess I mean
Internet years!), or about five in human reckoning, according to most surveyors of the
programming scene C++ is still the primary C-based language, especially in mission-critical,
high-performance systems. Fortunately, the CORBA technology discussed in this tome (as was

discussed in its predecessor Java-based version) excels at solving cross-language integration
problems. In fact, the de facto standard CORBA architecture provides interoperability in
thousands of distributed, heterogeneous enterprise-wide applications worldwide today;
heterogeneous not just in programming language but in operating system, underlying network
connection, and hardware platforms as well. This C++ revision of the book provides another
strong platform for understanding and implementing CORBA technology with confidence.break

RICHARD MARK SOLEY, PH.D.
CHAIRMAN AND CEO,
OBJECT MANAGEMENT GROUP, INC.

Page xi

Acknowledgments

First of all, we want to thank those people who assisted us in writing this book. These are our
editors at John Wiley and Sons, Robert Elliott, Pam Sobotka, Angela Murphy, and the Wiley
production team.

Thanks to Keith Duddy, who wrote many CORBA-related sections of Java Programming for
CORBA which have been the base of this book and to Michael McCaffrey, who helped with
some of the POA examples.

Special thanks to Inprise's Visibroker team, specifically to Prasad Mokkapati, Jon Goldberg,
Tom Casaletto, Vijay Natarajan, Nick Trown and Vishy Kasar, which made an early
Visibroker release, which supported the POA, available to us and gave support and guidance
for using the POA features. We also thank Peter Holzwarth for his help with the Visibroker
Trader implementation.

We acknowledge the corporation of the OMG, and in particular Richard Soley.

Thanks to Meta and Dorit for letting me work on evenings and weekends instead of going out or
to the beach. I promise the next book will be the last one, for a while.

Also a word of thanks to Mike Cook of Bellcore who I helped designing and building a cool
CORBA-controlled, Java-implemented IP telephony system. Mike always teased me that my
CORBA books don't have any comics featuring out-of-space characters. Well, Mike, this one
doesn't have any comics either, but I recommend as a supplement publications by Hank Hill
which are of great educational value specifically when you raise an American boy as you do.

—ANDREAS

I am extremely grateful to Prasad Mokkapati, Jon Goldberg, Ke Jin, Nick Trown, and Vijay
Natarajan, to whom I owe all I have learnt about the ORB so far. I am grateful to my family and
friends to whom I owe all I am today.

—BHASKAR

To Jazzy and Scott for giving me the love, support, and understanding that I needed to get this
book done and to all of my friends and family thatcontinue

Page xii

believed in me—you know who you are! I truly believe that without the support of the people
that you care for, you cannot achieve any of the goals that you are passionate about.

—MAIRA

I would also like to thank my mother for her amazing patience and unconditional love, thank my
father for his guidance and dedicate my efforts to my sister Elena for teaching me that recycling
is a way of life: paper, plastic, aluminum, code . . .continue

—TED

Page xiii

About the Authors

Andreas Vogel is a Principal Consultant with Inprise Corporation since January 1997. In this
position he works with customers, mostly Fortune 500 companies, on CORBA solutions for
their distributed computing needs. More recently, he is also involved in strategy and product
development.

Prior to this appointment, Andreas worked at the Distributed Systems Technology Centre
(DSTC) in Brisbane, Australia in the position of a Principal Research Scientist, working on
various aspects of distributed systems including CORBA2.0 Interoperability, OMG's Object
Trader specification, CORBA-DCE interoperability, Web and middleware integration, and
distributed multimedia systems. From 1993 to 1994, he worked as a Research Scientist for the
University of Montreal, Canada, on quality of service issues of multimedia applications.

Andreas has co-authored Java Programming with CORBA (John Wiley & Sons, 1998), and is
now working on a new book on Enterprise JavaBeans, the Java Transaction Service, and the
CORBA Object Transaction Service. Andreas is Java Report Online's CORBA columnist and
is a contributor to the Middleware Spectra. He also serves on program committees and
advisory boards of a number of international conferences, workshops, and journals devoted to
different aspects of distributing computing. Andreas holds a PhD and MSc in Computer
Science from Humboldt-University at Berlin, Germany.

Andreas lives with his wife Dorit G. Hillmann and daughter Meta J.D. Hillmann in San
Francisco. When not being at customer sites, he enjoys the 35 km commute to the San Mateo
office on his bicycle.

Bhaskar Vasudevan, a Software Engineer with Inprise Corporation, is part of the VisiBroker
for C++ team. Prior to this, he was a Member of Technical Staff with the Networking Products
Development group at Oracle Corporation. He earned his Masters degree in Computer Science
from the Rensselaer Polytechnic Institute, New York. He is interested in distributed computing
and object-oriented programming. He currently lives in San Mateo, California.break

Page xiv

Maira Benjamin, a Senior Support Engineer with CrossWorlds Software, has extensive
expertise in educating and supporting customers and consultants to use complex business
solutions. She uses her knowledge of originating technologies such as CORBA, Java, C++,
Message Queuing, RDBMs, and data mapping tools to support interchange of data between the
companies' solutions and other business solutions such as PeopleSoft and SAP.

Maira enjoys a successful career in high tech that included time at well-known companies
including ASK, Sybase, UNIFACE, and Visigenic Software. She's held various engineering
posts from porting and development to manager of maintenance, QA, and code management.
Maira has also lent her talents to the consulting arena.

Maira enjoys the company of her husband Scott and her daughter Jasmine in their home located
in the San Francisco Bay Area. Maira would like more opportunities to practice her Spanish,
French, Japanese, and Sign Language. Some of her other passions are dancing, fashion, and
going out with her friends.

Ted Villalba lives in San Francisco, works at Broadvision in Redwood City, and spends as
much time as possible on a mountain bike in the mountains between the two.break

Page xv

How to Read This Book

This book introduces C++ Object Request Brokers (ORBs) to an audience familiar with the
basic concepts of object-oriented programming and distributed systems. It contains chapters
that fall into three categories: introduction and background, tutorial, and reference.

Chapter 1 gives motivation for the use of C++ ORBs, as well as an introduction on CORBA
programming in C++. Chapter 2 is a solid introduction to CORBA. Chapters 3 and 4 explain
the complete mapping from IDL to C++ and the C++ mapping of all CORBA interfaces. The
new Portable Object Adapter is explained and many examples, specifically for the nontrivial
memory management in C++, are given.

Chapter 5 introduces two fundamental CORBA Services, the Naming and the Trading Service,
and demonstrates their use. This chapter also covers the bootstrap mechanisms for CORBA
applications. Chapter 6 shows how to build applications with C++ ORBs using a room
booking example. Advanced features are explained in Chapter 7. They include the Any type
and TypeCodes, the Dynamic Invocation Interface and the Dynamic Skeleton Interface, the Tie
mechanism, and Contexts.

Besides the default approach of reading the book front to back, we suggest the following paths
through the book. Beginners should start with Chapter 1 and then continue with Chapters 5 and
6 and eventually 7. Chapters 2, 3 and 4 can be used as references as needed.

Advanced programmers will have experience with C++ and CORBA and may be most
interested in the POA features and examples that are distributed throughout the book.

We recommend the book for self-teaching as well as source material for training and university
courses. In any case, it is recommended that users work through the examples provided. The
source code can be obtained from the John Wiley & Sons web site at http://www.wiley.com/
compbooks/vogel. The web site is organized according to chapters, and should be easy to
navigate.break

Page xvi

Please note that the sample code in the book was tested against a beta of VisiBroker 4.0, but
should work with any ORB that includes the Portable Object Adapter (POA). Please check our
companion web site for updates reflecting new ORB releases.

Page 1

Chapter 1—
Introduction

1—
Benefits of C++ Programming with CORBA

This book brings together C++, the most widely used object-oriented programming language,
and the Common Object Request Broker Architecture (CORBA), the most popular
object-based distributed middleware. CORBA, a standard produced by the Object
Management Group (OMG)—the world's largest industry consortium—defines an
infrastructure that enables invocations of operations on objects located anywhere on a network
as if they were local to the application using them. Although CORBA is defined to support
many programming languages, C++ is the most popular language for implementing CORBA
objects.

The OMG Interface Definition Language (IDL) is a language which allows you to specify the
interface of objects in an implementation and programming language independent manner.
Conceptually and syntactically, the OMG IDL uses many C++ language conventions, so the
mapping from IDL to C++ is a very natural progression.

Throughout this chapter, we look at the advantages of using CORBA for C++ users and the
advantages of using C++ for programming distributed systems with CORBA. Similarly, we
provide some explanation of the object-hard

Page 2

oriented concepts of C++ in the context of CORBA. We will also give an introduction to
CORBA and C++ Object Request Brokers (ORBs). Finally, we explain how to program with
C++ ORBs by introducing a simple example.

1.1—
What Does CORBA Offer C++ Programmers?

The major advantages of using CORBA to build distributed applications with C++ are

• Interoperability across programming languages and operating systems

• Open standardization of CORBA

• Vendor independence

• Legacy integration

• Location transparency

• Programmer productivity

• Reusing CORBA services and facilities

1.1.1—
Interoperability across Programming Languages and Operating Systems

CORBA defines an architecture for building distributed systems (for details see Chapter 2).
One of the core pieces of CORBA is the OMG IDL, a language used to define interfaces to
potentially distributed objects. IDL is program language independent and there are a growing
number of specifications that define the mapping from IDL into programming languages.
Currently there are mappings defined for the following languages: C++, Java, C, Smalltalk,
Ada, and COBOL. Products implementing the CORBA architecture provide IDL compilers that
generate code into a programming language for your IDL specification.

The benefit of IDL is that you can choose the most appropriate programming language for a
certain task. This allows you to choose Java to implement applets, and thus provides access to
applications from within a web browser. On the other hand, you can choose to use C++ to
implement your objects on the server side.

Similarly you can have multiple clients to an application using different presentation models.
This means that you can have an applet as well as a spreadsheet as a front end in the same
application.

1.1.2—
Open Standardization of CORBA

The OMG is defining the standard for CORBA, which in turn is implemented by companies,
also known as ORB vendors. Since the OMG is a vendor consortium that is open to everyone,
you can participate in the processcontinue

Page 3

of what is defined by the OMG. A specification adopted by the OMG must be implemented by
the submitters.

1.1.3—

Vendor Independence

Since CORBA is an open standard, anyone can implement it without having to obtain a license
from the OMG or anyone else. Hence there are lot of vendors providing CORBA
implementations. However, there are only a handful of companies providing full-featured,
industrial-strength CORBA implementations, including support for multiple programming
languages and a rich set of CORBA services and facilities. In addition, there are many
companies that have CORBA-enabled their products. Examples of such products are Web
servers, databases, operating systems, and networks. Finally, there are a number of research
institutions that provide free CORBA implementations, often including the source code.

You can choose an appropriate ORB vendor depending on your requirements. You can write
code so that it can be easily ported to a different ORB product, just in case you decide to
switch products or your ORB vendor goes out of business. To achieve this portability, you
must restrict yourself to the application programming interfaces (APIs) defined by the CORBA
specifications. However, ORB vendors often provide a value-added feature set that makes the
programming easier. Essentially it's a trade-off.

Besides the portability, you must also consider the interoperability of different components or
subsystems that are implemented with different ORB products. CORBA specifies a hierarchy
of interoperability protocols: the General Inter-ORB Protocol (GIOP), which is transport
independent, and the Internet Inter-ORB Protocol (IIOP), which is the TCP/IP implementation
of GIOP. These protocols are a mandatory part of the CORBA specification (since version
2.0). Details are given in Chapter 2. The protocols ensure interoperability between components
implemented with different products. You can see a live demonstration of CORBA
interoperability at the CORBAnet website (www.corba.net).

1.1.4—
Legacy Integration

There are two reasons to use CORBA. One is to build new distributed applications with an
object-based architecture. The other is to integrate existing systems into new applications. The
way CORBA integrates legacy system implementations is to wrap those systems into a layer of
IDL interfaces. You only need to write a layer of code which, in turn, makes the wrapper IDL
interface call functions on the legacy APIs. That can be rather straightforward for libraries
written in C, C++, or COBOL for which there are existing IDL mapping standards. If you have
code in other legacy languages, forcontinue

Page 4

example, in FORTRAN or PL/1, you can wrap it using a C or C++ layer between the CORBA
interfaces and the legacy code. The glue layer becomes more complex when the legacy system
does not support the notion of a functional API. For example, a CICS interface to a mainframe
application could require parsing screens to extract data. However, once the legacy system has
been wrapped with a layer of IDL interfaces, it becomes very easy to enhance it with
additional functionality, to integrate it with another application, or to expose its functionality in
a web browser.

1.1.5—
Location Transparency

If you build distributed systems with simpler mechanisms than CORBA, such as remote
procedure calls (RPCs) or transport protocol APIs such as sockets, you typically need to know
exactly where a server is located. For example, when using TCP/IP networking, a client needs
the IP address and port number of a server.

CORBA provides the notion of an object reference, a concept known from C++ and other
object-oriented programming languages. But while a C++ object reference is only valid in the
address space of a program, a CORBA object reference is valid across processes, machines,
programming languages, and ORB products. CORBA object references are often abbreviated
as interoperable object references (IORs). Once a component has obtained an IOR it creates a
client proxy which encapsulates all of the complexity of networking, and a developer only
needs to write code against the signature of this local object, in our case C++.

CORBA goes even further. IORs and client proxy objects are still valid in the case that the
object implementation changes its location. The ORB's communication infrastructure forwards
your invocations to the relocated object.

1.1.6—
Programmer Productivity

The CORBA environment maximizes programmer productivity. As you have just seen, CORBA
frees a developer from most of the complexity of network programming. There is no need to
deal with address information, network connections, or writing code for marshaling and
unmarshaling your application data structure in byte streams. CORBA gives you the freedom to
choose the programming language that is most appropriate for your task and that best fits the
skill set of your developers.

CORBA is not the only core component that can handle your invocations on potentially remote
objects. There is an increasing number of services and horizontal and vertical facilities that are
specified by the OMG and implemented by ORB and component vendors. There are a good
number of such services available today. In the next section we provide more details.break

Page 5

The encapsulation of code in objects enables reusability. This is a benefit you probably won't
see when you implement your first CORBA application. But with a second application, you
will find that certain business objects you built in the first application are reusable in the
second one.

1.1.7—
Reusing CORBA Services and Facilities

As mentioned earlier, the OMG has specified a growing set of services and facilities for
common horizontal and vertical tasks. Following is a list of the most common and widely used
services:

Naming Service. White pages for CORBA objects (see Chapter 5).

Object Trading Service. Yellow pages for CORBA objects (see Chapter 5).

Event Service. An asynchronous, subscription-based messaging service.

Security Service. Securing CORBA applications.

Object Transaction Service. Transaction processing for distributed objects.

There are a number of Domain Task Forces (DTFs) within the OMG which actively work on
vertical services and facilities. In particular, the Telecom DTF and the CORBAmed DTF have
produced a number of services and facilities. For details and activities of other DTFs, see
Chapter 2 and the OMG web site for the latest updates.

1.2—
What Does C++ Offer CORBA Programmers?

The main reason for using a C++ language mapping of the OMG IDL is to take advantage of the
following C++ features:

• Performance that is closely tied to the machine

• Ties to legacy systems/architectures

• Low-level programming

1.2.1—
System Performance

C++ was designed with a strong focus on the performance of executables. C++ compilers
provide various levels of sophistication for optimizing executable code. The target of a C++
compiler is typically the native instruction set of a specific platform. The design of other
object-oriented languages such as Java and Smalltalk has followed other priorities, mostly
productivity and portability. The compilers for these two languages produce
platformindependent, intermediate code, which is then executed by an interpreter.continue

Page 6

Although many attempts are ongoing to improve the performance of code, particularly that
written in Java, executables generated by highly optimized C++ compilers are still more
efficient.

1.2.2—
Legacy Systems/Architectures

Today we face quite a bit of legacy code, which if it had to be rewritten would be quite
expensive. However, as explained, CORBA provides an excellent way of making this code
available through object wrapping. The C++ language mapping is a key CORBA feature that
makes this happen. The wrapping of C and C++ code is straightforward. For almost any
programming language, there exists an API into the C/C++ world that allows access to
libraries written via CORBA through the C++ mapping.

You might ask, why not use the IDL/C mapping instead of C++? Although this works, the IDL/C
mapping is not as natural as the C++ one, since C does not have all of the object-oriented
features, making the mapping somewhat awkward. The call of C APIs from a C++ class,
however, is straightforward.

1.2.3—
Low-Level Programming

C++ has, through its C inheritance, the capability to write low-level code. This is hard or
impossible to do with languages such as Java or Smalltalk. Combined with the natural IDL
mapping, this makes C++ the language of choice for implementing CORBA interfaces to
low-level tasks, for example, controlling interfaces for device drivers.

2—
C++ Overview

C++ supports object-oriented programming. This section discusses object-oriented principles
within C++ that have significance to CORBA. There may be occasional references to CORBA.
Please note that this is not meant to serve as a tutorial. For detailed discussions and
observations concerning the language, please refer to one of the many books on C++.

The central proposition of object-oriented design is the definition of objects and the operations
that are invoked by them. Object-oriented design uses the following ideas:

• Encapsulation

• Modularity

• Abstraction/Interfaces

• Inheritance

• Exceptions/Overloadingbreak

Page 7

Throughout this section we use C++ coding samples to help explain the concepts. We will end
the section with a Hello World example. Although it is simple, it does help to illustrate some
of the concepts presented. Later in this chapter we will distribute this example using CORBA.

2.1—
Objects and Classes

There is a differentiation between objects and classes within the object-oriented design
concept. A class is a type and an object is an instance of a class. That means a class is a static
entity described in your code and an object is a runtime representation of this code. There can
be many objects/instances of the same class/type. For example, you can declare a class bridge
which is a type describing the concept of a bridge in generic terms. We can have bridge objects
that are instances of the class bridge, for example, the Bay Bridge, the Tri-Borough Bridge, the
London Bridge, etc.

Classes in C++ can be virtual or concrete. A virtual class defines only the signature. A
signature is the syntax of the type. This is also known as an interface in generic
object-oriented terms. Java and OMG IDL rely heavily on the concept of an interface. In our
bridge example, a virtual class defines the signature of a bridge with members such as int

yearCompleted, int length, and methods like payToll().

A virtual class must be fully implemented to make a program that contains objects of this class
executable. The concrete class is also known as the implementation. It completely defines the
behavior of the class. A C++ convention is to define a class virtually in a header file and
provide the implementation of the methods in an implementation file.

OMG IDL is only concerned with the definition of interfaces that are mapped to virtual classes.
It is the application programmer's responsibility to provide implementations of the methods of
the virtual classes.

2.2—
Encapsulation

Encapsulation builds on the concept of abstraction (or hiding) of implementation details. The
idea is to show and provide access to a number of member variables and methods to an outside
entity. Variables and methods can be declared private or public. The concept of
friend weakens the clarity of this concept for pragmatic reasons. Generally only member
variables and methods declared as public can be accessed or invoked from the outside of
the object.

OMG IDL is only concerned with the definition of the publicly available attributes and
operations. Attributes and operations are mapped to public C++ methods.break

Page 8

2.3—
Modularity and Scoping

Modularity simply means that a program can be separated into various parts. Scoping means
that these parts have separated namespaces. That means you use the same identifiers in various
parts. C++ contains better facilities than C for modular programming. C++ does this through the
mechanism known as namespace. The concept of namespace allows you to group related
data, functions, and the like.

Although C++ defines namespaces to separate namespaces of different components, only
recently have C++ compilers supported this concept. The scope of nested classes can be used
to a certain extent as an alternative scoping mechanism.

OMG IDL uses the concept of module to separate different namespaces. The IDL/C++ mapping
defines two alternatives: a mapping to C++ namespaces where available and to the nested
classes otherwise.

2.4—
Inheritance

C++ supports the concept of inheritance of classes. A class, known as the derived class, can
inherit from another class, known as the superclass. That means that the derived class will have
all of the member variables and methods of the superclass and can define additional ones. For
our bridge example we can define a class TrainBridge which inherits attributes from the
superclass Bridge and adds a member variable int numberOfTracks. Inheritance can

be applied recursively. For example, we can define a class AmericanTrainBridges that
will inherit attributes from the class TrainBridge.

C++ also supports the notion of multiple inheritance. This means that a class can inherit any
number of superclasses. Multiple inheritance of concrete classes has a potential problem.
When a class inherits the methods with the same signature from different superclasses, they can
have different implementations. The behavior of this method in the derived class is undefined.

OMG IDL also supports the inheritance of interface, including multiple inheritance. The
problem described above does not apply because there is no behavior associated with methods
in IDL.

2.5—
Method Overloading

C++ provides method overloading. This means there can be multiple definitions of methods
with the same method in a class as long as the method result type and the parameter types allow
distinguishing between the various methods. This concept also applies to multiple classes that
are in an inheritance relationship.break

Page 9

OMG IDL does not allow the overloading of operations. The motivation is in the mapping of
IDL to programming languages that do not provide the concept of method overloading.

2.6—
Exceptions

Exceptions provide an alternative termination of a method. Exceptions are often used to handle
errors or other exceptional conditions. C++ defines exceptions as classes and hence allows
inheritance of exceptions.

An entity can invoke methods that can raise exceptions. The entity can then decouple the
exception handling from the unexceptional behavior by encapsulating the method invocations
into a try-catch block. When a method raises an exception, it triggers the catch block in the
invoked program.

OMG IDL also defines exceptions. However, exceptions are datatypes similar to structures and
not objects. Hence inheritance does not apply to exceptions in IDL.

2.7—
Hello World Example

We will introduce a simple C++ example, a Hello World program. We show the optional
definition of a C++ virtual class and its implementation. We then explain how to build a C++
application. The object of the implementation class is created and a method is invoked on the
object. We return to the same example later in the chapter where we will distribute the
components.

The Hello World example contains an object of a class GoodDay that provides a method
hello(). This method returns a string containing the message, "Hello World, from location,''

where location is the name of a geographical location, for example, Brisbane.

2.7.1—
Defining the Signature and Implementation Class

A C++ interface defines the signature of an object, its types, fields, and methods. Hence it
allows various substitutable implementations. For our example we define the interface
GoodDay, which has one method, hello(). This is defined in the header file, GoodDay
.h, for this example.break

//GoodDay.h

class GoodDay{

 char * hello();
};

Page 10

2.7.2—
Implementing the Class

As we noted before, we need to create an implementation class which we will use to execute
the hello() operation. The hello() operation will return the locality which we set in the
constructor of the object. This implementation of the class we put in the GoodDayImpl.cpp
file.

//GoodDayImpl.cpp

#include "fstream.h"
#include "GoodDay.h"

class GoodDayImpl : public GoodDay{
private:
 char* _locality;
public:
 GoodDayImpl (char *locality) : _locality(locality){}

 char *hello(){
 return(_locality);
 }
};

2.7.3—
Creating and Invoking the Object

We create a GoodDay object in the main() routine of our program. We initialize with the
location "Brisbane." We then invoke the hello() method on the GoodDay object and print
out the result.

//GoodDayServer.C

#include <GoodDayImpl.cpp>

int main(int argc, char* const* argv){

 //Create a GoodDay object.

 GoodDayImpl goodDayImpl("Brisbane");

 //invoke method hello() and print result
 cout << "Hello World, from " << goodDayImpl.hello() << endl;

 return(0);
}

2.7.4—
Build and Execute

The final step in order for us to execute the Hello World program is to build the executable.
We compile the two C++ files and link them. Now we can run the executable, which prints the
following message:break

Hello World, from Brisbane

Page 11

3—
Overview of C++ ORBs

A C++ ORB is an ORB that supports a C++ language mapping for OMG IDL. This language
mapping, or language binding, allows clients and objects to be implemented in C++. A C++
ORB must offer a complete implementation of the CORBA specification.

This section introduces the architecture of the C++ ORB. First, we examine some necessary
terminology. We then discuss the requirements for C++ applications to communicate with
CORBA objects. Specifically, we cover the following topics:

• C++ ORB features

• C++ applications as clients and servers

• Clients and servers implemented using other programming languages

3.1—
Terminology

In this section and throughout the rest of the book we will use a number of terms that have
specific technical meanings. Because both CORBA and C++ are object-oriented and have
similar object models at the interface level, some terms will apply to both. However, most of
the time we will use different language to refer to concepts in each domain. Here is the way in
which we will differentiate:

Object. Refers to some program component that has a well-defined interface. We
usually refer specifically to CORBA objects, whose interfaces are represented in OMG
IDL, and C++ objects, whose interfaces are represented by C++ variables and method
declarations.

Operation. An action that can be invoked on a CORBA object, as defined in IDL.

Method. An action that can be invoked on a C++ object, as defined in that object's
public class declaration. C++ objects can implement CORBA interfaces. Methods on
these objects correspond to operations in the CORBA interface.

Client. A role that is played by a program in the context of an invocation.

Server. A role that is played by a CORBA object in the context of an invocation. Many
programs that are servers are also clients to other servers.

CORBA Server. An operating system process that is hosting one or multiple objects
and object adapters.break

Page 12

Object Adapter. A component of the ORB which connects CORBA objects with the
ORB runtime system. It can make CORBA objects accessible to clients, activate or
deactivate CORBA objects, control threading policies, etc.

3.2—
Clients and Servers as C++ Applications

Figure 1.1 illustrates the simplest scenario involving C++ ORBs: a client interacting with a
server. Client and server are both implemented in C++. Figure 1.1 is an abstract representation
of the client-server model in C++ ORBs. We see three components in the figure: the client, the
server, and the ORB. The client communicates with the ORB in order to convey a request for
an operation invocation to the server, which then sends results via the ORB back to the client.
The interfaces these components use are defined by the CORBA standard and by the
application-specific IDL definitions that the object at the server supports.

Figure 1.2 shows a more concrete view of how the ORB performs the task of conveying an
invocation from client to server. Most C++ ORBs are implemented as libraries that are linked
into a program. The lightly shaded objects in Figure 1.2 are provided by the ORB (compare
with Figure 2.4). The following sections describe the functionality of each of these
components.

3.2.1—
Stub and Skeleton Code

The IDL compiler generates a number of C++ classes known as stub classes for the client and
skeleton classes for the server. The role of the stub class is to provide proxy objects that
clients can invoke methods on. The proxy object method implementations invoke operations on
the object implementation, which may be located remotely. If the object implementation is at a
remote location, the proxy object marshals and transmits the invocation request. That is, it takes
the operation name and the types and values of its arguments from language-dependent data
structures and places them into a linear representation suitable for transmitting across a
network. The code to marshal programmer-defined datatypes is an essential part of the
stubcontinue

Figure 1.1
Client-server model with C++ ORBs: abstract view.

Page 13

Figure 1.2
Client-server model with C++ ORBs: concrete view.

code. The resulting marshaled form of the request is sent to the object implementation using the
particular ORB's infrastructure. This infrastructure involves a network transport mechanism
and additional mechanisms to locate the implementation object, and perhaps to activate the
CORBA server program that provides the implementation.

The skeleton code provides the glue between an object implementation, a CORBA server, and
the ORB, in particular the object adapter (OA). The original CORBA specification defined the
basic object adapter (BOA). This specification left many of the interfaces between the ORB
core, BOA, and server program partially or totally unspecified. For this reason, different
ORBs have different mechanisms for use by the BOA to activate servers and for use by servers
to inform the BOA that their objects are ready to receive invocation requests. In the meantime,
the OMG has adopted the specification of the portable object adapter (POA), which overcomes
the shortcomings of the BOA.

The POA was designed to provide a standard portable interface that CORBA objects can use
to communicate with the ORB runtime. The key dif-soft

Page 14

ferentiation between the POA and the BOA is that the POA provides a layer of abstraction
between the object and the ORB, allowing an object implementation to be portable across
multiple vendor implementations. In contrast, the BOA is very tightly coupled with a particular
ORB implementation and object implementations written with one vendor's ORB will not work
with another vendor's ORB. In either case, the build process for the object is effectively the
same. When developing a CORBA object implementation, the class must access either the
BOA skeleton class or the more portable POA skeleton class. The access can be via
inheritance (inheritance approach) or by delegation (tie approach).

The skeleton class for either the BOA or POA implements the mechanisms by which invocation
requests coming into a server can be directed to the right method of the right implementation
object. The implementation of those methods is the responsibility of the application
programmer.

3.2.2—
ORB and Object Adapter

The BOA has a proprietary interface to the ORB that is not standardized in CORBA. This
generally means that BOA functionality is implemented as part of the same code as the ORB,
partially in libraries, partially in stub and skeleton code, and partially in a runtime daemon
(background task or process). The marshaling routines in both the stub and skeleton code
exchange invocation requests and results via a network connection that is set up using ORB
library code that must be linked into CORBA servers and clients. This code also communicates
with the ORB runtime daemon which knows which servers implement which objects and can
locate and/or activate servers when requests are made to them. The POA provides the same
functionality, but now the interfaces between the OA, the ORB, and the skeleton are defined.

Unlike the BOA, the POA provides a well-published interface for objects to code directly to,
independent of the underlying vendor implementation. The POA introduces new terminology,
defining CORBA object implementations as servants. In the POA model, an object
implementation registers itself with the POA as a servant and the POA maintains a mapping of
object references to servant implementations. Further, the POA allows activation of these
servants based on the definition of various types of policies.

The information about how objects and servers are associated with idle or running C++ code
files is stored in the Implementation Repository. This is a component of CORBA that is
assumed to exist, but its interface is not specified and is different in each ORB.break

Page 15

Figure 1.3 presents a simplified view of the interactions between server programs, the objects
they support, the ORB, and the OA. As the figure shows, a CORBA server usually supports a
number of CORBA objects. The server's main routine is used to create CORBA object
instances and to notify the OA of their availability to CORBA clients.

The BOA provides the operations obj_to_ready() and impl_is_ready(). They are
supported by library methods on a BOA pseudo-object in an implementation of a CORBA

pseudo-IDL interface specification in an ORB-dependent manner (usually as library code).

The POA provides a richer interface that is explained in more detail in Chapter 2. Typically
the POA is implemented in the same manner as the BOA, as part of the ORB library. The
POA's policies can be configured to make it behave like most vendors' BOA implementations.
This allows programmers to continue writing code against the convenient BOA interface,
which, in fact, will be just an API on top of the POA with some default policies. The POA will
require different operations to be used to activate servants based on the activation policy.

3.3—
Clients and Servers Implemented with Non-C++ ORBs

Since CORBA provides multiple programming language mappings for OMG IDL, clients and
servers can be implemented in a wide variety of languages. There are many reasons for using
other languages, for example, to deploy clients on the Internet as Java applets, to integrate
legacy code, or to exploitcontinue

Figure 1.3
C++ ORB server side: simplified view.

Page 16

specific skills of a software engineering team. Other programming languages are made
available by ORB vendors in the following ways:

Within the same ORB or ORB family. This requires an IDL compiler that generates
the stub and skeleton code in the required programming language. The implementation
of the ORB and OA pseudo-objects must be accessible via an API wrapper in this
programming language or they must be reimplemented in this language. The ORB
runtime system, including daemons and configuration files, can be shared. The objects
implemented in different languages can use an ORB's proprietary protocol.

With different ORBs using CORBA 2.0 interoperability. Implementations in
different languages using the development and runtime environments of different ORBs
can communicate using IORs. This is often referred to as communication across ORB
domain boundaries.

The trend is clearly going toward the second approach. Today we see more and more ORB

implementations choosing IIOP as their native or primary communication protocol. Figure 1.4
illustrates the interworking between clients and servers implemented in different programming
languages using IIOP as the communication protocol. Besides the C++ client and server, we
show Java clients and servers because they are very popular. A typical example of clients and
servers in other programming languages are those implemented in Smalltalk.break

Figure 1.4
Interoperability.

Page 17

4—
Building a First C++ ORB Application

In this section we use another simple Hello World example (see Figure 1.5) to introduce the
principles of building distributed applications with C++ ORBs. This example expands the
Hello World example introduced above. We will implement a client, a C++ application, and a
server supporting an object implementation. Figure 1.5 illustrates the components of our
example.

All code is available in electronic form from www.wiley.com/compbooks/vogel. We used
Visibroker for C++ to develop and run our examples. The code is available for Solaris and
Windows 95/NT and is easily portable to other platforms. As long as standard CORBA
features are used, the ORB you choose does not matter. However, there are a few portability
issues for CORBA/C++ code. We have already mentioned the incomplete BOA specification
and how the POA overcomes it.

The various ORB products, which conform to the CORBA specification, differentiate
themselves with implementation details that have an impact on performance and scalability.
Most also have extensions to the CORBA core.break

Figure 1.5
Hello World application.

Page 18

The section starts with a summary of the development process for CORBA applications in
C++. We then give detailed explanations for the development of a simple example application
and subsequently extend this to include more features. In Chapter 6 we return to application
development with a more substantial example.

4.1—
Summary of the CORBA Development Process

The examples presented in this section will follow these steps:

1. Write some IDL that describes the interface to the object or objects that we will use or
implement.

2. Compile the IDL using the IDL compiler provided by the particular ORB. This produces the
stub and skeleton code. It will convert an object reference into a network connection to a
remote server and then marshal the arguments we provide to an operation on the object
reference, convey them to the correct method in the object denoted by our object reference,
execute the method, and return the results.

3. Identify the classes (header and implementation files) generated by the IDL compiler that we
need to use or specialize in order to invoke or implement operations.

4. Write code to initialize the ORB and inform it of any CORBA objects we have created.

5. Compile all the generated code and our application code with the C++ compiler.

6. Run the distributed application.

Figure 1.6 shows the use of IDL and the IDL compiler when building the application.

Executing the IDL compiler for the C++ ORB that you have installed typically creates two sets
of C++ files. The files contain the following information:

The client files (2). These files contain C++-type definitions for the client structure as
well as C++ definitions for the client classes. They also contain the various C++
implementation methods for use by the client application. The methods generated by the
IDL are stub code methods.

The server files (2). These files contain C++ definitions for classes that contain
skeleton methods. The ORB uses skeleton methodscontinue

Page 19

Figure 1.6
Building the Hello World application.

to unpack parameters from the client application's request. They will invoke the actual
method on the server object.

4.2—
Environment Setup

Before we can start with the examples we have to set up a working environment. We
implemented the examples using Visibroker for C++ on a Sun/Solaris platform and ported the
code to Microsoft's Windows operating system. For setups in other environments, the reader is
referred to the installation manuals for the particular products and platforms.

4.3—
Interface Specification

Our first example provides the same functionality as the one introduced in section 3. However,

a client invokes an operation hello() on the interface of a potentially remote object
GoodDay. The result of the invocation is a message that is printed by the client.

For any CORBA application we must write an IDL specification that defines datatypes and
interfaces, including attributes and operations. For our example, we defined an IDL file called
SimpleHelloWorld.idl, which resembles the C++ class of the Hello World example from
section 3.break

Page 20

//SimpleHelloWorld.idl

module SimpleHelloWorld{
 interface GoodDay{
 string hello();
 };
};

The file contains the specification of a module SimpleHelloWorld. It is good
specification style to

• Use modules to create a separate namespace for an application or its major components.

• Have one file per module.

• Name the file after the module.

Within the module we define one interface: GoodDay. The interface is not in an inheritance
relationship. It provides one operation: hello(). This operation does not have any
parameters and returns a result of type string.

As we will see in the implementation, the object returns a string describing its locality as part
of the result of the operation hello(). The operation returns a message saying: "Hello
World, from location.''

4.4—
Compiling the IDL

The next step in the application development is to compile the IDL to generate the client code
stub and server skeleton code. The compiler for Visibroker for C++ is idl2cpp. The compile
command is

prompt> idl2cpp SimpleHelloWorld.idl

The following four files are generated by the IDL compiler:

• SimpleHelloWorld_c.hh

• SimpleHelloWorld_c.cpp

• SimpleHelloWorld_s.hh

• SimpleHelloWorld_s.cpp

The SimpleHelloWorld_c.* files comprise the client side of the application. The
SimpleHelloWorld_s.* files comprise the object server side of the application. The suffixes
.cpp and .hh help you distinguish between these generated files and the files you will need to
create to complete the example. The .hh files are the generated header files for the application.
The .cpp files are the generated source files for the application. Note that you will not need to
modify these generated files.break

Page 21

4.5—
A Client as a C++ Application

A client implementation follows these steps:

1. Initialize the CORBA environment, that is, initialize the ORB.

2. Obtain an object reference for the object on which it wants to invoke operations.

3. Invoke operations and process the results.

4.5.1—
Generated C++ Interfaces

Let's look at the C++ definitions that correspond to the interface defined in the IDL. All these
classes extend a virtual base class for the CORBA object. Corresponding to our IDL interface
definition, the class GoodDay defines a method hello() which returns a pointer to char.
Here we present only an incomplete part of the code for clarity. This is coming from the
generated SimpleHelloWorld_c.hh header file:

class SimpleHelloWorld (
public:
...
 class GoodDay : public virtual CORBA_Object{
 private:
 static const CORBA::TypeInfo classinfo;
 GoodDay(const GoodDay&){}
 void operator=(const GoodDay&){}
 ...
 virtual char* hello()

4.5.2—
Initializing the ORB

The client program is essentially a main() function. Initializing an ORB means obtaining a
reference to an ORB pseudo-object. The ORB is called a pseudo-object because its methods
are provided by a library, and its pseudo-object reference cannot be passed as a parameter to
CORBA interface operations. Excluding that restriction, however, a reference to an ORB looks
like any other object reference.

The reference to the ORB object is obtained by calling the static method
CORBA::ORB_init().break

#include "SimpleHelloWorld_c.hh"

int main(int argc, char* const* argv){

 CORBA::String_var stringifiedIor;

 try{
 //Initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv)

Page 22

4.5.3—
Obtaining an Object Reference

References to objects can be obtained by various means, as explained in depth in Chapter 5.
Here we use a rather unsophisticated method. Object references are opaque data structures.
However, an object reference can be made persistent by converting it into a string (as we show
when explaining the server). This is known as stringifying an object reference. The resulting
string is called a stringified object reference. Stringified object references are reconvertible
into "live" object references. This is done using the two corresponding operations
object_to_string() and string_to_object() defined in the CORBA::ORB
interface. Stringified interoperable object references can be converted into working object
references by any CORBA 2.0–compliant ORB.

// get stringified IOR from command line
if(argc >=2)
 stringifiedIor = (const char *) argv[1];
else{
 cerr << argv[0] << ": Missing IOR" << endl;
 return 1;
}
// get object reference from command-line argument
CORBA::Object obj = orb::string_to_object(stringifiedIor);

For this example client, we assume that a stringified object reference is provided as the first
argument to the client program. It is then provided as the argument to the method
string_to_object(), which is invoked on the ORB pseudo-object. The method returns
an object reference of type CORBA::Object_ptr, the base type of all CORBA objects. To
make use of the object, it needs to be narrowed to the appropriate type. Narrowing is
equivalent to downcasting in some object-oriented programming languages. The narrow
operation is type safe. It returns a null reference if the object is not of the expected type, but
make sure that you test for null references. In addition, the narrow operation can raise a
CORBA system exception.

//narrow it down to GoodDay
SimpleHelloWorld::GoodDay_var goodDay =
SimpleHelloWorld::GoodDay::_narrow(obj);
if(goodDay == null){
 cout << "Good day is null" << endl;
 return(1);
 }

4.5.4—
Invoking the Operation

Once the ORB is initialized and an object reference is obtained, CORBA programming looks
very much like standard object-oriented programming.break

Page 23

One invokes methods on objects, and it looks exactly the same for remote and local objects.

//invoke the operation and print the result
cout << "Hello World, from " << goodDay->hello() << endl;

Our simple client invokes the method hello() on the object goodDay and the result is
printed to standard output.

The last thing to consider is handling exceptions that might occur. Since there are no user
exceptions raised by the hello() operation, we only have to catch and process CORBA
system exceptions which can be raised during the initialization of the ORB, the narrow()
and the invocation of the hello() operation.

 //catch CORBA system exceptions
 catch(const CORBA::Exception& e){
 cerr << e << end;
 return(1);
 }
 return(0);
 }
}

4.6—
Object Implementation

Now we turn to the implementation of the object whose interface has been specified in IDL.
The object implementation class must be associated with the skeleton class generated by the
IDL compiler. This can be done by inheritance or by delegation.

The skeleton class is an implementation of the C++ interface, which corresponds to the IDL
interface. The object implementation is an extension of this class. This is known as associating
the skeleton with its implementation by inheritance.

Another way to associate the skeleton class with the inheritance implementation is to use the
Tie method. The Tie method associates the skeleton with its implementation by delegation.
That is, there are separate skeleton and implementation objects, and the skeleton is given a
reference to the implementation object. This is explained in detail in Chapter 7 using the same
example.

In our example, we have an implementation class SimpleGoodDayImpl that extends the
POA skeleton class (POA_SimpleHelloWorld::POA_GoodDay). As in the
implementation of the equally named class shown in section 2, we locally declare a private
variable that holds a string identifying the location of the service. Here we mean the geographic
location, as shown in the client example.break

Page 24

We also have to implement the constructor of the class. The constructor has one parameter that
is assigned to the private variable _locality.

class SimpleGoodDayImpl : public POA_SimpleHelloWorld::POA_GoodDay{

// variable declaration
private:
 CORBA::String_var_locality;

// constructor
public:
 SimpleGoodDayImpl(const char *locality,
 Const char *object_name = NULL) :
 _locality(locality),
 _sk_SimpleHelloWorld::_sk_GoodDay (object_name){}

 char *hello(){
 CORBA::strdup(_locality);
 }
}

We implement the method hello(), which returns a *char holding the value of the variable
_locality. We have to duplicate the string value, otherwise the ORB releases the memory.

4.7—
 A Server as a C++ Application

Now we have to implement a server executable. This executable initializes the environment,
creates the implementation object, makes it available to clients, and then listens for events.

The server executable for our example is called SimpleHelloWorldServer. Since it is a
stand-alone program, we need to have a main() routine. We check for the right number of
arguments: one argument that indicates the locality of the server.

A server is responsible for the following tasks:

• Initializing the ORB and the POA

• Creating the object/servant

• Using the POA to activate a servant

4.7.1—
Initializing the ORB and POA

We initialize the ORB in the same way we did on the client side, by calling
CORBA::ORB_init(), which returns a reference to the ORB pseudo-object. For the POA,
we will call resolve_initial_references() in order to obtain a refer-soft

Page 25

ence. This will return a CORBA::Object, which must be narrowed to the appropriate POA
type.

try{
 // Initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 //Initialize Portable Object Adapter
 // Get the Root POA object reference
 CORBA::Object_var obj =
 orb->resolve_initial_references ("PersistentPOA");

 //Narrow the object reference to a POA reference
 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow (obj.in());

4.7.2—
Creating the Object

We create our implementation object and supply one parameter for the constructor, which we
copy from the command line argument.

// Create a new GoodDay object.
 GoodDayImpl goodDayImpl(argv[1]);

4.7.3—
Using the POA to Activate a Servant

Once we create the implementation object we notify the POA that this object is available and
that it must map the object reference to a POA servant by calling the method
activate_object(). When using the POA instantiating a POA manager is also required.
A POA manager provides the ability to utilize multiple POAs, each with different policies. We
also print out the stringified version of the object reference, which we obtain by calling
servant_to_reference() to get the standard reference, and then pass this to the ORB
operation object_to_string(). This is the object reference we used in the client to
establish a connection with a server.break

// Allocate a POA Object id and map it to the servant
 PortableServer::ObjectId_var oid =
root_poa->activate_object(&goodDayImpl);

 // Activate a POA Manager for our POA.
 root_poa->the_POAManager()->activate();

 // Get a stringified IOR to our Servant
 cout << orb->object_to_string
(root_poa->servant_to_reference(&goodDayImpl)) << endl;

Page 26

orb->run();
}
 catch(const CORBA::Exception& e){
 cerr << e << endl;
 return(1);
 }
 return(0);
}

4.8—
 Compiling the Server and the Client

To compile the server and the client source code and make them executable, it is best to create
a makefile that will also compile the IDL file. We are responsible for the following files:

• SimpleHelloWorld.idl

• SimpleHelloWorldClient.C

• SimpleHelloWorldServer.C

The makefile needs to take these files into account as well as the IDL-generated compiled files:

• SimpleHelloWorld_c.cpp

• SimpleHelloWorld_c.hh

• SimpleHelloWorld_s.cpp

• SimpleHelloWorld_s.hh

Here are the specific makefile rules for our SimpleHelloWorld application:

SimpleHelloWorld_c.cpp: SimpleHelloWorld.idl
 idl2cpp SimpleHelloWorld.idl

SimpleHelloWorld_s.cpp: SimpleHelloWorld.idl
 idl2cpp SimpleHelloWorld.idl

SimpleHelloWorldClient.exe: SimpleHelloWorld_c.o SimpleHelloWorldClient.o
 $(CC) -o SimpleHelloWorldClient SimpleHelloWorldClient.o \
 SimpleHelloWorld_c.o $(LIBPATH) $(LIBORB) $(STDCC_LIBS)

SimpleHelloWorldServer.exe: SimpleHelloWorld_s.o SimpleHelloWorldServer.o
 $(CC) -o SimpleHelloWorldServer SimpleHelloWorldServer.o \
 SimpleHelloWorld_s.o $(LIBPATH) $(LIBORB) $(STDCC_LIBS)

The definitions of the global variables that we are referring to in this makefile are contained in
a standard makefile. It is best to distinguish platformspecific makefiles from each other.break

Page 27

4.9—
Running the Application

After the successful compilation of the files you have created, you will need to run the resulting
executable files—SimpleHelloWorldClient and SimpleHelloWorldServer—to test the validity
of the application. Start the application server:

prompt> SimpleHelloWorldServer Brisbane

The server will then display a stringified IOR that we will need to reference when executing
the client:

IOR:012020202100000049444c3a53696d706c6548656c6c6f576f726c642f476f6f64446179

3a312e3000202020010000000000000054000000010100200b00000031302e312e332e313434

0020170e20203800000001504d43010000002100000049444c3a53696d706c6548656c6c6f57

6f726c642f476f6f644461793a312e30002020200000000059810c35

We execute the client by typing the client application name and the stringified object reference
that was obtained from the execution of the server:

prompt> SimpleHelloWorldClient IOR:012020202100000049444c3a53696d706c654865
6c6c6f576f726c642f476f6f644461793a312e30002020200100000000000000540000000101

00200b00000031302e312e332e3134340020170e20203800000001504d430100000021000000

49444c3a53696d706c6548656c6c6f576f726c642f476f6f644461793a312e30002020200000

000059810c35

The client then prints the expected message:break

Hello World, from Brisbane

Page 29

Chapter 2—
CORBA Overview

This chapter contains detailed information, from a CORBA application developer's
perspective, about the OMG and the architecture documents and specifications it has produced.
Section 1 is an overview of the history, goals, organizational structure, and processes of the
OMG. It provides descriptions of all the committees, task forces, and special interest groups
within the consortium.

Section 2 is a detailed summary of the contents of the Object Management Architecture Guide
and includes the changes made to the OMA since the third revision in mid-1995. There are two
main topics in this section, the Core Object Model (section 2.2) and the OMA Reference
Architecture (section 2.3).

The third, and longest, section summarizes the CORBA 2.1 specification. This section attempts
to balance conciseness and detail, and covers all of the content of the July 1995 Common
Object Request Broker: Architecture and Specification document that is relevant to ORB
users while briefly introducing the material relevant to ORB implementers. The major topics
covered includebreak

Page 30

• CORBA Object Model (section 3.2)

• ORB Structure (section 3.3)

• OMG IDL (section 3.4)

• ORB and Object Interfaces (section 3.5)

• Basic Object Adapter (section 3.6)

• Portable Object Adapter (section 3.7)

• Language mappings (section 3.8)

• Interoperability Architecture (section 3.9)

• TypeCode, Any, and Dynamic Any (section 3.10)

• Dynamic Invocation and Dynamic Skeleton Interfaces (section 3.11)

• Interface Repository (section 3.12)

1—
The Object Management Group

The Object Management Group (OMG) is the world's largest computer industry consortium,
with over 750 members in 1997. It is a nonprofit organization that began in 1989 with eight
members: 3Com, American Airlines, Canon, Data General, Hewlett-Packard, Philips
Telecommunications N.V., Sun Microsystems, and Unisys. The organization remains fairly
small and does not develop any technology or specifications itself. It provides a structure
whereby its members specify technology and then produce commercial implementations that
comply with those specifications. The OMG's processes emphasize cooperation, compromise,
and agreement rather than choosing one member's solution over another's.

1.1—
OMG's Goals

The goals of the OMG are promotion of the object-oriented approach to software engineering,
and development of a common architectural framework for writing distributed object-oriented
applications based on interface specifications for the objects in the application.

1.2—
The Organizational Structure of the OMG

The OMG Board administers the organization and ratifies the activities of the other groups
within the OMG (see Figure 2.1). Most positions in the OMG are unpaid and are held by
representatives of member companies.

The technical group of the OMG is overseen by the Architecture Board (AB), whose members
are experienced system architects. The AB is elected by the OMG membership. It reviews all
technology proposals and specifica-soft

Page 31

Figure 2.1
Organization of the OMG.

tions for consistency and conformance with the Object Management Architecture (OMA).

The structure of the committees, task forces, and other groups within the OMG reflect the
structure of the OMA. Two committees oversee the technology adoption of a number of task
forces (TFs) and special interest groups (SIGs).

Platform Technology Committee (PTC). This committee is concerned with
infrastructure issues: the Object Request Broker,continue

Page 32

Object Services, and the relationship of the OMA to object oriented analysis and
design.

Domain Technology Committee (DTC). This committee is concerned with
technologies to support application development, in particular vertical markets such as
manufacturing, electronic commerce, or health care.

Task forces may issue requests for proposals (RFPs). These are detailed statements of a
problem that needs to be solved. Responses are solicited in the form of IDL specifications with
object semantics explained in English. Two rounds of submissions are taken, usually 3 months
apart, and then the most suitable specification is selected by a vote of members and presented
to the task force's controlling committee.

Special interest groups may not issue RFPs directly or adopt technology specifications, but
may do so with the support of a task force. Usually special interest groups discuss areas of
common interest and report their findings to their controlling committee via documents and
presentations. A number of special interest groups do not belong to either the PTC or the DTC.
Instead they report directly to the Architecture Board.

1.2.1—
PTC Task Forces and Special Interest Groups

The following are the task forces and special interest groups that report to the Platform
Technical Committee:

ORB/Object Services Task Force (OSTF). This task force is responsible for
specifying the ORB, which is published as the Common Object Request Broker
Architecture and Specification (CORBA). The task force also specifies general
purpose Object Services (published as CORBAservices). This is the area which
supports the basic infrastructure of object interaction. This task force has adopted the
largest number of specifications.

Common Facilities Task Force (CFTF) (disbanded). This task force specified
technologies that provided services to applications at a high level. Its specifications
were published as CORBAfacilities. It was disbanded in June 1997 because most of
the work it undertook was undertaken by the Domain Task Forces. The distinction
between the remaining ''horizontal" facilities and Object Services has long seemed too
subtle, and so future work will take place in other task forces.

Object Analysis and Design Task Force (OADTF). This task force is concerned with
applying widely used object-oriented analysis and design methodologies to distributed
object-oriented applica-soft

Page 33

tion development using CORBA. It is a new task force which has published some white
papers but as yet no specifications.

Internet Special Interest Group (ISIG). The ISIG is concerned with the convergence
between distributed objects and the Internet, both as a distribution mechanism and as a
growing area of commercial activity.

Japan Special Interest Group (JSIG). The JSIG is a focus for Japanese developers of
distributed objects and is particularly concerned with internationalization issues across
the OMG.

Real Time Special Interest Group (RTSIG). The RTSIG is concerned with issues of

guaranteed performance of requests to distributed objects, embedded systems, and fault
tolerance.

1.2.2—
DTC Task Forces and Special Interest Groups

The following are the task forces and special interest groups that report to the Domain
Technical Committee.

CORBAmed Task Force (Healthcare). The CORBAmed Task Force is concerned
with adopting specifications that meet the vertical domain requirements of the health
care sector. It also promotes the use of object-oriented technology in the medical field.

Telecommunications Task Force (CORBAtel). CORBAtel is working toward
adoption of specifications that meet the needs of telecommunications providers. It also
promotes the OMG and liaises with relevant telecommunications industry bodies.

Manufacturing Domain Task Force (CORBAmanufacturing). The MDTF promotes
the use of CORBA technology in manufacturing industry computer systems and is
adopting technology specifications tailored to that broad sector.

Financial Domain Task Force (CORBAfinancials). This task force promotes the use
of financial services and accounting software based on OMG standards. They are
adopting specifications for standard interfaces to this kind of software.

Interactive Multimedia and Electronic Commerce Domain Task Force. The
IMCDTF is interested in on-line commerce, including rights and royalties, and
electronic payment for media services.

Business Objects Domain Task Force (BODTF). The BODTF covers a broad area: it
includes any standard objects used in business processes. This covers such areas as
workflow, document processing, task scheduling, etc. The first RFP issued by the
BODTF was controversial in that it did not solicit a single well-focusedcontinue

Page 34

specification, but rather invited submitters to specify anything that they considered to be
a Business Object. In the end a framework for business objects was adopted.

Transportation Special Interest Group (TSIG). The TSIG examines the requirements
of the transportation industry in the development of Distributed Object Applications.

1.2.3—
Architecture Board Special Interest Groups

The following special interest groups that report directly to the Architecture Board.

End User Special Interest Group (EUSIG). The EUSIG is becoming increasingly
important as the OMG membership shifts from representing mainly technology vendors
to including a large number of users of the technology. The EUSIG seeks to emphasize
the usability of the specifications adopted throughout the OMG from the point of view
of application builders in business, the military, and government.

Security Special Interest Group. This SIG is similar to the EUSIG in that it feeds the
security requirements of end users into the OMG-wide technology adoption process.

Metrics Special Interest Group. This SIG investigates the measurement of the
performance of object technology and the processes by which the technology is
developed.

Inactive SIGs. The following SIGs still exist but are not meeting or currently
developing documents:

• Database Special Interest Group

• Smalltalk Special Interest Group

• Parallel Object Systems Special Interest Group

• Class Libraries Special Interest Group

1.3—
OMG Technology Adoption Process

The process, in brief, is as follows:

A task force puts out a Request for Information (RFI) on a particular technology area.

RFI submissions are considered in the process of drawing up an RFP, which solicits
submissions addressing its proposal from contributing members of the OMG.

Any member company that wishes to respond to an RFP must submit a letter of intent
(LOI) stating that they are willing to release acontinue

Page 35

commercial implementation of their submitted specification within one year of its
adoption, should it be chosen.

A voting list is established from OMG members who express an interest in selecting
from the submissions.

A first submission takes place, usually about 3 months after the issue of the RFP.
Typically there are three to six submissions.

The task force session at one of the six annual OMG meetings asks questions and
provides feedback on the initial submissions.

The submitters consider each other's specifications, and frequently some or all of them
decide to produce a consensus merger of specifications which align fairly closely.

Second (final) submissions are made, usually after another 3 months, and if there is
more than one submission the choice of which to adopt is put to a vote.

The adopted specification is presented to a technical committee plenary session and a
yes/no vote to adopt the chosen submission is put to the entire OMG membership. This

usually passes without problem.

The Architecture Board then considers the broader implications of the new
specification on the whole OMA. They may approve the specification unequivocally,
suggest revisions, or reject the specification and issue a new RFP. Reissue of the RFP
is not likely to occur.

Once the Architecture Board is happy with the specification, it is ratified by the OMG
Board based on a further vote by members.

The form of submissions to the OMG's task forces and technical committees is usually a
specification detailing the problem area that is being solved and proposing a number of
interface definitions (in OMG IDL). The IDL is accompanied by English text describing the
semantics of the objects and the roles and relationships to other objects in the specification and
outside of it. The interfaces are described in terms of the actions of their operations and not in
terms of a particular underlying implementation.

2—
The Object Management Architecture

This section introduces the OMA and provides a summary of the technical parts of the third
edition of the OMG publication Object Management Architecture Guide, which consists of
two main parts: the Core Object Model (described in section 2.2) and the Reference Model
(described in section 2.3).break

Page 36

2.1—
Overview of the OMA

The OMA is the framework within which all OMG adopted technology fits. It provides two
fundamental models on which CORBA and the other standard interfaces are based: the Core
Object Model and the Reference Model.

The Core Object Model defines the concepts that allow distributed application development to
be facilitated by an Object Request Broker (ORB). The Core Object Model is restricted to
abstract definitions which do not constrain the syntax of object interfaces or the implementation
of objects or ORBs. It then defines a framework for refining the model to a more concrete form.
The model provides the basis for CORBA, but is more relevant to ORB designers and
implementers than to distributed object application developers.

The Reference Model places the ORB at the center of groupings of objects with standardized
interfaces that provide support for application object developers. The groups identified are
Object Services, which provide infrastructure; Domain Interfaces, which provide special
support to applications from various industry domains; Common Facilities, which provide
application-level services across domains; and Application Interfaces, which is the set of all
other objects developed for specific applications. Since the disbanding of the Common
Facilities Task Force (see section 1.2.1), the OMA Reference Model has not been redefined,
and a number of specifications still populate this space in the OMA.

The Reference Model is directly relevant to CORBA programmers because it provides the big
picture from which components and frameworks can be drawn to support developers of
distributed applications. The Reference Model also provides the framework for OMG's
technology adoption process. It does this by identifying logical groupings of interface
specifications that are provided by organizational groups (TFs and SIGs) which specify and
adopt them.

2.2—
Core Object Model

This section provides a detailed explanation of the theoretical underpinnings of CORBA.
These specifics will not be of interest to everyone. We have tried to provide a readable
summary of the contents of the OMG's Object Management Architecture Guide, but section 3
of this chapter on CORBA is written without assuming that the reader is familiar with the
details of the Core Object Model. This section will mostly be of interest to readers with a
background in object-oriented theory, but it starts with principles and so iscontinue

Page 37

readable by anyone with a somewhat broader interest than simply using CORBA as an
application development platform.

2.2.1—
Scope of the Core Object Model

The main goals of the Core Object Model are portability and interoperability. The most
important aspect of portability to consider is design portability. This means knowledge of an
object's interface and the ability to create applications whose components do not rely on the
existence or location of a particular object implementation. The core does not define the syntax
of interface descriptions, but does describe the semantics of types and their relationships to one
another.

Interoperability means being able to invoke operations on objects regardless of where they are
located, which platform they execute on, or what programming language they are implemented
in. This is achieved by the ORB, which relies on the semantics of objects and operations
described in the Core Object Model. The ORB also requires some extensions to the core which
provide specifications for specific communication protocols, an interface definition syntax, and
basic services to object implementations. CORBA provides these extensions.

The Core Object Model is not a meta-model. This means that it cannot have many possible
concrete instances of the basic concepts. It consists of an abstract set of concepts that allow
understanding of objects and their interfaces. However, these concepts cannot be redefined or
replaced, only extended and made more concrete. The Core Object Model is specialized using
components and profiles to provide a concrete architecture for an ORB.

2.2.2—
Components and Profiles

A component is an extension to the abstract Core Object Model that provides a more concrete
specialization of the concepts defined in the core. The core together with one or more

components produces what is called a profile. CORBA is a profile that extends the core with
several components which provide specializations such as a syntax for object interfaces and a
protocol for interoperation between objects implemented using different ORBs.

Figure 2.2 shows how components and profiles are used to add to the Core Object Model.

2.2.3—
Concept Definitions

The Core Object Model is a classical object model. This means that actions in the system are
performed by sending request messages to objects. Thecontinue

Page 38

Figure 2.2
Components and profiles.

request will identify an operation and its parameters. The object will then interpret the message
and perform some actions, and then possibly send a return message to the caller containing
resulting values. The concepts defined in the Core Object Model are objects; operations,
including their signatures, parameters, and return values; nonobject types; interfaces; and
substitutability.

Objects. Objects are defined simply as models of entities or concepts. For example, an
object can model a document, a date, an employee, a subatomic particle, or a compiler.
The important characteristic of an object is its identity, which is fixed for the life of the
object and is independent of the object's properties or behavior. This identity is
represented by an object reference.

Operations, signatures, parameters, and return values. An operation is an action
offered by an object which is known to the outside world by its signature. The notion of
sending a request to an object is equivalent to the notion of invoking an operation on an
object.

An operation's signature has the following components: a name, a set of parameters,
and a set of result types. Operation names are unique within a particular object. No
syntax for describing operations and their types is provided.

When a request is sent to an object it nominates an operation and provides arguments
matching the parameters in that operation's signature. The operation then performs some

action on those arguments and returns zero or more results. It is important to note that
object references may be returned as part of the result of an operation.break

Page 39

Operations may cause some side effects, usually manifested as changes in the
encapsulated state of the object. When an object cannot process a request it will
typically return an exception message, but exceptions are defined in a separate
component that is part of CORBA, not in the Core Object Model.

The Core Object Model does not specify whether or not requests are accepted by an
object in parallel or what the consequences of parallel execution would be if they
were. An implementation of objects could choose to provide atomic operations or a
sequence of operations for transaction management.

Nonobject types. Unlike the object models of Smalltalk and Eiffel, there are types in
the OMA core that are not objects. These are usually called datatypes. The set of
objects and nonobject types makes up the whole of the denotable values in the OMA.

While the Core Object Model does not specify a set of nonobject types, another
component of CORBA does. Even though the OMA core is designed to be extensible
into several profiles via different sets of components, the likelihood of an alternative
profile to CORBA being specified in the OMA is almost nonexistent. This design
decision has been made so that new components can be added to CORBA in a
consistent manner, and so that new versions of CORBA can be defined in terms of the
makeup of its components and their versions.

2.2.4—
Interfaces and Substitutability

An interface is a collection of operation signatures. Typically the interface to an object is the
set of operations offered by that object, but this is left, once again, to CORBA to specify.
Interfaces are related to one another by substitutability relationships. This means that an object
offering an interface can be used in place of an object offering a "similar" interface. The Core
Object Model simply defines substitutability as being able to use one interface in place of
another without "interaction error." However, it is useful to examine a more concrete
definition.

The simplest form of substitutability is when two interfaces offer exactly the same operations.
Generally, if an interface A offers a superset of the operations offered by another interface B,
then A is substitutable for B. Substitutability is not symmetrical, except in the simple case
where A and B offer the same operations. However, it is transitive. That is, if A is
substitutable for B and B is substitutable for a third interface C, then A is also substitutable for
C.break

Page 40

2.2.5—
Inheritance

Since interfaces may offer operations with the same signatures that have different purposes and
semantics, it is useful to have an assertion of compatibility between them. In order to ensure a
semantic relationship, the model introduces inheritance. If interface A inherits from interface B,
then A offers all of the operations of B, and may also offer some additional operations. The set
of operations of A is therefore a superset of the operations of B, and hence A is substitutable
for B. However, because the relationship between A and B is explicit, we can be certain that
the operations they have in common serve the same purpose, and A and B don't merely
coincidentally share signatures. Figure 2.3 shows this example in a graphical form.

The Core Object Model defines subtyping as a form of substitutability dependent on
inheritance of interfaces. That is, an interface A that inherits from an interface B is a subtype of
B. We can also say that B is a supertype of A. In the Core Object Model, subtyping is the only
acceptable form of substitutability.

The supertype of all objects in the Core Object Model is an abstract type Object that has an
empty set of operations. The inheritance hierarchy places Object at the root and all other
objects as its subtypes and is also called the type graph.break

Figure 2.3
Inheritance.

Page 41

2.3—
The Reference Model

The OMA Reference Model is an architectural framework for the standardization of interfaces
to infrastructure and services that applications can use. The object-oriented paradigm
emphasizes reusability of components that perform small, well-defined parts of an
application's functionality. The Reference Model allows users of components to understand
what support they can expect in what areas from ORB vendors and third-party component
providers.

The Reference Model is shown in Figure 2.4, which identifies five main components of the
OMA:

• Object Request Broker

• Object Services

• Common Facilities

• Domain Interfaces

• Application Interfaces

Only the last of these is not intended to have interfaces specified through OMG processes.
Application objects are the project-specific part of an integrated application.break

Figure 2.4
The OMA Reference Model.

Page 42

2.3.1—
Object Request Broker

The ORB is defined in the Common Object Request Broker Architecture (CORBA) and
Specification document. CORBA builds on the OMA Core Object Model and provides

• An extended CORBA core including syntax and semantics for an IDL

• A framework for interoperability, including two specific protocol definitions

• A set of language mappings from IDL to implementation languages (C, C++, Smalltalk,
Ada'95)

The ORB is situated at the conceptual (and graphical) center of the Reference Model. It acts as
a message bus between objects which may be located on any machine in a network,
implemented in any programming language, and executed on any hardware or operating system
platform. The caller only needs an object reference and well-formed arguments in the language
mapping of choice to invoke an operation as if it were a local function and receive results. This
is called location and access transparency.

At the heart of CORBA is the Interface Definition Language (IDL), which is covered in detail
in section 3.4. It provides a way of defining the interfaces of objects independent of the
programming language in which they are implemented. It is a strongly typed declarative
language with a rich set of datatypes for describing complex parameters. An IDL interface acts
as a contract between developers of objects and the eventual users of their interfaces. It also
allows the user of CORBA objects to compile the interface definitions into hidden code for the
transmission of invocation requests across networks and machine architectures without
knowledge of the network protocol, the target machine architecture, or even the location of the
object being invoked.

2.3.2—
Object Services

This set of interface specifications provides fundamental services that application developers
may need in order to find and manage their objects and data, and to coordinate the execution of
complex operations. Object Services are the building blocks from which other components of
the OMA can be constructed and which application objects may require. The OMG brand name
for these services is CORBAservices. The published services include

• Naming

• Events

• Life Cyclecontinue

Page 43

• Persistent Object (deprecated)

• Relationships

• Externalization

• Transactions

• Concurrency Control

• Licensing

• Query

• Properties

• Security (including IIOP over SSL)

• Time

• Collections

• Trading

Some of these are simply framework interfaces that will be inherited by applications or other
objects, for example, the Life Cycle Service. Others represent low-level components on which
higher level application-oriented components can be built, for example, Transaction Service.
Others provide basic services used at all levels of applications, such as the Naming and
Trading Services. These last two services provide a means of locating objects by name or by
type and properties for late binding in an application. See Chapter 8 for a detailed description
of these services.

2.3.3—
Common Facilities

Common Facilities are those end-user-oriented interfaces that provide facilities across
application domains. The first such specification adopted, published by the OMG as
CORBAfacilities, is the Distributed Document Component Facility, based on OpenDoc. Work
has been completed on Internationalization and Time Facilities, Data Interchange, and Mobile
Agent Facilities, as well as a Printing Facility. A Meta-Object Facility, which is a way of
defining repositories for IDL and non-IDL types, and a Systems Management Facility have also
recently been adopted.

2.3.4—
Domain Interfaces

The OMG contains a large number of special interest groups and task forces which focus on
particular application domains such as telecommunications, Internet, business objects,
manufacturing, and health care. This area of standardization was separated from the Common
Facilities in early 1996 where it was called Vertical Facilities. Several Requests for
Information RFIs and Requests for Proposals RFPs are in progress in the Domain Task Forces.
Some examples are the Common Business Object Facility, Product Data Management Enablers,
and a Healthcare Patient Lexicon Service.break

Page 44

2.3.5—
Specification Adoption in the OMG

Technology adoption in the OMG emphasizes the use of existing technologies and rapid market
availability. To this end, submitters of specifications must vouch that an implementation of the
specification exists and that, should their submission be adopted, they will make an
implementation commercially available within 1 year of adoption. The adoption process is
detailed in section 1.3.

3—
Common Object Request Broker Architecture

This section provides a summary of the Common Object Request Broker Architecture and
Specification, version 2.0.

3.1—
Overview

CORBA is the specification of the functionality of the ORB, the crucial message bus that
conveys operation invocation requests and their results to CORBA objects resident anywhere,
however they are implemented. The CORBA specification provides certain interfaces to
components of the ORB, but leaves the interfaces to other components up to the ORB
implementer.

The notion of transparency is at the center of CORBA. Location transparency is the ability to
access and invoke operations on a CORBA object without needing to know where the object
resides. The idea is that it should be equally easy to invoke an operation on an object residing
on a remote machine as it is to invoke a method on an object in the same address space.

Programming language transparency provides the freedom to implement the functionality
encapsulated in an object using the most appropriate language, whether because of the skills of
the programmers, the appropriateness of the language to the task, or the choice of a third-party
developer who provides off-the-shelf component objects. The key to this freedom is an
implementation-neutral interface definition language, OMG IDL, which provides separation of
interface and implementation.

IDL interface definitions inform clients of an object offering an interface exactly what
operations an object supports, the types of their parameters, and what return types to expect. A
client programmer needs only the IDL to write client code that is ready to invoke operations on
a remote object. The client uses the datatypes defined in IDL through a language mapping. This
mapping defines the programming language constructscontinue

Page 45

(datatypes, classes, etc.) that will be generated by the IDL compiler supplied by an ORB
vendor.

The IDL compiler also generates stub code that the client links to, and this translates, or
marshals, the programming language datatypes into a wire format for transmission as a request
message to an object implementation. The implementation of the object has linked to it similar
marshaling code, called a skeleton, that unmarshals the request into programming language
datatypes. The skeleton can be generated by a different IDL compiler with a different language
mapping. In this way the object's method implementation can be invoked and the results
returned by the same means. Figure 2.5 illustrates the use of stub, skeleton, and ORB code to
make a remote invocation.

IDL and IDL compilers allow programs providing and using object interfaces to agree on the
form of their exchanges, even though they may be developed completely independently, in
different languages, and on different ORB technologies. This means that objects offering the
same interfaces are substitutable, and that clients can decide which object to use at runtime
with the assurance that there will be no interaction mismatches. Because the implementation of
a particular object offering an interface is hidden, there may be quality of service differences,

or even differences in the semantics of operations. The Trading Service allows clients to find
the most appropriate object that matches their particular performance, location, cost, or other
criteria.

The interfaces to components of the ORB are all specified in IDL. This provides a
language-neutral representation of the computational interfacecontinue

Figure 2.5
Stub, ORB, and skeleton.

Page 46

of the ORB. However, certain parts of these definitions are designated as pseudo-IDL (PIDL),
which means that their implementations are not necessarily CORBA objects and datatypes. Any
interface definition that is commented as pseudo-IDL may be implemented as a pseudo-object.
This usually means that it is a library that is linked into the application using it. Although
operations on pseudo-objects are invoked in the same way as operations on real CORBA
objects, their references and pseudo-IDL datatypes cannot be passed as parameters to real
CORBA objects.

3.2—
Object Model

The OMA Core Object Model provides some fundamental definitions of concepts that are
extended by the CORBA specification. CORBA uses the same concepts as the OMA core, but
makes them more specific and concrete. The definitions here refer to the way in which these
concepts are declared, but do not provide syntax for declarations. The syntax is provided by
IDL (see section 3.4).

3.2.1—
Object Implementations and Object References

It is necessary to distinguish between object implementations and object references. The
former is the code that implements the operations defined by an IDL interface definition, while
the latter is the object's identity, which is used by clients to invoke its operations.

An object implementation is the part of a CORBA object that is provided by an application
developer. It usually includes some internal state and will often cause side effects on things that

are not objects, such as a database, screen display, or telecommunications network elements.
The methods of this implementation may be accessed by any mechanism, but in practice most
object implementations will be invoked via the skeleton code generated by an IDL compiler.

Object references are handles to objects. A given object reference will always denote a single
object, but several distinct object references may denote the same object. Object references
can be passed to clients of objects, either as an operation's parameter or result, where the IDL
for an operation nominates an interface type, or they can be passed as strings which can be
turned into live object references that can have operations invoked on them.

Object references are opaque to their users. That is, they contain enough information for the
ORB to send a request to the correct object implementation, but this information is inaccessible
to their users. Object references contain information about the location and type of the object
denoted, but do so in a sophisticated manner so that if the object has migratedcontinue

Page 47

or is not active at the time, the ORB can perform the necessary tasks to redirect the request to a
new location or activate an object to receive the request.

Unless an object has been explicitly destroyed, or the underlying network and operating system
infrastructure is malfunctioning, the ORB should be able to convey an operation invocation to
its target and return results. The ORB also supports operations that interpret the object
reference and provide the client with some of the information it contains.

3.2.2—
Types

Types are defined using predicate logic in the CORBA specification. Object types are related
in an inheritance hierarchy, with the type Object at the root. An object type derived from
another can be substituted for it. Object types may be specified as parameters and return types
for operations, and may be used as components in structured datatypes. A set of nonobject
types are defined with specific properties in CORBA. These are represented by constructs in
OMG IDL. The usual kind of basic numeric, string, and boolean types are defined. A type
called Any is also given as a basic type. It can store any legitimate value of a CORBA type in a
self-describing manner. See Chapter 6 for detailed descriptions of Anys and Chapter 10 for
examples using Anys.

The basic types can be used as components for a rich set of structured types, including
structures, arrays, variable length sequences, and discriminated unions. The syntax and
specifications of CORBA types are given in the OMG IDL description.

3.2.3—
Interfaces

An interface is a description of the operations that are offered by an object and can also
contain structured type definitions used as parameters to those operations. Interfaces are
specified in OMG IDL and are related in an inheritance hierarchy. In CORBA, interface types
and object types have a one-to-one mapping. This is a restriction of the OMA Core Object
Model, which implies that objects have single interfaces but does not state that this must be the
case. The term principal interface is used to indicate the most specific (most derived)

interface type that an object supports. The Multiple Interfaces RFP is currently soliciting
submissions in the OMG, and a model for objects with multiple interfaces will probably be
introduced in a revised CORBA specification.

3.2.4—
Operation Semantics

There are two kinds of operation execution semantics defined for static (stub code)
invocations:break

Page 48

At-Most-Once. An operation is a named action that a client can request an invocation
of. The invocation of an operation results in the ORB conveying the arguments to the
object implementation and returning the results (if any) to the requester, which is
blocked and waiting for a successful termination or an exception. The semantics of the
invocation are ''at-most-once." That is, the operation will execute exactly once if a
successful completion takes place, or if an exception is raised it will have executed no
more than once.

Best-Effort. If an operation is declared using the oneway keyword then the requester
does not wait for the operation to complete and the semantics is "best-effort." Both
these kinds of requests can be made using the generated stubs or using the Dynamic
Invocation Interface (DII), but the DII also offers a third type of execution
semantics—deferred-synchronous. This allows the requester to send the request
without blocking and at some later time to poll for the results.

3.2.5—
Operation Signatures

Each operation has a signature, expressed in IDL, which contains the following mandatory
components:

• An operation identifier (also called an operation name).

• The type of the value returned by the operation.

• A (possibly empty) list of parameters, each with a name, type, and direction indication. The
direction will be one of in, out, or inout, stating that the parameter is being transmitted from the
client to the object, is being returned as a result from the operation, or is client data to be
modified by the operation, respectively.

An operation signature may also have the following optional components:

• A raises clause that lists user-defined exceptions that the operation may raise. Any
operation may raise system exceptions.

• A oneway keyword that indicates "best-effort" semantics. The signature must have a void
return type and may not contain any out or inout parameters or a raises clause.

• A context clause that lists the names of operating system, user, or client program
environment values that must be transmitted with the request. Contexts are transmitted as sets of

string pairs and are not type safe. Contexts are intended to play a similar role to environment
variables known from various operating systems.break

Page 49

3.2.6—
Attributes

An interface may contain attributes. These are declared as named types, with a possible
readonly modifier. They are logically equivalent to a pair of operations. The first,an
accessor operation, retrieves a value of the specified type. The second, a modifier operation,
takes an argument of the specified type and sets that value. Readomly attributes will only have
an accessor. Attributes cannot raise user-defined exceptions.

The execution semantics for attributes are the same as for operations. Attributes do not
necessarily represent a state variable in an object, and executing the modifier operation with a
particular argument does not guarantee that the same value will be returned by the next
accessor execution. Section 3.4.6 contains a full syntax for operation and attribute declarations.

3.2.7—
Exceptions

An exception is a specialized nonobject type in OMG IDL. It is declared with the keyword
exception and has a name and optional fields of named data values that provide further
information about what caused the abnormal termination of an operation.

The standard IDL module, CORBA, contains declarations for 26 standard exceptions to
address network, ORB, and operating system errors. These exceptions may be raised by any
operation, either implicitly by the ORB or explicitly in the operation implementation. Each
standard exception, also known as a system exception, has two pieces of data associated with
it:

• A completion status, an enumerated type with three possible values—COMPLETED_YES,
COMPLETED_NO, and COMPLETED_MAYBE—indicating that the operation implementation
was either executed in full, not at all, or that this cannot be determined

• A long integer minor code which can be set to some ORB-dependent value for more
information

Further user-defined exceptions may be declared in IDL and associated with operations in the
raises clause of their signatures. An operation may only raise user exceptions that appear in
its signature.

3.3—
ORB Structure

As we have mentioned, OMG IDL provides the basis of agreement about what can be
requested of an object implementation via the ORB. IDL, however, is not just a guide to clients
of objects. IDL compilers use interface definitions to create the means by which a client can
invoke a local functioncontinue

Page 50

and an invocation then happens, as if by magic, on an object on another machine. The code
generated for the client to use is known as stub code, and the code generated for the object
implementation is called skeleton code. Figure 2.6 shows the ORB core, stub and skeleton
code, and the interfaces to the ORB.

These two pieces of generated code are linked into the respective client and object
implementations, and they interface with the ORB run-time system to convey requests and
results for static invocations. Static means that the IDL is statically defined at compile time,
and only operations on known interface types can be invoked.

The CORBA standard also defines an interface to allow requests to be built dynamically for
any operation by a client. This is known as the Dynamic Invocation Interface (DII). A
symmetric interface is defined for responding to arbitrary requests, called the Dynamic
Skeleton Interface (DSI).

CORBA defines an interface for communicating with the ORB from either client or server.
This interface deals mainly with ORB initialization and object reference manipulation.

Finally, object implementations need extra facilities for managing their interactions with the
ORB. A component called an object adapter (OA) fills this role and is responsible for
operating system process management for implementations on behalf of the ORB and for
informing the ORB when implementations are ready to receive requests.break

Figure 2.6
ORB interfaces.

Page 51

3.3.1—
Client Stubs

When a client wishes to invoke án IDL-defined operation on an object reference as if it were a
local method or function call, it must link in stubs for the IDL interface which convey that
invocation to the target object. In object-oriented implementation languages the stubs are
instantiated as local proxy objects that delegate invocations on their methods to the remote
implementation object. The stubs are generated from an IDL compiler for the language (and
ORB environment) the client is using.

3.3.2—
Dynamic Invocation Interface

A request is a notional message that is sent to an object denoted by an object reference to
request the invocation of a particular operation with particular arguments. The DII defines the
form of such a message so that clients that know of an object by reference, and can determine
its interface type, can build requests without requiring an IDL compiler to generate stub code.
A request interface is defined in pseudo-IDL. It provides operations to set the target object for
the invocation, name the operation to be invoked, and add arguments to send to it. It also
provides operations to invoke the operation and retrieve any resulting values. As noted earlier,
the implementation of pseudo-IDL is provided as a library and the operations map to local
methods on a non-CORBA object.

The DII defines various types of execution semantics for operations invoked using request
pseudo-objects. The usual synchronous at-most-once semantics are available, as well as a
deferred-synchronous option which sends the request and immediately returns to the client code
to allow further processing while waiting for a response.

3.3.3—
Implementation Skeleton

Once a request reaches a server that supports one or more objects, there must be a way for it to
invoke the right method on the right implementation object. The translation from a wire format
to in-memory data structures (unmarshaling) uses the language mapping to the implementation
language. This is achieved by the skeleton code generated by an IDL compiler.

3.3.4—
Dynamic Skeleton Interface

Implementation code may be written that deals with requests in a generic manner, looking at the
requested operation and its arguments and interpreting the semantics dynamically. This is
called the Dynamic Skeleton Interface (DSI) and is realized by allowing the implementer
access to thecontinue

Page 52

request in the form of a ServerRequest pseudo-object, which is the same as the DII request,
except for the invocation operations.

An example use of the DSI is a minimal wrapper around some legacy command processing
code which accepts each request it receives with a single string argument. It then parses the
string for a numeric value and sets this in a register before passing the operation name to an
interpreter. It then checks the contents of the register, and unless an error bit is set, encodes the

rest of the register as a numeric string and passes it back as the result. Clients can then write
IDL that matches the expected pattern and use the generated stubs in a type-safe way to invoke
the server which was implemented before the IDL was written.

3.3.5—
Object Adapters

An object adapter is a component that an object implementation uses to make itself available
through an ORB and which the ORB uses to manage the runtime environment of the object
implementations. An adapter is used, rather than extending the interface to the ORB, so that
different object adapters suitable for different implementations can be used for greater
efficiency.

Currently CORBA defines two such interfaces, the basic object adapter (BOA) and the
portable object adapter (POA). Their purpose is to generate and interpret object references,
and to activate and deactivate object implementations. The interface to the BOA is described in
detail in section 3.6, and the interface to the POA is described in section 3.7.

3.4—
OMG Interface Definition Language

OMG IDL is a declarative language for defining the interfaces of CORBA objects. It is a
language-independent way in which implementers and users of objects can be assured of
type-safe invocation of operations, even though the only other information that needs to pass
between them is an object reference. IDL is used by ORB-specific IDL compilers to generate
stub and/or skeleton code that converts in-memory data structures in one programming language
into network streams and then unpacks them on another machine into equivalent data structures
in another (or the same) language, makes a method call, and then transmits the results in the
opposite direction.

The syntax of IDL is drawn from C++, but it contains different and unambiguous keywords.
There are no programming statements, as its only purpose is to define interface signatures. To
do this a number of constructs are supported:

Constants—to assist with type declarations

Data type declarations—to use for parameter typingbreak

Page 53

Attributes—which get and set a value of a particular type

Operations—which take parameters and return values

Interfaces—which group datatype, attribute, and operation declarations

Modules—for namespace separation

All of the declarations made in IDL can be made available through the Interface Repository
(IR). This is part of the CORBA specification and its interfaces are explained in section 3.12.

3.4.1—

Lexical Analysis

OMG IDL uses the ISO Latin-1 character set.

Identifiers. Identifiers must start with a letter and may be followed by zero or more
letters, numbers, and underscores. The only strange feature of the lexical analysis of
IDL is that identifiers are case sensitive but cannot coexist with other identifiers that
differ only in case. To put it another way, to identify the same entity the identifier must
use the same case in each instance, but another identifier with the same spelling and
different case may not coexist with it. For example, short DisplayTerminal
and interface displayTerminal denote different entities, but may not both be
declared in the same IDL. The reason for this is that language mappings to
case-insensitive languages could not cope with both identifiers.

Preprocessing. The standard C++ preprocessing macros are the first thing to be dealt
with in lexical analysis. They include #include, #define, #ifdef, and
#pragma.

Keywords. Keywords are all in lowercase and other identifiers may not differ only in
case.

Comments. Both styles of C++ comments are used in IDL. The "/*" characters open a
comment and "*/" closes it. These comments cannot be nested. The characters "//"
indicate that the rest of a line is a comment.

Punctuation. The curly brace is used to enclose naming scopes, and closing braces are
always followed by a semicolon. Declarations are always followed by a semicolon.
Lists of parameters are surrounded by parentheses with the parameters separated by
commas.

3.4.2—
Modules and Interfaces

The purpose of IDL is to define interfaces and their operations. To avoid name clashes when
using several IDL declarations together a module is usedcontinue

Page 54

as a naming scope. Modules can contain any well-formed IDL, including nested modules.
Interfaces also open a new naming scope and can contain constants, datatype declarations,
attributes, and operations.

//RoomBooking.idl
module RoomBooking{
 interface Room{};
};

Any interface name in the same scope can be used as a type name, and interfaces in other name
scopes can be referred to by giving a scoped name that is separated in C++ style by double
colons. For example, RoomBooking::Room is the name of the empty interface declared
above. This name can also be written ::RoomBooking::Room to explicitly show that it is
relative to the global scope.

Modules may be nested inside other modules and their contents may be named relative to the
current naming scope. For example,

module outer{
 module inner{//nested module
 interface inside{};
 };
 interface outside{//can refer to inner as a local name
 inner::inside get_inside();
 };
};

The get_inside() operation returns an object reference of type
::outer::inner:inside, but may use the relative form of the name due to its position
in the same scope as the inner module.

Interfaces may be mutually referential. That is, declarations in each interface may use the name
of the other as an object type. To avoid compilation errors, an interface type must be forward
declared before it is used. That is,continue

interface A;//forward declaration

interface B{//B can use forward-declared interfaces as type names
 A get_an_A();
};

interface A{
 B get_a_B();
};

Page 55

The preceding example declares the existence of an interface with name A before defining
interface B, which has an operation returning an object reference to an A. It then defines A,
which has an operation returning an object reference to B. Forward declaration of interfaces is
often used for formatting and readability rather than mutual recursion.

When a declaration in a module needs some mutual reference to a declaration in another
module, this is achieved by closing the first module and reopening it after some other
declarations. This is shown in the following declaration:

module X{
 //forward declaration of A
 interface A;
};//close the module to allow interface A needs to be declared

module Y{
 interface B{//B can use X::A as a type name
 X::A get_an_A();
 };
}
module X{//reopen module to define A

 interface C{//C can use A unqualified as it is in the same scope
 A get_an_A();

 };

 interface A{//A can use Y::B as a type name
 Y::B get_a_B();
 };
};

Reopening modules is a recent addition to OMG IDL, and as yet many IDL compilers do not
accept it as valid syntax. This is mainly due to the lack of such flexible name scoping
mechanisms in programming language compilers. Java is one language that can support this
correctly.

3.4.3—
Inheritance

The set of operations offered by an interface can be extended by declaring a new interface that
inherits from the existing one. The existing interface is called the base interface and the new
interface is called the derived interface. Inheritance is declared by using a colon after the new
interface name, followed by a base interface name, as the following example shows:break

module InheritanceExample{

 interface A{
 typedef unsigned short ushort;

Page 56

 ushort op1();
 };

 interface B:A{
 boolean op2(ushort num);
 };
};

In this example, interface B extends interface A and offers operations op1() and op2(). The
datatype declarations are also inherited, allowing the use of ushort as a parameter type in
op2(). All interfaces implicitly inherit from CORBA::Object. This becomes clear when
looking at the language mapping. In Java, for example, interface A will map to a Java interface
A, which extends a Java interface called org.omg.CORBA.Object provided by the ORB.
In the same manner interface B will map to a Java interface B which extends A.

CORBA IDL allows any nonobject types declared in an interface to be redefined in a derived
interface. We consider this to be an oversight, and it is not recommended that this feature ever
be used. The beauty of inheritance is that it is a clean mechanism for determining subtyping and
substitutability of interfaces. An object implementing interface B would be able to be used
where an object of type A was required, as B is a subtype of A.

3.4.4—
Multiple Inheritance

An interface may inherit from several other interfaces. The syntax is the same as single
inheritance, and the base interfaces are separated by commas. For example,

interface C : A, B, VendorY::interfaceX{
 ...
};

The names of the operations in each of the inherited interfaces (including the operations they
inherit from other interfaces) must be unique and may not be redeclared in the derived
interface. The exception to this rule is when the operations are inherited into two or more
classes from the same base class. This is known as diamond inheritance (the inheritance graph
is in the shape of a diamond). For example,break

module DiamondInheritanceExample{

 interface Base{
 string BaseOp();
 };

Page 57

 interface Left:Base{
 short LeftOp(in string LeftParam);
 };

 interface Right:Base{
 any RightOp(in long RightParam);
 };

 interface Derived:Left,Right{
 octet DerivedOp(in float DerivedInParam,
 out unsigned long DerivedOutParam);
 };
};

Figure 2.7 shows the IDL in graphical form. Both interfaces Left and Right contain the
operation BaseOp(), but they can both be inherited by Derived because BaseOp()
comes from the same base interface.

3.4.5—
Types and Constants

The name of any interface declared in IDL becomes an object type name that may be used as
the type of any operation parameter or return value or as a member in a structured type
declaration; for example, to declare the length of an array. The basic types are rich enough to
represent numerics, strings, characters, and booleans. The definitions of these are very precise
to allow unambiguous marshaling. The structured types available in IDL are structures,
discriminated unions, arrays, and sequences. Exceptions can be considered to be a special case
of structures that are only used in raises clauses of operations.break

Figure 2.7
Diamond inheritance.

Page 58

The set of basic types provided by IDL and their required characteristics are as follows:

Type keyword Description

[unsigned] short Signed [unsigned] 16-bit 2's complement integer

[unsigned] long Signed [unsigned] 32-bit 2's complement integer

float 16-bit IEEE floating point number

double 32-bit IEEE floating point number

char ISO Latin-1 character

boolean Boolean type taking values TRUE and FALSE

string Variable-length string of characters whose length is
available at run time

octet 8-bit uninterpreted type

enum Enumerated type with named integer values

any Can represent a value from any possible IDL type, basic
or constructed, object or nonobject

The keyword typedef allows aliases to be created for any legal type declaration. In the case
of template types (types that require a parameter to determine their length or contents) a typedef
is required before the type can be used in an operation or attribute declaration. See the
following string example.

Strings may be bounded or unbounded. Bounded strings are a template type. That is, their
declaration contains a maximum length parameter in angle brackets. For example,

interface StringProcessor{
 typedef octstring string <8>;
 typedef centastring string <100>;

 //...
 octstring MiddleEight(in string str);
 centastring PadOctString(in octstring ostr, char pad_char);
};

Enumerated types are declared with a name, which can be used as a valid type thereafter, and a
comma-separated list of identifiers. The identifiers used in an enum declaration must be unique
within a namespace. For example,break

enum glass_color{gc_clear, gc_red, gc_blue, gc_green};

Page 59

Any. The Any type has an API defined in pseudo-IDL which describes how values are inserted
and extracted from it and how the type of its contained value may be discovered. This is
addressed in Chapter 6.

Structures. Structures are declared with the keyword struct, which must be followed by a
name. This name is usable as a valid type name thereafter. This is followed by a
semicolon-separated list of named type fields, as in C and C++. For example,

interface HardwareStore{
 struct window_spec{
 glass_color color;
 height float;
 width float;
};

Discriminated unions. Discriminated unions are declared with the keyword union, which
must be followed by a name. The name, once again, becomes a valid type name for use in
subsequent declarations. The keyword switch follows the type name and it is parameterized
by a scalar type (integer, char, boolean, or enum) which acts as the discriminator. The body of
the union is enclosed in braces and contains a number of case statements followed by named
type declarations. For example,

enum fitting_kind{door_k, window_k, shelf_k, cupboard_k};

union fitting switch (fitting_kind){
 case door_k: door_spec door;
 case window_k:window_spec win;
 default: float width;
};

The default case is optional, but may not appear more than once. In each language mapping
there is a means of accessing the discriminator value by name in order to determine which field
of the union contains a value. The value of a union consists of the value of the discriminator
and the value of the element that it nominates. If the discriminator is set to a value not
mentioned in a case label, and there is no default case, then that part of the union's value is
undefined.

Sequences. Sequences are template types. That means that their declarations nominate other
types which will be contained within the sequence. A sequence is an ordered collection of
items that can grow at run time. Its elements are accessed by index. Sequences may be bounded
or unbounded. All sequences have two characteristics at runtime, a maximum and a current

length. The maximum length of bounded sequences is set atcontinue

Page 60

compile time. The advantage of sequences is that only the current number of elements is
transmitted to a remote object when a sequence argument is passed.

Sequence declarations must be given a typedef alias in order to be used as types in operation
parameters or return types. Here are some example sequences of hardware fittings used to
convey orders to a hardware store:

//union type "fitting" declared above.

typedef sequence <fitting> HardwareOrderSeq;
typedef sequence <fitting, 10> LimitedHWQrderSeq;

typedef sequence <sequence <fitting>, 3> ThreeStoreHWOrderSeq;
typedef sequence <sequence <fitting> > ManyStoreHWOrderSeq;

Sequence is the only unaliased complex type that may be used in angle brackets. All other types
must be typedefed before sequences of them can be declared. Note that there is a space
between the two closing angle brackets in the final declaration. If these were put side by side
they would be parsed as the operator >>, which can be used when declaring integer constants.
A better style would be to declare ThreeStoreHWOrderSeq as a sequence of
HardwareOrderSeq.

Arrays. Arrays are also usually declared within a typedef, as they must be named before using
them as operation parameter or return types. However, they may be declared as an element type
of a union or member type of a struct.

Arrays at runtime will have a fixed length. The entire array (regardless of useful content) will
be marshaled and transmitted in a request if used in a parameter or return type. In contrast,
sequences passed as arguments or returned as results will only be transmitted up to their length
at the time of the invocation.

Arrays are declared by adding one or more square-bracketed dimensions containing an integer
constant. For example,break

 typedef window[10] WindowVecl0;
 typedef fitting[3][10] FittingGrid;

struct bathroom{
 float width;
 float length;
 float height;
 boolean has_toilet;
 fitting[6] fittings;
};

Page 61

Exceptions. Exceptions are declared in exactly the same manner as structures, using the
keyword exception in place of struct. A set of standard exceptions, also known as

system exceptions, is declared in the CORBA module. Here are some examples of user-defined
exceptions:

exception OrderTooLarge{
 long max_items;
 long num_items_submitted;
};

exception ColorMismatch{
 sequence <color> other_window_colors;
 color color_submitted;
};

It is good style to include values of arguments that are relevant to the cause of a failure in an
exception. That way exception handling can be done by a generic handler that does not know
what arguments were given that may have caused the exception. The handler can determine the
context of the operation that raised the exception from the values in the exception.

Constants. Constant values can be declared at global scope or within modules and interfaces.
The declaration begins with the keyword const, followed by a boolean, numeric, character,
or string type name, an identifier, and then an equals sign and a value. Numeric values can be
declared as expressions, with the full range of C++ bitwise, integer, and floating point
mathematical operators available. For example,

const short max_storage_bays = 200;
const short windows_per_bay = 45;
const long max_windows = max_storage_bays * windows_per_bay;
const string initial_quote = "fox in socks on knox on blocks";
const HardwareStore::CashAmount balance = (max_storage_bays - 3)/1.45

3.4.6—
Operations and Attributes

Operation declarations are similar to C++ function prototypes. They contain an operation
name, a return type (or void to indicate that no value is expected), and a parameter list, which
may be empty. In addition, an operation may have a raises clause, which specifies what user
exceptions the operation may raise, and it may have a context clause, which gives a list of
names of string properties from the caller's environment that need to be supplied to the
operation implementation.

Lists of parameters to operations are surrounded by parentheses and the parameters are
separated by commas. Each parameter must have a directional indicator so that it is clear
which direction the data travels in.continue

Page 62

These are in, out, and inout, indicating client to object, return parameter, and client value
modified by object and returned, respectively. These points are shown in the IDL that follows:

//interface HardwareStore cont..
 typedef float CashAmount;
 typedef sequence <window_spec> WindowSeq;

 CashAmount OrderFittings(in HardwareOrderSeq order)

 raises (OrderTooLarge);

 void OrderWindows(
 in WindowSeq order,
 in CashAmount willing_to_pay,
 out CashAmount total_price,
 out short order_number)
 raises (OrderTooLarge, ColorMismatch)
 context ("LOCAL_CURRENCY");

Operations can be declared oneway if it is desirable for the caller to send some noncritical
message to an object. Oneway operation invocations will use best-effort semantics. The caller
will get an immediate return and cannot know for certain if the request has been invoked. For
obvious reasons there can be no out or inout parameters declared on oneway operations. There
must be no raises clause and the operation must have a void return type. The following
declaration illustrates this.

//interface HardwareStore cont...

 oneway void requestAccountStatement(in short customer_id);

An attribute is logically equivalent to a pair of accessor functions, one to access the value, the
other to modify it. Read-only attributes require only an accessor function.

Attributes are simpler to declare than operations. They consist of the keyword attribute
followed by the type of the attribute and then an attribute name list. The optional keyword
readonly may precede the attribute declaration.

//interface HardwareStore cont...
 readonly attribute CashAmount min_order, max_order;
 readonly attribute FittingSeq new_fittings;
 attribute string quote_of_the_day;

The previous attributes could be replaced by the following IDL:break

CashAmount min_order();
CashAmount max_order();

Page 63

FittingSeq new_fittings();
string get_quote_of_the_day();
void set_quote_of_the_day(in string quote);

As declared, the operations and attributes are equivalent. The actual names chosen for the
methods in the object implementation are determined by the language mapping. Attributes and
operations can both raise standard exceptions. However, operations can be given raises
clauses, allowing better handling of error conditions.

3.4.7—
Contexts

Contexts provide a way of passing string-to-string mappings from the computing environment
of the client to the object implementation. The specification does not define the way in which
an ORB populates contexts to pass to objects. Some ORBs treat contexts as equivalent to UNIX

or DOS environment variables. Others require users to build context objects explicitly. The
string literals within a context clause must start with a letter and may end with ''*", the wild
card matching character. The matching character will cause the ORB to find all context items
with the leading characters in common.

Contexts are a powerful concept but must be used with care. For example, the use of wild card
pattern matching is especially dangerous, as the IDL author has no way at specification time of
knowing what names will be defined in the context of all callers. A broad pattern match may
cause many kilobytes of strings to be transmitted unnecessarily for an otherwise lightweight
operation invocation. In general, contexts are a hole in an otherwise type-safe interface
definition language.

3.5—
ORB and Object Interfaces

The ORB interface is available directly to clients and object implementations for several
object management reasons. These include creating string representations of object references,
and transforming them back again, copying and deleting object references, and comparing
object references against the empty, or nil, object reference.

As already mentioned, there are a number of interfaces defined within the CORBA standard
that use the IDL syntax for programming-languageneutral API definitions. They are interfaces to
ORB components that are implemented as libraries or in whatever way ORB implementers see
fit. The IDL is commented as pseudo-IDL.break

Page 64

3.5.1—
Stringified Object References

As object references are opaque, the only way to correctly make an object reference persistent
is to stringify it. A stringified object reference can be passed by means such as email, web
sites, or pen and paper, and when supplied as an argument to the string_to_object()
operation it will produce a valid object reference that can be invoked. In order to use
generated stubs to do this, the returned object reference must be passed to the narrow()
method of the appropriate interface stub to cast the object reference into a reference to a more
specific interface than Object.

module CORBA{//PIDL

 interface ORB{
 string object_to_string(in Object obj);
 Object string_to_object(in string obj);

 //several other operations are defined here but used in
 //other contexts, such as the ORB initialization and the DII
 };
};

The object_to_string() operation takes an object and produces a string. This string
may be passed to the converse operation, string_to_object(), to generate a new object
reference that can be invoked and will send its requests to the same object passed to

object_to_string().

3.5.2—
Managing Object References

This subsection addresses the pseudo-IDL for the CORBA::Object interface. This is the
base interface for all CORBA objects and its operations can be invoked on any object
reference. However, the functionality is implemented in the libraries provided by the ORB and
results are not obtained by sending a request to the object implementation.

Object references, although opaque to their users, always contain certain information that can
be extracted by using appropriate operations. The main components in an object reference are

• Abstract information about the name and location of the object implementation

• The interface type of the object

• Reference data, that is, a unique key that differentiates this object from other objects in the
same implementation (server)

The get_implementation() and get_interface() operations provide access to
the first two components, and the get_id() operation on the BOA interfacecontinue

Page 65

provides access to the third. Many ORBs provide this information in other forms by additional
operations not required by the standard.

module CORBA{

 interface Object{//PIDL
 implementationDef get_implementation();
 interfaceDef get_interface();
 boolean is_nil();
 Object duplicate();
 void release();
 boolean is_a(in string logical_type_id);
 boolean non_existent();
 boolean is_equivalent(in Object other_object);
 unsigned long hash(in unsigned long maximum);

 //the create_request operation used by the DII is defined here
 };
};

The get_implementation() operation returns an ORB-dependent interface called
ImplementationDef, which the standard does not specify. This interface should provide
information about how the object adapter launches implementations of objects. Usually the
object adapter does this by starting a new process or task running from a particular executable
file with certain arguments.

The get_interface() operation returns a standard interface from the Interface
Repository. This allows a client to investigate the IDL definition of an interface via calls to
objects that represent the IDL in the Interface Repository. This approach can be used to

discover the operations available on an object reference when its type is unknown at compile
time. The DII can then be used to invoke these operations.

The is_nil() operation returns TRUE if this object reference denotes no object. Object
implementations that return object references as output parameters or return values may choose
to return a nil object reference rather than raise an exception. Different language bindings
implement object references differently and an invocation on a nil object reference may result
in a fatal error.

The duplicate() and release() operations are very important in programming
languages where programmers do explicit memory management (such as C and C++). Luckily
in Java this is done for us automatically. These operations ensure correct management of
copies of an object reference. When an object reference is to be passed to another object, or
thread of control, the opaque type which implements the object reference must not be copied
by using features of the implementation language. The duplicate() operation must be used
instead. The reason is that when a remote clientcontinue

Page 66

uses an object reference, a proxy object is created locally for the client to invoke operations on
directly. The proxy, in concert with the ORB, creates the request which ends up at the object
implementation.

A proxy object keeps a counter of all object references that refer to it. This is called a
reference count. If a copy of a reference to that proxy is created without the knowledge of the
proxy, it cannot increase its reference count. When the counted references are released the
proxy assumes that no other references to it exist and it will deallocate its resources and delete
itself. Now the reference copied without using duplicate() refers to a deleted proxy and
invocations made on it will incur a run-time error. This is illustrated in Figure 2.8.

When duplicate() is called to obtain a new copy of the object reference, the proxy will
increase its reference count and wait for all references to call release() before cleaning up
and going away. This makes the importance of using release() equally clear. If the last
reference to a proxy is deleted without calling release() the proxy will continue to
consume memory, and probablycontinue

Figure 2.8
Invalid object reference copy.

Page 67

network resources, until the process or task in which it executes dies. Figure 2.9 illustrates this
case. Figure 2.10 shows the correct use of duplicate() and release() where the
reference count in the proxy reflects the actual number of references to it.

Figure 2.11 shows what occurs when an object reference is duplicated for passing across
machine boundaries. The figure does not show the temporary increase in the reference count on
proxy object B before the skeleton code does a release() when passing the reference back
to the client.

The is_a() operation returns TRUE if the Interface Repository identifier passed to it refers
to a type of which this object is a subtype. It is mainly used in dynamically typed languages that
cannot support a narrow() method. We recommend the use of narrow(), which can be
attempted for various object types. It will return a valid object reference if it is of a compatible
type. Otherwise it will return a nil object reference or raise an exception.break

Figure 2.9
Invalid object reference deletion.

Page 68

Figure 2.10
Correct use of duplicate() and release().

The non_existent() operation returns TRUE if the object implementation denoted by this
reference has been destroyed. The ORB will return FALSE if the object exists or if it cannot
determine the answer definitively.

The is_equivalent() operation is the only way within CORBA of determining whether
two object references denote the same object. All references that are created by calling
duplicate() on a single object reference will be equivalent to the original reference and
with each other. Even so, it is possible that two references that actually denote the same object
may return a FALSE result from this operation. That is, a TRUE result guarantees that the
object denoted is the same, but a FALSE result does not guarantee that two references denote
different objects. String representations obtained from object_to_string() are ORB
dependent and often are different every time they are generated. Hence they do not offer a
means of comparing references.break

Page 69

Figure 2.11
Proxy creation when passing object references.

Page 70

The hash() operation provides a way of searching for an equivalent object reference that is
more efficient than comparing a reference against every object reference in a list. The same
object reference will return the same hash value each time. This provides a way of selecting a
small number of possibly identical references in a chained hash table, which can be compared
pairwise for a match. Most CORBA application programmers will never need to use
is_equivalent() or hash().

3.5.3—
Initialization

The CORBA module contains a pseudo-IDL operation ORB_init() for bootstrapping the
ORB.

module CORBA{//PIDL
 typedef string ORBid;
 typedef sequence <string> arg_list;
 ORB ORB_init(inout arg_list argv, in ORBid orb_identifier);
};

ORB_init() is provided to obtain a reference to an ORB pseudo-object. Ordinarily
operations must be associated with an interface, but ORB_init() is freestanding.
ORB_init() takes the command line arguments from a UNIX shell-style process launch and
removes any that are intended for the ORB. It also takes the name of the ORB to be initialized
in the form of a string.

The ORB interface supports some further operations to allow any ORB user to get access to
fundamental object services and/or facilities by name. The most important of these for object
implementations is an object adapter. The following IDL shows the signature of
BOA_init(), which is the way to obtain a reference to a BOA pseudo-object.

module CORBA{
 interface ORB{//PIDL
 typedef string OAid;
 typedef sequence <string> arg_list;

 BOA BOA_init(inout arg_list argv,
 in OAid boa_identifier);

As with the ORB initialization, the argument list may be scanned for BOA-specific arguments
and it will be returned with these removed. The object adapter identifier parameter,
boa_identifier, must be passed a string specified by the particular ORB vendor.

The declarations following allow the ORB user to find out which basic services and facilities
the ORB supports and obtain references to their objects. This mechanism is also used to obtain
a POA reference. The list_ini-soft

Page 71

tial_services() operation provides a list of the strings that identify the services and
facilities, and the resolve_initial_references() operation takes these strings as an
argument and returns an object reference.

//interface ORB cont...
 typedef string ObjectId;
 typedef sequence <ObjectId> ObjectidLIst;

 exception InvalidName{};

 ObjectIdList list_initial_services();

 Object resolve_initial_references (in ObjectId identifier)
 raises (InvalidName);

 };//interface ORB

};//module CORBA

The resolve_initial_references() operation is a bootstrap to get object references
to the POA and CORBAservices, such as the Naming Service, Interface Repository, and
Trading Service. The argument is a string specified in each CORBA service specification, for
example, "NameService" for the Naming Service and "TradingService" for the Trader.

The type of interface expected as a return type is well known, and the object reference returned
can be narrowed to the correct object type: CosNaming::NamingContext for the
Naming Service and CosTrading::Lookup for the Trading Service. See Chapter 8 for a
full explanation of how to obtain these references using the Java language binding and how to
use them to obtain references to application objects.

3.6—
Basic Object Adapter

For the object implementer, the BOA is the interface used to inform the ORB when objects
come into existence and when running processes or tasks are ready to accept incoming requests
on those objects. However, for the client the BOA is the component of the ORB that ensures
that an invocation on an object reference always reaches a running object that can respond to it.
That is, the BOA is capable of launching processes, waiting for them to initialize, and then
dispatching requests to them. To do this it needs access to the Implementation Repository—a
component proprietary to each ORB which stores information about where the executable code
that implements objects resides and how to run it correctly.

The CORBA specification lists the creation, destruction, and lookup of information relating to
object references as one of the BOA's primary functions. It provides pseudo-IDL (PIDL)
descriptions of interfaces to do this.break

Page 72

These will be described later for completeness. However, in effect, creation and destruction of
object references is managed by code that is generated by IDL compilers as part of the
implementation skeleton. When implementation objects are created their object references are
usually created with them.

3.6.1—
Registration, Activation, and Deactivation of Implementations

Let's look at what a program that implements some objects needs to do to allow the skeletons
for those objects to be called and cause the methods of the objects to be invoked.

module CORBA{//PIDL

 interface BOA{
 void impl_is_ready (in ImplementationDef impl);
 void deactivate_impl (in ImplementationDef impl);
 void obj_is_ready (in Object obj, in ImplementationDef impl);
 void deactivate_obj (in Object obj);

 //continued....
 };

};

The program implementing an object may have been started by some external means or by the
BOA using the information in the Implementation Repository. The BOA should use policy
information in the Implementation Repository to determine how to start the program (or server
process) and what registration calls to expect. Four policies are explained in the CORBA
specification:

Shared server activation policy. According to CORBA, each object should register
itself with an obj_is_ready() operation if the process it runs in supports many
objects. This is called the shared server activation policy. The obj_is_ready()
operation is invoked to associate a running object implementation with an entity in the
Implementation Repository. When an object can no longer respond to requests it should
inform the BOA using the deactivate_obj() operation. Most ORBs provide
automatic deregistration of objects in the destructor of the generated skeleton code.

Unshared server activation policy. In the unshared server activation policy the
process encapsulates an application that supports only one object interface. In this case,
when all the other initialization has been completed, the impl_is_ready()
operation should be invoked. This associates the single object with an entity incontinue

Page 73

the Implementation Repository. The deactivate_impl() operation informs the
BOA that the server can no longer service requests.

Server-per-method activation policy. In the server-per-method activation policy a
new process is started for each request received by the BOA. The standard says that no
registration call is needed in this case, but ORBs that support this policy often require
an impl_is_ready() call to notify the ORB that requests can be served.

Persistent server policy. A persistent server is a process that is started by some means
other than BOA activation. Typically an operating system script or user command starts
the server. In this case the impl_is_ready() operation should be used to register
the server with the BOA.

Some ORBs' BOAs support only impl_is_ready() and don't allow objects to be
activated individually, while others support both approaches, even in programs that use the
shared activation policy. Some offer the above activation policies explicitly, but not
necessarily using the registration operations specified. Others support orthogonal policies
which consider the caller's identity. Most ORBs implement impl_is_ready() as a
dispatch loop that doesn't return while the server is accepting requests and which calls
deactivate_impl() if interrupted.

In short, BOA implementations vary a great deal, and object implementers should not only be
aware of their responsibilities when initializing implementations, but they should be aware of
the peculiarities of their ORB. See Chapter 7 for details of what Java ORBs require.

3.6.2—
BOA Implementation

The BOA is a logical component of the ORB, but its implementation is usually divided
between the ORB daemon, the BOA pseudo-object, and the generated code from the IDL
compiler. As one would expect, the ORB daemon takes responsibility for launching processes.
The BOA pseudo-object provides the interface that is invoked to register the objects.

Two common strategies are used by ORBs for object-oriented languages when incorporating
the skeleton code into the object implementation. The first is to inherit the generated skeleton
class into each implementation of an interface described in the IDL file. The base class is then
responsible for supporting interactions between the ORB and the implementation methods. The
second approach is to generate a proxy class that implements the same functionality as the
skeleton class, but is not inherited by the class that implements the object's application
semantics. When a logical CORBA object is instantiated, the application implementercontinue

Page 74

must actually instantiate two objects, the proxy object and an implementation object. The proxy
object must then be given a reference to the implementation object so that it can delegate
incoming requests there. This is called the Tie approach, as the application developer must
''tie" the proxy and implementation objects together when they are created.

In the programming chapters of this book we use the inheritance approach, but the Tie approach
is covered in Chapter 10.

3.6.3—
Other Functions

The BOA interface description provided in the CORBA module contains several additional
operations that are seldom used by any ORB implementation. The generation of object
references is usually done implicitly when a programming language reference to an
implementation object is passed as a parameter. The handling of authentication and access
control is done by a higher level service. The reference data in an object reference may be
used for many purposes, among them retrieval of persistent state. The following IDL supports
object reference creation for non-object-oriented languages and retrieval of information from
object references.

//interface CORBA::BOA PIDL cont...

 interface Principal;
 typedef sequence <octet, 1024> ReferenceData;

 Object create(
 in ReferenceData id,
 in InterfaceDef intf,
 in ImplementationDef impl);

 void dispose(in Object obj);
 ReferenceData get_id (in Object obj);

 void change_implementation (
 in Object obj,
 in ImplementationDef impl);

 Principal get_principal(
 in Object obj,
 in Environment ev);

 };//interface BOA
};//module CORBA

Generation of object references. As explained in section 3.5.2, an object reference has three
main components: a unique key within the server implementation, the object's interface type,
and a way of locating its imple-soft

Page 75

mentation, for example, an IP address and port number. Not surprisingly, these are the
parameters that the create() operation needs to create a new object reference. It is unlikely
that this operation will actually be offered in most ORB implementations, as object references
are created implicitly from implementation objects by the ORB. The way to safely delete an
object reference is by passing it to the dispose() operation.

The change_implementation() operation associates a new object implementation with
a particular object reference. This must be done with care, making sure to deactivate the object
before switching its implementation. There are security problems with providing access to a
new object implementation using an existing object reference. Most objects will be associated
with a single implementation for the duration of their life span.

Access control. The get_principal() operation is used to determine the identity of a
client that caused the activation of an object. It will generally be used by a higher level security
service.

Persistence. The get_id() operation will return the reference data of an object reference
that is guaranteed to be unique within the server that implements the object. This uniqueness
means that it can be used as a key to a database table which contains a persistent state that
survives between activations of a server.

3.7—
The Portable Object Adapter

The semantics of the BOA specification were left intentionally vague because it was not clear
which features would be required on various platforms or how implementations would be
achieved. As a result, different vendors implemented different parts of the BOA with
differences in their semantics. This implementation experience was used as the basis for the
specification of the portable object adapter (POA), which aims to eliminate these
inconsistencies and standardize some of the proprietary features that have emerged to fill the
gaps in the BOA specification.

3.7.1—
POA Overview

The POA aims to provide a comprehensive set of interfaces for managing object references and
their implementations, now called servants. The code written using the POA interfaces should
now be portable across ORB implementations and have the same semantics in every ORB.

The POA defines standard interfaces to

• Map an object reference to the servant that implements that object

• Allow transparent activation of objectscontinue

Page 76

• Associate policy information with objects

• Make a CORBA object persistent over several server process lifetimes

The use of pseudo-IDL has been deprecated in favor of an approach that uses ordinary IDL,
which is mapped into programming languages using the standard language mappings, but which
is locality constrained. This means that references to objects defined in POA may not be
passed outside of a server's address space. One addition has been made to IDL: the native
keyword. Parts of the specification tagged as native may be mapped to programming languages
in a manner different from the standard language mappings.

The rest of this section will explain the architecture of the POA and provide an overview of the
important interfaces it provides as well as the object activation policies that the interfaces may
administer.

3.7.2—
POA Architecture

First it is useful to provide definitions of some key concepts used in the POA specification:

Servant. An implementation object that provides the runtime semantics of one or more
CORBA objects.

Object ID. An identifier, unique with respect to a POA, that the POA uses to associate
a CORBA object identity with a servant.

Active object map. A table of associations between Object IDs and servants kept by a
POA to allow it to dispatch incoming requests.

Incarnate. The action of providing a running servant to serve requests associated with
a particular Object ID. A POA will keep this association in its active object map.

Etherealize. The action of destroying a servant associated with an Object ID, so that
the Object ID no longer identifies a CORBA object with respect to a particular POA.

Default servant. An object to which all incoming requests for Object IDs not in the
Active Object Map are dispatched.

3.7.3—
POA Policies

The policies used by POAs are divided into several interacting categories:

ID uniqueness. Whether more than one Object ID may refer to the same servant object.

The names of the policies are UNIQUE_ID and MULTIPLE_ID.

ID assignment. Whether the POA or the programmer assigns Object IDs. The names of
the policies are USER_ID and SYSTEM_ID.break

Page 77

Lifespan. Whether objects are transient or persistent. That is, whether the CORBA
object is available to clients after the server process dies or whether it returns the
OBJECT_NOT_EXIST exception when the server is reactivated. The names of the
policies are TRANSIENT and PERSISTENT.

Servant retention. Whether the POA keeps Object ID/servant associations in its
Active Object Map or relies on default servants or servant locators to find servants for
each request. The names of the policies are RETAIN and NON_RETAIN.

Request processing. Whether the POA uses only the Active Object Map, only the
default servant, only a servant locator, or some combination of these to locate the
correct servant for incoming requests. The POA also relies on the value of the servant
retention policy to determine its request processing behavior. The names of the policies
are USE_ACTIVE_OBJECT_MAP_ONLY, USE_DEFAULT_SERVANT, and
USE_SERVANT_MANAGER.

Servant manager. A programmer-supplied object that manages servants. There are
two subtypes of this abstract interface: activators and locators.

Servant activator. An object that a POA uses to incarnate objects for continued use
and then to etherealize them when their life cycle is complete.

Servant locator. An object that a POA uses to obtain a servant to invoke a single
operation on an object identified by an Object ID. A POA will not place this
association in its Active Object Map.

The purpose of a POA is to dispatch incoming invocation requests to the correct servant object.
It does so based on policies determined by the programmer of the CORBA server. This allows
a range of behaviors from automatic generation of unique Object IDs, which are kept with
servant references in the Active Object Map, to the use of programmer-supplied servant
manager objects, which interpret Object IDs and return appropriate servants for invocations.

There can be more than one POA active in a particular server; however, there is always a root
POA from which all of the other POAs are created. Each POA has a name relative to the POA
in which it was created, and a find operation is defined to allow POAs to be located (and
activated) by their parents. POAs themselves have manager objects which activate them and
may change their processing state to allow them to suspend processing of requests or even to
discard requests for some period (see Figure 2.12).break

Page 78

Figure 2.12
POA architecture.

Thread policy. Determines whether single or multiple threading is used so that safe
deletion of servants may be achieved. The names of the policies are
ORB_CTRL_MODEL and SINGLE_THREAD_MODEL.

Implicit activation policy. Determine whether the POA can implicitly activate a
servant or whether it needs to call a servant activator to do so. The names of the
policies are IMPLICIT_ACTIVATION and NO_IMPLICIT_ACTIVATION.

Policies are specified as IDL interfaces in the PortableServer module. They all derive
from a base interface called CORBA::Policy. The values that the policy objects represent
are specified as read-only enum attributes. There are factory operations defined in the POA
interface for creating these objects. For example, the LifespanPolicy object is specified
as follows:break

Page 79

enum LifespanPolicy Value{
 TRANSIENT,
 PERSISTENT
};

interface LifespanPolicy{
 readonly attribute LifespanPolicyValue value;
};

with the following operation defined in the POA interface to create the object:

LifespanPolicy create_lifespan_policy(in LifespanPolicyValue value);

The way in which a new POA is created and initialized is by using the root POA (or one of its
extant children) to create policy objects which are then passed in a sequence to the
create_POA() operation.

Following are some useful policy combinations for child POAs:

RETAIN and USE ACTIVE OBJECT MAP ONLY. This combination resembles the
default situation of most ORBs implemented with the BOA. It relies on servers to
explicitly activate new objects using the activate_object() or
activate_object_with_id() operations.

RETAIN and USE_SERVANT_MANAGER. This is a portable way of allowing a
server to implement a generic servant manager interface (namely
ServantActivator). The POA uses the ServantActivator when an object is
not found in the Active Object Map. Each ServantActivator supports the
operation incarnate(), which takes an Object ID and returns the servant that
implements the object identified.

RETAIN and USE_DEFAULT_SERVANT. This combination assumes that objects
not found in the Active Object Map are to be implemented by a generic servant object
(probably using the DSI), which is registered with the POA as its default servant. The
POA will raise the OBJECT_ADAPTER system exception if no default servant has
been registered.

NON_RETAIN and USE_DEFAULT_SERVANT. This is similar to the previous
situation, except that no Active Object Map is kept, meaning that all requests are sent to
the default servant.

NON_RETAIN and USE_SERVANT_MANAGER. The server will configure a
POA to use this policy combination when it wishes to be in control of mapping each
incoming invocation request to the appropriate servant. The servant manager used in
this situation is a ServantLocator, which the POA calls using operationscontinue

Page 80

called preinvoke(), which obtains the servant which will service the request, and
postinvoke(), which allows the server to clean up afterward.

3.7.4—
POA Life Cycle

A reference to the root POA is always available from the ORB. Its name is RootPOA and it is
obtained using the ORB::resolve_initial_references() operation. It has a
predetermined set of policies, which can be summarized by saying that all object references
are transient, mapping a single servant to an Object ID which is set by the POA and retained in
the Active Object Map. When a server is being initialized it is responsible for setting up any
other (descendant) POAs that it requires to support its objects.

Creating POAs manually. In order to create other POAs, the createPOA() operation must
be invoked on the root POA. A hierarchy of POAs can be created by subsequently calling
createPOA() on the resulting child. When a POA is no longer required its destroy()
operation must be invoked. The other operation used in relation to children of a POA is
find_POA(), which allows a relative name to be resolved, returning an existing or newly
activated POA.

create_POA(in string adapter_name,
 in POAManager a_POAManager,
 in CORBA::PolicyList policies)
 raises (AdapterAlreadyExists, InvalidPolicy);

The create_POA() operation takes a name parameter and a POAManager parameter,
which is usually a nil object reference, indicating that the ORB should assign a manager to the
POA. It also requires a list of consistent policies, such as the combinations given previously.

find_POA (in string adapter_name, in boolean activate_it)
 raises (AdapterNonExistent);

The find_POA() operation may find child POAs that have been activated by
create_POA() or it may be used to activate a POA using a preregistered adapter activator.

Adapter activators are associated with POAs at the time of their first creation and allow them
to be made persistent when their objects are not being used and reactivated when required. The
adapter activator for a POA is registered by setting the POA attribute called
the_activator.

Adapter activators have a single operation:break

boolean unknown_adapter(in POA parent, in string name);

Page 81

This operation is called when find_POA() is invoked with the activate_it argument
set to TRUE or when an invocation request is received nominating a POA that is not active. In
this case the activators are called in succession from the one closest to the root to the furthest
descendant. The parent parameter passes the reference of the parent POA to the activator. A
typical activator implementation retrieves any stored information about the child and uses the
parent POAs policy operations to create the correct policies. It then uses its create_POA()
operation to instantiate the child. If it can successfully create the child, the activator returns
TRUE from the unknown_adapter() call. The ORB can then call
unknown_adapter() on the adapter activator of the new child to activate the next POA in
the chain. For example, if the currently instantiated POA hierarchy consists only of the root
POA and its child A, an incoming request for an object controlled by a POA identified as
"<root>/A/B/C" will result in the following calls (in pseudo-code):

if (A.the_activator.unknown_adapter (A, "B"))
 then B.the_activator.unknown_adapter(B, "C")

POA references to other objects. Certain POA policies require the assistance of other
objects, such as managers, and the POA interface provides operations to set and get references
to these objects. References to other objects are implicit in the POA's position in the hierarchy

or are derived from the arguments provided to its parent at creation.

There are a number of attributes that POAs support:

readonly attribute string the_name;
readonly attribute POA the_parent;
readonly attribute POAManager the_manager;
attribute AdapterActivator the_activator;

The read-only attributes allow users of the POA (ORB and server implementers) to access the
name of the POA with respect to its parent, the POA's parent, and its manager. The writable
attribute the_activator must be set if this POA is not always created by the server
initialization code.

If the USE_DEFAULT_SERVANT policy is set, a servant must be nominated

as the default using:

void set_servant(in Servant p_servant) raises(WrongPolicy)

The default servant can be retrieved using:

Servant get_servant() raises (NoServant, WrongPolicy);

The WrongPolicy exception is raised by both operations if the USE_DEFAULT_SERVANT
policy is not set. NoServant is raised by get_servant() when set_servant() has
not yet provided a default servant.break

Page 82

If the USE_SERVANT_MANAGER policy is set, the following operations are used in the same
manner as set/get_servant() to initialize the ServantManager to be used by the
POA:

void set_servant_manager(in ServantManager imgr)
 raises(WrongPolicy);
ServantManager get_servant_manager()
 raises(WrongPolicy);

3.7.5—
Using the POA to Create Object References

The other operations of the POA interface are for mapping Object IDs to servants and for
activating servants that already have Object IDs, thereby creating usable object references that
can be handed to clients. If the USER_ID policy is set, servers can allocate their own Object
IDs and map them to servants using the following operation:

void activate_object_with_id(
 in ObjectId id,
 in Servant p_servant)
 raises (ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy);

The ServantAlreadyActive exception is raised if the servant is already mapped and the
UNIQUE_ID policy is set. The ObjectAlreadyActive exception is raised when this
Object ID is already in use.

When the SYSTEM_ID policy is set, activate_object_with_id() will raise the
WrongPolicy exception and explicit server activation must be done using:

ObjectId activate_object(in Servant p_servant)
 raises (ServantAlreadyActive, WrongPolicy);

The return value is the POA's allocated Object ID for the new servant.

One more step is required (under the USER_ID policy) to make a usable object reference. The
create_reference_with_id() operation is used to associate an object reference with
an Object ID and hence with its active servant.

Object create_reference_with_id(
 in ObjectId oid,
 in CORBA::RepositoryId intf)
 raises(WrongPolicy);

The Object ID becomes associated with an object reference and conforms to the type specified
in the Interface Repository using the repository ID provided as the intf argument. The
association between Object IDs and object references can be made by the POA when the
policy is SYSTEM_ID:break

Page 83

Object create_reference(in CORBA::RepositoryId intf)
 raises(WrongPolicy);

Once the object is no longer required, its Object ID is deallocated and the mapping is removed
from the Active Object Map using

void deactivate_object(in ObjectId oid)
 raises(ObjectNotActive, WrongPolicy);

3.7.6—
Discovering the Mappings in a POA

If the Active Object Map is being used (RETAIN policy is set) the following operations allow
its mappings between Object ID, object reference, and servant to be interrogated:

ObjectId reference_to_id(in Object reference)
 raises (WrongAdapter, WrongPolicy);
Object id_to_reference(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);
Servant reference_to_servant(in Object reference)
 raises (ObjectNotActive, WrongAdapter, WrongPolicy);
Servant id_to_servant(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);

The mappings from servant to Object ID and reference can also be obtained if the
UNIQUE_ID policy is set:

ObjectId servant_to_id(in Servant p_servant)
 raises(ServantNotActive, WrongPolicy);
Object servant_to_reference(in Servant p_servant)
 raises(ServantNotActive, WrongPolicy);

3.7.7—
The Current Interface

When a servant implements methods for more than one Object ID it often needs to know which
CORBA identity is associated with the request that has been dispatched to it. For this purpose
an interface is defined that allows the servant to acquire information about its POA and its
Object ID in that POA. The CORBA::Current interface is inherited by the
PortableServer::Current interface, which adds the following operations:

POA get_POA() raises(NoContext);—this operation allows the servant to determine
which POA processed the request, and to examine the policies of that POA.

ObjectId get_object_id() raises (NoContext)—this operation allows the Object ID
relative to that POA to be discovered, and the servant can use this identity to access the
correct state for the CORBA object it is serving for the current invocation.break

Page 84

3.8—
Language Mappings

The OMG has standardized four language bindings and has RFPs issued to standardize several
more. The current adopted specifications are C, C++, Smalltalk, Ada '95, COBOL, and Java.

3.8.1—
C

The C mapping was published along with the CORBA 1.1 specification. It provides an
example of how to implement CORBA clients and servers in a non-object-oriented language.
Operation and interface names are concatenated to provide function names and object
references are passed explicitly as parameters.

3.8.2—
C++

The C++ language mapping is the most widely supported language mapping at the moment. Its
syntactic resemblance to IDL provides class definitions that very closely mirror IDL interface
definitions. The generated stub code can be incorporated by inheritance into object
implementation classes or delegate to them. The major drawback of this mapping is that
implementers of clients and servers must pay very close attention to memory management
responsibilities. The rules for allocation and deallocation of data memory are just as complex
as old-style Remote Procedure Call (RPC) programming. Some helper classes are defined that
can deallocate memory when they go out of scope, but these must be declared and used with
care because they might deallocate memory that is still being used by another object.

3.8.3—
Smalltalk

Smalltalk is a dynamically typed, single-inheritance object-oriented language in which all
types are first-class objects. The datatype mappings use existing Smalltalk classes and

operations map to methods on classes. The way in which IDL interfaces map to Smalltalk
objects is unconstrained. Explicit protocol mappings are made for some IDL types, such as
unions and Anys, which provide a standard way of accessing their discriminators and
TypeCodes, respectively. However, implicit mappings may be used by programmers.

3.8.4—
COBOL

The IDL/COBOL mapping was adopted in 1997. Since COBOL is not object oriented the
mapping is not as natural as, for example, those for C++ orcontinue

Page 85

Java. In particular, IDL concepts such as name scopes, interfaces, and inheritance require
complex mapping rules. The datatype mapping is based on the optional COBOL typedef
construct. However, older COBOL compilers may not provide typedefs, in which case the
mapping has to use COBOL copy files as an alternative.

3.9—
Interoperability

The CORBA 2.1 specification has a section called Interoperability. It specifies an architecture
for interoperability, as well as an out-of-the-box interoperability protocol, running over
TCP/IP, and a second, optional protocol which uses the DCE RPC transport.

The specification contains a lot of technical detail about the protocols specified and about
bridging between proprietary protocols. Here we will give an overview of the framework
within which the two specified protocols exist and of the mandatory Internet Inter-ORB
Protocol (IIOP). The rest of the standard applies to ORB implementers and will not be
covered.

3.9.1—
The ORB Interoperability Architecture

The architecture contains definitions of ORB domains, bridges, and interoperable object
references (IORs). It defines domains as islands within which objects are accessible because
they use the same communication protocols, the same security, and the same way of identifying
objects. In order to establish interoperability between domains, one of these elements must be
replaced with a common element or a bridge must be set up to facilitate translation of the
protocol, identity, authority, etc., between domains.

The approach of the architecture is to identify the things that can be used as common
representations (canonical forms) between domains and then suggest ways in which ORB
domains can create half-bridges that communicate using the common representation. The first
step, a common object reference format, is defined as part of the architecture. An IOR contains
the same information as a single domain object reference, but it adds a list of protocol profiles
indicating which communication protocols the domain of origin can accept requests in. The
protocol interoperability problem is addressed in a separate component called the General
Inter-ORB Protocol (GIOP). Allowance is also made for the introduction of third-party
protocols, called Environment-Specific Inter-ORB Protocols (ESIOPs), within this framework.

Figure 2.13 illustrates the relationships between these protocols.break

Page 86

Figure 2.13
ORB protocols.

3.9.2—
General Inter-ORB Protocol

The GIOP defines a linear format for the transmission of CORBA requests and replies without
requiring a particular network transport protocol.

3.9.3—
Internet Inter-ORB Protocol

The IIOP is a specialization of the GIOP which specifies the use of TCP/IP (the Internet
Protocol). It defines some primitives to assist in the establishment of TCP connections. This
protocol is required for compliance with CORBA 2.0 and is intended to provide a base-level
interoperability between all ORB vendors' products, even though some vendors will continue
to support proprietary protocols. Java ORBs are all implemented using IIOP.

3.9.4—
Other Approaches

As can be seen in Figure 2.13, the interoperability architecture allows for the specification of
ESIOPs, which will provide ''islands of interoperability," but which should be able to be
bridged to other ORBs using IIOP. The first adopted ESIOP is the DCE Common Inter-ORB
Protocol (DCE-CIOP), which was already used by a number of ORBs before the introduction
of GIOP/IIOP.

An alternative implementation for GIOP can be expected for 1998. There are projects in
progress to implement GIOP directly over ATM protocol layers. Most likely the
implementation will choose AAL5.

Before the CORBA 2.0 specification was introduced, each ORB vendor had to choose or
invent a protocol for the transmission of invocation requests and responses. Most vendors have
a customer base with extant objects that use a certain protocol, and so it is in their interest to
continuecontinue

Page 87

to support old protocols alongside IIOP. However, leading ORB products now support IIOP as
their native protocol.

3.10—
TypeCode, Any, and DynAny

This section gives details about the interfaces to the generic container type Any and its
supporting type, the TypeCode, which it uses to identify its contents. The ORB Portability
Specification adopted by the OMG in 1997 extends the functionality available from Anys by
adding a new interface called DynAny, which allows programmers to navigate the contents of
Anys and access constituent parts without requiring compiled stub code with which to extract
the entire contents of an Any.

3.10.1—
Any

The Any type is a basic type in IDL. It designates a container that can contain a value of any
IDL type and identifies the type of its contents for typesafe extraction of the value. The
pseudo-IDL type TypeCode is used to identify the type of a value in an Any and can be used
outside of the context of Anys to identify IDL types in general. TypeCodes are not IDL basic
types, but they may be declared as parameters to operations and members of structured types.

Since the keyword any in IDL is a basic type, and it does not have a signature represented in
PIDL, it is left to each language mapping to define the mechanism for inserting and extracting
values from Anys and defining the TypeCodes that identify the values they contain.

3.10.2—
Language Mapping for Anys

The mapping for Anys in Java is given in Chapter 6, and provides methods on an Any class that
allow the insertion and extraction of all basic types, as well as additional methods on Helper
classes for IDL-defined types that produce Anys. To provide a very basic notion of what an
Any is, let's look at the C mapping

typedef struct CORBA_any{
 CORBA_TypeCode _type;
 void * _value;
} CORBA_any;

There are no helper functions defined in the mapping, and programmers are responsible (as is
usual in C) for ensuring that the _value structure member is cast in a type-safe manner. To do
this the programmer must compare the _type member against TypeCode constants that
correspond tocontinue

Page 88

known IDL types and then cast the _value member to the mapped C type for that IDL.

3.10.3—

TypeCode

The ORB specification defines a PIDL interface to a type called TypeCode, which is used to
describe any IDL type. TypeCodes are one of only two PIDL types that can be used in IDL
definitions as components of structured types or as parameter and return types of operations or
attribute values. The other is Principal which is used for Security. The PIDL for TypeCodes is
given in the Interface Repository section of the CORBA 2.1 document. However, they are
implemented as a combination of library and IDL compiler-generated code and are available to
CORBA programmers independent of the Interface Repository.

In concept a TypeCode consists of a kind field and a set of parameters that provide more
information about that kind of TypeCode. For example, a TypeCode for a struct will give the
name of the struct and the names and types (using recursive TypeCodes) of the members of that
struct. The PIDL for TypeCode provides operations to allow the programmer access to the
parameters, as well as an operation to compare TypeCodes for equality. All of the following
PIDL is situated in the CORBA module.

TypeCode kinds. The kinds of types in IDL are given as an enumeration. The kinds have been
extended by the IDL Type Extensions Specification (OMG document ptc/97-01-01) to include
wide characters and strings, fixed-point decimal numbers, and 64-bit integers and
floating-point numbers. The extensions are given in italics below:

enum TCKind{
 tk_null, tk_void,
 tk_short, tk_long, tk_ushort, tk_ulong,
 tk_float, tk_double, tk_boolean, tk_char,
 tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
 tk_struct, tk_union, tk_enum, tk_string,
 tk_sequence, tk_array, tk_alias, tk_except,
 tk_longlong, tk_ulonglong, tk_longdouble,
 tk_wchar, tk_wstring, tk_fixed
};

Internationalization is also supported implicitly by the character and string types, whose
semantics now include the possible use of two-byte characters.

TypeCode operations. The TypeCode interface provides an equality operator whose
semantics are not well defined—interface TypeCode{//PIDL:break

boolean equal (in TypeCode tc);

Page 89

Most ORB implementations perform a simple comparison that returns TRUE only when the
types compared have the same repository ID. That means that no structural comparisons are
performed and no typedef aliasing is taken into account.

Making an analysis of a TypeCode begins with determining its kind with the kind()
operation, so that other appropriate operations may then be chosen to learn more about the
type:

TCKind kind();

Most types also have definitions stored in the Interface Repository, which can be used as an

alternative source of type information. The id() operation returns the RepositoryId for any
nonbasic type. Basic types are not stored in the Interface Repository, and if the TypeCode's
kind is inappropriate, a BadKind exception is raised. This exception is raised whenever an
operation inappropriate to a TypeCode's kind is invoked:

exception BadKind{};
RepositoryId id() raises (BadKind);

Object references and structured types, except for sequences, always have an interface or tag
name. These are returned using the name() operation:

Identifier name() raises (BadKind);

Structs, unions, enums, and exceptions contain named member fields. The number and names of
these members are discovered using the following operations. The exception Bounds is
raised by indexed operations when the index parameter exceeds the number of elements:

exception Bounds{};
unsigned long member_count() raises (BadKind);
Identifier member_name (in unsigned long index)
 raises (BadKind, Bounds);

The members of structs, unions, and exceptions (but not enums) each have a type as well. These
are returned as nested TypeCodes, which can be interpreted in the same way as their parent
TypeCode:

TypeCode member_type(in unsigned long index)
 raises (BadKind, Bounds);

Unions also have a discriminator type and label values of that type for each member, as well as
an optional default case. The member_label() opera-soft

Page 90

tion will return the value for each case. It returns an Any containing a zero octet for the default
case, if it exists. The discriminator_type() operation returns the TypeCode of the
ordinal type in the switch clause of the union, and the default_index() operation returns
the index of the member that corresponds to the default case or zero if it does not exist.

any member_label (in unsigned long index)
 raises (BadKind, Bounds);
TypeCode discriminator_type() raises (BadKind);
long default_index() raises (BadKind);

Sequences and strings may be bounded to a certain length, and arrays are always of a fixed
length. The return value from the length() operation is zero for unbounded sequences and
strings:

unsigned long length() raises (BadKind);

Arrays and sequences contain elements of a particular type, and typedef aliases also refer to a
previously declared type. The content_type() operation returns a TypeCode which can
be interrogated to find out what type they contain:

TypeCode content_type() raises (BadKind);

Standard TypeCode Instances. The CORBA module defines TypeCode constants for all
basic IDL types. For example, the constant _tc_long represents the TypeCode for longs.

IDL compilers usually generate TypeCode instances to correspond to all types in an IDL
definition. They are named according to the language mapping. However, if no stubs are
available for a particular type the ORB interface defines operations to create TypeCodes from
relevant parameters and a RepositoryId to nominate the IDL in which the type belongs. These
are seldom used, and we will only give an example here:

TypeCode create_union_tc (
 in RepositoryId id,
 in Identifier name,
 in UnionMemberSeq members
);

The UnionMemberSeq type is defined in the Interface Repository specification.

3.10.4—
DynAny

The ability to access the contents of an arbitrary Any had not been specified in CORBA until
the adoption of the ORB Portability specification, and verycontinue

Page 91

few ORB implementations provided the ability to do so without access to compiled stub code.
The implementation of Object Services and other interfaces that use the type Any to pass
arbitrary values for storage or transmission often requires some access to these values in order
to perform their specified semantics. DynAny provides an interface to do this in a standard
way. It is part of the CORBA module.

An Any must first be inserted into a DynAny before its values can be accessed. A DynAny
cannot be used as an operation parameter directly, and so a conversion back to an Any is also
required. This functionality is provided as follows:

Interface DynAny{
 exception Invalid{};
 void from_any (in any value) raises (Invalid);
 any to_any() raises (Invalid);

Assignment of one DynAny to another, production of a new copy of an existing DynAny, and
the destruction of DynAnys are achieved using the following operations:

• void assign (in DynAny dyn_any) raises (Invalid);

• DynAny copy();

• void destroy();

The DynAny interface also supports operations for the insertion and extraction of all the IDL
basic types. These take the form of a pair of operations per basic type:

exception InvalidValue{};
exception TypeMismatch{};

void insert_basic_type (in basic_type) raises (InvalidValue);
basic_type get_basic_type() raises (TypeMismatch);

However, it is easy enough to insert and extract basic types from Anys, so DynAny extends this
functionality by adding operations to traverse structured types. These return new DynAnys that
refer to individual components of a structured type, which can be recursively traversed. The
model is that of a cursor pointing to a current element.break

 DynAny current_component();
 boolean next();
 boolean seek (in long index);
 void rewind();
 //...
};//interface DynAny

Page 92

The boolean return values are set to TRUE if there is a component at the index that they move
the cursor to. The components of structured types depend on the type. For example, the
components of structures are their members and the components of arrays and sequences are
their elements. The specification then defines a number of interfaces that inherit from DynAny
to provide more specific access to the components of particular structured types. We will look
at a number of significant examples.

Accessing Structs. The interface DynStruct provides a way of getting the names of
structure members, and getting and setting their values:

typedef string FieldName;
struct NameValuePair{
 FieldName id;
 any value;
};

typedef sequence<NameValuePair> NameValuePairSeq;

interface DynStruct: DynAny{
 FieldName current_member_name();
 TCKind current_member_kind();
 NameValuePairSeq get_members();
 Void set_members (in NameValuePairSeq value)
 Raises (InvalidSeq);
 };

The operations inherited from DynAny are used to move the current cursor, and the new
operations access the value at the cursor.

Accessing Enums. The type DynEnum provides attributes that allow access to and change the
value of an enum as either a string tag name or a long integer value:

interface DynEnum : DynAny{
 attribute string value_as_string;
 attribute unsigned long value_as_ulong;
};

3.11—
Dynamic Invocation and Dynamic Skeleton Interfaces

This section describes the interfaces to the symmetrical pair of ORB components, the Dynamic
Invocation Interface (DII) on the client side and the Dynamic Skeleton Interface (DSI) on the
server side. The DII enables a client to invoke operations on an interface for which it has no
compiled stub code. It also allows a client to invoke an operation in deferred synchronous
mode. That is, it can send the request, do some further processing, and thencontinue

Page 93

check for a response. This is useful regardless of whether or not the interface type is known at
compile time, since it is not available via a static, or stub-based, invocation.

The DSI is used to accept a request for any operation, regardless of whether it has been defined
in IDL or not. The mechanism allows servers to implement a class of generic operations of
which it knows the form but not the exact syntax. It helps in writing client code that uses
compiled IDL stubs based on an abstract IDL template. The client can then invoke operations
on a compiled proxy stub in a type-safe manner.

3.11.1—
Requests (DII)

The heart of the DII is the Request interface. A request has an object reference and a target
operation name associated with it, as well as operations to add arguments. Once the request
has the correct arguments it is invoked using the invoke() operation, and this blocks in the
same way as a stub invocation until the response (or an exception) is returned.

3.11.2—
Deferred Synchronous Invocation

The send() operation provides the means for a deferred synchronous invocation. This returns
to the caller immediately and allows the client to perform some processing while the request is
being transmitted and executed. The get_response() operation, when called in this
situation, will either block until the request has returned its response or, if a flag is set, it will
return a status value indicating whether or not the request has completed. Operations are also
provided, but not specified in PIDL, for sending the requests to multiple objects and getting the
responses from these invocations.

The PIDL in the CORBA document does not specify the types of all the parameters and return
values of the operations on a Request, and so we provide the details of these operations in
Chapter 7. The use of the DII in Java is demonstrated in Chapter 10.

3.11.3—
ServerRequests (DSI)

In a particular object adapter implementation, an object reference is usually associated with an
object implementation of the equivalent type in a particular language binding. However, an
implementation that can deal with requests of several object types, called a Dynamic
Implementation Routine (DIR), could be associated with an object reference instead. In this

case, the object adapter does not look up a particular method and make an up-call by passing it
the arguments in a request. Instead it creates a ServerRequest pseudo-object and passes this to
the DIR. This is the definition of the ServerRequest interface:break

Page 94

module CORBA{

 pseudo interface ServerRequest{
 Identifier op_name();
 Context ctx();
 void params(inout NVList params);
 Any result();
 };
};

The DIR can check the interface on which the request was made and look up its details using
the Interface Repository. It could also be expecting requests of a known form and not require
any IDL details. It can use the interface above to check the operation name, unpack the
arguments, and find a location in which to place the result. The Java language mapping for the
DSI is explained in Chapter 7.

3.11.4—
Named Value Lists and Contexts

The PIDL for the Request and ServerRequest interfaces uses the PIDL type NVList to
represent the values in an argument list. It is a type that is defined in each individual language
mapping for the best implementation. However, it is logically equivalent to the following PIDL
definition:

struct NamedValue{
 Identifier name;
 any argument;
 long len;//length/count of argument value
 Flags arg_modes;//in, out, or inout
};

typedef sequence <NamedValue> NVList;

The other type that is used in requests is the Context. This is another construct that is more
concretely defined in particular language bindings. Its PIDL may not be directly translated
using the language mapping. The PIDL is not given here but is explained in full in Chapter 7.

3.12—
Interface Repository

The Interface Repository is a fundamental service in CORBA that provides information about
the interface types of objects supported in a particular ORB installation. It can be thought of as
a set of objects that encapsulate the IDL definitions of all CORBA types available in a
particular domain.

The Interface Repository specification defines a set of interfaces that correspond to each
construct in IDL: module, interface, operation, sequence, constant, etc. It also uses the idea of a

containment hierarchy to relate objects of these types to one another. The Container
interface is inherited by allcontinue

Page 95

IDL construct description interfaces that contain other constructs, and the Contained
interface is inherited by all the interfaces that describe IDL constructs contained in others. For
example, an interface can be contained in a module and can contain an attribute.

The term abstract interface is used to indicate that an interface is only meant to be inherited
into other interfaces. No objects of an abstract interface type will ever be instantiated. The
term concrete interface is used to indicate that objects of this interface type will be
instantiated.

All of the interfaces shown here are defined in the CORBA module. There are two mechanisms
for finding out the properties of virtually all IDL constructs:

The interfaces named idl-constructDef provide attributes and operations that
explain the construct's properties and relationship to other IDL constructs. For example,
SequenceDef is an interface definition with an attribute, bound, that gives the
upper bound of a bounded sequence, or zero for an unbounded sequence. It has another
attribute to return the type of the elements of the sequence it is describing.

The Contained interface has a describe() operation that returns an enumerate
value to identify the kind of IDL construct and a value of type Any which contains a
structure dependent on that kind. The CORBA module defines a structure corresponding
to each IDL construct named idl-constructDescription. The structure
contains the name, the repository identifier, the container where this construct is
defined, its version, and some other members depending on the kind. For example,
InterfaceDescription contains a list of base interfaces of the interface it
describes.

This design has received a good deal of criticism. Some of the problems that have been
observed with the current specification are

• It contains a large amount of redundancy.

• Often operations return RepositoryIds, which then need to be resolved at the Repository
interface rather than object references to the idl-constructDef objects denoted by the
Ids.

• Values are returned in a generic manner by base interfaces (e.g., in an Any) and then need to
be interpreted based on an enumerated type. This functionality should have been pushed down
to well-typed operations in the derived interfaces.

We recommend that you use Figure 2.14 as a basis for understanding the relationships between
interfaces, since the Interface Repository specification can get rather confusing.break

Page 96

Figure 2.14
Structure of the Interface Repository.

3.12.1—
The Abstract Base Interfaces

The interfaces to various syntactic constructs in IDL share common properties inherited from a
number of abstract base interfaces which provide the common properties of these groups.

The IRObject interface provides an attribute returning a value from an enumerated
type that distinguishes between all IDL syntactic constructs. This attribute is available
on all object references in the Interface Repository and allows the user to determine
what kind of IDL construct description object they have a reference to.

The Contained interface is inherited by all interfaces representing userdefined IDL
constructs and offers attributes to discover the name of the construct and to obtain a
structure that describes it.

The Container interface is inherited by the Repository, ModuleDef, and
InterfaceDef interfaces of the Interface Repository and contains operations to look
up and describe the contents of these containers. It also contains operations to create all
the objects thatcontinue

Page 97

inherit from Contained. These creation operations establish a containment
relationship between the Container and the object that its operations create.

The IDLType interface is inherited by all the interfaces that represent datatypes,

including all the basic type interfaces and user-defined datatype interfaces. It is also
inherited by InterfaceDef because interface types can be used wherever datatypes
are used in IDL. IDLType offers a single attribute that returns the TypeCode of the
construct it describes.

The TypedefDef interface is inherited by all the user-defined type interfaces that are
given a type name: structs, unions, enums, and typedef aliases. It offers a single
operation which describes the type.

3.12.2—
Nondatatype Interfaces

There is an interface for each IDL construct that forms part of an interface:

Repository—top level naming scope; can contain constants, typedefs, exceptions,
interface definitions, and modules

ModuleDef—a logical grouping of interfaces; can contain constants, typedefs,
exceptions, interface definitions, and other modules

InterfaceDef—can contain constants, typedefs, exceptions, operations, and
attributes

AttributeDef

OperationDef—consists of a list of parameters and raised exceptions

ExceptionDef

3.12.3—
Datatype Interfaces

The following objects are used to represent the datatypes that IDL offers:

ConstantDef

StructDef

UnionDef

EnumDef

AliasDef—typedefs that rename a defined type

PrimitiveDef—CORBA-defined types that cannot be changed by users

StringDef

SequenceDef

ArrayDefbreak

Page 98

3.12.4—

IDL Definitions of the Interface Repository Interfaces

The IDL for the Interface Repository separates the functionality of the operations and attributes
into read and write sections. The implementations of the Interface Repository that we have seen
only implement the read part of the specification. The repository is usually populated by the
IDL compiler using proprietary means. The purpose of this section is to allow users to
investigate the functionality of an interface at runtime, so we will ignore the write interface.

The IRObject Interface. This base interface offers only a read-only attribute which indicates
what kind of IDL object you have.

enum DefinitionKind{
 dk_none, dk_all,
 dk_Attribute, dk_Constant, dk_Exception, dk_interface,
 dk_Module, dk_Operation, dk_Typedef,
 dk_Alias, dk_Struct, dk_Union, dk_Enum,
 dk_Primitive, dk_String, dk_Sequence, dk_Array,
 dk_Repository
};

interface IRObject{
 readonly attribute DefinitionKind def_kind;
};

The Contained Interface.

typedef string VersionSpec;

interface Contained: IRObject{

 attribute RepositoryId id;
 attribute Identifier name;
 attribute VersionSpec version;

The read/write attributes are a global ID, a simple name, and a version (default set to 1.0).

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

The read-only attributes are the module, interface, or repository where the text of this construct
is defined; the scoped name of this instance of the construct; and the repository object where
this construct definition object is kept.break

struct Description{
 DefinitionKind kind;

Page 99

 any value;
};
Description describe();

The describe() operation returns a Description structure containing a kind and a
value. The value returned depends on the kind. We will see what values correspond to each
kind when we reach the concrete interfaces. The type name for the value will be of the form

idl-constructDescription, for example, InterfaceDescription for
interfaces.

The Container Interface.

typedef sequence <Contained> ContainedSeq;

interface Container: IRObject{
 Contained lookup (in ScopedName search_name);

The lookup() operation finds an object with a scoped name relative to this container. If the
scoped name begins with "::" then the name is found from the enclosing repository.

ContainedSeq contents (
 in DefinitionKind limit_type
 in boolean exclude_inherited
);

The contents() operation returns a sequence of the objects in this container. The list may
be limited to a certain type and may exclude inherited objects.

ContainedSeq lookup_name (
 in Identifier search_name
 in long levels_to_search
 in DefinitionKind limit_type
 in boolean exclude_inherited
);

The lookup_name() operation performs a recursive search down the containment hierarchy
for a simple name. Restrictions can be placed on the number of levels to search, the types
searched for, and whether or not to look at inherited objects.

The IDLType Interface.

interface IDLType:IRObject{
 readonly attribute TypeCode type;
};

This interface is inherited by built-in types like sequences and arrays, and offers only the
TypeCode of the object.break

Page 100

The TypedefDef Interface.

interface TypedefDef: Contained, IDLType{};

struct TypeDescription{
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
};

This interface combines the functions of the Contained and IDLType interfaces. Since it is
the base class for all user-defined datatype description objects and a derived interface of

Contained, it has a description structure that is returned by the describe() operation
which it inherits. The TypeDescription structure has a similar form to the other
idl-constructDescription structures. It serves for all interfaces derived from
TypedefDef, because its type member can describe any CORBA type.

The Repository Interface. This interface is the outer shell of the containment hierarchy and it
is where all the definitions for the base or primitive types are contained. It is also the starting
point for browsing and allows users to find definitions using their repository IDs.

enum PrimitiveKind{
 pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
 pk_float, pk_double, pkboolean, pk_char, pk_octet,
 pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref
};

interface Repository: Container{
 Contained lookup_id (in RepositoryId search_id);
 PrimitiveDef get_primitive (in PrimitiveKind kind);
};

The lookup_id() operation finds an object with a certain identifier in this repository. The
get_primitive() operation returns a primitive definition object contained in this
repository.

3.12.5—
The Multiply Derived Interfaces

Figure 2.14 shows that ModuleDef and InterfaceDef are the only concrete interfaces in
this specification that inherit directly from more than one abstract interface.

The ModuleDef Interface.break

interface ModuleDef: Container, Contained{};

struct ModuleDescription{
 Identifier name;

Page 101

 RepositoryId Id;
 Repositoryid defined_In;
 VersionSpec version;
};

ModuleDef offers the operations from Container and Contained and a structure that
allows them to be described in terms of name, ID, and version. This will be the value in the
Any returned from Contained::describe() for modules.

The InterfaceDef Interface. The InterfaceDef interface inherits operations from all
three of the second-level base interfaces.

interface InterfaceDef: Container, Contained, IDLType{
 attribute InterfaceDefSeq base_interfaces;
 boolean Is_a (in RepositoryId interface_id);

The base_interfaces attribute allows us to find all the interfaces that this interface
directly inherits. Is_a() returns TRUE if this interface has the identifier passed as an
argument and FALSE otherwise.

struct FullInterfaceDescription{
 Identifier name;
 RepositoryId Id;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 RepositoryIdSeq base_interfaces;
 TypeCode type;
 };

};//InterfaceDef
FullInterfaceDescription describe_interface();

struct InterfaceDescription{
 Identifier name;
 RepositoryId Id;
 RepositoryId defined_in;
 VersionSpec version;
 RepositoryIdSeq base_interfaces;
};

The describe_interface() operation returns a FullInterfaceDescription
structure that contains all the information about an interface's contents in a number of sequences
that contain other idl-constructDescription structures. A
FullInterfaceDescription contains all the information needed to construct acontinue

Page 102

request to invoke an operation on an object of this interface type using the DII. See the DII
section in Chapter 10 for an example of its use.

InterfaceDescription is the structure contained in the Any returned by the
describe() operation inherited from Contained.

3.12.6—
Interfaces Derived from TypedefDef

The TypedefDef abstract interface is derived from Contained and IDLType.
TypedefDef adds a TypeCode attribute. All the interfaces derived from it are structured
types that must be user defined.

StructDef.

struct StructMember{
 Identifier name;
 TypeCode type;
 IDLType type_def;
};

typedef sequence < StructMember > StructMemberSeq;

interface StructDef: TypedefDef{
 attribute StructMemberSeq members;
};

A StructDef describes its members by name and type, giving both a TypeCode and a
reference to the object that describes that type.

UnionDef.

struct UnionMember{
 Identifier name;
 any label;
 TypeCode type;
 IDLType type_def;
};

typedef sequence < UnionMember > UnionMemberSeq;

interface UnionDef: TypedefDef{
 readonly attribute TypeCode discriminator_type;
 attribute IDLType discriminator_type_def;
 attribute UnionMemberSeq members;
 };

A UnionDef describes its discriminator type with a TypeCode and by reference to the object
describing that type with discriminator_type and discriminator_type_def,
respectively. Its members are accessed in a similar manner to those of a structure, but contain a
label value in addition to the name and type.break

Page 103

EnumDef.

typedef sequence < identifier > EnumMemberSeq;

interface EnumDef: TypedefDef{
 attribute EnumMemberSeq members;
};

The only information an enumerated type definition requires over that inherited from
TypedefDef is the list of names used for its values.

AliasDef.

interface AliasDef: TypedefDef{
 attribute IDLType original_type_def;
};

Aliases are typedefs that simply provide a new name for an existing type. The AliasDef
interface has an attribute that refers to the object that describes the original type.

3.12.7—
Interfaces Derived from IDLType

These objects represent the primitives and system-defined types.

PrimitiveDef.

interface PrimitiveDef: IDLType{
 readonly attribute PrimitiveKind kind;
};

The kind attribute returns an enumerated value identifying the basic type that this object
represents.

StringDef.

interface StringDef: IDLType{
 attribute unsigned long bound;
};

A bound value of zero means that the string is unbounded.

SequenceDef.

interface SequenceDef: IDLType{
 attribute unsigned long bound;
 readonly attribute TypeCode element_type;
 attribute IDLType element_type_def;
};

A bound of zero means that the sequence is unbounded. The other two attributes identify the
type contained in the sequence by TypeCode and object reference.break

Page 104

ArrayDef.

interface ArrayDef: IDLType{
 attribute unsigned long length;
 readonly attribute TypeCode element_type;
 attribute IDLType element_type_def;
};

Multidimensional arrays are created by having another array as the element, described by
element_type and identified by element_type_def.

3.12.8—
Interfaces Derived Directly from Contained

ConstantDef.

interface ConstantDef: Contained{
 readonly attribute TypeCode type;
 attribute IDLType type_def;
 attribute any value;
};

struct ConstantDescription{
 Identifier name;

 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 any value;
};

A constant has a type described by type and referenced as another Interface Repository
object in type_def. It also has a value. The ConstantDescription structure is
returned as the value of the Any returned by the describe() operation inherited from
Contained.

ExceptionDef.break

interface ExceptionDef: Contained{
 readonly attribute TypeCode type;
 attribute StructMemberSeq members;
};

struct ExceptionDescription{
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
};

Page 105

An exception, like a structure, has a list of members that return more specific information about
the exception. The inherited describe() operation returns an ExceptionDescription
structure in an Any.

AttributeDef.

enum AttributeMode{ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef: Contained{
 readonly attribute TypeCode type;
 attribute IDLType type_def;
 attribute AttributeMode mode;
};

struct AttributeDescription{
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 AttributeMode mode;
};

AttributeDef supplies information about an attribute's type, as well as a reference to the
object in which that type is defined. The mode attribute indicates whether this is a read-only
attribute or not. The inherited describe() operation returns an
AttributeDescription structure in an Any.

OperationDef. Operations are perhaps the most complex entities that the Interface Repository
describes. They contain parameters and return types and may also raise exceptions and carry
context. Parameters are represented by structures, whereas definitions of exceptions are
objects.

Here are the types required for the OperationDef interface and the
OperationDescription structure:break

enum OperationMode{OP_NORMAL, OP_ONEWAY};

enum ParameterMode{PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription{
 Identifier name;
 TypeCode type;
 IDLType type_def;
 ParameterMode mode;
};
typedef sequence < ParameterDescription > ParDescriptionSeq;

typedef Identifier ContextIdentifier;
typedef sequence < ContextIdentifier > ContextldSeq;

typedef sequence < ExceptionDef > ExceptionDefSeq;
typedef sequence < ExceptionDescription > ExcDescriptionSeq;

Page 106

This is the IDL for the interface which describes operations and the structure returned by the
describe() operation inherited from Contained.

interface OperationDef: Contained{
 readonly attribute TypeCode result;
 attribute IDLType result_def;
 attribute ParDescriptionSeq params;
 attribute OperationMode mode;
 attribute ContextIdSeq contexts;
 attribute ExceptionDefSeq exceptions;
};

struct OperationDescription{
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode result;
 OperationMode mode;
 ContextIdSeq contexts;
 ParDescriptionSeq parameters;
 ExcDescriptionSeq exceptions;
};

The params attribute of OperationDef is a list of ParameterDescription
structures. The contexts attribute gives a list of scoped names of context objects that apply
to the operation.

3.12.9—
RepositoryIds

There are three forms of repository identifiers:

IDL format. The string starts with ''IDL:" and then uses the scoped name followed by a
major and minor version number to globally identify an object. Objects with the same
major number are assumed to be derived from one another. The identifier with the
larger minor number is assumed to be a subtype of the one with the smaller minor
number.

DCE UUID format. The string starts with "DCE:" and is followed by a UUID, a colon,
and then a minor version number.

LOCAL format. The string starts with "LOCAL:" and is followed by an arbitrary
string. This format is for use with a single repository that does not communicate with
ORBs outside its domain.break

Page 107

Chapter 3—
OMG IDL to C++ Mapping

This chapter provides a detailed explanation of the mapping from OMG IDL to C++ as defined
by the corresponding OMG standard (OMG document PTC-97-02-25). The mapping begins
with modules and the basic IDL types, then we continue with the structured types. Finally, we
explain the mappings for operations and attributes, interfaces and their inheritance
relationships, and modules.

The mapping, as defined by the OMG standard, assumes that the C++ environment supports the
features described in The C++ Annotated Reference Manual by Ellis and Stroustrup,
including the namespace construct and exception handling.

1—
Mapping Modules

An IDL module is mapped to a C++ namespace. Since, at the time of this writing, few C++
compilers currently support namespaces, the specification also allows a module to be mapped
to a C++ class:break

//IDL
 module ABC{...};

Page 108

is mapped to

//C++ - mapping to a namespace

namespace ABC{...};

or

 //C++ - mapping to a class
class ABC{...};

Nested module definitions are mapped to nested namespaces or class definitions.

2—
Mapping Basic Datatypes

The mapping of IDL basic types to C++ is straightforward and mapped to a CORBA typedef.
Because of hardware implementations, some of the mappings are defined differently depending
on support for 32-bit and 64-bit implementations. These are defined in Table 3.1 as "platform
dependent."

A CORBA type layer masks the different representations on different platforms. For example, a
CORBA::Long would be represented as a 32-bit integer whether on a 32-bit machine or a
64-bit machine. For the sake of portability, a programmer would benefit from using the
CORBA types.

The boolean type is defined to take only the values 0 or 1. Since many C++ environments
provide their own preprocessor macro definitions of TRUE and FALSE, the OMG mapping
does not require that an implementation providecontinue

TABLE 3.1 Primitive Type Mappings

OMG IDL C++

short CORBA::Short

long CORBA::Long (platform dependent)

long long CORBA::LongLong (platform dependent)

unsigned short CORBA::Ushort

unsigned long CORBA::Ulong

unsigned long long CORBA::ULongLong (platform dependent)

float CORBA::Float

double CORBA::Double

long double CORBA::LongDouble (platform dependent)

char CORBA::Char

wchar CORBA::Wchar (Platform dependent)

wstring CORBA::Wstring(Platform dependent)

boolean CORBA::Boolean

octet CORBA::Octet

Page 109

this mapping, and instead recommends that compliant applications use the values 0 or 1
directly to avoid compilation problems for CORBA applications.

3
—Mapping Strings

IDL string types can be bounded or unbounded. Both are mapped to the C++ type char*
which is null terminated. In addition to the char* mapping, CORBA defines the class
string_var (pronounced "string underscore var") that contains a pointer to the memory of
the allocated string. This mapping provides simplified memory management for strings.
Memory allocated to the string is automatically freed when the string_var object goes out
of scope or is destroyed. When a String_var is created from a char* by construction or
assignment, the char* is consumed in this process and can no longer be accessed by the
caller. Alternatively, assignment from a const char* or another string_var creates a
copy of the char* for the caller. The following code illustrates how the String_var class
is implemented. It has constructors that allow creation of a string_var object from a
char*, and overloaded operators to allow operations such as comparison of string_var
types, assignment from char*, type casting from a char* to a String_var, and the ability to
access array elements in an intuitive manner.

The string_var class is written as:break

//C++
 class CORBA{
 class String_var{
 protected:
 char*_p;
 ...
 public:
 String_var();
 String_var(char *p);
 -String_var();
 String_var& operator=(const char *p);
 String_var& operator=(char *p);
 String_var& operator=(const String_var& s);
 operator const char *() const;
 operator char *();
 char &operator[] (CORBA::ULong index);
 char operator[] (CORBA::ULong index) const;
 friend ostream& operator<<(ostream&, const,
 String_var&);
 inline friend Boolean operator==(const String_var&
 s1,const String_var& s2);
 ...
 };
 ...
 };

Page 110

The following functions are provided for dynamic allocation and deallocation of strings. The
String_var expects that the string it points to was allocated using these functions.

//C++
namespace CORBA
{

 ...
 static char *string_alloc(CORBA::ULong len);
 static char *string_dup(const char *str);
 static void string_free(char *data);
 ...
};

As declared in the preceding code, the string_alloc() operation will return a null
pointer if it cannot perform the dynamic allocation. Otherwise it allocates space for the string
of length len plus a trailing null character. The string_dup() operation allocates enough
space for a copy of its string argument, copies the contents, and returns a pointer to the
allocated memory. If the operation fails, a null pointer is returned. The string_free()
operation deallocates the memory associated with strings created by these operations.

The examples below illustrate the proper usage of the String_var class. The following is
correct and string_ex is consumed:

string_ex = CORBA::string_alloc(10);
string_ex = "char string";
CORBA::String_var String_var1 = string_ex;

The next example is in error because the char* should point to data allocated with CORBA:
string_alloc(), so it cannot be consumed:

String_var1 = "static string example";

The following is correct since a const char* is copied, not consumed:

String_var1 = (const char *)"another string";

Strings can also be constructed using a CORBA::String_var constructor:

String_var1 = CORBA::String_var(string_ex);

The comparison operators let you compare string_var to char*:

if (String_var1 == string_ex)
 cout << "Strings are different "<< end1;
else
 cout <<"Strings are the same" << end1;

For wide string types, CORBA defines the class WString_var which provides similar
operations for bounded and unbounded wide strings.break

Page 111

class CORBA{
 class WString_var
 {
 public:
 WString_var();
 WString_var(WChar *p);
 WString_var(const WString_var &w);
 ~WString_var();
 WString_var &operator=(WChar *p);
 WString_var &operator=(const WString_var &w);
 operator WChar*();

 operator const WChar*() const;
 WChar &operator[] (ULong index);
 WChar operator[] (ULong index) const;
 ...
 };
 ...
} ;

Likewise dynamic allocation and deallocation of wide strings must be performed via the
following functions:

//C++

WChar *wstring_alloc(ULong len);
void wstring_free(WChar*);

4—
Mapping Constants

IDL constants are mapped directly to a C++ constant declaration. The following is a simple
IDL declaration and a sample of the generated C++ code. The C++ code shown here is only a
snippet of the actual compiler output. For this example only the relevant parts are shown.break

//IDL
const long Long_Ex=1966;
interface Interface_Ex
{
 const string String_Ex="Your Name Here";
 const boolean Boolean_Ex=TRUE;
};

//C++
const CORBA::Long Long_Ex = 1966;

class Interface_Ex : public virtual CORBA_Object{
...
public:
 static const char* String_Ex;//"Your Name Here"
 static const CORBA::Boolean Boolean_Ex;//1

Page 112

...
};

Under certain conditions an IDL to C++ compiler will generate the value of the constant rather
than the constant's name in the resultant C++ code. If a constant is declared and then that
constant is used as part of a declaration of an array or other constructed type, the compiler will
replace the use of the constant name with the actual value of the constant. Below we show an
example:

//IDL
interface Interface_Ex
{
 const long Array_lndex=10;
 typedef long Long_Array[Array_jndex];

};

will produce

//C++
class Interface_Ex{
public:
 static const CORBA::Long Array_Index;//10
 typedef CORBA::Long Long_Array[10];
} ;

5—
Mapping Enumeration

Enumerations defined in IDL are mapped directly to C++ enumerations, for example,

//IDL
enum Enum_Ex{fire, earth, water, air};

maps to

//C++
enum Enum_Ex{fire, earth, water, air};

6—
Mapping for Structured Types

The IDL structured types are struct, union, sequence, and array. All but the array are
mapped to a C++ struct or class with a default constructor, a copy constructor, an assignment
operator, and a destructor. The array is mapped to a C++ array.break

Page 113

The default constructor for structured types initializes object reference members to nil and
initializes string members to null. All other members are initialized with default constructors.
The copy constructor performs a deep copy, duplicating all object reference members and
allocating the heap for string members. The assignment operator releases all object reference
members, frees the string members, and performs a deep copy. The destructor releases all
object references and frees all string members. The mapping for each structured type varies
slightly depending on whether it is fixed length or variable length. The following types are
variable length:

• An unbounded or bounded sequence

• A struct or union with a variable length member

• An array with a variable length element type

The variation in mapping fixed and variable length types allows more flexibility in allocation
of out parameters and return values of an operation. The mapping of a variable length type as
an out parameter or return value is a pointer to the associated class or array. For managing this
pointer, the IDL/C++ specification defines a mapping to an additional class that automatically
deletes the pointer when an instance is destroyed or reassigned. This type is named by adding

the suffix _var (pronounced "underscore var") to the original type name. It behaves similarly
to the original, only the members are accessed indirectly. We have already seen an example for
such a mapping for the simplest variable type, IDL string. For reasons of consistency the
fixed length struct is also mapped to an _var type. The form of the _var type is

//C++
class T_var
{
 public:
 T_var() ;
 T_var(T *);
 T_var(const T_var &);
 ~T_var();
 T_var &operator=(T *);
 T_var &operator=(const T_var &);
 T *operator-> const();
//other conversion operators to support
//parameter passing will be covered later
};

The default constructor creates a T_var containing a null T*. Before it can be converted to a
T*, or its operator -> can be used, it must be assigned a valid T* value or another T_var.
The copy constructor performs a deep copy of the T_var parameter, calling
_duplicate() on all object reference members. The normal assignment operator deep
copies the data pointed to by T_var.continue

Page 114

The T* assignment operator deallocates any old storage pointed to by the T_var before
assuming ownership of the T* parameter.

The T* constructor creates a T_var that will delete the storage pointed to by the T* when the
T_var is destroyed. T_var types do not work with a const T* as a parameter. Instead, the
copy constructor for T can be used for explicit copying of const T* objects into T_var
types:

//C++
const T *t =...;
T_var tv = new T(*t);

When the T_var is destroyed, or assigned a new value, the storage is also destroyed.

6.1—
Mapping for Struct Types

IDL struct types are mapped to C++ structs and also to an _var class. The fixed length
member types are mapped to their corresponding C++ types with exception to strings and
object references which have mappings to corresponding _var types. In order to allow for
simple field access and aggregate initialization, C++ structs cannot have user-defined
constructors, destructors, or assignment operators.

Assignment of strings or object reference members to corresponding _var types is performed
by copying the data, whereas assignment of these members to pointers does not result in

copying the data, but rather the pointer to the data. The exception to this is the const char*,
where, when assigned to a member, the storage is copied. Next is an example of an
IDL_defined fixed struct and its mapping to C++.

 //IDL
 struct Struct_Ex{
 long param1;
 float param2;
 };

//C++
struct Struct_Ex{
 CORBA::Long param1;
 CORBA::Float param2;
};

Following is an example of how the members are accessed and the memory management that
occurs when using variable length structs. Note that the string member and the interface
member both map to an _var class.break

//IDL
interface Interface_Ex;

Page 115

struct Struct_Ex{
 string name;
 Interface_Ex Interface_Member;
};

//C++
struct Struct_Ex{
 CORBA::String_var name;
 Interface_Ex_var Interface_Member;
};
...
class Struct_Ex_var{
...
};

The following example uses the above defined structures in different ways to illustrate the
memory management that occurs. Note the different ways of accessing the struct members
depending on whether the struct or the struct_var is used. We illustrate that assignment
from a const char* results in old memory being freed and data copied. Similarly
assignment between a string or object reference member and the corresponding _var types
results in data being freed from the _var and the new data being deep copied. We show that
when assignments are made to the struct member name from a pointer, the memory will be
freed, but data will not be copied if the pointer is not declared as const.

//C++

Struct_Ex struct1;
Struct_Ex_var struct2 = new Struct_Ex;
char *non_const;
String_var string_var;
const char *const_a;

const char *const_b = ìstring 1î;
const char *const_c = ìstring 2î;

Because const_b and const_c are const data, the storage in the field name in the
structure is freed and the new value is copied:

struct1.name = const_b;
struct2->name = const_c;

When dealing with pointers, the pointers are assigned and no storage is freed/copied:

non_const = struct1.name;
const_a = struct2->name;

In the first line below, the storage area of struct1.name is freed but the data is not copied.
A pointer is just assigned since the assigned value is acontinue

Page 116

non_const char*. In the second line the old storage is also freed. The assigned value is
copied as it is a const char*.

struct1.name = non_const;
struct1.name = const_b;

In the following lines, the storage is freed and copied. In the first line, a member is assigned to
another member. In the other two lines we make assignments to and from a string_var.

struct2->name = struct1.name;
struct1.name = string_var;
string_var = struct2->name;

Direct assignments to the _ptr member of a struct do not free storage and do not copy
data. Such assignments should be avoided.

6.2—
Mapping Union Types

IDL unions map to a C++ class. Accessor functions are defined for setting and retrieving the
value of the data members. When accessor functions are used to initialize the data, a deep copy
is performed and any memory previously associated with that member is freed.

Accessor functions for array union members return a pointer to the array slice. The slice is
defined as the original array, but less the first dimension. Slices are covered in section 6.4 on
arrays. A discriminant type, having the name _d, is set by the application or may be
automatically set by the ORB when any of the data members are set.

//IDL
interface Ex_Obj;
struct Struct_Ex{
 long Long_member;
};
typedef string StringArray[10]
union Union_Ex switch (long){
 case 1: long x;
 case 2: string y;

 case 3: Struct_Ex z;
 case 4: StringArray list99;
 default: Ex_Obj obj;
};

The above defined IDL union, Union_Ex, is mapped to the C++ class
Union_Exbelow.break

//C++
class Union_Ex{

Page 117

private:
 CORBA::Long _disc;
 CORBA::Long _x;
 CORBA::String_var __y;
 Struct_Ex __z;
 StringArray __list99;
 Ex_Obj_var __obj;
...

public:
 Union_Ex() : _disc((CORBA::Long)0){}
 ~Union_Ex() {}
 Union_Ex(const Union_Ex& _obj);
 Union_Ex& operator=(const Union_Ex& _obj);

 void _d(CORBA::Long _val){ _disc = _val; }
 CORBA::Long _d() const{ return _disc; }

 void _default(){ _disc =...; }//orb implementation dependent

 void x(CORBA::Long _val){
 __x = _val;
 _disc = 1;
}

 CORBA::Long x() const{ return __x; }
 void y(char * _val){
 __y = _val;
 _disc = 2;
}

 void y(const char * _val){
 __y = _val;
 _disc = 2;
}

 const char *y() const{ return __y; }

 void z(Struct_Ex _val){
 __z = _val;
 _disc = 3;
}

 const Struct_Ex& z() const{ return __z; }

 Struct_Ex& z(){ return __z; }

 void obj(Ex_Obj_ptr _val){
 __obj = _val;
 _disc = 4;//implementation dependant
 }
 void list99(StringArray_slice *_val)
 StringArray_forany _t_list99(__list99);
 StringArray_forany __t_list99((StringArray_slice *)_val);

Page 118

 _t_list99 = __t_list99;
 _disc = 5;
}

 const StringArray& list99() const{ return __list99;}

 StringArray& list99(){ return __list99; }
 Ex_Obj_ptr obj() const{ return __obj; }
...
};

The generated code above shows the union constructors and the accessor functions for the
union members. The default union constructor does not initialize any of the union members, and
the discriminator must be set before accessing a member of the union. The copy constructor and
the assignment operator both perform deep copies of their parameters and the assignment
operator releases the old storage where necessary. If a default value is not explicitly defined in
the union, then the compiler sets the discriminant to a legal value. The destructor releases the
storage assigned to the union. Unlike accessors for simple datatypes and strings, accessors for
struct, union, sequence, and any will reference to a non-const object for
read-write access. Also, the array slice returned from an array accessor allows read-write
access via subscript referencing to the array. The following illustrates usage of accessor
functions and the discriminator _d.

//C++
Struct_Ex struct_A ={10};
Union_Ex union_A ;

union_A.z(struct_A) ;//member z is selected
union_A._d(3);//member z is selected

union_A._d(1);//member x is selected
union_A.x(99);//modifies member x

cout << union_A.z();//Error ! Member x is currently selected

6.3—
Mapping Sequence Types

An IDL sequence is a one-dimensional array with two characteristics: a maximum size and
a length. It is mapped to a class for the sequence as well as a sequence _var class. The
maximum size of a bounded sequence is explicitly defined in the IDL specification and cannot

be changed by the application. Doing so will produce undefined behavior. On the other hand,
the maximum length of an unbounded sequence can be specified as a parameter to the
constructor to control initial buffer allocation and can be manipulated by the programmer. The
current length of either sequence is modifiable by the application.break

Page 119

Memory management of the data vector of the sequence is determined by the release flag.
When TRUE, the flag indicates that the sequence owns the storage of the data array. The
contents of the vector will have to be allocated with the sequence allocbuf() function and
deallocated using the sequence freebuf() function. The default constructor of a bounded
sequence automatically sets the release flag to TRUE.

Set to FALSE, the caller owns the storage of the data vector and is responsible for freeing each
of the elements of the data array, and the contents buffer, whenever assignment occurs or the
sequence goes out of scope. When FALSE, users should avoid accessing the elements of the
data array with the [] operator because memory management errors may occur.

In the following example we will examine the results of compiling IDL that defines a bounded
and an unbounded sequence. Both are sequences of type Data_Type.break

//IDL
typedef sequence<Data_Type> UnB_Seq;//unbounded sequence
typedef sequence<Data_Type, 2> B_Seq;//bounded sequence

//C++
class UnB_Seq //unbounded sequence
{
public:
static CORBA::Long *allocbuf(ULong _nelems);
static void freebuf(Long *_data);
UnB_Seq();
UnB_Seq(ULong max);
UnB_Seq(ULong max, ULong length,Data_Type* data,
Boolean release = FALSE);
UnB_Seq(const UnB_Seq&);
~ UnB_Seq();
UnB_Seq &operator=(const UnB_Seq&);
ULong maximum() const;
void length(ULong);
ULong length() const;
Data_Type &operator[] (ULong index);
const Data_Type &operator[] (ULong index) const;
static void _release(UnB_Seq *_ptr)
...
};

class B_Seq //bounded sequence
{
public:
static CORBA::Long *allocbuf(ULong nelems);
static void freebuf(Long *_data);
B_Seq();
B_Seq(ULong length, Data_Type *data, Boolean release = FALSE);
B_Seq(const B_Seq&);

Page 120

~B_Seq();
B_Seq &operator=(const B_Seq&);
ULong maximum() const;
void length(ULong);
ULong length() const;
Data_Type &operator[] (ULong index);
const Data_Type &operator[] (ULong index) const;
static void _release(B_Seq *_ptr)
...
};

Table 3.2 describes the operations generated for sequence types:

An example of memory management and the release constructor parameter will help illustrate
the functionality provided by the ORB with relation to the release flag. Below is a declaration
of an unbounded sequence that, by default, has the release flag set to FALSE. Also declared
is an unbounded sequence which passes TRUE in the constructor, setting the release flag
and thereby bestowing ownership of the data array upon the sequence. When this
sequence goes out of scope it will call string_free() for each of its elements and
freebuf() on the buffer passed into the constructor.break

//IDL
typedef sequence<string, 3> String_seq;

TABLE 3.2 Sequence Operations

Function Description

allocbuf (ULong _nelems) Allocates memory for the sequence to be passed to the
constructor and initializes each member.

Freebuf (Long *_data) Free storage allocated for the data buffer.

UnB_Seq(ULong max) Constructor for the unbounded sequence.

UnB_Seq(ULong max, ULong length,
 Data_Type* data, Boolean
 release =

Release flag !=0. ORB manages memory of *data when
data buffer is increased. Differs from bounded sequence
constructor in that maximumlength is specified.

FALSE); UnB_Seq(const UnB_Seq&) Copy constructor. Copies data storage of parameter.

~ UnB_Seq() If release flag !=0, destructor frees data storage.

UnB_Seq &operator=(const UnB_Seq&) Deep copy.

ULong maximum() Returns the size of the sequence.

ULong length() Two length functions. One sets, one gets.

&operator[] (ULong index) Two index operations. One sets, one only gets.

_release (UnB_Seq *_ptr) Releases the sequence. If the release flag of the
sequence is non-zero, then the ORB releases each
element of the sequence before releasing the contents
buffer.

Page 121

//C++ app
char *static_array[] ={ìAî, ìBî, ìCî};
char **dynamic_array = StringSeq::allocbuf(3);

String_Seq static_seq(3, static_array);//Release flag
//defaults to FALSE
String_Seq dynamic_seq(3, dynamic_array, 1);//Flag set to TRUE

static_seq[1] = ìAî;//old memory not freed, no copying of data
char *str = string_dup(iDî);
dynamic_seq[1] = str;//old memory freed, no copying

6.4—
Mapping for Arrays

IDL arrays are mapped to C++ arrays. IDL arrays can be statically initialized. If the array
element is a string or an object reference it will be mapped, like a structure member, to its
_var type. This mapping to _var types lets the ORB manage the data storage of the elements
so that an assignment of an element will automatically release the storage of the previous value.
The _var type also provides an overloaded [] operator for intuitive access to array
elements.

The mapping also provides a type definition for an array slice, specified by the original array
name followed by the suffix _slice. An array slice is an array that has all the dimensions of
the original array specified, except the first. Slices are provided as a convenience for passing
multidimensional out and return arrays and will be discussed more in the section on parameter
passing.

//IDL
interface Interface_Ex{
 ...
};
typedef long Long_Array[10];
typedef string String_Array[10][20][30];
typedef Interface_Ex Interface_Array[10];

The following is a snippet of what is generated by the compiler: break

//C++
...
typedef CORBA::Long Long_Array[10];

typedef CORBA::Long Long_Array_slice;
class Long_Array_var{
 ...
};

Page 122

typedef CORBA::String_var String_Array[10] [20] [30];
typedef CORBA::String_var String_Array_slice[20] [30];
class String_Array_var{
 ...
};

typedef Interface_Ex_var Interface_Array[10];
typedef Interface_Ex_var Interface_Array_slice;
class Interface_Array_var{
 ...
};
 ...

In addition to the above mappings, an IDL compiler is required to generate a special mapping
for each array to accommodate the type-safe any. The name of this C++ type is the name of the
array followed by the suffix _forany. Array_forany types allow access to underlying
array elements, similar to the array_var types. The reason for the special array type is that
when the array_var type is destroyed, it systematically deletes the underlying storage, but
because an any type retains ownership of its storage, the array_forany does not delete the
storage of the underlying array upon its own destruction. This ownership is retained by the any
type, and memory management will be discussed shortly when we undertake the discussion of
the any type. The _forany classes generated by the compiler for the previous example is
presented next.break

 //C++

class Long_Array_forany{
...
public:
 Long_Array_forany(Long_Array_slice *slice) :_ptr(slice){}
...
};

class String_Array_forany{
...
public:
 String_Array_forany(String_Array_slice *slice) :_ptr(slice){}
...
};

class Interface_Array_forany{
...
public:
 Interface_Array_forany(Interface_Array_slice *slice)
:_ptr(slice){}
...
};

Page 123

Finally, for dynamic allocation and deallocation of arrays, special functions are provided at the
same scope of each array type. These functions allow the ORB to implement its memory
management of the array.

//C++
Long_Array_slice *Long_Array_alloc(){
 return new CORBA::Long[10];
}

Long_Array_free(Long_Array_slice *_data){
 if (_data) delete[] _data;

}

String_Array_slice *String_Array_alloc(){
 return new CORBA::String_var[1O] [20] [30];
}

String_Array_free(String_Array_slice *_data){
 if (_data) delete[] _data;
}

Interface_Array_slice *Interface_Array_alloc(){
 return new Interface_Ex_var[10];
}

Interface_Array_free(Interface_Array_slice *_data){

if (_data) delete[] _data;

}

6.5—
Mapping Typedefs

A typedef declares an alias for a type. Since the IDL to C++ mapping may create several C++
types for an IDL type, the compiler will create corresponding aliases for each type. For
example, an IDL array will map to an array_slice, so a typedef for an array will also
map to the corresponding array-slice.break

//IDL
typedef long Long_Ex;
interface Interface_Ex;
typedef Interface_Ex Interface_Ex2;
typedef sequence<long>Sequence_Ex;
typedef Sequence_Ex Sequence_Ex2;
typedef long Long_Array_Ex[10];
typedef Long_Array_Ex Long_Array_Ex2;

//C++
typedef CORBA::Long Long_Ex;

Page 124

class Interface_Ex_var{
...
};
typedef Interface_Ex Interface_Ex2;
typedef Interface_Ex_var Interface_Ex2_var;

class Sequence_Ex_var{
...
};
typedef Sequence_Ex Sequence_Ex2;
typedef Sequence_Ex_var Sequence_Ex2_var;

class Long_Array_Ex_var{
...

};
typedef CORBA::Long Long_Array_Ex[10]

typedef Long_Array_Ex Long_Array_Ex2;
typedef Long_Array_Ex_var Long_Array_Ex2_var;

6.6—
Mapping the Type Any

The any type is a self-describing type, which can hold values of an arbitrary IDL type
(including an any type). The IDL to C++ mapping of the type any fulfills two requirements:

• Handling C++ types in a type-safe manner

• Handling values whose type is unknown prior to implementation compile time

In other words, it must handle the conversions required to insert into and extract from an any,
and it must accommodate requests or responses containing an any that holds data of a type that
was unknown to the caller at compile time.

Handling C++ types in a type-safe manner requires the C++ mapping to provide overloaded
functions for each distinct IDL type. For those IDL types that do not produce distinct C++ types
(boolean, octet, char, and wchar) separate functions are provided to distinguish
them from one another.

6.6.1—
Insertion into an Any

Insertion into an any is accomplished with the overloaded "left-shift-assign" operator. For
smaller datatypes, including bounded strings (passed as char*), enumerations, and object
references (passed as _ptr), the operator copies the data, and uses the following form:break

Page 125

//C++
void operator<<=(Any&, Data_Type);//copies the data

These last two functions are created to handle more complex types:

void operator<<=(Any&, const Data_Type &);//copies the data
void operator<<=(Any&, Data_Type*);//non-copying form

Note that with the noncopying form of the operator, the inserted data is consumed and cannot be
accessed by an application once it has been inserted into the any. For insertion of IDL types
without a distinct C++ mapping, such as octet, char, wchar, and bounded string;
special "helper types" are provided and will be covered shortly in a section devoted to these
types.

The following function signature is generated for the IDL defined below:

//IDL

struct Struct_Ex{
 long param1;
 float param2;

};

//C++
void operator<<=(CORBA::Any& _a, const Struct_Ex& _val)

so that an application could insert values into an any in the following manner:

//C++
...
struct_1 ={10, 20.0};
long long_val = 30;
char *string_val = "Forty";
Any a,b,c;

a <<= struct_1;
b <<= long_val
c <<= string_val;

6.6.2—
Inserting an Array into an Any

Insertion of arrays into an any is accomplished with the Array_forany types generated for
each array defined in IDL. A copying insertion is the default. Depending upon the
implementation provided by the ORB vendor, the user may be able to set a nocopy flag in the
Array_forany constructor. With the nocopy flag set to TRUE, the inserted value will be
consumed by the any.break

//IDL
typedef long Long_Array[10][20];

Page 126

//C++
typedef CORBA::Long Long_Array[10] [20];
class Long_Array_forany{
...
};
...
operator<<=(CORBA::Any& _a, const Long_Array_forany& _val)...;

The above generated types can be used in an application as shown below:

//C++ app
Long_Array array1;

//...initialize array...

Any any_data;
any_data <<= Long_Array_forany(array1);

6.6.3—
Retrieving from an Any

To retrieve a value from an any, the mapping overloads the "right-shift-assign" operator for
each IDL type. The function returns a boolean, indicating whether or not the type being
extracted is indeed the same type to which it is being assigned. If successful, the value will be

copied, or its pointer assigned (depending on the type). For primitive types, the following
function signature will suffice:

//C++
Boolean operator>>=(const CORBA::Any&, Data_Type&);

for nonprimitive datatypes:

//C++
CORBA::Boolean operator>>=(const CORBA::Any&, Data_Type*&);

and for arrays:

//C++
CORBA::Boolean operator>>=(const CORBA::Any& , _forany&)

The following illustrates the use of the extraction operator for the various types: break

//C++
Any any_value;
//... any_value is assigned a value...

if (any_value >>= Long_value){
 //... use the value...

Page 127

else if (any_value >>= struct_ptr){
 //... use the value...

else if (any_value >>= Array_forany_ref){
 //... use the value...

6.6.4—
Inserting boolean, octet, char, wchar, and bounded string

Helper types are provided to distinguish these datatypes because as mentioned previously in
the basic datatypes section, the IDL to C++ mapping does not require them to map to distinct
C++ types. A means of distinguishing them from each other is necessary so that they can be
inserted and extracted from the type any. These are functions which, when passed a variable
of the specific type, are inserted to a type any. Also included, of course, are functions for
extracting the specified type from the any.break

//C++
 from_boolean{
 from_boolean(CORBA::Boolean b) : val(b){}
 CORBA::Boolean val;
 };

 from_octet{
 from_octet (CORBA::Octet b) : val (b){}
 CORBA::Octet val;
 };

 from_char{
 from_char(CORBA::Char b) : val(b){}
 CORBA::Char val;

 };

 from_string{
 from_string(char *s, CORBA::ULong b,
 CORBA::Boolean no_copy=0)
 : val(s), bound(b), nocopy(no_copy){}
 char *val;
 CORBA::ULong bound;
 CORBA::Boolean nocopy;
 };

 from_wchar{
 from_wchar(CORBA::WChar b) : val(b){}
 CORBA::WChar val;
 };

 from_wstring{
 from_wstring(CORBA::WChar *s, CORBA::ULong b,
 CORBA::Boolean no_copy=0)
 : val(s), bound(b), nocopy(no_copy){}

Page 128

 CORBA::WChar *val;
 CORBA::ULong bound;
 CORBA::Boolean nocopy;
 };

 void operator<<=(from_boolean);
 void operator<<=(from_octet);
 void operator<<=(from_char);
 void operator<<=(from_string);
 void operator<<=(from_wchar);
 void operator<<=(from_wstring);

 to_boolean{
 to_boolean(CORBA::Boolean& b) : ref(b){}
 CORBA::Boolean& ref;
 };

 to_octet{
 to_octet(CORBA::Octet& b) : ref(b){}
 CORBA::Octet& ref;
 };

 to_char{
 to_char(CORBA::Char& b) : ref(b){}
 CORBA::Char& ref;
 };

 to_object{
 to_object(CORBA::Object_ptr &obj) : ref(obj){}
 CORBA::Object_ptr &ref;
 };

 to_string{
 to_string(char *&s, CORBA::ULong b)

 : val(s), bound(b){}
 char *&val;
 CORBA::ULong bound;
 };

 to_wchar{
 to_wchar(CORBA::WChar& b) : ref(b){}
 CORBA::WChar& ref;
 };

 to_wstring{
 to_wstring(CORBA::WChar *&s, CORBA::ULong b)
 : val(s), bound(b){}
 CORBA::WChar *&val;
 CORBA::ULong bound;
};

Page 129

 CORBA::Boolean operator>>=(to_boolean) const;
 CORBA::Boolean operator>>=(to_char) const;
 CORBA::Boolean operator>>=(to_octet) const;
 CORBA::Boolean operator>>=(to_object) const;
 CORBA::Boolean operator>>=(to_string) const;
 CORBA::Boolean operator>>=(to_wchar) const;
 CORBA::Boolean operator>>=(to_wstring) const;

These operators are defined in the vendor's any class interface. Insertions would be similar
to the following, depending on the vendor's Any_Class name:

//C++
any_value <<=Any_Class::from_Boolean(boolean_val);

any_value<<=Any_Class::from_Octet(octet_val);

any_value<<=Any_Class::from_string(char_ptr_val,str_len,1);
//nocopy flag set to FALSE, and the any consumes the string
//and bound value > 0 indicates a bounded string

if (any_value>>=Any_Class::to_string(char_ptr_val,str_len)){
 //then any contained a string of length 8
};

6.6.5—
The Any Class

The default constructor creates an any with its TypeCode set to type tk_null, which
means that the type of the value which the any can contain is undefined. The copy constructor
creates a deep copy of the any passed as a parameter. The final constructor duplicates the
pseudo-object reference and assumes ownership of the storage of the value parameter if the
release flag is set to TRUE. Otherwise, if the flag is set to FALSE the caller owns the storage.

//C++
CORBA_Any();
CORBA_Any(const CORBA_Any&);
CORBA_Any(CORBA_TypeCode_ptr tc, void *value,

 CORBA::Boolean release=0);
...

Also defined is an Any_var class similar to the _var class encountered earlier, which is
useful for the convenience of the memory management provided by the ORB. break

//C++
{
Any_var();
Any_var(CORBA_Any *a);
Any_var(const Any_var &a);
~Any_var();

Page 130

Any_var &operator=(CORBA_Any *a);
Any_var &operator=(const Any_var &a);

CORBA_Any *operator->();

};

The any class is a useful construct for handling values of generic types that may be unknown at
compile time. Creating an any is as simple as declaring a standard datatype, and may also be
constructed by duplicating another any as seen in the any and any_var constructors.
Following is a simple example of creating an any:

//C++
Struct_Ex struct_1 ={10, 20.0};
Struct_Ex * struct_2

//create an any and shuffle structure into it
any_struct = new CORBA::Any();
*any_struct <<= struct_1;

//Now to extract the struct from the any.
if (*any_struct >>= struct_2){
...//use the value
}

To this point we have covered all the basic datatypes, constructed types, and types that handle
all these, even if they are undetermined at implementation time. The last type we have to cover
is the exception type.

7—
Mapping for the Exception Types

The IDL to C++ mapping of exceptions is similar to that of variable length structs in
that each exception member must self-manage its storage. An IDL exception mapping
derives from the UserException class, which in turn derives from the base Exception
class. Following is an example of a user-defined exception:break

//IDL
 exception SomethingWrong{
 string reason;

 long id;
 };

//C++
class SomethingWrong : public CORBA_UserException{
public:

Page 131

static const CORBA_Exception::Description _description;
CORBA::String_var reason;
CORBA::Long id;

SomethingWrong(){}
SomethingWrong(
 const char * _reason,
 CORBA::Long _id){
 reason = _reason;
 id = _id;
}
...

The default constructor creates the object, leaving the fields to be filled in. The second
constructor initializes the object with the parameter values.

The standard exceptions are derived from the SystemException class, which, like the
UserException class, also derives from the base Exception class. An exception is
caught in a try block, thrown as a value, and caught as a reference to the Exception type.
UserException and SystemException, derived from the base Exception class,
narrow the scope of the exception.

//C++
try{
...
catch (const UserException &ue)
...
} catch (const SystemException &se){
...

All CORBA system exceptions include a completion_status code which will be one of the
following three values: COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE.
Table 3.3 is a list of CORBA system exceptions:

8—
Mapping Operations and Attributes

IDL-defined operations and attributes are mapped to C++ functions. IDL operations map to
C++ functions of the same name. Attributes map to a pair of functions of the same name, one to
set the value and one to get the value. By default, all attributes are read-write, but if the
attribute has been defined as read-only, then only the ''set" function is available. IDL allows
specification of operations that have no return value. A return type must not be specified for
oneway operations. The following example illustrates the mapping of the IDL for attributes and
functions:break

//IDL

interface A

Page 132

TABLE 3.3 Standard Exception Types

Exception Explanation

BAD_PARAM An invalid parameter was passed

NO_MEMORY Dynamic mem allocation failure

IMP_LIMIT Violated implementation limit

COMM_FAILURE Communication failure

INV_OBJREF Invalid object reference

NO_PERMISSION No permission for attempted operation

INTERNAL ORB internal error

MARSHAL Error marshalling parameter result

INITIALIZE ORB initialization failure

NO_IMPLEMENT Operation implementation unavailable

BAD_TYPECODE Bad typecode

BAD_OPERATION Invalid operation

NO_RESOURCES Insufficient resources for request

NO_RESPONSE Response to request not yet available

PERSIST_STORE Persistent storage failure

BAD_INV_ORDER Routine invocations out of order

TRANSIENT Transient failure, reissue request

FREE_MEM Cannot free memory

INV_IDENT Invalid identifier syntax

INV_FLAG Invalid flag was specified

INTF_REPOS Error accessing interface repository

BAD_CONTEXT Error processing context object

OBJ_ADAPTER Failure detected by object adapter

DATA_CONVERSION Data conversion error

OBJECT_NOT_EXIST Nonexistent object, delete reference

TRANSACTION_REQUIRED Transaction required

TRANSACTION_ROLLEDBACK Transaction rolled back

INVALID_TRANSACTION Invalid transaction

UNKNOWN An unknown exception

{
 string f();
 oneway void g();
 attribute long x;
 readonly attribute string y;
};

//C++
A_var() : _ptr(A::_nil())}

A_var(A_ptr _p) : _ptr(_p){}

...

char* A::y(){...} //get function only

CORBA::Long A::x(){...} //get function for x

Page 133

void A::x(CORBA::Long _val){...}//set function for x

void A::g(){...} //oneway operation

char* A::f(){...}

}

The following code could be implemented by a client:

//C++
A_var a;
a =... //initialize the object reference
a->f();
a->g();
Long n = a->x();//get
a->x(n + l);//set

9—
Argument Passing

Primitive types and enumerations are passed by their defined type. For object references, the
ptr type is used. Passing structured types requires greater attention to the details of memory
management. In-parameter storage is simplest because the caller has allocated and owns the
storage of the parameter. Out and inout parameters are more complicated.

If the out parameter is a fixed length aggregate, then the mapping is by reference, T&. If the out
parameter is a variable length aggregate then both T and T*& can be used. Using the
aggregate's _var class frees the user from this consideration in that the mapping is T_var&
for both in and out (see Tables 3.4 and 3.5).

The cases described in Table 3.5 are the following:

1. Caller allocates all necessary storage, except that which is encapsulated and managed within
the parameter itself. For inout parameters, the caller provides the initial value and the callee
may change that value. For out parameters, the caller allocates the storage but need not
initialize it, and the callee sets the value. Function returns are by value.

2. Caller allocates storage for the object reference. For inout parameters, the caller provides
an initial value; if the callee wants to reassign the inout parameter, it first calls
CORBA::release on the original input value. To continue to use an object reference passed
in as an inout, the caller must first duplicate the reference. The caller is responsible for the
release of all out and return object references. Release of all object references embedded in
other structures is performed automatically by the structures themselves.break

Page 134

TABLE 3.4 Basic Argument and Result Passing

Datatype In Inout Out Return

short Short Short& Short& Short

long Long Long& Long& Long

long long LongLong LongLong& LongLong& LongLong

unsigned UShort UShort& UShort& Ushort

short unsigned ULong ULong& ULong& Ulong

long unsigned ULongLong ULongLong& ULongLong& ULongLong

long long float Float Float& Float& Float

double Double Double& Double& Double

long double LongDouble LongDouble& LongDouble& LongDouble

boolean Boolean Boolean& Boolean& Boolean

char Char Char& Char& Char

wchar Wchar WChar& WChar& Wchar

octet Octet Octet& Octet& Octet

enum enum enum& enum& enum

object reference objref_ptr objref_ptr& objref_ptr& objref_ptr

 ptr

struct, fixed const struct& struct& struct& struct

struct, variable const struct& struct& struct*& struct*

union, fixed const union& union& union& union

union, variable const union& union& union*& union*

string const char* char*& char*& char*

wstring const wchar* wchar*& wchar*& wchar*

sequence const sequence& sequence& sequence*& sequence*

array fixed const array Array array slice*2

 array

array variable const array array array

 array slice*&2 slice*2

any const any& any& any*& any*

fixed const Fixed& Fixed& Fixed& Fixed&

3. For out parameters, the caller allocates a pointer and passes it by reference to the callee.
The callee sets the pointer to point to a valid instance of the parameter's type. For returns, the
callee returns a similar pointer. The callee is not allowed to return a null pointer in either case.
In both cases the caller is responsible for releasing the returned storage. To maintain
local/remote transparency, the caller must always release the returned storage, regardless of
whether the callee is located in the same address space as the caller or located in a different
address space. Following the completion of a request, the caller is not allowed to modify any
values in the returned storage—to do so the caller must first copy the returned instance into a
new instance, then modify the new instance.

4. For inout strings, the caller provides storage for both the input string and the char* or
wchar* pointing to it. Since the callee may deallocatecontinue

Page 135

TABLE 3.5 Memory Management Rules for Parameter Passing

Datatype Inout parameter Out parameter Return result

short 1 1 1

long 1 1 1

long long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

unsigned long long 1 1 1

float 1 1 1

double 1 1 1

long double 1 1 1

boolean 1 1 1

char 1 1 1

wchar 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

wstring 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

fixed 1 1 1

the input string and reassign the char* or wchar* to point to new storage to hold the output
value, the caller should allocate the input string using string_alloc() or
wstring_alloc(). The size of the out string is therefore not limited by the size of the in
string. The caller is responsible for deleting the storage for the out using string_free() or
wstring_free(). The callee is not allowed to return a null pointer for an inout, out, or
return value.

5. For inout sequences and anys, assignment or modification of the sequence or any may
cause deallocation of owned storage before any reallocation occurs, depending upon the state

of the boolean release parameter with which the sequence or any was constructed.

6. For out parameters, the caller allocates a pointer to an array slice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to the
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the
callee returns a similar pointer. The callee is not allowed to return acontinue

Page 136

null pointer in either case. In both cases, the caller is responsible for releasing the returned
storage. To maintain local/remote transparency, the caller must always release the returned
storage, regardless of whether the callee is located in the same address space as the caller or
located in a different address space. Following completion of a request, the caller is not
allowed to modify any values in the returned storage—to do so the caller must first copy the
returned array instance into a new array instance, then modify the new instance.

9.1—
Examples

This section contains examples, which illustrate the passing of various IDL types as arguments
to CORBA method invocations. In particular, we see how the following IDL types, whose
IDL-to-C++ mappings were discussed in the previous sections, can be passed as arguments:

• fixed and variable struct type

• fixed and variable length union type

• fixed and variable length array

• fixed and variable length sequences

• octet

• object reference

9.1.1—
Fixed Length Struct

Consider the following IDL with a fixed length struct Time:

//HelloWorld.idl
module HelloWorld{
 struct Time{
 short hour;
 short minute;
 };
 interface GoodDay{
 Time hello(in Time in_time,
 inout Time inout_time,
 out Time out_time);
 };
};

In the above IDL, we have declared a struct Time with two short members, hour and

minute. Since the sizes of hour and minute are fixed, Time is a fixed length struct. We
have also declared an interface GoodDay that supports one operation, hello(). The
hello() operation takes an in argument in_time, of type Time, an inout argument
inout_time, of type Time, and an out argument out_time, also of type Time. In
addition, the hello() operation has a return value of type Time.break

Page 137

If the above IDL is passed through the IDL compiler (the actual compiler used in these
examples was idl2cpp from Inprise VisiBroker), the following signature is generated in
HelloWorld_c.hh corresponding to the method invocation:

HelloWorld::Time hello(
 const HelloWorld::Time& _in_time,
 HelloWorld::Time& _inout_time,
 HelloWorld::Time& _out_time
);

The code generated above adheres to the mapping rules specified by the CORBA specification.
A typical client program that uses the above generated stub code simply needs to understand
the memory management rules for parameter passing, allocate storage for the parameters (or
not allocate storage and depend on the callee to do it), and initialize the values for the
parameters. A typical client program could look like the following:

HelloWorld::Time in_time, inout_time, out_time;
HelloWorld::Time return_time;

in_time.hour = 15; in_time.minute = 30;
inout_time.hour = 20; inout_time.minute = 35;

return_time = goodDay->hello(
 in_time, inout_time, out_time);

In the above code we declare three variables, each of type HelloWorld::Time, which is
the struct generated from the corresponding IDL type. We then assign values to the
variables that are to be the in and inout arguments to the hello() operation. To do this
we simply set values to the two short members, hour and minute of the struct. We
also declare another variable return_time, to hold the return value from the operation.
However, we do not initialize the out_time and the return_time parameters. The values
for these are set by the hello() operation. We then invoke the hello() method in
accordance with its signature generated by the IDL compiler (shown above).

It is important to note that in the above code, we have adhered to the memory management rules
for parameter passing listed earlier in Table 3.5. As an example, for a fixed length struct
used as an in parameter, we see that in the generated code such a parameter is passed as a
const reference, const HelloWorld::Time&. In accordance with case 1, we have
allocated storage for this parameter on the stack (by declaring it as a local variable) and have
passed it by reference to the callee. Similarly, for passing a fixed length struct as an inout
parameter to a method, we have used case 1, which calls for caller allocated storage. We have
allocated storage on the stack for the struct passedcontinue

Page 138

as an inout parameter and have initialized it with a value. We do realize that the callee could
change this value upon returning from the method invocation. As for the out parameter, the table
indicates that we use case 1. Therefore we allocate storage but do not initialize it with a value.
The callee is supposed to set a value to it. So also, for the return type, the callee initializes the
struct returned with the correct value and returns it by value to the caller.

In the skeleton code (in the files HelloWorld_s.hh, HelloWorld_s.cpp) generated
from HelloWorld.idl, the signature of the hello() operation is as follows:

virtual HelloWorld::Time hello(
 const HelloWorld::Time& in_time,
 HelloWorld::Time& inout_time,
 HelloWorld::Time& out_time) = 0;

The IDL compiler generates a pure virtual function that needs to be implemented by a servant.

A typical implementation of the hello() method by a servant named GoodDayImpl that
implements the HelloWorld::GoodDay object is as follows:

HelloWorld::Time GoodDayImpl::hello(
 const HelloWorld::Time& in_time,
 HelloWorld::Time& inout_time,
 HelloWorld::Time& out_time){

 out_time.hour = 18; out_time.minute = 31;

 //Replace the values received as an
 //inout argument
 inout_time.hour = 19; inout_time.minute = 32;

 //Create a return value
 HelloWorld::Time ret_time:
 ret_time.hour = 17; ret_time.minute = 30;

 return ret_time;
}

In the above implementation, the signature of the method matches that of what was generated by
the IDL compiler in the skeleton code. We set values to the out_time argument, replace the
values in the inout_time argument, create a return_time, set a value to it, and return it
to the client.

In terms of memory management associated with the example above, all storage allocation was
done on the stack. We could modify the above example to use the _var types generated by the
IDL compiler for the struct Time. It enables storage allocation on the heap. In such a case,
the client code would look likebreak

Page 139

HelloWorld::Time_var in_time,
 inout_time, out_time;
HelloWorld::Time_var ret_time;

in_time = new HelloWorld::Time();
in_time->hour = 15; in_time->minute = 30;
inout_time = new HelloWorld::Time();
inout_time->hour = 20; inout_time->minute = 35;

return_time = goodDay->hello(
 in_time,
 inout_time.inout(),
 out_time.out());

In the above code segment, we declare three variables, each of type
HelloWorld::Time_var, namely, in_time, inout_time, and out_time. Here
we use the _var convenience class generated by the IDL compiler. The constructor for the
_var class allocates memory on the heap. The destructor for the _var class gets invoked
when the _var class goes out of scope and frees the allocated memory. Had we not used the
HelloWorld::Time_var class but instead used HelloWorld::Time_ptr, we would
have had to keep track of the storage allocated (when we call new) and remember to free it
appropriately before the method returns. The _var class takes care of this problem by
managing memory associated with the_ptr. So we allocate storage for the in_time and
inout_time variables by invoking the _var class constructor. Like before, we assign
values to in_time and inout_time. We do not allocate any memory for out_time and
for return_time. The memory for these is allocated by the ORB and is freed when these
variables go out of scope. As a general rule, we always try to use the _var convenience class
generated for us by the IDL compiler whenever possible.

Also note that in the method invocation above, we pass inout_time.inout() and
out_time.out() as the second and third arguments, respectively. Invoking the inout()
on a HelloWorld::Time_var returns a HelloWorld::Time&. So also, invoking the
out() on a HelloWorld::Time_var returns a HelloWorld::Time&. The
inout() and out() methods of the var class return the appropriate types expected by the
hello() method. We could have used inout_time and out_time directly instead of
using the inout_time.inout() and out_time.out() as arguments to the hello()
method, since these variables are of the _var type and the _var class has implicit conversion
operators to return the appropriate types expected by the hello() method. However, some
compilers have problems with this approach and hence it is better to use the inout() and
out() explicitly.

Similarly, the servant implementation would look as follows if we use
HelloWorld::Time_var instead of using stack based storage allocation:continue

Page 140

HelloWorld::Time GoodDayImpl::hello(
 const HelloWorld::Time& in_time,
 HelloWorld::Time& inout_time,
 HelloWorld::Time& out_time){
 out_time.hour = 18; out_time.minute = 31;

 //Replace the values received as
 //an inout argument
 inout_time.hour = 19; inout_time.minute = 32;

 //Create a return value
 HelloWorld::Time_var return_time =
 new HelloWorld::Time();
 return_time->hour = 17; return_time->minute = 30;
 return return_time._retn();
}

We only use the _var class while allocating memory for the return_time parameter. The
in_time and inout_time parameters are passed by const reference and reference,
respectively. Storage for these parameters has been allocated already. Similarly, for the out
parameter out_time, storage has already been allocated by the caller of the method. We just
have to assign values to its members.

One special thing to note is the use of the _retn() method while returning return_time
to the method. The _retn() method is generated as part of the _var class and returns the
appropriate type that matches the return type of the method, which is HelloWorld::Time.
Use of the _retn() method is similar to the use of the inout() and out() methods on the
_var class in the client code above.

9.1.2—
Variable Length Struct

The variable length struct example is interesting because of the memory management rules that
apply to the out parameter and the return type. We follow case 3 for the out parameter and the
return type. Consider the following IDL:break

//HelloWorld.idl
module HelloWorld{
 struct Time{
 short hour;
 short minute;
 string location;
 };
 interface GoodDay{
 Time hello(in Time in_time,
 inout Time inout_time,
 out Time out_time);
 };
};

Page 141

In the above IDL, we have declared a struct Time with two short members, hour and
minute, and a string member, location. Since the sizes of hour and minute are
fixed but the size of string is variable, Time is a variable length struct. We have also declared
an interface GoodDay that supports one operation hello(). The hello() operation
takes an in argument in_time, of type Time, an inout argument inout_time, of type
Time, and an out argument out_time, also of type Time. In addition, the hello()
operation has a return value of type Time.

If the above IDL is passed through the IDL compiler (the actual compiler used in these
examples was idl2cpp from Inprise VisiBroker), the following signature is generated in
HelloWorld_c.hh corresponding to the method invocation:

HelloWorld::Time *hello(
 const HelloWorld::Time& _in_time,
 HelloWorld::Time& _inout_time,
 HelloWorld::Time_ptr& _out_time
);

Following is a typical client program that uses the above generated stub code:

HelloWorld::Time_var in_time,
 inout_time, out_time;
HelloWorld::Time_var return_time;

in_time = new HelloWorld::Time;
in_time->hour = 15; in_time->minute = 30;
in_time->location = CORBA::string_dup ("San Mateo");
inout_time = new HelloWorld::Time;
inout_time->hour = 20; inout_time->minute = 35;
inout_time->location = CORBA::string_dup("San Bruno");

return_time = goodDay->hello(
 in_time,
 inout_time.inout(),
 out_time.out());

In this code we declare three variables, each of type HelloWorld::Time_var, which is
the _var class corresponding to the struct generated from the corresponding IDL type. We
then allocate storage (on the heap, by invoking new) and assign values to the variables that are
going to be the in and inout arguments to the hello() operation. We set values to the two
short members, hour and minute, and the string member location of the struct
contained in the HelloWorld::Time_var.

We also declare another variable return_time, to hold the return value from the operation.
However, we do not initialize the out_time and the return_time parameters. In
accordance with case 3, which should be used forcontinue

Page 142

the out parameter, we only allocate storage for the pointer, which in this case is just the
declaration of the _var. Note that the _var class contains the _ptr as a member, and just
declaration of the _var class constitutes allocation of storage for the pointer, _ptr. The
callee is supposed to set the pointer contained in the _var to a valid instance of the
parameter's type, which in this case is HelloWorld::Time*. The same rule also applies to
the return type. We then invoke the hello() method in accordance with its signature
generated by the IDL compiler (shown above). In terms of freeing storage, case 3 makes the
caller responsible for releasing storage allocated for the out and return parameters. Since we
use the _var class for all the variables, storage is released automatically. In addition, use of
the _var class also takes care of releasing the storage allocated for the in and inout
parameters, storage for which was allocated on the heap.

In the skeleton code (in the files HelloWorld_s.hh, HelloWorld_s.cpp) generated
from HelloWorld.idl, the signature of the hello() operation is as follows:

virtual HelloWorld::Time_ptr hello(

 const HelloWorld::Time& in_time,
 HelloWorld::Time& inout_time,
 HelloWorld::Time_ptr& out_time) = 0;

The IDL compiler generates a pure virtual function that must be implemented by a servant.

A typical implementation of the hello() method by a servant named GoodDayImpl that
implements the HelloWorld::GoodDay object is as follows:

HelloWorld::Time_ptr GoodDayImpl::hello(
 const HelloWorld::Time& in_time,
 HelloWorld::Time& inout_time,
 HelloWorld::Time_ptr& out_time)

 out_time = new HelloWorld::Time;
 out_time->hour = 18; out_time->minute = 31;

 //Replace the values received as an
 //inout argument
 inout_time.hour = 19; inout_time.minute = 32;

 //Create a return value
 HelloWorld::Time_var return_time =
 new HelloWorld::Time;
 return_time->hour = 17; return_time->minute = 30;
 return return_time._retn();
}

In the above implementation, notice that the signature of the method matches that of what was
generated by the IDL compiler in the skeletoncontinue

Page 143

code. We set values to the out_time argument, replace the values in the inout _time
argument, and create a return_time, set value to it, and return it to the client. We use the
_var class whenever possible to ensure proper memory management.

9.1.3—
Fixed Length Union

With regard to memory management, a fixed length union is treated identically to a fixed length
struct. We follow case 1 when a fixed length union is passed as an in, inout, or out
parameter or if used as a return type. The caller allocates storage and passes by reference or
const reference to the callee. The caller is responsible for releasing allocated storage.
Consider the following IDL:

//HelloWorld.idl
module HelloWorld{
 struct Time{
 short hour;
 short minute;
 };

 union TimeUnion switch(long){
 case 1:
 Time time;

 case 2:
 default:
 long value;
 };

 interface GoodDay{
 TimeUnion hello(in TimeUnion in_union,
 inout TimeUnion inout_union,
 out TimeUnion out_union);

 };
};

In the above IDL, we have declared a struct Time with two short members, hour and
minute. We have also declared a union TimeUnion, which has a discriminator of type
long, and two members: time, of type Time and a long value. Since Time is a fixed
struct and long is of a fixed size, the length of the union is fixed. We have also declared
an interface GoodDay that supports one operation hello(). The hello() operation
takes an in argument in_union, of type TimeUnion, an inout argument
inout_union, of type TimeUnion, and an out argument out_union, also of type
TimeUnion. In addition, the hello() operation has a return value of type
TimeUnion.break

Page 144

If the above IDL is passed through the IDL compiler (the actual compiler used in these
examples was idl2cpp from Inprise VisiBroker), the following signature is generated in
HelloWorld_c.hh corresponding to the method invocation:

HelloWorld::TimeUnion hello(
 const HelloWorld::TimeUnion& _in_union,
 HelloWorld::TimeUnion& _inout_union,
 HelloWorld::TimeUnion& _out_union
);

Following is a typical client program that uses the above generated stub code:

HelloWorld::TimeUnion_var in_union,
 inout_union, out_union;
HelloWorld::TimeUnion_var return_union;

in_union = new HelloWorld::TimeUnion;
inout_union = new HelloWorld::TimeUnion;

HelloWorld::Time_var time =
 new HelloWorld::Time;
time->hour = 15; time->minute = 10;

//Set in_union's time member
in_union->time = time;

//Set inout_union's value member
inout_union->value = (CORBA::Long)20;

return_union = goodDay->hello(

 in_union,
 inout_union.inout(),
 out_union.out());

In the above code, we declare three variables, each of type
HelloWorld::TimeUnion_var, which is the _var class corresponding to the union
generated from the corresponding IDL type. We also declare another variable
return_union to hold the return value from the operation. To set value to the union, set the
time member of the union, in_union, which is the in parameter, and the location member
of the union, inout_union, which is the inout parameter and set values to these. To set
value to the time member, declare a variable time, of type HelloWorld::Time_var.
We use the _var class in the declaration for the in_union as well as for its contained
element time. This is necessary for proper memory management. Wherever possible we use
the memory managed _var class so that wecontinue

Page 145

do not have to keep track of freeing memory. We do not initialize the out_union and the
return_union parameters. The values for these will be set by the hello() operation. We
then invoke the hello() method in accordance with its signature generated by the IDL
compiler, which is shown above.

In the skeleton code (in the files HelloWorld_s.hh, HelloWorld_s.cpp) generated
from HelloWorld.idl, the signature of the hello() operation is as follows:

virtual HelloWorld::TimeUnion hello(
 const HelloWorld::TimeUnion& in_union,
 HelloWorld::TimeUnion& inout_union,
 HelloWorld::TimeUnion& out_union) = 0;

The IDL compiler generates a pure virtual function, as shown above, that must be implemented
by a servant.

Following is an implementation of the hello() method by a servant named GoodDayImpl
that implements the HelloWorld::GoodDay object:

HelloWorld::TimeUnion GoodDayImpl::hello(
 const HelloWorld::TimeUnion& in_union,
 HelloWorld::TimeUnion& inout_union,
 HelloWorld::TimeUnion& out_union)

 //declare and set a time variable
 HelloWorld::Time_var time = new HelloWorld::Time;
 time->hour = 18; time->minute = 30;
 //set the time member in out_union
 out_union.time(time);

 //Replace the values received as an

 //inout argument
 time->hour = 19; time->minute = 32;
 inout_union.time(time);

 //Create a return value

 HelloWorld::TimeUnion return_union;

 //Set the time member in return_union
 time->hour = 17; time->minute = 30;
 return_union.time(time);

 return return_union;
}

In the above implementation, notice that the signature of the method matches that of what was
generated by the IDL compiler in the skeletoncontinue

Page 146

code. We set values to the out_union argument, replace the values in the inout_union
argument, and create a return_union, set value to it, and return it to the client. We use the
_var class whenever possible to ensure proper memory management. We could have used
stack-based allocation for time in the above code instead of using the _var class because the
size of the struct is very small.

9.1.4—
Variable Length Union

With regard to memory management, a variable length union is treated identically to a variable
length struct. We follow case 3 in terms of allocating and freeing storage for out and return
parameters. Consider the following IDL:

//HelloWorld.idl
module HelloWorld{
 struct Time{
 short hour;
 short minute;
 };

 union TimeUnion switch(long){
 case 1:
 Time time;
 case 2:
 string location;
 case 3:
 default:
 short value;
 };

 interface GoodDay{
 TimeUnion hello(in TimeUnion in_union,
 inout TimeUnion inout_union,
 out TimeUnion out_union);
 };
};

In the above IDL, we have declared a struct Time with two short members, hour and
minute, and a string member, location. Since the size of struct Time is fixed but
the size of string is variable, TimeUnion is a variable length union. We have also
declared an interface GoodDay that supports one operation hello(). The hello()

operation takes an in argument in_union, of type TimeUnion, an inout argument
inout_time, of type TimeUnion, and an out argument out_time, also of type
TimeUnion. In addition, the hello() operation has a return value of type TimeUnion.

If the above IDL is passed through the IDL compiler (the actual compiler used in these
examples was idl2cpp from Inprise VisiBroker), the fol-soft

Page 147

lowing signature is generated in HelloWorld_c.hh corresponding to the method
invocation:

HelloWorld::TimeUnion *hello(
 const HelloWorld::TimeUnion& _in_union,
 HelloWorld::TimeUnion& _inout_union,
 HelloWorld::TimeUnion_ptr& _out_union
);

Notice the difference in the signature of the hello() method in contrast to the signature
generated when a fixed length union is used as an argument to the hello() operation. A
typical client program that uses the above generated stub code could look like the following:

HelloWorld::TimeUnion_var in_union,
 inout_union, out_union;

HelloWorld::TimeUnion_var return_union;

in_union = new HelloWorld::TimeUnion;

HelloWorld::Time_var time =
 new HelloWorld::Time;
time->hour = 15; time->minute = 30;
in_union->time(time);

inout_union = new HelloWorld::TimeUnion;
inout_union->location =
 CORBA::string_dup("San Bruno");

return_union = goodDay->hello(
 in_union,
 inout_union.inout(),
 out_union.out());

In the above code, we declare three variables, each of type
HelloWorld::TimeUnion_var, which is the _var class corresponding to the union
generated from the corresponding IDL type. We then assign values to the variable that are going
to be the in and inout arguments to the hello() operation. To do this, we set values to the
two short members, hour and minute, and the string member location of the
struct contained in the HelloWorld::Time_var. We also declare another variable
return_union, to hold the return value from the operation. However, we do not initialize
the out_union and the return_union parameters. The values for these are set by the
hello() operation. We then invoke the hello() method in accordance with its signature
generated by the IDL compiler, which is shown above.

In the skeleton code (in the files HelloWorld_s.hh, HelloWorld_s.cpp) generated
from HelloWorld.idl, the signature of the hello() operation is as follows:break

Page 148

virtual HelloWorld::TimeUnion *hello(
 const HelloWorld::TimeUnion& in_union,
 HelloWorld::TimeUnion& inout_union,
 HelloWorld::TimeUnion_ptr& out_union) = 0;

Note that the IDL compiler generates a pure virtual function that needs to be implemented by a
servant.

Following is an implementation of the hello() method by a servant named GoodDayImpl
that implements the HelloWorld::GoodDay object:

HelloWorld::TimeUnion *GoodDayImpl::hello(
 const HelloWorld::TimeUnion& in_union,
 HelloWorld::TimeUnion& inout_union,
 HelloWorld::TimeUnion_ptr& out_union){

 out_union = new HelloWorld::TimeUnion;

 HelloWorld::Time_var time =
 new HelloWorld::Time;
 time->hour = 18; time->minute = 31;
 out_union->time = time;

 //Replace the values received as an
 //inout argument
 inout_union->location =
 CORBA::string_dup("San Mateo");

 //Create a return value
 HelloWorld::TimeUnion_var return_union =
 new HelloWorld::TimeUnion;
 return_union->value = (CORBA::Long)30;

 return return_union._retn();
}

In the above implementation, the signature of the method matches the signature generated by the
IDL compiler in the skeleton code. We set values to the out_union argument, replace the
values in the inout_union argument, and create a return_union, set value to it, and
return it to the client. We use the _var class whenever possible to ensure proper memory
management.

9.1.5—
Fixed Length Array

The rule to be used for a fixed length array when used as in, inout, or out parameter is case 1,
and when used as a return parameter is case 6. Consider the following IDL:continue

Page 149

//HelloWorld.idl
module HelloWorld{
 struct Time{
 short hour;
 short minute;
 };
 typedef Time TimeArray[10];
 interface GoodDay{
 TimeArray hello(in TimeArray in_arr,
 inout TimeArray inout_arr,
 out TimeArray out_arr);
 };
};

In the above IDL, we have declared an array, TimeArray, which contains ten elements each
of type struct Time with two short members, hour and minute. Since the sizes of
hour and minute are fixed, the array is of fixed length. We have also declared an
interface GoodDay that supports one operation hello(). The hello() operation
takes an in argument in_arr, of type TimeArray, an inout argument inout_arr, of
type TimeArray, and an out argument out_arr, also of type TimeArray. In addition,
the hello() operation has a return value of type TimeArray.

If the above IDL is passed through the IDL compiler, the following signature is generated in
HelloWorld_c.hh corresponding to the method invocation:

HelloWorld::TimeArray_slice *hello(
 const HelloWorld::TimeArray _in_arr,
 HelloWorld::TimeArray _inout_arr,
 HelloWorld::TimeArray _out_arr
);

Notice the peculiar return parameter HelloWorld::TimeArray_slice *. This type
represents a pointer to a slice of the array, which has all the same dimensions of the original
array except the first. A typical client program that uses the above generated stub code could
look like the following:break

HelloWorld::TimeArray_var in_arr,
 inout_arr, out_arr;
HelloWorld::TimeArray_var return_arr;

HelloWorld::Time_var time=
 new HelloWorld::Time;

in_arr = HelloWorld::TimeArray_alloc();
for(CORBA::ULong i = 0; i < 10; i++){
 time->hour = i; time->minute = i + 10;
 in_arr[i] = time;
}

Page 150

inout_arr = HelloWorld::TimeArray_alloc();
for(CORBA::ULong j = 0; j < 10; j++){
 time->hour = j; time->minute = (j*2) + 20;
 inout_arr[j] = time;

}

return_arr = goodDay->hello(
 in_arr,
 inout_arr.inout(),
 out_arr.out());

In the above code, we declare three variables, each of type HelloWorld
::TimeArray_var which is the _var class generated from the corresponding IDL type
TimeArray. To dynamically allocate storage to in_array, we invoke the
HelloWorld::TimeArray_alloc() method found in the generated code. This method
is generated by the IDL compiler when an array is used in IDL. The implementation of this
method is as follows:

HelloWorld::TimeArray_slice
 *HelloWorld::TimeArray_alloc(){
 return new HelloWorld::Time[10];
}

To assign a value to each element of in_array, we do the following. We declare time, of
type HelloWorld::Time_var, and, in a for loop, assign arbitrary values (just to
illustrate) to the hour and minute members of time and then assign this time to an element of
in_array. Similarly, we allocate storage and assign values to inout_array. We also
declare another variable return_time, to hold the return value from the operation.
However, we do not initialize the out_arr and the return_arr parameters. We only
allocate storage sufficient enough for the pointer _ptr contained in the _var associated with
the out_arr and return_arr types. The values for these will be set by the callee. We
then invoke the hello() method in accordance with its signature generated by the IDL
compiler (shown above). The caller is responsible for releasing storage. In this case we use
the _var class for all variables possible, so releasing storage happens automatically when the
_var class goes out of scope.

In the skeleton code (in the files HelloWorld_s.hh, HelloWorld_s.cpp) generated
from HelloWorld.idl, the signature of the hello() operation is as follows:

virtual HelloWorld::TimeArray_slice *hello(
 const HelloWorld::TimeArray in_arr,
 HelloWorld::TimeArray inout_arr,
 HelloWorld::TimeArray out_arr) = 0;

The IDL compiler generates a pure virtual function, as shown above, which must be
implemented by a servant.break

Page 151

Following is an implementation of the hello() method by a servant named GoodDayImpl
that implements the HelloWorld::GoodDay object:

HelloWorld::TimeArray_slice *GoodDayImpl::hello(
 const HelloWorld::TimeArray in_arr,
 HelloWorld::TimeArray inout_arr,
 HelloWorld::TimeArray out_arr){

 //Set values to out_arr

 HelloWorld::Time_var time=
 new HelloWorld::Time;
 for(CORBA::ULong i = 0; i < 10; i++){
 time->hour = i; time->minute = (i*2) + 20;
 out_arr[i] = time;
}

 //Replace the values received as an
 //inout argument
 for(CORBA::ULong j = 0; j < 10; j++){
 time->hour = j; time->minute = (j*3) + 30;
 inout_arr[j] = time;
}

 //Create a return value
 HelloWorld::TimeArray_var return_arr =
 HelloWorld::TimeArray_alloc();
 for(CORBA::ULong k = 0; k < 10; k++){
 time->hour = k; time->minute = (k*4) + 40;
 return_arr[k] = time;
 }

 return return_arr._retn();
}

In the above implementation, the types in the signature of the method match the signature types
generated by the IDL compiler in the skeleton code. We assign values to the out_arr
argument, replace the values in the inout_arr argument, and create a return_arr, set
value to it, and return it to the client. We use the _var class whenever possible so that
memory management is taken care of. In particular, we do use the _var class for each element
of the array, which is of type struct Time.

9.1.6—
Variable Length Array

The only difference between fixed length arrays and variable length arrays in terms of memory
management is when passing them as out parameters. We apply case 1 while passing a fixed
length array as an out parameter, whereas we apply case 6 while passing a variable length
array as an out parameter. Consider the following IDL:break

Page 152

//HelloWorld.idl
module HelloWorld{
 struct Time{
 short hour;
 short minute;
 string location;
 };
 typedef Time TimeArray[10];
 interface GoodDay{
 TimeArray hello(in TimeArray in_arr,
 inout TimeArray inout_arr,
 out TimeArray out_arr);
 };

In the above IDL, we have declared a struct Time with two short members, hour and
minute, and a string member, location. Since the sizes of hour and minute are
fixed but the size of string is variable, Time is a variable length struct. Hence the size of
the array TimeArray is also variable. Like before, we have also declared an interface
GoodDay which supports one operation hello(). The hello() operation takes an in
argument in_arr, of type TimeArray, an inout argument inout_arr, of type
TimeArray, and an out argument out_arr, also of type TimeArray. In addition, the
hello() operation has a return value of type TimeArray. If the above IDL is passed
through the IDL compiler (the actual compiler used in these examples was idl2cpp from
Inprise VisiBroker), the following signature is generated in HelloWorld_c.hh
corresponding to the method invocation:

HelloWorld::TimeArray_slice *hello(
 const HelloWorld::TimeArray _in_arr,
 HelloWorld::TimeArray _inout_arr,
 HelloWorld::TimeArray_slice_ptr& _out_arr
);

Following is a client program that uses the above generated stub code:break

HelloWorld::TimeArray_var in_arr,
 inout_arr, out_arr;
HelloWorld::TimeArray_var return_arr;

in_arr = HelloWorld::TimeArray_alloc();
HelloWorld::Time_var time =
 new HelloWorld::Time;
for(CORBA::ULong i = 0; i < 10; i++)
 time->hour = i; time->minute = i + 20;
 time->location =
 CORBA::string_dup("San Mateo");
 in_arr[i] = time;
}

Page 153

inout_arr = HelloWorld::TimeArray_alloc();
for(CORBA::ULong j = 0; j < 10; j++){
 time->hour = j; time->minute = (j*2) + 30;
 time->location =
 CORBA::string_dup("San Francisco");
 inout_arr[j] = time;
}

return_arr = goodDay->hello(
 in_arr,
 inout_arr.inout(),
 out_arr.out());

The client code above is almost identical to the client code written for the fixed length array
example in the previous section. The only difference is the setting of the location member of the
struct Time. Since the generated code declares the location member of struct Time
as a CORBA::String_var, we must set value to the _var. The only point to note here is
that we use the _var class for each element of TimeArray in addition to using the _var

class for the TimeArray itself.

In the skeleton code (in the files HelloWorld_s.hh, HelloWorld_s.cpp) generated
from HelloWorld.idl, the signature of the hello() operation would look like

virtual HelloWorld::TimeArray_slice *hello(
 const HelloWorld::TimeArray in_arr,
 HelloWorld::TimeArray inout_arr,
 HelloWorld::TimeArray_slice_ptr& out_arr) = 0;

The IDL compiler generates a pure virtual function, as shown above, which must be
implemented by a servant.

Following is an implementation of the hello() method by a servant named GoodDayImpl
that implements the HelloWorld::GoodDay object:break

HelloWorld::TimeArray_slice *GoodDayImpl::hello(
 const HelloWorld::TimeArray in_arr,
 HelloWorld::TimeArray inout_arr,
 HelloWorld::TimeArray_slice_ptr& out_arr){

 HelloWorld::Time_var time =
 new HelloWorld::Time;
 out_arr = HelloWorld::TimeArray_alloc();
 for(CORBA::ULong i = 0; i < 10; i++){
 time->hour = i; time->minute = (i*2) + 20;
 time->location =
 CORBA::string_dup("Scotts Valley");
 out_arr[i] = time;
 }

Page 154

 //Replace the values received as an
 //inout argument
 for(CORBA::ULong j = 0; j < 10; j++){
 time->hour = j; time->minute = (j*3) + 30;
 time->location =
 CORBA::string_dup("Santa Cruz");
 inout_arr[j] = time;
 }

 //Create a return value
 HelloWorld::TimeArray_var return_arr =
 HelloWorld::TimeArray_alloc()
 for(CORBA::ULong k = 0; k < 10; k++){
 time->hour = k; time->minute = (k*4) + 40;
 time->location =
 CORBA::string_dup("Monterey");
 return_arr[k] = time;
 }
 return return_arr._retn();
}

In the above implementation, the types in the signature of the method matches the signature
types by the IDL compiler in the skeleton code. We set values to the out_arr argument,

replace the values in the inout_arr argument and create a return_arr, set value to it
and return it to the client. We use the generated method TimeArray_alloc() to allocate
memory and the _var class whenever possible to ensure proper memory management.

9.1.7—
Sequences

The memory management rules for both fixed length and variable length sequences are the
same. Hence we only consider a variable length sequence in this section. Consider the
following IDL:

//HelloWorld.idl
 module HelloWorld{
 struct Time{
 short hour;
 short minute;
 string location;
 };
 typedef sequence<Time> TimeSeq
 interface GoodDay{
 TimeSeq hello(in TimeSeq in_seq,
 inout TimeSeq inout_seq,
 out TimeSeq out_seq);
 };
 };

In the above IDL we have declared a struct Time with two short members, hour and
minute, and a string member, location. We have then declared acontinue

Page 155

sequence TimeSeq, whose elements are of type struct Time. We have also declared an
interface GoodDay which supports one operation hello(). The hello() operation
takes an in argument in_seq, of type TimeSeq, an inout argument inoutseq, of type
TimeSeq, and an out argument out_seq, also of type TimeSeq. In addition, the
hello() operation has a return value of type TimeSeq. If the above IDL is passed through
the IDL compiler (the actual compiler used in these examples was idl2cpp from Inprise
VisiBroker), the following signature is generated in HelloWorld_c.hh corresponding to
the method invocation:

HelloWorld::TimeSeq_ptr hello(
 const HelloWorld::TimeSeq& _in_seq,
 HelloWorld::TimeSeq& _inout_seq,
 HelloWorld::TimeSeq_ptr& _out_seq
);

Following is a typical client program that uses the above generated stub code:break

HelloWorld::TimeSeq_var in_seq,
 inout_seq, out_seq;
HelloWorld::TimeSeq_var return_seq;

in_seq = new HelloWorld::TimeSeq;
CORBA::ULong in_seq_len = 10;
in_seq->length(in_seq_len);

for(CORBA::ULong i = 0; i < in_seq_len; i++)
 time->hour = i; time->minute = i + 10;
 time->location =
 CORBA::string_dup("San Mateo");
 in_seq[i] = time;
}

inout_seq = new HelloWorld::TimeSeq;
CORBA::ULong inout_seq_len = 20;
inout_seq->length(inout_seq_len);
for(CORBA::ULong j = 0;
 j < inout_seq_len; j++){
 time->hour = j; time->minute = (j*2) + 20;
 time->location=
 CORBA::string_dup("San Francisco");
 in_out_seq->time = time;
}

return_seq = goodDay->hello(
 in_seq,
 inout_seq.inout(),
 out_seq.out());

Page 156

In the above code, we declare three variables, each of type HelloWorld::TimeSeq_var,
which is the _var class corresponding to the sequence generated from the corresponding IDL
type. We then assign values to the variables that are going to be the in and inout arguments
to the hello() operation. To do this we simply set values to each member of the sequence in
a loop. We arbitrarily set values to each member just for illustrative purpose. Note that the
_var class provides an overloaded operator[], thus making it convenient to assign values
to the elements, like we would do with an array. We also declare another variable
return_time, to hold the return value from the operation. However, we do not initialize the
out_seq and the return_seq parameters. The values for these will be set by the
hello() operation. We then invoke the hello() method in accordance with its signature
generated by the IDL compiler, which is shown above.

In the skeleton code (in the files HelloWorld_s.hh, HelloWorld_s.cpp) generated
from HelloWorld.idl, the signature of the hello() operation is as follows:

virtual HelloWorld::TimeSeq_ptr hello(
 const HelloWorld::TimeSeq& in_seq,
 HelloWorld::TimeSeq_& inout_seq,
 HelloWorld::TimeSeq_ptr& out_seq) = 0;

Note that the IDL compiler generates a pure virtual function that needs to be implemented by a
servant.

Following is a typical implementation of the hello() method by a servant named
GoodDayImpl that implements the HelloWorld::GoodDay object:break

HelloWorld::TimeSeq_ptr GoodDayImpl::hello(
 const HelloWorld::TimeSeq& in_seq,
 HelloWorld::TimeSeq_& inout_seq,
 HelloWorld::TimeSeq_ptr& out_seq){

 HelloWorld::Time_var time =
 new HelloWorld::Time;

 out_seq = new HelloWorld::TimeSeq;
 CORBA::ULong out_seq_len = 20;
 out_seq->length(out_seq_len);
 for(CORBA::ULong i = 0; i < out_seq_len; i++){
 time->hour = i; time->minute = (i*2) + 20;
 time->location =
 CORBA::string_dup ("Scotts Valley");
 out_seq[i] = time;
 }

 //Case 5. Release inout parameter
 //inout_seq is passed in as _ptr
 //assigning it to an _var ensures automatic

Page 157

 //release
 Seq_var release_seq(inout_seq);

 //Create a new sequence
 HelloWorld::TimeSeq_var new_seq =
 new HelloWorld::TimeSeq;

 //Replace the values received as an
 //inout argument
 for(CORBA::ULong j = 0;
 j < inout_seq->length(); j++){
 time->hour = j; time->minute = (j*3)+30;
 time->location =
 CORBA::string_dup("Santa Cruz");
 new_seq[j] = time;
 }
 inout_seq = new_seq._retn();

Here, we must use case 5, which applies to inout parameters. Case 5 implies that we release
the storage contained in the _ptr passed as an inout parameter. To do this we declare a
variable release_seq of type HelloWorld::TimeSeq_var and assign inout_seq
to it. This forces a release of the storage that was allocated to inout_seq. (Look at the
implementation of the assignment operator, copy constructor for the
HelloWorld::TimeSeq_var class in HelloWorld_c.hh). Following this, we create
a new sequence, assign values to it, and use its _retn() value to assign it to the inout
argument that is then returned to the client.

//Create a return value
HelloWorld::TimeSeq_var return_seq
 new HelloWorld::TimeSeq;
CORBA::ULong return_seq_len = 20;
return_seq->length(return_seq_len);
for(CORBA::ULong k = 0;
 k < return_seq_len; k++)
 time->hour = k; time->minute = (k*4) + 40;
 time->location =

 CORBA::string_dup("Monterey");
 return_seq[k] = time;
;
return return_seq._retn();
}

In the above implementation, the types of the signature of the method matches the signature
types generated by the IDL compiler in the skeleton code. We set values to the out_seq
argument, replace the values in the inout_seq argument, and create a return_seq, set
value to it, and return it tocontinue

Page 158

the client. We use the _var class whenever possible to ensure proper memory management.
We use the _var class for each element contained in the TimeSeq as well.

9.1.8—
Octet

Octets are similar to IDL primitive types such as long, or float, with regard to argument
passing. We follow case 1 when an octet is passed as an argument to a method. An octet is
passed by value if it occurs as an in argument, passed by reference if an out or inout
argument, and returned by value from a method. Consider the following IDL:

//HelloWorld.idl
 module HelloWorld{
 interface GoodDay{
 octet hello(in octet in_octet,
 inout octet inout_octet,
 out octet out_octet);
 };
};

In the above IDL, we have declared an interface GoodDay which supports one operation
hello(). The hello() operation takes an in argument in_octet, of type octet, an
inout argument inout_octet, of type octet, and an out argument out_octet, also
of type octet. In addition, the hello() operation has a return value of type octet.

If the above IDL is passed through the IDL compiler (the actual compiler used in these
examples was idl2cpp from Inprise VisiBroker), the following signature is generated in
HelloWorld_c.hh corresponding to the method invocation:

CORBA::Octet hello(
 CORBA::Octet _in_octet,
 CORBA::Octet& _inout_octet,
 CORBA::Octet& _out_octet
);

Following is a typical client program that uses the above generated stub code:break

CORBA::Octet in_octet, inout_octet, out_octet;
CORBA::Octet return_octet;

in_octet = 'a';
inout_octet = 'b';

return_octet = goodDay->hello(
 in_octet,

Page 159

 inout_octet,
 out_octet);

In the above code, we declare three local variables, in_octet, inout_octet, and
out_octet, each of type CORBA::Octet, which is the type corresponding to an IDL octet.
We then assign values to the variable that are going to be the in and inout arguments to the
hello() operation. We also declare another variable return_octet, to hold the return
value from the operation. However, we do not initialize the out_octet and the
return_octet parameters. The values for these will be set by the hello() operation. We
then invoke the hello() method in accordance with its signature generated by the IDL
compiler (shown above).

In the skeleton code (in the files HelloWorld_s.hh, HelloWorld_s.cpp) generated
from HelloWorld.idl, the signature of the hello() operation is as follows:

virtual CORBA::Octet hello(
CORBA::Octet in_octet,
CORBA::Octet& inout_octet,
CORBA::Octet& out_octet) = 0;

The IDL compiler generates a pure virtual function that needs to be implemented by a servant.

Following is an implementation of the hello() method by a servant named GoodDayImpl
that implements the HelloWorld::GoodDay object:

CORBA::Octet GoodDayImpl::hello(
 CORBA::Octet in_octet,
 CORBA::Octet& inout_octet,
 CORBA::Octet& out_octet){

 out_octet = 'c';

 //Replace the value received as an
 //inout argument
 inout_octet = 'd';

 //Create a return value
 CORBA::Octet return_octet = 'e';
 return return_octet;
}

In the above implementation, the types of the signature of the method matches the signature
types generated by the IDL compiler in the skeleton code. We set values to the out_octet
argument, replace the values in the inout_octet argument, and create a return_octet,
set value to it, and return it to the client.break

Page 160

9.1.9—
Object Reference

We follow case 2 when passing interfaces as arguments to an operation. IDL interfaces are
passed as pointers to object references. It is interesting to observe the invocation of duplicate
and release on object references. Consider the following IDL:

//HelloWorld.idl
module HelloWorld{
 interface MyObject{
 void my_method();
 };
 interface GoodDay{
 MyObject hello(in MyObject in_obj,
 inout MyObject inoutobj,
 out MyObject out_obj);
 };
};

In the above IDL, we have declared an interface MyObject that supports one operation,
my_method. This operation does not take any arguments and does not return any value, just to
keep things simple. We have also declared an interface GoodDay which supports one
operation hello(). The hello() operation takes an in argument in_obj, of type
MyObject, an inout argument inout_obj, of type MyObject, and an out argument
out_obj, also of type MyObject. In addition, the hello() operation has a return value of
type MyObject. Note that all the arguments are IDL interfaces. If the above IDL is passed
through the IDL compiler (the actual compiler used in these examples was idl2cpp from
Inprise VisiBroker), the following signature is generated in HelloWorld_c.hh
corresponding to the method invocation:

HelloWorld::MyObject_ptr hello(
 HelloWorld::MyObject_ptr _in_obj,
 HelloWorld::MyObject_ptr& _inout_obj,
 HelloWorld::MyObject_ptr& _out_obj
);

Following is a client program that uses the above generated stub code:break

HelloWorld::MyObject_var in_obj,
 inout_obj, out_obj;
HelloWorld::MyObject_var return_obj;
//somehow obtain a reference to MyObject
//either by calling _bind() or _narrow() or
//from the Naming Service
in_obj =
 HelloWorld::MyObject::_bind("InObject");

Page 161

//obtain a reference to MyObject
//and initialize inout_obj
inout_obj =
 HelloWorld::MyObject::_bind("InOutObject");

return_obj = goodDay->hello(
 in_obj,
 inout_obj.inout(),
 out_obj.out());

In the above code, we declare three variables, each of type
HelloWorld::MyObject_var, which is the _var class corresponding to the
MyObject class generated from the corresponding IDL type, MyObject. Following case 2,
the caller allocates storage for an object reference and passes a pointer to the object reference
as an in parameter. In our example we obtain an object reference by invoking _bind(),
which is used to initialize in_obj.

_bind() is one way to obtain an object reference. We could also have used _narrow() or
other means to obtain an object reference. We similarly initialize inout_obj. We also
declare another variable return_obj to hold the return value from the operation. However,
we do not initialize the out_obj and the return_obj parameters. The values for these are
set by the hello() operation. We then invoke the hello() method in accordance with its
signature generated by the IDL compiler (shown above). We pass as the second and the third
arguments to the hello() method the results of invoking inout() and out() on the _var
class corresponding to HelloWorld::MyObject. One subtle thing to note is that we have
used the _var class for all parameters. This ensures the appropriate releasing of the object
reference contained in them when the _var goes out of scope. Had we used an _ptr instead
of the _var, we would have had to remember to invoke CORBA::release on the object
reference contained in the inout and out parameters.

In the skeleton code (in the files HelloWorld_s.hh, HelloWorld_s.cpp) generated
from HelloWorld. idl, the signature of the hello() operation is as follows:

virtual HelloWorld::MyObject_ptr hello(
 HelloWorld::MyObject_ptr in_obj,
 HelloWorld::MyObject_ptr& inout_obj,
 HelloWorld::MyObject_ptr& out_obj) = 0;

Note that the IDL compiler generates a pure virtual function that needs to be implemented by a
servant.

A typical implementation of the hello() method by a servant named GoodDayImpl that
implements the HelloWorld::GoodDay object is as follows:continue

Page 162

HelloWorld::MyObject_ptr GoodDayImpl::hello(
 HelloWorld::MyObject_ptr in_obj,
 HelloWorld::MyObject_ptr& inout_obj,
 HelloWorld::MyObject_ptr& out_obj)

 //if we need to hold onto the object
 //reference passed as in parameter, need to
 //duplicate it, ORB would release it otherwise
 HelloWorld::MyObject_ptr save_in_obj =
 HelloWorld::MyObject::_duplicate(in_obj);

 //obtain an object reference
 //either by invoking _bind(), _narrow() or

 //other means to initialize out_obj
 out_obj =
 HelloWorld::MyObject::_bind("OutObject");

 //Release incoming inout parameter
 CORBA::release(in_obj);

 //Now initialize the inout argument
 inout_obj =
 HelloWorld::MyObject::_bind("InOutObject");

 //Create a return value
 HelloWorld::MyObject_var ret_obj =
 HelloWorld::MyObject::_bind("RetObject");

 //if we need to hold onto this object's
 //reference, duplicate it before we return it
 //to the caller, else the ORB would release it
 HelloWorld::MyObject::_duplicate(ret_obj);

 return ret_obj;
}

In the above implementation, the types of the signature of the method matches the signature type
generated by the IDL compiler in the skeleton code. Again we use _bind() to obtain an
object reference, which we then use to initialize out_obj and return_obj. The important
points to note here are the memory management rules. If we need to hold onto the object
reference passed to us an in parameter, we need to call _duplicate() on the object
reference so that it is not released by the ORB. In accordance with case 2, we have to release
the object reference stored in the inout parameter before we assign a new one to it. Also,
before we return an object reference, if we need to hold onto it for later use, we need to call
_duplicate() on it before we return the value. This rule applies not only to object
references but all variable types.

Following these principles we set values to the out_obj argument, replace the values in the
inout_obj argument, and create a return_obj, initial-soft

Page 163

ize it, and return it to the client. We use the _var class whenever possible to ensure proper
memory management.

10—
Mapping of Interfaces

IDL interfaces are mapped to C++ classes that contain datatype definitions and function
declarations for the operations of the interfaces. The mapping can be divided into client side
(caller) and a server side (called) mapping.

10.1—
Client Side Mapping

Given the background information on the mapping types and the rules for passing parameters,

we now look at how to use this information to create distributed applications. The IDL
compiler is responsible for creating the skeleton from which we can build our applications.
The client side pieces of this skeleton, commonly referred to as stubs, are implementations of
the C++ classes created by the IDL compiler from the corresponding IDL interface. From an
object reference obtained by the client, a client side proxy object is generated from the stubs
which allows the client to invoke functions as though the object were local. Upon execution,
the proxy object forwards the call to the implementation object and all the data marshaling and
low-level communication are transparently handled by the ORB to make remote invocations
appear local. In a client program you need only declare an object reference of the C++ class
type, such as

Tester_var myTester;

and assign a value to the variable, for example,

CORBA::Object obj = orb->string_to_object(iorString);
myTester = myTester._narrow(obj);

The client can now invoke functions on this object in the usual manner. The difference is in the
execution of the function. The proxy object forwards the call to the implementation object by
calling the ORB library to send the call to the remote object.

10.2—
Server Side Mapping

For the server side mapping we have to consider different cases. We have to consider two
object adapters, the BOA and the POA. In either case the map-soft

Page 164

ping the IDL compiler generates is a skeleton class for each IDL interface. The implementor's
task is to implement the attributes and operations defined in the IDL specification and to glue
them together with the skeleton.

The gluing can be done in two ways, using an inheritance approach or a delegation approach.
In the inheritance approach you define an implementation class that inherits the skeleton class
generated by the IDL compiler. In the delegation approach the IDL compiler generates an
additional class, called the tie class. The tie class is a pseudo-implementation class. The tie
class inherits the skeleton class and holds a reference to the real implementation class you
provide.

The BOA specification is rather vague and it is particular in the area of the interface
implementation. Hence the mappings vary. For details on the various BOA details, review the
reference manuals of the particular products.

For demonstration purposes we use the Inprise VisiBroker for C++ idl2cpp compiler. For
example,

//Example.idl
interface Example{
 void f();
};

compiles to produce the following C++ files:

interface_ex_c.hh
interface_ex_c.cc
interface_ex_s.hh
interface_ex_s.cc

Within interface_ex_s.hh is the skeleton class of the interface_ex, named with the
prepended _sk_. From this the developer inherits and provides the class implementation and
method definitions.break

//Interface_Ex_Implementation.h

#include Interface_Ex_s.hh

Class Example : public virtual _sk_Example
{
protected:
 _sk_Example(const char *_obj_name = (const char *)NULL);
...

public:
 virtual void f() = O;//operation stub

Page 165

...

};

//Interface_Ex_Implementation.cpp

#include Interface_Ex_Implementation.h

//constructor
Example::Example(){
... //initialization(s);
}

void Example::f(){
...//do something
 }

The POA takes the same approach as the BOA, but exactly defines the names and conventions
of the generated classes. First of all, the mapping defines a virtual C++ class with the same
name as the IDL interface, the class is as follows:

//C++
class Example : public virtual CORBA::Object{
 public:
 virtual void f();
};

There is a choice for ORB implementors of where to apply the virtual keyword, but the
signature of the interface is in any case the same. The mapping of the operations follows the
rules explained above.

The mapping defines two more classes for use in the inheritance and the delegation approach,
respectively. For the inheritance approach, a class POA_interface_name is generated. It
inherits a servant base class and has the same signature as the class interface_name. For
our example it would look like the following:

//C++
class POA_Example :: public virtual PortableServer::ServantBase{
 public:
 //÷
 virtual void f();
};

An implementation class is as follows:break

class ExampleImpl : public virtual POA_Example{
 public
 void foo() throw(CORBA::SystemException){

Page 166

 cout << ìfoo invokedî << end1;
};
} ;

For the delegation approach, the compiler generates an additional class, the tie class. The tie
class is named POA_interface_name_tie. The tie class inherits the skeleton class. The
tie class for our example is:

//C++
template<class T>;
class POA_Example_tie : public POA_Example{
 public:
};

It is now the application programmer's responsibility to provide the implementation of the
template class. For our example that is:

//C++
template<class T>
void POA_Example_tie<T>::foo() throw(CORBA::SystemException){
 cout << "foo invoked" << end1;
};

In the next chapter we explain the C++ mapping of the POA. More examples using the POA are
given throughout the remainder of the book, specifically in chapters 6 and 7.break

Page 167

Chapter 4—
ORB Runtime System

The CORBA specification defines the ORB runtime system in the form of the pseudo-objects

ORB, BOA and POA, and Object. They are called pseudoobjects because they provide
interfaces like normal objects, but the operations on those interfaces are implemented in
libraries and do not usually result in a remote invocation. Interfaces of pseudo-objects are
specified in OMG IDL, which are commented as pseudo-IDL (PIDL). In this chapter we
explain the implementation of these pseudo-objects for C++ ORBs, that is, their corresponding
C++ APIs. Besides the three pseudo-objects, we introduce the C++ mapping for TypeCodes,
the DII, the DSI, and the Contexts.

This chapter contains mappings for the following interfaces:

• CORBA::Object

• CORBA::ORB

• CORBA::BOA

• TypeCode

• DII

• DSI

• CORBA::Context

• CORBA::POAbreak

Page 168

1—
Object Interface

Using the BOA, all CORBA objects, that is, objects that have been specified in OMG IDL and
implemented in a CORBA environment, are extensions of CORBA::Object. The interface
CORBA::Object defines the operations that are applicable to any object. These operations
are implemented by the ORB itself instead of being passed to the implementation of the derived
object. POA servants are connected with CORBA::Object by delegation.

In this section we will discuss the mapping of these operations to C++. The mappings will be
presented in the following format:

CORBA definition CORBA::Object

C++ mapping CORBA::Object

1.1—
get_implementation()

The Implementation Repository contains information that allows the ORB to locate and activate
object implementations. This information is accessible from an object with a CORBA
definition CORBA::ImplementationDef. Note that the specification of

CORBA::ImplementationDef is left to the particular ORB implementation since it deals
with operating-system-specific information. The operating returns an object that can then be
queried about details of the object implementation.

CORBA definition ImplementationDef get_implementation();

C++ mapping CORBA_ImplementationDef_ptr::_get_implementation()

1.2—
get_interface()

The Interface Repository contains type information of IDL-defined types. Although the Interface
Repository can be modified directly through an IDL-defined interface, the type information is
usually created and stored by the IDL compiler, with the appropriate options switched on. The
type information is kept in objects with the CORBA definition CORBA::InterfaceDef.
Operations on this interface allow the query of type information in the Interface Repository.
The question get_interface() returns an ImplementationDef object that represents
that interface type of the object it was called on.break

CORBA definition ImplementationDef get_interface();

C++ mapping CORBA_InterfaceDef_ptr::_get_interface()

Page 169

1.3—
is_nil()

An object reference can be tested for this value by the operation is_nil(). This operation
returns TRUE if the value of the reference is nil, otherwise FALSE. The ORB determines the
result; the implementation of the object is not involved. Its parameter is the object pointer
which needs to be checked.

CORBA definition boolean is_nil()

C++ mapping static CORBA::Boolean CORBA::is_nil (NVList_ptr obj)

1.4—
duplicate() and release()

The operations duplicate() and release() provide memory management for object
references. The operation duplicate() is a public member of the C++ class
CORBA::Object. The operation release() is defined in the CORBA namespace.

CORBA definition Object duplicate();

 void release();

 void release();

C++ mapping static Object_ptr_duplicate
(Objectptr obj);
 CORBA::release(Object_ptr obj);

The semantics and use of these operations are explained in Chapter 2.

1.5—
is_a()

The operation is_a() tests if the object the operation is called on is of the interface type
supplied as an argument. This string argument to is_a() is interpreted as an Interface Repository
identifier (see Chapter 2 for an explanation). It returns TRUE if the object is of the type
identified. This means either that the object's type and the identified type are the same, or that
the identified type is a base type of the object's type. A FALSE return value does not
necessarily mean that the object is not substitutable. The parameter for the C++ mapping is the
repository identifier to check.

CORBA definition boolean is_a(in string logical_type_id);

C++ mapping CORBA::Boolean _is_a(const char* logical_type_id);)

1.6—
non_existent()

The operation non_existent() can be used to test if an object has been destroyed. It
returns TRUE if the ORB can authoritatively determine thatcontinue

Page 170

the referenced object does not exist, otherwise it returns FALSE. Note that the FALSE may not
mean that the object still exists.

CORBA definition boolean non_existent();

C++ mapping CORBA::Boolean _non_existent()

1.7—
is_equivalent()

The operation is_equivalent() determines if two object references are equivalent, that
is, are they identical or do they refer to the same object. The operation returns TRUE if the
object reference on which the object was called and the reference other_object are
known to be equivalent, otherwise it returns FALSE. Note that the FALSE does not mean that
the object could not possibly be the same.

CORBA definition is_equivalent(in Object other_object);

CORBA definition is_equivalent(in Object other_object);

C++ mapping CORBA::Boolean _is_equivalent (CORBA::Object_ptr
other_object)

1.8—
hash()

The operation hash() is used to effectively manage large numbers of object references. It
generates a hash value for the object reference on which the operation is called. The hash value
relates to an ORB-internal identifier. As usual with hash functions, different object references
can result in the same hash value and further operations, such as the operation
is_equivalent(), need to be called.

CORBA definition unsigned long hash(in unsigned long maximum);

C++ mapping CORBA::ULong hash(CORBA::ULong maximum);

1.9—
create_request()

The operation create_request() is used to create a dynamic invocation request when
using the DII. It is discussed in this context in Chapter 7.break

CORBA definition Status create_request(
in Context ctx,
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flags);

Page 171

C++ mapping CORBA::Status _create_request (
Context_ptr ctx,
Const char *operation,
CORBA::NVList_ptr arg_list,
CORBA::NamedValue_ptr& result,
CORBA::Request_out request,
Flags req_flags)

2—
ORB Interface

The ORB interface provides operations to bootstrap a CORBA application. This requires the
initialization of an object adapter, the conversion of object references into strings and vice
versa, and the resolution of initial references.

There are more operations defined on the ORB pseudo-interface that are concerned with
TypeCodes, contexts, the DII, and the DSI. The mappings for these operations are explained in
the appropriate sections. The ORB interface is mapped as follows:

CORBA definition CORBA::ORB

C++ mapping CORBA::ORB

2.1—
ORB Initialization

Before an application can use the operations on the ORB interfaces it needs a reference to an
ORB pseudo-object. The CORBA::ORB_init() method initializes the ORB. A pointer to
the ORB is returned. The orb_id parameter identifies the type of ORB to be used.

CORBA definition ORB ORB_init(inout arg_list argv, in ORB
orb_identifier);

C++ mapping CORBA::ORB_init(int& argc,
 char* const *argv,
 const char* orb_id = NULL);

2.2—
Converting Object References into Strings and Vice Versa

Object references can be externalized by converting them into strings. A stringified object
reference can be conveniently stored in a file or passedcontinue

Page 172

around by means other than CORBA, for example, by ftp or email. Of course, a stringified
object reference must be reconvertible into a real object reference, which refers to the same
object as the original one.

There are two operations of the ORB interface which stringify and destringify object
references. The object_to_string() operation converts an interoperable object
reference (IOR) into a string.

CORBA definition string object_to_string(in Object obj);

C++ mapping char *object_to_string (CORBA::Object_ptr obj)

The operation string_to_obj ect() converts a stringified object reference back into an
IOR.

CORBA definition Object string_to_object(in string obj);

C++ mapping CORBA::Object_ptr string_to_object
(const char *str)

A stringified IOR that has been produced by object_to_string() is guaranteed to be
reconvertible by string_to_object() independent of which ORB the operations have
been invoked on. Note that the result of string_to_object() is of type
CORBA::Object and must be narrowed to the object type expected.

2.3—
Obtaining Initial References

Besides initializing an ORB, client and server programs need to access initial objects such as a
root naming context, usually to bootstrap themselves. The ORB defines two operations for this
purpose.break

CORBA definition typedef string ObjectId;
Typedef sequence <ObjectId> ObjectIdList;
exception InvalidName{};
ObjectIdList list_initial_services();

C++ mapping typedef char* ObjectId;
class ObjectIdList{ ... };
class InvalidName{ ... };
ObjectIdList * list_initial_services();

CORBA definition Object resolve_initial_services(in Objectid
identifier)
 raises(InvalidName);

C++ mapping Object resolve_initial_services(
 const char *identifier);

Page 173

2.4—
BOA Initialization

A server also needs to initialize an object adapter. The ORB pseudo-interface provides the
operation BOA_init() to obtain a BOA.

CORBA definition BOA BOA_init(inout arg_lit argv, in OADid
boa_identifier);

C++ mapping CORBA::BOA_ptr ORB::BOA_init(int & argc, char
*const *argv,
const char *boa_identifier = (char *) NULL);

2.5—
POA Initialization

A reference to an initial POA can be obtained using the operation resolve_
initial_services(), as defined above. The object identifier for the initial POA is
RootPOA. An application program can obtain further, more refined POAs from the root POA,
which is explained below.

3—
Basic Object Adapter

Earlier we introduced the operation BOA_init(), which initializes a BOA and provides a
server with a pseudo-object reference to a BOA. In this section we introduce the operations
specified in BOA pseudo-interface and their mapping to C++. The IDL-specified BOA
pseudo-interface CORBA::BOA is mapped to the C++ class CORBA::BOA_ptr.

3.1—
Activation and Deactivation

The operation object_is_ready() makes the specified object available for clients.

CORBA definition void object_is_ready(in Object obj,
 In ImplementationDef impl);

C++ mapping void obj_is_ready(CORBA::ImplementationDef_ptr
 impl_ptr = NULL);

Although an object reference can be passed to clients, for example, via a Naming or Trading
Service, or externalized with object_to_string() as soon as an object is created,
methods can only be invoked after obj_is_ready() has been called for this particular
object.

The operation deactivate_object() will deactivate the specified object. Once an
object has been deactivated it is no longer accessible to clients. Ancontinue

Page 174

attempt to invoke a method on a deactivated object will raise the exception

CORBA::NO_IMPLEMENT.

CORBA definition void deactivate_object(in Object obj);

C++ mapping void deactivate_object(CORBA::Object_ptr obj);

The operation impl_is_ready() activates objects on a per-server basis, that is, all
objects that have been created by a particular server are made accessible to clients.

CORBA definition void impl_is_ready(in ImplementationDef impl);

C++ mapping void impl_is_ready(
CORBA::ImplementationDef_ptr impl_def = NULL);

Visibroker for C++, however, implements the method with slightly different semantics.
Visibroker requires a call to obj_is_ready() for each object. The method
impl_is_ready() makes a program listen for requests to the objects it has created.

3.2—
Other Operations

The BOA interface description provided in the CORBA module contains several additional
operations that are seldom used by any ORB implementation. The generation of object
references is usually done implicitly when a programming language reference to an
implementation object is passed as a parameter. The handling of authentication and access
control is done by a higher-level service. The reference data in an object reference may be
used for many purposes, among them retrieval of persistent state.

Note that the principal has been deprecated and we only show it for historical reasons. If you
want to implement your own access control, use the service context instead of the principal to
pass the identity of a caller along with an invocation.break

//interface CORBA::BOA PIDL cont...

interface Principal;
typedef sequence <octet, 1024> ReferenceData;

Object create(
 In ReferenceData id,
 In InterfaceDef intf,
 In ImplementationDef impl);

void dispose(in Object obj);
ReferenceData get_id(in Object obj);

Page 175

Void change_implementation(

 In Object obj,
 In ImplementationDef impl);

Principal get_principal(
 In Object obj,
 In Environment env);
};//interface BOA
};//module CORBA

The get_id() operation will return the reference data of an object reference which is
guaranteed to be unique within the server that implements the object. Activation and
deactivation of servers requires that object state information be stored persistently, for
example, in a database. The reference data can be used as a database key to retrieve this
information when a server is reactivated.

4—
TypeCodes

TypeCodes represent IDL type definitions at runtime. They can be created and examined at
runtime. TypeCodes are defined in the CORBA specification by the pseudo-CORBA definition
CORBA::TypeCode. They are used in the following contexts:

The Any type—describes the type of the value contained by the Any object.

DII—used to determine the type of the parameters of a Request.

Interface repository—represents type specifications stored in the Interface
Repository. IORs—represents the type of the referenced object.

4.1—
Interface TypeCode

The pseudo-CORBA definition is mapped to C++ mappings or classes:

CORBA definition CORBA::TypeCode

C++ mapping CORBA::TypeCode

The following is a list of the TypeCode constants for IDL datatypes. All of the TypeCode
constants have a datatype of TypeCode_ptr.break

_tc_null
_tc_void
_tc_short

Page 176

_tc_long
_tc_longlong
_tc_ushort
_tc_ulong

_tc_ulonglong
_tc_float
_tc_double
_tc_longdouble
_tc_boolean
_tc_char
_tc_wchar
_tc_wstring
_tc_octet
_tc_Any
_tc_TypeCode
_tc_Principal
_tc_Object
_tc_string
_tc_NamedValue

4.1.1—
TCKind

The CORBA module defines a pseudo-IDL definition of an enum, TCKind. This enum
defines constants to determine various "kinds" of TypeCodes. Different operations are allowed
on different kinds of TypeCodes.

CORBA definition CORBA::TCKind

C++ mapping CORBA::TCKind

This class is used by the Interface Repository and the IDL compiler to represent the type of
arguments or attributes. TypeCode objects are also used in a Request to specify an
argument's type, in conjunction with the Any class. TypeCode objects have a kind and
parameter list property.break

tk_null
tk_void
tk_short
tk_long
tk_longlong
tk_ushort
tk_ulong
tk_ulonglong
tk_float
tk_double
tk_longdouble
tk_boolean
tk_char
tk_wchar
tk_wstring
tk_octet

Page 177

tk_any
tk_TypeCode

tk_Principal
tk_objref
tk_struct
tk_union
tk_enum
tk_string
tk_sequence
tk_array

4.1.2—
General Methods

The operation equal() returns TRUE if the TypeCode is structurally equivalent to a
typecode, FALSE otherwise. Additionally, if the objects' kind is not CORBA::tk_union,
a BadKind exception will be raised.

CORBA definition boolean equal(in TypeCode tc);

C++ mapping CORBA::Boolean equal
 (CORBA::TypeCode_ptr tc) const;

The operation kind() returns the kind of the TypeCode as defined in CORBA::TCKind.

CORBA definition TCKind kind();

C++ mapping CORBA::TCKind kind()const;

The operation id() returns a RepositoryId for a type in the Interface Repository.

CORBA definition RepositoryID id()raises (BadKind);

C++ mapping CORBA::String_var id();

There are three forms of repository identifiers:

IDL format. The string starts with ''IDL:" and then uses the scoped name followed by a
major and minor version number to globally identify an object. We assume that objects
with the same major number are derived from one another. The identifier with the
larger minor number is assumed to be a subtype of the one with the smaller minor
number.

DCE UUID format. The string starts with "DCE:" and is followed by a UUID, a colon,
and then a minor version number.

LOCAL format. The string starts with "LOCAL:" and is followed by an arbitrary
string. This format is for use with a single repository that does not communicate with

ORBs outside its naming domain.break

Page 178

The operation name() returns the unscoped name of the type as specified in the IDL. This is
only valid for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
tk_except.

CORBA definition Identifier name()raises(BadKind);

C++ mapping const char *name()const;

4.1.3—
Methods for Structured Types

The operation member_count() returns the number of members in the type description. It is
only for the following TypeCode kinds: tk_struct, tk_union, tk_enum, and
tk_except.

CORBA definition unsigned long member_count()raises(BadKind);

C++ mapping CORBA::ULong member_count()const;
Throws system exception BadKind()

The operation member_name() returns the name of the indexed member. The index is
zero-based. It is only valid for the following TypeCode kinds: tk_struct, tk_union,
tk_enum, and t_except.

CORBA definition Identifier member_name(in unsigned long index)
 Raises(BadKind, Bounds);

C++ mapping const char member_name CORBA::ULong index) const;
 Throws system exception BadKind and Bounds

The operation member_type() returns the type of the indexed member only valid for the
following Typecode kinds: tk_union, tk_except.

CORBA definition TypeCode member_type(in unsigned long index)
 Raises(BadKind);

C++ mapping CORBA_TypeCode_ptr::member_type(CORBA::ULong
 index) const;

4.1.4—
Methods for Unions

The operation member_label() returns the label of member index (of a case statement). It
is only valid for the tk_union TypeCode kind.break

CORBA definition any member_label(in unsigned long index)
 Raises(BadKind, Bounds);

C++ mapping CORBA::Any_ptr CORBA_TypeCode::member_label(
 CORBA::ULong index) const;
Throws system exceptions BadKind and Bounds

Page 179

The operation discriminator_type() returns the type of the union discriminator (only
valid for tk_union).

CORBA definition TypeCode discriminator_type()raises(BadKind);

C++ mapping CORBA::TypeCode_ptr
 CORBA_TypeCode::discriminator_type()
 Throws system exception BadKind

The operation default_index() returns the default index of the union (only valid for
tk_union).

CORBA definition long default_index()raises(BadKind);

C++ mapping CORBA::Long default_index()const;
 Throws system exception BadKind

4.1.5—
Methods for Template Types

The operation length() returns the number of elements contained by the type; it returns zero
for unbounded strings and sequences. It is only valid for the following TypeCode kinds:
tk_string, tk_sequence, tk_array.

CORBA definition unsigned long length()raises(BadKind);

C++ mapping CORBA::Ulong length()const;
 Throws system exception BadKind

The operation content_type() returns the base type of the template types
(tk_sequence, tk_array) or the aliased type (tk_alias).

CORBA definition TypeCode content_type()raises(BadKind);

C++ mapping CORBA::TypeCode_ptr context_type() const;
 Throws system exception BadKind

4.2—
Creating TypeCodes

TypeCodes are created using operations in the CORBA::ORB interface. We will provide the
method signatures in this section. All the TypeCode creation methods follow a similar pattern.
The result of the method is the newly created TypeCode object. These methods must be
recursively applied for TypeCodes of recursive types.

4.2.1—
Structured and Flat Types

The methods to create TypeCodes for structured and flat types, that is, structs, unions, enums,
alias, exception, and interface, have the same firstcontinue

Page 180

two parameters. The first parameter is a Repository Identifier specifying the type in IDL. The
second parameter is the unscoped type name of the type. Further parameters determine specific
components depending on the kind of TypeCode. This will be explained below.

The method create_struct_tc() creates a TypeCode describing an IDL structure. The
parameter members determine an array of structures defining the members of the type.

static CORBA::TypeCode_ptr create_struct_tc(
 const char *repository_id,
 const char *type_name,
 const CORBA::StructMemberSeq& members);

The method create_union_tc() creates a TypeCode describing an IDL union. The
parameter discriminator_type determines the type of the discriminator, for example,
the type used in the switch statement. The parameter members determine an array of structures
defining the members of the type.

static CORBA::TypeCode_ptr create_union_tc(
 const char *repository_id,
 const char *type_name,
 CORBA::TypeCode_ptr discriminator_type,
 const CORBA::UnionMemberSeq& members);

The method create_enum_tc() creates a TypeCode describing an IDL enum. The

parameter members determine an array of strings defining the members of the type.

static CORBA::TypeCode_ptr create_enum_tc(
 const char *repository_id,
 const char *type_name,
 const CORBA::EnumMemberSeq& members);

The method create_alias_tc() creates a TypeCode describing an IDL typedef alias.
The parameter original_type determines the aliased type.

static CORBA::TypeCode_ptr create_alias_tc(
 const char *repository_id,
 const char *type_name,
 CORBA::TypeCode_ptr original_type);

The method create_exception_tc() creates a TypeCode describing an IDL exception.
The parameter members determine an array of structures defining the members of the
type.break

Page 181

static CORBA::TypeCode_ptr create_exception_tc(
 const char *repository_id,
 const char *type_name,
 const CORBA::StructMemberSeq& members);

The method create_interface_tc() creates a TypeCode describing a CORBA
interface.

static CORBA::TypeCode_ptr create_interface_tc(
 const char *repository_id,
 const char *type_name);

4.2.2—
Template Types

The methods to create TypeCodes for template types, that is, strings, sequences, and arrays,
have the same first parameter, length. These parameters specify the length of bounded types. A
zero value determines an unbounded type.

The method create_string_tc() creates a TypeCode describing an IDL string.

static CORBA::TypeCode_ptr create_string_tc(
 CORBA::ULong bound);

The method create_sequence_tc() creates a TypeCode describing an IDL sequence.
The parameter element_type determines the type of the elements contained by the
sequence.

static CORBA::TypeCode_ptr create_sequence_tc(
 CORBA::ULong bound,
 CORBA::TypeCode_ptr element_type);

The method create_recursive_sequence_tc() creates a TypeCode describing an
IDL sequence. The parameter offset determines how many levels up in the type hierarchy the
TypeCode's definition can be found.

static CORBA::TypeCode_ptr create_recursive_sequence_tc(
 CORBA::ULong bound,
 CORBA::ULong offset);

The method create_array_tc() creates a TypeCode describing an IDL array. The
parameter element_type determines the type of the elements contained in the array.break

static CORBA::TypeCode_ptr create_array_tc(
 CORBA::ULong length,
 CORBA::TypeCode_ptr element_type);

Page 182

5—
Dynamic Invocation Interface

The DII enables clients to invoke operations on objects without compiletime knowledge of
their IDL type, that is, without the stub code generated by the IDL compiler. A client creates a
request, which is the dynamic equivalent of an operation. A request contains an object
reference, an operation name, type information, and the values of the arguments which are
supplied by the client. Eventually a request can be invoked that has the same semantics as
invoking the operation using stub code.

In this section we will explain common data structures, the request interface, and the NVList
interface. The use of the DII is explained by an example in Chapter 7.

5.1—
Common Data Structures

There are a number of common data structures to be used in the context of the DII and
elsewhere in the ORB. In this section we introduce NamedValue and NamedValueList
and their respective mapping to C++.

Named values usually describe results and parameters of operations. A named value list is
used to describe a parameter list of an operation.

5.1.1—
Named Values

A named value is specified in PIDL as

pseudo interface NamedValue{
 readonly attribute Identifier name;
 readonly attribute any argument;
 readonly attribute Flags flags;
};

where name determines the name of the parameter. The argument carries the value of the
parameter encapsulated in an Any. Note that the argument not only carries the value but also
the type (in the form of a TypeCode) of a value. The len parameter determines the length of
the value (argument) in bytes. The arg_modes can have the value CORBA::ARG_IN,
CORBA::ARG_INOUT, or CORBA::ARG_OUT to determine if the parameter is in, inout,

or out.

The type NamedValue is mapped as follows:

CORBA definition CORBA::NamedValue

C++ mapping CORBA::NamedValue

Its members are mapped to the following methods:continue

Page 183

C++ mapping
C++ mapping
C++ mapping

const char *name() const;
CORBA::Any *value() const;
CORBA::Flags flags() const;

Note that objects implementing the NameValue interface cannot be created directly. Instead,
they must be obtained via the NVList interface as shown below.

5.2—
Creating an NVList

An NVList can be created by using the operation create_list() provided on the ORB
pseudo-interface.

CORBA definition Status create_list(in long count,
 out NVList new_list);

C++ mapping CORBA::Status create_list(CORBA::Long count,
 CORBA::NVList_ptr& nvlist);

The operation create_list() creates a pseudo-object of type NVList where count
determines the length of the list. The return type Status can be defined as either typedef
unsigned long Status (intended to describe a status code rather than raising an
exception) or typedef void Status.

5.3—
NVList Interface

The interface NVList is defined in pseudo-IDL in the CORBA module. It provides the
operations in the following subsections.

5.3.1—
Adding Elements to NVLists

There are three operations defined in pseudo-IDL to add arguments to an NVList.break

CORBA definition Status add(in Flags flags);

C++ mapping NamedValue_ptr add(CORBA::Flags flags);

CORBA definition Status add_item(in Identifier item_name, in Flags
flags);

C++ mapping NamedValue_ptr add_item(const char *,
 CORBA::Flags flags);

CORBA definition Status add_value(in Identifier item_name, in any
value in Flags flags);

Page 184

C++ mapping NamedValue_ptr add_value(
 const char *,
 const Any&,
 CORBA::Flags flags);

The flags parameter can take the values ARG_IN, ARG_OUT, or ARG_INOUT, which
correspond to the parameter tags in, out, and inout. The C++ language defines values for
these flags in the CORBA class.

The TypeCode and the value pointer parameters in the IDL are replaced by the Any in the
methods. There is also no need for the length parameter because the void * is replaced by
a reference to a C++ Any object, and hence is of known length.

5.3.2—
Freeing Lists

The CORBA definition provides two operations to handle garbage collection.

5.3.3—
List Management

The pseudo-CORBA definition provides the operation get_count() which returns the total
number of items in the list.

CORBA definition Status get_count(out long count);

C++ mapping CORBA::Long count() const;

A number of other useful operations are provided. The item() method returns the indexed
element from the list.

C++ mapping CORBA_NamedValue_ptr item(CORBA::Long index)

The remove() method removes the indexed element from the list. The exception
BAD_PARAM is thrown if the index is out of range.

C++ mapping CORBA_NamedValue_ptr remove(CORBA::Long index)

5.4—
DII Request

Request is a pseudo-CORBA definition that provides the mechanism to dynamically invoke
operations on objects. Requests are created by the ORB.

5.5—
Creating a Request

The pseudo-interface CORBA::ORB provides an operation to create Request objects. The
operation create_request() returns a new Request pseudo-object.break

Page 185

CORBA definition Status create_request(
in Context ctx,
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flags);

C++ mapping CORBA::Status _create_request(
 CORBA::Context_ptr ctx,
 const char *operation,
 CORBA::NVList_ptr arg_list,
 CORBA::NamedValue_ptr result,
 CORBA::Request_ptr& request,
 Flags req_flags);

The ctx parameter specifies the context of the request. The operation parameter determines
the name of the operation to be invoked. The arg_list parameter provides the arguments to
that operation. The result parameter provides a type expected as the result of the operation. The

req_flags and flagsparameters indicate the memory management required for the out
parameters. If they are set to CORBA::OUT_LIST_MEMORY, all memory associated with out
parameters can be freed by the ORB when freeing the arg_list, otherwise it has to be freed
explicitly. The newly created Request object is returned as the result of the method. There is an
additional operation to create partially initialized Request objects:

C++ mapping CORBA::Request_ptr _request(const char* operation)

All other parameters of the Request object must be set through the object's interface as
described below.

5.6—
Request Interface

The pseudo-interface Request is defined in the module CORBA. It is mapped to the C++
mapping CORBA::Request. The pseudo-interface defines the following operations. The
add_arg() operation incrementally adds arguments of type NamedValue to the Request's
parameter list (of type NVList).break

CORBA definition Status add_arg(
in Identifier name,
in TypeCode arg_type,

Page 186

in void *value,
in long len,
in Flags arg_flags
);

C++ mapping CORBA::Any& _addinarg(const char *name);

When the Request is correctly initialized it can be invoked by calling the invoke()
operation:

CORBA definition Status invoke(in Flags arg_flags);

C++ mapping CORBA::Status invoke();

If the operation returns successfully, the result is set in the result field of the Request and the
inout and out parameters have been modified in the Request's parameter list by the object

implementation.

The operation destroy() deletes the Request object.

CORBA definition void destroy();

C++ mapping void destroy();

The operation send() allows an asynchronous Request to be made. The semantics are that the
operation returns without waiting for the target object to invoke the operation. It is paired with
the operation get_response() which allows the caller to check for results at a later time.
The invoke_flags parameter may contain the flag CORBA::INV_NO_RESPONSE to
indicate that the operation is one way, or that the caller expects no results in any case.

The send() operation is mapped to a pair of methods. The method send_oneway() is
mapping for send() with the flag CORBA::INV_NO_RESPONSE. It does not block and
does not result in a response being sent from the object implementation to the client
application. The method send_deferred() is the mapping for send() without this flag
set. It will not block waiting for a response. The client application can retrieve the response
using the get_response() method.

CORBA definition Status send(in Flags invokeflags);

C++ mapping CORBA::Status send_oneway();
CORBA::Status send_deferred()

The operation result and any inout or out parameters won't be valid until the operation
get_response() has been invoked and has returned. The operation get_response()
receives the result as well as inout and out parameters from an operation invocation initiated
by the send() operation.break

CORBA definition Status get_response(in Flags arg_flags);

C++ mapping CORBA::Status get_response();

Page 187

The methods block until the operation invocation initiated by the Request is complete.

There is an additional method, poll_response(), which returns a boolean value
indicating whether or not the operation invocation is complete.

C++ mapping CORBA::Boolean poll_response();

It returns TRUE if the response to the asynchronous invocation is available, FALSE otherwise.
Note that get_response() must be called even if poll_response() returns TRUE,
since only get_response() reads in the result values.

The CORBA specification provides an operation for making multiple requests,
send_multiple_requests(), and a corresponding response operation
get_next_response(). These operations are defined in C syntax.

The operations are mapped to the following C++ methods provided in the CORBA::ORBclass.
The method send_multiple_requests_oneway() sends all the requests in its
argument array, and the method send_multiple_requests_deferred() sends all of
the requests provided to it and returns.

C++ mapping CORBA::Status send_multiple_requests_oneway(

 const CORBA::RequestSeq& seq);

The method get_next_response() blocks until a response to a deferred Request is
available. The method poll_next_response() informs the caller if any invocations have
completed.

C++ mapping CORBA::Status get_next_response(
 CORBA::Request*& request)

C++ mapping CORBA:Boolean poll_next_response();

6—
Dynamic Skeleton Interface

The DII provides a mechanism to invoke operations from a client without compile-time
knowledge about the interface. The DSI provides a similar mechanism for the other side; that
is, the ORB can invoke an object implementation without compile knowledge about the
interface, that is, without the skeleton. For an object implementation, a call via a
compiler-generated skeleton and the DSI are indistinguishable.

The idea behind the DSI is to invoke all object implementations via the same general
operation. This operation is provided by an interface of thecontinue

Page 188

pseudo-object, called ServerRequest, which is similar to the Request pseudoobject of the
DII. We illustrate the use of the DSI in Chapter 7.

6.1—

ServerRequest Interface

The pseudo-IDL specification of ServerRequest provides the following operations. The
operation op_name() returns the name of the operation that was invoked.

CORBA definition Identifier op_name();

C++ mapping const char* op_name() const;

The ctx() operation provides the invocation Context of the operation.

CORBA definition Context ctx();

C++ mapping CORBA::Context_ptr ctx() const;

The params() operation returns the list of parameters passed to the invocation.

CORBA definition void params(inout NVList params);

C++ mapping void params(CORBA::NVList_ptr params);

The result() operation returns the Any in which the result is to be placed.

CORBA definition Any result();

C++ mapping void result(CORBA::Any_ptr result)

7—
 Context Interface

A context object contains a list of properties, pairs of names, and values. CORBA restricts
values to type string. The intended role of context objects is similar to that of environment
variables in various operating systems, which can determine a user's or an application's
preferences. They could be defined for a system, for a user, or for an application. Context
objects can be manipulated by concatenating their property lists or by arranging them into
context trees. We demonstrate the use of contexts in Chapter 7.

Operations can be declared with a context by adding a context clause after the raises
expression. A context is made available to the server by an additional argument to the stub and
skeleton interfaces. When an operation with a context is invoked through either the stub or the
DII, the ORB will insert the values of the properties of the specified context.break

Page 189

7.1—
Creating a Context Object

Contexts are organized in trees. Each context has an internal reference to its parent context. The
root context is the global default context. The pseudointerface Context is mapped to C++
mappings and classes.

CORBA definition CORBA::Context

C++ mapping CORBA::Context

The ORB pseudo-interface provides the operation get_default_context() to obtain
the root context. The equivalent method is provided by the C++ class CORBA::ORB.

CORBA definition Status get_default_context(out Context ctx);

C++ mapping CORBA::Status
get_default_context(CORBA::Context_ptr&);

7.2—
Manipulating a Context Object

The pseudo-CORBA definition CORBA::Context provides operations to manipulate a
context object. The operation set_one_value() sets the value of the named property.

CORBA definition Status set_one_value(
 in Identifier proper_name,
 in string value
);

C++ mapping CORBA::Status set_one_value(const char *name,
const CORBA_Any&);

The value is supplied as an Any rather than a String. Note that NamedValue also has
values of type Any.

The operation set_values() sets the values of those properties that are named in the
values parameter.

CORBA definition Status set_values(in NVList values);

CORBA definition Status set_values(in NVList values);

C++ mapping CORBA::Status set_values (CORBA::NVList_ptr);

Note that the flags of the items of the NVList must be zero and that the TypeCode field of the
values of the items must be TC_String.

Values can be read with the operation get_values().break

CORBA definition Status get_values(
in Identifier start_scope,

Page 190

in Flags op_flags,
in Identifier prop_Name,
out NVList value
);

C++mapping CORBA::Status get_values(const char *start_scope,
 CORBA::Flags, const char *name,
 CORBA::NVList_ptr&);

The prop_name parameter specifies the name of the returned properties. A string can specify
multiple property names by using a naming convention with a wildcard "*" similar to the
notations used in various operating system shells. The parameter start_scope determines
the scope of this query within the context hierarchy. The naming of scopes is implementation
dependent. The op_flags parameter can have the value CORBA::CTX_RESTRICT_
SCOPE, which limits the scope to the specified start_scope. An empty flag uses the whole
context tree. The value parameter carries the named properties, including their values
contained in Anys.

The operation delete_values() deletes the named properties from the context object.

CORBA definition Status delete_values(in Identifier prop_name);

C++ mapping CORBA::Status delete_values(const char *name)

Finally, there is a method that returns the name of the context object.

C++ mapping const char *context_name() const;

7.3—
Manipulating the Context Object Tree

There are additional operations on the context object to manipulate the context tree. The
operation create_child() creates a new context object that is a child of the object on
which the operation is invoked.

CORBA definition Status create_child(
in Identifier ctx_name,
out Context child_ctx
);

C++ mapping CORBA::Status create_child(
const char *name,
 CORBA::Context_ptr&)

The methods mapping this operation assign a parent context to an existing context which is
obtained through the get_default_context() operation.break

Page 191

C++ mapping CORBA::Status
get_default_context(CORBA::Context_ptr&)

The operation delete() deletes the context object on which it is invoked. The del_flags
parameter can take the value CORBA::CTX_DELETE_DESCENTS. If this flag is specified it
causes the deletion of all descendent objects. If the flag is not specified and the object has
children, an exception is raised.

CORBA definition Status delete(in Flags del_flags);

C++ mapping void operator delete(void *p)

There is an additional C++ function that returns the parent context of the object. It returns null if
the context is the global default context.

C++ mapping CORBA::Context_ptr parent();

8—

Portable Object Adapter

This section describes the C++ mapping of the portable object adapter (POA). The POA has
recently been added to the CORBA specification and supercedes the BOA. Basically the POA
plays the same role as the BOA, being an object adapter, but in contrast to the BOA, the POA
is fully specified.

The POA-related interfaces are defined in a separate module from the CORBA module. It is
called the PortableServer module.

8.1—
POA Policies

The POA::create_POA operations are derived interfaces from CORBA::Policy. Policy
objects are created using factory operations on any preexisting POA. Policy objects are
specified when a POA is created. Policies may not be changed on an existing POA. Policies
are not inherited from the parent POA.

We will discuss the various policies that are defined for the POA. Each of the policies may
have several values which influence the mechanisms of the policy.

• Thread policy

• Lifespan policy

• Object ID uniqueness policy

• ID assignment policy

• Request processing policy

• Implicit activation policybreak

Page 192

8.1.1—
Thread Policy

The POA::create_thread_policy() operation creates ThreadPolicy objects.
These are passed to the POA::create_POA() operation to indicate which threading model
to use for the POA that was created.

CORBA definition ThreadPolicy create_thread_policy(in
ThreadPolicyValue
value);

C++ mapping ThreadPolicy_ptr create_thread_policy(
 ThreadPolicyValue value);

The values that can be passed to the value parameter are

ORB_CTRL_MODEL. Assigning requests for an ORB-controlled POA to threads is
the responsibility of the ORB.

SINGLE_THREAD_MODEL. Single-threaded POA requests are processed
sequentially.

The default value for the parameter is ORB_CTRL_MODEL.

8.1.2—
Lifespan Policy

The POA::create_lifespan_policy() operation creates LifespanPolicy
objects. These are passed to the POA::create_POA operation to specify the lifespan of the
objects implemented for the POA that was created.

CORBA definition LifespanPolicy create_lifespan_policy(in
LifespanPolicyValue value);

C++ mapping LifespanPolicy_ptr create_lifespan_policy(
 LifespanPolicyValue value);

The values that can be passed to the value parameter are

TRANSIENT. The POA-implemented objects cannot outlive the process that created
them. An OBJECT_NOT_EXIST exception will be raised for any object references
that use the deactivated POA.

PERSISTENT. The POA-implemented objects are allowed to outlive the process that
created them.

The default value for the parameter is TRANSIENT.

8.1.3—
Object ID Uniqueness Policy

The POA::createid_uniqueness_policy operation creates
IdUniquenessPolicy objects. These are passed to the POA::create_POA operation
to indicate whether the servants activated in the created POA must have unique object
identities.break

Page 193

CORBA definition IdUniquenessPolicy create_id_uniqueness_policy(in
IdUniquenessPolicy value);

C++ mapping IdUniquenessPolicy_ptr create_id_uniqueness_policy
 (IdUniquenessPolicyValue value);

The values that can be passed to the value parameter are

UNIQUE_ID. Servants activated with that POA support exactly one object ID.

MULTIPLE_ID. Servants activated with that POA may support one or more object
IDs.

The default value for the parameter is UNIQUE_ID.

8.1.4—
ID Assignment Policy

The POA::create_id_assignment_policy operation creates
IdAssignmentPolicy objects. These are passed to the POA::create_POA operation
to indicate whether object IDs in the created POA are generated by the application or by the
ORB.

CORBA definition IdAssignmentPolicy create_id_assignment_policy(in
IdAssignmentPolicy value);

C++ mapping IdAssignmentPolicy_ptr create_id_assignment_policy
 (IdAssignmentPolicyValue value);

The values that can be passed to the value parameter are

USER_ID. The application can only assign object IDs to the created POA.

SYSTEM_ID. The POA can only assign object IDs to the created POA. If the POA
also has the PERSISTENT policy, assigned object IDs must be unique across all
instantiations of the same POA.

The default value for the parameter is SYSTEM_ID.

8.1.5—
Servant Retention Policy

The POA::create_servant_retention_policy operation creates
ServantRetentionPolicy objects. These are passed to the POA::create_POA()
operation to indicate whether the created POA retains active servants in an active object
map.break

CORBA definition ServantRetentionPolicy create_servant_retention_policy
 (in ServantRetentionPolicy value);

C++ mapping ServantRetentionPolicy_ptr
 create_servant_retention_policy
 (ServantRetentionPolicyValue value);

Page 194

The values that can be passed to the value parameter are

RETAIN. Active servants will be retained by the POA in its active object map.

NON_RETAIN. Servants are not retained by the POA.

The default value for the parameter is RETAIN.

8.1.6—
Request Processing Policy

The POA::create_request_processing_policy() operation creates
RequestProcessingPolicy objects. These are passed to the POA::create_POA()
operation to indicate how requests are processed by the created POA.

CORBA definition RequestProcessingPolicy create_id_assignment_policy
 (in RequestProcessingPolicy value);

C++ mapping RequestProcessingPolicy_ptr request_processing
_policy
 (RequestProcessingPolicyValue value);

The values that can be passed to the value parameter are

USE_ACTIVE_OBJECT_MAP_ONLY. The RETAIN policy is also required for
this parameter. If the object ID is not found in the active object map, an
OBJECT_NOT_EXIST exception is returned to the client. The POA does no automatic
object activation. The server must activate all objects served by the POA explicitly.

USE_DEFAULT_SERVANT. With the RETAIN policy, there is a default servant
defined for all requests involving unknown objects. The POA first tries to find a
servant in the active object map for a given object. If it does not find such a servant, it
uses the default servant. With the NON_RETAIN policy, the request is dispatched to
the default servant, if the default servant was registered with the POA. An
OBJ_ADAPTER exception is returned to the client since no default servant has been
registered. The MULTIPLE_ID policy is also required.

USE_SERVANT_MANAGER. This value, along with the RETAIN policy, will make
the object try to determine the servant by means of invoking the incarnate()
method in the ServantManager, if the POA doesn't find a servant in the active
object map. With the NON_RETAIN policy, one servant is used per method call. The
POA does not try to find a servant in the active object map because the active object
map doesn't exist. In every request, thecontinue

Page 195

POA will invoke the appropriate operation on the default servant registered with the
POA. If no default servant is available, the POA will raise the OBJECT_ADAPTER
system exception.

The default value for the parameter is USE_ACTIVE_MAP_ONLY.

8.1.7—
Implicit Activation Policy

The POA::create_implicit_activation_policy() operation creates
ImplicitActivationPolicy objects. These are passed to the
POA::create_POA() operation to indicate whether implicit activation of servants is
supported in the created POA.

CORBA definition ImplicitActivationPolicy create_implicit_activation_policy
 (in ImplicitActivationPolicy value);

C++ mapping ImplicitActivationPolicy_ptr
 create_implicit_activation_policy
 (ImplicitActivationPolicyValue value);

The values that can be passed to the value parameter are

IMPLICIT_ACTIVATION. Implicit activation of servants is supported by the POA.
This also requires the SYSTEM_ID and RETAIN policies.

NO_IMPLICIT_ACTIVATION. Implicit activation of servants is not supported by
the POA.

The default value for the parameter is NO_IMPLICIT_ACTIVATION.

8.2—
POAManager Interface

Each POA object has an associated POAManager object. There are four methods within the
POAManager object construct. These operations correspond directly to four of the possible
processing states: active, inactive, holding, and discarding.

8.2.1—
activate()

The activate() operation changes the state of the POA manager to an active state. The
operation will raise an Adapterlnactive exception if activate() is issued while the
POA manager is in the inactive state. The POAs can process requests while in the active
state.break

CORBA definition void activate()
raises (Adapterlnactive);

C++ mapping void activate();

C++ mapping void activate();

Page 196

8.2.2—
hold_requests()

The state of the POA manager is changed to holding when this operation is used. An
Adapterinactive exception is raised if hold_requests() is issued while the POA
manager is in the inactive state. POAs can queue incoming requests while in the holding state.
Requests will continue to be queued while in the holding state for any requests that have been
queued and have not started executing.

The operation returns immediately after changing the state for a FALSE value of the
wait_for_completion parameter. For a TRUE value of the parameter, the operation
does not return until either there are no actively executing requests in any of the POAs
associated with this manager or the state of the POA manager is changed to a state other than
holding.

CORBA definition void hold_requests(in boolean wait_for_completion)
raises (AdapterInactive);

C++ mapping void hold_requests(
 CORBA::Boolean wait_for_completion)

8.2.3—
discard_requests()

The state of the POA manager is changed to discarding when this operation is used. An
Adapterlnactive exception is raised while the POA manager is in the inactive state. The
POAs discard incoming requests when entering the discarding state. Also, any requests that
have been queued and are not executing are discarded. A TRANSIENT system exception is
raised to the client when a request is discarded.

The operation returns immediately after changing the state for a FALSE value of the
wait_for_completion parameter. For a TRUE value of the parameter, the operation
does not return until either there are no actively executing requests in any of the POAs
associated with this manager or the state of the POA manager is changed to a state other than
discarding.

CORBA definition void discard_requests(in boolean wait_forcompletion)
raises(Adapterlnactive);

C++ mapping void discard_requests(CORBA::Boolean
 wait_for_completion)

8.2.4—
deactivate()

The state of the POA manager is changed to inactive when this method is used. An
Adapterlnactive exception is raised if the deactivate() method is issued while the
POA manager is in the inactive state. The associated POAscontinue

Page 197

reject requests that have not begun to be executed, as well as any new requests upon entering
the inactive state.

If the etherealize_objects parameter is TRUE, the POA manager will cause all
associated POAs that have the RETAIN and USE_SERVANT_MANAGER policies to perform
the etherealize() operation on the associated servant manager for all active objects. If
the etherealize_objects parameter is FALSE, the etherealize() method is not
called. This is so that developers can be provided with a means to shut down POAs in some
unrecoverable error situation or in a crisis.

The method will return immediately after changing the state, if the wait_for_operation
parameter is FALSE. In the case of a TRUE value for the wait_for_completion
parameter, the method will not return until there are no actively executing requests in any of the
POAs associated with this POA manager. In addition, if the etherealize_objects
parameter is TRUE, then all invocations of etherealize() have completed for POAs
having the RETAIN and USE_SERVANT_MANAGER policies.

CORBA definition void deactivate(in boolean etherealize_objects,
 in boolean wait_for_completion)
 raises(AdapterInactive);

C++ mapping void deactivate(
 CORBA::Boolean etherealize_objects,
 CORBA::Boolean wait_for_completion)

8.3—
AdapterActivator Interface

Adapter activators are associated with POAs. The ability to create child POAs on demand is
the domain of the adapter activator. Note that an application server that creates all its needed
POAs at the beginning of execution does not need to use or provide an adapter activator. We
only need the adapter activators in the case of POAs that need to be created during request
processing. An AdapterActivator object must be local to the process containing the POA
objects it is registered with.

8.3.1—
unknown_adapter()

When the ORB receives a request for an object reference that identifies a target POA that does

not exist, then this operation is invoked. For each POA that must be created in order for the
target POA to exist, the ORB must invoke this operation. The method is invoked in the adapter
activator associated with the POA that is the parent of the POA that needs to be
created.continue

Page 198

The parent parameter represents the parent POA that is passed. The name parameter represents
the name of the POA to be created.

When the method returns TRUE, the ORB will process the request. If the method returns
FALSE, the ORB will process the request and it will return OBJECT_NOT_EXIST to the
client. If multiple POAs need to be created, the ORB will invoke unknown_adapter once
for each POA that needs to be created. The OBJECT_NOT_EXIST exception will be raised if
the parent of a nonexistent POA does not have an associated adapter activator. The ORB will
report an OBJ_ADAPTER exception if the method raises a system exception.

CORBA definition boolean unknown_adapter(in POA parent,
 in string name);

C++mapping CORBA::Boolean unknown_adapter(
 PortableServer::POAptr parent,
 const char *name);

8.4—
ServantActivator Interface

Servant managers are associated with POAs. When the POA has the RETAIN policy, it uses
servant managers that are ServantActivators. There are a couple of methods that help in
the management of this concept.

8.4.1—
incarnate()

Whenever the POA receives a request for an object that is not currently active, this operation is
invoked by the POA. We are assuming that the POA has the USE_SERVANT_MANAGER and
RETAIN policies.

The oid parameter contains the object ID value associated with the incoming request. The
adapter parameter is an object reference for the POA in which the object is being activated.

If the incarnate() operation returns a servant that is already active for a different object
ID and if the POA also has the UNIQUE_ID policy, the incarnate() has violated the POA
policy and is considered to be in error. The POA will raise an OBJ_ADAPTER system
exception for the request.break

CORBA definition Servant incarnate(in ObjectId oid,
 in POA adapter)
raises(ForwardRequest);

raises(ForwardRequest);

C++ mapping PortableServer::Servant_ptr incarnate(
 const ObjectId& oid,
 POA_ptr adapter);

Page 199

8.4.2—
etherealize()

Whenever a servant for an object is deactivated, this operation is invoked. The POA must have
the USE_SERVANT_MANAGER and RETAIN policies. An active servant may be deactivated
by the servant manager via etherealize(), even if it was not incarnated by the servant
manager.

The oid parameter contains the object ID value of the object being deactivated. The adapter
parameter is an object reference for the POA in whose scope the object was active. The serv
parameter contains a reference to the servant that is associated with the object being
deactivated. The serv parameter has a value of TRUE if the denoted servant is associated
with other active objects in the POAs active map at the time that etherealize() is called,
otherwise it is FALSE. If the cleanup_in_progress parameter is TRUE, the reason for
the etherealize() operation is that either the deactivate or destroy operation was called
with an etherealize_objects parameter of TRUE. For a FALSE parameter, the
etherealize() operation is called for other reasons.

CORBA definition void etherealize(in ObjectId oid,
 in POA adapter,
 in Servant serv,
 in boolean cleanup_in_progress,
 in boolean remaining_activations);

C++ mapping void etherealize (const ObjectId& oid,
 POA_ptr adapter,
 Servant_ptr serv,
 CORBA::Boolean cleanup_in_progress,
 CORBA::Boolean remaining_activations);

8.5—
ServantLocator Interface

When the POA has the NON_RETAIN policy, it uses servant managers that are
ServantLocators.

8.5.1—
preinvoke()

This method is invoked by the POA whenever the POA receives a request for an object that is
not currently active, assuming the POA has the USE_SERVANT_MANAGER and
NON_RETAIN policies. The oid parameter contains the object ID value associated with the
incoming request. The adapter parameter is an object reference for the POA in which the
object is being activated. The Cookie parameter is a type that is opaque to the POA which
can be set bycontinue

Page 200

the servant manager for use later by the postinvoke method. The operation is the name of
the operation that will be called by the POA when the servant is returned.

CORBA definition Servant preinvoke(in ObjectID oid,
 in POA adapter,
 in CORBA::Identifier operation,
 out Cookie the_cookie)
raises(ForwardRequest);

C++ mapping PortableServer::Servant_ptr preinvoke(
 ObjectId& oid,
 POA_ptr adapter,
 CORBA::Identifier_ptr operation,
 Cookie ptr& the_cookie);

8.5.2—
postinvoke()

This method is invoked whenever a servant completes a request, assuming the POA has the
USE_SERVANT_MANAGER and NON_RETAIN policies. The oid parameter contains the
object ID value associated with the incoming request. The adapter parameter is an object
reference for the POA in which the object is being activated. The Cookie parameter is a type
that is opaque to the POA which can be set by the servant manager for use later by the
postinvoke method. The operation is the name of the operation that will be called by
the POA when the servant is returned. The in_servant parameter contains a reference to
the servant that is associated with the object. Please note that destroying a servant that is known
to the POA can lead to undefined results.break

CORBA definition Servant postinvoke(in ObjectId oid,
 in POA adapter,
 in CORBA::Identifier operation,
 in Cookie the_cookie,
 in Servant the_servant)
raises(ForwardRequest);

raises(ForwardRequest);

C++ mapping PortableServer::Servant_ptr preinvoke(
 ObjectId& oid,
 POA_ptr adapter,
 CORBA::Identifier_ptr operation,
 Cookie_ptr the_cookie,
 Servant_ptr the_servant);

Page 201

8.6—
POA Interface

A POA object manages the implementation of a collection of objects. There is support for a
namespace for the objects that are identified by object IDs. In addition, a POA also provides a
namespace for POAs. A POA is created as a child of an existing POA, which forms a hierarchy
starting with the root POA.

8.6.1—
create_POA()

This method creates a new POA as a child of the target POA. The adapter _name
parameter identifies the new POA with respect to other POAs with the same parent POA. A
new POAManager object is created and associated with the new POA if the a_POAManager
parameter is null. Otherwise the specified POAManager object is associated with the new
POA. The POAManager object can be obtained using the attribute name the_POAManager.
The policies parameter indicates which specified policy objects are associated with the
POA. It is used to control the POA behavior. Policies are not inherited from the parent POA.

The method will raise the AdapterAlreadyExists exception if the target POA already
has a child POA with the specified name. An InvalidPolicy exception is raised if
conflicting policy objects are specified, or if any of the specified policy objects require prior
administrative action that has not been performed. The exception contains the index in the
policies parameter value of the first offending policy object.

CORBA definition POA create_POA(in string adapter_name,
 in POAManager a_POAManager,
 in CORBA::PolicyList policies)
 raises(AdapterAlreadyExists, InvalidPolicy);

C++ mapping PortableServer::POA_ptr create_POA(
 const char *adapter_name,
 POAManager_ptr a_POAManager,
 CORBA::PolicyList_ptr policies);

8.6.2—

find_POA()

This method will return the child POA if the target POA is the parent of a child POA with the
specified name. If the value of the activate_it parameter is TRUE and if a child POA
with the specified name does not exist, then the target POA's adapter activator is invoked, if it
exists. If it successfully activates the child POA, then that child POA is returned. An
AdapterNonExistent exception is raised otherwise.break

Page 202

CORBA definition POA find_POA(in string adapter_name,
in boolean activate_it);
raises(AdapterNonExistent)

C++mapping PortableServer::POA_ptr find_POA (
 const char *adapter_name,
 CORBA::Boolean activate_it);

8.6.3—
destroy()

This method destroys the POA and all descendant POAs. The destroyed POA may be
re-created later in the same process. When a POA is destroyed, any requests that have started
execution continue to completion. Any requests that have not started execution are processed as
if they were newly arrived, that is, the POA will attempt to cause re-creation of the POA by
invoking one or more adapter activators.

The parameters to this method have boolean values. If the etherealize_objects
parameters is TRUE, the POA has the RETAIN policy, and a servant manager is registered
with the POA, then the etherealize operation on the servant manager will be called for
each active object in the active object map. If an etherealize() method attempts to invoke
the operations on a destroyed POA, then it will receive an OBJECT_NOT_EXIST exception.

If the wait_for_completion parameter is TRUE, the destroy() operation will return
only after all requests in process have completed and all invocations of etherealize have
completed. Otherwise the destroy() operation returns after destroying the POAs.

CORBA definition void destroy(in boolean etherealize_objects,
 in boolean wait_for_completion);

C++ mapping void destroy(CORBA::Boolean etherealize_objects,
 CORBA::Boolean wait_for_completion);

8.6.4—
get_servant_manager()

The USE_SERVANT_MANAGER policy is required for this method. Otherwise a
WrongPolicy exception is raised. This method returns the servant manager associated with
the POA. If no servant manager has been associated with the POA, it returns a null reference. It
is system dependent whether the root POA initially has a servant manager; the application is
free to assign its own servant manager to the root POA.break

CORBA definition ServantManager get_servant_manager()
 raises (WrongPolicy);

C++ mapping ServantManager_ptr get_servant_manager();

Page 203

8.6.5—
set_servant_manager()

This method sets the default servant manager associated with the POA. The
USE_SERVANT_MANAGER policy is required for this method. If not present, the
WrongPolicy exception is raised.

CORBA definition void set_servant_manager(in ServantManager imgr)
 raises(WrongPolicy);

C++mapping (void set_servant_manager(ServantManager_ptr imgr);

8.6.6—
get servant()

This method returns the default servant associated with the POA. A NoServant exception is
raised if no servant has been associated with the POA. The USE_DEFAULT_SERVANT
policy is required for this method. If not present, the WrongPolicy exception is raised.

CORBA definition Servant get_servant()
 raises(NoServant, WrongPolicy);

C++mapping Servant_ptr get_servant();

8.6.7—
set_servant()

The specified servant (with the POA as the default servant) is registered with this method. This
method will be used for all requests for which no servant is found in the active object map. The
USE_DEFAULT_SERVANT policy is required for this method. If not present, the

WrongPolicy exception is raised.

CORBA definition void set_servant(in Servant p_servant)
 raises(WrongPolicy);

C++mapping void set_servant(Servant_ptr p_servant);

8.6.8—
activate_object()

This method generates an object ID and enters the object ID and the specified servant in the
active object map. The object ID is returned. The SYSTEM_ID and RETAIN policies are
required for this method, otherwise a WrongPolicy exception is raised. Also, a
ServantAlreadyActiveexception is raised if the POA has a UNIQUE_ID policy and the
specified servant is already in the active object map.break

CORBA definition Objectid activate_object(in Servant p_servant)
 raises (ServantAlreadyActive, WrongPolicy);

C++ mapping ObjectId* activate_object(
 Servant_ptr servant);

Page 204

8.6.9—
activate_object_with_id()

This method enters an association between the specified object ID and the specified servant in
the active object map. However, an ObjectAlreadyActive exception is raised if the
CORBA object denoted by the object ID value is already active in this POA. A
ServantAlreadyActive exception is raised if the POA has the UNIQUE_ID policy and
the servant is already in the active object map. A WrongPolicy exception is raised if the
RETAIN policy is not present. In addition, a BAD_PARAM system exception is raised if the
POA has the SYSTEM_ID policy and it detects that the object ID value was not generated by
the system or for this POA.

CORBA definition void activate_object_with_id(in ObjectId oid,
 in Servant p_servant)
 raises (ObjectAlreadyActive, ServantAlreadyActive,
 WrongPolicy);

C++ mapping void activate_object_with_id(ObjectId_ptr oid,
 Servant_ptr p_servant);

8.6.10—
deactivate_object()

The removal from the active object map of the association of the object ID map specified by
the oid parameter and its servant is performed by this method. An ObjectNotActive
exception is raised if there is no active object associated with the specified object ID. The
method ServantLocator::etherealize will be invoked with the oid and the servant
if a servant manager is associated with the POA.

CORBA definition void deactivate_object(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);

C++ mapping void deactivate_object(ObjectIdptr oid);

8.6.11—
create_reference()

An object reference that encapsulates a POA-generated object ID value and the specified
Interface Repository ID is created by this method. This method does not cause an activation to
take place. The resulting reference may be passed to clients. This means that subsequent
requests on those references will cause the appropriate servant manager to be invoked, if one
is available. The generated object ID value may be obtained by invoking
POA::reference_to_id with the created reference. A WrongPolicy exception is
raised if the method does not use the SYSTEM_ID policy.break

CORBA definition Object create_reference(in CORBA::RepositoryID intf)
 raises(WrongPolicy);

Page 205

C++ mapping Object_ptr create_reference(CORBA::RepositoryId
_ptr intf);

8.6.12—
create_reference_with_id()

An object reference that encapsulates a POA-generated object ID value and the specified
Interface Repository ID is created by this method. An activation does not take place with this
method. The resulting reference may be passed to clients, so that subsequent requests to those
references will cause the object to be activated if necessary, or the default servant used,
depending on the applicable policies. A BAD_PARAM system exception is raised if the POA
has the SYSTEM_IS policy and detects that the object ID value was not generated but the

system or for this POA.

CORBA definition Object create_reference_with_id(in ObjectId oid,
 In CORBA::RepositoryId intf);

C++ mapping Object_ptr create_reference_with_id(
 CORBA::Object_ptr oid,
 CORBA::Repositoryld_ptr intf);

8.6.13—
servant_to_id()

With the UNIQUE_ID policy, and the specified servant is active, the object ID that is
associated with that servant is returned. With the IMPLICIT_ACTIVATION policy, and
either the POA has the MULTIPLE_ID policy or the specified servant is not active, the
servant is activated using a POA-generated object ID and the interface ID associated with the
servant, and a corresponding object ID is returned. A ServantNotActive exception is
raised otherwise. Therefore this method requires the use of the RETAIN and either
UNIQUE_ID or IMPLICIT_ ACTIVATION policies, otherwise a WrongPolicy
exception is raised.

CORBA definition Object servant_to_id(in Servant p_servant)
 raises(ServantNotActive, WrongPolicy);

C++ mapping Objectptr servant_to_id(Servant_ptr p_servant);

8.6.14—
servant_to_reference()

With the UNIQUE_ID policy, and the specified servant is active, an object reference
encapsulating the information used to activate the servant is returned. With the
IMPLICIT_ACTIVATION policy, and either the POA has the MULTIPLE_ID policy or the
specified servant is not active, the servant is activated using a POA generated object ID and the
interface ID associated with the servant, and a corresponding object reference is returned.
Acontinue

Page 206

ServantNotActive exception is raised otherwise. Therefore this method requires the use
of the RETAIN and either UNIQUE_ID or IMPLICIT_ACTIVATION policies, otherwise a
WrongPolicy exception is raised.

CORBA definition Object servant_to_reference(in Servant p_servant)
 raises(ServantNotActive, WrongPolicy);

 raises(ServantNotActive, WrongPolicy);

C++ mapping Object_ptr servant_to_reference(
 Servant_ptr p_servant);

8.6.15—
reference_to_servant()

This method returns the servant associated with that object in the active object map if the POA
has the RETAIN policy and the specified object is present in the active object map. Otherwise
this method returns the default servant if the POA has the USE_DEFAULT_SERVANT policy
and a default servant has been registered with the POA. The WrongAdapter exception is
raised if the object reference was not created by this POA. The WrongPolicy exception is
raised if either the RETAIN or USE_DEFAULT_SERVANT policy is not present.

CORBA definition Servant reference_to_servant(Object reference)
 raises(ObjectNotActive, WrongAdapter,
 WrongPolicy);

C++ mapping Servant_ptr reference_to_servant(
 CORBA::Object_ptr reference);

8.6.16—
reference_to_id()

The object ID value encapsulated by the specified reference is returned by this method. A
WrongAdapter exception is raised if the reference was not created by the POA on which the
operation is being performed. The object denoted by the reference does not have to be active
for this method to succeed. Currently, the WrongPolicy exception is declared to allow for
future extensions.

CORBA definition ObjectId reference_to_id(in Object reference)
 raises(WrongAdapter, WrongPolicy);

C++ mapping ObjectId_ptr reference_to_id(
 CORBA::Object_ptr reference);

8.6.17—
id_to_servant()

The active servant associated with the specified object ID value is returned by this method. An
ObjectNotActive exception is raised if the object ID value iscontinue

Page 207

not active in the POA. A WrongPolicy exception is raised if this method does not use the
RETAIN policy.

CORBA definition Servant id_to_servant(in ObjectId oid)
 raises(ObjectNotActive, WrongPolicy);

C++ mapping Servant_ptr id_to_servant(ObjectId_ptr oid);

8.6.18—
id_to_reference()

A reference encapsulating the information used to activate the object is returned by this method
if an object with the specified object ID value is currently active. An ObjectNotActive
exception is raised if the object ID value is not active in the POA. A WrongPolicy
exception is raised if this method does not use the RETAIN policy.

CORBA definition Object id_to_reference(in ObjectId oid)
 raises(ObjectNotActive, WrongPolicy);

C++ mapping Object_ptr id_to_reference(const ObjectId& oid);

8.7—
Current Operations

Derived from CORBA::Current, the PortableServer::Current interface provides
method implementations with access to the identity of the object on which the method was
invoked.

8.7.1—
get_POA()

A reference to the POA implementing the object in whose context is called is returned by this
operation. A NoContext exception is raised if get_POA() is called outside the context of
a POA-dispatched operation.

CORBA definition POA get_POA()
 raises (NoContext);

C++ mapping CORBA::Current::POA_ptr get_POA();

8.7.2—
get_object_id()

The object ID identifying the object whose context is called is returned by this operation. A

NoContext exception is raised if get_object_id() is called outside the context of a
POA-dispatched operation.break

CORBA definition Objectid get_object_id()
 raises (NoContext);

C++ mapping CORBA::Current::ObjectId_ptr get_object_id();

Page 209

Chapter 5—
Discovering Services

This chapter provides an overview of mechanisms for discovering CORBA objects. We
explain the two most important CORBA services for locating objects: the Naming Service
(Section 2), which finds objects by name, and the Trading Service (Section 3), which finds
objects by type and properties. However, there is still the question of how to find initial
references to instances of those services. In Section 1 we explain the operations on the ORB
pseudo-interface that can be used for bootstrapping.

In Section 4, Naming and Trading domains are introduced. This section discusses which object
instance is returned by the bootstrapping operations.

Finally, Section 5 explains how ORBs name and locate servers and objects by using
proprietary mechanisms. Although these mechanisms are not standardized, and hence not
portable or interoperable, they are quite popular due to their simplicity.

1—
Bootstrapping

CORBA solves the bootstrapping problem by providing a pair of operations on the ORB
pseudo-interface: list_initial_services()—list the names of initial services which
are available from the ORB; resolve_initial_references()—returns ancontinue

Page 210

initial object reference to a named service. For example, a naming context is returned when a
Naming Service reference is requested.

We have already introduced these operations in Chapter 2 and have explained their C++
mapping in Chapter 7. We show how to use these operations in the Naming Service example in
the following section.

These two operations only provide a bootstrapping mechanism for the services offered by a
particular ORB implementation because the mechanism for registering services with the ORB

is not defined by CORBA. However, the standard interface to the ORB ensures the portability
of application code.

These two operations do not provide full bootstrap support. The problem is that it is not clear
which object instance is returned when several are available. We discuss this problem in more
detail in Section 4 where we introduce the concept of domains as a solution.

An alternative way to bootstrap applications is to use proprietary mechanisms provided by
various ORB implementations. We have a closer look at some of the options in Section 5.

2—
The CORBA Naming Service

The Naming Service allows object implementations to be identified by name and is thus a
fundamental service for distributed object systems. This section is organized as follows:

• We give an overview and explain how to use the Naming Service (Section 2.1).

• We explain the interface specification in detail (Section 2.2).

• We provide an example (Section 2.3).

2.1—
Overview of the Naming Service

The Naming Service provides a mapping between a name and an object reference. Storing such
a mapping in the Naming Service is known as binding an object and removing this entry is
called unbinding. Obtaining an object reference bound to a name is known as resolving the
name.

Names can be hierarchically structured by using contexts. Contexts are similar to directories in
file systems and they can contain names as well as subcontexts.

The use of object references alone to identify objects has two problems. First, object
references are difficult for human users, as they are opaque datatypes, and second, their string
form is a long sequence of num-soft

Page 211

bers. When a service is restarted, its objects typically have new object references. However,
in most cases clients want to use the service repeatedly without needing to be aware that the
service has been restarted.

The Naming Service solves these problems by providing an extra layer of abstraction for the
identification of objects. It provides readable object identifiers for the human user—users can
assign names that look like structured file names—and a persistent identification
mechanism—objects can bind themselves under the same name regardless of their object
reference.

The typical use of the Naming Service involves object implementations binding to the Naming
Service when they come into existence and unbinding before they terminate. Clients resolve
names to objects, on which they subsequently invoke operations. Figure 5.1 illustrates this

typical usage scenario.

2.2—
Interface Specification

The central interface is called NamingContext and it contains operations to bind names to
object references and to create subcontexts. Names are sequences of NameComponents.
NamingContexts can resolve a name with a single component and return an object
reference. They resolve names with more than one component by resolving the first component
to a subcontext and passing the remainder of a name on to that subcontext for resolution.

2.2.1—
The Name Type

The CosNaming module provides type definitions used to identify objects by names: break

Figure 5.1
Typical use of the CORBA Naming Service.

Page 212

module CosNaming{

 typedef string Istring;

 struct NameComponent{
 Istring id;
 Istring kind;
 };

 typedef sequence <NameComponent> Name;

The type Istring is used to define the Name type for future compatibility with
internationalized strings. At the time of writing, this type is defined to be string. A
NameComponent has two fields: id contains the string that is actually matched when a name
is resolved; kind is available for application-specific purposes and may or may not be
interpreted by the Naming Service. We recommend that the kind field always be initialized to
the empty string.

The Name type is a sequence of component, or atomic, names and no syntax is given for the
textual representation of names. This allows application programs to use separators such as the
UNIX file system "/" character to separate components when printing names for users.

2.2.2—
Bindings

The Binding type provides information about the bindings in a context:

//module CosNaming

enum BindingType{nobject, ncontext};

struct Binding{
 Name binding_name;
 BindingType binding_type;
 };

 typedef sequence < Binding > BindingList;

The type CosNaming::Binding provides a name and a flag of type BindingType. The
value ncontext indicates that an object bound to a name is a NamingContext at which
further name resolution can take place. The value nobject means that the binding, even if to
a NamingContext, cannot be used for further resolution.

2.2.3—
Adding Names to a Context

There are two operations for binding an object to a name in a context and two for binding
another context to a name.break

Page 213

//module CosNaming

interface NamingContext{

//we elide the exceptions declared here

void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName);

The bind() and bind_context() operations associate a new name with an object. In the
case of bind_context() the object must be of type NamingContext. We will see how
to create new contexts below. If the name used has more than one component, the
NamingContext will expect that all but the last component refers to a nested context, and it
will make the binding in the context resolved by the first part of the name. For example,

consider Figure 5.2.

We use the ''/" character as a separator for NameComponents. In our example we invoke the
bind() operation on the NamingContext object we have called "Contextl" with the
parameters "Context2/Context5/MyName" and some object reference. This results in a new
atomic name, "MyName," being bound to the object in the "Context5" context (see Figure 5.3).
The BindingType of the resulting binding will be nobject.

If we invoked bind_context with the same parameters (although the object reference must
be to a NamingContext) then the same situation would result. However, the
BindingType will be ncontext, and the "Context5" context would then be able to resolve
names like "MyName/x/y/z" by passing the remainder, "x/y/z," to the new "MyName"
context.break

Figure 5.2
NamingContext structure—before binding .

Page 214

Figure 5.3
NamingContext structure—after binding.

The rebind() and rebind_context() operations work the same as bind() and
bind_context(), but rather than raising an exception if the name already exists, they
simply replace the existing object reference.

2.2.4—
Removing Names from a Context

The operation unbind() will remove a name and its associated object reference from a
context or one of its subcontexts.

void unbind(in Name n)

 raises(NotFound, CannotProceed, InvalidName);

2.2.5—
Name Resolution

The resolve() operation returns an object reference bound to a name supplied as its
argument.

Object resolve (in Name n)
 raises(NotFound, CannotProceed, InvalidName);

The resolve() operation behaves as follows:

It resolves the first component of the name, n, to an object reference.

If there are no remaining components then it returns this object reference to the caller.

Otherwise it narrows the object reference to a NamingContext and passes the remainder of
the name to its resolve() operation.

Implementations of the Naming Service will probably optimize this process so that the
narrow() and resolve() operations are not called repeatedly.continue

Page 215

However, the result will logically be the same as that produced by the algorithm above.

2.2.6—
Exceptions

Here are the exceptions omitted above:

//interface NamingContext

 enum NotFoundReason{missing_node, not_context, not_object};

 exception NotFound{
 NotFoundReason why;
 Name rest_of_name;
};

 exception CannotProceed{
 NamingContext cxt;
 Name rest_of_name;
};

exception InvalidName{};
exception AlreadyBound{};
exception NotEmpty{};

The NotFound exception indicates that the name does not identify a binding. It may be raised
by any operation that takes a name as an argument. The Naming Service specification does not
explain the meaning of the why member of this exception, but we make the following
interpretation: At some stage of tracing the leading name components down to the context in
which the final component is bound to a (possibly noncontext) object reference one of these
situations occurs:

• A NameComponent does not exist in the context expected (missing_node).

• A leading NameComponent is bound to an object with a binding type of nobject rather
than ncontext, or an ncontext binding is bound to an object of a type other than
NamingContext (not_context).

• The object reference bound to a NameComponent denotes a destroyed object
(not_object).

If this happens, the rest_of_name member returns the rest of the sequence from the
unresolvable name onward. This is not explicitly specified in the Naming Service.

The CannotProceed exception returns a NamingContext object reference and a part of
the original name. It indicates that the resolve() operation has given up, for example, for
security or efficiency reasons. However, the client may be able to continue at the returned
context. The rest_of_name membercontinue

Page 216

returns the part of the name that should be passed to the returned context ctx for resolution.

The InvalidName exception indicates that the name is syntactically invalid. For example, it
might contain a zero length NameComponent. The names acceptable to different Naming
Services may vary.

The AlreadyBound exception may be raised by bind operations. It informs the caller that a
name is already used and cannot be overridden without using a rebind operation.

NotEmpty is an exception raised by the destroy() operation defined below. Contexts that
still contain bindings cannot be destroyed.

2.2.7—
Context Creation

There are operations to create new contexts defined in the NamingContext interface.

//interface NamingContext

NamingContext new_context();
NamingContext bind_new_context(in Name n)
 raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

New NamingContexts may be created and later used alone or bound into other contexts
using bind_context(). They can also be created with a particular name and bound in a
single operation. new_context() produces an empty NamingContext that can be used
anywhere. bind_new_context() also creates a new context, but binds it into a subcontext
of the context on which the operation is invoked. It can raise the usual exceptions for an
operation that takes a name as an argument.

2.2.8—
Context Destruction

When a context is no longer used, and all the bindings it contained have been unbound, it can be

destroyed.

//interface NamingContext

void destroy()
 raises(NotEmpty);

The destroy() operation will delete a context as long as it contains no bindings. Be sure at
the same time to remove any bindings that may refer to this context.

2.2.9—
Browsing Contexts

A NamingContext supports browsing of its contents by use of the list() operation.break

Page 217

//interface BindingIterator; has been forward declared

//interface NamingContext

void list (in unsigned long how_many,
 out BindingList bl, out BindingIterator bi);

 };//end of interface NamingContext

The parameters of the list() operation allow the caller to specify how many bindings to
return in a BindingList sequence. The rest will be returned through an iterator object
(which are explained below) referred to by the bi parameter, which will be a nil object
reference if there are no further bindings.

2.2.10—
Binding Iterators

A BindingIterator object will be returned if the number of bindings in a context exceeds
the how_many argument value of the list() operation invoked on the context.

//module CosNaming

interface BindingIterator{
 boolean next_one(out Binding b);
 boolean next_n(in unsigned long how_many,
 out BindingList bl);
 void destroy();
 };
};//end of module CosNaming

If there are remaining bindings, the next_one() operation returns TRUE and places a
Binding in its out parameter. The Naming Service specification is ambiguous about whether
it should return FALSE if this is the last binding in the iterator or on the next call.

The next_n() operation returns a sequence of at most how_many bindings in the out
parameter bl. It also returns FALSE if there are no further bindings to be iterated over. It is
not specified whether the FALSE value should be returned with the last binding or on the next
call.

The destroy() operation allows the iterator to deallocate its resources and it will render
the object reference invalid. Iterators may sometimes be implemented so that they time out or
are deleted on demand for resource recovery.

2.2.11—
The Names Library

The Naming Service also defines some pseudo-IDL for a Names Library. This is a set of
operations intended to ease the creation and manipulation ofcontinue

Page 218

names. To our knowledge it has not been implemented in any Naming Service product, and so
we will omit details of this part of the specification.

Users typically type in strings to nominate objects. In our examples we use a C++ class library,
introduced in Section 2.3, which allows the use of strings in a convenient syntax to access the
Naming Service.

2.3—
Using the Naming Service from a C++ Client

This subsection contains some of the methods for an EasyNaming class that will be used in
subsequent chapters. This class allows applications to obtain a stringified object reference to a
NamingContext and then use string arguments with the "/" character as a name separator to
identify objects relative to that context.

First let's look at the declaration of the class, its private fields, and constructors. There are two
constructors, one of which obtains a root context via the ORB, the other which uses a
stringified object reference for boot-strapping.break

//EasyNaming.C
#include "EasyNaming.h"

//constructors
EasyNaming::EasyNaming(const CORBA::ORB_var& orb){
 //initialize Naming Service via ORB
 try{
 cout << "Initial Services: " << endl;
 CORBA_StringSequence_var services;
 services = orb->list_initial_services();
 if (services->length() == 0)
 cout << "No services available" << endl;
 for(int i = 0; i < services->length(); i++)
 cout << services[i] << endl;

 CORBA::Object_var obj =
 orb->resolve_initial_references("NameService");

 root_context = CosNaming::NamingContext::_narrow(obj);
 if (root_context == CosNaming::NamingContext::_nil()){
 cerr << "Returned IOR is not a Naming Context" << endl;
 cerr << "Giving up..." << endl;

 exit(1);
 }
 cout << "Its IOR is: " <<
 orb->object_to_string(root_context) << endl;
}
 catch(const CosNaming::NamingContext::InvalidName& inex){
 cerr << inex << endl;
}
 catch(const CORBA::SystemException& corba_exception){

Page 219

 cerr << corba_exception << endl;
 }
)

We first list all available initial services by calling list_initial_services(). This is
not needed to initialize the object, but we use the opportunity to demonstrate the use of the ORB
bootstrap operation. We then try to obtain a reference to a root context of the naming service by
calling resolve_initial_references() on the ORB. We obtain an object reference
of the type CORBA::Object which we narrow to a NamingContext. If the
root_context is nil, the obtained object is of the wrong type and we give up.

Alternatively, there is a constructor which initializes the EasyNaming object with a
stringified object reference for a root context. This constructor can be used for cross-ORB
bootstrapping.break

const CORBA::String_var& ior_string){
//Initialize Naming Service via stringified IOR
try{
 CORBA::Object_var obj = orb->string_to_object(ior_string);
 root_context = CosNaming::NamingContext::_narrow(obj);
 if (root_context == CosNaming::NamingContext::_nil()){
 cout << "Could not narrow down object to root_context" << endl;
 cout << "Narrowing down to Extended Naming" <<
 cout << "Context Factory" << endl;
 CosNaming::ExtendedNamingContextFactory_var
 ext_naming_factory =
 CosNaming::ExtendedNamingContextFactory::_narrow(obj);
 if (ext_naming_factory ==
 CosNaming::ExtendedNamingContextFactory::_nil()){
 cout << "Extended Naming Context Factory is NULL" << endl;
 cout << "Narrowing down to Naming Context Factory" << endl;
 CosNaming::NamingContextFactory_var naming_factory =
 CosNaming::NamingContextFactory::_narrow(obj);
 if (naming_factory ==
 CosNaming::NamingContextFactory::_nil()){
 cout << "Naming Context Factory is NULL" << endl;
 cout << "Giving up" << endl;
 exit (1);
 }
 else{
 //Creating a new root context
 cout << "Creating root context" << endl;
 root_context = naming_factory->create_context();
 }

 }
 else{
 cout << "Get root_context from Extended Naming Context"
 << "Factory" << endl;
 root_context = ext_naming_factory->root_context();
 }

Page 220

Both constructors will create an object with a properly initialized root_ context private
field. We can now look at the methods provided by the EasyNaming class.

A method called str2name() takes a UNIX file name string format (always starting with a
"/" character, as all names are relative to our root context) and produces a
CosNaming::Name, which is mapped to CosNaming ::NameComponent. The
method's signature is defined below, and the implementation of the class EasyNaming can be
found in the examples associated with this chapter.

CosNaming::Name_var EasyNaming::str2name(const
 CORBA::String_var& str){
}

The EasyNaming class provides methods equivalent to the operations on naming contexts,
but accepts string arguments. The bind_from_string() and
rebind_from_string() methods also allow the use of names that refer to nonexistent
contexts, and create subcontexts as necessary. This allows us to exercise the bind() or
rebind() operations, as well as resolve(), to check the existence of a subcontext and
bind_new_context() to create the subcontexts that don't already exist. This is how we
implement bind_from_string():break

CORBA::Object ptr obj){
CosNaming::Name_var name;
try{
 name = EasyNaming::str2name(str);
}
catch(const CosNaming::NamingContext::InvalidName& excep){
 cerr << "Caught Invalid name exception" << endl;
 cerr << "String was: " << str << endl;
 return;
}

CosNaming::NamingContext_var context = root_context;
CosNaming::Name _name;
_name.length(1);

try{
 root_context->bind(name, obj);
}
catch(const CosNaming::NamingContext::NotFound& not_found){
 //bind step by step

 //create and bind all nonexistent contexts in the path
 for(int i = 0; i < name->length() - 1; i++){
 _name[O] = name[i];
 try{

 //see if the other context exists
 context = CosNaming::NamingContext::_narrow(

Page 221

 context->resolve(_name));
 cout << "Resolved " << _name[0].id << endl;
 }
 catch(const CosNaming::NamingContext::NotFound& not_found){
 //if not then create a new context
 cout << "Creating " << _name[0].id << endl;
 context = context->bind_new_context(_name);
 }
 //let other exceptions propagate to the caller

First the str argument is converted to a Naming Service name and an attempt is made to bind
the obj argument using the bind() operation. If one of the contexts in the name path is not
found, the method bind_from_string() descends the context hierarchy, one
NameComponent at a time. If a component resolves correctly to a context then that context is
used to test the name of the next component. If the resolve() operation fails then the name
component is used to create a new subcontext. This continues until the final component, which
is then bound in the final subcontext to the object reference passed as an argument.

Similarly, we have implemented a more convenient method for resolving names. Below we
show the implementation of the method resolve_from_string(), which directly calls
the resolve operation on the root context after having converted the string name into a Naming
Service name.

CORBA::Object_var EasyNaming::resolve_from_string(
 const CORBA::String_var& str){
 return root_context->resolve(EasyNaming::str2name(str));
}

We have implemented other methods, matching the operations on naming contexts, which use
string names instead of Naming Service names. The complete implementation of
EasyNaming is shown in the set of examples associated with this chapter.

3—
Trading Services

The Trading Service (see Figure 5.4) has its basis in the ISO Open Distributed Processing
(ODP) standards. The trader work in this group had reached a Draft International Standard
(DIS) level within ISO when responses were due for OMG's Object Services RFP 5. The
submitters to the RFP were mostly people who had been working on the ODP standard, which
enabled the convergence of the Trading Standards from both groups. Even though ODP uses
OMG IDL as an interface specification language,continue

Page 222

Figure 5.4
Typical use of a CORBA Trading Service.

implementations of ODP standards may use any technology. However, the common underlying
semantics of the two efforts greatly enhances the prospects for future cross-platform
interoperability.

3.1—
Overview of Trading

Traders are repositories of object references that are described by an interface type and a set
of property values. Such a description of an interface is known as a service offer. Each service
offer has a service type, which is a combination of the interface type of the object being
advertised and a list of properties that a service offer of this service type should provide
values for.

An exporter is a service or some third party acting as an agent for the service which places a
service offer into a trader. That service offer can then be matched by the trader to some client's
criteria.

A client which queries a trader to discover a service is called an importer. An importer
provides the trader with a specification of a service type and a constraint expression over the
properties of offers of that type. The constraint expression describes the importer's
requirements.

A long-standing example of a trading scenario is that of printing services. Currently system
administrators configure new printers in a networkcontinue

Page 223

by providing a unique name for a new device and then notifying potential users by email, news,
or notice board. Then each user must remember the printer's name and type it into a dialog box
in an application. A better way to discover new printers is to allow applications or users to
provide their requirements to the application, which then sends the print job to the most

appropriate printer. This is achieved as follows:

We assume that new printers are provided with an implementation of a standard printing
interface, specified in IDL. For example

module Printing{
 interface Printer{
 typedef string filename;

 exception PrinterOffLine{};

 void print_file(in filename fn)
 raises(PrinterOffLine);

 short queue_length()
 raises(PrinterOffLine);
};
};

Then we define a service type that nominates the Printer interface and a number of property
names and types. For example, the printer's location, its language (ASCII, PostScript, HP Laser
Jet, etc.), its resolution in DPI, its color properties, its print queue length, and its name.

Each printer is then advertised by exporting a service offer to the trader. For convenience we
will refer to the example printers below by their ''name" property:break

Property Value

building "A Block"

floor 2

language postscript

resolution 150

color black

queue_len ——> [PrinterObjectRef]->queue_length()

name "12ps"

Page 224

Property Value

building "A Block"

floor 3

language postscript

resolution 300

color black

queue_len ——> [PrinterObjectRef]->queue_length()

name "monster"

Property Value

building "A Block"

floor 7

language postscript

resolution 150

color 256color

queue_len ——> [PrinterObjectRef]->queue_length()

name "rib"

Applications configure print requests based on user preferences, either from a user's
environment, a dialog box, or a text query. This results in a constraint expression that can be
passed to the trader in an import query. For example,

 building == "A Block" && floor <= 5 && language == postscript

This query would result in matching two printers ("12ps" and "monster"). The query can ask
for the resulting service offers to be ordered according to a preference expression. This
provides the matched service offers in order based on some minimal, maximal, or boolean
expression. For example, a preference to give us the highest resolution printers first would be
expressed as

 max resolution

The "queue_len" property is a dynamic property, which means that its value is not stored
but looked up each time a query is made. So we would probably have a default preference
criterion of "min queue_len". This would sort the printers which are returned so that we
print to the one that matches the constraint expression, and has the shortest queue.

Let's imagine that a new color printer is installed in Block A and that it is higher in resolution
than the "rib" printer. All users who want high resolution will have this maximized in their
preferences, and when they next require a color printer the new printer is automatically
selected when theircontinue

Page 225

application does an import. If, on the other hand, a new printer is installed on floor 1 of the
building, then people who used to walk upstairs to collect printouts will have their ordinary
black-and-white postscript print jobs directed to the new printer on their floor, without having
to change their environment, or even know the name of the printer. In this way they will be
informed of a new device as soon as they trade for a printer and the new one meets their
requirements.

Of course it is hard to set requirements and preferences when you don't know what is
available. Some applications that regularly use the Printer interface will have browsers built in
to allow users to see all available printers and their properties by querying the trader with a

simple constraint such as

building == "A Block"

3.1.1Service Types and Service Offers

Service types are templates from which service offers are created. They ensure that groups of
services that offer the same interface, and have the same nonfunctional considerations, are
grouped together. This allows efficient searching and matching of service offers in the trader.
Most importantly it allows exporters and importers to use the same terminology (property
names) to describe a common set of features so that expressions written in terms of those
properties will always be evaluated correctly.

3.1.2—
Export and Lookup of Service Offers

Any program may export a service offer to a trader if it has an object reference to some
application object and knowledge of the implementation behind the reference so that it can
describe the properties of that object. Often services will advertise themselves by exporting a
service offer.

Any client that is compiled using a set of IDL stubs for a particular interface may assign any
valid object reference to a variable at run time and execute operations on that object. As new
implementations of servers become available, a client may wish to select objects based on
some proximity, quality of service, or other characteristics. To do this, it formulates a
constraint expression in terms of the property names of a service type. This expression
determines which service offers of that type match the client's requirements.

A client may also ask a trader to sort the matching service offers based on some preference
expression that emphasizes the values of particular properties. The trader will return a sorted
list of matching service offers, and the client will then use the object reference extracted from
one of these.break

Page 226

3.1.3—
Trader Federation

Each trader contains a database of service offers which it searches when it receives an import
request. It may also store a number of links to other traders to which it can pass on queries to
reach a larger set of service offers. Links are named within a trader and consist of an object
reference to the Lookup interface of another trader, as well as some rules to determine when to
use the link to satisfy an importer's request. Traders which are linked in this manner are said to
be interworking, or federated.

Federated queries are import requests passed from one trader via its links to other traders, and
perhaps by them to other traders and so forth. These queries can be constrained by policies
passed in by the initial importer, by the policies of each trader, and by the rules stored in the
links themselves.

3.2—

Overview of the Trading Service Interfaces

In this section we give an overview about the specification of the CORBA Trading Service.
The specification includes the following interface definitions:

• Service Type Repository

• Trader Components

• Lookup

• Iterators

• Register

• Link

• Admin

• Proxy

• Dynamic Properties

We will look at each of these in a separate subsection.

3.2.1—
Service Type Repository

We have seen the importance of service types in the scenario presented in Section 3.1. If a
service offer does not provide an object reference of a known type then it is impossible for an
importer to invoke operations on the object references it gets back. In the same way, service
types are important for writing constraint expressions. If a service offer's property names and
types vary then the constraint and preference expressions that express the requirements of an
importer will fail to match relevant service offers. For example, if one service offer for a
Printer described its floor via the propertycontinue

Page 227

 ("Floor", "ground"), and another as the property ("level'', 4), then it would be impossible to
compare them for proximity.

Service types are stored in the Service Type Repository. A service type consists of a name, an
interface type, and a set of property specifications. A property specification gives the name and
TypeCode of properties that will occur in service offers of this type. Properties are also given
modes which allow them to be specified as read-only and/or mandatory. Read-only properties
may not be modified after export. Mandatory properties must be included in a service offer to
be accepted as an instance of this service type.

The datatypes and operations for the Service Type Repository are contained in the
CosTradingRepos::ServiceTypeRepository interface. Most traders will
implement a compiler for a service type language (for which there is no standard syntax) and
browsing tools to enable importers to compose queries to a trader without needing to write
clients to the Service Type Repository. The only type needed when importing using a trader is

ServiceTypeName, which is a string.break

typedef sequence <CosTrading::ServiceTypeName> ServiceTypeNameSeq;

enum PropertyMode{
 PROP_NORMAL, PROP_READONLY,
 PROP_MANDATORY, PROP_MANDATORY_READONLY
};

struct PropStruct{
 CosTrading::PropertyName name;
 CORBA::TypeCode value_type;
 PropertyMode mode;
};

typedef sequence <PropStruct> PropStructSeq;

typedef CosTrading::Istring Identifier;//IR::Identifier

struct IncarnationNumber{
 unsigned long high;
 unsigned long low;
};

struct TypeStruct{
 Identifier if_name;
 PropStructSeq props;
 ServiceTypeNameSeq super_types;
 boolean masked;
 IncarnationNumber incarnation;
};

Page 228

Substitutability of Service Types. Service types, like IDL interfaces are substitutable via an
inheritance relationship. For IDL interfaces this simply means that all the attributes and
operations defined in the base interface become part of the derived interface. However, in
service types there are three aspects to substitutibility:

The interface type of a derived service type may be a subtype of the interface type in
the base service type.

The property set may be extended in a derived service type with new property names
(and their associated type and mode specifications).

Inherited properties may be strengthened. That is, nonmandatory properties may be
made mandatory, and modifiable properties may be made read-only. However, the
datatype of an inherited property must remain the same.

When an importer queries the trader it may receive service offers of a subtype of the requested
service type in the same way that object references to subtypes of a required interface type may
be passed where a base type is required.

The masked member of the TypeStruct allows service types to be declared as abstract
base service types. The incarnation member is assigned an increasing index so that

queries on service type definitions can be restricted to those that were defined after some other
service type which has a lower incarnation number.

Creating and Deleting Service Types. Exporters and trader administrators will often want to
write code to define a new service type. This is done by populating a PropStructSeq and
then calling the add_type() operation.break

IncarnationNumber add_type (
 in CosTrading::ServiceTypeName name,
 in Identifier if_name,
 in PropStructSeq props,
 in ServiceTypeNameSeq super_type,
) raises (
 CosTrading::IllegalServiceType,
 ServiceTypeExists,
 InterfaceTypeMismatch,
 CosTrading::IllegalPropertyName,
 CosTrading::DuplicatePropertyName,
 ValueTypeRedefinition,
 CosTrading::UnknownServiceType,
 DuplicateServiceTypeName
);

Page 229

The name parameter is the name of the service type, which is used by importers to nominate
the types of service offers they wish to search over. The if_name parameter is a Repository
ID that identifies the type of the object to be advertised by service offers of this type. The
properties expected in service offers of this type are given in the props parameter. The final
parameter specifies a list of existing service types which are being subtyped by the new
service type. The rules for inheritance of service types are explained above. The exceptions
are mostly self-explanatory, and many of them relate to conditions in which the properties
added or modified in a subtype do not follow the compatibility rules.

Service types should not be removed from a repository unless no service offers of this type are
currently exported to the trader. Even in this case it is probably better to mask service types
(see below) than delete them, as this avoids the reuse of old service type names, which can
lead to confusion. On the rare occasions when a service type should be deleted, the operation
remove_type() performs this action.

void remove_type (
 in CosTrading::ServiceTypeName name
) raises (
 CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType,
 HasSubTypes
);

A known service type cannot be removed if it has subtypes, and the exception HasSubTypes
is raised in these circumstances.

Obtaining Service Type Information. The repository has operations to list the service types it
holds. It can also describe them, either in terms of their supertypes and additional or modified
properties, or in terms of the properties that must go into a service offer to conform to this type.

The operation list_types() returns all the service type names in the repository:

ServiceTypeNameSeq list_types (
 in SpecifiedServiceTypes which_types
);

The operation describe_type() returns a TypeStruct which contains the service
type's definition as it was added to the repository. It does not include any properties inherited
from its supertypes.break

TypeStruct describe_type (
 in CosTrading::ServiceTypeName name
) raises (

Page 230

CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType
);

The fully_describe_type() operation, on the other hand, gives a full list of properties
derived from all of a type's supertypes. This operation would usually be called by importers
and exporters who want to know what properties to expect in a service offer of this type.

TypeStruct fully_describe_type (
 in CosTrading::ServiceTypeName name
) raises (
 CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType
);

Masking Types. Masking a service type is used to either deprecate an existing service type,
for which there are already offers in the trader, or to declare an abstract base service type
which must be subtyped before service offer instances will be accepted by the trader.

As a service type becomes widely used, people think of additional properties of a service that
they wish to describe. So rather than simply adding nonstandard extra properties to their
service offers, they create a new service type that subtypes the existing type. If the new
properties become important, or widely accepted, then the old type can be masked to prevent
new service offers being created without the extra properties.

The operation mask_type() indicates that this type is no longer used, at least in its base
form:

void mask_type (
 in CosTrading::ServiceTypeName name
) raises (
 CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType,
 AlreadyMasked
);

The unmask_type() operation reverses this masking, and the trader will once again accept
offers of this type. The Trading Service authors think that this operation will seldom be
used.break

void unmask_type (
 in CosTrading::ServiceTypeName name
) raises (
 CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType,
 NotMasked
);

Page 231

3.2.2—
TraderComponents--Finding the Right Interface

The trader defines five separate interfaces:

• Lookup—where importers make queries

• Register—where exporters advertise new service offers

• Link—where links to federated traders are administered

• Admin—where policies of the trader are administered

• Proxy—where legacy mechanisms for advertising services are added so that they look like
service offers

A single interface, TraderComponents, is inherited by all the interfaces listed above. This
allows users to locate the other interfaces supported by a particular trader implementation.

interface TraderComponents{

 readonly attribute Lookup lookup_if;
 readonly attribute Register register_if;
 readonly attribute Link link_if;
 readonly attribute Proxy proxy_if;
 readonly attribute Admin admin_if;
};

3.2.3—
Lookup

The Lookup interface is used by importers to find service offers that meet their needs. It
offers a single operation, query(), that requires a specification of the service type and
matching constraint expression, and returns a list of service offers. The signature for query()
is significantly more complex than this simple explanation would indicate:break

void query (
 in ServiceTypeName type,
 in Constraint constr,
 in Preference pref,
 in PolicySeq policies,
 in SpecifiedProps desired_props,
 in unsigned long how_many,
 out OfferSeq offers,
 out OfferIterator offer_itr,

 out PolicyNameSeq limits_applied
) raises (
 IllegalServiceType,
 UnknownServiceType,
 IllegalConstraint,
 IllegalPreference,
 IllegalPolicyName,
 PolicyTypeMismatch,

Page 232

 InvalidPolicyValue,
 IllegalPropertyName,
 DuplicatePropertyName,
 DuplicatePolicyName
);

The third parameter, pref, is a minimizing, maximizing, or boolean sorting expression that
tells the trader which matched offers to return first. The policies parameter allows the
importer to influence the way in which the trader searches its service offers, and the way in
which it propagates the query to other traders. Often query invocations will be given an empty
PolicySeq as the trader administrator will configure the trader to allow a trade-off between
search space and resource usage that will deliver appropriate services to users.

A desired_props argument must be provided so that the trader knows whether to return
properties of the service offers that matched, or simply the object references to the services.
The SpecifiedProps type is defined as follows:

enum HowManyProps{ none, some, all};

union SpecifiedProps switch (HowManyProps){
 case some: PropertyNameSeq prop_names;
};

Sometimes a service type will contain many properties that do not interest a particular
importer. In this case the importer will need to specify in the prop_names field of the
desired_props which property values to return. In many cases the choice to ignore the
property values or to require all the values is sufficient.

The how_many parameter specifies that the importer wishes to receive a certain number of
offers back in the form of a sequence (in the offers out parameter). The rest of the offers
will be obtained through an iterator, whose object reference is returned in the offer_itr out
parameter (see Section 3.2.4). Typically, importers are interested in one of these:

• Getting back a small number of offers so that they can ensure that one service is actually
available at the time

• Examining a large number of service offers for direct comparison outside the trader

In the first case, an importer may save the trader the time and resources of creating an iterator
by specifying a policy called "return_card." This policy instructs the trader only to return the
number of matching service offers specified by the policy. Making its value the same as the
how_many argumentcontinue

Page 233

will prevent the creation of an iterator. The creation of policies is dealt with in Section 3.2.

3.2.4—
Iterators

An iterator is an object that controls a logical list of objects or data items and can return them
to a client a few at a time. We use the term logical list because the object supporting the
iterator may produce new items for the list as they are required. This is a common style used in
many OMG specifications. In the trader two iterators are specified:

• OfferIterator is used when a large number of service offers are returned from the
Lookup::query operation.

• OfferIdIterator is used to return all of the OfferIds held in a particular trader from the
Admin::list_offers operation.

They have essentially the same interface, so we will look at only one of them here.

interface OfferIterator{

 unsigned long max_left (
) raises (
 UnknownMaxLeft
);

 boolean next_n (
 in unsigned long n,
 out OfferSeq offers
);

 void destroy();
};

The max_left() operation provides an upper bound on the number of offers that the iterator
contains. If the offers are being constructed a few at a time, then the upper bound may not be
easily calculated, so the UnknownMaxLeft exception will be raised. The next_n()
operation will return up to n offers in the offers out parameter, and a return value of FALSE
indicates that no other offers are contained in the iterator.

Although the trader may clean up iterators from time to time to reclaim resources, responsible
clients will call destroy() on iterators as soon as they have extracted enough offers.

3.2.5—
Register

The Register interface provides operations for advertisers of services. The most important
operations arecontinue

Page 234

• export() advertises a service offer in the trader and returns an identifier for it.

• withdraw() removes an identified service offer from the trader.

• describe() returns the properties of an identified service offer.

• modify() allows an exporter to change the values of non-read-only properties of a service
offer.

Other operations allow exporters to withdraw all service offers matching a particular query
and to obtain the Register interface of a linked trader by name.

OfferId export (
 in Object reference,
 in ServiceTypeName type,
 in PropertySeq properties
) raises (
 InvalidObjectRef,
 IllegalServiceType,
 UnknownServiceType,
 InterfaceTypeMismatch,
 IllegalPropertyName, //e.g. prop_name = "<foo-bar"
 PropertyTypeMismatch,
 ReadonlyDynamicProperty,
 MissingMandatoryProperty,
 DuplicatePropertyName
);

The export() operation takes three parameters that describe a service and places that
service offer in the trader's database for return as a result of an importer's query. The
reference parameter must contain an object reference of the type specified in the service
offer named by the second parameter, type. The properties parameter must contain a
value for each mandatory property in the service type and may contain values for other
properties. All values provided for property names specified in the service type must be of the
property type specified, and additional properties of any other name and type may also be
included. Any non-read-only property value may be replaced by a structure of the following
type:

struct DynamicProp{
 DynamicPropEval eval_if;
 TypeCode returned_type;
 any extra_info;
};

This will cause the property's value to be determined at import time, which means that the
constraint will be evaluated on up-to-date information. The printer example above has a
property that reflects the length of thecontinue

Page 235

current print queue. The eval_if member is an object reference to a standard interface that
has a single operation which returns an any. The returned_type member is the type of the
value expected in that any, and must match the type specified for this property in the service

type.

The exceptions that may be returned are mostly self-explanatory. The
ReadonlyDynamicProperty exception indicates that it is illegal for a read-only property
to change after export.

The withdraw() operation passes the trader an OfferId returned from a previous
export(), and the trader will remove the corresponding service offer from its database.

void withdraw (
 in OfferId id
) raises (
 IllegalOfferId,
 UnknownOfferid,
 ProxyOfferId
);

The other withdraw operation, withdraw_using_constraint(), will remove all
service offers that match a particular constraint expression. This should generally only be used
by the administrator.

The describe() operation returns an OfferInfo structure corresponding to the id
parameter. OfferInfo contains exactly the same information as the three parameters to
export(): an object reference, a service type, and a sequence of properties.

struct OfferInfo{
 Object reference;
 ServiceTypeName type;
 PropertySeq properties;
};

OfferInfo describe (
 in OfferId id
) raises (
 IllegalOfferId,
 UnknownOfferId,
 ProxyOfferId
);

The modify() operation allows exporters to change the properties contained in a particular
service offer. Some traders do not allow the modification of service offers and will raise the
NotImplemented exception. Traders that implement this operation must succeed on all
modifications, or fail on all. Properties listed in the del_list parameter will be deleted if
possible, andcontinue

Page 236

property values in modify_list will replace current values in the identified service offer,
if this is allowed. The reasons the operation may fail are reflected in its long raises clause. In
short, the two list parameters may be inconsistent, or the caller may be trying to modify
something read only, or delete something mandatory.

void modify (
 in OfferId id,
 in PropertyNameSeq del_list,

 in PropertySeq modify_list
) raises (
 NotImplemented,
 IllegalOfferId,
 UnknownOfferId,
 ProxyOfferId,
 IllegalPropertyName,
 UnknownPropertyName,
 PropertyTypeMismatch,
 ReadonlyDynamicProperty,
 MandatoryProperty,
 ReadonlyProperty,
 DuplicatePropertyName
);

The resolve() operation is for obtaining a reference to the Register interface of another
trader, to which this trader has a named link. This is how one exports service offers to and
withdraws them from federated traders.

Register resolve (
 in TraderName name
) raises (
 IllegalTraderName,
 UnknownTraderName,
 RegisterNotSupported
);

3.2.6—
Link

Links can be considered a specialization of service offers. They advertise other traders that can
be used to perform federated queries. The Link interface therefore looks much the same as the
Register interface, with operations to add and remove as well as describe and modify
links. Each link has four associated pieces of information: its name, its object reference (to a
Lookup interface), and two policies on link following. Most users of traders do not need to
know what links a trader has or how they are followed. The trader administrator sets up link
policies and trader defaults.break

Page 237

3.2.7—
Admin

The Admin interface contains a large number of operations to set the policies of a trader and
operations to list the OfferIds of service offers contained in the trader. Ordinary trader
users can query the attributes of the other interfaces to determine the current policies of a trader
but will never need to use the Admin interface. Some traders will not even offer this interface,
as all policy will be determined by the implementation.

3.2.8—
Proxies and Dynamic Properties

Proxies are objects that sit alongside service offers but hide some legacy mechanism of service
creation or discovery. Most traders will not support the Proxy interface. Traders that do,

return identical results from a proxy as from a normal service offer.

Dynamic properties are a mechanism to allow a service to provide a property value at import
time that reflects the current state of the service. We have seen in the explanation of the
export operation above that the value of a non-read-only property may be replaced by a
DynamicProp structure. This will cause the trader to call back to an interface supported by
the service (or some associated server) to obtain the property value when the constraint
expression of a query is being evaluated. The object reference provided in that structure must
be of the following interface type:

interface DynamicPropEval{
 any evaIDP (
 in CosTrading::PropertyName name,
 in TypeCode returned_type,
 in any extra_info
) raises (
 DPEvalFailure
);
};

When evaluating a dynamic property, the trader invokes the evalDP() operation of the
eval_if member of the DynamicProp, passing the property name and the
returned_type and extra_info members of the structure. It receives an appropriate
value in return.

The evaluation of a query which involves calling back to several services to determine the
dynamic value of a property can be very costly, and some traders will not support dynamic
properties, as indicated by the
SupportAttributes::supports_dynamic_properties boolean attribute.
However, for some services the information is invaluable for determining their suitability for a
purpose. For example, a printer that is one floor up from me and has acontinue

Page 238

zero-length queue is much more useful than one in the same room that has thirty jobs queued or
is out of toner.

3.3—
Exporting a Service Offer

In this section we will provide an example implementation of the Printer interface
introduced in Section 3.1. The server that supports objects of this type will export service
offers describing the printer objects to the trader. In this way printer clients can choose printers
using an expression of their requirements rather than the usual method of choosing the name of a
printer they know.

The Printer interface is very simple and emulates the kind of command line interface
provided by UNIX print commands such as 1pr. The purpose of this implementation is to
show how a minimal wrapper of this kind of service, which describes printer attributes in
service offers, can allow users more flexibility. They can not only choose a printer based on
some capability that it has, such as high resolution, but they can also choose it based on its
current state, such as the length of its print queue. In addition, users can discover new printers

that they were previously unaware of.

The environment in which we implemented this server is one in which many different operating
systems run on different machines. Although they all have access to the same file systems via
NFS, it is too complex to integrate all the different printing services, and printing is only
available on some machines. One way of extending printer availability is installing this server
on one of the printing machines and using a CORBA client on the other machines which passes
the name of the file to be printed.

The implementation of the Printer Server has the usual steps. The first of these, specifying the
interface of a CORBA object, has already been done in Section 3.1, although we will extend
this IDL to facilitate the evaluation of dynamic properties. The second is to compile the IDL.
Following that we need to implement the Printer interface and write a server which creates
instances of the implementation class. Our server will also create service offers for the printers
it creates and export these to the trader.

3.3.1—
Implementing the Printer Interface

We intend to allow the trader to use its dynamic property evaluation to get the printer queue
length at query time, so that clients of the trader can sort their returned printer service offers
according to the length of the queue. In order to do this we need to implement the interface
CosTradingDynamic::DynamicPropEval so that the trader can call its evalDP()
operation to get the queue_len property of each printer service offer. The best way to do
this is tocontinue

Page 239

create a new interface that multiply inherits from the printer and the dynamic property
evaluation interfaces. We reopen the Printing module and define a new interface as follows:

module chapter8{
module Printing{
 interface TradingPrinter: Printer,
 CosTradingDynamic::DynamicPropEval{};
};
};

The IDL compiler generates the following files: printingC.hh, printingC.cc,
printingS.hh, and printingS.cc.

Our implementation of the TradingPrinter interface is done in the servant class
PrinterImpl, which inherits from the POA class generated from IDL,
POA_Printing::POA_TradingPrinter.

//PrinterImpl.C
#include "printingS.hh"
class PrinterImpl : public POA_Printing::POA_TradingPrinter{

Because the printer interface is so simple, we only need PrinterImpl to know the
command we will use to find the queue length, the command to print files, and the name of the
printer to which it will send them. Therefore we define three private string members to store
the commands and the name, and a constructor which accepts three corresponding string

arguments.break

//PrinterImpl.C

#include "PrinterImpl.h"
...
char **print_command;
char **queue_command;
CORBA::String_var printer_name;
CORBA::TypeCode_var ret_type;

//constructor
PrinterImpl::PrinterImpl (const char *p_command,
 const char *q_command,
 const char *name,
 CORBA::TypeCode_ptr dp_eval_ret_type){

 print_command = new char *[4];

 print_command[0] = new char[256];
 strcpy(print_command[0], p_command);

Page 240

 print_command[1] = new char[256];
 strcpy(print_command[1], " -P ");
 strcat(print_command[1], name);
 print_command[2] = new char[256];
 strcpy(print_command[2],"");
 queue_command = new char *[2];

queue_command[0] = new char[256];
 strcpy(queue_command[0], q_command);
 queue_command[1] = new char[256];
 strcpy(queue_command[1], "-P");
 strcat(queue_command[1],name);
 queue_command[2] = new char[256];
 strcpy(queue_command [2], "");

 printer_name = CORBA::strdup(name);
 ret_type = dp_eval_ret_type;
}

We could have chosen to initialize printer objects with all the characteristics which we will
export in their service offers, but because we don't define any attributes or operations to
retrieve these properties, there is no point in doing so. Instead we make the server aware of
these characteristics, and it exports service offers with corresponding property values on the
objects' behalf.

The remainder of the implementation consists of the methods mapped from the IDL operations.
The first of these is print_file():break

void PrinterImpl::print_file (const char *fn){

 strcpy(print_command[2], "");
 strcat(print_command[2], fn);

 print_command[3] = new char [256];
 strcpy(print_command[3], "");

 cout << "print command: " << endl;
 for(int i = 0; i < 4; i++)
 cout << print_command[i];
 cout << endl;

 cout << "Invoking print command" << endl;
 if (execvp((const char *)print_command[0],
 (char *const *) print_command) < 0){
 cout << "execvp to print file failed " << endl;
 throw Printing::Printer::PrinterOffLine();
 }

}

Page 241

The method is implemented very simply by concatenating the print command, the printer name,
and the file name and executing it via the system call, execvp() .

The queue_len() method is also implemented by making a call to a UNIX executable,
which makes the crude assumption that the output of the queue command lists two lines of
header information of 80 characters, followed by a line of 80 characters for each queued
job.break

CORBA::Short PrinterImpl::queue_length(){

 const int MAXLINE = 1024;
 char line[MAXLINE], command[MAXLINE];
 CORBA::UShort len = 0;
 int line_num = 0;
 FILE *fp;

 //Execute the lpq command
 strcpy(command, queue_command[0]);
 for(int i = 1; i < 3; i++){
 strcat(command, " ");
 strcat(command, queue_command[i]);
}

 //Print the command actually being invoked
 cout << "Invoking command: ";
 cout << command << endl;

 if ((fp = popen(command, "r")) == NULL
 throw Printing::Printer::PrinterOffLine();

 //sleep while the queue command produces
 //output
 VISPortable::vsleep(1);

 //read 1pq output
 while ((fgets(line, MAXLINE, fp)) != NULL)
 ++line_num;

 //close file
 fclose (fp);

 //check the length of the output available
 //and use this to calculate the number of
 //lines of queue output, then subtract the
 //header lines to give queue length
 len = (CORBA::UShort) (line_num / 80 - 2);
 len = (len ? len : 0);
 cout << "Printer " << printer_name <<
 " queue_len:" << len << endl;

Page 242

 return len;
}

The other method which must be implemented is for the dynamic property evaluation operation
evalDP(). Its parameters are extracted from the value of any dynamic property in a service
offer. This value will always be of type

struct DynamicProp{
 DynamicPropEval eval_if;
 TypeCode returned_type;
 any extra_info;
};

The eval_if member of this struct will be a reference to our PrinterImpl object, and the
other two parameters will be passed to the evalDP() operation on that interface. This is
what we implement here:

CORBA::Any_ptr Printerimpl::evalDP (const char *name,
 CORBA::TypeCode_ptr returned_type,
 const CORBA::Any& extra_info){

 cout << "Printer " << printer_name << " DPEval" << endl;
 if (strcmp(name, "queue_len") == 0){
 throw CosTradingDynamic::DPEvalFailure();
 }

 if (returned_type != ret_type){
 throw CosTradingDynamic:: DPEvalFailure ();
 }

 CORBA::Any_var ret_val;

 try {
 (*ret_val) <<= this->queue_length();
 }

 catch (const Printing::Printer::PrinterOffLine& pol){
 throw CosTradingDynamic:: DPEvalFailure();
 }

 return CORBA::Any::_duplicate (ret_val);
}

The name argument to the evalDP() method is the name of the property in the service offer
which is being evaluated. We are expecting only one such name, queue_len, and if we
receive any other we will throw the DPEvalFailure exception. The result of the evaluation
must be an any with the TypeCode passed in the returned_type argument. If the
TypeCode expected is not thecontinue

Page 243

typecode for an IDL short then we also raise an exception. We are not expecting any extra
information (such as arguments to supply to a method call), so we then create an any object
and place the result of the call to queue_length() into it and return the any. The last
failure condition may occur when the printer is off-line and cannot return a queue length value.
In this case we also throw the DPEvalFailure exception.

3.3.2—
Implementing the Printer Server

Now that we have an implementation of a PrinterImpl servant class that satisfies the
requirements of printer clients and the trader, we will implement a server that creates printer
objects and service offers that represent their characteristics and then exports them to the
trader. We have used the Inprise VisiTrader implementation for testing. As it was not
incorporated into C++ ORB products at the time of writing, the ORB bootstrap
resolve_initial_reference() could not be used to obtain a reference to a trader by
passing it the string "TradingService". Instead, the application uses a helper class called
IORFile that reads an Interoperable Object reference from a file and produces a string that
we can pass the ORB::string_to_object() operation.

Our server will take the following command line arguments:

• A filename where the trader's object reference is kept

• A command to send a file to the printer that takes the printer name and a filename

• A command to check the printer queue length that takes a printer name

• The characteristics of one or more printers including the printer's name, resolution in DPI,
building location, and floor number

The PrinterServer program is in PrinterServer.C:

//PrintServer.C

#include "CosTradingC.hh"
#include "CosTradingReposC.hh"
#include "PrinterImpl.h"
#include "IORFile.h"

const int NAME = 0;
const int BUILDING = 1;
const int FLOOR = 2;
const int RESOLUTION = 3;
const int QUEUE_LEN = 4;

const int COLOR = 5;
const int LANGUAGE = 6;

The server's main function is as follows:break

Page 244

int main(int argc, char *const *argv){

 int num_printers;
 PrinterImpl **printers;
 CORBA::String_var printer_name;
 if ((argc < 8) 11((argc-4)%4 != 0)){
 cout << "Usage: " << argv[0]
 << TraderIORFile print_command ";
 cout << "queue_len_command name "
 << "resolution building floor ";
 cout << " [name res build floor...]"
 << endl;
 exit(1);
}

An array is declared for storing pointers to the printer object references. Various ORB and
trader variables are declared and then the usual ORB initialization is carried out.

//allocate an array to store Printer Implementation Objects

num_printers = (argc - 4)/4;
printers = new PrinterImpl *[num_printers];

cout << "number of printers: " << num_printers << endl;

CORBA::ULong i = 0;

We initialize the ORB, obtain a reference to preinitialized root POA.

try{

 CORBA::ORB_var orb;

 //initialize the Object Request Broker
 orb = CORBA::ORB_init(argc, argv);

 //get the root POA object reference
 CORBA::Object_var obj =
 orb->resolve_initial_references("RootPOA");

 //narrow the object reference to a POA reference
 PortableServer::POA_var poa =
 PortableServer::POA::_narrow(obj);

We then proceed with the trader-related declarations.break

//Trader object reference declarations
CosTrading::LookupRef lookup;
CosTrading::Register_ptr p_register;
CosTradingRepos::ServiceTypeRepository_var st_repos;

Page 245

//get the trader reference from the command line
//and initialize the ServiceTypeRepository and Register
//interface references from the Initial Lookup interface

IORFile trader_ref(argv[1]);
CORBA::Object_var obj =
orb->string_to_object(trader_ref.get_ior_string());

lookup = CosTrading::Lookup::_narrow(obj);
if (lookup == CosTrading::Lookup::_nil()){
 cerr << "lookup narrowed incorrectly" << endl;
 exit(1);
}
cout << "lookup narrowed" << endl;

p_register = lookup->register_if();
cout << "register obtained" << endl;

obj = p_register->type_repos();
st_repos =
 CosTradingRepos::ServiceTypeRepository::narrow(obj);

if (st_repos ==
 CosTradingRepos::ServiceTypeRepository::_nil()){
 cerr << "ServiceTypeRepository narrowed incorrectly"
 << endl;
 exit(1);
 }

The trader's reference is obtained from the file supplied on the command line using an instance
of the IORFile class. The first reference for a trader is to a Lookup interface, from which
we obtain references to its Register interface and the service type repository. The service
type repository reference returned from the attribute type_repos is specified as type
Object in the standard, in anticipation of the interface ServiceTypeRepository being
replaced by a repository specified by the Meta Object Facility, which was adopted by the
OMG in September 1997. This is why the returned reference must be narrowed.

The next thing we need to do is to check if the service type that we want to use is already
defined in the service type repository. We do this by checking the result of a call to the
describe_type() operation, which will raise the UnknownServiceType exception if
it is not yet created.break

//check for Service Type existence
//and create a new Service Type if it does not exist

CORBA::Boolean type_exists = (CORBA::Boolean)0;
CORBA::String_var repos_id = (const char *)
 "IDL:Printing/Printer:1.0";

Page 246

CORBA::String_var serv_type_name = repos_id;

CosTradingRepos::ServiceTypeRepository::IncarnationNumber
 incarn_num;

CosTradingRepos::ServiceTypeRepository::TypeStruct_var
 type_desc;
try{
 type_desc = st_repos->describe_type(
 CORBA::strdup(serv_type_name));
 cout << "called describe_type - returned typedesc"
 << endl;
 type_exists = (CORBA::Boolean)l;
}
catch(const CosTrading::UnknownServiceType& ust){
 cerr << "called describe_type - raised UnknownServiceType"
 << endl;
 type_exists = (CORBA::Boolean)0;
}
catch(const CosTrading::IllegalServiceType& ist){
 cerr << ist << endl;
 exit(1);
catch(CORBA::SystemException& se){
 cerr << se << endl;
 exit(1);
}

If the service type is not present then we must create it. We will use the same properties as
shown when we introduced the printing example in Section 3.1. We make all the properties
mandatory, so that we can be sure that a query using any property name in the service type will
be evaluated on all service offers of this type.break

if (type_exists == (CORBA::Boolean)0){
 cout << "service type does not exist" << endl;

//we will create a new service type

//create a prop struct list with the property names
//for a printer service type

CosTradingRepos::ServiceTypeRepository::PropStructSeq_var
st_props = new
 CosTradingRepos::ServiceTypeRepository::PropStructSeq();
st_props->length(6);

st_props[NAME].name = (const char *)"name";
st_props[NAME].value_type = CORBA::_tc_string;
st_props[NAME].mode =
 CosTradingRepos::ServiceTypeRepository::PROP_MANDATORY;

Page 247

st_props[BUILDING].name = (const char *)"building";
st_props[BUILDING].value_type = CORBA::_tc_ushort;
st_props[BUILDING].mode =
 CosTradingRepos::ServiceTypeRepository::PROP_MANDATORY;

st_props[FLOOR].name = (const char *)"floor";
st_props[FLOOR].value_type = CORBA::_tc_ushort;

st_props[FLOOR].mode =
 CosTradingRepos::ServiceTypeRepository::PROP_MANDATORY;

st_props[RESOLUTION].name = (const char *)"resolution";
st_props[RESOLUTION].value_type = CORBA::_tc_ushort;
st_props[RESOLUTION].mode =
 CosTradingRepos::ServiceTypeRepository::PROP_MANDATORY;

st_props[QUEUE_LEN].name = (const char *) "queue_len";
CosTradingDynamic::DynamicProp dynamicProp;
st_props[QUEUE_LEN].value_type = dynamicProp.returned_type;
st_props[QUEUE_LEN].mode =
 CosTradingRepos::ServiceTypeRepository::PROP_MANDATORY;

st_props[COLOR].name = (const char *)"color";
st_props[COLOR].value_type = CORBA::_tc_string;
st_props[COLOR].mode =
 CosTradingRepos::ServiceTypeRepository::PROP_MANDATORY;

The other arguments required by the repository's add_type() operation are a service type
name, an interface's Repository ID, and a list of supertypes. We are using the interface's
Repository ID as the service type name, and will not use any supertypes.break

//create an empty super type list
CosTrading::STSeq_var super_types =
 new CosTrading::STSeq();

//add the new Service Type
//we use the Interface type string as the service
//type name
cout << "about to add_type" << endl;
cout << "serv_type_name = " << serv_type_name << endl;
cout << "repos_id = " << repos_id << endl;

incarn_num = st_repos->add_type(serv_type_name,
 repos_id,
 st_props,
 super_types);

cout << "Created Service Type: " << serv_type_name
 << endl;
cout << "Incarnation Number: high="

Page 248

 << incarn_num.high << endl;
cout << " low= "
 << incarn_num.low << endl;
}

Now we are ready to create a template service offer, which we can reuse for all the printers
that we will export. This server is only going to support printers that are black and white and
use postscript, so we can set the values for the ''color" and "language" properties now. The
other property that will share a value for all service offers is "queue_len", which will
contain a DynamicProp. It will be initialized with the type expected from the dynamic
evaluation, but the actual object reference will be added once the printer object is created.

//create Service Offer Property Seq to use for export
CosTrading::PropertySeq_var so_props = new
 CosTrading::PropertySeq();
so_props->length(7);

//create a Dynamic Property for queue length evaluation
CosTradingDynamic::DynamicProp_var queue_prop =
 new CosTradingDynamic::DynamicProp();

queue_prop->eval_if =
 CosTradingDynamic::DynamicPropEval::_nil();
queue_prop->returned_type = CORBA::_tc_ushort;
//The first five properties will be different for each
//printer, so we initialize them in the loop below

so_props[NAME].name = (const char *)"name";
so_props[BUILDING].name = (const char *)"building";
so_props[FLOOR].name = (const char *)"floor";
so_props[RESOLUTION].name = (const char *)"resolution";
so_props[QUEUE_LEN].name = (const char *)"queue_len";

//the last twp properties' values are assumed by this
//server
//so we initialize them for all printers

so_props[COLOR].name = (const char *)"color";
so_props[COLOR].value <<= (const char *)"black";
so_props[LANGUAGE].name = (const char *)"language";
so_props[LANGUAGE].value <<= (const char *)"postscript";

//create printer object(s) and export

The next step is to process the command line arguments and create printers with the
corresponding characteristics. We do this in a loop, creating the PrinterImpl objects,
making them available to the ORB, and then updating the creating service offer to advertise
themcontinue

Page 249

for(CORBA::ULong i = 0; i < num_printers; i++){

 cout << "about to create printer" << endl;
 //create a Printer object
 printers[i] = new PrinterImpl(
 argv[2],
 argv[3],
 argv[i*4 + 4],
 CORBA::_tc_ushort
);

 //activate the object created
 PortableServer::ObjectId_var oid =
 root_poa->activate(printers[i]);

 //activate the POA to wait for requests
 root_poa->the_POAManager()->activate();

 //create Printer Object Reference
 CORBA::Object_var printerRef =
 root_poa->id_to_reference (oid);

 cout << "Printer IOR: "
 " << orb->object_to_string(printerRef) << endl;

 cout << "Created printer: " << argv[i*4 + 4] << endl;

We activate each printer object using the root POA and have the root POA create object
references for each of them, which will then be published through the TraderService.break

//initialize the properties we get from the
//command line

//name
so_props[NAME].value <<= argv[i*4 + 4];

//resolution
 cout << "Resolution: " << argv[i*4 + 5] << endl;
so_props[RESOLUTION].value <<=
 (CORBA::UShort)atoi(argv[i*4 +5]);

//building
 cout << "Building: " << argv[i*4 + 6] << endl;
so_props[BUILDING].value <<= argv[i*4 + 6];

//floor
 cout << "Floor: " << argv[i*4 + 7] << endl;
so_props[FLOOR].value <<=
 (CORBA::UShort)atoi(argv[i*4 + 7]);

Page 250

 //update the dynamic prop struct and insert into
 //the queue_len property of the service offer
 queue_prop->eval_if = printers[i];
 so_props[4].value <<= queue_prop;

 //export the service offer
 cout << "about to export" << endl;
 p_register->export(printers[i],
 serv_type_name,
 so_props);

 cout << "Exported printer: " << argv[i*4 + 4] << endl;
} //end for loop

Once the printers are all created and their offers exported, we call orb->run() to enter the
ORB's event loop. We also have to catch the various CORBA user and system exceptions that
can be raised.

 //start ORB's event loop
 orb->run();
 }
 catch(const CosTrading::PropertyTypeMismatch& pm){

 cerr << pm << endl;
 cerr << pm.type << endl;
 cerr << pm.prop.name << endl;
 cerr << pm.prop.value << endl;
 }
 catch(const CORBA::UserException& ue){
 cerr << "User Exception caught" << endl;
 cerr << ue << endl;
 exit(1);
 }
 catch(const CORBA::SystemException& se){
 cerr << "System Exception caught" << endl;
 cerr << se << endl;
 exit (1);
 }

 return 0;
}

3.4—
Finding an Object Using a Trader

In this section we use VisiBroker for C++ to implement a simple C++ application client that
trades for a suitable Printer object to send its print job to. The application expects two
mandatory and two optional arguments:

• A name of the file where the IOR to a CosTrading::Lookup object is stored

• The name of the file we wish to printbreak

Page 251

• A constraint expression to select suitable printers

• A preference expression to order the printer service offers returned

The structure of the application is as follows:

The program usage is checked for an appropriate number of arguments. We obtain an object
reference to a Lookup object.

The command line arguments to the application are processed.

Some basic policies for a trader query are established.

The query is made.

The returned Printer objects are tried in order until one successfully prints the file.

Let's look at the code starting with the included files, the main function, and command line
argument check:

//PrintClient.C

#include "CosTradingC.hh"
#include "IORFile.h"

#include "printingC.hh"

int main(int argc, char *const *argv){

 if (argc < 3 11 argc > 5){
 cout << "usage: PrintClient trader_ior_file printfile
 << "[constraint [preference]]" << endl;
 exit(1);
 }

The application exits if it has not been run with the two mandatory arguments.

The next piece of code declares some variables and then initializes the ORB and obtains a
reference to the trader's Lookup interface.break

CORBA::ORB_var orb;

//initialize the ORB
try{
 orb = CORBA::ORB_init (argc, argv);
}
catch(const CORBA::SystemException& excep){
 cerr << "System Exception caught while
 << "initializing ORB" << endl;
 exit(1);
}

Page 252

 //some general purpose variables
 CORBA::Any_var policy_any = new CORBA::Any;
 CORBA::Object_ptr obj;

 //get reference to trader lookup interface
 CosTrading::LookupRef my_lookup;
 try{
 IORFile ior_file(CORBA::strdup (argv[1]));
 obj = orb->string_to_object(ior_file.get_ior_string());
 my_lookup = CosTrading::Lookup::_narrow(obj);

 if (my_lookup == CosTrading::Lookup::_nil()){
 cerr << "NIL Trader Reference" << endl;
 exit(1);
 }
 }
 catch(const CORBA::SystemException& se){
 cerr << "Caught CORBA System Exception" << endl;
 cerr << se << endl;
 exit(1);
 }
 cout << "trader narrowed" << endl;

The IORFile class opens and reads the file given as a command line argument and produces
a string for use with the ORB's string_to_object() method. We then narrow the
reference obtained.

The next step is to prepare the query for a printer. We use any constraint and preference strings

received from the command line and provide suitable defaults when they are not provided.

//determine the constraint
CORBA::String_var constr;

if (argc > 3)
 constr = (const char *)argv[3];
else
 constr = (const char *)"";

//determine the prefs
CORBA::String_var prefs;

if (argc > 4)
 prefs = (const char *)argv[4];
else
 //if no preference, compare the offers for shortest queue
 prefs = (const char *)"min queue_len";

An empty constraint string will match all service offers of the right type. If the user does not
supply a preference then we use a default which orders the returned printers by shortest queue
length. Now we set parameter values and some policies which will ensure that we get a
reasonable result.break

Page 253

//set some basic policies
CosTrading::PolicySeq_var query_pols = new
 CosTrading::PolicySeq();

query_pols->length (2);

//declare variables needed in the query()
CORBA::Short num_offers = 3;
CORBA::String_var service_type_name =
 (const char *)"IDL:Printing/Printer:1.0";
CosTrading::Lookup::SpecifiedProps_var desired_props;
CosTrading::OfferSeq_var return_offers;
CosTrading::OfferIterator_var iter;
CosTrading::PolicyNameSeq_var limits;

We will ask for at most three offers back, as this provides a reasonable likelihood of one
printer being operational. We initialize a short variable num_offers to the value 3. This is
used in the policy "return_card", which specifies the maximum number of service offers to
return from a query. If we then pass the same value to the query() operation's how_many
parameter, we can ensure that all of the results will come back in the offers out parameter, and
we will not have to process an iterator.

try{
 //we want at most 3 offers back
 (*policy_any) <<= num_offers;
 CosTrading::PolicyName_var policy_name =
 (const char *) "return_card";
 CosTrading::Policy policy;
 policy.name = policy_name;
 policy.value = *(policy_any);

 query_pols[0] = policy;

The other policy we will pass to the trader is "use_dynamic_properties", which

tells the trader to evaluate the "queue_len" property dynamically so that the

value used is up to date.

//we want to use dynamic props to find
//printer queue length
(*policy_any) <<=
 CORBA::Any::from_boolean((CORBA::Boolean)l);
policy_name = (const char *)"use_dynamic_properties";
policy.name = policy_name;
policy.value = *(policy_any);
query_pols[1] = policy;

The desired_props parameter to query() lists the property names whose values we
want returned with the query result. For easy processing in thiscontinue

Page 254

example we will ask for only the printer name, which assumes that users of our application
know their printers by name so that they can go and pick up a print-out from the right location.
Remember that using the trader we can discover new printers that only the systems
administrator knows about. A more advanced printing application would probably ask for all
the properties and provide the user with information on the location of printers, which would
enable newly discovered printers to be found by location.

 //we want back only the name property
 CosTrading::PropertyNameSeq_var desired_prop_names;

 desired_prop_names = new CosTrading::PropertyNameSeq(1);
 desired_prop_names->length(1);
 desired_prop_names[0] = "name";
 desired_props = new CosTrading::Lookup::SpecifiedProps();
 desired_props->prop_names(desired_prop_names);
}
catch (const CORBA::SystemException& se){
 cerr << "Query failed: " << se << endl;
 exit(1);
}

The SpecifiedProps type is a union, so we must initialize its value and discriminator. The
C++ mapping specifies that a method corresponding to a union branch name will set the
discriminator for us. We use the method prop_names() to set the value of the only branch.

Having created objects or variables for each of the parameters to the query() method, we
can now invoke it:

//make a query
try{
 my_lookup->query(service_type_name,
 constr,
 prefs,

 query_pols,
 desired_props,
 num_offers,
 return_offers.out(),
 iter.out(),
 limits.out());
}

Since we have set the value in policy return_card to the value of num_offers(the size
of the sequence we are prepared to accept back into our return_offers object), we can
ignore the iterator. We also ignore the feedback from the trader about what policy restrictions
it applied to our query,which are returned in the limits object. This time we must catch the
usercontinue

Page 255

exceptions as well as any system exceptions. Rather than catching each ofthe ten possible user
exceptions that the query() operation could raise, wewill catch the base class of all of these,
CORBA::UserException.

//catch some important exceptions
catch (const CORBA::UserException& ue){
 cerr << "Query failed - User Exception: " << ue << endl;
 exit(1);
}
catch (const CORBA::SystemException& se){
 cerr << "Query failed: " << se << endl;
 exit(1);
}

Having received a response from the trader we will now attempt to use the service offers to
print the file. We do this by entering a loop which exits once the print_file() operation
has successfully been invoked on one of the objects returned in a service offer. First we
declare and initialize some variables, including a string and an Any_var to extract the
printer's name from the single returned property in each service offer.

..//send job to printer
 CORBA::ULong i = 0;
 CORBA::Boolean printed = (CORBA::Boolean)0;
 char *pname;

 CORBA::Any_var return_any = new CORBA::Any;

Then we enter the loop.break

..//we'll try all the returned printers until one works
 while (i < return_offers->length() - 1 && !printed){
 try{
 return_any <<= return_offers[i].properties[0];
 *(return_any) >>= pname;
 Printing::Printer_var printer
 Printing::Printer::_narrow(return_offers[i].reference);

 if (printer == Printing::Printer::_nil()){
 cerr << "Printer " << pname << " not found" << endl;
 i++;

 continue;
}

printer->print_file(CORBA::strdup(argv[2]));
printed = (CORBA::Boolean)1;
cout << "File " << argv[2] << "sent to printer"
 << pname << endl;
 }

Page 256

If the string extraction from return_any and the narrow of the object reference work, we
attempt to print the file named in the second command line argument. If the print_file()
call works, the termination variable is set to true, a message is printed, and the loop will exit.
Other possibilities are that the printer is off-line or that the invocation fails for some other
reason.

 catch (const Printing::Printer::PrinterOffLine& pol){
 cout << "Printer " << pname << " offline!" << endl;
 }
 catch (const CORBA::SystemException& se){
 cout << "Printer " << pname << " raised: " << se << endl;
 }
 i++;
 }
}

Any failures to print are notified to the user and the next printer is tried. This is an example of
how we might run the application:

/Print>PrintClient trader.ior
 /home/dud/myfile.ps \
 language == "postscript" && floor < 4

Our constraint expression expresses our need for a postscript printer somewhere on the lower
floors of our building. We do not specify a preference, as the default preference for the shortest
print queue length is suitable. The execution above may result in the following output:

..Printer 12ps offline!

..File /home/dud/myfile.ps sent to printer monster

3.4.1—
Possible Enhancements to the PrintClient

The example exercises the query() operation, demonstrates how to pass policies and how to
specify the properties we want back, and shows how to extract the returned property values.
However, it does not deal with the situation where no service offers match the constraint
expression.

A more sophisticated printer query might look up the user's default printer constraint
expression and preferences from a file if none were supplied on the command line. It could
also check that at least one working printer offer is returned, and if not, it could make a less
specific query with an empty constraint string to match all available offers of the service type.

In the case where the first attempt fails, it could query for all printers and ask for all of their

properties to be returned, then display a list and allow the user to select an appropriate printer.
This would require that the return_card policy not be set and that an iterator be used, as
the number of offers returned would be unpredictable. When making a query that mightcontinue

Page 257

match a large number of offers, it is often best to set the how_many argument to zero and have
a single loop to process the iterator. This avoids having to have two loops, one for the returned
sequence of offers and the other to invoke the next_n() operation on the returned iterator.

4—
Domains

As we saw in Section 1, the operation resolve_initial_references() returns an
object of type CORBA::Object, but this object is expected to be of a specific type,
depending on the service name specified as parameter. For the Naming Service, you narrow the
object to a NamingContext. The question we want to discuss in this section is which object
instance the method resolve_initial_references() returns for a given service
name.

It might appear that the answer is the root context of the Naming Service. However, there are a
number of problems with this answer.

First of all, what is the Naming Service. CORBA does not define an association between the
ORB and Services, and there is also no such thing as the ORB. When you obtain an ORB
pseudo-object by calling CORBA::ORB_init() a local instance of the class CORBA::ORB
is created which implements the operations defined in the pseudo-interface CORBA::ORB.
Furthermore, novice users sometimes assume that an ORB is associated with an IP subnet—this
is not the case! Whenever your ORB is initialized locally and obtains a reference to an object,
you can invoke operations on that object.

As we see, the ORB does not solve our problem. What we want is something which allows us
to share the same instances of initial services among a set of objects and clients. We call this a
domain. There are multiple kinds of domains. In this context we have a naming domain, that is,
a set of objects and clients which share the same Naming Service.

In the case of the Naming Service we face an additional problem. The Naming Service
specification does not define a structure for the relationships between naming context objects.
Even though you organize your naming contexts as a tree, the Naming Service does not know
this. Hence any context may have to be returned by resolve_initial_references().
So a domain is specific to a specific service and identifies which initial object instance
provided by such a service is returned. All members of a domain will obtain the same initial
object. For the Naming Service, this means that all clients and objects which belong to the
same naming domain obtain the same context object when calling
orb->resolve_initial_references ("NameService").

CORBA only provides a minimal interface for choosing domains. The only hook available is
the parameters which can be used to initialize the ORB object. The C++ language binding
defines the following ORB's ORB_init() operation:break

Page 258

CORBA::ORB_ptr
 CORBA::ORB_init(int argc, char *const *argv);

Using the argc and argv parameters, we can pass command line arguments to initialize the
local ORB object so that it belongs to a certain naming domain.

We illustrate the use of domains with the VisiBroker Naming Service and a simple client
program which can resolve string names and print out stringified object references. This client
is defined in the Resolve program. The implementation is shown in the examples associated
with this chapter. Domains are implemented with VisiBroker using the ORB's underlying
directory service, implemented by the OSAgent (see Section 5 for details). We start the
Naming Service using a factory which creates one initial naming context object. We then
register this naming context object with the OSAgent under the name ROOT.

CosNamingExtFactory ROOT /tmp/ns_log

Now we start the resolve client from Section 4 so that it belongs to the naming domain defined
by the naming context called ROOT. We do this by setting the command line argument
-DSVCnameroot to the value ROOT.

Resolve -DSVCnameroot=ROOT "/x/y/z"

Now when we call resolve_initial_references() on the local ORB object, it
returns a reference to the Naming Service's context object called ROOT.

We can assume that the naming context object, which is named "/x/y" relative to the root
context, is registered as "_X_Y" with the OSAgent. We can again start the same resolve
client, but this time we want it to belong to a different naming domain and obtain the same
object. This time the object's name is different as it is relative to a different naming context:

Resolve -DSVCnameroot=_X_Y "/z"

Alternatively, you can start a client with another command line argument which passes a
stringified IOR to determine the naming domain. This is particularly useful for ORB
interoperability.

Resolve -DSVCnameIOR="IOR:000.."
 -DSVCnameroot=ROOT -ORBagent 0 "/x/y/z"

5—
Proprietary Object Location

Different ORB implementations provide proprietary mechanisms to locate objects. An example
of such mechanisms are the bind() methods provided by Visibroker C++. Other ORBs such
as Orbix also have implementations ofcontinue

Page 259

the bind() method. Although the similarity of the names and signatures suggests
interoperability, this is not the case. The set of bind methods have quite different mechanisms.

Although these bind mechanisms are neither interoperable nor portable between different ORB
implementations, they are quite popular among application programmers. In fact these
mechanisms ease the bootstrapping of applications and provide additional features. For
example, Visibroker provides load balancing, fault tolerance through replicas, and automatic
object activation.

We introduce here the binding mechanisms of Visibroker for C++. The mechanisms introduced
here are uniform across the product suites of the vendors that implement them. C++ ORB
access to CORBA objects implemented in other languages will rely on using the equivalent
mechanism in another ORB in the same family. We do not provide any details on how this is
achieved, and the reader is referred to the product documentation.

VisiBroker's mechanism for binding objects requires the object implementer to assign names to
objects when instantiating them. The name is then used to automatically register the object
implementation with a VisiBroker's Smart Agent. Clients of the object can then use their
knowledge of these names to bind to the objects.

The Visibroker-generated skeleton classes all have a constructor that accepts a string, which is
the implementation name for a particular object, assigned by the object implementer. This name
is then used by clients to obtain a reference to an object of a particular type by using the
bind() methods generated in the stub class for that interface type. Let's have a look at an
example constructor for an implementation of an interface X in the BOA model:

class Ximpl : public _sk_X{
 //constructor
 Ximpl(const char *object_name) : _sk_X(object_name){
 }

The object created using this constructor will now be accessible to any client that uses the
generated stub class. The client has to pass the same name to a bind() method on that class.
The bind() method looks like the following:

static X_ptr bind(const char *object_name = NULL,
 const char *host_name = NULL,
 const CORBA::BindOptions *_opt = NULL,
 CORBA::ORB_ptr _orb = NULL)

Specifying nonnull values for the parameters sets constraints on the bind() method in finding
implementations. For example, specifying a non-hard

Page 260

null host_name restricts the bind() method to finding implementations on the specified
host_name.

The _opt parameter allows the client to specify options by creating an object of class
CORBA::BindOptions updating its boolean fields:

• defer_bind—do not make a connection to the target object until the first invocation

• enable_rebind—reconnect to the target object if the connection is lost

Object implementations with the same name are treated as replicas. That is, if a client holds an

IOR to an object and this object isn't accessible anymore, the invocation will be automatically
rerouted by the Smart Agent. The address information in the run-time representation of the IOR,
that is, the client side proxy, will be automatically updated. When multiple object instances
match a bind request, the Smart Agent returns object references in a round-robin fashion—a
simple but in many cases adequate load balancing mechanism. Finally, as long an object
implementation is registered with the object activation daemon, the Smart Agent creates an
object instance if there are none of the requested specification available.break

Page 261

Chapter 6—
Building Applications

In this chapter we explain how to build applications using C++ ORBs. We have selected a
simple room booking system as an example. Since we want to demonstrate CORBA features
rather than prove that we can implement a sophisticated booking system, we have kept the
application-specific semantics simple. But as will be seen in the IDL specification, we have
chosen a very fine-grain object model which allows the creation of many CORBA objects and
the demonstration of invocations between them. We will also demonstrate the use of the
CORBA Naming Service.

This chapter covers the development of an entire application including

• Interface specification (Section 1).

• Implementing objects (Section 2).

• Implementing a server (Section 3).

• Implementing a factory (Section 4).

• Starting servers (Section 5).

• Client application (Section 6).

1—
Application Specification

The room booking system allows the booking of rooms and the cancellation of such bookings. It
operates over one-hour time slots from 9 A.M. to 4 P.M. Tocontinue

Page 262

keep things simple we do not consider time notions other than these slots, so there are no days
or weeks. The rooms available to the booking system are not fixed; the number and the names
of rooms can change. When booking a room, a purpose and the name of the person making the
booking should be given. We do not consider security issues and anyone can cancel any
booking.

The following key design decisions were made:

• Rooms and meetings are CORBA objects.

• A meeting object defines a purpose and the person responsible for the meeting.

• A meeting factory creates meeting objects.

• A room stores meetings indexed by time slots.

• Rooms have a name and register themselves under this name with the naming service.

Figure 6.1 illustrates a typical configuration of the room booking system. There are three room
servers that all have one room object implementation. There is also a meeting factory server
that has created a meeting factory object. The meeting factory has created several meeting
objects that are in the same process space. There is also a naming service that has various
naming context objects forming a context tree. The room and the meeting factory object
implementations are registered with the naming service.break

Figure 6.1
Room booking system—a typical configuration.

Page 263

1.1—
IDL Specification

The IDL specification of the room booking system is contained in a hierarchy of modules as
motivated in Chapter 5. It contains a number of interface specifications: Meeting,
MeetingFactory, Room.

The interface Meeting has only two attributes, purpose and participants, which are
both of type string and both readonly. The attributes describe the semantics of a meeting.

Meeting objects are created at run time by a meeting factory which is specified in the interface
MeetingFactory. It provides a single operation, CreateMeeting(), which has
parameters corresponding to the attributes of the meeting object and returns an object reference
to the newly created meeting object.

module RoomBooking{

 interface Meeting{

 //A meeting has two read-only attributes which describe
 //the purpose and the participants of that meeting.

 readonly attribute string purpose;
 readonly attribute string participants;
};

interface MeetingFactory{
 //A meeting factory creates meeting objects.
 Meeting CreateMeeting(in string purpose, in string participants);
};

Within the specification of the interface Room, we start with the definition of some datatypes
and a constant. There is the enum Slot which defines the time slots in which meetings can be
booked. The constant MaxSlots, of type short, indicates how many slots exist. The typedef
Meetings defines an array of length MaxSlots of meeting objects. Then we define two
exceptions, NoMeetinglnThisSlot and SlotAlreadyTaken, which are raised by
operations in the interface. There is also a readonly attribute name of type string which
carries the name of the room, for example, "Board Room."break

interface Room{
 //A Room provides operations to view, make, and cancel bookings.
 //Making a booking means associating a meeting with a time slot
 //(for this particular room).

 //Meetings can be held between the usual business hours.
 //For the sake of simplicity there are 8 slots at which meetings
 //can take place.

Page 264

 enum Slot{ am9, am10, am11, pm12, pml, pm2, pm3, pm4};

 //since IDL does not provide means to determine the cardinality
 //of an enum, a corresponding constant MaxSlots is defined.

 const short MaxSlots = 8;

 //Meetings associates all meetings of a day with time slots
 //for a room.

 typedef Meeting Meetings[MaxSlots];

 exception NoMeetingInThisSlot{};
 exception SlotAlreadyTaken{};

 //The attribute "name" names a room.

 readonly attribute string name;

There are three operations defined in the interface Room. The operation View() returns
Meetings, the previously defined array of meeting objects. The meaning is that a meeting
object reference indicates that this meeting is booked into the indexed slot. A nil object
reference means that the indexed slot is free.

The operation Book() books the meeting a_meeting in the slot a_slot of the room
object on which the operation is invoked. The operation raises the SlotAlreadyTaken
exception if there is already a meeting booked into the specified slot.

The operation Cancel() removes the meeting at the slot a_slot. It raises the
NoMeetinglnThisSlot exception if there is no meeting in the slot.

2—
Implementing Objects

The servant classes we have to implement are for the IDL interfaces Meeting and Room. We
use the POA model for both the meeting and room implementations.

2.1—
Implementing the Meeting Object

We implement the meeting object in a class MeetingImpil which extends the
IDL-generated implementation base class POA_RoomBooking::POA_Meeting. We
define two private variables _purpose and _participants, which correspond to the
attributes with the same names. The constructor has two parameters which are used to initialize
those two private variables.break

Page 265

//MeetingImpl.h
#include "RoomBooking_s.hh";

class MeetingImpl : public POA_RoomBooking::POA_Meeting{

 private:
 CORBA::String_var _purpose;
 CORBA::String_var _participants;

 public:
 //constructor
 MeetingImpl (const char * purpose,
 const char * participants) :
 _purpose(purpose), _participants (participants){}

IDL attributes are mapped to C++ methods. These consist of an accessor method and a
modifier method if the attribute is not readonly. Since the attributes of the interface
Meeting are readonly we only have to implement the accessors. Their implementation is
straightforward, they just return the value of the corresponding private variable.

 //attributes
 char *purpose(){ return CORBA::strdup(_purpose); }
 char *participants(){ return CORBA::strdup(_participants); }

2.2—
Implementing the Room Object

The room object is implemented in the class RoomImpl, extending the corresponding
IDL-generated class POA_RoomBooking::POA_Room. We declare two private variables,
_name to hold the name of the room object and meetings to hold the array of booked
meetings. Note that the variable meetings is of type RoomBooking::Meetings_var
which is a memory-managed type. We also declare a third private variable safetyMutex,
which will be used to ensure thread safety. We explain in subsequent sections how we make
use of the mutex. Note that the type of the mutex variable is VISMutex_var, which is a
convenience class provided by Inprise VisiBroker.

Within the constructor, we assign the only argument, determining the name of the room to be
created, to our private variable name.break

//RoomImpl.h

#include "RoomBooking_s.hh"

class RoomImpl : public POA_RoomBooking::POA_Room{

 private:
 CORBA::String_var _name;

Page 266

 RoomBooking::Meetings_var *meetings;
#if defined(THREAD)
 VISMutex_var safetyMutex;
#endif

 public:
 //constructor
 RoomImpl(const char *name) : _name(name){
 meetings = RoomBooking::Room::Meetings_alloc();
 }

As introduced in Chapter 3, IDL arrays are mapped to C++ arrays. Our variable meetings is
an array. We use the constructor to initialize it appropriately. The length of the array is defined
in the specification of the interface Room as a constant MaxSlots, which is mapped to a C++
constant MaxSlots of type CORBA::Short.

//RoomBooking_c.hh

class Room: public virtual CORBA_Object{
 ...
 static const CORBA::Short MaxSlots;//8
}

The attribute name is read-only and hence only the accessor method needs to be

implemented. It returns the value of the corresponding private variable.

//attributes
char *name(){
 return CORBA::strdup(_name);
}

The operations of IDL interfaces are mapped to C++ methods. Clients can concurrently access
room objects. Therefore we have implemented room objects in a thread-safe manner. The
particular problem we have to address is that the three methods, View(), Book() and
Cancel(), each either access or set the private member variable meetings. These
variables are shared between multiple threads. For example, while one thread in the server
could be servicing the Book() operation and thus setting an entry in the meetings array,
another thread in the server servicing the cancel() operation could delete the same entry.
This leads to an inconsistency in the data structure meetings and to undefined behavior. To
prevent this we introduce a private member variable safetyMutex that is locked at the
beginning of each of the methods—view(), Cancel() and Book() -and is unlocked when
we exit from these methods. The mutex serializes the access to the member variables. Inprise
VisiBroker provides us with a convenience class VISMutex_var, which takes care of
locking and unlocking in its constructor and destructor,continue

Page 267

respectively. We simply make use of this class at the beginning of our methods.

The implementation of the method View() is shown below. We lock the mutex
safetyMutex to make the View() method thread safe. We simply declare a local variable
called lock of type VISMutex_var and pass the safetyMutex as an argument to its
constructor. This takes care of locking the safetyMutex. When the VISMutex_var
variable goes out of scope, its destructor is called which unlocks the safetyMutex. Hence
there is no explicit call to unlock the mutex at the end of the View() method.

We declare a variable new_meetings of type RoomBooking::Meetings_var * and
allocate memory to it by making use of the Meetings_alloc() method generated by the
IDL compiler. For each element in this array, we assign the corresponding value from the
private member variable meetings after invoking _duplicate. The purpose of the
_duplicate() method is to increment the reference count of the object reference contained
in meetings[i]. Finally, we return new_meetings, which holds the object references to
the currently booked meetings. When we return an object reference, we must always invoke
_duplicate() on it. Otherwise the skeleton would garbage collect the object. The object
reference is returned to the client but the reference on the server side is released. For
information on the reference counting mechanism, see Chapter 2.

RoomBooking::Meetings_slice *RoomImpl::View(){
 #if defined(THREAD)
 VISMutex_var lock(safetyMutex);
 #endif

 RoomBooking::Meetings_slice *new_meetings =
 RoomBooking::Room::Meetings_alloc();
 for(CORBA::Ulong i=0; i < RoomBooking::Room::MaxSlots; i++){
 new_meetings[i] =

 RoomBooking::Meeting::_duplicate(meetings[i]);
 }
 return new_meetings;
}

The method Book() has two parameters, one that determines the slot in which a meeting
should be booked and the other that identifies the meeting object. We lock the safetyMutex
to make the method thread safe, like we did in the view() method.

We check if the slot is empty, that is, if the object reference indexed by the slot is nil. If the slot
is empty we assign the meeting to the slot, otherwise we raise the exception
SlotAlreadyTaken. The class for the exception is defined in the class
RoomBooking::Room since the corresponding IDL exception was defined in the interface
Room.break

Page 268

 void RoomImpl::Book(RoomBooking::Room::Slot slot,
 RoomBooking::Meeting_ptr meeting){
 if #defined(THREAD)
 VISMutex_var lock(safetyMutex);
 #endif

 if(meetings[slot] == RoomBooking::Meeting::_nil()){
 meetings[slot] =
 RoomBooking::Meeting::_duplicate(meeting);
 }
 else{
 cout << "Throwing exception: SlotAlreadyTaken" << endl;
 throw RoomBooking::Room::SlotAlreadyTaken();
 }
}

The method Cancel() is implemented similarly. We lock the safetyMutex to ensure
thread safety. We check if the slot is occupied, and if so we assign
RoomBooking::Meeting::_nil() to the slot. This causes the object reference
contained in the _var to be released. In the case where there is no meeting object in the
indexed slot, we throw the exception NoMeetingInThisSlot.

 Void Cancel (RoomBooking::Room::Slot slot){
 if #defined(THREAD)
 VISMutex_var lock(safetyMutex);
 #endif

 if(meetings[slot] != RoomBooking::Meeting::_nil()){
 //Assigning _nil releases object reference contained in
 //the _var
 meetings[slot] = RoomBooking::Meeting::_nil ();
 }
 else{
 throw RoomBooking::Room::NoMeetingInThisSlot();
 }
 }
}

3—
Building Servers

To instantiate the object implementations and to make them available to clients we have to
implement a server. The server is code that at run time executes as an operating system process
or task. There can be one server per object or a server can host multiple objects. A server has
four fundamental tasks:break

Page 269

• Initialize the environment, that is, get references to the pseudo-objects for the ORB.

• Create objects.

• Make objects accessible to the outside world.

• Execute a dispatch loop to wait for invocations.

Additional server tasks can include the registration of the objects with the Naming Service or
the Trading Service.

The server RoomServer does the four fundamental tasks and registers the newly created
room with the Naming Service. This is achieved in the main() function of the RoomServer
program. We define two strings which are used when registering the room object with the
Naming Service. Then we check that the number of arguments is correct and exit the program if
it is not. We expect one argument determining the name of the room object.

To use the Naming Service successfully, objects which want to share information via the
Naming Service have to agree on a naming convention. For this example we use the following
convention, which is illustrated in Figure 6.2. Under a root context we have a context
''BuildingApplications" which contains two contexts called "Rooms" and "MeetingFactories,"
respectively. We bind room objects into the context "Rooms" and the meeting factory object
into the context "MeetingFactories." Following this con-soft

Figure 6.2
Naming convention.

Page 270

vention will ensure that clients can locate the appropriate objects. Note that the Trading
Service provides a more formal approach to categorization based on service types (see
Chapter 5).

According to this naming convention we initialize the variable context_name with a
corresponding string version of the room context name.

//RoomServer.C

#include "EasyNaming.h"
#include "vpolicy.h"
#include "RoomImpl.h"

int main(int argc, char *const *argv){

 CORBA::String_var context_name;
 char str_name[256];

 if (argc < 2){
 cerr << "Usage: " << argv[0] << "room_name" << endl;
 exit(1);
 }

 context_name = (const char *)"/BuildingApplications/Rooms/";

3.1—
Initializing the ORB

The first task is to initialize the ORB. To get a pointer to the ORB, we call the method

ORB_init() on the class CORBA.

try{
 //initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

3.2—
Creating an Object, Registering with the Root POA

The second task is to create the room object. We create an instance of the class RoomImpl
and provide the name as a parameter to the constructor (see Section 2.2 for the definition of
that class). Then we perform the third task. We use the standard POA model to implement the
server. We obtain a reference to the persistent root POA by invoking
resolve_initial_references on the ORB and narrowing it to a POA_var. We
then activate the room object by invoking activate_object on the root POA and passing
the instance of RoomImpl as an argument. Following this, we activate the POA manager by
invoking activate() on the POAManager. We then have the POA manufacture an object
reference for the room object so that it can be exported to clients, either in a text file or through
the Naming or Trading Service.break

Page 271

 //create the Room object
 RoomImpl room(argv[1]);

 //Get the Root POA object reference
 CORBA::Object_var obj =
 orb->resolve_initial_references("RootPOA");

 //Narrow the object reference to a POA reference
 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(obj.in());

 //create a Persistent POA
 PortableServer::POA_var persistent_poa = create_persistent_poa(root_poa);
 //create an ObjectID
 PortableServer::ObjectId_var oid =
 PortableServer::string_to_ObjectID(CORBA::string_dup(argv[1]));

 //Register servant with the POA explicitly
 persistent_poa->activate_object_with_id(oid,&room);

 cout << "activating POA manager ..." << endl;
 persistent_poa->the_POAManager()->activate();

 cout << "create reference" << endl;
 CORBA::Object_var roomRef =
 persistent_poa->id_to_reference(oid);

3.3—
Registering with the Naming Service

The next step is to register the object with the Naming Service. The class EasyNaming
provides a convenient interface to the Naming Service, as explained in detail in Chapter 5. Its

constructor obtains an initial context of a Naming Service via the ORB's bootstrap mechanisms.
The class EasyNaming handles simple names including contexts in a notation similar to the
notation of file names in various operating systems:

/<contextl>/<context2>/.../<contextn>/<name>

It parses strings in this format and creates Naming Service names of type
CosNaming::Name, which maps to CosNaming::Name in C++.

We initialize such a string in the variable str_name, for example, with a value
"/BuildingApplications/Rooms/Board Room." We then bind the room object reference to the
name corresponding to this string by calling bind_from_string() on the object
easy_naming.break

//register with naming service
//create EasyNaming object
EasyNaming *easy_naming = new EasyNaming(orb, cosnaming_ior);

Page 272

//Copy context_name to str_name
strcpy(str_name, context_name);

//Append string name
strcat(str_name, argv[1]);

//bind str_name to room object
easy_naming->bind_from_string(str_name, roomRef);

3.4—
Entering the ORB's Event Loop

The fourth task of the server is to enter the ORB's event loop by calling orb->run() to wait
for incoming invocations.

Finally, we catch exceptions. If an exception of type AlreadyBound is raised, we realize
that a room with our room's name is already registered with the Naming Service. We handle
any exception that is raised in a very simple way. We print it out and exit.

 //Enter ORB's Event loop
 orb->run();
 }
 catch(const CosNaming::NamingContext::AlreadyBound& already_bound){

 cerr << "Room " << context_name << " " << argv[1]
 << " already bound. " << endl;
 cerr << "Exiting..." << endl;
 exit(1);
 }
 catch(const CORBA::UserException& ue){
 cerr << ue << endl;
 cerr << "Room " << context_name << " " << argv[1]
 << " already bound. " << endl;
 exit(1);
 }

 catch(const CORBA::SystemException& se){
 cerr << se << endl;
 exit(1);
 }
 return 0;
}

4—
Building Factories

A factory is an object implementation with a particular design pattern. The difference from
ordinary objects is that factories provide methods to dynamically create new objects. They
perform the same initialization of new objects as a server's main() method. That is, they
create objects and make them invokable. The process of building factories contains the
samecontinue

Page 273

steps as building any other server: implementing the object and implementing the server.

4.1—
Meeting Factory Object Implementation

The meeting factory implementation, the class MeetingFactoryImpl, is an extension of
the corresponding IDL-generated class POA_RoomBooking::POA_ MeetingFactory.
We declare private variables to hold pointers to the ORB and the POA. In the constructor we
pass references to the ORB and POA which have obtained in the server. We also set the name
of the object in the POA model.

//MeetingFactoryImpl.h

#include "RoomBooking_s.hh"
#include "MeetingImpl.h"

class MeetingFactoryImpl : public POA_RoomBooking::POA_MeetingFactory{
 private:
 CORBA::ORB_var _orb;
 PortableServer::POA_var _poa;

 public:
 //constructor
 MeetingFactoryImpl (
 CORBA::ORB_ptr& orb,
 PortableServer::POA_ptr poa):
 try{
 _orb = orb;
 _poa = PortableServer::POA::_duplicate (poa);

 } catch(const CORBA::SystemException& excep){
 cerr << "MeetingFactoryImpl: exception occurred" << endl;
 cerr << excep << endl;
 exit(1);
 }
 }

The implementation of the only method of the meeting factory, CreateMeeting(), is shown
below. Its parameters correspond to those of the meeting object's MeetingImpl()
constructor. We pass the parameters to the Meetingimpl constructor which creates a new
instance of a meeting object. We store the reference to this object in the variable
newMeeting. Once the object is created we follow the usual procedure to activate an object
in the POA model. We activate the object, and have the POA manufacture an object reference
that can then be returned to the caller. We must duplicate the object reference before returning
to the caller, in accordance with the CORBA reference counting and IDL to C++ mapping rules
for returning object references.break

Page 274

//MeetingFactoryImpl.C

#include "MeetingFactoryImpl.h"

//operations
RoomBooking::Meeting *MeetingFactoryImpl::CreateMeeting(
 const char * purpose, const char * participants){
 MeetingImpl *newMeeting;

 try{
 newMeeting = new MeetingImpl(purpose, participants);

 if (newMeeting == RoomBooking::Meeting::_nil()){
 cerr << "newMeeting created is nil" << endl;
 }

 cout << "activating obj..." << endl;
 PortableServer::ObjectId_var oid =
 _poa->activate_object(newMeeting);

 cout << "create reference..." << endl;
 CORBA::object_ptr obj = _poa->id_to_reference (oid.in());
 _poa->the_POAManager()->activate();

 //increase the reference count
 returnRoomBooking::Meeting::_narrow(CORBA::Object::_duplicate(obj));

 }
 catch(const CORBA::SystemException& excep){
 cerr << "System Exception occurred while creating new Meeting" <<
 endl;
 exit(1);
 }
 return newMeetingRef;

4.2—
Meeting Factory Server

The meeting factory server follows the same pattern as the room server. We initialize the ORB,
create the meeting factory object, and follow the usual rules to activate the object with the root
POA.break

#include "vpolicy.h"
#include "EasyNaming.h"
#include "MeetingFactoryImpl.h"

int main(int argc, char *const *argv){

 CORBA::String_var context_name;
 char str_name[256];

 if (argc < 2){

Page 275

 cerr << "Usage: " << argv[0] << " FactoryServerName" << endl;
 exit (1);
}

 context_name =
 (const char *)"/BuildingApplications/MeetingFactories/";
 try{
 //initialize ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 //Get the root POA object reference
 CORBA::Object_var obj =
 orb->resolve_initial_references("RootPOA");

 //Narrow the object reference to a POA reference
 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(obj.in());

 //create a persistent poa
 PortableServer::POA_var persistent_poa =
 create_persistent_poa (root_poa);

 //create an object Id
 PortableServer::ObjectId_var
 PortableServer::string_to_objectId(CORBA::string_dup(argv[1]));
 MeetingFactoryImplmeeting_factory(argv[1]);

 //Register servant with POA
 persistent_poa->activate_object_with_id(oid, & meeting factory);

 cout << "activating poa mgr..." << endl;
 root_poa->the_POAManager()->activate();

In the meeting factory server we use the Naming Service differently from the way we use it in
the room server. Instead of binding a name to the object reference, we rebind it. This means
that when there is already an object bound to the name we have chosen, we override the old
binding. We use the method rebind_from_string() of the class EasyNaming which
calls rebind() on the naming context.

Note that we use rebind only to demonstrate another feature of the Naming Service; the rebind
semantics are not implied by the meeting factory.break

//register with Naming Service

//create EasyNaming object
EasyNaming *easy_naming = new EasyNaming(orb);

//Copy context_name
strcpy(str_name, context_name);

//Append logical name to be registered with Naming Service

Page 276

strcat(str_name, "MeetingFactory");

//rebind str_name to meeting factory object
//overrides any previous binding
easy_naming->rebind_from_string(str_name, meeting_factoryRef);

We finish by calling orb->run() to wait for incoming invocations and then catch
exceptions.

 //enter ORB's event loop
 orb->run ();

 } catch(const CORBA::SystemException& sexcep){
 cerr << "MeetingFactoryServer: System Exception occurred" << endl;
 cerr << sexcep << endl;
 exit (1);
 } catch(const CORBA::UserException& uexcep){
 cerr << "MeetingFactoryServer: User Exception occurred" << endl;
 cerr << uexcep << endl;
 exit (1);
 }
 return(0);
}

5—
Starting Servers

Starting the servers requires the following steps. As explained in Chapter 5, we have defined a
naming domain to which all components of our application belong. We do this by setting the
root context to a naming context called ROOT.

Start Naming Service

> CosNamingExtFactory ROOT ROOT_log > CosNaming.ior & (UNIX)
> nameextf ROOT ROOT_log > CosNaming.ior & (Windows)

Start meeting factory server

> MeetingFactoryServer MeetingFactory -SVCnameroot ROOT &

Start room serversbreak

> RoomServer "Board Room" -SVCnameroot ROOT &
> RoomServer "Training Room" -SVCnameroot ROOT &
> RoomServer "Meeting Room" -SVCnameroot ROOT &
> RoomServer "Andreas' Office" -SVCnameroot ROOT &
> RoomServer "Keith's Office" -SVCnameroot ROOT &

Page 277

6—
Building Clients

Clients can be implemented as C++ applications or Java applications or Java applets. In order
to build Java client applications or applets, we require the Java ORB. For further details, refer
to Java Programming with CORBA by Andreas Vogel and Keith Duddy (1998). In this section
we illustrate how to build a text-based C++ client application.

The following output shows the initial state of a client that is viewing a booking system
containing four bookings made previously by other clients.

Room Booking Client Application

 AM PM

Rooms 9 10 11 12 1 2 3 4

Training room Book Book Book Book View Book Book Book

Keith's office Book Book View Book Book Book Book Book

Meeting room Book Book Book Book Book View Book Book

Board room Book View Book Book Book Book Book Book

Andreas's office Book Book Book Book Book Book Book Book

The following output shows a view of the booking system after a user has selected the training
room's 9 A.M. time slot and the booking has been made.

Room Booking Client Application

 AM PM

Rooms 9 10 11 12 1 2 3 4

Training room View Book Book Book View Book Book Book

Keith's office Book Book View Book Book Book Book Book

Meeting room Book Book Book Book Book View Book Book

Board room Book View Book Book Book Book Book Book

Andreas's office Book Book Book Book Book Book Book Book

The following shows a sample output from invoking a "View" operation on the 9 A.M. slot of
the training room.break

Enter the name of the room you would like to book/cancel/view:Training Room

Enter the slot number you would like to book/cancel/view
(9,10,11,12,1,2,3,4) :9

Meeting Details:

Page 278

Room name: Training Room
selected slot: 9am
Purpose: C++ ORB Training
Participants: Andreas & Keith

The following operations are available:
 Cancel
 Return

To Cancel, enter 'c' or 'C'
To Return to Main menu, enter 'r' or 'R'

6.1—
Client Application

We initialize the ORB by invoking ORB_init(). We then call init_from_ns() which
obtains the meeting factory and room naming context references from the Naming Service. Then
we invoke the method view() to get the booking information from each room.

int main(int argc, char *const *argv){

 try{
 orb = CORBA::ORB_init(argc, argv);
 init_from_ns();

 CORBA::Boolean quit_flag = 0;

 view();

Following initialization, we accept user input. The choices available to the user at this time are
to view an existing booking, to book a room or toquit. Based on the user input, we take action
accordingly. The method select_room_slot() allows the user to select a particular
room and slot. The method meeting_details() displays the details of an existing
meeting. The method display_rooms() presents a table of all the rooms with their
booking status.break

 //Accept input from the user
 //Modify internal variables accordingly
 for(;;){
 cout << "\n\nThe following operations are available:" << endl;
 cout << "\tBook\n";
 cout << "\tView\n";
 cout << "\tQuit\n\n\n";

 cout << "To Book, enter 'b' or 'B'\n";
 cout << "To View, enter 'v' or 'V'\n";
 cout << "To Quit, enter 'q' or 'Q'\n";

 char choice;
 cin >> choice;

Page 279

 switch(choice){

 case 'v':
 case 'V':
 select_room_slot();
 meeting_details();
 display_rooms();
 break;
 case 'b':
 case 'B':
 select_room_slot();
 book();
 break;
 case 'q':
 case 'Q':
 quit();
 quit_flag = 1;
 break;
 default:
 cout << "\n\nThe choice you entered was incorrect. Please enter
 again\n";
 break;
 }
 if (quit_flag) break;
 }
 }
 catch(const CORBA::SystemException& sexcep){
 cerr << "RoomBookingClient: System Exception occurred" << endl;
 cerr << sexcep << endl;
 exit (1);
 }
 catch(const CORBA::UserException& uexcep){
 cerr << "RoomBookingClient: User Exception occurred" << endl;
 cerr << uexcep << endl;
 exit (1);
 }
 return 0;
 }

6.2—
Methods in the Client Application

In this section we explain the methods which are part of the client application.

6.2.1—
Overview of Methods

The C++ client application consists of the following methods:

void init_from_ns()—Gets the room context from the root context and obtains
a reference to the meeting factory by resolving it from a predefined name.break

Page 280

CORBA::Boolean view()—Queries all rooms and displays the result at the user
interface.

CORBA::Boolean cancel()—Cancels a selected booking.

void select_room_slot()—Processes the event of clicking a button to book or
view a meeting. It decides if the room is free and a booking can be made or if the
booking details should be displayed.

void meeting_details()—Queries and displays the details of a meeting. The
method deals mainly with GUI programming and hence the code is only shown in the
Appendix.

CORBA::Boolean book()—Creates a meeting and books it into a selected slot.

void display_rooms()—Displays all the rooms and slots in a tabular fashion
along with their booking status.

void display_labels()—Helper function for display_rooms(). Displays
labels.

void display_room_status()—Helper function for
display_rooms(). Examines the booked array and displays View if the slot
already has a booking and Book if the slot is empty.

6.2.2—
Variable Declarations

We start the implementation of the class with a number of local variables.break

//RoomBookingClient.C

#include "RoomBooking_c.hh"
#include "EasyNaming.h"

CORBA::ORB_var orb;
CORBA::String_var ior;

RoomBooking::MeetingFactory_var meeting_factory;
CosNaming::NamingContext_ptr room_context;

CORBA::String_var participants;
CORBA::String_var purpose;

CORBA::UShort **booked;

CORBA::ULong selected_room;
RoomBooking::Room::Slot selected_slot;

RoomBooking::Room_var *rooms;
RoomBooking::Meeting_var *meetings;

CORBA::String_var *r_label;

Page 281

int num_rooms = 0;
const int max_slots = 8;
const int max_buf_len = 80;

6.2.3—
init_from_ns()

We have decided on a naming convention for the room booking system illustrated in Figure 6.2.
Room objects are bound to names in the context ''/BuildingApplications/Rooms" and the
meeting factory object is bound to the name
"/BuildingApplications/MeetingFactories/MeetingFactory." The method init_from_ns()
resolves the rooms context and obtains an object reference to the meeting factory using methods
from the class EasyNaming, which we introduced in Chapter 5.break

//Initialize from Naming Service
void init from _ns()

 try{

 //Create EasyNaming Object
 EasyNaming *easynaming = new EasyNaming(orb);

 //get room context
 room_context = CosNaming::NamingContext::_narrow(
 easynaming->resolve_from_string(
 "/BuildingApplications/Rooms"));

 if (room_context == CosNaming::NamingContext::_nil()){

 cerr << "Room Context is NULL" << endl;
 cerr << "exiting... " << endl;
 exit(1);
 }

 //get MeetingFactory from Naming Service
 meeting_factory = RoomBooking::MeetingFactory::_narrow(
 easynaming->resolve_from_string(
 "/BuildingApplications/MeetingFactories/Meeting
 Factory"));
 if (meeting_factory == RoomBooking::MeetingFactory::_nil()){
 cerr << "No Meeting Factory registered at Naming Service" << endl;
 cerr << "exiting..." << endl;
 exit (1);
 }
 }
 catch(const CORBA::SystemException& system_exception){
 cerr << "System Exception while initializing from Naming Service: "<<
 endl;
 cerr << system_exception << endl;
 }
 catch(const CORBA::UserException& naming_exception){

Page 282

 cerr << "User Exception while initializing from Naming Service: " <<
 endl;
 cerr << naming_exception << endl;
 }
}

6.2.4—
view()

The method view() displays information about the current availability of rooms. Therefore it
has to find out about all existing rooms and call the View() operation on each of them.

Object references for the available rooms can be obtained from the Naming Service. We have
already initialized a room context in which, according to our convention, room objects are
bound.

We query the room context by using the method list(), defined in the interface
CosNaming::NamingContext. As explained in Chapter 6, the operation list() has
three parameters:

in long length—The maximum length of the list returned by the second parameter,
which is a CORBA::Ulong in C++.

out CosNaming::BindingList—A sequence of names. Since it is an out parameter we
declare a BindingList_var variable bl and use its .out() in accordance with the C++
language mapping for out parameters.

out CosNaming::Bindinglterator—A binding iterator, that is, an object from
which further names can be obtained. It is also an out parameter and so we declare a
BindingIterator_var variable bi and use its .out() in accordance with the C++
language mapping for out parameters.

In our implementation we demonstrate the use of the list as well as the iterator. We obtain
object references from the room context via the resolve() operation. We then narrow the
resulting object to the right type. We go through the binding list as well as through the binding
iterator.break

CORBA::Boolean view(){
 try{
 //list rooms
 //initialize binding list and binding iterator
 //objects for out parameter
 CosNaming::BindingList_var bl;
 CosNaming::BindingIterator_var bi;

 //we are lazy and consider only 20 rooms
 //although there could be more in the binding iterator

 if (room_context == CosNaming::NamingContext::_nil()){
 cerr << "room context has become NIL" << endl;

Page 283

 exit(1);
 }
 room_context->list(20, bl.out(), bi.out());

 //create an array of Room and initialize it by resolving
 //the entries in the Room context of the Naming Service
 num_rooms = bl->length();

 rooms = new RoomBooking::Room_var [num_rooms];
 for(CORBA::ULong i = 0; i < num_rooms; i++){
 cout << "Room " << i << ": " << bl[i].binding_name[0].id << end
 rooms[i] = RoomBooking::Room::_narrow(
 room_context->resolve(bl[i].binding_name));

 }

 //be friendly with system resources
 if (bi != CosNaming::BindingIterator::_nil())
 bi->destroy();

We create an array of labels, one for each room, which is eventually used to display the names
of the rooms. We also create an array of type CORBA::Boolean for internal use to store
information about whether each slot is already booked or not.

//create room labels according to the number of rooms
r_label = new CORBA::String_var[num_rooms];

//create booked array according to the number of rooms
booked = new CORBA::UShort*[num_rooms];
for(i = 0; i <= num_rooms-1; i++)
 booked[i] = new CORBA::UShort[max_slots];

Next we initialize the elements of the label array by invoking the accessor method for the
attribute name of the interface Room.

//show the label with the room name
for(i = 0; i < num_rooms; i++){

//get the names of the rooms and store them locally
r_label[i] = rooms[i]->name();

For each of the rooms we invoke the operation View(), which returns an array of
Meeting_var objects. For such arrays a valid object reference identifies a meeting object
which is booked into the indexed slot, while a nil object reference means an empty slot. We go
through the array and set the corresponding element in the booked array to 1 or 0 depending on
whether the slot is empty or not.break

//call view operation on the i-th room object
//and create book or free label
cout << orb->object_to_string(rooms[i]) << endl;

Page 284

 meetings = rooms[i]->View();

 for(CORBA::ULong j = 0;
 j < RoomBooking::Room::MaxSlots; j++){
 if (meetings[j] == RoomBooking::Meeting::_nil())
 booked[i] [j] = 0;
 else{
 booked[i][j] = 1;
 }
 }

 }

 display_rooms ();
 }
 catch(const CORBA::SystemException& system_exception){
 cerr << system_exception << endl;
 }
 catch(const CORBA::UserException& naming_exception)
 cerr << naming_exception << endl;
 }
 return 1;
}

6.2.5—
cancel()

To cancel a meeting, the method cancel() invokes the operation Cancel() on the
appropriate room, providing the selected slot as an argument.

If the selected slot does not contain a meeting object reference, the operation Cancel() raises an
exception of type NoMeetingInThisSlot. This can only happen when there are multiple
clients running that attempt to cancel the same meeting in overlapping time intervals. A more
sophisticated approach would be to use the CORBA Transaction Service.

CORBA::Boolean cancel(){
 try{
 room[selected_room]->Cancel(selected_slot);
 }
 catch(const RoomBooking::Room::NoMeetingInThisSlot& no_meeting){
 cerr << "Cancel: " << no_meeting << endl;
 }
 catch(const CORBA::SystemException& system_exception){
 cerr << "Cancel: " << system_exception << endl;
 }

 //show bookings of all rooms
 return view();
}

The method select_room_slot() prompts the user to enter the name of a room that
he/she is interested in booking, viewing, or canceling an existing booking. It then validates the
user input by comparing against the list ofcontinue

Page 285

room names available. Following this, it prompts the user to enter a slot number and checks for
its validity. At the end of this method, the variables selected_room and
selected_slot contain valid values that can be further processed.

6.2.6—
book()

The booking of a meeting, managed by the method book(), involves two tasks: creation of the
appropriate meeting object and booking of the selected meeting.

We create the meeting object using the meeting factory. This is done by invoking the operation
CreateMeeting(). Its two parameters are obtained from two text fields.

The newly created meeting is then booked by calling the operation Book() on the selected room
object. It is again possible that someone else has booked the slot in the meantime. If so, we
catch an exception of type SlotAlreadyTaken.break

CORBA::Boolean book(){

 try{
 char purpose[max_buf_len];
 char participants[max_buf_len];

 cout << "Enter the purpose of the meeting:";
 cin.ignore(max_buf_len, '\n');
 cin.get(purpose, max_buf_len);

 cout << "\nEnter the participants in the meeting:";
 cin.ignore(max_buf_len, '\n');
 cin.get(participants, max_buf_len);

 RoomBooking::Meeting_var meeting =
 meeting_factory->CreateMeeting(purpose, participants);
 cout << "Meeting created" << endl;

 rooms[selected_room]->Book(selected_slot, meeting);
 cout << "Room is booked" << endl;
 }
 catch(const RoomBooking::Room::SlotAlreadyTaken& already_taken){
 cerr << "book: " << already_taken << endl;
 cerr << "Please select another slot or room" << endl;
 }
 catch(const CORBA::SystemException& system_exception){
 cerr << "book: " << system_exception << endl;
 }

 //show bookings of all rooms
 return view();
}

Page 286

6.2.7—
meeting_details()

The method meeting_details() displays the details about a meeting by invoking the
name() method on the meeting object. To obtain the purpose and the participants in a meeting,
it invokes the View() method on the selected room. Following this, the user is prompted for a
choice regarding cancellation of the current booking.break

void meeting_details(){

 try{

 cout << "\n\nMeeting Details:\n\n";

 cout << "Room name: "
 << rooms[selected_room]->name() << endl;

 cout << " selected slot: " << slot_map[selected_slot] << endl;

 //Get information about this room

 meetings = rooms[selected_room]->View();

 RoomBooking::Meeting_var meeting = meetings[selected_slot];

 if (meeting != RoomBooking::Meeting::_nil()){
 cout << "Purpose: " << meeting->purpose() << endl;
 cout << "Participants: " << meeting->participants() << endl;

 CORBA::Boolean valid_choice = 0;

 cout << "\n\nThe following operations are available:\n";
 cout << "\tCancel\n";
 cout << "\tReturn\n\n";

 while (!valid_choice){

 cout << "To Cancel, enter 'c' or 'C'\n";
 cout << "To Return to Main menu, enter 'r' or 'R'\n";

 char choice;
 cin >> choice;
 switch(choice){
 case 'c':
 case 'C':
 cancel();
 valid_choice = 1;
 break;
 case 'r':
 case 'R':
 valid_choice = 1;

Page 287

 break;
 default:
 cerr << "\n\nThe choice you entered was incorrect.\n";
 break;
 }
 }
 }
 else{
 cerr << "\nThere is no meeting scheduled in the above slot and
 room!!\n" << en
 }
 }
 catch(const CORBA::Exception& exception){
 cerr << "meeting_details: " << exception << endl;
 }
}

7—
Extensions to the Example Application

The example can be extended, in particular to include various other CORBA services. We
outline possible extensions below.

The Object Trading Service could be used as an alternative to the Naming Service for locating
objects. The server classes would register objects with the Trading Service and a client would
query the Trading Service to search for room and meeting factory objects.

The Transaction Service could be used to ensure ACID properties to booking and cancel
operations. In the current implementation we do not explicitly roll back the creation of a
meeting object when it cannot be booked into a particular slot.

The Security Service could be used to authenticate users and to authorize a user to execute
certain operations. For example, only a user who booked a meeting originally should be
allowed to cancel it.

The Event Service could be used to notify certain users that a meeting in which they are
participating is now starting.break

Page 289

Chapter 7—
Advanced Features

In this chapter we explain and give examples of how to use some advanced CORBA features.
The features, which are explained in detail here, have already been introduced in Chapters 3
and 4. They are:

• TypeCodes

• Any

• Interface Repository (IR)

• Dynamic Invocation Interface (DII)

• Dynamic Skeleton Interface (DSI)

• Tie approach

• IDL context

1—
The Extended Hello World Example

To demonstrate these advanced features we will adapt the distributed Hello World example
from Chapter 1.

1.1—
Interface Specification

The IDL for the extended example will look as follows:break

Page 290

module HelloWorld{

 interface GoodDay{
 string hello(out short hour, out short minute);
 };

} ;

In the IDL above, we again specify an interface GoodDay with an operation hello(). The
module is again called HelloWorld. However, we have changed the signature of the
operation specification. Its result is still a string, but this time the operation has parameters and
it returns the description of the server's location. The parameters are tagged as out, meaning
that their values will be supplied by the invoked object. They are both of type short and their
intended meaning is that they hold the current time at the server's location: hour holds the hour
and minute the minute.

An out parameter in an IDL operation has pass-by-result semantics. This means that a value for
this parameter will be supplied by the invoked object. The value will be available to the client
after the invocation is completed.

1.2—
A Client

The main difference between the client in this example and the simple Hello World example
introduced earlier is that we now declare two CORBA::Short variables, hour and
minute, and pass references to these variables during the invocation of the hello()
method.break

//HelloWorldClient.C
#include "HelloWorld_c.hh"

int main(int argc, char* const* argv){
 CORBA::String_var ior;
 CORBA::Short minute;
 CORBA::Short hour;
 char *location;

 //get stringified IOR from command line
 if (argc >=2)
 ior = (const char *) argv[1];
 else{
 cerr << argv[0] << ": Missing IOR, specify IOR of server" << endl;
 return 1;
 }

 cout << "IOR: " << ior << endl;

Page 291

try{
 //Initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 //get object reference from the command line
 CORBA::Object_var obj = orb->string_to_object(ior);

 //narrow it down to GoodDay
 HelloWorld::GoodDay_var goodDay =
 HelloWorld::GoodDay::_narrow(obj);

 //check if object reference is NIL
 if (goodDay == HelloWorld::GoodDay::_nil()){
 cerr << "Could not narrow object
 reference to HelloWorld::GoodDay\n";
 exit(1);
}

1.2.1—
Invoking the Operation

After we initialize the ORB and obtain a narrowed object reference, we invoke the operation.
We assign the result of the operation to a string location. After the successful return of the
invocation, the variables named hour and minute will carry the values set by the invoked
object.

 //invoke the operation
 location = goodDay->hello(hour, minute);
 //print location and time obtained
 cout << "Hello World!" << endl;
 if (minute < 10)
 cout << "The local time in " << location << " is "
 << hour << ":0" << minute << "." << endl;
 else
 cout << "The local time in " << location << " is "
 << hour << ":" << minute << "." << endl;

} //Catch CORBA system exceptions
 catch (const CORBA::Exception& e){
 cerr << e << endl;
 return(1);
 }
 return (0);
}

When we print out the results we obtain the time at the remote location from the variables
hour and minute. We compile the client as before and execute the client. The stringified
object reference must refer to an object that provides the extended Hello World interface. The
following is a typical result.break

Page 292

$ HelloWorldClient 'cat HelloWorld.ior'
IOR:012020201b00000049444c3a48656c6c6f576f726c642f476f6f644461793a31
2e3000200200000001534956640000000101012009000006672616e6b6c696e00202
020fe040000010000003d00000001504d43000000001b00000049444c3a48656c6c6
f576f726c642f476f6f644461793al2e3000201100000048656c6c6f576f726c6453
657276657200202020000000000000000059000000010100200e0000003230362e36
342e31352e3232370056113d00000001504d43000000001b00000049444c3a48656c
6c6f576f726c642f476f6f644461793a312e3000201100000048656c6c6f576f726c
6453657276657200
Hello World!
The local time in San Mateo is 22:25.

1.3—
Servant Implementation

The servant, GoodDayImpl, derives from the skeleton class POA_HelloWorld::POA
_GoodDay which is generated by the IDL compiler. The variable declarations and the
constructor are as in the class GoodDayImpl of the simple Hello World example, but the
signature of the method hello() has changed this time. There are now two references to
short variables as parameters to the hello() method. We create an object localtime of
type Localtime which holds the time information of the system. The convenience class
Localtime is defined in Localtime.h, supplied with the examples. We retrieve the hour
and minute by invoking the methods hour() and minute() on the localtime object. We
assign the values to the corresponding short variables passed in by reference. We also return
the location as in the earlier example.break

//HelloWorldServer.C

#include "HelloWorld_s.hh"
#include "Localtime.h"

class GoodDayImpl : public POA_HelloWorld::POA_GoodDay{

 private:
 CORBA::String_var _location;

 public:
 GoodDayImpl(const char *location,
 const char *object_name = NULL) :
 _location(location){
 PortableServer_ServantBase::_object_name(object_name)
 }

 char *hello(short &hour,
 short &minute){

 //use the Localtime class to get
 //location and time of the server
 Localtime localtime;

Page 293

 hour = localtime.hour();
 minute = localtime.minute();

 return CORBA::strdup(_location);
}

};

The server implementation uses the servant class GoodDayImpl. Once the ORB is
initialized, we create an instance of the servant class GoodDayImpl. We then obtain a
reference to the root POA by invoking resolve_initial_ references on the ORB and
narrow it to a POA reference. The argument Inprise_TPool_Persistent makes the operation
return a POA with pre-set threading and lifespan policy.

int main(int argc, char* const* argv)
{
 CORBA::String_var location;

 location = (argc < 2) ?
 (const char *) "some place" : (const char *) argv[1];

 try{
 //Initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 //Create a new GoodDay object.
 GoodDayImpl goodDayImpl("HelloWorldServer", location);

 //Get the Root POA object reference with pre-set policies
 CORBA::Object_var obj =
 orb->resolve_initial_references(
 "Inprise_Tpool_Persistent");

 //Narrow the object reference to a POA reference
 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(obj.in());

We then invoke the activate_object() method on the POA. This causes the
goodDayImpl object to be registered with the POA and activates it. To activate the POA,
we invoke the activate() method on the POAManager.break

cout << "Activating the GoodDay object ..." << endl;
PortableServer::ObjectId_var oid =
 root_poa->activate_object(&goodDayImpl);

cout << "Activating the POA to wait for requests..." << endl;
root_poa->the_POAManager()->activate();

Page 294

We then create an object reference corresponding to the activated object by invoking
id_to_reference() on the POA. This creates an object reference from the activated
object which we then stringify by invoking object_to_string() and then export to
clients.

cout << "Create Object Reference..." << endl;
CORBA::Object_var goodDayRef =
 root_poa->id_to_reference(oid);

//Stringify the object
cout << orb->object_to_string(goodDayRef) << endl;

We finally enter the ORBs event loop.

//Enter ORB Event loop
 orb->run();

 } //catch CORBA system exceptions
 catch(const CORBA::Exception& e){
 cerr << e << endl;
 return(1);
 }

 return(0);
}

2—
The Any Type and TypeCodes

In this section we demonstrate the use of Anys as parameters of IDL-defined operations. We
use a variant of the distributed Hello World example introduced previously.

2.1—
Interface Specification

In the IDL following, although we have changed the signature of the interface specification, we
retain the semantics of the hello() operation. Both the result of the operation and the only
parameter are of type any. As before, the operation will return the location of the object
implementation as a string, this time contained in an Any. This is an example of the use of a
predefined datatype within an Any.

The any_time parameter is an example of passing a user-defined datatype in an Any. The
parameter will contain a structure with two fields, both short integers, representing the minute
and hour of the local time at the objectcontinue

Page 295

implementation. Although this structure is not directly used in the specification of the operation,
its definition needs to be available to the client and the server. Hence we define the Time
structure within the module.

module HelloWorld{

 struct Time{
 short hour;
 short minute;
 };

 interface GoodDay{
 any hello(out any any_time);
 };
}

2.2—
Object Implementation

The object implementation class GoodDayImpl derives from the skeleton base class
POA_HelloWorld::POA_GoodDay which is generated by the IDL compiler. We also
keep the same private variable _location and the constructor.

//HelloWorldServer.C

#include "HelloWorld_s.hh"
#include "Localtime.h"

class GoodDayImpl: public POA_HelloWorld::POA_GoodDay{

private:
 CORBA::String_var _location;

public:
 //constructor
 GoodDayImpl(const char *object_name,
 const char *location)
 : _location(location){
 POA_HelloWorld::POA_GoodDay::_object_name(object_name);
}

The signature of the method hello() corresponds to the IDL mapping for Anys, as explained
in Chapter 3. We have an Any for the result and declare a variable of type
CORBA::Any_ptr for the out parameter.

We make use of the Localtime class to obtain the local time at the server's location, as in
the original example. In the next step we create an object of the class HelloWorld::Time,
which is the C++ representation of the IDL type definition struct Time. There is no default
constructor generated forcontinue

Page 296

this class, so we obtain the hour and minute from invoking _localtime.hour() and
_localtime.minute() and assign the hour and minute fields of struct_time.

We declare a CORBA::Any variable any_time, to return the time over to the client. Now
we have to insert the value of the time variable into the Any. The CORBA::Any class
provides an entire range of methods overloading the insertion operator <<= and the extraction
operator >>=. However, these methods are available only for primitive datatypes and for
CORBA-specific datatypes. For user-defined datatypes, such as HelloWorld::Time in our
example, the IDL compiler needs to be instructed specifically (with VisiBroker for C++ 3.x
IDL compiler idl2cpp, using the -type_code_info command line option) to generate code
that we can use for inserting a variable of type HelloWorld::Time to a CORBA::Any
and for extracting a variable of type HelloWorld::Time from a CORBA::Any. Using the
insertion operator <<= that was generated by the IDL compiler, now the Any object
any_time contains the value of struct_time.

//method

CORBA::Any_ptr hello(CORBA::Any_ptr& any_time){
 //use the Localtime class to get
 //location and time of the server
 Localtime localtime;

 //create time-structure assign hour and minute to it
 HelloWorld::Time struct_time;

 struct_time.hour = localtime.hour();
 struct_time.minute = localtime.minute();

 //create an any and shuffle structure into it
 any_time = new CORBA::Any();
 *any_time <<= struct_time;

 //create an any and shuffle location into it
 CORBA::Any_ptr any_location = new CORBA::Any();
 *any_location <<= CORBA::strdup(_location);
 return any_location;
 }
};

The operation result is stored in the variable any_location, an Any holding a string value.
Since the class CORBA::Any provides us with an insertion operator <<= for strings, we
insert the value of _location by calling the method operator <<= on the Any object. There
are similar methods, listed in Chapter 3, defined in the class CORBA::Any for the other
predefined datatypes.

The last task of the implementation is to return the Any_ptr any_location. The server
class implementation is the same as above and in Chapter 1.break

Page 297

2.3—
Client Implementation

The client implementation follows the same structure that we used before.

2.3.1—
Initialization and Invocation

We declare two variables any_location and any_time of type CORBA::Any for the
method's result and its parameter, respectively.

//HelloWorldClient.C

#include "HelloWorld_c.hh"

int main(int argc, char * const *argv){

 CORBA::String_var ior;

 //get stringified IOR from command line
 if (argc >= 2)
 ior = (const char *)argv[1];

 else{
 cerr << argv[0] << ": Missing IOR, specify IOR of server" << endl;
 return 1;
 }
 try{
 //initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 //get object reference
 CORBA::Object_var obj = orb->string_to_object(ior);

 //and narrow it to GoodDay
 HelloWorld::GoodDay_var goodDay = HelloWorld::GoodDay::_narrow(obj);

 //check if object reference is NIL
 if (goodDay == HelloWorld::GoodDay::_nil()){
 cerr << "Could not narrow object reference to HelloWorld::GoodDay\n";
 exit(1);
 }

 //invoke the operation

 CORBA::Any_var any_location, any_time;
 any_location = goodDay->hello(any_time.out());

We initialize the ORB, convert the command line argument into an object reference, and
narrow it to the right type. Then we invoke the method hello() with the argument
any_time.out() and assign the result to any_location.break

Page 298

Note that we pass any_time.out() in accordance with the IDL/C++ mapping for out
parameters. Note that the out() is specified by the IDL/C++ mapping.

2.3.2—
Obtaining TypeCodes

TypeCodes are a runtime representation of IDL types. They are explained in detail in Chapter
4. In the following example we obtain type information about the values contained in the Anys.
First we declare a variable tc of type CORBA::TypeCode_var. The type
CORBA::TypeCode_var is a variant of CORBA::TypeCode and provides automatic
memory management. It is useful to make use of the _var classes whenever possible to avoid
memory leaks in applications. Then we obtain the TypeCode of the value held in the container
variable any_time. The Any object referred to by any_time has a method type(),
which returns the TypeCode of the stored value. In this example the value is a C++ object
representing an IDL struct.

A TypeCode represents an attributed type tree. It provides various methods to obtain the
values of the attributes. For example, we query the Interface Repository identifier of the type
by calling the method id() on the TypeCode object. Similarly, we get the name of the type
by invoking the method name().

Since we are expecting the Any to contain an IDL structure, we need to traverse the type tree to
obtain type information about the fields of the struct. The method member_count() returns

the number of fields and member_name() returns the name of the indexed field.

Because type definitions differ in their structure, operations on TypeCode objects are only
valid for particular kinds of TypeCodes. If an inappropriate method is invoked, the exception
CORBA::TypeCode::BadKind is raised. The method member_name() raises the
exception CORBA::TypeCode::Bounds when the index is out of bounds.break

//declare a type code object
CORBA::TypeCode_var tc;

//get type of any_time and print type information
tc = any_time->type();
try{
 cout << "IfRepId of any_time: " << tc->id() << endl;
 cout << "Type Code of any_time: " << tc->name() << endl;
 for(int i = 0; i < tc->member_count(); i++)
 cout << "\tname: " << tc->member_name(i) << endl;
}
catch(const CORBA::TypeCode::BadKind ex_bk){
 cerr << "any_time: " << ex_bk << endl;
}
catch(const CORBA::TypeCode::Bounds ex_b){
 cerr << "any_time: " << ex_b << endl;
}

Page 299

In the following code, we check if the value of any_location is of the expected kind,
CORBA::tk_string, and if so we query for its length. Note that the length refers to the type
definition and not the current value. The method length() returns the maximum size of a
bounded string, sequence, or array. If the type is unbounded it returns zero. We must again
catch the exception CORBA::TypeCode::BadKind.

//get length of any_location
tc = any_location->type();
try{
 if (tc->kind() == CORBA::tk_string)
 cout << "length of any_location: "<< tc->length() << endl << endl;
 else
 cout << "any_location does NOT contain a string." << endl << endl;
}
catch(CORBA::TypeCode::BadKind ex_bt){
 cerr << "any_location: " << ex_bt << endl;
}

When executing the client, the preceding code will produce the following result:

IfRepId of any_time: IDL:HelloWorld/Time:1.0
Type Code of any_time: Time
 name: hour
 name: minute
length of any_location: 0

2.3.3—
Unpacking the Results

Now we proceed to the normal behavior of the client; that is, we obtain the results and print
them. We can print the Anys directly by using their overloaded << operator method or we
could obtain the contained value and print them in a customized manner. We show both
possibilities.

First we print the Anys any_location and any_time in the default format. Then we
obtain the string from any_location by invoking the overloaded method for the extraction
operator>>=. To get the time object from the Any any_time we call the extract method
provided by the generated code. Once we have the values in the usual types, we print the
message in the same way as in the original example.break

 //get String from any_location
 char *location = (char *)NULL;
 *any_location >>= location;

Page 300

 //get Struct from any_time
 HelloWorld::Time time;
 *any_time >>= time;

 //print results to stdout
 cout << "Print Anys: " << endl;
 cout << "any_location: " << endl << any_location << endl << endl;
 cout << "any_time: " << endl << any_time << endl << endl;
 //print results to stdout

 cout << "Hello World!" << endl;
 if (time.minute < 10)
 cout << "The local time in " << location << " is " << time.hour
 << ":0" << time.minute << "." << endl;

 else
 cout << "The local time in " << location << " is " << time.hour
 << ":" << time.minute << "." << endl;
}
catch(const CORBA::Exception& ex){
 cerr << ex << endl;
 return 1;
}

When the client is invoked, it prints the results in the following form:break

Print Anys:
any_location:
TypeCode:
CORBA::TCKind:tk_string
Parameter Number: 0
TypeCode:
CORBA::TCKind:tk_ulong
Value:
0
Value:
SanMateo

any_time:
TypeCode:
Repository id: IDL:HelloWorld/Time:1.0
CORBA::TCKind:tk_struct
Parameter Number: 0
TypeCode:
CORBA::TCKind:tk_string
Parameter Number: 0
TypeCode:
CORBA::TCKind:tk_ulong
Value:
0
Value:
Time
Parameter Number: 1

Page 301

TypeCode:
CORBA::TCKind:tk_string
Parameter Number: 0
TypeCode:
CORBA::TCKind:tk_ulong
Value:
0
Value:
hour
Parameter Number: 2
TypeCode:
CORBA::TCKind:tk_TypeCode
Value:
2
Parameter Number: 3
TypeCode:
CORBA::TCKind:tk_string
Parameter Number: 0
TypeCode:
CORBA::TCKind:tk_ulong
Value:
0
Value:
minute
Parameter Number: 4
TypeCode:
CORBA::TCKind:tk_TypeCode
Value:
2
Value:
22 25

Hello World!
The local time in San Mateo is 22:25.

3—
Interface Repository and Dynamic Invocation Interface

In this section we present a client that is capable of invoking operations on an object whose
type was unknown to the client at compile time. So far, clients have used stub code generated
by an IDL compiler to create a proxy object on which they have invoked methods
corresponding to each operation.

The structure of the example is

• Initialize the ORB (section 3.1).

• Browse the Interface Repository (section 3.2).

• Unparse and print the type information obtained from the Interface Repository (section
3.3).break

Page 302

• Create a Request object (sections 3.4–3.6).

• Invoke an operation using the Dynamic Invocation Interface (section 3.7).

• Obtain and print results (section 3.8).

To make invocations on objects without having access to IDL-generated code we have to

• Obtain information about the interface type of the object

• Invoke a method without an IDL-generated client-side proxy class (stub)

The first task is carried out using the Interface Repository, which contains type information
about interfaces. Typically the Interface Repository is populated by the IDL compiler. Our
client will query the Interface Repository using a standard method on the object reference,
defined in CORBA::Object. This returns a reference to an Interface Repository object that
represents the target object's interface type. The object is part of a type tree which the client
can traverse.

The second task is carried out using the Dynamic Invocation Interface (DII). It provides a
Request object which can be used for the invocation of methods on arbitrary objects. The DII's
interface Request is defined in the CORBA module using pseudo-IDL. It is the programmer's
responsibility to initialize a Request pseudo-object with all the necessary information (a
target object reference, an operation name, argument types and values) in order to make an
invocation.

Figure 7.1 illustrates the process by which interface information is obtained and used to invoke
the object implementation. The IDL compiler creates the skeleton code for the server side as
usual and populates the Interface Repository with the types specified in the IDL file. The client
can then query the Interface Repository about the type of any object reference it obtains.

3.1—
Initializing the ORB

The client obtains an object reference from, for example, a stringified object reference or from
the Naming or Trading Service. For simplicity, we use stringified object references in our

example. Note that we cannot narrow the object reference to its particular interface type
because we do not know its type and do not have access to the _narrow() method, which is
part of the code generated by the IDL compiler.break

//DiiClient.C

#include "corba.h"

Page 303

Figure 7.1
DII client.

int main(int argc, char * const *argv){

 CORBA::String_var ior;

 //get stringified IOR from command line
 if (argc >= 2)
 ior = (const char *)argv[1];
 else{
 cerr << argv[0] << ": Missing IOR, specify IOR of the server" << endl;
 return 1;
 }

 cout << "IOR: " << ior << endl;

 try{

 //initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 //get object reference
 CORBA::Object_var obj = orb->string_to_object(ior);

We call the method _get_interface() on our new object reference. Thisis a standard
method, provided by the class CORBA::Object, which returns a pointer to an object of type

InterfaceDef. Note that we make use of the con-soft

Page 304

venience class InterfaceDef_var to store the return value. This class takes care of
freeing allocated memory. The InterfaceDef interface is defined in the Interface
Repository specification. The interfaces of the Interface Repository are explained in Chapter 2.

//get interface definition from Interface Repository
 CORBA::InterfaceDef_var if_def = obj->_get_interface();

3.2—
Browsing the Interface Repository

The InterfaceDef interface has an operation, describe_interface(), which
returns a pointer to a structure FullInterfaceDescription. It contains a number of
nested structures which represent the operations and attributes contained in the interface. One
of the nested structures, OperationDescription, describing an operation, also contains
nested structures describing the operation's parameters.

The structure FullInterfaceDescription represents a flattening of the objects in the
Interface Repository to provide all the necessary type information in a single data structure
without the need to make further calls to the Interface Repository objects to query their types.
Alternatively, traversal of the Interface Repository can be done by obtaining object references
to OperationDef objects and AttributeDef objects that can be queried to discover
their component definitions.

//get full interface description
 CORBA_InterfaceDef::FullInterfaceDescription_var full_if_desc =
 if_def->describe_interface();

In our client we store the interface description in a variable full_if_desc. The type is
defined in IDL as the following struct. We only show the type definitions we use in the
example.

typedef string Identifier;
typedef sequence<OperationDescription>OpDescriptionSeq;

struct FullInterfaceDescription{
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 RepositoryIdSeq base_interfaces;
 TypeCode type;
}

We use the members name and operations, which is a sequence of
OperationDescription structs:continue

Page 305

typedef sequence < ParameterDescription > ParDescriptionSeq;
typedef sequence < ExceptionDescription > ExcDescriptionSeq;

struct OperationDescription{
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode result;
 OperationMode mode;
 ContextIdSeq contexts;
 ParDescriptionSeq parameters;
 ExcDescriptionSeq exceptions;
};

In turn, parameters and exceptions that are part of an operation are described by structures.

3.3—
A Simple Unparser

The following code traverses the nested structures and prints all operations of the interface in a
simplified version in OMG IDL syntax. We go through all the operations that are defined in the
interface, obtaining the result type in the form of a CORBA::TypeCode, the operation name
which is a string, and the parameters. We invoke the method kind() on the result to obtain
the value of the typecode. Note that we use a helper function print_tk2idl() that takes as
input a CORBA::TCKind and prints the corresponding IDL type to cout.

int no_of_parameters = 0;

//print various information
cout << "Querying the Interface Repository" << endl;
cout << "interface " << full_if_desc->name << "{" << endl;

for(int i = 0; i < full_if_desc->operations.length(); i++){
 no_of_parameters =
 full_if_desc>operations[i].parameters.length();

 cout << " ";

 //print the type code of the operation's result
 print_tk2idl (full_if_desc->operations[i].result->kind());

 //print the name of the operation
 cout << " " << full_if_desc->operations[i].name << " (" << endl;

The parameters are described by a sequence of structures of type ParamDescription:
enum ParameterMode{PARAM_IN, PARAM_OUT, PARAM_INOUT};continue

Page 306

struct ParamDescription{
 Identifier name;
 TypeCode type;
 IDLType type_def;
 ParameterMode mode;

};

The parameter's type member is of type TypeCode and its name is an Identifier, which
is an alias of string. The parameter mode is an integer, and its values are defined in the
enumerated type CORBA::ParameterMode. We have to convert the mode value into
strings.break

 //define and initialize text representations
 //for parameter modes
 CORBA::String_var mode, in, inout, out;
 in = (const char *)"in";
 inout = (const char *)"inout";
 out = (const char *)"out";

 char last_char = ',';

 //print parameters of the operations
 for(int j = 0; j < no_of_parameters; j++){

 //set the right text for the parameter mode
 switch (full_if_desc->operations[i].parameters[j].mode){
 case CORBA::PARAM_IN:
 mode = in; break;
 case CORBA::PARAM_INOUT:
 mode = inout; break;
 case CORBA::PARAM_OUT:
 mode = out; break;
 default:
 mode = (const char *)"unknown mode";
 }

 //deal with separating commas
 if(j == no_of_parameters - 1)
 last_char = ' ';
 //print mode, type and name of the parameter
 cout << " " << mode << " ";
 print_tk2idl(
 full_if_desc->operations[i].parameters[j].type->kind()
);
 cout << " " <<
 full_if_desc->operations[i].parameters[j].name;
 cout << last_char << endl;
 }
 cout << ");" << endl;
}
cout << "}';" << endl

Page 307

3.4—
Initializing Requests

Now that we have discovered the type of the object, we want to invoke an operation on it. We
will need the DII to do this. This requires the creation of a Request object, as illustrated in
Figure 7.2. A Request has three components:

• string—carries the name of the operation to be invoked

• NamedValue—carries the type and value of the operation's result

• NVList—carries the mode, type, and value of the operation's parameters

3.5—
Creating Supporting Objects

We now create and initialize the NamedValue for the result and the NVList containing the
arguments to the operation. A NamedValue is a datatype defined in pseudo-IDL in the module
CORBA. It is a triple of a name of type CORBA::String, a typed value of type Any, and a
mode of type int. Appropriate constants are defined in the enum
CORBA::ParameterMode. Ancontinue

Figure 7.2
Request object.

Page 308

NVList is an object containing a list of NamedValue objects. See Chapter 4 for details.

To initialize an operation result we only need to set the type we expect by initializing the value
with a dummy value of the right type. After the invocation, the value will hold the result of the
operation.

We create an NVList result_list of length one and insert a single element later using the
method add_value(). This method has three parameters, one for each of the components of
a NamedValue.

The tricky part is to create an Any which carries the type and the value of an argument. For out
parameters we only need to put the type information into the Any. The class Any provides
overloaded insertion and extraction operators for all primitive datatypes which take care of
filling in the appropriate typecode information (see Chapter 3). So we just create a new Any
object.

We need to be able to only set the types of Any objects but not their values. This is needed for
parameters which are tagged as in or inout. The IDL/C++ language mapping provides us with
overloaded insertion and extraction operators to solve this problem. If you look at the code
generated for IDL-defined types you will find examples of the use of output streams. While
these streams are standardized in the IDL/Java mapping and are used as a portability layer, this
is not the case in C++.

The following code shows the implementation of the overloaded insertion operator <<=
defined in the class HelloWorld::Time which has been generated by the IDL compiler. It
is the generated class for the struct Time that we defined for the previous example.

inline friend void operator<<=(CORBA::Any& _a, const Time& _val){
 CORBA::MarshalOutBuffer _mbuf;
 _mbuf << _val;
 _a.replace(_tc_Time_get(), _mbuf);
}
inline friend CORBA::Boolean operator>>=(const CORBA::Any& _a, Time&
_val){
 CORBA::TypeCode_var_tc(_a.type());
 if (!_tc->equal(_tc_Time_get())) return 0;
 CORBA::MarshalInBuffer _mbuf((char *)_a.value(),
 (CORBA::ULong)_a.len());
 _mbuf >> _val;
 return 1;
}

The overloaded method operator>>=() extracts val which is of type Time& from an Any.
The previous methods use typecodes to ensure the type safety of the insertion.break

Page 309

3.6—
Using the Supporting Objects

We now return to our DII client class. For simplicity we have chosen to invoke the first
operation of the interface specification, full_if_desc.operations [o]. This is the
interface specification for the object whose object reference we obtained from a string when
initializing the client.

We create two NVLists, one for the operation result, result_list, and the other for the
operation's parameter list, arg_list. For the operation result, we only have to set the type
which we expect the operation to return. We get an Any object of the right type for the result by
creating a CORBA::Any variable with the right TypeCode and an initial value of zero. The
list is populated using the NVList method add_value().

//using the DII to make an invocation

cout << "Make a DII call" << endl;

//create and initialize result
CORBA::NVList_ptr result_list = new CORBA::NVList();

result_list->add_value("",
 CORBA::Any(
 full_if_desc->operations[0].result,
 0
),
 0);

//create and initialize arg_list
CORBA::NVList_ptr arg_list = new CORBA::NVList();
no_of_parameters = full_if_desc->operations[0].parameters.length();
for(i = 0; i < no_of_parameters; i++){

 //add empty value
 arg_list->add_value(
 full_if_desc->operations[0].parameters[i].name,
 CORBA::Any(
 full_if_desc->operations[0].parameters[i].type,
 0),
 full_if_desc->operations[0].parameters[i].mode + 1);
}

cout << "operation: " << full_if_desc->operations[0].name << endl;

For the argument list we use a for loop over the parameter specifications from the interface
description and add corresponding values for each argument with the add_value() method.
The values are Any objects of the right type, obtained by invoking the constructor for
CORBA::Any that takes as a parameter a TypeCode and an initial value. The argument list
must con-soft

Page 310

tain values for in and inout arguments. Note that this method only deals properly with out
parameters.

3.7—
Creating and Invoking a Request Object

Once we have initialized the result and the arguments, we can create and initialize a Request
object by calling _create_request() on the object reference on which we want to
invoke the operation. The method _create_request() has the following parameters:

Context—which we do not use and hence initialize to CORBA::Context
::_nil().

Operation name—which we obtain from the interface description.

Arguments—which we have created in NVList arg_list.

Result—which is the first element of the NVList result_list.

Request object—which is the request object being constructed by this method. We use
the out() method since the request object is an out parameter to this method.

Flags—which we do not use and hence initialize to zero.

//create request
CORBA::Request_var request;
obj->_create_request(
 CORBA::Context::_nil(), //context - not used
 full_if_desc->operations[0].name, //operation name
 arg_list, //NVList with arguments
 result_list->item(0), //NamedValue for result
 request.out(), //created request
 //object
 0 //Flags
);
//invoke request
request->invoke();

Now we can call the method invoke() on the Request object. This results in an invocation
on the object reference from which we obtained the Request. Once the call is completed the
Request object will place the result of the operation and the values for the inout and out
parameters into the NVLists provided to its constructor.

3.8—
Getting Results

Next we print the value of the result and the values of the out parameters of the operation. We
use the overloaded method for the extraction operatorcontinue

Page 311

<<= on the Any objects, which allows us to print the value of Any objects directly using cout,
as shown below. Note that if the Any contains another Any, indicated by its TypeCode kind
CORBA::tk_any, then we have to extract the contained Any as shown in the code snippet
below.break

//get result
CORBA::Any_var res_any_var = request->result()->value();
cout << "result: " << endl;

//Check typecode of result
CORBA::TypeCode_var tc = res_any_var->type();

//If typecode kind is CORBA::tk_any, need to extract
//the contained Any
if (tc->kind() != CORBA::tk_any){
 cout << *(res_any_var) << endl;
}
else{
 CORBA::Any res_any;
 * (res_any_var) >>= res_any;
 cout << res_any << endl << endl;
}

//get out parameters
CORBA::NVList_ptr nv_list = request->arguments();
for(i = 0; i < no_of_parameters; i++){
 cout << nv_list->item(i)->name() << ":" << endl;
 CORBA::Any_var nv_any_var = nv_list->item(i)->value();

 //Check the typecode of the Named Value
 CORBA::TypeCode_var tc = nv_any_var->type();

 //If typecode kind is CORBA::tk_any, need to extract the
 //contained Any
 if (tc->kind() != CORBA::tk_any
 cout << (*nv_any_var) << endl;
 else{
 CORBA::Any nv_any;
 (*nv_any_var) >>= nv_any;
 cout << nv_any << endl;
 }
 }
}
//catch exceptions
catch(const CORBA::TypeCode::Bounds& bex){
 cerr << bex << endl;
 return 1;
}
catch(const CORBA::SystemException& ex){
 cerr << ex << endl;
 return 1;

Page 312

}
catch(const CORBA::Exception& ex){
 cerr << ex << endl;
 return 1;
}

3.9—
Executing the Client

When executing the DII client we can invoke operations on arbitrary objects. In our example
we invoke the first operation defined in the interface. The following output is produced when
the object reference used refers to an object supporting the extended Hello World interface.

.../dii> DiiClient IOR:012020201b00000049444c3a48656c6c6...

Querying the Interface Repository
interface GoodDay{
 string hello (
 out short hour,
 out short minute
);
};
Make a DII call
operation: hello

result: TypeCode:
CORBA::TCKind:tk_string
Parameter Number: 0
TypeCode:
CORBA::TCKind:tk_ulong
Value:
0
Value:
SanMateo,California,USA

hour:
TypeCode:
CORBA::TCKind:tk_ushort
Value:
22
minute:
TypeCode:
CORBA::TCKind:tk_ushort
Value:
33

As another example, we use the DII client program to invoke the AnyHelloWorld object from
the previous section. Again the client queries the Interface Repository and prints the interface
specification in OMG IDLcontinue

Page 313

syntax. As in the previous section, the interface GoodDay again provides an operation
hello(). However, this time the result and the only parameter are both of type Any. The
client creates the corresponding Request object and invokes it. In this example, however,
notice that the return type is an Any and the out parameter is also an Any. In this case, we will
encounter CORBA::tk_any in the typecode kind of the return value and the out values, thus
causing an additional extraction of the contained Any.break

.../dii > DiiClient IOR:012020201b00000049444c3a48656c6c6f57...
Querying the Interface Repository
interface GoodDay{
 any hello (
 out any any_time
);
};
Make a DII call
operation: hello

result:
TypeCode:
CORBA::TCKind:tk_string
Parameter Number: 0
TypeCode:
CORBA::TCKind:tk_ulong
Value:
0
Value:
SanMateo,California,USA

any_time:
TypeCode:
Repository id: IDL:HelloWorld/Time:1.0
CORBA::TCKind:tk_struct
Parameter Number: 0
TypeCode:
CORBA::TCKind:tk_string
Parameter Number: 0
TypeCode:
CORBA::TCKind:tk_ulong
Value:
0
Value:
Time
Parameter Number: 1
TypeCode:
CORBA::TCKind:tk_string
Parameter Number: 0
TypeCode:
CORBA::TCKind:tk_ulong

Page 314

Value:
0
Value:
hour
Parameter Number: 2
TypeCode:
CORBA::TCKind:tk_TypeCode
Value:
2
Parameter Number: 3
TypeCode:
CORBA::TCKind:tk_string
Parameter Number: 0
TypeCode:
CORBA::TCKind:tk_ulong
Value:
0
Value:
minute
Parameter Number: 4
TypeCode:
CORBA::TCKind:tk_TypeCode
Value:
2
Value:
22 28

4—
Dynamic Skeleton Interface

Similar to the DII on the client side, the Dynamic Skeleton Interface (DSI) provides an
interface on the server side which allows the invocation of methods on objects without
compiler-generated skeletons. We introduced the CORBA specification of the DSI in Chapter 2

and explained its mapping to C++ in Chapter 4. In this section we demonstrate how to program
with the DSI. Once again we use a modified Hello World example to illustrate it.

The implementation of the server is the same as usual, only we provide a different
implementation of the GoodDay interface. The interface is implemented by a C++ class called
GoodDayImpl, which represents the servant in POA terminology.break

//HelloWorldServer.C

#include "corba.h"
#include "Localtime.h"

class GoodDayImpl: public PortableServer_DynamicImplementation{

Page 315

The implementation class extends the class
PortableServer_DynamicImplementation. As with the static implementation class
we declare a private field _location. The constructor of the GoodDayImpl class
implicitly calls the constructor of the base class.

We describe the interface type in the form of an Interface Repository identifier. These
identifiers are strings with the following syntax (in EBNF):

''IDL:" {module_name "/"} interface_name ":" major "." minor

The major/minor pair are currently always 1 and 0, as the use of versioning in the Interface
Repository is not well defined.

Repository identifiers can be easily created. In our example we just hard-code them into the
class. More flexible and sophisticated solutions could look them up from the Interface
Repository or receive them from a third party.

private:
 CORBA::String_var _location;

public:

 //constructor
 GoodDayImpl(const char *location,
 const char *object_name) :
 _location(location),
 PortableServer_ServantBase::_object_name(object_name);
}

The class PortableServer_DynamicImplementation defines the abstract methods
invoke() and _primary_interface(). The invoke() method is called whenever
an invocation is made on the dynamic implementation object. The method has one parameter
which is of class CORBA::ServerRequest, which is very similar to the corresponding
class Request in the DII in structure, but different in signature. The class
CORBA::ServerRequest is defined in C++ asbreak

class CORBA::ServerRequest{
 ...
 public:

 const char *op_name() const{... }
 CORBA::Context_ptr ctx(){... }
 void params(CORBA::NVList_ptr);
 void result(CORBA::Any_ptr);
 void exception(CORBA::Any_ptr exception);
 const char *operation() const{... }
 void arguments(CORBA::NVList_ptr param){ ... }
 void set_result(const CORBA::Any& a){ ... }
 void set_exception(const CORBA::Any& a){... }
 ...
}

Page 316

Within the implementation of the method invoke() we need to analyze the server request
object to determine which operation has been invoked. The DSI is typically used to
dynamically delegate incoming requests for operations that were not defined at the time the
server was written. Of course, the server must be able to interpret the semantics of the request,
or forward the request somewhere where it is understood. Examples of this sort of behavior
can be found in generic wrappers whose clients define IDL in a particular pattern that is
understood by the server, which identifies the corresponding legacy functionality to perform the
required task, and in bridges that simply pass on the request uninterpreted. The recently
adopted CORBA-DCE interworking specification explains the use of the DSI in a dynamic
bridge.

In our example we provide one operation as a demonstration of dealing with the
ServerRequest. This is implemented directly in the invoke() method. If the operation name
of an incoming request is not "hello" we throw the CORBA system exception
CORBA::BAD_OPERATION.

//methods
void invoke(CORBA::ServerRequest_ptr request){

 cout << "DSI: invoke() called" << endl;
 cout << "operation: " << request->op_name() << endl;
 cout << "if def: " << this->_get_interface() << endl;

 //check operation name
 if (strcmp(request->op_name(), "hello") != 0){
 throw CORBA::BAD_OPERATION();
}

The _primary_interface() method should return the Repository ID of the object being
implemented. This is required to provide the necessary type information to the dynamic
skeleton. In the static case, this information would be contained in the skeleton class generated
from the IDL. Following is the implementation of the _primary_interface() method:

CORBA::RepositoryId _primary_interface(
 const PortableServer::ObjectId& oid,
 PortableServer::POA_ptr poa){
 return CORBA::string_dup("IDL:HelloWorld/GoodDay:l.0");

Otherwise we proceed with the implementation of the hello() operation by making use of
the Localtime class to get the current time. To return the result and the out parameters we

have to wrap the values in Any objects and put them into the ServerRequest object. This needs
to be done earlier when we are expecting some arguments to our operation, as the
ServerRequest requires us to pass an NVList with all the parameter names and types initialized
into which it places the values that came from the client. In ourcontinue

Page 317

case, we are only passing out parameters, so we can create the NVList after the processing is
done.

We create the Any objects in the usual way and insert our values using the appropriate
overloaded methods for the insertion operator <<= on the Any object. For user-defined
datatypes we would use the overloaded method for the insertion operator <<= generated by the
IDL compiler, as described in the previous section.

//get local time of the server
Localtime localtime;
CORBA::Short hour, minute;

hour = localtime.hour();
minute = localtime.minute();

//create anys for hour, minute and location
CORBA::Any any_hour;
CORBA::Any any_minute;

any_hour <<= hour;
any_minute <<= minute;

We now create a NameValue list for the arguments to which we add two elements: the two Any
objects we have created for the out parameters. Then we set the parameters and the result of the
ServerRequest object.

 CORBA::NVList_ptr parameters = new CORBA::NVList();
 parameters->add_value("hour", any_hour, CORBA::ARG_OUT);
 parameters->add_value("minute", any_minute, CORBA::ARG_OUT);

 request->params(parameters);

 //create an any and shuffle location into it
 CORBA::Any_ptr any_location = new CORBA::Any();
 *any_location <<= CORBA::strdup(_location);
 request->result(any_location);
 }
 };

When a client invokes methods on an object implemented with the DSI, it does not notice any
difference to invoking an object implemented with an IDL-generated skeleton.

5—
Tie Mechanism

So far we have constructed statically typed object implementations by inheritance of skeleton
classes generated by the IDL compiler. These skeletonscontinue

Page 318

implement the marshaling and incoming request delegation of the CORBA object. They are then
extended to provide methods that support the operations in the IDL interface. The inheritance
approach forces an implementation to inherit from a skeleton class. There are occasions when
there are existing classes which cannot be modified to inherit from the skeleton class.

A solution to the problem is to use delegation instead of inheritance. This is achieved by
generating a pseudo-implementation or Tie class which inherits the skeleton. However, rather
than implementing the operations, this pseudo-implementation class calls methods on another
object that actually implements the operations' semantics. The delegation approach is also
known as the Tie mechanism.

We use the Hello World example as introduced in Chapter 1 to demonstrate the Tie approach.
We have to modify both the server class and the object implementation class, and introduce the
pseudo-implementation class. Let's start with the implementation class. The only difference
from the inheritance approach is in the declaration of class GoodDayImpl.

//HelloWorldServer.C

#include "HelloWorld_s.hh"
#include "Localtime.h"

class GoodDayImpl{

While the implementation class extends the skeleton class in the inheritance approach, in the
Tie approach it does not.

The class GoodDayImpl implements the methods corresponding to the IDL. The Tie class
serves as a wrapper around this real implementation class and delegates incoming requests to
it.

class GoodDayImpl{

private:
 CORBA::String_var _location;

public:

 //constructor
 GoodDayImpl(const char *location) : _location(location){}
 //method
 CORBA::Any_ptr hello(CORBA::Any_ptr& any_time){

In the server implementation, we initialize the ORB. Then we create an instance of the
GoodDayImpl class, called goodDayImpl, and supply it as a parameter to the constructor
of the Tie object goodDayPseudoImpl. As usual,continue

Page 319

we obtain a reference to the root POA, register the servant with the root POA, and activate the
object. Following this, we activate the POA, have the POA manufacture the object reference,

write out the object reference to be exported to clients, and enter the ORB's event loop.break

int main(int argc, char * const *argv){

 CORBA::String_var location;

 location = (argc < 2) ?
 (const char *) "some place" : (const char *) argv[1];

 try{
 //initialize the ORB
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

 //create a GoodDay object
 GoodDayImpl goodDayImpl(location);

 //create a Tie Object
 HelloWorldPOA_tie_GoodDay<GoodDayImpl>
 goodDayPseudoImpl(goodDayImpl);

 //Get the Root POA object reference
 CORBA::Object_var obj =
 orb->resolve_initial_references("Inprise_TPool_Persistent");

 //Narrow the object reference to a POA reference
 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(obj.in());

 cout << "Activating the GoodDay object..." << endl;
 PortableServer::ObjectId_var oid = root_poa->activate_object(
 &goodDayPseudoImpl);

 cout << "Activating the POA to wait for requests..." << endl;
 root_poa->the_POAManager()->activate();

 cout << "Create Object Reference ..." << endl;
 CORBA::Object_var goodDayRef = root poa->id_to_reference(oid);

 //print stringified object reference
 cout << "IOR: " << orb->object_to_string(goodDayRef) << endl;

 //start ORB's Event loop
 orb->run();
 }

 catch(const CORBA::Exception& e){

Page 320

 cerr << e << endl;
 return 1;
 }
 return 0;
}

To understand what is happening behind the scenes, let's have a look at the class
HelloWorldPOA_tie_GoodDay. This is the Tie, or pseudo-implementation, class.

The Tie class inherits from the class POA_HelloWorld::POA_GoodDay, which connects
it with the ORB runtime system. The class is a templated C++ class and contains a private
variable named _ptr which represents the real implementation class. This variable will be
initialized by each of the constructors. As we have already seen in the server class, the
implementation class is provided as a parameter to the constructor.break

template <class T>
class HelloWorldPOA_tie_GoodDay : public POA_HelloWorld::POA_GoodDay
{
private:
 CORBA::Boolean _rel
 PortableServer::POA_ptr _poa;
 T* _ptr

 HelloWorldPOA_GoodDay_tie(const HelloWorldPOA_GoodDay_tie&){}
 void operator=(const HelloWorldPOA_GoodDay_tie&){}
public:
 HelloWorldPOA_GoodDay_tie(T& t)
 : _ptr(&t), _poa(0), _rel(0){}
 HelloWorldPOA_GoodDay_tie(T& t, PortableServer::POA_ptr poa)
 : _ptr(&t),
 _poa(PortableServer::_duplicate(poa)), _rel(0){}
 HelloWorldPOA_GoodDay_tie(T* p, CORBA::Boolean release= 1)
 : _ptr(p), _poa(0), _rel(release){}
 HelloWorldPOA_GoodDay_tie(T *p, PortableServer::POA_ptr poa,
 CORBA::Boolean release=l)
 : _ptr(p), _poa(PortableServer::_duplicate(poa)),
 _rel(release){}
 virtual ~HelloWorldPOA_GoodDay_tie(){
 CORBA::release(_poa);
 if (_rel) delete _ptr;
 }

 CORBA::Any* hello(
 CORBA::Any*& any_time){
 return _ptr->hello(
 any_time);
 }

};

Page 321

Once a method is invoked by a client, the pseudo-implementation object calls the method
hello() on the real implementation object ptr and returns the result from this invocation
back to the client. Note that the out parameter is also set by the pseudo-implementation.

6—
IDL Context

This section describes IDL-specified context. A Context can be used to supply optional context
information associated with a method invocation, such as the value of an environment variable.
In this section we show how to pass information using IDL context by extending the Hello
World example introduced earlier.

In the IDL below, the operation hello() now has a context associated with it called
MY_VALUE.

module HelloWorld{

interface GoodDay{
 string hello(out short hour, out short minute) context("MY_VALUE");
};

};

The code generated from this IDL will contain the following signature.

virtual char* hello(
 CORBA::Short& _hour,
 CORBA::Short& _minute,
 CORBA::Context_ptr _context
);

This code shows an additional parameter generated for the method hello() . This parameter
is of type Context_ptr. The ORB provides methods to create a context, obtain the default
context, set values to a context, and get values from a context.

6.1—
Creating a Context

The code below shows a portion from the client program in the Context example. We obtain the
default context from the ORB and create a child from the default context called CONTEXT. We
again obtain the default context of the child created. We then create an Any variable, insert a
string "Test" into the Any and associate it with MY_VALUE using the set_one_value()
method. Note that MY_VALUE is actually the context specified in IDL.break

Page 322

//obtain default context from the ORB
CORBA::Context_ptr default_ctx;
CORBA::Context_ptr ctx;

orb->get_default_context(default_ctx);
default_ctx->create_child("CONTEXT",ctx);
orb->get_default_context(ctx);

//set value to the context created
CORBA::Any any;
any <<= (const char *) "Test";
ctx->set_one_value("MY_VALUE",any)

6.2—
Invoking the Method

To match the signature of the hello() method in the generated code, we invoke the
hello() method using an additional parameter ctx that was created above:

//invoke the operation

location = goodDay->hello(hour, minute, ctx);

6.3—
Getting Values from the Context

Similarly, to extract the information carried in a context, we use the get_values() method.
The server program of the context example shows how to retrieve the information received
from a context.break

//method
char *hello(short &hour,
 short &minute,
 CORBA::Context_ptr context){

 //Obtain context information
 if (!CORBA::is_nil(context)){

 CORBA::Flags flags = 0;
 CORBA::NVList_var nv_list;

 context->get_values("", flags, "MY_VALUE", nv_list.out());
 char *value;
 for(CORBA::ULong i = 0; i < nv_list->count(); i++){
 CORBA::NamedValue_var named_value = nv_list->item(i);
 *(named_value->value()) >>= value;
 cout << "HelloWorldServer: context value [" << i << "] = ";
 cout << value << endl;
 }
 }

Page 323

else{
 cout << "The context information passed by the " << endl;
 cout << "client for this method invocation is NIL" << endl;
}

In the previous code, we first check if the incoming context is NIL. If not, we use the
get_values() method to retrieve the information contained in the IDL context MY_VALUE.
The get_values() method takes in an empty NVList and fills in the values. We then
obtain the individual elements from the NVList.break

Page 325

Glossary

Acronyms

AB—Architecture Board.

API—Application Programming Interface.

BOA—Basic Object Adapter.

CGI—Common Gateway Interface.

CORBA—Common Object Request Broker Architecture.

DCE—Distributed Computing Environment.

DCE-CIOP—DCE Common Inter-ORB Protocol.

DII—Dynamic Invocation Interface.

DIS—Draft International Standard.

DSI—Dynamic Skeleton Interface.

DTC—Domain Technology Committee.

ESIOP—Environment-Specific Inter-ORB Protocols.

EUSIG—End User Special Interest Group.

FDTF—Financial Domain Task Force.

GIOP—General Inter-ORB Protocol.

IDL—Interface Definition Language.break

Page 326

IIOP—Internet Inter-ORB Protocol.

IMCDTF—Interactive Multimedia and Electronic Commerce Domain Task Force.

IOR—Interoperable Object Reference.

IR—Interface Repository.

ISIG—Internet Special Interest Group.

ISO—International Standards Organization.

JSIG—Japan Special Interest Group.

MDTF—Manufacturing Domain Task Force.

ODP—Open Distributed Processing.

OMA—Object Management Architecture.

OMG—Object Management Group.

ORB—Object Request Broker.

PIDL—Pseudo-IDL.

POA—Portable Object Adapter.

PTC—Platform Technology Committee.

RFI—Request For Information.

RFP—Request For Proposal.

RMI—Remote Method Invocation.

RTSIG—Real Time Special Interest Group.

SIG—Special Interest Group.

SSL—Secure Socket Layer.

TSIG—Transportation Special Interest Group.

UUID—Universal Unique Identifier.

Terms

A

Any—Pre-defined data type in OMG IDL which can contain self-describing values of any
type.

Architecture Board—An OMG board that reviews proposals and technology for conformance
to the OMA.

Auditing—Keeping records of which principals perform which invocations on secured
objects.

Authentication—Verifing that principals are who they claim to be.

B

Basic Object Adapter—The first specification of an object adapter in the CORBA standard.
Its interface is considered incomplete, and ORB vendors have used divergent
implementations to complete its functionality.

Byte-code—Intermediate representation of programming language code. The Java byte-code is
very popular and virtual machines which cancontinue

Page 327

 execute Java byte-code are available for most hardware platforms and operating systems.

C

Common Facilities—See CORBA facilities.

Common Gateway Interface—Interface at HTTP servers which allows access to resources,
e.g., databases or programs outside the server.

Common Object Request Broker Architecture—Architecture for distributed object systems
defined by the OMG.

Common Object Services—See CORBA services.

CORBAfacilities—A set of published specifications for application-level object services that
are applicable across industry domains, e.g., Printing Facility, Systems Management
Facility.

CORBAnet—Permanent showcase to demonstrate IIOP-based ORB interoperability
sponsored by the OMG and most ORB vendors. CORBAnet is hosted by the Distributed
Systems Technology Centre in Brisbane, Australia. CORBAnet can be accessed at
http://www.corba.net.

CORBAservices—Set of published specifications for fundamental services assisting all
object implementations, e.g., Naming Service, Event Service, Object Trading Service.

Core Object Model—The fundamental object-oriented model in the OMA which defines the
basic concepts on which CORBA is based.

Credential—An encapsulation of a principal's identity and security attributes.

D

DCE Common Inter-ORB Protocol. Environment Specific Interoperability Protocol based on
DCE. The first ESIOP adopted by the OMG.

Distributed Computing Environment. Distributed middleware developed under the control of
the Open Group, formerly Open Software Foundation (OSF).

Domain Task Force—Group in the OMG responsible for specifying technologies relevant to a
particular industry sector. They report to the Domain Technical Committee.

Domain Technology Committee—OMG Committee which supervises several Domain Task
Forces concerned with technology specification for particular domains.

Draft International Standard—ISO defines phases through which a potential International
Standard must pass. Draft International Standard is the penultimate phase.

Dynamic Invocation Interface—Interface defined in CORBA which allows the invocation of
operations on object references without compile-time knowledge of the objects' interface
types.

Dynamic Skeleton Interface—Interface defined in CORBA which allows servers to
dynamically interpret incoming invocation requests of arbitrary operations.break

Page 328

E

Environment-Specific Inter-ORB Protocols—CORBA interoperability protocols which use
data formats other than the ones specified in the GIOP. See also DCE ESIOP.

F

Firewall—Networking software that prevents certain types of network connections and traffic
for security reasons.

G

General Inter-ORB Protocol—Protocol which belongs to the mandatory CORBA
Interoperability protocol specifications. It defines the format of the protocol data units
which can be sent via any transport. Currently there is only one transport protocol defined,
namely, IIOP.

I

Interface Definition Language—Language to specify interfaces of objects independent of
particular programming language representations. OMG has defined OMG IDL.

Interface Repository. Component of CORBA which stores type information and makes it
available through standard interfaces at run time. Typically, an Interface Repository is
populated by an IDL compiler when processing IDL specifications.

Interoperable Object Reference—Object reference which identifies objects independent of
the ORB environment in which they have been created.

J

JavaBean—A Java class that supports certain conventions to allow it to be inspected and used
as a component by visual application builder environments.

M

Marshal—Conversion of data into a programming-language and architecture-independent
format.

N

Non-repudiation—Creation, transmission, and storage of irrefutable evidence that a principal
performed an action.

O

Object Adapter—The ORB component which at invocation time locates the correct method in
the correct programming language object based on an object reference. It is also informed
by servers when objects are ready to be invoked.

Object Management Architecture—This is the overall architecture and roadmap of the
OMG, of which CORBA forms a part.

Object Management Group—An international industry consortium with over 600 members
which specifies an object-oriented framework for distributed computing, including
CORBA.

Object Reference—Opaque data structure which identifies a single CORBA object, and
enables clients to invoke operations on it, regardless of the object's location. Objects can
have multiple object references.

Object Request Broker—The central component of the OMA which transmits operation
invocation requests to distributed objects and returns the results to the requester.

Object Services—See CORBAservices.break

Page 329

OMA Reference Model—The structural model defining roles for the various components
taking part in the OMA. It identifies five groups of objects to be specified: Object Request
Broker, Object Services, Common Facilities, Domain Objects and Application Objects.

Open Distributed Processing—Group within ISO which is concerned with the standardization
of open distributed systems.

P

Platform Technology Committee—OMG Committee which supervises several Task Forces
concerned with specifying the ORB platform infrastructure.

Portable Object Adapter—An object adapter with standard interfaces to associate CORBA
object references to programming language object instances. It is considered to be a
replacement for the Basic Object Adapter.

Principal—A user or system component with a verifiable identity deprecated since CORBA
2.2.

Pseudo-IDL—Interface definitions for components of ORB infrastructure that will not be
implemented as CORBA objects.

R

Request For Information—A formal request from an OMG body for submissions of
information relating to a specific technology area.

Request For Proposal—A formal request from an OMG body for a submission of a
technology specification in IDL with English semantics.

S

Secure IIOP—An extension of the IIOP protocol that includes security information and
provides optional encryption of request data.

Secure Socket Layer—A protocol that extends TCP/IP sockets by providing authentication
and encryption of communications.

Servant—Term used in the context of the POA for the implementation of an IDL interface.

Special Interest Group—Member group in the OMG that has a topic of interest in common.

These groups report findings to Committees within the OMG, or the Architecture Board.

T

TypeCode—A run-time representation of an IDL type.

U

Universal Unique Identifier. Used in DCE to identify an entity.

Unmarshal—The inverse of marshaling.break

Page 331

Index

A

activate(), 195

activate_object(), 203

activate_object_with_id(), 204

active object map, 76

Ada, 2, 42

AdapterActivator interface, 197-198

Admin interface, 237

advanced features, 289

Anys, 294-301

DSI, 314-317

IDL context, 321-323

IR and DII, 301-314

Tie mechanism, 317-321

Any, 59, 87, 175

advanced features example, 294-301

Any class, 129-130

insertions, 125-126, 27-129

language mappings, 87-88

mapping, 124-130

retrieving from 126-127

APIs (application programming interfaces), and portability, 3

application programming interfaces. See APIs

applications. See building applications; C++ ORBs

argument passing, 133-136

fixed length array, 148-151

fixed length struct, 136-140

fixed length union, 143-146

object reference, 160-163

octet, 158-159

sequences, 154-158

variable length array, 151-154

variable length struct, 140-143

variable length union, 146-148

arrays, 60

inserting into an Any, 125-126

mapping, 121-123

passing arguments

fixed length array, 148-151

variable length array, 151-154

at-most-once operation, 48

attributes, 49, 53, 61-63

mapping, 131-133

B

base interface, 55

basic datatypes, mapping, 108-109

basic object adapter. See BOA

best-effort operation, 48

binding, 210, 212. See also Naming Service

adding names, 212-214

removing names, 210, 214

BOA (basic object adapter), 71-75, 173-175

activation and deactivation, 173-174

different from POA, 13-15

implementation, 73-74

and the Implementation Repository, 72

initialization, 173

purpose, 52

BODTF (Business Objects Domain Task Force), 33-34

book(), 285

boolean, inserting, 127

bootstrapping, 209-210

pseudo-IDL operation, 70

bounded string, inserting, 127-129

bridge, 7

building applications, 261

application specification, 261-264

building clients, 276-287

building factories, 272-276

building servers, 268-272

extension to example, 287break

Page 332

implementing objects, 264-268

starting servers, 276

Business Objects Domain Task Force (BODTF), 33-34

C

C

mapping from IDL, 2, 42

mappings, 84

C++. See also CORBA; Hello World example

benefits of CORBA, 1-6

legacy systems/architectures, 6

low level programming, 6

mappings, 1, 2, 84

overview, 6-10

and system performance, 5-6

C++ ORBs

building an application, 17-27

client implementation, 21-23

compile server and client, 26

compile the IDL, 20

development process, 18-19

environment setup, 19

implement server, 24-26

interface specification, 19-20

object implementation, 23-24

run the application, 27

clients and servers

as C++ applications, 12-15

with non-C++ ORBs, 15-16

overview, 11-16

terminology, 11-12

cancel(), 284-285

CFTF (Common Facilities Task Force), 32

char, inserting, 127-129

Class Libraries Special Interest Group, 34

classes, 7. See also Hello World example

and inheritance, 8

and method overloading, 8

stub and skeleton, 12-14

clients

building, 276-287

client implementation, 21-23

client side mapping, 163

compiling, 26

description, 11

implementation example, 21-23

Naming Service and C++ client, 218-221

stubs, 51

clients and servers as C++ applications, 12-15

compiling, 26

with non-C++ ORBs, 15-16

COBOL

mapping from IDL, 2

mappings, 84-85

comments, 53

Common Facilities, 41, 43

Common Facilities Task Force (CFTF), 32

Common Object Request Broker Architecture. See CORBA

components, 37

concept definitions, 37-39

constants, 52, 57-61

mapping, 111-112

context interface, 188-191

create context object, 189

manipulate context object, 189-190

manipulate context object tree, 190-191

context object, 189-190

context object tree, 190-191

contexts, 63. See also Naming Service

creating, 321-322

getting values from, 322-323

CORBA (Common Object Request Broker Architecture). See also advanced features; C++
ORBs

advantages for C++ programmers, 2-5

benefits, 1-6

BOA, 71-75

DII and DSI, 92-94

Interface Repository, 94-106

interoperability, 2, 85-87

hierarchy of protocols, 3

language mappings, 84-85

legacy integration, 3-4

location transparency, 4, 44

most popular language, 1

Naming Service. See Naming Service

object model, 46-49

OMG IDL, 52-63

open standardization, 2-3

ORB and object interfaces, 63-71

ORB structure, 49-52

overviews, 29-30, 44-46

POA, 75-83

programmer productivity, 4-5

programming language transparency, 44

reason for using C++, 5-6

reuse, 5

Trading Service. See Trading Service

TypeCode, Any, and DynAny, 87-92

vendor independence, 3

CORBA server, 11

CORBA::BOA, 173-175

CORBA::Context, 188-191

CORBA::Object, 168-171

CORBA::ORB, 171-173

CORBA::TypeCode, 175-181

CORBAfacilities, 43

CORBAfinancials (FinancialDomain Task Force), 33

CORBAmanufacturing (Manufacturing Domain Task Force), 33

CORBAmed DTF, 5

CORBAmed Task Force (Healthcare), 33

CORBAnet website, 3

CORBAservices, 42-43

CORBAtel (Telecommunications Task Force), 33

Core Object Model, 36-40

and CORBA, 46-49

main goals, 37

create_POA(), 201

create_reference(), 204-205

create_reference_with_id(), 205

create_request(), 170-171

D

data type declarations, 52

Database Special Interest Group, 34

deactivate(), 196-197

deactivate_object(), 204

deferred synchronous invocation, 93

deferred-synchronous, 48

derived interface, 55

design portability, 37

destroy(), 202

DII (Dynamic Invocation Interface), 50, 92-93, 182

advanced features example, 301-314

common data structures, 182-183

creating a request, 184-185

creating an NVList, 183

DII request, 184

heart of DII, 93

NVList interface, 183-184

operation semantics, 48

request, 51

Request interface, 93, 185-187

and TypeCodes, 175

DIR (Dynamic Implementation Routine), 93-94

discard_requests(), 196break

Page 333

discovering services, 209. See also Naming Service; Trading Service

bootstrapping, 209-210

domains, 257-258

proprietary object location, 258-260

discriminated unions, 59

Domain Interfaces, 41, 43

Domain Task Forces (DTFs), 5, 33-34

Domain Technology Committee (DTC), 32, 33-34

Domains, 257-258

DSI (dynamic skeleton interface), 51-52, 92-94, 187-188

example, 314-317

ServerRequest interface, 93-94, 188

DTC (Domain Technology Committee), 32, 33-34

DTFs (Domain Task Forces), 5, 33-34

duplicate(), 169

Dynamic Implementation Routine (DIR), 93-94

Dynamic Invocation Interface. See DII

Dynamic properties, 237-238

Dynamic Skeleton Interface. See DSI

DynAny, 87, 90-92

E

encapsulation, 7

and programmer productivity, 5

and transparency, 44

End User Special Interest Group (EUSIG), 34

enumerations, mapping, 112

enums, accessing, 92

environment setup, 19

etherealize, 76

etherealize(), 199

EUSIG (End User Special Interest Group), 34

Event Service, 5

exception types, mapping for, 130-131

exceptions, 9, 49, 61

F

factories, 272-276

Financial Domain Task Force (CORBAfinancials), 33

find_POA(), 201-202

flat types, 179-181

freeing lists, 184

G

General Inter-ORB Protocol (GIOP), 3, 86

get_implementation(), 168

get_interface(), 168

get_object_id(), 207

get_POA(), 207

get_servant(), 203

get_servant_manager(), 202

GIOP (General Inter-ORB Protocol), 3, 86

H

hash(), 170

Hello World example, 9

build the executable, 10

building a C++ ORB application, 17-27

client as C++ application, 21-23

compiling server/client, 26

compiling the IDL, 20

development process, 18-19

environment setup, 19

interface specification, 19-20

object implementation, 23-24

obtaining the code, 17

running application, 27

server as C++ application, 24-26

create/invoke object, 10

define signature, 9

extended version, 289-294

Anys, 294-301

the client, 290-294

DSI, 314-317

the IDL, 289-290

IDL context, 321-323

IR and DII, 301-314

Tie mechanism, 317-321

implementing the class, 10

hold_requests(), 196

I

ID

assignment, 76, 193

uniqueness, 76, 192-193

identifiers, 53

IDL (Interface Definition Language), 42, 52

Any type, 59

arrays, 60

attributes, 53, 61-63

benefit of, 2

comments, 53

compiling the IDL, 20

constants, 52, 57-61

constructs, 52-53

contexts, 63

data type declarations, 52

description, 1

discriminated unions, 59

and exceptions, 9, 49, 61

identifiers, 53

IDL compiler, 45

and inheritance, 8, 55-57

interface definitions, 44-45

and interfaces, 53-55

inheritance of, 8

wrapping code, 3-4

interoperability, 2

keywords, 53

lexical analysis, 53

mapping to C++. See mapping, OMG IDL to C++

mappings defined, 2

modules, 53-55

operations, 53, 61-63

preprocessing, 53

punctuation, 53

sequences, 59-60

specification, 263-264

structures, 59

types and constants, 57-61

why use C++ language mapping, 5-6

id_to_reference(), 207

id_to_servant(), 206-207

IIOP (Internet Inter-ORB Protocol), 3, 16, 86, 87

IMECDTF (Interactive Multimedia and Electronic Commerce Domain Task Force), 33

implementation skeleton, 51

implicit activation policy, 78, 195

incarnate, 76

incarnate(), 198

inheritance, 8

and Core Object Model, 40

and exceptions, 9

and interfaces, 8, 40, 55-57

and method overloading, 8

multiple inheritance, 7, 56-57

init_from_ns(), 281-282

initial references, obtaining, 172

Interactive Multimedia and Electronic Commerce Domain Task Force (IMECDTF), 33

Interface Repository, 94-106

abstract base interfaces, 96-97

browsing, 304-305

Contained, 104-106

datatype interfaces, 97

example, 301-314

IDL for, 98-100break

Page 334

IDLType, 103-104

multiply derived interfaces, 100-102

nondatatype interfaces, 97

repository identifiers, 106

and TypeCodes, 175

TypedefDef, 102-103

interfaces, 47

attributes, 49

base interface, 55

derived interface, 55

and inheritance, 8, 40, 55-56

interface specification, 19-20

mapping, 163-166

OMG IDL, 53-55

principal interface, 47

and signature, 7

and substitutability, 39

interface TypeCode, 175-179

Internet Inter-ORB Protocol (IIOP), 3, 16, 86, 87

Internet Special Interest Group (ISIG), 33

interoperability, 85-87

advantage of CORBA, 2

communication across ORB domain boundaries, 16

Core Object Model, 37

GIOP, 86

IIOP, 86

offered by IDL, 2

ORB interoperability architecture, 85

website, 3

interoperable object references. See IORs

IORs (interoperable object references)

location transparency, 4

and TypeCodes, 175

IR. See Interface Repository

is_a(), 169

is_equivalent(), 170

ISIG (Internet Special Interest Group), 33

is_nil(), 169

iterators, 233

J

Japan Special Interest Group (JSIG), 33

Java interface concept, 7

and low-level code, 6

mapping from IDL, 2

and system performance, 5-6

JSIG (Japan Special Interest Group), 33

K

keywords, 53

L

language mappings, 84-85

for Anys, 87-88

legacy integrations, 3-4, 6

lifespan policy, 77, 192

Link interface, 236

list management, 184

location transparency, 4, 44

Lookup interface, 231-233

low-level programming, 6

M

Manufacturing Domain Task Force (CORBAmanufacturing), 33

mapping. See also Naming Service

language mappings, 84-85

and legacy systems, 3-4, 6

mapping, OMG IDL to C++, 107

any type, 124-130

argument passing, 133-136

fixed length array, 148-151

fixed length struct, 136-140

fixed length union, 143-146

object reference, 160-163

octet, 158-159

sequences, 154-158

variable length array, 151-154

variable length struct, 140-143

variable length union, 146-148

arrays, 121-123

basic datatypes, 108-109

constants, 111-112

enumerations, 112

for exception types, 130-131

of interfaces, 163-166

modules, 107-108

operations and attributes, 131-133

sequence types, 118-121

strings, 109-111

struct types, 114-116

for structured types, 112-130

typedefs, 123-124

union types, 116-118

meeting_details(), 286-287

method in client application, 279-287

description, 11

and exceptions, 9

methods for structured types, 178

methods for template types, 179

methods for unions, 178-179

overloading, 8-9

method overloading, 8-9

Metrics Special Interest Group, 34

modularity, 8

modules, 53-55

mapping, 107-108

multiple inheritance, 8

N

named values, 182

Naming Service, 5, 210-221

from a C++ client, 218-221

interface specification, 211-218

adding names to a context, 212-214

binding iterators, 217

bindings, 212

browsing contexts, 216-217

context creation, 216

context destruction, 216

exceptions, 215-216

name resolution, 214

name type, 211-212

Names Library, 217-218

removing names from a context, 214

overview, 210-211

registering with, 271-272

non_existent(), 169-170

nonobject types, 39

NVList creating, 183

interface, 183-184

O

OA (object adapter), 12, 52. See also BOA; POA

description, 12

and skeleton code, 13, 14

OADTF (Object Analysis and Design Task Force), 32-33

object adapter. See OA

Object Analysis and Design Task Force (OADTF), 32-33

object id, 76

object implementations, 46-47. See also Naming Service

object interfaces, 63-71

initialization, 70-71

managing object references, 64-70

stringified object references, 64

Object Management Architecture. See OMA

Object Management Group. See OMG

Object Model, 46-49. See also Core Object Modelbreak

Page 335

object-oriented programming, 6-10

encapsulation, 7

exceptions, 9

inheritance, 8

method overloading, 8-9

modularity and scoping, 8

objects and classes, 7

object references, 46-47. See also Naming Service

converting into strings, 171-172

location transparency, 4

managing, 64-70

obtaining, 22

passing arguments, 160-163

stringified, 64

object request broker. See ORB

objects, 11

and classes, 7

creating, 25, 270-271

creating/invoking, 10

defined in Core Object Model, 38

implementation, 23-24

implementing, 264-268

locating. See discovering services object implementation, 23-24

supporting objects, 307-310

Object Services, 41, 42-43

Object Trading Service, 5. See Trading Service

Object Transaction Service, 5

octet inserting, 127-129

passing arguments, 158-159

OMA (Object Management Architecture), 35

Core Object Model, 36-40

and CORBA, 46-49

overview, 36

Reference Model, 36, 41-44

OMG (Object Management Group), 30

Architecture Board, 30-31, 34

and CORBA, 1, 2-3

DTC, 31, 32, 33-34

DTFs, 5

goals of, 30

organizational structure, 30-34

illustration, 31

PTC, 31-33

special interest groups, 31, 32-34

inactive, 34

task forces, 31, 32-34

technology adoption process, 34-35, 44

OMG IDL (Interface Definition Language), 52-63. See also IDL

operation, 11

in Core Object Model, 38-39

invoking, 22-23

OMG IDL, 53, 61-63

semantics, 47-48

signatures, 48

operations, mapping, 131-133

ORB (object request broker). See also C++ ORBs

entering event loop, 272

initializing, 21, 24-25, 171, 270

interoperability architecture, 85-87

and object interfaces

and OMA Reference Model, 41, 42

ORB and object interfaces, 63-71

initialization, 70-71

managing object references, 64-70

stringified object references, 64

ORB interface, 171-173

structure, 49-52

ORB runtime system, 167

BOA, 173-175

context interface, 188-191

DII, 182-187

DSI, 187-188

object interface, 168-171

ORB interface, 171-173

POA, 191-207

TypeCodes, 175-181

ORB vendors, 2-3

ORB/Object Services Task Force (OSTF), 32

OSTF (ORB/Object Services Task Force), 32

overloading, 8-9

P

Parallel Object Systems Special Interest Group, 34

parameters, 38

performance, 5-6

Persistent server policy, 73

Platform Technology Committee (PTC), 31-32

POA (portable object adapter), 13-15, 52, 75, 191

activate a servant, 25-26

AdapterActivator interface, 197-198

architecture, 76

creating, 79, 80

creating object references, 82-83

current interface, 83

current operations, 207

initializing, 24-25, 173

life cycle, 80-82

mappings, discovering, 83

overview, 75-76

POA interface, 201-207

POAManager interface, 195-197

policies, 76-80, 191-195

purpose of, 77

references to other objects, 81

registering with, 270-271

ServantActivator interface, 198-199

ServantLocator interface, 199-200

portability and APIs, 3

and CORBA/C++ code, 17

design portability, 37

and ORB vendors, 3

portable object adapter. See POA

postinvoke(), 200

preinvoke(), 199-200

preprocessing, 53

printers, 222-225

enhancements, 256-257

finding an object, 250-256

implement printer interface, 238-243

implement printer server, 243-250

productivity, programmer, 4-5

profiles, 37

programming and interoperability, 2

language transparency, 44

low-level programming, 6

programmer productivity, 4-5

proprietary object location, 258-260

proxies, 237-238

PTC (Platform Technology Committee), 31-33

punctuation, 53

R

Reference Model, 36, 41-44

references, obtaining initial references, 172

reference_to_id(), 206

reference_to_servant(), 206

Register interface, 233-236

release(), 169

removing names from a context, 210, 214

request, 51, 93

create/invoke request object, 310

creating, 184-185

DII request, 184

initializing, 307

interface, 185-187

ServerRequest, 93-94

request processing, 77, 194-195break

Page 336

resolving the name, 210

return values, 38

reuse, 5

runtime system. See ORB runtime system

S

scoping, 8

Security Service, 5

Security Special Interest Group, 34

sequence types, mapping, 118-121

sequences, 59-60

passing arguments, 154-158

ServantActivator interface, 198-199

ServantLocator interface, 199-200

servants, 14, 76

activate, 25-26

activator, 77

default servant, 76

implementation, 292-294

implicit activation policy, 78

locator, 77

manager, 77

retention, 77, 193-194

servant_to_id(), 205

servant_to_reference(), 205-206

Server-per-method activation policy, 73

ServerRequest interface, 93-94, 188

servers. See also clients and servers

building, 268-272

as a C++ application, 24-26

compiling, 26

CORBA server, 11

description, 11

server side mapping, 163-166

starting, 276

Service Type Repository, 226-230

set_servant(), 203

set_servant_manager(), 203

Shared server activation policy, 72

SIG (special interest groups), 31, 32-34

signature, 7, 48

components, 38, 48

defining, 9

skeleton, 12-14

dynamic skeleton interface, 51-52

and IDL compiler, 45

implementation skeleton, 51

Smalltalk and low-level code, 6

mapping from IDL, 2, 42

mappings, 84

Special Interest Group, 34

and system performance, 5

special interest groups (SIG), 31, 32-34

standardization of CORBA, 2-3

and reference model, 41-44

stringified object references, 64

strings converting into object references, 171-172

inserting bounded strings, 127-129

mapping, 109-111

structs accessing, 92

argument passing

fixed length struct, 136-140

variable length struct, 140-143

mapping, 114-116

structured types, 59

creating, 179-181

mapping, 112-114

arrays, 121-123

sequence types, 118-121

struct types, 114-116

type Any, 124-130

typedefs, 123-124

union types, 116-118

methods for, 178

stub, 12-14

client stubs, 51

IDL compiler and stub code, 45

substitutability and interfaces, 39

and subtyping, 40

subtyping, 40

supporting objects, 307-310

system performance, 5-6

T

TCKind, 176-177

TCP/IP implementation of GIOP, 3

Telcom DTF, 5

Telecommunications Task Force (CORBAtel), 33

template types creating, 181

methods for, 179

sequences, 59-60

thread policy, 78, 192

Tie mechanism, 317-321

TraderComponents, 231

Trading Service, 5, 45, 221-257

Admin interface, 237

Dynamic properties, 237-238

exporting a service offer, 238-250

finding an object, 250-257

iterators, 233

Link interface, 236

Lookup interface, 231-233

overview of

trading, 222-226

Trading Service interfaces, 226-238

Proxies, 237-238

Register interface, 233-236

Service Type Repository, 226-231

TraderComponents interface, 231

transparency, 4, 44

Transportation Special Interest Group (TSIG), 34

TSIG (Transportation Special Interest Group), 34

TypeCode, 87, 88-90, 175-181

creating, 179-181

interface TypeCode, 175-179

typedefs, mapping, 123-124

types, 47, 57-61

U

unbinding, 210, 214

union types mapping, 116-118

methods for, 178-179

passing arguments

fixed length union, 143-146

variable length union, 146-148

unions, discriminated, 59

unknown_adapter(), 197-198

unparser, 305-306

Unshared server activation policy, 72-73

V

variable declarations, 280-281

vendor independence, 3

view(), 282-284

virtual class, 7

Visibroker for C++, 17, 19 compiler for, 20

W

wchar, inserting, 127-129

wrapping code, 3-4, 6

the DSI, 52

	Contents
	Foreword
	Acknowledgments
	About the Authors
	How to Read This Book
	Chapter 1 Introduction
	1 Benefits of C++ Programming with CORBA
	1.1 What Does CORBA Offer C++ Programmers?
	1.2 What Does C++ Offer CORBA Programmers?

	2 C++ Overview
	2.1 Objects and Classes
	2.2 Encapsulation
	2.3 Modularity and Scoping
	2.4 Inheritance
	2.5 Method Overloading
	2.6 Exceptions
	2.7 Hello World Example

	3 Overview of C++ ORBs
	3.1 Terminology
	3.2 Clients and Servers as C++ Applications
	3.3 Clients and Servers Implemented with Non- C++ ORBs

	4 Building a First C++ ORB Application
	4.1 Summary of the CORBA Development Process
	4.2 Environment Setup
	4.3 Interface Specification
	4.4 Compiling the IDL
	4.5 A Client as a C++ Application
	4.6 Object Implementation
	4.7 A Server as a C++ Application
	4.8 Compiling the Server and the Client
	4.9 Running the Application

	Chapter 2 CORBA Overview
	1 The Object Management Group
	1.1 OMG's Goals
	1.2 The Organizational Structure of the OMG
	1.3 OMG Technology Adoption Process

	2 The Object Management Architecture
	2.1 Overview of the OMA
	2.2 Core Object Model
	2.3 The Reference Model

	3 Common Object Request Broker Architecture
	3.1 Overview
	3.2 Object Model
	3.3 ORB Structure
	3.4 OMG Interface Definition Language
	3.5 ORB and Object Interfaces
	3.6 Basic Object Adapter
	3.7 The Portable Object Adapter
	3.8 Language Mappings
	3.9 Interoperability
	3.10 TypeCode, Any, and DynAny
	3.11 Dynamic Invocation and Dynamic Skeleton Interfaces
	3.12 Interface Repository

	Chapter 3 OMG IDL to C++ Mapping
	1 Mapping Modules
	2 Mapping Basic Datatypes
	3 Mapping Strings
	4 Mapping Constants
	5 Mapping Enumeration
	6 Mapping for Structured Types
	6.1 Mapping for Struct Types
	6.2 Mapping Union Types
	6.3 Mapping Sequence Types
	6.4 Mapping for Arrays
	6.5 Mapping Typedefs
	6.6 Mapping the Type Any

	7 Mapping for the Exception Types
	8 Mapping Operations and Attributes
	9 Argument Passing
	9.1 Examples

	10 Mapping of Interfaces
	10.1 Client Side Mapping
	10.2 Server Side Mapping

	Chapter 4 ORB Runtime System
	1 Object Interface
	1.1 get_ implementation()
	1.2 get_ interface()
	1.3 is_ nil()
	1.4 duplicate() and release()
	1.5 is_ a()
	1.6 non_ existent()
	1.7 is_ equivalent()
	1.8 hash()
	1.9 create_ request()

	2 ORB Interface
	2.1 ORB Initialization
	2.2 Converting Object References into Strings and Vice Versa
	2.3 Obtaining Initial References
	2.4 BOA Initialization
	2.5 POA Initialization

	3 Basic Object Adapter
	3.1 Activation and Deactivation
	3.2 Other Operations

	4 TypeCodes
	4.1 Interface TypeCode
	4.2 Creating TypeCodes

	5 Dynamic Invocation Interface
	5.1 Common Data Structures
	5.2 Creating an NVList
	5.3 NVList Interface
	5.4 DII Request
	5.5 Creating a Request
	5.6 Request Interface

	6 Dynamic Skeleton Interface
	6.1
	ServerRequest Interface

	7 Context Interface
	7.1 Creating a Context Object
	7.2 Manipulating a Context Object
	7.3 Manipulating the Context Object Tree

	8
	Portable Object Adapter
	8.1 POA Policies
	8.2 POAManager Interface
	8.3 AdapterActivator Interface
	8.4 ServantActivator Interface
	8.5 ServantLocator Interface
	8.6 POA Interface
	8.7 Current Operations

	Chapter 5 Discovering Services
	1 Bootstrapping
	2 The CORBA Naming Service
	2.1 Overview of the Naming Service
	2.2 Interface Specification
	2.3 Using the Naming Service from a C++ Client

	3 Trading Services
	3.1 Overview of Trading
	3.2
	Overview of the Trading Service Interfaces
	3.3 Exporting a Service Offer
	3.4 Finding an Object Using a Trader

	4 Domains
	5 Proprietary Object Location

	Chapter 6 Building Applications
	1 Application Specification
	1.1 IDL Specification

	2 Implementing Objects
	2.1 Implementing the Meeting Object
	2.2 Implementing the Room Object

	3 Building Servers
	3.1 Initializing the ORB
	3.2 Creating an Object, Registering with the Root POA
	3.3 Registering with the Naming Service
	3.4 Entering the ORB's Event Loop

	4 Building Factories
	4.1 Meeting Factory Object Implementation
	4.2 Meeting Factory Server

	5 Starting Servers
	6 Building Clients
	6.1 Client Application
	6.2 Methods in the Client Application

	7 Extensions to the Example Application

	Chapter 7 Advanced Features
	1 The Extended Hello World Example
	1.1 Interface Specification
	1.2 A Client
	1.3 Servant Implementation

	2 The Any Type and TypeCodes
	2.1 Interface Specification
	2.2 Object Implementation
	2.3 Client Implementation

	3 Interface Repository and Dynamic Invocation Interface
	3.1 Initializing the ORB
	3.2 Browsing the Interface Repository
	3.3 A Simple Unparser
	3.4 Initializing Requests
	3.5 Creating Supporting Objects
	3.6 Using the Supporting Objects
	3.7 Creating and Invoking a Request Object
	3.8 Getting Results
	3.9 Executing the Client

	4 Dynamic Skeleton Interface
	5 Tie Mechanism
	6 IDL Context
	6.1 Creating a Context
	6.2 Invoking the Method
	6.3 Getting Values from the Context

	Glossary
	Acronyms
	Terms
	A
	B
	C
	D
	E
	F
	G
	I
	J
	M
	N
	O
	P
	R
	S
	T
	U

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

