Preface

This manual contains more or less complete solutions for every problem in the
book. Should you find errorsin any of the solutions, please bring them to my attention.

Over the years, | have tried to enrich my lectures by including historical
information on the significant developments in thermodynamics, and biographical
sketches of the people involved. The multivolume Dictionary of Scientific Biography,
edited by Charles C. Gillispie and published by C. Scribners, New York, has been
especially useful for obtaining biographical and, to some extent, historical information.
[For example, the entry on Anders Celsius points out that he chose the zero of his
temperature scale to be the boiling point of water, and 100 to be the freezing point.
Also, the intense rivalry between the English and German scientific communities for
credit for developing thermodynamics is discussed in the biographies of J.R. Mayer, J. P.
Joule, R. Clausius (who introduced the word entropy) and others] Other sources of
biographical information include various encyclopedias, Asimov’s Biographical
Encyclopedia of Science and Technology by 1. Asimov, published by Doubleday & Co.,
(N.Y., 1972), and, to a lesser extent, Nobel Prize Winners in Physics 1901-1951, by
N.H. deV. Heathcote, published by H. Schuman, N.Y.

Historical information is usually best gotten from reading the original literature.
Many of the important papers have been reproduced, with some commentary, in a series
of books entitled “Benchmark Papers on Energy” distributed by Halsted Press, adivision
of John Wiley and Sons, N.Y. Of particular interest are:

Volume 1, Energy: Historical Development of the Concept, by R. Bruce Lindsay.
Volume 2, Applications of Energy, 19th Century, by R. Bruce Lindsay.

Volume 5, The Second Law of Thermodynamics, by J. Kestin and

Volume 6, Irreversible Processes, also by J. Kestin.

The first volume was published in 1975, the remainder in 1976.
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Other useful sources of historical information are “The Early Development of the
Concepts of Temperature and Heat: The Rise and Decline of the Caloric Theory” by D.
Roller in Volume 1 of Harvard Case Histories in Experimental Science edited by J.B.
Conant and published by Harvard University Press in 1957; articles in Physics Today,
such as “A Sketch for a History of Early Thermodynamics’ by E. Mendoza (February,
1961, p.32), “Carnot’s Contribution to Thermodynamics’ by M.J. Klein (August, 1974,
p. 23); articles in Scientific American; and various books on the history of science. Of
specia interest is the book The Second Law by P.W. Atkins published by Scientific
American Books, W.H. Freeman and Company (New Y ork, 1984) which contains a very
extensive discussion of the entropy, the second law of thermodynamics, chaos and
symmetry.

| also use several simple classroom demonstrations in my thermodynamics courses.
For example, we have used a simple constant-volume ideal gas thermometer, and an
instrumented vapor compression refrigeration cycle (heat pump or air conditioner) that
can brought into the classroom. To demonstrate the pressure dependence of the melting
point of ice, | do a simple regelation experiment using a cylinder of ice (produced by
freezing water in a test tube), and a 0.005 inch diameter wire, both ends of which are
tied to the same 500 gram weight. (The wire, when placed across the supported cylinder
of ice, will cut through it in about 5 minutes, though by refreezing or regelation, the ice
cylinder remains intact.—This experiment also provides an opportunity to discuss the
movement of glaciers.) Scientific toys, such as “Love Meters’ and drinking “Happy
Birds’, available at novelty shops, have been used to illustrate how one can make
practical use of the temperature dependence of the vapor pressure. | aso use some
professionally prepared teaching aids, such as the three-dimensional phase diagrams for
carbon dioxide and water, that are available from laboratory equipment distributors.

Despite these diversions, the courses | teach are quite problem oriented. My
objective has been to provide a clear exposition of the principles of thermodynamics, and
then to reinforce these fundamentals by requiring the student to consider a great
diversity of the applications. My approach to teaching thermodynamics is, perhaps,
similar to the view of John Tyndall expressed in the quotation

“It is thus that | should like to teach you all things, showing you the way to
profitable exertion, but leaving the exertion to you—maore anxious to bring out
your manliness in the presence of difficulty than to make your way smooth by
toning the difficulties down.”

Which appeared in The Forms of Water, published by D. Appleton (New Y ork, 1872).
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Finally, | usually conclude a course in thermodynamics with the following quotation
by Albert Einstein:

“A theory is more impressive the greater the smplicity of its premises is, the
more different kinds of things it relates, and the more extended its area of
applicability. Therefore, the deep impression classical thermodynamics made
upon me. It is the only physical theory of universal content which, within the
framework of the applicability of its basic concepts, | am convinced will never
by overthrown.”



1.1

1.2

(a)
(b)

(©)

(d)
(©)

(a)

(b)

Thermostatic bath imposes its temperature 7 on the system.

Container imposes constraint of constant volume. Thermal isolation implies
that heat flow must be zero, while mechanical isolation (and constant volume)
implies there is no work flow. Consequently there is no mechanism for
adding or removing energy from the system. Thus, system volume and energy
are constant.

Thermally isolated = adiabatic

Frictionless piston = pressure of system equals ambient pressure (or ambient
pressure + wg/A if piston-cylinder in vertical position. Here
w =weight of piston, 4 = its area and g is the force of gravity.)

Thermostatic bath = constant temperature 7.

Frictionless piston = constant pressure (see part ¢ above).

Since pressure difference induces a mass flow, pressure equilibrates rapidly.
Temperature equilibration, which is a result of heat conduction, occurs much
more slowly. Therefore, if valve between tanks is opened for only a short
time and then shut, the pressure in the two tanks will be the same, but not the
temperatures.

Water is inappropriate as a thermometric fluid between 0°C and 10°C, since

the volume is not a unique function of temperature in this range, i.e., two

temperatures will correspond to the same specific volume,

V(T=1°C)~V(T=7°C);, V(T =2°C)~V(T=6C); etc.

_1.000191, 10002
1.0001 —
VH20
— L _
L1 0.9999 '
0 5 10
0, T 9,

[Tin °C and Vin cc/g]

Consequently, while 7 uniquely determines, ¥, ¥ does not uniquely
determine T.

Assuming that a mercury thermometer is calibrated at 0°C and 100°C, and
that the specific volume of mercury varies linearly between these two
temperatures yields
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N V(T =100°C)-¥(T = 0°C)
V(T)=V(0°C -0°C
(n=r(oc)+ 100°C-0°C (% )

=0.0735560+0.000013421 T (*)

where T is the actual temperature, and 7; is the temperature read on the

(T =10°C) = 00736893 cc/g. However,

the scale temperature for this specific volume is, from eqn. (*) above

thermometer scale. At 10°C, I}c

Vup(T)— 00735560 00736893 — 00735560

- =9932°C
13421x107 13421x107°

S

Thus, T-7, at 10°C =-0068°C. Repeating calculation at other
temperatures yields figure below.

0 0
AT, -o0a1 [~ -
c0.153491- () 5 |
0 50 100
O, T, 100,

The temperature error plotted here results from the nonlinear dependence of
the volume of mercury on temperature. In a real thermometer there will also
be an error associated with the imperfect bore of the capillary tube.

(©) When we use a fluid-filled thermometer to measure AT we really measure AL,
where

A AV M(ov/oT)AT
A A

A small area 4 and a large mass of fluid M magnifies AL obtained for a given
AT. Thus, we use a capillary tube (small 4) and bulb (large M) to get an

accurate thermometer, since (GI}/ oT ) is so small.
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2.1

2.2

2.3

(a) By an energy balance, the bicycle stops when final potential energy equals
initial kinetic energy. Therefore

2
, (20k—mx1oooﬁx$)
2 hr km 3600 sec

1 :
—mv; =mgh, or hf:Z_’:

g 2x9807
sec
or h=1.57 m.
(b) The energy balance now is
%mv% = %mv,2 +mgh; or vjzf =} +2gh
2 2
vi= (20 k—m) +2x9807—5 x 70 mx( km_, 36005“)
hr sec 1000 m hr

v, = 134.88 km/hr. Anyone who has bicycled realizes that this number is much

too high, which demonstrates the importance of air and wind resistance.

The velocity change due to the 55 m fall is

m km y 3600sec jz
sec? 1000 m hr

v, = 118.24 km/hr. Now this velocity component is in the vertical direction. The

(M) =2x9807— %55 mx(

initial velocity of 8 km/hr was obviously in the horizontal direction. So the final
velocity is

km
[2, 2
V=qvy TV =118.51h—

T

(a) System: contents of the piston and cylinder
(closed isobaric = constant pressure)
MB.: My,-M,=AM=0=>M,=M,=M

E.B.: MZUZ—MIUI:MO +Q+yVSO [ Pav
M(U,-U,)= Q- [ Pav =0~ P[dV = Q- P(V,-V))
M(U,-U,) = 0- PM(V,-1;)

Q= M(U,-Uy)+ M(PV, - PV,) = M[(U, + PV,)— (U, + P}
= M(H, - H,)
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P =1013 bar = 0.1 MPa

A ~ A

Vv U H

T =100 1.6958 2506.7 2676.2

T=150 1.9364 2582.8 2776.4
Linear interpolation

T=125°C 1.8161 2544.8 2726.3 Initial state
Final state P =01 MPa, V, =3.6322m’kg

T =500°C 3.565 3488.1

T =600°C 4.028 3704.7

Linear interpolation

363223565 T, —500
4028-3565  600—500
5145-500  H,—34881
600—500  3704.7 —3488.1
0 =1kg(35195-27263)kl/kg = 7932 k]
W=~ PdV = -1bar x (V; - ¥;) = —1 bar x (36322 - 18161) m’/kg
Pa 1kg 5 1]

= —1bar x100,000 — x 3 2 2
bar m-s*-Pa m”-s”-kg

T, =5145°C

H, =35195

x 18161 m’/kg

= —1816 kl/kg

(b) System is closed and constant volume
MB.: My,=M,=M

. . 0 0 0
EB.: MU,- MU, =aMF) +0+ % - [Py
Q:M(UZ_UI)
Here final state is P=2x1013bar~02MPa; ¥, =V, =18161 m*/kg

(since piston-cylinder volume is fixed)
P=02MPa; V, =18161

T(°C) 14 U
500 1.7814 3130.8
600 2.013 3301.4
1816117814 _ T-500 _ 00347 100 (s
2013-17814  600—500 02316
T=515°C
Up=31308 1408 U, =31564 kl/kg

3301431308
0 =1kgx(31564—25448) ki/kg =6116 k]

(c) Steam as an ideal gas—constant pressure

PV RV BV
I AN L 15

N = 1=t
RT ~ RT,  RT,

but V, =2V,; R=h
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BV P2V
1—1 _ 1% = E =2><7;
LG

T, =27315+125=39815K

T, =2x T, =7963K =52315°C

| K 1k
0= NALI:MXMA T/mol K x (7963 —39815) K x J

18 g/mol 1000 J
=7609 kJ

Wz_deVz_pAV=_p(ﬂ_ﬂ

)= —NR(T, - T)
1

= —% x 8314 x39815=-1839 kJ

(d) Ideal gas - constant volume

BV, BV
—=L=2=Z here V,=V,; B =2R
RT, RT, - =
. B 2R-
So again l—Vl:l—Vl; T, =27, =7963K.
T

1 2

0= NAU = 1000 g/ke 3448314y (7963 —39815) x
— 18 g/mol 1000

Cy=Co—R; 0=5770k]
2.4

~

- M

W w, i

=1kg

MU xgx1m

w, f

M,=M

weight

weight

1 kg x Cp(T; — ) = 1 kg x9.807 m/s® x 1 mx =9807J

mzkg/s2
1 kg x 4.184 J/nglol(:ﬂx AT = 9807
g

9807

=— 22 K=2344x10"° K
4184 x 1000

2.5  From Illustration 2.3-3 we have that H(T;, B)= H(T,, B) for a Joule-Thomson
expansion. On the Mollier diagram for steam, Fig. 2.4-1a, the upstream and
downstream conditions are connected by a horizontal line. Thus, graphically,
we find that 7 ~ 383 K. (Alternatively, one could also use the Steam Tables
of Appendix III.)
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2.6

PEFAi SESA
Erquae I.H=i5

For the ideal gas, enthalpy is a function of temperature only.  Thus,
H(T,, Bb)=H(T,, ) becomes H(T)=H(T,), which implies that
T,=T,=600°C.

System: Contents of Drum (open system)
mass balance: M|, — M|, =AM

energy balance:
MU| - MU| =AM, +Q+W,~ [ Pav :"g“?steam
2 1 -

but O =0 by problem statement, , =0
and j PdV = PAV is negligible. (Note V(T =25°C)=1003x10" m’/kg,
V(T =80°C)=1029x107 m*/kg). Also from the Steam Tables

H,, = H(T =300°C, P =30 bar = 300 kPa) = 3069.3 kJ/kg

and recognizing that the internal energy of a liquid does not depend on pressure
gives

z}|’ = U(T =25°C, 1.013 bar) = U(sat., T =25°C) =10488 kJ/kg
1

and

Ul
12

= U(T =80°C, 1.013 bar) = U(sat., T = 80°C) = 33486 kl/kg

Now using mass balance and energy balances with M|f1 =100 kg yields
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2.7

2.8

M|, x33486 kJ —100 x 10488 kJ =[ M|, —100]x3069.3 kJ

Thus

M|,Z (3069.3-334.86) =100 x (3069.3 —104.88)

M|, =10841kg,and AM = M|, — M|, =841kg of steam added.

(@)

(b)

Consider a change from a given state 1 to a given state 2 in a closed system.
Since initial and final states are fixed, U,, U,, V;, V,, B, B, etc. are all

fixed. The energy balance for the closed system is

Uy =U,=Q+W,— [ PdV =0+W

where W =W, - J PdV = total work. Also, Q=0 since the change of state is
adiabatic. Thus, U, U, =W .

Since U, and U, are fixed (that is, the end states are fixed regardless of the

path), it follows that W is the same for all adiabatic paths. This is not in
contradiction with Illustration 2.5-6, which established that the sum Q+W is

the same for all paths. If we consider only the subset of paths for which
0 =0, it follows, from that illustration that // must be path independent.

Consider two different adiabatic paths between the given initial and final
states, and let " and W be the work obtained along each of these paths,
ie.,

Path 1: U,-U,=W"; Path 2: Uy-U, =w"
Now suppose a cycle is constructed in which path 1 is followed from the
initial to the final state, and path 2, in reverse, from the final state (state 2)
back to state 1. The energy balance for this cycle is

*

U,-U, =W
(U, -U)=-W"
O — W* _ W**

Thus if the work along the two paths is different, i.e., W" =W, we have
created energy!

System = contents of tank at any time
mass balance: M, — M, =AM

energy balance: (Mlj)2 - (Mlj)1 = AMI—AIin
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2.9

2.10

2.11

(a)

(b)

Tank is initially evacuated = M, =0

Thus M, =AM, and U, = H, = H(5 bar, 370°C) =32096 kl/kg (by
interpolation). ~ Then U, =U(P=>5bar, T=7)=32096 kJ/kg. By
interpolation, using the Steam Tables (Appendix III) 7 =548°C

V(P =5 bar, T =548°C) = 0.756 m’/kg

Therefore M =V/V =1m’/(0.756 m’/kg) =13228 kg.

Tank is initially filled with steam at 1 bar and 150°C
=V, =V(P=1bar, T=150°C)=194 m’/kg  and U, =2583 kl/kg,
M,=V[V =1/V =05155kg . Thus, M, =05155+ AMkg. Energy balance
is le}z —05155x2583 =(M —05155)x3209.6 . Solve by guessing value of
T,, using 7, and B, =5bar to find I;'z and Uz in the Steam Tables

(Appendix III). See if energy balance and M, =1 m3/ 1}2 are satisfied. By
trial and error: 7, ~425°C and M, =1563kg of which 1.323 kg was
present in tank intially. Thus, AM = M, — M, =024 kg.

a) Use kinetic energy = mv*/2 to find velocity.

\%
1keg x—
875

2 2
> =1000J =1000—;
SeC m S€C

so v=44.72 m/sec

b) Heat supplied = specific heat capacity x temperature change, so

1000g x ——— x 2510
55.85

1 mol L AT =10007 so AT=2225 K.

g mol-

System = resistor

Energy balance: dU/dt =W, +Q

where WS =E-I, and since we are interested only in steady state dU/dt=0.
Thus

~Q =W, =1ampx 10 volts = 02 x (T —25°C) J/s

and | watt =1 voltxl amp=1J/s.

_ 10 watt x1 J/s-watt

+25°C =750°C
02 J/s-K

System = gas contained in piston and cylinder (closed)

0
Energy balance: U], —U|, = Q+y’s _j PdV

(@

V=constant, [ PdV =0, Q=U|_-Ul|, = N(U|, -Ul, )= NCy(T; - T;)

From ideal gas law

_ PV 114367 Pax0120 m’
RT 8314 Pa-m*/mol-K x298 K

=5539 mol (see note following)
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Thus

p-r+—2 20K+ 10,500 J
NCy, 5.539 molx30.1 J/mol-K

=298+630=3610K

Since N and V are fixed, we have, from the ideal gas law, that

2=Z20or P =£Pl _ 3610 114367 kPa = 1385 10° Pa
2980

A 4 I

(b) P =constant = 1.14367 x10° Pa ;
Cp =Cy +R=301+8314 =38414 J/mol-K

Energy balance U], -U|, = Q- PAV, since P = constant
= NG(L, - 1) = 90— P(V, - V1) = O N(RT, - RT,)
= 0= NG5~ T)

=T+ 20840300 _ 34735
NG, 5539 x 38414
and
. 3 .
Ay = NVRAT _ 5539 molx8314 Pa-m /mol - K x4935K _ 001987

P 114,367 Pa
V =012+00199 = 01399 m’

Note: The initial pressure P= P, + P,

atm wt of piston

P, = 1013 bar =1013x 10> kPa
2
e piston = 200 ng AN 98 m/s? = 13,067 N/m’ = 13,067 Pa
0.15m~ kg-m

=13.067 kPa
Thus, intial pressure =114.367 kPa .

2.12 System = contents of storage tank (open system)
Mass balance: M, — M, =AM

Energy balance: (Ml}) (MU)] :(AM)I-AIin since Q=W =0 and steam

-
entering is of constant properties.
Initially system contains 0.02 m® of liquid water and (40—0.02)=3998 m® of

steam.

Since vapor and liquid are in equilibrium at 50°C, from Steam Tables,
P=12349 Pa. Also from Steam Tables V" =0001012 m/kg,
7V =1203 m’/kg, HY =25921 ki/kg, H" =20933 kI/kg,

U' =20932 kJ/kg, and U" = 24435 kl/kg .
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3
L =Lm3= 19.76 kg;
0001012 m*/kg Loy
. M, = MV + MY =2308 kg.
N :%: 332 kg;
12.03 m’/kg

U, =19.76x209.32 +3.32 x 24435 =12,2486 kJ
Also
I—A[in =0.90x26761+010x419.04 =24504 kJ/kg

Possibilities for final state: 1) vapor-liquid mixture, 2) all vapor, and 3) all liquid.
First possibility is most likely, so we will assume V-L mixture. Since
P =1013 bar, T must be 100°C. Thus we can find properties of saturated vapor

and saturated liquid in the Steam Tables: V' =0001044 m’® / kg,
vV =16729 m’/kg, U' =41894 kI / kg, HY =26761 ki/kg,  and
UV =25065kJ / kg.

I}2 =x(1.6729) + (1-x)0.001044 = 0.001044 +1.6719x m3/kg , where
x = quality

(72 = x(25065) +(1—x)41894 = 41894 +2087.56x kJ/kg
Substituting into energy balance

M,(41894 +208756x)—12,248.6 = (M, —23.08)-24504

where

3
M, = L _ 40 m
v, 0001044 +16719x

Solving by trial and error yields x=05154 (quality), M, =4636kg, and
AM =2328 kg . Also the final state is a vapor-liquid mixture, as assumed.

2.13 System = tank and its contents (open system)
(a) Steady state mass balance
o i, n,
7—0—M1+M2+M3 r‘j r T,

= My =—(M,+ M,)=-10 kg/min

iy, T,

Steady state energy balance
‘Z_U — 0= M, + My, + My
t
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1:13 = H exit stream = H at temperature of tank contents

Also TI; = T = temperature of tank contents
Now H = H,+Cp(T—T;), assuming C, is not a function of temperature
0=5{H, + Co(T;, ~ Ty)} +5{Hy + Cp(T, ~ Ty}~ 10{ Hy + Go(T - Ty}

_ST4+5T, 1

=T =—(I}+T,)=65C
2% (4 )

(b) mass balance: a;—At/I =0=M+M,+ M3 (no useful information here)

dU A oA oA
energy balance: i M\ H, + M,H, + M;H,

put Y i(M(}) Y v e, gnee Cox Gy for
dt  dt dt dt dt
liquids. Thus MG, % =5G T, +5C, T, —10C,T; and M =50kg.

10%+27§ =(80+50)=130= T, = d¢"* + C (¢ = minutes)

At 1w, T, =C=65C
At1=0, ;= A+C=25C= A=-40°C
So finally T; = 65°C—40°Ce™ (¢ = minutes)

EB: M'U'- MU' = AMH,,
(M{U! + MyUY)— (MU} + M{UY) = [ M{ + MUJO1H, , +09H, 4, ]

Also known is that V" = 60 m® = MEI}LF + M\F/VA\f . =2 equations and 2 unknowns

P
VL

V- M . A
(%Uf + MSU&)—(M‘LU‘L + MyUy)
L
VMUY o s 5
=| = My [014, ;,+09H, ]
L
2.14 Thermodynamic properties of steam from the Steam Tables
Initial conditions:
Specific volume of liquid and of vapor:

. 3 A 3
i =1061x10° 2 Pl = 08857 —
kg kg
Specific internal energy of liquid and of vapor
kJ kJ

Ul =3139=; Ul =24759—
kg kg
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M.B: M'—M' =AM

1

200 liters

M'= M} + My ; M ==———=194.932 kg;
4
3 : .
ai, = 0 ;OO HeTS 14476 kg and so M=209.408 kg
\%
E.B.

MU - MU' = AMA,,
(M{U{ + MyUY) = (MU + MyUY) = [ My + MUJO1H, 5, +09Hy ;]
Total internal energy of steam + water in the tank

194.932x313.0 + 14.476x2475.9 = 9.686x10" kJ
Properties of steam entering, 90% quality

Specific volume = ¥, = 0.1x1.061x10™+ 0.9x0.8857 = 0.797 m*/kg
Specific enthalpy = I-AIin =0.1x504.70 + 0.9 x 2706.7 = 2.486 x10° kl/kg

Also have that 7 = 60 m® = MLfI}L1 + M{,I}\ﬁ .
This gives two equations, and two unknowns, M{ and M\f,.

The solution (using MATHCAD) is M, =215.306 kg and M, = 67.485 kg.
Therefore, the fraction of the tank contents that is liquid by weight is 0.761.

2.15 System = contents of both chambers (closed, adiabatic system of constant volume.

Also W, =0).
Energy balance: U(t,)-U(#)=0 or U(t,) =U(t))
(a) For the ideal gas u is a function of temperature only. Thus,

U(t,)=U(t,) = T(t,) = T(#,) =500 K . From ideal gas law

BV, =N,RT; but N, =N, since system is closed
BV, = N,RT, T, = T, see above

and ¥, =2V see problem statement.

1
= P =R =5bar=05MPa= 7, =500 K, B =05 MPa

(b) For steam the analysis above leads to U(#,)=U(#) or, since the system is

closed U(t,) =U(t,), V(t,) =2V (t;). From the Steam Tables, Appendix III,

U(1;)=U(T =500 K, P=1MPa)=U(T =22685°C, P =1 MPa)
=26694 kl/kg
V(t,) = V(T =22685°C, P =1MPa) = 02204 m*/kg

Therefore U(t,) = U(t,) = 26694 kg/kg and

V(t,) =2V (1) = 04408 m3/ kg. By, essentially, trial and error, find that
T~2163°C, P~05MPa.
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(©

(d)

Here U(t,)=U(t,), as before, except that U(t)=U"(t,)+U"(t,), where
superscript denotes chamber.
Also, M(t)= M"(t,)+ M"(t,) {mass balance} and

V(ty) = 27/ M(t) = 2V1/[Ml(f1)+ Mll(tl)]

For the ideal gas, using mass balance, we have

hQV) RV RV _ 2B _R A W
N A L A

Energy balance: N,U, = NIIQ{ + N}Ig?

Substitute U = U, + NCy(T —Ty), and cancel terms, use N = PV/RT and get

2B =R +R' @

Using Eqns. (1) and (2) get P =75x10°Pa=075MPa and

T, =5294 K (25625°C).

For steam, solution is similar to (b). Use Steam Table to get M and M, in

terms of V.

Chamber 1: Ul =26694 kI/kg; V' =02204 m’/kg;

M =w [V} = 45371,

Chamber  2: U =U(T =600 K, P=05MPa)=28459 kJ/kg ;
V' = 05483 m’/kg; M" =1824¥, =1, /)"
Thus, V, = o 2 = 03144 m’/kg;

M'+ M" 4537V, +1824V,
U, =(M'O} + M"U}") /(M] + M}") = 27200 ki/kg
By trial and error: 7, ~302°C (575 K) and P ~0.76 MPa .

2.16 System: contents of the turbine (open, steady state)

(2)

(b)

adiabatic

dM . . . .
mass balance: = 0=M+M,=>M,=-M,

A . A . . adw 0

energy balance: Lil_(t] =0=MH + M,H, + ﬁ' 0, W,— P 7(1%

= W, = —M,(H, - H,) = - M,(34509 - 2865.6) ki/kg

=—M,(5853x10°) J/kg

But W, =-75x10° watt = -75x10° J/s

_ =750x10° J/s
~5853%10° J/kg

Energy balance is

dU

e A, dw O
E=0=M1H1+M2H2+Q+VK—P7C¥

=1281 kg/s = 4613x10° kg/h

1
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where O = M,(-60 kJ/kg)
H, = H(150°C, 0.3 MPa) = 27610 kJ/kg
Thus
—W, = 1281 kg/s(34509-27610—-60) kl/kg =807 k/s

=807 x 10° watt =807 kW

2.17 System: 1 kg of water (closed system).
Work of vaporization = JPdV = Pf dV = PAV since P is constant at 1.013 bar.

Also, from Steam Tables

V' =0001044 m’/kg; VY =16729 m’/kg ; AV =16719 m’/kg

Energy balance for closed system (1 kg):

U,-U, =0~ [ PdV = 0-1013x10° Pax 16719 m’/kg
=0-16945x10° J/kg

U, = 25065 kJ/kg = 25065x10° J/kg

U, = 41894 kl/kg =41894x10° J/kg

Thus
0=U,-U,+W =25065x10° —4.1894 x 10° +16945x 10’

=22570x10° J/kg
W=—[PdV =16945x10° J/kg.

So heat needed to vaporize liquid =22570x10° J/kg of which 0.16945x10° is

recovered as work against the atmosphere. The remainder, 2.088x10° kJ/kg,
goes to increase internal energy.

2.18 System = Contents of desuperheater (open, steady state)

Superheated steam

7=500°C —*| Desuper- Saturated steam
P=3 MPa heater '
— ¥ 2.25 MPa
Water
25°C

M, =500 kg/hr; H, =34565 kJ/kg
M, =?; H, = H(sat’d liq., T =25°C) = 104.89 kJ/kg
Mass B: O=]\'/I]+]\'/[2—i-]l'43

PSRN A . dw 0
Energy B: 0= M, + My, + M0+ 10 ] O —P7d¥'
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2.19

2.20

M, =—(500+ M,) kg/hr; Hy = H(sat’d steam, P =225 MPa) = 28017 kJ/kg
Thus,
0="500x 34565+ M, = 10489 — (500 + M, ) x 28017

= M, =1214 kg/hr

The process here is identical to that of Illustration 2.5-3, so that we can use the
equation
- B
=
B/Ti+Cy /G (B - R)/T;,]

developed in the illustration. Here, B =20MPa, T, =120°C=39315K,

Cp =293 J/mol K, Cy =Cp —R=2099 J/mol K .

S
v

Cylinder 2: A =01MPa, 7; =20°C=29315K

Cylinder I: B =0, T, =—2T, =5488 K =27565°C

T = 20 =52587 K =252.7°C
0.1/293.15+20.99/293[(2.0 - 0.1)/393.15]

Cylinder 3: A =1MPa, 7, =20°C=29315K; = 7, =38216 K=109.01°C

System: Gas contained in the cylinder (closed system)
4000kg 98 m/s?
25m? 1 kgm/st

M.
(a) P=01013 MPa+%°ng: 10133x10° +

=11701x10° Pa=0.117 MPa

moles of .
. PV 11701x10° Pa x 25 m*
N = gas initially = —— = 3
RT 8314 Pa-m*/mol K x29315K

in system
=1200 x 10° mol = 1200 kmol
(b) Energy balance: U,-U;=0- J' PdV = Q- PAV since P is constant.

AV =3mx25m?>=75m’; PAV =11701x10° Pax75m> =87758 x10° J
Final temperature:

_ PV, 11701x10° Pax(25+75)m’

"~ NR  12x10° mol x8314 Pam’/mol K
U,-U = N(gz _Ql) = NCV(B _Tl)
=12x10° mol x (30—8.314) J/mol K x (3812 -293.15)K
=2291x10°J

T =3812 K =10805°C

(©)
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O= AU+ PAV =2291x10° + 87758 x10°
ATof  work
gas work=27.7% of energy absorbed
AT=723%

=3169 x10° J =3.169 MJ

(d) System: Gas contained within Piston + Cylinder (open system).
[Note: Students tend to assume d7/dt = 0. This is true, but not obvious!]

mass balance: d—N =N
dt

p
dt
Here (1) P is constant, (2) Ideal Gas Law ¥V = NRT/P, (3) T and P of Gas

Leaving Cylinder = 7T and P of gas in the system. Thus,
dUu dN aNn . d (NRT j

energy balance: %(NQ) = NH,, + /6' ° -

N=+U—=H—-P

. —dt T dt dt P
s (H - U)—=NCV ‘Z i(Nn
RTY _ ney L Nr 9L RTd—N:> N(Cy +R) AL g
dt dt dt dt dt
=9 _)Q.ED.
dt

Thus 7; =7, =3812 K
Now going back to

Nd—Q+UdN— dN Pd—V and using ﬂzOzd—Q
[7/ S dt =dr dt dt dt
dr dt dt dt RT dt

Since P and T are constants

N, _ V25w’

- 07692
N, V, 25+75m’

Thus N; =0.7692 x 1200 mol = 923 mol ;
AN =-277 mol = -0.277 kmol

2.21 (a) System: Gas contained within piston-cylinder (closed system) [neglecting the
potential energy change of gas]

energy balance:
d(NU) dau . dV . dh
dt a S V =0 P
7 DT P (V)P0
NR dt dt NR dt
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Thus

o ACPdh dh (&JFIJ@ZPACpﬂ

+AP— = PA
R dt dt dt R dt
30 J/mol K

" 8314 J/mol K
=2111x10° J/s

x 11701x10° Pax 25 m* x 02 m/s

(b) System: Gas contained within piston and cylinder (open system). Start from
result of Part (d), Problem 2.20 (see eqn. (**) in that illustration)

d—N = id—V = P—Aﬁ with P and T constant
dt RT dt RT dt
(See solution to Problem 2.20)

dN _ 11701x10° Pax2.5 m’
dt 8314 J/mol Kx3812 K
=—0.01846 kmol/s

x (=02 m/s)=—-1846 mol/s

[check:  —1846 mol/sec x 15 sec =—2769 mol compare with part d of
Problem 2.20]

2.22 System: gas contained in the cylinder (open system)
Important observation . . . gas leaving the system (That is, entering the exit valve
of the cylinder) has same properties as gas in the cylinder.

Note that these are
~ (Edqns. (d) and () of
= NH| [ljustration 2.5-5

mass balance d—N =N
dt
d(NU)
di

energy balance

Proceeding as in that illustration we get Eqn. (f)

10" _( P §0) 320
(%] :(P«»] o TG~ gy 100K ()

where we have used a slightly different notation. Now using the mass balance we
get

_d(P) vaen
dt dt\ RT R dt

or

. _ 3
d(P/T) _ NR _ —(45/28) mol/s><8.31;1 Pa-m*/mol K _ 8908 PajK-s
dt 4 015m

and
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P

T

P

~8908x107t  bar/K for P in bar and 7 in secs. )
=0

t

Using ¢ =35 minutes =300 secs in Eqn. (2) and simultaneously solving Eqns. (1)
and (2) yields

T(5 min) =15257 K, P(5 min) = 0.6907 bar

Computation of rates of change from mass balance

i(ﬁ) _i(d_P_ PdlnT)_@ op dnP dinT _ NRT 3)
dat\T) T\dt dt 14 dt dt PV
From energy balance (using 2 eqns. above and eqn. (f) in Illustration (2.5-5))

Cy dlnT:dln(P/T) Or&dlnT:dlnP @

R dt dt R dt dt
Now using Eqn. (4) in Eqn. (3). Thus,

CydInT _ Cy dT _ NRT
R dt  RT dt PV

- 2
ﬂi _ NRT) = 1151 K/sec
dt t=5 min PVCV 1=5 min
@ Grdr
dt 5 min RT dt

2.23 Consider a fixed mass of gas as the (closed) system for this problem. The energy
balance is:

and

=—-0.0188 bar/s

5 min

dNU) U e dT v
dt dt dt dt

From the ideal gas law we have P = NRT/V . Thus

dT _-NRTdV _ CydInT _—dinV

CyN—= =
dt Voo dt R dt dt
or
Cy/R
Coph_ )l BV (K *
R T v \5 2

or



Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

2.24

2.25

V2T2CV/R = VIJ]C"/R = VTV/R = constant

Substituting the ideal gas law gives PV/S = Py’ =constant. Note that the
heat capacity must be independent of temperature to do the integration in Eqn. (*)
as indicated.

System: Contents of the tank (at any time)
(a) Final temperature (7 =330 K) and pressure (P =1013x10° Pa) are known.

Thus, there is no need to use balance equations.

PV _1013x10° Pax03 m’

= = =11.08 mol =0.01108 kmol
RT 8314 J/mol K-330 K

(b) Assume, as usual, that enthalpy of gas leaving the cylinder is the same as gas
in the cylinder . . . See Illustration 2.5-5. From Eqn. (f) of that illustration we
have

Co/R RICp 5 \8314/29
H_(L) L_(&) " _[L0133x10° 05187
P \T I \ P 10x10°

1 1 1

Thus T =05187x330K=17119 K, P =1013 bar, and
N; =2136 mol = 002136 kmol .

Except for the fact that the two cylinders have different volumes, this problem is
just like Illustration 2.5-5. Following that illustration we obtain

2P 2p" P
Til — T_lg + T_zf for Eqn. (a')
1 1 2
2P =2R" + B or P’ = % B for Eqn. (c')

and again get Eqn. (f)

]'IVf CP/R ])lf
[73) _(FJJ

Then we obtain P' =1333 bar, 7, =2234 K, and 7 =32801K.

2.26 From problem statement A’ = B/ = P' and 7' =7 =T".
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Mass balance on the composite system of two cylinders

. . 2pt pto3pt op
N{+Ny=Nfor =42 =" ="
L L T T

Energy balance on composite system

2P 2x200 bar

NiUt = NUl + NiUL = PT = =1333 bar (as before)

.
and 7" =%7}‘ =%(%}7} =T =250K.
1

2.27 Even though the second cylinder is not initially evacuated, this problem still bears
many similarities to Illustration 2.5-5). Proceeding as in that illustration, we
obtain

2R B 2R B
£, _1l+_21 instead of Eqn (a")
L L 0L
2pli + le = 2131f + sz =3P instead of Eqn. (¢)

[Thus, Pl = (2x200+1%x20)/3=140bar ] and again recover Eqn. (f) for

Cylinder 1
Cp/R £
Y™ (R
o =| =L Eqn.
(Tl) (Pl‘ -

Solution is B = Pf =140 bar, T;' =22647 K, T, =28651K..

2.28 (a) System = Gas contained in room (open system)

mass balance: a;{—N =N

energy balance: d(NU) =NH+Q= ﬁa;—];[+ 0
Thus,
. d(NU) dN dN du
=——-H—=U-H)—+N—
0 dt —dt ¢-8 dt dt

For the ideal gas, H—-U = PV = RT; N _ i(ﬂ) = Ki[f)
- - = dt dt\RT) Rdt\T
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0= _Rr(zji(f)+]vcv%: —RT~££(£)+NC ar

R)dt\ T P dit\T Vodt
0= _NRT£+NR£+NCV£
dt dt dt
Since P = constant, ar _ 0, 0= NGpdT
dt dt

dT Q0 RT _ 15x10° W-8314 J/mol K-28315K
dt  Cp PV 29 J/mol K-10133x10° Pa-(35x5x3) m’
= 00229 K/s=137 K/min

(b) System = Gas contained in sealed room (closed system) N=0

d(NU) dUu dr .
Energy balance: ————=N—=NC,— =
gy ” v 0
dar - 0 = iﬂi = _ 2 %137 K/min
dt [sealed  NC, Cy dt|usealed 298314
room v N room
=1925 K/min

2.29 In each case we must do work to get the weights on the piston, either by pushing
the piston down to where it can accept the weights, or by lifting the weights to the
location of the piston. We will consider both alternatives here. First, note that
choosing the gas contained within piston and cylinder as the system, AU = QO+ W .
But AU=0, since the gas 1is ideal and 7 =constant. Also

W= —'[ PdV =—NRT1n(V; [V;), for the same reasons. Thus, in each case, we have

that the net heat and work flows to the gas are

-2
W(work done on gas) = —NRT In 4 =-2479 lnLﬂ({2 =162251]
V. 2334 %10

and Q=-W=-16225] (removed from gas)

1

If more work is delivered to the piston, the piston will oscillate eventually

dissipating the addition work as heat. Thus, more heat will be removed from the

gas + piston and cylinder than if only the minimum work necessary had been used.
Note that in each case the atmosphere will provide

W, = PAV =1013x10° kPax(2.334-1213)x 102 m*> =11356J
and the change in potential energy of piston

(2334-1213)x1072 m’

mgAh =5keg x98 m/s* x
& g m/ 1x102 m

=549
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The remainder 16225-11356-549=4320J must be supplied from other
sources, as a minimum.

(2)

(®)

One 100 kg weight.

An efficient way of returning the system to its original state is to slowly (i.e.,
at zero velocity) force the piston down by supplying 432.0 J of energy. When
the piston is down to its original location, the 100 kg is slid sideways, onto the
piston, with no energy expenditure.

An inefficient process would be to lift the 100 kg weight up to the present
location of the piston and then put the weight on the piston. In this case we
would supply

AV m (2334x107-1213x107) m’
MgAh = Mg—— =100 kg x 98 = x
& € A & s’ 1107 m’

=10986 kg m?/s* =10986J

This energy would be transmitted to the gas as the piston moved down. Thus

W(ongas)= 11356] + 549J + 10986J =22891

(atmosphere) (PE of piston) (PE of weight)

W(J ) = _Q(J ) chclc = _Qcyclc

Efficient  1622.5 16225-11905=4320
Inefficient 2289.1 2289.1-11905=1098.6
Two 50 kg weights

In this case we also recover the potential energy of the topmost weight.

m  (1597-1213)x 107 m’

meAh =50 kgx 9.8 D x — 18821
& £%2-%°2 001 m>

Thus in an efficient process we need supply only
16225-11356-549—-1882 =2438]

An efficient process would be to move the lowest weight up to the position of
the piston, by supplying

m  (2334-1213)x107 m®

—x
2 1x107% m?

50 kg x9.8 =54931]

Slide this weight onto the piston and let go. The total work done in this case
is

11356 + 549 + 2438 + 5493 =19836]J]
(atmosphere) APE of piston  APE of weight  supplied by us

Therefore
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w(J)=-0 chcle = _Qcycle
Efficient 1622.5 1622513787 =2438]
Inefficient 1983.6 1983.6—-1378.7=604.9 ]

(c) Four 25 kg weights.
In this case the recovered potential energy of weights is

—2
25 kg 98 m/52X([(1.897—1.213)+(1.597I1.212)33+(1.379—1.213)]x10 ]m
X

=30231]
Thus in an efficient process we need supply only
16225-11356-549-3023=129.7J

An inefficient process would be to raise the lowest weight up to the piston,
expending

(2334-1213)x1072 m’

= =27461
1x102 m

25kgx98 m/s® x

Thus the total work done is
11356+549+3023+2746=176741

and

w=-0 chclc = _Qcycle

Efficient 1622.5 16225-14930=-1295
Inefficient 1767.4 17674 —-1493.0=-2744

(d) Grains of sand
Same analysis as above, except that since one grain of sand has essentially
zero weight W =16225J, O=-16225J, Wge = —Ouyee =0

2.30 System = Gas contained in the cylinder (closed system)
d(NU) = Nd—g = NCy ar =-— a = —NRT dV. {Using the
dt dt dt Vo dt

energy balance:

ideal gas equation of state}
Since Cy; and G, are constant

cotar  vav (Y (v\¥Y (L)'
—f——=———or |2 |=| ==L
RTd va \1) \n L,

003 m3 8.314/(30—8.314)
0.03+0.6 % 0.05 m3]

=22857 K =-4458°C and

:>T2:(25+273.15)><(
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T 1 228
B =P ﬁ) B 0 L2857 666 bar
nAT 2 29815

From the difference (change of state) form of energy balance
0
av=8° cw- NCy(T, - T,) =—[ Pdv

and N =2V Py 20 bar x 0.03 m” kmol-K _0.0242 Kmol

RT  298.15K x8.314x107 bar-m’
= W = AU =—-0.0242 kmol x (30-8314) kJ/kmol-K-(298.15-22857)K

=-3652kJ
Where has this work gone?
(a) To increase potential energy of piston
(b) To increase kinetic energy of piston
(¢) To push back atmosphere so system can expand
(d) Work done against friction (and converted to heat).
To see this, write Newton’s 2nd Law of Motion for the piston

mg T Frictional Force fF,
Pressure of gas (P) x 4

d . .
f=MA= (PA- By, A—mg— f},) = md—‘; ; v = velocity of piston

Thus, P_—Q+Pam+mg i
A dt 4 4
AU =36520 = +[ PdV
dvdv . mg Lip dv
:+I};_lde+ j +7jdV+ZJ.fﬁ-Edl‘ )
Now L9V _dh _ v (h =piston height) and vd_:li(\ﬂ)
VTR dt 2dt

2
365200 = P AV + 22 & mgAh + | fyvat

3000 J 2 1760 J
Work against ~ SInce Work used to
atmosphere  Viniia =0 increase potential

energy of piston

2
Thus 36,520 J = 3000+%+ 1760+ [ fyevt .

(a) If there is no friction f; =0 then

2 _ (365203000 -1760)J x 2
300 kg

=2117 m?/s* = v =1455 m/s
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(b) If we assume only sliding friction, f}; = kv
[ fivdv = k[ v?dt = (36520 - 3000 - 1760) = %vz + k[t

In order to determine the velocity now we need to know the coefficient of
sliding friction &, and then would have to solve the integral equation above (or
integrate successively over small time steps). It is clear, however, that

w(with friction) < v(without friction) = 14.55 m/s

2.31 ZSOC, 3.0 x 106 Pa =3 MPa —Q. '''''''''' Q
125 kg/s System for " System for
(a) mass balance (steady-state) part a part b
0 = Ml + M2 25° C,

3.0 x 10° Pa = 3Mpa

= M, =-M, =125 kg/s 125 kgl

Energy balance (neglecting PE terms)
2 2
0= MI[Hl +V7‘]+ MQ(H2 +V72)

M = pvA = mnv4 ; p= mass density, n = molar density,
v = velocity, 4 = pipe area, m = molecular weight.

M_ P,
m RT
6
125 kg/s _ 3.0x10° Pa : % v(mys) x 7 x 009 m’?
16 kg/kmol 298.15 K x8.314 x10° Pa-m’
= v=2283 m/s
2 2
mv” _ 16 kg/ kmo”(zz'832m/ ) _ 4170%10° J/kmol =417 KJ/kmol
2 2x1 kg-m/Ns
Back to energy balance, now on a molar basis
2 2
mv, my
H-Hy=—%-—"=C(li~T)

As a first guess, neglect kinetic energy terms . . .
([ -5)=0=T,= T, =25°C
Now check this assumption
_ny, _ Ry, 30x10%,
" n, B 20x10°
Recalculate including the kinetic energy terms

C(h-T) = %(vf -v3)= 12—6(34.242 —2283%)=5209 J/kmol

— 3424 m/s
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B 5209 J/kmol
368 J/mol x 1000 mol/kmol

Thus the kinetic energy term makes such a small contribution, we can safely
ignore it.

T=T =T,-014°C

(b)  Mass balance on compressor (steady-state) 0 = N L+ N2

3.0 x 10 Pa

2.0 x 10°Pa —» compressor >
=7

T,=25° C

Energy balance on compressor, which is in steady-state operation

. ) 0o . .
0= NH,+ NyHy + B0 0, = W, = NGy (5~ 1)
=25°C
adiabatic compressor

Can compute ¥, if 7, is known or vice versa. However, can not compute both
without further information.

2.0 x 10 Pa Gas cooler 3.0 x 106 Pa
T,=? - g T,=25°C

Analysis as above except that Q = 0 but W =0.
0=N,+N,
0=NG(T ~T)

=25°

25°C

Here we get {
Can not compute O until 7, is known.

See solution to Problem 3.10.

2.32 a) Define the system to be the nitrogen gas. Since a Joule-Thomson expansion is
isenthalpic, H(T,,R)=H(T,,B). Using the pressure enthalpy diagram for
nitrogen, Figure 2.4-3, we have
H(135 K,20 MPa) = 153 kI / kg and then 7, = T(P, = 04 MPa, = 153 kI / kg)
From which we find that 7 = 90 K, with approximately 55% of the nitrogen as
vapor, and 45% as liquid.

b) Assuming nitrogen to be an ideal gas (poor assumption), then the enthalpy

depends only on temperature. Since a Joule-Thomson expansion is isenthalpic, this
implies that the temperature is unchanged, so that the final state will be all vapor.

2.33 Plant produces 136 x10° kwh of energy per year
= Plant uses 136 x10° x4 =544 x10° kwh of heat
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1kwh=36x10°17

= Plant uses 3.6 x 10° J/ky—e;‘r x 544 x 10° kwh = 19584 x 10" J/year
W

AH of rock (total) = M - C,(T; — T))
=10 kgx1 J/g Kx1000 g/kgx (110-600) K
=—490x10" J

= 1958 x 10" J/year x x years = 490 x 10" J
x =2502 years
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31 (a) System = Ball (1) + Water (2)
Energy balance: MU/ + M,UJ — MU} — M,U: =0

= MCy (T =)+ M)Cy (T —-T)=0;also T/ - 75 . Thus
e MCy T+ MyCynTy _ 5x10° x05x75+12x10° x42 x5
M,Cy, + M,Cy, 5x10° x05+12x10° x42
=831°C
[Note: Since only AT's are involved, °C were used instead of K)].

(b) For solids and liquids we have (eqn. 3.4-6). That AS=M J G d—; = MG, ln% for the case in
1

which G, is a constant. Thus

Ball: AS =5x10° gx 05— x1n{8'31+273'15}=—531.61i
g K | 75+27315 K
= 53161
Water: AS=12x10° gx 42— ><1n{8'31+273'15}=+596.22i
2K 5+27315 K

and

AS(Ball + Water) = 59622 —53 1.61% =64.6 1%

Note that the system Ball + Water is isolated. Therefore
J
AS = Syen = 64.61E

3.2 Energy balance on the combined system of casting and the oil bath

MCCV_C(Tf - 7;’) + MOCV.D(Tf - 1;’) =0 since there is a common final temperature.

20 kg x o.si(Tf —450)K +150 kg x 2.6l(Tf —450)K =0
kg-K kg-K
This has the solution T'= 60°C = 313.15 K
Since the final temperature is known, the change in entropy of this system can be calculated

from AS = 20 x 05 x ln(w) +150% 2.6 ln(w) _41358
27315+ 450 27315+50 K

3.3 Closed system energy and entropy balances
du . . dv dS O .
—=0+W, - P—; —==+S8,,:
dt QO+ dt " dt T ¥

gen

Thus, in general O = T ‘;—f — T8, and
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VK:d_U_Q a d_U_Td_S+TS pd_V
' dr dt dt dt
Reversible work: W% = W *(S,, =0) = 40 _pd5  pd”
dt dt dt
(a) System at constant U & V = d—U =0 and d—V =
dt dt

i('5, =0)= g - £

at
P
(b) System at constant S & P = as =0 and ar =0= Pd—V = i(PV)
dt dt dt
so that
. ., dU d dad
W, (Sgen = 0) = W5 = = +—( V)= —(U+ PV)= —
34
700 bar, 600°C ~ — - Q—»—  10bar, =2
Steady-state balance equations
a_ =0=M,+M,
dt
oA A 0 awo . .
%:0: M+ M0, + F10 4 —P7d¥ = M, + MyH,
or /1, = I,
Drawing a line of constant enthalpy on Mollier Diagram we find, at P =10 bar, 7 = 308°C
At 700 bar and 600°C At 10 bar and 308°C
Y =0003973 m*/kg ¥ ~02618 m’/kg
H=3063 kJ/kg H ~3063 kl/kg
§=5522 kl/kgK S=17145 kJ/kgK
Also
0
%=0=M1S1+M2S2+€ + Syen =
) . S A oA kJ
= Syen = My(S, = 5)) 00 =2 =5, 5, =7.145-5522 = 1623——
M] kg-K
3.5
o— 2
System L 2]
W

Energy balance

constan

AU = (Uf ~UL)+(Uf ~U!) = B2 1y e~ [PBVvgiume
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W, = MC,( 1)+ MC(T ~ 1) = MC,[(T/ 1)+ (1 - 7})]

but Y]f:Bf:Tf 3£=[2T‘f—ﬂi—7}i]

Entropy balance
adiabatic

. . w0
AS=(S{ ~S5)+(S/ - S}) = J}T}Yit +<$ﬁ

0 for maximumwo r

_ _ / /
(S —S3)+(S{ -S])=0=MC, ln%+ MG, 1nT‘—,.
2 1

'/ o
or I{ 2L =0, VI =T'T; but T/ =7/ =1/
LT

= (1) =(F5) or 7/ =TT and

A/I;V(SJP =1/ -1 -] =[5 - 1 - ]

1 bar 10 bar
3.6 —>
290 K 575K
(@ Entropy change per mole of gas

AS =Gy lnﬁ— Rlni eqn. (3.4-3)
- A A

Thus AS:29.3Llnﬂ—8.3l4Llnm: 09118 !

mol K 290 molK 1 mol K
(b) System = contents of turbine (steady-state system)

Mass balance [;—];]=O=N1+N2 =-N,=N,=N

. . . . dw O
Energy balance a;—(:=0:N,E1+N2£I2+Q‘O + Ws_p7d¥

W,=N(H,-H,)= NGy(T, - T;)

W, J
W=-=5=Cp(l~T)=293 x (575—290)K
N P( 2 l) mol K ( )
~ 83505
mo

(c) In Illustration 3.5-1, W =78348 J/mol because of irreversiblitities (AS #0), more work is

done on the gas here. What happens to this additional energy input? It appears as an increase of
the internal energy (temperature) of the gas.

3.7 Heat loss from metal block

dU dT -
—:C _—=
a at Q
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i = -7 T=0 oy QO = heat out of metal
T —0 = heat into heat engine
b
- = dez—cpj( Zde
7 T

4T (T-T,) _
Pdt T

W = =T~ G Tyl = cp[@ —n)—zln%}
1 1

w=Grn|1-1)-nl
& T
T

)
0= | GdT = Gp(T - T)) = CPE(I—FIJ

T 2
Alternate way to solve the problem

T

System is the metal block + heat engine (closed)

dUu dT
EB.: —=C,—=0+W
7 P =0
a5 _ 0

+
dt Tzé/

0 for maximumwo r

0= 2dS, dU—EdS+W;dU:CPdT;dS:&dT
dt dl T T
L L
W=IWdt=ij(l—£de=CPJ'( Tz)dT
T r T T
1
T T
W=C -1 TCln =G| 1-=L|-In=2

3.8 This problem is not well posed since we do not know exactly what is happening. There are several
possibilities:
(1) Water contact is very short so neither stream changes 7 very much. In this case we have the
Carnot efficiency

W T..-T.
gD Thow 22 22 0933 7330
0 g 27+273 300

(2) Both warm surface water (27°C) and cold deep water (5°C) enter work producing device, and
they leave at a common temperature.

NG A
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3.9

aM

M.B.:?:O:MH+ML+MO:M0:—(MH+ML)
dU e A

EB: ©5=0= My + My + My + =0
t

W = — My Hyy — My Hy, +(M, + M, )H,
= Wt (By— By )+ 31y (A 1)
:MHCP(YE) TH)+MLCP( L)

ds A R 0 0
S.B.: Ezo:MHSH"’MLSL"’MOSO"' - %
MH§H+ML§L_(MH+M[)§0=O

My (S = 8o)+ My (S, - S,) = 0= MGy ln 04 M, Cp I =0

0
My M, ) ] o
(TH i =lor T, MHTLML _ 76MH+ML
T; T;
0 0
T = \4H J(My+ M) ML J(My+My)
0= I

From this can calculate 7. Then
W= MuCo(Ty—Ty) + M Co(Ty — T,)

This can be used for any flowrate ratio.
(3) Suppose very large amount of surface water is contacted with a small amount of deep water, i.e.,

My >> M, . Then Tj ~ T
W= MyuGpo(Tyy = Tiy) + My Co(Ty = T ) ~ My Go(Tyy — T )
(4) Suppose very large amount of deep water is contacted with a small amount of surface water, i.c.,

My << M, T)~T .
W= MHCP(R ~Ty)+ MLCP(E -0)~ MHCP(];, -T)

System = contents of the turbine. This is a steady-state, adiabatic, constant volume system.
M ) ) ) )
(a) Mass balance e 0=M+M, or M, =-M,

Energy balance
d . oA . oA . : A d\A constan
ay =0=MH +M,H, + ﬂ adiabat |+VVS - P7d¥volume

dt

Entropy balance

ds ]g

=0= M\, + M,S
d ” 1°1 297+ T en
0, by problem state
Thus
= —Ml(ﬁ ) E.B.

A

S, =5, S.B.
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State 7} =500°C Steam H,=34222 kI/kg
L' p=60b “Tables ~ §
) = ar Tables S, = 68803 kJ/kg
State P, =10 bar Steam T, =2404°C
_—
2 . Tables R
§, = § = 68803 H, ~29205 ki/kg
kgK
W: = 45001(_}1% % (29205 3422.2)% = —22576501{—hJ =-6271kW
g

(b) Same exit pressure (B, =10 bar), and still adiabatic
=W, = _M1<H1 _Hz)~

Here, however,

W, = 081, (Part a) = 0.8(—2.258 106)1‘—11J =4500(H, - 3422.2)%
= ﬁ[z =30208 kl/kg Steam T, = 2867 K
[ ~
P =10 bar Tables S, 70677 kI/kg K
Thus
Syen = —M,($,-5,) = _4500%2 (68803—7.0677) K _g433
£ h kg K K-h

(c) Flow across valve is a Joule-Thompson (isenthalpic expansion) ... See Illustration 2.3-3.
Thus, ]—Alim0 valve = I—A[Out ofvalve » and the inlet conditions to the turbine are

Hl = Houl of valve = into valve — 34222 kJ/kg
B, =30 bar

Steam T, =~4848°C

Tables S, = 7.1874 kJ/kg K

Flow across turbine is isentropic, as in part (a)

S, =8, =71874 kl/kgK Steam T, =318.1°C
_—> N
P, =10 bar Tables H, ~30904 kI/kg

W, = 45001‘—}ig % (30904 — 3422.2)112—J = —1493x10° k—hJ =-4148 kW
g

3.10 Since compression is isentropic, and gas is ideal with constant heat capacity, we have

5)_(B)"
L) R

jS.S 14/36.8

R 3x10°
So that 7, = 7}[?2) =2981 5( =326.75 K. Now using, from solution to

4 2x10°
Problem 2.31, that W, = NCp(T, — T)
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W, =125—=x x368 x(326.75-298.15)K x
s léog mol K

. kg 1mol J 1000 g
k

=823x10° J/s
The load on the gas cooler is, from Problem 2.31,
0= NC|(L~T)
_ 125 kg/sx1000 g/kg 500 % (298.15-326.75)K
16 g/mol mol K

(0]
=-823x10"J/s




3.11 (a) This is a Joule-Thomson expansion
O H(70 bar,T=7?) = H(1013®ar,T= 4000 = H( barT= 400L
=32782kJ kg
and T =447 C,$=6619 kJ kg K
(b) If turbine is adiabatic and reversit{§,.,=0), then§,,, = §, =6.619 kJ kg K andP =1013
bar. This suggests that a two-phase mixture is leaving the turbine

S¥ =7.3594 kJ/ kg K

St =13026 kJ/ kg K

Then x(7.3599 +( I x)( 1302B6= 661%J kg K or x=08778. Therefore the enthalpy of
fluid leaving turbine is

Let x = fraction vapor

H = 0.8788x 26755 +( & 08778  41746= 2395%
HY (satd, 1 bay AL ( satd, 1 bjr kg

Energy balance

— N1 g 0
O_Mian+MoutHout+/J +V\é P%

but M, = =M,

g - W =32782- 2399 & 878—5—

in
(c) Saturated vapor at 1 bar

§$=73594kJ kg K; H= 26755kJ kg
el -32782- 26755 602 *J kg
inlActual

Efficiency (%) = woz 686%
8786

ﬁ =7.3594- 6619 074KkJ/ Kh

in

(d) w 0=M,;+M,0 M,=-M,
¢ av
Steam _>Water 0= M ( )+V\é+ Q P_
70 bar '] 1 bar
° A ° . N A .
447° C i 25°C 0= Ml(Sl_ Sz)"'?"'%en
Q

Simplifications to balance equations

%en =0 (for maximum work);P?j—\: =0 (constant volume)

g— Q whereT, =25 C (all heat transfer at ambient temperature)
0



H (sat'd lig, 25 ¢= 10489% S(sat'd lig, T= 25 ¢= O3674k;_JK

N B TdS §=(H B9 T

max

= To(% A%)
Wy
M

z Io-

=[32782- 2981% 6619 10489 298415. 03p74

max

=1304 75+ 465 13094 kJ kg

3.12  Take that portion of the methane initially in the tank that is also in the tank finally to be in the
system. This system is isentrofie = $.

(8) The ideal gas solution

8314 36
S;=80 T= ( ) 0((32) =1502K

PV
N=PY 0 N =Y =19646 moliN; =~ = 1962mol
RT RT RT,

AN = N; - N = -17684mol

(b) Using Figure 2.4-2.
70 bar= 7 MPa,T = 300 K § =505 kJ kg K= §

3 3
v = o.0195'l}, so thatm = — "™ = 35,90 kg.

9 00108™
kg

35.90 kg< 10002
N, = 9 =1282mol

I
2g 9
mol

At 3.5 bar = 0.35 MPa anéf =505 kJ/ kg KO T= 138 K. Also,
3 3

v, = o.192'l?—, so thatm, =—2""_ = 3646 kg.
9 o.192:‘—

3646 kg< 10002
N, = 9 =1302mol

28 9
mol

AN = N; — N =1302- 1282= - 11518 mol

3.13 dS= Cd—_:+RdV egn. (3.4-1)

AS= j[(a— R+ b cT+ d?+—}£ Rjdv

so that



3.14

ST Vo)~ $F V=( & Rn2+b(T-T)+=(T3-T)
1

O A v,
+— (L -T°)-=(T,“ =T, )+ RIn==
S W) ) R
Now using
P\_/=RTD£=£E&D
Vi, TR

ST B)-$T B= dn2enf-T+(T2-T)
1

1

Finally, eliminating T, using T, = TRV, / RV, yields

S(B.V)- $ R )= &(%}%(szz— RVY)
~1
+ o [(RYL) - (RV,Y]
+ 2[RV, - (RY]

- (v )-(Ry - A2
1

System: contents of valve (steady-state, adiabatic, constant volume system)

Mass balance & N;+ N,

: : . 0 0
Energy balance 0= N;H, + N, H, +,@’0 +yz —P7df

at
0 H =H,

: : : 0
Entropy balance0=N,;S + N S+ .+ ]g
(a) Using the Mollier Diagram for steam (Fig. 2.4-1a) or the Steam Tables
T,=600K PR, =7 bar DT2=293’C
B =35bar H,=30453)g S =7277JgK

H, = H, =30453J/g. ThusS =65598J/gK; T,,, =293C
AS=§-$=0717 JgK
(b) Fortheidealgagd,=H, 0 T,=T,=600 K



= - - On2-rint
85=ST - 8T p= gn-Rin:

1

= —Rln% =1338J/ mol KO
1

AS=0743J mol K

3.15 From the Steam Tables
P =15538 MPa

V' =0001157m*/ kg V¥ = 012736 i kg
Ul =85065kd/ kg  UY = 25953kJ kg
H'=85245kJ/ kg  H"= 27932kJ kg
S' =2.3309kJ/ kglK & = 64323kJ kdgIK

AH'? =19407k] kg AS**= 41014k] /kgIK

(&) Now assuming that there will be a vapor-liquid mixture in the tank at the end, the properties
of the steam and water will be

P =04578 MPa

At 200°C,

V' =0001091m*/ kg V' = 03928 i1 kg

U'=63168kJkg U" = 25595J kg
At 150°C, R R

H'=63220k¥kg HY = 2746%J kg

S' =18418kJkglK & = 6837%J/ kglK
AH'® =21143kd/ kg AS***= 49960 kJ kgIK

(b) For simplicity of calculations, assume i volume of tank.

Then
Mass steam initially =& =6.2814kg
0.12736 M/ kg
Mass water initially :& =17286 kg
0.001157 M/ kg
Weight fraction of steam initially 5.2814_ 0.03506
179.14

Weight fraction of water initially -62814: 0.96494
179.14

The mass, energy and entropy balances on the liquid in the tank (open system) at any time
yields

aM" _ dmtut s dmtS-
dt ' dt

1 L
or Mt gt M gy o v M
dt dt dt
qL L
Ldu” _dM (HV —UL)
dt dt
Also, in a similar fashion, from the entropy balance be obtain
& L L
LE :dl(é\/ - S—):dlASvap
dt dt dt



There are now several ways to proceed. The most correct is to use the steam tables, and to use
either the energy balance or the entropy balance and do the integrals numerically (since the
internal energy, enthalpy, entropy, and the changes on vaporization depend on temperature.
This is the method we will use first. Then a simpler method will be considered.

Using the energy balance, we have

dvt _ dU* _ o o
ML R Ut or replacing the derivatives by finite differences
Mil-; _MiL lel_l —Ljil' . U‘It _LjiL

MT v oge O finally M, = M 1+ gt

So we can start with the known initial mass of water, then using the Steam Tables and the data
at every &C do a finite difference calculation to obtain the results below.

i T (°C) Ut (kdkg K) HY (kJ/kg K) M (kg)
1 200 850.65 2793.2 172.86
2 195 828.37 2790.0 170.88
3 190 806.19 2786.4 168.95
4 185 784.10 2782.4 167.06
5 180 762.09 2778.2 165.22
6 175 740.17 2773.6 163.42
7 170 718.33 2768.7 161.67
8 165 696.56 2763.5 159.95
9 160 674.87 2758.1 158.27
10 155 653.24 2752.4 156.63
11 150 631.68 2746.5 155.02

So the final total mass of water is 155.02 kg; using the specific volume of liquid water at
15C°C listed at the beginning of the problem, we have that the water occupies 03691 m
leaving 0.8309 rhfor the steam. Using its specific volume, the final mass of steam is found to
be 2.12 kg. Using these results, we find that the final volume fraction of steam is 83.09%, the
final volume fraction of water is 16.91%, and the fraction of the initial steam + water that has
been withdrawn is

(172.86+6.28-155.02-2.12)/(172.86+6.28) = 0.1228 or 12.28%. A total of 22.00 kg of steam
has withdrawn, and 87.7% of the original mass of steam and water remain in the tank.

For comparison, using the entropy balance, we have

dML —déL 1 H - .. .

Mt o &a_g & replacing the derivatives by finite differences
L _ L AL _ ~ AL _ .

Mi%s LMi — S+1A $ of finally Mil-_u = MiL 1+ S+1A $L
Ivli Asvap ASvap

So again we can start with the known initial mass of water, then using the Steam Tables and
the data at every’6 do a finite difference calculation to obtain the results below.

i T (°C) & (kJ/kg K) & (kd/kg K) M (kg)

1 200 2.3309 6.4323 172.86
2 195 2.2835 6.4698 170.86
3 190 2.2359 6.5079 168.92
4 185 2.1879 6.5465 167.02
5 180 2.1396 6.5857 165.17
6 175 2.0909 6.6256 163.36
7 170 2.0419 6.6663 161.60
8 165 1.9925 6.7078 159.87
9 160 1.9427 6.7502 158.18



10 155 1.8925 6.7935 156.53
11 150 1.8418 6.8379 154.91

So the final total mass of water is 154.91 kg; using the specific volume of liquid water at
15C°C listed at the beginning of the problem, we have that the water occupies 03690 m
leaving 0.8310 rhfor the steam. Using its specific volume, the final mass of steam is found to
be 2.12 kg. Using these results, we find that the final volume fraction of steam is 83.10%, the
final volume fraction of water is 16.90%, and the fraction of the initial steam + water that has
been withdrawn is

(172.86+6.28-154.91-2.12)/(172.86+6.28) = 0.1234 or 12.34%. A total of 22.11 kg of steam
has withdrawn, and 87.7% of the original mass of steam and water remain in the tank.

These results are similar to that from the energy balance. The differences are the result of
round off errors in the simple finite difference calculation scheme used here (i.e., more
complicated predictor-corrector methods would yield more accurate results.).

A simpler method of doing the calculation, avoiding numerical integration, is to assume that
the heat capacity and change on vaporization of liquid water are independent of temperature.
Since liquid water is a condensed phase and the pressure change is small, we can make the
following assumptions
Ut=H" andHY -H" = AR

qL qL L & L L
du :dH :CFI,‘dT ; andﬁ:C_Pdl

dt dt dt dt T dt
With these substitutions and approximations, we obtain from the energy balance

qL L AL L
Ldu" _dm (B -0Y) LdH" _ M e
dt dt dt dt
dT dMm*
M — AHvP
R dt  dt

Now using an average value@f akid®  over the tempenatnge we obtain
G dT_ 1 dam'
AHY dt M- dt
G 10 o My
AP (150- 200 =1 =

or

and from the entropy balance
& L L L
L dSL _dam M- s | S G, dT _dMm AM” v
dt ot T dt dt
Now using an average value@f 1 over the tempernainge we obtain

Co dT_ 1 dM"
TAS®™ dt ~ M" dt
C In(150+ 27313:"{M#j
AS? "\ 200+ 2731 Ve

From the Steam Table data listed above, we obtain the following estimates:

or




(©)

_U(T=200C)-U(T = 150C) _ 85245 63220 2405 K3
200°C- 150C 50 kgK

or using the In mean value (more appropriate for the entropy calculation) based on

csln(£j=é<1;)—w

CL

T

T
. _ Y(T=200C)- § T= 150C) _ 2.3309- 18418 kJ
= o220 27T Tty g
150+ 2731 4231

Also, obtaining average values of the property changes on vaporization, yields
AH" = % x[AH (T = 150C) + AH **{T = 2000)] = % x[21143+ 19407= 2027%

pge=1x [AS*( T=150C)+A S & 2000)| = L [49960+ 4101p= 45487
2 2 kg K

With this information, we can now use either the energy of the entropy balance to solve the
problem. To compare the results, we will use both (with the linear av€pag¢he energy
balance and the log mean in the entropy balance. First using the energy balance
L ME -

Cr (150- 200 = In| —+ - 7440 50_ 510863
AHY M, 20275
My _ _
T exp(—-010863 = Q89706
Now using the entropy balance

M L
In _fL _ (EP In(150+ 27313 _ 4.3793|n(423lz) _ O.9628|n(42312)
M, AS™ \200+ 27315 45487 \4731 4731

M L 0.9628
MfL = (%3 = 089805

Given the approximations, the two results are in quite good agreement. For what follows, the
energy balance result will be used. Therefore, the mass of water finally preser) (ser m

M*"(final) = 0.897x M"(initial) = 15506 kg

occupyingV = M*( fing)xV*(150 ¢= 15506« 000109% .01692h
Therefore, the steam occupies 0.8308 m , corresponding to
0.8308 M _ 0.8308 m _

VY(150C)  g3g08™
kg

MY (final) = 2.115kg

So the fraction of liquid in the tank by mass at the end is 155.06/(155.06+2.12) = 0.9865,
though the fraction by volume is 0.1692. Similarly the fraction of the tank volume that is
steam is 0.8308, though steam is only 2.12/(155.06+2.12) = 0.0135 of the mass in the tank.

Initially there was 6.28 + 172.86 = 179.14 kg of combined steam and water, and finally from
the simpler calculation above there is 155.06 + 2.12 = 157.18 kg. Therefore, 87.7% of the
total amount of steam + water initially in the tank are there finally, or 12.3% has been
withdrawn. This corresponds to 21.96 kg being withdrawn. This is in excellent agreement
with the more rigorous finite difference calculations done above.



dN

3.16 @) E=o= N+ Ny orN,=- N,
5 =0= NyH, + Ko H, + Vi + @ FoL =Vigs Kb = N Hy or 15 =H, -H,
1
ds_ Spen J
+—+ — =5, C,=3715
P NS - NS Syen N, 2 5 G K
. Tf
W _ Hy-H; = [CedT= G T -2981%K) if the heat capacity is independent of
Nl o 298.15K
temperature. First consider the reversible case,
S,- §=0 gives j Cogr= Rj i The  solution  is  499.14K.  Then
T.
V\gev J
N = Cp, (49914~ 2981K) = 7467—I The actual work is 25% greater
1
W, =128ALY = 9334% = G T - 2981K)
The solultion isT; =54939 K
(b) Repeat the calculation with a temperature-dependent heat capacity

Co(T)=22243+ 597711 T- 3499 10T*+ .7464 1O

Assuming reversibilityTs = 479.44K. Repeating the calculations above with the temperature-
dependent heat capacity we findy¥ 9191 J, and;=520.92K.

So there is a significant difference between the results for the constant heat capacity and variable
heat capacity cases.

317 T =300K,T, = 800K, an® =1.0 bar

Co(T)= 29.088 -0.19% 18T +0x TO? -0.8%0 QeI
mol K
T, =800K P
J Co(T) T=p J dP
T; =300K T
Calculated final pressuFQ =3.092 °10 Pa.
T; =800K
Wey = [ Go(T)dT=1458x 16—
T; =300K mol
3.18 Stage 1 is as in the previous problem.
Stage 2

Following the same calculation as above.
Stage 2 allowed pressuPe, =9.563"10 Pa

W,, =1.458x 10* ﬁ = Stage 2 work



Stage 3
Following the same calculation method

P 3 =2.957x 10 Pa = Stage 3 allowed pressure.

W,, = 1.458x 16% = Stage 3 work

Question for the student: Why is the calculated work the same for each stage?

3.19 The mass, energy and entropy balances are

O:]I_“t"=a'/|l+m2=o, M, =-M,

dU e

E—O—M1H1+ M,H,+Q+W,; |\/|1(H1— Hz)"'V\é—Q
\Aéz"'Ml(':'z_':'l)

ds A QL C A A )

0T MSH MS 4§, = M{S- §+ §.=0
Sen= M(5-9

300°C, 5 bar= 05 MPa H, = 3064 2 kJ/ kg

§ = 7.4599 kJ/ kg K
100°C, 1 bar= 01 MPa H, = 26762 kJ/ kg

S, =7.3614kJ kg K

Mﬂ =26762- 3064 2= 38%J/ kg satisfied the energy balance.
1

A

% =S - S =7.3614- 7459% - 0098%J/ kg K can not be. Therefore the process is impossible.
1

3.20 Steam 20 bar ®IPaand 300 C H =30235 kJ kg
S$=6.7664 kJ kg (from Steam Tables)

~

U =27726 kJ kg
Final pressure = 1 bar. For reference saturation conditions are
P=01MPa, T=9963
Ut =41736 H' =41746 S'=13026
UV =25061 HY =26755 SV =7.3594
(a) Adiabatic expansion valW/ =0 andQ= 0

M.B.: O:j—'\t"z M,+M,=0; M, =-My;

E.B.: ‘Z—liz MH+MH,=0; Hy = H,y

From Steam Tables

0 H,;=30235 T=250C |3=29743 kj kg $=80333 kJ kg K
P=01MPa T=300C §=30743kJkg S=82158 k/kg K

By interpolationT =275 C gived:| = 3023.5 kJ / kg all vapor



$=81245kJ kg K
dS .~ . . .
gt VSt M St g =0

% =S, - §=8.1254- 6.7664 1359 KJ kg K

gen

(b) Well designed, adiabatic turbine
S.B.. M,§+ M,5=0;S,=§; S =67664kJ kg K
O Two-phase mixture. Solve for fraction of liquid using entropy balance.

x[{7.3599 +( 1+ x) 013026 67664
x =0.902(not good for turbing!

~

H, =0902x 26755 0098 41746 2454/ kg
% = (2454 2- 3023p=- 569 %J kg
W
-— =5693 kJ/ k
Vi / kg
(c) Isorthermal turbin&l superheated vapor
T=300C 7. H =30743kJ kg
final state R
P=01MPa S=82158kJ/ kg K
E.B.. M;H;+M,H,+Q+W=0
s 5. Qe
S.B.. M;S§+ M2§+?+/g{n' =0

=_M1é1_ MZS= M(S' A%

Z|o 4]0

T(S - §) =(300+ 2731¥ 82158 .67664J kg K
8307 kJ/ kg

—% % +(H, - H,) =8307+( 30235 30743 7798Y kg

O get more work out than in adiabatic case, but have to put in heat.



3.21

3.22

System = contents of the compressor (steady-state, constant volume). Also, gas is ideal.

(2)

(b)

Mass balance 0=N,+N, > N, =-N,
. . . . dw O
Energy balance 0=NH+N,H, + @‘O +WS_P7dZ'
adiabatic t
Entropy balance
reversib |

) ) O compresso r
0:N1§1+N2§2+ T % :}§]:§2
0
From the energy balance W, = NCp(T, —T;) or WS =G(,-T,)

RICp
From the entropy balance S, =S, =1 =1 (sz
1

. R/Cp
"_erl| 2] o
N A

Two stage compression, with intercooling, so that gas is returned to initial temperature, before
entering 2nd compressor

Thus

e R/ CP
work in stage 1 =W/ = NCPY][(%j - 1} ; where P" = pressure after st compressor.
1

. R/Cp
work in stage 2 = W = NCPT{(%) _ 1}

. . . e kG .
Total work =W/ + W' = NCI,Y][(%) + (}}:2*) —2:‘ =W,
1

To find P" for minimum work, set d W,/dP" =0 .

) _ « \(R/Cp)-1 (R/Cp)-1
2 iy-0- gl &7 L8 (n (1R )
dP G\ R B G\P P

= (P =(RB)Y

or
P =RB,
Students should check that this results in minimum, and rnot maximum work.

System: nitrogen contained in both tanks (closed, adiabatic, constant volume)

Mass balance: M = M{ + M{ (1)
Energy balance: MlUl = le(}if + sz(j-zf (2)
Final pressure condition: B/ = P/ (3)

For the entropy balance, the nitrogen in the first tank that remains in the tank will be taken as
the system. Then

Si=§/ @)



Equation (1) —(4), together with eqn. of state information of the form S= S‘(T , P), U=0 (T,P)
and V = I}(T , P) which we can get from Fig. 2.4-3 provides 4 eqns. for the 4 unknowns

7/, B/, Iy and P/ . Procedure to be followed in solution

(1) Guess a final pressure p/

(i)  Use eqn. (4) + Fig. 2.4-3 to compute 7;/ , caluculate U if

(iii))  Use Fig. 2.4-3 to get I}If , compute M{ = %f
|

Gv) M{=M-M and Vi =v/m

(v) Use P/ and [}2f to get 7 and sz

(vi)  See if energy balance, Eqn. (2), is satisfied. Ifit is, guessed P/ is correct. If it is not,

guess new pf , g0 back to (ii), and repeat calculation.

Some preliminaries

T =250 K Figure Hi =368 kl/kg
. — . R
P’ =200 bar 24-3 Vi ~ 00037 m’/kg

Thus M! =V /] =001 m’/00037 m*/kg=2703 kg

As a first guess, use ideal gas solution for pressure. (Also try some neighboring pressures.) My
solution is

B’ = B/ =1333 bar (same as ideal gas solution)
T]f =226K (ideal gas solution: TIf =2228 K)
T/ =285K (ideal gas solution: T =3304 K)

3.23 (a) Setup justasin Problem 3.22 above. Solution after a number of iterations is Plf = sz ~5bar .

3.24

T/ =2756°C and T/ =497.7°C .

(b) Since now there is heat exchange between the two chambers we have 7]f = Bf . This equation

is used instead of entropy balance. Solution procedure is to guess a final pressure, and then
compute final temperature using first the mass balance

VI’ V[ sz 124 Vl

That is, choose 77 until eqn (1) is satisfied. Then compute T 7 from energy balance i.e.

MU = M{U{ + M{U{ =(M{ + M{\U{ = U] =0’ )
When guessed P/ is correct, 7/ computed from eqns. (1) and (2) using the Steam Tables will
be identical. My solutionis P/ =5bar and 77/ =366°C .
System = contents of turbine (open, constrant volume, steady-state)
dN . . . )
Mass balance: = 0=N,+N,= N,—-N,

sonstant

volume
) ) ) ) dw 0
Energy balance: C;—];]:O:Nlﬂ]+Nzﬂz+ ,@'0 +W, - P 7(1%'

adiabatic



dN . . (U
Entropy balance: E=0=N1§1+N2§2+ T +5,

(@)

(b)

325 (a)

(®)

= W,=-N,(H, - H,)=-N,Cp(T; - T;)) for the ideal gas

gen

. . . T, P
= Sgen =—Ni(8,-S,) = Nl{c,, 1n[—2j -R 1n(—2}
L A
or

R/Cp S
LT[ 2| exp|2
Pl N, 1 CP

For 7, to be a minimum, since Sgen >0 and N, >0, Sgen must be zero. Thus the minimum

outlet temperature occurs in reversible operation.
W,=+N,Go(T, - T;) . Since T, > T, , the maximum work occurs when 7, is a minimum. Thus,

W, is a maximum (in magnitude) for a reversible process.

For any system:

dsS . oA Q R
Z: |:M,-SI- +7+Sgen:|

depending On the process 0>0 or Q<0 and > M;S, >0 or > M,S; <0. Also, Seen =0 or

Seen > 0, depending on whether or not the process is reversible. Thus, dS/dt for a system can

be greater than, less than, or equal to zero.
Since, by definition, the universe contains everything, it must be a closed system and
adiabatic, since there is nothing for the universe to exchange mass or heat with. Therefore

d—S=0+o+Sgcn SN Syen 2 0
dt dt

Thus the entropy of the universe can not decrease, and the statement is true.
Consider the change from any state 1 to any state 2 in a closed system. The energy and entropy
balances for this transformation are:

(1) U,-U,=0+W =W (Since the process is adiabatic
@) S5 =Sy {
If the transformation is possible, then Sy, =20 now consider the transformation from state 2 to
state 1. Here
@ U-U=w
4 8-5, =S
Comparing eqns. (1) and (3) we have W = —W" (This is ok).
Comparing eqns. (2) and (4) we have S, = —S, (%)

gen

Separately we have, if the processes are possible, that S, >0 and S.. > 0. The only way that

gen = gen =
all these three equations for S,., and Sgen can be satisfied is if Sy, = Sgen =0, that is, both

processes are reversible. Generally, processes are not reversible. However, eqn. (5) requires

that only one of S, and S, can be greater than zero. Thus,



If Syen >0 12 ispossible, but 2 — 1 is not possible.

If Sge, >0 2 —1 is possible, but 1 — 2 is not possible.

3.26 This is like Illustration 3.7-2 except that the Rankine rather than vapor compression refrigeration
cycle is used. Only properties of point 2, and path from 1 — 2 changes.

Point 2: isentropic S =12622 kJ/kgK; H=2798 kJ/kg; 55°C; T'=5°C
SY(5°C) = 10244 ; x = fraction vapor; SV(5°C) = 17252

17252 - x +1.0244(1 - x) = 12622

x=03393

H"(5°C) =20638 = x(401.7) + (1 - x)(206.8)

HY(5°C) =4017 =2729

Ok = H,— H, =402-2729 =129

W=H, - H,=432-402=30

C.O0.P.= 1291 =4303
30

H
H

If the turbine drives compressor
W =(H, - Hy)-(H, - H,) = (432 - 402) - (280 -272.9) = 229

C.0.P.= 1291 =564
229

Vapor compression cycle with change of 7, and Ty, .
Location State Path T(°C) P (kPa) fA](kJ /kg) .SA’(kJ /kg)
1 Sat’d liq 60 1683 287.9 1.286
isenthalp
2 V-L mix 0 293 287.9
P =const
3 Sat’d vap 0 293 398.8 1.728
isentrope J
4 superheated 1683 433.6 1.728
vapor
P =const T
5 Sat’d liq 66 1683 287.9 1.286
Interpolation
P=1600kPa  60°C S=17134 H=4293
65°C §=17323 H=4356
70°C S =17503 H=4417
P=1700kPa  65°C S=17217 H=4333
70°C S =17405 H=4397

at 1700 kPa S = 1.728 at 65.16°C and H = 4335
at 1600 kPa S = 1.728 at 63.84°C and H = 434.1
= at 1683 kPa T =64.9°C and H = 4336



Oc = Hy— H, =3988—-2879 =1109
W= H,— H, =4336-3988 = 348

cop=12 34

348

3.27 General analysis of a heat engine

: 1
ds _ Q; Q=T%; O, ;= [ TdS =area(a—1-2-3-4-b—a)

dt T 7

O =ITdS= 7(S,-S,)=area(a—1-4-b—a)

Integration around a cycle
0=0, 3+0; 1 + Wy

W=+, 5+0, =area(a—1-2-3-4-b—a)—area(a—1-4-b—a)

=area(l1-2-3-4-1)

area(l-2-3-4-1)

n= _VVneL _ _VVnet _
Qin Q2,3 area(a—1—2—3—4—b—a)
Original cycle Increasing evaporator 7' but not pressure




Original cycle Increasing evaporator 7 and P

Either way more work is obtained, with only a slight increase in heat rejected
= almost all the additional heat input is converted to work.
= efficiency improves

Decreasing evaporator T

¥ (Note: may get in to 2-phase region)

Again, efficiency will increase due to more work being produced and less heat rejected.

—b'—a without superheat
—-4-b—-a with superheating.



5I

(¥

Clearly greater work output and higher efficiency with superheat.

a—-1-2-3-4-b—-a without subcooling
a'—1'-2"-3-4-b—a’' with subcooling

Probably is greater efficiency with subcooling, but is not as evident as with superheating case.
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i e g
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- -~ - T
" , 11 : .
E 0 = = mr
i B W _ R Ty .
e ey A T — e
T P S H 14
1 80°C 4739 kPa < 1.0753 33491 0.00102
isentropic
2 2.5 MPa 1.0753 337.4
3 700 2.5 MPa 7.8435 3914.5
4 1303 4739 = 7.8435
1 80°C 47.39

at P = 0050 MPa(~ 0.04739)
T=100; H=26825; S =7.6947




T=150; H=27805; S =79401
= T'=1303; H=27418 kJ/kg
Work, ,, =+[VdP = 0001029 m’/kgx(2500-4739)kPa

=2524 m’/kgx10° Pa =2524x10° m’/kgxJ/m’
= 2524 kJ/kg

n="hel Ly (27418-39145)+25 = 11702

0, =39145-3374=35771
11702

7735771
Turbine is only 85%, but adiabatic

= Wi =39145-27418=11727

urbine

Cine = 085x1172.7 = 9968

~ "Mturbine

= H, =39145-9968 = 29177 kl/kg

Sostate 4 = P=4739; H=29177
T=200°C; H=28777; S =81580
T=250°C; H=29760; S =83556
= T'=2203°C; §=82384 kl/kgK

=0327=327%

-2 78
P T H S
©) 4739 kPa 80 33491 1.0753
©) 2.5 MPa 1.0753
® 25MPa  700°C 3462.1  7.8435
4 4739 kPa  ~190 2860.2

If turbine is only 85% efficient
W =3462.1-2754.0= 7081 in previous case
W=6019 = H, =3462.1-6019 =2860.2

n=~085%x0226=0192

U =96373 kl/kg; S =25639 ki/kgK ; U" =26033 kJ/kg; S" = 62503



P kPa T H

@D  satL  47.39kpa 334.91

©) 2.5 MPa

@ superheated 3462.1
vapor

(@ superheated 4739 ~138°C 2754
vapor

0, = Hy— H, = Hy - H, =3462.1- 33491
W= H, - H, = 275434621

W 34621-2754

0 34621-33491

=0226

~

S 1
1.0753  0.001029
1.0753

7.8435

7.8435



3.30 Energy balance around whole cycle

S.B.: 0=QH +QL+QM; —QM=QH+QL

0:%_},.&_}.&
L, 7. Iy
G0 (0,0
Tf{ TH TM TH TM
5 =[G, O
QL_ ]L[TH—FTMJ
0.0 (0,9)
Iy I, v Ty

. 1 1 . 1 1
Q“(TH‘E):‘QL(FL‘E)

4 _[h)-(/R)] =_(TM—TH] 1T,
O W0T)-Wh)] ik SR

_(w-Th\ L _(Lh-Ty | I
y-1.) Ty Iy-1,) Ty
3.31 First write balance equations for the contents of the turbine. This is a steady-state, constant-volume,
adiabatic system.

MB. 0=M,+M,= M, =-M,
E.B. 0:MII}1+M2H2+VK:>—WYZN1(£[1_§2)

gen

CoA A 0 .

Maximum work = reversible process = Sgen =0 (see Sec.3.2) = S’l = 3‘2 . Thus the inlet and

exit turbine conditions are connected by a vertical line on the Mollier diagram.

(@) H,=2880 J/g Vertical line H, =2270 J/g, T, = 99.65°C
connecting 540 K, Saturation T
P, =1bar
36 bar and 1 bar for P =1bar

—% = H, - H, = (2880—-2270) J/g =610 J/g

(b) Two stage turbine. Use balance equations above for each stage.

Stage 1
T, =540 K = 26685°C H' =2770 J/g
B, =36 bar T"=118°C
U l
H,=2880 J/g P* =185 bar
S, =628 J/gK —  §°=6281/gK

After reheating in the reactor



Stage 2

P* =185 bar H, =2440 1/g
T" =26685°C T, =99.63°C
U )
H =2960 J/g P, =1bar
§=6701/g ——> 8,=670

Note: There is no work done in reheating step (no shaft work, and no change of reheater boundaries).
Only energy transfer step is heating; Q/ M =2960-2770=190 J /g

Total work out/g = —% = (2880—2770)+ (2960 —2440) = 630 J/g
(20 J/g additional work)

(c) Similar to part (b) above, except that intermediate pressure is 6.0 bar

O/ M =445 J/g
~W,/ M =685 J/g (75 J/g additional work)

3.32 System: contents of the tank at any time (open, adiabatic, constant volume system).

(a) Mass balance: a =-N

ideal gas law N :Z; N o where V' = volumetric flow rate.
RT RT
P PV P P. . :
us, i(—V) = ——V = Vi(—) =——V since V and V' are both constant.
dt\ RT RT dat\ T T
iln(ﬁj :—K or i :£ exp| G = 1.082><10_3E or
d \T 14 Tlsmin  Tlo 14 K
P(5 min) = 1082 x107(5 min)  {P = bar, T =K} (1)
Energy balance: i(NQ) =-NH= Qd—N+ Nd—g :ﬂd—N
dt dt dt dt
or Nd—gzd—N(ﬂ—Q)zRTd—N: NC\,Q
dt dt dt dt
R/Cp
using N = PV/RT yields Rd—P:ECpﬂ or , =T, 5
de T = dt B

[Note: could have gotten this result from the entropy balance also!]

P(5 min) )8.314/39

= T(5 min) = 340(
1 bar

2

simultaneously solving equations (1) and (2) yields

P(5 min) = 0281 bar and 7(5 min) =259.3 K



RICp
(b) Since pump is adiabatic and reversible, S, =S . or 3= E(ﬁj since B = A. This equation
2

implies that I; =7, =340 K .

3.33 Number of moles of gas in tank initially = N, = N(0)

_ PO _ 15barx02 m>x10° J/m’ bar
RT(0) 8314 J/mol K x (22 +27315)K

N(0) =122.26 mol

cii_];] = N =—45 mol/min = N(¢) = 12226 -45¢t mol ( = min)

(a) Entropy balance on an element of gas that remains in the tank (see Illustration 3.5-2) yields

e T@ (PO ) P\
8()-5(0)=0= 0" [%j =T(t) = 29515(?) (1)

From the ideal gas equation of state

PUW = NORT() = LONO _ V. _ TONO)
Pt R P0)

Thus

() _29515K 12226 19.68

= = 2
P() 15bar 12226-45t 1-0.03681¢ @)

Now using eqn. (1) in eqn. (2) to solve for P(¢) and 7(¢) yields

P(t) =15x% (1 —~0.0368 lt)1.6075
T(t)=29515%x(1— O~03681Z)0'6075

But 7(¢) is temperature in the tank. What about temperature of gas leaving the throttling valve? Gas

going thru valve undergoes a Joule-Thomson expansion = H; = H_, . Since gas is ideal, this implies

Ty = Ty - Thus, T(0)|,y opvarve = 29515 % (1-003681¢)"7
(b) If tank is isothermal, then, instead of eqn. (2), we have
P(r) _ RT _ P(0)

= ——= P(t)=15(1-0.03681¢)bar
N(@) V. N

and 7(¢) = constant = 29515 K

Summary
T(K) P(bar)
Adiabatic  295.15(1-0.036817)*7  15(1-0.03681¢)""7
Isothermal 295.15 15(1-0.03681¢)



3.34 This is a tough problem!
Subscript 1 denotes properties in initally filled tank
Subscript 2 denotes properties in initially "evacuated" tank
We will use i and f'(superscripts) to denote initial and final properties, and we will assume negligible mass
hold-up in engine.
1) Mass balance on closed system consisting of both tanks

e RV, BV, PV, B
NaN=N/+Nf B0 B B BT
5 i

but

T/ T 97315 29815

, bar m’

M
=5196%10"

2) Entropy balance on gas contained in tank 1 initially and finally. This is a closed, adiabatic, reversible
system

_ f /
§=0:>5;=S{:>cp1nT'—. _ rin| )
dt T

Thus
) A/‘ R/CP _f 2/7
T =T [ij = 9731 s(iJ 3)
R 140

Equation (2) implies that 7] and A are related as follows

din7y R dInRq

4
dt, G dt @
3) Mass and energy balances on tank 1
. . . dUu
M Ny =-N; i:(NlQl):_Nﬁl :Qlﬂ"'Nl;]
dt dt dt dt
or MGy =D gy )= - Ry
dt dt dt
using eqn. (4) gives
NlﬂdlnE:_N:ﬂ (5)
G dt dt

4) balances on the engine: adiabatic, reversible (for maximum work) and since no hold-up of mass,
dN,/dt =0
Subscript eng refers to gas leaving engine and going into tank 2.



0=(H,— Hep )N +W,
0=(S, S, )N
= 8] = Sengs
Also P, =F,,
= Tog = i(Pog/B)" " = T(B/R)H (6
(Note that 7g,, # T, )
and
—W, = NGy(T; - Ty, ) m

5) balances on tank 2 [Note, irreversible mixing occurs unless, fortuitously, 7., =7, at all times (can this
occur?). Thus, Sy, >0, and entropy balance gives no useful information]

Mass balance: dN,/dt = N

_d(N,U,) dN, dUu, dN,
Energy balance: ” =U, = +N, - Nﬂcng % —=H,,, But
H=G(T-T)
where Tj = reference temperature
U=C/(T-T)-RTy= C,T- Gy
=
dN. dN, dT,
~H(Hey ~Us) == H{Go Ty -Gl - O+ G T = NGy — 2
or
dT,
N{CP eng CVB} NZCV dtz (8)
and
oy d (B _BhAL | Vs b
dt dt RT, RTY dt RT; dt
-
_dh_ RGN Tdp o

dt BV, Bd,

using eqns. (6) and (9) in eqn. (8)

R/CP 2
. P RIS . T, dP,
N{CPE(?ZJ _Csz}:_Nzcv' 2N+ N,Cy—>—=

1 By, B, dt,

- N+ 22 o B b
RT, V'R d,

PZJR/C" Gl dp

NG| 2
P R dt

and using eqn. (5)



RICp
S
, 1 1 R dt
or, finally
RIC
y[B) T4R_, 4B
\p e dt
1
vp Mo ey ey 4
dt dt
or
» P
_V2j dPZC l.l[ dPlC
R/IC R
e B, /Cp : P /Cp
=

25{(PY 035 = f(P1)VT —1a0) /)

= P/ =3053 bar: using Eqn. (3), T/ = 6298 K .
Now using eqn. (1), Tzf =6119K

Finally, to get the total work, we do an overall energy balance (system = two tanks; adiabatic, closed,
constant volume).

NTU{ + N{US = NiU| = NoUs = W,

W, = (P 472) - RV; - 1)

= 3{3.053(0.3 +0.75) =14 x 03— 035x 075

=-3142 barm® = -3142x10° J =-3142 kJ

3.35 (a) ~63% sat vapor

37% liquid produced

Work in stage I~ 473-290 =183 kJ/kg

Work in stage 2  388—-269 =119 kJ/kg

302 kl/kg
. 302

kJ/kg liquid N, = 3 8162 kJ/kg N, produced

My = My + M

M31:13 = MS'ﬁ5 + M6[96

115=x-278+(1-x)29

x(278-29)+29

X = 153729 = 124 = 0498 = fraction vapor

278-29 228
= 0502 fraction of liquid

Enthalpy of stream before compressor



Stage 1 425-272
272
Stage 2 ————=579.6 kl/kg N
B8 04693 [keN;
(as before)

0498 (0.1 MPa,125 K) + 0502 /(0.1 MPa,135 K)

=0498 x278+0502 x 290 = 284.02 kJ/kg
Stage 1 463-284=179

Stage 2 119
as before 179 +119 =298 kJ/kg
298

272 5936 kJ/kg LN
0502 /kg LN,

3.36 Note: be careful about coordinate system. A mass flow in the negative x direct is negative!

L]
—> Heat exchanger is
«— in steady-state operation

+x >

AL

Case I: Concurrent flow
Mass balance on shaded volume

mass in mass in mass in mass out

elementat — element = atface — atface at

time ¢ + At at time ¢ at L in At L+ AL in At
0 = (M, — M 5 )M

(steady - state)
M+ My =M
Energy balance on the shaded volume

energy in energy in energy flow in energy flow out
element — element = bymassflow + by massflow at
att+ At att at L in At L+AL in At

energy flow in
+ by heat flow
in time At
(steady-state)

0=M,H,At— M, H, ., At +OALAt
M(§L+AL _EL) = MCP(TL+AL -1)= QAL
dividing by AL, taking limit as AL — 0, and using subscript 1 to denote fluid 1

) dT -
Mle.ld—ézsz(Y"z—Y])



Q = heat flow rate per unit length of exchanger.
Similarly, for fluid 2 (other part of exchanger)
) dT. )
M,Cppy—2=-0=—x(T,-T,
22 (2 (L-T)

( M, and M, are both + for concurrent flow)

Adding the 2 equations

dr, dr

M,Cop—L = M,Cp, —2=0
ey A

From problem statement, M, = M, and Cp, = (O
ﬁ+ﬁ=i(TI+T2)=O or 7, + T, = constant = C
dL dL dL

and I,=C-T,; T, =C-1,
now going back to

daTy K x(C-2T;
K (g,g)-KC20)
dL MG, MG,
and integrating
WC2W ) 2w L MG
c-2T MG, L, " &

T/ =15°C, T =35°C, If =5°C, T/ =-15°C.
Also, C=T/ +T =T/ +T{ =20°C
[i =initial conditions, conditions at L =0; f =final conditions, conditions at L* where L* =length of

exchanger]
Using this in equation above gives

* _
L= ln(zo 70) =1n5=1609
L, \20-30

And, more generally, at any point in the exchanger

L];(.L):exp _L :>7](L):£ 1—exp _L + T exp! _L
C-2T} L, 2 L, L,

T,(L) =10+425exp _L °C
L,

T(L)=C-T(L)= 10—25exp(—Li)°c
0

Now writing an entropy balance



0= M, S, At— M, ;S\ 0 = %ALAt

N MdS' _2_ x(,-T) —x50exp(—L/ L)

dL T, T 10+25exp(—L/Ly)+ 27315
needT a}llbsolute
cre

46 = 0Ly exp(—L/Ly) d( L )
M 28315+25exp(-L/L,) \ L,

_ 25exp(~L/ L) d( L )

P 28315+ 25exp(—L/Ly) \ L,

= S’(L) = S;(L = 0)+ Cp ln{283.15+256xp(_ L/LO)}
308.15

Case II Countercurrent flow
My =M,
. dTl;
MGy —L=x(T, - T)) (1)
dL 35 5  »15- C
WG 2 = (1, ) @) 5 Ce 4 -5
dr;

MICPE:K(E_TI) 3)

Eqn. (3) comes from eqn. (2) using M2 = —M1 . Subtracting eqn. (1) from eqn. (3) gives

d

d—L(Z]—E)=O:>T]—T2 = constant = C =30°C
T, =T,-30°C
Thus
dT,
MG, = (T~ T) = -30x
LN
MC,
L =s—15L =35 3% _35 5L
0 CP 0

Mi
where L, = 5 P and the entropy balance
K

95 _@_—x30

T

ds, &30
dL  M(35-30xl/ MCp+ 27315)

absolute
temperature
needed here




) 30kl Ll G
308.15-15L/ L,

dS, =— : £
M(30815-30«L/ MC,) \ L,
CP

———dx
2054 — x

= S(L) = S(0)+ Cp ln(l —-0.048 Lij
0

Summary
Concurrent flow

L
1 = 10+256xp(—L—j
0

T, =10- 2Sexp(—£)
Ly

S(L)=S8(L=0)+Cp ln{283.15+25exp(— L/LO)}

308.15
Countercurrent flow

L

T =35-15—
L

T=5-15—
LO

$(L) = 50)+ C, ln(l 0048 Lij
0

d

L
Ly

)



d_V (p p)d_V
dt ot

dUu . . av . .
3.37 (a) ?:WS*‘Q- PE:VVS'FQ-R)

and

s _ 0

dr T gen

Now let

. . dv av
W=Ws- Po_t' (P- R)—

and

i =i+ B9l = (P P)ﬂb d—U—W+Q e
“ Ogr 7S “ar T ar " 0 gt

or
Upy- U =W, + Q- B(V,- 1)
S5 - S1:%+Sgenb 0 =155, - TS, - TS,

gen
0

and

Up- Uy =W, +TpS; - ToS1~ ToSgen = FolV2 - V1)
W,=Uy+ RV - TySy) - (Uy+ Ry; - 7651)+%Sgen
since TpSgen * 0

T = A, - Ay, Wherea =U + R - TS

(b) . . . .
0=MH,- MH,+Q+W;

O:M§l' M§2+T2+Sgen
0

Here W, =W,
Vi/u = Mﬂz' Mﬂl' Q:Mﬁz - Mﬂ1+MZb§1' MTO§2+ZE)Sgen
Vi/u = M(ﬂz' Zbiz)' M(ﬁl' TO§1)+E)Sgen

Since I;Sgen * O

B = N(E, - By Whete = H - ToS
(c) Using the Steam Tables we find
i)  at30bar =3MPaand600°C
U = 32850 kJ/kg, $=75085 kJkg K, ¥ =013243 m°/kg



Ay =U+PV- TS
= 32850 +1013 bar + 013243 m*/kg” 107 kJ/barxm®- 29815 75085
=105976 kJkg

ii)  a5bar =05MPa and 300°C
U =28029 kjkg, S =74599 kJkg K, ¥ =05226 m’/kg

A, =28029+1013" 05226” 107 - 20815 74599 = 63167 kJ/kg

W, = A,- A, =(63L67- 1059.76) kJ/kg=-42809 kJkg
This is the maximum useful work that can be obtained in the transformation with the environment
a 25°C and 1.013 bar. It isnow aproblem of clever engineering design to develop adevice which
will extract this work from the steam in a nonflow process.

(d) Sincetheinlet and exit streams are at 25°C and P =1013 bar, any component which passes
through the power plant unchanged (i.e., the organic matter, nitrogen and excess oxygen in the air,
etc.) does not contribute to the change in availability, or produce any useful work. Therefore, for
each kilogram of coal the net changeis:

0.7 kg of carbon =5833 mol of C
+5833 mol of O,
to produce 58.33 mol CO,,

also

015 kg of water = 833 mol of H,O undergoes a phase change
from liquid to vapor

Therefore

ME,=a (N, E,),, =5833 0+5833" 0+833" (- 68317 +29815" 0.039)

i (carbon) (oxygen) (liquid water)

=-1976 kJkg coal
Moy =@ (N;B,),, =5833" (- 94052)+ 833 (-578+ 29815  00106)

i (carbon dioxide) (water vapor)

= - 24858 kJ/kg coal
W™ = - 24858- (1976) kJ/ kg coal =22882 kJ/kg coal

w2 = _22 kW- hr/kg coal = 7920 kJ/kg coal
Efficiency in % =20 190 _ 3/ 60
22882

Thus acoal-fired electrical power generation plants converts slightly more than 1/3 of the useful
work obtainable from the coal it consumes. This suggeststhat it would be useful to look for
another method of generating electrical power from coal . . . for example, using an electro-
chemical fuel cell. Considering the amount of coal consumed each year in power generation, and
the conseguences (strip mining, acid rain, greenhouse effect, etc.) the potential economic savings
and environmental impact of using only 1/3 as much coal is enormous.



3.38 Assumptions:
1) Turbine and pump operate reversibly

and adiabatically @
2) No pressure drop across condenser and /JLv Boiler | ———~
boiler l
3) Only heat transfer occurs at condenser Pump 4 Turbine
and boiler ‘
TT Condenser @
Location  Path State T(°C) P (bar) H Kl /kg Sk /kgK V m’/kg
1 superheated 3917.4 7.9487
vapor
) AS =0
2 superheated 67 2623.2
vapor
) P
constant
3 60.1 2514 0.8320 0.00102
) AS =0
4 comp liq 60.1 253.4
) P=
constant
1 3917.4 7.9487

[At each state the properties in boxes were known and used with the steam stables to find the remaining
properties.] Now ready to answer questions.
(a) Net work output per kilogram

= _[(Hl _ﬁ2)+(1:13 —194)]
= (39174 -26232)+ (2514 —2534)] = 12922 kI/kg

(b) Heat discarded by condenser
= H, - H, = 251426232 = 23718 kl/kg
(c) Fraction of work used by pump (%)

(2514-2534)x100 _
—(3917.4-26232)

0154%

(d) Heat absorbed in boiler = (39174 —2534) =3664.0 kJ/kg
(e) Thermal efficiency (%)

_ —Net work out <100 = 12922 x 100

= - =3527%
Heat in 3664.0



Carnot efficiency (1100°C and 15°C)

_ L T _ (1100+27315) - (15+27319 . |00 2000,
T (1100+ 27315) '

For comparison, Carnot efficiency (700°C and 60.1°C) which are the temperature levels of working fluid
(steam) in the closed-1oop power cycle

_ (700+27315) - (601+27315) ,
700 + 27315

100 = 6576%

which isamost twice as high as the actual efficiency.

3.39 Threesubsystems: unknowns 7/, B/, T/, B/, T/, B/ (6 unknowns)
After process P/ = B/ = P/ (2 equations)
Subsystem 1 has undergone a reversible adiabatic expansion

R/Cp
b s/ =5 o7 = Tf(j) (1 equation) (#1)
1

Subsystem 3 has undergone a reversible adiabatic compression

pf

RICp R[Cp
p S, =55, 0r Tsf—Ts( J —Ts[P ) (lequation)  (#2)
3

3
Mass balance subsystems 1 + 2

B'v, BV, RV BV
A P

N{ +N§{ = N{+Njp

or

=0.017909 (1 equation) (#3)

o[ 05,7 ) 1005 1 025
77 7/ )T 29315 ' 29315

Energy balance on subsystems1 + 2 + 3

N/ U] +NJ UL + NJUL = NiU, + NjU S + NiU

P
P].Vlc Tf PZVZCVTZf'i'PSVSC Tf P].Vlc Tl PZVZC Tl P3V3C Tl
RT/ RTJ RTY RT} RT} RT}

PI(n+v V)= BV + B, + BYs
but 7, + 7, +V) =V, +V} +V4 =(05+025+025) =1m®

pl = 10" 05+1" 025+1" 025
1

=55bar

usingthisresult  inegn. (1) ® 7;/ =25245K
inegn. (2) ® 7y =44893K



CPoT 1, 44893
Vi =V3—2x2-=025" —  ——=006961m"
J TN 55 29315

v,/ =025 2- 006961=04304m°

Now using Egn. (#3)

05 ¥ 05 04304
Py| =+ | =55 ——+———|=0017909 b 7}/ = 337.41K
/1 25245 T

Thus the state of the system is asfollows

Initial Final
T 293.15K 25245 K
4 10 bar 5.5 bar
T, 293.15K 33741 K
P, 1 bar 5.5 bar
Vs 025m’ 04304 m*
T 293.15K 448.93 K
P, 1 5.5 bar
Vs 025m° 00696 m*
Work done on subsystem 3
Energy balance

N{UL - Njug=w=-[Pav

1242 . Pyl A e . C

C Tf_ 3 3C Tl:P.fV.f_V_ PlVl_V:W
RZéf \Ax] RZ%I V~3 373 R 373 R
w=S2"R(p/v/ - pvi)=355" 00696- 1 025

= 03984 bar xm°> = 3984 kJ

3.40 For the mass and energy balances, consider the composite system of can + tire as the system. Also gasis
ideal for thissystem Q=0 and W =0
BV, BV, BW B

massbalance: N/ + N = NI+ N b . .
7 B L 5

1)
energy balance

N{U{ +NJUJ = N{U, + N,U, b B+ PV, = B+ PV, (2

(see derivation of egn. (c) of Illustration 2.5-5)
Also B/ = B/ =26bar(- 3 ; using egn. (3) in egn. (2) yields

. B/V,+P/V,- Py, 267 (406" 10%)-1 47107

B — =10927 bar
" 6" 10

1



To use eqn. (1) to get final temperatures, need another independent equation relating 7,/ and 7. Could do

an energy balance around tank 1, asin derivation of egn. (f) of Illustration 2.5-5. A more direct way is to do
an entropy balance around a small fluid element, asin Illustration 3.5-2 and immediately obtain Eqn. (€) of

that illustration
71f' Co/R plf
I R

(pr\iG 0 \8314/30
L =T L = 295(—) =104.69K (very cold!)
B 109.27

Thus

Using thisresult in egn. (1) gives 7,/ = 30326 K.

3.41 (@) System: Gasinthetank — system boundary isjust before exit tothe tank. System is open, adiabatic, and
of constant volume.

mMB: Yoy
dt
N .
sp: 49 _ s
dt
b s v _Ns=-Nsp NQ:OorS:constant(sinceN1 0)
— dt dt - dt~ dt -

Note: Gasjust leaving system has the same thermodynamic properties as gas in the system by the “well-
mixed” assumption.
For the ideal gasthisimplies

_ B lce
Tz—E?

1

=13352K

8314/30
(b) 7,=(@2+ 27315)( 1 bar )

17.5 bar
(c) System: Gasin the tank + engine (open, constant-volume, adiabatic)
MB.. N,- N,=DNn

1

DN =amount of mass (moles) that |eft the system
EB. N,U,- NU, =DNH,, +W

Note: H,, = constant, since gas|eaving engineis of constant properties.
Thus

Wy =N,U,- NU;- DNHy,
= Nfgf - MU, - Nfﬁout + N H o
=N;Cy - N,CyT - N;Cplyy + NiCploy; butToy =T
=N, [GT, - CoT]+ N.RT;



! referencetemperature
H=C(T- T
1= G 0) } see Eqn. (2.4-8)
U=G/(T- T)- RT

PV
Now PV =NRTP N=—
RT

, 3
vz 175bar” 0.5m =0.3566 kmol

" 29515K” 8314 102 barxm*/kmol K

lbar” 0.5m®

/713352 K © 8314 102
W = 004504[(30- 8.314)" 13352- 30" 29515]+0.3566 8314 29515

= 606.6 kJ

= 004504 kmol

Since W, >0, work must be put into the engine if the outlet temperature is to be maintained at 22°C.

(Alternatively, heat could be added and work extracted.)
We should check to see if the process considered above is indeed possible. Can do this by using the
entropy balance and ascertaining whether Sy, 2 0.

Entropy balance

N/ NS =(N) = NSy +8

gen

T P . .
b N/ Coln—L- N RIn—L- NGpn Loy NRInEL =5,

out out out I%ut
But 7,,, =T =29515K , and R, = P, =1bar so
T, P
/ i —
NfCPIn?iHViRInE— Sgen
or

13352
Sgen = 004505" 30In
20515

175
+03566" 8.314|nT = 7414 kJK

Thus, Sgen >0, and the processis possible!
(d) Similar process, but now isothermal: system = gasin tank and engine.
MB.. N,- N, =DV

EB. NyUy- NU; =DNHoy +Q+W, =Ny N JHoy + O+,

. _ 0, .
SB. NS, NS, ZDNSyy+ -+ S = (N, - NS

0
+=4+9
Sout T T Dgen

Set Sgen = 0, since we want maximum work (see Sec. 3.2). Thus



3.42

=15, M) (4 M.

= TNf(Qf- ﬁom)' mi(ﬁi' gout)

P, B
=- N,TRIn—+ N,RT In—*
out out

But P, =B, =1bar and

175

0 =03566" 8314 " 29515l F(Tj =25046 kJ

We=N;Uy- NiUj- NpHoq + NiBloy - O

=- N,RT+N,RT- Q=(N,- N,;)RT- Q

put v, = Lo 105

/" RT  29515" 8314 10°2
W, =(03566- 00204)" 8314" 29515- 2504.6 = - 1679.6 kJ. Inthis case we obtain work!

=2038" 10°2 kmol and

a) For each stage of the compressor, assuming steady-state operation and reversible adiabatic operation we
have from the mass, energy and entropy bal ances, respectively

0:Mir1+M0ut or Mout:_Min:_M
0= Minl_]in + MoutHout +w o W= M(Hout - I_]in)
and

o = Min§i11 + Muut L,S\vnut or 5()ut = S\Vin

So through each compressor (but not intercooler) stage, one follows aline on constant entropy in Fig. 2.4-2
Therefore, for first compressor stage we have

H,,(T =200K,P =1bar) = 767 kJ/ kg and S,,(T = 200K,P = 1bar) =65 kJ/ kg K
H,,(S=65kJ/kgK,P =5bar) =963 kJ/ kg and T, =295K

Therefore the first stage work per kg. of methane flowing through the compressor is
W (first stage) = 963 - 767 kJ/ kg = 196 kJ/ kg

After cooling, the temperature of the methane stream is 200 K, so that for the second compressor stage we
have

H, (T =200K,P =5bar) =760 kJ/ kg and S, (T = 200K, P = 5bar) =565kJ/ kg K
H,,(S=565kJ/kgK, P =25bar) =960 kJ/ kg and T,, = 300K

Therefore the second stage work per kg. of methane flowing through the compressor is
W (second stage) = 960- 760 kJ/kg = 200 kJ/kg

Similarly, after intercooling, the third stage compressor work is found from

H, (T =200K,P = 25bar) =718 kJ/ kg and S, (T = 200K, P = 25bar) = 4.65kJ / kg K
H,,(S = 465kd/ kg K, P =100 bar) =855 kJ/ kg and T, = 288K
Therefore the third stage work per kg. of methane flowing through the compressor is

W (third stage) = 855- 718 kJ/ kg = 137 kJ/ kg



b)

Consequently the total compressor work through all three stagesis
W =196 + 200 +137 =533 kJ/ kg

The liquefaction processis a Joule-Thomson expansion, and therefore occurs at constant enthalpy. The
enthalpy of the methane leaving the cooler at 100 bar and 200 K is 423 kJ/kg. At 1 bar the enthalpy of the
saturate vapor is 582 kJ/kg, and that of the liquid is 71 kJ/kg. Therefore from the energy balance on the
throttling valve and flash drum we have

A~ ~

H,=H,

in out
H(200 K, 100 bar) = (1- x)H (sat'd. vapor, 1 bar) + xFH(sat'd. liquid, 1 bar)

423 g =(1- x)x71£+x>582§

g kg g

or

where x = 0.689 is the fraction of vapor leaving the flash drum, and (1) = 0.311 is the fraction of the
methane that has been liquefied. Therefore, for each kilogram of methane that enters the simple
liquefaction unit, 689 grams of methane are lost as vapor, and only 311 grams of LNG are produced.
Further, since 533 kJ of work are required in the compressor to produce 311 grams of LNG, approximately
1713 kJ of compressor work are required for each kg. of LNG produced.

Asintheillustration, we choose the system for writing balance equations to be the subsystem consisting of
the heat exchanger, throttle valve and flash drum (though other choices could be made). The mass and
energy balances for this subsystem (since there are no heat losses to the outside or any work flows) are

My = Mg+ Mg or taking M, = 1 and letting x be the fraction of vapor

1=(1- x)+x

MsHs = MgHg + MgH,

1% (T = 200K, P =100 bar) = x xH (T = 200K, P = 1bar) +(1- x)xH(sat'd.liquid, P =1bar)
kJ kJ kJ

423 == = x 5718 — +(1- x) 1 —
kg kg kg

The solution to this equation isx = 0.544 as the fraction of vapor which isrecycled, and 0.456 as the

fraction of liquid.
The mass and energy balances for the mixing of the streamsimmediately before the compressor are

Mg + M; = My; then basing the calculation of 1 kg of flow into the compressor

My =1, Mg = 0544 and M, = 0456

However, since both the recycle vapor and the inlet vapor are at 200 K and 1 bar, the gas leaving the
mixing tee must also be at these conditions, so that the inlet conditionsto the first compressor are the

same as inthe simple liquefaction process, and 1511. = 718%. Also, all other compressor stages

9
operate as in the simple liquefaction process.
Therefore, the total compressor work per kg of methane passed through the compressor is
W =196+ 200 +137 =533 kJ/ kg of methane through the compressor. However, each kg. of methane
through the compressor resultsin only 0.456 kg. of LNG (the remainder of the methane is recycled).
Consequently the compressor work required per kg. of LNG produced is (533 kJ/kg)/0.456 kg = 1168 kJ/kg
of LNG produced. Thisisto be compared to 1713 kJkg of LNG produced in the simple liquefaction
process.
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3.43 (also available asaMathcad worksheet)

Problem 3.43 with MATHCAD

. 3
bar:=101300-Pa  mol:=1 RE:=8314.1%4€ RG = 000008314 22"
mol-K mol-K
Heat capacity Cp:=25RE
Initial Conditions (Vt=total volume, m"3): Ti:=208K Pi:=400bar  Vt:=0045m"
Find initial molar volume and number of moles _RGTi B 1n5 .. .3
Start with initial guess for volume, m"3/mol Vi=— Vi = 619410 m
Initial molar volume and _ D .3 M _ .
number of moles Vi = 6.194+10 m N '_ﬁ N = 726.518°mol

Final pressureis1.013 bar, and final temperature is unknown; will be found by equating the initial and final
entropies. Guess final temperature is 200 K

Pf:=1013-bar T:=50K \Yi :=E

Pf
Solvefor final
temperature using Given T Pt —
Fina temperature Tf = 26432 *K

w :=§-RE-(Tf— Ti):N W = -2.461-106 joule
W
TNTeq i=- | ————MM— TNTeq = 0.535°kg
as000001241®



3.44 (also available asaMathcad worksheet)

3MNZ - Ri-ga RRi=831410°

Note that in the 1st and 2nd printings, carbon dioxide was used as the fluid. This gave
unreasonable answers when this problem was revisited with the Peng-Robinson eqn.

of state, as both the initial and final states were found to be in the liquid state. Therefore
from the 3rd printing on, the fluid has been changed to nitrogen.

Heat capacity constants for nitrogen

Cp,:=28883  Cp,i=-015710°  Cp,:=080810° Cp,:=-287110°
Ti:=298.15 Tf:=100
Given
Tf
2 3
(Coy+ Cp, T+ Cp, T2+ Cp, T
0 1 2 3 dT=Rn 1013
T 140
Ti
Tt :=find(Tf) Tt = 72054

N=0106 moles

N [ 140.31416.( .01) .06
RR-298.15

Number of moles = N = PV/RT

Tf
W = N-J (Cp0+ Cp, T+ Cp, T2+ Cp3-T3) dT

Ti
W =-695.114  joules 4600 J = 1 gram TNT
-W
Grams of INT = G:=—— G=0151 grams of TNT
4600

3.44C02 R:=8314 RR:=8314-10"°

Note that in the 1st and 2nd printings, carbon dioxide was used as the fluid. This gave
unreasonable answers when this problem was revisited with the Peng-Robinson eqgn.

of state, as both the initial and final states were found to be in the liquid state. Therefore
from the 3rd printing on, the fluid has been changed to nitrogen.

Heat capacity constants

Cp0:=22243  Cpl:=597710%  Cp2:=-3499-10° Cp3:=7.464-10 °
Ti :=298.15 Tf := 200
Given
Tf
(cpo+ Cp1 T + Cp2 T2+ cp3 1) dT=R-In( %)
T 140

Ti



Tf := find( Tf) Tf = 79.836

12 L 14031416 ( 0% 06
RR29815

Number of moles = N = PV/RT N=0106 moles

To calculate work done (energy released), we need the internal energy change. Therefore
Cv=Cp-R

Tf
W= N-J‘ (cpo- 8314+ Cp1.T+ Cp2 T2+ Cpa T3 dT
Ti
W =-555558  joules 4600 J =1 gram TNT

Grams of TNT = G:=ﬂ G=0121 grams of TNT
4600

3.45 25bar =25 MPg; 600°C
[ =36863 kJkg; S =75960 kJ/kg K

1 bar 100°C S$=73614
150 S=76314

D=027 1311

b T =14344°C

H =27764- 131= 27633 kJ kg
W = - 36863+ 27633 = - 923 kJ/kg
- 16614 kJ/mol
(ideal gas = - 16830 kJ/mol)
Actual work 784.55

dU Ca s dY
—=0=M(H,- Hy)+Q- P—+VW,
ar 1( 1 2) 0 r s

H,=H, +% = 36863- 78455= 290175

1
Final state P=1bar : A =290175

A(Lbar, 200°C) =28753| br_ 50
FA(Lbar, 250°C) = 29749 DH 996
290175- H(1bar, 200°C) = 2645
T = 200 +—2 2645= 21328

996

S(1 bar, 250) = 80333
S(1 bar, 200) = 78343
S(1bar, 213.28) = 7.8872



3.46

ds Ca AN
E:O:M(Sl-SZ)+Sgen;

Seen _ & =
N =8, - §, = 78872- 75960 = 02912 kJ/kg K

M
52416 kJ/kg K

(ideal gas =5468)
PR: T=600°C; P=25bar
H =216064" 10*
S =14.74377
Now P=1bar, S =1474377. Guess T =213°C.

r S H
213 19.67116 727195
150 14.74399 503486

w
T 503486- 216064 = - 1657154 J/mol
Actual work P H, =752059

r S H
213 19.67116 7271.95
230 20.90787 7883.64
220 20.18472 7523.41

219.9 20.17742 7519.80
219.92 20.17888 7520.53

§ =2017888- 14.74377 = 543511

From simple statics the change in atmospheric pressure dP accompanying a change in height dk is
dP =-r gdh

wherer isthelocal mass density and g isthe gravitational constant. Assuming a packet of air undergoes an
atitude change relatively rapidly (compared to heat transfer), the entropy change for this processis
C R i . .
ds = 7PdT- — dP =0 sinceboth 0 and S,,,, equal zero.
Combining the two equations above we have
G R R R N M
—L2dT =—dP =- —rgdh = - —— Mgdh = - — gdh
T P P PV T

dT _ Mg
o —=-—-2
dh Cp

. dT K dT . , .
For dry air — @ 9.7—. Notethat — isreferred to asthe adiabatic lapse rate.
dh km dh

Also, itsvalue will bel ess than that above as the humidity increases.
Infact, if the humidity is 100%, so water will condense as the pressure decreases, the adiabatic lapse rate
will be almost zero.



Solutions to Chesnical and Engineering Thermodynamics, Je

4.1 Usingthe Mollier diagram

. (EJH _(EL g (510- 490)°C

), \pp 1241° 10" - 7.929" 10°)Pa

= 4.463" 10°°°C/Pa = 4.463°C/MPa
T DT 510 - 490)°C
s :(E_P)S i [EL ) (1069'(107 : 9.51)5’ 10°)Pa
=1702" 10 °°C/Pa=1702°C/MPa
(14/98); _ 1(4,7). US,P) _ WH,T). 1S, P)
(TH/1S), WS, T) N(H,P) WH.P) S.T)
_N7T,H), 1P,S) _ m

= WP WL.S) :k_s = 0262 (unitless)

42 (a) Startfromeqgn. 4.4-27

H(T,P)- H'®(T,P)=RT(Z- )+ Lj {T(d—Pj - P}d[
14

oL \dT
RT a(7T) P R dajdt
P= - = sl les] = - > SO
V-b Ve+2bV-b TJ)y V-b Vo+2bV-b

H(T,P)- H'®(T, P)

v
SRT(Z- D+ | {T R____dofdt | RT . __ D) }dV
vyl V-b VE+20V- 0] V-b V420V -b2] T

| et
y VE+2pV - 1

=RT(Z- 1) +(a + Tﬂ)
dT

From integral tables we have

dx 1 224 +b¢- VbE - dae

_ "
Ja¢c2+b¢c+c¢ Vb& - daee

for 4a¢¢- bE <0
1226+ b6+ Vb - 4atq

In our case a¢=1, b¢=2h, c=-b°; so 4ae- b€ =4xN-b%)- (o) =-8° and
(b9? - 4aeC=I8h2 = 2/2b .
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H(T,P)- H'°(T,P)

_ RI(z - 1)+ a7 TdafdT)| | 2V +2)- 22b| | 2V +2b- 22|
22b 2V+2b+2«/_b| 2V+2b+2J§b|
(a- TdajaT), V.+(1-¥2)b
=RI(Z- D+ In
2+/2b V+(1+«/—)b
or finaly

_ IG — i (T
H(T,P)- H'®(T,P)=RT(Z- )+ =T

(b) Thispartissimilar except that we start from eqn. (4.4-28)

, . ¢lG ; =RI T d_P - £:|
S(T,P)- S'°(T,P)=R nz+K£¥ {(dez v dy

K{ R dafdT

=RInZ+ >
oLV b Y +2b) - b

R

4

dafdT- a), Z+(1++2)B
n z+(1- V2)B

b

—RInZ+RIn— o +49/dT V+1+J—)b|

IV¥ 2J§b V+( «/—)b|

B da/dT r{Z+(1+«/—)B
=RINZ- B)+
+(1-V2)B

43 Start with egn. (4.2-21): dU = CVdT{[(ﬂP) - P
|4

©) ol -
), (3], )58,

(a) ldeal gas PV = RT

f(ﬂ_f’) - p=ob (ﬂ_ﬂj :(ﬂ_ﬁj
7), 1r), \nr),

(b) vander Waals gas

po KT (IP) _ R [ fAP) ] e
V-b V ‘ITT V-b ar ), 4
Also: dP—ﬂ- R dV+2—adV

V-b (- b? e

v .

|

Thus
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5 (ﬂ_g] __ R[w-b) :[ T 24y- b)]l
7T ), RT/W-b)?- 24V |(-b) RV

(3] ()
17), 1), [P’1v- »)]-[20 - 0)/RV]
__ aRV(V-b)
RTV3- 2a(V - b)?
(c) TheViria Equation of State

» R B R RT (4B Note: Thisisatotal
(ﬂ_j :7+é d +é : (d_TI - derivative, since B, is

T |4 =V .
Ty == == afunction of only temperature
P RT dB.
pr{ 2| p=§ BL 4B
qr), 2 r*tdinT

Also need (117 /117) ,, but thisis harder to evaluate alternatively. Since
(ﬂ_zj (ﬂ_PJ (ﬂ] -_1p (ﬂj __ WPAIT),
7 ),\w) \77), 1), (PAD),
MmpP

—— | isgivenabove.
17 ),

1P\ _ RT g (i+)BRT
w), v: oL v

o ('IT_K) _ K(RT/K+§1[B,-RT/K1‘+1]+§ (RT Zi+leB[/d|nT)j
),

l‘(RT/K +&[u+Brr/ z’”]j
i=1

. RT o BRT
Using —=P- &~
4 =1

we get

qv\ _YP+& (RT/r"*\aB,/dnT)]
(ij - 1P+& BRD)/V

and
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ar v dInTL P+& iBRT/V"**

44 (@) Startfrom

w2 ) e e ()

) ) {1

(b) ( /1) jp— = mtegraIe(V)T‘P-(L)TlP: Zj rm;PaIT.

7 T T np T
T, ,P
7, 2 ng,
Thus (T, P)= V(5 P) 2 +T, | —FdT.
I;L E’P T

w) w-b? ¥
('ﬂzpj __2RT  6a
w?), w-»* v

at the critical point P® F.,T® T, and V ® ¥,

(1) cop M 20
T V-0 Ve

2
[ﬂ ’Z) op 2RI _ G
mw T (Kc'b) Ve
- 1 1 |4
Dividing (1') by (2) b E(KC- b)ZEKc P b :? from (1)

L= VERT: _ (3b)°RT. _ 2TbRT. _ VcRT,

[‘IT_Q] ['nt _g R _aB, [P+& (RT/V""*)(4B]dInT)

AV~ b)Y 23b-bY 8 8
Ao L= L 4 ggp=_t 2. 4
T V-b RIV 27b(2b)  9b®  27b
b Z.= PCKC — Kc e _ ZC _ (g/S)KCRTC
RTC KC -b RTCVC (2/3)KC KCRTC
= E_ g = E = 0375

(1)

(2)

1)

)
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46 ds=rar- ('"—K) dP [egn. (4.2-20)]
s e

1[5 3 o

. qlG ) =0)- §'¢ = :P{E-(ﬂj}
[E(T,p) s (T,P)] [§(T,P 0- ST, P 0)] io P \17), u

. Ch R
For the idea gas dS'G:%dT-FdP. Thus, a constant temperature

However, S(7,P=0)- S'®(T,P=0=0, since al fluids are idel a P=0. Also
PV =Z(T,P)RT . Thus

)22

and

R () _ R RT (112
(8] o 218)

P \1r P
"lz-1 1(9z
P S(T,P)- S'(T,P)=-R _[ [—+_[_) }dp
T,P=0 P P ﬂT P
" lur,e)-1 T.(12
=R | {— ) +—’(—) ]dP,
1,,P,=0 K BT )p
47 (a) ldeal gas
PV = NRT

(50 bar)(100 m®)

N = — — 3 =142.1kmol
(27315+150)K * 8314 " 102 bar xm°/kmol K

Energy balance, closed nonflow system
DU =Q- [PdV=0+W.
However, for ideal gas DU =0 since T'is constant (isothermal). Thus

W=-0=-[Pdv :-IMW: - NRTINZ = - NrTInEL
v v, P,

= - 1421kmol * 8.314 Jmol K * (27315+150)" Ir(%)

=895.9" 10°kJ =8959 MJ
0=-8959MJ

Also, by Ideal Gas Law at fixed Tand N
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P 50
BV =BV, b V,=V—==100m*" — =1667m°
P, 300

(b) Corresponding states

IG
T P 7 u

= §°.5
r ]-'C —_— —_
initial state 22028151399 0 _g70 094 07 04
3042 7376
findl state 1301 % = 4067 0765 45 24
' cal cal

mol K mol K

Py 1421 PV
Number of molesof gas = N = =1512 kmol (142.1=—— from above)
ZRT 094 RT
Final volume =V, = = ZNRT

0765”1512 8314 102" (27315+150)

300
Energy balanceongas:. DU =Q+W

=1356 nt

Entropy balance on gas processes in gas are reversible: DS = Q +Sgen P S

DS:% or Q=171DS

en =0. Therefore

DS =S, - 5= N(S, - )= N{(s, - S7)+(S} - 87)- (S, - )}
= N{-2.4' 4184 - 8.314In%- (-04° 4.184)}

{ 8.368 - 8314In%} =-2326N J/K

0 =TDS =(27315+150)" 1512 kmol * (- 2326) = - 14885MJ
W=pU-0=NU,-U]-0=Nu, - ] N[py, - B ]- 0

:N{Tc(ﬂf'ﬂ.lfG)Jr(H S _Tc(ﬂi'ﬂile)
T o Tc

Since process

- Z/RT, +Zl.R7j}- 0

is isothermal.

3042(- 45- (-07))” 4184 - 8314
=1512 kmol| : +14885MJ
(27315+150) " (0.765- 094)

=1512" 107- 48365+ 615.7]J+14885MJ = - 6382 +14885 M J
=8503 MJ

(c) Peng-Robinson E.O.S.
Using the program PR1 with 7'=27315, P=1bar as the reference state, we obtain
T=150°C, P=50ba
Z=09202; ¥ =06475" 10° m*/mol ; H = 470248 J/mol; S =-1757 Jmol K .
T=150°C, P=300bar



Solutions to Chesnical and Engineering Thermodynamics, Je

7=07842; ¥ =09197" 10* m*/mol ; H =-6009 J/mol ; S = - 4124 J/mol .
vV 100 m®
V. 06475 103 m3/mol
O = TNDS = (27315+150) " 15444 (- 4124- (- 1757)) = - 15469 MJ
W=DU-Q=(H- PV), - (H- PV),- Q
=N@- P, - - P)]- 0
-6009- 300" 09197 10°*
=154.44 " 10° J/barxm®- 470248 |  10°+15469" 10°
+50° 06475 103" 10°

=885.25MJ
{Note that N, Q and I are close to values obtained from corresponding states.}

=154.44 kmol

4.8

(EJ _N@.S) _ .S WP NS DL
TP)g MRS WPT) WPS) S P)YUT,P)
_-(s/p), _ (W), _yar

(1S/917), Go/T Cp

and
ks _ WOAL/AP)s _ G, S)/N(P.S) _ T¢.S) A(P.T)
ky  (YrXTY/aP);  TE.D/NP.T)  W.T) N(P.S)
_Tsy) 'H(T,P):(Ej {ﬂj G, TGy
1Y) s.p) \17), \18), T G G
9 @ ('ﬂ_ﬂ) :'IT(E,T):ﬂ(ﬁ,T)yﬂ(P,T):(ﬂ_ﬂj (_P)
w), 1w 1(en 1w \1e),\1r ),

Since (ﬂ—:;) 1 0 (except at the critical point)
T

(ﬂ_ﬁ] :Oif(ﬂ_ﬁ) ~0
1w )r 1P );

o (L) -1e0_S0n 500 (1) (o1
w), 1@.p) WT.pP) NP \N7), \T),

:&g{(d_fj G Gy (ﬁ) o
rvAav), @nEvan, wa (),

4.10 (@) Westart by using the method of Jacobians to reduce the derivatives
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( ﬂ) _N7.H) _ WT,H) (T, P) TV
W), NWoH) TP TV TH)
__ ) NP,/ T) _ ( ﬂ_ﬂ) P/,
(P, 7) N(&ZW)/NT,Y)

TP ), (H/TT),
_(qH/A),
(@ H/TT),

Now from Table 4.1 we have that

(3], 7255, o (38, = 5L

alternatively, since H=U + PV

[ﬂ_ﬁj (ﬂ_zj {ﬂ(f’@j =cy )
ar v ar v ar v dT )y
Thus

( E) _-(wp/m), v - (/1)) _ - [v@p/p),+1(P/TT), ]
W), Cy +¥(TP/T), Cy +¥(TP/NIT),
Note: | have used (ﬂ—PJ ('ﬂ_K) :-(Ej .

w)\NT1), 1T v

(ﬂj _NT.8) _ WS WD) - WS D WY
W W8 W.n .S WD) WY

5 (35, 267,

Cy \ 1T
(b) For the van der Waalsfluid

(ﬂ_P] R (ﬂ_Pj - _“RT 21
7)), v-bo\w), w-sP P

Thus

ar\ - Rrv/@w - 0) + 20/v?)+ RTJ - B}
(ﬁ)ﬂ ) G +[KR/K' b]

after simplification we obtain

a7\ -[2aw- b7 - RTV]
(ﬁ)ﬂ G- VPR - b
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and

), wEn
ﬂK s Cv(Z' b)

4.11 There are a number of ways to solve this problem. The method | use is a little unusual, but the
simplest that | know of. At the critical point all three roots of ¥ are equal, and equal to V..

Mathematically this can be expressed as (V - Zc)s =0 which, on expansion, becomes
3 2 2 3 _
4 '%CK +3KCK-ZC_O (2)
compare thiswith

__RT a _ RT a
V-b VY +b)+b(V-b) V-b V>+2by - b°

P

which multiplying through by the denominators can be written as

RT 2bRT RTH? ab
K3+K2(b' —)+(-3b2 - —+ijg+ e L21-g (2)
P P P P P

Comparing the coefficientsof V' in Egns. (1) and (2) gives 7., F.

2
Ve b- —=-F 3
v P Y ¢ ()
v - 2RI, a g 4
P F
KO: b3+ RPTC b2_ ;l)_b — _K:é (5)
C C

From Eqgn. (3)

PCb-l:_apcVC:-SZC or Pcb
RT, RT, RT,

=1- 37, (6)

, 1-
For convenience, let y=1- 3Z. or Z :Ty' Then

RT,

From Eqgn. (4)
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2
A Bb _Z(Pcb)+ aPC2:3Zg
RT, RT.) (RT.)

b 32+ 2y+ afe _31- )
(RT,)? 9
or expanding and rearranging
_afe > = i(10};2 +4y+1) (7
(RT.)" 3

Finally from egn. (5)

(Pcbjg_l_(bpcjz_(Pcbj aPC :_Zs
RT.) \RT, RT. \ (RT;)? ¢

1 1
y3 +y2 _ yxg(loyz +4y +l) =- E(l_ y)3

or
64)° +6y* +12y- 1=0 (8)

This equation has the solution y = 0077796074

b b= 0.077796074% (from Eqn. (6))
C
2
R,
a= 0457235529% (from Eqn. (7))
C

1-
Also Z. == = 0307401309 .

Note that we have equateda and b to 7, and F. only at thecritical point. Therefore these functions
could have other values away from the critical point. However, aswe have equated functions of ¥,

we have assumed a and 5 would only be functions of 7. Therefore, to be completely general we
could have

RT)? (T
a = 0457235529 ga(—)
P C T, C

b = 0077796074 22C b(l)
c T; C

with I ®1asl®1andbl ®1asi®1.
Te Ic e Ic

In fact, Peng and Robinson (and others) have set b=1 at all temperatures and adjusted a as a
function of temperature to give the correct vapor pressure (see chapter 5).

4.12 (also available asaMathcad worksheet)
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N .. . .
MB. “ =N+ N =0P Np=- Ny
N1—PI;|—PN2 U Q
EB. = N\H,+N,H,+0=0p = =H,- H
dt 124 2222 Q Nl 4

Also, now using the program PR1 with T'= 27315, P =1 bar reference state we obtain

7=100°C 7=150°C
P =30 bar P=20bar
Z =09032 Z =09583
¥ =09340" 10° nm/mol ¥ =01686" 102 m*/mol
= 3609.72 J/mol H = 679606 J/mol
§=-468 Jmol

§ = - 1584 J/mol K
2 = 679606 - 3609.72 = 318634 J/mol

4.13 (also available asaMathcad worksheet)
and reversible DS =0 or S, =§_f. , i.e,

adiabatic
Using the program PR1 with the 7=27315K and P=1

Since  process s
S(310K, 14 bar) = S(T' =7, 345 bar).
bar reference state we obtain 7=310K, P=14bar, Z=09733, V' =01792" 10% n/mol

H =109083 J/mol and S =1575 J/mol K .
By trial and error (knowing P and S, guessing 7) we obtain 7 =34191K, P =345bar

Z=09717, ¥ =08007" 104 m%/moal, H =188609 J/mol , S =1575 J/mol K
P 7, =34191K.
System = contents of compressor
M.B.: (Z—]ZIZOZN1+N2 b N,=-N,
volume of
compressor

. . constant
adiabatic

dU . . . , 0
= NH, + NoHy+ 70 - P %VZ
dt

EB. —=0=
dt
Wg=- N\H,+N,H, or =~=H,- H, =188609- 109083 = 79526 J/mol

V a
4.14 (9 P+— (V-b)=RT b —
RT V- b RTV

PV y
lim [—— R ]—1
ve

i) lim—=
P® O RT V-b RITV
V®Y¥
.. . PV . |4 a
ii) B=Ilim V[——- j:hmV;- -
POO\ RT re¥x—|\V-b RTV
V®¥ — -
=limy V- (Z'b)_ a = lim bV a :b-i
e ¥ v-b  RTV] vex|(-b) RT RT
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(b)

4.15 (9

(b)

(©

b

i) €= lim Vz(ﬂ- 1- 5): lim V{w}: lim 2L =52
p®0— \ RT V Ve®¥ V-b Vve¥V -b
V® ¥ - - -
b C=b
At the Boyle temperature: lim V(L- 1): Ob B=0
P® 0"\ RT
W RT, v
0=h- —— T, == buta =—=—< p ==t (Egns. 4.6-33)
RT, R, 8 3
9/8V_RT. 27
B:@:_E = 33757,
RV./[3 8

Fromtable: 7, ~320K ,i.e, B(7;)= B(320K) =0
Theinversion temperature is the temperature at which

RSt
1P )y Co|™ M7 ),

(ﬂ) _ T [Eﬂg}:ﬁﬂ_f?
), qr|,LP P dT

V- ﬂ :E+B-£_Td_B:B_Td_B
- \1r), P P dT dT

i - . dB
Thus, T"™ isthe temperature at which B - T; =0.

Plot up Bvs. 7, obtain dB/dT either graphically, or numerically from the tabular data. | find
™ ~ 600K . Also, dB[dT  decreases with increasing temperature (i.e,

dBJdT ~ 456 cn/mol K at 87.5K and 0.027 cn?/mol K at 650 K. Presumably it is negative
at even higher temperature!)

Generaly
n’]:(ﬂ) :-i V- [‘(ﬂj :-L{B-Td_B}
), G|~ 917 ), G dT

i dB
Using the datain the tableit is easy to show that for 7<7T"™, B- T—dT<OI:> n> 0, while for
i B
T>TV B- Td—>0b m<0.
dT
Since Fig. 2.4-3 for nitrogen is an H-P plot is easiest to proceed as follows

[E) _ 1 _-(H/1P),
TP )y (HMT),WPD,  (THD),

Since (1H/91T), =Cp is> 0 and less than ¥ [Except at a phase transition—see Chap. 5 and
Problem 5.1—however, n has no meaning in the two-phase region], if (d7/dP) y IS to be zero,
then (d H/dP), must equal zero. That is, an inversion point occurs when isothe?ms are paralel
to lines of constant H (vertical line). This occurs at low pressures (ideal gas region) and at high
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pressures (nonideal gas region). See, for example, T =-200°C isotherm near 30 MPa (which

is off thefigure).
To identify the inversion temperatures of nitrogen we can use Fig. 2.4-2b, a temperature-

entropy diagram. From part a of this problem we note that at v

V:T"“’(ﬂj b p:_Ti“"(ﬂ_P)
- 17)p 17 )p

Thus at each inversion temperatures ™ we can find a density (or pressure) for which this
equation is satisfied. Unfortunately, it isdifficult to read the figure.
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3
4.16 18 kg; V = 203N
18 kg

=1667x 10° m3/kg. Using Fig. 2.4-2 we find®= 91 bar

Using the program PR1, witfi = 42315K andV =1667x 10° n?/kg, we find, by trial-and-error
that P =108 0 bar.

4.17 Using theprogram PR1 we find at 30G and 35 bar; Z =0.6853 V =09330x 10° n#/mol;

H =21033J mol= 21033kJ mol andS=7.06 J/ mol K .

To use the principle of corresponding states we will assume the state 86 C and P =01 bar
is an ideal gas state (i.e., don’'t need corrections for nonideality at this condition). °At 800 35
bar we have

300+ 27315

= 25210302

2832+ 27315

p =2 _076754
456

We find Z=071% (H'® - H) /T, =8.37 J mol; S® -~ $=7.113J mol K.
From Appendix Il

Cp =22243+ 00597T- 3499 IBT?+ .7464 10T°
57315

AH'® = [CodT=11910J mol
289.15
ps® = | & 47— RIn

289.15

57315 ~*
(35barj = -20386J/mol K

0.1 bar

Thus

H(T =30C°C, 35 baj)
H-H'°

=H(16C, 0.1 bay+ AH'® +TC[— — j
T 300°C, 35 bar

=0+11910- (2832 273)6.83% 725#mol
S(T=300°C, 35 bay= 0- 20386~ 7113 27499 mol K

. 0.71x 8314x 10° x 57315
Finally PV = ZRT; V = 35 = 09666x 10° m*/mol.

4.18 Equation of stateP(V —b) = RT
oPY R _P (0V) _R_V-b, oP ) _ P
@ |—| =—==;|—=| =—= ;and| — | = ——
ot ), o P oV );
Thus

\ P R
CP:CV+ a—_ a_ :Cv+T—£:C\/+R
oT )\ oT ), P T

for C,(P, T)= GJ(T), we must have that
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5% =13%) -0

%) _o|(ov) _o| R
5] 34,30 -] 2o ar-co

imi aCy 9P
Similarly, f V,T)= : t have that =T =0.
imilarly, for C,(V,T)= G (T), we must have {a\i jT (GTZJV

9’P) _o|(oP) _o]| R
[Flﬁuﬁj o7, y-p 07 H(T V=GO

(b) First case is clearly a Joule-Thomson expanBioH = constant

(a_T) _ _L[V _T(ﬂ) } _L[RT +b- ﬂ}_ b
oP), GC|T \aT), C.L P P Co
Since C;, is independent d?, integration can be done easily
T2
JCoMdT=-H B~ B
T
to proceed, we need to know hdy, depends oii. If C, is independent ¢f we have

b
T2:T1_C_(P2_ P) (1)

P

Eqgn. (1) also holds ifC, is a function ofT, but then it is the average heat capacity over the

temperature interval which appears in Edn.
The second expansion is at constant entropy (key words are reversible and adiabatic)

oT) __(@8faP; _ @V[oT), _ T R f. dT __tdP
(aPJ_S_ (a§/aT)P_ Co/T _CP ICP _RplP

If Cp isindependent df, then

R/Go
T, = Tl( PZ] ; @

more complicated expression arise€if = C(T).

4.19 (also available as a Mathcad worksheet)
General:

mass balance:N, = N/ + N} 1)

energy baIance:N{Q1 = le Q{ + sz g; (2)
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state variable constraintst' =T =T"; B' =R =P ; v,=\, 0O U/ = U]
(a) Ideal gas solution
Egns. of state:PV = NRT; U =C,T- G T
i f
From M.B. get: ili: 2Pf
T
1 f

FromE.B.get T, =T' 0 T. =T =20°C; P' :%Pli:250bar

(b) Corresponding states solution
PV = ZNRTor PV = ZRT
U(T) = UM+ (U-U°(M)= U (M+(H-H®) - Pv+(RY°
=UM+(H-H®)+@1-2(PV°
U'eM+(H-H"®)+@1-2)RT

From the mass balance

P 500x 10 p' '
L= =1398x 10= 2 ——;or f ~=6990x 10
Z'T  (20+27315x 122 Z'T Z'T
where we have used
. 20+ 27315 5% 10
Z|: '|;:—:]_ 92—210772122
1907 4.64% 16

From energy balance
NIU = N U + N U =N+ N U =(N+ ) UD U =4
where we have used the fabatU, =U! . SinceT," =T, andPR' = B' . But

U -U3=0=U5(T")-Us(T)+(H-H")
HL= 2R o = (1= 2 Ry 5

-(H-H"°),

T Pf

and

u'®(T")-u'®(T)=c(T" - T)=27.25 mol K( T - 29315K)

(H _ HIG) ., =-180x 190 7= - 3432 6)/ mol

— — 7P

(1- Z)RTi 5 =-022x 8314x 29315 - 536 2/ mol

0 0=2729; + 29316 2725 022 .8314 180 190(H-H'°)

+(1_Z)RT|TTYPf

Tf pf

27.28 +(H-H'®) | | +(1=- 2)RThs o = 4,021 (1)

THP
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To be solved along with

pf
<57 =699 10 2

| found the solution by making a guess ok, using eqgn. (2) and Fig. 4.6-3 to firll' by trial
and error. Then, guessél’ and computedP’ were tested in eqn. (1). Solution found:
T' ~237K =-3615C; P' ~1011x 16 Pa= 1011bar

(c) The van der Waals gas

; i 1 .
We know that:U' :Qf andV' :E\f . To evaluate the final temperature we start from

oV path of

/v consty V!

Vf
dT:(a_T) d¥+(£j du O Tf _'|"|a|ong = J'(a_T) dv
u oy u

but

aT) _ _(8ujav), _ T@POT,+P_ 4
( L (0u/aT), Cy RRY:

ov )
Now, by Eqn. (4.2-36)

’p RT
(_GC\,) =T 9 > forvdWeosF’:——i2
oV J; aT* )y V-b v

oP R a°pP o .
(ﬁl :ﬁ; (aﬁl =00 C, is independent of volumé G, =G,

but C, = G, — R=35565- 8314= 2723/ mol K

V' v
SR TR, azdvz_ijd_gﬂi(if__lij
GV GV GV

=——2 _ Ssince IZEV.
>~

Thus the first step is to find' .
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p+_2

V)
0 V' =6.678x 10° m*/mol; V' = 133& 10 n?/mol
~ -02283 Palni/ mof
~ 2x(27.25J/mol K)x (6678 10 n¥/mo)

> (V' -b)= RT

Ti-T =-6273K

0 T =29315 6273 2304K=- 4278

_ RT" a _ 8314x 23042 02283
" (LT-b) (v'f 1336x10'- 426% 10 (1336x10)

P, =8286x 10 Pa= 8286 bar

(d) Here we will use the program PR1. Using the 273.15 K drat teference state we find that at
the initial conditions Z=11005 V'=05365< 10* n¥/mol, H'=-328185J mol and

S =-5912 J mol K. Therefore

U'=H -PV =-328185 506« 05368 Itx 1&- 596436mol

Now sinceU " =U' = -5964 353 mol and

V' =2V =1073 10* ni/mol.

We must, by trial-and-error, find the temperature and pressure of the state having these
properties. | find the following as the solutiofs =2309K; P~99 bar (for which

V =01075 n?/mol andU =-59684 J/mol). To summarize, we have the following answers
for the different parts of the problem:

pf Tf
Ideal gas 250 bar 293.15 K
Corresponding states 101.1 bar 237 K
van der Waals 82.86 bar 230.42 K
Peng-Robinson 99 bar 230.9 K

Once again, the ideal gas solution is seriously in error.

4.20 Mass balance (system = both tankg)i = N + N}
energy balance (system = both tank®);U’, = N U! + N} U}
entropy balance (system = portion of initial contents of tank 1, also in there fin&)yy: §
Vi o _ Vi _V
—+i N/ =—and N, =—%
V] Yy Yo
foof

. P P
(a) Ideal gas solution: obtaiff- =—=—+—% from mass balance and
T T

f— pf — pf. i =
Also, P =B =P ; N =

R=R"+R =2F O P =250ba= 2% 10Pafrom energy balance
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(b)

(pf R/ G 1 8314/ 35565
Tf = E(ﬁj 0T =@o+273 1&{5) =249.3K
1

=-239 C from entopy balance

and
1 2 1
—=—-—0 T, =3559K = 827C
L T 0

Also

N, R'v, RT 25x10 _ 29315

—= === =0588

NI  RT' BV, 2493 500x 10
and

f f
No [ Mo garz
Ny N;
Corresponding States Solution:
" o 29315
Initial conditions T, =——— =15838; P :ﬂ:m??;
190.7 4.64x 10
H'C -H G
=T =180 Jmol K; S - S=96 J mol K.
C
Mass balance:
R 1 1 50x 10
1 _pil = (=22 130816 1)
ZT zitl  ZiT | 122x 29315

Entropy balance:

sl -4=0=(5-_§) +(8"-_8)-(Ls_'Y

or

(§1_§G)f+ Gin Tlf pf

- RIn =-96 2
29315 5 16 @

Energy balance:

NIU, = N{ U1+ N DS but = N+ NS 0 N (U - U+ N (U~ ) =0

0 zZ2=122;
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AV (1] - Ry ) (- B+ = (1 - B )- (Hy- BV} =0

2R Ry

S B (] ) (%) -2 RY < 2R}

1 1

r—rr{(H - HE O +(H O - Hy %) ~(H)- HS ') -2 RY + 2R} =0
2 12

Substituting in the known values gives
1 f f,1G f fof
ﬁ{(ﬂl ~H, ')+35564T," - 29315~ 831Z T + 64045

+ﬁ{(ﬂ; ~H{''®)+35564T, - 20315 8312/ T/ + 64045 (8)
2

Eqgns. (1-3) now must be solved. One possible procedure is
i) GuessPf
i) Use Egn. (2) to findT,’
iiiy Use Eqn. (1) to findT,’
iv) Use Eqgn. (3), together Witﬁ-lf and'l'2f to see if guesser is correct. If not, go back to
step .
After many iterations, | found the following solutionP" =97.87bar; 'I'lf =2216 K;
T, =2504K; N, /N, =0645; N /N, =0.355.
(c) Peng-Robinson equation of state
Here we use the equations

N = N + N} (4)
NjUy = N Uj + N U withU = H - PV (5)
S=5 (6)

Plf - sz - Pf

and N} =Vi/Vi; N =vi/V] ; N =v,/vf = \/Vi sinceV, =V, (value of V, cancels out
of problem, so any convenient value may be used). Procedure | used to solve problem was as
follows. From PR1 we know/} (0 N;) and S, given initial conditions. Then

1. Guessvalueof,', find P = P' that satisfiesS] = §
2. UseT', P" andVv] togetN';thenN; = NI- N! sov/ isknown.
3. FromP' andV/ find (trial-and-error with PR1JT,

4. See if eqn. (5) energy balance is satisfied; if not go back to step 1. After a number of
iterations | find P, =1036bar, T, =2223K; T, =2555K; N[/N =0619;

N/ /N, =0381
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Summary
ideal gas Corresponding P-R E.O.S.
(part a) states (part b) (part c)
pf 250 bar 97.87 103.6
Tlf 2493 K 2216 K 222.3 K
T2f 355.9 K 259.4 K 255.5 K
le/Ni1 0.588 0.645 0.619
sz/Nil 0.412 0.355 0.381

Clearly, the ideal gas assumption is seriously in error!

4.21 System = contents of compressor. This is a steady-state, open constant volume system.
dN . .
mass balance:ﬁ =0=N;+ N,

duU . . . . . A4
energy balance:E =0=NH,; + N H, + Q+ W - P
t
0o0= Nl(ﬂl_ﬂz)"'Q"'W
ds . . o . 0)
tropy balance—= 0= N, S, + +=+ = N(§ - S)+=
entropy balance: - S+ NS = ége/n (S -S) T

0

Thus,
Q=-TN(§-_9)
N%: Q=T(5,-9)
and

N, W+Q=H,-H,

(a) Corresponding states solution
Q=T(S-9)= (s~ 8)+((3-_9-(,5_ 1%
-Tlls - £)-(5§)-

37315 1 50
Now T, ==——=092; P , =——~0009 ; P , =——=0443. Thus
4056 171128 271128

Q——RTIH%+ T{( S - §) ,2 =0444 = ( o 1§) r1—0209}

=-8314x 3731%In 56 32315 .523)8 - 14,088mol
and

W+Q=H,-H = (H,-HS)+( HT -H?®)-(H,-HP)
Osince
T=constant
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Thus

_ylc _4lG
W+Q = T{(H A )—(ﬂl By )}:4056><(—628+ )
TC C

=-25472 J/ mol
W =-Q-25472= 11540 9/ mol

(b) Clausius gas

PV-b)= RV =L 4p; [O¥ :B
P aT), P

Thus

PZ
AS= j asj dP = —j avj dP:—RjidP:—Rmi
oOPJr 0T/ n P R

Q=TAS=- Rﬂn(sloj -12,1365J mol

AH = j( F))po ﬂ_ T(g¥j }dP _F[i[R_PTm-g}dp

= dep: K B- B =1828J mol
Pl

So W+Q=182.8 J mol and

W=-Q+182.8= 12,1365 1828 12,3193 mol

(c) Peng-Robinson equation of state
Using the program PR1 we find (fdr=27315and P =1 bar ideal gas reference state) that

100°C, 1 bar 106C, 50 bar
v 03089« 10" m?/mol 04598« 10°
H 3619.67 J/mol 1139.65

S 11.32 Jimol K —25.94

Note, from PR1, the vapor pressure of Nidt 100C is 62.58 bar. Therefore, use vapor
solution to P-R equation.
ThenQ=T(S -_§) =-139036J mol

W+Q=H,-H,=113965 36196% - 24800/ mol

and W = -Q-24800= 114236J mol .
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4.22 (also available as a Mathcad)

Considering the gas that is in the tank finally as the system, this is a closed system undergoing a
reversible, adiabatic expansion. Theref@e= § .

RT
@ ds=dT-[2%] dp but with PV~ = RTor V =+ +b. Then [2%| =R aiso
=77 ot ), P ot ), P

2
a_ij =-T 6\% :—Ta E:OD G, is independent of pressure. Therefore
oP J; ot ), oT|, P

C,=C,. Thus
L Pr
0=AS= _[&dT— Rjidp
i T R P

()
This has the daotion P; =1310 bar. Now to find the initial and final molar volumes we use

\L = E+b
P
V, =0.000709 m*/mol
V., =0.00197m% mol
Ny V.
So that— = \7—' =0.3595 (or 35.95%)
i —f

(b) Corresponding states
0=5¢-38~= (_SP __§)+(_IS __ilg)_(_a S—ila
Initial state

_ 400 _

r

p=—22 -og7787 Z=0906
7376

P
(S©° - §°) =-124009- 8314n—
50
(As given by eqn. (1) above. Why?)
Guess for final state (usefrom part a), then iterate. Final solutionis =1152 bar for which
P =0156, S® - S0029 and Z; =0.939.

N _(P/z:R P 7
- (PZRT) P QZ—T:1152><4—mx—0'92::0.2964(or29.640/o

N, (R/ZRT) T, R 50 300

(c) Peng-Robinson equation of state
Use program PR1 with given heat capacity constants to find a pressure at 300 K which has the
same entropy as the stat€ =400K, P=50bar. By trial-and-error we find that

P =1337bar (somewhat higher than the previous cases). Alsor 05982x 10° m3/mol
and
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2 3 Nf
. =0175x 102 m*/mol0 —- = 0 3416(0r 34.16%)
N

L<||<

4.23 There are two obvious ways to proceed.
1) retainT and P as the independent variables since we have a program, PR1 that calculates
V(T, P), H(T,P) and YT, B. We can then use

U(T,P=H(T,P- PV= HT BP- ZRT(whereZ=Z(T, P)) (1)
GT.PA=HT.H-T$TP (@)
and
AT,P)=G-PV=U-TS H P+ TS H ZRT TS @
Now we will write

H(T,P) = HS(T) + RT z—1)+%22‘ax @
and
ST, P=S5(T P+ R( 2 PBr djggn (s)

where for convenience, | have used
X = [Z +(1+«/—)B}
- V2)B

Then we find

u(T, P) :g‘%m%x whereU'® =H® -RT  (6)

G(T,P=G®(T, P+ RI( Z)-In( Z H-

5 @

and

A(T,P)= AS(T, B- RTIn( Z B- (@)

J_b

Thus wecan either use eqgns. (1 to 3) and previously calculated v&Julls and S, or modify

PR1 to use Egns. (6-8) instead of Eqns. (4 and 5).
2) The second alternative is to takandV as the independent variables and start from

du = c,dT+| 122] —plav andas= Sat+[2P) av
= oT = andf=T= at ),

to get

T,V B
s-8°= [ |25] -2y
_aT! \A

T,V B
u-u'°= j T(g—il - P}dy
V=oo| v

and
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Then put in the Peng-Robinson equation of state and from build up a procedure to ceiculate
H,U,P, A and G with Tand V as the independent variables. We will not follow this
alternative further.

4.24 We will do these calculations using

G=H-TSandA=G- PV=H- PV- TS

As an example, consider thiie= 0° Cisotherm P=1bar, H = -742.14 J/ mol

G =-74214- 27315 (- 259% - 3468 mol, $=-259 J/mol K
a - - - mo
¥ V = 22.6800m°/ kmol

A=-3468- lbarx 0.02268 fif mol 16 3- 2302 7/J mol

P=5bar H=-78605] mol
S$=-1609J/ mol K 0O
V =0.004513m*/ mol

P=10 bar H =-84075) mol

G =36089 J mol
A=13524 3/ mol

G =51658J/ mol

S=-2199YmolK O~
= X A=29238J/mol
V = 0002242 m*/mol  —
P =20 bar H =- 94956)/ mol
~ G =67150J mol
S$=-2806J) molK 0O —
X A =45010J/ mol
V =0.001107 m*/mol  —
P =40 bar H=-116397) mol
~ G =82324J/mol
S=-3440)molK O —
. A=60688J/mol
V =0.0005409m°/mol —
P =60 bar H =- 137264)/ mol
~ G =90999 J mol
$=-3834J)molK 0O —
. A=69789 J mol
V =0.0003532m*/mol ~ —
P =80 bar H=-157376) mol
~ G =97046J mol
S=-4129J)molK O —
3 A=76230J/ mol
V =00002602m%/mol  —
P =100 bar H=- 176561/ mol
~ G =10,168 3J mol
S=-4369)molK 0O —
= A=81163J/mol

V =0.0002052m*/mol
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Similarly, G and A at other points could be computed, though this will not be done here.

log

75

e o

4.25 (a) p=

6p=6[ij— V29V O (apj =-V (ap) _+v_—2(a_s/ay)P
v op), ~av), (@8,

by eqgn. (4.1-6a)

(by eqn.(_4.1- 6p

e el oo,

G+R_,,

(b) y— Cv for the ideal ga§, =C,,+ RO y=

For the Clausius Gas

_Cp _ G+ T(OV/0T)p(0 B0 Ty ST (av) (G_P)
Loy C, “Tog\aT ) \aT),

with P(V-b) = RT
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Thus

To show thaC, # C,(V) we start from eqn. (4.2-35)

2 2
(60\,) =T o 'Z but a—P :E; a_IZ =0 for ideal gas
oV Jr aT" )y ot vooTh)y

P R ’p
an 6_ = o > | =0 for Clausius gas]
oT V-b (9T ),

O (6_0\, =0 for the ideal and Clausius Gases
ov J;

: TP
(c) vs(ideal gag= y\fg?:

5

vs(Clausius gas= VMZV-E SUTh :V\_i beRT

= \L\_/ b vg(ideal gas(

at samel andV.

4.26 Preliminaries
Pressure = outward force per unit area exerted by gas
Force = tensile force exerted on fiber — at mechanical equilibrium fiber exerts an equal and opposite
inward force
O In all thermodynamic relations replaBeby —F/A andV by LA, and they will be applicable to
fiber.

In particular, in place ofS= § T, \J and ds:(?} dT+(a—5j dv. We willuse S=§T, D
v T

and dS:(EJ dT+(§j dL. Also
ot )~ \aL),

as) _G,(9s) _&
oT), T oT), T

o7), (55 o (50 ),

dS=idU +£dV O dS:—ldU :EdL
T T T T
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oS

oL
Maxwell relation
(E _( 9P i(ﬁ __1(oF
ov J; oT ), A\oL)/; A\OT )

ds=Sat- (ap) dL=StdT-y(L- L)dL
T T

(@) From the abovedS= 9S dT+|—| dL= CLdT+ 0S dL and the analog of the
T L - aL T

we get

oT

(b) dU =TdS- PdVOD dU= Td$ FdL
=C dT-yT(L- L)dL+yT L= L) dL= ¢ dT
(Note: This is analog of ideal gas expresdibr U(T) or dU =C,dT)

© ds:&dT—y(L— L,)dL

OS(LD-% b D= I{ dT-y(L- Lo)dL}

Lo.To

Choosing the patflL,,Ty)) - (L, T) - (L, T) yields

L, T.L
S(LD-%6 D= | OHBTdT—y J(L-LpdL
To, Lo T,Ly

o+ BT -T)-Y(L- L)
—GlnTO+B(T )=~ (L= L)

(d) Areversible (slow), adiabatic expansigh (L, §)- § | =0

0={S(L.T)- Kb D}-{ 8L~ 64 N
= aan( 2L}t - 1) Xf(L - 1 - - 7]

Need to solve this transcendental equation to Tind
() du=c dTO0 (au) =00 F,=0
oL );

Fs = T(gfj ==T{-v(L- L)} =yT(L~ Lo)=—T(g—_Fer
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427 (@ dU =TdS - PdV+GdND(ﬂUj :T;(ﬂ—Uj :-P;and(ﬂ—U
V,N

1S

Now equating mixed second derivatives

W Jsn

TN

)=
SV

)

3

(), 50, (), 39, o
ﬂVSN TIS ﬂSV,N ﬂV S,N ﬂV ﬂS V,N
T (ﬂ_U) y (ﬂ_v) b (ﬂ_Tj (ﬁj
ﬂN SV ﬂS V,N ﬂSV,N ﬂN SV ﬂN SV ﬂS V,N
and
3, @),
TN ATV gy T W\ TN g, qaN W Jsn

(b), (¢), and (d) are derived in similar fashion.

4.28 (also available asaMathcad worksheet)

(@) The procedure that will be used is to first identify the temperature at which m=0, and then
show that m<O at larger temperatures, and m>0 at lower temperatures. The starting point is,

from Sec. 4.2

rn:[ﬂ) :-L(]_- Ta)
mw”), G

where, from Illustration 4.2-4, for the van der Waals gas,

al=t1¥ . i A 1
V-b RV G| fv-b)-[2a0 - b)/RTV’]

Simplifying yields

y (bfy - b)- [2a@ - b)/RTV?]
e -

Co (/1 - b)- [2a(r - b)/RTV?]
[RTH/W - b)]- [2a - B)/V?]
o [RTV/( - b)]- [2a - B)[V?]

QN

(1)

Now for nto be zero, either the numerator must be zero, or the denominator infinity. Only the

former ispossible. Thus,

i _2a( - b) (V- b) _2a(V - b)’

T =
RV? b RV?

the desired expression

to determine the sign of the Joule-Thomson coefficient in the vicinty of the inversion
temperature, we will replace 7 in egn. (1) by 7™ +d, where ¢ may be either positive or

negative. Theresultis
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e - 2 [E/ - b)d
G [RV/(v - D)d+[2a(v - b) [o77]

It is easily shown that the denominator is aways positive. ~ Thus,
mis proportional to- d b if 7>7T"™ , sothat d>0, m<O0. Alternatively, if 7<7T"™, d<0
and m>0.

9 V
(b) Using a :EZCRTC and b :——3C

2 2 2
rinv :ngZcRTc V-ve/3 :ETC(KCJ (¥, -9

3) p?

— Tinv

™ _9(r . V@,-0 Ay, -1’
P - 21,2 3= 2
Ve &;

(c) Expression abovegives 7™ =T"™ (V) ; what wewant is 7™ asafunctionof P.. Thuslook at

3 8T 3
P+—|(¥F.-1)=8T b P.= —-— 3
(} sz( r ) r r 3Vr'1 Vr2 ()

I

Choose 7, as independent variable; use Eqn. (2) to get 7;””, and use Eqgn. (3) to get P.
Results are tabul ated and pl otted below.

Vr ];inv Tlr‘N(K) B P (bar) Tinv (o C)

0.5 0.75 94.65 0 0 —178.55
0.625 1.455 183.62 5.622 190.8 —89.6
0.75 2.048 262.5 7.977 270.7 -10.7

1.0 3.0 378.6 9.0 305.5 105.4
125 3.63 458.1 8.64 293.2 184.9
1.50 4.083 515.3 8.0 2715 242.1
175 4.422 558.1 7.344 249.3 284.9

2.0 4.688 591.6 6.751 229.1 3184
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150 : i
SR 1~"‘-2 / elre .
"“‘-»._H S vhn Hep Waals frecicrion
— 1
m "f \‘\jk
150 ildi 8 ‘i\
¥ joo 3
5 i\
3w ;
E O 4 j
[ 5 ,"{1F
£ 5 /,
=100 " JL d =1

0 40 E0 120 16D 100 240 230 1A X0 400
re, bar

4.29 (also available as a Mathcad worksheet)

4.29 Take the gas to be nitrogen
Pa-m3

Enter constants R:=8.314 Ti:=273.15K
moleK

System is the gas to be compressed. System is closed and isothermal (constant temperature).

Energy balance is U(final) - U(initial) = Q + W = Q - PdV

Initial conditions are 0 C and 1 bar, final conditions are 0 C and 100 bar

a) ldeal gas
PL(V,T) =RT T-(d—Pl(V,T)) —P1(V,T)>0
Y, dT
.._ RTi _
v 100000-Pa Vi = 00227*m+rmole *
ve=_ _RTL vi= 2271 10_4 -m3'mole_l
10000000-Pa
Ve 4 -1
w:——J' P1(V,Ti)dV w=10458"10" *mole
Vi
Q=W Q=—1.O458'104 'mole_1

b) Virial equation of state

-6 m3
B:=10310 —

mole

-9 m6
€:=151710 -

2
mole

Consequently, as we already knew,

the internal energy of an ideal gas is not
a function of pressure or volume, only
temperature.

Initial and final volumes

°joule

U(final)-U(initial)=0, so Q = -W

°joule
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RT
P2(V,T) i=——.
v

B C
l+—+—q
\% 2

v Consequently, the internal energy of this

gas is also not a function of pressure or
volume, only temperature.However, if the
T-(d— P2(V,T)) -P2(V,T)—>0 virial coefficient were a function of
dr temperature (which is the actual case)
then the internal energy of this gas would
be a function of temperature.

Guesses for Initial and final volumes vii= RT vii=— RTL_
10000-Pa 1000000-Pa
Given o e . 3 -1
100000-pP&=P2( Vi, Ti) Vi \=find( Vi) vi = 0.0227°m~ *mole
Given 10000000-P&=pP2( VI, Ti) VE i =find( Vf) Vf=2.2353'10_4 -m3-mole_1
Ve 4 -1
w :——J' P2(V,Ti)dV w=10424-10" *mole ~ °joule
Vi
U(final)-U(initial)=0, so Q = -W o= w Q:_1_0424.104 emole L “joule
c) The van der Waals gas
2120136825 5 m3
e b:=386410  ——
mole mole
Pa(v,T) =R _ @
V-b 2
6 —a\/A ; ; ;
T d—PS(V,T) — PV, T)=> 1368Pa, " a/VA2 In th|§ case the internal energy is a
dT (molez-vz) function of volume (or pressure)
Guesses for Initial and final volumes vii= RT vii=— RTL_
10000-Pa 1000000-Pa
Given 100000-pP&=P3( Vi, Ti) Vi \=find( Vi) vi = 0.0227- m3-mole_1
Given 10000000-P&=P3( VI, Ti) VE i =find( Vf) Vf=2.132'10_4 -m?’-mole_1
Ve 4 -1
w :——J' P3(V,Ti)dV w=10414-10" *mole ~ °joule
Vi
\%i 1
oui=| 2dv DU =-635.618°mole ~ <joule
V2
Vi

0=-1.0424-10% *mole T <joule
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d) The Peng-Robinson fluid

126.2k
w:=0.04 b:=0.07780R——— -5 3 -1
b=24051+10 *m~*mol
B9410°Pa mmoe
2 2 2
R (126.2°K) ] 0.5
a:!:0.45724-[— 27315
alf:=| 14 (0.37464+ 1.54226-w— 0.26992 ww) | 1— | ——
(3394.10° 9 * * " ) (124.6)
af= 0.6249
ar=ecf a=00927 ~mPemole 2 opa
pav Ty =R T _ a
V—b V{(V+b)+b(V—h)
6
T-(d—P4(V,T))—P4(V,T)float,4 —> 09268 Pa: m
dT ) 5 m3 5 w3 5 w3
mole™| v |v4+240510 "——) +240510 " ——|v-240510 " ——
mol mole mol
Which shows that the internal energy is a
function of volume (or pressure)
Guesses for Initial and final volumes vii=RTL vii=— RTH
10000-Pa 1000000-Pa
Given 100000-P&=P4( Vi, Ti) Vi ‘=find( Vi) vi = 0.0227 -m3-mole_l
Given 10000000-P&=P4( Vf, Ti) Vf:=find( V) V= 2.2006 10_4 -ms’-mole_1
Ve 4 -1
w :——J' PA(V,Ti)dV w = 1.041-10 *mole ~ °joule
Vi
T:=273.15K
\%i
= [ _ -
DU.—J [T (dTP4(V,T)) P4(V,T):|dV bU=-3780606 *mole 1 sjoule
Vi
Q.:=DU—W

Q="-1.0788 104 . mole_l °joule
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4.30 For an isothermal process involving a fluid described by the Redlich-Kwong equation of state
develop expressions for the changesin
(@) internal energy,
(b) enthalpy, and
(c) entropy
in terms of the initial temperature and the initial and final volumes.
For your information, the Redlich-Kwong equation of stateis

RT a
V-b AT AV +b)

P=

and

)

vl ) e

R (1/2)at RT a

=T + - - dK
V-b THyW+b) V-b TRy +b)

_ -adV

2JT V(V +h)

Vv, V,+b
U(TV,)- U(T V)= I ==L }

2«/_'[V(V ) 2«/Fb|n_zz+b v,
E(T,Kz)- E(T,Kl):_( V,)-U(TV,)+BYV,- BV,

_a  Jr, (r,+b) v,
B 2«/_b|n[z (_2+b)} K v }

N 1
JT|V,+b vV, +b
o)l
0 V-b 2197V +b)

S(TV,)- STY)= R'”%*Tﬁ?’%‘”{%"%—:m
G(TV,)- G(T.Vy) =[H(T.V,)- TS(T.V,)]- [H(T.V,)- TS(T. V)]
_o_a L 0t )}RT{VJ_L}
“2dTh |V, (V,+b) V,-b V,-b
a| 1 1 }
T |V, +b Vb

- rrinkezb_ _a [Viv@l”’)
V.-b 24Th

-2

i LGt e L B
NJTb vV, V,+b) Vo-b Vi-b
al 1 1 V,+b

- - - RTIn =
TV, +b V,+b vV, +b
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4.31

Joule-Thomson Expansion

P,=25bar, 7, =300°C, P,=1bar, T, =7

(a) ldeal gas-enthalpy isindependent of pressure b 7, = 300°C
(b) vander Waalsgas

H H ) ( HIG) (HIG HIG) E IG =0
T 1
P 0=RT(Z,- 1)+ j { }dz+deT RT(Z,- D)
r=¥ i
Y(5,A)
] J‘ {r(’%—];) -P}dK:O
r=¥ 14
__RT a (ﬂpj_ R 'np) _RT  RT a _a
pP= - P=—— —+—=—
v-b p2 1T AT V-b V-b v

v?
T, v,
dv = dy
P 0=RTy(Z,- V)+a j —+jchT RG(Z - 0)-a j——
V¥K V=¥ V
T,

dv
0=RTy(Z,- D+a j V—+jchT RT(Z - 1)
V=¥ _

Vs
0= PRV, - RT,- a[i- i]+j(a+bT+ cT? +dT3)dT
Vil
- PV, +RT,

1 1
OZPZKZ-RTZ-a(K—Z-K—ljﬂz(E T)+— ( - 1Y)
+§(753- 713)+%(T2“- %) BV, +RT,

Solved together with vdw EOS
T =57507K, »3019°C (T increases?)
(c)  Peng Robinson EOS

Thermodynamic propertiesrelative to an ideal gasat 273.15 K and 1 bar.
H(300°C, 25bar) =94363" 10° Jmol

After sometrial and error

H(2742°C, 1 bar) = 94362° 10° J/ mol

So the solution is 7=274.1°C
Close enough

(d) Steam tables

H(300°C, 25 bar) = 30088 kJ/ kg
H(T =7, 1bar) = 30088 kJkg
H(T = 250°C, 1 bar) =2974.3
H(T = 300°C, 1 bar) =30743

b T @267°C =540K

4.32 Noteerror infirst printing. The problem statement should refer to
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Problem 4.13, not the previous problem. The solution is available only
asaMathcad worksheet.

N
4.33 A(N,V,T)=-kTInQ(N,V,T):-kT|n[f(T)NVN]ZV(IN/V,T) }

=-NRTInf(T)- NkTInV - NkTInZ[%, T)+kTInN!
Stirling's approximation INN!'=NInN- N

A(N,V,T)=- NkTn f£(T)- NkTnV - kTInZ(%,Tj+NkTInN- NkT

(‘HA] . NkT Jinz (N, T)| AN
~Z| =-p=-- NT
T )y v awpy o
NKT  N%T flinZ(N/V,T)|

v y? Mmw/v)

T

P=

b

(“—AJ =S =- NkInf(T)- NkT

dinf(T)
1), . dT

- NkInV - kInZ(%,T)

RPvPALEGTUSYD)
ﬂT N,V

S= Nklnf(T)+Nde|r;fT(T) Nklr(V)+kInZ(% Tj

+ NkTﬂh‘lZ(N/V ,T) kT
1T NV

M4\ _ MnZ(NW ,T)| ANV
G = - kT - KTInV - kT:
|molecu|e (ﬂN)TV nf(T) n ﬂ(N/V) |V ﬂN |V

- NkT\InZ(N[V,T) +kTInN +kT - kT
NKT NInZ(NJV ,T)
N (O

G = NG|, yeese = - NKTIN f(T) - NKTInV -

N
+ NkTInN - NkTInZ(7,T)

Asacheck

G = A+ PV =- NKTInf(T)- NkTInV - NkTInZ(%,T)+NkTInN

) NkT+[NkT_ NKT 1InZ(N/V ,T)| }V

v o v: N
= - NKTIn f(T)- NKTInV - NkTInZ(%,T)+NkTInN
) _NkT 9Min z(/\/ |
e |

N

=-NkTIn f(T)- NkTInV - NkTInZ(7 )+NkTInN

B

_ NKT qlInZ(N/V,T)
vy
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which checks!
T (ﬁ) - U
a7, y\T T2

:1{ [ NkInf(T)- NkInV - Nklnz(ﬁ,rj+Nk|nN- Nk}
i, . Vv

:{_ /(@ Nk(ﬂan(N/V,T)) }
dT qr o

+NkT2['ITInZ(N/V,T)j
ﬂT N,V

2 .
C\,:(d—U) = ok LN, g2 710D
T )y dT dT

+ szT(w) : Nsz(wj
T N,V 1T v

v = nkr? /(D
T

H=U+PV

= NKT? dInf(T)
dT

.\ NkTZ('ITInZ(N/V, T)J

ar
L VKT NKT SInZ(N/V . T)|
vy W),

etc.

434 dH'S=dH- dH'° :CF¢1T+{K— r@—ﬂ }zp- CodT
P

. 14
= - d - _— d.
(G- Gp) T+[Z T(‘HTJJ P
res * P
dUu'™=(cy - C\,)dr{r(%l - P}dz

dS:C_vdT+ ﬂ_P dv b dS’%:MdT+ ﬂ_P -ﬁdV
- T 1), - T ), T

ordSVES:M- ﬂ -Ldp
= T Wr), T

deeS:dEFES_ d(TSres):dﬂreﬁ_ ngres_ greﬁdT

=(Cp- C;)dr{z- T[%)JdP- (Cp- Cp)ar- [r(%jp K}dP

_ greSdT
dgres :gresdT
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vex | \TT B
pzﬂ_iz
V-b p
Py __R
M), V-b

P RT RT
(1) po R AT a0 _a
), v-b v-b VP oy

L 1 1
H(T,P)- H'®(T,P)= RT(Z- D+ | %dZ:RT(Z— 1)- a{z- Q}

y=x &
RT a P
= RT(Z - D-%:RT(Z- 1)-?%%
P
<RIz D ZaRT
P
H(T,P)- H'®(T)=RT(Z- 1)- ZaRT -

U™ =Uu(r,p)- U'S(T)= H(T, P)- PV~ (H®- PV'°)

G

VvV PV
= H'T,P)- RTL+ =—RT = H*™(T, P)+RT(1- 2)
RT  RT
P
= H'(T,P)- RT(Z- 1) =2
H™T,P) (-1 TRT
v
= P R
§'®=8(1,P)- $'°(r,P)=- | [(ﬂ—j -—}dk
v \T ), ¥
v -
= J' L-ﬁdV:_R|n&+RInL
ylZ-b vl r®¥)-b V® ¥)
S"™(T,P)=RIn 4 =RIn z ;B:P—b
= V-b Z- B RT

4.35 a) The Soave-Redlich-Kwong eguation of stateis

_RT (D)
“V-b V(V-b)

Rewrite this in the power series of 1

ve- EV2+(- p2- 2Ly —“(T))V- amp g
P - PP

Notice that the three roots of volume at the critical point areidentical so we can write

w-ry=0 o
3 2 2 3 =
re- 3Kcz +3Kcz_ Kc -
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At critical point, the second and fourth equations must be satisfied simultaneously. Consequently, the
coefficients of each power of J must be the same. Thus,

RT,
3V :TC
C
RT.  afT,
a2 =52 Ry 2e) g
PC PC
L
Ve = all),
Ye==p

_ Ri¢
—< 3R
_ 3 _ RT¢
b=(32-1)r.=008664—C and
PC
P.VE RT.)?
a(Ty) =—<=C€ - 0.42728R%)
b P.
Also
2
a(T) = a(T)a(T) = 042748815 ()
C
b) 7o =FLe _ Fel Rl 1
RT.  RI. 3P. 3
4.36 (also available as aMathcad worksheet)
__RT_ a(T)
V-b V(I +b)
H(T,P)- H'®(T,P)= RT(Z- 1)+ j {f(—j - P}d[
v \TT )y

TP) __ R 1  daT)
), V-b V(@ +b) dT

P ,_RT T dal) RT  _ a
7)),  V-b Vb)) dT  V-b V(I +D)

- K(K1+ b) [a - dZ(TT)}

So the integral to bedoneis
|4

£ v _ 1 n[lprr
V=¥ K(Z+b) (' b) =¥

| L =
- v
1 |V+b| 1 |V+b 1 |V+b
=-—In= +=In= =-=In=
plv e ly by bLUE

I — =

J1y YV +b)
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H(T,P)- H®(T,P)=RT(Z- )+ ]' {rﬂ_ﬂ - P}d[

V=¥
I Y T(Za/dT)lr(K;b)

T(da/Z’T ~a, [z: Pb/RT)]

[ZB

_—ZRT/P
S(T,P)- S'°(T,P)= RInZ + j SRl
N S g .”T v

=RT(Z- D+

da/dT

=RT(Z- D+ 2

>

=

1P} R_ R 1 da
), V. V-b V¥ +b)dT K

1 da R
- - =lav
V-b V(Y +b)dT K}

T

I=
I e— N
® S|
~
~
. 1

=

V-b V dal V+b
n— - RIn——+——1In
[K' b]V®¥ [K]z®¥ dT b K
+
- pinlob, da 1|n[z (PbRT)}
dTb Z

Z-B) dal |Z+B
-rif 222 ) dig 228
VA dT b VA

S(T,P)- S'(T,P) = RInZ+RIn(

Z- B) da 1l [Z+B}

arb |z
= RINZ - B)+ﬂlln[Z+B}
ars |z

P
G®=H™. TS =RT(Z- 1)- ——- RTIn
ZRT Z-
Redlich-Kwong
_ RT a

“v-b TV b
(ﬂ_P) __R . (42

7)), Vv-b 1% +b)
T[ﬂ_Pj _po RT (2 RT a
1), V-b TV +b) V-b J_V(V+b)
@2 _ &

“JTvWw by VTV +b)
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H(T,P)- BT P) = RT(Z- 9+ | L
ZL 2T V(¥ +b)

% In 4

2TV +b
W Z

20T~ Z +(bP/RT)
3 Z

= RT(Z - D+Wlnm

3 z

In
20T Z+B

S(r,p)- $°(r.P)=- | [('"—Pj - ﬁ}dz

V=¥
]
=¥
|4 2 |4

= RIn— -(]/ )aln =
V-b T% V+b
=RIn 4 - a2 n 4
Z-B 27% z+B

=RT(Z- 1)+

= RT(Z- D+

U(T,P)- U°(T,P)=

{R +_ Y2 ﬁ}dz

V-b TRV +b) ¥
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4.37 (aso available asaMathcad worksheet)

Problem 4.37

Critical properties and heat capacity for oxygen:

Tc:=1546-K Pc :=5.046-10° Pa w :=0.021 Tref :=298.15-K Pref := 10°-Pa

Cp(T) 2254603 | 1519.90 2. MU | _ 71515572 [ JME ) | g 39590073 [ JME
mole-K mole-K? mole-K> mole-K*

Soave-Redlich-Kwong Constants:

. 2
R:=8:31451. 1€ Py oo LA B (1) :=| 1+ (0480+ 1574w — 0276w ?) [1- | L
K-mole Pc
a(T) =ala(T) b:=008664°1C b= 220710 ° +m>-mole *
Pc (Initial guess
Temperature and Pressure: for solver)
T:=17315K P:=110"Pa V=10 *m* mole*
Solve block for Volume:
Given p= RT __aT) V= Find(V)

V_b V(VDb)

Calculation of Compressibility:
_Pv

Zi=—_
RT

Calculation of Enthalpy and Entropy:

a(T) - (d—a(T)) T
dT

-
HDEP:=RT-(Z- 1) + In HIG::J‘ Cp(T)dT
b V+b Tref
4 am) T
DEP :=RIn Z(V-b)|_dT In v SIG:= wdT— Rn L
\Y; b V+b T Pref
Tref
H := HIG+ HDEP S:=SIG+ SDEP

Final Results:

T=17315 *K  Z= 09952

V=0014327  emiemole
=-36027310°  +mole L <joule

S=-1562 -K_1°mole_1 *joule

P-110° -Pa
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4.38 (also available asaMathcad worksheet)

4.38 with the SRK equation

Property Data Tc:=1262 Pc:=33%4

(Tin K, P in bar):

om:=0.04 Cp, =272 Cp, = 4210

R:=0.00008314 kap:=0.480+ 1.574-om- 0.176.0m-om
Initial Conditions (Vt = total volume, m*3): Ti:=170 PF: =100 Vt:=0.15
2

SRK Constants: b= 0.08664-% ac 1= 0.42748. R:C
Initial temperature T :=Ti
Note that these are being defined as a T 2
function of temperature since we will need to df(T) =1 1+ kap-({1- [— ,_
. . ) Tc a(T) :=acdf(T)
interate on temperature later to obtain the final
state of the system ._d

Y Da(T) =—a(T)

dT
Find initial molar volume and number of moles Vo= R:Ti
Start with initial guess for volume, m3/mol Pi
Solve SRK EOS for initial volume ~ Given =1 __ _ &™) Vi :=Find(V)
V-b V(V+b)

i o =4 LMt . 3
Initial molar volume and Vi = 1.02010 Ni:=— Ni = 1.471+10
number of moles Vi
Entropy departure at the DELS ::{R-In[(\ﬁ— b)-i} + Da(T) -In(VH_ b) 10°
initial conditions RT b Vi

. ) g ._015 ,_
Now consider final state Nf :=Ni- 1050 Vf .—W V= Vf
Type out final number of Nf = 971.269 Vf = 1544410 4
moles and specific volume
Final pressure, will change in course _ RT am

: ) PE(T) = -
of solving for the final temperature V-b V:(V+Db)
Entropy departure DELS(T) :=| Rin| (v b)-F(D) | DAT) | (V4 DY |5
at final conditions . b V;
Solve for final GIVEN
temperature using T PH(T)
S(final) - S(initial) = 0 O=Cp1-ln o + sz-(T— Ti) - R-105-In(T + DELS(T) — DELS
i
T :=FIND(T)

Type out solution V = 1544+ 10_4 T=131.34 Pf(T) = 37.076

3
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4.39 (also available asaMathcad worksheet)

Problem 4.39
Critical properties for carbon dioxide:
Tc:=3042 K Pc:=7.37610° Pa w :=0225

Soave-Redlich-Kwong Equation of State and Constants:

: 3
,_ joule Pa:m R2.Tc2
R:=831451 or a Tc . RTc
K -mol (K-mol) al .—0.42748-( b .—0.08664-?
2
2 T
a(T):=|1+ (0.480+ 1574w — 0176w )-(1— T_)] a(T) :=al-a(T)
c
v, Ty =L AT
V-b V(V+Db)
Data given in the problem:
T:=(150+27315) K P1:=5010° Pa P2:=30010° Pa Vitotal :=100
V= R-l (Initial guess needed for solver)
P1

Solving for the initial molar volume and the number of moles of carbon dioxide:

Given P1=P(V, T)

- _ Vltota _ 10D _
V1imolar:=Find(V) N = Viro N = 151810 Vimolar = 658710 4
Solving for the final molar volume and the final total volume:

v:={RT)
P2

Given P2=P(V,T)
V2molar = Find(V) V2molar = 9.805+10 °
V2total :=V2molar-N (i) V2total = 14.885
Calculating the amount of work done to compress the gas:

V2molar
Work :=N[ “P(V, T)dV (i) Work = 8823108 joule

V1molar

Since the temperature is constant, the change in enthalpy, H(T, P2) - H(T,P1), is just equal
to Hdep(T,P2) - Hdep(T,P1) :

a(T)- T o(T)
dT .

PV Y,
Hdep(T,P) :=RT-[——- 1| + In
oo7.P) =T (o) —— [
H(T,P) := Hdep(T, P) H(T, P2) = -438210° H(T,P1) = -7.314-10°

Q =N-((H(T,P2)— H(T,P1)) — (P2-V2molar— P1-V1imolar)) — Work

38

Q=-383710 joule
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4.40 (also available asaMathcad worksheet)

Problem 4.40
Critical properties and heat capacity for ethylene:

Tc:=2824 K Pc:=503610° Pa w :=0085

Ca:=3950 Cb:=1562810° Cc:=-833910° Cd :=17.657-10°

Soave-Redlich-Kwong Equation of State and Constants:

J _ RATc? 2
R=83MSL ok ali=042748| a(T) =| 1+ (0480+ 1574w - 0176w [ 1-
a(T) :=ala (T) b :=008664- % ¢ pev,T) =R __&T)
Pc V-b V(V+b)
T1:=(100+27315) K P1:=30-10° Pa
_(RT1) "
Pa V.= (Initial guess for solver)

T2:=(150+ 27315) K P2:=20-10°
Solving for the initial and final molar volume (Only one root is possible for each volume because
both temperatures are above the critical temperature):

Given P1=P(V,T1)

V1:=Find(V)  V1=9501:10 %  n

Given  P2=P(V,T1)

V2:=Find(V)  V2=146710°

Defining the reference state as P=1 bar, and T=300 K :

T
Hig(T) :=J‘ (ca+ coTT+ ceTT?+ ca TTI dTT
300

a(T)- T o(T)
dT .

Hdep(T,P,V) ::R-T-(ﬂ— 1) + In( v )
RT V+b

H(T,P,V) :=Hdep(T, P, V) + Hig(T)

Q:=H(T2 P2,V2) - H(T1,P1, V1)

Q=26410°  joule
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4.41 (also available asaMathcad worksheet)

Problem 4.41 Soave-Redlich Kwong EOS with MATHCAD

mol :=1 bar :=101300-Pa RE:=8314. joule RG:=()_00008314.bar-m
mol-K mol-K

Prqperty Data Tc:=3042K Pc:=7376:bar om:=0.225

(TinK, Pin bar): kap '=0.480+ 1.574-om- 0.176:om-om

Initial Conditions: Ti=400K P :=50-bar

SRK Constants: bi=00866aFCTC  acim0amag RETS

Initial temperature T:=Ti

Note that these are being defined as a T 2
function of temperature since we will need to af(T) =11+ kap-({1- [— T i=acaf(T
interate on temperature later to obtain the final Tc &(T) =acaf(T)

state of the system d
Da(T) !=d—Ta(T)

Heat capacity Cpl:=22.243 joule Cp2:=5977-10 2. joule
constants mol-K mol-K
Cp3:=-3499.10'5. 1Ue Cpa:=7.4p4.10°°.1%U€
mol-K mol-K
Find initial molar volume and number of moles _RGTi B 4.3
Start with initial guess for volume, m*3/mol v . V=6651210 ° *m
RGT &)

Solve SRK EOSfor initid volume  Given Pi= Vi :=Find(V)

V_b V(V+b)
Vi = 60960210 & -

Entropy departure at the DELS ::[In[(\ﬁ - h)- i ]1- Da(T) -In(w + b”-RE
initial conditions RGT b-RG Vi
DELS = -237467°K L sjoule zi:=PV Zi = 091653
RGT

(T-d—a(T)—a(T)) Zit 2
RG

DeHi :=RET-(Zi- 1) + In

Zi
DelHi = ~1.24253-10° +joule
Final temperature is 300 K, and final pressureis unknown; will be found by equating the initial and final

entropies. Guess final temperature is 10 bar

_ o, _RGT _
Pf :=10-bar Ti=300K  Vi=— V= 24942103 o
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Temperature part of ideal gas entropy change

ti :=400 tf :=300
tf

DSidedT :=Cplin

ti

+ Cp2:(tf - ti) +%’-(th— ) +CTp4-(tf3— )

DSidealT = ~11.24332-K L <joule

Note: To use the given and find commands for variable with different dimensions such as P and V, will have
to convert to dimensionless variables so as not to have a units conflict. Define x=V/b and y=P/Pc

initial guess x::% X = 8395847 y =05
Given RG300K  a(300K)
y-Pc= -
xb-b  xb:(xb+b)

0=DSidedlT - REIN[ Y7 4 | in| (xb— by Y-PC | DABOK) | ix+ B | pe_ pELS
P RG 300K bRG X

Y :=FIND(x, y) - [ eesa
0.19654

._ ) -3 3

V=Y b Vf = 15939310 ° *m

Pri=Y, P Pf = 146849-10° -Pa

Pf Vi

— = 14.49643 Fraction massremaining in tank = A 0.38245
bar Vf

4.42 (also available as a Mathcad worksheet. In fact, this file contain graphs and other
information.)

2 2
Easier to work with [ﬁ) = I‘(ﬂ—ij than with (ﬂi) =- ﬂ—% .
1w J; 1T v P ), ),

ow,n- oW =¥1=C,0,T1)- C(T)= z)dK
v \TT

4
+ +
= 07557 Lt :075%|n(z bj
A N 4
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* V +b
So Cy(V,T) :CV(T)+O.75T+2bIr(—7j. Clearly as ¥ ® ¥ (ided gas) we
recover C, =C,, .
Procedure:  Choose collectionof V's
Calculate C, - C, for given ¥ and T

Calculate P from RK EOS get C,, - C, vs. P
Next use

o= {35) (37 =6 rigarap
P17 ), WP/,

to convert from C,, to C,. Have done both parts using MATHCAD. See the

MATHCAD Ffile.
4.43 (also available asaMathcad worksheet)

a P= RT - a ;i:1+£+£+. =7
v-b NTy(w+p) RT V. p?
LB _V ¥ a __r a
T V-b RTNTYW+b) V-b RTP(W+b)
_ 1 alv. _ 1 alV

T 1-b/y RTPA+b1V) 1-b1V RTRQ+b1V)

Now expanding in apower seriesin }I//

alV a 1
Z=1+blV - —=1+|b- — |~
= RTY ( RT3/2)K

23
1#=Lp 1,= (i) =8765K
bR bR

b) Using the Redlich-Kwong parameters
a 3
T, = (—) =8765K
bR

4.44 (also available asaMathcad worksheet)

V a
Z=—- 72
V-b RT7V +b)
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(¥7), -5 (77), ol ae), v
). v-b\1P), (V-by . RTP( +1b)? i

_ RT i a

V-b T +b)
(ﬂ_P] ST R ¢ (2 +b)
Wi Ww-b) ‘/F(ZZHJZ)

i'ag'&ﬂ_il :O:{V?b ) (V—Kb) RT’°"2(a_+b) }(WJ
(32) B e ey
TP )y [-rTf[w- bY]}+ {/[J_V2+bV Ter+n
“m('ﬂZJ w-bo-viffw-»7_ »

Po¥| 9 P - r7f[(r - )]

y®b

lim (‘HZJ - W +[e/( RTF/Z_]

o) [ Rt/ [Tt er
_afRr¥) v a
~ -Rrfv? T RIY? T RTY

4.45 a) The Redlich-Kwong equation of stateis

RT a

V-b Tr{r+b)

P=

which we rewrite as follows

Py _ ¥
— 3 so that
RT " V-b RT (V +b)

PV v a _ b a
——-1= -1- 15 - ) 15 d
RT V-b RT™(W +b) V-b RT WV +b)

PV 4 a v
K(_—-l):b = - =
RT V-b RT®V+b

: PV : PV : 4 a v
Lim,, /| —-1|=Li Vi—-1|=Lim b—o- — |=b- = B(T
”®°*(RT j m'i®¥_(RT ) K®¥{ V-b RT15K+b} RT15 D
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To proceed further, we now need to have expressions for aand b in terms of the critical
properties. To obtain these we proceed asin Problem 4.35 and rewrite thisin the power
seriesof V

RT RT a ab
V- —V2+(-b2- —bh- jV— =0
- p- P Arp)= Atp

Notice that the three roots of volume at the critical point are identical so we can write

(¥- KC)SZO or
3 2 2 3 —
Z - 3KcK +3KcK_ Kc =0

At critical point, the second and fourth equations must be satisfied simultaneously.
Consequently, the coefficients of each power of  must be the same. Thus,

v - RT,
F
RT. a
2 =-p2-—Cp- and
—C })C ]TCPC
Ve =——b

T B

Solving the above three equations together for a(7), b and Ve, we get

=RT:
RT,
b=(2- 1. =008664—C and
C
225
a = 04274881
C
RT, RT?S
S0 B(T) = b- —z = 008664—C - 042748
RT P. P.T

For n-pentane, 7¢=469.6 K and P = 33.74 bar

Theresulting virial coefficient as afunction of temperature is shown below.
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B(T) —0.001

-0.002 | | | |
200 400 600 800 1000 1200 1400 1600

200, T 1.510°,

. T |4
4.46  Inversiontemperature mF 0 = (ﬂ—j =- C;[l- Talb aT =1
P

TP ),
a:i(ﬂ—Kj but (ﬂ_K] ('”—P) (Ej = -1 by triple product rule.
KﬂTP 1TTPﬂKTﬂPK
(ﬂ_KJ _ -1 __(Wp/AT),
7), QP N7/P),  (NP/TV),
(8 vdw EOS; P=—1. 2. ['"_P) __R
v-b ys \NT), V-b
(ﬂ_PJ :-—RT +£
w) o w-o? ¥
(‘ﬂ_K) _ - R~ b)
17), ¢ RO)Y[@ - 0] +[24/v7]
a1 (ﬂj _ {- RV (v - D)}
v\7 ), - Rrf[ - )7 +[24/17]

_q. - RT/IV (v - b)] _
T e oA
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RT _ RT  2a
yv-b @-b? v®

{ 1 1 }_ 2a
TR - =-=
V(V—b) V- b)? &

5 V]: ﬁ
V(V b) V3
bRT _2a
V(V p? V3
20 V- H)® _ bY
1 —_
“R 2 TR ¥
dso P_ﬂ_i
V-b v?
Choose

Calculate T, from Egn. (1)

Calculate P from Egn. (2)
Solution done with MATHCAD (see MATHCAD worksheet).

(b) RK EOS
_ RT ) a
V-b NTV(V +b)

TPy _ RT + a + a
(ﬂ_zl T -0 ATYAr+b) NTV( +b)
(‘ITP] __R . (Y2
), v-b TI (¥ +b)
mwy _ i(ﬂP/ﬂT)V
(ﬂrj AT Y
IR/ - DN+ ¥ (v +5)]}
Arifle- o +H{o[Srrew o+ o[ rre o7}

<

ﬂ'—‘N»—\Iw|p|

Pﬂ
o
=

(1/2)a RT

_RT F_ 1 } a [1+ 1 1/2}

V-blY V-b] Nrvw+p)|v v+b v

RT [V-b-V]_  RTH _ a 2NV +b) +V.
S iy ‘ |

v-b) ] vw- 0?2 NTry +n)l v +b)

VWb TR b)) (- b2 NTVAU+b) ATV by

(1)

(2)
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RTb a Y +3b
V(v -b?  2NTV(V +b) V(V +D)
RTb _ a(5V +3b)

V-6 2TV +b)
g2 _ a(& +3b) (V - b)
2V(V +b)*> Rb

23
- {L{5+32} - bf}
2Rb V1 +b)

4.47 Sorry, in the first printing this problem was misplaced. It is Problem 5.47, and
the solution appearsin Chapter 5 of the solution manual.

T

The replacement problemis
“Repeat the calculation of Problem 4.31 with the Soave version of the Redlich-
Kwong equation.”
The solution isasfollows:
Using aMathcad program forte Soave-Redlich-Kwong EOS we find

H(300°C, 25 bar) =945596" 10° J/mol

(relativetoideal gasat 273.15K and 1 bar).
Now by trial and error until enthal pies match

H(2745°C, 1 bar) = 945127 1C°
H(2746°C, 1 bar) =945486" 10° b T=2746°C

Close enough

Notethat this solution isonly very slightly different from that obtained with the
Peng-Robinson equation (274.10C compared to 274.60C obtained here).

4.48 (also available as a Mathcad worksheet)

Problem 4.48 Peng-Robinson EOSwith MATHCAD

mol :=1 bar :=101300:Pa RE :=8314. joule RG:=0_00008314.bar-m?’
mol-K mol-K

Prqperty Data Tc:=519-K Pc:=227bar om:=-0.387 Cp :=25RE

(TinK, Pinbar): kap := 037464 + 1.54226.0m— 0.26992-0m-om

Initial Conditions and total volume Vt: Ti:=298K Pi:=400bar  Vt:=0045-m°

Peng-Robinson Constants: b:=007780°CTC  aci=045724 RGZP'CTCZ

Initial temperature T:=Ti

Note that these are being defined as a

function of temperature since we will need to af(T) =1
interate on temperature later to obtain the final

state of the system

2
-
1+ kap'(l‘ ﬂ)] a(T) = acdlf(T)

Da(T) :=9_a(T)
a7
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Find initial molar volume and number of moles _ RGTi _ -5 3
Start with initial guess for volume, m*3/mol V= = V= 6193910 m
Solve P-R EOSfor initial volume Given R= RGT _ a(T) Vi :=Find(V)
V-b V(V+Db)+Db(V-Db)
Initial molar volume and _ e SR Y _
number of moles Vi = 7.10667°10 ~ *m N v N = 633.20762
Entropy departure at the DELS := In[(Vi— b)- i }+ Da(T) n Vit (l-H/E) b ‘RE
initial conditions T 2A/2.b:RG | Vit (1_ JE) b
DELS = 00151°K * sjoule zi=PV Zi = 114736
RGT

. b-A
TLam-am |2+ (1442) on
DelHi :=RE-T-(Zi— 1) + In ' DelHi = 274.27781+joule

242 zig (1= 42) 2P

RGT

Final pressureis 1.013 bar, and final temperature is unknown; will be found by equating the initial and final
entropies. Guess final temperatureis 30 K
_RGT

Pf:=1.013-bar T:=25.7K Vi=——_

o V = 21002810 °

um3

Note: To use the given and find command for variables with different dimensionssuch as T and V, will have
to convert to dimensionless variables so as not to get a units conflict. Define x=V/b, y=T/Tc

initial guess x:=10 y:=5

Given P= RGy-Tc 3 a(y-Tc)
xb—b _ xb-(xb+ b)+b-(xb— b)
o=Cp-|n(y'_T_C)_ rein( P + RE-In[(x-b— by — "1 ]+ Da(y -Tc) RE || xb+ ae4f2) ]| DELS
T RGYTe] 5, obre | xb(1-42)
Y :=FIND(X,y) v = 150.89161
527265
Vi=Y b V=223150 2 omi TE =Y Te Tf = 27.36506'K  Final temperature
7t:=V - 1057

RGT
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19 arry—a(tt) | zt4 (144/2) 2FL
DelHf ;=RETf-(Zf - 1) + T In RGTI

AN PR AN

DelHf = 11.61232°joule

Uf - Ui = (Hf - ZF*R*TF) - (Hi - Zi*R*Ti) = Hf - Hi - ZF*R*Tf + Zi*R*Ti
= (Hf-HfIG) + HfIG -(Hi - HilG) -HilG - Zf*R*Tf + Zi*R*Ti
= DelHf - DelHi + Cp*(Tf-Ti) - Zf*R*Tf + Zi*R*Ti

DelU := (DeHf — DeHi+ Cp-(Tf - Ti) — Zf-RE-Tf + Zi-RE-Ti)N

DelU = -2.08062-10° <joule
TNTeqi=-— D299 TNTeq = 045231kg
a600000124®
kg

4.49 (also available as a Mathcad worksheet)

PENG-ROBINSON EQUATION OF STATE CALCULATION Nitrogen

The Property Data should be as follows

Tc (in K), Pc (in bar), omega, Tb (in K)

Cp1, Cp2, Cp3, Cpd (In eqn Cp=Cp0+Cp1*T+Cp2*TA2+Cp3*T~3)
Tref (in K), Pref (in bar) (reference conditions)

Note that in the 1st and 2nd printings, carbon dioxide was used as the fluid. This gave
unreasonable answers when this problem was revisited with the Peng-Robinson eqn.
of state, as both the initial and final states were found to be in the liquid state. Therefore
from the 3rd printing on, the fluid has been changed to nitrogen.
i=01.3 R :=0.00008314
Cp,:=28883  Cp,i=-015710°  Cp,:=080810° Cp, i=- 287110
Tc:=1262 Pc:=3394 om:=004
Trs:=27315 Prs:=10

9

kap :=0.37464 + 1.54226-0om— 0.26992:0m-om

22
Peng-Robinson Constants: b :=0.07780-% ac 1= 0457243 T¢
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Input temperature and pressure of calculation T:=29815 K, P:=140 bar

2
af(T) :=1.[1+ kap-(l—\/z)] aT) =acaf(T) ca(T.p):=2DP g1 py = PP
Te RT

(RT)?

Da(T) =4 a(T)
dT

Z(T,P):= |A<CA(T,P)

B~ CB(T,P)
(a-B-B2- B
2 Vector of coefficients in the PR equation
Ve A-3B"-2B in the form
-(1-B) 0=-(A*B-B*2-B*3)+(A-3*B*2-2*B)*Z-(1-B)*Z*2+Z*3
1
ZZ« polyroots(V) Solution to the cubic
for il 0.2

(zzi<_o) if (Im(ZZi) ¢o)
Set any imaginary roots to zero

ZZesort(ZZ) Sort the roots
. -5
ZZO(_ ZZZ i (I ZZO |<10 ) Set the value of any imaginary roots
22,22, if (I 7z, |<10—5) to value of the real root

7z

Calculate molar volumes
Z(T,P)O-R-T 3 Z(T,P)Z-R-T

10 X

VL(T,P) := W(T,P) := 10

Fugacity expressions [actually In(f/P)] for the liquid fl and vapor fv

CA(T.P) . Z(T,P)yt (1+ «/5) .CB(T,P)

24/2:CB(T,P) |Z(T,P),+ (1— JE) -CB(T,P)

fI(T. P) = (Z(T.P)y~ 1) - In(Z(T,P),~ CB(T,P)) -

CAT.P) - Z(T,P)2+(1+«/E)-CB(T,P)

24/2:CB(T,P) |Z(T,P),+ (1— «/E) -CB(T,P)

fv(T,P) i=(Z(T,P),~ 1) - In(Z(T,P),~ CB(T,P)) -

phil (T, P) :=exp(fl(T,P)) phiv(T, P) :=exp(fv(T,P))

fugl(T, P) :=P-phil(T,P) fugv(T,P) :=P-phiv(T, P)
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Residual entropy for liquid (DELSL) and vapor (DELSV) phases

Z(T,P 1+4/2) -CB(T,P
DELSL(T,P) := R-In(Z(T]P)O_CB(T,p) +Da(T),In ( )o+(+«/—) (T,P) e

24/2b | Z(T,P),+ (1— JE) -CB(T,P)

Da(T) n Z(T, P)2+ (1+ 4/5) CB(T, P) .105

2AN2b | Z(T,P),+ (1— «/5) .CB(T,P)

DELSV(T,P) :=| RIn(Z(T.P),- CB(T,P)) +

Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases

DELHL(T,P) :=| RT-(Z(T,P),- 1)+T'Da(T)—a(T).|n Z(T'P)o+(1+«/£) -CB(T,P) &
2-«/5-b _Z(T,P)0-|—(1— JE) CB(T,P)|

DELHV(T,P) i=| RT-(Z(T,P),- 1)+T-D6\(T)—a(T).In Z(T'P)2+(1+«/5)-CB(T.P) o
242 _Z(T|P)2+(1—«/5)-CB(T,P)_

Ideal gas properties changes relative to the reference state

cp, (T2 1) cp (TP-TisY  op, (14- Trs)
+

DELHIZT) ::Cpo-(T— Trs) + +
2 3 4
2 2 3 3
T sz-(T —Trs ) CpS-(T - Trs) 5 =
DELSET,P) ::Cpo-ln — |+ Cpl-(T— Trs) + + - R10™In[—
Trs, 2 3 Prs

Total entropy and enthalpy relative to ideal gas reference state

SL(T,P) :=DELSI(T, P) + DELSL(T,P) SV(T,P) :=DELSIG(T, P) + DELSV(T, P)

HL(T,P) :=DELHIXT) + DELHL(T, P) HV(T,P) :=DELHIG(T) + DELHV(T, P)
SUMMARY OF RESULTS

T=29815 K Pressure, bar P=140
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Compressibility
Enthalpy, J/mol
Entropy, J/mol K
Fugacity coefficient
Fugacity, bar

Volume, m”*3/kmol

Number of moles initially
W(T,P)
Tf :=100 Pf:=1.103
Given
SV(Tf, Pf)=-41.04818 TF 1= find(Tf)
Tf = 69.36841K Pressure, bar  Pf= 1103
LIQUID
3

Compressibility
Enthalpy, J/mol
Entropy, J/mol K
Fugacity coefficient
Fugacity, bar

Volume, m*3/kmol

U(T,P) :=HV(T,P) - 140-

U(TF, Pf) :=HV(Tf, Pf) — 1.013.

0.17689

LIQUID
Z(T,P), = 0.99907

HL(T, P) = —96.20674
SL(T,P) = -41.04818
phil(T, P) = 097024
fugl(T, P) = 135.83299

VL(T,P) = 0.17689

N [ 31416 (.01)2.06] 1000

Z(TTf, Pf), = 56185510
HL(T, Pf) = -1.16967-10"
SL(TF, Pf) = —114.62977
phil (Tf, Pf) = 0.31698
fugl( Tf, Pf) = 0.34963

VL(TF, Pf) = 002938

U(T,P) = —96.45439

491926

W :=N-(U(Tf, Pf) - U(T,P))

_-W
4600

G:

W =—-625.17152

G=013591 grams of TNT

U(Tf, Pf) = -5.96317-10

VAPOR
Z(T,P), = 0.99907

HV(T, P) = -96.20674
SV(T,P) = -41.04818
phiv(T, P) = 0.97024
fugv(T, P) = 13583299

WW(T,P) = 017689

N = 0.10656

Tf = 69.36841

VAPOR
Z(Tf, P¥),, = 0.94081
HV(TF, Pf) = -5.96312-10°
SV(TF, PY) = ~4104818
phiv(Tf, Pf) = 094395
fugv(Tf, Pf) = 104117

WV(TF, PY) = 491926
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PENG-ROBINSON EQUATION OF STATE CALCULATION Carbon dioxide

The Property Data should be as follows

Tc (in K), Pc (in bar), omega, Tb (in K)

Cp1, Cp2, Cp3, Cp4 (In eqn Cp=Cp0+Cp1*T+Cp2*TA2+Cp3*TA3)
Tref (in K), Pref (in bar) (reference conditions)

Note that in the 1st and 2nd printings, carbon dioxide was used as the fluid. This gave
unreasonable answers when this problem was revisited with the Peng-Robinson eqn.

of state, as both the initial and final states were found to be in the liquid state. Therefore
from the 3rd printing on, the fluid has been changed to nitrogen.

i:=0,1..3 R :=0.00008314
Cp,'=22243  Cp,i=597710°  Cp,:=-349910° Cp, :=7.464-10"°
Tc:=3042 Pc:=7376 om:=0225

Trs:=2315 Prs:=10 kap 1= 0.37464-+ 1.54226-om— 0.26992-0m-0m

2 2
Peng-Robinson Constants: b= 0.07780-% ac = 0457243 TC

Input temperature and pressure of calculation T:=20815 K, P:=140 bar

2
1+ kap-(l— /l)] aT) =acaf(T) cA(T.P)=2DP g7 py:=PP
Tc RT

af(T) =1
(RT)?

pa(T) =9_a(T)
dT

Z(T,P) = | A< CA(T,P)

B~ CB(T,P)
(pB-B?-8)
2 Vector of coefficients in the PR equation
Ve A-3B-2B in the form
-(1-B) 0=-(A*B-BA2-BA3)+(A-3*BA2-2*B)*Z-(1-B)*ZA2+Z"3
1
ZZ« polyroots(V) Solution to the cubic
for il 0.2

(zzi<_o) if (|m(zzi) ¢0)
Set any imaginary roots to zero

ZZe—sort(ZZ) Sort the roots
: -5
22422, i (I 2z, |< 10 ) Set the value of any imaginary roots
22,22, ff (I 2z, |< 10—5) to value of the real root

zz

Calculate molar volumes
Z(T,P)O-R-T 3

Z(T,P),RT
VL(T,P) 1 — 2z .

W(T,P) =
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Fugacity expressions [actually In(f/P)] for the liquid fl and vapor fv

(T, P) :=(2(T, P);- 1) - In(Z(T, P),— CB(T,P)) -

CA(T.P) Z(T.P)0+(1+«/E)-CB(T,P)
2420B(T.P) | 2(T,P)+ (1-42) cB(T. P)

W(T,P) = (2Z(T,P),~ 1) - In(Z(T,P),~ CB(T, P)) - — =P -|n[Z(T’P)2+(1+J5)'CB(T’P)]

2A2:CB(T,P) | Z(T,P),+ (1— «E)-CB(T,P)
phil(T, P) :=exp(fl(T,P)) phiv(T,P) :=exp(fv(T,P))
fugl(T, P) :=P-phil(T,P) fugv(T,P) :=P-phiv(T, P)

Residual entropy for liquid (DELSL) and vapor (DELSV) phases

DELSL(T, P) :=| Rin(Z(T, P) - CB(T,P)) + Da(T) Z(T’P)°+(1+“/E)'CB(T'P) e
2420 _Z(T,P)O+(1—J5)-CB(T,P)__

DELSV(T,P) = R_In(Z(T’P)Z_ CB(T,P))+ Da(T) ,, Z(T,P)2+(1+«/5)-CB(T,P) 1
24[2:6 _Z(T,P)2+(1-J5)-CB(T,P)__

Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases

DELHL(TP) :=| RT-(Z(T,P), - 1)JFT-Da(T)—a(T)_In Z(T,P)0+(1+«/5)-CB(T,P) o
2A2'b _Z(T,P)0+(1—«/5)-CB(T,F>)__

DELHV(T, P) :=| RT-(Z(T,P),,- 1)+T-Da(T)—a(T).|n z(T,P)2+(1+JE) BITR|
2N 2:b _Z(T,P)2+(1—J§)~CB(T,P)__

Ideal gas properties changes relative to the reference state

Cpl-(Tz— Trsz) Cp2~(T3— Trs3) Cp3-(T4— Trs4)
DELHIGT) ::Cpo-(T— Trs) + 5 + 3 + n

T sz-(TZ— Trsz) Cp3-(T3— Trss) 5 P
DELIET,P) ::Cpo-ln(ﬂ) + Cpl-(T— Trs) + > + 3 -R10 -In(%)
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Total entropy and enthalpy relative to ideal gas reference state

SL(T,P) := DELSG(T,P) + DELSL(T,P)  SV(T,P) := DELSG(T, P) + DELSV(T, P)

HL(T, P) := DELHIG(T) + DELHL(T, P) HV(T, P) := DELHIG(T) + DELHV(T, P)

SUMMARY OF RESULTS

T=20815 K Pressure, bar P=140
LIQuID
Compressibility Z(T, P)0 = 029126
Enthalpy, J/mol HL(T, P) = -1.03464 10"
Entropy, J/mol K SL(T,P) =-67.27151
Fugacity coefficient phil(T,P) = 0.365
Fugacity, bar fugl(T, P) = 51.09983
Volume, m*3/kmol VL(T, P) = 0.05157

N [ 3:1416.( 01)2..06] .

Number of moles initially 1000
VL(T,P)
Tf =50 Pf:=1.013
Given
SL(THP=SUT. P) T :=find(Tf)
Tf = 277.04181 K Pressure, bar  Pf=1013
LIQuID

Compressibility Z(Tf, Pf)0 = 252794 10_3
Enthalpy, J/mol HL(TF, Pf) = -1.10995+ 10"
Entropy, J/mol K SL(Tf, Pf) = -67.27151
Fugacity coefficient phil (Tf, Pf) = 26.04907
Fugacity, bar fugl(Tf, Pf) = 26.3877

Volume, m*3/kmol VL(TF, Pf) = 0.05748

VAPOR
Z(T,P), = 029126

HV(T,P) = 103464+ 10"
SV(T, P) = -67.27151
phiv(T,P) = 0.365
fugv(T, P) = 51.09983

W(T, P) = 005157

N = 0.36552

Tf = 277.04181

VAPOR
Z(TTf, Pf), = 0.99308

HV(Tf, Pf) = 93.98326
SV(Tf, Pf) = 0.2929

phiv(Tf, Pf) = 0.99311
fugv(Tf, Pf) = 1.00603

WV(TF, Pf) = 2258025
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U(T,P) :=HV(T,P)

U(Tf, Pf) :=HV(Tf, Pf)

U(T, P) = -1.03464- 10"

U(Tf, Pf) = 93.98326

W :=N-(U(TF, Pf) = U(T, P)) W = 381613-10°
="V
" 4600 G=-0.82959 grams of TNT

Note that this answer does not make sense. The reason is that with carbon
dioxide, but the initial and final states would be liquid. Therefore, carbon
dioxide is a poor choice of fluid for this problem, and also problem 3.44. In
the third and later printings, nitrogen is used.

4.50

4.51

We start from

[P
dQ:CVdT+(ﬂ—j dVv.
7 )v

Since the entropy at O K is not afunction of temperature, it followsthat Cy = 0.
Also, since the entropy is not afunction of specific volume, it follows that

(57, =0

However, by the triple product rule

) o

(), = ) (57). =0

but from the thermodynamic stebility condition

(ﬂ—P] <0
)2

which impliesthat

(ﬂ_zj =0 and a:l(ﬂ_zj =0
7 /p VAT Jp

Rewrite the Clausius equation as
- P ),

(ﬂ ;

and K—T(ﬂ—zj =b
7 /p

2

=a
<

2) = 0 (which meansCj is independent of pressure and equal to Cp)
P

~

a) Therefore
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DH = H(T,,B)- H(T,,B) = jC(T)dT+fde 0 or

n A
b > 2.9,.3 .3 _
a(7;- T1)+2(7£ '71)+3(Tz- L)) +b(R- R) =0

isthe line of constant enthalpy.
b)

(T) (R4
DS = ,P)- = [=2g7- [|==| dP=0
S =5(L, B)- (T, B) = J T z[l(ﬂT)P P

% (1) 2R
j =P T - }!l?dpzo

or

ain2+nr, - 1)+ (72 - 17)- Rinf2 = 0
I 2 i

isthe line of constant entropy.

¢) For thefluid to have a Joule-Thomson inversion temperature

1T

e (—j must undergo asign change. However
H

V- —+bh-T—
w(ﬂ) :_[ T P p_."b
P )y Cp Co Cp

Thisisaways negative, so the Clausius does not have a Joule-Thomson
inversion temperature.

‘HV) } RT R
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5.1 (alsoavailable asaMathcad worksheet)
(@ G=H-TS a P=25MPaand T =22399°C=49714K

A N A ual with
GV = HY - 1SV =28031- 497.14" 62575=-3078 J/g}eq

R R R the accuracy
G- = H"- TS" = 96211- 49714" 25547 = - 307.9 J/g

of tables

®) rec) k) AV - sV G"
225 49815 28063 - 49815° 62639= -3141 Jg
250 52315 28801 - 52315 64085= -4725
300 57315 30088 - 57315  6.6438= -799.1
350 62315 31263 - 62315° 68403= -11362
400 67315 32393 - 67315 70148= - 14827
(Note: All Gibbsfree energies are relative to the internal energy and entropy of the liquid phase
being zero at the triple point. Since H“~U%, and G- = H" - TS", we have that G- =0 at
thetriple point.)
(© rec) 1K) H- - TS" GY
160 43315 67555 - 433157 19427= -1659 J/g
170 44315 71921 - 44315° 20419= -1857
180 45315 76322 - 45315 21396= -2063
190 46315 807.62 - 46315° 22359= -2279
200 47315 85245 - 47315° 23309= -250.4
210 48315 897.76 - 48315° 24248= -2738

RESULTS
(d 710 150 160 180 200 220 224
I;(mg/ kg) 0.001091 0001102 0001127 0.001157 0.001190 0001197
to
0.07998

T(°C) 225 250 300 350 400
V(m’/kg) 008027 008700 009890 010976 012010
_ H(T +DT)- H(T)

DT

(e) Will compute Cp, from Cp ~ oA
br ),
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7(°C) 150 170 180 190 200 210 224
4.6225

Co(kJkgK) 4328 4392 4430 4472 4518 4572 to
3.200

7(°C) 250 300 350 400

Cp(kJkg K) 2952 2574 2350 2260
These results are plotted below.

Ly 2oo 25D Eoa 250 Vs
nic)
L2
4
&7
E
z
e FEn 5 oo $52 e
%)
dau _ . dV
5.2 Closed system energy balance: - 0- PI

s ¢
Closed system entropy balance: I = %+ Sgen

(@) System at constant volume and constant entropy

d_V:Oandﬁzo

dt dt
du . 0 . . .
=) ?:Q and 0:?+Sgenp 0 =-TSgen
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U . .
and —=-TSgen; T>0; Sgen 2 0

d
p d—i]EO or U = minimum at equilibrium at constant 7 and S.

(b) System at constant entropy and pressure again Q = - TSy,

P V
Now d—:OD Pd—:i(PV). Thus
dt dt dt
dU dv d
—=Q- P—=-TSy- —(PV
dt © d gen dt( )
and
dU d d dH .
—+—(PV)=—U+PV)=—=-T7TS._. £0
dt dt( ) dt( ) dt gen

Therefore, enthalpy isaminimum at equilibrium at constant S and P.

5.3 (@ Theconditionfor equilibrium at constant 7 and V' is that the Helmholtz free energy 4 shall be a

minimum.
i)  Equilibrium analysis (following analysisin text)

| | |
dA' = [‘"—AI) dT + [ﬂilj dv' + [‘"—Alj dm'
ﬂ r V.M ﬂV M ﬂM TV

but d7' = 0, since temperature is fixed, and

I I
(MJ =-P' and [—ﬂAI] =G'
ﬂV T,M T[M TV

Thus, following the analysisin the text, we obtain
dA=-(P' - P")av' +(G'- G")am'p P'=P"andG'- G"
ii) Stability analysis:
Here again we follow analysisin Sec. 5.2—and find
1
EdzA = Ay (dV)? + 24y, (dV XdM) + Ay, (dM)* 3 0

This can be rewritten as

Zd%4 = ay(dnf +(de, 5 0

where

2 2
AMMAVV B AVM — AVM

=4, d= = Apm

AVV
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and

A
dx, = dV +2LdM |, dx, = dM
AVV

Thus,g,;® 0 andqg, 3 0

2
q[ﬂ_AJ -1 (ﬂ_A) -1 (_P)p_[ﬂ_Pj 2 0
ﬂV M ﬂV M ﬂV M ﬂV M ﬂV M

or (E) £ 0 aspreviously found
T[V M
Far
Ao =4y - 30
2 MM AVV

A :_(ﬂ_P) A :l(ﬂ_Aj :_(ﬂ_Pj .
oW\, )
womst (3], )
11M|T,V ™ TV ™ TV
Now be Egn. (4.8-17) on a mass basis
RICGA T (ﬁj &
™ Ty M\TTM TV

~ P R
Also, dG = VdP- SdT + GdM b (ﬁj :V('” j +G and
ﬂM T,V T,V

)
A - AP =y e - [_ (ﬂP/ﬂM)T,V]Z
" Ay ™ TV -(T[P/T[V)TM
(_Pj m('”_VJ (ﬂ_PJ
M TV TP .M M TV
(TP ~ (Vv by the tri ple product
M ry o rp rule; Egn. (4.1-6)
Since

‘ITV) 5 by
—— | =VP Ay, - =, =0!
(ﬂM T.P AVV

(b) The Gibbs free energy must be a minimum for a system constrained at constant 7 and P
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i) Eguilibrium analysis

| | |
dG' = (‘”—Glj dT' + ('”—G,] dp' +[—'”G | j am’
ﬂT P.M ﬂP T,M ﬂM T,P

Since T and P are fixed,
dG' :(ﬂ—Gll] dM' =G'am’
M TP
Thus
dG=(G'- ¢"am' =0 ax G'=G"
ii) Stability analysis

1, »_( 1%G 2
—d°G =Gy (dM) = | —= dM 0
5 wmm (dM) [TIMZJTP( ) >
Now
2 A Eqn. . A
(Te) -(2) 2 i2e) o]-f-g
9T M P ITM T'P4.9-10M aTM r.p M

Thus G,,,, ° 0, and stability analysis gives no useful information.

54 (@) Atconstant M, T and V, 4 should be a minimum. For a vapor-liquid mixture at constant M, T
and V' we have:

A=A+ 4"
and at equilibrium dA=0=dA" +d4" . Thus

da=0={- Prav" - s“d1" + G am" }+{- PYav" - sVar¥ + GVam"}
but

M = constant b dM" +dM" =0ordM" = -dM"
Vv =congtant b dV-+dVY =0ordv* =-dv¥
T =constant b dT" +dT" =0
b dd=-(P-- PV)av" +(G"- G¥)aM" =0
Since dV' and dM* are independent variations, we have that
P-=PY;and G =GV

adso T-=7Y by constraint that 7'is constant and uniform.
(b) Atconstant M, T, and P, G =minimumor dG =0 or equilibrium.

dG ={rtap- - star- + Gram*} +{yVapY - sVar¥ + GVam"}
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and M = constantb dM"“ =-dm"
P =constantb dP- =dPV =0
T = constantb dT- =dT¥ =0
P dG =G am" +GVam¥ =(GY - GYam" =0
or G+ =GV for vapor-liquid equilibrium at constant 7 and P.

(Also, T and P are uniform—thisisimplied by constraints.)

5.5 From Sec. 4.2 we have

er=cu- ) (37, =< {35 37)
Y ae)\ar), Y ) v ),

Itisthelast form of the equation which is useful herenow 7'>0 and (‘ITZ/‘ITT)% 3 0. However

P} |<0
v ), |=0atcritical point or limit of stability

Thus C, > G, ingeneral; except that Cp, = C,,
i) atthecritical point or limit of stability of asingle phase.
ii) For the substances with zero valuer (or very small value) of the coefficient of thermal expansion
a=(YvV)(V/NT), such asliquids and solids away from the critical point.
5.6  Stability conditionsfor afluid are

C, >0 and (ﬂ—P) <0
T Jr

for afiber these translate to
C, >0 and (ﬂ—F) >0
ML),

Now C =a+br;if C >0 forall 7,then C, >0 a T b O impliessa>0; C, >0 as T® ¥
implies b>0. Also, (TF/11L), =g >0 since T >0, thisimpliesg > 0.

d

<

1
57 dU=TdS- Py dS=—dU+

~ |~

Thus E :i and E :ﬁ. These relations, together with the equation
w), T w), T
s=s°+ainLipinl (1)
- = Qo VU

will be used to derive the required equation.
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[Note that Eqn. (1), which is of the form S =S(U,V) is a fundamental eguation of state , in the

sense of Sec. 4.2.]
-1
@ (ﬁj :a(%) 12 lvy=ar )
Tw), ) v U <

(b) ( j £:b_—><—0: . Thus PV =bT. ()
W T yr

[Clearly, the fluid with an equation of state given by (1) is an ideal gas with constant heat

capacity]
(c) Stability criteria:

2¢ )2 2 2 2 2
T2 <23 () ot 2] <01 <o
M %14 we )\ s ), Wy 1w,

Now
a a
( j 4{ Z:'F<0ba>0forﬂwd
to be
( J 4{ E_-£<op b>0 | stable
Vig ¥
[Note: a, b> by problem statement.]

and

Eoo
4

T°s L{(ﬂ_ﬁj -1
ww W \wv), W

Thus, the stability criteriayield

U . "
:[ﬂ——) =Cy >0 sincea and k are positive constants

17),

from_

Eqn. (2)

and
2
b= K_(ﬂ_P) >0 [ﬂ_P) <0

T\ ); Ww);

Thus, fluid is always stable and does not have afirst order phase transition.
5.8  Atlimit of stability (1P/1V), =0 for the van der Waal's equation:

[P+ %J(z b) = RT

So that at limit of stability

w V-b Vv
2a RT 1 RT 1 a
—3: = = P+—2
w-oF v-b\r-5) 750 ¥
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Thus P=a(V - 2b)/V*; or using

To obtain the envelope, we compute P. for various values of 7,

v 10 2 1 0.8 0.7

r

P 0.028 05 1.0 0.781 0.0343

Notice, that the critical point (V. =1, P =1) isthe upper limit of metastability (i.e., P, £1), as well
asthelimit of single phase stability.

5.9 T andP will betaken astheindependent variables at a second order phase transition

Then G'=G": §'=§", since 5 = ('ﬂ_g)
),

and

7' =" where = ['"—Q)
Vi=y v=lqr).

and, of course, 7' = 7" and P' = P".
From S' = S" we have that along the 2nd order phase transition curve that dS' =dS" or

| | 1 1
(57,35 o5 )
1), 1P ), ar ), 1P ),

| | 1l 1
b P ar. (—M J ap =P 4. (—“K ) AP
), ),

T T
Thus
('”_P) _ G- G (1)
N, T AT, - (),

curve

Similarly, equating dV' =dV’" yields

| | 1} 1
TE NV are | TE ) gp= [ T o[ I 4p
nr ), e ) e ), e

Thus

(7)o = SWARILRAUR @

a1 i (N f1P), - (W 0P),

However, since /' ="', we can divide numerator and denominator by ¥ and obtain
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qar _ a-a"
(ﬂrjalon kl vl (2b)
transition T T
curve

Note: The Clausius-Clapeyron equation is

1r _Ha-H" ﬁ
T(ﬂ'TjalOn - V V (3)

transition
curve

However, this form is indeterminate for a 2nd order phase transition. Applying L’ Hopital’s rule to
egn. (3) taking derivatives of numerator and denominator with respect to T at constant P

TP - e -
' hich (1)
[ﬂT)tarI:r?sguon (ﬂV /T[T) (ﬂzll/ﬂT) which isegn ( )

curve
Similarly, applying L' Hopital’ srule, but now taking derivatives with respect to P at constant 7.

(‘ITPJ _(Lfar), - (14 /9P),

T Jies, (W AP) - (e fp),

curve

[ -rw ), - vt (et ), ]
) (/' fap), - (' /p),

but 7' =" so that

1P _ (/) - (/)
g T(ﬁjmm "T(ﬂz'/ﬂp) - (" /),

T
curve

whichisegn. (2a)!

dP _ DH dP _H - Hs _ 335 10° J/kg
510 @ (=g =75 P =SS -
dT Jyendion TDV dinT 7, - Vs -0000093 m*/kg

curve

=-361 10° Jm®

P _ 361 10° Ym®=-361" 10° Pap P,- P =-361 10°In22
dinT I
-2985" 10"°
or 7 = Tyexp) —————(P,- B)
dP DH RT

(b) but DV »p' ~

N"

Il
ar trgr?sgtion D

curve
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dP _DHP  dInP _ DH
dT RT?' dT  RT?

If we assume that DA is constant, then

(c) Denver: B =846" 10’ Pa

T =27315exp{-2.985" 10 °(846" 10" - 1013" 10°)}
=27315K = 0°C (freezing point essentially unchanged)

B 1 8314 10° 846 10"
TZ = - . 6 - n .
37315 22557 10°° 18 1013° 10°

-1
} =36808 K=949°C
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5.11 This problem involves the application of the Clausius-Clapeyron equation. We will assume that the

heats of fusion, sublimation and vaporization are al constant. Thus we will use
P. DH(1 1).
2= _(TFJ in all cases. Now DH'® =DH™"- DH". To calculate DH™" we
2 1

will use the following sublimation data:

State 1: Triplepoint; 7=1129°C=386.05K; P=1157" 10* Pa
State2: 7' =1064°C =37855K ; P=800" 10° Pa

. 4 sub
b In(ll57 10 ):0369:_ DH ( 1 1 )

800" 10° R \38605 37855

P DH™ =5980" 10* J/mol

DH"*=1527" 10" Jmolp DH'® = (5980- 1527)" 10"
= 4453 10" Jmol

and Dﬂ"a"/ R =5356K. To find the normal boiling temperature we again use Clausius-Clapeyron
equation.

o 10137 10°)_-4453"10°(1 1 ) Stael=T.P.
1157 10* 8314 (7, 38605) State2=N.B.P.
b 7, =4577K =1845°C

Experimental value =183° C; difference due to assumption that DH'® isa constant.

5.12 (a) Atequilibrium P (ice) = P (water)
Equating the In P 's gives

288962 - @ = 26.3026- 54328

b T=273rC

and

. 61401
In P (ice) = 288962 - 73l - 64096 b P* = 607.7 Pa

B
(b) InP=A-2 ang 4INP _ DI
T dT  RT
d'”P:+ﬁzp DH = BXR
dT T -
Thus
DH b _ ,
= = 61401 and DH** =5105" 10" J/mol
R ice® vapor
DH

=54328 and DH** =4517" 10* J/mol
R water ® vapor

Dgfus: Dﬁliee@ o Dﬁwb _ DEVBP =5880" 103 J/mOI
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5.13 (Also available asaMathcad worksheet. The Mathcad solution includes graphs.)

(@) Usethe Clausius-Clapeyron equation

DH'® _ In(A/P)
R YL- 9T,

1
Plotting In P vs. T and graphically taking slope, | find DH"* ~ 42700 J/mol .
(b) The vapor pressureislow enough that the ideal gas approximation should be valid—thus

dinP'® _DInpP'® _ DH'®
dT DT RT?

either graphically or analytically, we find
DH"* ~ 313,600 J/mol
5.14 (a) Start with Eqgn. (5.4-6)
P P
f=Pexp iJ'(V Ede =} Iniz J.(ﬂ 1)dP
RT \™ P P \RT

dPY) AV _dz_dV

1
but —dP =
P YV Z 1

r dz %Py Ndv _ zZ T(P 1
= [ea g ][y e nd T

or
2 1 % (RT
InL=(z-9-Inz+=—= | (— P]JV (Egn. 5.4-8)
J2 RT I\ ¥ -
B(T RT(. B
0y z=1+20 4 p:—(1+7)
14
|ni:£_ |,—(1+£j+i J‘ [(Eﬂﬂﬁj}ﬂ/
P ¥V v) RT,.,\V Vv ¥V V)| —
v
=B nz+3 | idezﬁ- InZ
4 |4
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(c) vdWeo.s.

S0
vdw
Inf =ln vy __a +(Z-D-Inz
P V-b RITV
Pb RT P
:|nz-|n(z-—)-i —+(Z-1)- InZ
RT) RT PV RT
A
=(Z-1)-—=-In(Z- B
(z-9 ~ (Z- B)
Pb
where 4 = > =—.
T) RT

(d) Peng-Robinson equation of state. Start with

v v
yox yex LV V-b V(I +b)+b(V - b)

:Rnn_K { (1+I)b]

V-b 2«/7; +(1-2p
:RTInzZB 2«/_19{ ET«/\/_;))ZI

[See solution to Problem 4.2 for integral]. Therefore

|anPR:(z-1)-|nz+|n z _«d |{K+(1+J§)b]

Z-B 2J2bRT +(1- «/E)b
a +(1+2)p
=(-D)-Inz- 5)- «/EbRT V+(1 V2

515 (a) f,L'jS—fHZS, Y® = P(f/P), where the fugacity coefficient, (/P will be gotten from
corresponding states.

20
Tows=3732K b T =220 2815_ ggq0p
Ho 3732

Zcu,s = 0284, whichis reasonably closeto 0.27
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From Fig. 5.4-1, % =0765, fy,s =20" Q765=153bar .
(b) For aliquid, from Egn. (5.4-18)

f= P"ap(%jsalexp{ '[f %dP}

PV®

Since P'® =6455" 10° Pa at the temperature of interest, we will assume that (f/P),

Also, we will consider the liquid to beincompressible. Thus

[ Lap=L [ar- (P P“ap)
o RT T RT
and
v(p- P 0.018(P - 6455)
= P**®exp = = 6455exp{ ' }Pa
Jas p[ RT 8314 10° 310.6
so that
Pressure, Pa s Pa Reported
P=10" 10’ 6,921 6,925
50" 10 9,146 9,175
10”108 12,960 12,967

5.16 (also available asaMathcad worksheet)
(@) Thereare (at least) two ways to solve this problem. One way isto start from

1 ”( RT
= Pexpl— (|- 2= lap
= ool p)
or

P
RT
RTInL:J(V- —)dP
P P
RT _8314" 10° MPaxm®/mol K * (27315+ 400)K _ 0310748 g
P P(MPa) " 1801 g/mol ~ 10°% kg/g P

~1.
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From Steam Tables 7'=400°C

PMPa v m*/kg V- RT|P
0.01 31.063 -0.0118
0.05 6.029 ~0.00596
0.10 3.103 -0.00448
0.2 1.5493 -0.00444
03 1.0315 -0.00433
0.4 0.7726 -0.00427
05 0.6173 -0.00420
0.6 05137 -0.00421
0.8 0.3843 -0.00413
1.0 0.3066 -0.00415
1.2 0.2548 ~0.00416
1.4 0.2178 -0.00416
16 0.19005 ~0.00417
1.8 0.16847 -0.00417
2.0 0.15120 -0.00417

By numerical integration of this datawe find that

RTW% ~ -00084 MPaxm?/kg

_ 3
b . - 00084 MPaxm 3/|<g 0027032
P 0310748 MPaxm®/kg

so f/P=097333 and f =1947 MPa. A second way to use the steam tables is to assume that
steam at 400°C and 0.(31 MPaisanideal g?s. From the steam tables, at these conditions, we have
H =32796 kJ/kg; §=96077 kJ/kg K
P G=H- TS = 32796- 67315 96077 = - 31878 kJ/kg
= - 574127 kJ/kmol = G(400° C, 0.01 MPa) = G'®(400° C, 0.01 MPa)

Also
2MPa
G'®(T=400°C, 2MPa) - G'(T = 400°C, 0.01 MPa) = jK'GdP
P=001MPa
2MPa RT
G'(T'=400°C, 2 MPa) = -574127 kJ/kmol + [ =—aP
001

=-574127+83141n200 = - 277603 kJ/ kmol

Also, from steam tables

G(T = 400°C, 2 MPa) = (32476- 67315" 71271)" 1801
= - 2791563 kJ/kmol
f G- G'° p( 2791563+ 27760.3)
—zexpg =—— |=ex -
P RT 8314 67315
= 09726
£ =09726" 2 MPa=1945MPa
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(b)

©

517 (a)

(b)

Corresponding states (7. = 647.3K, F. = 22048 MPa, w = 0344)

+
6473 22048

From corresponding states chart (actually from Table in Hougen, Watson and Rogatz, Vol. II, p.
601) we have

S [~

=0983P f =1966 MPa

Using the program PR1 we find

f =1940 bar = 1940 MPa

Comment: The steam table results are probably the most accurate, and the corresponding states
results the least accurate. Note that with the availability of the computer program PR1, the P-R
e.0.s. isthe easiest to use. The results would be even more accurate if the PRSV equation was
used.

PV . B C RT  BRT  CRT
=it —+—+..:bD V=—+——+ 4o
RT voy? - P VP v%p
Thus
PV B
— =1+ >
RT = RT/P+BRT/VP+CRT[V?P+-..
C
+ > FI
RT/P+BRT/VP +CRT[V 2P +.-.
2
1s B(P/RT) ,_C(P/RT)

1+ B{RT/P+--} "+ C{RT/P+---} * +... 1+ 2B/} +---

Now keeping terms of order 1, B, B? and C only yields
PV 2
RT RT RT RT
BP P
=1+ 22 4 (c- BZ)(—] o
RT RT
RT
+B+(C- 32)(i)+... and 7' =——. Therefore
RT P

v-v'¢=B+(C- 32)(i)+--- and
RT

%z exp{%ﬂBﬂC- BZ)% +.-}dP}

or
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P RT 2 \RT

s BP+M( P)Z..}

We will consider a number of alternatives for using the virial coefficient data. The first is to
start with Eqgn. (5.4-6a)

f 1 %(, RT _ 15 e
;—exp{ﬁi(z Tde}—exp{ﬁg(K |4 )dP} (1)

P
thus we need to evaluate the integral 1/RT_[(K- K'G)dP. Since the truncated virial equation
0

P/RT =1V +B[V?+C[V® can not easily be solved for ¥ as a function of T and P, the

following procedure will be used:
i) Choosevaluesof V and compute

ii) PlotPand P'® asafunction of |4

iii) Use these two plots to obtain Z'G and V (real gas) at the same value of P, also compute
V(T,P)- V'°(T,P)
iv) Finally, use anumerical or graphical integration schemeto get //P asafunction of P

Same representative values of ¥ - V'® are given below

P(10° Pa) 1 2 3 4 5 6 7 8
-(r-r'°) 0.187 0.180 0.187 0.223 0206 0211 0201 0.180
m°/kmol

P(10° Pa) 9 10 11 12 13 14 15

-(r-1'9) 0.1573 0.1384 0.1215 0.1069 0.0944 0.0834 0.0739
m°/kmol
Using the data and performing the integration we obtain

plo*Pa) 1 3 5 7 9 10 1 138 15
f/P 0.939 0.822 0.703 0.602 0.527 0.499 0.475 0.439 0.412

An alternative isto note that dP = (E—gj dV and, with
T

RT B
P21 de ) (1) <. L 28 3Cer
re rvr W, v
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and
P ¥(P)
1 ¢ RT
—j(_ dP—— z( ) —dp
RT P
0 ¥(0)
| 1 28 ac dpP
Syl [ (22 Ky [£
e vV ov: oy 2 P

Y(Po)

= Iim{- InPK+InP0K(PO)+2B(i- 1 )+£(2L %ﬂ
5 v(p) Uk)) 2\(P) V(R)

=-InPV +InRT+2—B+£

14 2V
Note: lim V(P,) =¥
[ Po® 0_( O) ]

Thus

f RT 2B 3C| _RT 2B 3C
==exXpn—+—+—t=—exp—+—

P Py v ZZ Py 4
but PV/RT =1+B/V +ClV? and

_exp{2B/y +3¢/2v?}  exp{- 03326/ +001938/y*} ,
P~ 1+B+ClY? T 1- 01663V +0012921/y'? @
for ¥ in m*/kmol .

The use of this equation leads to results that are somewhat more accurate than the graphical
integration scheme. Still another possibility isto use the results of part (a) which yields

%: exp{- 000619P- 10207" 10°°P?} for P in bar (3)

Theresults of using this equation are listed below.
Finally we can also compute (f/P) using corresponding states (Figure 5.4-1). For methyl

fluoride 7, =317.7K and P.=5875MPa (note Z. is unknown is V. has not been
measured). Thus, 7. =(27315+50)/317.7 = 1017 , and for each pressure P. can be computed,
and f/P found from Fig. 5.4-1.

Theresults for each of the calculations are given below:

P (bar) 10 30 50 70 100 130 150
eqn. (1) f/P 0.939 0.822 0.703 0.602 0.499 0.439 0.412

ean. (2) f/P 0.939 0.822 0.710 0.607 0.503 0.442 0.416
ean. (3) f/P 0.939 0.823 0.715 0.617 0.486 0.376 0.314

Corresponding 09 085 072 060 047 039 0.345
states f/P

Note that at low pressure, al the results for f/P are similar. At high pressures, however, the

results differ. Equation (3) is approximate, and probably the least accurate. Equation (2) should
be the most accurate, except that there is a question asto how accurate it isto use an equation of
state with only the second and third virial coefficients for pressures as high as 150 bar.
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5.18 (a) Assume the vapor phase is ideal, and that DH'® is approximately constant (or an average
DH"® can be used).

2= == 1
A I 1)
5 In[z.oze) _ - DH"® ( 1 1 j

1013 R \2220+27315 1780+ 27315

vap
b DﬁR =352 10°/K  DH®=293" 10* Jmol

(b) DH'™(T) = H(set.vap,T)- H(set. liq, T)
=[H(sat. vap, 1)~ 1'(1)]- [H(sat.lig., 7)- H'°(7)]

1G 1G
o Dﬂvap(T):T[(ﬂ'ﬁ j _(ﬁ-ﬂ ) }
‘ TC sat. vap, T T sa. lig, T

+
(@ T =L =202 0y
T.  2831+27315

H®-H

H®-H
TC

J =506 J/mol K and [ ] = 4469 J/mol K
sat. v. T sat. liq.
7,=0851 7,=0851

DH"*(T) =556.45K[44.69 - 506] = 2205" 10* J/mol

(d) The reason for the discrepancy is probably not the inaccuracy of corresponding states (since
Z. =0272 which is close to 0.27) but rather the assumption of an ideal vapor phase in the

Clausius-Clapeyron equation. We correct for gas-phase nonideality below.

a 7=178°C, T =0811, Z=082
Tr=22°C, T.=089%0, Z2=071

The average value of the compressibility is

-1
Z= 5(0.82 +071) = 0765
We now replace egn. 1 with

- Vap
inf2-"RE f1 11y pye—q765 (203 10° Jmol)
Bz \5 5) ¢

=224" 10" J/mol

which isin much better agreement with the result of part (c). A better way to proceed would be

to compute the compressibility as a function of temperature, i.e., find Z = Z(T, P) and then
integrate
dP__DH™P

dT  Z(T,P)RT?
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rather than use an average valueof Z, i.e. Z.

5.19 Basis: vessel volume 1m?® (cancels out of problem)
x = fraction of vessel filled with liquid water

(per 1m? of vessel)

1-
N = total number of moles of water = ViL + ( va)
1) Tota number of moles same at all condition_s -
2) xisthesameat initial loading and at critial point
State 1—Ilow pressure V'V >> 7"

b N =—+

s . 1- 1
State 2—Critical point Kv :Z" =V.P N, ==Xy X -~ put
Ve Ve Ve

X 1 vt
N =N, b ——=—o0r x ==—
K KC C

N

(@) Using steam tables

y'(25°C) = 0001003 m*/kg; V. = 0003155 m/kg
0001003

x= =03179
0003155

P Initial fill should contain 31.79% of volume with liquid (which was reported in the Chemical
and Engineering News article).
(b) Peng-Robinson equation of state

V,(25°C) =02125" 10* m*/mol
and the P-R equation of state predicts Z. = 03074 (solution to Problem 4.11b) so

_ Z.RT, _ 03074 8314 10 ® MPa m*/mol K * 647.3K
P 22.048 MPa

= 075033 10°* m*/mol b x = 02832

or aninitia fill of 28.32% of volume with liquid.

5.20 (@) One theory for why ice skating is possible is because ice melts due to the pressure put upon it
under the ice skates, and then refreezes when skate leaves and the pressure is released. Skate
actually moves over afilm of water on the sheet of ice. To find the lowest temperature we use
the Clapeyron eguation to calculate the change in freezing point as a result of the applied
pressure. Properties of ice:

r =Q90 g/cch ¥ =111 cgg
D]f]fus — lelsub _ lelvap =28348- 25013=3335 J/g (at 0.01°C)
(Appendix I11)
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(b)

(©

TP\ _DH _ TP _ 3335 J/g
T ), 71DV T  27315K’ (1- 111) cd/g
=- 1110 J/ccK = - 1114 bar/K

or (%) ~-00090 K/bar b DT =-0009 K/bar (DP)

Assume 70 kg person on 0.6 cn? skate area (well sharpened)

70
DP = —==1167 kg/cm?” 09807 bar/kg/cm? =114.4 bar
b DI =-103°C

assuming skate makes complete contact with ice. If the surface is irregular (as it is) maybe
contact only over 10% of area. In thiscase DI'=-93°C. My observation in Minnesota was
that it was possible to skate down to ~-20°C (5% contact area??). Of course, the
thermodynamic model for this process may be incorrect. Other possibilities include the melting
of ice as aresult of friction, or by heat transfer from the skater’'s foot to the ice. | believe the
thermodynamic theory to be the a reasonabl e explanation of the phenomena.

Since DA™>0 and DV™>0 for CO, and most other materials, freezing point will be

elevated not depressed. Liquid film can not form and ice skating isimpossible.
More difficult to quantify. Similar to (a) for freezing point depression, which on release of
pressure causes refreezing and formation of snowball; but in this case thereis also considerable
heat transfer from the hands to the surface of the snowball that causes melting.
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5.21 (also available as a Mathcad worksheet)

5.21
From Eq. 5.7-4  AT=AP*AV*T/AH  bar:= 16-Pa
3
Water 1000 bar(— 0.090610 6-3) 273.1K
AT:= _ 9 AT =-7.412K
3338/0Ul¢
g
3
Acetic acid 1000 bar(o.01595 106-3) 289.8K
AT := __ 9 AT = 2472K
1g7ioule
a
. 3
Tin 1000 bar(0.00389 106-3) 505.0K
AT := __ 9 AT = 3.352K
58.610U
g
3
Bismuth 1000 bar(— 0.0034210 Gﬂ) 544K
AT:= _ g AT =-353 *K
527 joule
g

5.22 (also available as a Mathcad worksheet)

5.22

i:=0..10
R:=8.314

AH(T,ab,c) =R|c(T)2+b.T-a)

Ag(s) Tmax= 1234 Tmin := 298 a:=-14710 b:=-0.328
_ Tmax- Tmin. . .
Yi = (1) + Tmin T K AHmM, J/mol
Y AH(Yi,a,b,c)
298 1.215 16
391.6
255 2 1.212 16
578.8 12110
672.4 1.207 18
766 1.205 16
859.6
9532 1.202 18
1.047 16 1210
11418 1.197 18
1234 10 1.194 18
1.192 16
1.18910°
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Ag(l) Tmax:=2485 Tmin := 1234
Y = Tmax- Tmin (i) + Tmin
! 10
BeO(s) Tmax:=2800 Tmin := 298
Y = Tmax- Tmin (i) + Tmin
! 10

a:=-14260 b:=-0.458

T, K AHsub, J/mol

Y, AH(Yi,a,b,c)
1.234 16 1.139 16
1.359 16 1.134 16
1.484 10 1.129 16
1.609 10 1.124 16
1.734 10 11216

1.86 16 1.115 16
1.985 10 1.11:1G

2.11 16 1.105 16
2.235 10 1110

2.36 10 1.096 18
2.485 16 1.091 16

a:=-34230 b:=-0.869

T, K AHm, J/mol

Y, AH(Yi,a,b,c)
298 2.824 16
>48.2 2.806 16

798.4

1.049 18 2788 10
1.299 16 27716
1.549 10 275210
1.799 16 273410
2.049 16 2716 10
2310 2.698 10
2.55 10 26816
2810 2.662 10
2.644 16

o

o
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Ge(s)

Mg(s)

Y. !

Y. :

Tmax:=1210 Tmin ;=298
._ Tmax- Tmin (i) + Tmin
10
Tmax:= 924 Tmin :=298
_ Tmax= Tmin (i) + Tmin
10

a:=-20150 b:=-0.395

T, K

298

389.2

480.4

571.6

662.8

754

845.2

936.4

1.028 16

1.119 16

1.21.10

AHm, J/mol
AH(Yi,a,b,c)

1.665 16
1.662 16
1.659 16
1.656 16
1.654 10
1.651 10
1.648 16
1.645 16
1.642 16
1.639 16
1.636 16

a:=-7780 b:=-0.371

DHm, J/mol
A H(Yi,a, b,c)

6.376 16
6.357 16
6.338 16
6.318 14
6.299 14

6.28 14
6.261 16
6.241 16
6.222 16
6.203 16

6.183 14

1]
o

Cc:

c:=0
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Mg(l) Tmax:=1380 Tmin =924 a:=-7750 b:=-0.612 c:=0
. Tmax-Tmin . .
Yi= (D +Tmin T, K DHm, J/mol
Y AH(Yi,a,b,c)
924 5.973 14
969.6
5.95 164
1.015 16
5.927 16
1.061 16
5.904 14
1.106 16
5.88 1¢
1.152 16
5.857 16
1.198 16
5.834 16
1.243 16
5.811 16
1.289 16
5.788 14
1.334 16
5.764 14
1.38 10
5.741 16
NacCl(s)
Tmax;=1074 Tmin ;=298 a:=-12440 b:=-0.391 c.=- 0.4610'3
. Tmax-Tmin . .
Yi= (D + Tmin T, K DHm, J/mol
Y AH(Yi,a,b,c)
298 1.021 16
3756 1.017 16
4532 —r
530.8 1.012 16
608.4 1.006 16
636 110
763.6 5
TR 9.94 1
918.8 0.871 16
996.4 9.799 16
1074 16 9.721 18
9.639 14
9.552 14
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Si(s)
Tmax:= 1683 Tmin := 1200 a:=-18000 b:=-0444 c:=0

Y, ::w'(i) +Tmin T.K DHm, J/mol
Y, AH(Yi,a,b,c)

1210 1.452 16

1.248 16 1.45 16

1.297 16 1.449 16

1.345 16 1.447 16

1.393 16 1.445 16

1.442 18 1.443 16

1.49 10 1.442 16

1538 16 1.44 16

1.586 16 1.438 16

1.635 16 1.436 18

1.683 16 1.434 16

5.23 (also available as a Mathcad worksheet)

5.23

The metal tin undergoes a transition from a gray phase to a white phase at 286 Kat ambie
pressure. Given that the enthalpy change of this transition is 2090 kJ/mole and that

the volume change of this transition is -4.35 cm3/mole, compute the temperature at which
this transition occurs at 100 bar.

From Eq. 5.7-4 AT=AP*AV*T/AH bar:= 10-Pa

6 m3
99-bar-4.3510°._"_| 286K
AT = mole, AT =-589310 ° -K

20000061°4€

mole

5.24 For the solid-liquid transition

f f
(ﬂj -4H D(apj SAH 12798 9643 y/cc
eq eq

aT AV \dInT AV 01317cdg

op =964.3J/cc= 964 3% 10 J M= 9643bar .9648 10Pa
oInT

0 B = P+9643xIn2
Lt
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0O TP =T ex ﬂ = 278 7ex m (1)
17" 9.643x 16 Pa 9.643x 16 Pa

For the solid-vapor trans@n, assuming an ideal vapor phase

n&:_ﬂﬂs”b(i__lj
R R % &
. _AH™ _ In(R,/R) In(26.67/1333

R YT, -YT, 3696x 10%- 382% 1T

DmP-_s53t-1
R L h

=-5513K

and

1 pTeT™ 1000
T'P=|=-01814x 10°In— | = — ()
T R 3696- 01814n(P'"/ 266]7

Solving Egns. (1) and (2) simultaneously gives

PP =0.483bar= 483kPaandT'F =278 7K

[The melting temperature of benzene ~ triple point temperatf®3C = 278 7K, which agrees
exactly with our prediction].

5.25 First, at 298.15 K, lets relate the Gibbs free energy at any pressure to the value given at 1 bar.

K 1mol
(P-1)barx 35103 x 10062 x —
m kg 12¢

gdia (298‘15 P) = gdia( 298 P= bar) + 5 rﬁﬁ
8314x 10°22 1" 2981k
mol K

(P—l)bar><2220k—g3>< 100g% x 1Mo
m kg 12¢

8314x 105037 . 2081k
mol K

G,(29815P) = G (298 P= bar) +

Note that
3 3
V=t M, 1 KO,15 9 - 34188 1601
3510kg 1000g mol mol
1 m 1k §
V=== X515 9 _ 54054 100
—9 2220kg 1000g mol mol

Therefore
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Ga(29815P) - G ( 29815P) = G,,( 298P= Han- G( 298P= Ha)
3
(P-1)barx (34188 5405} ﬂﬁmlol

8314x 10523 | o081
mol K

+

at equilibrium at 28.15 K wehave

0=2900-0 -P -1x 8.0148 1D
2900

VR 36185x 16 bar = 36.185 Mbar

To find the transition pressure at other temperatures we use the Clapeyron equation
J
(G_Pj _As _
0T Jsat AV

mol K
P
— 16928x 16?"“: 1692&%

(2.377- 5740

learﬁ
J

3
(3.4188-5.405yx 10° 12—
mol

which indicates that for every degree K increase about 298.15 K we need to increase the pressure
by 16.928 bar. However, this is a small percentage increase compared to the 36.185 MPa pressure
required at 298.15 K. So the transition is essentially (within engineering accuracy) only very

weakly dependent on pressure.

5.26 Mass balance:M; = M,
Energy balanceU; =U,

Equilibrium criterion: G°=G'=GV; also S=maximum
We will assume the vapor phase is an ideal gas.
Properties of the triple point (a convenient reference state):

U(quuid, T =0° C, triple point) =0 ( referencstatg
U (solid, T = 0° Q = -AH(solid — vapo) =-335 J g

sinceAV [0

U(vapor, T=0° Q=AH"-RT
=2530J/g- 8314 27315) mok 11 ;”O'
g

=24038J/g

Energy content of originalystem:
U(liquid, T=-10°C)= 0+422J § C<(- 16 G=- 422 g
U (solid, T=-10° § = -335 Jogr2158 G(-10 £=-356/J¢g
U(vapor, T=-10° Q = 24038 J ¢*C,(- 10 ¢  wher&, ~ G - R

= 24038+( 203 %‘)(—10 C) = 23881)g

Also, initial specific volume of vapor phase

=7609 m*/mol

vV - RT _ 8314 Pallni/ mol Kx 26315K
- P 287.6 Pa



Solutions to Chesnical and Engineering Thermodymasmics, 38

Ratio of mass initially present in vapor to mass in liquid

MY V' _18x10° m*/mol
VV

= =237x 10°
7.609 m*/mol

ML

O Negligible mass of system initially present in gas phase!

Since the initial system is a subcooled liquid + vapor, the following possibilities exist for
the equilibrium state.
(1) All the liquid freezes and some vapor remains (i.e., a solid-vapor system at equilibrium).
The energy released (heat of fusion) would then go to heat the system—Since 335 J/g are
released, an€, ~422 J o C, too much energy is released for only the solid and vapor to be
present.
(2) Someof the liquid vaporizes and some freezes, so that a solid-liquid-vapor mixture is
present. Thus, the system is at the triple point at equilibrium. [The energy released in
solidification of the water goes to heat the system ug@ the triple point temperature.]
We will consider this second possibility here; as a first guess, the small amount of vapor will not
be included in the calculations.

Let x = fraction ofliquid that solidfied

M" = initial mass ofliquid in thesystem
Energy balance

MLUL(-10°C) = (1-x)M-U" (0 C)+ xM- (F (0 ©)
-422J=(1- X)(9+ x(- 33%
0 x=0.126 fracton that isolid

1- x = 0.874fraction that is juid
Now lets go back and determine the amount of vapor in the system

triple point pressure 0.6%1 kPa 611 Pa

Steam tabs

As a first approximation, assume that the vapor still occupies about 1/2 of the total volume—
this is reasonable, since we expect little volume change of the condensed phase due either to
freezing or thermal expansion.

MY (18x10° m3/mol) x 611Pa .
= = 484x 10
M 8.314 Palny mol k27315 K

If we now include this amount of vapor in the energy balance, it makes only an insignificant

change in the computed solid and liquid fractionisWe will neglect the presence of the vapor.
To compute the entropy change, we notice that if we started with 1 gram of liquid, the net
change in the system would be

1gliquid (-10 O 087449 liquid(C Q
+ - 0126 gsoll (¢ Q
2.37x 10° g vapor(- 10 C, 287.6 Pa 4.84x 10° vapor(0 C,611 Pa

Entropy changes
1 g liquid (-10C) - 1 g liquid (CC)
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T 27315
AS= G In—t = 4.22 I/ gKin=—="="= 01574 J gK
Ging /oK eats T9

I
0.126 gliquid (0°C) — 0.126 g solid (6C)

AG=0=AH-TAS

2s=21 andas= w2
T T
~335 ]
ns=33599, 0196 g= - asa5 /K
27315K

(484-23]x 100 = 24% 10gliquid(C Q -~ 247 10 gvapof O C

AR 2530

AS=247x 10° = 24% 10x———=0229% 10" J/K
27316

O vapor makes a negligible contribution in computihg

AS=01574- 01545 00029 K for each gram of water present.

5.27 Gibbs Phase Rule (Egn. 5.6-B=3-P
(a) Only solids can have many as 3 phases present. These can only exist at a singlelpainat of
P as there are no degrees of freedom.
If only 2 solid phasesF =10 a single degree of freedom. Can fix eitharP.
If only one solid phase present, thEm 2, bothT andP can vary independently.
(b) If a liquid is also present

Liguid alone F=3-1=2 T andP independently
variable

Liquid + 1 solid F=3-2=1 Can varyT or P, the
other follows

Liquid + 2 solids F=0 Only a single point

(c) Same as (b), with vapor replacing liquid in discussion above.

(d) If liquid and vapor are already present, tHér 2
O 1 degree of freedom if no solid is present (i.e., eifher P can be fixed, not both)
If liquid and vapor and solid are preseft=3
O F=0 Triple pointis a unique point on phase diagram.

5.28 Criterion for equilibrium at constaftandV as thatA= minimum. However, from Problerb.4
this impliesGY = G- (not A = A 1)
Now G = A+ PV and P = —(9 A/0V),. Thus, at equilibrium

R N S P
T T

V L
Also at equilibrium PV = pt 0 | 28| —[ 94
av' ). \av" ).

O Pressures are equal when derivativesfofvith respect to/ are equal. The derivative ok with
respect td/ is the tangent to the curve in tihe-V plane. Thus both curves must have a common
tangent if equilibrium is to occur, and the slope of this tangent line is the negative of the equilibrium
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pressure. Now must prove that the points of intersection of the tangent link audve are points
at which G¥ = G-. From the figure we haved” = A" +(8 A/dV);(V' - V) but this is exactly
what is required by Eqgn. (1) f(ﬁ_SV :QL I So we have indeed identified the equilibrium state.

1>

<+“—>

7

<

=
<
<

<

%zv vt)

5.29 (a) From the equilibrium criteria we ha®e =T-, PV =P and

<l|I>

L V T aP
G'=G'D deP Oorf dVv =0
vV, T a\i T

(b) For the van der Waals equation we have

8T, 3

p=—=~ - 1
EVEEREYE 1)
and
(apj_g_ 24T, 1 4T,
ARG VI e A VR
Thus
v ap TV,
jw( f}v 0= j( 2}w
V['— r r (3/_1)
_ (" 4T _1Vrv
0__\/_,[ -~ [ -0- 3 - 97
and

Another equation arises from the fact tidt = P 0O P = P so that, using Eqn. (1)

r r
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8, _ 3 _ 8, _ 3
vV -1 (Vrv)z -1 (Vr")z,

or, solving for the reduced temperature
{0y -V

(/3 -1)- (3 - 1] (3)

Tr:E
8

This is an independent equation betwé’;en\/rv andVrL. Using Egn. (3) in Egn. (2) gives'

| S o =t 3

AR 1.
+ - =0
ARAAR RS R S|

4)

(c) Procedure used in solution
i) Guess (or choose) a value \ﬁ’ , compute\/rL which satisfies Eqn. (4).
i) UseV andV" so obtained to compuf& from Eqn. (3).

i) Use V. andT, and Eqgn. (1) to getP = P**". [Note: This calculation was done on a

digital computer.] Results are at end of problem solution.
(d) The Clausius-Clapeyron equation can be written as

ﬁ B Aﬂ B PC deap B Aﬂ vap
dT coexistance TAV TC d-l; TAV
curve - —

or

deap_ Aﬂvap 1 ~ Aﬂvapaié ~ %P Aﬂ vap

dT  TAV R TAV a a TAY,

Sincea=3R\Z; V. =3b. Now 9%j/a has units of(energy ™, so define a reduced heat of
vaporization, AH'", to be S/aAH"*". Thus

dp'ep
AH =TAV, =
Thus AH'*" can be computed by taking derivatives of results of part (c). (This was done

graphically). The results are as shown below.

v vio P T
3x10° 0.3690 2617x 10* 0.2948

0.3124 9.1
1x10° 0.3745 8772x 10* 0.3300

0.3341 8.69
8x 10 0.3758 1123x10° 0.3382

0.3477 8.69
5x1CF 0.3789 1894x 10° 0.3571

0.3686 8.51
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3x 10
15x 1
100

75

60

50

40

30

20

15

10

1.8
15

1.0

0.3829

0.3896

0.3947

0.3985

0.4020

0.4052

0.4095

0.4158

0.4268

0.4365

0.4538

0.4658

0.4849

0.4998

0.5226

0.5596

0.6410

0.6710

0.7364

1.0

Results are plotted below.

33503« 10° 0.3802

7.299x 103
0.01153
0.01597
0.02056
0.02527
0.03254
0.04505
0.07112
0.09810
0.1534
0.1954
0.2650
0.3198
0.3996
0.5240
0.7332
0.7899
0.8830

1.0

0.4171

0.4423

0.4621

0.4787

0.4931

0.5119

0.5383

0.5799

0.6129

0.6649

0.6965

0.7402

0.7697

0.8072

0.8573

0.9270

0.9437

0.9697

1.0

0.3986

0.4297

0.4522

0.4704

0.4859

0.5025

0.5251

0.5591

0.5964

0.6389

0.6807

0.7184

0.7550

0.7885

0.8323

0.8922

0.9354

0.9567

0.9849

8.77

8.87

8.70

8.52

8.54

8.62

8.53

8.85

8.01

7.81

7.51

7.33

6.97

6.64

5.86

4.89

3.94

3.22

1.43

EN-]

e
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o
=i
Larg10l -1
PrapPe)
o}
-.rn'ﬂl FaT EN-J ]

LT¢

The reduced vapor pressure and heat of vaporization for the van der Waals fluid.

5.30 (a) Restricted form of Gibbs Phase Rule:=3-P
O P must be 3 orless
O quaternary point can not exist in a 1-component fluid.
(b) 2 phase&l F =3-2=1 degree of freedom.
Thus, if any property ofone of the phases is specified, this is sufficient to fix all of the
thermodynamic properties of both phases! However, if only the total molar volume of the two-

phase system (or some other two-phase property)M.e. X V/(T, P+ X V ( T P, this is not
sufficient to solve forx', V' andV". That is, many choices afand P can yield the same

value of the total molar volume by varying the mass distribution between the two phases.
Consider now the situation in which the total molar volume and total molar enthalpy is

specified. In this case we have

1=x"+x"
V=xXV(T R+ XV (TP
andH =x'H'(T, P+ X H (T R
The unknowns here are', x" and eitherT or P (note that since the system has only one

degree of freedom, eith@ror P, but not both are independent variables). Thus, given equation
of state information (relatiny and H to T andP, and the two-phase coexistance curve), the

equations above provide 3 equations to be solved for the 3 unknowns.

531 (a) ds:(§) dT+(§) dP. Thus
=71/, \ar ),

oS _(0S + oS oP
OT Jsat oT P oP - OT Jsat

curve curve
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but

98) _Cp (9P} _AH™
0T ), T (0T Jsat  TAV'®
curve -

and, by the Maxwell relations

[52), 15, -
22| =4Z=| =va
aP ). \aT ), —

Thus
s AH'® oV ) AH"®
Ci =T| = =Cp, -0V —— = - == —
sat [OT Jsat P avve P oot p AV
curve - -
and
G =Gy A _(oV) AH™
sat P — A\Lvap oT . A\_/Vap i

wherei denotes the phase.
(b) For the liquid

AV >>VE anda' ~00 CL, ~Ch

sat

For the vapor we will use Co~[H(DL)-HMI(L-T and
(0V/0T)p ~[M(B)-MDY(E- D and

v AHYP
Avvap

Co=Cp —a’V

[C, and(0V/0T), will be evaluated using finite differences above and steam tables. In each

caseT, will be taken as the saturation temperature, &ndo be the next higher temperature in

the steam tables.]
Thus, at 100C (0.1 MPa)

_ 27764~ 26761

CY =" = —=2006kJkg K;
P 50 J/ g
(d_\_/) _ 19364~ 16958 0004817/ kg K
dT /), 50

at 370C (21.0 MPa)Cy =146 kJ/ kg Kand

(%j =0.000141m’/kg K. Thus, at 108C
P

22570 kJ kg

16719m%/kg

CY,=2.006 kJ kg K- 000481n?/ kg Kx

= -4.488 kJ kg K

at370C
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441.6 kY kg
V =146 kJ/kg K- 0000141n7/ kg Kx
Coa /kg [k 0.0027 ¥/ k

= -8359 kJ kg K

5.32 (a) Multiply out the terms, and this is easily proved.
9’s _ 0 1 1(aT a°s
(b) Syy=gr>= (—j:——z =] =
ONoU  ON|, \T T°\ON),, \OUON

S,

butdS——dU +—dV——dN O oS :—E so that
AN ), T
a’%s :i(_ﬁ) _ (ae) aTj
QUAON U\ Ty U Jy v 72U VN
__1(oeG), G (oT) ___1(0G)(oT G
Nlau ), NT2lou )y aT ), au NTZ(:V

V v

and

%N:_;{V(ﬂj _S}J,LZ =i (apl+9+2T_S
cNT|ZlaT), =] NT?G, NG TlaT), NTG

butG+TS= H. Thus

oT \ oP H
SJN:__Z - == | — +;2
7(aN ), NGT\aT ), NTG,

d ds_a (P 1(aP P(oT
© SN yay=aNT L, “TaN ), T2 AN ),
NV aN\T),, TlaN),, TZ(oN

4 02, B 3(2),

“ovoN v
:_1 9G) , G (oT) __1(9G 6Tj+§ oT
av ), NTZlav ), a1 ),\av NT? oV

(%) = {e 122 |

but

)
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dg:Q,dT{W(a—Pl—P}dyD [—) =1
aT v ), ¢

(69] _9G V) _2G Y 9T, V)
b 9T Y a(T.V) o, V)

aT

_(95/0T),(0U/oV), - (0 G/o V)0 Yo T,

(0U/aV),

_(3_91 _Cy(0G/oV); .
loT), (eu/av),

dG =VdP- SdT,
- - - oT ), oT

Thus,

w1 fee) |,
A4-10 TN Uy NT?

Now

oG

09) o) s eef28) (2]

[a__j :\L(O_P) _s- CyV(0 P/oV),
u TN ~ T(aP/aT)\L—P

L Gy TV POV,

TS
- T(o P/aT)\L -P
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0 Sy = v(apj +S(6Tj +G(6Tj
A =
TNLON ), TNION ), T°NION ),
=V (oP)  H foT} __YfoP) , HiOT
TN{ON )y, T?NION),, TlON),, TIaN ),y

but from above

l(aT) _ Vv [apj_ H
T2(0N),, NC,T\0T), NT?G

and, from equating the two expressions 8y

1(6P]Uy _~HEP/OT), . v (BPJZ_ v (aP]T

TloN NC,T NG, \aT ), NT\av

Putting these expressions together yields

" NG, T

N

2HV (9P _ H? V’(@P/OT) Vv?(aP
(ﬁl NG, T NG, W(WJT

(e) Itis now simple algebra to combine the expressions above, and those in Sec. 5.2, and show that

o :SJU S~ %N_(SJU S~ Sy §N)2
’ S Su(Su v - &)

is exactly zero!!

5.33 (Mathcad worksheets in the Mathcad Utilities Directory are also available to do these calculations)

Students in my thermodynamics courses have produced thermodynamics diagrams for many fluids
using the program PR1 and following the methods in illustrations of Chapters 4 and 5. The
following figures are examples of some of these diagrams. It should be noted that all of these
diagrams are in qualitative, but not quantitative agreement with thermodynamic diagrams generated
using more accurate equations of state. In particular, liquid densities are not predicted very
accurately from the Peng-Robinson e.o.s. so that the location of the two-phase dome is somewhat
shifted as are the other thermodynamic properties. Diagrams for other substances will be found in
the file named “Other figs”

Thermodynamic properties of nitrogen by Tom Petti



Solutions to Chemical and Engineering Thermodymamics, Je

28

=

e

s I

Wi
(Lt

vil d

i —— =

1o Tty

oL

108

=" T ] = I t
| |
e
g \
..II_:“.W \\\n.\. 1&\-5.
e .....-n T
I..m . A e
w I AN A N\M
J o O O 7 5 4 2 o
=
| A
b - LA .\..
W27 4
B I e i Al
F1~._qm_..\ — ZZ ATt
L A Vi
ey L~
] v
w] v
1_1 g \\ r
xx_x f
F o
s e —
[ 1 — i
: : 1 ..I......:lllfu_.u|
HiAREAIE
HE ¥
-] M T il
S £

ML

Pressure-volume diagram for nitrogen Peng-Robinson eos.

TEARERA S SN TR GAGRAM FOR STRCRIENT P17 (T

EY

T

i
SEEEE
2 234 3
L3 x
— v} -
- -
Ilr.lJ..I.T.-dJJ]Jr.r.Irl..J..r.rFr.
IIlIJ..I.lJl.IIlI...T-Jr = ]
|l|l|o||..ll§||:m r_ruFr..r-.rll J
— B
r...l..lrr...r__l.r....r:”..r.._.....
l.l.I_.... Illurrflll.—-:-r..m.dr
[,
i
: .

1]




Solutions to Chemical and Engineering Thermodynamics, Je

“H— " . AR b
4 -2 " 0 o @ s B S
Tue 150 %G g} " e X TLiitl
1',_ e -\:‘\. ‘"1 L'I'Ilﬁl.-i L-}} Ta-100%0
A — N ‘\_ el A AL HTTT
Tad T840 b e R R R Ta-F59G
:}—"’ 11\%1 1 1 Tu-50%G
P
- 7 b N il B
, 7 N \\ T
Te25C
" 7 \x Ruiasss!
o Ta50C
Telvo'c f‘ 1:l"l l!ll —  TuTSNC
F A | e
Te22500 —9 f{ [1 l l g Tal25 00
k\-l ':-‘- B E
- L
-Boog -6000 ~4000 -2004 i}

H TEAHIAOL)



Solutions to Chesnical and Engineering Thermodymasmics, 38

5.34 Thermodynamic properties of water (steam) by Allen Donn.

Joe [—

L

Pressure-volume diagram of steam computed with the Peng-Robinson equation of state
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400

3o0

Wﬂ
g

2a0 |

(08

Temperature-entropy diagram of steam computed with the Peng-Robinson equation of state.
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100 ] T=425°C

s0 s v , S

20 = =
T= 200°C

£ bar i

;0 - - —
.-T=150°C N

s B/ {1 Low e

EEETT Sl

= Ho -3 -Zo -f0 o 10 2o

Pressure-enthalpy diagram of steam computed with the Peng-Robinson equation of state.

5.35a) This would be a difficult problem if it were not for the availability of the program PR1. Using this

program, the critical properties and the heat capacity data in the text, ahatBé315K,
P =1 bar reference state (which cancels out of the problem) we find for ethylene

85 bar and25 C= 2981XK
H =-6388 J mol
S=-5279 J mol K

By trial and error, using guessed valued oitil we obtainP¥?" =10 bar, we obtain

T=22135K; S' =-2944 ) mol K; V¥ =01536x 10° n?/mol;
S"=-7871) mol K; V" =05454x 10* nt/mol.
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Now considering the fluid initially in the tank that will be in the tank finally as the system we
have

N=N; and§ =S8

(b) Now there can not be only vapor in the tank (entropy too high) or only liquid (entropy too low),
so there must be two phase mixture. kbt= mass (or mole) fraction of liquid. Thus:

x"S +(1- %) 8§ =_$=-5279¥ mol K
X"(-7873 +(1- X" )(- 294%= - 5279

- +
x- _ I5279+ 2944, 0474 x¥ = 0526
7871+ 2944

Thus, 47.4 wt % of fluid in tank is liquid, and 52.6% is vapor. Based on 1 mole in tank we have

V = 0474x 05454 100+ 0528 .01536 10= . 8388 ~40v’/mol

474x 05454 1
volume % liquids 222 9545% Y 100= 31%
8338x 10

volume % vapor=96.9%




Solutions to Chesnical and Engineering Thermodynamics, Je

5.36 (alsoavailable as aMathcad worksheet)

(ﬂ_Pj _ b
i), TDV
_ZRT,

Assume VY >>ytp Dy ~yY = -

('ITP) _ DH (ﬂlnp) _ DH
« - 2 P - 2
7 )y ZRT?/P \ T ), ZRT

but
RILLLEGH 1(43552 (%6227 4.70504InT)
T ), 7 T
=, 20227 470504 _ 1 (56977 4705047)
T r T
Thus
DH__ 1 (56227- 4705047)
ZRT? T

or

DH = ZR (56227 - 4.70504T) = 31,602 J/mol at 75°C

A 31602 = 09539

8314~ (56227- 470504  (27315+75))

but

LA :1+£ =7 =09539
RT |4

SO

=0.9539- 1=-004607; B =-0.04607V

< | %

Then V' = 09539RT/P. Tofind P use

In PY® =43552 - 6227 470504In(27315+ 75)

(27315+75)
P'® = 08736 bar
09539 8314 10°°" (27315+75

V= =31606" 10" m/mol
08736

and

B=-1456"10% m?/mol
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5.37

5.38

We start with Egn. (5.7-4), the Clapeyron equation

%%
1T G'=g" jv) 4

[Note: Error in problem statement of 1st printing. Disregard comment that the volume change on
fusionis zero.]

From the problem statement DH = 48702 kJ/mol , but no dataon DV isgiven. Also P¥ =1013
bar at 7 =185 C=29165K . Based on other hydrocarbons, we can guess that

Dys~1t02” 10* ni/kg

We will use this as an estimate and determine the effect on 7 . Also, the molecular weight of
hexadecane is 226.45. Thus

dP__ 48702 kJmol " 1000 J/kJ
dinT d” 10* m*/kg” 22654 g/mol * 1kg/1000 g
_20498. o nf
d
[where cis1or 2]
;A ;a2
:—214'92 10 Ym? 102 barm¥/ky” 10° kJ/J:—214'92 10" par
21498 21498 T
dP =———dInT b (P- 1013 bar) = In—-2
d d  29165K
. . 29436 ifd=1
;= 291659xp|:wi| = .
21498 29710 ifd=2

So the freezing point is raised between 2.7 and 5.5 K, depending on the (unknown) value of DK“‘S.

(also available as a Mathcad worksheet)

This is a one-component adiabatic flash process. | will assume that only vapor + liquid are present,
and then show that thisisindeed the case.

There are two ways to solve this problem. Oneisto calculate all the thermodynamic properties, and
the second isto use the steam tables. Both methods will be considered here

(1) Calculating all thermodynamic properties, and assuming the vapor phaseisideal.

energy balance: 10. U (7 =95°C) =(10- x)U"(7) +xU" (7)
equilibrium requirements: 7-=7V; P =PV;and G- =G’ b P=P'®
Also, using data supplied earlier,

PV = exp(14.790 - 5432'8)

and by the ideal gaslaw
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_ NYRT _x/18 mol 8314 10°° (bar>m®/mol K)T
ad 1 10°%- (10- x)/10°

volume taken up
by liquid

P

Equating P and P'® we have

- - -5

3f/18 8314° 10°T - ex p(l 4790 - 5432.8) _X 83141

1710°%- (10- x)/10° T 18 1000- (10- x)
Also we havefor theinternal energies

U“(T =0°C) =0 reference sate
UY(T=95C) = 95C" 4184 J/g° C= 39748 Jg

US(1) = (T - 27315 4184 [assuming C, = constant]
UV(T =0°C) =DH"®- RT =2260- % = 213383 J/g

UV(T) = 213383+ (T - 27315)" 2.09
so that
10° 39748 =(10- x) 4184~ (T - 27315) +x[213383+(T - 27315)" 2.09]
| find that the solution to these equationsis

T=35268 K and P=05411bar
x=03289g

Thisisso far above the melting point of water, that the presence of an ice phaseisimpossible.
(2) Using the steam tables

energy balance:

107 5(T =95 C) =10" 397.88= (10- x)U(7)- xUY(T)
| SN ——

both at saturation

also P=P¥(T) and

¥ =0001n7 = (10- x)V(1) +xVV(1)

Procedure
) GuessT, get P(T), V-(T), VV(T), U-(T) and U" (T) from steam tables
ii) Seeif Egns. (1) and (2) are satisfied by using Eqn. (2) to getx, and then seeing if Eqgn. (1) is

satisfied.

For example, guess T =80°C:

VL =1029" 10° m'/g U =334586 Jg

VvV =3407" 10° /g UY =24822 Jg
P =4739kPa

P x(egn. (2)) = 029058; x(egn. (1)) = 0.29348
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by iteration and interpolation

T=794°C, P=04739bar and x =029 grams.

Difference between this solution and the previous one is due to the inaccuracies of the
approximate vapor pressure equation in Part 1, and the assumption of constant heat capacities.

5.39 All the P-V datafor this problem was obtained with a simple basic language program written for this
problem. Calculations were done for n-butane as a representative fluid. The van der Waals loop
region is shown on the diagram. What is interesting is that, in addition to the van der Waals loop,
there is much structurein the P-¥ plot. Much of it occursintheregionof b>} and V <0, so that

it has no relevance to our calculations. In the region ¥ > there is only the van der Waals loop
behavior at low reduced temperatures, and the hyperbolic behavior (PV = RT) at very high
temperatures. The main point is that the cubic equations we use exhibit quite complicated P-V
behavior, but only relatively simple behavior in the region of interest to us, whichis ¥ > 5.

2oen ___ ST HoLies

#- eh; = - [
ll{r.—:. D"'_‘,"’P" nwnlj_f Ve dér I‘u"ll'.'li
TP e | ~foep reqion

= (B0

= l!;u-rrlir4¢
p—" J e 3
i
- Joon) et B e h
; |
- Hees T
?;- =
= SO6F ¥ =t —
15
- boor i_ N i S R
|
~ ool 1 Ll Lon
z 3 o F ]

P-V diagram for n-butane calculated with the Peng-Robinson equation of state for realizable (¥ > 5) and
physically unrealizable (¥ < b) regions.
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5.40 Let 7 = theequilibrium transition temperature when both solid phases are stable.

5.41

dG =VdP - SdT

Also dH = TdS +VdP so at constant pressure

(Ej :i(ﬂj _
1), r\171), T

b phase with higher heat capacity will have a higher entropy since the entropy of both phases are
zero at O K.
Then, again at constant pressure

(Ej =-9S
), =

Since both phases have the same Gibbs free energy at the temperature, 7, this implies that the
substance with the larger entropy (which arises from larger heat capacity) will have the lower Gibbs
free energy, and therefore be the stable phase.

i:1+B(T); po RT  B(RT

RT v v V2

P\ _ RT -2B(T)RT

w | Tz <0

Ww), v 4

2B(T) 1 y3 |4 |4

>-—: B(l)>-=—=-=; B(I)>-=

/3 )2 (7) 52 (7) >
Back to virial eqg.

PV? +1+[1+ (4PB/RT

= y-B(I)=0; V= (4PB/RT)
RT 2P/RT
y=RT L RT [, 4P8

2p 2P RT

B>- l[ﬂ} 117’1+4ﬁ
2L2P RT

B
1% /1+ (4PB/RT)

Infact, B(T)> - > issufficient since |B(T)| << ¥ in al conditions where second virial coefficient is

used.

>- BT qid will be stable
4P

Approximation B(T) > - % P B(T)>- % for stability.
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5.42 Easy way
d_U =)- P dV das Q
drdi T

System of constant entropy Q = - TSy,

Also constant pressure

dUu . dv . d
—_—=- TSgen' P?: - TSgen' —(PV)

Sgen

dt

ay d(PV)——(U+PV)—d—H——TS £0

dt dt

P H= maX|mumaquU|I|br|um

dH =0

d’H30b

dH = TdS +VdP

d?H = (ﬂ ) (dS)? +(ﬂ ] deP+(1TV] dPdS +('"V) (dPy’
s ), 1P ) s ), 1P),

2 mr 3 r 3
(2] s oo (I2) +o

1s
T T
(ﬂ—j =—30bP G >0
1), G

More theoretically correct way
Equilibrium criterion for a closed system at constant entropy and pressure.

du . dV ds _Q

—_ ; _+S
=0 dt AT e
ds
T——- TS

0= dt

U _pds . pd_V- TSy

dt dt dt
ds dv
Constant entropy — = 0; constant pressure P; = Z(PV)

dUu

b ——=-— —(PV) TSyen: (U+PV):-TS'gen

dH _ dH

i TSgenEOD d—EOD H = minimum stability
t

d?H >0 but dH = TdS +VdP + G dN
d°H = (Hss + H)(dS' ' + (Hip + Hy)(dN')’
+2(Hgy + Hey )dS'dN' > 0
—M[N His(dS'f +2N' HiydS'aN' + N' Hly(an') ]>o

N'N
Making atransformation of variables

N gN; dx, = dN'
NN

dx, = dS' +
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(NHssNHyy - N*Hgy)
NHsgs

O, = Nlgs; Qp =
Asacheck

Chdx} +Qpdx;

2 2772
:NHSS(dSI +H;S\llej + NHSSNHNN - N HSN leZ
HSS

NHgg

2
|
+ NH W N -

which is correct so
qldxf +(J]2dx22 30pP g,>00q,>0

b = NHs = N(“H] :Nl(“_Hj (L) -0

T s\ 1S 18 )
but ds=SPur- (Wj (E) =S ('”S] _ NG
T 9T 9T T 9T T
b N >0; N>0, T>0P Cp>0
P
Second criterion
NHgsNHyy - N?HEy TH 1G
NP NI ey :_(_) ol
NHss TN s p TN s p TN Jg p

H y (ﬂ_Hj P (EJ
AN AN TN,

2 T/TIN)?
NHyy - NH—-N(E) - N—(ﬂ MN)sp
H, ﬂN S,P

SS
5.43 (also available asaMathcad worksheet)

(NT/NS)p

543 ISENTHALPIC CLAUSIUS EQUATION OF STATE CALCULATION
Cp,:=2097  bby :=42810"° bb,:=13510"  b(T) :=bb,+ bb T

R:=8314.10"°
Input initial temperature and pressure of calculation  Ti:=120+ 27315 R :=50 bar

Input final pressure Pf:=10 bar

_(RTl)

Initial state calculations T:=Ti P:=H + b(Ti)

zi={BM) 72 1 1467 (R.Tiz_bb J
RTI DELHin:=|RT(Zi-1)- >~ ¥ |.10°

Vi— b(Ti)

DELHin = 214
Guess for final state T:=08Ti P:=Pf

Residual enthalpy (DELHF) (RT) (PV(T,P))

RT

V(T,P) = +b(T) 2Z(T,P):=
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(R-Tz-bbl) .
DELHF(T,P):=|RT(Z(T,P)- 1) - —————|'10
V(T,P)-b(T)

Ideal gas properties changes relative to the initial state DELHIZ T, P) :=Cp0-(T— Ti)

Solve for the exit temperature

GIVeN  DELHE(T,P) + DELHIG(T, P) — DELHin=0 T :=find(T) T = 401314

dH := DELHF(T, P) + DELHIG(T, P) — DELHin HF := DELHF(T, P) + DELHIG(T, P)

SUMMARY OF RESULTS

FEED EXIT
Temperature, K Ti=39315 T =401.314
Pressure, bar P =50 P=10
Compressibility Zi = 11467 Z(T,P) =10291
Enthalpy 0 HF = 214
(relative to the feed)
dH = -3.1264-10 1>
Symbolic determination of enthalpy departure function for the File: 5-43 symbolic

Clausius equation of state

b(T,bb) i=bb_+bb, T

(RT)

T,V,Rbb) = ™1
A v b(T, bb)

R R. T

4_A(T,V,R bb) > . bb,
dt (V- bby—bb, T) (V= bby= bb, T)?
der(T, V. R,bb) :=9_P(T,V,R bb)
dT
Int(T,V,R,bb) :=T-der(T,V,R,bb) - P(T,V,R, bb)

Int(T,V,R,bb)=>T-: R: ‘bb, |- R

+
(V- bby—bb,-T) (V- bby— bb, T)? Y (v-bby-bbyT)

Cn bb
Upon simplification RT2 1

(V- bb, - bbl-T)z
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\ . o

DelH(T,V, R, bb) := Int(T, S, R bb)dS MATHCAD has trouble with an |nf|n|te lower
- limit, so use a very large number instead
10
bb bb
DEH(T,V, R, bb) >-R T2 ! _RT2 !
- - : - 1000000000000000 :
(V- bb,~ bb,T) (-2 + bby + bb, - T)

This term can be neglected, would
be zero if an infinite lower limit
could be used

bb,

DEH(T,V,R, bb) :=-R T
(V~bb,~ bb,T)

Final result

RT
V- b(T)

Condition for stability is (ﬂ—PJ <0
w

5.44 ClausiuseOS. P=

For the Clausius equation

(ﬂ_Pj :-L2 Since R>0, T>0 and (V - by’ >0.
1w, V- b)

Then (ﬂ—PJ must be negative or
w);

(1111_5j <0b Singlephaseisstable at all conditions.
T

5.45 See solution to Problem 5.41. If fluid is unstable, then a vapor-liquid phase
transition can occur.

5.46 Redlich-Kwong equation of state

V=ZRT[P

1- RT

Ini:— —-PldV-InZ+(Z-1])
P RT i, 4 -
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J(E- de£= T(RT _RT | _a(T)
v I N\V Vb V(W +D)

|4
= RTIn—%—_ rrin—%-2 j ar
K® ¥ (K‘ b)V®¥ V=¥ (V+b)
14 1 V+b V4 a Z+ B
=RTIn——+4q| - —|In|= =RTIn -—In
V-b b |4 Z-B b z

inL =in—2—. 4 Ir(Z+B)-InZ+(Z-1)

= " bRT r(Z B)+(Z Y

a (z+ Pb/RT)
In
bRT z

=(Z-1- In(Z- B)-

A:a_})z, B:b_P
RT RT

In— Z-1)- In(Z- B)- %Ir(
USI ng the same analysis for the Soave-Redlich-Kwong equation of state leads to

Z+B)

the following
InL=(z-1- Ir(Z- P—b)- "mm[ZJ’(Pb/RT)}
P RT RTH VA
Z+B
=(Z-1-In(Z- B ﬂlr{—}
( ) ( ) RTh zZ
5.47 (also available asaMathcad worksheet)
See Mathcad for the graphs.
Problem 5.47
R-T a
P(V,T,R,a,b) =
-b o SV (V+b)
RT a
~ P(V,T,R,a,b)|[dV>RT:In(V)- 1:In(V- L..b) RT+ ——:In(V) - L.———:In(V+ b)
(J? b) Wro)
6 Panm’ 2. 25
Tc:=1262K Pc:=3.396:10 -Pa R:=8.314- . a::0.42748-R Tc b = 0,08664- RTc
mole-K -
T:=110K
120,100 V,i=15b V. =V.1000 V)= 401510 ° smiemole ©
i+1 i 0
p = RT a pi.Vi
i _ 0.5 Z =— _ =3 3 -1
Vimb 1%V (v, + b) TR V,,, = 565510 ° *m>*mole
Vi a Vi
fop, :=In - In(Zi) +Z-1+ In
Vi- THRb Vith
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fi = PI e(p(fopl) 150
100 [~
Pi
5 0
10™-P:
o
-50 | | |
0 0.5 1 1.5 2
V.
b
2.5'106
2'106 — =
1.5'106 — ]
f.
i
1010° .
5'105 — =
0 | | | |
0 0.5 1 1.5 2 25
V.
Iog(—l)
b
T:=150-K

s . — i
i:=0.. 100 Vo '=15b Vi+1 '=V,-1.001

V, = 401510 ° *m-mole’

1

25
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RT a P.V
P = - i i -3 . 3 -1
i Z = V, =565510 © *m~+*moal
V.- b TO'S-Vi-(Vi+ b) i TR 100 m>*mole
Vi a Vi
fop, :=In - In(Zi) +2Z,- 1+ In
Vi-b Ti5Rp |VitD
fi= Pi-e<p(fopi)
500
400 - —
300~ —

[&2]

oz

200 [~ 1

100~ ]

2510

2° 107 — =
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5.48 (also available asaMathcad worksheet)

Problem 5.48
a) If ethanal isan ided gas, the /= P, so that the fugacity of ethanol is 505 kPa

b) Starting from egn. 5.48 we have that

In (fiP)=(B/V) - In Z +(Z-1) mol ;=1
3 3
P:=505000Pa  T:=(27315+126) K  R:=8314 (pari) B:=-52310°%."_
mol-K mol
v:={RT) V= 65710410 S o
P
Given (PV)_1, B V= find(V) V=599810 S om’
RT v
S .(PV)
T RT Z = 0913
fsat :=P-e@| 2 -In(2) + (2- 1) 5
ke by * fsat = 4502+10° *Pa

5.49 (also available asaMathcad worksheet)

Problem 5.49

The dengity of ethanol is0.789 g/cc at 20 C which we will dso useat 126 C, and its molecu
weight is46.07. Thereforeitsliquid molar volume is

3 kg kPa:=10>Pa MPa:=10°Pa
(46.07-1 _I)
— mol _
V= kg VI=583010 °  -ni°
0.789-10° 2
m3

3 et e ((ZBMPa— 505kPa) V1) .

sree RT f=7066-10° <Pa
b)

5 3

—\A. A 8.epa L. Pa_ -
W(p) .-V|[1+1.0910 kPa *-(101L3-kPa p)] WW(25:MPa) = 5681+10 om

fi=fsat-exp

L J-25-|\/|Pa
— W(p)dp - a5 .
RT Jsos.kpa f=702410° <Pa
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5.50 (also available asaMathcad worksheet)

5.50 FUGACITY CALCULATION USING SRK EQUATION

Read in properties for Pentane Tc:=4696 Pc:=3374 om:=0.251
kappa calculation kap :=0.480+ 1.574-om- 0.176-om-om
RTC ReTc?
S-R-K Constants: R :=0.00008314 b= 0.08664-? ac :=0.42748.
Note that these are being defined as a 2
function of temperature. aAf(T) =1 1+ kap-(l— Tl)] a(T) = ac-alf(T)
/J c
CATR) =S DT TR = Da(T) =S a(T)
(RT) RT aT
Z(T,P):= |A<CA(T,P)
B« CB(T,P)
-AB
A_B2_B Vector of coefficients in the SRK equation
Ve in the form
-1 0=-A*B+(A-B"2-B)*Z-*Z"2+Z"3
1
22 POIerOtS(V) Solution to the cubic
for il 0.2

(zzi<_o) if (|m(zzi) ¢o)

Set any imaginary roots to zero

Z2Zesor(22) Sort the roots

7772, if (]zzo|< 10‘5)
Set the value of any imaginary roots

22,727, if (I 2z, |< 10‘5) to value of the real root

zZ

Enter temperature T, and pressure P.
T:=100 C T:=27315+T K P:=50

Fugacity expressions [actually In(f/P)] for the liquid fl and vapor fv

Z(T,P).+ CB(T,P
fI(T,P) = (Z(T P)g— 1) - In(Z(T, P)o- CB(T,P))_CA(T,P)_M( (T, P)o+ OB( ))

CB(T,P) Z(T.P),

Z(T,P),+ CB(T,P
(T, P) :=(Z(T,P),- 1) - In(Z(T,P),- CB(T,P))—CA(T’P).m( (T, P),+ CB( ))

CB(T,P) Z(T,P)2
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Fugacity Fugacity coefficient
fugl :=P-exp(fl(T,P)) fugl = 6.49272 fI(T,P) = 204134 phil :=—= phil = 0.12985
P

fugv :=P-exp(fv(T,P)) fugv = 649272 fv(T,P) = —204134 fugv

phiv :=—— phiv = 0.12935
P

SUMMARY OF RESULTS

T=37315 K Vapor pressure, bar P=50
LIQuUID VAPOR
Compressibility Z(T,P),= 023249 Z(T,P), = 023249
Fugacity coefficient phil = 0.12985 phiv = 0.12985
Fugacity, bar fugl = 6.49272 fugv = 649272
Read in properties for Benzene Tc:=5621 Pc:=4894 o0om:=0212
kappa calculation kap :=0.480+ 1.574-om- 0.176-om-om
2
S-R-K Constants: R :=0.00008314 b:= 008664ﬂ ac :=042748. R Tc
Pc Pc
Note that these are being defined as a 2
function of temperature. aAf(T) =1 1+ kap-(l— Tl)] a(T) = ac-alf(T)
/J c
Ca(TP) =0T BT pa(T) =% a(T)
(RT) dT
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Z(T,P):=| A< CA(T,P)
B— CB(T,P)
-AB
A-B*-B

-1

1
ZZ« polyroots(V)
for il 0.2

(2;0) if (Im(zZ)#0)

ZZe—sort(Z2)

Ve

. -5
77277, if (Izzo|< 10 )

: -5
27,2727, if (Izzz|< 10 )

Z

Enter temperature T, and pressure P.

T:=100 C T:=27315+T K

Vector of coefficients in the SRK equation
in the form
0=-A*B+(A-B*2-B)*Z-*Z"2+Z"3

Solution to the cubic

Set any imaginary roots to zero
Sort the roots

Set the value of any imaginary roots
to value of the real root

P:=50

Fugacity expressions [actually In(f/P)] for the liquid fl and vapor fv

(T, P) = (Z(T. P)g~ 1) - In(Z(T,P),~ CB(T,P)) -

v(T,P) = (Z(T.P),~ 1) - In(Z(T,P),,~ CB(T,P)) -

CA(T, P) n Z(T, P)O+ CB(T, P)
CB(T,P) Z(T,P),

CA(T, P) in Z(T, P)2+ CB(T, P)
CB(T,P) Z(T,P)2

Fugacity Fugacity coefficient
fugl := P-exp(fl(T,P)) fugl = 201968 fI(T,P) = —3.20908 phil :E phil = 0.04039
P
fugv :=P-exp(fv(T,P)) fugv = 201968 fv(T, P) = —3.20908 phiv = fugv phiv = 0,04039
P
SUMMARY OF RESULTS
T=37315 K Vapor pressure, bar P=50
LIQuUID VAPOR

Compressibility
Fugacity coefficient

Fugacity, bar

Z(T,P), = 017187
phil = 0.04039

fugl = 2.01968

Z(T,P), = 017187
phiv = 0.04039

fugv = 2.01968
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5.51 (Solution using Mathcad worksheet)

T=-200°C

7V =099512

HY =-55795" 10°

sV =17372
T=-180°C pP'®=
7V =0.96359

HY =-51095" 10°

sV =-32734
T=-160°C P =
7" = 08810

HY =-47953 10°

SV =-42099
T=-140°C pP'®=
7V = 073096

HY =-47988" 10°
sV =-496785
T=-130°C P =
7V = 061800

HY =-50406" 10°
sV =-53938
T=-125°C pP'®=
zV =054226

HY =-52985" 10°

sY =-56685
T=-120°C P'®=
7V =042788

H' =-58378" 10°
sV =-61034

P'® =0.10272 bar

zZ- =4414" 10°*
H"=-12994" 10*
st =-11874

1.348 bar
Z-=4955" 103
H" =-11948" 10
st =-10615

6.750 bar
7zt =0.02307

H"=-10805" 10*
St =-95210

20.676 bar
Z- = 007305

H" =-94328" 10°
St =-84481

32.310 bar
7t =012528

H" =-85449" 1¢°
St =-78418

39.554 bar
7' = 016843

H"=-79739" 10°
St =-74744

47.848 bar
7t =0.24887

H"=-71281" 10°
St =-69.459
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The Mathcad worksheet for thisfileis shown below.

VAPOR PRESSURE CALCULATION USING SRK EQUATION File: SRKvap.med

Properties of oxygen Tei=186 Pei=3046  om =04021

Heat capacity constants

Cp, =28460 Cp = 1819007 Cp, =-0.715007°  Cpy =13t

Reference state and kappa calculation

Tra ;=273.15 Prs =113 kap ;=480 4 13T 40 — 00176 -0m-oin
5.R-K Constants: B = 0L00RE 14 b ::-::-.llshti-t-kpi ac = 0A27E X k'l"
& -
Note that these are being defined as a 4
function of temperature since we will e : | 2 :
need to interate on temperature. alfi Ty =1 L pkap |1 = af T i=ac-alli T)
3 af TP " b
CA{T Fyi=—— CIMT, Py i=—— d
] DalTyi=—a{T}
(R-T)y -1 & d.lh‘
LT Pyi= [A—CA(T Py
Be—CIHT. ")
-AB
A-B_B Vector of coefficients in the SRK equation
Wi In the farm
-1 0=-A*B+[A-B"2-B)"Z-"Z"2+Z"3
1
rolal W
CheprigmotN) Solution to the cubic
for 1= 0_32
[x;.f_cs} ir [:1.:.(y_f|]ae-c=}
Set any imaginary roots to zero
P AR
s Sort the roats
22+ 72 if [] 7z, | ||r‘J
Set the value of any imaginary roots
P2 2F i []N ,_m--‘J to value of the real root
o 2, |
£

Enter temperature T, and pressure P.

Depending on what s specified in the Glven and Find statements
balow, gither T or P is specified and the other i% an initial guess
which may have to be adjusted as the other variable is changed,
especially as the eritical point is appreached. This worksheet will EITALELTH
probably not converge to a selution when T or P are within 3 to 5%

of the eritical values unless an extremely good initial guess is

provided. One way to obtain a good initial is to start well below the P30

critical region and step towards it using the result of previous calculations.

I'i=—130 C




Solutions to Chesnical and Engineering Thermodynamics, Je

Fugacity expressions [actually In{fiP)] for the liquid fl and vapor fv

TP = (20T, P, - 1) = TP - CRTL )

BT R ST n BT R
CBT.F} 2T, P,

AT P [ECTPh+ CBT,P)
ALT,F .
BT P = (AT P, = 1) = infZ0T Py, — CBUT.PY - pin G FLA I|1[

CH ]'.1":-. ZT.P),
GIVEN WT, P - BT Py=d Equate log of fugacity coefficients
P i< Bndc P P o33 31000 Salve equality of fugacities
Fugacity Fugacity coefficient
L ; . , . A . o, fugl . .
tugl i=Mexp{ I T. 1] lugl = 23,6716 WT. Py =—03111 |'|I'||I.—T phil = 0, 73264
lugy i=Pexp( v T.P1) gy = 23,6716 BAT,P1=—03111  phiv :=IU]_":“ phiv = 0.7T3164

Residual entropy for liguid (DELSL) and vapor (DELSV) phases

e BT P) +CB(T.F}
bl ]
DELSL 1= [I{ |n[rc TPy — CH(T. 1=a}+' i) |-|[ ! ]) 0
b

AT

W AT B+ CIT P

1 3

DELSY :=(}t {07, P, - L'IH'I.I‘J:|+] ‘*h“ l( T )] o
: (TP,

Residual enthalpy for liquid {DELHL) and vapor (DELHV) phases

i ZiT.P) + CB(T,P) :
DELHI :=[}E 1 [::f-: e, - |}+r S '11 B, I|1[ s ” L

Z(T.PY,

o E(T.PY, + CB{T.P)
T = g : ;
DELHV :=[|< T{re,- 1)+ ity 1: L) Iu( e ” 1
. I T.F,
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Ideal gas properties changes relative to the reference state

cp, (17— Tos?) Cp, ¢ gty WP I

DELHIG i=Cp (T — Tes) 4 — i ¥
: 3 3 i

I Cp, [l'-'— |,,.1]| p l:l"“— Irs ] : fP
)+L'?, (1= Trspy——— + —“"t""'”[: )
3 Prs

DELSIG =Cp, In
b I'rs

Total entropy and enthalpy relative to ideal gas reference state
SL=DELAIG 4+ DELSL. &Y =DELSIG 4 DELSY  HL :=DELHIG 4+ ELHE. HY (= DELHIG ¢ DELHY
SUMMARY OF RESULTS

I'=143.15 K Vapor pressure, bar = 123 1000

LIGuino VAPOR
Compressibility AT.Py = 012328 T, Py, = (618
Enthalpy, Jimol HL = =8 $5440e 107 Y = =% 0dis a0
Entropy, Jimal K L ==THA177% SV = ~23.03703
OGOty comifomm phill = 0.73264 phiy = 0.73264
Fugacity, bar fugl = 23,6716 fugy = 236716

5.52 (also available asaMathcad worksheet)

5.52 Pure component properties calculation using the SRK equation of state

Read in properties for oxygen Tc:=1546 Pc:=5046 om:=0.021

Heat capacity constants
Cp,'=25460 Cp i=151910°  Cp,=-071510°  Cp,:=131110"

Reference state and kappa calculation

Trs :=298.15 Prs:=1.0 kap :=0.480+ 1.574-om- 0.176-om-om
RTC RATc?
S-R-K Constants: R :=0.00008314 b:= 0.08664-? ac :=0.42748
Note that these are being defined as a 2
function of temperature for convenience. Af(T) = 1'[1_'_ kap-(l— Tl)] a(T) = ac-alf(T)
/J c
CA(T, P) :=a(T)'F2’ CB(T,P) =20 oa(T) =8_a(T)
(RT) RT dT
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T)-P :
ca(r,p) =207 eyt py = P2 pa(T) =8_a(T)
(RT) RT dT
Z(T,P) = |A—CA(T,P)
B~ CB(T,P)
-AB
2 Vector of coefficients in the SRK equation
A-B"-B .
Ve in the form
-1 0=-A*B+(A-B*2-B)*Z-*ZA2+Z"3
1
ZZ“f’OlerOtS(V) Solution to the cubic
for il 0.2

(zzi<_o) if (|m(zzi) ¢o)

Set any imaginary roots to zero

Z2Zeson(22) Sort the roots

7772, if (] 22|« 10‘5)
Set the value of any imaginary roots

27 ZZo if (I 2z, |< 10‘5) to value of the real root

zz

Enter temperature T, and pressure P.

T:=-125C T:=27315+T K P:=100

Fugacity expressions [actually In(f/P)] for the liquid fl and vapor fv

Z(T,P),+ CB(T,P
fi(T, P) i=(Z(T.P)y~ 1) = In(Z(T.P),~ CB(T.P)) - CA(T,P)Iln( (T, P)+ CB( ))

CB(T,P) Z(T,P),

fv(T.P) = (Z(T,P),~ 1) - In(Z(T,P) ,~ CB(T.P)) -

CA(T,P) lln(Z(T, P),+ CB(T, P))

CB(T,P) Z(T,P),
Fugacity Fugacity coefficient
fugl :=P-exp(fl(T,P)) fugl = 34.64672 fI(T,P) =-1.05997  phil :=ﬂ phil = 0.34647
P
fugv :=P-exp(fv(T,P)) fugv = 34.64672 fv(T,P) =-105997 phiv ::fuﬂ phiv = 0.34647
P

Residual entropy for liquid (DELSL) and vapor (DELSV) phases
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Z(T,P) + CB(T,P
DELSL::(R-In(Z(T,P)O— CB(T,P))+DaéT)-In( (TPl + OB )))-105

Z(T.P),

Z(T,P)_+ CB(T,P
DELSV:=(R-In(Z(T,P)2— CB(T,P))+Dat()T)-In( (T, P+ O ))).105

Z(T,P),

Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases

[ Z(T,P) + CB(T,P)\ |
DELHL :=| RT-(Z(T,P) - 1)+T'Da(Tt))_ a(T)-In( ( Z)(O:P)( )) 10°

L 70

[ Z(T,P),_+ CB(T,P)\]
DELHV :=| RT-(Z(T,P),- 1)+T'Da(Tz)"a(T)-|n( ( z)(z:P)( )) 10°

L 72

Ideal gas properties changes relative to the reference state

Cpl-(Tz— Trsz) sz-(T3— Trss) CpB-(T4— Trs4)
DELHIG:=Cp (T - Trs) + > + 3 + 2

DELSG::CpO-ln(Tl
IS

Cp, (T Trs) o, (-1) (=) R10%In[ "
+Cp,(T—Trs) + + - R10°In[—
! 2 3 Prs

Total entropy and enthalpy relative to ideal gas reference state
SL:=DELSIG+ DELSL  SV:=DELSIG+ DELSV  HL:=DELHIG+ DELHL HV :=DELHIG+ DELHV
2T

Vo =Z(T.P) 831410 V, = 004081 v, =2(T,P), 83141671
P

V, = 0.04081

SUMMARY OF RESULTS

T=14815 K Vapor pressure, bar P=100
LIQUID VAPOR
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LIQUID

Compressibility

Z(T,P), = 03313

Volume, m”3/kmol V, = 0.04081
Enthalpy, J/mol HL = -9.20100-10°
Entropy, J/mol K SL =-83.19194
Fugacity coefficient phil = 0.34647
Fugacity, bar fugl = 34.64672
Some representative results are shown below.
T(C) -125 -150 -175
P=1bar
VA 0.9923 0.9872 0.9766
14 12.2227 10.1072 7.9693
H -4301.41  -4994.48 -5684.02
S -19.97 -25.1 -31.35
P=10 bar
VA 0.9193 0.8565  0.03572
14 1.1323 0.877  0.02914
H -4561.07  -5357.77 -12395.6
S -40.28 -46.18 -106.11
P=50 bar
zZ 0.1946 0.1647 0.17634
14 0.04795  0.03373 0.02878
H -8938.78 -10919.2  -12338.7
S -79.34 -93.79 -106.71
P=100 bar
VA 0.3313 0.318  0.34788
14 0.04081  0.03256 0.02839
H -9291.09 -10896.8 -12261.8
S -83.19 -95.02 -107.39

5.53 (also available asaMathcad worksheet)

-200

0.9505
5.7804
-6375.9
-35.49

0.04292
0.0261
-13706.2
-121.5

0.21349
0.02597
-13628.9
-121.86

0.42446
0.02581
-13530.9
-122.29

VAPOR
Z(T,P), = 03313

5.53 Pure component properties calculation using the SRK equation of state

Read in properties for Water

Heat capacity constants

Cp,:=32218 Cp,:=019210°°

Tc:=647.3 Pc:=22048 om:.=0.344

Cp, :=105510"°

V, = 0.04081
HV = -9.2910910°
SV = -83.19194
phiv = 0.34647
fugv = 34.64672
Cp, :=-350310°°
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Reference state and kappa calculation

Trs:=373.15 Prs:=1.013 kap :=0.480+ 1574-om- 0.176-om-om
RTC RATc?
S-R-K Constants: R :=0.00008314 b :=0.08664—— ac :=042748
Pc Pc
Note that these are being defined as a 2
function of temperature for convenience. aAf(T) =1 1+ kap-(l— Tl)] a(T) :=acaf(T)
4} c
CA(T,P) Fa(T)-I: CB(T,P) S Da(T) -=d_a(T)
(RT) RT dT

Z(T,P) = |A«<CA(T,P)

B CB(T,P)

-AB
2 Vector of coefficients in the SRK equation
A-B°-B .
Ve in the form
-1 0=-A*B+(A-BA2-B)*Z-*Z*2+Z"3
1
22 POIerOtS(V) Solution to the cubic
for il 0.2
(zzi<_o) if (|m(zzi) ¢0) o o .
et any imaginary roots to zero
22 sor(22) Sort the roots
7772, if (] zz,|< 10‘5)
Set the value of any imaginary roots
22,77 if (I 2z, |< 10‘5) to value of the real root
zZ

Enter temperature T, and pressure P.

T:=50 C T:=27315+T K P:=0.15

Fugacity expressions [actually In(f/P)] for the liquid fl and vapor fv

Z(T,P),+ CB(T,P
fi(T,P) = (Z(T,P)y~ 1) ~ In(Z(T,P),~ CB(T, P)) - CA(T,P)Iln( (T, P)o+ CB( ))

CB(T,P) Z(T,P),

Z(T,P),+ CB(T,P
fv(T.P) = (Z(T,P),~ 1) = In(Z(T.P),,~ CB(T.P))—CA(T‘P).m( (T,P),+ CB( ))

CB(T,P) Z(T.P),
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Fugacity Fugacity coefficient
fugl := P-e(fI(T,P))  fugl = 0,09983 fi(T,P) = -040721  phil ::f“_F?' phil = 0.6655
fugv :=P-exp(fv(T,P)) fugv = 0.14972 fv(T,P) = —1.83629 1( phiv ::fu% phiv = 0.99817

Residual entropy for liquid (DELSL) and vapor (DELSV) phases

Z(T,P) + CB(T,P
DELSL::(R-In(Z(T,P)O— CB(T,P))+Dat(JT)-|n( (TP + OB ))).105

Z(T,P),

Z(T,P),+ CB(T,P
DELSV::(R-In(Z(T,P)Z— CB(T,P))+DaéT)-In( (TP + OB ))).105

Z(T,P),

Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases

[ Z(T,P) + CB(T,P)\]
DELHL :=| RT-(Z(T,P),- 1)+T'Da(Tg‘ a(T)-In( ( Z)(():P)( )) 10°

L "o ]

[ Z(T,P),+ CB(T,P)\]
DELHV :=| RT-(Z(T,P),- 1)+T'Da(Tg‘a(T)-|n( ( Z)(Z:P)( )) 10°

L 72

Ideal gas properties changes relative to the reference state

Cpl-(Tz— Trsz) sz-(TS— TrsS) Cpg-(T4— Trs4)
DELHIG::CpO-(T— Trs) + > + 3 + 2

sz-(Tz— Trsz) Cpg-(Ts— Trs3) s {p
+ Cpl-(T— Trs) + + - R10 -In(_)

2 3 Prs

DELSIG::CpO-In(Tl
rs

Total entropy and enthalpy relative to ideal gas reference state
SL:=DELSIG+ DELSL SV :=DELSIG+ DELSV  HL:=DELHIG+ DELHL HV :=DELHIG+ DELHV
SUMMARY OF RESULTS

T=32315 K Vapor pressure, bar P= 015

LIQUID VAPOR
Compressibility Z(T, P)0 = 1.35706° 10_4 Z(T, P)2 = 0.99816
Enthalpy, J/mol HL = -4.74037- 104 HV = -1.71382 103
Entropy, J/mol K SL =-127.05678 SV = 10.96203

Fugacity coefficient phil = 0.6655 phiv = 0.99817
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5.54 (also available as aMathcad worksheet)

5.54 ISENTHALPIC PENG-ROBINSON EQUATION OF STATE CALCULATION

Tc:=1546 Pc :=50.46 om:=0.021 kap :=0.37464 + 1.54226-om— 0.26992-om-om

Cp,i=2546  Cp,:=150110° Cp,:=-0715110° Cp, =1311.10°°

2
Peng-Robinson Constants: R :=0.00008314 b= 0.07780-% ac := 045724 RZEIC
Input initial temperature and pressure of calculation Ti:=120. K, F:=30 bar
Input final pressure Pf:=30 bar
Initial state calculations T:=Ti P:=P
r 2
Af(T) =1 14 kap|1- | aT) =acaf(T) cA(T.p):=2DP g1 p PP
L Tc (RT)2 RT
d
Da(T) i=—a(T)
dT

Z(T,P) := |A<CA(T,P)

B« CB(T,P)

(a-B-B2- B
2 Vector of coefficients in the PR equation
Ve A-3B"-2B in the form
-(1-B) 0=-(A*B-BA2-B*3)+(A-3*B/*2-2*B)*Z~(1-B)*Z*2+Z*3
1
ZZ« polyroots(V) Solution to the cubic
for il 0.2
(zzi<—o) if (|m(zzi) ¢o)
Set any imaginary roots to zero
ZZesort(Z2Z) Sort the roots
. -5

22y—22, i (I 22, |< 10 ) Set the value of any imaginary roots

22,227, ff (I 2z, |< 10—5) to value of the real root

ZZ

Calculate inital properties ZH(T, Py =2(T, P)

Calculate initial molar volume VL = Z(T, P)o'R'T_los Z(T,P) =
and enthalpy and entropy ' p
departure

0.0888

0.0888
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Z(T,P),+ (1- JE).CB(T,P)

DELHin :=[R-T-(Z(T, P)y- 1) + T'Da(r/)_— AT) |
24/2:b

Z(T,P)y+ (1+«/£) -CB(T, P)“'105

DELSn := R-In(Z(T, P),— CB(T, P)) + In 10
24/2:b Z(T,P)O+(1— JE)-CB(T,P)
DELHin = -5.987510° DELSIn = -40.1647
Guess for final state T:=08Ti P :=Pf

Fugacity expressions [actually In(f/P)] for the liquid fl and vapor fv

(T, P) = (Z(T. P)g~ 1) - In(Z(T,P),~ CB(T,P)) -

CA(T.P) .ln[Z(T,P)Oﬁ—(l-r«/E)CB(T,P)]

22c8(TP) | 2(T,P) ¢ (1-42) cB(T.P)

(T, P) :=(Z(T,P),- 1) - In(Z(T,P),- CB(T,P)) - CA(T,P) 'In{Z(T,P)Z-I-(1+«/E)-CB(T,P)]

24/2:CB(T,P) |Z(T,P),+ (1— JE) -CB(T,P)

Given  fI(T,P) = fv(T,P)=0 T :=find(T) T = 101.906

Residual entropy for liquid (DELSL) and vapor (DELSV) phases

DELSL(T,P) = R-ln(Z(T,P)O— CB(T,P))+ Da(T) ,, Z(T'P)OJF(l“/E) CB(T,P) 105
2420 _Z(T,P)0+(1—JE)-CB(T,P)__

DELSV(T,P) := R-In(Z(T,P)Z— CB(T,P))+ DaAT) Z(T'P)2+(1+“/£)'CB(T'P) 105
2'«/5'b _Z(T|P)2+(1—«/£)-CB(T,P)"

Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases

DELHL(T,P) := R-T-(Z(T,P)O_ 1)+T-Da(T)—a(T)'|n Z(T,P)0+(1+«/E)-CB(T,P) &
2420 _Z(T,P)0+(1— «/E)-CB(T,P)"

DELHV(T,P) := R'T'(Z(T'P)z‘ 1)+T-Da(T)—a(T).|n Z(T,P)2+(1+«/E)-CB(T,P) o
2-«/5-b _Z(T,P)2+(1— «/E)-CB(T,P)"
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Ideal gas properties changes relative to the initial state

oo, (12-19) cp, (1P 1) cp (- i)
DELHIG(T, P) :=Cp (T - Ti) + > + - + y

2 L2 3 .3
T ) sz(T -Ti ) Cp3(T - Ti ) 5 P
DELSI(T, P) :=CpIn|—] + Cp, (T~ Ti) + + - R10™In|—
Ti 2 3 ]
Find vapor-liquid split x:=05

Given

xDELHV(T, P) + (1- X)-DELHL(T, P) + DELHIG(T, P)=DELHin

x:=find(x) x = 01618 Fraction vapor

HV:=DELHV(T, P) + DELHIQT, P) SV:=DELSV(T,P) + DELIG(T,P)

HL :=DELHL(T, P) + DELHIXT, P) SL:=DELSI(T,P)+ DELS(T,P)
dH :=x-HV+ (1- X)-HL— DELHin dS:=xSV+ (1~ x)-SL~ DELSn

SUMMARY OF RESULTS

FEED LIQUID VAPOR
Temperature, K Ti=120 T = 101.906 T = 101.906
Pressure, bar Pi=30 P=3 P=3
Vapor-liquid split x = 01618
Compressibility Z(Ti, Fﬁ')O =0088 (T, P)0 = 9.3464-10_3 Z(T, P)2 = 0.9309
Enthalpy, J/mol 0 HL = -7.0203-10° HV = ~635.2466
(relative to feed)
Entropy, J/mol K 0 SL = —48.8038 SV = 138527
(relative to feed)
Enthalpy change dH=0

J/mol

Entropy change _
Jimol K dS= 14957
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5.55 (also available asaMathcad worksheet)

ISENTROPIC PENG-ROBINSON EQUATION OF STATE CALCULATION

Tc:i=1546  Pc:=5046 om:=0021  kap :=037464+ 1.54226-0m— 0.26992-0m-om
Cp,'=2546  Cp,i=150110° Cp,:=-07151:10 " Cp,=1311:10"°

2
Peng-Robinson Constants: R :=0.00008314 b ::0.0WSO-% ac ::0.45724-RZ'-|-C
Input initial temperature and pressure of calculation Ti:=120. K, Pi:=30 bar
Input final pressure Pf:=3.0 bar
Initial state calculations T:=Ti P.=R

2
Af(T) =1{ 14 kap-{1- |- aT) =acaf(T) ca(T,p)=XDP g1 py=PP
Tc (RT)2 RT

pa(T) =9_a(T)
dT

Z(T,P) = |A<CA(T,P)

B—CB(T,P)
(aB-B?- 89
9 Vector of coefficients in the PR equation
Ve A-3B-2B in the form
-(1-B) 0=-(A*B-B*2-B"3)+(A-3*B"2-2*B)*Z-(1-B)*Z*2+Z"3
1
ZZ« polyroots(V) Solution to the cubic
for il 0.2

(zzi<_o) if (|m(zzi) ¢o)
Set any imaginary roots to zero

ZZ—sort(ZZ) Sort the roots
: -5
ZZO(_ 22, i (I ZZO |< 10 ) Set the value of any imaginary roots

77,77, if (I 2z, |< 10—5) to value of the real root

zz

Calculate inital properties Zi(T,P):=2(T.P)

0.0388
Calculate initial molar volume VL 1= Z(T, P)O'R'T.103 Z(T,P)=|0
and enthalpy and entropy ' = 0.0888

departure
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DELHin :={R-T-(Z(T, Po— 1) + T'Da(r/)_— am) i
24120

Z(T.P) + (14+4/2) (T, P)”lo5

Z(T.P) + (1= JE) .CB(T,P)

Da(T) Z(T,P)O+(1+JE) .CB(T,P) 5
DELSn := R-In(Z(T,P)O— CB(T,P)) + In 10
242b | Z(T,P),+ (1— JE) .CB(T,P)
DEL Hin = ~5.987510° DELSn = —40.1647
Guess for final state T:=08Ti P:=Ff

Fugacity expressions [actually In(f/P)] for the liquid fl and vapor fv

fl(T,P) :=(Z(T, P)o- 1) - In(Z(T, P),— CB(T, P)) _

CA(T,P) " Z(T,P)0+(1+A/E)-CB(T,P)
2a2.8(T.P) | 2T P)+ (1-[2) cB(T P)

fv(T.P) = (Z(T,P),~ 1) - In(Z(T,P) ,~ CB(T,P)) -

CACT.P) Z(T,P)2+(1+JE) .CB(T,P)
242CB(T.P) | Z(T.P),+ (1-42) cB(T. P)

Given  fl(T,P)- fv(T,P)=0 T :=find(T) T = 101.906
Residual entropy for liquid (DELSL) and vapor (DELSV) phases

Z(T,P) + \1+4/2/-CB(T,P
DELS(T,P) := R-In(Z(T,P)O—CB(T,P))-|—Da(T)-In ( )°+(+J_) (T.P) 10°

2q2b | Z(T,P)y+ (1— JE) CB(T.P) |

Z(T,P), + \1+4/2/-CB(T,P
DELSV(T,P) = R-In(Z(T,P)Z—CB(T,P))-|—Da(T)-In ( )2+(+J_) (T.h 10°

2q2b | Z(T,P),+ (1— JE) CB(T,P) |

Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases

DELHL(T,P) i=| RT-(Z(T,P), - 1)+T-Da(T)_a(T).|n Z(T,P)O+(1+A/E)-CB(T,P) &
22b | 2T Py (1= 42) cB(T. )|

DELHV(T,P) := R‘T'(Z(T,P)Z— l) + T-Da(T) - a(T) in Z(T,P),+ (1+A/E) -CB(T, P) 1
2N2'b _Z(T,P)2+(1—«/5)-CB(T,P)_
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Ideal gas properties changes relative to the initial state

cp, (12-18) o (-1 oo (14— TiY)
DELHIG(T, P) i=Cpy (T=Ti) 4 2Ly 2

op, (17-17) cpy(1°-17) . ( E)

DELSI(T,P) :=Cp,In T +Cp, (T-Ti) + +
Ti 2 3
Find vapor-liquid split x:=05
Given

xDELSV(T,P) + (1— x)-DELSL(T, P) + DELSIG(T, P)=DELSin

x:=find(x) x= 01379 Fraction vapor
HV :=DELHV(T, P) + DELHIGT, P) SV :=DELSV(T,P) + DELISIT,P)
HL :=DELHL(T,P) + DELHIZT, P) SL:=DELSL(T,P)+ DELIET, P)
dH :=xHV + (1- x)-HL— DELHin dS:=xSV+ (1- x)-SL— DELSn

SUMMARY OF RESULTS

FEED LIQUID VAPOR
Temperature, K Ti=120 T = 101.906 T = 101.906
Pressure, bar Pi=30 P=3 P=3
Vapor-liquid split x=0.1379
Compressibility Z(Ti, R’)O =0088 Z(T, P)O = 9.3464-10_3 Z(T, P)2 = 0.9309
Enthalpy, Jimol 0 HL = =7.0208-10° HV = -635.2466
(relative to feed)
Entropy, J/mol K 0 SL = —48.8038 SV = 138527
(relative to feed)
Enthalpy change dH = ~152.4165

J/mol

Entropy change _
I/mal K ds=0
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5.56 (alsoavailable asaMathcad worksheet)

5.56 ISENTHALPIC S-R-K EQUATION OF STATE CALCULATION

Tc:=1546 Pc :=50.46 om:=0.021 kap :=0.480+ 1574-om- 0.176-om-om

Cp,:=2546  Cp,:=150110° Cp,:=-07151:10"° Cp,:=1311-10°°

22
S-R-K Constants: R :=0.00008314 b ::0.08664-% ac ::0.42748-R e
Input initial temperature and pressure of calculation Ti:=120. K, F:=30 bar
Input final pressure Pf:=3.0 bar
Initial state calculations T:=Ti P:=P
2
aAf(T) =1 14 kap|1- |-~ aT) =acaf(T) cA(T,p):=2DP g1 py = PP
Tc (RT)Z RT
._d
Da(T) :==—a&(T)
dT
Z(T,P):= |A<CA(T,P)
B—CB(T,P)
-AB
2 Vector of coefficients in the S-R-K equation
A-B"-B i
Ve in the form
-1 0=-A*B+(A-B*2-B)*Z-Z"2+Z"3
1
22 POlerOts(V) Solution to the cubic
for il 0.2

(2z,0) i (Im(zz))#0)
ZZsort(2Z) Sort the roots
22,72, if (| 2z, |< 10'5)

ZZZ<— ZZ0 if (I 222 |< 10‘5) to value of the real root

7z

Calculate inital properties ZK(T,P) =2(T.P)

Set any imaginary roots to zero

Set the value of any imaginary roots

0.1004
Calculate initial molar volume VL = Z(T, P)O'R'T.103 Z(T,P)=| 0
and enthalpy and entropy ' p 0.1004

departure

DELHin := R-T-(Z(T, P)o- 1) + T'Da(Tt))‘ &) -In( 2P
70

Z(T,P CB(T,P
(T,P),+ CB( ))].105
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Z(T,P)_+ CB(T,P
DELSn :=|RIn(Z(T, P) - CB(T,P))+Dat()T)-|n( (T P+ O )))-105

Z(T,P),

DELHin = —6.0618'103 DELSn = —40.9502

Guess for final state T:=08Ti P:=PFf

Fugacity expressions [actually In(f/P)] for the liquid fl and vapor fv

Z(T,P),+ CB(T,P
fi(T, P) = (Z(T,P)y- 1) - In(Z(T,P),— CB(T,P)) - C/-\(T,P).ln( (T, P)y+ CB( ))

CB(T,P) Z(T,P)0

V(T,P) =(Z(T,P), - 1) - In(Z(T. P),~ CB(T,P)) -

CA(T, P) n Z(T, P)2+ CB(T, P)
CB(T,P) Z(T,P)2

Given  fI(T,P) - fv(T,P)=0 T :=find(T) T = 1020671

Residual entropy for liquid (DELSL) and vapor (DELSV) phases

Z(T,P)_+ CB(T,P
DELSL(T, P) ::(R-In(Z(T,P)O— CB(T,P))+DaéT)-|n( (TP + & ))).105

Z(T,P),

Z(T,P), + CB(T,P
DELSV(T, P) ::(R-In(Z(T,P)Z— CB(T,P))+DaéT)-|n( (T, P+ O ))).105

Z(T.P),

Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases

Z(T,P) + CB(T,P
DELHL(T,P) ::{R'T-(Z(T,P)O_ 1) + T-Da(Tt)J— a(T)-In( ( )0+ ( ))].105

Z(T,P),

Z(T,P), + CB(T,P
DELHV(T, P) ::[R-T-(Z(T,P)z_ 1) + T-Da(Tt)J— a(T)-In( ( )2+ ( ))].105

Z(T,P),
Ideal gas properties changes relative to the initial state

o (1218 op, (TP-T) o (- TiY)
DELHIGIT, P) =Cpy (T T ———— " =2~ 0




Solutions to Chesnical and Engineering Thermodynamics, Je

T e, (2= 1) cp (- T) s Ip
DELSIG( T, P) :=Cp, In|—] + Cp,(T- Ti) + + - R10%In[—
O AT 2 3 '
Find vapor-liquid split x:=05
Given

xDELHV(T, P) + (1— X)-DELHL(T, P) + DELHIG(T, P)=DELHin

x:=find(x) x = 0.1661 Fraction vapor
HV := DELHV(T, P) + DELHIG(T, P) SV :=DELSV(T,P) + DELIT, P)
HL :=DELHL(T, P) + DELHI T, P) SL:=DELS(T,P) + DELIGET, P)
dH :=x-HV + (1- x)-HL— DELHin dS:=xSV+ (1- x)-SL— DELSn

SUMMARY OF RESULTS

FEED LIQUID VAPOR
Temperature, K Ti=120 T = 1020671 T = 1020671
Pressure, bar P =30 P=3 P=3
Vapor-liquid split x = 0.1661
Compressibility Z(Ti, F’i)0 = 01004 AT, P)o = 0.0106 Z(T, P)2 = 0934
Enthalpy, J/mol 0 HL = -7.143510° HV = —630.1699
(relative to feed)
Entropy, J/mol K 0 SL = —49.936 SV = 138781
(relative to feed)
Enthalpy change dH =0
J/mol
Entropy change _
IImanl K dS= 16121

5.57 (also available as a Mathcad worksheet)

5.57 ISENTROPIC S-R-K EQUATION OF STATE CALCULATION

Tc:=1546 Pc :=50.46 om:=0.021 kap :=0.480+ 1574-om- 0.176-om-om
Cp,:=2546  Cp,:=150110° Cp,:=-07151:10" Cp,:=131110"°

22
S-R-K Constants: R :=0.00008314 b:= 008664% ac :=0.42748 RTc
Input initial temperature and pressure of calculation Ti:=120. K, P =30 bar
Input final pressure Pf:=3.0 bar

Initial state calculations T:=Ti P:=PR
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2
1- l)] aT) =acdf(T) cA(T,p) =P CB(T,P)::FF;_':

(RT)?

af(T) :=1| 1+ kap-

pa(T) =9_a(T)
dT

Z(T,P) = |A<CA(T,P)

B« CB(T,P)
-AB
2 Vector of coefficients in the S-R-K equation
A-B°-B /

Ve in the form

-1 =-A*B+(A-BA2-B)*Z-ZA2+ZA3

1
ZZ&POIerOtS(V) Solution to the cubic
for il 0.2

(zzi<—o) if (Im(ZZi) ¢o)

Set any imaginary roots to zero

Z2Zesor(22) Sort the roots

7772, if (] 22, |< 10‘5)
Set the value of any imaginary roots

77,77, if (I zz, |< 10‘5) to value of the real root

Y4

Calculate inital properties Zi(T.P):=2(T.P)

0.1004
Calculate initial molar volume VL 1= Z(T, P)O'R'T.103 Z(T,P)=|0
and enthalpy and entropy ' p 0.1004

departure

Z(T,P CB(T,P
DELHin 1:[R-T-(Z(T, P)o- l) + T-Da(Tk)J— aT) -In( (T, P)y+ CB( ))].105

Z(T.P),

DELSn :=

Z(T,P) + CB(T,P
RIN(Z(T, P), - CB(T,P))+Dat()T)-In( (TPt &5 )))-105

Z(T,P),

DELHin = -6.0618+10°

DELSin = —40.9502
Guess for final state T:=08Ti P.=Ff

Fugacity expressions [actually In(f/P)] for the liquid fl and vapor fv
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Z(T,P),+ CB(T,P
fi(T, P) = (2(T. P)y- 1) - In(Z(T,P),- CB(T’p))_CA(T,P)'In( (T, P),+ CB( ))

CB(T,P) Z(T,P)0

fv(T,P) i=(Z(T.P),~ 1) = In(Z(T,P) ,~ CB(T.P)) -

CA(T, P) n Z(T, P)2+ CB(T, P)
CB(T,P) Z(T,I:’)2

Given  fI(T,P)— fv(T,P)=0 T :=find(T) T = 1020671

Residual entropy for liquid (DELSL) and vapor (DELSV) phases

DELS(T, P) := (R-In(Z(T, P)o— CB(T.P)) + Da[(JT) In

Z(T P+ BT PN o
Z(T.P), |

Z(T,P).+ CB(T,P
DELSV(T,P) :=(R-In(Z(T,P)2— CB(T,P))+Dat()T)-In( (T.P)t O ))).105

Z(T,P),

Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases

Z(T,P) + CB(T,P)} |
DELHL(T, P) =| RT-(Z(T,P),- 1)+T'Da(Tt))_ 6‘(T)-In( ( Z)(OTJFP)( )) 10°
70
Z(T,P).+ CB(T,P)} |
DELHV(T, P) i=| RT-(Z(T,P) - 1)+T'Da(Tg"a(T)-ln( ( Z)(Z:P)( )) 10°
2

Ideal gas properties changes relative to the initial state

+
3 4

cp (1218 cp, (13- 1) cp (i)
DELHIG(T, P) :=Cp (T - Ti) + . +

2 .2 3 .3
v o (1) o)
DELSQT,P) ::Cpo-ln — +Cpl-(T— Ti) + + - R10™In|—
Ti 2 3 J
Find vapor-liquid split x:=05
Given

xDELSV(T, P) + (1— X)-DELS(T, P) + DELSIG(T, P)=DELSin
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HV := DELHV(T, P) + DELHIT, P)
HL :=DELHL(T, P) + DELHIG(T, P)

dH :=x-HV + (1- x) -HL - DELHin

x = find( x)

SUMMARY OF RESULTS

5.58

Temperature, K

Pressure, bar

Vapor-liquid split

Compressibility

Enthalpy, J/mol
(relative to feed)

Entropy, J/mol K
(relative to feed)

Enthalpy change
J/mol

Entropy change

llmal K

X = 01408

FEED
Ti=120

Z(Ti, i), = 0.1004

0

SV .=

Fraction vapor

DELSV(T,P) + DELS(T, P)

SL:=DELSL(T,P) + DELSGT,P)

dS:=xSV+ (1- x)-SL— DELSn

LIQUID
T = 1020671

P=3

x = 01408
Z(T,P), = 00106
_ 3
HL = ~7.1435:10

SL = -49.936

dH = —164.5454

dS = 7105410 2

VAPOR
T = 1020671

P=3

Z(T,P), = 0934
HV = -630.1699

Sv = 138781

This problem was solved using the attached Mathcad worksheet. The results are

1°C)

273.15
283.15
203.15
303.15
323.25
343.15
373.15
393.15
423.25
448.15
474.15
523.15

P'%® wi

0.3137
0.5529
1.697

3.208

9.994

26.681
92.355
186.67
463.23
886.08
1599.4
4065.2

tharT)

P®witha=1 (P inkPa)

166.57
221.329
288.55
369.83
580.97
867.65
1467.0
1997.1
3016.5
4094.2
5456.5
8759.0
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623.15 16744 18865
643.15 21060

As can be seen, the S-R-K equation is of comparable accuracy to the P-R
equation. In both casesif thea parameter is set to one, the results are not very
good, indeed quite bad at low temperatures.

The Mathcad worksheet used in solving this problem is given below.

VAPOR PRESSURE CALCULATION USING SRK EQUATION

Read in properties for Water le =643 Po=22048 om;=0.344

kappa calculation keags ;= (h A B0 4 1574 -0 — 0.1 76 -oam-0im
5-R-K Constants: R i=0.00B 314 by i=';:'.|.|3f|l:1-|--]ll:l| o aei=0ATTHE R--t' Ie’
,_. e
Note that these are being defined as a 1
function af temperature sinee we will A6y =1 1 kanl 1 1 o T4 =ab sl Tt
need to interate on temperature. con e e o8 et e o S
CA(T,Pyiz 2 ) Ii CRHT.F :=L!\
(RTH |
AT Pyi= | A—LALT Py
Be—CR{ T ")
-AB
A—B'_B Vector of coefficients in the SRK equation
W In the form
-1 0=-A'B+{A-B*2-B)"Z I 2+Z"3

I
el V) Solution to the cubie

for 1= O_32

[z'_.f.l-;_-;s} ir [[.:.{uljﬁs}
Sl S

2 a7, if []x?“ E |n")

Set any imaginary roots to zero
Sort the roots

Set the value of any imaginary roots

PR [] 77 e ]ll"':] to value of the real root

EL

Enter temperature T, and pressure P.

Depending on what s specified in the Glven and Find statements
below, either T or P is specified and the other is an initial guess
which may have to be adjusted as the other variable is changed,
especially as the critical point is approached. This worksheet will

probably not converge to a solution when T or P are within 3 to 5% [i=n4313
of the critical values unless an extremely good initial guess is
provided. One way to obtain a good initial is to start well below the Pi=210

critical region and step towards it using the result of previous caleulations.
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Fugascity expressions [actually In{fiP)] for the liquid fl and vapor i

w i T P AT P+ CBT, M
TP = (20T, 1), = Y= 20T PY - CIH TP — S i '|'( )

CI(T, P} ZT.P),

KT P) o= (Z(T.PY, - 1) — nfZ(T.P), - CBCT.PY) -

CAIT.P) AT PL+ CBIT. P
ALT.FY :
CIT.P) TP,

GIVEN T, Py = P T, Py=t Equate log of fugacity coefficients
P = P P o 2005086 Solve equality of fugacities
Fugagcity Fugacity coefficient
e ‘1 2 : . - — o gl
lugl =T expl T3} fugl = 141. 78565 W T. P = 0. 395612 |'|h|l.—T
fugy (=Pexpi BT, P fugv = 141, 7RI6S i T, P = 39562
SUMMARY OF RESULTS
T=H643.15 K Vaper pressure, bar "= 21059561
Liauio VAPOR
Compressibility TPy, = 025283 TP, = 042254
Fugaeity, bar
gacity. ligl = 141, 78565 fugy = 14 1. TR565

5.59 (also available as a Mathcad worksheet)
The solution isthat the final temperatureis 131.34 K, and the final pressureis
37.036 bar.

5.59 Using SRK EOS with the approximate two-constant heat capacity expression

Property Data Tc:=1262 Pc:=33%4 om:=004 Cpl:=272 Cp2:=0.0042

(Tin K, Pin bar): R:=000008314  kap :=0.480+ 1574-0m— 0.176.0mom

Initial Conditions (Vt=total volume, m#3): Ti:=170 PF:=100 WVt:=015
2

Peng-Robinson Constants: b:= 008664% ac :=042748- ReTe

Initial temperature T :=Ti

Note that these are being defined as a

2
function of temperature since we will need to af(T) = 1-[1+ kap-|1- l)] a(T) =ac-df(T)
interate on temperature later to obtain the final Tc '
state of the system d
Y Da(T) =S_a(T)
dT
Find initial molar volume and number of moles _RTi

Start with initial guess for volume, m”3/mol =
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a(T)

Solve P-R EOS for initial volume Given - Vi = Find(V)
V-b (V(V+Dhb))

Initial molar volume and Vi = 102010 4 Ni=A Ni= 1472.20°

number of moles v

Entropy departure at the DELS ::[R-In{(Vi - b) i] + Da(T) n w-'f b }-105

initial conditions RT b Vi

Now consider final state Nf :=Ni— 10-50 Vf ::O'_lf Vi=Vf
N
Type out final number of Nf = 971.269 Vi = 154410
moles and specific volume
Final pressure, will change in course _ RT a(T)
: P(T) := -
of solving for the final temperature V-—b V(V+b)
Entropy departure —| R _y PT) Da(T)  (V+by]| .5
at final conditions DELS(T) = Rin (V= b) T |7 b In V 10

Solve for final GIVEN
temperature using
S(final)-S(initial)=0

T P(T)

0=272In _) +00042(T = Ti)— R-105-In(— + DELS(T) - DELS
R

Ti

T :=FIND(T)
Type out solution T=13134 Pf(T) = 37.076

5.60 a) At agiven temperature, the stability limit of afluid is determined by the
following criterion (Note that this |eads to the spinodal curve)

(ﬂ_P) =0
WVr

For the given EOS, the stability limit of afluid undergoing a pressure change at

constant temperature is
1P RT BRT CRT
Wl Tz % 3=
W ¥ 4 4

or V2 +2BV +3C =0

0

In order to have a phase transition, there must be two distinct stability limits,
i.e., the above quadratic equation must have two different roots of V. Therefore,

(2B)?- 4”1 (3C) >0
or B®>3C
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b) Accordingto Illustration 4.2-1

dU = CVdT{T(Ej ; P}dﬁ
7 Jy

But for the given EOS {l‘(ﬂ—})j - P} =0
)y

Therefore,
DU =[dU =[G, ndr

. TCy P .
Since | ——| =T|— | =0 (Because B and C arenot functions of 7)
W Jr 1r v
Therefore C, = C,(T) =C, =a+bT
and
% b
DU = [(a+bT)dT = a(Ty- B)+2 (77 - TY)
T
Theinternal energy changeisthe samefor an ideal gas.

¢) Accordingto Eqn 4.2-19

dS:C—VdT+(ﬂ—P) dV sothat
17y

- T
(ﬂP) RT BRT CRT

T — —_—t——
(ﬂ_Tj__ )y __ P v v> rd

S

W C,  a+bT a+bT

For anideal gas,

). (H. o«

W), a+bT a+bT V(a+bT)
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Thermodynamic properties of n-Hexane by William Provine.

ipw

2o

P par *

T=460 K

/ T=500 K
[

/

T=460K
T=420K 7=923.15 K
7=390K 7T=673.15 K
| 7=500 K
L
T=420 K
| |
2.4 o5 LD
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Thermodynamic properties of methane by Michael Sowa
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6.1 (a) ByEqn. (6.2-3)

(ﬂ_H) -G
v P.S,Ns,

but G, = H, - TS,. Thus

(ﬂ—HJ =H - Ts:
ﬂNi P.SiNj; l

(b) SinceU =U(S,V,N )

dU :(ﬂ—Uj dS+(ﬂ—Uj dV+é(ﬂ_U) dN,
), W)y SNy,

=TdS- PdV +Q (ﬂ—UJ dN, 1
i SV,N;

i i

However, we adlso have U = H- PV; dU =dH- PdV - VdP, and, by Eqgn.
(6.2-3)

dU =VdP+TdS +@ GdN, - PdV-VdP=TdS - PdV +@ GdN, (2)
_ — (U
Equating (1) and (2) showsthat G, = [—j . Next we start from
L /SN s

A= A(T,V,N)

b dA:(ﬂ—A) dT+(MJ dV+§_(ﬂ—A) dN,
)y Wy SN

or

dA=-SdT- PV +8 (‘"—AJ dN, &)
i ﬂNi TN

However, we also havethat A=U - TS ;
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62 (9

(b)

dA=dU- TdS- SdT = TdS- PdV +@ GdN, - TdS - SdT
or
dA=-SdT - PdV+§ GdN, 4)

Comparing (3) and (4) yields

G :(Mj
Iv; TV, N,

Generd: q=§ N,q, where g =(TQ/TIN,); » y . and

do=§ qdN;+§ Ndq, @

However, we also have that

T[q ﬂq o T[q
dg=|— dT+| — dv + — dN: 2
; (ﬂr)w (wlﬂ a('ﬂNjT,V,N,,[ ’ @

i

Subtracting (2) from (1) yields

0:-(mj dT-(mj av + 38
)y n Wirn

At constant 7 and

— ﬂqj ° —
q['(_ dN; +a Ndq,
TN; T,V,iji]

o:é{a- ('”—q) }dNﬁé NG
TV.N

v,
(general equation)
For g=4, g,=4, and [mj :(Mj =G. Thus,
N; T.V.N iv; TV N,
a- (93] =7-G=- 7
MN; TV N a;

a Nd4|, , =Pa VN, , specificequationfor q= 4

Following the analysis above, we also get
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0=- (ﬂqj du - (ﬂqj v + 8
W V.N mw UN

and, at constant U and V'

— qu ) ° —
q- (— AN, + @ Ndo
N UVN g,

o |— 119 o) —
0= dN,+8Q N.dq,
a[ (ﬂN jUVN ] ravda

N|Q|

Now, choosing g =S, and using that [ﬁj = , which is easily
I JUV.Nj

Vg

derived, yields

(c) Following asimilar analysisto those above, we obtain

_ 'nqj ('ﬂqj o | = ('ﬂqj o =
0—-(— ds- ar+al|g-|—— dN; +a N;dq;
1s V.N mw S,N MN; SV N
which, at constant J and S, reduces to
o [— b|[e] o —
0=a Q'(_j dN; +a Ndq
[ TN SV N

Findly, usnggq=U,and (TU/M N.)g, v =G, yields
R
é- ]Vidﬁi|SV =8 { 71+TS}dN|SV
6.3 (@) Atconstant Uand ¥V, S = maximum at equilibrium
C C
Ss=5"+g" = é Nilg.il +6°1 Ni”‘§i”
i=1 i=1

but

I
dS=0= ('"S J du' +(ﬂ—5|) +a ('" j dN!
' V.N Wy N '”N: UV.N
I 1 I
+(£“) au" +(‘H_SHJ +3 (ﬂS ) dNi”
L V.N mw UN ﬂNi UV Ny

SinceU =U' +U" = constant, du" =- qu'
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Since V' =¥" +¥"" = constant, dV" =-dv’
andsince N, = N' + N!' = constant, dN,' = - dN.

Also,
(‘ITS) _l_('ﬂS) P ('ﬂsj _ G
- =—; | — - and - = . —L
v VN ro\mw U,N r i UV Np; T

(see previous problem)

Thus

for equilibrium in a closed system at constant U and V.
(b) For aclosed system at constant S and ¥, U has an extremum. Thus

| | |
dU =0 = (ﬂ—Ulj ds' + (‘”Llj ar'+@ (ﬂ—Ulj dN|
s V,.N mw SN i VT SV Ny

1 1 1
+(_'”U”j ds" +(_'"U”j ar'+ 3 [_'"U“j dN!"
s V.N w SN i \TN; UV N

butS,Vand N;, j=1,---, C areconstant. Thus

l 1

dau =0=(r"- ")as' +(P' - P")arv' +4 (G' - G")an;
pr'=r"pP=PadG =G"
for equilibrium in a closed system at constant.S and V.

6.4 (@) For aclosed system at constant T'and V, 4 is a minimum at equilibrium; thus
d4, ;=0. FromEgn. (6.2-5)

dA=- PdV - SdT +@ GdN; or dd|, , = @ GdN,

But, N;=N, o+n,X. ThusdN, =ndX and

dd), ;= (@ nG,)dx =0 or ('”—A) =4 nG =0.
' ﬂX V.T i

(b) For aclosed system at constant U and ¥, S = maximum, or dS| vy =0. From

1 P 1o —
Eon. (6.2-4) dS = —dU +—-dV - Fé GdN, ; thus



Solutions to Chemical and Engineering Thermodynamics, 3e

1o — 1 —
sy, =- 751 G.dN; or dS|;, =- 7(5. Gn,)dx
and
11s 1 _
ax :'7601 nG; =0
ﬂ U,V i

6.5 Let m, = molecular weight of species i. Multiplying Eqgn. (6.3-2a) by m, and
summing over all species; yields, for aclosed system

o . o o

a m;N; =total massinsystem= g m;N;o + Xa nm,
total massin
system initialy

However, since the total massis a conserved quantity,
é m;N, = é mN;o P Xé n,m =0, where X can take on any value.

Conseguently, if this equation is to be satisfied for al values of X, then

a n;m =0!
o
Similarly, inthe multi-reaction case, starting from N, = N, + @ n, X, , we get
j=1
g g s ¥ s 8 g &
i=1 i=1 =1 j=1 =1 j=1 j=1 =l

Sincethe X;’sarenot, in general, equal to zero, we have

$
anm =0
i=1
In particular, for thereaction H,O = H, +(1/2)0,, or H, +(1/2)0,- H,0=0, we

have
& = (02 +( 232 +(- 28 =o.

6.6 From Egns. (6.6-4) we have

TI(DKmix)

=V, +DV . +x,
y,+br T,

@

T,P

and
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_mix) (2)

I72 :KZ +DZmix *Xq

Now since 7, P and X, are the independent variables, we have that

0 since pure component volume is a function of

T and P only
— M€(Dv__.
dv1|T, P = %{P + d(Derx )|T P + d[xz(ﬂ%jm)}
T, P
2
- ﬂ(DV_m\x) + 1T(D\/_m\x) T[X_de 1 + Xzﬂ (DLZmix ) dx .
T e LLEST S | E T T, P

S
_ ﬂz(DV_m‘x) J ) EP .
- X X since -
SR A M T,
Similarly
~ (DY i)
dValr, p = 1 ﬂxfmlx dx;
T,P
Thus
T(DV T(DV
a xia?i|T,P = xXp (ﬂ;fmlx) dx, - xle—( ;fm'x) dx ° 0
T,P T,P

Thus, ¥, and ¥, given by equations (1) and (2) identicaly satisfy the Gibbs-
Duhem equation § xdd,| , =0.
A similar argument applies for the partial molar enthal pies of Eqn. (6.6-9).

6.7 (also available as a Mathcad worksheet)

The students can solve this problem by drawing tangent lines to the DV ..

curves. Polak and Lu smoothed their data using the Redhich-Kister equation (see
Eqgn. (6.6-53)). That is, they fitted their datato

DV ix = xlxzé. Cj(x2 - xl)j_l =x,(1- xl)é. C,(1- 2x)/"*

j=1
Now
MO i) - (1. )8 €1~ 229"
1Tx,
- xlé Cj(l' le)j-l - 2x(1- xl)é Cj(j' (- le)j- ?
TR = (O 5 T = 0 ) 208) w
X1

and
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NOLyy) x7{A+2x,B} @
ﬂxl

Vo-Vy=(DV i) - %1
where

A4=3 C(1-2x)) e B=3 C,(j- DA- 2x))?
j=1 j=1
Taking species 1 to be methyl formate, Polak and Lu found

(e G, G, c,
methyl formate- Methanol - 033259 - 010154 - 00516 00264
methyl formate- Ethanol ~ 081374 -0.00786 00846 00448

[units are cc/mol; multiply by 103 to get m3/kmol]

| have used the equations above and the constants given to find 171 ¥, and

v, - V, , sincethis|eads to more accurate results than the graphical method.

Theresults are tabulated and plotted below.
Methyl formate - M ethanol

- 0 01 02 03 04 05

DV,  (cc/mol) 0 0039 -0065 -0080 -0085 -0083

-V, 0459 -0329 -0225 0148 -0093 -0058

-V, 0  -0007 0025 -0051 -0080 -0.109
X 06 07 08 09 10

DV,  (cc/mol) -0075 -0063 -0047 -0027 O

-V, 0035 -0021 -0011 -0004 O

-V, 013 -0162 -0192 -0236 -0309

Thus Ve = 6278+(7; - V) cc/mol or 10" n/kmol .
Vi =4073+(V,- V).

Methyl formate - Ethanol

X 0 01 02 03 04 05
DV,  (cc/mol) 0 0080 0136 0174 019% 0203
-V, 0935 0682 0507 038l 0285 0205
-7, 0 0013 0043 0085 0137 0201

X 06 07 08 09 10
DV,  (cc/mol) 019 0174 0134 0077 0
iV, 0133 008l 0037 0010 0

v, - v, 0.284 0.390 0.522 0.680 0.861
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Thus Ve = 6278+(7; - V) cc/mol. Multiply by 10°2 for mi*/kmol .

Ve =5868+(7,- V)

o

6.8 This problem is similar to the last one, and will be treated in a similar fashion.
Fenby and Ruenkrairergasa give their datain the form

DﬂmiX(J/mOI) = x2(1- xz)é Cj(l' sz)j-l W

where component 2 is the fluorobenzene.

The constants given in the

aforementioned reference and Fenby and Scott J. Phys. Chem 71, 4103 (1967) are

given below

System (o c,
CsHg - CRCI —2683 929
CeHg- CiRBr -3087 356
CsHg - CiR —4322 -161
CeHg - CiF;s —1984 +1483

CeHy- CoRH 230 +578

G C,
970 0
696 0
324 0

+1169 0
+409 +168

~
L]

;g0
a%%
:
X

FORMATE =

MMETHAY oL
M TLTE

METHYL
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If wereplace x, with 1- x; in Eqgn. (1), we regain the equation of the previous

illustration, except for afactor of (- 1) 1 in the sum and the corresponding places
in the other equations.

XCohs Dy (H-H),  (H-H o  Ycsa
0 0 —2642 0 10
01 252 27 392 09
02 463 ~1790 130 08
03 —609 —1466 242 0.7
04 —679 —1175 -349 0.6
05 -671 —-903 —439 05
0.6 -590 —646 -506 04
0.7 -453 —409 -555 03
08 —284 —205 —601 0.2
09 -119 —57.8 —666 01
10 0 0 —784 0
[Note: Jmal]
CeHg- C4RBr CeHg - CoR
Yoty PHwy (H-H) (H-H) DHy (H-H) (H-H) Xcgy
CeHs  CeRBr CeHs  CoRl
0 0 2747 0 0 -3837 0 10
01  -263 2248 429  -359 3119 521 09
0.2 —488 —1829 —153 —657 —2489 —200 08
0.3 —654 —1469 -306 -883 —1937 —431 0.7
04 —751 —1149 —486 —-1026 1456 —740 06
05 772 -8l 683 1081 1040 1121 05
0.6 —717 —600 -893 —1042 —689 -1572 04
0.7 -595 -370 -1120 -910 —402 —2095 03
08 420 -181 1374 688  -187 2695 02
09 212 500 1671  -382 489 3379 01

10 0 0 —2035 0 0 —4159 0
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CoH, - CoF, CeH - C.RH
Xcgs  OHuyix (H-H) (H-H) DHyyw (H-H) (H-H) Xcgre

C6H6 C6F6 C6H6 CGFSH
0 0  -2298 0 0 610 0 10
01  -218 1899 312 22 3%2 -1 09
02 -39 150 -930 -39 -28  +68 08
03 502 1332  -146 135 423 4374 07
04 53 1097 162 314 -723 4100 06
05 4% -867 125 575 870 422 05
06 -394 637 -289 869 -845 34 04
07  -253 413  +121 110 667 524 03
08 108 212  +308 116 -394  +737 02
09 45 609  +503 89 126 +973 01
10 0 0 +688 0 0 1217 0

Note: Changesin signin column

69 (a) GibbsPhassRulee F=C- M- P+2
P=2,C=2, M=0b F=2-0- 2+2=2 degreesof freedom
Thus can fix two variables, usually from among 7, P, x and y.
() P=1,C=3 and M =1b F =3- 1- 1+2 =3 degrees of freedom
Thus, we can fix 3 variables, for example, 7, P and x,, .

(c) Formation reactions
C+20® CO,

C+0® CO
2H® H,
C+4H® CH,
2H+0® H,0

1
Use O=CO- Cand H :EHZ to eliminate O and H from the set so that

C+2(CO-C)® CO, 2CO0® CO,+C
C+4(/2H,)® CH, P C+2H,® CH,
2(1/2H,)+(CO- C)® H,0 H,+CO® H,0+C

Thus we have found a set (there is no unique set) of three independent
reactions among the six species. Consequently, C =6, M =3, P=2 (solid
carbon + gas phase).

F=C- M- P+2=6- 3- 2+2=3 degrees of freedom. Asacheck:

# Of unknOWﬂSZS(TS, PS, TV, PV, xCOZY Xcos tz’ xCH4)

Note: Xh,0 = 1- Xco, ~ ¥co ™ Xu, = You,
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6.10 (9

(b)

(©

6.11 (a)

(b)

6.12 (9

Relations among the unknowns 78=7, P°P=PY, no phase equilibrium
relations, but 3 chemical equilibrium relations of theform § n;G =0.

8 unknowns- 5 eqgns.= 3 unspecified unknowns or
3 degrees of freedom

Ingeneral, for abinary, two-phase mixture (C =2, M =0, P =2)

F=C- M- P+2=2- 0- 2+2=2 degrees of freedom.

However, for an azeotrope there is the additional restriction x; = y,, which
eliminates one degree of freedom. Thus, thereisonly 1 degree of freedom for a
binary, azeotropic system.

Inosmoticequilibrium P' 1 P" | since the membrane is capable of supporting
a pressure difference, and G, * G,' , where 2 is the species which does not

pass through the membrane. Therefore, the independent unknowns are T,

P',x, T, P" and x;'. [Note, x, and x) are not independent unknowns

since xy=1- x; and x) =1- x']. There are two equilibrium relations

between these six unknowns: viz. 7' =7" and G, =G,". Consequently,

there are four degrees of freedom % that is, aswe shall seein Sec. 8.7, if T, P,
P" and x| arespecified, x;' will befixed.

Casel: M=0,C=2,P=2b F=2-0-2+2=2

Caell: M=0,C=2, P=3b F=2-0-3+2=1

GibbsPhaseRule: F=C- M- P+2

C=2, M=0b F=2-0- P+2=4- P degreesof freedom.

Therefore, a maximum of 4 phases can exist at equilibrium (for example a solid,
two liquids and avapor, or two solids, aliquid and avapor, etc.)

GibbsPhaseRule: F=C- M- P+2

C=2, M=1b F=2-1- P+2=3- P degreesof freedom.

Therefore, a maximum of e phases can exist at equilibrium (for example a two
liquids and avapor, or asolid, aliquid and a vapor, etc.)

le. . .

dt :Ni+Ni,r><n

dU o . 0 dVv
—=a NH +Q- -P—
dt a Nif; +0 yfs dt
dS o .= O
E:aNi‘S‘z‘"'?*'Sgen

ds

TE' TéNiEi'TSgen:Q
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d—U—éNﬁ+T£ TA NS.- TS P

dt [ ] dt i~ gen dt

dUu dv as _o /= .= .

—+P—-T—=q N.(H - TS, )- TS

dt dt dt a z( i z) gen

dUu dv dS _ o . — . o (dN, dX \— .
—+P—-T—=q Nm-T§, . = —-nNn—Mm- TS
df dt dt a. i1 gen a( dt ldtj 1 gen
General expression

Now

System is only permeable to species 1

d—U+Pd—V- Tﬁ- (le -n d—Xjn'l]:' TSgenEO

dt dt dt
When 7T and P constant

dt Y

d d
—WU+PV-TS)- —l(Ni- mX)m]£0
o )+ (N - ]

d
E[G' (N- nX)m]£ 0

P G- (N;- nyX)m = minimum at equilibrium
(b) When T and ¥ are constant

d d
E(U- 75)- Z[(Nl- n.X)m] £0

P A- (N, - niX)m = minimum at equilibrium

6.13 () 2N® N,
20® O,

2N+0® N,O N2+é02® N,O

2N +20® 2NO N, +O, ® 2NO

2N +40® N,O, N,+20,® N,O,

2N +40® 2NO, N, +20, ® 2NO,

2N+50® N,O, N2+goz® N,O

P 5 independent reactions
(b) F=C- M- P+2=7-5-1+2=9-6=3
F = 3 degrees of freedom
(c) 1degreeof freedomusedin O,:N, ratiob 2 degresof freedom

6.14 Massbalance: M+ M, = M, Molecular weight H,0 =1802 g/mol
Energy balance: M,U,+ MU, = M, U,
In each case the system is A kg of solution 1+ M, kg of solution 2.
Since 0 =0, W, =0 (adiabatic mixing)
For liquids U° H . Thuswe have
i = MyHy+ MyH,
VYY)
1 2
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when M, = M,; H, :%(fllﬁflz).

(@)

(b)

6.15 (a)

(b)

Read from Figure 6.1-1
H,=69" 10° Jkg
H,=-61"10° J/kg
Thus H, :%(5.410' 10*) =2705" 10* J/kg
To find the composition, so asulfuric acid balance
FMy+ro,My=r M, P r, :%(rl+ ry) sme M;= M,

where r, = weight percent of ith flow stream.

1
Thus r, :5(10+90) =50 wt % sulfuricacid. From Figure 6.1-1
50 wt % H,SO,

AR b T, ~110°C
H=U=2705"10* J/kg

Here H, =69 10° J/kg,

H,=-3186" 10° Jkgb H, :%(6.9- 3186)" 10° =- 156" 10° J/kg and
r,=10wt%, r,=60wt%pP r ,=35wt%. Using

Figure 6.1-1, 7, ~22°C.

Notice that there is a balance between the energy released in mixing, Dﬁmix ,
and the energy absorbed in heating the mixture, C,DI" . In case (a), DJLAImiX is
very large, and 7, >7; or T,, while in case (b) DI:ImiX is smaller, so that
Ty ~ 4.

MW H,O = 1802 g/mol ; MW H,SO, = 9808 g/mol

100 g H,0 =555 moal
100 g H ,S0O, =102 mol

Note: When these are mixed, a solution containing
5.44mol H,0 /mol acid is formed. DH, for such a solution is 58,390 Jmol

acid. Thus,

total heat released =102 mol acid” (- 58,390 J/mol acid) = - 59,558 J

(Negative sign means that heat isreleased!)
Adding another 100 grams of water produces a solution which contains 10.88
mol H,O /mol acid. From the graph DH = - 64,850 J/mol acid . However, —

58,390 Jmol of acid were released in preparing the first solution, so that only —
6,460 Jmol acid, or 6,590 J, are released on this further dilution.



Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6

401802
60/9808
DH = -52,300 Jmol acid, and

(c) 60 wt % H,S0, b = 3629 molesH,0/molesacid for which

| aci
60 mol acid - 319907
98.08

Note: Enthalpy of 60 WT% solution is —31,990 J relative to pure components
a the same temperature. Similarly
25wt % H ,S0, P 1627 mol H,O/mol acid,  DH  ~ - 68830 J/mol acid

and

DHj = - 52,300 J/mol acid

25" 7
DH = - 68,830 J/mol acid * 025 5_. 13160J
98.08
Fina solution =175 grams; 78.75 grams acid =0803 mol,
96.25 gramswater =5347 mol b 6.66 mol H,O/mol acid . So that
DH =-60,670 J/mol acid
DH, = - 48,720 J
Thus, enthalpy change on mixing, DH ., is
DH,,, =-48,720- (-31990- 13160) = - 3570 J

Thus, 3570J =357 kJ must be removed to keep solution isothermal!

(d) For 1 mole of solute: (1+ N,)H

mix

N.
=H, + N,H, + >-DH 3(72] (argument of
1

DH,) andfor N, moles of solute and N, moles of solvent.

N
(N1+N2)H :Nlﬂ1+N2E2+N1DﬂS[Tz):HmiX

==mix
1
Now

ﬁl:(&) = ﬂl*’Dﬁs(&)*‘Nl (DH,) | yﬂ(Nz/N1)|
1-[Nl T,P Nl TI(NZ/NI)|T,P 1TNl |T,P
or

73 (&)_ &{ﬂDES(NZ/Nl)} e TN2/NY) _ Np

H,- H =DH =
b Ny ) Ni[ T(N,/Ny) N, N?

Similarly, starting from H, :(Mj we obtain
2 T,P
7 — ﬂDﬁs(]vZ/]vl)
2" EZ T QN I
T(N,/Ny)

T,P
50/1802
50/9808
DH ((5443) = - 58,370 J/mol and, from the accompanying graph

(e) 50wt % acid b

=5443 mol H,0/mol acid

DL (N2/N,) _ (-91630)- (-48030) _ _; o5 J/mol
ﬂ(NZ/Nl) at N, /N;=5443 20

sothat H,- H,=-2280 Jmol and
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H,- H, = (-58370) - 544(- 2,280) = - 45967 Jmol .

SO0 =

kT ® g Al
et st NeTE: Wolue a EYTAES

ied abave Wwas Fraleated
from a Langer greph.

o 2 4 é £ o F] iy ‘6 r zo

arad  fdoFee /..-nwf Pt

6.16 To get partial molar properties it is easiest to first convert al data in problem to
mole fractions and properties per mole.

_ Wt % CCl, /15384
x puy
©Ca ™ (wt % CCl,/15384) +[(100- wt % CCl,)/7811]

where MWeq, =15384; MW, = 7811.
Cp(mole mixture) = Cp(grams mixture) ~ (MW of mixture)
=Cp [req, 15384+ (- xcq,) 7811

also, compute é x;Cp; , where Cp; = heat capacity of pure speciesi and

DG mix = Cp(Mixturg - a x,Cp,; . Resultsare given below:

Wt% CCl,  xcg, CpJ/molK 3§ x,Cp, DCp mix (J/mol K)

0 0 137.90 137.90 0
10 0.0534 13391 137.17 -3.26
20 0.1126 12955 136.35 —6.80
30 0.1787 124.45 13544 —-10.99
40 0.2529 118.85 134.42 -15.67
50 0.3368 113.98 133.72 —19.74
60 04323 111.29 131.96 —20.67
70 0.5423 11048 130.44 —19.96
80 0.6701 11059 128.69 -18.10
0 0.8205 114.44 126.62 —12.18
100 1 124.15 124.15 0



LA L

i) P

Solutions to Chemical and Engineering Thermodynamics, 3e

Chapter 6

Using these data, and the graphical procedure introduced in Sec. 6.6, we obtain
the following results.

Xea, 0 01 02 03 04 05
Co- ooy, 7L 607 B8O 445 275 175
Crca, 5315 635 662 797 97 1067
(CP - CP)C6H6 0 -05 -1.3 -6.7 160 -240
EP, CeHe 1379 1374 1366 1312 1219 1139
Xea, 06 07 08 09 10
G- Gy, -8 87 41 12 0
Crca, 1124 11545 1201 1230 12415
(CP - CP)CGHG -308 367 498 675 -805
Crcapte 1071 1012 81 704 574
T'ﬂ‘.tq
I z 3 il -5 L] 7 g i J a
n ]
=g
s, i P z
-2 ] g :__ -
g .-\'-N - - ” -
-30 o e ecs 8 \ tengent
P _‘fhﬂc!'
& N
i P - - .
> "
-1 L - -
ooy MNOTE : Thig ""‘Ph &;_ i =
—_ " i ILL VAT A Tipa gﬂﬁr_ LAra s Table . W
. s SoTrEA o A A e é:#&." olfar ‘
=T
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iwe

L3 -]

too

f =4

Lo

An aternate solution to this problem follows.

Alternate Solution to Problem 6.16
Instead of using Equations (6.6-10a and b) and DGC; ;, data, Equations (6.6-

11a and b) and the heat capacity data for the mixture can be used. Since
Equations (6.6-11a and b) are very similar to Equations (6.6-10a and b) [of
which Equations (6.6-4a and b) and (6.6-9a and b) are special caseq], it follows
that the graphical construction discussed in Sec. 6.6 can be used. The
difference, however, is that the tangents to the Cy ., vs. mole fraction curve

will give Cpeo, and GCpgy, directly, rather than (Cp- G and

P)ccu
(C.- G,)., as before. An illustrative graph, and the numerical results
P P/cgHe

obtained using a much larger graph are given below:

Xcal, 0 o1 02 03 04 05
Crca, 30 630 630 80 970 1062
Crcar, 1379 1379 1379 1307 129 1147
Xcol, 06 07 08 09 10

1130 1170 1203 1232 12415
1057 976 87.3 70.8 55.9
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Note that these results differ from previous results by small amounts. Previous results are
probably more accurate since the curvature of DCp i VS. Xcg, IS greater than that of

Chmix VS Xca, » SO tangents are found with greater accuracy.

6.17 Let

@)

(b)

x = Ibs. of 20 WT% sol ution} used to m&ke 1 1b.

y =Ibs. of pure aid of 60 WT% solution

Total massbalance: x+y =1

Species mass balance on acid: 0.2x + y = (06)(2)

P 0.2x+(1- x)=06 or x =05 kg 20 WT% solution, y =05 kg pure acid.
From Figure 6.1-1

H(20 wt%, 5°C) =-122" 10° J/kg
H(100 wt%, 50°C) =710" 10* J/kg
H(60 Wt%, 70°C) =-159° 10° J/kg
H(60 wt%, boiling point) = (60 wt%, 143 C) ~ 0 J/kg
Using the change over a time interval form of the energy balance equation,

considering the initial state to be two 0.5 Ibs. of separated 20 WT% and pure
acid solutions, and the final state to be 1 Ib. of mixed solution, and neglecting

the difference between  and U for these liquids, yields

(60 wt%, T )- 05H (20 wt%, 5°C) - 05H(100 wt%, 50°C) = Q
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a T, =70C

0=[-159" 10°- 05" (-122" 10°)- 05" (71" 10°)]
=-625" 10" J/kg fina solution

at T, = boiling paint =143°C
0=[0- 05- 122" 10°)- 05(71" 10")]=-255" 10" J/kg final solution

6.18 Suppose there was enough information available on Dg,,, where c is any

extensive thermodynamic property of a mixture, as a function of the three mole
numbers N;, N,, and Nj, that the data could be fitted to a polynomial expression
in x;, x, and x; or, equivalently, in N,, N, and N; where N=a N,. The
partial molar properties could then be obtained by differentiation of the polynomial
expression for Dq;, . Thatissince

3
a=Ng=a NG +DAyix(Ny, Nj, N3)
i=1

. 1 11 ix
q=—" =q + (qu )
v T.P,Nj; TN; T.PNj;
so that
~ TI(quix)
q-g =
TN TP,

Alternately, graphical methods could be developed for finding c_J, - g; aong paths
where N, isvaried, and other mole numbers are fixed (i.e., x; isvaried, while the

mol e ratios of the other speciesin the mixture are fixed.)
Sinceit isunlikely that enough information will be available for any mixing property
to obtain Dq,,,, asan explicit function of mole fractions or species mole numbers

for ternary, quaternary, etc. mixtures, it is not surprising that there is little
information on partial molar propertiesin such systems.
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6.19 (a) The Gibbs-Duhem equation is (Equation 6.2-19b)

. OH,| . oM _,
ox, |T,P ox, |r_p
Now ot =2xb, 9% =-2bx, , and &i = +2b,x; so that
Xilr,p Ix % Ir.p
H, H.
xl& X, ol 2(b, —b)xx, =0 forall x;, = b =b,=b
Xtlr,p Xlr,p

(b) 1im§,.=gl.:>a1=g, and a,=H, where H, and H, are the pure

x;—1

component molar enthalpies. Thus
Hy=H, +bx;; Hy=H, +bx{

and

AH . = x(H = H))+x,(H, - H,) = xbx} + x,bx}
Aﬂmix = (xl + X, )bxlxz = bxlxz

6.20 Note: Sorry about 1 set of data being given in alcohol wt% and other in water

mole %, but this is the way the data appeared in the International Critical Tables.
(a) First will convert the data to mole fractions.

wit A = KEAXI00 kg A/MW,
kg A+kg W kg A/MW, +kg W/MW,,
_ wt% A
Wt% A +(100— wt% A) MW, /MW,,

= Xa

Also, V . = M_W/ Pmix Where p... = mixture density and MW is the mole
fraction averaged molecular weight of mixture (i.e., MW = ZX,-W[ )

Also, ¥V, = MW, /p(100 wt% alcohol) and

Vw =MWy, /p(0% alcohol).
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wt% Xa MW Vi — 25V, AV .. (cc/mol)
alcohol . 3
[multiply by 10~ for
m3/kmol ]
0 0 18 18.083-18.033 0
5 0.0202 18.566  18.765-18.846 —0.081
10 0.0417 19.168  19.521-19.711 —0.190
15 0.0464 19.809  20.315-20.633 -0.318
20 0.0891 20.495  21.159-21.690 —-0.531
25 0.1151 21.231  22.077-22.678 —0.601
30 0.1436 22.021  23.088-23.813 —-0.725
35 0.1740 22.872  24.091-25.036 —0.945
40 0.2069 22.793  25.442-26.360 -0.918
45 0.2425 24.790  26.809-27.793 —0.984
50 0.2813 25.876  28.317-29.355 -1.038
55 0.3235 27.058  29.978-31.053 -1.075
60 0.3699 28.357  31.823-32.920 -1.097
65 0.4209 29.785  33.865-34.973 -1.108
70 0.4773 31.364  36.147-37.243 -1.096
75 0.5440 33.120  38.710-39.766 -1.056
80 0.6102 35.038  41.600-42.592 —0.992
85 0.6892 37.298  44.883-45.771 —0.888
90 0.7788 39.806  48.663-49.377 —0.714
95 0.8814 42.679  53.070-53.507 —0.437
100 1.0 46. 58.280-52.280 0

The AV .. data are plotted, and the graphical procedure of Sec. 6.6 used to
find (V, -V ,) and (Vi —V,). Results are given in the following table.

o
=L
r
- = Va -V,
o W =W &= 1A
{ CEF wards )
&
o L i % r L
X

Next note that
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per mole Heat evolved ~ Mole fraction 1)
. . = X X —_
M\ mixture per mole ethanol  of ethanol Since heat is
evolved, AH .
is negative.

Once AH ..
(Hy—H,,). Table below gives (V, -V,), ("w-Vy), (Hy—H,) and

is computed, graphical procedure is used to get (17 W —H A) and

(Hy, — H,,) as a function of the water mole fraction.

Xy V-V V-V, AH.. ~ Hy-H, H,-H,

cc/mol kJ/mol
0 -4.5 0 0. -0.85 0
0.05 -0.0400 -0.099 +0.015
0.1 -5.0 —0.05 —0.0828 -1.15 +0.039
0.15 -0.142
0.2 -3.43 -0.42 -0.201 -1.13 +0.038
0.25 -0.251
0.3 -2.5 -0.78 -0.296 —-0.85 —-0.055
0.35 -0.337
0.4 -1.22 -1.04 -0.382 —-0.88 -0.03
0.45 -0.416
0.5 —0.82 -1.37 -0.473 -1.02 +0.087
0.55 —-0.541
0.6 -0.58 -1.67 -0.603 -1.13 +0.183
0.65 -0.674
0.7 -0.42 -2.0 -0.743 -1.175 +0.388
0.75 -0.805
0.8 -0.17 -2.86 -0.854 -1.02 -0.26
0.85 -0.873 -0.79 -1.36
0.9 -0.025 -3.50 —-0.780 -0.30 -5.0
0.95 -0.491
1.0 0 -3.88 0. 0. ?
) )
o
=L
-y
&
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6.21

We want to evaluate H, (T , P, y)—ﬁAL(T ,P,x), where x, and y, denote the

liquid and vapor alcohol mole fractions, respectively, and the superscripts V and L
designate the vapor and liquid phases. To an excellent approximation, at the

temperatures here, H AV (T P, X) = LIX(T , P). To proceed further we use
H\(T,P)~ Hy(T, P,x) = H\(T, P)~ Hy(T, P)+[H(T, P)~ H\(T, P,x)]

where
EX(Ts p)_gk(T, P)= Agvap|pum =44,770 J/mol (See Problem 5.13a)

ethanol

and Hy(T,P,x) —ﬂk(T, P) was computed in Problem 6.20. Thus,

AHY

75 mole = 44,770 J/mol = [H\ (T, P,x, = 0.75)— H} (T, P)]
% A

— 44,770 (~ 0) = 44,770 J/mol

50 mole = 44,770 — (87) = 44,683 J/mol
%A

25 mole = 44,770 — (~ 0) = 44,770 J/mol
%A

A

AHYY

To evaluate AH,"

. = L
_0mole, care must be taken since (Hk -H A) becomes very
% A

large (and negative) in this limit. To avoid serious errors, we will fit the low
alcohol (high water) mole fraction data with a polynomial in mole fraction, and

evaluate (H, — H,) analytically. I used

AH . =x\xyw(A+B(x, —xy)) See Eqn. (6.6-5a)
Then
INAH,.

=t = ( ONy ]T.P.NW ) xW[Axw ' B(3xw _4x\2N)]

and 1iml(17A —-H,)=A-B. Fitting AH_; data at xy =085, 0.9 and 0.95,
Xy —>
x,—0

find that 4 =+5368 kJ/mol and +17.45 kJ/mol. Thus
Hy—-H,| _ =+5368-1745=-1208 ki/mol
A

Thus

AHY

=4477—(-12.08) = 5685 kJ/mol
x,—0
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6.22

Clearly at moderate and high ethanol concentrations, an ethanol molecule must
interact with the water-ethanol mixture to almost the same extent as an ethanol
molecule interacts with pure ethanol. Thus its heat of vaporization from solution
is about the same as from pure ethanol. However, at very low alcohol
concentrations there is a dramatic change. Presumably, water (now almost pure)
forms a more ordered structure (probably as a result of hydrogen-bonding). Thus,
it seems reasonable that at very low ethanol concentrations, each ethanol molecule
is more involved in hydrogen bonding (with water molecules) than it is in pure
ethanol (with ethanol molecules).

Consequently, the heat of vaporization of ethanol from dilute alcohol solutions is
greater (that is, more energy is needed) than for the pure substance.

n .
V(T, P,x) = x\b + x,b, +xlx22a,-(xl -x,)
i=0
@) limV(T,P,x)=V(T,P)=b; lim V(T,P,x,)=V,(T,P)=b,
x—1 X, =1

— 17
®) 7 =—=—(NV)yp .
IN, T.P,N,

n _ i
:i NX1K1+Nx2Z2+(Nx‘)(Nx2)Zai (Nx, _Nxz)
JN, N P N
0" n (N _N )i
T AR e | IR
= 2
1 n i—1
=V, +N Z(NI—N’ZH ZNI—N%)H
(N +N,) ico (NJ+N,)
(N, =Ny
— NN,y a(i +1)——22
! ZIZO (N N2):+2

n . .
=V, +xzzai(x1 -x,) +x1xzzaii(x1 _xz)'_l
i=0
—xleZa,-(i+ D(x, —xz)i

=V + szaf(xl - xz)H[xl =Xy +ixy =+ Dy (x; — x,)]
i=0

V=V, +5 Y e —x) " 26+ Dy 1]
i=0
Similarly, by taking derivative with respect to N, , we obtain

I72 =V,- xlzzai(xl - xz)i_l[z(i +1)x, —1]
Therefore

Ve = —xzza —x,) 26+ Dx, 1]

and
X =V, =V, =—xi 2 ai(x 26 +1)x, 1]
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© TNTPx —0) =" =>a(-1)""(-D) = a(-1)

i=0 i=0
=ay—a;+a,—az+---

V,3(T, P,x, — 0) = e”":—Za(l)’ "= = Za

:a0+al+a2 +a3 +--

6.23 These derivations are the same as in Sec. 5.1. For example, starting with the
closed system equations

dN a . . dV s O .
Ay - P and 2L
dt dr =0+ dt d T
with S,,, 20, U=Y NU, and S=) N,S;. We have first N (or M) = constant.

Now for a constant volume, adiabatic system with no shaft work we have

au

7 =0 = constant ; also V' = constant
t

and
as . .
= Seen > 0= S can only increase at constant N, V" and U
= § = maximum at equilibrium at constant N, V, U.

Similarly with WS =0 for an isothermal system (constant &, 7, and V) at constant
volume we have

au . ds Q ds
?:Q andZ: Saen or 0= T——TS
s0
dU_Td_S_TS a’(U—TS):aI_A:_TSen
dt dt dt dt ¢

= A = minimum at equilibrium at constant N, 7, and V.
Similarly, one can show that G = minimum at constant N, 7, and P.

624 M= M(x;,xp,...,xy)

but
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), 5, 5
IN; PNy — J ox; T.P.N IN; T.P.N i

Now
N X
——L =L ifjxi
v o 9 (N A
/' N’ON, "/ ON\N LN 1=y e
———= ; ifj =i
N N
Therefore

),
IN; T,P.N,.; B i\ OX; T.P.N,,, N ox; TP Ny N
_1fom) [ﬂ_ﬂj X
- N(ax,. ]T.P.xm i\ OX; N

:>]\_/II=M+(5_M) _zxj[ﬁﬂJ
0’7)6,- T.P.x ox; T.P.x.,

J#i

6.25 (See Section 8.4)
Since the stable equilibrium state of the mixture for some range of compositions is
as two liquid phases, rather than a single homogeneous phase, the Gibbs free
energy of the homogeneous mixture must be greater than a linear combination of
the Gibbs free energies of mixtures of compositions on either side of the actual
mixture composition. That is, the Gibbs free energy of the mixture must be as
indicated in Figure 1 below.

Now, the Gibbs free energy of the mixture is
G=NG + NG + NG+ N, Gy’
with the restrictions that
N{ + N{' = constant = N}
and N, + N, = constant = N5 . Thus, we have that
G = NG+ NIG +(N7 - V)G + (V3 — NG
At equilibrium

AN/

(where, in evaluating each of these derivations, we have used the Gibbs-Duhem
equation) and

(5_(;) —0=G' ="
T,P,N;

( o"GIJ :0:52] :6211
IN, T.P,N{
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However, G| =(7G/JN,) is a tangent to the G versus N, curve. Thus, the

equilibrium requirement that G,' = G requires that the compositions of the two
equilibrium phases are at the intersections of each lobe of the G versus N, curve
with the single tangent line to both curves. See Fig. 1. [Note: See Problem 5.28]

The limit of stability of a single phase is found from the condition that d°G =0.
Here that implies

2
(ﬁ G] =0  Now, G= NG, +N,G,
T,P,N,

(5 Nl
(_j = (;1 + Nl(_l j + Nz( ) = 1
é Nl T,P,N é Nl T,P.N é Nl T,P.N

Since the last two terms sum to zero by the Gibbs-Duhem equation. Thus

(538),... (&)
é’le T,P,N, N, T,P,N,

Thus, the limits of stability of a single phase are the inflection points on the G vs
N; (or G vs x;) curve and the local maximum and minimum on the G; vs. N,

(or (_;1 vs. xp) curves. (See Figure 2.) The region between each coexisting phase

composition and the adjacent inflection point represents a metastable region. This
is illustrated in Figure 2.

Fial..In:. - 8

|
LT, ﬁﬁ: are 'J'JIFJ-]'

m:u1 )
el Huiicd o1
Phase Fhages ‘E"TH;:
-F SE

CompesiTiofs of (HEXLTIA
+ Iﬂ L FMLE-

M,

Fiaure Z
Hamers
= ﬂ ita ﬁ-.lutl
o >
= o]
:ﬁ ;:3 fﬂfﬂiﬂﬂ
1 = Ciquic
T x, T phase
ML TAE L e Composirions

AEE oy g
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6.26 (a)

(b)

(©)

H=xpH,+(1-x3)H,
txp(1— x5 1418~ 4824(1 2x5) + 1874(1 — 2x5)’]
but AH = H—xpH y—(1=xp)Hy,
AH,, = xp(1-x)[1418 - 482.4(1— 2x5) + 187.4(1 - 2x,)]

From Equation (6.6-9b)

AH . _
AH —XBMZ Hgp —Hp, ; also

Oxp
AH ) —
AH iy +(1—XB)M =Hp—-H,
) Oxg
Now
AH .
ArHy) (1-2x,)[1418 - 4824(1 - 2x,) + 187 4(1 - 2x,)"]
Oxpg
+2:05(1- x,5)[4824 - 562.2(1- 2, )’]
Therefore,
(Hop —Hp\) = x§[1418 —4824(1-2x,)+1874(1 —2x3)3]
+2x3(1- xB)[482.4 ~5622(1- 2x3)2]
and
(Hp - Hy) = (1-x,)°[1418 - 4824(1-2x5) + 1874(1 - 2x, )’
12 (1 - x,)[4824 - 562.2(1- 2x,)’ |
At x; =05
— 1 2
(Hea —Hyy) =(2) [1418] - (2) ( )(4824) 2339 J/mol
(Hy—Hp)= G) [1418]- 2( )(2) (482.4) = 475.1 J/mol
Mixing process

System = 1 mole of each initial mixture (2 moles total)
Difference form of mass balance: N, =N, ;+ N, ; =1+1=2 mol

Balance on benzene (species balance):

XNy =xp Ny +Xp0; Ny =025+0.75
025+0.75 .
Xpf = + = 0.5 (obviously!)
Energy balance: N, U, = N;U,;+N,,U,,+Q
For liquid solutions, U = H . Consequently,
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O=2H,-H ,~-H,,;= 2H(xg = 05)— H(xp = 025)— H(x = 0.75)

but
Atlmix = Hmix - [XBEB + (1 - xB)ﬂEA]
:gmix = AEmix +XBEB+(1_XB)EEA
polynomial given N l
in problem statement pure component
enthalpies
0= Z[Aﬂmix(xg =05)+05H , + O.SEEA]

—[Aﬁmix(xB =025)+025H , + O.75ﬂEA]

—[Aﬁmix(xB =0.75)+0.75H 5 + O.ZSEEA]

=2AH_. (x3 =05 -AH . (x; =025)-AH _, (x;=0.75)

=2x3545-225-3067=17731]

le fracti
6.27 QLxmoe Taction _ {L}
mol n-propanol | of n-propanol mol of solution

Thus, we obtain the following
Mole % H,0 0 5 10 15 20
O kJ/mol propanol 0 +0.042 0.084 0.121 0.159
AH . kJ/mol solution 0 0.040 0.076 0.103 0.127
Mole % H,O 25 30 35 40 45
0 kJ/mol propanol 0.197 0.230 0.243 0.243 0.209

AH .. kJ/mol solution 0.148 0.161 0.158 0.146 0.115

Mole % H,O 50 55 60 65 70 75
(0] 0.167 0.084 -0.038 —0.201 —-0.431 -0.778
AH .. 0.084 0.038 -0.015 -0.070 -0.129 -0.195
Mole % H,O 80 85 90 95 100

(0] -1.335 -2.264 —4.110 -7.985 0

AH -0.267 -0.340 -0.411 -0.399 0

—mix

AH . is plotted below, and H,—H, and H,-H, are evaluated using the

—mix

graphical procedure of Sec. 6.6.
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# I

ﬂﬂmj

. of
AT g sotir e

Dashed lines are sample tangent lines. [Note: Results in table and figure below gotten
using a much bigger graph.]
1,0 Hyp—-H Hy,o-H

——nP —H,0
kJ/mol
0.1 0.015 0.642
0.2 0.042 0.470
0.3 0.118 0.260
0.4 0.335 -0.130
0.5 0.510 -0.340
0.6 0.610 -0.425
0.7 0.732 -0.500
0.8 0.843 -0.540
0.9 0.940 -0.565

=
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6.28 (a) AH . = xix,[A+B(x;, — x,)] = x,(1-x, )[4+ B(2x, - 1)]
= (3, = x7 )[4+ B(2x, - 1)]

OANH .
( ﬁ_m.x j =(x, —x;)[ 4+ B(x; — x,)]+2Bx;x,
Xy

JAH
AH i\~ xl(o”;xm“j = x1%,[ A+ B(x; — x,)]
1

=x1(o0y = x1) 4 = x; (3 = x;)(x; = x,) B — ZBxlzxz
= x{[4+ B(4x,-3)] = H, - H,

at x, =05, H, - H -1 A+B(2—3)]:1[A—B]
: 2Ty 4

JAH,, JAH
AH, 4 x| == | = A =i
o 2( Ix ) e ( Ix, )

= x1[ A+ B(x; — x,)]
+2, (%) — %, )[4+ B(x; — x,)]+ 2Bx,x3
=x;[4+ B(3-4x,)]= H,- H,

at x, =05, H, - H_I[A+B(3—4lﬂ=l[/1+3]
4 2)] 4

at 300 K, 4=-12,974+51505x300 =2477.5
B =87828-34.129 x 300 = -14559

U
ST
I

%[2477.5 +14559]=9834 J/mol

H-H, = l[2477.5 —14559]=2554 J/mol
1 24 4

(b) a,,—Cpi:i(ﬁi—ﬂi) “_51505 9B _ 34129
oM ar oT oT
— 0 A4 OB\ 1
= Cpr—Cpo| - H,-H — = |=—(51505+34.129
P2 P.2|0_> OqT( 2 ) [O’)T ﬁTj 4( )

= 21409 J/mol K

Coi—Crilys = %(51.505— 34.129) = 4344 J/mol K

(c) Overall mass balance: 0= N, + N, + N,
n-octanol mass balance: 0= x,N, +x,N, +x;N;

Also (problem information): N, = 2N,
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Basis of calculation: N, =1=> N;=-3; N, =2

X = 0.2><2-3|-0.9><1 04333

Energy balance: 0= N,(H), + N,(H), + N3(@3 +0

AH,=H-xH-x,H,

== mix

(H), = xH -x,H,

le

= _Q = NI(A_mlx
= 2(AH

) + Nz(AH
+1(AH

(NI + N2 )(AH
3(AH

le) ml‘()

le)] ml\)z le)

AH, . = xx,[24775-14559(x, — x,)]

(AH, ) =02x08[24775-14559(02 —08)] = 53617 J/mol

(AH__), =09 x 01[24775—14559(09 — 0.)] = 11815 J/mol

(AH, . ), = 0433x 0567[24775—14559(0433—0567)] = 65579 J/mol

le)]
mix )2

mix )3

—0=2x53617+1x11815-3x 65579 = 77689

= Q0 =77689 J/3 mol solution
= Heat must be added

0 =25896 J/mol solution
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6.29 The mass balance of the acetic acid-pyridine streams at steady-state is
. ) . . . ) . kmol
0= Not Ny + Ny B - Ny = Np# Ny P Ny =25
min
The energy balanceis
o = NP£P+ NAEA + Nmixﬁmix +Q
= NPEP + NAEA + Nmix(xPﬁp + XAEA + Dﬁmix) + Q
= 1)<EP B ﬁp) + 1)(EA - 4H, )- 2><Dﬁmix(xv:' = 0'5) +Q
0
0 =2xDH , (x, =05)
Now from the table
DH,.,(x, =0.4786) = - 4833J/ mol  and
DH ., (x, =05029) = - 4765 J / mol
By interpolation
DH ., (x, =05) » - 4773J/ mol
. kmol J 1kJ 1000 moal
0 =29 4773 mo
min mol 1000J  kmol
=- 9546k—_‘]
min
Negative sign means that heat must be removed (or cooling supplied) to keep
the process at a constant temperature. Since ethylene glycol hasavalue of Cp =
2.8 kJ/kg K. From an energy balance we have that
28K~ 20K 31 = 95462
kgxK min
Therefore
kJ
9546——
i = = min - 1705 kg ethylerpglycol
28——" 20K min
kg>xK
6.30 (also available as an Mathcad worksheet)
Problem 6.30
x0:=0 H0:=0 x1:=0.0371 H1:=-1006 >%:=0.0716 H2:=-1851
X, 1=0.1032 H, 1=-2516 x,'=01340  H,'=-3035 X '=0.1625
X5 '=0.18% Hy =-3765 x,'=02190  H,'=-4043 Xg 1=0.2494
X, +=0.2760 H, =-4440 X,'=03006 H, ,1=-4571 X, =03234
x12:=0.3461 H12:=-4760 x13:=0.3671 H13:=-4819 x14:=0.3874
X5 +=0.3%1 H, =-4832 X '=04076 H  :=-4880 X, =04235
X g += 04500 H g =-4855 Xo'=04786 H 4 :1=-4833 X +=0.5029

H =-3427
H8 =-4271
H, '=-4676
H14 '=-4863
H, '=-4857
H20 =-4765
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X,, +=0.5307 H,, :=-4669 X,,'=05621 H,,:=-449%6 X,y :=05968  H,;:=-4253
X,, = 06372 H,, :=-3920 Xy 1= 06747  H,.:=-3547 X, =07138  H,.:=-3160
X,,=0.7578 H,, :=-2702 X,q=08083 H,o:=-2152 X, =08654  H,j:=-1524
Xyq += 09277 H,, =-806 Xy =10 H, =0
i=0,1.31
0
=2000 [~ —
H.
]
T —4000 - —
-6000 '
0 0.5 1
%
One-constant Margules fit
£(X) 1=x(1= X) S:=linfit(x H, ) s=-1961-10"
Two-constant Margules fit
X(1-X 4
f(x) 1= (129 SS:=linfit(x, H, f) 7189310
x(1-x)(2x-1) SS= 3
8.068-10
Three-constant Margules fit
x(1-%) -188-10*
f(x) :=| x(1-x)(2x-1) SS:=linfit(x, H, f) _ 3
) SS=1 798310
x(1-X)-(2x-1) 3
—1.14310

HH(X) =]~ 188-10%(x: (1= )) + 7.983-10% (x (1= %)-(2x— 1)) ] - 1143163 [ x (1= %)-(2x= 1)?]

dHH() ::g—HH(x)
X

DHL(X) :==HH(X) + (1= ) -dHH(X)  DH2(X) := HH(X) — xdHH(X)



Solutions to Chesnical and Engineering Thermodynamics, Je

=500

= 1000

= 1500

= 2000
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HH(x) DH1(x) DH2(x)
0 - 279310 0

970622 7 64168
| 17610° 25 20%

- -21610 - 462512
5 2.393-103 L o1710° - 753.807
- 2.931.103 1710 - 1.074-10°
ST | siea0” 141810
- 3.718-103 a1 - 1.828.10°
DT [’ -2288.10°
_4.322-103 Lom1d | 2716.10°
- 4.517-103 0213 10° -3127.10°
4610 - 8227.10° -35210
.4.762-103 2 3.10° -39210°
48510  6565.10° - 4.296-10°
410 10 - 4663-10°
: 4.902-103 5281107 - 487510°
-4.906-103  495310° -508-10°
R -531910°
AL - 4317.10° 5810
; 4.853-103 269 10° -6.315-10°
AT -3102.10° -6.747.10°
46810 6310 -7.231.10°
5 4.561-103 o1l -7.763.10°
- 4'388'103 | 1.750.10° -8327.10°
5 4.162-103 L2010 - 894610°
-386'10 : - 96367 -94810°
=N
P - 274.249 -1 1(1

: - 135442 -1110
-2.21810 48028 _1144.10"
- 1581-10° ~849 -1177.10°
- 850.046 0

- -1196.10"
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6.31 Starting by writing the equation for the formation of each of the six compounds
present from their elements

C+4H=CH, (1
20=0, 2
C+20=C0O, (3)
cC+0=CO 4
2H=H, 5)
2H+0O0=H,0 (6)

Now using egn. (2) to eliminate the oxygen atom, and egn. (5) to eliminate the
hydrogen atom. We obtain

C+2H, =CHa

C+0,=C0,

C +1/20,=CO

H, + 1/20, = H20

Thus from the Denbigh method, we find there are four independent reactions.
One such set islisted above.

6.32 (a) N,(g)+H,(g)=2NH(g) DH,,,=2" (- 461 = -922 kJ/mol
DG,,=2" (- 165) = - 330 kJ/mol
(b) CiHg(g) = C,H,(g) + CH,(g)
DH,,, =525- 745- (-104.7) =827 kJmol
DG.,,, = 685- 505- (- 243) = 423 kJ/mol
(c) CaCOs(s) = Cal(s) +CO,(g)
DH.,,,, = - 635.1- 3935- (-1206.9) =178.3 kJmol

rrxn

DG,,,, = -6040- 394.4- (-11288) =1304 kJ/mol

(d) 4CO(g)+8H,(g) = 3CH,(g)+ CO,(g) +2H,0(g)
DH,,, =3 (-745)+(-3935)+2 (-2418)- 4 (- 1105) = - 658.6 kJ/mol
DGy, =3 (- 505) +(- 3944)+2" (- 2286)- 4  (-1372) = - 4543 kJ/mol

6.33 Buckmasterfullerene Cgso(BF) + 60 O, = 60 CO, for which
DHeomp = 26,033 kJ/mol= 26,033 kJ/60 mols C

Graphite 60C + 60 O, = 60CO, for which DHgymp = 60" 393.513= 23,611 kJ/60
molsC

For these reactions sice only carbon, carbon dioxide and oxygen are involved,
DHt = -DHoomb

Subtracting the first chemical reaction above from the second yields
60C > Cgo(BF) =>-26033 — (-23611) = -2422 kJ/mol Cso(BF)
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6.34 (also available asan Mathcad worksheet)

Problem 6.34 Partial molar enthalpies File: 6-34.MCD
>%::O HO::O xl::0.0120 Hl::-68.8 x2::0.0183 H2::-101.3
x3:=0.0340 H3 =-179.1 x4::0.0482 H4::-244.4 >%::0.0736 H5 '=-3446
X :=0.1075 He '=-4511 X '=0.1709 H7 '=-565.3 X '=0.1919 H8 '=-581.0
><9::0.2301 H9 :=-585.0 xlo::0.2636 H10 =-566.1 X, :=0.2681 H, :=-561.9
Xl_z_:: 0.2721 Hl_z_::- 557.8 Xl_BV:: 0.3073 H1_3,:__ 519.6 X, 5:: 0.3221 H, _4.::- 508.0
Xe :=0.3486 H15 :=-4685 X :=0.3720 H16 =-4244 X :=0.3983 H17 :=-369.1
Xg :=0.4604 H18 =-197.1 X :=0.4854 H19 :=-1354 X0 :=05137 Hzo '=-66.1
X 1= 05391 H21 =-19 X, 1= 0.5858 H22 =1171 Xyg = 0.6172 H23 :=186.5
X4 :=0.6547 H24 :=266.9 Xoe :=0.7041 H25 :=360.3 Xy :=0.7519 H26 :=436.6
X, 1= 0.7772 H27 :=4705 Xog 1= 0.7995 H28 :=4959 X9 1= 0.8239 H29 :=510.0
Xy i= 0.8520 H3O :=515.8 X = 0.8784 H31 :=505.3 X, = 0.8963 H32 :=486.0
Xpg 1= 0.9279 H33 :=4205 Xy, i= 0.9532 H34 :=329.2 X 1= 0.9778 H35 =184.7
X 1= 0.9860 H36 :=123.3 X, = 0.9971 H37 =251 Xog = 10 H38 =00
i:=0,1..38
1000
500
Hi 0
=500
-1000 '
0 0.5 1
X
One-constant Margules fit
f(x) =x(1-x) SS:=linfit(x, H, ) SS = ~528.45491

HH(x) = SSO-X-(l— X)

dHH() ::g—HH(x)
X

PH1(x) :=HH(X) + (1- x)-dHH(X) PH2(x) :=HH(X) — x:dHH(X)
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SO0 I

- 100
400

=200
200

i Hﬂ[x,-:l - 300
0
- 400
- 200
- 500
-400
- 600 '
] 0.5
=600 %
Two-constant Margules fit
x(1-X) o —337.24041
f(x) = SS:=linfit(x, H, ) SS=
Xx(1-x)(2x-1) 5707.44046

HH() 1=x(1- %) [ SSy+ S5, (2x- 1)} dHH() ::j_HH(X)
X

PH1(x) :=HH(X) + (1- x):dHH(x)  PH2(X) :=HH(x) — x:dHH(X)
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500 I

400

200

—400

~ 600

-&00

Three-constant Margules fit
x(1-X)

f(x) = x(1-x)(2x-1) SS:=linfit(x, H, f)

% (1= x)-(2x= 1)°

annn

4000

2000

—4000

= 6000

—&000

SS=

—488.57112
567245617

HH(X) =] S8 (x(1= %)) + S (x (1= X)(2%= 1)) ]+ SS,x(1- 0 (2 x- 1)*

dHH() ::g—HH(x)
X

PH1(X) :=HH(X) + (1- X)-dHH(X)

PH2(X) :=HH(X) — x:dHH(X)
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B00D I
600 I

s000 |- -
400 ;

000 |- .‘—

200

—200 - 2000

= 4000
-400

- 6000
1]

- 600

Four-constant Margules fit
x(1-X)
x(1-X)-(2x-1)

f(x) = x(1— X)-(2%- 1) SS:=linfit(x, H, f)

| x:(1- %)-(2x— 1)°]

HH(xX) 1=x(1— x)-[SSO+ SS, (2%~ 1) + SS,(2x~ 1)*+ SS,(2x~ 1)3]

_d
dHHGO = HHO) () = HHO + (1= %)-0HH(X)  PH2(X) = HH(X) — xdHH(x)
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600

400

200

-200

—400

=600

2000 I
£000 — -
4000 — .
2000 - F
leﬁﬂ
0
PII2[xJ
- 2000
- 4000
- 6000
- 2000
o 0.3
x



HH(X)
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PH1(x)

PH2(x)

0

- 6620.61619

0

- 75.89284

-6037.1938

- 3.48837

-112.97104

- 5746.57438

- 7.95429

-197.51978

- 5066.79383

- 26.13746

- 264.87861

- 4503.47003

- 50.23256

- 365.61955

- 3607.09619

- 108.09291

- 465.07305

- 2606.80402

- 207.10545

- 563.45181

- 1219.73582

-428.17388

- 575.52278

-871.2077

- 505.3063

- 576.41179

- 347.75299

- 644.75104

-558.17713

14.29521

- 763.09798

- 554.54726

57.06648

- 778.58558

- 551.10303

94.0214

- 792.26028

- 512.60889

379.84612

- 908.52549

- 49243244

481.19324

- 955.04467

-451.15379

638.98059

- 1034.5447

- 409.80542

756.15737

-1100.47128

- 358.55983

866.44984

- 1169.46453

- 221.374%4

1052.07298

- 1307.91205

- 161.16559

1101.2544

- 1351.95197

-90.55115

1140.97708

- 1391.46839

-255922

1162.73326

- 1415.53852

95.51229

1169.06642

- 1422.80738

176.23404

114881031

- 1391.88005

269.19976

1098.66681

- 1303.49667

380.26243

990.04823

- 1070.73515

466.63265

841.94903

-670.81348

500.06403

748.83482

- 367.73066

520.4105

660.0669

-36.47376

530.95404

557.74661

405.60256

525.02317

436.6149

1033.96809

498.49631

323.9931

1759.05242

467.10138

250.96992

2335.16915

380.96262

1353294

3542.17012

279.46841

62.11408

4706.43722

148.70801

15.16587

603057744

97.36045

6.1957

6517.96343

21.20369

0.27562

7216.85219

0

0

7407.10877
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6.35 Assume reactor operatesin steady state. Then the mass balanceis

0= Ni,in - Ni,out +niX

or

Ni,in = +Ni,0ut - niX

and the energy balanceis

0= é Ni,inﬂi,in - é ]vi,outﬂi,out +Q
or l [

[¢} [o]
Q =- a Ni,inﬁi,in +a Ni,outﬁ,-,out

o o
=- a (Nzout - niX)ﬁun +a Ni,outﬁi,out

[¢}
= a Zvi,out (ﬁv‘,out - ﬁi,in) + Dﬂrxn(ﬂn)X
Using a Mathcad worksheet, the heats of formation and heat capacities in the
appendices of the textbook, we find that 59.93 kJ must be supplied per mole of N2
entering reactor. See Mathcad worksheet for this problem.

6.36 (also available asan Mathcad worksheet)

6.36
x25O = H250 =0 x50O = H5O0 =0 Nomenclature

— — - . H25 = enthalpy at 25C
x25 :=0027 H25 :=-22316 x50, :=0031 H50, :=-76.20 H50 = enthalpy at 50C
X25,:=0084 H25,:=-290.15 x30,:=0043 H30,:=-121.84 HH25 and HH50 are

— — — ,_ correlated enthalpies.
X25,:=0054 H25,:=-32950 x50,:=0082 H50,:=-97.55 DH125 = difference
X25,:=0094 H25,:=-38425 x30,:=0098 H30,:=-5275 between partial molar
X35, =0153 M5 i=-27507  xB0,:=0206 Hs0,:=12560  2nd pure component

5 5 5 5 enthalpies of species

X25,:=0262 H25,:=-10341 x50,:=0369 H50,:=37053 1 at 25C,
X25,:=0205 H25,:=-8122 X50,1=0466 HS0,:=43543 ¢
x258 =0.349 H258 =-11.35 xwg :=0.587 H508 =47311
X25,:=0533 H25,:=133.98 x50, :=0.707  H50, :=460.55

&
%

H25, ) :=16831 x30,,:=0872 HS0,,'=23823
X25,'=0.739 H25  =177.94 x30,, '=0.9999 H30,, :=0.0

x2512 =10 H2512 =00 x5012 =10 H5O12 =00
i:=0.12
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Three-constant Margules fit x(1-X)
f(x) :=| x(1-x)(2x- 1)
x(1= %) -(2x= 1)*
851.268

<25 :=linfit(x25, H25, f)

5= | 1543-10°

-5.027-10°

. 19510°
s50 := linfit( x50, H50, f)

50 = | 1.443-10°

-2,099-10°

HH25(x) !:SZSO-X-(l— X) + 3251-x-(1— X)(2:x—1) + 5252-x-(1— X)(2:X— 1)2

HH50( X) !25500-X-(1— X) + sSOl-x-(l— X)(2:x—1) + 3502-x-(1— X)(2:X— 1)2
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HH30(z) = 850, (1 = 20 + 830, (1 - ) (da— 1) + 830, 201 - ) (2%~ 1)2

300 I

s00 |

200

100

-l

-a00 f-

-300 |- -100 [

' l - 200
—400 i 0.5

dHH25(x) = j—HHZS( x)  dHH50(x) := S—HHSO( X)
X X

D H150( x50) = HH50(x50) + (1— x50) -dHH50( x50)
D H125(x25) = HH25(x25) + (1 x25) -dHH25( x25)
D H250( x50) = HH50( x50) — X50-dHH50( X50)

D H225(x25) = HH25( x25) — x25:dHH25( x25)
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;  Sooo
1340914 107
AH o
125 [xzsi]
AHI25 [xzsi]
- 5000
5 4
CETIETIE 0T J1ay

174218610

AH150 |[x5lil ]]

A |[x5lil J

a
]

0.;
s,
i

6.37 (also available asan Mathcad worksheet)

6.37
X :=0.2108
X :=04285
X5 :=0.5562
X :=0.7725
i:=0.10
—600
—800
H

—1000

—1200

H,=-738 x, '=0.2834 H, :=-900
H,:=-1083 X, :=04498 H, =-1097
H, 1=-1096 x;:=0.6001 H_ 1=-1061
Hy :=-780 X, =0.8309 H,i=-622
H
H><xI =

0.2 0.4 0.6 0.8

2000

3

]

X, :=0.3023
X :=0.5504

Xg 1= 0.6739

Hxxi

—4420

—4430

- 4440

—4450

0.5
A0,
i

H2 ==

H5 ==

H8 =-

933

1095

976

0.2
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DH, = 4430 1- x)* D H2, =- 4430 (x)
I \ | l
D H:I.I D H2| HXXI
3
- 2.759-10° - 196.854 - 4.436-103
_355.798 o,
_2275.10° 4432-10
X A8 - 4.424.10°
- 1447.10° 896278 4422 1o3
-1.341.10° -1.342.10° - 4.433-103
- 895481 -137.10° - 4425.10
~ 3
3;2’12'2 - 150510° -4.4410 :
vy 3 442110
471092 -2012:10 i
- 22928 - 2644-10° - 444110
- 12667 -305810° -4438.10°
- 4.427.10°

1
638 () CoHlia+1270, +47.02N, ® 8CO, +0H,0+47.02N,
DHyyn = 8DH ; o, *9DH ; 1,0~ DH o

= §(- 3935 + (- 2418)- (- 2084) = - 51158 kJ

29815

DU,, = DH.,,- DNRT = - 51158 kX17- 135)" 8.314" o kI

=-51158- 87 kJ=-51245kJ
Cp of mixture =8 5125+9" 39.75+47.02" 3243= 229261 J/mol K

C,, of mixture =Cp - I¥R =2292.61- 6402° 8.314 = 176035 J/mol K

# of
moles

D 1245 10°
Tiina = T + DV _ 598154 21285 107 _ 5015, 201107 = 32002 K
Cy 1760.35
by ideal gaslaw
T N,T N, T
pv=nrrp M="rr p,=p—L-L
E Pf ‘ i 7;
6402 , 32092
P, =1lbar———" =11386 bar
: 6052 29815

(b) Adiabatic expansion
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229261 229261
Cp(per mole) = = = 3581
8+9+4702 6402

RICp 8.314/3581
P 1
T, = Ti(_z) =32002° (—]
P

11386
T, = 3209.2(0087827)* %" = 18245K
d_U = : d_S = 0 +3 <
dt dt

W =C,DrI =-2438" 10° J/mol of octane

(c)  Thisislike Carnot cyclewith avarying upper T

au . . dT dS
—:Q+W: ; Q T 150°C
dt dl‘ dr T
dU s .
Zor 2 o
dt dt
DU- T,DS = W
W =C,DT- T xC,Init
T,
42315

W =17603542315- 18245)- 42315" 2292.61In
18245

=-1049 " 10° Jmol of octane

dT __ C,dT dT _ C,dT
Cy— =T —2—+Wp W=C,—- T, 2—
dt T di dt T dt

I
Ws=Cy(T. - Ty)- TLCPlnT_
H

dU I — o -

dt a H a zoutHIOUI+Q+W 0
S o . = o . = 0 0
m =a NiinSiin- A NiowSiow + Tog %

(for maxi mum work)

0= [a finSiin” é Ni,outs'i,out]
0=& NyinlH:in~ T Siin) = & Niour (o = TamoSrn) + W
W =8 Nyin(Hyin - TanoSiin) = & Ny (H o = TS o)
- a Nz |n( i,in Tambgz m)' é. (Nz,in +Xni)(l—_[zout "~ TnbSi out)
Absolute maximumwork T, =T , =T,
Ideal gas H, = H,; Q,m=gi,out; E,.:g,.-Rlnx,.
W = a iinGiin ™ ba iin B é. NiinGijn *

ba NiinINX; o +Xan,(G RTn lnxi,out)
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o o} xi,in Q 2 n;
“W = RTpp@ Ny I+ X @ NG, RTge@ 1Nl

iout

— 2 xi,in 2 nj
= RTamba ]vi,in In—=-+ XDern - RTamba Inxz‘,out

i,out

6.39
C isthe number of cmponents, and M isthe number of phases.

Then the unknowns are

NiK (number of moles of speciesiin phase K)
=C’ P unknowns

P* (pressure in phase K) = P unknowns

T* (temperaturein phase K) = P unknowns.
Total number of unknownsisC " P+ P+ P = P (C+2)

Then restrictions are that

Tisthesameinall phases, i.e, 7' =7" =7"" =....
P-1restrictions

P isthesameinall phases, i.e.,, P' = P"' = P'"' = ...
P-1restrictions

EiK must be the same for species in al phases
=C’ (P-1) restrictions

In addition we have the stoichiometric relation for each species that

K M
N, =& Nf =N,,+& n;X; which provides an addition C restrictions.

k=1 j=1
Therefore the number of degrees of freedom F are
F=(C+2)*P-(C+2)4P-1)-C = C+2-C=2
independent of the number of components, phases or independent chemicd reactions.
Therefore Duhem's theorem isvalid.
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71 PY(T,P,Ny,N,..)=@ NRT b V(T,P,x)=V(T,P)
U(T,P,N;,N,..) =@ NU/T,P) b U(T,P,x) =U(T,P)
Also S/(T,P,x) =S(T,P)- RInx;
DU ix = A %[0T, P.x)- U(T, P)]=& x[0] =0

DV ix =8 2 [V(T. P.x)- V,(T, P)] = & x[0]=0

DH iy = DU iy + POV i =0
DS iy = & x[S(T, P,x)- S(T,P]=4 x[- RInx]=- R4 x,Inx,
DG iy = & [G(T.P.x) - G/(T. P)|= & x[(H, - T5))- (&, - T,)]
= é XI(E - ﬁi)_ Té xi(gi - Si)
= DH i, - TDS i, = RTQ x,Inx,
Similarly
DA ix =DU i - TDS 5 = RTA xInx;

mix

7.2  Thepicture of the process hereis asfollows

1 Mixture & N, Molesof gasat T and /!
l

SR

(@ Let
P = initial pressure of speciesi (pressure in unmixed state)
P = final pressure of mixed gas
P = x. P = partial pressure of speciesi infinal state
want to show that P = P
P=NRT/V =(& N,)RT/V
P =N.RT[V
and

Chapter 7
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“initial pressure of purei
P =xP=x,NRT/V=NRT|V=P
- partial pressure of speciesi O.E.D.
(b) Since the internal energy of an ideal gas is independent of total pressure, it follows that

U;"™(T,x)=U!°(T) for mixing at constant total pressure or constant partial pressure. Thus,
IGM _
Dlimix =0.

Next,

| {é NjRT} _RT _ RTx _ RTx

Thus 7,'*™(T, P,x) =x,V (T, R)

IGM
mix

Can now definetwo Dg

0!, =8 5 {a(r, P.)- o,(7.P)} and /S| =& x @19~ o7, P}
D_}L'rrf)'z" , was computed in Section 7.1 and will not be considered here. We will be concerned
: IGM
with Dg =" 2!

DV = § % {77, P.x)- VAT, B)} = @ x{xV (T, B)- V(T B)}

i i

C
Note: é_ 1=C
i=1

where C = number of components.
For enthalpy we have

H/'®M(7, P,x) = T1°M(T, P, x)+ PTM(T, P,x) = U/S(T, P) + PxV'%(T, )
=US(T,P)+ PS(T,P)= Hi(T, P)
Thus
DHIGMl =3 xl_(ﬁ[lGM(T,P’{)_ t[:_G(T,P)) =0

—mix

and
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DHlGM

—mix

5 J(H*M(T,P.x)- H(T,R))

é v, py+ Py (1, P)- U1, P)- BY,(T,P)}
8 x{0+ PV(T,P)- BV (T,R)} = § %{RT- RT} =0

To compute DS'S™ we use the same sort of argument asin Section 7.1, but noting here that the

volume occupied by each gas in the initial and final states are the same. Therefore
S/°M(1, P,x)= S!°(T,B). Since T and ¥ of each species is unchanged (see egn. (3.4-2)).
Therefore

mix

SIGM| =4 x[{EIGM(T,P'_)_ E!-G(T,R-)} 0

For the Helmholtz free energy we note that
A=U- TSP 4'°™T,P,x)=T;°™(T, P,x)- TS,°™(T, P, x)

=U,%(D)- TS,°(T\B)= 4,°(T )

Thus, DAIGM

—miXx

=0. Findly G=4+PV, b
G, P.x) = 4'°™(T, P,x) + PT (T, P,x) = A°(T, B)+ Px,V (T, P)
= A/%(T,R)+ RV'Y(T, R) = G,°(T, P)
So that

EX;IGM

—miXx

=0

7.3 Generally mixing at constant 7 and P and mixing at constant 7 and V are quite different.
However, for the ideal gas we have

PV, = N,RT (purefluids) ad PV = é_ N,RT (mixtures)
Thusfor the purefluids (same 7 and P)

N,RT N,RT
Vy=—t— and v, =—2
P P
NiRT _ N,RT _ RT
b (V +V,) = N+ N, =V
(1 +73) = 7 7 = ( z)P

So for theideal gas the mixing process described in problem statement is also a mixing process at
constant 7 and P and Table 7.1-1 applies here al so.

7.4 We have the following properties for a mixture for mixing at constant 7 and P:
U(T,P,x)=§ N,U,(T,P)
V(T,P,x) = & N,V,(T, P)
S(T,P,x) =4 N.S4(T P)- RQ N, Inx,

v,
and S, = S +CV,In L +RIn=%
U’ V.

= —
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8%, U?, v? areat some reference state.

(8 Find 7, U;, S; and G; intermsof 8°, U°, ¥°, Cy,,R,T,and P. Need U, , V, .

1 P _ v
Weknow dU = TdS - PdV ® J> :—;E =—andS-:S°+Cv,-'n£—6+R'”;6 for
e 177 P A 77 F e e B 7L
pure component ;.
as| 1 1

L . 1 R JL QS
s, Wl P Ty P wy ¥ T
-
P
— U
SOU,:L{ _iéMCViT:CViT:Qi
TNilrpn,, TN ' ’
Ui=Cy,T
— V RT —
r= =l ang=tarey
1TNI'TPN,, v; P

75 (a) Startwithegn. 7.2-13

InL:Infi =—1JK:ZRT/P AT N 4P dV - InZ
x,P RT r=¥ v w, ), | =

i iV

p_ RT @ _ NRT N%a__ NRT 4 & NN,
V-b v2 V-Nb V® V-@Nh 2
Ww| _  RT  NRT 5)- 24 N,
Wl v-anNh (- & npP V2

__RT | NRTH 28 N
V-Nb (V- b)? 2
| _RT _ RTh, 2Axa

-— ]

Wi, v ow-b  V?
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Inf, dV - InZ
-InZ
i%ii
i+ B - Inz (whereB,-:P—b"j
Z-B (Z-B) RIV RT
[o]
i B 2ax e
b Inf, =In~—-=———-1In(Z- B)- ———
xP Z-B RTV

(b) For apurevan der Waals fluid (Egn. 5.4-13)

f; a;
In=2~=(Z-1)- InZ- B,
P ( )- ( ) RTV
and, by definition of the activity coefficient
];i =xf9 P
Zé xinj
f. = x,Pexp ZB’ -In(Z - B)- —<

mixture

1= Pexp{(Z- - InZ- B)- ﬁ}
purefluid i

exp{[B /(Z- B)]- In(Z- B)- Kzﬁ x;4 ] / }}
J mixture =g

exp{(Z-1)- In(Z- B)- [(4,)/Z]}

SO

i
f pure fluid

Note that the compressibilitiesin pure fluid and mixture will generally be different at the same T
and P.

7.6  Asapreliminary note that, from Eqns. (4.4-27 and 28)

V=ZRT[P
- IG = - ﬂP
H(T,P)- H>(T,P)=RT(Z- )+ VL l:f('ﬂTj P:ldV

and

=¥ )y

V=ZRT/P
S(T,P)- $'(T,P)=RInZ+ | {(‘"—PJ - ﬁ}dz
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vdw E.O.S. Pzﬂ- < s
V-b y?
ﬂ_P :_R ,Tﬂ_ - P:_RT - RT +i:i
1), v-b \1NT V-b V-0 v? y?
('”_P)_E R _5
), v ®-b) v’
V=ZRT[P
b H(T,P)- H'®(T,P)=RT(Z- D+ | —dV RT(Z- 1)-——RT(Z D-%
V=¥ —

and

S(T,P)- S'°(T,P)=RInZ+ - .=
S(,P)- S'(T,P) KL T

ZRT|P
V-b
:RInZ+RIn¥{ = RIn(Z - B)
Voly=
Now on to solution of problem.

9 RT
C) Kex =V ix- Ax Y, =— P ( Znix - ax ): DV i
Zix = compressibility of mixture at T and P
Z, = compressibility of purefluidi at 7 and P
Will leave answer to this part in this form since the analytic expression for Z and Z

(solution to cubic) is messy. Though it can be analytically and symbolically with a computer
algebra program such as Mathcad, Mathematica, Maple, etc.)

V=ZRT[P
-2y

(b) ﬁex :ﬂmix é, X4, :ﬂ' LAmix' a xi|:RT(Zi - 1)' RT4:|
Zmix -1 Zmix i Zmix
= RT(Zyy, - 8 2,)+ & R1| 2 | Kl mix
Zi Zmix

Qex = (Hmix m|x)
:( mix - aXH) (_mix'

:RT( mix ~ aszt)+Rr(a 2 Lix)- RT( mix ~ a )

i mix
- +RT(é xiAi _ Amixj
Zi Zmix
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Chapter 7

(© Swmix- & xS - R x1nx,
i
= PIN(Zyix - Bix) - R[X,IN(Z - B,)- RQ xInx]
= RINZpix - Bpix)- RA x[IN(Z; - B,)+Inx]
= RIN(Zpyix - Bmix)- R[x[Inx(Z;- Bl
= RInZmix™ Bumix
P(Z:- B)"
(d) G*=H"- TS” = RT(Zmx- & xZ)+RT(é a4 Am‘XJ
Zi Zmix
- RT InZaix” Bixc
P(Z- B)"
A =U® - TS —+RT[ 2k AmiX)- RTIn L Bmix.
- = Zi L E’(Zz - B)"

7.7 (@) Startfromegn. (7.2-13)

inf, =indi= 2 jV:ZRT/P RT N(ﬂj V-1nz
yP RT v v; TV N..

but
o O
PV Bux @005
RT 14 14
po R, BrixRT _ & N,RT . RTQ & N,N,B,
vy v v
28 N;B;RT
TP _RT,
w, v y?
2NQ N,B,RT
hls NRT J ‘ B E 2a ijU
W, v v? 4 v?
b
2RTQ x,B;
S 1 RT RT F
in-Lo Lz ———L4v-Inz
y,P ~RT J=v vor v
2o
78. - InZ  (egn. 7.4-6)
Note also that
PV PV? PV?
—==z=1l+—or ——=)V+B—-F-B=0
RT RT RT
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by = BEVLTAPB/RT PV _ :%(111/1+4PB/RT)

2 P/RT T

as P® 0, Z® 1 (ided gaslimit) so only + sign allowed

= 2(1+ J1+ 2PBJRT)
2

Note that at low pressures we can obtain asimpler expression.
At low pressures

l =1+ Bmix »1+ BmixP
RT 4 RT
Then
_RT _RT
V= > Bmix 7 —+ {y1B11+ 2y1y,B1; + yszz}
RT RT
V-v ==t By - —-=a a8, ="
Also
RT 2 2
V=NV=(N+ 1\/2)—+—{N1 Byy+ NZByp + 2NN, By}
P Ni+N,
24 N,B;
— 91 RT 1
V= V=—"-———8aNN;B+—L—
TN, P N+ N, ; N+ N,

RT
:_'aayly] +2ayj ij

= T * [2y 1Bia* 29,815 - V{Byy - 201,81, 3 Bzz]
RT
-y + [)’1(2 - y1)Bi1+2y,(1- y1)By, - yngz]

RT
==t [y1(2 - y)Bu*+2)5Bip- 35 322]

& 77IGM _
n-n-= _+[y1 (2- 31)Byy +2)5By, - yszz]
;s P
f1 1 AR P
—=— dP 2- y1)By +2)2B B
P RT -([ [yl( V1)Bi1+2y5 By - 5B, RT
fi p{ P }
P ——=ex (2- y)B;+2 2B
1P [J’1 y1)B11+2y;3 Bz - 3 22] RT

This is an alternate, some approximate expression that we will use in what follows. Also, for
the pure component we have
fiog p[BnP}
RT

s
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Note that these expressions are slightly easier to use then the full expressions since we don’t
haveto solvefor ¥ (or Z) first

L — = eX[{[yl(Z- v)Bu+2y;B,,- yzszz](P/RT)}
nh > exp{ B, P/RT}

P
= eXp{[' (1- 234+ y7) B + 293 By, - yngz]ﬁ}

P
= eXp|:y22(2Blz - By - Bzz)ﬁ} =0

dyp)5 P
or Ing, :% where d, = 2B,,- B,;- B,,

(b) Repeating the argument for aternary mixture

P
Ing, = E[hzdlz + y23(Chp +Ohg - Chyp)+ y§d13]

By simple generalization

Inglz—P aa yy,(dy+d,- d;) [Note d,=0
2RT & ¢ «
n1ji1
it

78 (@ G¥=xx{d+B(x- x)}

GeX:NGEX: N1N2 A+ Bl Nl_ NZ
B o N1+N2 N1+N2

N ), N+ N, N+ N,
&{A N B(N_M}

(N +N,)? N+ N,

NN, { B B(N;- NZ)}
N+ N [Ni+ N, (Np+N,)
= xp{4 +B(x;- %)}~ xx0p{A+ B(x; - xp)} +xx,B(1- x; +x,)
= sz2 +sz2 - ZBxg’ +23x§ - ZBxg’
Thus G = RTIng, =(A+3B)x? - 4Bx3.
Now by repeating the calculation, or by using the symmetry of G* and replacing B by - B and
interchanging the subscripts 1 and 2 we obtain

Gy* = RTIng, = (A- 3B)x} +4Bx;

(b) G*= 2RTa12x191%29>2 b G = NG = 2RTa5q192 NiN,
g1+ X4 Nig1 + Nogo
After some algebra
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ex
alex - ﬂ(NQ ) _ 2RTaq,
LR |T,P,N2 [+ (x1‘I1/x2q2)]2

aex 2a

p Ingl =—1 = 1291 5= a .
RT  [1+(na/xe)] [+ (an/bg)]

Similarly Ing, =—— 2
[1+ (b, /ax,)]
ex ‘q
(©) == =2aymz; + 20137123 + 2a,557523; where z =g and
K axq;

J

o« _ o« _ o Yo o _
G =NG =RTl A N, | A A @N:N;q9,9, ; thus
ko

k

o o
- q; A ayqiq XX 2a ;9,9 ;% j

eX .
|ngi:Gl_i & = J. K 5 + Jo
RT 1IN, TPy ° a x4,
a X 9 k
k
Now setting
= = = - _ ¢1b1p
ay, = 2q1a,,. B, =2q,a, = 2q,a0,, =@, P 4, = a—zi
1
similarly, ¢3= 910 ,etc. Forthecase i=1
A3

_ {x22a12(b12/ ay,)” + xays(bya/ al3)2} + %x3(br2 /a1, X bra/ass)[an, + @s- az(@,/bry)]
{xy+ xy(Dpa/a,) + xa(bra/ans) )

Ing,

Interchanging indices 1 and 2

{xf b1, (@15/b12)° + Za5(1sa/ a23)2} + 10382/ D12 X b2g/Az)[Pr2 + 843 - @zo(bro/asy)]
{x +x(a12/brp) + x3(b23/a23)}2

Finally, interchanging indices 1 and 3 in the original equation yields

{xzz by3(@a/b2s)” + ¥ brf@us/ b13)2} + x5 (Bl3/23)(@13/ Py D5 + brs - byy(r3/a55)]
{3+ xx(@29/D23) + 11(B19/D13) )

7.9 (also available as a Mathcad worksheet)

2 2
Using Egns. (7.6-b) yields. a :%[ﬂ- E} and b—b—z[ﬁ- %} . From Section 4.6,

b b CRT| by
we have three different expressions relating the « and b parametersto the critical properties:
2TR?T? RT,
1) a= € and b =—X . Egn. (4.6-4a)
64 P 8P

2 a=3RVZ and b==C. Eqn. (4.6-4b)

w |r|$



Chapter 7

Solutions to Chemical and Engineering Thermodynamics, Je

O RT, Ve

3 «a :—CT and b= 3 Eqn. (4.6-3a)

Since Z. is not equal to 3/8 for the fluids under consideration, each set of relations will give a
different pair of valuesfor a and b. Generally, set 1 is used, since V. is known with less accuracy
than P. and T,.. All three sets of parameters will be considered here.

Benzene 2,2,4-trumethyl pentane
Ve = MW/r . 0.2595 m3/kg 0.4776 m3/kg
L4 1g757 16F (mP) Pa/kmol® 3600 10° ()" Pa/kmol’
b 0. 119 / kmol 0. 232 / kmol
a 0.480
k 0.937
Set2 a 9945° 10° (m Pa/kmol2 1698 10° (m3)2Pa kmol?
0.0865 rr13/ kmol 0159 n#/kmol
a 0.353
k 0.658
Set 3 a 13655" 10° ( Pa/kmol2 2476 10° (m Pa/kmol2
0.0865 m3/ kmol 0159 m3/ kmol
a 0.433
k 0.807
Set 4
Example 7.5-1 a=0415
Fitting the van Laar equation b=0706
Set5
Example 7.6-1 a= %(dl - d,)*=0703
Regular Solution Theory b=L2a=1304

—1

The 5 sets of results are plotted bel ow.

Numbersin circles denote parameter sets used.
Parameter set (2, fitted to the experimental data, should be the most accurate. Parameter set ®,

obtained using V. and 7. data should be reasonably good, also.
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7.10

i)

i)

'IB
One-constant Margules equation
RTIng, = Ax; RTIng,(x,=0)= 4
Thus
* Gh(x1) 2 2
RTIng, =RTIN————=—= Ax5- A=- A(1-
% Oi(x, =0) "2 ( x2)
or
. - A(1- x3) x,4000 |- A(1- x3)
—exp ——| ad == ex
% p{ RT o M, N RT
Two-constant Margul es equation
RTIng(x;) = ayxj + oy
RTIng(x,=0)=ay+b,
« O1(x1) 2 3
RTIng; = RTIn———————=-a,4(1- - by(1-
e} (= 0) 1( xz) bl( xz)
Thus
g* - exp —al(l— x%)- bl(l- xg)
' RT
and

4= xl&oooexp{-al(l- 2)- by(1- x?)}

mM, RT

Chapter 7
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Chapter 7

iii) van Laar equation

a
Ing,(x,)= —— ; Ing(x;,=0)=a
) o "0
* a
Ing,(x) =Ingy(xy) - Ingy(x; = 0) = -
[1+ (ax;/bx, )]2
or, upon rearrangement,
2
g, =exp - a’x,(2bx, +?x1)
(by, +ax,)
and

o= x, X000 exp -a’x,(2bx, +ax)
ComMy (bx, +ax,)”

iv) Regular Solution Theory

RTIngy(x) =V £5(ch - dp)® and RTIngy(x; = 0) =V, (ch - &)
XZZZ

xVi+xl,

(sice T, = Pls x,® 0)
Thus

RTIng;(x,) = RTIngy(x;)- RTING,(x, =0)=K1(f 5- 1)(d1' d2)2
\ V(f3- 1)d, - d,)?
g :exp{_l< 2- 1) - o) } and

RT

meM, RT

ol - xlxloooexp[zl(fg- 1)(d - dz)Z}
[1-

v) UNIQUAC Model

Ing, = Inf—"+£qi|n&+
x, 2 .

1 1

f- o o o qtl

L-—taxl-gq|l-Inq(dt,)- a ——

X; 7 j(] /) jéqktkj

k

Ing;(x; ® 0) = lim(Ing,

g(x ® 0)= lim(ing))
Now consider x, ® 0,thenq,;® 1 andq ® 0

Loio_on A__ f;

R < ) G ey S B T
X;  xnptxon X v f. i

i X txon X

7 z A 7 t..
Ing, =In = |+=q; I ==xL |+[ - =1 - q;|1- Int;)- —~
N {nj 2" r(qj rJ o q’{ ) }

S N AN/ q g/ f,a
INn—=——=Ing, =In| —L |+=¢, In =%, |- I+
(v, ® 0) & (x,nj 24 r(f. , ax!
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7.11

7.12

X000 - . .
dlj =4 v g, Where g, isasgiven above.

msiViq

An ideal gas constrained to remain at constant volume and 7, is also a system at constant internal
energy and volume, since U is only a function of temperature for the ideal gas. Consequently, at
equilibrium, the entropy should be a maximum.

Suppose there were N, molecules and N lattice sites. For any distribution of the N, molecules

among the N lattice sites there will be N, lattice sites with molecules, and N, = N - N; empty
lattice sites. Thuswe can consider the “lattice gas’ to be amixture of N, moleculesand N, holes,

and the entropy of various configurations of this binary system can be computed. Following the
analysis of Appendix 7.1, it is clear that the random mixture, or uniform distribution of gas
molecules, is the state of maximum entropy. A completely ordered state (for example, the first N,
lattice sites filled, and the next N, =N - N, lattice sites empty) is an especialy low entropy
configuration.

The principle of corresponding states, and the pseudo-critical constant concept will be used first,
then the Peng-Robinson equation of state (program PR1)

290 800
(@ O,: T, =1546K; R. =5046bar; 7, =——=1876,; F, =———=1585.

154.6 5046

From Figure 5.4-1: % =1025pb f = P(%) =820 bar .

Using the P-R e.0.s.. and the program PR1 f,, =7351bar .

290 800 f
b) N,: T7T.=1262K; R . =339%9bar; 7 =——=2298; P =——=2357; — @L36;
() N, ¢ ¢ o 126.2 3394 I
fn, =1088 bar .
UsingtheP-Re.o.s. fy, =1043bar.
(c) Lewis-Randadl Rule
Corresponding states P-Re.o.s.
fo, 03" 820 = 2460 bar 03" 7351=2205bar
n, 0.7 1088 = 7616 bar 0.7 1043=7301bar

(d) Kay'sRule
Ty =037 1546+07 1262 =134.72K

Py, =03 5046+ 0.7 3894 = 3890 bar

T 290
O, _ — —
y 2= ——(Tco,- Tm)=- (1546- 134.72) = - 0318
T 2 134.72?
N, . 20 ~(126.2- 134.72) = +0136
3472
y 92 =- Moo, Fem) _ 119
Py
y b2 =2622
290 800
Ty = =21526; Py =———= 20565

134.72 3890
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H- H'® 17
Lo a3 g =-0856; 7, ~16
P RT. 1987
n fn, 13, (0136)-0856)  (L6- 1)(2622)
xy, P (21526) 20565
= 02070+0.0251+0.0765= 03086
b Iy 13615; fy, = 07" 800" 13615= 762.4 bar
xNZ
f - 0318)(- - 1)(- 6112
L% =in12. COSI)C0B6) , (6 DEL12) g0
xo, P (21526) 2065
p fo

- = 097113 fo, =097113" 03" 800 = 2331 bar
Xo,

(e) Prausnitz-Gunn Rule
Fow = R(c':ol xiZc,i)(c':ol xTe,)! (é xiKC,i)

=Zom =Tem =V
Zoy =037 0.288+0.7" 0.290 = 02894
Ty =134.72 (seepart d)
Vey =037 00732+0.72° 00895= 008461
_008314" 0.2894" 134.72
o 008461
T, and P,, aresoclosetoresultsin (d)that z,,, f/P; H- H'® areal thesame. Also, y’s
are the same.

= 3831bar {vs. 38.90 bar in part d}

N, _ 800 {(0.0895- 00846)_ (126.2- 134.72)_ (0.290- 0.2894)}
Y2 3831 0.0846 13472 02894

= ﬂ{005792 +006324 - 0.00207 = 2487
3831

0 = B0 {(0.0732- 0.0846)_ (154.6- 134.72)_ (0288- 0.2894)}

2" " 3831 00846 13472 02894
- .5794
N = 02070+ qo251+ 282487 _ 130357

., 2088

f —&—13547 fu. = 7586 b
Ne T p T S, = 758.6 bar

N

2

fo, =-001819; f o =

xOZP x02

In J °2P =09820; fo, = 2357 bar
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(f)  Using the program PR1we find fo, = 2249 barand fy, = 732.3bar .

SUMMARY
N, Jfo,
Lewis-Randall 761.6 bar 246.0 bar
with corresponding states
with Peng-Robinson eos 730.1 220.5
Kay'sRule 762.4 233.1
Prousnitz-Gunn 758.6 235.7
Peng-Robinson e.o.s. directly 732.3 224.9
(program PR1)

7.13

This problem was solved using the program UNIFAC. To present the extent of nonideality, two
measures will be used. One is the infinite dilution activity coefficients, and the other is G®(max) ,
that is, the maximum value of the excess Gibbs free energy. The results appear below for the case of

T=50°C
1 2 a5 g5 G (Imol)
water ethanol 27469  7.2861 829.6
benzene 3040  1867.7  3507.9
toluene 4465 87762  3765.4

ethanol benzene 8.8774 4.5590 1162.0
toluene 8.1422 5.4686 1177.7
benzene toluene 0.9650 0.9582 -26.1

These results were obtained treating toluene as 5 ACH groups+ 1 ACCH, group.
An alternativeis to consider toluene to be 5 ACH groups, 1 AC group and 1 CH, group. We do this

just to demonstrate that there can be a number of possible group assignments, each of which will
result in somewhat different activity coefficients.

1 2 a5 g5 G (Imol)
water toluene 340.1 6162.0 3685.0
ethanol  toluene 9.928 5.966 1269.2
benzene toluene 1.0058 1.0080 4.5

We see, from the results (independent of which group assignment is used for toluene) that the
benzene-toluene mixture, which contains chemically similar species, is virtually an ideal solution.
The water-toluene and water-benzene mixtures consist of very dissimilar species and, therefore, the
mixtures are very nonideal. Ethanol contains a hydrocarbon end and a polar -OH end.
Conseguently, it is ailmost equally compatible (or incompatible) with both water and hydrocarbon
solvents and forms only moderately nonideal mixtures with both this behavior is predicted above.
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7.14 Regular solution theory should not be used with hydrogen-bonded sol vents such as
water and ethanol. However, merely for demonstration, we will use R.S.T. for
these compounds. The “Handbook of Chemistry and Physics’ reports

Ogoy =100 and  dy 0 =99. Also,  V, ,=18 c¢/mol  and
V eion =584 cc/mol .
In regular solution theory

Ry
RTIng; =V f5(d;- d,f* @ g :exp{—zi(dl %) }

RT
SO
¥ ¥
1 2 O 9
Water ethanol 1.000 1.001  dgoy =100
benzene 1.014 1070 d,, =92
toluene 1.028 1181 d, =89
Ethanol  benzene 1.060 1.093
toluene 1.116 1.223
Benzene toluene 1.013 1.015

Since the solubility parameters of all the components are similar, regular solution
theory predicts essentially ideal solution behavior, even though, for example, the
water-aromatic hydrocarbon mixtures are highly nonideal. This is an example of
how bad the regular solution theory predictions can be when used for mixtures for
which it is not appropriate.

This example should serve as awarning about the improper use of thermodynamic
models.

7.15 Start from

Q(T,P,@-QIGM(T,P,E) _ ﬂ'ﬂle
Tew T.

N1[G-G""]_ Tw T [G- G
917 RT R 9T RT

il (G) H . . .
Ingeneral —| = |=- = ; using this aboveyields
g qr\T 2 g y

IGM IGM
1[6-¢6 }:_ Tom [ HIGM]:-L[i} (12-12)

T RT RTPET T RTZ | Tou
Also
1[G-6'" _ Few l(G- GIGM) _ Fem (V— VIGM)
1P| RT RT P — RT ™ —
_FPou( PV PV =L zn- Q143
P \RT  RT pM

Using these equationsin Eqgns. (7.7-9 and 11) gives
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miz.{i)- Tou (8- 1) N(w:mj
x;P P RT N e pow,

P
+i(Z,vI - 1)N{ﬂ ”Mj
£ PNy,

J

= H- HlGM ) ) .
='r(£j- (;TZ—T )yi+(ZMP Dy (7.7-14)
r,M4CM

7

For Kay’srules, Toy =a x1Ic; and Ry =a xF; , wehave

o
: L r NT 1% NT N,Te,
T, & N7,
_-_NT G a Nilc, - T {TC -TCM}
Ba LN N2 T3, J

Since the “combining rule” for R, isthe same as for T, (for Kay’s rule), it
follows that

y 4(K)=- P%{Pc,/ - R}
CM

For the Prausnitz-Gunnrule, T, = T\ (Kay) , soy {(PG) =y {(K) . However

R(é XZc; )(é. xiTC,ij
Ry = : :

é Ve,

l

Thus,

; 1P NP 9
JPG = N| —— = ———— P
Y 5(PG) (ﬂN'JTPN»;» P2, ﬂNj{ om

J

NP 1 {Ré_ NiZC,ié NiTC,i}

Péu T, anva NV,

NP RZC,]é N Tc, RTC,jé. NiZc,; 1 KC,j
- > [o] [ +—5 [ - PCM [] )

Few (@ NNa NV, aNaNVg, anN anNlg,

_ NP { ZC,j + T‘C,/ 1 Zc,j }

- [ [ ST T o
Fom | NiZe;, a NI, N aNVe;

Fem Vem Tem Zem

y 5(PG) = P KKCJ " Lou j (TCJ' Tew j (ZC,]" Zem H

F CM VCM I CM ZCM

Thus
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7.16
T, P
x1 molespurel
P N
Process e N
T, P

x2 molespure2

System: 1 mole of initial mixture
system is closed, isothermal and isobaric
Mass balance: x; +x, =1

au . av .
Energy balancee —=Q- P—+W,
ay 7 0 at s
as o .
Entropy balance: Z:?+Sge”
Thus
. JU . av
Wy=—m:- Q+P—
S dt © dT
. ds .
Q: TE' TSgen
) WS:d_U- T£+TSgen+Pd—V
dt dt dt

a) Since both P and T are constant, we can write

. dU d d .
Wy=—+—(PV)- —(IS)+ TS
St dt( ) dt( ) Toen
d . dG .
:Z(U-'—PV- TS)+TSQEFI:E+ TSgen
. - : . in_ dG
Clearly, for 7, to beaminimum, Sy, =0, and W5 = o

-G, =00, tx,6, - %G, - %G,

Jy7min per moleof 1\
° \initial mixture) ~'

= xl(gl' 51) +x2(gz' 52)
_—fl(T’P) +x RTIn——fZ(T’ )

=xRTIn 2
ST, P,x) ST, P.x)
b) Now for either ideal mixtures or Lewis-Randall mixtures, %:xi.

Therefore,

wmin = RI[- x, Inx, - x,Inx,]® O, so work must be added!
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. ds . . ds . i
[Note: Q= TE_ TSyen; thus Q™ = TE' which occurs when W, =w"".

Following same analysis as above leads to
O™ = T{u[S\(T., P)- S(T. P, x)]+ x[S,(T. P)- 5x(T.P.x)]}

¢) Using the ideal gas or ideal mixture assumption, since isomers can be
expected to form ideal mixtures, and the result above

W = RT[- x,Inx, - x,Inx,] =8314 * 300K " [- 05In05- 05In05]

mol xK
=-8314 J - 300K In05=- 1728.8;
mol xK mol of feed

2
717 NG =il A+C(N1'N22
N1+ N (N1 +N,)

E:M{ :x2[A+C(x1- X2)2]- xlxz[A+C(x1- x2)2]
TN {r e,

(N,- N,) 2N, - Nz)z}
(Ni+N,)* (N +N,)°

= x,(1- xliA +C(x, - xz)z] +x1x2[2C(x1 - xp)- 2C(x, - xz)z]
= x22[A +C(x; - xz)z] +2Cx,x,(x, - X)L~ X, +x,)

= xzz[A +C(x - xz)z] +4Cxx5(x, - x,) = RTIng,

+x,N, [ZC

G, = M{ = xl[A +Cl(x, - x2)2] - xlxz[A +C(x, - xz)z]
ﬂNZ T,P,Ny

B 2(N1' Nz) _ ZC(Nl' N2)2:|
(N, +N,)° (N, +N,)°

=x,(1- xZIA +C(x, - x2)2] - 2x,x,C(x, - x,)[L+ X, - x,]
= xlz[A +C(x, - x2)2] - 4Cxx?(x, - x,) = RTIng,

+x1x2(N1 + N2)|:

or
RTlngl = )C22[A +C(x1- XZ)Z + 4Cx1(xl - x2)]

RTIng, = xlz[A +Cl(x, - x2)2 - ACxy(x, - xz)]
7.18 (a) i) One constant Margules equation.

RTIng, = A(l- x,)°; RT% =-24(1- xy)
1
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T”ngl — - 2A(l' xl)
ﬂxl RT
Ting, _ im 2A4(1- x,)

lim li
,\’1®1 ﬂxl X1®1 RT

or

=0

ii) Two constant Margules equations

RTIng, = a,(1- x)* + b1~ x,)°
fing, 1 2
ﬂ—xl_ﬁ{' 2a,(1- xp)- 30,(1- 1)’} ® Oasx, ® 1
iii) van Laar Equation

a

| =
" @/ )T
Thus

Ting, _ 2a’b’(1- x)
Tr b1 x) +axl]3

® Oasx,® 1

iv) Regular Solution Theory expression
R.S.T. has the same form as the van Laar Equation, so that proof follows
from (iii) above.
(b) Starting from the Gibbs-Duhem Equation, Egn. (7.3-16)

C
0= é x,[—ﬂlng'}
i=1 ﬂxl T,P

OZx,(—T”nglj +x2(—1-“ngzj
Tx Jrp T Jrp

Alternatively, since dx, = - dx, , we have

we obtain

9In 9In
(_9) _ (_92) ")
ﬂxl T,P ﬂxZ T,P
Now lim x; =1 and Iim(mj =0
x® 1 x,® 1 X Jrp

p|imx{mj =0 b |imx2(ﬂ'”92) =0
T,P T,P

n®1 Mx,
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fling,

X2

lim xi(ﬂ'”gfj -0
x,®0 ﬂxi TP

which also implies that ”g]OXZ( ) =0 or, more generally
2 T,P

Thuswe have
Ing, departs, with
"Q}(mj =0Pb zerodope, fromits
R valueof O atx, =1
and
Ing;, riseslessrapidly
lim x; Jing =0b than 1 asx; ® 0. Thus
x,®0 Mx rp X

x, Ing; is bounded!!!
7.19 Let M = molality of salt in solution.
i) ForKCl: z, =1,z =1, M =M, My =M,

1 1
I:Eé M, :5(1' M+1 M)=M

. . =3 z. =-1
i)y For CrCl,: ——{32 M+1" 3M}=6M
M,=M M =3M
z, =3 z. =-2
M,=2M M. =3M
Now, the Debye-Hiickel expressionisIng, = -ajz,z. |«/7
and Equation (7.11-18)

1
iii) For Cry(SOy),: } I :5{32' 2M+4° SM}:15M

-alzz W1 . _ (mol )1/ .
Ing, = ol 0dz,z. |1 ; a=1178 m at 25°C
i) KCl
M Ing, Debye-Hckel Eqgn. (7.11-18)
experiment Ing, =- 1178/ M -1178JM
= Ing, = ————+01M
B 1+ M
0.1 0.770 0.689 0.761
0.2 0.718 0.590 0.709
0.3 0.688 0.525 0.679
0.5 0.649 0.435 0.645
0.6 0.637 0.402 0.635
0.8 0.618 0.349 0.621

1.0 0.604 0.308 0.613
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i) CrCl,

M Ing, Ing, = - 8657V M
0.1 0.331 0.065
0.2 0.298 0.021
0.3 0.294 87 103
0.5 0.314 227103
0.6 0.335 12”103
0.8 0.397 43 104
10 0.481 17° 104

i) Cr,(S0O,),
M Ing, Ing, =- 27374/ M
0.1 0.0458 174° 10°%
0.2 0.0300 482" 10°
0.3 0.0238 308" 1077
0.5 0.0190 392" 10°
0.6 0.0182 618 1010
0.8 0.0185 233" 101t
1.0 0.0208 129° 10 12

Ing, =

In

- 8657V M

_- 27374~ M +
T 1+3873VM

Chapter 7

+18M
1+2449v M

0.256
0.226
0.227

0.262
0.291
0.373
0.492

oM

0.0502
0.0113
0.122
0.508
1.104
5.559
29.44

Thus the Debye-Hiickel and extended Debye-Hiickel (with a fixed value of
the d parameter) theories are not very accurate. However, if the d parameter is
adjusted, much better agreement with experimental data can be achieved. This

isleft to the student to prove.

7.20 (also available as a Mathcad worksheet)

.20
M, :=0001 Gam, :=0967 M :=0005 Gam :=0934
M, =005  Gam :=0347 M, =01 Cram, :=0.790
M, =10 Gam, :=0774 M, =30 Gam, = 1.156
M, =20 Gam, =861 M, =10 Cam, =19.92
M, =140 Gam,:=1047 M =160 Cam =198
i:=0.14 s
tngDH, :=-1.1:-'8-(Mi) '
10 T T
sk |
m[smi] / m[ﬁmi]
— . | —_—
gD H, IgDHL,
_5 b — ot
| |

M, =001  Cam, :=0851
M, :=0.5 Gam, :=0739
M, =50 Gam, =274
M, =120 Cam =463
M, =20 Gam,, 1= 485

] 1.1?8-(M.j”'5
IngDH1, = :
1 " (Mi:lﬂ.j

1n T T
sk _
o _

-5 | |

0 2 4 1]
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0.5

- 1.178-(|v| i) 0.5
+030-M.

- ' -1178-(M.
IngDH2i : +01:M, IngDHSi = ( |)

1+ (Mi)O'S L+ (M)°3

-5 | | .
i 2 4 6 0 2 4
[M]-:lu.j [MJDS
0.5
1 179 (Y0 _-1.1?8-(M_)
IngDH4, = () 033 M IngDH3, 1= — —— + 037 M
1y I:Mi)n.s + ( )
10 | | 10 | T
hl[l}am’:l | | ﬁm}j | :_/ |
mgbHS, : | _‘I_‘E_If'mi . ]
5 ! ! -3 : '
1] 2 4 G 0 2 l[ ]:I':'j +
j
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7.21 The Gibbs-Duhem equation, written in terms of molalities and using the mean
ionic activity coefficient isasfollows:

Msdgs + MEdEE =0 where Sis solvent and E is electrolyte
but

Ge =Gy + RTIn[gh M7+ M"-)

Gs = G4+ RTIn(xgs)
So that
MgdG g+ MedGe =0

Mgd \n(xgs)+ MedIn(gi M+ M™ ) =0
Med In(xQs)+ MedIn(dh M) = 0= Mgd In(xsQs) + Merd In(g., M., )

Thisisthe Gibbs-Duhem equation for the solute-electrolyte system.

For HCI
M, =M, n =1
M. =My n =1

2_ 1 _ g2
M, = My *Myiq) = My

1000
Mg =——=5556
18

_ Mg _ 5556
Ms+Mg 5556+ Mg

Xs

M Inggxg + Mo (1+1dIn(g, M) =0

dInggrg = - 2Mygd InQ: Myq)
My 0

-2M,d In(g, M,
d Ingsxs = HCI555(6_ Ht)

-2M
DInggxg = WHGCID”‘(QJ;MHG)

This can now be used as a basis br numerical integration with the activity
coefficient expression from Illustration 7.11-1. Or proceeding further,
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-2Mygd InQ: My )

d Inggxg =
My 0
dIngs+d Inxg=- 2MpdIn(g.) | -2Mygd I(Myq)
5556 5556
dings+d| 5556 . 2MHC,dIn(gi)+-2MHc,dIn(MHC|)
5556 + Mg 5556 5556

From Illustration 7.11-1

- 1178 Myqr |, 021,

1+ My
dln(gi):(_ 1 1178 % 1178 a3l
20 My 1+ My @+ M)

HCI

In(g,) =

dM
5556+ My,
_ 2Mue (1 178 1 s 03 M - 2_ i,
5556 \ 2 Mpq 1+ Myg 2 (144 Myq) 5556
dIngs
_ 1 UMy,  1U78M,,  06M,y 2
= + Myci
5556+ M, 5556X1+4M,y) 5556X1+4/M,)? 5556 5556

dlIngg-

This can only be solved by numerical integration. (See MATHCAD filefor this
problem).

ggma (M) 05

4518510 °, 0 I [

0 M 30

7.22 (@) The two-constant Redlich-Kister expansion, which leads to the two-constant
Margules equationis

G = x5 {A+B(x,- x,)}
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Thus

ex

S 4By 1) 1)
X1X2

Which isalinear function of x.
The form of the Wohl Equation which |eads to the van Laar Equation is

— 2RTa15191%595

G ex
o X1q1* X2q>
which can be rearranged to

xpp _ xg+ (1= x)g
G 2RTa12q19>

(2)

which is aso a linear function of x. Equations (1) and (2) provide the
justification for the procedure.

(b) Thefigure below isthe required plot. Clearly, neither equation is an accurate
fit of the data. [The 2-constant Wohl (or van Laar) equation plot of the data,
i.e., the form of Eq. (2), is closest to being linear, and therefore should be the
better of the two-constant fits of the data. The data can, however, be fit quite
well with a 3-constant Redlich-Kister expansion—See Illustration 8.1-4]

3 -4 1000
I xic } @ = AT paTa L
=== Liae taru I"T ‘ --"',u
ﬁ,_ L . L
a | ) AET pPaiATS - d 1ese
Py T £
L e G [reXe
E s
% ’
gﬂ e~ s a®
7 F - . s
e -
Mfﬁ‘ ~ -\ PR
4 - Vam Laav A" o
&, u
o Two - ConaTanT ean
sao | Herguiex
o 2 4 -6 5 g
¥ & P4 - % & £
a8
Xg

7.23 Expression for G* in this problem is the same as that of Eq. (7.6-6). If we
recognize that 4 and B in Eq. (7.6-6) is replaced by ART and BRT here. Also,
since (1- 2x,) = (xcy, - Xar) , SPecies 1 is methane and species 2 is argon.
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(@  Therefore

RTIng, = (ART +3BRT)x; - 4BRTx;

and
RTIng, = (ART - 3BRT)x; +4BRTx
At x, =x, =05
Ing, = %(A +B)= %(0.2944+0.0118) = 00766; gy, =10796

1 1
Ing, = Z(A - B)= 2(0.2944- 0.0118) = 00706 ; g,, = 10732

(b) G*=RTx,,(1- x, {4 +B(1- 2x,,)} at x,, =05

ART G¥ =05) AT
G¥(xp, =05) = and = (ar =05) _ AT
A

R 4
Thus
QEX(XA}; =09 7 =100K) =100 2386 _g o731k
G 0nr =05) (4 2110 K) = 1127 222 - soanak
G =09 oy - 115.74K) = 11574 2289 - g1134k

Now replacing differentials with finite differences

ex ex ex ex
T DT L% G o G
R R RT RT

109 8.2731 0.0759
3 -0.0299 -0.0023
112 8.2432 0.0736
3.74 -0.1298 —-0.0035
115.74 8.1134 0.0701
Next using

RT? RT?

WoG/rT)| _-oi _ [ADG™/RT)| _-p* _-oH,,
a7 |, RT? mw], -

D(G*/RT), = _, _
Thus _T (- RT?)=DH,,, where T = average temperature over

Dr.
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b DH,. @ 8314 (112 K)’ %{ 0'2023+ ‘03;3335}: 888 J/mol

(c) From (ﬂ_Q) =-§ weobtain l[— ]
M), 7R ),

ex
=- Q— Therefore,
R

RD(G™/ R 1(-00299 -012
5 _ RAGTIR) oy Ymol K~ —{ 00299 , -0, 98}
DT 2 3 3

= 02213 J/mol K

Also
DS iy = - R x,Inx, + % =-8314" 2” (05In05)+ 0045

=5984 J/mol K
7.24 Westart with
i1 5= = 15 RT
ndo= L mevyp= L (1) KT
x;P  RT RT3\ N, )r p. P
Eqn. (7.2-3a) -

Now

1 P
dP==d(PV)- —dV =—
y r— r

Also, by triple product rule

) ) ) -
T[N‘ T,P.N, ﬂK T,N; ﬂP TV ,Nj;

1

5 V:(ﬂ_V) :[ﬂj (ﬂj
l 1w, P,T,Nj, LR\ TV,N j; e T.N;
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|ni:i _[ﬂ (ﬂ_V dP- J'i[idz_ ﬁdV}
x,P RT TN, TN 5 qQpP N, Pl Z [

1 L (9qpP Lo Z1
=-— | (—ﬂ ) Ndv+ [ —dv- [ Zdz
RTV:¥ ﬂNi TJV,N p; V= K p:oZ
zZ=1
v
:ij‘ RT N(_ﬂp) dv - In 4
RT L | ¥ TN oy v z=1
1 % |RT P
=— | —N(ﬂ—) dv - InZ
RT 4| V TNy,
7.25
G*  § {o |
=—=-a xIna xL;
RT 2, Y
r O
G NG je a_-ijl]
=—=—=-Qq N,In -
RT  RT ot N
Glex q (Gexj
RT  IN\RT ),
o o
axl; anN.L;
| AN N e S TN
N i aNL;| N N%  dN,

A x/L
—ex c A Xk

G § § xlL.
Ing, =—L :-In{é_xJLi]}-é_oxl 148 —L

RT =1 ma by = axly
J J
C C
L,
=1- Ir{é_ le_,.]}- Ll
=1 =1d XLy

J

Which isthe answer to part b... To obtain the result of part a, we restrict i and j to
thevalues 1 and 2, and notethat L, =1. Thus
X1 xol

|nglzl' |F[x1+x2L12]- -
Xtk Xl tx;

but

) X _Mtnlp-x _ xlep

xp +xoL 1 X+ x5l g X+ x5l
so that

Ly, } Loy }

Inglz-lr’{x1+x2L12]+x2[ oL L4
XpTXob1p Xl o™X
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7.26 All the calculations for this problem were done using the program VLMU with the
binary interaction parameter for CO, - nC, equal to 0.13 as given in Table 7.4-1.

Theresults are only given in graphical form here.
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7.27
G = axpry(x; - xy)
v = ANiNo(N1 - N) _ [Nl Ny - NlNé}

o (N +N,)? (Ny+ N,)?
ING™ {21\11N2 NZ  2NPN,- NlNZZ)}
3
TN |y, rp (N +Np)° (N1 +N5)

= A[lexz - x2 - 2xfx2 + 2x1x22]

= sz[Zx - X, - 22+ lexz] = Ax,[2x,(1- x;) - x, + 2x;x,]
= Axy[2x1x, - xp +2x0x,] = Ax2[4x1 1]= sz (4- 4x,- 1)
= Ax3(3- 4x,) =RTIng,

TNG®* _A{le- 2N, N, 2(N12N2 - NlNZZ)}
- 2 3
TNz Ay, rp (N1 + N,) (N1+N,)

= A[xf - 2x1% - foxz + 2x1x22]
= Axl[xl- 2x, - 2x;%, +2x§] = Ax]le+ 2x,(x, - 1) - 2x1x2]
= Axy[x; - 2xx, - 2x0x,]= Axf[l- 4x,] = Axlz[l- 41- x,)]
= Ax}(-3+4x;) = RTIng,
(Thisisjust a check since by symmetry of original equation 1« 2 gives minus
sign. Therefore 1« 2 on Ing must give minus sign!)
Does this expression satisfy the Gibbs-Duhem Equation?
xldlngl +x, ding; _ 0or _xlallng1 +x, ding, _ 0
dx; dx, X, dxy

ding, _ 4 d 2(-3+ 4xl)]__i( 3xf+4xf)
dxl RTd dxl

A
A
dzzgl - RT_d—xz[xzz(S- 4x2)] _R _dx2 (3)62 4x2)

Gibbs-Duhem Equation
A
'xlﬁ(exZ 12)C2)+XZ RT ( 6xl+12x1)

A 2 2
=—- 6x,x; +12x0x5 - Bx,x +12x1x
RT[ 2X1 1X2 2X1 12]

4 xlxz( 12x,x, +12x1x2 +12x2x2) 2 = xpx5(x, +x,- 1)

124
= —xfxzz(O) =0

b Satisfies Gibbs-Duhem Equation
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7.28 To check the utility of these models we will use the Gibbs-Duhem equation in the

form
() ofom)
T Jrp T Jrp
For the model
Ing; = Ax2 = A(1- x,)°
Ing, = Bx?
Gives

(T“nglj x (T”ngzj :O:x1>QXA(1' Xl)(‘l)"'sz)Qxl
MTx Jrp T Jrp

= leXZ(B‘ A) = 0

The only way this equation can be satisfied isif 4= B ; if not the Gibbs-Duhem
equationisviolated.

For themodel Ing, = 4x; ; Ing, = Ax/

('ﬂlngl] +x ('”'“gzj = xpnxA(L- x;)" M- D)+ x, xdxy =0
T Jrp T Jrp

= nAxlxz[- x5 24Xy 2] =0

The only way the Gibbs-Duhem equation can be satisfied for all values of x; and
x, (with x;, +x, =1)isif n=2 inwhich casethe term in brackets is always zero.
For themodel Ing, = Ax; ; Ing, = Bx{ . Wehave

(T“nglj +x (ﬂlngzj :x1><n><A(1- xl)n—l(_ l)+x2><n><Bxf'1:0
Txr Jrp T Jrp

= nxlxz[- Axy %+ Bxf_z] =0

For this equation to be satisfied, the term in the brackets must be zero. This can
onlybeinn=2and 4=8B.
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7.29 Wewill write the Flory-Huggins expression as

ex

Q :C(xl+mx2)flf2:M
RT ros x, +mx,
G* f f .
Z 1 =NIn—t+N,In-2 withf,=—2 _ §,=_""2
RT | oo X, X, x; +mx, x; +mx,
G| _ NG| _ N N,m
RT|, RT |_ Ny +mN,
M€ (G¥ CN.m CN,N,m
| = 2 - 12 2:C(f2'flf2):d2(l'f1):cr§
N\ RT| ) Ny+mN, (N,+mN,)
Similarly
ex
; (G | ] S T = an(f - £ ) =
N, \ RT| ) Ny+mN, Ny+mN,
ex
s :Nllnh+N2Inf—2
RT comb X1 Xo
ex
L (G jzlnf—1+Nl Ll Inf—1+N2 1 Inf—2
ﬂNl RT comb X1 ﬂNl X1 T[N]_ X2
fi_ 1 N
Xy Xy tmx, Np+mN,
and
Tl NarmNoy 2 Ny Tt ey
TN, x N Ni+mN, (N,+mN,) TNV, x
fo_. m _ Nm
Xy, Xxytmx, Ny{+mN,
i“’]f_z: i_ 1 : ]\72 1 |nf_2:x2_h
TN, x5 Nm N;+mN, 9TV, x, m
Therefore
Tl' GeX 1‘[ GEX
o= )
ﬂNl RT comb ﬂNl RT res
f f
=0T (1 £2)+(xp- 2+ of ]
X m
f f f 1
=In—L+1-f, - —2+xf§:|n—1+f2( - —)+ cf 5
X m X m

Also
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L G—{ =T {Nllnf—1+N2Inf—2}
TN\ RT |y ) TIN2 Xy X

Ing, :lnf_2+(x1' mf 1)+ (xy- f,)+cf ?
X2
fs

Chapter 7

=In—=+f - mf1+xfi :Inf—2+(1- m)f | + Cfi

X2 X2

=inf2. (m- 2f + of 2
X2

7.30 (also available asaMathcad worksheet)

7.30
i:=0,1.10 x =01

fma, :=x|-e(p[1.06-(1— x) 2]-1.126

fm :=(1- x) -e<p[1.06-(xl) 2] 0847

0.266
0.444
0.568
0.66
0.734
0.8
0.867
094
1024
1126

fma =

Hma :=1.126-exp( 1.06) Hma = 3.25
Hm:=0.847-exp(1.06) Hm= 2445
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L1z 17 T T T T
. _
fita,
1
fin,
1
05 —
0. g | | | |
] 0.2 04 0.6 0s 1
n X

7.31 Show Ao(P ® ¥):c{"m “ax b—f

v
® élg'élg®¥ :'IPdK

(V¥ ® ¥ isconvenient since we have ideal gasand ideal gas mixtures)

sat - p=14
LA

PR
RT a
= - - pure component
V-b V{+b)+b( - b)
A [t
A A|V®¥ - dK
JV-b SV +b)+b - b)
= - RT[IN(V - b)- |n¥]+j—dV

+2bY - b*
Need to integrate

j +2bV - b? L= Z@I{K+(1+Q2]

From Problem 4.2 we have that

a r+
b 4|, -4 =-RTlIn(V - b) - In¥ ]+ In
—|K JK®¥ [ (_ ) ] ZJEb [K
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So for pure component:

o [V+bf1-2)
A, - A =-RT{In(V - b,)- In¥ } + ——1
—llﬁ —'|K®¥ { (_ 1) } 2\/5[), F{K"'b,-(l""‘/E)J

By exact analogy for mixture
a. . Kmix +bmi><(1' "/E)

A|, - 4 =- RT{In(V brix) - IN¥ 1+ —2*—|n

_|K JZ®¥ { (—m|x m ) } 2"/517- (Kmix"'bmix(l"”‘/E)

mix

Now when V ® ¥ getideal gasor ideal gas mixture:

Al - Al® = - RT{INW - b)- In¥} +—%| L1 2)
- = - - - +
-4 e RSPV v+ b1+ +2)

élﬁ - éllGM = RT{ln( mix " mlx) In¥}
+ @ mix |I’1 —mix +bm'x( JE)
2/2b, Vo +bmix(l+«/§)
and by definition A% =4- A™ (e, A=A™+4%) so; have 4-

mix
élGM so

A :(4_ AIGM)_ A™ + 4'M gng

élGM:éxﬁl +RTax|n éIM:éx.A.+RTéxi|nx[
A% =4- 4'M- éxA RTaxInx+axA S+ RTQ x Inx
éex :(ﬁ' AIGM)' é xi(ﬁi' ﬁ,lG)

thisiswhy we found DA for pure component

14
So putting inresultsfor 4|, - 4|, =- JPdV for pure i and mixture.
¥

In¥]+ Amix Ir{zmix"'bmix(l' ’\/E)]

2[2b V i+ b (1+4/2)

mi

cofene)

2V2n, v, +5(1+42)
Need to collect someterms.

éex =- RT|:|n(Kmix - bmix) - In¥ - é- xi[ln(Ki B bl) ) |n¥]i|

i

4+ %mix - V mix m|x( '\/E) L Zi+bi(l"‘/5)
22b,i, V omix + b (1+4/2) ZJ_b v, +h(1+2)

Now let P® ¥ whichisthesameasV, ® b and V., ® by

N o £ B £

A% =- RT[Inw

Z_mix ~ mix)'
mix

-a xl{[- RTINY, - b))+ RTIn¥]+

= -RT [ (bpix = b )0 ¥ = @ x;0in (b, - b;) - In ¥)
R )
2 me‘x 2+«/_)%1,X 2/3, (2 +“/;)A

Now . and . cancel In0- § xl.InO—O
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and andﬁ cancel - IN¥ +§ x,In¥ =0. i.e, -¥ +3% =0
So
S = 1 amiX| (2 ‘/_j 2 L“—(ﬂj
“rR 22 by, (2442 N od2, 2442
- 2-2 1 |:amix_°x'ﬂ:|
2+'\E Xm bmix a Ibi

A% =-06232 Lmix - § .—}
_£®R¥ _bm|x b

2-2) 1 \
whereln ——= |—==-0.6232=C forP-R
r{z+«/§jz«/§

Now for van der Waals b same process though solution is briefer.
P b A Ay = [ ar [l ay
17, - - ¥y-p — ¥p?
Pure component
Aly- A'° =-RTIn(, - b)+ RTIn¥ - %

and for the mixture

Aly- A =~ RTINW,, - by) +RTIn¥ - ;—M
M

and 4% ° A- A™ =(4- 4'M)=§ x,(4,- 4'®)~ sameasabove

Putting inresultsfor A4|, - 4|, =- | PdV for purei and for the mixture.

K;JV

A% =- ROV, - b,,)- RTIn¥]- ZA

—M
o a.
-a x,{-RT[In(K,. - b;)- RTIn¥]- V—}
=- RI[IN(V - by, ) + & x,In(V, - b)+In¥ - § x,In¥]- 2L+ § x I‘/’_
—M —i
Teke limit P® ¥,V ® b;V,, ® by, .
First 4 terms cancel!

ex — aM o ai
Aypw =- ol a xi?
P® ¥ M ;

7.32 Starting from
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or

aM_Qex+° 9o — _Qu
——==+ax—° DRT and b, =

by C i ; DRT

Substituting, we then obtain

w9 - gtha =g D
DRT RT RT 1- D
and

a D 0
b =M 4 = + ==
M RT 0 Ql-D 0 1- D

7.33 Equation (7.10-11) is easily derived, is generic, and applies to any mixing rule.
Thiswill be used as the starting point. With the Wong-Sandler mixing rule
Note that derivatives must be taken with respect to mole numbers.

Therefore

a..
0=44a xﬂ?,—(b,;,- - R—”Tj needsto be in the form of
i
N’0=8 & NV,[b, - L

.UV RT
Similarly

wc— - needsto be in theform of
bRT C RT

1
ND=Q N, JNG
. 'bRT C'RT

From this starting point, egns. (7.10-12 and 13) are easily derived.

o
D=a x
i

a;

7.34 Starting from egn. (7.2-13)

- 1 V=ZRTIP RT P
inte =L j RT -y 22 dv - InZ
ka RT V=¥ K ﬂNk T,V,Nj,k

The Soave-Redlich-Kwong equation of stateis
RT  a(T) _ NRT  NZ2a(T)
“V-b V(W +b) V-Nb V(+Nb)
with
Nb=@ Np, and N°a=@§ & N,N,a;
i o
Now taking the derivative, we obtain

o
2 xX.d.
N( ‘ﬂp] __RT_, _RTW "’} Tk b,
TV,Njy

= +
V-b (V-b)Y? VE+b) V¥ +b)?
Zéxiaik

N, )

. abk
i - + —1L -
V. V-b -b? VE+b) VY +b)

—-N
4

RT (ﬂpj _RT RT  RTh
Vi TV Ny
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and then

- V=ZRTIP
inde -1 | RT N( ﬂp) dv -InZ
Xk RT V=¥ 4 iV, TV,Npg
25. Xi ik
ZRT| P RTb, . ab, ZRT| P
n + +1— -—In——7——
_1 ZRTIP - b ZRTIP - b b b* | ZRTIP +b | Inz
RT

) Clbk
BZRTIP + b)

Now using B=Pb/RT and A = Pa/(RT)* we obtain

— Zé_x[A[-k
Inf":ln Z s B A) B2 A B,y
x P Z-B Z-B B A B Z+B BZ+B
However, the Soave-Redlich-Kwong equation of state can be rewritten as
follows
- RT __a
V-b V(I +b)
PK_Z_ |4 a _ Z A
T V-b RT(V+b) Z-B Z+B
B A
Z-1=——--
Z-B Z+B

Using this expression in the 2" and 4™ terms on the right-hand side of the
fugacity expression yields the desired result

o
" 2Q x; 4y

[ B |ni+ﬂ(z-1)
x; P Z- B B A B Z+B B

Notethat in this derivation, we have used the following

Jx(j:c-b) :%'”(xibj
J‘x(;ifxb)zzbizlr(x-lx-b)k b(x1+b)

dx
j(x_ 5 =In(x - b)

7.35 See Mathcad worksheet.
aand b) See Mathcad file 7-35.MCD and figures contained there

c) Clearly
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Ax,RT
H™ = GRT(xy + m)f ff 5 = 2 (xy 4 mg) —2 "2
- (x; +mxy) (x;+mx;,)
_ szleRm
X1+ mx,
G* f f, Ax
= =x In—L+x, In—2+22(x, + mx, )f f
RT 1 xl 2 Xz T(l 5
1 T[NGeX f 1 ﬂ(Nﬂ(xl"'mxz)flej
Inglz—(——J :In—1+(l- —jfz + T
RT ﬂNl T,P,N, X1 m ﬂNl
T.P.N,
sz
ﬂ(N—T (x1+mx2)f1f2j _él Nao( X1 + mx, ) xmx, A4 1 |: NyNmN, :|
W™, TNy (xy +mx, ) T Ny L(Ny+mNp Ny + Ny)
T.PN,
_ A{ N,mN, ) N,NymN, ] N,NymN, }
T (Ny+mN,)(Ny+N,) (N1+mN2)2(N1+N2) (N1+mN2)(N1+N2)2
A Axf Axf
:7[x2f2' xof of - xpef o]= 72, 2 [1-fi-x]= 72, 2[fz' x]
f 1 Axf
|n91:|n_l+[1‘ _jfz"' =2 2f 5 - x]
X1 m T
Nﬂ(x +mx, )f f
_ 1 ﬂNQex _ f2 T 1 2012
Ing, =—| — =In—=+(1- m)f, +
RT ﬂNZ T PN X9 ﬂNZ
T,P,N,
Ax,
ﬂ(N T (xl+mx2)f1f2) _ﬁ T | Ny (o +mxy)xmx, _i Al { szNlm }
N, T N, (x1+mx2)2 TN, [ (Ny+mN,)(Ny + Ny)
T,P,Ny
A { 2N,mN, ] N2Nm? ] N2 Nym }
TL(Ny+mNp)(Ny+Np) o (Ny+mNp)2(Ny+ Np) - (Np+mNp)(Ny+ NoY
A Ax,f Axf
:7[2x1f2- xif 5 - xlx2f2]: ; 2[2' fo-x]= ; 2[f1+x]]

Ing, =In 2+ (1 myf ,+ 222pp 40
X2 T

d) and e) Seefiguresin Mathcad worksheet 7-35.mcd.
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= 00004

WIS = 1000 YVTi=1 _Wps

0= —

A

%Y J+[;] = ".J VP

- L '*hl‘[(l - H phiPs + x-[:plailaxI]?]

! VT +{1 = .1J NS

plii'T =

Graph of activity coefficients wersus male fraction

™ “1

Graph of aciivity coefficients versus log of the
fraction of tolusns

plil's

5

Chapter 7

=208 PR

:I_F-hilI

, 2
VRS |.'1:.-:|:| l—mi r||1|]|+lr |:|'\-I||I J]

! AV +[I—-c,}-*-l‘-\

Graph of activity coefficients versus volume frachon of
toduene,

T
wvolume 4

P

boera g I;|J|;|J|..|'L| o .'\gJ

wil
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Graph of activity coeflcents versus weght
fraction of toluene.

Graph of activity coeflicients versus kg of the welght
fraction of ioluene.

1T

W

wi|
1
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‘Wirth new axdicity coefficient model
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8.1-1 f =f'P xP'®y, =y,P,sincethepressureislow enough that fugacity coefficient corrections

will be small.
(8) Fortheideal solution, g, = 1for all species; 1=EB, 2=nH; y. =x P'*®/P . Thus,

v, = 04723" 07569/0.4537 = 07879

and

v, = 05277 00773/0.4537 = 00899;

a y; =08778 which indicates that theideal solution assumptionisinvalid!
(b) Regular solution behavior:

v,=75cm® v, =148cm®
d, =8.9(cal /cc)]/ 2 d,= 7.4(cal/cc)1/2

fi=x, [(xV, +xV,) =04723" 79(04723" 75+ 05277  148) = 0312
f, = 0688

In _Klfg[dl'dzl_oj_%. = 1142 Similarl =1055 Theref
0= - = ;9= . imilarly g, = : erefore,

»,=1142° 07879=08998; y, =1055" 00899 = 00948; and a y, =09946 which is much

closer to unity.
(c) UNIFAC: using the program UNIFAC we have g,=1173 and g, =1118;

b y =1173" 07879=09242; y, =1118" 00899 = 01005; é, y; =10247 which istoo high.
(d) First the expression g, = y,.P/xl.Pl"ap and the given vapor-liquid equilibrium data will be used
to compute the species activity coefficientsin the given solution:

_ 08152° 03197

97 02843 07569
Using egns. (7.5-10) we obtain b = 03055 and a = 06747. Thus, using the van Laar eqgn.

=1211; similarly, g, =1069

06747 0.3055

dIng, =
% [1+0.4528x,/x,

Ing, =
Y [1+22085x,/x, ]

at x, =04723, g,=1079, g, =1144, 50 that y,= 08504, y, =01029 and & y; = 0953.

Since none of the models yields a y; =10, none of the solution models is completely correct.
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Since the regular solution model comes closest to meeting this criteria, it presumably leads to
the best predictions—however, thisis merely a hypothesis.

Thevan Laar equation will be used to fit the data given. Starting from

1= H,0

9, =P, xil:i,vap
/ 2=FURF

we obtain, at 10 mole % water, g, =5826 and g, =1266 . Using egn. (7.5-10) we get
a =85648 and b=07901. Thus,

85648 0.7901

Ing, = and Ing, =
Y (1+10841x, /x,)? % (1+00922:x,/x,)°

which we will assumeisvalid at all temperatures.

At the new temperature we have xg,F'* =y P or x,g,” 10352=y,” 1013 and
x,g, 01193= y,” 1013 which must be solved together with the activity coefficient expressions
above, and the criteriathat x, +x, =1 and y, +y, =1. Solution procedure | used wasto guess a
valueof x;,compute x, from x, =1- x;, compute g, and g, from the expression above, y,
from y, = x,.gl.B"a”/P for i =1 and 2, and then check to seeif & j; =1. Proceeding thisway,
the following results were obtained

calculated measured

X 0075 0.20
X, 0925 080
n 0867 089
Y, 0129 011

Note & y; = 0.996 which is not quite equal to 1. The discrepancy between the calculated and
experimental results indicates the dangers of using approximate solution models.

The desired result may be proved a number of different ways.

Simplest proof: We have show that at an azeotropic point (Ej =0 using thetriple product rule
T

1
intheform

(3.,

yields

(ﬂ_Pj :_(ﬂj (1) -0
T[x]_ T ﬂx]_ P ﬂT X1

1P P

vap
Since there is no reason to believe (—T) =0 {in fact, (_Tj = PDL}
X1 X1

RT?
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Wethen have (EJ =0.
P/ p

Alternate proof: P = xg,B'® +x,9,P,'* = RT/V for anideal gasphase. Thus

T |4 In InPp'®
(ﬂ_) == {glplvap + xlglplvap[—ﬂ G, JInf— } - g,R*
P

T[xl R ﬂxl ﬂxl
vap
+ngszvap[ﬂ Ing, , Mn% } =0
T, Ty P

Now:

vap
i) (WTPlJ =0 Since the pure component vapor pressure does not depend on the mixture
1 P

composition at fixed P and T since (E) =0
1/p
ii) Gibbs-Duhem egn. is

iex(ﬂ) _Vex(mj +x[1.“nglj +x2(ﬂ|ngzj -0
T ﬂxl P - ﬂxl P ! ﬂxl P ﬂxl P

®0 ®0

=) (glplvap - 92132V3p)|:1+ xl(mj :| =0
T Jp

1

or g,B'*® =g,B/*®. Fromhereonitisthe same argument asin the text.
Alternative to proof above: start with P = x,g, B'® +x,9,F5'®

vap
(Bj 0 0=91ﬂvap+x1911’1vap{(ﬂlnglj +[ﬂ|npl ] }-gzpzvap
o ) p for Jp T Jp

+x,0, P Ting | Tin ™
ix, Jp I, ),

Now using an argument similar to (i) above, and also using (ii), gives g,'® =g,

8.1-4  Ingenera, wehave xg,P'"® =y P and § x,g;R'® = P. Also, from the experimental data, we

know PY¥ =02321 bar and F;* =0.2939 bar.

. 02321
(@) ldea solution: xP*®=yP and JxP*®=P.  Thus yET:"ETT and

P =xg;" 02321+ x =02939 or P=02321- 00617x;. Consequently x-y and P-x
diagrams are given on following page.
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(©
(d)

(b)  Regular solution model:
d v

ethanol 125 584
benzene 9.2 890

Ethanol solubility parameters at 25°C was computed using DH{ ¥ =9674 cal/mol
P
DUEY = DHE? - RT and Ogr = (DQSP/ZIET)
2
14

de; - dg]
er[Cer - d] =10059f 3 and Ingg =1532%K 2. These activity coefficient
RT

expressions are used with the general equations above to obtain the solution. The results are
given below.
The program UNIFAC was used to obtain the predictions shown in the figures below.

First we evaluate the activity coefficients at the given data point using ¢, = yl.P/xi}l?"ap to
obtain g =12244 and g; =20166. Next using egns. (7.5-10) we obtain a = 20271 and
b=14993. {Thisisto be compared with a =195 and b=116 in Table 7.5-1]. Thus we
obtain

Thus Inggr =

g = exp{ 20271 }
o [1+13520xg7/(1- xer )P
and

g - e 14993
° [1+0.7396(1- xer)/xer]’

Using these expressions in the general equations we obtain the results plotted below.

0T

pyo

0.337

Aar

0247

aw

@ = Eip'= DaTed
WA FAC

@ = gxp'L PATA

.

Yis e

ho
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8.1-5 (a)

(b)

Using the vapor pressure data (Plotting InP'® vs 1/T), | find that at 7 =1054°C,

B¥ »06665 bar and P*»08793 bar. Thus g, =(1013/0.6665)=1520 and
O =1013/08793=1152 at the azeotropic composition of x; =0.627 . Next, using eqns. (7.5-
10) and treating toluene as species 1, | find a = 1075 and b=1029 . Thus,

1075 1029

Ing; = and Ing, ¢ =-————.
[1+09572¢]

) [1+1045 2]

These expressions have been used to obtain the results plotted below.

fE=f"P xg,B®=y.P. Thus, g, = xg,P"*®/P and § y, =1. Procedure | used was, for
each value of x;,to

i)  Guessan equilibrium temperature 7'

ii) Compute y; and y, ., and check to seeif a y =1

iii) If not, guess anew value of 7 and repeat the calculation
A simpler procedure isto use Mathcad or another computer algebra program

Results Experiment van Laar I deal
P 025 050 075 025 050 075 025 050 0.75
yr 043 057 069 043 057 070 030 056 0.80

T(°C) 1045 100.8 100.6 107.5 1058 1058 1165 114 111

Ideal solution results were obtained in a similar matter, except that all activity coefficients were
set equal to unity.

i:=0,1. 20 X =005

Write van Laar model this way to avoid division by zero.

o 1.075.(1_ XJZ o 1.029-(XI)2
gem(D) = e [(1_ x) + 1.045-x]2 el =e [x+0.957-(1— x)]z
i [ I I
3
15
ﬂ(i)- i | In(gamt (i)
gm_m(l) In(gamec(i))
05 7]
1 I I
0 05 1 °
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P, :=x-gamt (i)-0.8793+ (1- x)-gamac(i) 0,665 y. =X gamt (i) 0-8P793
i
Pid, :=X 08793+ (1- x)-0.6665 e
yid. 1=x ——
"' Ad
1
Yi Pi
yid, o b Pid,
0 I 06 '
0 05 1 0 05 1
XI

8.1-6 (a) We start with egn. (6.2-12b): é x,dG + SdT- VdP=0. And note that at constant temperature

8dT =0 and
dG = RTdInf, = RTdIn(xg.f,(T,P)),

so that
RTQ xdInx, +RTQ xdIng, + RTQ x,d\nf, - VdP=0

However, for the pure fluid fugacity, we have, from eqn. (7.2-8a)

RTdInf; =dG, =V dP

Thus
RTQ xdInx +RTQ xdIng, +(§_ xV,-V)dP=0
Also
o o o o —eX
axV,-r=axy,-axV,=-axVi
=-V®b RTQ xdIn(xg,)- V¥dP=0
Now assuming

i) Ideal gas-phasebehavior: xg,P'® =P or xg, =P/ P"® and
ii) That PV®/RT <<1 weobtain
9 9 Py
& xdIn(xg) = 8 xdn(yP/B"®) = RKT dInP

or

& xdIny, +& xdInP- & xdInP*® = (PY*/RT)dIn P
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Now noting that § xd InB'® =0, since P'® is a function of temperature only and

ex

& xdInP=dInP(& x)=dInP, yields § xdIny, :(P;/—T

X X pre
Ly + d ] y,=|——-1dInP»-dInP
N Y2 N )2 RT

- 1JdInP or

Since »ty, =1, dy, = -dy, . Also »=1-y, and x,=1- x,
X1 (1- x) - x(1- yy)- »@- xy) 4N so
n o l-n n(l- ») (1= )

(J1- %) dyn _dInP

J’1(1' J’1) dx, B dxy

Toobtainthe x - y diagram, | used the equation above in a finite difference form. Using
the argument ; to denote the ith data point, the equation above becomes

V(i) - x(0)
(@)L~ 31())
»(?) isunknown, however, PB(i), P(i- 1), x,(f) are known. Also y,(1) is either O or 1

depending on which end of the data one starts with. In fact, | started at both ends, in two
separate calculations, to check the results. | solved this problem using the equation above

rewritten as

>{yl() »( - J.)]_InP(z) InP(i - 1)

._ BxAB?-4C

yl(Z)—f

where

- x@On@-9
1+DInP

_x@+y@-Y+DInp
1+ DInP

dC

and averaged the results from starting at the x; =0 and x; =1 ends.
Once x; and y,;, were known, the activity coefficients were calculated from

g,= ylP/lel"ap and g, = sz/szz"ap . Results are given below.

b. CCl, + n-Heptane System
o .
L
i
F
af # 21
Fa
#
e
- &
A £ >
F
i
1 A
&y P o i
&
s = exprmntl Feery T
. x-y data 2
o1 o
r
Koty = X eady
e 5z o [ 2.8 o ot o4 o6 5.8 i.a
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C. Ethylene bromide + 1-nitropentane System
e 2.8
#,
-
*
a8 #
#
S
o,
Ok
3
i s ‘r Azeotrope
fa
o =
'
L
o & = exprmntl
.1 i x-y data
& S
&
& # T: £8
@ ez o 2k FE3 -0

8.1-7 A simpler solution using Mathcad is avail able as a Mathcad worksheet.
(@) At thebubble point we have

v, = x,B'"®/P where P=5 bar

xgr = 005; xp =010, xyg =040 and x,,, = 045. Procedure used was

i) GuessT,

i) Compute each y,, and the sum é_ y.o If 5_ y; =1, guessed T is correct; if é ¥ >1,
guessed T'istoo high; if é v, <1, guessed T is too low. If é y; 1 1, we correct T and
recalculate.  Solution: T'=29366 K (bubble point) y. =04167, y,=01730,
Yng = 01601 and y,,, =0.2502.

(b) Thedew point calculation issimilar. Here, yr =005, y, =010, y\g =040 and y,, =045.
P=5 bar, and T and the x;'s are the unknowns. Thus, here we guess the dew point
temperature, compute each of the x, 'sfrom x, = Py,./B"ap andevaluate & x; . If & x, =1, the
guessed temperature is the dew point temperature; if é x; >1, guessed T is too low; if
é x; <1, guessed T is too high. Solution (obtained using the computer) 7 = 31423 K (dew
point) xgr =0.0039, xp, = 00337, x,g = 05215 and x,,, = 04409 .

(c) The advantage of the Mathcad worksheet for the isothermal flash calculation is that one can use
theinitial flash equations directly, rather than having to make the substitutions below.

For theisothermal flash vaporization calculation, we proceed as in Illustration 8.1-3. First, we
calculate the K factors, i.e.

_ 10+ (- 817.08/303.15+4.402229)

ET = =10185.
and, similarly K, =2238, Kz =0546 and K, =0743. Thus, the equations to be solved
are:
Xer Fxpt gt xyp =1 ()
Yer ¥ Vp Vg T Vup = 1P 10185x ; +2238x, +0546x 5 + 0743x,p= 1 2
Also,
xgr[L(@- Kgp) +Kgp] =0.05P x(10185- 91857) = 005 3

and, similarly
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xp(2238- 1238L) = 010 ©)
xy(0546 +0454L) =040 (5)
xyp(0743+0257L) =045 (&)

Solution procedure | used was to guess L, compute the x;'s from egns. (3 to 6), and then

ascertain whether egns. (1) and (2) were satisfied. After a number of iterations, | obtained the
following solution:

L = 086667 V' =013333
xg7 = 00225 ver = 0.2289
xp = 00858 yp=01921
xyg = 04258  yyg =0.2326
xyp = 04659  yyp = 0.3464
é x; =1000 é y; =1000

(d) For an adiabatic flush vaporization, shown below, the energy balance must also be satisfied

liquid
liid 7 d

vapor
- pressure reducing valve or device

Thisis a (two-phase) Joule-Thomson expansion, so that the energy balance yields H,, = H
or

ﬁnﬁﬂﬂﬂy] :4énﬁﬁnayl +

inlet conditions utlet liquid conditions

o i 4
& i (r.ry)], )
— Jdoutlet vapor conditi ons

This equation must be satisfied, together with the mass balances and phase equilibrium
equations of part c. Thus, we have one new unknown here, the outlet temperature, and an
additional equation from which to find that unknown.

8.1-8 (a) Starting from xg,P'® =y P, weobtain g, = y,P/x,P"® , and using the data in the problem
statement, we can compute each g, and then In(gp/g,) and G®/RT =x,Ing, +x, Ing, .
These results, together with [QEX/RT]/xpr and itsinverse are tabulated on the following page.
Also, there is a plot of In(gp/g,) vs. x, . This plot indicates that the data appears to be
thermodynamically consistent (i.e. jln(gp/gA )dx, » 0), though the points at the composition
extremes ( x, = 0021 and x, = 0953) look suspect

(b) See Problem 7.22 the plots of [(_;eX/RT]/xPxA and xpr/[QeX/RT] appear on the following

page. Thefact that neither islinear indicates that neither the two-constant Margules, nor the van
Laar equation will accurately fit the data. Hence, one will have to use at least a 3-constant
Redlich-Kister expansion for the Gibbs free energy to obtain a good fit of the experimental data
for this system!
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X4
0021
0061
0134
0.210
0.292
0405
0503
0611
0.728
0869
0953

Xp
0979
0939
0866
0.790
0.708
0595
0497
0389
0272
0131
0047

5

e

0.5

9| &% G*®  x,x RT
gP gA I - — ex
O RT  RTx\xp G
33407 13140 09331 02927 14.237 00702
36497 10643 12323 01367 23866 04190
31326 11142 10337 0.2467 21259 04704
25617 11700 0.7837 03216 19385 05159
22196 12187 05995 03729 18037 05544
18190 13475 03000 04198 17421 05740
15132 15582 -00293 04288 17153 05830
13299 18214 -03145 04074 17141 05834
11689 23716 -07075 03485 17600 05682
10542 31505 -10948 01962 17235 05802
10191 45509 - 14964 00893 19937 05016
'\-
\l
. N
b
*y
\i
*
b
-4
Tp
[ .
Ba &
L
b
- B Fﬂlﬁ'l'.i ‘h
CeltwlatTed t\_
abasve LY
Y
*
%
b
.
-
& 2 i & F fald
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Pmeas

(hPa)
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00

- - 1™
-..-.--_- i - _...-
- T &
P ~ g
5 2 L/
!
-
L. Fa \-l' r..-"‘ h
ET K
| -— ol e
i \‘;."-‘.__r__-'_’_—_‘___,..-':’ G“
Ly |1 3"
':;!'l ]
RT ka ¥ ‘
Lo ! 3
!
1
1 .
]
° “Z 7 B g
Ea

The next step is to fit parameters in the Gibbs free energy models to the experimental data. |
have done this assuming small errorsin all the variables (7, P, x and y) and using the maximum
likelihood method. The results of the different models are given below:

Wilson model L, =34782

Pcalc
(hPa)
1008.46
1012.01
1012.35
1012.89
1012.21
1008.83
1024.86
1007.84
1011.79
1010.94
1012.31

Tess
(°0)
49.15
45.76
39.58
36.67
34.35
32.85
33.35
31.97
31.93
32.27
33.89

Tealc
(0
49.17
45.76
39.58
36.67
34.35
32.87
33.31
31.99
31.93
32.28
33.89

L,, =107523
X1 meas X1cdc
.0210 .0317
.0610 .0556
.1340 1273
.2100 .1942
.2920 .2958
4050 4290
.5030 4291
.6110 .6224
.7280 7287
.8690 .8640
.9530 .9554

1013 hPa = 1013 bar =1013" 10°Pa
The sum of squares of weighted residuals for this model is 1298, the mean deviation in y, is

2.55%, andin P is 0.29%

Y1meas

.1080
- 3070
4750
.5500
.6140
.6640
.6780
.7110
.7390
.8100
.9060

Vicdc

.2353
.3404
.5048
5761
.6330
.6731
.6725
7128
.7380
71957
.8933
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Pres

(hPa)
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00

Pmeas

(hPa)
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00

P meas
(hPa)
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00
1013.00

NRTL model t,,=777.95  t, =43253

Peac Teas Tcac X1,meas X1cdc Y1,meas Yicdc

(hPa) (°C) (°C)
1008.14 49.15 49.17 .0210 .0379 .1080 .2400
1011.69 45.76 45.76 .0610 .0650 .3070 .3469
1011.87 39.58 39.58 .1340 1399 4750 5131
1012.35 36.67 36.67 .2100 .2034 .5500 .5843
1012.18 34.35 34.35 .2920 .2939 .6140 .6403
1010.35 32.85 32.86 - 4050 4186 .6640 .6793
1025.99 33.35 33.30 .5030 4173 .6780 .6784
1007.37 31.97 31.99 .6110 .6208 7110 7131
1010.33 31.93 31.94 .7280 .7296 .7390 .7348
1009.50 32.27 32.28 .8690 .8581 .8100 .7896
1011.83 33.89 33.89 .9530 .9505 .9060 .8890

Sum of squares of weighted residuals =1547
Mean deviationin y, is3.00%; in P=034%

UNIQUAC Model The parameters aret;, = 572.61 and t,; =-72.84
Mean deviationin y; is3.0790; in P is 0.34%

Peac Tveas Tealc X1,meas X1cdc Y1,meas Yicdc

(hPa) (°C) O
1008.12 49.15 49.17 .0210 .0381 .1080 .2402
1011.66 45,76 45.76 .0610 .0655 .3070 3474
1011.82 39.58 39.58 -1340 1412 4750 5141
1012.26 36.67 36.67 .2100 .2048 .5500 .5855
1012.10 34.35 34.35 -2920 .2946 .6140 .6417
1010.40 32.85 32.86 4050 .4180 .6640 .6807
1026.29 33.35 33.30 .5030 A177 .6780 .6800
1007.25 31-97 31.99 6110 .6206 7110 7139
1010.16 31.93 31.94 .7280 7295 .7390 .7351
1009.43 32.27 32.28 .8690 .8579 .8100 .7895
1011.80 33.89 33.89 .9530 .9503 .9060 .8888

van Laar model a =15032 b = 18534
Mean % P=034; y=318% sum of squares of wt. residuals =1625

Peac Tiees Teac X1,meas X1cdc JV1,mess Yicdc

(hPa) (°0) (0
1008.13 49.15 49.17 .0210 .0380 .1080 .2403
1011.66 45.76 45.76 .0610 .0656 .3070 .3478
1011.78 39.58 39.58 .1340 1419 4750 5154
1012.19 36.67 36.67 .2100 .2057 .5500 .5874
1012.06 34.35 34.35 .2920 2947 .6140 .6441
1010.66 32.85 32.86 4050 4164 .6640 .6837
1025.98 33.35 33.30 .5030 4121 .6780 .6822
1007.14 31.97 31.99 .6110 .6202 .7110 7162
1009.92 31.93 31.94 .7280 .7293 .7390 .7362
1009.57 32.27 32.28 .8690 .8585 .8100 .7897
1011.89 33.89 33.89 .9530 .9512 .9060 .8894

Section 8.1
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2-Constant Margules Model A=17737 B =19259
Mean % deviationin P=0.33% andin y=290%, and sum of squares of weighted residuals =1401

Prreas Peac Tineas Tealc X1,meas X1cdc Y1meas Vicdc

(hPa) (hPa) (°0) (°0)
1013.00 1008.60 49.15 49.17 .0210 .0287 .1080 .2337
1013.00 1012.14 45.76 45.76 .0610 .0502 .3070 .3382
1013.00 1012.66 39.58 39.58 .1340 1135 4750 .5022
1013.00 1013.56 36.67 36.67 .2100 1731 .5500 5736
1013.00 1013.81 34.35 34.35 .2920 .2764 .6140 .6314
1013.00 1004.67 32.85 32.88 .4050 4396 .6640 .6653
1013.00 1023.95 33.35 33.31 .5030 .4598 .6780 .6670
1013.00 1005.18 31.97 32.00 .6110 .6465 .7110 .6899
1013.00 1014.78 31.93 31.92 .7280 7317 .7390 .7082
1013.00 1013.07 32.27 32.27 .8690 .8863 .8100 .7932
1013.00 1012.36 33.89 33.89 .9530 .9578 .9060 .8928

So, of the models considered here, the Wilson model provides the best description (of the two-
constant models) for this data set.

8.1-9  Using the program UNIFAC taking 7 and x, asknown, and computing g,, g, and P aswell as
¥yp Weobtain

[o]
xp T(°C) g& g P“C:a(g)gil?“* e R

0021 4915 41390 1006 0922 0147 0108
0061 4576 37515 10053 0.983 0325 0.307
0134 3958 31680 10258 0.976 0498 0475
0210 3667 26687 10649 0.995 0583 0550
0292 3435 22487 11302 0.993 0635 0.614
0405 3285 18162 12697 0.993 0677 0.664
0503 3335 15416 14540 1004 0697 0678
0611 3197 13247 17663 1002 0717 0711
0.728 3193 11592 23176 1001 0742 0.739
0869 3227 10388 35893 1005 0804 0810
0953 3389 10053 4.9909 1018 0897 0906
T
measured

value =1013 bar
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While the prediction is not perfect, it isrelatively good.
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8.1-10 First we should check to seeif this problemis soluble (i.e.., well-posed in the sense of the Gibbs
phaserule). The Gibbs phaserule, eqn. (6.9-6) is F =C- M- P+2. Thusherewe have
F =3- 0- 2+2 =3 degrees of freedom. Since the temperature, and two independent liquid-
phase mol e fractions are specified, the problem iswell posed.
For the solution of this problem, the following subscripts will be used: 1= ethanol
2 =henzene and 3 =ethyl acetate. Asthefirst step, compute the pure component vapor

pressures. Thisisdone by using the vapor pressure datain the “ Chemical Engineers' Handbook”,
making plots of INB'* vs 1/T, and then determining INB'* (and hence B'*)at T=78C

(Y7=2847" 10° K) wefind

P'* @10 bar; B'* @0.9666 bar and P'* @L053 bar

Next, we need compute the liquid phase activity coefficients. Thiswill be done using the ternary
van Laar egn. (egn. (A7.3-2)). [See also Problem 7.8c], together with the entriesin Table 7.6-1.
Here one has to be careful about the order in which the species appear in the table. | obtained the
following:

=1946 b,=1610 b a,=b,=1610 b, =a,,=1%46
a,=115 b, =092 b ay,=b,=092 b,=a,=15
a;,=08% b, =08%6 b a,=b,=08% b,=a, =08%

Now from egn. (A7.3-2)

2 bp\2, 2 b2 b by ap
{xzalz(_alz) txg@ga) T Ysa, ag (B2 Rz gy

Ing, =
[ #xaf2)+ xol22 ]
_ {13320x22 + 0.896x§ + l730x2x3}| _ 0.6333 - 07308
[x, +08273x, +x;F xy=r;=04 08666
x =02
P g, =20767

To obtain an expression for g, , we interchange subscripts 1 and 2 in egn. (A7.3-2) to obtain [see
solution to prob. 7.8¢]

{xf blz(z_ﬁ)z +x§a23(2 ) txx S(blz X )(blz t8py;- %z—ﬁ)}

Ing, =
[ro +xf32) + w22
_ {35214 + 143753 +2.7025x,x, | _ 05403 _ .0
[x, +12087x, +1250x;F  |=x,=04 13036
x1=02
P g, =15136

An expression for g, isobtained by interchanging indices 1 and 3in egn. (A7.3-2) to obtain [see
solution to Problem 7.8c]
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8.1-11

{xzz bzs(z_z)z *xp bls(z_i)z + x1x2(f,—§)(i—ﬁ)(b23 +by;- by, 2_2)}

Ing; = >
[rs+al52) 52
_ {0.7360:3 + 08967 + 00268x.x, }| 01557
[x5+080x, +x,] v,=x,=04 08464
x1=0.2

P Ing; = 01840 and g; = 12020

With these "preliminaries" taken care of, we can now proceed on to the solution. The equilibrium
equations are

Therefore
g B'® =02" 20767 1000 = 0.41534 bar
x,0,P)/%® = 04" 15136" 0.9666 = 058522
x393P3Vap =04~ 12020 1053 = 050620
P =150684 bar
and

»,=02756 y,=03884 y,=03360

Note that the vapor composition is only very dlightly different than the liquid composition. (This
is because the vapor pressures and activity coefficients of the speciesare al quite similar).

An alternative isto use the program UNIFAC to estimate the activity coefficients. Using
the program with ethanol (1- CH;, 1- CH,, 1- OH), benzene (6-ACH) and ethy| acetate

(1- CHg, 1- CH,, 1- CH,COO) we obtain, at 20 mole % ethanol, 40 mole % benzene and 40

mole % ethyl acetate at 78°C) that
0, =22062; g, =11931 ad g, = 10038

The solution is P =12965 bar and

y, = 03181; y, =03558 and y, =0.3261

Clearly thisresult is different from the ternary van Laar prediction. In the absence of experimental
data for this ternary mixture, it is difficult to say which model is better.

For the simpler models, it is possible to show by simple mathematics that the model either does or
does not permit a double azeotrope. For example, the van Laar model is

G* _ 2000915 . 2015 _ abxyx, - ab (1- xy)
RT  xig1+Xq,  2a;; an+hby, an+b(l-x)

Now for the benzene-hexafluorobenzene system G has an interior maximum and an interior

minimum. That is, dgex/dxl iszerotwiceintheregion O£ x; £1. Toseeif the van Laar model
permits this we examine



Solutions to Chemical and Engineering Thermodynamics, Je

abxl(l' xl)

dx\ RT

or

ab(1- 2x,) ) aby(1- x)@- b) _

i(ﬁ_j __abll-x) , aby(l
(ax+b(1- x)) ay+bl- x) [ay+bl- x)]

ay +b(l- x)  [dy,+b(1- x)F )
P (xz- x)(@x + b)) - xx(@- b)=0

axle - axf - bxle + bfzz - axle + bxl.xZ =0

or

a
ar’ =bd b —:(ﬁ
b X1

2
x a
or %=z |=
X1 b

~(@a-b)=0

Section 8.1

Now aand b must be of same sign (otherwise we get the square root of a negative number).
Also,since 0£ x; £1 and O£ x, £1, only positivesignisallowed. Thus x,/x; :1/a/_b when
a’Qex/dxl =0. Andonly aninterior maximum (if a >0 and b>0) or an interior minimum (if
a <0 and b <0) canoccur, but not both! Therefore, van Laar model can not describe the

observed behavior.

Similarly, obviously the one-constant Margules model G* = Ax;x, can not give both an interior

minimum & maximum, so it can not describe observed behavior.
Instead of continuing this extreme argument, we will look at the results of merely fitting the

experimental data.
Two-constant-Margules model

Proess Peac X1,meas X1cdc

(hPa)  (hPa)

521.60 521.60 .0000 .0000
525.70 518.42 .0941 .0940
525.68 517.53 .1849 .1849
522.87 517.19 2741 2741
518.18 516.24 .3648 .3648
509.89 514.09 .4538 .4539
507.73 511.32 .5266 .5268
503.50 507.72 .6013 .6015
499.74 503.06 .6894 .6896
497.57 498.70 .7852 .7852
497.94  496.96 .8960 .8960
501.55 501.55 1.0000 1.0000

- only 1 azeotrope at x, 3 09

Y1mesas

.0000
.0970
.1788
.2567
.3383
4237
4982
5783
.6760
7824
.8996
1.0000

Vicdc

.0000
.0880
A777
.2679
.3605
4522
.5275
.6051
.6970
.7960
.9063
1.0000
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Wilson model

P meas P cac

(hPa) (hPa)

521.60 521.60
525.70 510.55
525.68 500.76
522.87 492.21
518.18 484.89
509.89 479.35
507.73 476.28
503.50 474,74
499.74 475.30
497.57 479.24
497.94 488.48
501.55 501.55

Y1meas

.0000
.0970
.1788
.2567
.3383
4237
4982
5783
.6760
1824
.8996
1.0000

Vicdc

.0000
.0757
.1556
.2407
.3335
4300
.5118
.5974
.6982
.8038
.9145
1.0000

Only asingle azeotrope predicted to occur.

NRTL model

Proess
(hPa)
521.60
525.70
525.68
522.87
518.18
509.89
507.73
503.50
499.74
497.57
497.94
501.55

No azeotrope results form the least squares fitting of parameters

Pcalc
(hPa)
521.60
518.93
516.49
514.23
512.08
510.11
508.62
507.19
505.66
504.17
502.69
501.55

UNIQUAC model

P meas
(hPa)
521.60
525.70
525.68
522.87
518.18
509.89
507.73
503 50
499.74
497.57
497.94
501.55

Pcalc
(hPa)
521.60
528.19
526.27
521.58
515.87
510.44
506.61
503.46
500.91
499.57
499.80
501.55

X1,meas

.0000
.0941
.1849
2741
.3648
4538
.5266
.6013
.6894
.7852
.8960
1.0000

X1,meas

.0000
.0941
.1849
2741
.3648
.4538
.5266
.6013
.6894
.7852
.8960
1.0000

Y1 meas

.0000
.0970
.1788
.2567
.3383
4237
4982
.5783
.6760
7824
.8996
1.0000

Y1meas

.0000
.0970
.1788
.2567
.3383
4237
4982
.5783
.6760
7824
.8996
1.0000

Double azeotrope predicted, as indicated.

Vicdc

.0000
.0896
1773
.2647
.3545
4436
5170
5927
.6825
.7804
.8938
1.0000

Vicdc

.0000
.0953
717
.2503
.3368
4276
.5046
.5852
.6807
7832
.8978
1.0000

Section 8.1
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Section 8.1

Therefore, of the models considered only the UNIQUAC model is capable of producing the

peculiar behavior of G* for this system.

8.1-12 From Table 8.1-1 we have (assuming an ideal vapor phase)

Seefigure below.

X1
00503
01014
01647
0.2212
0.3019
0.3476
0.4082
04463
05031
05610
0.6812
0.7597
08333
0.9180

Sh
34337
31394
26218
2.2340
19334
17879
15928
15237
14284
13225
11841
11285
10648
10223

7] |09m(£L]
9,
10247 05251
10192 04885
10445  0.3997
10918  0.3109
11332 02320
11637 01865
12643 01003
13068 00666
13755 0.0164
14984 -0.0542
17837 -01779
20086 -0.2504
24539 - 03625
31792 -04927
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0.6
Thetwo areas| and || appear to be approximately
equal, so the datawill be presumed to be

o thermodynamically consistent. Infact, from proper
numerical analysis, we find the data to be consistent.

o.2 I

7,

2h
hall - %
oy

-4

Section 8.1
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8.1-13
P=xQ B® +x,9,5%

(ﬂ—Pj =-g,B'"*+xn'*® Yo , 0, B'* +x,P/® 19, : where we have used that T . 1las
[0 T T, e, 2

5®0 g®lad =0 g

X2

[ i ) =- B+ 0P + x,)(® O)ﬂ&
T,x,®0

T, T,

so that
vap | P
e (ﬂxz J
g,(x,® 0) = o 1500 constant temperature ebulliometer
2
Now
P=x0, B +x9,5%

and

P _ o ﬂgl) vap (ﬂPl“” J( ﬂTj
—| =0=-g,B%*+x| = | B® +xg L
(T[xsz O11 xl[ﬂxz i 1 XUy e 1, .,

v 19,) .« ﬂPVﬁPJ r
Pap 2 PaP 2 e
et (ﬂx) 92( 17 (ﬂj

asx,®0, g ®land Le 0
ﬂxz

vap
=- PlVaP +dP1_(£ +gz(x2 ® O)PZVaP
dT ﬂXZ P

or

py® dplvap IV
1 dT ﬂxz
P,xp® 0

vap
)

o(x,® 0)= constant pressure ebulliometer

8.1-14 (also available as a Mathcad worksheet)
Clearly many different thermodynamic models can be used. We will use the van Laar model

a b
Ing,=——— and Ing, e
s |

which gives Ingf =a and Ing} =b . Using the datain the problem statement
a =1In(16931) =05266 and b=1n(19523) =0.6690. Using these parameter valuesin the activity
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8.1-15

8.1-16

coefficient equations above, together with P =xg,P'®; P= P+ P, and y, = P,/P gives, at
x, =02

x, =02 » =04483 y, =05517 and P =06482 bar
Also

x, =0500 y, =07036 y, =02946 P =08431

0.700 08118 01882 09262
0.850 08943 01057 09732
0.900 0.9256 00744 09861
0.950 09604 0.0396 09972
0975 09795 00205 10019

(also available as a Mathcad worksheet)
Using Mathcad | obtained the following results

T=300K Keoneac T'=400K  Keou eac
Xgon = 01 58340 xgoy =01 15318
05 04255 05 11172
09 003103 09 00815

Thus the results exhibit strong composition and temperature dependence. For anideal solution
vap vap

xif;vap:yipp L:B_p K:M:B_

x P Loy BT

I J

Thus, for anideal solution, the relative volatility K;; hasno composition dependence, but can be
dependent on temperature (unless, fortuitously, 2*® and P;/* have the same temperature
dependence, that is, DH;® = Dﬁ‘j’?" ). The composition dependence arises from the non-ideal
solution behavior. Since the activity coefficients dependent on temperature, nonideal solution
behavior also contributes to the temperature dependence of the relative volatility.

This system was used for illustration in the first edition. The figures which appear below are from
that source. [I changed to the hexane-triethylamine system since the x and y were too close in the
benzene-ethylene chloride system because the pure component vapor pressures are so close.]

fl

T 0.4
bir

LT x, F

7= 418rc

Bereers moke fraciion in e phae

:C- (1] [F] BE [-F] 1.0

Sercrans moi Tracson @ bopisd Bhise

0l o [T 0 [T']
Britere medn (echen
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F, mm Hy

Mzia irsciion of Baraurs in vepsr

8.

5] :

36

1.535%

bar
230 b 1 1 LT
a oz [T s a3 T3
inin Fracsos of Daraene
0 T = T T
F = 350 mm Hy =
o8 = 511 hor _f ']
3 04 bay
-

L i

oS . =l
¢
i
oA b= i £l 34T bar
4 o
e
'

- A -
2 g

o i N 1 [l

0 (5] o4 fiTs an 1.0

Mo freccoe of Senaene 0 Bguid

1-17
G a® (%) =npP
@ ay, <22l J SBR[ P [P), _ B ),
i GBP(fIPP  aBP(f[P),  B®MHR(1/p),
:ﬂeA(xf-xg)/RT(f/P)z zﬂe/t(xf-(l- Xl)z)/RT(f/P)z
B (f/Py A% (f/P)
Pz_vap o Al 2x))/RT (f/P)z
Plvap Composition (f/P)l

—
T dependenceand T dependence ‘,_T and P
dependence

(b) Ideal mixture at low pressure
A4=0 aboveand dsoall (%) =1

(1)

PY*(T)

T dependence

=
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8.1-18 a) Starting from

xP'®+x,P,/® = P sotha
x,P'®

vap vap ’
Bt x,h

y,'_

P'®

In aequimolar mixture yi(x, =05) L

b) For the nonideal mixture
xg; B =y P

Now adding these equations for both components, we get

B BY® +x,0,’® = P sothat
_ xigiPivap .
) MOB® + x50 P
For the one- constant Margules model
- x5 P'® exp(a(l- x,))
x B exp(ax) +x, PY® exp(ax})
In aequimolar mixture with the
05R"* exp(a(05)°)

Vi

Vi

71 =7 weget, for theideal solution, that x, 2'® = y,P
Now adding such equations for both components, we get

~ pvap vap
B+ 5

Section 8.1

p'%®

y,(x; = 05)

- 05P,® exp(a(05?) +05P)® exp(a(05)?) -

1
vap vap
R +5h

which is exactly the same result as for the ideal solution. However, these two
different models only give the same vapor-phase composition in an equimolar
mixture. However, even in this case, the pressures for the ideal and one-

constant Margules mixtures are different.
8.1-19

G¥ =4 b g =ex A ex Axt
= Axx = —|; = —
G 1o P g p RT &) RT

40,5 =P

Azeotrope x;, =y, P g = v

g, p p@ p oA [RT
o B p® p B n® B eAx%/RT

R™ _ 4 A A
n-2 :—(xz- x2) :—T(xlz- (- xl)z)zﬁ(xf- 1+2x, - xlz)

B'® RT =~ R'®  RT

B

So for an azeotrope to form
(1) If B*¥>p"

vap

Azeotrope will form near x; =0 if 4= RTIn—2

vap
A

A= In = In
Pvap le' 1 szap 1' 2x1 PlVap

Azeotropewill format x; =05if 4=¥ ;at x; =05if 4=-¥ .
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B'*®
vap
A

Azeotrope will formnear x; =1if 4=- RTIn

1(, RT (B®
Oringenera x; :E(l- TIF(PZ"’"F’D
1

So we can draw figures of regionsin which azeotropes can be expected to form.

RT PB'¥
(2 If B®>p® then 4=———In—=—
l' 2x1 szap

Mirror image of point 1
(b) T = 2AX1(1' Xl) ’ A= RT
R 2x1(l- xl)

at x; =05; A=2RT

8.1-20 (also available as a Mathcad worksheet)

8.1-20
T:=69
poi=dazz- 8.314-(2;773??54r T PeEen(ps)  ps=ard
P = 10456~ 8.314-(22976;i5+ T) P6:=ep(p6) p6= 1024
pri= Lt 8.314-(32572??25+ T PrEe(pn) P70

X:=025 x6:=045 X7 =03

P:=X5p5+ X6:p6+ X7-p7 P=1258
y5:= 05P9) y6:=06P9) y7:= O7PD)
P P P
Bubble point pressure P=1258
Bubble point compositions y5= 0541 y6 = 0.366 y7=0.093

Now on to dew point calculation

Initial guesses P:=1 ¥5:=0.1 X6 :=0.6 X7:=03
z5:=0.25 26:=0.45 z7:=03
GIVEN

X5+ X6+ X7=1 X5:p5=25-P  x6-p6=26-P X7-pr=z7-P
soln :=FIND(X5, X6, X7, P)

><5.=so|n0 x6.:solnl x7.:soln2 P.:s;oln3

Dew point pressure P=0.768

Dew point compositions X5 = 0.071 X6 = 0.338 X7 = 0.592
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8.1-21 (also available as aMathcad worksheet)

8.1-21

Solving for the bubble point pressure

T:=69 P:=1013

PS(T) := exp| 10422~ 26799 p5(T) = 2721 ks(T, p) :=PAT)
I 8314-(27315+ T) | )

P&(T) := exp| 10.456 - 2%76 p&(T) = 1024 ke(T, p) = PET)
I 8314-(27315+ T) | )
[ 35200 |

7(T) = exp| 11431 - AT

PrT) e(p_ 8.314(27315+ T) | p7(T) = 0.389 K7(T.P) ==&P)

y5:=033 y6:=033 y7:=033 z5:=025 726:=045 Z7:=03

GVEN

K5(T,P) 25+ K6(T,P)-z6+ K7(T,P)-zZ7=1  y5=K5(T,P)-z5 y6=K6(T,P) z6 y7=K7(T,P)-z7

soln :=FIND(y5,y6,y7, P)

y5::51oln0 y6::51olnl y7::51oln2 P::soln3

y5 = 0541 y6 = 0.366 y7 = 0003 P=1258

This is the bubble-point pressure solution. Now on to the dew-point pressure problem.

Note that xi=yi/Ki

X5:=0.33 X6 :=0.33 X7:=033
GVEN
75 + z6 + i _ _ B 6 = z/
KYT,P) K6(T,P) K7(T,P) K5(T,P) K6(T,P) K7(T,P)
soln :=FIND(X5, X6, X7, P)
><5:=so|n0 x6:=so|n1 x7:=so|n2 P:=so|n3
x5 = 0.071 X6 = 0.338 X7 = 0.592 P = 0.768

This is the dew-point pressure solution.

So for a mixture of the composition z5=0.25, z6=0.45 and z7=0.30, at a temperature of 69 C, the
mixture will be all liquid at pressures above 1.258 bar, and all vapor at pressures below 0.768 bar.
Vapor-liquid equilibrium will exist at this temperature only between 0.768 and 1.258 bar, so this is
the pressure range we will examine.
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GIVEN K5(T,P) 6+ K&(T, P) ¥6+ K7(T, P) X7— (X5+ X6+ X7)=0

¥%5:(L(1- K5(T,P)) + KXT,P))=25
6:(L-(1- K6(T,P)) + K&(T,P))=26

X7-(L-(1- K7(T,P)) + K7(T,P))=27 soln := FIND(5, 36, 7, L)

><5::solnO x6::soln1 x7::soln2 L ::soln3 V:i=1-1L
x5 = 0223 X6 = 0.456 X7 =032 V = 0.094 L = 0.906
y5:=K5T,P) x5 y6:=K6&(T,P):x6 y7:=K7(T,P) X7
y5= 0507 y6 = 0.389 y7=0104
P:=11 L =080
GIVEN

K5(T,P) 56+ K&(T,P) 6+ K7(T, P) X7 — (x6+ X6+ X7)=0
%5(L:(1- KS(T,P)) + K5(T,P))=25
6:(L:(1- K6(T,P)) + K&(T,P))=26

X7-(L-(1- K7(T,P)) + K7(T,P))=27 soln := FIND(5, 36, 7, L)

><5::solnO x6::soln1 x7::soln2 L ::soln3 Vi=1-L
X5=018 X6 = 0.458 X7 = 0.362 V=0264 L =0.736
y5:=K5T,P)»%5  y6:=K6(T,P)x6 y7:=K7(T,P)x7
y5 = 0.445 y6 = 0427 y7=0.128

P:=10 L:=0.60

GIVEN K5(T,P) %5+ K&(T,P) x6+ K7(T,P) X7 — (56+ X6+ X7)=0
X5 (L(1- K5(T,P)) + K5(T, P))=25
X6:(L-(1- K6(T,P)) + K6(T, P))=2z6
X7-(L:(1- K7(T,P)) + K7(T,P))=z7 soln := FIND(x5, %6, X7, L)
><5::solnO x6::soln1 x7::soln2 L ::soln3 Vi=1-L
X5 =0141 X6 = 0.445 X7 = 0414 V=0451
y5:=K5T,P)»%5 y6:=K6(T,P)x6 y7:=K7(T,P)x7
y5= 0.383 y6 = 0.456 y7 = 0.161

L = 0549
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P:=0.9 L:=0.40

GIVEN K5(T,P) %5+ K6&(T, P) X6+ K7(T,P)-X7— (X5+ 6+ X7)=0

%-(L-(1- K5(T,P)) + K5(T,P))=25
%6-(L-(1- K6(T,P)) + K6(T,P))=26

X7-(L-(1- K7(T,P)) + K7(T,P))=27 soln := FIND(x5, ¥6, X7, L)

x5i=soln,  x6:=soln,  X7:=soln, L:=soln, Vi=1-L
x5 = 0107 X6 = 0412 X7 = 0481 V = 0.663 L = 0.337
y5:=K5T,P)»%6  y6:=K6(T,P)x6 y7:=K7(T,P)-x7
y5 = 0323 y6 = 0.469 y7 = 0.208

P:=08 L:=020

GIVEN K5(T,P) 36+ K&(T, P) X6+ K7(T,P) X7— (354 36+ X7)=0
%5-(L-(1— K5T,P)) + K5(T, P))=25
%6-(L-(1— K6(T,P)) + K6(T, P))=26

x7-(L-(1- K7(T,P)) + K7(T,P))=27 soln := FIND(X5, 36, X7, L)

X5i=soln,  x6:=soln,  X7:=soln, L:=soln, Vi=1-L
x5 = 0.078 X6 = 0.359 X7 = 0563 V=091 L =009
y5:=K5T,P)%5  y6:=K6(T,P)x6 y7:=K7(T,P)-X7
y5 = 0.267 y6 = 0.459 y7=0274

P.=0.77 L:=0.10

GIVEN K5(T,P) %5+ K6(T, P) 6+ K7(T,P) X7 - (56+ X6+ X7)=0
X5-(L-(1- KXT,P)) + KXT,P))=25
X6-(L-(1- K&(T,P)) + K&(T, P))=26

X7-(L-(1- K7(T,P)) + K7(T,P))=27 soln := FIND(55, 6, X7, L)

><5::soln0 x6::soln1 x7::soln2 L ::s;oln3 Vi=1l-L
x5 = 0.071 X6 = 0.339 X7 =059 V = 0.995 L = 5309 10_3
y5:=K5(T,P)»%6  y6:=K6(T,P)-x6 y7:=K7(T,P)x7
y5= 0.251 y6 = 0451 y7=0.298

P:=125 L:=095

GIVEN K5(T,P) 36+ K6&(T,P) 36+ K7(T,P) X7 — (X6+ 6+ X7)=0
%5 (L(1- K5(T,P)) + K5T, P))=25
¥6:(L-(1- K6(T,P)) + K6(T, P))=26
X7-(L-(1- K7(T,P)) + K7(T,P))=27

><'.5.:soln0 x6.:solnl x7.:soln2

soln :=FIND(X5, X6, X7, L)
L::soln3 Vi=1l-1L
x5 = 0.246 X6 = 0.451 X7 = 0.303
y5:=K5T,P) x5 y6:=K6(T,P):x6 y7:=K7(T,P) X7
y5= 0536 y6 = 0.369 y7=0.0%4

V = 0.013 L = 0.987
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i:=0,1.9

a7
8
9
10
11
12

0.4

04

ERIE

0z

[0.768]

125
| 1.258 |

[0.250 ]
0.251
0.267
0323
0383
0.445
0.507
0.536

0541 |

[0.450 ]
0.451
0.459
0.469
0.456
0.427
0.359
0.360
| 0,366 |

[0.071 ]
0.071
0.078
0.107
0.141
0.180
0223
0.246

0.250 |

14
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8.1-22 (also available as a Mathcad worksheet)

8.1-22

Solving for the bubble point temperature

P:=1.013

T:=69

px(T) :=exp| 10422

pe(T) :=exp

p7(T) :=exp| 1143

10.456

1

26799

© 8314(27315+ T) |

29676

© 8314(27315+ T) |

35200

© 8314(27315+ T) |

[0.338 (0592 ] 0
0.339 0590 0.0053
0359 0563 0.090
0412 0481 0.337
X6 = 0.445 xX7 '=| 0414 LL :=| 0549
0.458 0.362 0.736
0456 0.320 0.906
0451 0.303 0.987
0450 | | 0300 10 |
[0.200 |
0.6
0.29% AN !
0374
=04 N -
0202 — ~
o e
=| 0161 -
0.128 — T / g
0.104
o | ] ]
0.054 06 0 1 12 14
0,007 | Fr
1
IL 05 -
1]
06 14
p5(T) = 2721 ks(T, ) :=PXT)
P
p6(T) = 1.024 ke(T, P) := P&
P
p7(T) = 0.389 K7(T,P) :=_p7;T)
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y5:=033 y6:=0.33 y7:=0.33 z5:=025 26:=045 Z7:=03
GIVEN

K5(T,P)-z5+ K6(T,P)-z6+ K7(T,P).Zi=1  y5=K5(T,P)-z5 y6=K6(T,P) 26 y7=K7(T,P) z7
soln :=FIND(y5,y6,y7,T)

y5::soln0 y6::soln1 y7::soln2 T ::soln3

y5=0.548 y6 = 0.363 y7=0.088 T =61788

This is the bubble-point temperature solution. Now on to the dew-point temperature problem.

¥5:=033 x6:=033  x7:=033 Note that xi=yi/Ki
GIVEN
75 + 76 + z7 =1 _ 5 _ 26 _ Z7
K5(T,P) K6(T,P) K7(T,P) K5(T, P) K6(T, P) K7(T,P)
soln :=FIND(X5, X6, X7, T)
><5::solnO x6::soln1 x7::soln2 T::soln3
x5 = 0.074 X6 = 0.346 X7 = 0579 T = 77436

This is the dew-point pressure solution.

So for a mixture of the composition z5=0.25, z6=0.45 and z7=0.30, the mixture will be all liquid
at temperatures below 61.79 C, and all vapor at temperatures above 77.44 C. Vapor-liquid

equilibrium will exist only between 61.79 and 77.44 C, so this is the temperature range we
will examine.

T:=62 L:=099 P:=1013

GIVEN K5(T,P) 56+ K&(T,P) X6+ K7(T,P)-X7 - (X6+ X6+ X7)=0
%5 (L(1- K5(T,P)) + KX T,P))=25
6:(L-(1- K6(T,P)) + K&T,P))=26
X7-(L-(1- K7(T,P)) + K7(T,P))=2z7 soln :=FIND(5, %6, X7, L)

><5::solnO x6::soln1 x7::soln2 L::soln3 V:i=1-1L

%5 = 0.246 %6 = 0.451 X7 = 0.303 V= 0012 L = 0988
y5:=K5T,P)%5  y6:=K&(T,P)x6 y7:=K7(T,P)x7
y5= 0543 y6 = 0.367 y7= 009
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GIVEN K5(T,P) 5+ K6(T,P) %6+ K7(T,P) X7 — (55 + ¥6 + X7)=0

%5-(L-(1— K5(T,P)) + K5T,P))=25
¥6-(L-(1— K&(T,P)) + K&(T,P))=26

X7-(L-(1= K7(T,P)) + K7(T,P))=27 soln := FIND(x5, %6, X7, L)

X5 1=soln X6 :=soln; X7 :=soln, L :=soln, Vi=1-L
x5 =0.198 X6 = 0459 X7 = 0.343 V = 0.187 L = 0813
y5:=K5T,P)%6  y6:=K6(T,P)x6 y7:=K7(T,P)-x7
y5 = 0476 y6= 041 y7= 0114

T:=68 L:=0.60

GIVEN K5(T, P) x5+ K6&(T, P) x6+ K7(T,P)-X7— (X5+ X6+ X7)=0

%5-(L-(1— K5(T,P)) + K5T,P))=25
¥6-(L-(1— K&(T,P)) + K&(T,P))=26

X7-(L-(1= K7(T,P)) + K7(T,P))=27 soln := FIND(x5, ¥6, X7, L)

X5 =soln X6 :=soln; X7 :=soln, L :=soln, Vi=1-L
x5 = 0.157 X6 = 0453 X7 = 0.389 V = 0.365 L = 0635
y5:=K5T,P)%6  y6:=K6(T,P)x6 y7:=K7(T,P)-x7
y5= 0411 y6 = 0444 y7= 0144

GIVEN K5(T, P) x5+ K6&(T, P) X6+ K7(T,P)-X7— (X5+ X6+ X7)=0

%5-(L-(1— K5(T,P)) + K5 T,P))=25
¥6-(L-(1— K&(T,P)) + K&(T,P))=26

X7-(L-(1= K7(T,P)) + K7(T,P))=27 soln := FIND(x5, %6, X7, L)

X5 :=soln X6 :=soln; X7 :=soln, L :=soln, Vi=1-L
x5 =0.124 X6 = 0432 X7 = 0443 V = 0551 L = 0449
y5:=K5T,P)%6  y6:=K6(T,P)x6 y7:=K7(T,P)-x7
y5 = 0.352 y6 = 0464 y7=0183

T:=74 L:=0.20

GIVEN K5(T,P) %5+ K6&(T, P) X6+ K7(T,P)-X7— (X5+ 6+ X7)=0

%-(L-(1- K5(T,P)) + K5(T,P))=25
%6-(L-(1- K6(T,P)) + K&(T,P))=26

X7-(L-(1- K7(T,P)) + K7(T,P))=27 soln := FIND(55, ¥6, X7, L)
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><5::solnO x6::soln1 x7::soan L::soln3 V:i=1-L
x5 = 0.098 X6 = 0.398 X7 = 0.504 V = 0.749 L=0251
y5:=K5(T,P) x5 y6:=K6(T,P)x6 y7:=K7(T,P)-x7
y5=0.301 y6 = 0467 y7=0232
T:=76 L:=0.10
GIVEN KX T,P) x5+ K6(T,P) X6+ K7(T,P) X7 — (X5+ x6+ X7)=0
X5(L(1- KXT,P)) + K&, P))=25
X6-(L:(1- K&(T,P)) + K&(T, P))=26
X7-(L-(1- K7(T,P)) + K/(T,P))=z7 soln :=FIND(X5, X6, X7, L)
><5::soln0 x6::soln1 x7::soan L ::soln3 V:i=1-L
x5 = 0.083 X6 = 0.369 X7 = 0.548 V= 0.891 L =0.109
y5:=K5T,P) x5 y6:=K6(T,P)x6 y7:=K7(T,P) X7
y5=027 y6 = 0.46 y7=027
T:=77 L:=0.10
GIVEN KX T,P) x5+ K6(T,P) X6+ K7(T,P) X7 — (X5+ x6+ X7)=0
X5(L(1- KXT,P)) + K&, P))=25
X6-(L:(1- K&(T,P)) + K&(T, P))=26
X7-(L-(1- K7(T,P)) + K/(T,P))=z7 soln :=FIND(X5, X6, X7, L)
><5::soln0 x6::soln1 x7::soan L ::soln3 V:i=1-L
x5 = 0.077 X6 = 0.353 X7 = 0.57 V = 0.966 L = 0.034
y5:=K5(T,P) x5 y6:=K6(T,P)x6 y7:=K7(T,P)-x7
y5=0.256 y6 = 0453 y7=0291
T:=78 L:=0.05
GIVEN

K5(T,P) 56+ K&(T,P) 36+ K7(T,P) X7 — (X6+ X6+ X7)=0
5 (L:(1- K5(T,P)) + K5T,P))=25
6:(L:(1- K6&(T,P)) + K&(T,P))=26
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X7-(L-(1- K7(T,P)) + K7(T,P))=27

x5.:soln0 x6.:soln1 x7.:soln2

soln :=FIND(X5, X6, X7, L)

L .:soln3

*5 = 0071 ¥6 = 0.337 X7 = 0592
y5:=K5T,P)»6  y6:=K&(T,P)x6 y7:=K7(T,P)x7
y5 = 0.242 y6 = 0.445 y7= 0313

V=

1-L

V= 1045

GIVEN K5(T,P) %5+ K6&(T, P) x6+ K7(T,P) X7— (X5+ X6+ X7)=0

X5-(L-(1- K5(T,P)) + K5(T,P))=25
x6-(L-(1- K6(T,P)) + K6(T,P))=26
X7-(L«(1- K7(T,P)) + K/(T,P))=z7

x5.:soln0 x6.:soln1 x7.:soln2 L.:szoln3

X5 = 0.264 X6 = 0.446 X7 =029

y5:=K5(T,P)»5  y6:=K§(T,P)x6 y7:=K7(T,P)x7

L =-0.045

soln :=FIND(X5, X6, X7, L)

y5 = 0566 y6=0.351 y7=10.083
i:=0,1.9
[61.788 ] [ 0.25 | [ 045
62 0.246 0451
65 0.198 0.459
63 0.157 0453
TT:=| 71 x5 =] 0.124 x6 =] 0432
74 0.098 0.398
76 0.083 0.369
77 0077 0.353
| 77.436 | 0,074 | | 0.346
[0.545 | 0363 | 0028 |
0.543 0.367 0.050
0.476 0.410 0114
0.411 0.444 0.144
yys = |0352 | vy =|0.464 w7 = |0.183
0.301 0.467 0.232
0.270 0.460 0.270
0.256 0.453 023
| 0.25 | | 0.45 | | 0.30 |

V =-0.047

E|E

3

Vi=1-1L

XX7 =

03 ]

0.303
0.343
0.389
0443
0.504
0.548
0.570

| 0570 |

L = 1047

LL:

[ 10 ]

Section 8.1

0.988
0.813
0.635
0.449
0.251
0.109
0.034
0.0

0.4

04

u.z—\ -

.........
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[<11] 65 T ] a0

0
&0 63 0 T3 20
TT
8.1-23 (also available as a Mathcad worksheet)
8.1-23a
i:=0.10 X =01
= |T«380
3120.29
Pvapl—ep|93225- —————
e 2]
Pvap2— exp| 9.2508 - &
T- 5757
60— 31— _ (1- x)2
32315 32315, '
gamle exp| = =
i 8314.T
- T _—
e e L
32315 323.15 !
gam2«— exp| = -
i 8314 T
P x-gaml-Pvapl+ (1— xl) .gam2-Pvap2
0.329
0.368
0403
0433
0.461
P in bar

0.485
0.508
0.529
0.548
0.566
0.583
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T:=380 Pvapl ::e<p(9.3225— ﬂ)

T- 6363

60— 1o (1- x)2
32315 32315 :

Pvap2 :=exp (9.2508— _

gaml. \=exp
! 8314T
60 35 11 -(x)2
- 32315 32315 :
gamZi =ep
8314-T
(xl-ganli-Pvapl)
yl o=~ 4 y2 :=1-yl
[ P [ 1
i
Lt '
¥l
0
H
1
oo l
] 0.5
. x
1
0582581, O-¢
0.5
P,

0.4

.0.328551, 3 l | |

Section 8.1
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8.1-23b generalized at fixed pressure

i:=0.10 X =01

TT = |T<373.
DT<5
while | DT |>0.00001

312029
Pvaple— exp| 93225 227
® e(p( T- 63.63)

Pvap2— exp| 9.2508 - w
T- 5757

60— 31— _ (1- x)z
| 32315 32315/ | !

8314-T

gamle exp

1o ||
32315 32315/ |
I 8314-T

Pe—x -gam1-Pvapl+ (1— xl) -gam2-Pvap2

DT« 10In 380
P-750

TeT+ DT
TTeT

gam2«— exp| =

TT.

Have to recalculate vapor pressures, activity coefficients and vapor phase mole fractions since
these variables are only defined within the subprogram.

Pvapl :=ep (9.3225— 312029 )

TT, - 6363

Pvap2 =exp(9.2508 - ﬂ
! TT, - 5757

[ TT, TT, )
630— ' — 33/ |1-— " -(1— x)
323.15 323.15 !

8314-TT,

[ TT, TT, )
630— L — 335 [1- — (x)
32315 32315/ | V!

8314-TT,

gamli =ep

gam2, := e
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P :=x-gamL, Pvapl + (1— xl) -gam2, -Pvap2

yri=— L 1 y2 i= (2-%) 'Q:‘Zi'wapzu

0.193
0.339
0.456
0.554
0.639
0.717
0.789
0.859
0.929

0.886
0.795
0.73

0.679
0.64

0.608
0.581
0.558
0.539
0.522
0.507

1.003
101

1023
1041
1.065
1.095
1132
1175
1227
1.286

Pvapl =

400

390

yl

370

Section 8.1

379.919

Pvap2 =

0.5 1
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1292954 14 I

gm:uli

8.1-24 (also available as a Mathcad worksheet)

8.1-24 Benzene activity in benzene - polyisobutylene (40,000) mixtures
NB:=1 NP =200 g .-gg6 VIB :=1319 R:=8314 ¢ =10
104
Mb:=08%81  mpib:=1 wig:=— ™ WIB = 04545  WiPIB :=1- WiB
WiB mb + mpib
78 . . x0-VB
_—_— xpib :=1- xb PhiB := N :
WtB WIPIB X0-VB + xpib-NPIB:vIB ~ PhiP:=1- PhiB
78 40000
L Lo -3 _
PhiB = 0.4264 xpib = 2.335210 PhiP = 05736 b = 09977
m:=NPBVIB m = 574.7878
NB-VB
iG8 :=in[ B 1 (1= 2} priP+ c PHiF?  gB:=eqp(InGB) gB = 1.0529
xb m,
|nc32::|n(Ph__'tF:)+(1— m)-PhiB+c -PhiBZ  gP:=exp(InG2) gP=0
Xpi
ING2 = ~238.9603 ab:=xbgB ab = 1.0505
InGB = 0.0516 .
activity of benzene
Partial pressure of benzene = 0.0606-ab = 0.0637  bar
mb:=05543  mpib:=1 wtgi=__m WitB = 03566 WIPIB :=1— WtB
mb + mpib
WtB
78 . . x0-VB
wi=— - xpib:=1-xb PhiB = N .
WtB  WtPIB X0-VB + xpib-NPIB:vIB ~ PhiP:=1- PhiB
78 40000

X0=09%5  PB=03309 i 35056102 Phip = 06691
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IGB :zln(@) + (1— 1) PhiP+ ¢ -PhiF?
%

m
G2 i=In{ 2P 4 (1— m).PhiB+ ¢ -PhiB?
xpib
InGB = 0.0132 ING2 = —184.5044

Partial pressure of benzene =

0.0606-ab = 0.0612

Section 8.1

gB :=exp(InGB) gB=10133
gP:=exp(InG2) gP=0
ab =xb-gB ab = 1.0097

activity of benzene

bar

mb :=0.291 mpib :=1 W= WiB=02254 WiPIB :=1— WtB
mb + mpib
WtB
78 . . b VB
P xpib :=1-xb PhiB = N .
WtB _WPIB X0-VB+ xpib-NPIB:vIB ~ PhiP:=1- PhiB
78 40000
x0=09933  PhiB = 02061 xpib = 6.6564+10 ©  PhiP = 0.7939
|nGB::|n(@)+ 1- i)-PhiPJrc PhiP? 9B :=exp(InGB) gB = 0.8608
xb m,
InG2 ::In(Ph—_”: +(1— m)-PhiB + ¢ -PhiB? gPi=ep(InG2)  gP=0
xpi
INGB = 01499 ING2 = —113.4422 ab:=x0-9B ab = 08551

Partial pressure of benzene = 0.0606-ab = 0.0518

activity of benzene
bar

Calculation of pure component vapor pressure of benzene

Data from Perry's

Pvap=40mmHgatT=7.6 C and 60 mm Hg at 154 C

A =10 B :=3000
given In(40)=A— 2 In(60)=A—___ B
27315+ 76 27315+ 154
con :=find(A,B)
A :=con, A=186885 Bi=con, B = 42111-10°
exp(A 5
Pvap = 27315+ 10 Pvap = 00606 bar

750
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8.1-25 (also available as aMathcad worksheet)

8.1-25 Cyclohexane activity in cyclohexane - polyisobutylene (40,000) mixtures
NC:=1 NpB =200 e =818 ypis1319 Riz83M ¢ =047
104 779
me:=1318  mpib:=1 wtci=— ™ WIC= 05686  WIPIB :=1- WtC
WitC mc + mpib
84.16 . . xc-VC
PO P — xpib:=1-xc PhiC = N .
WtC WtPIB xc-VC+ xpib-NPIB-viB ~ PhiP:=1-PhiC
84.16 40000
o L 103 .
PhiC = 05716 xpib = 1.5938° 10 PhiP = 0.4284 »C = 09984
m:=NPBVIB - s95731
NC:VC
InGC::In(%)+ (1— 1)-PhiP+c PhiP? gC :=exp(InGC) gC=09578
Xc m
_, {PhiP . ) . _
InG2 :=In ob + (1-= m)-PhiC+c -PhiC gP = exp(InG2) gP=0
Xpi
ING2 = ~262.067 ac:=xegC ac = 0.9%63
InGC = —0.0431

activity of cyclohexane

Partial pressure of cyclohexane = 0.1303-ac = 01246  bar

e =0434 mpib =1 WtC ::L_ WtC= 03026 WtPIB:=1- WtC
mc + mpib
witC
84.16 . . xc-VC
PO P — xpib:=1-xc PhiC = N .
wWiC WitPIB xc-VC+ xpib-NPIB-VIB PhiP:=1- PhiC
84.16 40000
xc=09952  PhiC= 03052 xpib = 4824510 ° PhiP = 06948
InGC :=In(@) +[1- 1) PhiP+ ¢ -PhiP? gC:=exp(InGC) gC= 07716
Xc m
InG2 ==|n(Ph—_'E + (1- m)-PhiC+ ¢ -PhiC” gP=exp(InG2) gP=0
Xpi
InGC = -0.2593 ING2 = —137.998 ac:=xcgC ac = 0.7679

activity of cyclohexane

Partial pressure of cyclohexane = 0.1303-ac = 01001  bar
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me =0147 mpib::=1 wici=— ™ WIC=01282  WIPIB i=1— WiC
mc + mpib
WtC
_ 8416 B = xc-VC
PHiC . WtPIB xpib 1=1-xc xcVC+ xpb-NPIBVIB  PhiPi=1- PhiC
84.16 40000
xc= 04174  PhiC= 01556 xpib = 05826 PhiP = 0.8444
InGC ::|n(_Ph'C) + (1- 1) PhiP+ ¢ -PhiP? gC:=exp(InGC) gC= 12146
XC m,
InG2 ::In(Ph—_'E) +(1- m)-PhiC+ ¢ -PhiC? gP:=exp(InG2) gP=0
xpi
INGC = 01944 InG2 = ~72.5182 ac =)xcgC ac = 0.507

activity of benzene

Partial pressure of cyclohexane = 0.1303-ac = 0.0661  bar

So while not perfect, the value of the Flory parameter chosen, 0.475, gives a reasonably good
description of the cyclohexane-polyisobutylene system.

Calculation of pure component vapor pressure of cyclohexane
Data from Perry's
Pvap =60 mm Hg at T = 14.7 C and 100 mm Hg at 25.5 C

A =10 B :=3000
given In(60)=A - — 2> In(100)=A — — 5
27315+ 147 27315+ 255
con :=find(A, B)
A :=con, A=182201 B:=con, B = 4.0661-10°
explA - L
27315+ 25

Pvap = Pvap = 01303 bar

750
8.1-26 (also available as aMathcad worksheet)

8126 pentane activity in pentane - polyisobutylene (40,000) mixtures

NP:=1 NpiB =200 . 7215

104

VIB:=1319 R:=8314 ¢ :=0.85
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mp:=1405  mpib:=1 wtpi=— ™ WtP= 05842  WiPIB :=1— WtP
WtP P+ Mpib
84.16 . . Xp-VP
e Xpib :=1- xp PhiP = N .
WtP  WiPIB xp-VP+ xpib:-NPIB-vIB ~ PhiPib:=1—PhiP
8416 40000
PhiP = 0.6012 xpib = 1495310 °  PhiPib = 0.3988 xp = 0.9985
m::M m = 4429714
NP-VP
InGP :=In ﬂ) + 1—i ‘PhiPib + ¢ PhiPib? gP =exp(InGP) gP = 10261
Xp m
InG2 ::In(Ph”_::)b) + (11— m)-PhiP+c PhiP? gPib :=exp(InG2) gPb=0
Xpi

InGP = 0.0258 InG2 = —259.8176 aP=xp-gP aP = 1.0246

activity of n-pentane
Partial pressure of n-pentane = 0.3778:aP= 03871  bar

mp =0.269 mpib =1 Wipi=_™® WtP=0212  WIPIB :=1— WtP
mp + mpib
WtP
84.16 . . xp-VP
e Xpib :=1- xp PhiP = N .
WtP  WiPIB xp-VP+ xpib-NPIB-vIB  PhiPib:=1— PhiP
8416 40000
xp=0992  PhiP= 0224 xpib = 7760910 °  PhiP= 0.224
InGP :=In ﬂ) +(1- i ‘PhiPib + ¢ PhiPib? gP =exp(InGP) gP =0.8169
Xp m
InGZ::In(pnII_::)b)+(l— m)-PhiP+c-PhiP2 gPib :=exp(InG2) gPb=0
Xpi
InGP = ~0.2023 InG2 = ~94.3441 ap=xpgP ap = 08105

activity of n-pentane

Partial pressure of n-pentane =  03778-:ap = 03062  bar
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mp:=00294  mpib:=1 wipi=— " WtP= 00286 WIPIB i=1— WtP
mp + mpib
WtP
_ 8416 S xp-VP
PhiP  WtPIB xpib :=1-p xp-VP+ xpib-NPIB-viB ~ PhiPib:=1—PhiP
8416 40000
x0= 01264  PhiP= 00355 xpib = 0.8736 PhiPib = 0.9645
inaP = In{ 0P ¢ 11— 2 priib + ¢ -PhiPib? gP:=exp(InGP) gP= 16197
Xp m,
InG2 :=|n(Ph'Eb + (1= m)-PhiP+ ¢ -PhiP? gPb:=ep(InG2)  gPib = 1.7316°10
INGP = 0.4822 InG2 = ~15.5691 p=xpgP ap = 0.2047
activity of n-pentane
Partial pressure of pentane = 0.3778-ap = 00773  bar

So while not perfect, the value of the Flory parameter chosen, 0.85, gives a reasonably good description
of the pentane-polyisobutylene system.

Calculation of pure component vapor pressure of pentane
Data from Perry's
Pvap =200 mm Hg at T =1.9 C and 400 mm Hg at 18.5C

A =10 B :=3000
given In(200)=A— 5 In(400)=A— B
27315+ 19 27315+ 185
con :=find(A,B)
A 1=con, A = 174764 B i=con, B = 3.34% 103

B
eplA- ——
( 273.15+ 10
750

Pvap = Pvap = 0.3778 bar
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8.2-1

8.2-2

8.2-3

Section 8.2

Using the critical properties in the text, the program VLMU and the following interaction

parameters

ke, ¢, = 00015 ke,_¢, =0010; ke _¢, =0003

I obtain the following

Bubble point, P (bar)
1
5
10
15
20
25
30
35
40
42
43

Using the same program and information as above, I obtain the following

Dew point, P (bar)
1
5
10
15
20
25
30
32
35
38
40
42
43

See figure on following page.

T(K)
23131
280.26
30817
32712
34199
35447
36583
37527
384.56
38831
39031

7(K)
25393
299.65
32527
34232
35543
36615
37515
37844
383.00
387.09
389.57
39176
392,64

Ye,
03444
02222
01738
01460
01261
01102
0.0932
0.0835
0.0699
0.0632
0.0588

X,
0.0038
0.0081
0.0117
0.0148
0.0180
0.0213
0.0257
0.0271
0.0296
0.0331
0.0361
0.0402
0.0434

Yey
05907
0.6576
0.6693
0.6691
0.6642
0.6565
0.6434
0.6329
0.6133
0.6011
05919

Xc,
02309
03128
03595
03924
04198
04446
04724
04806
04936
05103
05231
05389
05499

e,
0.0649
01202
01569
0.1849
02097
02333
02634
0.2836
03168
03357
03493

Xc,
0.7653
0.6791
0.6289
05928
05623
05341
05019
04923
04768
04566
04408
04209
04068

Again we use the program VLMU and the data from Problem 8.2-1. Also, since, at 20 bar, the
bubble point of the mixture is 341.99 K and the dew point is 355.43 K, we only need to consider

temperatures between these two extremes. The results follow:
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P =20 bar

T(K) X X, X3 Ny ¥ V3 V/L split

3425 00478 05670 03852 00120 0.6648 02143 0.0303/09697
3440 00418 05564 04019 01069 06641 02290 01265/08735
346.0 00352 05382 04263 00914 06580 02506 02635/0.7365
348.0 00299 05170 04531 00789 06464 02746 04095/05905
350.0 00258 04928 04814 00690 06304 03007 05612/04388
3520 00224 04668 05107 00609 06106 03285 0.7175/0.2825
3540 00197 04397 05407 00542 05878 03580 08796/0.1204
3550 00185 04259 05557 00512 05756 03732 09628/0.0372

Note to instructor:
Re: Problems 8.2-1,2 and 3

You should take time to discuss how the compositions are changing with pressure in each
of the cases above. For example, in Problem 8.2-1, at low bubble point pressures the vapor
composition is very different than the liquid, with the vapor greatly enriched in the light (C,)

component. However, as the pressure increases, and the critical point is approached, the vapor
composition becomes similar to that of the liquid. Analogous comments apply to the dew point
case of Problem 8.2-2.

Vapor Liquid Equlibrium
I I

40 T T
30 [ T
Pibpi
5]
g .
2 Pdn 2of Bubble point _
S curve
Dew point
10— curve ]
0 | | | | | | | |
220 240 260 280 300 320 340 360 380 400
Tﬁbpi,Tidpi
TinK

8.2-4  See solution to Problem 4.2. The derivation of Eqs. 8.2-8 is identical to the derivation of eqns.
4.4-29 & 30.

8.2-5 (aand b) These algorithms are incorporated into the program VLMU Examine that program to see
the algorithms used.

8.2-6 (a) The equations to be used to solve this problem are the mass balances, the equilibrium condition
(equality of fugacities) and the energy balance. Writing these equations for an open, steady-
flow system, we have (for 1 mole of feed of compositions z; ).
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Mass balances z, =x,L+yV i=1,2,..., N @)
1= L+V (summing equations above over all species) 2)
phase equilibrium condition f;* = f;”
7L raY
Pt _ypfi i N
X, P v, P
or
—L =V
x,¢,(T,P,x) =4, (T,P,Z)
or
—L
K=2-f k@ Py i=12, .. N @
Nog

energy balance 0= Z(N,FI,) + Z(N,f_l,)vl + Z(NJ?)L

i
out

or

0=>"(zH) -V (xH) ~LY (nH) w

Also, we have the summation conditions

inzlallll Zy,-zl )]

(b) With the exception of eq. (4), the other equations are the ones used in the isothermal flash
calculation (see eqs. 8.1-14 & 15, and 8.2-4). Therefore the easiest algorithm to implement is to
use the one for the isothermal flash with an extra, outer loop which iterates on final temperature.
This is done by adding an enthalpy calculation (see eq. 8.2-8a) to the program, and calculating
the enthalpy of the feed stream, and the liquid and vapor streams. If eq. (4) is not satisfied, the
exit temperature is adjusted, and the calculation repeated.

(¢) A Mathcad worksheet (8-02-6.MCD) is available for this calculation. This worksheet is also
available as the Adobe PDF file 8-02-6.pdf.

8.2-7  This problem is probably most easily solved using an equation of state, such as the Peng-Robinson
equation. Using the program VLMU, the critical properties in Table 4.6-1 and &, = 0.01 (from
Table 7.4-1) we obtain the following

mole % ethane Calculated Measurement
in liquid vapormol %  P(bar)  vapor mol % P(bar)
78 6.62 39.68 62 39.73
228 1935 37.08 19.7 37.07
303 2581 3579 255 3560
59.0 5213 3094 531 3213
89.0 8528 2589 854 2545

Thus we see, using the program VLMU, we obtain very accurate predictions in a simple manner
(though, of course, much work went into preparing the program). With the exception of the 59
mol % ethane liquid, the compositions are predicted to about 0.004 mole fraction and 0.4 bar
accuracy.

8.2-8  Again the program VLMU will be used with the critical properties in Table 4.6-1 and the value
ki, = 0.055 given in Table 7.4-1. The only question is how to use the program to get K values. I

have used the isothermal flash, since that is the only option that allows me to specify 7 and P.
One then has to choose a feed composition that assures that one is in the two-phase region (this
can be checked by a collection of bubble point or similar calculations, if desired). This
corresponds to methane compositions in the range
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8.2-9

8.2-10

8.2-11

00711 < x., <09916

In this range we find the following
X y K
methane 00711 09916 1395
benzene 09289 0.0084 0.009083
T

asked for in problem statement

We use the program VLMU, critical properties in Table 4.6-1, and a value of k;, = 0.003 given in

Table 7.4-1. The problem must be solved by trial-and-error. The easiest way is to start with the
bubble-point P program. This leads to the result that the bubble-point pressure is 8.47 bar.
Therefore, a lower pressure than 8.47 bar must be used to produce appreciable vapor. Likewise,
using the dew point pressure program gives a dew point pressure of 6.12 bar. Therefore, the
pressure must be between 6.12 bar and 8.47 bar to produce appreciable vapor. By trial-and-error
we find at 7=31315K, P=7234 bar V//L=05/05=1 and

Feed Liq  Vapor K

C, 05 03699 0.6301 1703
nC, 05 06301 03699 05871
Phase compressibility, Z 0.0268 08594

Using the program VLMU, critical properties in Table 7.4-1 and the following interaction
parameters k¢ _c. =0001; k¢, _,c, =0010; k¢, _jc, =—0007; ke _pc, =0.003;

ke —ic, =—0007 and k¢, _jc, = 0.0 we obtain the following

Component Feed Liquid Vapor K
ethane 03100 01638 04384 2677
propane 03400 03372 03425 1016
n - butane 02100 03084 01236 04008
i-butane 0.1400 0.1907 0.0955 05008
moles 10 04676 05324
compressibility 0.0548 0.7952

Therefore, 53.24 mol % of tank contents will be vapor and the remaining 46.76 mol % will be
liquid. [If we believe the compressibilities, even though the liquid compressibility has some error,
then we have that 5.71% of the volume of the tank is filled with liquid, and the remaining 94.29%
is filled with vapor.]

The analysis is similar to that of Problem 8.2-6 except that the energy balance
0= z (Z,.ﬁ,.)m - LZ (xH")- VZ (v H")

used there is now replaced with the entropy balance
0= Z (Z,-E[)i“ - LZ (x,EfL) - VZ (y,gfv)

A Mathcad worksheet (8-02-11.MCD) is available for this calculation. This worksheet can be
viewed as the Adobe PDF file 8-02-11.pdf.
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8.3-1 (a) H" data are obtained from the Superheated Steam Tables. Also
H Y(T, P=01MPa) ~ H L(T, any pressure) since, at low and moderate pressures, the liquid
enthalpy is independent of pressure to an excellent approximation. Therefore, H LT, P) is

taken along the saturation line, and then extrapolated to high temperature, as shown below.

Sooo fﬂ‘-‘%ﬁ
o J
. wevo ,-—f"/_/jjr;‘“ﬂﬁ Pl T
H,.I Jff J'_'f,f..-rl'l"‘"' - . - I-Irl'-"'r
= #
Jooo = -"‘, o
| FA— - - #bﬂ
zeee PR
-
8 ar woe%c dAm"F. 250 T
fepe uﬂ-ﬂ' ) . g {5’
i
fon Joe Do reo Foo fleo

T, A

8.3-2  General: The starting point for solving this problem is

f]x%z = f}x}fz = xNZJ’NZf]\%Z =, P=K,

where £, is the partial pressure of nitrogen in the gas phase. Also, fNL2 = fugacity of pure

"liquid" nitrogen, is 1000 bar according to the problem statement.

(a) Ideal solution
¥, = 1:880 R, =1 bar (problem statement)
thus
K, 1

Xy, =t =——=0001
YA 1000

(b) Non-ideal solution
Here Inyy, = 0.526(1—xN2)2. Since, from the ideal solution case above, xy, is quite small
(and will be even smaller here), it is reasonable to assume that 1—xN2 ~1, In N, = 0526, and
7N, =16922. Thus
A 1
2 yN;NLZ = Teomzxiop X107

The Henry's Law Constant is the constant in the expression

AN

Hx, = £,V , here, Hy, xy, =1 bar
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8.3-3 (a)

(b)

(©)

8.3-4 (a)

B 1 bar

XN

=1692 bar.

thus Hy,

2
Also, since Hy =y, fy, and V* =0, we have that the activity coefficient yy is

independent of pressure. Thus, the only pressure variation of the Henry's law constant will be
through the Poynting pressure correction to the "liquid" phase of pure nitrogen.

To compute the ideal solubility, we will use Shair's correlation, Fig. 8.3-1 first we need to
compute the reduced temperature

_ 29815 _ 1564
190.6

r

thus,

L
S =365 and " =3.65x460 bar = 1679 bar
Fe Fig. 8.3-1
g. 8.

Therefore at 1 atm partial pressure of methane

ideal _ PCI—I4 _ 1.013 bar

= = =6.03x107° (all solvents
e fh,, 167.9 bar ( )

To compute the activity coefficients, we use Xy, 7cu, chH4 =1013bar  or

Ve, =1013/xey, [ =603x 10_3/xCH4 The following results are obtained

CH, -benzene: ycy, =291 CH,-CCly: yey, =211
CH4 -C6H12: 7CH4 = 213 CH4 - C6Hl4: )/CH4 = 191 MCDaniel
142 Guerry

The regular solution model gives, for the CH, - C(H;, mixture

2
= o) ZonBen, =Ocgn) o | [52x(568-73)] _ 126
Vcu, = €Xp RT ¢C6H14 =eX W ST

Since ¢¢ py,, =1. Note: CH, parameters from Table 8.3-1 C;H,, parameters from Table 7.6-1.

This result is not in agreement with either set of data, but is distinctly closer to Guerry's
result!

Start from fiL = J?iG = xi?’ifiL = yip(%)

Determination of nitrogen properties:

375K ~ 75bar

| = =296; P|, =——=2.
’lNz 1262 K |N2 33.94 bar
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L
feon,

From Fig. 5.4-1 (ij
P\,

I

l. Now using Shair's correlation (Fig. 8.3-1)

/N, (P =1013 bar)
}%7

= 6.1 ; however, at 75 bar we have

fe(P=T5bar)  fi (P=1013)  [Vy (P-1013)
= €X =
. . P RT

=6.1exp(0.0784) = 6.6 = fT\IM (P =75 bar) =224 bar

Determination of benzene properties:

75 bar

_37315K 3
48.96 bar

= =0664 and B|.

Plew. =S =13

From Fig. 7.8-1 L{ ~ (023 and, for the liquid, we need the vapor pressure. From the
vapor

Chemical Engineers Handbook we have P*® =1.013 bar at 7=801°C, and P'*® =2.026 bar
at 7=1038°C using In P*® =%+B as the interpolating formula, we find P** =1823 bar.

From Fig. 5.4-1, we have (with a little extrapolation) that (i) ~ 096 . [Along the saturation
sat

line]. Thus
Vi (P-P™
= R (i) exp LewP= P 53096 exp{—gg aXENE } =2.159 bar
FAP RT 831437315

Thus, the equations to be solved are

xN27N2224 bar = w, 75 bar
Xe i,V cg 2159 bar = ye 4y 75 bar
XN, +Xeg, =1
N, e, =1
together with

, 2
V5, (Ox, =Fc,n,) Pegn,
RT

7N, = €Xp

and

L 2 2
KCeHe (5N2 B §C6H6 ) ¢N2
RT

Yo, = €Xp

where the N, parameters are gotten from Table 8.3-1 and the benzene parameters from Table

7.6-1. Because of the nonlinear nature of the equations (due to the composition dependence of
the activity coefficient), this problem is best solved by trial and error. I chose xy, =00 as the

initial guess.
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(b)

8.3-5 (a)

(®)

Solution obtained was:
xy, = 0047 and yy, =03883

Measured values:
XN, = 0.045 and N, = 0944

At 100 bar the calculation is similar, however the numbers are a little different. I find

v L
I corrs; D
CgHyg C

~676 and f¢.y, ~2290

Solution obtained was:
XN, =0061 and W, = 0874

Measurement yields

xy, = 00595 yy, =0968

In both cases the liquid compositions are in better agreement with experiment than the vapor
compositions!

Note: I have found that some students try to make a large extrapolation of the vapor pressure,
rather than using Shair's correlation ... it is a large extrapolation here, since the nitrogen critical
temperature is 1262 K. If we extrapolate the low temperature vapor pressure, and make the

(small) fugacity coefficient correction, we obtain f]\%z =1195 bar compared to 224 bar here at
75 bar. This leads to xy, =0.0082, compared to 0.047 calculated here and 0.045 observed

experimentally.
Moral: Use Shair's correlation instead of making large extrapolations of the vapor pressure.

Suppose a small amount of liquid, AN is, vaporized, then there are yAN = moles of dissolved
gas in the vapor, and (x—Ax)(N —AN)= moles of dissolved gas left in the liquid we are
interested in a different distillation, i.e., the case where Ax and AN will be very small. Thus

(x — Ax)(N — AN) = xN — xAN — NAx + (Ax)(AN)
~ xN — xAN — NAx
Now writing a mass (mole) balance on the dissolved gas yields

xN = yAN +(x — Ax)(N — AN) = yAN + xN — xAN — NAx

Thus
ﬂz Y% and taking the limit as AN — 0 yields £= Y=
AN N dN N

. Hx . dx
Using y =— yields — === or =
P dN N N\ P din N P

(%9, Ny) and (x, N) yields

Hx
Do H-P 1 H-P . .
P-x i( ) dinx _ . Now integrating between

_H-P v H-P

delnx dInN or Inx—Inx, =
Xg P Ny P

[[n N —1n N,]

which can be rewritten as
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. N (H-P)/P N . P/(H-P)
AT or — ==
X0 Ny Ny X0

(¢) For - =001 we have % =(0.01)"2°° = 0983 . Thus, only 1.7% of initial number of moles of
Xo 0
liquid need be vaporized in a differential distillation (i.e., no violent boiling, otherwise
equilibrium will not be obtained) to remove 99% of the CO, .

For X = 00001 N (0.0001)7%° = 0966
X0 N

Thus only 3.4% of initial number of moles of liquid need be vaporized to remove 99.99% of the
CO, .

8.3-6 I used the bubble point option of program VLMU treating the liquid mole fraction of CO, as an

adjustable parameter, until a CO, partial pressure of 1.013 bar in the vapor phase was obtained.
The results appear below:

Xco, B Yeo, Pco2 =JYco, Pt
0006 031 08680 0.269 bar

0020 096 09562 0918
0022 105 0960 1.008
00221 105 09601 1.0081
00222 106 09603 1018

Therefore, the predicted solubility is xcq, ~0.02215.

8.3-7 (a) This problem is treated in the same manner as the previous problem. The results are given

below:
ki, =0
Xco, Ry Yco, R co, = Yco, Bt
0015 141 0.6729 09488
0016 148 0.6869 1.01662
00159 147 06856 1.0078

Therefore, the predicted solubility is ~ 0.01595=xco, . This is considerably higher than the

experimental value of x¢,, =0.00328

(®) &, =02
Xco, B Yco, R co, = Yco, Pt
0015 494 09011 44514
0003 136 0.6566 0.89298
00033 145 06775 09824
00034 148 06839 10121

In this case x¢o, ~0.0034 which is quite close to the experimental value of 0.00328. This

illustrates the importance of the binary interaction parameter k, .
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_PV, _ Ng-8314x107° barm’ 27315 K

838 (a) N a
(@) RT 1.013 bar
N = ax1013 No = 1m’p,, g/m’
97 8314x10°x27315 ¥ 18.015 g/mol
-1
o Ne 1V M
Ng + Ny, 1+‘T‘GV G

-5 -1 -1
vy P ><8.314><10 x27315K :[14_1244)(10,3,0_“,}
18015 ax1013 a

b)) L= M; for simplicity, assume 1 m® liquid
volume liquid
oV _Ng -8314x10°T V-1013 1013L

Im 1013 G T R314x10°T  8314x10°T

—1 Py -
X = 1+& =|:1+ Pw X8314X10 Ti'
G 18015 Lx1013

—1
- [1+4.555x 10*"TpTW}

6 3 3
(c) S=V=N,-8314x10° barm3/molK><273.15KxM
1.013 bar
Ng=Sx—013 o 1
8314 x27315 18015
= Ne _ S X it _ S*1013 __ S
Ng+Ny ol b §x1013+1260599  S+1244
(d) xKH:1.013:>x:w
H
S, 100
e) Np=—2: Ny =—o
© N Mg Y 18015
So
N, A 180158,
X = = 5 - =
N+ Ny 4100 180155, +100 My

8.3-9  Condition for equilibrium as the solubility limitis f;“ = £;¥ which implies

1

AG" = 0= RTIn Lo = prin 2 (DL = 1) /i)
- £ ST, Py, =1) £Y(T, P=1013 bar)
since the fugacity of the species in the vapor phase as this low pressure is given by the Lewis-Randall rule,
and just equal to the fugacity of the pure species at 1.013 bar. Now the last term on the right of this
equation is equal to the Gibbs free energy change of transferring the gas from the ideal gas state to a
solution of unit mole fraction. Therefore

=RTInx" + RTIn

f,.L(T,P,x’. = 1)
£Y(T, P=1013 bar)

AG* =0=RTInx® +RTIn =RTInx" +AG
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where AG is the free energy changed asked for in the problem statement . Therefore AG = —-RTIn xf"l , but
G

Inx® = A+§+ClnT+DT+ET2, then AQ:—RT[A+§+ ClnT+DT+ET2},also a—{=+H or

T

ﬁ:_ﬂjmz_yﬂﬁ

or T’ or
AH = %{—R[A +§+ CinT+DT+ ETz]}(—Tz) = R[-B+CT+ DT* +2ET"|
G=H-Ts=5="9 a5 AH;AG

AS =§[—B+CT+ DT* +2ET° + AT+ B+CTInT+DT* + ET’

= %[AT+ CTInT+CT+2DT? + 3ET3]
- R[A +CInT+C+2DT+ 3ET2]

Cp = (5_ﬂj = AC, = ((M_ﬂ) = R[C+2DT +6ET?)
or ) T

8.3-10 a) We expect the solubility of bromine in water to be quite low, so that the molar concentration of
water will be essentially unchanged. Then the change in free energy for the bromine dissolution
process is

g
M n S, 554 o S i,0(M)

G= RT + n—_
M +554 So, M+554 Fio(M =0)

M RTln147M+ 5555 RTln55'55+M

" M +5555 284 M +5555 5555
where 55.55 is the molar concentration of water. Assuming M will be very small, the second term
can be neglected and we obtain

_ M RTIn 147 M
M +5555 284

The results are plotted below.

0307734, !

-3.167164, —y l | |
0 0.05 0.1 0.15 0.2
0.01, M. 02,
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b) At saturation, the fugacity of liquid bromine equals that of bromine in solution. Therefore

S = or 147M =284; so M =01932

Either by using this value in the equation above, or using the graph above, we see that the
Free energy change is zero if the liquid is saturated with bromine.

8.3-11 CO, 1. =3042K F.=7376 bar ®w=0225 T,=1947K
Toluene 591.7 41.13 0.257 383.8
From Prausnitz-Shair Correlation
L
T7.=098; v =06. Assume very little toluene in vapor ycq, ~1
c
oo = Yeo, P (f/P)
o, 1o, (T. P=1013bar)exp{[V (,, (10-1013) bar|/RT}
10

At10bar 7.=098, P.

T

——=0136
73.76

%(Figure 54-1)= 096

f&, =06x7376 = 4426 bar
Now calculate the Poynting correction
55 cc/mol x 8987 bar 1m’
p[298.15 K x8.314x107 bar m3/mol cc * 10° cc}

- { 55%8987 x 10’

exp 5 ;

29816x10° x8314 %10

So ideal “Prausnitz-Shair” solubility
10x096 0213

XCo, T T AL 1A
4426 x1.02

Now consider solution nonideality

Table 7.6-1 Table 8.3-1

Sr =89 Oco, =060
vy =107 Veo, =55

} = exp[0.02] = 1.02

2 _ 2
Iy, = (55cc/mol)¢; (6.0 —8.9)" cal/cc _ 078142
> 8314 J/mol Kx29815 K x0.239 cal/J

4 Vi, o 107(1-x,)
U VX Vo X0, 107(1=xc0, )+ 5%,

O 107(1-xe,)  107(1-xg,)

107 - (107 =55)xc,, 107 =52x,

So to find the nonideal solubility must solve
0213 0213
Xco,

* exp[07814]  exp{0781[107(1- xco, )/ (107 - 5250, )] |
which has the solution x, =0.102 (using MATHCAD)
From Program VLMU with k¢, =00

(using flash with equimolar feed)
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Pressure =10.05 bar

x y
Co, 0.2062 0.9952
T 0.7938 0.0048
Note Fro, = Yco, * P =09952x1005 ~ 10 bar
kco,—r =010
X y
Co, 0.1174 0.9949
T 0.8826 0.0051
Feo, ~ 10 bar
Which is reasonably close to the Prausnitz-Shair correlation result, especially given the difference in
the methods.

8.3-12(a) From the Steam Tables 7 =25°C, P =3.169 kPa
(b) 1atm=1.-10 kPa

Yw = % =0.0313 bar ; remainder is oxygen and nitrogen.

Initial partial pressure of N, =0.79 x(101.3-32) =775 kPa
Initial partial pressure of O, =021x(101.3-32)=20.6 kPa
Mole fraction N, in water xy Hy, = K,
o = 775 kPa/100 kPa/bar __ 0775
> 848x10* bar/mole fraction 848x10*
=00914x107* =9.14x107°
Mole fraction O, in water
Yo, = 20.6/100/bar _ 20.6
> 435x10* bar/mole fraction 100x4.35x10*

=474x107°
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8.4-1 (a)

(b)

From eqn. (8.4-2) we have, at equilibrium, that
x/d(x")=x"g/ (x") for all speciesi
and from regular solution theory we have
RTIng; =V f3(d,- d,)

X1X2 Z]_Z 2

and  G¥ = (xl,+ V) if [dh - ALF = (d-d,)*>.  The critica

X3+ x5
temperature is found from

ﬂZQ B B ﬂZQGX ﬂZQIM
.2 =0= 2 + 2
Ty T,P Ty T,P Ty T,P

where

Q'M = x,G,(T, P) +x,G,(T, P)+ RT(xy Inxy + x, Inx;)
By taking derivatives, we find that

(ﬂzg'MJ _RT and[ﬂzg‘“} _ 25 d)°
T,P T,P

T} e} (Vs * 2V,)°
Thus, setting
?G™ 2G>
( —2 = —2 =0
Ty T,P Ty T,P
we obtain
RT. = 2x1szfK§(d1 ) d2)2 =2f £, ViV o(dy- d2)2 *)
(43 + %, )’ CAERENPY

To find the upper consolute temperature, that is, T,y , We Use (2&] =0 or
X1 /p

R(‘HTCJ _205(d - &) {XZ_ L Bl - b)} o
1
P

T, (Vg + X2K2)3 (V' +x,V5)

Section 8.4

solution

clearly theterm { } must be zero at the upper consolute temperature. Thus, we obtain

[r2, 12
- v + Vi*Vs- Vi,

Kz_ @1'[2)

Only the negative solution isrealistic. Thus, the composition at the upper consolute point is
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Vi+rs-vi,)- v,
(Kz - Kl)

x=1-x,=

Note that this composition depends only on the molar volumes of species, and not their
solubility parameters! Note also, that as V,® 1, x;® 05, as should be expected.

Substituting this result into egn. (*) aboveyields

Y2
Y- )y +V )2 +vE- vp,) - vE-vi

(Kz - Zl)z{(ﬁ + Kg - Kle)VZ - (Kl +K2)}3

RT, =

NGEX

84-2 For G* = Ax.x, wehave, from G = RTIng; = [%J . That RTIng, = Ax; and
LA TN,
RTIng, = Ax?.
(@ The equilibrium curve is one for which G =G: or xlgl =x'g!" for both species (i.e,
i =1, 2). Thus, the equilibrium phase envelopeis the solution to the equations

1- 12 1- 12
x! ex Al u) =x/'ex A )

RT ! RT

- xi')ex;{%;} =(1- ')exp{ARx—ille}

and we have two equations for the two unknowns: x/, x/'

2
(b) Limit of stabnitycriterionis[gj =0, where
T,P

and

1

G =x,G +x,G,+ RT(x;Inx; + x,Inx,)+ Ax;x,
—

QIM Qﬁ’-’(
setting
2 : RT
g =0 yields xx, =—— = x;(1- x)) = x;- x2
w2 ), , 24
11 2RT 1 1 2RT 11 2RT
solving for x; yields x; ==2=,/1- —— or x/ ==- =,[1- —— and x' == +=,[1- —
272 4 2 2 4 2 217 4

8.4-3 (@) Regular solution theory suppose that S* =0, or, since G% = H* - TS*, that G* =H* .
Thisis the case for the C,H - CCl, system, but not for the C;H,-CS, system. Therefore,
regular solution theory is not applicable to the C,H,-CS, system. To test the Hildebrand-
Scatchard model we use
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(b)

(©

2

o Lol g gy

le + sz

Q

at x, =05 weobtain

o _ (05) 89" (05) 61,
~  0589+6))

(10- 9.2)? = 1158 cal/mol = 4845 J/mol

compared with » 105 J/mol experimentally. Thus, we concluded that while the CCl, - C;H,

system has §* =0 and thus may satisfy the regular solution model, it is not well represent by
Scatchard-Hildebrand regular solution theory.
Since G isasymmetric function of composition for the CS, - C;H, system, we will represent

the composition dependence of G* by the one-constant Margules expression G* = Ax;x, with

A=1160 J/mol , so that G* =(x; = Q5 =290 J/mol, asis observed experimentally. For the
one-constant Margules egn., by egn. (8.4-14),

A 1160

Tjc=—=—7—""7"—»70K

2R 27 8314
Thus, if aliquid phase(s) were to exist at very low temperatures, it would exist as two phases
below 70 K, and a single stable phase above 70 K. However, since 70 K is well below the
melting points of either of the pure components, and, presumably, the eutectic point as well (see
section 8.7), no liquid-liquid phase separation will be observed. [Note: we can improve our
estimation of the upper consolute temperature by taking into account the temperature

G
. . T H )

dependence of the excess Gibbs free energy. In particular, from % =- ? we obtain

Gex —dT P
L 4

where we have assumed, for S|mpI|C|ty, that H® is temperature independent. At x, =05,
H® »525 J/mol . Thus

2 1 1
QEX(xlzoaTg:Tz[ D 52 ——H

29815 L, 29815
and, at 7, = 80 K,

G*(x, =05 80K) @62 J/mol , and A(T =80 K) @1848 J/mol

implying an upper consolute temperature of
A

TUC 252111 K
Guessagain T, =7, =105K

G*(x; =05, 106 K)=1056 K , 7;,c =1064 K (whichis close to guess)

Since this temperature is still well below the melting points of the species, our conclusion does
not change, there is no phase separation. We do, however, see the importance of accounting for
the temperature dependence of the excess Gibbs free energy (and activity coefficients)!]

For vapor-liquid equilibrium we have f“=f" P xg,P*®=y,P a an azeotropic point
x; = y;,sothat g,P'® = P for our system
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A 1160
—=————=04365
RT 8314 319.65
also
gcer;PchLp6 =pP= gcschVsaf
or
NGk, +InPC"S‘_’IG = Ingcs, +InPC"§§
or
Py 2
04365¢5s, +In—2t = 04365(1- xcs,)
PCSZ
This equation has, asitsonly solution,
Xcs, @182

which isnot between 0 and 1. Thus, we conclude that no azeotrope isformed. [Note: we could
get a better estimate of G* at the temperature of interest by talking into account the

temperature dependence of G* aswasdonein part b. Then we find that
G%(T=465C, x, =05) =273 J/mol

Thus, the solution becomes even lessrnon-ideal, and an azeotrope will not be formed.]

8.4-4 (a) Starting from

y? )2
x!g! :xAI eXpM :x!lg[l :x“epr(l_—xi)
R~ 1 RT i ; ; RT

which we can solve for 4

A o)

i

RT (1 Y- (- &'y

1

. . A . .
Using the data for benzene (xg =0.48 andxg = 094) yields = = 252, while using the data

for perfluoro-n-heptane yields % = 331. Sincethetwo valuesof 4 are different, we conclude

that the one-constant Margules equation isnot consistent with the experimental data.
(b) Regular solution theory gives

1\2 2 11\2 2

g = 5! Ki(f 1') (dp-d)” |y _ L‘(fj) (dp- dg)
%G =x; eX =x;0; =x exp

RT RT

which, solving for (dp- dg)? yields
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8.4-5

From Table 7.6-1 ¥ ; =89 cc/mol ; ¥, = 0.226 m3/mol from the problem statement. Thus
f L, =02666, f 5 =08605, f, =07334 and f;, =01395

Using the benzene data, we obtain (d,- dg)* =108 cal/mol or d,=d;+33=125 or 59.

Note that we can not choose between these two values solely on the basis of the data here.
Activity coefficient data on perfluoro-n-heptane in other fluids would be needed to fix d,. The

value 5.9 is, however, quite close to the value of 6.0 givenin Table 7.6-1.
Doing a similar calculation to the one above, but not using the perfluoro-n-heptane data
yields
(do-dg)? =775 d, =dgy £28=120 o &
Thus, regular solution theory is also not completely consistent with the experimental datal

The condition for material stability is that d?G >0 for all variations at constant 7 and P. Here
thisimplies

2 2DG )
(gj >0 or equivalently (ﬂ;zm'xj >0.
Thet T,P Thet TP

Looking at the curve in the problem statement, we see that at points B and C thisderivativeis
zero, and between points B and C it isnegative. Thisimplies phase instability or phase separation,
with points B and C being the limits of stability.

The condition of phase equilibriumis

G, =Gy and G, =Gy’ &)

Now from Chapter 6 we have

D . _
DV ix = xl(ﬂ _mlx) =V2-V,
T Jrp
and
DH —
Dﬁmlx xl(ﬂ_—mlxj = H2_ EZ
T Jrp
similarly we have
DG . —
DGy - (“ ﬂ—m'*) G- G, @)
X1 Jrp

Therefore, the equilibrium conditions can be written as

ﬂ DGm|x ﬂ DQmix
e =
and
DG (7, P2") - 4 1Oms) G (7, p, 1) xp TOLis) (3b)
1 ﬂxl

Subtracting the second of these equations from the first yields
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.X'I TI(D(;mn() _ TI(D(;mn() — N 1T(DGmn() _ N 1T(DGmn()
1 x2 | =X X2

ﬂxl ez ﬂxl ﬂ X2

and using dx, = - dx, gives

DG ) = (sl +x2) (DG 1)

(xl + xz) ﬂxl ﬂxi'

or, since xj +x; =1

1T(DGmlx) 1T(DG“mlx) 4
T[xl ﬂxl
Thus, at the equilibrium state not only is G' =G, but eqn. (4) is satisfied also. Using this|last
result in egn. (3a) gives, at equilibrium

DQmix(TyP,ll)- l(ﬂDﬂQm'Xj _ngm( _u)_xlu[ﬂDﬂQmix)
X1 T,P X, T.p

Now egn. (4) implies that the slope of the DG ,;, curve must be the same at the two points at

which the phases are in equilibrium. Further, from eqns. (1 and 2) we have that since G' =G,
thetwo lines have the same intercept. Since the two tangent lines have the same slope and the

same intercept, the lines must be identical, i.e., the equilibrium points are on a common tangent
line.
8.4-6 At thebubble point (assuming an ideal vapor phase)
é. xg;P'® = a yiP =P . S0 x,9,P;® +x,9, F* =P

() (0.04)g,(0427) +(096)(1)(0.784) = L013 bar b g, = 15244

15244° 004" 0427 0.784
SO yg = =0257 and y»y, =096" 1" ——=0743
1013 1013
1l -
e 004" 15244
(b) At equilibrium  xids =xpds P g = XB?B = o0z o gy=1524; also
xB L
(. -
096" 1
| =2wdw 2P 260
Xw 0.6

(c) Since x/g) =x'g' and § x!'d

have a bubble point pressure of 1.013 bar.

g'p'® =3 x!gP"® = P. The second liquid phase will also

8.4-7  Though the overall composition is 50 mole % isobutane, in fact there are really two phases ... one

liquid of composition 11.8 mole % isobutane and the other quuid of composition 92.5 mole %

isobutane. Since, at liquid-liquid equilibrium x)g} = x''g)' an

Pupnie = @ X/OB'® = § x/'g'BY®,

we need to calculate the bubble point pressure for one phase since the other phase will have the
same bubble point pressure. Also, since the pressures are not expected to be very high, we will
assume an ideal vapor phase. So the equations we will use are

xigiPivap =),P and é xg.P'*® = é. »P=P



Solutions to Chesmical and Engineering Thermodynamics, Je Section 8.4

We will use the 92.5 mole % liquid for the calculations.

G sob(Xisop = 0925) = 1019 from the problem statement
Oruri(Xisop = 0925) =2

However, from the liquid-liquid equilibrium condition we have

1 1 -

Xtrf D 0882 1033
xflurfg;urf = xflllirf gHJrf p g;urf (xisob =0925) = furfl . =

Xt 0075

=12148

Therefore

P=8 xg,P=0925" 1019 4909 +12148° 0075" 493" 103 = 4632 bar
; . 4909 _
Yieon = 09257 10197 225-= 0,999,y = 0001

8.4-8 () AtLLE x/g! =x'g)'. Herethisimplies
A 2 A 2
x! exp{— 1- x! }:x” exp{— 1- x! }
! RT( 1) ' RT( 1)

A 2 A 2
(1 st)oxpl(x '} = (1- af)exp| (ot |
These equations are symmetric with respect to the interchange on the subscripts 1 and 2 (that is
replacing x; by x, =1- x; and x, = (1- x;) by x, yields exactly the same set of equations).
This suggests that the equilibrium is symmetric. Of course, that is exactly what we would
expect with the one-constant Margules expression. Therefore, we have

and

xi; =0.0902 xpy = 09098
and
| _ 1 —
Xhon = 09098 Xpop = 00902

(b) Here, asin the previous two problems, the bubble point pressure can be computed from either
liquid phase since x/g! = x'g!' . Assuming anideal vapor phase, we have
XQ,B'"® =y P wd P=3 xgR"®
where the activity coefficients and vapor pressure are given in the problem statement. The
solution (putting all the equationsinto Mathcad) is

P=19657 bar, y,, = 05795, ygc, = 04205

8.4-9  The condition for liquid-liquid equilibrium is x/g} = x''g!' using the one-constant Margules egn.

we have RTIng = A(1- x})z. Now

Gi(x1 = 0097) _ | 0903

0.097 =0097)= 0903 =0903) b In =In
Gi(x, = 0097) = 0903gy(x, = 00B) P In == 02 = 1M o0e7

A 2 P A
=—I|(@- 0097)° - (1- 0903)°|b — =2.768
RT[( )2- ( )%] -
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so that
0 = exp(2768(1- x,)°)
O, = exp(2768(1- x,)?)
Now to compute the pressure in the one phase liquid region we use

P=x g B"® +x,0,P'%®

= l[exp(2.768(1- xl)z)]0.167+(1- x,fexp(2.768x7)313" 10°°]

Xacet P(bar)
0 000313
002 00507
004 00887
006 01186
008 01420
009 01517
0097 01577
Two phase
region ‘
0903 01577
092 01590
094 01607
096 01626
098 01647
10 0167
T e !
as |
— agqren of 2 Lauid phac. —
a4
K T > 8 LD
Tacer

8.4-10 Since we have the concentrations of the coexisting equilibrium liquid phase we can determine two
binary parameters. Also, since we are interested in two different temperatures (LLE at 20°C and
VLE at 734°C) we want an activity coefficient model with some built in temperature dependence
(otherwise, we will get LLE with the same compositions at all temperatures.) Consequently, | will
use the two constant Margul es equation
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p RTlngl = x%(al +le2)
RTIng, = x5 (@, +Byxy)

where @, = 4+3(- ) " B; B =4(-1) B. These equations are to be used with x,g} = x'g;';
X9, = xgh ; x, =00850; x, =1- x]; x;' =06363; x, =1- x}. Putting al thisinto Mathcad, |
find

A=48334 J/mol B =- 19802 J/mol

Now using T = 734° C, the same constants as above, | find

P(bar)  yvex
0.3603 0

0.7241 0540
08313 0617
08601 0637
08696 0.646
08776 0.656
08867 0677
08931 0714
08903 0.775
08718 0867
08337 1000

=
‘gmmnmmbumpoi

Azeotrope s predicted to occur at x,g, » 07287 and P = 08935 bar

¥~

Ly -5 he

Note: LLE does not occur at this higher temperature. If it did the calculated P- x diagram would have
both an interior maximum and minimum as a function of temperature, and the predicted x-y diagram would
belike asideways S, with the x-y line crossing the x = y linetwice.
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8.4-11 TheWilson model is

G®=-RT§ X In{é ijU}

J

L. :Eex - w
vyt RT

1

which, for abinary mixture, reducesto

with

G =- RT{x, In(x; +x,L ;,)+ x, In(x,L ,, +x,)}
and
G™ = x,G, + %, G, + RT (x, Inx; + x5 Inx,)

SO

X X.
G =x0Gy + %G,y + RT| xy In———L—+x,In—2—
+x,L X1k 51+ X
X1 T XLk 12 1k 21T X

Now we look at the derivative of G

(Ej G, G+ RTIn—
T,P

e, X+ 5L
+RTxlxl+x2L12 i( X1 )
X1 ey \xg +x,L 45
+
CRTIN—2 4 ppy, i le( 2 )
by +x X2 ey \xil o + X,
X
=G,- G, + RTIn—2—
= X+ x5l
+RT(x1+x2L12){ L - x(1- LlZ)Z}
X+l (n+xly)
_RT|nL
by +x
-1 L, -1
+RT(x1L21+x2){ - oLz )2}
by tx, (nly+x,)
X
=G,- G+ RTIn—"2—
7 X+ x5l
RT X
+——  Ix+xlL.-x+xL 1-RTIN—2
(x1+x2L12){ 1ol - xtal) ol tx
RT
— I xL,-x,-xL,+x}
(x1L 21+X2) 21 2 2—21 2
=G, G, +RTIn—22 4+ _RTLx
xtxl, xtxl,
- RTIn X, i RTL,,

xloytx, xb,+x

2

Section 8.4
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Then

(ﬂz%j :RTxl+x2lel( X, ) RTL,, =Ly
Wi Jrp X o\l ) (g +x,l o)

_ RTle21+x2 i( Xo )+ RTLZ]. 2(L21- 1)
Xy T\ xbor+x ) (xlog+x,)

RT
=—————{(y txlp)- x(1- L)}
x1 (g + x5l 45)
RT
t——————{(q Ly tx) +xy(L oy - D}

xp(xL o1 +x)

(ﬂZQJ - Rl—i: LT + L3 } -0
2 7 7
e Jrp x(x+ 0l 10)”  xo(ul o1+ xp)

at upper critical solution temperature

Now O£x, £1 and O£ x, £1; inparticular, neither x, nor x, isnegative. Also, clearly

2 2
(—le j >0 and (—LZl ) >0
x+xlq, Xkt x

2
So, for the Wilson model, the only way for [E) =0 isif T=0K. Thus, the upper
1/)r,pP

consol ute temperature for the Wilson model is 7= 0K, and thereisno liquid-liquid equilibrium.

8.4-12 (@) Clearly from
RTIng, = 8163x% we have

G ® = x,RTIng, +x,RTIng, = x,8163x2 + x,8163x%

kJ

= 8163(x; +x,) = 8163 —

X1X2 (x1 +22) = X2 mol
Therefore, the upper consolute temperature for this model is

A4 8163
Toe == =5 mata
2R 27 8314
First do the LLE calculation. At LLE x/g} = x''g)' . Herethisimplies

ol 4|t 7]

(1 st)oxpl (x'f = (1- af)exp| (ot |

where A=8163. The results using the MATHCAD worksheet with this problem number are

=4909 K

and
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Now do VLE calculation. Basisis x; exp(-

T (K) ) Al
250 0.023 0.977
275 0.035 0.965
300 0.050 0.950
325 0.0688 0.9312
350 0.0921 0.9079
375 0.1206 0.8794
400 0.1558 0.8442
425 0.2001 0.7999
450 0.2584 0.7416
475 0.3461 0.6539
485 0.4053 0.5949

2

2

The results using the MATHCAD worksheet with this problem number are

Section 8.4

Ax© Ax”
L 1p¥® =y P andthat § xexp|- —L [P"® =P
RT]’ Y b}x’ P RT |’

P=0.1013 bar P=1.013 bar P=10.13 bar
Xy VH T K VH T K VH T K
0 0 300.18 0 351.56 0 42417
0.01 0.4276 290.08
0.02 0.6305 282.65 0.3185 342.29
0.025 0.1578 418.62
0.03 0.7359 277.28
0.04 0.7959 273.22 0.4892 335.70
0.05 0.2642 414.45
0.06 0.5867 331.07
0.07 0.6197 329.31
0.075 0.3376 411.36
0.08 0.6457 327.84
0.09
0.10 0.6827 325.60 0.3888 409.09
0.125 0.4250 407.45
0.15 0.4505 406.29
0.175 0.4683 405.49
0.825 0.4568 405.41
0.85 0.4718 406.44
0.875 0.4934 407.95
0.9 0.5818 327.24 0.5249 410.17
0.91
0.92 0.6110 328.39
0.925 0.5717 413.43
0.93
0.94 0.6540 330.06
0.95 0.6444 418.30
0.96 0.7503 274.67 0.7188 332.50
0.97 0.7898 275.60
0.975 0.7661 425.85
0.98 0.8409 276.75 0.8216 336.15
0.99 0.9083 278.22 0.8973 338.66 0.885 432.58
1.00 1.0 280.10 1.0 341.86 1.0 438.59
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Temperature, °C

550
500 -
450 -
400 - P =10.13 bar Liquid
350 Vapor

P =1.013 bar Liquid
300

Vapor
/ P =0.1013 bar Liquid\
250 |
200 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Mole fraction of n-hexane

Section 8.4
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360
Vapor
340
VLLE Line
O 320
(o]
s | :
2
© 300
8 LLE Regi
egion
£ g
()
= 280}
260
240 | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Mole fraction of n-hexane

8.4-13(a) Bubble point pressure. Assume vapor phaseisideal. Then
xg,B'®=yP
Solvent

xlexr{lnf—1+(1- ijfz +xf§}Plvap =y,P b flexp[tl— i)f2+xf§}zulvap = P
m m

X1

D

Polyner

X, exp[lnf—z- (m- DF, +xff}szaP =y,P b f, exp[(l- i)f o+ xf g}szap = y,P
m

X2
but for the polymer

B*~0pP y,~0 y~1
Therefore, from egn. (1)

P= Fyipe =F lexp{(l- i)f o taf g}Plvap
point m



Solutions to Chesmical and Engineering Thermodynamics, Je Section 8.4

(b)  Liquid-liquid equilibrium

|
x exr{lnf—ll + (1- i)f'z +x(f '2)2}131""""
xl m
1
= ex;{ln%+(1— i)fg +x(fg)2}Pl"ap
xl m

p f'lexp[(l- %)f b+ x(f '2)2} =f; ex;{(l- %jflzl +af 2)2}

Similarly
f'zexp[(l- m)f ) +x(f '1)2]:f'2' exp[(l- m)f !+ x(f '1')2]
Data needed

(@) bubble point volume of solvent

volume of polymer
solvent-polymer ¢ parameter

vapor pressure of solvent
(b) liquid-liquid equilibrium
volume of solvent
volume of polymer
solvent-polymer ¢ parameter

8.4-14 Consider the condition for liquid-liquid phase equilibrium of a solute assuming that undissolved
solute is also present

7(rpa) =7, (1P a")= 15T Py

or

X1, P,x )T, P) = x'o(T, P.x" )£, M(T, P) = (T, P)

and then

xilg(T, P,ﬁ' ) = xl.”g(T, P,{“) =1

Therefore, if the activity of aspeciesin solution is ever greater than unity, a separate phase pure

(or very concentrated) in that specieswill form and reduce the activity of the speciesin the other
phases to unity.

8.4-15(also available asa MATHCAD worksheet)

8.4-15
—1 R0 1D
V1:=1610 V2:=15.10 w2 chi(T) = 185
V1 T
phill(x11) := x1VL phi21(x11) := 1— phill(x11)
XILVL+ (1— x11) V2
phi12(x12) := x12Vi phi22(x12) = 1— phi12(x12)

x12:V1+ (1- x12)-V2

x11:=0.01 x12:=0.99 x21:=1-x11 x22:=1-x12
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T:=600 Given

In(ph?ll(xn)) + (phi12(x12) - phi11(x11))-(1— 1Y+ enieTy-(phizeexan)— phiza(xi2)2=0
phil2(x12) m

In(phm(xn)) + (phil1(xd1) - phi12(x12))(1— m) + chi(T)-(phit1(x11)’~ phi12(x12)2)=0
phi22(x12)
v :=find(x11, x12) : 0.05979

094302

T:=700 Given

In(w) + (phi12(x12) - phi11(x11))-(1— 1Y+ enieTy-(phizeexan)— phiza(x12)2=0
phil2(x12) m

In(phm(xn)) + (PhiLL(x11) — phi12(x12))-(1— m) + chi(T)-(phi11(x11)~ phi12(x12)2)=0
phi22(x12)
v :=find(x11, x12) V= 0.11360
0.89956
T:=800 Given

In(ph?ll(xn)) + (phi12(x12) - phi11(x11))-(1— 21+ chiT) - (phiza(xan)?— phizz(x12)2)=0
phil2(x12) m

|n(p:§;§’(g) + (PhiL1(x11) — phi12(x12))-(1— m) + chi(T)-(phi11(x11)2— phi12(x12)2)=0
phi22(x

v :=find(x11, x12) V= 0.21265
0.83659

T:=825 Given

In(ph?ll(xn)) + (phi12(x12) - phi11(x11))-(1— 1Y+ enicTy-(phizeexan)2— phiza(xi2)2=0
phil2(x12) m

In(%) + (phi11(xd1) - phi12(x12))(1— m) + chi(T)-(phit1(x11)’~ phi12(x12)2)=0
phi22(x

v :=find(x11, x12) V= 0.25958
0.81687

Section 8.4
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T:=835 Given

In(w) + (phi12(x12) - phill(x]l))-(l— i) + chi(T)-(phi21(x11)? - phizz(x12)3=0
phil2(x12) m

|n(p:z;—gxg) + (phil1(x11) — phi12(x12))-(1— m) + chi(T)-{phit1(x11)2 - phit2(x12)%)=0
phi22(x

v :=find(x11, x12) . [ 0.28957]
080795
T:=843 Given

|n(M + (phil2(x12) - phill(x]l))-(l— L)+ chi(T)-(phiza(x11)2- phize(x12)d)=0
phi12(x12) m

In(m + (PiL1(x11) - phi12(x12))-(1 m) + chi(T)-(phi11(x12)2— phi12(x12)2)=0
phi22(x12)

v :=find(x11, x12) . [ 0.34590]

0.79783

The temperature 843 K is the highest at which a nontrivial solution is obtained. At higher
temperature on the trivial solution of both phases being equal is obtained. Thus, the FH
model predicts that LLE will occur up to this temperature. That is, 916.2 is the UCST for
SAN and PMMA. Of course, at this high temperature the polymers are likely to
decompose.

8.4-16 There are many different algorithms that could be used. One is a sequential one of first testing
for LLE, if LLE does not occur then test for VLE. If LLE occurs, one must also test for VLLE,
etc. In all the possibilities that must be tested for are only aliquid phase as stable phase, only a
vapor as the stable phase, VLE with a liquid rich in component 1 as the equilibrium phases,
VLE with aliquid rich in component 2 as the equilibrium phases, or VLLE.
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8.5-1

8.5-2

Following Illustration 8.5-1 we have
_12399-6,)4

X = 13158
1.987 x 2932
|4
where ¢, = x, —=2—
xVy+xV,
Benzene: V, =89 cc/mol, &, = 9.2(cal cc)”? by iteration we find that x; = 0256 (exp't

=0241)
Toluene: V, =107, 6, =89 by iteration we find that x; = 0239 (exp't =0224)

Carbon tetrachloride: V, =97, &, =86 by iteration we find that x; = 0221 (exp't =0.205)

Chlorobenzene is a somewhat more complicated calculation in that the regular solution parameters
are not available. From Perry's "Chemical Engineer's Handbook", the following data is obtained:

molecular weight = 11256 specific gravity = 1.107
P (Pa) 1333 666.7 13333 26667 53333
7°C) -130 106 222 353 49.7

vap
Using this data we find /', =101.68 cc/mol ; A;L_ITz =005613K™"; AU =39011 J/mol and
AU V2 1/2
o, = ; =958 (cal/cc)/ with these parameters, by iteration, we find x; = 02655
)

(exp't =0.256). Thus, the order of our predictions is correct, but our predictions are between 4
and 8% too high!

We will, again, use regular solution theory. Following illustration 8.5-1, we have

Inx, = -021113(9.9 - 5,)¢#3 — 1316 for a single solvent (1)
and
Inx, =-0211 13(9.9 - 5‘)2 —1316 for mixed solvents @
where
XV,

5= 5 and ¢, = ———
Z¢J o ¢j zx1Z1
I

and the sums extend over all solvent and solute species. The parameters used in the calculation
are listed below

V(cc/mol)  &(cal/ cc)’?
n - hexane 132 73
ccl, 97 86

Since the mole fraction of naphthalene appears on the right-hand side of eqns. (1) and (2), through
the volume fraction and solubility parameter terms, these equations must be solved by trial and
error. The results are given below
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Composition of initial Equilibrium solubility Equilibrium composition

mixture of naphthalene of mixture
Xy Xeet, NA Xno e,
1.0 0 0.079 0921 0
0.75 025 0.107 0670 0223
050 050 0.143 0429 0429
025 075 0.183 0204 0613
0 1.0 0222 0 0778

8.5-3  In the book "The Properties of Gases and Liquids", 4th edition, by Reid, Prausnitz & Poling
(McGraw-Hill, 1987), we find the following properties for biphenyl ;- =789 K, R~ =385 bar,

@ =0372, T, =5293 K. The vapor pressure is given by

PV ap
In

= (1-x) ' [-7.6400x +123008x" —367908x ~2.29172x°]
C

where x =1 _r (liquid range)
Ic
Also, the liquid density is 0.990 g/cc and MW =154.212 The "Handbook of Chemistry and

Physics" gives the following for the sublimation pressure of biphenyl

log,, P(mm Hg) =11.168 - 3959 for 6°C<T<26°C

Neither of these expression is good for the temperature range of interest to us here, but we will use
the expression above. In this way the following results are obtained

T=49°C
B P(bar)  Byyiing J(bar) yplexp)  yp(cale)
1008 x10* 1556 24717 24916x10* 001782 00082
2045 32847 33112x10* 002689 0015
2965 56087 56540x107 003605 0.0295
3794 9.0833 9.1566x10* 003795  0.050

T =552°C
17200 1106 18796 32330x10™* 000447 00112
1326 21310 36654x10* 001031 00038
1672 25961 44654x10* 001829 00095
2525 42237 72649x107* 003516 00265
3346 67474 11606x107° 005615 0.057
4128 105418 18132x107 007918 0290
4699 146018 25116x107° 011054 0325
4827 157081 27019x107° 012669 0335

T=575C
3614 77502 16171x107° 006365 030
4304 114580 23907 x107° 009208 034
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Here the Poynting factor was calculated from exp{

_ pVY. 154212
(P PB) 0.990

. To proceed, we now must
8314-T

choose a k¢, _p value. I have not done an extensive study, but based on the 7'=49°C isotherm,

kco, g =008 seems like a reasonable compromise value. This value was used to obtain the

predicted vapor mole fractions by using VLMU (species fugacity option) and, by trial and error
choices of the compositions, matching the biphenyl fugacity. [Note, if you or your students obtain
a better correlation, please let me know.] Clearly, the overall agreement is not very good. It is
qualitatively, but not quantitatively, correct.

8.5-4 (a)

(b)

From the data in the problem statement, the fugacity of solid naphthalene at 50°C and 60 bar is

fx =111x10 3bar x
(60-111x107)x 0112 bar-m*/kmol
P\ 27315+ 50)K x 83.14 bar -cm’ /kmol x 10° m*/emx 10° mol/kmol

=1425x%10"° bar

The fugacity coefficient for the virial equation of state is
P .
Ing; = (ZZij,-j _B)E ; with B = ZZy,-ij,-j

Now we will assume that y, is small so that yy~0. In this case B=By, and

[22 y_/'B!'l' - BJ = (2 X BN*COz N BCOZ *Coz) $0
J

Ing= {(z X (~0.405) — (~0103)) _ 0bar —
kmol 32315 K x10° 2ok x 8314 x 107> barm_
= —1579 = ¢, = 0206
SO
K(P*PSM)
R GXP[T} -3
Yy = J 129107 607 %1072 = 000692
In 0206

Now using the Peng-Robinson Equation of state. We use the program VLMU (species fugacity
option), at the specified 7" and P, with k¢, =0.103 (as in illustration 8.5-4) and adjust the

composition of naphthalene until a vapor phase fugacity of naphthalene of 1425x107> bar is
obtained. By trial and error, I find yy =0.000225, which is much lower than the virial equation

result. Since, at somewhat different temperatures and pressures, the Peng-Robinson model was
in reasonably good agreement with experimental data, I have more confidence in this result.
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8.6-1 Notation:
N; = total number of moles of species i

N,-J = number of moles of species 7 in phase J

N’ =3"N/ = total number of moles in phase J

. o N/
x;/ = mole fraction of species i in phase J = —

i ZNJJ
J

(a) Two liquid phases
Equilibrium conditions: f! 7,P,x' = f1 7,Px" i=1,2,3
Mass balance constraints: N, = N/ + N/' i=1, 2, 3
Thus we have six equations for the six unknowns N, J ;o J=L1II i=12,3

1
Alternatively, we can treat xll, X, xln, . N' and N as the six unknowns.

(b) Two liquid phases, but species 2 and 3 completely immiscible.

Equilibrium condition fll T, P,El = J_‘IH T, P,EH (1)
Mass balance constraint N, = Nj + N/’ @
Also
N
Ny=N, N'=N{+N, xj=—"—
N, +N,
I I I oo N
N;=N; N =N +N; T
1+ N

Basically, we have two equations [(1) and (2)] for the two unknowns N| and N;'. The other

equations merely relate the unknown N/ and N{’ to the mole fractions that appear in eqn. (1).
(c) Three liquid phases:
f(r.Px)= (1. Px") i=1,2,3
j:l(T’P’EI):j?iIII(T’P,IIII) i=1,23

equilibrium conditions {
1

mass balance constraints N, = N} + N/' + N/ i=1,2,3
Thus we have 9 equations for the 9 unknown N/, i=12,3; J=1,2,3 or

1
I 1 I I I T A0 Al A
Xis Xps X] 5 X0, X 5, % , N, N, N".

8.6-2  Preliminary calculations
MWe .0, =170 g/mol; Ce . = 001176 mol/liter
p-hydroxybenzoic acid
MWe 1,0, =138 g/mol; Cp yy o, = 00145 mol/liter
Notation
I = aqueous phase, I = diethyl ether phase
I I
%EK,.nrc,.“:Q (m
G K,
Also
GV'+C'"v" = N, = initial number of moles of species i
or, using eqn. (1)
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187all
cv! +C"TV= N,

Thus,
N K'N;
i (VI N 1(,71VH) (VI N Kl_fan)
Since diethyl ether and water are so insoluble, and since relatively small amounts of gallic acid
and p-hydroxybenzoic acid will be transferred, I will assume that 7' and V"' are unchanged
during the partitioning process.
Finally N, =V" x C?, where C = concentration of species in the water-phase before it

is contacted with the diethyl ether.

and C' = K¢ =

(a) Here vt=s, =1, Ciaro M = 0001307 mol/liter ;
765 5+ 025
ju C(l:7H605 I 1 0.0145
Cengo, = “ors - 0.005227 mol/liter ; MO, = T T 0.002829 mol/liter ;
- 8
Cluo = Cno, = 0000354 mol/lit
o, =g =0 mol/liter
(b and ¢)
Using 2 batches of diethyl ether, each of 2.5 liters
1* batch
(o] - 20176 _pes ]_[CHO]
GHeOsh o541 Cemo 025
00145 [y [Cno.], go]
[ CH03]1 5+1 CHOs]l
8
After second batch
[Cé‘7l|(,05 ]1 [C(q7ll(,05 ]
[C(I: 0o ] — [ C,HOs _ Kesm60s _ Kesng0s
7 5 2
542 25+m 25+ (25+55)
or, in general
I C87II(,O5 C8711(,05Kc711605
[CC7II()OS] = r n = 1
B < i I [l +K, L]
KC7H605 _ﬁ + Kemgos | C;HgO5 1
[ ] _ C87H605 _ C87H605
C H()OS -VI 1 h - 1 K VI n
KC LHO, -W + K(‘7H605 | [ + C,HO5 VT]

with a similar expression for p-hydroxybenzoic acid. Using these equations we obtain the
following results
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% initial C;H4O5 % initial C;HzO;

in aq. phase in aq. phase

1. 5 liter batch

n=1,v"=5 4445 244

1 ..
2. 25 liter batches

n=2, V=25 3787 0227

5. 1 liter batches

n=>5v=1 3277 0001693

T

Note the huge purification in five stages

8.6-3  Regular solution theory

85,-6,) (5,-6,)
1 =V 2 ( 1 2 : 1 =V 2 1 2
ny,=V,4 T RT ny,=V,4 T RT
Here
Vi =51 cc/mol &y =115 (cal/cc)l/2
Zécu =97 c¢/mol Sy, =86 (cal/cc)l/ :
97x * (115-86)
Inyg, =51 cCLy (115-86)
51xxg, +97xccr, | 1987x2982
2
_ 07239 — 270=n)
51xg, +97(1—xp,)
Thus
Xp; 385x107° 9.6x107 0047 00923 0135 0177 0217
7SSl 2.06 2047 1990 1920 1856 1794 1736
CCly, CCl,
yui” = BB | 2938 2980 3017 2988 2906 2940 2920
XBr

8.6-4  Regular solution parameters
Br, V"=51cce/mol 5=115 (cal/cc)l/ 2
CS, V" =61 cc/mol §=100 (cal/cc)l/2

2
RTnyg, = Klérz ¢%S2 (5131-2 - 5cs2)
In CS, phase, let
x =mol CS,/liter of solution; y = mol Br,/liter of solution

Assuming no volume change on mixing, we then have

0051y +0.061x =1 or oo (1=0051y)
0.061

Now at

extremes of Br, (y =0005=x=1639 x,, =305x 10 Pes, =1

conc. in CS, y=0095=x=1631 x,, =579x 107 Pes, ~ 1
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Thus we can take ¢, ~ 1 over the whole composition range, and

(115-10.0)°
1987 x 29815

Inype? =51x 1 x =0.1937

or 7C52 ~ 1214 over whole composition range. Now
Br,
1 11 I — h
X = aqueous phase
K=—= 7/—11 where )
X7 II = organic phase
I
1_ Y1
=7 =
K
where
. moles Br,
K= xBrZ n aqueous phase __ moles Br,+moles H,0
in organic phase moles Bry

x e S—
Br, moles Br, +moles CS,

Now we expect

moles Br,
moles H,O >> moles Br, g MOISTL0
moles CS, >> moles Br, moles Bry
moles CS,
Data given in problem statement is for
moles Br,
K = liter aqueous solution
- moles Br,
liter CS, solution
Thus
18 liters
K=K = 1000 mol water  __ 02984K'
76.18 liters i
1000x1.263 mol CS,
Also
cs,
}/HZO _ 7/Br2
Bl =
2 02984K’
From which we obtain the following
H,0
y xBrz 7Br2

1/16m 1/4m 1/2m
0005 31x10* 5845 2345
002 12x10° 6248 2436 1343
003 18x107° 6551 2496 1365

004 25x10° 2559 1388
005 31x107 2625 1413
006 3.7x107 2694 1437
0095 58x107 1501

To infer a relationship between 7/gr220 and the salt molarity m I plotted In 7/&?20 versus In m and

various powers of m using the data at y =0.02. I found that the expression lngr—’zO =Ccm™*

gave a very good fit of the data. The parameter C is a weakly increasing function of the bromine
mole fraction; I did not attempt to determine this dependence.

8.6-5 Consistency relation between P** , H and solubility
xH,=F = xﬂ/fPivap = xi??opimp
Hy= i

1
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For a substance above it’s melting point (liquid as a pure component) but only of limited solubility

vap
sat, oo

© 1 i
xi 7/i :1’7/i= sat :>]—Ii= sat
Now in Table 8.6-1 data are for Hin GH = B, = Cyx;H] = x;H; so
HI _ i _ Bvap _ Pivap
! CW waisal Cisal
Example 1: 1, 3 butadiene MW, ; =48+8 =56
- 281 kPa
' 735 mg/Lx (1 g/1000 mg) x (1000 L/m’) x (1 mol/56 g)
=214 kPa/ m’mol = 0214 bar/ m’mol (compared to 0.2016)
Example 2: 1, 2, 4 Trichlorobenzene MW, ¢, =72+3+3x355=1815
, 0039  0039x1815
' 488/1815 488
=145x10"" kPam’/mol
=145x107 bar m’ / mol (compared to 1.44x107° )
Example 3: Aniline
P = 0065 kPa = 65x 107 bar
Solubility =3.607 x10* ppm = 36070 mg/L
. 65x10™ bar
' 3.6070x 10" mg/L x (1 g/1000 mg)x (1000 L/m*)x (1 mol/93.12)

_65x10°°
36070
=1678x10°% =1678x10°° bar/ m’mol (something wrong in this case, compare with 0.138)

Example 4: 1, 2-Dichlorobenzene P** = 0196 kPa =196 x 10~ bar

Solubility =156 mg/L; MW =147.01

B 196107 bar

156 mg/Lx(1 g/1000 mg) x (1000 L/m*)x (I mol/147.01)

=185x107° bar/m3mol (compared to 1.2 x 10_3)

=0.145 kPa m3/mol

x 9312 bar/m’ mol

!
1

Example 5: Ethyl benzene P'* =127 kPa =127 x1072 bar ; MW =106.16
,_127x107  127x107° x10616
7 161/106.16 161

(compared t0 8.96x107° )

=8374x107 bar/m* mol

Example 6: Napthalene P*® =11x1072 kPa =11x10"* bar; MW = 12816

- LIx107* x128.16
317

Example 7: Styrene P'® = 0.88 kPa =88 x 10~ bar ; MW = 104.14

88x 107 x104.14
310

=445x10* bar/ m’ mol (compared to 50x107* bar/ m’ mol)

H = =296x107 bar/ m’ mol (compared to 2.85 x 107 bar/ m’ mol)
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8.7-1

Let T =normal boiling temperature of the solvent; T = actual (elevated) boiling temperature

of solvent. At the actual boiling temperature
(T, P.x) = f(T.P.y) = £ (T3, P)

Since the vapor at the vapor-liquid interface of either a pure boiling species or, as here, a liquid
with a nonvolatile solution is the pure solvent species. Now,

JZIL(TB’PaE) =X 1(£)f1L(TB>P)
So that

— flV(TB’P)
X I(E)_—flL(TB,P)

and

S (T3, P) _ Gy (T3, P) =Gy (T, P)
fl[‘(TBsP) RTB

In[x; ()] =1In
Now following the constant pressure path below

Liquid  Vapor
=T, q p

Liquid  Vapor

we obtain
Ty

AH"™(Ty, P) = AH"™(Ty) + J.ACPdT
T.’\'B
, T aG
AS™™(T, P) = AS™(Ty) + I —5dT
TNB T
where

AC,=C, -Cy

Since AG**(Tyy, P) = AH"*(Typ)— TysAS ™ (Ty) = 0. By equilibrium requirement for pure
fluid at the normal boiling point,

vap
as™(z,) = A" (D)
Typ
and
AGvap(TB’ P):AHvap(TVB) _i +J‘TB AdeT—TB Ty ACP T
B N A T;’VB Typ s T
so that we obtain
vap (-
h'lxl l(xl)zAﬂ—(Tj\"B) 1_& + 1 J-TB AdeT_lJ.TB ACP -
RTB 7?\;3 RT)} Txp RTw T

compare with eqn. (8.7-2).
If AC, is independent of temperature we obtain
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8.7-2

vap
nx ()= (Tw){l_i}mp {1 T\~B_1n£}

RT, Ty A

B T’VB

Furthermore, for small solute concentrations
((x)~1land Inx; =In(1-x,) = —x,
so that
Ly < AE(Ty) {1 L} AG [1 Ty mi}
RTy Ty Ty NB

and, when the AC,, terms may be neglected

AH"™(Typ) ( Ts — T j

—x, =
RTyg Ty
or
(T = Tyg) = ATy = RTpTypXs ~ RZ\Z,sz
1 T A Hvap(IT\"B) A E\"ap( T}\;B)

boiling point elevation
compare with freezing point depression equation

R]ﬁ X

T,-T, = AT =—m2
i AH™(T,)

freezing point depression

Since AH"™ > AH™ | it follows that the addition of a solute depresses the freezing point to a
greater extent than it raises the boiling point!

Since methanol, ethanol, glycerol and water all have -OH groups they are, in some sense, similar.
Also, since no activity coefficient data are given, we will assume that the mixtures involved are
ideal. [One really should go to the library and try to find activity coefficient data for these
systems, or data from which activity coefficients can be computed or use the van Laar constants in
Table 7.5-1]. Assuming ideal solution behavior we obtain, from eqn. (8.7-2).

s [T, - T,
—— (T’”){”’ f}—ACP{l—iﬂni}

[ I I A
Now AH" = 6003 J/mol and from Problem 5.26
AC, = Cp —Cp = (422-21) J/g°Cx18 g/mol = 3816 J/mol°C

Thus, for 7, =0°C=27315K and T, =-12°C =26115

6003 [273.15—261.15} 38.16[ 27315 27315
Inx, = 1

- - - +In } =-01169
8314127315x26115] 8314 26115 26115

Thus x,,, = 08831 to cause a freezing point depression to —12°C, that is, we must add 0.1169
mole fraction of solute.
Let y = grams of solute that need be added to 1000 grams H,O ; m = molecular weight of

solvent.
Thus we need
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¥y

X, = 01169 = +% or y=7354m

S8

Now for methanol m=3204 y=2356g
ethanol m=4607 y=23388g
glycerol m=9209 y=6772¢g
are needed per 1000 grams H,O to lower freezing point to —12°C

Note: suppose we took into account solution non-idealities ... since the van Laar
coefficients for these systems (see Table 7.5-1) are positive, the activity coefficients with be
greater than unity, and In ;o >0. Thus instead of Inx, , =-0.1169 we will have

Inxy o po=-01169 or Inx, ,=-01169—-In , , sothat x,; o will be less than here, and more

solute must be added!

For these solutions the effects of nonidealities are not too large. Using van Laar
parameters in Table 7.5-1 for methanol- H,O at 25°C, we find x = 0881 (instead of 0.8831
here), so that y,., = 2404 grams/1000 g H,O (instead of 235.6 grams here). Below are freezing
point depression data for various aqueous solutions (methanol and ethanol data from the
Handbook of Chemistry and Physics, glycerol data from "Glycerol" edited by C. S. Miner and
N.N. Dalton, Reinhold Publishing, New, York, 1953, p. 270-271). From these data we find that to
lower solution freezing temperature to —12°C we need 16.5 wt% methanol (vs 19.1 wt % in our
calculations), 21 wt % ethanol (vs 25.3 wt % calculated), and 35.5 wt % glycerol (40.4wt %
calculated).
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8.7-3  Assume ideal solutions to begin, also neglect AC,, term

Inx,,,=-

AH™(L)(T,=T,)_ 6003 (273151,
R 7;17} 4184 273.15><Tf
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H,O freezing out EG Freezing Calc at —10°C
xL,DZ o xglng T; T; X,0 H,0 EG
1.0 1.0 273.15 1.00 2.265
0.99 0.986 272.63 179.41 0.0048 1.004 2.090
.95 0.942 270.51 201.55 0.0307 1.008 1.628
9 0.879 267.78 212.86 0.0750 1.024 1.334
8 0.756 262.02 225.52 0.182 1.058 1.096
7 0.647 255.78 233.65 0.294 1.082 1.021
.6 0.549 248.94 239.78 0.400 1.093 1.001
S 0.457 241.31 244.76 0.500 1.094 1.000
4 0.368 232.58 248.99 0.598 1.088 1.004
3 222.22 252.68 1.083 1.007
2 209.09 255.97 1.086 1.006
1 189.90 258.93 1.110 1.003
.05 173.94 260.32 1.134 1.001
.01 145.55 261.39 1.163 1.000
109983 ( 26165 T,
Inxg; =-
4184 (26165x T,
For nonideal solutions
xidcal
X =
280
270 -
260 - ideal and real
250 r
X
- EG t
- freezes water
240 - ouzt freezes
out
230 r
220 r
210
0.0 0.2 0.4 0.6 0.8 1.0
XH20




Salutions to Chemical and Enginggring Thermodynamics, 38

8.7-4 AH,=10,000 J/mol

X Tf component 1
0
.05 172.34
.1 177.82
2 181.73
3 182.79
4 182.92
5 182.76
.6 182.62
7 182.68
.8 183.05
9 183.80
.95 184.34
1.0 185
.99
.98
.97
.96
LLE
xi
T= 195 K 0.458
190 0.357
185 0.304
183 0.287
180 0.264
LLE T. =i=—3250 =19545
2R 2x8314

x=05 T=27315
6003 (273.1 5-T

iven x = exp|— .
given £ xp[ 4184 \ 27315-T

y=1l-x

109983 .(261.65— T

iven y = exp| —
giver p[ 4184 \ 26165 T

For comparison, we also show the results for AH , =5000—

T, component 2

1

0.542
0.643
0.696
0.713
0.736

200
199.23
198.58
197.62
197.06
196.82
196.76
196.69
196.26
194.71
189.91
183.52
131.48
167.5
174.3
178.42
181.31

H T=find(T) T =241307

H T=find(T) T =244763

J
mol

Section 8.7
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Temperature, K

202

200

198

196 -

194 -

192 +

190 -

188 -

186 -

184

182 -

180

Component 2

freezes out first

LLE region
does not \
intersect \

1 SLE region 1

AHr= 10,000

0.0 0.2 04

0.6 0.8

X1

1.0

mponent
freezes
but first

Temperature, K

200

195

190

185

180

175

170

AHr = 5,000 J/mol

0.0 0.2

0.4

0.6 0.8

X1

1.0

Section 8.7
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8.8-1 System: » P energy balance:
System: dU . . I av! I av’t
== Q+W,-P P
¢ a2t dt dt
entropy balance:
as o .
— ==+
i T ¥

Constraints: W =0, system is isothermal, P' and P" are constant thus

. ds . d .
0= T—- TS gen = E(TS) —TSyen
and
du d : cavt o av”
= ==(15)-718,, - P —-pP1
dt dt( )~ en dt
d - d 171 d 1y 10
=—(T8)-T8,,, ——(PV") ——(P"V
dt( )~ TSeen dt( ) dt( )
= %(U— 7S+ PV + PV = ddit =TS,

where we have defined G* tobe G- =U -T7S+ P'v' + Py,
Consequently

dG"

=TS, <0=G = minimum at equilibrium
dt ¢

and
G =U-1S+PV'+PV" =(U"+U")-1(8" +8")- PV' - P"}"
— GI(T,PI,NI)-i-GH(T, PH,NH)

only system variation possible is in N,-I and N,-II for all species i which can pass through the

membrane. However, since N; + N' = constant, dN;' = —dN; . Thus

G = Y NG (. P )+ T NIG (1. P ")

* _ oG} (T, P',x'
(a_Glj :G,-I(T,PI,EI)-%ZN}[ j( I E)]
ON; T.P.N oN T.P.N

and

i

/ ON;

1

= EII(T P! xH)+ZN‘.‘[MJ
i T.P.\

IV jzi

minus sign arises from dN;' = —dN]

Now both summation terms vanish upon application of the Gibbs-Duhem equation to each phase.
Thus we have, at equilibrium, that
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8.8-2

oG" =1 11\ = mn o1
9 =0=G,(T,P,x )-G, (T,P",x
(6]\/;])7,10.1\’,‘, ( X) ( : )

. GI(T, Plyzl) _ C_}iH(T, PH,EH)

for each permeable i species, or equivalently
J;I_I(T’PI’EI) =j;,-"(T,PI,§“)

Let C = number of components
C,, =number of components that can pass through membrane (clearly, C=C,)

The system consists of two homogeneous regions (that can be thought of as two phases), and there
are no chemical reactions occurring.

Since C+1 variables are needed to fix the thermodynamic state of a single phase, there are
2(C+1) apparent unknowns here. However, we have the following equilibrium conditions:

=71 (1 relation)

G'=G" fori=1,2,..,C, (C,relations)

We also know the number of moles of the impermeable species in each cell (they are the same as
in the initial state). However, since this is not information about an intensive property, it is not of
help here. Thus, the actual number of degrees of freedom are

F=2C+)-(1+C,)=2C-C,+1

For a binary system, with a membrane permeable to only one of the species, we have
F=2-2—1+1=4 degrees of freedom
Thus if we specify temperature, the two pressures, and one phase composition, we can, in

principal, compute the composition of the other phase. Alternatively, as in the illustration in this

section, we can specify 7, xlI , x1” ,and P', and then compute the value of P! needed to

maintain equilibrium.

8.8-3 (&) G(T,P,x)=G(T,P)+¢, RTInx, =G, +RTInyx

= ¢, Inx; =Inx; +1Iny;

or (¢, -1 Inx; =Iny, m

(b) molarities of the salts in seawater are in the following ratios:

Mo L Mioggc, Pyggso, = 10 00210 2 00761 : 00598

since the major salt composition is NaCl we will, for simplicity assume only NaCl is present.
When converting to mole fraction from ionic strength; that is, we will assume all z; =1. Also,
we will assume that the addition of sea salt increases the density of the water solution, but
leaves the water molar concentration unchanged at 5556 moles/liter . In this case,

5556

X, =——— 2
Y 5556+21 @)
where / = ionic strength.
Using the data in the problem statement, and eqns. (1) and (2), we obtain the results in the
table below.
To get the osmotic pressure, we use eqn. (8.8-3), or the equivalent relation
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C_;SOIVCIII(T’ PH’XAI"I) = (_;solvent(T’ Pl’x;)

Now

Gsolvenl(T’ P, xs) = Qsolvcm(T9 P)+ ¢sRT1n Xs
T,P") =G (T P) = +V e (P = P')

Qsolvcm ( —solvent Z—solvent

(where we have assumed the liquid solvent, here water, is incompressible), and we will take

x; =1. Thus we obtain

Goonen(T>P")+#RTInx! =G . (T, P') = $,RTInx;

—~solvent —solvent

~(Gowent(T- P") = Goopent (- P1)) ==V

—solvent —solvent ~—solvent

( pl_ Pl)
or
1l
AP=P"—P'=—§ RTIn—"5— = 13784 Inx" bar
—solvent
The osmotic pressure AP is given in the table below.

I X" Inx; Iny, Vs &; AP(bar)
05 0982 -001784 000175 100175 09018 2217
1.0 0965 -003537 000299 100299 09155 44.63
20 0933 -006953 000265 100265 09619 9216
40 0874 -013453 -001262 09875 10938 2028

60 0822 -019557 -0.04960 09516 12536 3379

8.8-4  The program VLMU is used for the calculations in this solution. No value of the binary
interaction parameter k; for hydrogen containing mixtures are given in Table 7.4-1. Therefore, a
number of different values will be tried. The results are given below
Hydrogen-propane system at 80°C and 34.5 bar

Xy, 02801 04452 05935 07298 08215
g 1283 1106 1058 1028 1033
¢ca]c
ky, ¢, =000 1231 1020
Ky, o, =020 1246 1020

ky,-c, =067 1282 1145 1076 1038 1022

Hydrogen-propane system at 130°C and 34.5 bar

Xy, 02649 04715 05449 07827 08354
¢ 122 1116 1096 1047 1038
¢calc

k-, =067 1186 1017

Ky, o, =080 1194
k. =100 1205
ki o, =130 1223 1107 1080 1025 1019
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8.8-5

Hydrogen-methane system at 130°C and 34.5 bar

Xy, 02155 04594 05355 0.7901 08494

g 1223 1134 1125 1115 1121

calc
ki, ¢, =00 1029 1011
ki, ¢, =01 1032 1011
ki, ¢, =05 1046 1011
Ky, ¢, =10 1063 1028 1012

The most obvious conclusion from these results is that the Peng-Robinson equation of state does
not fit the data very well unless very large values of the k; parameter, or binary interaction

parameters, are used. Indeed, unrealistically large values must be used (i.e., of the order of 1,
rather than the 0.1 or less for many other of the systems we have considered). The most probable
reason for this is that the temperature function in the a(7) term of the Peng-Robinson equation of
state does not represent very supercritical components such as hydrogen at the conditions here
very well. In particular, the temperature function

RT? T
a(T)=045724 7 a(T): Jo(T) =1+xk| 1- T
with & = 037464 + 1542260 — 026992w* was obtained by (1) fitting data a long the vapor-liquid
T - 80+27315

saturation curve (i.e., 7. <10) while, for hydrogen we have 7, = =10.64 . Thisis an

enormous extrapolation, and undoubtedly greatly in error. Second, the acentric factor dependence
of xwas found by using vapor pressure data for argon and methane (@ = 0.0) and the normal

paraffins (@ > 0). Therefore, the use of this function with hydrogen (@ = —0.22) also represents

an extrapolation. Since hydrogen is, probably, so poorly represented by the Peng-Robinson
equation, it is not surprising that hydrogen-containing mixtures are poorly described. If this
suggestion is true, then the hydrogen-methane system should be more poorly represented than the
hydrogen-propane system since, in the former system, methane is also supercritical

[7,, _ 80+273.15 _ 1.853)
190.6

Finally, we note that the sensitivity of the fugacity coefficient (or the species fugacity) to
the binary interaction parameters is relatively low for the mixtures considered here in that large
variations in k produce rather small variations in ¢y, .

The solvent is unspecified, but we will consider it to be water, since water in the most common
solvent for molecular weight determinations. Assume we put 0.01 g solute in 0.99 g of water.

Then

0.01
MW,

X — solute
solute 001 099
MW, 18

solute

where MW,

olte = Molecular weight of solute. Therefore

MW, 100 1000 1,000,000

Xoue  1815x107 1818 x10™ 1818x1077
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i)  Freezing point depression using eqn. (8.7-5)

RT? 8314 x(27315)
AT = AH Xsolute = 6025 Xsolute
S
Thus
MW, 100 1000 1,000,000

solute

AT, K 0.1868 01871x10"" 01871x10"*
ii) Boiling point elevation

£V =1013 bar = xy RYP(T) = By (T = 100°C)
B

Assume In PP = 4—
T+C

SO

Inxy, = In By™(T =100°C)—In P**P(T7)
lnxwzln(l—xs)z—xS:_ B + B = Bl 1 _ 1
(Tig+C) (T+0) T+C Tp+C
T100+C—(T+C)}z B(Tipo—T)
(T+CTiog+C) ] (T +C)
Assuming AT is small, so T and 7}, are not very different and

B
For water, from Reid, Prausnitz and Sherwood,

= —Xg = B{

AT =T~Tip

In Py (mmHg) = 183036 —————; so
W & T(K)-4613 5 381644

MW, 100 1000 1,000,000
AT, K 005086 5094x10 5095x107°

iii) Osmotic pressure: AP = RTxoie eqn. (8.8-6)

solute
831410 bar m*/mol K-293.15 K - xg - 750 mm Hg/bar

= AP
18 cm3/mol x 107 m3/cm3

MW 100 1000 1,000,000
AP(mm Hg) 1843 1846 01846

Summary

_ 2
381644 AT = x (37315-4613)

Section 8.8

Freezing point depression: can easily be used for MW =100, may be possible for depression

MW =1000; not likely to be usable for MW = 1,000,000 .

Boiling point: may be possible for MW =100, difficult or impossible elevation for

MW =1000 ; not possible for MW = 1,000,000

Osmotic pressure: Measurable AP for all cases. Possibility of finding a suitable membrane very
doubtful for a substance of MW =100 or 1000, very easy for a protein or polymer or other

substance of MW = 1,000,000 (i.e., filter paper).
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Solutions to Chemical and Engineering Thermodynamics, Je

8.9-1 (also available as a Mathcad worksheet)

8.9-1

kow:=10°°  ksedw = 04-0.05-1.3-kow ksw i=0.4-0.02-1.5-kow

ksedw = 8.221922-10° Ksw = 3.794733-10°

0.0001

(—) _ equilibrium
wsi=t 201 16272100 solubility gami=~  gam- 1.388880-10°
1000 XS
18
H:=210 -1.013-gam H= 28138880 bar/mol frac
kaw := 0.2164-L kaw = 0.020423
298.15
ow:=03-10"° g/g water or ow:=03107° g/m”3 of water
cb :=0.05-kow:-cw ch = 4.743416 g/m”3 water or 4743 ppb by weight
- A i
ca:=kaw-cw ca= 612703910 6 g/m”3 of air
cs :=ksw-cw cs = 113842 g/m”3 of soil
cs =7 .
cs = cs = 7.589466r 10 g/g soil or 0.7589 ppm by wt.
1510°
csed :=ksedw:-cw csed = 2466577  g/m”3 of sediment

- _osed csed = 1.897367- 10_6 g/g sediment or 1.897 ppm by wt.

8.9-2  (also available as aMathcad worksheet)

8.9-2
LKow2 '=3.66 LKow3 =331

i:=0.3 LKow, =552 LKow, =516
S3 :=40000

SO:=27 Sl:=140 SZ:=7OOO

s :=s|'1o‘9 solubility in g/liter
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44710 4
1012:10 °
C= _ Fish concentration in g/liter
1610 3
| 408310 ° |
0.447
CPi = Ci -1000
cP-= 1012 Fish concentration in ppm

16
4,083

8.9-3 (also available as a Mathcad worksheet)
Water =4m®:
fish =200cm® =2 107 cm®” 10°® m*/en?=2" 10* n®
Soil =3m®
air =10- 4- 3- 00002 = 29998 m*
(@) Benzene
vapor pressure (25°C) =0127 bar
solubility in water (25°C) =0.0405mol %

1

sat, - ¥ ¥ ,

~1p g* =———=2469" 10°

8 Oe 9 = 0000405

Hg =g*P'® =0127" 2469 " 10° = 3136 bar/mol fraction
0.2164

Kaw =3136° = 02276
29815

10910 Kow = 213 Koy =135; Kgy = 005" 135 =6.75

Kgy =047 002" 135=108

By amass balance

10” 10° g=4mj, oCap 0 +3MCp sl +29998 M air " Cg 4
+27 10 miy, " Cgpin
= 4CB,H20(9/m3) + 3KSWCB,H20(9/106 g soil)15
+29998 M air” Kpy Gy i 0
+2° 10* m¥Kgy Cg p,0(9/m° B)

10" 103 g

= Cgp,0(4+3 108" 15+29998" 02276+24 104" 675)

Can0 =1048" 10" g/m® =1048 ppb; inwater 1 g/n? =1ppm

1132 103 ¢

10° g soil
Cpar =02276° 1048° 10 °=0239 " 10° g/m’
Cp i = 6757 1048”102 =7.074" 10°% g/m®

Coeon =108 1048 1073 = =1698" 10° g/m?
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(b) DDT Kaw ppr =95 10°*
Kow,ppr = 1549 10°
Proceeding the same way
Copr,o =1793" 107 g/m’® =1793 ppt
Coprar =3332° 10°° g/m°
Coprsien = 138837 103 g/m® = 1388 ppb

8.9-4 (also available asa Mathcad worksheet).

8.9-4
102
Kow =224 Pvap :=3-% bar S:=440 mgl/liter MW :=1575
(0.440)
X = 1575 x = 5.029 10_5 mole fraction of CINO2benzene
1000
18
Gam ::E Gam= 1.989% 104 H '=Pvap-Gam H=0.79%5 bar/mole fr
X

Mass balance: 100 kg = CW*7*10"6 + CA*6*10"9 + CS*4.5*10"4 + Csed*2.1*10"4
Equilibrium relations: CA=Kaw*CW Kaw=0.2164*H/298.15

CS=Ksw*CW Ksw=0.02*0.4*Kow*1.5 (g/m*3)/(g/m"3)
Csed=Ksedw*Cw  Ksedw=0.05*0.4*Kow*1.3

Ksw:=0.02:04-Kow-1.5 Ksedw :=0.05-0.4-Kow-1.3 Kaw := 0.2164-L

298,15
Ksw = 2.688 Ksedw = 5.824 Kaw = 5773 10—4
onie (100-1000)
(7.10°+ 6:10° K aw + 45-10" K sw+ 2.1-10" K sedw)
Ow=933910 °  g/m*3 or 9.339 ppb by wt
Cai=KawOw  Ca=53%210°  gm"3
1000
Cs :=Ksw-Cw Cs = 0.025 g/m”3 or Cs:= Csl_5 Cs = 16.736 ppb by wt

Csed :=Ksedw-Cw Csed = 0.054 a/m”3 or Csed := Csed-%(;0

Csed = 4184 ppb by wt
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8.10-1 Thisisasimple algebraic exercise, so the details will not be given.

8.10-2 Thestarting point for theliquiduslineis

]
e 2 T S e M)y T ]

and for the soliduslineis

S _
X1 =

R e e |

a) Regular solution model for the liquid, the solid phaseisideal
theliquiduslineis
V\(l xl) DHT,0) [, T
u T T2
X =
V\(l xl) DHfUS( D), T e V\(xl) DHfus( w2) . T
RT RT T,ml P RT T2
and for the soliduslineis
V\(le)Z DH fus( ) T
1- exp - exp| - —2—m2/ 11, —
. RT RT T2
X1 = 2
{ W- ) H DH{ (1, {1 H L{ v»(m] p{_ DI}(T, ) {1_ LH
RT RT T, RT T2

So these nonlinear equations must be solved simultaneously for the liquidus and solidus lines,
together with the equations for the second component, and that the sum of the mole fractionsin
each phase must be unity.

[y

b) Regular solution model for the solid, and the liquid phase isideal
theliquiduslineis

of A,
EE s
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and for the soliduslineis

B T T ]

So these nonlinear equations must also be solved simultaneously for the liquidus and solidus lines, together
with the equations for the second component, and that the sum of the mole fractions in each phase must be
unity.

¢) Regular solution model for the liquid and the solid phases, but with different values of W.

Theliquiduslineis
W, (1- x5 - we(1- 25 ey
1- exp[ L(1- xy) 5(1- xp) }exp{ _RS(Tm,z){l_ LH
2

RT T,

m,

X, =
o W (1- le)Z- Wy(1- xls)Z N DHS(T, ) Al WL(le)Z_ Ws(xls)Z N DH(T,, ) .
RT RT Ty RT RT

and for the soliduslineis

s _ ;
X, =
x Ws(l- xls)z_ WL(].' le)z oxd - Dﬂ;{us(]’;ﬂ,l) . L e Ws(xf)z_ WL()CJI_-)Z x| DﬂfZUS(Z;n,z) LT
RT RT 1,1 RT RT

Again, we have aset of nonlinear equations that must be solved simultaneously for the liquidus and solidus
lines, together with the equations for the second component, and that the sum of the mole fractionsin each
phase must be unity.

8.10-3 (also available as a Mathcad worksheet).

Problem 8.10-3 File: 8-10-3.MCD
x11:=0.1 x12:=0.9 T:=225 TUC = 5000 TUC = 300,698
2:8314
Given
2 2]
X11-xp 5000-(1- x11) =x12-6p 5000-(1- x12)
8314 T 8314 T
2 5000 2]
(1-x11)-exp M =(1-x12)-exp ﬂ
8314 T 8314 T

v :=find(x11, x12) V= 0.111
0.889
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T:=20 Given

k

2
(1- x11) exp[ 5000-(x11)
8314 T

v :=find(x11, x12)

T:=275 Given
2
X116 5000-(1- x11)
8314 T
2
(]__ x]_‘l_)-e(p M
8314 T

v :=find(x11, x12)

T:=285

- Given
2
X116 5000-(1- x11)
8314 T
2
(1-x11)-ep M
8314-T
v :=find(x11, x12)

T:=290

- Given
2
X116 5000-(1- x11)
8314 T
5000-(x11)2

(1-x11) exp[
8314 T

v :=find(x11, x12)

]=

]=

]=

1-x12) -exp[

s |

0.169
0.831

5000-(1— x12)*
8314T

-

5000-(x12)?
8314T

|

(1- x12) -exp[

0.256
0.744

5000-(1— x12)*
8314T

-

5000-(x12)?
8314T

|

5000-(1— x12)*
8314T

(1- x12) -exp[

-

0.306
0.6%4

5000-(x12)?
8314T

(1- x12) -exp[

22

0.339
0.661
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T :=298 Given
2 2]
X116 5000-(1- x11) =x12-6p 5000-(1- x12)
8314 T 8314 T
2 2
(1- x11)-exp 5000-(x11)" =(1- x12)-exp 5000-(x12)"
8314 T 8314 T
v =find(x11, x12) V= 0.418
0.582
T :=300 Given
2 2]
X116 5000-(1- x11) =x12-6p 5000-(1- x12)
8314 T 8314 T

2 2]
(1 xu).ap[m]=(l_ Xlz),e(p[sooo-mz)
8314 T

v =find(x11, x12) V= 0.458
0.542

8.10-4 (also available as a Mathcad worksheet)

Solid-liquid phase diagram:
Given: W° =10,000, 7, ;, =800K , 7, , = 600K ; DH} =6200 J/mol ; DHY, =4900 J/mol .

liquid phase ideal:
® solidusline

liquidusline

1 DH! T 1 DH! T @)
—exp ;1(1- —) - sexpi—=%1- —
g; { RT T.)| o RT T,

Start with Equation (1); pick 7, find T'so that (1) is satisfied. Use 7, xJ’ in (2).
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G = exs 22 (5 |

Gt = o5

RT
To find solid-solid equilibrium, use

2s1 _ 7SI SISl — SIS Sl Sl — SIS
fOEAT® gy =gy ad gy =Xx; g

W=10000
X Ty T Liquid — Liquid Eq.
0.0001 599.95 599.73 T xlf xl”
0.05 573.39 476.34 300 0.021 0.979
0.1 543.92 387.62 350 0.041 0.959
0.2 480.02 350.42 400 0.070 0.930
0.3 418.14 366.34 450 0.111 0.889
0.4 378.88 376.07 500 0.169 0.831
0.5 393.54 372.61 550 0.256 0.744
0.6 458.60 351.32 600 0.458 0.542
0.7 545.01 290.99 575 0.322 0.678
0.8 635.78 601.4 0.5
0.9 722.65
0.95 762.83 595.06

0.9999 799.93 799.59

0.975 781.83 698.52
0.925 743.08 472.85

10000

U 2 8314

Ly Il
X101 = x1 G

(1- x)gh = (1- 5 )oh

=60140
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300

700

500

500

Temperature, K
—

S1iLE
SJoLE S1

400 r

S1SE

300 1 I 1 1
0.0 0.2 0.4 0.6 0.8 1.0

X4

8.10-5
w
G =xx,W1- xx —) S0 that
G 1 2\/\( v
NG = N,N, 1- N,N, i w _ NN, W- lesz i W2
- N, +N, (N1+N2) ZRT N, +N, (N1+N2) ZRT

(.HNQQXJ :{ N, NN, }W{ 2N,NZ  3NINZ | W
Wy Jrpy, LNi+N, (N,+N,) (N, +N,)* (N, +N,)* | ZRT

=(x, - xx,)W- [2x1x22 - 3x/x % = x,(1- x)W- xx2- 3x]]

ZRT
RTIng, = (T[NQ J = x2W- x1x22[2- 3x1] W
1 e, ZRT
and by symmetry
RTIng, :(ﬂNQ" J = x12W- xlez[Z- &z]ﬁ
N, TPy ZRT

8.10-6 (also available asaMathcad worksheet).
8.10-6

Treat as freezing point depression problem and use Eqn. 8.5-12.

i=0,1.9 X =1-0.1i
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TO:=1410 T1:=1385 T2:=1350 T3:=1316 T4:=1290

T6:=1261 T7:=1242 T8:=1215 T9:=1090

DCp(T) :=26.606— 23.932— 2.469-10 3T + 4.142:10 > T? R:=8314

D H :=50626 Tm:=1410

T
1 i Ti
Term2 .:E-Lm DRI e - DOP(X) 4y

Tl
=

Tm

-DH T
Teml. = 11— —| — Term2. + Term3.
: 8314-T. Tm, ! :

g, ::;1-e<p (Termli)
I

1.029
1.041
1074 o 2F
1158 —
1341
1592 |

2.005] 0 0.5
2.774 %i
3.809

T5 '=1278
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8.11-1 Clearly, itisonly water that condenses out at the dew point, since O, and N,
arefar above their critical temperatures. Thus, at the dew point
P,‘jjg = Yu,oP = By,0 = partia pressureof H,O inair.
[In writing this expression, all fugacity coefficients have been assumed equal to

unity.]
From the datain Problem 5.12 we have, at the dew point,
54328
In B} = 263026 - ——————— = 78086
2 27315+ 256
and

Pp,’jg = (dew point) = Ry, = 24618 Pa
at the air conditions P,;’jg(T =256°C) = 33549
Bi,0 = Bio(T=206°C)

— - © 100% = 7338%
By (T = 256°C)

b relative humidity =

8.11-2  Equilibrium condition for V-L-Sequilibrium:  £Y o = fii,0 = fi3,0 Where
f_l-\I/ZO = .0 Bam
_f,J,Lzo = vapor pressure of liquid water
fi%,0 = Vvapor (sublimation) pressure of ice.

[Here, again, we have neglected all fugacity coefficient departures from unity.]
Now, in fact, we know that at normal pressures the liquid is the stable phase above
0°C and the solid at temperatures below 0°C. Thus, liquid droplets will stable at
saturation conditions above 0°C, and water (ice) crystals will be stable at
saturation conditions below 0°C.

At—25°C (248.15K) and P =1/2 bar, we have, for equilibrium with the liquid

S ,0 _ P'®(water)

=1644" 103
TH0 " 7 05 bar

[from equating /1,0 = /ii,o0]
For equilibrium with the solid

eq,s _ P'®(ice)
YH20 = 705 bar

[from equating fi0 = /i7,0]

=1268" 103

Thus, if the relative humidity (with respect to equilibrium with the liquid) is only
(1268" 10°/1644" 10°%)" 100% ~ 771% the ice crystals will be stable. At

higher relative humidities it is possible to have water vapor in equilibrium with
liquid droplets in a metastable state, at lower relative humidities the ice crystals
will sublime.
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8.11-3 We will assume, since Hydrochloric acid is a strong acid, that the HCI molecule
will be completely ionized at all concentrations.
Let y =wt% HCl; 100- y =wt% of H,O.

mol HCI/100 grams solution = 2
365

. 100 -
mol H,0/100 grams solution = 180y

. . 2
mol H*, CI" |ons/100 gramssolution =X
365

(100- y)/180 _ 20278(100- y)

mole fraction of water = =
(100- »)/180+2y/365 20278(100- y) +2y

Mole fractions for each solution are given in the table below.
Next, we use the partial pressure (vapor-liquid equilibrium) data. For water, we
have

J_rle_/ =J;v\v/ P xy9whyv" =Ry,

where, again, we have neglected all fugacity coefficient corrections. Using, from
Problem 512, that for InRy® =263026- 543287 inPa;  for bar

In Ry =14.7898- 54328/T and from the problem statement that

InR, = 2.3026(A - gj

we obtain
1
IN(xyGy) - (230264 - 147898) + ?(5432.8 - 2.3026B)

From which we obtain the following results:

y Xy In(x, G ) XwOw Ow = *wOw/¥w

10 0.9012 —-0.19172 0.82554 0.9160 (0.8707)
20 0.8022 —0.53917 0.5832 0.7270 (0.6472)
30 0.7029 -1.16719 0.31124 0.4428 (0.3770)
40 0.6033 —2.12638 0.11927 0.1977 (0.1585)

Note that the activity coefficient for water is significantly less than unity.
[Numbersin parentheses are g,, calculated assuming HCI not ionized.]

8.11-4 Equilibrium between water in air and water in aqueous solution requires that
fii,o = fit,0- Neglecting fugacity coefficient corrections, we have



Solutions to Chesmical and Engineering Thermodynamics, Je Section 8.11

Lo vap _

JH,0 = Xh,094,0P,0 =424x ,09n,0 bar
Tentry in table for
0wt% Na,CO3

Vo Sy _
Try0 = szoP(F) =Vn0P=F0
=1
PH o .
p =——=2 forP, ,inbar
0 424x,, o H20

Let W = wt% Na,CO,; MW, o, =106 g/mol

w
moles Na,CO5/100 g solution = —
,CO;,/ g 106

J7 (assuming Na,CO, is)

molesiong100 g solution = L8 o
106 \ completely ionized
-w

moles H,0/100 g solution = 100

. (100- w)/18 100- w
mole fraction water = =
(100- w)/18+ 3¥/106 100 - 0.4906W

Thus

P, (100- 0.4906/)
O = H,0
H20 4240100 - W)

Vauesof gy, caculated from above equation are listed below:

/4 0 5 10 15 20 25 30

PHZO(kPa) 424 416 405 39 384 371 352
Oh,0 100 1.007 1.010 1.015 1.021 1.023 1.011
XH,0 1.0 0974 0.946 0.918 0.887 0.855 0.821

Qi,o0 (Bssuming 1.0 0.990 0.974 0.959 0.944 0.924 0.891

Na,CO, did not ionize)

8.11-5 x_. = molefraction of air in water (liquid)

ar
. = Par _ Ql?SSkPa '103 Pa/kPa @3 107
H 43" 10" bar” 10° Pa/bar

Henry’s

law
constant

P Xy,0 =1 (Do not have to consider air trapped in water)
At equilibrium
fklfzo:flfzo :f|4\|/zo;

_ pb _ _ : -
P xh,0B10 = B0 = Yh0P = Bip Sincexy,o =1
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[Note: Because of the low pressures involved, we have neglected f/P terms and

Poynting corrections.]
For comparison, in an air-free measurement, we have

— psb
Ri% = Rip = Br
where B isthetruetriple point temperature.
Since Ry = Rij has to be satisfied in both cases, we would obtain the same

triple point temperature in both the air-free experiment, and the measurement with
air.

In the air-free experiment we measure P = R, o and get the triple point pressure.
In the experiment with air we measure P = R, 5 + B, and, mistakenly, assume
this is the triple point pressure; actualy R, o is the triple point pressure. The
error, DP, isequal to the partial pressure of air; here 0.1333 kPa. Thus, we have

DP ., . _ 01333,

% error = — =
B0 0.6113

100 = 218%

[Note: From the Steam Tables, triple point pressureis 0.6113 kPa.]

8.11-6
ﬂGeX 1'[ — —_
§9X:'(1TT) =-qp| RO+ %GT)
P.x Px

|

=-—| RT{xIng,+x,Ing,}
7|,
o o fing;
a-xing ax’( 7 )_

1T

=-RT?Q Xi(—ﬂlngij
Px

= TZP(Q—/T)} = erl{ a x Ing;
2 . 9T P

aTpP

a xRTIng = RTQ x{mj
T ),

T.x i

= RT x.[(ﬂ'”gfj +('"'”gf) }
o L\MInT /. \InPJr,

chz('”ﬁej = -2RTQ xi(—ﬂlngfj - RT?Q x,.(TFlnzgl‘)
"), 7 ), TR

8.11-7(a) Since tartaric acid is a weak acid, we will assume it is not ionized. Letting
z = grams of tartaric acid per 100 grams of water, we obtain
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_ molefraction 2{150 ]

= = Cxy =1- X
of tartaric acid  z/150 +100/18" "V i

Xt

At the boiling point we have x,9,R,* =R, =1013bar. Thus,
gy =1013/x,, Ry . The results of the computations appear below.

z Xy Xy G

87 0.0945 0.9055 0.9445
177 0.1752 0.8248 0.8744
272 0.2461 0.7539 0.8105

Thus, solutionisnot ideal.
(b) Now we use Eqgn. (8.7-2)

DH"™(T,)| T.- T, | DC, T, T
In =. = m L. —=P|1. m 4|p
i 7

From Problem 5.26
Cp(liquid) = 4.22 J/g°C
Cp(solid) =21 J/g°C
Also, from the Chemical Engineers Handbook Dﬂfus= 6008.2 J/mol . Let
y=T,/T, ,weobtain

- 60082 | T 3816, T T
IN(owOw) = so— | 72 1) —— | 1- - +In-2
8314 27316| T, 8314|" T, T,

In(x, Q) = - 26457y - 1]+ 4590[1- y+Iny]

P DCp=3816 J/mol °C

Procedure is to use the data tabul ated above to obtain the product x,,g,, , and

then compute y by trial and error. Below are the results of solving the
equation above, and also of neglecting the DC, term, i.e., solving

IN(34Ghy) = - 26457y~ 1]

T, dso T, dso
© ™ DrwithDC,term DT without DC, term
87 09055  -1595C -1525°C
177 08248 -3376 -3003
272 07539 49,99 4288

8.11-8 (a) Imagine the separation process to occur continuously, as below:

—» X4 moles of pure species 1
1 mole of mixture —» Separator

l T ’ x, moles of pure species 2
Qw
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Massbalance: 0=1- x, - x,
Energy balance: 0=H ;.- xH, - x;H, +Q+W

0
Entropy balance: 0=S, ;. - %S, - X8, + = +57
T
<
Subtracting the product of temperature and the entropy balance from the
energy balanceyields

Oz(ﬂmix - Tgmix)_ xl(ﬂl - T§1)' xz(ﬂz' T§2)+W
or
w=- @mix - xlgl' XZQZ} =- ngix =-RT é. X Inxi - Qex
i=1,2
Thus
W =- RT[x,Inx, + x,Inx,]- Axx,
and
Q=- W[ﬁmix -0 H, - xzﬂz]:' w- H*
However,
WS™/T) B e e 1[G
7|, 7 = ar\ T
b HY =- Tzl{Axl"Z}: Axx, =GP §% =0
g arl 7 G )
Therefore
Q=-W- H¥ =+RT § xInx, +G*- G
i=1,2
or

O = RT{x;Inx; +x, Inx,}

(b) W =0P RT(x;Inx, +x,Inx,)=- Axx, or

TI _ - Axle
w=0 R[x;Inx; + x5 Inx,]

TUC:i

Upper consol ute temperature: R

For an equimolar mixture

7, =—AY2Y2) __ 4 _r°
=0 R[@/2)In(Y2)]" 2  4RIn2 2In2

and, for this case
ucC

1 A
QO=-RIN2%——=-—RT"~"=- —
2In2 2 4

(c) If 4 isafunction of temperature, then

ﬂ‘x - Tzl(ﬂ) - TZ% - Txlxz[ﬂ—A)
ﬂT P P.x

El
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W =-RT(x,Inx, +x,Inx,)- Axx,
as before but

A
Q = RT(xl|nxl + X |an)+ .xler(ﬂ_j
T[T Px

and, for W =0, we have, as before
AJ4R
T =———
In2

. A
but 7Y€ isno longer equal to TR

8.11-9 Atequilibrium G(7,P,x')=G"(T,P,x"); i =1, 2 and along the equilibrium
curve
dG(T,P,x')=dG"(T,P,x"); i=1, 2

Treating 7, P and one mole fraction as the independent variables in this binary
system, we obtain

el
dG'=-§ldT+ Z'dp+(“Gf )dxl

ﬂ;f%n i=12
dG'" =-5"dT+ Z“dP+( i jdyl
T
Equating dG, and dG",
G =
_‘STildT-'- I7zldP+(ﬂq j dxl =- EIIdT'FIZ”dP +(ﬂi) dyl; i:l’ 2
X )r p T Jrp

Now multiplying by y,, summing and rearranging gives

2
A (5 - 5)ar+ & (T - 7" ar
i=1

(T, o (30
=aA V|| d-aAy|—| dx
( T Jrp ! T Jrp '

=0 by the Gibbs-
Duhem equation

-1
b &y - 7")ip =8 5(5 - 5T ay,-(“Gf ] dx,

Sincex’sandy’s are mixed,
the Gibbs- Duhem equation
does not gpply

Since G' =G, A'- 15/ =H"- 15" or § - 5" :(I-_I,-' 3 I-_I[”)/T.

For vapor-liquid equilibrium, with phase | = liquid, and phase Il = vapor, we have,
at low and moderate pressures, that

7,-“ >>I7i| _and I7i|| »%
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Therefore
2 2 2 ral
& RT 18 ,— = & (16,
-8 y—-dP==ay(H - H')JdT - & y,-(—] dxy
=1 P T iz i=1 X1J)r.p
| S )
-RTdInP DH® for y; moles

component 1 and
yo=1- y1 moles of
component 2 from solution.

1 g G,
b -RTdInP=- =DH'®dT- & A7 dx,
T i=1 X1)rp

(ﬂlnP] _DbH"™®
), RT?

8.11-10 (a)  Start from the Gibbs-Duhem eguation for each phase
-S%dT+v¥aP+d xXdGX =0

where K designates the phase, and is equal to I, Il or Il here. The criterion
for equilibrium is
rall

G

1

=G" =G" =G (no need to designate phase on G, )
Along the equilibrium coexistence line
d@jl =d6[-” =d6[-|“ =dG

Also, the pressures are equal in each phase as are the temperatures. Thus, we
have the three equations
V'd_P+x'd_C_;1+x' —dc_;z = Sl
—dT tdrT P 4T T
K"d_P+x:|LI @+xg dGz = §”
dT dT dT
Illd_P+x||| dGl + 11 dGZ

—+x, —=8§

dr ' dr

4

However,
G=H"-T5"=8 xKG b T8 =H"- & G, = (1"~ G))

Using thisresult gives

or, in matrix form
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(b)

v 1l ol - = a v H
_|| dP 1 dGl 1 - 1 dG2 G2 1 o 571
Vil * 2 | =t =G|t x2 r—Sl=—lax b
VIII ar xlll ar r xlll ar r T é xlllﬁlll
_ 1 2 i i

Thus, we have 3 algebraic equations for the three unknowns

(40) (0, B) (4, 5
dT dr T dT T

. . dpP .
Using Cramer’s rule and solving for o gives

lo 17 | |
Ta NH oxox
lo g 1 1
T X H, X X3
ié A
dP_ T i i 1
N V]

I I 1
Vi ox x
11 11 11
\Y/ X1 X2

Thistype of relationship was first derived by Gibbs.
The Gibbs Phase Ruleis F =C- P- M +2
i)  For liquid-liquid miscibility (only one liquid phase)
P =2 (vapor, liquid), C=2 and M =0

F=2-2- 0+2=2 degrees of freedom.
Thusif, at fixed temperature, the liquid phase mole fraction is varied, the total
pressure will change.
ii) liquid-liquid immiscibility (two liquid phases)

P =3 (vapor + 2 liquids)

Thus

F=2-3-0+2=1 degree of freedom

Consequently, at fixed temperature the two phase compositions and the
pressure are fixed. Varying the average mole fraction would change the mass
distribution between the two phases, but would rnot change the composition of
either phase or the total pressure. That is, when two liquid phases and a vapor
phase exist in a binary mixture, the equilibrium pressure depends only on
temperature and not on average composition.

8.11-11 Typesof equilibrium that could occur are;

i)
i)

solid-liquid
liquid-vapor

iii) solid-liquid-vapor

iv)

solid-vapor

Wewill assume

i)
i)

Ideal solutions P - =x, PY®
Ideal gasphase P £ =y P



Solutions to Chemical and Engineering Thermodynamics, Je

Section 8.11

iii) That oxygen and nitrogen are immiscible in the solid phase.

fS=fS=psb,

For vapor-liquid equilibrium, we have £V = f- b x,P"® =y P
For solid-liquid equilibrium we have f5= f- b P =x p'®

Calculation of solid-liquid equilibrium:

1) Assume N, isthe solid phasein equilibrium with the liquid

Thus

2) Choose 7, use datain the problem statement to calculate Pj‘;b and P jp , and

_ b
x Z_P,ﬁ‘;/P,Jap

2

3) Repeat calculation for other values of T
is the solid phase, and calculating

4) Repeat calculation assuming O,

— psub vap
xoz - P02 /Po2

5) At each composition, determine which solid freezes out by determining which

resultsin the highest melting temperature.
[In this calculation, the tabulated vapor pressure and sublimation pressure data
were plotted as In P vs 1/T, and this graph was used for interpolation.] Some

results are shown below:

I(K) R (r)/R(r)
4 0.126/0.4467
38 1.806/4.7867
42 15.427/32.2533
46 89.827/154.80
50 390.93/572.93
54 1356.8/1733.7
58 3934.7/4471.2
62  9873.3/10136.5

63.2

:'xN2

0.282
0.377
0.478
0.580
0.682
0.783
0.880
0.974
1.0

7(K)

45.46
47.62
50.0
52.6
54.35

5 / B®
3.8933/5.5733
10.560/13.733

29.867/34.000
78.667/84.000

= xoz

0.699
0.769
0.878
0.937
1.0

Since the sublimation and vapor pressures below the normal melting point are so
far below the total system pressure of 1 atm (1.013 bar), we do not have to
consider either solid-vapor or solid-liquid-vapor equilibrium.
For the calculation of vapor-liquid equilibrium we use xP'®=yP and

& x,P'® =1013 bar . Thus

P=x B® +(1- x, )R b P- PP = x (R®- P5P)

Therefore

and

xNz

IN, =

P- P

DV _ pva
PNz B R)z

vap
xNZPN2

P

and the procedure is to choose 7, cdculate Ri* and F3™, and then xy, and

In, - Theresults are given below:
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T 75.5 775 80 82.5 85 87.5 90.1 K

R® 1.013 1333 1.849 2467 3284 4.200 bar
Py 0.2187 0.3147 0.4267 0.5867 0.7600 1.013  bar
2

XN, 1.0 0.713 0.455 0.288 0.158 0.074 0
N, 1.0 0.938 0.830 0.700 0.512 0.305 0

Below is the vapor-liquid-solid phase diagram for O, and N, determined by experiment

(B.F. Dodge and A. K. Dunbar, J. Amer. Chem., Soc. 49, 501 (1927); B. F. Dodge, Chem. & Met.
Eng. 35, 622 (1928); M. Ruhemann and B. Ruhemann, “Low Temperature Physics’, Cambridge
Univ. Press, London, 1937, p. 100; and R.B. Scott, “Crogenic Engineering”, Van Nostrand,
Princeton, 1959, p. 286). The main difference between this figure and our calculationsisthat O,

and N, actually form mixed solids on freezing, which we presumed would not occur.

[I am grateful to my former colleague at the University of Delaware, Prof. K. Bischoff for
bringing these data to our attention.]

5 r—T1 1T T T T T T T 1

VQPW FP= L0!3 bar e

%0
85
f=Ta]

- 5
(k)

fo

1=

55

Jo

5
o o 2 3 4 5 £ 7 8 -9 1o

Mole. Fracrron Nrﬁrffeﬂ
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8.11-12 Note: Error in Problem statement in 1st printing vapor pressure of isobutane is

#.5333

& yooo

MPa.

22607

0./333

490.9 kPa not 4.909 kPa.

Based on lllustration 8.4-2 this is a problem in vapor-liquid-liquid (3 phase
equilibrium. Also, from Problem 8.9-10, we have that the coexistence pressure is
constant over the whole range of average (or total) mole fractions for which two
liquid phases exist. From Illustration 8.4-2, one liquid phase is present for
Xigoputane = ¥1 £01128 and x; 3 09284 . For overall mole fractions in the range
01128£ x, £0.9284, two liquid phases exist. To compute the V-L-L coexistence
pressure in the one-liquid phase region, we use (neglecting fugacity coefficient
corrections)  x,0,B'*+x0,5/®* =P  whee  PB'®=4909kPa, and
B/® =0498kPa, and g, and g, (or x,g, and x,g,) are given in Table in
[llustration 8.4-2. Also, the van Laar constants are given there, so g, and g, can
be computed at other compositions. Results are given below

! 40,8 + x9,B% P
0 0 1" 0493 0.493 kPa
0.025 03068 4909 + 09764° 0493 151.1
0.05 05491" 4909 + 09555° 0493 270.0
0.075 07384 4909 + 09371 0493 362.9
0.10 08843 4909 + 09231 0493 434.6
0.1128 0.945" 4909 + 0.914" 0493 464.4
0.9284 464.4

0.95 09582" 4909 + 07325 0493  470.7
0975 09771 4909 + 04318 0493  479.9
1 490.9 490.9

]

' i
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: i

I i
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8.11-13 The vapor pressure of water is 1.013 bar at 100°C. To compute the vapor
pressure of acetone, we fit the data in the problem statement to

InP'*® = A4/T+B and find A=-36189, B =109930 and
P/¥(100°C) = 3650 bar .
(@) To compute activity coefficients, we will use the van Laar model with
a =205, b=150, asgivenin Table 7.5-1. Thus
a 2.05

[+ 2o/ (0L tno)F  [1+13667(xs/ - 3n0))T
b Qe =1050atx, = 08

INgxc =

and
b 150

[1+ b, /@@~ x)f L+ 07317(x, /@~ x,))F
P g, =291atx, =02
At vapor-liquid equilibrium
XwAwhy™ +XacOachrc = P

Ingy

Substituting theresultsfor g,, P'® aboveyields

P =3658 bar
Thus, for all pressure above 3.658 bar only aliquid of composition x,,, =02,
Xpc = 08 will be present.

(b) This calculation is more difficult, since we can not calculate the dew point
“pressure” (at fixed temperature) until the liquid phase composition and
activity coefficients are known. Thus the problem involves a trial-and-error
solution of the equations

YWOwB = VWP Xadachac = YacP, and xpc+ %y =1

where x,,, x,. and P are the unknowns (The g, can be calculated from the
x; using the van Laar equations). By repeated guesses, | find

P=3601 ker, x,, = 0295 and x,. = 0705

Thus, for all pressures below 3.601 bar, only the vapor (of composition
»w =020, y,c =080) ispresent.

Note: One should check the conditions of both parts (a) and (b) to the above
problem for the possible occurrence of two coexisting liquid phases.
8.11-14 Using the program VLMU with kgo,.,c, =011 (Table 7.4-1) results in no

solution at 140 bar and 75°C. However, trying the bubble point and dew point
pressure programs we obtain the following results (at 7' = 34815K )
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Xco, bubble point Yeo, dew point Yeo, dew point
P, bar P, bar P, bar
0.1 12.96 0.001 121 0.9 15.06
0.3 37.93 0.05 1.28 0.92 20.25
0.5 64.15 0.1 135 0.93 24.64
0.7 89.14 0.3 176 0.94 32.02
0.72 91.36 0.4 2.07 0.945 38.56
0.74 93.49 0.5 251 0.947 42.62
0.76 95.52 0.6 3.17 0.949 49.39
0.78 97.43 0.7 431 0.9495 52.75
0.80 99.17 0.73 4.83
0.75 5.25 Program doesn’t
Program doesn’t 0.78 6.03 converge at higher
converge at higher 0.80 6.70 CO, concentrations
CO, concentrations 0.82 7.56

Dew Poent Curve

o 2.5 ﬂv"f a“ d'r

Since the program doesn’t converge at higher concentrations of CO, along either
the bubble point or dew point curves, we have to make an estimate of the CO,
concentration based on the data above. There are two possibilities: (1) The CO,

i
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saturation of the liquid at 140 bar isin the retrograde region at somewhere between
Xco, Of 0.8 and 0.95 [Note, simple equation of state programs, such as VLMU
typically do not converge in the retrograde region, and more sophisticated
algorithms and numerical methods must be used]; (2) at 140 bar only the vapor
exists, that is, al the hexane vaporizes.

An alternative is to use the activity coefficient approach. We do this here using

regular solution theory and corresponding states for the fugacity coefficients. The
starting point is the equilibrium condition

‘xigiﬁL = yif[V

which, for hexane translates to

I\ e V(PR (1)
ngH(P)aHPH eXp{—RT =P ),

whilefor CO, , which is considerable aboveits critical point, we have

L(P = 1013 bar Voo, (P - 1013 bar)
xoozgooz(f ( )) P, oo, exp]I D = Yoo, P(L)
co, 0,

P. RT P

Also, fitting vapor pressure data for n-hexane in “The Chemical Engineers
Handbook” wefind Py®(T =75°C)=1226bar . Also T =75 C=34815K

Next, we have

Ie(K)  Fe(bar)  g(cal/cc)V? V" (cgmol)
n-hexane ~ 507.4  29.69 7.3 - Table 7.6-1® 132
co, 3042  73.76 6.0 - Table 8.3-1® 55
T, P (/P (f-/F) (rV/p)
n-hexane 0686 4715 0732 ~0.08- Fig. 5.4-1
co, 1.144  1.898 ~1.15 065~ Fig. 8.3-1

Thus

- - 6 3 . _
reo,” 15" 7376 exp{ 55" 10° m%mol* (140- 1013)bar

348.15K * 8314 10°° (bar m°)/(mol K)
p xCoz gco2 = 0.8238_)/(:02

}gcoz = Yoo, 0650 140

and

1327 10°%" (140- 1226)
348.15° 8.314 " 10°°
p ngH = 6.628yH

Xy 07327 1226° exp{ }gH =y, 008" 140
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Theideal mixture (g, = 1) solutionis

Yeo, =0.9696 Xco, = 07988 (Easily solved using
vy = 00304 xy =02012 Mathcad)

To obtain a more accurate solution, regular solution theory will now be used to
computethe g;’s

V2, (dy - doo, )
RT

Ingy =
and

2 2
INGeo, = Kléozf H(dH ) dcoz)
°2 RT

using the ideal solution as afirst guess and iterating, or using Mathcad and solving
directly, | obtain the following

Yeo, =0.9620 Xco, = 07747 Qualitatively in agreement
vy = 00380 x, =0.2253 with the P-R e.0.s. results.

Note the enormous solubility of carbon dioxide in hexane and, indeed, in reservoir
crude! That iswhy carbon dioxide has been used in enhanced oil recovery (crude
oil swells so more is recovered, and viscosity drops so the trapped oil in the earth
matrix flows more easily.)

8.11-15 Possibilities: 1 liquid phase

1vapor phase

2 phases vapor + liquid

2 phases liquid + liquid

3 phases liquid + liquid + vapor
We will assume that only one liquid phase exists and show that this assumption is
correct.
From the datain the problem statement

PI¥ =09475bar and P55, = 08879 bar
The bubble point pressure of an equimolar mixtureis
P=8 x0,B"® =05exp(0896 "~ 05”)(09475+08879) =1148 bar

Since the applied pressure is 1.8 bar, no vapor is in equilibrium with an equimolar
mixture at the specified temperature of 75°C. Now we have to check to see
whether one or two liquids are present at equilibrium. To determine this we start
with

A
RTIng; = 4% P Ing; - Exf = A6F

with 4¢= 0896 given in the problem statement. Therefore 4 = AQRT = 0896RT .
Now from egn. 8.4-14 we have that the upper consolute temperature (the highest
temperature at which two liquids exist) for the one-constant Margules equation is
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A _ 0896RT
Tye =——= = 04487 = 15597 K
2R~ 2R

This temperature is so much below the system temperature of 348.15 K, that the

single liquid phase is the stable phase. Therefore, the equimolar mixture at 75°C
and 1.8 bar is stable, and the only phase present.

8.11-16 For an azeotropic mixture, from egn. (8.1-3)
g,- = P/ F;vap
0.2747
=05) =
Oe(xc ) 0246

0.2747
x. =051 =
gu(xc =05 = 2202

=11167

=11258

Since the two activity coefficients are so close, and the azeotrope occurs near
0.5 mole fraction, so | will use the one-constant Margules equation.

G*(x, = 05))

o = xcINge + x5 Ingy = 051In(11167)+ 0.49In(11258) = 011435

= Axcxg = A(051)(0.49) = 011435
A=0.4576 therefore G* =8.314 (273.15+40) " 0.4576 = 1191xcx;
RTINg. =1191x; or g, = exp(0.4576x3)

RTIng, =1191x% or g, = exp(04576x7)
P(xg) = xc exp(04576(1- x)*)0246 + (1- x5) exp(04576x2 )0244

Also
x. exp(Q4576(1- x)*)0246
yelxe) =
P(xc)
1 0.28
P.
I
y 05~ I — 026
- P
L L
0 0.24
0 05 1 0 05
X. X, Y.

b) The LLE upper consolute temperatureis
A 04576 31315° 8314 — 7165K

T ~=—=
UC ™ oR 27 8314

which is much below the freezing point of each compound.
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¢) Freezing point depression

fus
In(xQs) = - DA (7;’50"’3'“)(3- 1 j or
SIS,
R T 7;n,szolvent
1__1 R In(xQg;) or
- - s SIS
T Tm,solvem Dﬁf (Tm,solvenl)
T = Tm,solvent

_ R Tm,solvent
e
Dﬁ ( Z:n, solvent)
For cyclohexane freezing

27315+ 66 _ 279.75

In(xsQs)

T= > =
1. 8314 (27315+66) In(x Q) 1- 08844In(x,gg)
2630
For benzene freezing
= 27315+553 _ 27868
1. 8314 (27315+553 In(r.g.) 1- 02378In(x.9.)
9953
400
Tc.
|
200~ .
™
0 |
0 05 1

8.11-17

J=- %N(rﬁ + RTInx,g;) = CDNx,

a) x,D[NInx, +NIng,] = DNx, = xlDo|:i+ ﬂlngl}

X1 s
D= DO{1+—1“”91}
ﬂ |nx1

RTIng; = A(1- x)?

A 2
b) ﬂln ﬂ|n T”I”I ﬂ(_xz)
G, NG __ NG ART )= 5y,
Minx, Ty Tix, Tz
fing, ( 24 j
D=D.|1+ =D,|1- —
[ ﬂlnxj o\ R

C) 1) Infinite dilution x, ® 0 and D® D,

Section 8.11
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- . A
2) At LLE critical point Ty :Z a x=x,=05

272" R’ T
D=D,|1-———UYC =0
R Tyc

3) Negative deviations from Raoult’slaw P A4 is negative

D= Do(l- %xlxzj with 4 negative, D > D

8.11-18 (also available as a Mathcad worksheet).

8.11-18

Section 8.11

gPinf:=16 gHinf:=6.34 PvapP:=20.277 PvapH :=28.022

Using the van Laar equation
a :=In(gPinf) b :=In(gHinf)

i:=12.99 X '=0.01i

P = I — H'=epg| ——M
gF =ep 2 9 =ep 12| P PvapPgP + (1-x) PvapH-gH,
| b |
1+— 1+—
1- X a X
50
o (xl-PvapP-gPi)
P, yh = P
X.

0920522, 1

YR o5 .

.0.097206, I
0 0.5 1
.0.01, X; 0.99,
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So this system exhibits either azeotropy or LLE. Test for LLE

x11:=0.01 x12:=0.90
Given
x11-exp ;2 =x12-exp a >
l+i x11 1+i x12
b 1-x11, b 1-x12
b b
(1- x11)-ep —_— =(1- x12)-exp -
l+£ 1-x11 1 b_1—x12
a xia a Xx12
y =find(x11, x12)
x]_'L::y0 x11=0.113 x21:=1- x11 x21 = 0.887
x12:=y, x12 = 0.684 X2 '.=1-x12 x22 = 0.316

x12 = 0.684

So there is LLE



Note that many of the problems in this chapter can be solved relatively easily with two
programs. The first is CHEMEQ which makes the calculation of the chemical equilibrium
constant at any temperature very easy. The second is an equation solving program, such
as Mathcad, for solving the nonlinear algebraic equation(s) which result. It is advisable
that students know how to use both. [l have used Mathcad for many of the problem
solutions reported here.]

9.1

From Equation 9.1-18

-DG,,(25C) _  -17,740
RT 8314 29815
b InK,=-71566and K, (T = 25°C) = 77967 10°*

InK,(T =25°C) =

Next using Eqn. 9.1-23b with Da =16.736 J/mol K ; Db =Dc=Dd =De=0 gives
[Note: Error in problem statement of first printing. DC, =16.736 J/mol K not
kJmol K]

KT =500K) _Da =500
K,(T=29815K) R 29815

1
+E[' DH,,(29815)+Da” 29815500 *- 29815]

_ 16736 500
8314 29815
+ L[- 55,480 + 16736~ 298.15'_(i - L)
8314 500 29815
= 10407 + 82228 = 92635
INK,(T =500K) =InK, (T =29815)+ 9.2635= - 71566 + 92635 = 2107

b K,(T =500K) =8225
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9.2

Mass Balance Table

Species In Out Y ¥:(X = 09436)
IPOH 1 1- X (1 Xx)/a+Xx) 0.0290
Prop 0 X X/1+X) 0.4855
H, 0 X X/(1+X) 0.4855
Total 1+ X ® calculated after X was
found below

Now K, = dp,dpop _ X*(P=1013 bar/l bar) _  X* _
Qpon 1+x)(1- X) @- x?

X*=K,0- XP; (+K)X* =K, or X =K [1+K,);

K, =8225P X =09436P 9436% of alcohol isconverted.

Reaction: CaC,0, = CaCO, +CO

a a
K, = %03 0 - aco = Ro
Acoc,0,
T(°C) 375 338 403 410 416 418

P = Po(kP2) 109 400 1786 3333 7825 9118
K,= P, /100 00109 00400 01786 03333 07825 09181
Ik, 45282 —32.315 ~1.7356 —1.1112 —0.2581 -0.1052
7(K) 64815 66115 67615 68315 689.15 69115

_RTINK, = DG:]X” 24401 17763 9.757 63113 14788 0.6351

kJ/mol CaC,0,
reacted

d(DG./RT InK DH,
Now ( rxn/ ) - d a — _ rzn (1)
dT dT RT

DHy, - DGy
— 7 @

Plot thedatafor InK, vs. T. It falls on areasonably straight line of slope ~ 0.106.

dInk .
n%, ~0103. Thus, DH°_ @0.103RT?, which follows from Egn. (1). Once

e rxn

and DSy, =

DH®  is evaluated, Egn. (2) can be used to get DS°

xn rxn -’

below:

The results are given
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7(°C) 375°C  403°C 418°C
DHP 358.7 3904 4009 kJmol CaC,O, reacted

rxn
DS, 0.5159 0.5630 05984 kJmol K CaC,0, reacted

-2
-6 | | | | |
640 650 660 670 680 690 700
Temperature (K)
9.3 Reactions: C+CO,(g) =2C0O(g) @
2CO(g) = 2C+0,(g) @
Mole balance table
Species Initial Final Vi
C J—
Co, 1 1- X, (1- Xl)/(1+ X -X,)
co 0 2X,- 2X, 2(X,- X,)/1+ X, - X,)
o, 0 X, Xz/(1+X1- X,)
1+ X, - X,

P
a; :y‘—:y,. since P=1bar
1bar
(@ From the progran CHEMEQwefind that K, (7 =2000 K) = 39050

at7=2000K K,,=2445 10"p K,, ~0, X, ~0and K, = 39050

2 2
K = a(Z:O - 4(Xl - XZ) @ 4(Xl) b X12 — Ka,l =1
T aclco, (1- X)A+X, - Xp) ~(1- XA+ X)) 4+K,,

(as one would expect with such alarge equilibrium constant)
(b) At1000K using CHEMEQ
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Chapter 9
K,(T=1000K)=1835
K, (T =1000K) =3984" 10 %

1835

X, =,/——— = 0561
V4+1835

Thus, the composition of the gasleaving the graphite bed is

Species 2000 K 1000K
CO, 2504° 10° 0.283
Cco 10 0.717
02 0 0
94
K =exy- DG&T‘I = exp{ﬂ} =03147
‘ RT 8314° 20815
- (TP v,
= et here g, = — LA - exp{i(P -1 bar)}
graphite f(T,P =1bar) RT
TPoynting correction
terms assumed

incompressble solid

%giamond — exp{l/ gm (P - 1ban)/RT} = exp (Kdim 3 Kgr)(P' 1 bar)
Yyraphite eXp{Kgr (P -1 bar)/RT} RT

where

12 g/mol
v, =329m9 51168 co/mol = 34188 10°° mmol
'am 351 g/cc

_ 12 g/mol
—o@h 925 g/ec

- - _ _ D 0 _
In0.3147:(34188 53333(P- 1) cc-bar _ - DG 2866

—I'Xn = J/mol
RT R
b p-1bar= 2866 J{mol _

RT
19145 c¢/mol

=53333 cc/mol = 53333° 10° m*/mol

14970 J/cc = 14970 bar

or P=14971bar .

Thusfor P <14971bar ; Jdan > K, and graphiteis stable phase
Agraph

for P >14971bar ; Zdan < K, and diamond is stable phase
Agraph

P Need a hydraulic press capable of exerting 14971 bar to convert pencil leads to
diamonds. (Also, should consider a higher temperature!)

9.5  For convenience, writereaction as N, + O, = 2NO,,
Species balance table
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Species

Initial Final Y
0, 1 1- X (1- X)/4T762
N, 0.79/021=3762 3762- X (3762- X)/A762
NO 0 2X 2X/4762
4.762
Since P=1013bar ; a; L
1bar

K = Y ﬁo _ (2X )2

L= = which has the solution
N, Yo, (1- X)(@3762 - X)
= 22381+ {19073 +15048/K

Chapter 9

(4K,)- 1
Using the program CHEMEQ and its data base the following results are obtained
(which agree with Figure 9.1-2)
T°C) 1500 1600 1800 2000
K, 09795  10* 01924" 10° 05861 10° 01455 1072
X 0.0094 0.0133 0.0231 0.0361
T°C) 2100 2200 2400 2500
K, 02154° 10° 03077° 102 05718 102 0007487
X 0.0438 0.0520 0.0701 0.079%
T°C) 2600 2800 2900 3000
K, 0.009539 001450 0.01732 0.02028
X 0.0893 0.1086 0.118 0.1269
9.6 (a From Appendix IV
(0] [0}
DH DG,
Na,SO, X0H,0 -4322.5 —3642.3 kImol
Na,SO, —1382.8 —1265.2
H,O -241.8 -228.6

b DH,(T = 25 C) = (- 43225)- (- 13828)- 10(- 2286) = - 521.7 kJ/mol
DG (T = 25°C) = - 911 kJ/mol

b InK(T=25C)= — 2210 _ 36751
(8314~ 29815)

K,(T =25°C) =9139 " 10"°

Now
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10
% = ANa,S0 440H ,0 — [lbarj =09139" 10"
a 10 '

INg,s0, X0 \ B0

P By (25 C) = 2503" 10°2 bar = 00253 bar

(b) At15°C. Since 15°Cisnear 25°C we will correct K, for temperature using only
the DH? term,i.e.

xn

K(T=15C) _ DH’, ( 1 1
K, (T =25C) R \28815 29815
K (T =15C) = K (T = 25° C)exp(7.304) = 1358 10"

R,,(15C) =1221" 10 bar =0.01221bar

) =73438

Experimenta data (Baxter and Lansing, JA.C.S. 42, 419 (1920))
Ry,0(0°C) = 0003693 bar

By o(15°C) = 001228 bar
Ry,0(25 C) = 00256 bar

9.7 (aso available as a Mathcad worksheet)

a
K= =2%%  gpnce 4 =1 (solid), and P=1bar= standard state
acasz ysz
pressure.
Species balancetable:
Species Initial Final Y, K,=X/(1- X)
C — — —
S 1 1- X 1- X) b or
CS, 0 X X X = K,/(1+K,)

1

Using CHEMEQ | find K, (750°C) =8478 and K_,(1000°C) =6.607 . Therefore
X(750°C) =0894 and X(1000°C)=0869. X =)s, is the percentage
equilibrium conversion of sulfur.

9.8 (a Ba(NO;), solution

1= %é. Z2C; = El{(z)zcsa + (1)2CN03 + (1)2CA9 +(:DZCC'}

1
= E{4CBa + CNO3 + CAg + CCI}

but Cag =Cy =Cagar 5 Cga = CBa(NO3)2 ; Cno, = 2Ceanos)2
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1
1= E{4CBa(NO3)2 +2Cga(noy), t 2CAgCI} =3Cga(N0,), T Caga

Ceanog), Caga I JT InK, , where

Ks = Cg\gcl
2111 10* 01309° 10* 64639° 104 2542° 10°? —22.4873
7064”104 01339 10* 213259° 10* 4618° 102 —22.4420
44027 104 01450 104 132217 104 11498° 10°°  -222827
560" 104 01467 10* 168147 104 12967° 10°2  —22.2504
(mol/liter) (mol/liter)

(b) La(NO,;), solution
Using similar analysisto that above yields 7 = 6CLa(NO3)3 +Cagal -

Clawoy), Cagal I I InK_, where
Ks = ngcl
1438° 104 01317° 10% 87597 10* 29597° 102 224751
5780° 10* 01367  10* 348167° 10% 59006" 107 —22.4006
166" 104 014327 10% 997432° 10% 99872° 102  —22.3077
2807° 104 01477°10% 168568 10% 12983" 102 —22.2458
(mol/liter) (mol/liter)
W sglibliﬂr\[ 1A B..‘W‘_
4 = solublty 14 La o),
& = _fg.nhlkll- 14 ENO
-iz.0 {I.,I‘.Eur-rmﬁ % =33 -
Ao & _ el =
- 22.2 i
#__ g -.“
-22.4 S
t"- - =
-‘__ -
-22.6 1o ot 2.0 ¥io”
NI (mol Nitens

Except for the single point or high ionic strength (AgCl in KNO,), al the data

fall onastraight line.
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9.9 For BaSO,=Ba" +30, " ,wehave

_la 1. 2 - -
1= 5Q M, @ {2C +2Cy, | =4Cae0, =4S

i i

where S =solubility of BaSO, in moles/liter

aso K, = Goa+Cq, - = $?. Note we have neglected the difference between M
4

and C. Thus
T(°C) a(Table7.6) S K, =52 JI=24/s
5 1.140 156°10°% 243 10 797103
10 1..149 16.7 2.789 8173
15 1158 183 3349 8556
20 1167 198 3920 8.900
25 1178 216 4,666 9.205
(mollite)  (mol/liter)?  (mol/liter)?
n,+n_ o
Now K, :% and K, = gn[firn_ . K°=K,(Amold)™™ or
K.°

and

a

~ (Lmolal)™ ™

InK, =InK °- In}*"™
= °+ +
InK, (nBa++ N, szaHzSOA__ |a«/7

=InK,*+2X2" 2a = InK,*+16a/T

or K,°= K, exp(- 16avs) = 5% exp(- 16a/5).
Note that K, isthe equilibrium constant for the reaction

BaSO,(s) = Ba"*(ag, ided 1 molal) +S0; " (ag, ided 1 molal)

D
and % =-RInK,. Thuswe have
° o ° DGixn
UG Ks |nKx — =-R ana Dern Dern Dern

5 2261° 1010 —22.2100 184.654 20490 51,362 -110.99
10 2.587 —22.0754 183535 21234 51968 -108.54
15 3.0%4 —21.8964 182.047 21991 52457 -105.73
20 3.607 —21.7430 180.771 22760 52993 -103.13
25 4.275 —21.5731 179.359 23543 53476 -100.40

(mol/lit)z ( J ) (¥mol) (¥mol)  (Imol)
mol K
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DG,,,/T isessentialy alinear function of 7 as can be seen by plotting the data.
Also, from the plot we have

ﬂ(Dern/T) - D(Dern/T)

~-026485 J/ mol K2

ar Dr
However
T H T
We/7) _ ~—=b DHy, =- 72 0%/ D) _ 256485
ar T r
Finally
DH - DG DH 1y - DG
DS = —T p Dern = =0 T o

Both DH,,, and DS,,,, aregivenin thetable on previous page.
9.10 (also available asaMathcad worksheet)
(@) Using the progran CHEMEQ, the following results are obtained

rxnl CyHg+3H,0=3C0O+7H,
rxn2 CsHg+6H,0 = 3CO, +10H,

rxn Ka Ka DH(r)xn DGr(;n DH(r)xn DGr?(n
1000 K 1100K 1000K  1000K  1100K  1100K

1 01343 10°% 04806 1044 537260 -213.030 538140 -28811

2 03332 102 03851 10 432380 220590 436440 -286.09
All energiesin kJ/mol of CsHg

7 3 10 3
ay. a ay  a,
(b) K,;=—*—— and K,, = —2—2 where, since P=1bar
dc,HgH,0 dc Hg9H,0
_yP _
a =—=y..
1 lbar yl
Species balance table
Species In Out Vi
C;Hg 1 1- X - X, (1- [Xl+ Xz])/é
H,O 10 10- 3x, - 6X, (10- 3X, - 6X,)/a
Cco 0 3X; 3x,/a
Co, 0 3X, 3X,/4
H, 0 7X,+10X, (7 X, +10X,)/4
& =11+ 6(X, + X,)
Thus

27X3(7X,+10X,)’
(1- X,- X,)(10- 3X,- 6X,)}(11+6.X; +6.X,)°

Ka. 1
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27X3(7X,+10X,)"°
(1- X;- X,)(10- 3X;- 6X,)°(11+6X,+6X,)°

Ka,Z

Also

Ka1 _ X3(10- 3X;- 6X,)°
Kap  X3(7X,+10X,)°

In view of the very large numerical values of the equilibrium constants, we
expect X, + X, ~1. Using this approximation we get

27X 3(7+3X,)’ _ _ 27X3(7+3X,)"°

T - )7 360 (- X Xo)7- 35,017

and

13
Koy _ X37- 3%, | (Kaa |7 _ X4(7-3X5) _ (1 X,)(7- 3X,)
Kaz  X3(7+3X,)° Kaz2 X,(7+3X3) Xo(7+3X3)

Note that this last equation is a simple quadratic equation for X, given K,
and K,,. Also, then X, =1- X, .

(c) a1000K: X, =0527; X, =0473
a1100K: X, =0.603; X, = 0397

Thuswe obtain
Species 7;(1000 K) 7;(1100K)
C,Hg 0 0
H,O 0.328 0.342
(0/0)] 0.093 0.106
Co, 0.083 0.070
H, 0.495 0.482

9.11 (also available asaMathcad worksheet)

. 1
Re&“on: %2 +502 :$3



Solutions to Chemical and Engineering Thermodynamics, 3e

Chapter 9

Species balance table

Species Initial Final Y
So, 1 1- X _1x
338- 05X

1 1 21- x

02 - _(1_ X) L
2 2 338- 05X

N, 1,079 _ 188 188 188
2 021 338- 05X
S0, 0 X _X
338- 05X

338- lX
2

P
Since P=1013bar ; a, = 21— = 1013y,
1bar

dso, Vo, X(338- 05X)¥?
Y2

K. = = =
P agad? v yEE 1013771 x)¥¥(05)V?

The chemica equilibrium constant for this problem was calculated using the
program CHEMEQ and then the problem was solved using Mathcad. The results

appear below
T C) K, X V=0, Yo, Ys0,
0 1016”104 ~1 ~0 ~0 03472
100 08625 10° ~1 ~0 ~0 0.3472
200 01012° 10 0.9998 6148 10° 3074° 10° 03472
300 01265 10°  0.9967 0.001139 0.000569 0.3459
400 (05903 10° 0.9750 0.008635 0.0004317 0.3371
500 (06188 10?9 08935 0.0363 0.0182 0.3046
600 01104° 10? 07090 0.0962 0.0481 0.2343
700 02847 10t 04569 0.1723 0.0862 0.1450
800 0.9566 0.2467 0.2313 0.1157 0.0757
900 0.39%51 0.1252 0.2637 0.1319 0.0377
1000 0.1863 0.0655 0.2792 0.13% 0.0196
1100 0.09969 0.0366 0.2866 0.1433 0.0109
1200 0.05862 0.0220 0.2903 0.1451 0.00652
1300 0.03722 0.0141 0.2923 0.1462 0.00418
1400 0.02518 0.0096 0.2934 0.1467 0.00285
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a !

X.
|
YSO02 i
0.5 =

Y 02i
YSO3 i

LOJ 0

0 500 1000 1500
O, T; 1410°,

9.12

Reaction: C,H,+Cl,=C,H,Cl,
However, C,H,Cl, isaliquid at 50°C — 2 phase reaction!
Some physical property data

Species  Normal boiling point  pva (50 C) T F. bar

C,H,Cl, 8347°C 0.288 bar
C,H, -8863°C 1225bat  92°C 5036
cl, -346°C 14.87 bar

Fsince ethylene is above its critical temperature, its “liquid-phase” vapor-pressure
will have to be estimated if we are to do the vapor-liquid equilibrium calculation.
However, since we need only a moderate extrapolation (from 7=92°C to
T =50°C), we will do an extrapolation of the vapor-pressure data, and not use
Shair’s correlation. Using vapor-pressure equation in the Handbook of Chemistry
and Physics, wefind P'®(50°C) ~ 1225 bar for ethylene.

Note: To be consistent, all vapor pressure data for this problem have been taken
fromthe Handbook of Chemistry and Physics. The data differs, in many cases by
+20% from The Chemical Engineers’ Handbook. | believe the latter may be more
accurate.

Species balance table
Species Initial Final
C,H, 1 1- X =yen,V *txem, L
Cl, 1 1- X =ygV+xq,L
C,H,Cl, 0 X = Vehaa Y tXem,a,L

. P . .
Also, since P=1bar , g :1yt’)—: v; for specieswhose standard state is avapor.
ar

Note: An obvious first guessis that no C,H,Cl, is present in the vapor phase,
and no Cl, or C,H, ispresent in the liquid phase. Since the standard states of
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9.13

C,H, and Cl, areaspurevaporsand C,H,Cl, isasaliquid, thiswould result in
an equilibrium relation of the form

4CyH,Cl - 1 =4

ac,H,%a, ]/ZX-I/Z

which clearly can not be true! Therefore, to obtain the correct solution to this
problem we must consider the possibility that all species may be present in all
phases!

In the table above, L and 7 are the total humber of moles in the liquid and vapor
phases, respectively. L+V =1

Phase equilibrium:  f; = £;* P y.P =xg,P"®

Chemical equilibrium: (standard state: C,H, and Cl, = vapor; C,H,Cl, = pure
liquid)

K, =

_ Xc,H,a,9c,H.a,
= O TCHA,

K
Yen,Ya,
Now using datain Appendices |l and IV, and Egn. 9.1-23b we obtain
K, (T =50°C) ~ 11" 10°® ahuge number.

P (yC2H4CI2yCIz)' 1 10° = XCoH 401, 9C,H 401,
P Reaction goes, essentially, to completion.
Vapor-liquid equations

YeHacy = X, Boma,(0.284) vou, = Xeu,90m,(121) v, = Xq,9a,(14.68)
Now going back to chemical equilibrium relation

(xC2H4gC2H4)(xCI29CIZ)' (14-6&(121)(11' 1023) = XC,H 40, 9CH 4Ol

Since, for this system, we expect all the activity coefficients to be of reasonable size
(less than, say, 10), it is clear that the only solution is xc,4,q, ~1,

Xc,n, = Xa, =0 [actudly, these latter mole fractions will be of the order 10 13

Plugging these values back into the vapor-liquid equilibrium equation, we find
a y;<1. P No vapor phase!

Thus, the solution to this problem is that there is no vapor phase present at
equilibrium, only a liquid phase. The reaction goes to completion in the liquid
phase, so that

Xc,H,0, =1, Xc,n, =0, xg, =0.

G, =G, +RTIngx, =G, +RTIng; x; where

i
o

. N,
x; = apparent mole fraction = ——
anN

x; = actual mole fraction :—ON—"
N;

Inthemodel, g =1, sincethe ternary mixtureisideal.

N, . Ny*N»° _ N . N +#N°

X:
Dg_:_’: L !
Cx NENG+N, N;° N N+ Ng+ N,
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b __ Nyt Np® _ Np . Ny +Np°
Gy N, BTNy TN aN N
A B By B A B B,

Now consider the chemical equilibrium:;

Initial Final Mole fraction

Number moles  number moles X,

4 N, N, N4
Ny+Ng- Ng,

B N, N, -2X Ny~ 2N,
Ny+Npg- Ng,
B, — X N—fz
Ny+Np- Ng
Ny+Np- X
:NA+N; - Ng,

:ai:NBZ(NA-"N;' NBZ)
Toap (Np-2n,)

Solving this equation gives

(N34 N8 (N4 N J0)° - 4K (Vi)

where k = 4K, +1, and
2kN
—= = x, +kxp- (kx; +2kxax3+x5)]/2

= 2kx, +2kxy - d=2k - d

and d= (2k - D, + vy + (ke +2kr,xy +32)7°

Also we obtain
Ny _(Va+ Na) +NB)[2k -d; Ny=N,- —(NA;NB)

2 2k
NA+NB+NBZ :(NA+NB°)(%) and &—Zk

Thus

_ Ng(N+Ny)
Op =—=
Ny(N+Ng+ Ny )

2k - 2k 2
:[1- (2-d d)}_ = 2 {(0 + 2k, + )
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9.14 (also available as a Mathcad worksheet)

. 1
Reactions: C2H5OH+EO2 = CH4CHO+ H,0 rxn 1
C,H,OH= CH;CHO+ H, rxn 2
Species balance table:
Species In Out
C,H.OH 1 1- X, - X,
o, 0.75 075 0%,
079
N, ——x075= 28214 2.8214
0.21
H,O 0 X
CH,CHO 0 X, + X,
H, 0 X,
>

1
4571+ X1+ X,

Using the program CHEMEQ we obtain

Kay = 7.228x 16° aerobic reaction

K, =6.643 is greatly favored!

With these values of the equilibrium constant we obtdjn-1 and X, 00 [all ethyl alcohol used
up in first reaction].  Therefore, Yoy on ~0, Yo, ~0.049, Y, ~0556, Vyi,0~0197,
Yor,cHo ~ 0197 andy,, ~ 0.

9.15 (also available as a Mathcad worksheet)
CsHg=CH+H, rxn 1
C,Hg=C,H,+CH, rxn 2
Species balance table

Species Initial Final Y,
C;Hg 1 1- X, - X, 1- X=X,
1+ X, + X,

C,Hq 0 X, X
1+ X+ X,

X

HZ 0 Xl L
1+ X+ X,

C,H, 0 X, Xz
1+ X, + X,

CH, 0 X, X2
1+ X, + X,

b3 1+ X, + X,
yiP

In general, we Ave g; = thus

1 bar’
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K. = Ac,HeAH, _ ngHGyHZ( P )_ P X2
= = =
¥ Ao, Yo, \1bar) Lbar(1-X; = Xp)(1+ X + X))
Similarly
K = Qcn,8cn, P X5
" agy,  Llbar(l- X, - X1+ X+ X,)
Kaz K
Also —22 :ﬁ  so definear =22 = |22 Thys
al 1 Xl Ka,l

(P/1bap X? _ (P/1 bajX{
(L-@+o) X)L+ (T a) Xy 1-(1+ 0)° X}

Ka,l =

(a) Constant pressure case/1 bar=1
K 1 K 2
=T g AnXe=
1 1+(K;(1 + K;{Z) 1+(K¥ + kYD)
Results are given in table below.
(b) Constant volume case: Assume gas is ideal
N; T, T
PV=NRTO P=— —" :[(1+ X, + XZ)—S] bar
N, T 2981
or

[+ @+ x ]I
~ 20815
[1+(1+0)X,](T/298 15X XZT
[+ @+ X J1-(1+o)X,] 2981p%( o) X,]

29815 T
0 X, = K;/f{\/[K +KI +—— - K1/2+KZ§}

0 Kaa=

T 20815 L &

29815K],2 /K K12 T _rqves K2
ez T 2oa1s Loa

0 X,=

Results are given in table below.

T(K)

1000 1200 1400 1500 1600 1800 2000
Kep 2907 3888 246.0 5126 9724 2809 6511

Kaz 5343 2581 7754 11950 17350 31900 50870



Solutions to Chemical and Engineering Thermodynamics, Je Chapter 9

Part a
YeaH 0 0 0 0 0 0 0
Ve, = Wi, 0.034 0.055 0.076 0.086 0.096 0.114 0.132
Yo, = Yen,  0-465 0.445  0.424 0.414 0.404 0.386 0.368
Partb
YesHg 0.003 0.001 0.000 0.000 0.000 0.000 0.000
Yoq, =Yu, 0034 0055 0076 0086 0096 0.114 0.132
Yo, = Yen, 0464 0.445 0424 0414 0404  0.386 0.368
P bar 6.69 8.045 9.38910.061 10.732 12.074 13.416

As usual, all equilibrium constant were computed using the program CHEMEQ and Mathcad.

9.16 (also available as a Mathcad worksheet)
Reaction: N+ Q= 2NO

Species balance table

Species Initial Final Y,
N, 1 1-x 12X
2
0, 1 1-X %
NO 0 2X X
2 2

or

kyz=2X g x = (1)
a
1-X 2+4JK,

Now, the energy balance for the adiabatic reactor, Eqn. (9.7-10b) is

T

out

0=3 (N), [Co dT+AH, () X
Tin

or

T

out
J{con, +Cro bdT
T

X TR, T @)

—I'Xn
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Using the program CHEMEQ and the data in Appendix Il, together with egns. (1 and 2), the
following results are obtained.

T(K) Ka Aﬂrxn Xeq xenergy
(kJ/mol)
2800 0.008002 162.26 0.0428 0.0955
2820 0.008406 161.38 0.0438 0.0865
2840 0.008822 160.48 0.0449 0.0773
2860 0.009251 159.54 0.0459 0.0681
2880 0.009691 158.58 0.0469 0.0587
2900 0.01014 157.58 0.0479 0.0493
2920 0.01060 156.55 0.0490 0.0397
2940 0.01108 155.49 0.0500 0.0300
2960 0.01156 154.39 0.0510 0.0201
2980 0.01206 153.26 0.0521 0.0101
3000 0.01256 152.10 0.0531 0.0

The solution isT ~ 29025 Kand X = 00482 so thaty,, =0.0482, yy, = Yo, = Q04759

9.17 Suppose we start with 1 mole of hydrogen antbles of nitrogen. The species balance table is:

Species Initial Final Y,
H, 1 1-3X _1-3X
1+z-2X
N, z z- X =X
1+z-2X
NH, 0 X _2X
1+z-2X

> =1+z-2X

and

K. =

a

(PNHg/lbf’“)2 _ YR, (1bar)2
(R,,/Lbad(R, /1ba)  Yn, ¥, P

K( P )2_4x2(1+ z-2X%)?2 )
1bar)  (z- X)1-3X°

Note: We are assumiryjis low enough that né /P corrections are needed!
Now we want to know howX changes witlz, so we will look at the derivativejx/dz at constan®
andP. Starting from Egn. (1) we obtain
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0= 8X(+z- 2x)23 dX , 8X*(1+2z- 2xg (1_ 2d_x)
(z-= X)A-3X)" dz (z- X)(1-3X) dz
_AXP(1+ z- 2X)? (1_d_Xj_ 12X *(1+ 2= 2X)? (_3de
(z- XyY(1-3x°" dz) (z- X)1-3X%)" dz
o 9X [y(z= X)]-[9(1+ 2= 2]
dz  (2/X)-[4(1+z- 2X)]+[1(z= R]+[ 9( = 3%]

whereX must be equal to, or smaller than, the smallest of 1/2.and
z- X .
For yy, =05=————10 z=1. Let z=1+& whereé may be either + or —.
2 1+z-2X

ax _ [/@a+ 5= X)]-[9(2- 2X+3)]

dz  (/X)-[4(2- 2X+JI+[1(+= X)+]+[ ¥ + X]

Since X 51/3, the denominator is always positive, so we need only look at the numerator to
determine the sign adX/dz.

1 1
Num= -
1+3-X 1-X+(3/2)

. . . O
Now do Taylor series expansions4r— and .
1-X 2(1- X)

NUM = 1 (1_ o) )_ 1 (1_ o ): -0 i
1- X 1-X) 1- X 2(1- X) 21- X

Thus, the sign otiX/dz is the same as the sign ¢f3). If >0, i.e,, more N is added than is
required foryy, =05, dX/dz< 0, so that NH decomposes, and,Ns produced.
If, however, <0, i.e., less N is added than is needed fgx,, =05, the addition of N causes
more NH, to be formed.
Note: If, instead of N addition at constant pressure, the nitrogen was added at constant total
volume, so that partial pressure of either species were unaffected, and the partial pressyre of N
increased, then, from

(P, /L bar)

Ka= 3
(PH2/1 bar)(PHz/l ba)

it is clear that the reaction would always go in the direction of increased ammonia production. This
is an important distinction between reactions at constant volume and at constant pressure in this case.

9.18 (also available as a Mathcad worksheet)

Reactions: ¢ H,= G H+ H rxn 1
C,Hg=C,Hs+H, rxn 2
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Species balance table

Species Initial Final Y
l_ Xl
CaFlio ! =% 1+ X+ X5
C,H, 0 X, - X, %1~ %
1+ X, + X,
C,H, 0 X, X
1+ X, + X,
X+ X
H, 0 X, + X, L e
1+ X, + X,
> 1+ X+ X,
; __%P _
Since pressure=1 bar, a; = =y . Thus
1 bar
Kyq= yC4Hay|'|2 - (Xl_ XZ)( X1+ XZ)
a,
Ye Mo (@= XA+ X+ Xy)
0 Ko+ X = XE= X %)= = % (1)
and
K., = yCAHesz — XZ(X1+ XZ)
2= =
: Ye,Hg (X = X))+ X+ X))
O Kap(Xa+ XI=3G=33)= X %+ % (2)

Using CHEMEQ (for equilibrium constants) and Mathcad (for solution) | obtain

T Kaz Ka2 Xy X, Ye,Hy  YeuHs  YeuHs YH,
900 0.9731 0.1191 0.724 0.147 0.147 0.308 0.079 0.466
1000 5.814 0.5575 0.951 0.464 0.020 0.202 0.192 0.586

9.19 This problem can be solved graphically, as shown here, or analytically as seen in the Mathcad
worksheet.

. 1
Reaction: H, +502 =H0
Using the ppgram CHEMEQ, the equilibrium constant can be computed at each temperature. The

results are given on the next page. Also, sifcel013bar g = %‘; =y, Xx1013.



Solutions to Chemical and Engineering Thermodynamics, Je Chapter 9

(a)  Stoichiometric amount of pure oxygen

Species In Out Y,
H, 1 1-X 2(31";()
1 1- X
0 0.5 Z@1- X A
2 2( ) =%
H,0 0 X %
s 1
=(3-X
2( )
a0 _2X _3-X (3- X)?

0 K,

- aHZa&)/f(lom)J‘2 ©3-X 2(1- X) (1- X)"?(101372

_ X@=-x)Y?
1- X)¥?(1013"2

or
K, (- X)¥2(1013%2- X(3- X)*2= 0

This will be solved using Mathcad.
From the energy balance we obtain the following

T(K) Xeng(Part Xeng(Part b Xeng(Part ¢

1000 0.129 0.194 0.509
1200 0.167 0.226 0.658
1300 0.734
1400 0.207 0.279 0.811
1500 0.899
1600 0.246 0.333 0.968
1800 0.286 0.388 1.127
2000 0.328 0.443

2200 0.370 0.500

2400 0.412 0.557

2600 0.455 0.615

2800 0.498 0.674

3000 0.542 0.733

3200 0.585 0.792

3400 0.629 0.852

3600 0.674 0.911

and, from Eqgn. (9.7-10b), we get
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C
1
where ;(Ni)mcpvi =Gut+5 G andT,, =29815K .
(b) 100% excess oxygen

Species In Out Y,
H, 1 1- X 1-X
2-05X
1 1-05X
o, 1 1-—X
2 2-05X
H,O 0 X X
2-05X
2- i X
2

0 K, (- X)(1- 05X)Y2 - X(2- 05%)?2 = Oand, for energy balance

C
> (ND)iGoj = G, + Crg
i=1
(c) 100% excess oxygen in air
Species In Out Y,
H, 1 1- X _ =X
5762- 0X
0, 1 1- 05X _1-aX
5762- 0
7 762
N, 879 1=3762 3762 __3r6z
0.21 5762- 0
H,O 0 X X __
5762- 0X
5762-05X

0 K, (1- X)1- 05X)Y2- X(5762- 05¢¥2= 0

and

C

Z(Ni)me’i =Gy, + Cp o, +3762Cp

i=1
From the intersections of the equilibrium and energy balance curves, we obtain the following
solutions [curves on following page] (or directly by solving the equations using MATHCAD)

(a) T,,=3535K Vi, = 0291

X =0.659 Yo, =0146
Yu,0 = 0563

(b) T,,=3343K Yy, = 0104

X =0835 Yo, =0.368

Y0 = 0528
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(c) T,4=1646K YH, ~0
X 010 Yo, =0.095
YH,0 = 0190
W, = 0.715
o
e
qui i e
o8 Fars il
o6
> ol o
8o Corvid

Aetters olenore pParrs a,b orc

[T

Chapter 9

foop Aoop
T(K)

9.20 Using the data in the problem statement, Tables 2.4 and A6.1, | find

qa P
Ko.(750 K) = Bcaosiofea _ 1484 aco, = ylcgz : 1)
Acacq sig ar
since the activity of all the solids are unity.
Ko »(750 K) = w Q277=-"c0 - Yoo @)
aFeOqu Aco, 8co, Yco,
and
1bar /2
Kas(750 K) = —1,—F€3°4 2% = 08973x 16° = 7 :[ P]
aFeOSlQ o) Yo,
P
0 Jo:” _1949x 1078 ®3)
ar

From eqgn. (2) we have

Yeo 00277, while from spectroscopic observatiof€2- 1107
Yco, Yeo,
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Also, from eqn. (1), Ro, ~148 bar, while from the probe, the total atmospheric pressure is only

between 75 and 105 bar. Finally, from Eqn. (3), we conclude there is,nin e atmosphere,

compared to a trace from spectroscopic observations.

Conclusions? Somewhat ambiguous!

Calculations and data are not in quantitative agreement, but are certainly in qualitative agreement.
Consider the uncertainty in all the measurements, the atmospheric model is undoubtedly a
reasonable one, and can not be rejected.

9.21 (a) The condition for chemical equilibrium is

-AG, Y
KY :ex;{ —”‘”]: %EBV : vapor phase 1)
RT
s ay
or
-AGy, 5
KL =exg —=20 |= ?_E'?_ : liquid phase (2)
RT ) alah

where AG' . is the standard state Gibbs free energy change on reaction in phase i.
The phase equilibrium requirements are

fog = fop, fo =1 and fy =1 3)

From problem statememtG", = = -830 kJmol, and K" =3482x 16*. This implies that the

—rIXn

reaction will go, essentially, to completion in the gas phase. BowH - TS, and for most
liquids neither AHY®" or TAS'®" is more than several kJ/mol. Also, since, for hydrogen, the

—IXn

vapor is the stable phas&;; >G}, . Therefore, it seems likely tha¥G = will be of about

the same size and sign A§" .. Consequently, the liquid phase chemical equilibrium constant

—rxn"
will also be large, and the hydrogenation reaction will essentially go to completion in the liquid
phase.
O mole fraction of styrene will be very small in both phases. The problem then reduces to
determining the solubility of the excess hydrogen in the liquid ethyl benzene, and determining

the amount of ethyl benzene in the vapor. Thus, the equations to be solved are

f_ELB = f_EVB 0 XeeYes fee = Ve P

and
iy =fY 0 xyufy=wP
Here we have assumed that the vapor phase is ideal.
As a first guess, we will assume that very little hydrogen is dissolved in the liquid phase. Thus,
Yes =1, @z =1, and, using regular solution theory
V(G5 —3,) _ 31 cy/molx(88- 325 calcec 4.184 3 /cal
RT 8.314 J mol Kx 29815 K -

01612

Iny,, =

Oy, =1175

Next we have to estimate the fugacity of hydrogen in the liquid phase. An obvious way to
proceed is to use Shair's correlation, in Sec. 8.5. However, hydrogen was not used in
developing this correlation, and Prausnitz warns against its use for light gases such as hydrogen
and helium; since experimental data are not available, we have little choice but to use this
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(b)

correlation. Note, however, that for hydrogefy, =332K and R =1297bar, so that
T, =T/T. =8.98, which is off the scale of Fig. 8.3-1. If we extrapolate this correlation to

T, =898 (a very serious assumption), then we ob(afih/PC)l 013 bar 4, and

f-(L013bar, 25 G= 4x 1297 bar 5188 bar
[Note the the Poynting pressure correction of this result to 3 bar total pressure is negligible.]

As a first guess, we will assume that the gas-phase is essentially pure hydrogen. Therefore,

P 3b
X, = 2 - = a =0.049, and x_, =1- x, = 0951
Yufs 1.175x51.88 bar

Using the vapor pressure data for ethyl benzene, plotted in the fohmPS#° vs 1T, we find
that R'g” = 1273kPa at 25C.
Voo = XeaYes Prg’ _ 0.951x Ix 1273EI 0,004
P 3x100 kPa
and y, = 0996 [Since the gas phase is almost pure hydrogen, as assumed, there is no need to
iterate to a solution].
x, = 0049 Yy, =0.996
0 Xz =0.951 andy., = 0.004
Xs 1O Y 000

An alternative calculation is to use the Peng-Robinson equation of state. The critical properties
of hydrogen are given in Table 4.6-1. The values for ethylbenzeiig ar617.2 K,Pc = 36
bar,tx0.302, andzg=409.3 K. There is no binary interaction parameters for hydrogen with
other components in Table 7.4-1, so we will assume that its value is zero. Using the isothermal
flash calculation in the program VLMU we obtain the following results

x, =0.0018 y, = 09952

Xeg = 0.9982and y ., = 00048
X, 00 ys 000

This may be a more accurate calculation than using regular solution theory which required an
extrapolation of the Prausnitz-Shair correlation.. However, the result is based on the assumption
thatk; = 0. It would be better to have some experimental data to get a better estimate of this
parameter.

atT=25C
andP =3 bar

atT=25C
andP =3 bar

At 150°C and 3 bar.
Using the data in the Problem statement, Appendices Il and IV we find
K,(T=150C) = 3Ix 18. So again we can presume that all the styrene in the vapor and liquid

phases is converted to ethyl benzene.
As a first approximation (iteration), we will assume that the liquid phase is essentiallyhyiire e
benzene. Thus we obtain

3132

yH = ex 1(3—5_882 = 112
1987x 4231

Here again, we find, extrapolating Fig. 8.3-1, that

3
fi ~5188 baf] x, =—————— = 0052
5188x 112

and x_, =1- 0052= 0948
Now, however, R'EP ~1303bar

1303x 0948
0 Yep == = 0412

Now using these values for anotliteration, we obtain
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X, =0.029 vy, = 0586 T= 150C

Xep =0.971 y_, = 0414 3ar

Xsr ~0 Y5 = 0.0
Again using the Peng-Robinson equation of state, the program VLMU and the assumption that
ki = 0, we obtain the following

X, =0.0016 1y, = 05034 T= 150C

Xep =0.9984 y_.= 04966 Bar

X ~0 Ysr = 0.0
In both parts a and b we see that the results of thdiegud state calculation are in qualitative,
but not quantitative agreement with the Prausnitz-Shair correlation. However, the latter predicts
much higher solubilities of hydrogen in the liquid phase. The equation of state calculation is
much easier to do (given the availability of the program VLMU). If some experimental data
were available for hydrogen solubility in ethylbenzene (or other aromatics), the valkig of
could be adjusted to reproduce that data. Then we would have more confidence in the equation
of state predictions for the problem here. If such experimental data were available, it is not clear
how one would adjust the Prausnitz-Shair correlation to match that such data.

9.22 (a) Energy balance on a fixed mass of gas
. 0 .
d—U:Q—P;‘Z +V7‘ODQ: ou ) _(ou) (aT
dt ot ot \, \oT A\ ot ),

Q _(ou

butCy = === .
oT oT
at ),

Now U = Z N;U. :Z NU, , since we will assume the gas is ideal at the temperatures and
T

pressures encountered here. ANp= N +v X andU (T)=U (T;)+ I G, dT where Ty is
Tr

some convenient reference temperature.
ou o ON ouU.
=== =|== NU =) —=—| U, +) N|—=
G (GTJV (GTJVZ =i Z(GT JV—' 2 '(GT jv
oX oX
= ZViLii(aT )V + Z NIc(/ i = Agrxn(T)(F)V + Z Nlc(/ ,i(T)

where AU . = ZViL_Ji = internal energy change on reaction.
Species balance table

Species In Out Y,
N,O, 1 1-X 1-X
1+X

NO, 0 2% 2X
1+ X

> 1+ X
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2
K. = afgloz :(yNOZP/lbar) _ yrﬁozp :4X2(P/1bar)
® aye, (W,0,P/lba)  Yyo,@bad (1= X)1+ X)
By the ideal gas lawPV = NRTO N—P_I_: NP(ZI' where the subscripy denotes the initial
0'o
conditions

O pe %(ﬂ)(l): 1013ba( 1+ X)T
No A\ Ty 300
_ 4X?*(1+ X)TO013_ 41013 X*T
T X+ X)) 1-X)0

2
r X = TOKa =a X2 —O((l— X):O
1-X 40101371

on x-S i
X+oX-a=00 X—E{ 1+ 1} 1)
aXy _djaf [ 4 |- x- 1 dina
(F)V‘FHW a 1H {x Jl+<4/a)} T

(0]

but dina _dInK, 1 _ Agrgn  Also
dT T RT
AL_ern = Zvigi = Zvi(ﬂi - RT) :A|__|rxn_ RTZVi (2)

Evi =10 AU ,,=AH - RT

o OUne) [y 1
T Cyar == XG0, * XG po, +— | X 41+<4/a>} ©

First two terms give the composition (mole fraction) — weighted heat capacity of the individual
components; the last term is the enhancement of the heat capacity due to the chemical reaction.
This term has onedU . dependence since that amount of energy is absorbed as the reaction

equilibrium shifts, and a secomdl ., . dependence, since this determines the extent of a shift in

the equilibrium with temperature.

(b) Using CHEMEQ and the data in Appendix Il (fc(E;), InK, was determined at each
temperature along witlC,, for both NQ, and N, Q,. Then, from Egns. (1) and (3} and
Cyerr as well. These are tabulated and plotted below.

T(K) o X P(bar) Cyno, Cunj, Cuet

300 0.044275 0.1891 1.205 37.11 78.83 410.5
350 1.0016 0.6177 1.912 38.94 84.47 546.9
400 10.0613 0.9163 2.588 40.65 89.55 195.9

450 58.883  0.9835 3.014 42.22 94.06 69.11
500 236.25 0.9958 3.370 43.67 98.01 49.23
550 721.36  0.9986 3.712 45.00 101.39 46.49
600 1796.25 0.9994 4.051 46.23 104.20 46.71

700 7220.4 0.99986  4.727 48.36 108.12 48.45
J/mol K
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14 = koD
o
—~ soe
Joo ‘:.v
- won 1}7 j
g0 0
Cv - 3s0
to
Cal,
- A Fere compapeaT
4 Hear Capac,ries
i e e e e s mcsem cccme= === o Crag,
o= = = = = —— = - = =TS e T e e T o f'-',..mt
a
e deo soo -t oo Fos
T (k)

9.23 This is a very difficult problem. | used the NASA chemical equilibrium program, referenced in Sec.
9.4, in the solution of this problem. | will describe here how this problem could be solved without
this program.

First we need to identify the independent chemical reactions among the components. Starting from

2C+ 2H= HCCH

20=0, and firsising
C+0=CO 2H= HCCH- 2C
2H+0O=H,0 to elinmate H, and then
C+20=CQ O:%O2
2H=H, to eliminate O
yields
1
C+EOZ =CO

HCCH+%02 = H,0+2C

C+0,=CO,
HCCH=H, +2C

From Fig. 9.1-2 we have that, for the reactionC +()/2)Q, = CO is very large over the whole
temperature range (i.eK, = 0(10'°) at 1000 K and0(10°) at 3000 K). Since Qs present in

excess, this implies that their will be no solid carbon present. Thus, we will eliminate C using the
reaction equatiol€ = CO-(1/2)Q, O
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3
1) HCCH +-0; = H,0+ 2CO

1
2) CO+20,=CO;

3) HCCH+Q, = H,+ 2CO

The three equations above form a set of independent reactions that can be used for the description of
this reaction system. In fact, since eqns. (1) and (3) are both expected to go to completion, | used the
following reaction sequence for the description of this system:

H(:(:H+go2 =H,0+2C0O, mn 1
1

CO+ EOZ =CO, rxn 2
1

The first step in the numerical solution of this problem is the calculation of the equilibrium constants
and heats of reaction for the reactions above. Using the program CHEMEQ | obtained:

T 3000 3100 3200 3300 3400
AHy,,  —1310 -1320 ~1332 -1345 -1361  kJ
Kaz 159x 185 290x 13° 582x 13* 127x 16* 297x 18°

AH . 5 256.2 251.2 2455 238.8 221.0  kJ
Kaz 0.3246 0.4507 0.6092 0.8027 1.033

AH 3 261.9 264.9 266.9 269.9 2735  kJ
Kas 0.0476 0.0668  0.0922  0.1252  0.1675

T 3500 3600 3700 3800 3900

AHy 1 -1378 -1398 -1419 -1444 -1470  KJ
Kaz 745x 162 198x 13° 554x 18' 1633x 16! 5006x 18°

AH 5 222.2 212.1 200.6 187.6 173.0 K
Kao 1.299 1.598 1.926 2.274 2.633

AH 3 277.6 282.2 287.5 293.5 300.2  kJ
Kas 0.2213  0.2891  0.3738 0.4793 0.6098

Clearly, with such a large value of the equilibrium constant, reaction (1) must go essentially to
completion. | will assume it does. Thus, the reaction stoichiometry is

HCCH +gO2 = H,0+2CQ, X;=1|Note: These
1 reactions are the
COZ = CO+_02 X2 = ’) .
2 inverses of
H,O=H, +%O2 X5 =?| reactions 2and 3 above.
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Species |Initially  After rxn 1 Equilibrium Y,
goes to completion
HCCH 1 0 0 0
15 5 51 1 5.1 1
0] — — —+—=X,+=X —+=X,+=X
2 4 4 42223(42223‘)/Z
CO, 2 2- X, 2%
>
H,O 0 1 1- X, 1= X
2
H o 0 X, X
>
CO 0 0 X, X2
2
17 1
Z:I"'E(Xz"'xs)
¥2 ¥2
4 a
0 (Ka,z) 1_ codp, _ Yco Y5,

aco, Yo,

_ XA+ (¥ 2%+ (13 %7
2= X N7 +(1 3%, +( L 2%

1)

(where for simplicity | have assumed that the standard state and atmospheric pressures were the
same) and

(Kag) " = aHzajolzz - Vszchzz _ XJ(5/4+(¥ X, + (19 XJ/?

8,0 Yo (- X[(174+(13X +(LIXJ"

(2

where the equilibrium constanks, , andK, ; are the ones whose numerical values are given in the

table above.

Instead of solving these nonlinear algebraic equations, | used the NASA Gibbs free energy
minimization program to find the equilibrium mole fractions. Since this package uses a different set
of thermodynamic data, the computed mole fractions do not agree with eqns. (1 and 2) and the table
of equilibrium constants given above. The results are:

T (K) 3000 3200 3400 3600 3800 4000
Yeo 0.1530 0.2126 0.2605 0.2940 0.3154 0.3284
Yeo, 0.2777 0.2017 0.1395 0.0945 0.0642 0.0442
YH, 0.0153 0.0254 0.0384 0.0539 0.0705 0.0869
Yi,0 0.2001 0.1818 0.1616 0.1404 0.1193 0.0995
Yo, 0.3539 0.3785 0.4000 0.4173 0.4307 0.4410
X, 1.3017 1.5126 1.6609 1.7614
X, 0.1920 0.2771 0.3710 0.4658
AH, (kD) ~1006 -987.8 -997.0 1025
Tap 616.3 691.2 7757 8719 981.1 1106
[ GedT (kI
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In the table above, the mole fractions were computed using the NASA progkarand X, were
then computed from the mole fractions using

Yh, = Xs/¥ and Yoo = Xof%

.
17 1 . o .
where 5 :7+E( X, + X3). AH,,, and the |ntegranCPdT were computed using Eqgn. (9.1-19a)
Tin

and theAH,, , datain Table A6.1 an@, data in Table 2.4. Also,
Aﬂrxn(T) = Aﬂ rxn,l(T) + X2At|rxn,2(T) + )gA—ernS( 1)

and
TAD TAD
15
J. (CP,HCCH +ICP’Q)dT: J. deT

Tin Tin

Finally, from eqn. (9.7-10a) we have, at the adiabatic reaction (flame) temperature that

C Tap M
0= (N [ GoidT+ S AHyn (o) %
i=1 T j=1
or, in the notation here
TAD

| GodT+AH( Tap) =0
T

TAD
Plotting up the results in the previous table, i.ﬁeCPdT vsTandAH,,, vsT, leads to the solution
T

T, =3830K X,=1680 X;= 0387
Yeo, =0.0606 Yo = 03180 YH,0 = 01160
Yu, = 00732 and Yo, = 04322

Comment: The solution above considered only, ®,0, CO,, CO, H, and HCCH as possible
reaction species. At the high temperatures involved here, other reactions and other species are
possible. This is obvious in the results below. The dashed lines result from the chemical
equilibrium program of NASA with only the species mentioned above as allowed species, and the
solid lines result from the Chemical Equilibrium Program with all species allowed.
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8.5
5.4
5.3
a.2
a0
a
3o00 32o0 3900 3&c0 Jgon Toug
7C )

Note how different the two solutions are!

The actual (unrestricted) solution has O and H (not ions, but atoms) as important reaction products,
but these species have not even been considered in the adiabatic reaction temperature calculation.
The conclusion is that restricting over consideration to just the species in the problem statement is
unjustified!

9.24 (also available as a Mathcad worksheet)

CsHs , » Cote
C:H, C:H,
CcH:C:H;

Using the program CHEMEQ we obtain that at 600 K, = 3450 and AH_,, = -10394 kJ/mol

for the reaction
CeHe(9) + C,H,(9) = CsHC,HLg) .
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To find the extent of reaction we use

Species Initial Final Y a
C.H, 1 1-X 1-X (1—xj( P )
2-X 2—- X /\1bar
1-X -
C,H, 1 1-x =X (ﬁ)(i)
2-X 2-X \1bar
X X P
C.H.C,H 0 X ( j( )
oS 2-X 2- X \1bar
2-X

AcgHeCots = [X/(Z— X)]( P/lbar)
Achg mCZH4 [@-X)/(2- X)]Z( P/lbar)2
_ X(2- X)

" (1- X)*(P/1bar)

Total of noles
Initial # of moles

K, =345 0=

2
Now P = Rnitial X =1013barx

2IX[2-X) _  2IX
10130+ X)2(2= X) 101301~ X)?

0 K, =3450=

which has the solutioX = 0.927 and P = 05434bar.
Heat which must beemovedo keep reactor isothermal is
0.927x 103 94G= 96 353 (removel .

9.25 The two “reactions” areHI(g):%Hz(g) +%|2(9) and L(9= L($.

Using the data in th€hemical Engineer’'s Handbooke have

AGy,1=195kcal =8.159kJ  AGyy,,=-463 kcal=19.37 kJ
° Y232
- a
Ka1 = €x T8l - 370x 102 = HeHe
’ RT ey

a, (9

-AG,
Kap = exp—=202 1 =24783= —2—
RT a,(9)

Solid precipitation of one tiny crystal is just like a dew-point problem, that is, at the pressure at
which the first bit of solid appears the vapor composition is unchanged. Therefore, the first step is to

compute the vapor composition due to reaction 1 only.

Species Initial Final Y, 3,
HI 1 1-x  1-x Q=XP
latm
H, 0 1 X 1 X —(]/Z)XP
2 2 latm
, 0 1y 1. axp
2 2 latm
2 1

Note: standard state pressure in@emical Engineers Handboad& 1 atm.
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[vaxFram™] _ x
[a-XXP/1atm] — 2Z1-Xx)

0 372x 10% =

or

2K
x=—>=1 =0069248 (independent of pressure!)
2K, +1

Thus at all pressures (low enough that nonideal vapor phase corrections can be ignored) we have

Y, = ¥, = 003462 vy, = 093075

which is the composition of the vapor when the first precipitation of sglidcturs.
Now consider the second reaction:

P
Ay =1 A9 = Yz(_l atmj
1 lat
O K, , =24783= = =am
y,Z(P/latm) Ka 2,

latm

=———————=0.01166 atn¥ 01181bar.
0.03462x 2478.3

Thus, if P>Q01181bar precipitation of solid,| will occur.
9.26 (a) 2NaHCQy(s)= NaCQ(9+ CQ(9+ H @9

a A~ a a =1
K, = —2C0,7C0; TH0 |y p “NaNCOs }solids

ANaHCE 8aco, =1
Pio Feo
H Ka=au,08c0, = 1 bzar 1 b;r

N; . -
but R=y P:WI P where N = total moles in gas phasey, = moles ofi in gas phase and

1
Ni,0 = Neo, O By,0= Feo, :E P.
Therefore
2
&:[wap}
1bar
and

2
K (30°C) = [( 2)x 0826 kpj =1706x 10°

100 kPa

2) x 166 97kP
(OO [(1/ )100 kPa

InK,(3CPC) = 10979 InK,( 116C) = - 03610

2
a} = 0697
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Now

Ka(T)_ _ __ rxn| & _ &
{2 =i, 1) b 7 = - S ( ) M

This assumeshat AH,, | is independent of, the only assumption we can make with the limited

data in the problem statement

0 AH,, =1282kJ

(b) Going back to Eqn. (1) above we have

K, (T)= K (T = so)c)ex;{— st (i— L D =1706x 105exp(— 15420% - LJ)
R \T 30315 T 3031

15420+ 508659= 39 887&@

InK, =-109788-
(©) Reo, =10barl Ry, = 10bar P= 20bar
2)x 20[°
0 K,(T) = [%} -1
0 T =3866 K= 11345C forR,, = bar.

9.27 Reaction G+ 2H = CH
Using the program CHEMEQ we hawg, (T =1000 K) = 009838

Species Initial (gas) iRal (gas) Y
C
H, 1 1-2x 172X
1-X
CH, 0 X X
1-X
> 1-X
« o %o, _8n, __ XP D(1—X)2 (1bar)2
" acal, a2, (1-X)ibar (1-2x)?\ P

X(1= X) Lhar _ X(1- X)

(1-2X? P (1-2X)?

The solutions to this equation adé=00769ad X =09231

With such a small value of the equilibrium constant, tke= 00769 solution is the correct one.

This implies Yu, =0917 ad ycy, =0.083

This is (probably within experimental and calculational error) essentially the same as the equilibrium
composition. Therefore, the reaction process is thermodynamically limited, not mass transfer

limited. Consequently increasing the equilibration time by slowing the hydrogen flow will have no
effect on the process.

01004=
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9.28 (also available asaMathcad worksheet)
Reactions

C+H,0=CO+H,

C+2H,0=CO, +2H,
CO, +C=2CO

CO+H,0=CO0, +H,

For simplicity, let'swritereactions 1, 2 and 4 in reverse

CO+H,=C+H,0

CO, +2H, = C+2H,0
CO, +C=2CO

CO, +H, = CO+H,0

Now need to identify the independent chemical reactions.
Start by writing

C+0=CO Eliminate

) C+0=CO

2H+0O=H,0 reaction4
_ P H,+O=H,0

C+20=C0O, snceno
C+20=CO0O,

2H=H, H present

1 1 . . :
Now use O = ECOZ - EC to eliminate O since no atomic oxygen present.

1 1
C+=C0,==C+CO
2 2

1 1
H,+=CO,==C+H,0O
2T TS 2

or
C+CO,=2CO } Thisisone set of
2H, + CO, = C+2H,0] independent reactions.
Add these two
2H,+C+2C0O, =2CO+C+2H,0pP H,+CO, =CO+H,0
Wewill use

H,+CO, =CO+H,0 | asthe
2H, + CO, = C+2H,0] independent reactions.
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Species  Initial Fina Vi a;
CO, 1 1- X - X, 1- X;- X, [1- X, - Xz} P
a a 1 bar
H, 1 1- X,-2X, 1- X, - 2X, [1- X, - zxz} P
a a 1bar
(6{0)] 0 X, Xy [Xl:| P
a a |lbar
H,O 0 X, +2X, X1+2X, [X1+2Xz} P
a a 1bar
C 0 (X,) 0
(not in gas phase)
a=2-Xx,
K =00 _ X (X +2X5)
al™ -
Aeoan, (1= Xp- Xp)1- Xy 2X,)
Clac=Dafip (X, +2X,)%2- X,) 1bar
a2~ -
aﬁzacoz - X- 2X2)2(1' Xi-Xp) P
Using the program CHEMEQ, | find the following
T(K) Ka,l Ka,Z
600 03665 10! 758.6
700 0.1110 48.43
800 0.2493 5.950
900 0.4596 1.137
1000 0.7387 0.2974
(8) No carbon deposits X, =0
2 2
a,lzLZ and Ka,2 = X1—>Q31b_ar
(1- Xy) 1- Xy P
Solving these equations, | find
T(K) 600 700 800 900 1000
P(bar) 1151 104 6111 103 0.126 1.357 9.237

If the pressure for a given temperature is above the pressure calculated, carbon
will deposit.
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9.29

9.30

9.31

(b)  Exactly 30% of carbon is deposited X, = 03

c o KX +00) _ (u+06°(7) lbar
“1(07- X)(04- Xy) “2707- X,)04- x)° P
7(K) 600 700 800 900 1000
X, 0.0157 0.0410 00750 01104  0.1427
P(ber) 0.0084 0.170 1972 15266 85419

The reaction the engineer is concerned about is
Ti(s) + SIO,(s) = TiO,(s) + Si(s)
Thisisequivalent to the first reaction in the problem statement minus the second
reaction. Therefore
DGy, =-674- (- 644)£ =- 30£ =- 30,000L
mol mol mol
and the equilibrium constant for thisreaction is

DG° 30000
K, =exp - DG |- exp(—j =17.02
RXT 8314 X273

Consequently, asthe engineer fears, the titanium purity will be effected by high
temperature contact with silicon dioxide.

From Eqgns. (9.1-8 and 9.9-6) we have that
nFE° =RTInK, =- DG,
Consequently, by measuring the zero-current cell potential we obtain the
standard state Gibbs free energy change on reaction (if all theionsarein their
standard states). Now if we continue further and measure how the zero-current
standard state cell potential varies as afunction of temperature, we have

e B
), 7o),

Consequently by knowing the zero - current, standard state cell potential

and its temperature derivative we can cdculate DHp,, from
DGy = DHpyp - DSy, OF DHpyp, = DGy, + TDS
Similarly starting fromnFE = - DG, , and the measured zero-current potentials,

we can calculate the enthal py and entropy changes for the reaction when the
ions are not in their standard states.

The chemical reaction is

CH3-CHOH-CHz; = CH3-CO-CH3 + H;

Assuming we start with pure acetone, the mass balance table with all species as
vapors (given the high temperature and low pressure) is

Species in out y a

i-prop 1 1-X (1-X)/(1+X) (1-X)" 95.9/(1+X) )" 100
acetone 0 X X/(1+X) X" 95.9/(1+X) )" 100
hydrogen 0 X X/(1+X) X" 95.9/(1+X) )" 100

S 1+X
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But X = .564, s0 q,p=0.2673, and a e = ay =0.3458. Therefore

0.3458" 03458 DG®
K, =Za - - 04474 = expl - 2o
ai.p 02673 RT

DG® J
-08043=- —=Xn: 5oDG® =8314" 452.2° 08043 =30238—
RT mol

—IXn

9.32 Thereactions are
CgHg + H, = 1,3-cyclohexadiene
CsHg + 2H, = cyclohexene
CeHs + 3H, = cyclohexane

The Gibbs free energy of formation data needed to solve this problem
kJ

kJ
DG (benzene) = 1245 —— DG 7 (cyclohexene) = 1069 ——
mol mol

DG’ (cyclohexane) =269 K DG (13- cyclohexdiene) = 178.97 K
— mo| - m0|

The Gibbs free energy of formation for 1,3-cyclohexadiene is not available in
Appendix IV, Perry’s The Chemical Engineer’s Handbook or the Handbook of
Chemistry and Physics. The value was found using data on the WWW site
http://webbook.nist.gov/chemistry. This Web site contains the National Institute
of Standards and Technology (NIST) chemistry data book. The valuesfound on

thisWeb siteare

; kJ
DA (13- cyclohexdiene, 298.15K) = 7141 o

J
mol xK

S(1,3- cyclohexdiene, 298.15K)=197.3

J
mol xK

S(C,graphite, 298.15K) =588

S(H,, 298.15K) = 130,68

mol

Note that these entropies are with respect to the entropy equal to zero for the
pure component and 0 K. Also, the entropy change of reaction at O K is zero for

al reactions. Therefore

DS7 (13- cyclohexdiene, 298.15K)=
S(13- cyclohexdiene, 298.15K)- 6x5(C, 298.15K) - 4xS(H,, 298.15K)

=197.3- 6>688- 4413068 = - 360.75L

mol XK
DG (13- cyclohexdiene, 298.15K) = DH| - TDS} = 71410- 29815X- 360.79
J kJ
=178967 —— =17897——
mol mol

The mass balance table assuming all the organics are present only in theliquid
phase, and that the hydrogen is present in great excess to keep its partial
pressure fixed at 1 bar. Also, since all the organics are so similar, we will



Solutions to Chemical and Engineering Thermodynamics, Je Chapter 9

assume they form an ideal liquid mixture, and that there is no hydrogen in the
liquid phase. Mass balance table for liquid phase:

Species In Out x activity
Benzene 1 1-X1-X5-X3 1-X1-X5-X3 1-X1-X5-X3
1,3-cyclohex 0 X1 X1 X1
cyclohexene 0 X5 X5 X5
cyclohexane 0 X3 X3 X3

Total 1

The equilibrium relations are

K = Msoc _ X,  oxf . (178970 124500))
Gy, 1- X~ Xp- Xg 8314 29815
= exp(- 21973) =2866 " 10 *°
K = Socee _ X, _ o (106900- 124500))
P agpal 1 Xi- Xp- X 8314° 29815

= exp(71002) = 12122

K, , = Joe X,  oxrf . (26900- 124500))
L apmad, 1-X- X,- X, 8314 29815

= exp(39374) = 12587 10"/

By examining the values of the equilibrium constants, or more directly by taking
ratios of these equations, we see that X3 is about equal to unity. Then by taking
theratio of thefirst of these equations to the third, we have

X, 28667 10°1°
X, 12587° 107
and by taking theratio of the second of these equationsto the third
X, 12122

X, 12587 10Y

=227 10% » X,

=963 10 » X,

This suggests that X3 ~ 1, X, is of the order or 10%’, and X is of order
10%’. Thus the benzene will react to form essentially all cyclohexane.

9.33 The processis

. 5" 10° mol/kg .
Ni N 14 — 5 10° mol/kg N, our

> —> 5° 10°molka p,

Noin 5 10° mol/ka

Assume all other component concentrations are unchanged since the glucose
concentration is so low. The mass balanceis
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Nyin* Nojin= Nigw + Nogu
If disthe rate of glucose transported, then
(Vo) o0 = (Ng)y, *d
(NG)Z,OUI :(NG)Z,H‘I - d
The energy_balanceis . .
:(é' NiHi)l,in +(é NiHi)Z,in ) (é NiHi)l,out ) (a‘ NiHi)Zout +Q+W
and the entropy balanceis

o . — o . — o . — o - — 0 .

= (a NiSi)l,in + (a NiSi)2,in ) (a NiSi)l,out ) (a N' Si)z,out +?+Sgen
The kidney operates reversibly, and minimum work implies Sgen =0.
Subtracting 7 times the entropy balance form the energy balance gives

=(a Nia)l,in @ NiEi)z,in -(@ NiEi)l,out -(& NG )2,out W

(@ 4G, - (& %), - (A NG)

( : 2jn
:(NGEG)l,out +(NGEG) ot (NGEG) - (NGEG)
(

2,in
= (NG)l,in-'-dXEG)l, ut ((NG 2in d)(GG 200 (NGEG)l,in- (NGEG)z,in
Now since tﬂe concentrations are very | low, and have not changed significantly,
(GG)I,in :(GG)I,out and (EG)Z,in = (GG)Z,out
Therefore
W= o[(GG)l- (GG)Z]

(since, from the previous equation, we can eliminate the subscripts in and out).

Then

W = — S

—= [(Ge)l - (GG)z]: RTI (_—G)l

d (fG)Z
Now assuming ideal solutions (or that the activity coefficients of glucose in blood
and urine are the same)

G=Rrn [((;EU frin (oce)zj ’{(c@]

where we have assume that both blood and urine, being mostly water, have about
the same molar concentration. Therefore

3
K RTIn| —S2L (Co)y =RTIn 5, 10 = RTIn(100)
d s)s 5 10°

J - 3101K * In(100) = 11873LI - 11873k

mol K mo mol

=8314

Note that body temperature is 98.6°F = 310.1 K
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9.34 (also available asaMathcad worksheet).

0.34
Given:
T :=298.15K M 4 :=00001. 19 M ,:=001.M®
liter liter
A
mole 2 joule
a :=1178.[M2€ R:=831451_
liter K-mole

Using eqn 9.9-10 and the Debye-Huckel limiting law of eqn 7.11-15:

In(g)=-a -4 ,4-M Cuso4
0(M cusod) =el-2-8,M cusoy

M1

Mo

5(M )

3(M2)

DGomojes :=2RTIn +2RTn

The change is Gibb's Free Energy calculated above is for two moles of electrons (n=2). The
number of moles of electrons in this problem is calculated below:

- 2_(0.01-mo|e—20.0001-mo|e) 12991023  mde
G:=|2]pG

DG:= > DGomoles

Wmax:=DG (for a process at constant temperature and pressure)

Wmax=-92204 <joule

9.35 (also available asaMathcad worksheet).
From the Steam Tables P'® =12.349 kPa
From CHEMEQ K,=171.2
Hyns (from problem statement) = 384.5 kPa/mol e fraction

The solution at various pressuresis
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P (kPa) X f
0.10 0.0899 0
0.25 0.2017 0
0.50 0.3467 0
1.00 0.5478 0
2.00 0.7868 0
4.00 1.0322 0
6.00 1.1670 0
8.00 1.2559 0
10.00 1.3204 0
12.00 1.3701 0
14.00 1.4099 0
16.00 1.4429 0
18.00 1.4707 0
18.40 1.4757 2.02 10%
18.50 1.4797 0.0114
19.00 1.4996 0.0680

20.00 1.5339 0.1589
25.00 1.6437 0.3989
30.00 1.7063 0.5068
35.00 1.7488 0.5713
40.00 1.7806 0.6162
50.00 1.8267 0.6792
60.00 1.8602 0.7261
70.00 1.8869 0.7661
80.00 1.9093 0.8030
90.00 1.9291 0.8388
100.00 1.9472 0.8745
104.50 1.9449 0.8908

Chapter 9

25

20 r

15

Xandf

1.0

0.5

0.0

- - - -f, fraction liquid

X, molar extent of reaction

Pressure, kPa
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9.36 (also available asaMathcad worksheet).
9.36

Rxn: C8H18 + 25/2*02 = 9*H20 + 8*CO2

Given:

DHf o ::0-% DHf 3p ::0-% DHf cgiy18 ::-255100-%

DHfCOZ::-SgsmO-% DHf oo =~ 85800-%

P ool T) ::22.243-( joule )+5.977-1o‘2-T- joule )—3.499-10‘5-T2-( Joule )+7.464-1o‘9-T3-( Joule )
mole-K mole-K? mole K® mole-K*

Cp A T) ::28.883-( joule )- 0157.10 27-{1%€ )+ 0808107572 { I} _ 5 g71.959.73,{Joue
mole K mole-K? mole-K3 mole-K*
P hoo(T) ::32.218-( joule ) +019210°27.{ € Y | 108500 572 (_JME ) _ 3503957073 {_IOUe
mole-K mole-K? mole-K® mole-K*

Mass Balance Table:

Species In Out

C8H18 1 0

02 25/2 0

N2 (25/2)*(0.71/0.21) = 42.26  42.26

CcO2 0 8

H20 0 9

Total 55.76 59.26
Nin C8H18::1-mole Nin 02::2_25-mole N NZ::42.26-moIe
Nout cop '=8'mole Nout o = 9-mole

Energy Balance at Steady State:

k
o= Z N;H; +Q- J' PdV+ W (where Hi is the partial molar enthalpy of species i)
i=1
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Assuming no heat flow, no change in volume of the engine, and an ideal gas mixture yields:

k
w= Z N;H; (where is Hi is the molar enthalpy of species i)
i=1

At 150 C:

423.15K
298.15K

42315K
H 2o =DHI HZO"'J‘ P Hoo(T)dT

298.15K

42315K
Hcoz =DHf coz+J- P cop N dT

298.15K
W :=Nout copH gop+ Nout aorH poo+ N Nz:(H N2 = DHF Ng) = Nin cgag O HI cgrag— Nin 02D Hf o
W =-523310° <joule

This work obtained is per mole of n-octane.

9.37 (also available asaMathcad worksheet).

9.37
Given:
- _joule
T1:=298.15K P1:=10°-Pa T2:=650-K P2:=10°Pa R:=831451 K -mole
o joule o joule o joule
DG 1=-24300—— DG :=-50500—— DG :=68500——
C3H8 mole CHa mole C2H4 mole
(at 298.15 K)
o joule . joule o joule
DH :=-104700—— DH ==-74500—— DH :=52500———
C3H8 mole CH4 mole C2H4 mole
Mass Balance Table:
Species In Out y
C3H8 1 1-X (1-X)/(1+X)
CH4 0 X (1+X)
C2H4 0 X (1+X)
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Calculation of mole fractions and activities:
ycaHg(x) =12 % yCHA(X) =2 YC2HA(X) =X
1+ X 1+ X 1+ X
P P
aC3H8(X, P) :=yC3H8(X)- aCH4(X, P) :=yCH4(X) ——
10°-Pa 10°-Pa
P
aC2H4( X, P) 1= yC2H4(X)-
10°-Pa
DG =DG DGy DG DG, = 42310% *mole 1 +joule
N C2H4t VS CH4 C3H8 nn = % ]
DH '=DH DH —DH DH = 827’104 -mole_l *joule
nn - C2H4t PP cHa C3H8 nn - & ]
DG
xn -8
Ka =expl- Ka = 388510
298.15 RTL 298.15
Part (a): X :=10* (initial guess)
Given Kal pgg 1= o2 A, P -CHAX PL) o = Find( ) Xa= 1971:10
: aC3H8(X, P1)
yC2H4(Xa) = 1971+10 4
yC3H8(Xa) = 1 yCH4(Xa) = 1.971-10
Part (b):
From equation 9.1-22b:
DH
mn {1 1
Ka =Ka &Xp| - ) P — Ka = 2704
650 298.15 [ R (TZ Tl)] 650
X:=5 (initial guess)
Given Ka e = 202X, P1)-8CHA(X, P1) Xb :=Find(X) Xb = 0.854

aC3H8(X, P1)

yC3H8(Xb) = 0079  yC2H4(Xb) = 0461  yCH4(Xb) = 0461
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Part (c):
X:=5 (initial guess)
Given Ka e = 202HAX, P2) 2CHA(X, P2) Xc :=Find(X) Xc = 0461

aC3H8(X, P2)

yC3H8(Xc) = 0369  yC2H4(Xc) = 0.316 yCH4(Xc) = 0.316

9.38 (also available as a Mathcad worksheet).

9.38
R:=831451.1° G o i=- 24001241€ T 1=298.15K V= 4liter

K-mole mole
aA(XA'g A) =XAT A ag:=
ac(XA,g C) ::(1— XA)g C aD(P) = P

10°-Pa

G
Ka = exp|-—2 Ka= 2633

RT
Part (a):
xp =05 (initial guess)

5
. aD(o.5-1o Pa) ac(xa. 1) .
Given X p =Fi nd(xA)
aB'aA(XA, 1)

Xc=1-xp
XA =0.16 XC: 0.84
Part (b):

Recognizing that the partial molar Gibb's excess is in the form of the one constant Margules
expression yields:

g A=e<p(0.3-xC2) g C=e<p(0.3-x AZ)
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e Ka=aD(o.5-105-Pa) ac{xa.e(03x,7)) e =Find(xp)

aB'aA[XA , 9<p[0.3-(1— XA) 2]]

XC::].— XA
Xp = 0132 Xc = 0868
Part (c):

Mass Balance Table:

Species In Out
A 1 1-X
B 2 2-X
C 0 X
D 0 X
Assuming that D is an ideal gas:
X'RT
P=(n*R*T)V P(X) = ——
V
X:=05 (initial guess)
X:R-T-mole
aD(—) ac(X,1)
Given Ka= X :=Find(X)
agap(1-X,1)
X = 0425
NA::].—X NB:ZZ—X NC:: ND::X
XA =1-— X XC;: PD::M
\%
N 5 = 0575 Npg=1575 N = 0425 Np = 0425
X p = 0575 Xc = 0425 Pp=2633 105 *Pa

9.39 (also available as a Mathcad worksheet).
9.39

Without dissociation:

Amount_Adsorbed_Without=K1-a,
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Assuming the activity of molecular hydrogen gas is equal to the pressure of hydrogen g

Amount_Adsorbed_Without=K1P >

With dissociation:
Amount_Adsorbed With=K1-a 55+ _1-K3-a
H2 5 H

Using the equilibrium constant for the reaction H2 = 2H, the activity of atomic hydrogen
solved for in terms of the activity of molecular hydrogen:

a H2
Given Ko=—" Fi nd(a H)9
app

Using the positive root for the activity of hydrogen yields:

I 1 [ [
Amount_Adsorbed_Wlth-Kl-aH2+E-KS- K2 lapyo

Assuming the activity of molecular hydrogen gas is equal to the pressure of hydrogen g

I 1 [ [
Amount_Adsorbed_Wlth-Kl-PH2+E-K3- K2, [PH2

If the amount adsorbed varies linearly with the partial pressure of molecular hydrogen then no
dissociation is occurring. If the amount adsorbed varies as the square root of the partial pressure,
then dissociation is occurring.

9.40 (also available asaMathcad worksheet).
9.40
Since this is a combustion reaction, the reaction can be assumed to go to completio

Rxn:

can10+ B.o2+ 870 Bino=a.cont sH20+ 2P BNz
2 021 2 021 2

Given:

(The values for the Gibbs free energy of formation are given
joule at one bar. The difference in Gibbs free energy between
‘mole one bar and one atmosphere will be ignored because it is

insignificant in this calculation.)

DG C4H10 '=-16600-
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joule joule

DG ~p:=0— DG '=-394400 T:=298.15K
02 mole coz mole
._ A joule . joule . joule
DG =0=— DG '=-237100—— R:=8.31451.
N2 mole H20 mole K-mole
._ gm gm
MW '=4.12.001-—=—— + 10:1.0079-——
CAH10 mole mole
N ::1+1_3+E-E Ng:=4+ 5+E-E (Total number of moles)
2 021 2 021 2
13 0.79 13
13 0.79 13 1 13 2 0.79 13 021 2
G, =DG +—DE o+ ——DGE po+ RT|{IN[—]| +=In|— ] + —-—:In
P ORI T 02T 5 o T N2 ( | N 022 | N,
0.79 13
0.79 13 5 0.79 13 021 2
Gg:=4DG +5DG +— DG \p+RT|4IN[—]| +5In[— |+ ——'In
F co2 HO 0212 N2 N NF) 0212 | Ng
G, =-606710" +mole L joule
= N __20000-gm
6 -1 . C4H10"W
Gp=-28210" -mole = -joule C4H10

From egn 9.8-5: W oar = (GF_ GI) _ R-T-(N - N I)

Wi=N can10W molar W =-951510°  sjoule

9.41 (also available asaMathcad worksheet).
9.41

Process #1: N2(gas) = N2(metal)
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2:Ka 1
wt%nitrogen=A ‘P o where A=

H N2

Process #2: N2(gas) =2*N(metal)

_aN meta12= (H NN metal) ’

Ka2-
aN2 gas PN2
Kao, [P

/\j 2'A" N2

N meta™——————
HN
'Kaz

wt%nitrogen=B:, [P \j» where B=

HN

The empirical expression given in the problem is supported by process #2.

9.42 (also available as a Mathcad worksheet).

242
(Al Units are S0

Chapter 9

Because this is a combustion reaction, the reaction can be assumed to go to completion. This
assumption was verified using CHEMEQD where Ka at all temperatures under 4000 K weas found to be

greater than 100,

__..E

— _.._d;qr

a0
T T

Rxn: CH4 + 2*02 = CO2 + 2*H20
D Hf H20:=—241800 D Hf C02:=—393500
DGHZO::—ZZSM) DGCO =-394400

Heat capacity:

Cp cpyg(T) := 19875+ 5021:10 >-T + 1.268:10 T~ 11004-10 ° T°

Cp oo T) :=28.167+ 0.630-10 >-T - 0.075:10 > T

D Hf N2::0 DHfCH4:=—74500

DGNZ:ZO DGCH4::—505(D
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Cp ol T) i=27.318+ 062310 *T - 009510 °-T°
Cp oo T) i=29.163+ 144910 2T — 020210 °.T°

O o T) = 75464 1872:10 47 - 20142

ﬁ

Defining z as the methane to air ratio:

Mass Balance Table:

Species In Out

CH4 9.524*z (9.524*z)-X
02 2 2-2*X

N2 7.524 7.524

CO2 0 X

H20 0 2*X

Total 9.524%(z+1) 9.524*(z+1)

. __ 5

If z<0.105, then methane is the limiting reactant and X=9.524*z
If z>0.105, then oxygen is the limiting reactant and X=1

X(z) :=if(z<0.105,9524-7, 1)

CP out1(2 T) =(95242- X(2))-Cp cpya(T) + (2- 2X(2))-Cp o T)

P outaA 2 T) :=7524-Cp Nl T) + X(2)-Cp oo T) + 2:X(2)-Cp 140(T)

Cpout(z ) =Cp outa(Z. T) + Cp gtz T)

Using equation 9.7-10b:

Tout :=2500 (initial guess)
Tout

T ag(2) i=root J‘ Cp out(z T)dT + DHm o5-X(2), Tout
298.15

z:=001,002..1
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Chapter 9

2500

2000 [~

T (2 1500 —

1000 [~

500

0.5
z

0.6

The solution is approximate because the range for the heat capacity of methane used is only

valid between 273 K and 1500 K.
9.43 (also available as a Mathcad worksheet).
9.43:

From eqn 3.3-4:

_dT1m T2
-W=Qq T (for a Carnot cycle)
dw=dQ T1i7 T2
-dw=dQ -
T
1
T
2
T,-T
1 2
-w= dQq
T1
T1

dQ1=Cp gyt dT 1

T .4(2)
a1 - 20815
W carnot(2) =- B —
1

208.15

.Cp out(z,T ]) dT 4
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. -W carnot(2)
Wobtained ~grpot( 2) = ———— (Dividing by 9.524 gives the work per mole of air)
9.524

The work obtained by the Carnot cycle is plotted versus z at the end of Problem 9.44

9.44 (also available as a Mathcad worksheet).

9.44
Nout po :=7.524 Nout ~y4(2) :=9524-z— X(z)  (from the mass balance table)

Nout ~5o(2) :=X(2) Nout 1o0(2) =2:X(2) Nout 0x(2) :=2-2X(z) N(2z):=9524-(z+1)

Nin cpg(2) :=9.524-z Nin =2 Nin o :=7.524
T :=298.15

Partial Molar Gibb's Free Energy:

Nout N2
Gout \jo(2) :=DE po+ R T:In
N2 N2 N(2)
Nout 02(2)
Gout (2) =D& o+ RTIN|———M—
02 02 N(2)

Nout (2)
H20!
Gout (2) =D +RTIN|———
H20 H20 ( N(2)
Nout (2)
co?2
Gout (2) =D +RTIN|——
Cco2 (607 ( N(2)
Nout (2) Nin
CH4 . N2
Gout (2):=DC +RTIN|———— Ginpno(2) '=DG no+ RT:In
CH4 CH4 ( N(2) ) N2 N2 N(2)
Nin (2) Nin
. CH4 . 02
Gin (2) =D +RTIN|———MM— Giny(2) =D& ~p+ R T:In
CH4 CH4 N(2) ) 02 02 N(2)

From eqgn 9.7-16b:

Out1(z) := Nout \p-Gout No(2) + Nout 55(2) “Gout op(z) + Nout cys(z) Gout pys(2)
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Out2(z) := Nout pyo(2) ‘Gout oo (2) + Nout ¢p(Z) Gout cop( 2)

In(z) := Nin o Gin N2(2) + Nin 9p°Gin op(2) + Nin opy4(2) G s 2)

W Fudcal(2) = Outl(z) + Out2(z) — In(2)

-W kel (2)
9.524
The work obtained has units of joules per mole of air.

Wobtained FuelCdl (2) =

5
4 10 T T T T

DAD4ESTI07

Wabtained oo 0]

“Wobitaited F‘uelCe]l( )

2287308 107

9.45 (also available asaMathcad worksheet).

9.45

Given:

DGpqC) =~ 108700-% DGpg = 77110-% DG i=- 131170-%
DGy :=-186020-% DGy ::-32450-%

R:=8:31451. 1€ T:1=20815K

K-mole
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Part (a):
- _ PV N
DGrX”AgCI "DGAg"'DGCI—DGAgCI DernAgC|-5.464 10" *mole ~ cjoule
DGxn
- AgCl B -10
Kagcl --W(-—R.T K agcl = 2676:10

The solubility product given in illustration 9.3-2 is 1.607E-10. This experimental value is of the
same order of magnitude as the theoretical value calculated above.

Part (b):
D Gmn TlCl::DG-n-I— DGCI_DGT|C| D Gmn T|C|: °j0uIe
D Gxn
3 TICl )
KTicl --EXF’(-T KTl =

The solubility product given in illustration 9.3-2 is 1.116E-2. This experimental value is two orders
of maanitude areater than the theoretical value calculated above.

9.46 a) From Table 9.1-4, we have that

DG agt = 77.11£ and DG° .. =- 74]_991£
—/ A mol —/ S04 mol
Also, from Perry's Handbook,
kJ
o) —_
DG/ ag,s0, = 614.21m

Now consider the reaction

Ag,S0,=2Ag" + SO,

The chemical equilibrium relation for this reactionis

wrf - (27 77110- 741991- (- 641210)) —ex p( 53439 j

K =e -
¢ 8314" 29815 8314 29815

. 10 a/zx +Ag0;-
= exp(- 215580) = 43388 1010 =29 =4 = g°
aAgSO4
Now from egn. (9.2-7), assuming the simple Debye-Hickel equation
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1
InK, =InK? +(n, +n. ),z |a,’Eé z2 M,

1
— o - el
= InK? +(2+ DL 2|a\/2(MAg+ +AMg, )

1
— o . L
=InkK? +3 Za\/z(MAg++4MSO;)
1
BUt M. == M, . otha

3 M | M__ . 3
ik, = ke soaEar, =inCae ] Yo iy )
2 A9 (L molal) 9
This hasthe solution
M =8224"10°M and v =a1127 10409
Ag liter S04 liter
Therefore,
2 3
K, :(8.224’ 10'4—'?"0') 4112”1049 _ 57817 10 10(—@')
liter liter liter

b) Note that there is a error in the problem statement of the first printing of the
text. The solution should be 0.5 M CuSO, and saturated with AgSO,. The The
half-cell reactions are

Ag"+e® Ag(s) forwhich E° =+080 volts

Cu(s) ® Cu** +e forwhich E° =-034 volts

Therefore for the reaction

2Ag* +Cu(s) ® 2Ag(s) +Cu™  E° =+080- 034 = 046 volts
Next we have from egn. (9.9-7) that

=E°- Em—(acuﬁ) =E°- Eln—(aC“H )0.5 —po. BT\, (Mg, @, )Cu”)o.s
2F 2 F F M (9y) )
(aAg+) (aAgf) ( Agt\9t)ag
05 05
=0.46- 0025 |n(MCU“) +in{G)ar
(MAg+ (9:) ey

05 05
= 046- 00257 1009, Ge)aym
(MAg") (gi)cu"+

To proceed further, we have to compute the solubility of AgSO, in the 0.5M
CuS0;, solution. For this and all the calculations that follow, we will use the fact
that since the CuSO,4 concentration is so much higher than that of AgSO,4, we will
neglect the contribution of AgSO, to the total solution ionic strength. Also,
because of the high ionic strength of the solution, we will use Egn. (7.11-18) to
compute the mean ionic activity coefficient, as follows:
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1178z, W1
Ing, =- +03/
1441

wherel = =(22° 05+2%° 05) = =(2+2) =2
2 2

Therefore,
_oarsp N2
ING)ags0, =~ =+ 08 2=-07801
_oaare N2 .
NG)ags0, == =75 +03 2=-21602

So now we have

InK, =InK? +(n, +n_)(- 0.7801)
=InK? + (2 +1)(- 07801)
=-215580- 2.3403 = - 238983

0

M VM ?
K, = 41793 10'11:( i) Maoi_ (May) 05
(1 molal)® (1molal)®

and

,4.1793' 101
M, = | ————— =91425" 10"° molal
¢V o5

(0.5)0'5
(912425" 10°°)
= 046- 0.0257(11256 - 10801+ 0.7801) = 046- 02816 = 0178 volt

E =0.46- 0.0257[In +05" (-21602)- 1° (- 0.78013J

Since this is positive, it is the potential that is produced by the cell (rather than
must be applied) for metallic silver to form.

9.47 (also available asaMathcad worksheet).

9.47
" _joule
Given (Ka and Hrxn were calculated on CHEMEQ): R:=8.31451 K -mole
Ka:=3450  Hnn :=- 1030401°4€ P:=10"Pa T:=600K  Ni:=2mole
mole

Mass Balance Table:

Species In Out y

C6H6 1 1-X (1-X)/(2-X)

C2H4 1 1-X (1-X)/(2-X)

C6H5C2H5 0 X X/(2-X)
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aC6HB(X) =1-X aC2H4(X) =1-X aCBH5C2H5( X ) =X
2-X 2- - X
aCBH5C2H5( X )

KaX(X) =
) aC6H6( X) -aC2H4(X)

X:=09 (initial guess)
Given KaX(X)=Ka X :=Find(X)
X = 0.946 XX :=X-mole

Assuming the contents of the reactor behave as an ideal gas:

Vi:

_Ni-RT . _Nf-RT
= 5 Nf :=(2- X)-modle Vf = = Nf = 1.054~mole

An energy balance on the reactor yields:

Vf
Q:zXX-ern+J PdV
Vi

Q=-1031 105 sjoule (Heat must be removed because Q is negative)

9.48 (also available asaMathcad worksheet).

9.48

Part (a):
Using equation 9.1-20b:

DG
In(Ka)=-
RT

d [ 5738 017677\ _DHnn
dT

RT R RT2
57.33_DHmxn

RT? RT?

D Hhn=57.33

mole
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Part (b):
DGyn(T) ::57330-%_ 176.77-( joule ) T
mole mole K
DG y(T)
Ka(T) i=ep|-—_~
RT
Mass Balance Table:
Species n
N204 1
NO2 0
Total 1

Calculation of mole fractions and activities:

1-X

y (X) =—=
N204 1+ X

10°-P:
aNoz(X, P)2
KaX(X,P) i=——= "~
anzo4(X.P)
X:=07 (initial guess)
Given Ka(T)=KaX(X, P)

Xbgqi= X(323.15-K, 104.pa)

y NOZ(Xb 0_]7) =091

y N204(Xb 0_]7) =009

Part (c):

XCp1:= X(473.15-K, 104.pa)

Chapter 9

R:=831451. 1€
K-mole

Out
1-X
2*X
1+X

2-X

y (X) =——

NO2 X

anoAX, P) =y Nop(X)-

X(T,P) :=Find(X)

Xb 1 := x(32315K, 10°.Pa)
y Noz(Xb 1) = 0.605

Y N20a(Xb q) = 0.395

Xcq =x(47315K, 10°P3)

y NOZ(XC O.]J =1 y NOZ(XC]J =099

Y Naoa(X€ g) = 1.246¢ 104

y sz(xC]) = 124310

3

P
10°-

Xb 10 =x(32315K, 10°P3)
Y No2(Xb 10) = 0.261

y N204(Xb 10) =0.739

Xc 19 =x(47315K, 10°P3)
y Noz(XC 10) = 0988

y N204(XC 10) = 0012
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9.49 (also available asaMathcad worksheet).

9.49
Given:
- joule — joule
DH :=-58620—= DS, =-138.2
N mole N K-mole

Ta:=298.15K Tb :=37315-K P1:=10"Pa
Mass Balance Table:

Species In Out

M 2 2-2*X

D 0 X

Total 2-X

Activities, Equilibrium Constant, and Equilibrium Expression:

Chapter 9

R :=831451._Jo4€

K-mole

P2:=10"-Pa P3:=10°Pa

y

(2-2°X)/(2-X)
X/(2-X)

ap(x,p) =22 2X (P ap(X,P) =2 [
2-X \10°P 2= X 110°-P.
_ _ —Dern(T)
DGy y(T) :=DH ;= TDS Ka(T) = ep| ————
. aD(X, P)
Kax(X, P) —
aM(x! P)
X :=0.999 (initial guess for solver)
Given KaX(X, P)=Ka(T) X<1 DegreeOfDimerization( T, P) :=Find(X)
Part (a):

DegreeOfDimerization( Ta, P1) = 0.953
DegreeOfDimerization( Ta, P2) = 0.985

DegreeOfDimerization( Ta, P3) = 0.995
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Part (b):

DegreeOfDimerization( Tb, P1) = 0.547
DegreeOfDimerization(Th, P2) = 0.842
DegreeOfDimerization( Th, P3) = 0.949

Part (c):

Nomenclature

N = initial number of moles before dimerization

Nm = number of moles of monomer after dimerization = N-2X
Nd = number of moles of dimer = X

Total # of moles = N-X

yM=(N-2X)/(N-X)

yD=X/(N-X)

P = (Nm + Nd)*R*T/V

P=(Nm+ Nd)-(R\'/T)=(Nm+ Nd) (N-RT)_(N-X) (N-RT)

N \% N \%

yd  _  (X(N-X))

Ka= >f P of P which has the solution
e o
1 bar
P
4-Ka——
N N ( 1bar) or X1l | 1
i P N akal—P )41
4Ka: (_) +1 Toal
1 bar,
and
M=1_ §=o,5+ 05 ’ 1 =05| 1+ 1
N N aka|—F V41 aka|—F V41
1 bar, 1 bar,
P=| 05| 1+ | ! ANRT) where - (DHmn — TD Sxn)
P v Ke=ep
4Ka|— | +1 RT
1 bar

Note that the EOS goes to the ideal gas limit as Ka goes to zero, and 1/2 the ideal gas limit when
Ka goes to infinity (all dimer). Also, the equation of state will have an other than linear dependence on
temperature due to the temperature dependence of Ka.
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9.50 (also available asaMathcad worksheet).

9.50

Given (All Units are Sl):

T1:=267 T2:=255 PL g 1=210° P2 opyq 1= 1510° R :=831451
Activities: b
_ _ _PcHa
apydrate =1 appo=1 acpa(P cha) = -
Part (a):
, Ahydrate ,

a0 acHa(P cHg)
DGy (TL P1 pyg) = 665-10°

DGy (T2 P2 yg) = 5742:10°

Part (b):
DH yn 1=10° DSy, =10 (initial guesses)
Given DG (TLPLCHA)=DH = TL1DS g DGppy(T2,P2 o) =DH gy = T2DS
ans:=Find(DHrm,Dern) DH g 1= ans, DS i=ans;
__ 1A __
DH py = ~1.35710 DSy = ~75.737
Part (c):
DH
mn {1 1
Ka '=Ka[ Pl exp| - 1 R — Ka = 0044
273 ( CH4) [ = (273 Tlﬂ 273
P273 cpyq 1= 10° (initial guess)

- . 100
P273 oy = 228810
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9.51 Thereactionsare
i40 4, jBU B, and i4+;BU 4B,
The overall mass balance on species 4

initial number of o o o o [. 0
= = a lNAi + a. a lNAiBj = a lNAi +la NA:‘B/
i i i j

" molesof 4,

Overall mass balance on speciesB

_initial number of o o o o . o
? "~ molesof B, - ]NBf+a/- QJNA,B,‘a/ J NB,+ai. Nys
At equilibrium

(_;Ai - iEAl :O, (_;B[- - iEBl = 0, GA[B/ - (i(_;Al +j631) :O,

and

1

Grota = é‘ NA[ EA[ + é NB/’(_;B/ +é‘ é‘ NA[B/C_;A[BJ'
i i o ’
Atequilibrium 4G, =0 withrespect to each extent of reaction.

_ o — o — o o
dG total _aGA,dNA,'i'aGB,dN B, taaéa B/dNAB/

cF- - - - - - - - -—"—-- - - - -~ )
o — o — o o — _

lta N, 06, YA NpdGs T ANapdGap =0 |

C - - - - - - - - - - N ———

0 by the Gibbs-

Duhem equation
Also, using the equilibrium equations
G = 0= QiGqdN 1+ iGdNp +A A (iG +j581)dNA‘B_/-
=0=G @ idN ,;+Gyu@ idN  + 4 iG,Q dN 5 * a/Gna dN 45,
i J

= 5A1|:é (idNAi +id dN 45, ﬂ + 631{5 (J'de +ja dNA,.Bj):|

i J J

=GN, + GyydN,

[ﬂGtotalj ) EA _A,-' Also (ﬂGtotaJ) o EB = _B,-
1T]VVA NgT, P 1T]VVB Ny, T, P
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9.52

Therefore G,, =G, and G, =G, (1)
Also, we have that, by definition

(—ﬂ G") = RT(—W n/i j @)
1P J; 1P J);
Thus, integrating between any two states, we have

A(T.B)

G/(T, Po)- Gi(T, B) = RTIn"L 8

(3)

Now using Egn. (3) with Egns. (1), and recognizing that Egns. (1) must be
satisfied at a// T and P implies that

f,(T,P)=f (T, P) and fy(T,P)=f,,(T,P)

Alternatively we could integrate Egn. (2) between P =0 and the pressure P and
note that Eqn. (1) must be satisfied at all 7and P. Thisimplies that

SuP) [P
SaP=0 f,(P=0

but as P® 0 only 4 will be present (LeChatelier's principle)
P f,(P=0)=f,(P=0) sothat f,,(P)=f,(P).

A4 +4,U 4,
A1+AnU An+1
€etC.
Total moles N+ 2No + 3N e b + 0 N
= = e n oo = 1 .
° of 4y initialy Tt T TR " a i

o . o .
=N.a i% = N,Q ix,where N, = total number of molesin system
T

N, o
p %= ix;
N, am

Now b:éxibi :éixiblzbléixi and

_ 0o o _ o o . . _ o . \?
a=aa xl.xﬂ/ail.ajj =aa X, jx a, = al(a lxl.)

which implies that
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_(NoY (Mo
€) a—a,(NT] andb_bl[NTj

Also
K=K = ajs1 _ f % (P bar)z _ f x4 (1 bar)
a;a £ fx;x(P/1bar) ffoxx P
Then
ffP x f i _ x ;x K

f j+l xj*le f /f 1P xj+1
For the monent we will assume that

AP X

f j+1 x./-le

=a

isindependent of the index j and then show that thisisindeed the case. Then

2 _
xak=x,

02K = x3= (ak)x, = (xa K)xlzaK = )613(aK)2
Similarly
x, =xj@K)’
— J-lj
xX; = (@aK) “xf
(S (o
o . o . i-1 i
Then Ny = NgQ ix; = No@ i(Ka)" x1 .
Also ax;=1=3 (Ka)y 'x{ =1

Now from the properties of geometric sums

¥
S 1
ad=r"—
i=0 1- q
we have
33‘ -1_j 33‘ i-1 g P X
a (Ka)" "x{ =x,;a (Kaxl)-" =xa (Kaxl)-’ =— 1 =1 *)
j=1 j=1 j=0 1- Kaxy
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so that
1
x, =1- Kax, or x;(1+Ka)=1; Ka=—-1
X1
Also
¥ ¥ ¥
o . i1 d o i d 1 1 S . -1
YRNYT W YA R
i=0 da\;zo dg\l- q @- Q)Z i=1
so that
$ Nl S 1_ S i1
ai(ka) x =xyai(Kay) " =xa i(Kax)
i=1 i=1 i=0
2
Ny N _ Ay ) _1p
(1' Kaxl)2 NO X1 1- Kaxl X1

from Eqgn. (*) above

2
N. 1 N, N,
P TT:_ and b:bl(N—O):xlbl; a :al(N—Oj :xlzal

0o M T T

For the van der Waals equation of state we have

RT a _ NRT N

P= - —_—=
V-b v? V-Nb V
and
B 23 X a;
Inf, =—2_in(z - B)- UL
Z- B RTV

which here becomes

o] .
iB; 2Q xijay iB 2ia; o
Inf, = -In(Z- B)- = -In(Z - B)- ! X ;
' Z-B ( ) RTV. Z- B ( ) RTKa]"
/B, 2ia; N,
Inf,=—'—- In(Z- B)- —L 0
Z- B RTV Ny

so that
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Infjf1

=Inf . +Inf - Inf
!
=(+1-(+D)
2a, N, . ,
—L 0 (+1- (j+1
RTKNT(] (j+1)
=-In(Z- B)
ff.__1 _RTP
fu Z-B V-b

BlB +(-1- 1+1)In(Z- B)

z-

or
) PEfy _ RT _ RT __ NpRT  _
fuo V-b V-b(No/Ny) NiZ- Neh
which isindependent of the index j as was assumed. Now that we know that
aisindependent of theindex ;. We can use
NrRT RT RT
x(l+aK)=1and a= L = =
NrV- Nopp V- (No/Nghb V- xib
RTK
x| 1+ =1b x,(V- xb,+ RTK) =V - x;b,
V- xb
-xtb,+x,(V + RTK+b)- V. =0
byt - x(V+RTK +b)+V =0
(V+RTK+bl)i\/(V+RTK+ b)Y - 4V
(c) X = == = (**)
2by
Also
2
p= RT ) L: RT o g (***)
V-b v? V-xp V?

Equations (**) and (***) are the set which forms the equation of state for the
associating van der Waalsfluid. Noticethat to solvefor ' weneed x; which

depends on V ; therefore, the equation is no longer cubic.
Note that if the fluid is non-associating, then K = 0 in this limit

_Wrb)E VP VB (v eb)- (- b)

X1
2b 2b
so that
_RT a
V-t v

which isthe usual van der Waals equation.
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9.53 The description of HF containing systems is described in the article “ Collection of
Phase Equilibrium Data for Separation Technology” by William Schotte in Ind.
Eng. Chem. Process Des. Dev. (1980), 19, 432-439. By a careful examination of
the density and other data, he proposed that HF associates in the vapor phase
according to the reactions

2HF U (HP 2
6HF U (HP,
8HFU (HP)
and, over the temperature range of 195 to 240 K, the equilibrium constants are
K, =12 = expy 24204, 241456}
/i L
Ky=Ls = exp 211009 . 69.7292}
N L
Ky = 488 = exp 252245 834689}
J1

where K hasunits of (atm)™*, and /; isthe fugacity of speciesi. Next, Schotte
used a (questionable) argument by Tamir and Wisniak [Chem. Eng. Sci (1978), 33,
651] that the fugacity coefficients f 6 =f /xiP of the monomers, dimers,

hexamers and octamers are all aproximately equal, and can be calculated from the
fugacity of pure HF. This alleviated the need to specify the molecular parameters
for the association complexes. Using this model, Schotte obtained very good
agreement for the association factor (density) of pure HF and an HF-Freon mixture
using a simple equation of state such as Peng-Robinson (which must be solved
iteratively since chemical equilibrium is superimposed on the phase equilibrium
calculation).

An aternative, instead of using the Tamir-Wisniak assumption of equality of
fugacity coefficientsisto use the model in Problem 9.52

a; = j%a, and b; = jh

and then treat HF as a chemical reaction system with HF, (HF),, (HF); and
(HF)g. Similarly, HF + non-associating component would be treated as a five
component system: non-associating component + HF, (HF),, (HF),; and (HF),.

In each of these cases the compositions of the HF components change as the
equilibrium changed. The problem with this proposal is that the a parameters for
the association complexes become unredlistically large. For example,
ag =64" a,. Consequently, no completely theoretically-correct model for the HF

associating system exists, though the models now in use are probably satisfactory
for engineering calculations.
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